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Overview 
With the Igor Filter Design Laboratory you can design lowpass, highpass, bandpass, notch, 
differentiator, Hilbert, window, and arbitrary Finite Impulse Response (FIR) filters and “analog 
prototype” Infinite Impulse Response (IIR) filters. 

 

The Compare Filters window overlays the responses of two filters for easy comparison. 
 

 
 
You can export the filter coefficients as an Igor wave or as a text file in several formats. 

You can incorporate all of IFDL into your existing Igor experiments, or incorporate only the 
portion needed to use an exported filter, simply by adding an #include line to one of your 
procedure windows. See “Adding IFDL to an Existing Experiment” in Chapter 2. 



Chapter 1 — Getting Started 

 
3  

Installing IFDL Version 4 
IFDL 4 works with the Macintosh and Windows versions of Igor Pro version 4.06A or later. Igor 
4.09A or later is recommended, and updaters to that version are included on the CD and 
available as a free download at www.wavemetrics.com. 

Installing IFDL for Macintosh 
☞ If installing from the IFDL 4 CD, insert the CD into your CD-ROM drive and open it with the 

Finder. If installing from a downloaded ifdl.dmg file, double-click that file to view the contents 
with the Finder. 

Installing IFDL for Igor Pro 6.1 or Later 
☞ Locate the ‘Igor Pro 6 User Files’ folder choosing ‘Show Igor Pro User Files from Igor’s Help 

menu. 

☞ Drag the files in the ‘copy to Igor 5 or 6’s Igor Extensions’ folder into the ‘Igor Extensions’ folder 
inside your ‘Igor Pro 6 Users Files’ folder.  

☞ Drag the ‘IFDL v4 Procedures’ folder into your ‘Igor Pro 6 Users Files’ folder.  

Installing IFDL Extensions for Igor Pro 5 and 6.0 
☞ Using the Finder, open the Igor Pro Folder where you installed Igor. 

☞ Drag the files in the ‘copy to Igor 5 or 6’s Igor Extensions’ folder into the ‘Igor Extensions’ folder 
inside your Igor Pro Folder. 

☞ Drag the ‘IFDL v4 Procedures’ folder into your Igor Pro Folder.  

Installing IFDL Extensions for Igor Pro 4 
☞ Using the Finder, open the Igor Pro Folder where you installed Igor. 

☞ If you have Igor Pro 4 Carbon (the Mac OS X-native version of Igor) installed, drag the files in 
the ‘copy to Igor 4’s Carbon Igor Extensions’ folder to your ‘Igor Extensions’ folder inside the 
Carbon Extensions and Support fo lder. 

☞ If you have Igor Pro 4 “Classic” (the Mac OS 8/9 version of Igor) installed, drag the files in the 
‘copy to Igor 4’s Igor Extensions’ folder into the ‘Igor Extensions’ folder ins ide your ‘Igor 
Pro Folder’. 

☞ Drag the ‘IFDL v4 Procedures’ folder into your Igor Pro Folder.  

Completing the Installation 
☞ Drag the ‘Welcome to IFDL’ experiment file and IFDL.pdf to your hard drive. 

☞ This completes the installation, so you may now eject the CD-ROM. 

☞ Quit Igor Pro if it is running, then open the ‘Welcome to IFDL experiment’. Now skip ahead in 
this manual to the “Quick Review of Digital Filter Design” section. 
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Installing IFDL for Windows 
☞ If installing from the IFDL 4 CD, insert the IFDL CD-ROM into the CD-ROM drive. Setup.exe 

will automatically start: 

 

If installing from the IFDL4SETUP.exe downloaded file, double-click it to start it. 

☞ Enter the location of the Igor Pro Folder. The default location is shown in the installer.  
☞ Click ‘Unzip’. 
☞ This completes the installation, so you may now eject the CD-ROM. 
☞ Locate the installed files by choosing Igor Pro Folder from the Start menu:  

 

☞ Quit Igor Pro if it is running, then double-click the Welcome to IFDL.pxt experiment in the Igor 
Pro Folder. (The installer also copied the IFDL PDF manual into this folder.) 



Chapter 1 — Getting Started 

 
5  

Quick Review of Digital Filter Design 
Before we turn you loose with IFDL, perhaps we should review a few things…. 
Digital filters generally come in two flavors: Finite Impulse Response (FIR) and Infinite Impulse 
Response (IIR) filters. IIR filters are new in IFDL version 4. 
“Finite Impulse Response” means that the filter’s time-domain response to an impulse (or 
“spike”) is zero after a finite amount of time: 

Response=0 Response=0

 Impulse
 Filtered Impulse

        (time-adjusted to be non-causal) 

 
Digital implementation of an FIR filter uses adders, multipliers, and delay elements connected 
without feedback (only feed-forward): 

 
Where, 

H(z) is the filter’s transfer function expressed as a Z transform, 
yi = … is the filter output expressed as a “difference equation”, 
xi-n is the input signal delayed in time by n sampling intervals, 
z-n indicates a delay of n sampling intervals, 
a0, a1, etc are multipliers, 
and ! indicates addition. 
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The response of an IIR filter, however, continues indefinitely, as it does for analog electronic 
filters that employ inductors and capacitors: 

Response continues indefinitely

 Impulse
 Filtered Impulse

 

Digital implementations accomplish this response by connecting delay elements in a feedback 
configuration: 
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FIR Filter Design 
A Finite Impulse Response (FIR) filter is a finite length, evenly spaced time series of impulses 
with varying amplitudes that is convolved with an input signal to produce a filtered output 
signal. 
The impulse amplitudes are termed “weighting factors” or “coefficients”. These impulse 
amplitudes are identical to the filter’s response to a unit impulse. 
FIR filters are valued for their completely linear phase (constant delay for all frequencies), but 
they generally need many more coefficients than IIR filters do to achieve similar frequency 
responses. Consequently, physical digital realizations of FIR filters are usually more expensive 
than the corresponding IIR filter. 

IIR Filter Design 
A Infinite Impulse Response (FIR) filter is a set of coefficients or weights a0, a1, a2,… and b0, b1, 
b2… whose values and use depend on the digital implementation topology. Unlike the FIR filter, 
these coefficients are not the same as the filter’s response to a unit impulse. 
The filter topology can be mathematically expressed by one or more “difference equations” that 
compute the output value yi from previous input values xi, xi-1, xi-2,… previous intermediate 
values wi, wi-1, wi-2, and previous  output values yi-1, yi-2,…. 
IIR filters can realize quite sophisticated frequency responses with very few coefficients. The 
drawbacks are non-linear phase, potential for numerical instability (oscillation) when realized 
using limited-precision arithmetic, and the indirect design methodology (frequency 
transformations of conventional analog filter methods). 
IFDL implements two IIR topologies: the Direct Form I (see previous page) and the generalized 
Cascaded Bi-Quad Direct Form II: 
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The Cascaded Bi-Quad Direct Form II implementation works better than the Direct Form I when 
the filter order approaches 10 because it avoids computing differences of numbers with wildly 
different magnitudes. (A 10th order IIR filter uses 22 terms.)  

Cascaded Bi-Quad Direct Form II also works better when limited-precision (say, 32-bit) 
hardware is used. It is a popular design for audio and video processing using 32-bit integer 
arithmetic. 

Filter Design Goals 
The goal of filter design is to determine the number and values of the filter coefficients which 
produce the desired frequency and phase characteristics. 

You can specify desired filter characteristics using controls in IFDL’s “design graphs”, and IFDL 
will: 

• compute the required coefficients 
• display the resulting filter characteristics 
• (optionally) automatically apply the filter to your data 

IFDL stores the computed filter coefficients in an ordinary Igor “wave”. 

The IFDL documentation refers to this representation of a filter as a “coefficients wave”, a “filter 
coefficients wave”, or a “filter wave”. 

In IFDL, the wave named “coefs” contains the fi lter coeff icients for the most 
recently des igned FIR f ilter.  

The wave name “IIRCoefs” contains the most recently des igned IIR f ilter.  

You can save these filter coefficient waves under different names for export to another Igor 
experiment. 

Nyquist frequency = 1/2 sampling frequency 
This manual occasionally refers to the “Nyquist frequency”; this term refers to one half of the 
sampling frequency. 

The sampling frequency determines the time interval between consecutive signal samples and 
between filter coefficient impulses. For example, a sampling frequency of 1000 Hz results in a 
Nyquist frequency of 500 Hz. 
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The Nyquist frequency is the highest frequency that can be adequately recovered from the 
sampled signal — higher frequencies will be erroneously recovered as “aliased” signals at some 
frequency below the Nyquist frequency. For this reason, the frequency response of an FIR filter 
is considered to end at the Nyquist frequency. 

Consult a digital signal processing reference such as [Elliot] or [Ramirez] for a more thorough 
explanation of aliasing. 

About Phase and Digital Filters 
One of the primary reasons FIR filters are so useful is that it is trivial to produce zero-phase shift 
filters: simply keep the coefficients symmetric about the t=0 axis, and there is no phase shift (or 
completely linear phase shift caused by delaying the filter output). 

All of the IFDL FIR filters produce zero-phase shift filters, except the Hilbert filter which is 
designed to produce a -90° phase shift. 

IIR filters, on the other hand, do produce nonlinear phase shifts. This is a result of the filters’ 
recursive nature. The Bessel IIR filter was added to IFDL because it has nearly linear phase shift 
in the pass band. 

Whatʼs Next 
Before using IFDL on your own, we suggest you take the IFDL Guided Tour, in the next chapter. 

“The beginning is the most important part of the work.”  
— Plato, The Republic 
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Overview 
This Guided Tour will step you through most of the features of IFDL. We’ll skip some details 
that are covered in Chapter 3, “IFDL Reference”. 
Follow along as we use IFDL to: 

1) Add IFDL to an existing Igor experiment. 
2) Design a notch filter and apply the filter to data already in the experiment. 
3) Save the notch filter to compare with another filter, and for use in other experiments. 
4) Design an arbitrary response filter to compare with the notch filter. 
5) Compare the two filter designs. 
6) Remove IFDL entirely from the Igor experiment. 
7) Import the notch filter to another (new) experiment and use it without adding all of the 

IFDL procedures. 

☞ The symbol to the left of this paragraph indicates that you should perform the operations 
described in the associated paragraphs. You should follow these steps carefully so that you will 
stay synchronized with the tour, and subsequent steps will work as expected.  These 
instructions assume that you are familiar with the essentials of using Igor. 

Adding IFDL to an Existing Experiment 
After installing the IFDL extension and procedures (see “Installing IFDL” in Chapter 1), you can 
add IFDL 4 to any existing experiment by typing: 

#include ":IFDL v4 Procedures:IFDL" 

in any procedure window. 

☞ To start the Guided Tour, open the Welcome to IFDL experiment by double-clicking it. 

☞ Open the procedure window, and type #include ":IFDL v4 Procedures:IFDL" on its 
own line at the top of the window: 

 

☞ Click on the Compile button at the bottom of the window . 
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If IFDL is correctly installed and you typed correctly, the compile button will disappear without 
show in any error dialog, and there will be a new IFDL menu in Igor’s menu bar. 

☞ Close this procedure window (and any other procedure windows that are open). 

Designing an FIR Lowpass Notch Filter 
☞ Select ‘Set IFDL Parameters’ from the IFDL menu to display the SetIFDLParameters dialog. 

NOTE: If the IFDL extension is not installed correctly, you will see a demo mode alert. You 
should ensure that the IFDL extension was correctly installed into the Igor Extensions 
folder (see Installing IFDL in Chapter 1), and restart Igor. 

 

☞ From the ‘get sampling frequency from:’ popup, choose the ‘myData’ wave that we’ve included 
in the Welcome to IFDL experiment. 

IFDL uses the wave’s X scaling to set the sampling frequency used to design filters. This matches 
the range of the filter design parameters to the data’s frequency range. The myData wave’s X 
scaling corresponds to a sampling frequency of 5000 Hz. 

You can also set the sampling frequency by choosing ‘_value entered manually_’ and entering 
“5000” directly in the ‘manual sampling frequency, Hz’ field. 

☞ Choose 1024 from the ‘frequency resolution (# of FFT values)’ popup menu so we can see more 
detailed frequency response graphs. 
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☞ Leave the other values at their defaults, and click ‘Continue’ to change the IFDL parameters. The 
IFDL control panel will be displayed: 

 The IFDL panel provides 
access to most of IFDL’s 
features. 

☞ Choose ‘myData’ from the 
popup menu near the bottom 
that is currently showing 
‘Step’ (the wave selected here 
will have the current filter 
design automatically applied 
to it if the ‘Auto Apply’ 
checkbox remains checked). 

☞ Choose ‘Freq Response’ from 
the popup currently showing 
‘Time Response’ so that the 
result of the applied filter will 
be shown as a frequency 
response plot. Leave the dB 
(deciBel) checkbox checked. 

Click to change the
Filter Design Graph

Apply the current design to
data and display the result

Save the current filter design
Compare two filter designs

 

☞ Click the ‘2 Band Notch’ filter design button to bring up one of the filter design graphs. 
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We chose this filter to remove a strong power-line component from the sample data, whose 
frequency response looks like this: 

-160

-120

-80

-40

0

10008006004002000
Hz

 myData Freq Response

 

We will design a high-pass filter to recover the signal at about 200 Hz, with a notch at 60 Hz to 
reject the power-line signal’s fundamental frequency. We’ll set the high-pass cutoff frequency 
high enough to reject the 120 Hz harmonic of the power frequency 

☞ From the ‘Filter Type’ popup, choose ‘high pass’. 

☞ Set the Notch Frequency to 60, or drag the vertical bar to the 60 Hz position. 

☞ Set the End of First Band (the end of the reject band) to 150 Hz, and the Start of the Second Band 
(the start of the pass band) to 175Hz. 

☞ Set the Number of Terms to 401 (this large number is needed to keep the passband response 
relatively flat). 

☞ Leave the other values alone, and click Compute Filter: 

 The frequency response of 
the designed filter is shown, 
in decibels, in the top 
graph. Notice the deep 
notch (-94 dB) at 60 Hz. 

 The frequency response of 
the data and the filtered 
data are displayed together 
in the ‘Filtered myData’ 
graph, also in decibels. The 
60 Hz and 120 Hz harmonic 
are absent from the filtered 
signal, and the 200 Hz 
signal remains. 
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☞ To see better detail, drag 
out a marquee in the 
“Filtered myData” 
window from 0 to 300 
Hz, click inside and 
choose ‘Horiz Expand’: 

 

-150

-100

-50

0

300250200150100500
Hz

 myData Freq Response
 Filtered myData

 

Notice how the 60 Hz interference and the 120 Hz harmonic have been suppressed by as much 
as 70 dB. The signal to be recovered is barely affected. 

☞ To see the time response of the filter, choose “Time Response” in the IFDL control panel, and 
click the ‘Apply Design to’ button. Use the marquee to horizontally expand the graph: 

-1.0
-0.5
0.0
0.5
1.0

0.3350.3300.3250.3200.3150.3100.3050.300

 myData
 Filtered myData

 
Here you can see that the filtered signal (solid line) doesn’t have the 60 Hz contamination that 
causes myData (dashed line) to wander. 

Saving the Notch Filter Design 
The current FIR filter is always stored in a wave named “coefs”. New FIR designs will overwrite 
the existing design. 

To compare this filter with another FIR design, or to use it in another experiment, we must save 
it as an Igor binary wave under another name. 
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☞ Click the ‘Save Design...’ button in the IFDL panel to get this dialog: 

 

☞ To use the design within the current experiment, keep ‘Another Igor Wave’ selected and click 
‘Continue’: 

 

☞ IFDL proposes a name based on the design type. You can change this, but we’ll use the default. 
Click ‘Continue’. 

You won’t see any change, but this wave will be available later so we can compare another 
design to it. 

Now we’ll also save the design as an Igor Binary file for use in a new experiment: 

☞ Click the ‘Save Design...’ button again: 

 

☞ Choose ‘Igor Binary File’ and click ‘Continue’: 
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☞ Click ‘Continue’ and save the file to your hard disk: 

 

Arbitrary FIR Filter Design 
While most of the FIR filter design graphs work similarly to the 2 Band Notch design graph, the 
Arbitrary Filter design graph is a bit different. Follow along as we use it to try to improve on the 
2 Band Notch filter we’ve already designed. 

☞ Click on the ‘Arbitrary’ button in the IFDL control panel:  

 

NOTE: For legibility’s sake, we set the axis range of the responseLeft axis to autoscale using 
the “Nice + inset data” setting in the Set Axis Range dialog in the Graph menu. 

We’ll design a wide-notch filter, which will require 3 bands (one reject and two pass bands). 

Desired Response Trace Preset 
The first task is to create the desired response curve. The Preset controls help you get started. 
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☞ Click on the ‘Preset Bands’ SetVariable control until it reads “3”. 
☞ Click the ‘Preset Bands’ button. 
☞ Click the ‘Edit Response’ button. 

Pass Band Pass Band
Reject Band  

Adjusting the Desired Response Trace 
The bands are distributed evenly over the Nyquist frequency range. We’ll move the reject band 
to span 60 and 120 Hz, allowing signals near 0 Hz and 200 Hz to pass. 

☞ WINDOWS: Hold down the Ctrl and Shift keys while dragging the vertical response line 
currently at 800 Hz. Drag the line left until the X: readout indicates about 40. 

☞ MACINTOSH: Hold down the command ( ) and shift keys while dragging the vertical 
response line currently at 800 Hz. Drag the line left until the ‘x=’ readout indicates about 40. 

 
Hold down shift and command / Ctrl keys, 

click on the vertical response line...
...and drag left to about x=40 (Hz)

 

☞ Drag the remaining vertical response line at 1700 Hz down to about 140 Hz. 

☞ Click the ‘Finish Response’ button: 
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To Weight or Not to Weight... 
Weighting values are used to give higher importance to one region of the response curve. We’ll 
use uniform weighting to start out with. 

☞ Click the ‘None’ weighting button. This sets all the weighting values to 1. 

Deleting Transition Regions 
The shaded transition regions indicate frequencies where we expect the response to change from 
a reject band to a pass band, so we don’t constrain the response to a particular value. Using a 
transition region allows the filter design algorithm more freedom to optimize the response in 
places where we do care about what the response is. 

These transition bands are in the wrong place. The Arbitrary Filter Design graph can’t move the 
transition regions, but you can add or delete them using the marquee. 

We’ll delete the existing transition bands and add more precise ones after zooming in on the low 
frequencies. 

☞ To delete the transition regions, click to the left of 500 Hz, and drag a marquee out that 
encompasses the 500 Hz to 2250 Hz range, click inside the marquee, and choose 
‘Remove_Transition_Region’ from the resulting popup menu: 
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☞ Expand the low frequencies by dragging out a marquee that starts at about 20 Hz and ends near 
160 Hz, clicking inside the marquee, and choosing ‘Horiz Expand’ from the popup menu (or use 
the Set Axis Range dialog in the Graph menu): 

 

☞ (Optional) With the low frequencies expanded out, you might take the opportunity to adjust the 
desired response trace more accurately. 

Adding Transition Regions 
Now we’ll add transition regions around where the response changes between pass band and 
reject band. 

☞ Drag out the marquee from 30 Hz to 50 Hz to enclose the 40 Hz vertical response line without 
including the 60 Hz region, click inside the marquee, and choose ‘Add_Transition_Region’: 

        

☞ Repeat for 130 Hz - 150 Hz: 

 

We’ve specified the desired response: a reject band encompassing the 60 Hz and 120 Hz 
interference signals, and two pass bands that preserve the constant (0 Hz) level, the signal 
frequency (200 Hz), and most other frequencies. 
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Filter Terms - How Much is Enough? 
The default Filter Terms setting of 41 is for filters with large bands, not the narrow ones we’re 
creating. (If you try 41 terms, choose ‘Autoscale Axes’ from the Graph menu to see the entire 
response to assess the result.) 

An odd number of terms is required because it eliminates phase shift in the filtered result. Since 
we’ll be comparing this filter with the 2 Band Notch filter, we’ll use the same number of terms.  

☞ Change the Filter Terms value to 401. 

☞ Click the ‘Compute Filter’ button: 

 

This shows the gain of the computed filter over the 20-160 Hz range.  

NOTE: The responses you obtain will be slightly different, depending on the actual desired 
response and transition regions values you entered. 
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Critiquing the Designed Filter 
At first glance, the filter seems quite adequate: the reject band is near zero and the the passband 
(what little we can see of it) has very little ripple. Let’s take a closer look. 

☞ Check the ‘dB Response’ checkbox. We also set the response axis range to about -80 to 10 and 
turned on the grid for the responseLeft axis: 

 

The rejection in the 50 to 130 Hz region is about -30 dB. This corresponds to a gain of 10^(30/20) 
= 3.2%. For some applications this might be good enough, but we’ll attempt to do better. 

☞ To see the response over the entire frequency range, choose ‘Autoscale Axes’ from the Graph 
menu. 

☞ Uncheck the dB Response checkbox: 

 

The passband does indeed have a nice equiripple response very close to unity gain. To measure 
the pass band response, we need to zoom in. 
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☞ Use the Set Axis Range dialog to set the range of the responseLeft axis to vary from a minimum 
of 0.95 to a maximum of 1.05: 

 

Now we can see that the gain of our computed filter in the passband is between 0.98 and 1.02 (or 
+/- 0.17 dB). 

Improving the Design 
The reject band suppresses the 60 Hz and 120 Hz interference signals by about -30 dB (3% gain). 
We’d like to improve that to about -50 dB (0.3% gain). 

There are two usual methods used to improve a filter: 

• Increase the number of filter terms. This usually works by reducing the errors (usually 
also increasing the number of ripples in the response). 

• Use weighting values. Larger weighting values improve accuracy in one part of the 
frequency range by reducing accuracy in the remaining frequency range. This method 
keeps the same number of filter terms. 

Improving the Design by Increasing the Number of Terms 
Let’s drastically increase the number of terms and see what happens: 

☞ Change the Filter Terms value to 701. 

☞ Click ‘Compute Filter’. 

(Sometimes this very large number of terms will cause the filter design algorithm to fail; try an 
intermediate value like 601 if you get an error dialog.) 

☞ Use the marquee or Set Axis Range dialog to zoom in on the 20 Hz - 160 Hz range. 
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☞ Click the ‘dB Response’ checkbox: 

 

The response in the reject band is flatter and much deeper, about -55 dB! 
Checking the new response over the entire frequency range shows that the ripple is almost zero 
(less than 0.02 dB). 
We’re done if the increased number of terms is no problem for us (for instance, we’re not going 
to implement the filter in hardware, where more terms usually are either more expensive or 
possibly too slow for realtime conversions). 
Next we’ll show you how to improve the filter while using the same number of terms. 

Improving the Design with Weighting 
You can force the design algorithm to give higher priority to portions of the desired response by 
assigning a higher weighting value to that frequency range. The default weighting value is 1.0, 
the value applied to all frequencies when you click the ‘None’ weighting button. 
We will assign a higher weighting value to the reject band of frequencies. First, change the 
number of filter terms back to 401. 

☞ Enter 401 in the ‘Filter Terms’ control. 
☞ Click ‘Compute Filter’ to get the original filter response. 

There are two ways to assign weighting values: 

• Click the ‘Edit Weighting’ button, and edit the weighting trace directly. 
• Use the marquee to set a range to a constant value.  
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We’ll use the marquee. 

☞ Drag out a marquee over the range of approximately 40 Hz to 140 Hz, click in the marquee and 
choose ‘Set_Weighting_Value’: 

 

☞ Enter 10 in the resulting dialog and click ‘Continue’. 

☞ Cick ‘Compute Filter’: 

 

The rejection at 60 and 120 Hz has been improved to -45 dB (from -30 dB). 

Checking the passband response shows that the variation has increased to +/- 0.4 dB (from +/- 
0.17 dB). The weighting has traded greater accuracy in the reject band for a slight loss of 
accuracy in the pass bands. This tradeoff is fairly typical of filter design. 

Let’s see how this filter compares to the 2 Band Notch filter we designed earlier. 
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Comparing Filter Designs 
The current design is always stored in the Igor binary wave named “coefs”. This is the Arbitrary 
Filter we just finished. (We could save this into another Igor Binary wave so that it won’t be 
overwritten by a later design.) 

We saved the 2 Band Notch filter design earlier into a wave named “mpr2BandNotch”. 

We’ll use the Compare Filters graph to compare these two designs. 

☞ Click the ‘Compare Filters’ button in the IFDL control panel. 

☞ Choose ‘mpr2BandNotch’ from the Filter 2 popup menu: 

 

(Some line styles have been changed for readability.) 

Because the ‘Auto Apply’ checkbox in the IFDL panel is still checked, the time-domain 
responses of applying each filter to myData are also displayed. 

Both filters recover the signal adequately. 
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By expanding the low frequencies of the Compare 2 Filters graph, you can see that our 2 Band 
Notch rejects the noise more completely, while the arbitrary filter can pass more frequencies 
(including the often-important 0 Hz): 
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 mprArbitrary
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You can also simultaneously observe the passband response using the ‘Apply Filters to’ button: 

☞ Choose ‘Impulse’ from the IFDL control panel’s data wave popup menu (just below the ‘Apply 
Filters to’ button). 

☞ Choose ‘Freq Response’ from the IFDL control panel popup menu below ‘Impulse’. 

☞ Click the ‘Apply Filters to’ button. 

☞ Expand the passband frequencies with the marquee or the Set Axis Range dialog: 
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You can see that the arbitrary response filter has slightly lower passband error. 

Another helpful comparison is to observe the frequency response of the data before and after 
filtering. 

☞ Choose ‘myData’ from the IFDL control panel’s data wave popup menu. 

☞ Choose ‘Freq Response’ from the IFDL control panel popup menu. 

☞ Click the ‘Apply Filters to’ button. 
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☞ Expand the low frequencies with the marquee or Set Axis Range dialog: 
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Here you see the 2 Band Notch filter more thoroughly rejecting the 60 Hz and 120 Hz 
interference than the Arbitrary filter. 

Entirely Removing IFDL from an Experiment 
We’ve already saved the 2 Band Notch filter to a file for later use. We’ll abandon the arbitrary 
filter and show you how to remove IFDL completely from the experiment: 

☞ Choose ‘Delete All IFDL Data’ from the IFDL menu: 

 

You will see two dialogs asking you to confirm the deletion of data: 

  

☞ Click ‘Yes’ in each of them. 

Under unusual circumstances you might be using the root:WinGlobals data folder, in which 
case you should answer ‘No’ to the second dialog (there is no harm in doing so). 

You have now removed all the IFDL waves, strings, variables, and data folders from the 
experiment, except for some waves that IFDL left in your current data folder (the saved filters 
and filtered signal results). You may wish to remove these waves: 
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☞ Choose ‘Data Browser’ from the Data menu. 

☞ Drag out a marquee that intersects all waves you no longer want. 

☞ Click the ‘Delete...’ button in the Data Browser, and ‘Delete’ in the resulting dialog: 

   

☞ Close the Data Browser. 

Now we’ll remove the IFDL procedures. 

☞ Open the main procedure window by pressing Ctrl+M (Windows) or command-M (Macintosh). 

☞ Delete the #include ":IFDL v4 Procedures:IFDL" line we originally added. 

☞ Save the experiment (to prepare for its use in the next section). 

IFDL is completely removed from the Welcome to IFDL experiment. We’ve shown you how to 
add, use, and remove IFDL with one of your own existing experiments. 

Importing a Filter into an Experiment 
Now suppose you have saved some filters as Igor binary waves to your disk, and you want to 
apply a filter to your data in another experiment. 

You could add all of the IFDL procedures to your experiment, as we did to the Welcome to IFDL 
experiment, but we’ve provided a smaller procedure that compiles faster. 

IFDL ships with a standalone procedure file you can include in your experiment to apply a filter 
to your data. 
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Follow along as we: 
• Import the 2 Band Notch filter we saved earlier. 
• Add the ‘IFDL Apply Filter’ procedure to an Igor experiment. 
• Apply the 2 Band Notch filter to some data. 
• Remove the added procedure and imported filter. 

☞ If not still open, open the modified Welcome to IFDL experiment you saved earlier. 

Now we’ll create some data to be filtered. 

☞ Choose the ‘MakeMyData’ macro from the Macros menu. 

 

This is the same myData wave we used when designing the filters, but let’s pretend it is your 
actual data from your own experiment. 

Importing the Filter 
☞ Choose ‘Load Igor Binary...’ from the Data menu’s ‘Load Waves’ submenu: 

 

☞ In the resulting dialog, select the ‘mpr2BandNotch.bwav’ file we saved earlier. 

☞ If you get the ‘Copy or Share Wave?’ dialog, choose Copy and click OK. 
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Adding the IFDL Apply Filter Procedure 
☞ Open the procedure window, and type #include ":IFDL Procedures:Apply Filter" on its own line 

at the top of the window: 

 

☞ Click the procedure window’s 
close box. The procedure will 
disappear and the procedures 
will automatically compile. 

 There will be a new Apply 
IFDL Filter To Data item in the 
Analysis menu. 

☞ Choose the ‘Apply IFDL 
FilterToData’ item. 

 

 
☞  Select the mpr2BandNotch 

filter in the ‘FIR or IIR filter 
coefficient wave’ popup. 

 Leave the ‘FIR filtered output’ 
popup set to “not delayed” We 
would choose “delayed” if we 
wanted to delay the filtered 
output. See “Filter Delay” in 
Chapter 3 for more 
information. 

☞ Click ‘Continue’. 
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☞ In the resulting graph of data and filtered data, set the bottom axis range from 0.50 to 0.55 to see 
the detailed results: 
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 myData
 myDataFilt

 

Removing the IFDL Apply Filter Procedure and Filter 
To remove the IFDL procedure, delete the #include ":IFDL v4 Procedures:IFDL Apply Filter" 
line from the procedure window. 

To delete the filter wave mpr2BandNotch, use the Kill Waves dialog or the Data Browser’s 
Delete button. 

End of Guided Tour 
There are other IFDL features you haven’t used in this Guided Tour, but they all work in a 
similar fashion. 

The remaining chapters describe IFDL features in detail without guiding you through the steps 
of using them. 
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Overview 
The usual procedure for using IFDL is: 

1) Add the IFDL procedures to your experiment. 
2) Set the sampling frequency and other IFDL parameters. 
3) Design a filter while observing how it affects your data. 
4) Save the filter coefficients as an Igor binary file for later use. 

Optional steps follow: 

5) Import the filter into an experiment containing data to be filtered. 
6) Add the IFDL Apply Filter procedure to your experiment. 
7) Apply the filter to your data. 

A step-by-step walkthrough of this procedure that covers the basic features of IFDL is provided 
in Chapter 2, “Guided Tour”. 

This chapter describes the features of IFDL in more detail. 
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Adding IFDL to an Existing Experiment 
After installing the IFDL extension and procedures (see “Installing IFDL” in Chapter 1), you can 
add IFDL to any existing experiment by typing: 

#include ":IFDL v4 Procedures:IFDL" 

in any procedure window, and clicking the Compile button at the bottom of the procedure 
window. 

If IFDL is correctly installed and you typed correctly, the compile button will disappear without 
producing any error dialog, and there will be an IFDL menu in Igor’s menu bar. 

To remove IFDL from an experiment, see “Entirely Removing IFDL from an Experiment”, in 
Chapter 2. 

IFDL Lite 
If you have an already-designed filter you want to apply to your data, you can instead type: 

#include ":IFDL v4 Procedures:IFDL Apply Filter" 

This adds only the Apply IFDL Filter To Data macro to your Analysis menu, rather than adding 
the entire IFDL menu. 

The primary advantage is that fewer procedure files will be opened so that your procedures will 
compile much faster. A secondary advantage is that fewer waves, variables, strings, data folders, 
graphs, and panels will be created in your experiment. 

For more information, see “Adding the IFDL Apply Filter Procedure” in Chapter 2. 

You will need to import your filter wave into the experiment, too. See “Importing the Filter”, 
also in Chapter 2. 

The IFDL Menu 
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Here is what the IFDL menu items do: 

Set IFDL Parameters... Brings up the Set IFDL Parameters dialog to set 
sampling frequency and other globally applicable 
filter and IFDL values. Displays the IFDL control 
panel if not already shown. 

Filter Designs Displays the IFDL control panel. If IFDL has not 
been initialized, it first brings up the Set IFDL 
Parameters dialog. 

Normalize Design Coefficients... Sets the filter gain to exactly 1.0 at a given 
frequency. 

Save Design Saves the current filter design in a variety of 
formats. Same as the ‘Save Design...’ button in the 
IFDL control panel. 

Compare 2 Filters Compares the frequency responses of two filters 
saved in Igor binary waves. Same as the ‘Compare 
Filters’ button in the IFDL control panel. 

Sine Sweep Test Signal...  Creates an Igor binary wave that sweeps a sine 
wave over a range of frequencies. A useful signal to 
demonstrate a filter’s response in the time domain. 

Two Tones Test Signal… Creates an Igor binary wave that is the sum of two 
sine waves. A useful signal to demonstrate a filter’s 
response in the frequency domain. 

Apply Filter...  Applies a filter to data stored in an Igor binary 
wave.  Same as the ‘Apply Filter to’ button in the 
IFDL control panel. 

Close All IFDL Windows Closes all windows (graphs, panels, layouts) 
created by IFDL. Does not delete any data. 

Delete All IFDL Data Closes all IFDL windows and deletes all the IFDL 
data stored in the IFDL data folder(s). Some IFDL-
created data remains in the current data folder, 
notably the ‘coefs’ and ‘IIRCoefs’ Igor binary waves 
which contain the filter coefficients. 
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Setting the IFDL Parameters 
IFDL needs to know what frequency your data will be sampled at, because a Finite Impulse 
Response filter designed for one sampling rate will produce incorrect results when applied to a 
signal sampled at a different rate (however, see Normalized Frequencies, below.) 

Select ‘Set IFDL Parameters...’ from the IFDL menu to set the frequency at which your data will 
be sampled at, and other IFDL values: 

 

NOTE: If the IFDL extension is not installed correctly, you will see a demo mode alert. You 
should ensure that the IFDL extension was correctly installed into the Igor Extensions 
folder (see Installing IFDL in Chapter 1), and restart Igor. 

After you make your selections and click Continue, IFDL will: 

• Show the IFDL control panel if it isn’t already showing. 
• If a filter design graph is showing, the current filter will be recomputed with the 

changed parameters. 

The dialog parameters are: 

◊ ‘get sampling frequency from:’ determines whether the sampling frequency is set 
automatically to match the selected wave’s X scaling, or whether it is entered manually 
in the ‘manual sampling frequency, Hz’ field. 

 Selecting a wave from this popup sets the filter sampling frequency to 
1/∆x(selectedWave). Both the signal and the designed filter coefficients will be 
represented by impulses separated in time by deltax(selectedWave). 

◊ ‘sampling frequency, Hz’ determines the X scaling of filters and filtered signals. In this 
manual, the sampling frequency is sometimes referred to as fs. A sampling frequency of 
5000 Hz, for example, would result in the selected filter’s X scaling being set to 0.002 
seconds between adjacent points: 
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= 1/5000
= 0.002

By 
default, the dialog shows fs = 1 Hz, corresponding to X scaling of 1 second between 
adjacent points. 

  Normalized Frequencies 
 It is common to design a filter using “normalized frequencies”, where all frequencies are 

expressed as a fraction of the sampling frequency. To use normalized frequencies in 
IFDL, leave fs = 1 Hz, and interpret “Hz” to mean “fraction of sampling frequency”. 

  Changing a Filterʼs Sampling Frequency 
 You can change the sampling frequency of the current design by choosing Set IFDL 

Parameters from the IFDL menu and altering the sampling frequency. This will scale the 
current design to the new frequencies. All frequency-based parameters will be scaled to 
the same percentage of the sampling frequency. 

 For example, if the filter originally had a sampling frequency of 100 Hz, and an end-of-
first-band frequency value was 20 Hz (20% of fs) changing the sampling frequency to 
300 Hz will alter the end-of-first-band frequency to 20% of 300 Hz, or 60 Hz. 

 When you change the sampling frequency, IFDL forcibly re-computes the filter 
coefficients and displays the changed responses. 

◊ ‘frequency resolution (FFT values)’ determines how many values are computed for the 
frequency response graphs. With a frequency resolution value of 128, the displayed 
frequency resolution will be 1/128th of the Nyquist frequency. 

 This frequency resolut ion sett ing does not affect the f i lter coeff icients in 
any way. 

 Continuing the example above, if fs = 5000 Hz, the frequency resolution of the FFT 
results will be 2500 Hz/128 =  3.9 Hz (remembering that the Nyquist frequency is half 
the sampling frequency). 
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◊ ‘quantization type’ is a popup which selects the default filter coefficient number 
representation simulated by IFDL. 

 “floating point” represents the coefficients as a floating point number. This means that 
the FIR filters we design are intended to be implemented using software or hardware to 
multiply and sum the digitized input signal using floating point representations. 

 “fixed point” selects scaled integer representations. 

◊ ‘bits of quantization’ is the number of bits in the mantissa of floating point filter 
coefficients. For fixed-point quantization, this is the number of bits in each integer filter 
coefficient. 53 is the maximum number of bits supported by IFDL. This corresponds to 
double-precision floating point number in IEEE format. 

  Filter Delay 
◊ ‘FIR output timing’ determines the timing relationship between the input signal and the 

filtered output signal produced by the filter. Here it is set to ‘in phase with input’, so 
that the filtered output is not delayed with respect to the filter’s input. 

 IFDL implements ‘in phase with input’ by advancing the timing of the filter coefficients 
by one half of the filter length into the future. Coefficients associated with negative 
(future) time are applied to input signal samples that haven’t arrived yet. 

   
 This time axis labeling is backwards from the normal convention of increasing time left 

to right, where “future” samples are off the graph to the right. The reversal is the result 
of the convolution equation: 

     

Filtered(t) = Signal(t + i)
i=  ! N! 1

2

N !1
2

" •Filter(0 ! i)
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The equation shows that signal samples displaced in a positive direction (future-ward 
samples) are multiplied with filter coefficients with negative x values (future-ward 
coefficients). 

 “In phase with input” timing makes comparison of the input and filtered signal easier, 
and is appropriate when the input signal is stored or buffered in memory before the 
filtering is performed. 

 The other popup choice is ‘delayed (causal)’, which means the filtered response is 
delayed with respect to the input signal. This second choice is appropriate when the 
input signal is not stored in memory before the filtering is performed (i.e., the filtering is 
performed in “real-time”). 

   
◊ ‘IFDL legend font size (points)’ does not affect the filter at all; it simply allows you to 

shrink or expand the various legends that IFDL automatically puts in the graphs. 

 The new value will be used when IFDL next creates or modifies an automatically 
generated legend. 



Chapter 3 — Reference 

 
44 

FIR Filter Designs 
Choosing the ‘Filter Designs’ IFDL menu item displays the IFDL control panel, which provides 
access to most of IFDL’s features. 
NOTE: If IFDL has not yet been initialized, the Set IFDL Parameters dialog is shown. 
The first group of buttons will 
bring up a “filter design graph”: 
an Igor graph with controls in it to 
set the parameters for the kind of 
filter being designed. 

Only one filter design graph may 
be displayed at a time. 

See the “Filter Designs” section 
later in this chapter for 
information about each filter 
design graph. 

Click the ‘Save Design...’ button to 
save the current filter coefficients 
in the “coefs” wave as another 
Igor wave or to a file. 

Click to change the
Filter Design Graph

Apply the current design to
data and display the result

Save the current filter design
Compare two filter designs

 
You can save the coefficients as an Igor binary wave in the current experiment, or as a file in 
binary or text formats. See “Save Design”, later in this chapter for more details. 
Click the ‘Compare Filters’ button to bring up a graph that compares two filter designs. The 
filter coefficients must be stored in Igor binary waves, one of which can be the most recently 
computed filter stored in “coefs” wave. 
The last group of controls apply the current filter stored in the “coefs” or “IIRCoefs” wave to 
data selected in the top popup menu, and displays the result in a separate “Filtered dataWave” 
graph. 
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The top popup menu shows data waves already in the current experiment and two special 
waves named “Impulse” and “Step” so that you can easily evaluate the impulse and step 
response of a filter: 
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Use the bottom popup menu to choose between frequency response or time-domain response. 

These Filtered dataWave graphs are updated: 

• When you click the ‘Apply Design to’ button. 
• (if the ‘Auto Apply’ checkbox is checked) whenever a filter design is computed. 
• (if the ‘Auto Apply’ checkbox is checked) whenever a different filter is selected in the 

Compare Filters graph). 

Normalize Design Coefficients... 
Normalizing a filter adjusts the scaling of all coefficients by a factor, k, so that the filter’s 
magnitude response at a particular frequency is 1.0. You might choose to normalize a filter at an 
important signal frequency; perhaps 0 Hz to preserve D.C. response. 

‘Normalize Design Coefficients’ can be used to adjust the filter coefficients by a scale factor to 
normalize the filter response at a particular frequency or at the maximum amplitude frequency. 

 

The computed scale factor k is printed in the command history window. 

NOTE: You should immediately use Save Design on the normalized filter. When you 
re-compute the f ilter for any other reason, the normalizat ion is lost.  
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The dialog parameters are: 

◊ ‘Normalization frequency, or <0 for peak frequency’ is the frequency at which the 
current filter’s gain is normalized to 1.0. Enter the frequency between 0 and the Nyquist 
frequency, or enter “-1” to normalize the filter’s maximum response to 1.0. 

◊ ‘Quantize the coefficients?’ asks you whether to quantize the normalized filter to the 
number of bits specified in the ‘Set IFDL Parameters’ dialog. 

 Quantizing a filter will limit how accurately the filter can be normalized. This is usually 
noticeable only when there are many filter terms and relatively few bits (say, 100 terms 
and 16 bits), or when an IIR filter uses the Direct Form I implementation. 

Save Design 
The current FIR filter is always stored in a wave named “coefs”, and the current IIR filter is 
stored in a wave named “IIRCoefs”. Computing new designs will overwrite these waves. 

To preserve the result of one design for comparison with another design result — or to use the 
filter in another experiment — you can save the  current filter wave in a variety of formats using 
either the Save Design submenu of the IFDL menu or the ‘Save Design...’ button in the IFDL 
control panel: 

 

NOTE: Saving the filter coefficients doesn’t actually save all the design parameters, just the 
coefficients which are a result of using those parameters. 

NOTE: The filter design parameters for each design graph are saved in the experiment in 
which the filter was designed, in waves, variable, and strings within the 
root:Packages:WM_IFDL: data folder. 

Descriptive Text File 
‘Descriptive Text File’ creates a text file listing the filter coefficients. The format is different for 
FIR and IIR filters. 

The FIR format follows Momentum Data Systems Inc’s FIR filter coefficient file format. 
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Here is an (abbreviated) example of the MDS file format: 

FILTER COEFFICIENT FILE  
FIR DESIGN 
  28       /* number of taps in decimal */ 
001c       /* number of taps in hexadecimal*/ 
24         /* number of bits in quantized coefficients(decimal) */ 
0018       /* number of bits in quantized coefficients(hexadecimal)*/ 
 0         /* shift count in decimal */ 
0000       /* shift count in hexadecimal */ 
   -93424 FFFE9310  /* coefficient of tap 0  */ 
  -171217 FFFD632F  /* coefficient of tap 1  */ 
   -33496 FFFF7D28  /* coefficient of tap 2  */ 
   139245 00021FED  /* coefficient of tap 3  */ 
   114123 0001BDCB  /* coefficient of tap 4  */ 
 ... 
   114123 0001BDCB  /* coefficient of tap 23 */ 
   139245 00021FED  /* coefficient of tap 24 */ 
   -33496 FFFF7D28  /* coefficient of tap 25 */ 
  -171217 FFFD632F  /* coefficient of tap 26 */ 
   -93424 FFFE9310  /* coefficient of tap 27 */ 
-1.113699655979872e-02 BC3677F300000000 /* coefficient of tap 0  */ 
-2.041061595082283e-02 BCA7342A00000000 /* coefficient of tap 1  */ 
-3.993035294115543e-03 BB82D80200000000 /* coefficient of tap 2  */ 
 1.659924909472466e-02 3C87FB2600000000 /* coefficient of tap 3  */ 
 1.360450591892004e-02 3C5EE56F00000000 /* coefficient of tap 4  */ 
... 
-1.996348612010479e-02 BCA38A7700000000 /* coefficient of tap 22 */ 
 1.360450591892004e-02 3C5EE56F00000000 /* coefficient of tap 23 */ 
 1.659924909472466e-02 3C87FB2600000000 /* coefficient of tap 24 */ 
-3.993035294115543e-03 BB82D80200000000 /* coefficient of tap 25 */ 
-2.041061595082283e-02 BCA7342A00000000 /* coefficient of tap 26 */ 
-1.113699655979872e-02 BC3677F300000000 /* coefficient of tap 27 */ 

 
You can change the format by editing the ‘DescriptiveTextFile’ procedure in the IFDL.ipf 
procedure file. 

The IIR formats are different, and depend on the IIR filter implementation. 

Here is an example of the Direct Form I implementation format: 

FILTER COEFFICIENT FILE 
IIR DIRECT FORM 1 DESIGN 
 
Chebyshev low pass; 2 bands 
Band Start Freq (Hz) End Freq (Hz) 
1 0  1250 (pass band) 
2 1250  2500 (reject band) 
(end) 
 
Z-plane poles: 
     0.5509033687686493 + j    -0.3350683608090418 
     0.5509033687686493 + j     0.3350683608090418 
     0.2330879372966871 + j    -0.7665180267265226 
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     0.2330879372966871 + j     0.7665180267265226 
     0.0043816972451698 + j    -0.9393540340690545 
     0.0043816972451698 + j     0.9393540340690545 
 
Z-plane zeros: 
    -1.0000000000000000 + j     0.0000000000000000 
    -1.0000000000000000 + j     0.0000000000000000 
    -1.0000000000000000 + j     0.0000000000000000 
    -1.0000000000000000 + j     0.0000000000000000 
    -1.0000000000000000 + j     0.0000000000000000 
    -1.0000000000000000 + j     0.0000000000000000 
 
53 bit floating point mantissa 
 
Delay    Numerators                Denominators 
  0   0.00963112711906433        1                         
  1   0.0577867664396763         -1.57674586772919         
  2   0.144466906785965          2.46742701530457          
  3   0.192622542381287          -2.29841303825378         
  4   0.144466906785965          1.66127419471741          
  5   0.0577867664396763         -0.797427535057068        
  6   0.00963112711906433        0.235488712787628         
 
output[i]= (1/denominator[0]) * ( numerator[0]*input[i] + ... 
numerator[6]*input[i-6] - denominator[1]*output[i-1] - ... 
denominator[6]*output[i-6] ) 
 

The last line of the file (which is shown wrapped here) is a reminder of how the numerator and 
denominator coefficients of the filter are used in the “difference equation” for the Direct Form I 
implementation. 

Here is an example of the same filter implemented as a Cascaded Bi-Quad Direct Form II filter: 
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C Source File 
‘C Source File’ creates a text file with the coefficients printed in a format useful for implementing 
the filter using the C programming language. The format varies depending on the filter type. 

The file created for an FIR filter is simply a listing of the coefficients to be convolved with the 
input signal to create each filtered output value. 

/* FIR filter coefficients */ 
static double coefs[]={ 
 -0.011137,-0.0204106,-0.00399304,0.0165992,0.0136045, 
 -0.0199635,-0.0272254,0.0162812,0.0498153,-0.00298352, 
 -0.0854573,-0.0397108,0.183563,0.406513,0.406513, 
 0.183563,-0.0397108,-0.0854573,-0.00298352,0.0498153, 
 0.0162812,-0.0272254,-0.0199635,0.0136045,0.0165992, 
 -0.00399304,-0.0204106,-0.011137 
}; 

The file created for an IIR Direct Form I filter actually has example code in it: 
/* IIR DIRECT FORM I FILTER IMPLEMENTATION 
 
Chebyshev low pass; 2 bands 
Band Start Freq (Hz) End Freq (Hz) 
1 0  1250 (pass band) 
2 1250  2500 (reject band) 
(end) 
 
Z-plane poles: 
     0.5509033687686493 + j    -0.3350683608090418 
     0.5509033687686493 + j     0.3350683608090418 
     0.2330879372966871 + j    -0.7665180267265226 
     0.2330879372966871 + j     0.7665180267265226 
     0.0043816972451698 + j    -0.9393540340690545 
     0.0043816972451698 + j     0.9393540340690545 
 
Z-plane zeros: 
    -1.0000000000000000 + j     0.0000000000000000 
    -1.0000000000000000 + j     0.0000000000000000 
    -1.0000000000000000 + j     0.0000000000000000 
    -1.0000000000000000 + j     0.0000000000000000 
    -1.0000000000000000 + j     0.0000000000000000 
    -1.0000000000000000 + j     0.0000000000000000 
 
53 bit floating point mantissa 
 
*/ 
 
static double delayedIn[7], delayedOut[7]; 
 
// Call clearFilterHistory before starting to filter data. 
void clearFilterHistory(void) 
{ 
 memset(delayedIn, 0, 7*sizeof(double)); 
 memset(delayedOut, 0, 7*sizeof(double)); 
} 
 
double nextFilteredOutput(double nextInput) 
{ 
 double yn; 
 
 // accumulate numerator portion: a[0]*x[n] + a[1]*x[n-1] + a[2]x[n-2] ... 
 yn = (0.0096311271190643) * nextInput; // a[0] * x[n] 
 yn += (0.057786766439676) * delayedIn[0]; // a[1] * x[n-1] 
 yn += (0.14446690678596) * delayedIn[1]; // a[2] * x[n-2] 
 yn += (0.19262254238129) * delayedIn[2]; // a[3] * x[n-3] 
 yn += (0.14446690678596) * delayedIn[3];  // a[4] * x[n-4] 
 yn += (0.057786766439676) * delayedIn[4];  // a[5] * x[n-5] 
 yn += (0.0096311271190643) * delayedIn[5]; // a[6] * x[n-6] 
 yn += (0.0096311271190643) * delayedIn[6]; // a[7] * x[n-7] 
 
 // accumulate denominator portion: - b[1]y[n-1] - b[2]y[n-2] ... 
 yn -= (-1.5767458677292) * delayedOut[0];  // b[1]* y[n-1] 
 yn -= (2.4674270153046) * delayedOut[1];  // b[2]* y[n-2] 
 yn -= (-2.2984130382538) * delayedOut[2];  // b[3]* y[n-3] 
 yn -= (1.6612741947174) * delayedOut[3];  // b[4]* y[n-4] 
 yn -= (-0.79742753505707) * delayedOut[4]; // b[5]* y[n-5] 
 yn -= (0.23548871278763) * delayedOut[5];  // b[6]* y[n-6] 
 yn -= (0.23548871278763) * delayedOut[6];  // b[7]* y[n-7] 
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 // yn *= (1); //  * 1/b[0] 
 
 // shift delayed input values 
 delayedIn[6]= delayedIn[5]; 
 delayedIn[5]= delayedIn[4]; 
 delayedIn[4]= delayedIn[3]; 
 delayedIn[3]= delayedIn[2]; 
 delayedIn[2]= delayedIn[1]; 
 delayedIn[1]= delayedIn[0]; 
 delayedIn[0]= nextInput; 
 // shift delayed output values 
 delayedOut[6]= delayedOut[5]; 
 delayedOut[5]= delayedOut[4]; 
 delayedOut[4]= delayedOut[3]; 
 delayedOut[3]= delayedOut[2]; 
 delayedOut[2]= delayedOut[1]; 
 delayedOut[1]= delayedOut[0]; 
 delayedOut[0]= yn; 
 
 return yn; 
} 

The C routine nextFilteredOutput is designed to be called in a loop, generating a new output value 
for each new input value, as if done in real-time. 

The file created for an Cascade B-Quad Direct Form II filter also has this example code (this 
example is abbreviated): 
/* IIR CASCADE DIRECT FORM II FILTER IMPLEMENTATION 
. . . 
*/ 
 
static double wn1[3], wn2[3]; 
 
// Call clearFilterHistory before starting to filter data. 
void clearFilterHistory(void) 
{ 
 memset(wn1, 0, 3*sizeof(double)); 
 memset(wn2, 0, 3*sizeof(double)); 
} 
 
double nextFilteredOutput(double nextInput) 
{ 
 double wn; 
 
 /* ===== Section 1 ===== */ 
 // compute w[n]= ( x[n] - b1*w[n-1] - b2*w[n-2] ) / b0 
 wn = nextInput - (-0.008763394318521 * wn1[0]) - (0.88240528106689 * wn2[0]); 
 
 // compute y[n]= a0*w[n] + a1*w[n-1] + a2*w[n-2] 
 nextInput =  (0.0096311252564192 * wn) + (0.019262250512838 * wn1[0]) 
+ (0.0096311252564192 * wn2[0]); // cascade to next section
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// prepare for next filtering operation by shifting section 1's wn1 and wn2 
 wn2[0] = wn1[0]; wn1[0] = wn;  

 
 /* ===== Section 2 ===== */ 
 // compute w[n]= ( x[n] - b1*w[n-1] - b2*w[n-2] ) / b0 
 wn = nextInput - (-0.46617588400841 * wn1[1]) - (0.6418799161911 * wn2[1]); 
 
 // compute y[n]= a0*w[n] + a1*w[n-1] + a2*w[n-2] 
 nextInput =  (1 * wn) + (2 * wn1[1]) + (1 * wn2[1]); // cascade to next section 
 
 // prepare for next filtering operation by shifting section 2's wn1 and wn2 
 wn2[1] = wn1[1]; wn1[1] = wn; 
 
 /* ===== Section 3 ===== */ 
 // compute w[n]= ( x[n] - b1*w[n-1] - b2*w[n-2] ) / b0 
 wn = nextInput - (-1.1018067598343 * wn1[2]) - (0.41576534509659 * wn2[2]); 
 
 // compute y[n]= a0*w[n] + a1*w[n-1] + a2*w[n-2] 
 nextInput =  (1 * wn) + (2 * wn1[2]) + (1 * wn2[2]); // cascade to next section 
 
 // prepare for next filtering operation by shifting section 3's wn1 and wn2 
 wn2[2] = wn1[2]; wn1[2] = wn; 
 
 return nextInput; 
} 
 
Igor Binary File 
Use ‘Igor Binary File’ to save a filter for use in another Igor experiment. See also “Importing a 
Filter into an Experiment” in Chapter 2. 

Another Igor Wave 
Use ‘Another Igor Wave’ to save a filter for use in the current experiment. This is necessary for 
comparing two FIR or two IIR filters using the Compare 2 Filters graph. 

You can use the name that IFDL proposes, which is based on the design type, or choose a more 
informative name. 

IFDL saves some of the filter design values in the wave’s note. You can observe a wave’s note 
using the Browse Waves dialog or the Data Browser, and you can retrieve it with Igor’s note 
function. 

Compare 2 Filters 
Use the ‘Compare 2 Filters’ IFDL menu item to compare the frequency response of two filters 
saved in Igor binary waves. This is the same as clicking the ‘Compare Filters’ button in the IFDL 
control panel. 

The filters are compared in a graph showing the frequency responses of the two filters chosen 
from the popup menus. 

If the ‘Auto Apply’ checkbox is checked in the IFDL panel, both filters are automatically applied 
to the current data wave and the results are shown in the Filtered dataWave graph: 
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Sine Sweep Test Signal... 
Use this IFDL menu item to create an Igor binary wave that sweeps a sine wave over a range of 
frequencies: 

20
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0
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-20

0.50.40.30.20.10.0 Hz

 sineSweep Freq Response
 Filtered sineSweep
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This signal demonstrates a filter’s response in the time domain: 

1.0
0.5
0.0

-0.5
-1.0
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s

1.0
0.5
0.0

-0.5
-1.0

sineSweep

Filtered sineSweep

 

Two Tones Test Signal... 
Use this IFDL menu item to create an Igor binary wave containing two sine waves of specific 
frequency and amplitude. This signal demonstrates a filter’s response in the frequency domain 
at those two frequencies: 
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Apply Filter...  
The ‘Apply Filter’ IFDL menu item applies a filter to data stored in an Igor binary wave: 

 

The dialog offers more options than the ‘Apply Filter to’ button in the IFDL control panel: 

• Choose any filter, not just the “coefs” or “IIRCoefs” wave. 
• The input and output frequency response can be shown as linear amplude, not just in 

decibels: 
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Close All IFDL Windows 
The ‘Close All IFDL Windows’ IFDL menu item closes all windows (graphs, panels, layouts) 
created by IFDL. It does not delete any data, and does not close any windows you created 
independently of IFDL. 

Delete All IFDL Data 
The ‘Delete All IFDL Data’ IFDL menu item closes all IFDL windows and deletes all the IFDL 
data stored in the IFDL data folder(s). 

Some IFDL-created data remains in the current data folder: 

• the “coefs” Igor binary wave which contains the current filter’s coefficients 
• waves such as “mpr2BandNotch”, etc containing saved filter designs 
• waves such as “myDataFiltDbMag” containing filtered results computed by Apply 

Filter 

These can all easily be deleted with the Data Browser or the Kill Waves dialog. 

Filter Design Graphs 
You can specify desired filter characteristics using controls in IFDL’s “design graphs”, and IFDL 
will: 

• compute the required coefficients 
• display the resulting filter characteristics 
• automatically apply the filter to your data 

IFDL stores the computed coefficients in the wave in the current (usually root) data folder. FIR 
filter coefficients are stored in a wave named “coefs”. IIR filter coefficients are stored in a wave 
named “IIRCoefs”. 

The design parameters are saved in the current experiment’s root:Packages:WM_IFDL data 
folder in various waves, variables, and strings. 
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This allows you to design, say, a 2 Band Notch filter, then try another filter design, and when 
you come back to the 2 Band Notch design graph all the settings are unchanged. Clicking the 
‘Compute Filter’ button will reinstate the previously designed 2 Band Notch filter into the 
“coefs” wave that is the shared output of the FIR design graphs. 
The filter design graphs have been divided into four groups: 

MPR Filters The MPR filter design graphs use the McClellan-Parks-Rabiner 
method. This is also called equiripple design, optimal filter design, and 
Remez exchange design. The algorithm is described in [Elliot], [IEEE], 
[McClellan], and [Rabiner]. 

Kaiser Filters Kaiser’s maximally flat FIR filter and Kaiser Low pass filters. The 
algorithms are described in [Kaiser]. 

Window Filters These filters are constructed in the frequency domain using smooth 
pulses that are inverse-FFTed, truncated to the specified filter length, 
and smoothed with the specified window function. 

 Because of their simplicity, window-based filters are commonly 
discussed in the introductory chapters of Digital Signal Processing 
textbooks. See [Elliot]. However, better filters can be designed using 
the MPR and Kaiser design graphs. 

 If the IFDL extension is not installed properly (or is absent as in the 
case of the IFDL demo), then Window Filters filters can still be 
designed. To install the IFDL extension, see “Installing IFDL” in 
Chapter 1. 

IIR Filters Infinite Impulse Response filters based on analog (electronic) filters. 
The resulting filter is stored in the “IIRCoefs” wave. 
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MPR Low Pass Design Graph 
The MPR Low Pass design graph implements a simple lowpass filter using the McClellan-Parks-
Rabiner equiripple technique. 

 

Max Pass 
Band Error

Min Stop 
Band Gain

End of 
Pass Band

Start of 
Stop Band  

The parameters are: 

◊ ‘End of Pass Band’ specifies the highest frequency in the pass band. The passband is 
where the nominal filter response (gain, or Vo/Vi) is 1.0, or 0dB, where dB = 
20•log10(Vo/Vi). In the example above, the passband frequency range extends from 0 
Hz to 0.2 Hz. 

◊ ‘Start of Stop Band’ specifies the lowest frequency in the stop band. The stopband is 
where the nominal filter response is 0.0, or -∞ dB. This example stopband extends from 
0.25 Hz to the Nyquist frequency (0.5 Hz). 

◊ ‘Max Pass Band Error (dB)’ specifies the allowable deviation from 0dB in the passband. 
This filter’s passband response will not exceed 0dB ±3.0 dB. 

 The frequencies between the end of the passband and the start of the stopband (0.2 Hz 
to 0.25 Hz in the example graph) are called the “transition band”, where the filter gain is 
changing from approximately 1.0 to approximately 0.0. 

◊ ‘Min Stop Band Attenuation (dB)’ limits the gain in the stopband. This filter’s gain in the 
stopband will be more than 40 dB down from the nominal passband gain of 0 dB. Note 
that this specification is attenuation, and not gain, and therefore the dB value is a 
positive number. 40 dB of attenuation corresponds to a maximum gain of 0.01. 

◊ ‘Number of Terms’ selects either an even or odd number of filter terms. (Unlike many of 
the other design graphs, the number of coefficients used in the resulting filter is 
calculated rather than being entered as a design parameter. The result is shown in the 
design graph.)  Normally an odd number is preferred, as it does not introduce a half-
sample delay in the impulse response. 
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The Filter Design Did Not Converge ??? 
If the requirements are too strict — an unreasonably small transition region between the 
passband and stopband, a max error which is too small, or too many filter terms — then the 
MPR algorithm may fail to converge. In such a case you may encounter an error alert such as 
this: 

 

Click ‘OK’ and change the design parameters to avoid the problem. Often the problem is caused 
by using too many filter coefficients. 

IFDL also places an error message in the command window’s history area warning you that the 
filter may produce undesirable results. 

MPR 2 Band Design Graph 
The MPR 2 Band Design graph implements either a lowpass or highpass filter using the 
McClellan-Parks-Rabiner equiripple technique. 

 
End of 

First Band
Start of 
Second Band  
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The parameters are: 

◊ ‘End of First Band’ specifies the highest frequency in the frequency band beginning at 0 
Hz (D.C.)  In the example design, the first band’s frequency range extends from 0 Hz to 
0.14 Hz. 

 If the filter type is “low pass”, the first band is a passband, where the nominal filter gain 
is 1.0, or 0dB. 

 If the filter type is “high pass”, the first band is a stopband, where the nominal filter 
gain is 0, or or -∞ dB. 

◊ ‘Start of Second Band’ specifies the lowest frequency in the second band. The second 
band ends at the Nyquist frequency (0.5 Hz in the example graph). 

 If the filter type is “low pass”, the second band is a stopband, where the nominal filter 
gain is 0, or or -∞ dB, 

 If the filter type is “high pass”, the second band is a passband, where the nominal filter 
gain is 1.0, or 0dB. 

 The frequencies between the end of the first band and the start of the second band (0.14 
Hz to 0.18 Hz in the example graph) are called the “transition band”, where the filter 
gain is changing from approximately 1.0 to approximately 0.0. 

◊ ‘First Band Weighting’ determines the relative accuracy in the first band compared to 
the second band. For example, if this number is greater than 1 then the error in the first 
band will be reduced at the expense of increased error in the second band. 

◊ ‘Number of Terms’ specifies the number of coefficients in the filter. This is also the 
number of values in the “coefs” filter wave.  

 Using more coefficients lowers the error in the passband and stopband. 
 We suggest that you use an odd number of coefficients, especially for high pass designs. 

An even number introduces a half-sample delay in the filtered output. 
◊ ‘Filter Type’ chooses either a lowpass or a highpass design. 
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MPR 2 Band Notch Design Graph 
The MPR 2 Band Notch design graph is identical to the MPR 2 Band design graph except you 
can place a transmission zero (or “notch”) at a precise frequency. 

The resultant filter is technically a cascade of two filters but the program combines (convolves) 
both coefficient arrays into a single filter. For a discussion of the technique used by this design, 
refer to page 86 of [Elliott]. 

 
End of

First Band
Start of 
Second Band

Notch can be 
dragged or set 

using the Notch 
Frequency control

 

The parameters are: 

◊ ‘End of First Band’ specifies the highest frequency in the frequency band beginning at 0 
Hz (D.C.). In the example graph, the first band’s frequency range extends from 0 Hz to 
0.25 Hz. 

 If the filter type is “low pass”, the first band is a passband, where the nominal filter gain 
is 1.0, or 0dB. 

 If the filter type is “high pass”, the first band is a stopband, where the nominal filter 
gain is 0, or or -∞ dB 

◊ ‘Start of Second Band’ specifies the lowest frequency in the second band. The second 
band ends at the Nyquist frequency (0.5 Hz in the example graph). 

 If the filter type is “low pass”, the second band is a stopband. 
 If the filter type is “high pass”, the second band is a passband. 
 The frequencies between the end of the first band and the start of the second band (0.25 

Hz to 0.35 Hz in the example) are called the “transition band”, where the filter gain is 
changing from approximately 1.0 to approximately 0.0. 

◊ ‘Filter Type’ chooses either a lowpass or a highpass design. 
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◊ ‘Notch Frequency’ specifies the center frequency of the transmission zero (“notch”). 
 Since the notch is always located in the stopband, if a low pass filter is chosen, the notch 

frequency must be in the second band. For a high pass filter, the notch must be in the 
first band. 

◊ ‘First Band Weighting’ determines the relative accuracy in the first band compared to 
the second band. For example, if this number is greater than 1 then the error in the first 
band will be reduced at the expense of increased error in the second band. 

◊ ‘Number of Terms’ specifies the number of coefficients in the FIR filter. This is also the 
number of values in the “coefs” filter wave.  

 An odd number of coefficients is recommended, especially for high pass designs. 
◊ ‘Notch Sharpness’ can be used to adjust the relative width of the notch. It does so by 

adjusting the relative gain of the two cascaded filter sections. 
 You may find that the notch will not work properly if the quantization is too coarse (if 

too few quantization bits are specified in the Set IFDL Parameters dialog). 

MPR 3 Band Design Graph 
The MPR 3 Band design graph can be used to design band pass and band reject filters using the 
McClellan-Parks-Rabiner equiripple technique. 

End of
First Band

Start of 
Second Band

End of
Second Band

Start of Third 
Band  
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The parameters are: 

◊ ‘End of First Band’ specifies the highest frequency in the frequency band beginning at 0 
Hz (D.C.). In the example design graph, the first band’s frequency range extends from 0 
Hz to 0.1 Hz. 

 If the filter type is “band reject”, the first band is a passband, where the nominal filter 
gain is 1.0, or 0dB. 

 If the filter type is “band pass”, the first band is a stopband, where the nominal filter 
gain is 0, or or -∞ dB. 

◊ ‘Start of Second Band’ specifies the lowest frequency in the second (middle) band. 
 If the filter type is “band reject”, the second band is a stopband; if “band pass”, the 

second band is a passband. 
 The frequencies between the end of a band, and the start of the next band are “transition 

bands”, where the filter gain is changing from approximately 1.0 to approximately 0.0. 
◊ ‘End of Second Band’ specifies the highest frequency in the second band. 
◊ ‘Start of Third Band’ specifies the lowest frequency in the last band which ends at the 

Nyquist frequency (0.5 Hz in the example design graph). 
 Like the first band, if the filter type is “band reject”, the third band is a passband; if 

“band pass”, it is a stopband. 
◊ ‘Filter Type’ chooses either a band pass or band reject design. 
◊ ‘Second Band Weighting’ determines the relative accuracy in the second (middle) band 

compared to the other bands. For example, if this number is greater than 1 then the 
errors in the second band will be reduced at the expense of increased errors in the 
second and third bands. 

◊ ‘Number of Terms’ specifies the number of coefficients in the filter. This is also the 
number of values in the “coefs” filter wave. 

 An odd number of coefficients is recommended, especially for band reject designs. 
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MPR Differentiator Design Graph 
This design graph creates a differentiator filter using the McClellan-Parks-Rabiner equiripple 
method. The filter has a straight-line gain vs frequency response from 0 Hz to the ‘End of First 
Band’ value, with a slope equal to the given ‘Slope’ value: 

 

End of 
First Band

differentiator response = slope • 
frequency

sampling frequency  

The dialog parameters are: 

◊ ‘End of First Band’ specifies the highest frequency in the frequency band beginning at 0 
Hz (D.C.). In the example design graph, the first band extends from 0 Hz to 450 Hz. 

◊ ‘Slope’ determines the slope of the magnitude response. A value of 1, for example, 
causes the response to attempt to reach 0.5 at the Nyquist frequency. A slope of 2 
attempts to reach a response of 1.0 at the Nyquist frequency, etc. 

 The response at the ‘End of First Band’ is: 
   Slope • End of First Band / Sampling Frequency 
 For the example graph: 
   1 • 450 Hz / 1000 Hz = 0.45 
◊ ‘Number of Terms’ specifies the number of coefficients in the differentiator filter. This is 

also the number of points in the “coefs” filter wave.  
 The number of filter coefficients should be even and should be relatively small (if too 

large, IFDL will give a failure-to-converge error). 
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MPR Hilbert Design Graph 
This design graph produces Hilbert transformers using the McClellan-Parks-Rabiner equiripple 
method. Such filters are used in the field of communications for modulation and demodulation 
for their unusual property of shifting all frequencies in the passband by -90 degrees. 

Hilbert filters designed with a symmetrical passband have another unusual property of having 
half of the coefficients equal to zero (meaning that hardware implementations require half the 
number of multipliers): 
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Hilbert Filter
Every other coefficient is zero!

 

The conditions required for these zero coefficients are: 

1) Start of Pass Band = Nyquist Frequency - End of Pass Band 

2) Number of Terms is an odd number. 
If you leave the ‘Symmetrical’ checkbox checked, IFDL keeps the ‘Start of Pass Band’ and ‘End 
of Pass Band’ values adjusted to satisfy those conditions. 
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The Hilbert design graph is the only one that shows the phase of the computed filter (other 
filters have zero or completely linear phase shift). The phase trace and axis are drawn using red 
to help you associate the phase trace with its axis. 

 
End of 

Pass Band
Start of 

Pass Band

Phase 
Response 

Details

 

The parameters are: 

◊ ‘Start of Pass Band’ specifies the lowest frequency in the passband. In the example 
dialog, the passband begins at 0.05 Hz. 

◊ ‘End of Pass Band’ specifies the highest frequency in the pass band. In the example 
graph, the pass band ends at 0.45 Hz. 

 The filter is usually specified with a passband centered about half the Nyquist 
frequency, or one quarter of the sampling frequency. If this isn’t the case, the stopbands 
may have unexpected characteristics, and every other coefficient will not be zero. 

◊ ‘Symmetrical’ instructs IFDL to keep the passband centered around half the Nyquist 
frequency by adjusting ‘Start of Pass Band’ when you change ‘End of Pass Band’, or 
vice-versa. 

◊ ‘Terms’ specifies the number of coefficients in the Hilbert transformer filter. This is also 
the number of points in the filter wave.  

 The number of filter terms is always odd. 
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MPR Arbitrary Filter Design Graph 
The Arbitrary Filter Design graph is a bit different than the other filter design graphs. 

Using various means, you can completely specify: 

• desired frequency response, 
• weighting, 
• transition regions, 
• number of filter terms, 

to the MPR equiripple algorithm. With this added power comes some complexity: 

Reject BandPass Band

Use these controls to 
initially define the basic 
shape of the filter.

Click ʻNoneʼ to give uniform 
importance (weighting) to all 
frequencies.

Click to edit the 
weighting trace.

Click to edit the 
desired response 
trace.

The marquee 
menu has three 
special items for 
transition regions 
and weighting.

 

Desired Frequency Response 
The main task is to create the desired response curve. 

The Preset controls help you get started. It is based on the idea of “bands” of frequencies where 
the desired response (or gain) alternates between 0 and 1.0. 

The example graph above shows the result of choosing 3 bands and clicking the “Preset Bands” 
button. 

You can edit the response trace with the mouse. 
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Editing the Response and Weighting Traces 
Clicking on the ‘Edit Response’ or ‘Edit Weighting’ buttons invokes the GraphWaveEdit mode 
on the corresponding trace. Here we’ve clicked on the ‘Edit Response’ button in the example 
graph: 

 

Use the mouse to edit the trace to define the desired filter parameters with these methods: 

To add a point to the response or 
weighting trace 

Click anywhere on the trace where you want 
to add the point. 

To edit a point already on the trace Click and hold on the existing point and drag 
it to the new position. 

To remove an existing point Macintosh: Hold down the option key to get 
the lightning bolt cursor, and click the point. 

Windows: Hold down the Alt key to get the 
lightning bolt cursor, and click the point. 

To move a straight-line portion of the 
trace 

Macintosh: Hold down the command ( ) key 
to get the 4-arrows cursor (shown above), click 
and drag it to the new position. 

Windows: Hold down the Ctrl key to get the 4-
arrows cursor, click and hold on the line, and 
drag it to the new position. 

On both platforms,  hold down the shift key to 
constraint movement to vertical and 
horizontal displacements. 

When you are done editing the trace, click the ‘Finish Response’ or ‘Finish Weighting’ button. 
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Weighting 
The Preset bands button initially sets the weighting to be 1.0 where there are pass bands or reject 
bands, and to 0.0 in the transition bands. (This means that we don’t care what the response is in 
those regions.) 

You can force the design algorithm to give higher priority to portions of the desired response by 
assigning a higher weighting value to that frequency range. The default weighting value is 1.0, 
the value applied to all frequencies when you click the ‘None’ weighting button. 

There are two ways to assign weighting values: 

• Click the ‘Edit Weighting’ button, and edit the weighting trace directly. 
• Use the marquee to set a range to a constant value over the frequency range enclosed by 

the marquee. 

To set the weighting using the marquee: 

1) Sweep out a marquee over the frequency range you will assign a constant weighting 
value to. 

2) Click inside the marquee and choose ‘Set_Weighting_Value’ from the marquee menu. 

   

3) Enter the weighting value in the dialog that appears. 
4) Click Continue. 
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Transition Regions 
The transition regions indicate frequencies where we expect the response to change from a reject 
band to a pass band or vice versa, so we don’t want to constrain the response to a particular 
value. 

Using transition regions allows the filter design algorithm more freedom to optimize the 
response in places where we do care about what the response is. 

Editing Transition Regions 
Transition regions are added and removed using the marquee menu. 
To remove one or more transition regions: 

1) Sweep out a marquee over the frequency range you will remove transition region(s) 
from. 

2) Click inside the marquee and choose ‘Remove_Transition_Region’ from the marquee 
menu. 

   

To add a transition regions, follow the same procedure, but choose ‘Add_Transition_Region’, 
instead. 
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You can extend a transition region by overlapping the marquee with an existing transition 
region and choosing ‘Add_Transition_Region’: 

Extending a Transition Region  

You can also trim a transition region by overlapping the marquee and choosing 
‘Remove_Transition_Region’. 

Filter Terms 
An odd number of filter terms is required because it eliminates phase shift in the filtered result. 

Increasing the number of terms reduces the errors in the actual filter response. (“Errors” in this 
context means deviations from the desired response trace.) 

Increasing the number of terms also increases the number of ripples in the response. 
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Kaiser Maximally Flat Design Graph 
This low pass design technique, due to Kaiser, has the sometimes very desirable property of 
producing FIR filters having absolutely no ripple within the limits of quantization. Naturally 
such filters have many more terms than an equivalent equiripple design. The number of 
coefficients are calculated based on the entered parameters: 

 Transition Width

Transition 
Frequency

 
The parameters are: 

◊ ‘Transition Frequency’ is the 50% gain point of the response curve. 
◊ ‘Transition Width’ is the width of the response curve from 95% gain to 5% gain. 

Avoid specifying excessively narrow transition widths, or transition frequencies near the 
Nyquist frequency. 
IFDL prevents you from entering obviously wrong values. Even so, some values may cause the 
‘DoMaxflat’ XOP to run for a long time while spinning the “beach ball” cursor. 
If this happens, your best recourse may be to stop the XOP by typing command-period 
(Macintosh) or pressing the Abort button (Windows): 

   

Then try using a larger transition width or a lower transition frequency. 
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Kaiser Low Pass Design Graph 
This low pass FIR filter design is based on the Kaiser window. It is principally provided for 
teaching purposes. See “Window Filters Design”, below, for an explanation. 

 
End of

Pass Band
Start of 
Stop Band

Minimum 
Stop Band 
Attenuation

 

The parameters are: 

◊ ‘End of Pass Band’ is the highest frequency in the passband. The passband extends from 
0 Hz to this frequency, where the nominal gain is 1, or 0dB. 

◊ ‘Start of Stop Band’ is the lowest frequency in the stopband. The stopband extends from 
this frequency to the Nyquist frequency, where the nominal gain is 0, or -∞ dB. 

 The frequencies between the pass and stop bands define the transition band, where the 
gain is changing from 1 to 0. 

◊ ‘Number of Terms’ chooses an even or odd number of terms.  As with the Kaiser 
MaxFlat design, the number of coefficients are calculated based on the desired 
properties: 

◊ ‘Min Stop Band Attenuation (dB)’ is a positive number expressing the maximum gain in 
the stop band in decibels. 
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Window Filters Design Graph 
This low or high pass method is the classic “window” method of FIR filter design if the ‘End of 
First Band’ frequency is equal to ‘Start of Second Band’ (that is, if there is a zero-width transition 
region). 

End of
First Band.

Start of
Second Band.

Choose the Window 
shape to be applied to 
the truncated 
coefficients (see text).

 

The parameters are: 

◊ ‘End of First Band’ is the highest frequency in the first band. 
 If the ‘Filter Type’ is “low pass”, the first band is the pass band; if “high pass”, it is the 

stopband. 
◊ ‘Start of Second Band’ is the lowest frequency in the second band. The second band 

extends from this frequency to the Nyquist frequency. 
 If the ‘Filter Type’ is “low pass”, the second band is the stopband; if “high pass”, it is the 

passband. 
 The frequencies above the ‘End of First Band’, and below the ‘Start of Second Band’ are 

the transition region, where the gain is changing between 1 and 0. 
◊ ‘Filter Type’ selects either a low pass or high pass filter. 
◊ ‘Number of Terms’ specifies the number of coefficients in the FIR filter. This is the 

number of values in the “coefs” filter wave. 
◊ ‘Window’ specifies the window function used on the coefs wave. The “Kaiser[1]” 

selection is the Kaiser window with ß = 1. 
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Window-based Filter Design Details 
The Window Filter Design algorithm constructs a frequency-domain magnitude response step 
with the edges at the specified frequencies: 

End of
First Band

Start of
Second Band

Smooth 
transition 
created by 
REdge 
function

 

If a reasonable transition band width is specified then a smooth frequency domain transition 
between the bands is applied, rather than the classic abrupt edge. You can try different 
transition curves by editing the REdge function in the “Window Filters.ipf” procedure file. 

The designed response is inverse-FFT’d to produce the impulse response: 

 

It is then truncated to the entered value for ‘Number of Terms’ and multiplied by the selected 
‘Window’ function: 

x

=
 

Given the availability of the McCellan-Parks-Rabiner method, this technique is only of 
instructional value since it uses more filter terms to achieve the same performance. 
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IIR Analog Prototype Design Graph 
The IIR Analog Prototype design graph was added to IFDL in version 4. It designs Infinite 
Impulse Response filters whose response mimics that of traditional analog electronic 
Butterworth, Chebyshev, and Bessel filters. 

 

The main functions of this design graph specify: 

• filter type (highpass, lowpass, bandpass, bandstop, or notch-only), 
• band edge(s), 
• filter order, 
• analog prototype (Bessel, Butterworth, or Chebyshev), 
• additional notches. 
• implementation (Direct Form I or Cascade DF II), 

For reference or for comparison to other filter design programs, the design graph provides for 
display of:  

• poles and zeros in the Z-plane 
• coefficient values in a table, 
• for cascade implementations, the frequency response of each section. 

Filter Type 
You can choose from the basic two-band filter choices and an additional 
“notch only” option. 
When “notch only” is selected, no band edges apply: only the notch 
settings. See the “Additional Notches” section.  
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Band Edges 
Depending on which filter type is chosen, 1st Band and 2nd Band define the approximate –3dB 
corner frequencies of the filter. In the analog filter world, these correspond to the “poles” of the 
filter. For bandpass and bandstop filter types, the value of 1st Band must be  less than or equal to 
the value of 2nd Band. 

Filter order 
“Filter order” refers to the number of poles (and also the number of zeros) in the filter. Higher 
order filtering has a steeper transition region: 

-10

-8

-6

-4

-2

0

25002000150010005000

 2nd order Butterworth
 4th order Butterworth

 
A filter of order 2 (a “second order filter”) has two poles and two zeros. This is also called a “bi-
quad” or “bi-quadratic” filter. The second order filter is the basic building block (or “section”) of 
the Cascade Direct Form II implementation. See the “Implementation” section below. 

Analog Prototype 
The IIR filters are designed by transforming classical analog filter designs from the Laplace (or 
“S-plane”) into the Z-transform plane (or “Z-plane”) using a bilinear transformation. 

Analog filters are designed by computing the position of “poles” and “zeros” in the complex S 
plane. These poles correspond to infinite maxima and the zeros to, well, zeros, in the Laplace 
transform of the filter transfer function H(s): 

    
H(s) = K(s! z1)(s! z2 )...

(s! p1)(s! p2 )...

 

where p1, p2, etc are the pole locations in the complex (Laplace) S plane s = " + j#. The # part in 
j# is the pole frequency (in radians/second) in the S plane. # can have any value from -∞ to +∞. 

The Butterworth, Bessel, and Chebyshev analog filters are designed to have poles in different 
locations in the S-plane, which result in different frequency responses: 

• Bessel filters tend to have the most linear phase response of the three choices. 

• Butterworth filters have a very smooth passband with a sharper cutoff shape than the 
Bessel filter. 

• Chebyshev filters exhibit a still-sharper cutoff at the expense of introducing ripple in the 
passband. 



Chapter 3 — Reference 

 
77  

Here are the pole locations for second order low pass filters with 2nd Band set to 1/2 of the 
Nyquist frequency: 

-2

-1

1

2

-3 -2 -1 1

Bessel

j!

"

-2

-1

1

2

-3 -2 -1 1

Butterworth

j!

"

-2

-1

1

2

-3 -2 -1 1

Chebyshev

j!

"

 

These example second order filters also have zeros at s = 0 + j ∞ and s = 0 – j ∞, which aren’t 
shown.  

The S plane designs are all frequency-normalized lowpass filters. The S plane design frequencies 
are computed in Hz by dividing the 1st and/or 2nd band frequencies by the sampling frequency, 
and then adjusted so that when the poles are mapped into the Z plane the desired cutoff 
frequency is obtained. 

The S plane poles and zeros are then frequency scaled to account for the sampling frequency, 
converted to highpass, bandpass, or bandstop, and then converted into the Z plane for digital 
filter realization. 

Here are the corresponding Z plane poles of the filters shown above (the sampling frequency 
has been set to 1 Hz): 

0.5 1
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0.125 Hz

0.25 Hz

0.375 Hz

0.5 Hz

   Bessel 
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Digital filters are designed in the Z transform plane, which has a finite frequency range of 0 to 
the Nyquist frequency. The Z transform is beyond the scope of this manual, but basically it is a 
digital equivalent of the analog S or Laplace transform. 

The conversion from S plane to Z plane is accomplished through the “bilinear transform” which 
maps an S plane value s = " + j# into the Z plane z = by the relation: 

    
z = 2 + s

2 ! s
 

This relation maps s = 0 + j∞ to z = -1 + j0, (or z = ej
$) so that the infinite frequency range # = 0 + 

j0…∞ in the S plane is mapped to ej
0..$. This compresses the complete frequency response of the 

analog filter nonlinearly into the range from 0 to the Nyquist frequency: 

! = " ! = 0

z = e j!

# = 0

Z plane unit circle

Digital frequency response is
the magnitude of H(z) on the

unit circle from ! = 0 to ! = ".

S plane positive imaginary axis

Analog frequency response is
the magnitude of H(s) along the

s = 0 + j# axis from # = 0 to # = ∞.

s = j#
z = 

2 - s
2 + s

# =  ∞

 

These transformed poles and zeros (p’1, p’2, etc) form the corresponding Z transform filter 
transfer function H(z): 

    
H(z) =

K(z! " z 1)(z! " z 2 )...
(z! " p 1)(z! " p 2 )...

 

The realization of this function varies depending on the implementation (see “Implementation”, 
below). 
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Additional Notches 
After the Z plane poles and zeros of the filter have been computed, one or more notches (aka 
“zeros”) can be added to these filters: 

The fundamental notch 
can be dragged or set 
using the 'Add Notch at' 
control.

Any harmonics of the 
notch frequency are set 
indirectly by adjusting the 
fundamental notch 
frequency.

(Harmonic notches that 
exceed the Nyquist 
frequency are not 
implemented.)

The width of all notches is set indirectly 
using a constant Q:

Q = notchFrequency/notchWidth

For example, the second notch's width is 
twice a wide as the first notch's width:

notchFrequency2 = 2 • 60 Hz = 120 Hz
notchWidth2 = 120 Hz / 5 = 24 Hz

notchWidth2

 

Each zero is positioned on the unit circle of the Z 
plane at the angle corresponding to the zero’s 
frequency, where $ corresponds to the Nyquist 
frequency. 

Each zero has a corresponding pole placed near it 
whose placement affects the sharpness of the 
notch. The pole placement is computed based on 
the notch “Q”, as shown above. 
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Implementation 
Once the Z plane poles and zeros have been computed, the filter design is actually implemented 
using either a Direct Form I or Cascaded Bi-Quad Direct Form II implementation. 
Each implementation method creates a different kind of IIRCoefs filter wave. 

Direct Form I 
See “Quick Review of Digital Filter Design” in chapter 1 for a diagram of the Direct Form I filter. 
An IIR filter’s transfer function in pole-zero form is: 

    
H(z) = K z! " z k

z! " p kk=1

N

#
 

To implement the Direct Form I filter, the products are each expanded into an Nth order 
polynomial in z-1: 

    
H(z) = Y(z)

X(z)
=

a0 + a1z
!1 + a2z!2 ... + aNz!N

b0 +b1z
!1 + b2z!2... +bNz!N

 

Where Y(z) is the Z transform of the output signal and X(z) is the Z transform of the input 
signal. Cross-multiplying X(z) and the right-hand-side denominator yields: 

    Y(z) b0 +b1z!1 + b2z!2 ... + bNz!N( ) = X(z) a0 + a1z!1 + a2z!2 ...+ aNz!N( ) 

The equivalent time-domain “finite difference equation” is computed by substituting x[i-n] for 
X(z)z-n (an inverse Z transformation) – and similarly for y and Y(z) – and then solving for the 
digital time-domain output signal y[i]: 

    
y[i] =

1
b0

a0x[i] + a1x[i ! 1]... + aNx[i ! N] ! b1y[i ! 1]... + bNy[i ! N]{ }
 

The IFDL implementation of this filter is a real-valued two-column wave with the numerator 
coefficients a0 through aN in the first column, and the denominator coefficients b0 through bN in 
the second column: 

Row Numerator 
Column 0 

Denominators 
Column 1 

0 a0 b0 
1 a1 b1 
… … … 
N aN bN 
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Cascaded Bi-Quad Direct Form II 
See “Quick Review of Digital Filter Design” in chapter 1 for a diagram of the cascade filter. 

Each bi-quad section of the cascade applies second order filtering (two poles and two zeros) 
before passing the result to the next section, each in turn, until all the designed poles and zeros 
have been applied. This implementation divides the Z plane filter transfer function into groups 
of products. For example a 4th order filter: 

    
H(z) =

K(z! " z 1)(z! " z 2 )(z! " z 3 )(z! " z 4 )
(z! " p 1)(z! " p 2)(z! " p 3 )(z! " p 4 )

 

is divided into two sections of 2nd order filters: 

    
H1(z) =

K1(z! " z 1)(z! " z 2 )
(z! " p 1)(z! " p 2 )

 

    
H2(z) =

K2(z! " z 3)(z! " z 4 )
(z! " p 3 )(z! " p 4)

 

and the combined result H1(z)H2(z) = H(z). 

Each section’s transfer function is multiplied out into a polynomial in powers of z-1. For 
example, H1(z) becomes: 

    
H1(z) = a0 + a1z

!1 + a2z!2

b0 +b1z
!1 + b2z!2

 

This second order ratio is then transformed into the equivalent “finite difference” form: 

    
y[i] =

1
b0

a0x[i] + a1x[i ! 1] + a2x[i ! 2] ! b1y[i ! 1]+ b2y[i ! 2]{ }
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The IFDL implementation of this filter is a real-valued six-column wave whose every row 
corresponds to one of the bi-quad sections. Within each row, the first three columns contain the 
numerator coefficients a0, a1, and a2, and the next three columns contain the denominator 
coefficients b0, b1, and b2: 

 Numerators Denominators 
Section Row\Column 0 1 2 3 4 5 

1st 0 a0 a1 a2 b0 b1 b2 
2nd 1 a0 a1 a2 b0 b1 b2 
… … … … … … … … 

Last N a0 a1 a2 b0 b1 b2 
 
Options for Cascaded Bi-Quad Direct Form II 
The poles and zeros are grouped into a section based on several criteria: 

• The poles closest to (or, optionally, farthest from) the unit circle are assigned to the first 
section, taking care to keep conjugate pairs together in the same section. 

• Zeroes closest to those poles are placed into the same section, also taking care to group 
conjugate pairs (if any) in the same section. 

• If the number of poles (and zeros) is odd, a pole and zero at z=(0,0) is used to fill out the 
last section (each section requires two poles and two zeros). 

The default grouping option puts poles closest to the unit circle in the first section, as shown in 
this example of pole/zero grouping for a three-section (6th order) filter: 

1

0.25 Hz

0 Hz

0.25 Hz

0.5 Hz

 Poles
 Zeros

Section 1
Poles and Zeros

Section 2 Poles
(grouped with 2 of
the zeros at 0 Hz)

Section 3 Poles
(grouped with 2 of
the zeros at 0 Hz)
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The grouping criteria can be 
reversed in the “Section Gains, 
Options” graph by checking the 
‘Reverse Pole and Zero Grouping’ 
checkbox. 

In the H1(z) and H2(z) formulas, 
note that the apportionment of K 
into K1 and K2 can be done many 
ways. The values IFDL uses for K1 
and K2, etc can be modified in the 
“Section Gains, Options” graph, 
too. 

 

The default method sets K2…Kn to 1 and then calculates a K1 so that the overall frequency 
response’s maximum gain is 1.0. 

Selecting ‘Normalize Each Section’ applies this calculation to each section’s frequency response. 
This is desirable when the sections are implemented with fixed-point arithmetic (e.g., in 
hardware) to prevent numerical overflow. The drawback is that by normalizing each section’s 
maximum gain to 1.0 the overall maximum gain can be almost any value! In hardware systems, 
this can be overlooked when an amplifier, multiplier, or attenuator can be used to restore the 
overall gain. 

Selecting ‘Except the First Section’ restores the overall frequency responses’s maximum overall 
gain to 1.0 while normalizing the remaining sections. 

Advantages of Cascaded Bi-Quad Direct Form II 
The Cascaded Bi-Quad Direct Form II implementation works better than the Direct Form I when 
the filter order approaches 10 because it avoids computing differences of numbers with wildly 
different magnitudes. (A 10th order IIR filter uses 22 terms.)  

Cascaded Bi-Quad Direct Form II also works better when limited-precision (say, 32-bit) 
hardware is used. It is a popular design for audio and video processing using 32-bit integer 
arithmetic. 
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Plot Poles and Zeros 
Clicking the ‘Plot Poles and Zeros’ button displays the filter’s poles and zeros in a polar graph of 
the Z plane (See “Implementation”, above, for examples.) 
Poles are shown as X’s, and zeros as O’s. Often a filter has multiple zeros at z=-1+j0 or z=1+j0. 
These are drawn as concentric O’s of increasing size. The first 10 zeros at a location are drawn 
this way: additional zeros are all drawn at the maximum size. 
When the Cascade implementation is chosen, the poles and zeros are drawn with colors that 
indicate the section grouping.  

Show Coefficients 
Clicking the ‘Show Coefficients’ button displays the IIRCoefs wave in a table that is formatted to 
explain the coefficients. 

Implementation IIRCoefs 

 

 

 

Direct Form I 

 
 
 

Cascade DF II 

 
 

IFDL External Operations 
IFDL relies on an Igor extension to compute filter coefficients. The extension file you install 
depends on the type of processor your computer has. See “Installing IFDL” in Chapter 1 for 
details. 

You normally won’t need to write code that uses the operations added by this Igor extension. 
But, if you do, you’ll want to know the operations’ syntax... 
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DoMaxflat 
The DoMaxflat operation calculates the coefficients of Kaiser's maximally flat filter. The 
implementation is based on the “mxflat” program as found in [Elliot] and [Kaiser].  The 
‘Maximally Flat’ Kaiser filter design graph uses the DoMaxflat operation. 

The syntax for the DoMaxflat operation is: 
DoMaxflat beta,gamma,coefsWave 

where, 
 
beta is the transition frequency expressed as a fraction of the sampling 

frequency. 
gamma is the transition width expressed as a fraction of the sampling 

frequency. 
coefsWave is the wave to receive the resulting coefficients. 

On output, the first point of coefsWave contains the number of coefficients in the designed filter. 
Only the first half of the coefficients are computed by DoMaxflat; the rest are obtained by 
symmetry. 
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Remez 
The Remez operation calculates the coefficients for digital filters given a desired frequency 
response as input. 

The implementation is based on the McClellan-Parks-Rabiner Fortran program as found in 
[IEEE] and [Elliot]. The MPR filter design graphs use this operation. 

The syntax for the Remez operation is: 
Remez [/N=n] [/Q=iter] desWave, wtWave, gridWave, coefsWave 

where, 

/N=0 selects multiple passband/stopband filter (default). 
/N=1 selects differentiator or Hilbert transform filter. 
/Q continues execution if the filter doesn’t converge, regardless of the 

number of iterations. Same as /Q=0. 
 Without /Q execution stops if the filter doesn’t converge. 
/Q=iter stops execution only if the filter fails to converge in iter  iterations or 

less. If the filter does converge after iter  iterations, the execution 
does stop. 

 Use /Q=3 to stop execution for serious errors (after only 1, 2, or 3 
iterations) but not for minor errors (after 4 or more iterations). 

desWave is the wave containing the desired response. 
wtWave is the wave containing the weighting values. For a differentiator 

(/N=1), the weighting values are inversely proportional to 
frequency. 

gridWave is the wave containing the frequencies corresponding to each point 
in desWave and wtWave. Values range from 0 to 0.5 with gaps 
(NaNs) where the band edges occur. 

coefsWave is the output wave which receives the resulting coefficients. Its 
length defines the number of coefficients used in the filter design. 
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Remez Operation Example 
This example specifies a length 41 lowpass filter with a passband that ranges from 0 to 0.14•fs 
and a stopband that ranges 0.18•fs to 0.5•fs. (The frequencies between 0.14•fs to 0.18•fs) 
constitute a transition band.) 
The passband weight is equal to the stopband weight: 

Make/N=41 coefs  // 41 coefficients 
Variable np= 16 * numpnts(coefs) 
Make/N=(np) des, wt, grid 
grid= 0.5*p/np  // frequencies from 0 to 0.5 (Nyquist) 
wt=1    // equal weighting 
des= p < 0.14*np // desired response 
    // = 1 below 14% of Nyquist frequency 
    // = 0 above it. 
// now remove response at transition frequencies (0.14 to 0.18) 
DeletePoints 0.14*numpnts(des), 0.04*numpnts(des), des, wt, grid 
Remez des, wt, grid, coefs 
 

This example is equivalent to using the MPR 2 Band Design graph with the settings shown 
below. A 1 Hz sampling frequency is used, making this a normalized frequency filter design: 

. 
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When Things Go Wrong 
“If anything can go wrong, it will.”  

— Edsel Murphy 
Here are the problems you are most likely to encounter with IFDL, and our suggested solutions. 
Each section heading in this chapter is one of: 

• text that appears in a warning dialog 
• text that is printed to the history window 
• a description of a problem 

Each section describes the likely causes of the problem and proposes solutions. 
Problems are listed roughly in the order you might encounter them while using IFDL. 

Macro Scan Error - include file not found 
You can add the IFDL or IFDL Apply Filter procedures to an experiment by typing: 

#include ":IFDL v4 Procedures:IFDL" 

or: 

#include ":IFDL v4 Procedures:Apply Filter" 

in any procedure window, and clicking the Compile button at the bottom of the procedure 
window. Normally the compile button will disappear without producing any error dialog.  
However, if you see the Macro Scan Error Dialog: 

 
there are three likely causes: 

• The #include statement has a typographical error, possibly a missing “:” or space 
character, 

• The #include statement is referring to an old IFDL version (no “v4” in the path), 
• The IFDL v4 Procedures folder was not moved into your Igor Pro Folder. See “Installing 

IFDL” in Chapter 1. 
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IFDL Menu opens procedure file 
If you choose an item from the IFDL menu, such as ‘Set IFDL Parameters’ or ‘Filter Designs’, and 
Igor just opens a procedure window that looks like this: 

 

you need only close the procedure window, and all other procedure windows, before reselecting 
the menu item. 

NOTE: Whenever any procedure window is open, selecting a menu item that corresponds to 
any macro or function will open the procedure window containing the macro or 
function. This is a programming feature (that is, it is not a bug.) 

IFDL Demo Mode 
If you see a dialog like this: 

 

it is mostly likely because the IFDL extension is not installed correctly. 

You should ensure that the IFDL extension was correctly installed into the Igor Extensions 
folder (see Installing IFDL in Chapter 1), and then restart Igor. 



 

 
 

Igor Changes a Value I Entered in a Control 
IFDL will prevent you from entering an illegal value based on the current settings.   
There are two common scenarios: 

• you are typing an even value into a ‘Number of Terms’ control 

• you are typing a frequency value into a control such as ‘End of First Band’ 
Many of the filter designs require an odd value for ‘Number of Terms’. This avoids introducing 
a time delay of 1/2 the sampling interval in the filtered output. For example, typing “18” into 
the Hilbert design graph’s ‘Terms’ control, will provoke IFDL into setting the value to 19, the 
next legal value. 

Similarly, the frequency values are checked against the other frequency values and are “clipped” 
to “legal” values. Changing the ‘End of First Band’ frequency value in the MPR 2 Band Notch 
design graph shown below to a value exceeding 0.35 would result in a negative width transition 
band: 

The End of First Band 
can't exceed...

... the Start of 
Second Band.

If you enter more 
than 0.35 here, 
IFDL changes 
the value to 0.35 
— the maximum 
value when Start 
of Second Band 
is 0.35.

 

IFDL will change the value you entered to leave at least a zero-width transition band. 

For this same reason the maximum and minimum values for the SetVariable controls prevent 
you from specifying improper values using the up and down arrows. These limits are 
automatically updated when, for example, you change the value of ‘Start of Second Band’. 
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Design something, first! 
Couldnʼt find “coefs” wave in current data folder! 
If you see one of these dialogs: 

  

then IFDL looked for the “coefs” FIR filter wave in the current data folder and didn’t find it (this 
can also happen when IFDL is looking for the “IIRCoefs” IIR filter wave). 

These dialogs appear if you haven’t clicked any ‘Compute Filter’ button before choosing 
‘Normalize Design Coefficients...’, ‘Design Report Layout’, or ‘Save Design’ from the IFDL 
menu. 

You should: 

• click one of the filter design buttons in the IFDL control panel 
• design a filter 
• click ‘Compute Filter’ 

and try again. 

(Normalize Design Coefficients gives this error when it can’t find the “preQuantCoefs” wave in 
the WM_IFDL data folder. PreQuantCoefs is created when you click the ‘Compute Filter’ button, 
too.) 

See also “Coefs Wave isn’t being updated” in the next section for more about the “coefs” and 
“IIRCoefs” waves and IFDL’s use of data folders. 



 

 
 

Current Data Folder is wrong 
Coefs Wave isnʼt being updated 
IFDL creates many waves, variables, and strings in the root:Packages:WM_IFDL data folder. 
However, it stores and updates the coefs and IIRCoefs waves along with various filter results in 
the “current data folder”. 
It is possible for IFDL to lose track of the current data folder after some other error has occurred, 
and so IFDL might have created another coefs wave in what IFDL thinks is your intended 
current data folder. 
If there is any doubt about the value of the current data folder, choose Data Browser from the 
Data menu to display the Data Browser: 

Two 
"coefs" 
waves.

This "coefs" wave in the 
Current Data Folder is 
the one updated by 
'Compute Filter'.  

If the current data folder has been changed, you should: 

• Delete any “coefs” wave in the WM_IFDL data folder (or wherever the bogus coefs wave 
has ended up). 

• Reset the current data folder to your preferred value. For most users, this will be the 
root: data folder. In this example, drag the red arrow from WM_IFDL up to root:. 
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The filter design did not converge ... 
Failure to converge after n iterations 
If the design requirements are too strict — an unreasonably small transition region between the 
passband and stopband, a maximum error which is too small, or too many filter terms — then 
the MPR algorithm may fail to converge, resulting in an error dialog: 

 

Click ‘OK’ and change the design parameters to avoid the problem. The problem is often caused 
by specifying too many filter coefficients. 

This dialog appears only if the filter design fails to converge after 1, 2, or 3 iterations. If more 
iterations occurred before the convergence failed, the dialog isn’t shown (because the filter has a 
reasonable chance of being okay). 

IFDL always places a “failure to converge after n iterations” error message in the command 
window’s history area warning you that the filter may produce undesirable results. 



 

 
 

Note: coefficients are not quantized. 
This informational message appears in the history window when you select ‘Normalize Design 
Coefficients...’ in the IFDL menu, and the ‘quantize the coefficients” popup is set to “No”: 

 

‘No’ instructs IFDL to ignore  the ‘bits of quantization’ setting in the SetIFDLParameters dialog 
during the normalization: 

 

See “Setting the IFDL Parameters” in Chapter 3 for more about ‘bits of quantization’. 
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WARNING: data samp freq = XX Hz (sample freq = YY 
Hz) 

When you invoke the ‘Apply Filter’ item from the IFDL menu: 

 

and choose ‘warn if not correct’ for the ‘data wave sample frequency’ setting, you may see this 
warning dialog: 

 

This dialog means three things: 

1) There is a mismatch between the data’s sampling frequency (10 Hz in this example), and 
the IFDL design sampling frequency (1 Hz in this example). 

2) The sampling frequencies of data wave and the filter wave were not changed. 
3) The filtered result is as if the filter’s frequency range was scaled to match the data’s 

frequency range. 

No dialog is shown when you choose the ‘force to samp freq’ setting for the popup. 
In that case, IFDL will scale the data wave’s frequencies to the filter’s frequencies. 

See the next section for an explanation of “Filter Frequency Scaling”. 



 

 
 

Filter sampling frequency doesnʼt match data 
WARNING: filter sampling frequency does not match 

data 
After adding: 

#include ":IFDL v4 Procedures:Apply Filter" 

to your procedure window, you can invoke the ApplyFilterToData macro: 

 

If you choose a filter coefficient wave whose sampling frequency does not match the data wave, 
you will see a dialog like this: 

 

Choosing “Yes” will scale the filter’s sampling frequency to match the data’s sampling 
frequency, and Igor will print a message like this one in its history window: 
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Filter Frequency Scaling 
The filter scaling is most easily visualized in the frequency domain. Here is an example 
kaiserMaxFlat filter’s designed frequency response: 

1.0
0.8
0.6
0.4
0.2
0.0

543210
Hz

Nyquist Frequency = 5 Hz

Transition Frequency= 2 Hz

Kaiser Max Flat Response 

 

The filter rejects frequencies above 2 Hz, and is designed for data sampled at 10Hz (the Nyquist 
frequency is 1/2 the sample rate). 

The data in this example, however, is sampled at 1Hz, and the maximum frequency content (the 
Nyquist frequency) is 0.5 Hz: 

60

40
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0

0.50.40.30.20.10.0
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Data Spectra

 

When Igor applies the 10 Hz filter to the 1 Hz data, the result is as if the filter’s frequency axis 
had been scaled to match the data’s frequency range: 

1.0
0.8
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Nyquist Frequency = 0.5 Hz

Transition Frequency= 0.2 Hz

Kaiser Max Flat Response 

 

The scaled filter rejects frequencies above 0.2 Hz, a factor of 10 lower than the original design. 



 

 
 

IIR Cutoff Frequency isnʼt what you specified. 
Adding notches near the cutoff frequency (band edge) distorts the frequency response. You can 
move the notch farther from the band edge, or sharpen the notch by increasing Q to lessen the 
effect the notch has on the cutoff frequency, or you can compensate by altering the requested 
cutoff frequency. 

The Chebyshev cutoff frequency is affected by the specified amount of passband ripple: less 
ripple pushes the cutoff frequency out. You can compensate by altering the requested cutoff 
frequency. 

IIR Notches arenʼt very deep. 
The frequency resolution used to compute the response may need to be increased to accurately 
gauge the notch response. Choose a higher value for ‘Frequency Resolution’ in the ‘Set IFDL 
Parameters…’ dialog. 

Switch to Cascade DF II implementation. 
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Technical Support 
For general Igor problems, please consult the Igor Pro User’s Guide’s “Technical Support” 
section. 
WaveMetrics provides technical support via telephone, FAX, and email. 
Before contacting WaveMetrics about IFDL problems, please gather this information so that we 
can help you more effectively: 

• The exact version of Igor you are running. The version number is displayed in the 
About Igor dialog available from the Apple menu (Macintosh) or the Help menu 
(Windows) when Igor is the current application. 

• The exact version of the operating system you are running. 
 Macintosh: The version number is displayed in the About this Macintosh or About This 

Computer dialog in the Apple menu when the Finder is the current application. You 
should also be prepared to answer questions about what system software extensions 
you are using since there may be conflicts we know about. 

 Windows: Use the System control panel, accessed from the Settings item in the Start 
menu. The problem may involve your video driver or printer driver as well. 

• The hardware configuration. This will vary depending on model and platform. 
• A list of any Igor extensions not created by WaveMetrics. 

Telephone and FAX Support 
You can reach us at (503) 620-3001 from 9 AM to 5 PM Pacific time. It is often very helpful if you 
can try things on your computer while speaking to us so, if at all possible, call us from a phone 
near your computer. 

You can reach our FAX machine at (503) 620-6754. 

Email Support 
You can send technical questions to us via email at: 

 support@wavemetrics.com 

For information on procuring updates and other general information, send queries to: 

 sales@wavemetrics.com 

World-Wide Web 
Our web address is: 

http://www.wavemetrics.com/ 

Our web site contains timely announcements of upgrades, bug fixes, and links to Igor-related 
FTP and web sites. 

 

 



 

 
 

 


