
IGOR Pro
Version 6.37

WaveMetrics, Inc.

Updates
Please check our website at <http://www.wavemetrics.com/> or the Igor Pro Help menu for minor updates, which we
make available for you to download whenever bugs are fixed.
If there are features that you would like to see in future versions of Igor or if you find bugs in the current version, please
let us know. We’re committed to providing you with a product that does the job reliably and conveniently.

Notice
All brand and product names are trademarks or registered trademarks of their respective companies.

Manual Revision: June 2, 2015 (6.37)

© Copyright 2015 WaveMetrics, Inc. All rights reserved.

Printed in the United States of America.

WaveMetrics, Inc.
PO Box 2088
Lake Oswego, OR 97035
USA

Voice: 503-620-3001
FAX: 503-620-6754
Email: support@wavemetrics.com, sales@wavemetrics.com
Web: http://www.wavemetrics.com/

mailto:support@WaveMetrics.com
mailto:sales@WaveMetrics.com
http://www.wavemetrics.com/
http://www.wavemetrics.com/

Table of Contents
Volume I Getting Started

I-1 Introduction to Igor Pro ... I-1
I-2 Guided Tour of Igor Pro ... I-11

Volume II User’s Guide: Part 1
II-1 Getting Help .. II-1
II-2 The Command Window .. II-19
II-3 Experiments, Files and Folders II-27
II-4 Windows .. II-53
II-5 Waves ... II-75
II-6 Multidimensional Waves .. II-107
II-7 Numeric and String Variables II-115
II-8 Data Folders .. II-121
II-9 Importing and Exporting Data II-139
II-10 Dialog Features ... II-181
II-11 Tables ... II-189
II-12 Graphs .. II-235
II-13 Category Plots ... II-315
II-14 Contour Plots .. II-325
II-15 Image Plots .. II-347
II-16 Page Layouts ... II-373

Volume III User’s Guide: Part 2
III-1 Notebooks ... III-1
III-2 Annotations ... III-41
III-3 Drawing ... III-69
III-4 Embedding and Subwindows III-87
III-5 Exporting Graphics (Macintosh) III-99
III-6 Exporting Graphics (Windows) III-107
III-7 Analysis ... III-115
III-8 Curve Fitting ... III-155
III-9 Signal Processing .. III-235
III-10 Analysis of Functions .. III-267
III-11 Image Processing .. III-297
III-12 Statistics .. III-329
III-13 Procedure Windows .. III-341
III-14 Controls and Control Panels III-359
III-15 Platform-Related Issues ... III-395
III-16 Miscellany ... III-411
III-17 Preferences .. III-431

Volume IV Programming
IV-1 Working with Commands .. IV-1
IV-2 Programming Overview ... IV-19
IV-3 User-Defined Functions .. IV-25
IV-4 Macros .. IV-99
IV-5 User-Defined Menus .. IV-109
IV-6 Interacting with the User IV-125
IV-7 Programming Techniques IV-147
IV-8 Debugging ... IV-187
IV-9 Dependencies .. IV-203
IV-10 Advanced Programming IV-213

Volume V Reference
V-1 Igor Reference .. V-1

Index

Volume I Getting Started

Table of Contents
I-1 Introduction to Igor Pro ... I-1
I-2 Guided Tour of Igor Pro ... I-11

Chapter

I-1
I-1Introduction to Igor Pro

Introduction to Igor Pro ... 2
Igor Objects .. 2

Waves — The Key Igor Concept ... 2
How Objects Relate .. 3
More Objects... 4

Igor’s Toolbox.. 4
Built-In Routines ... 4
User-Defined Procedures.. 5
Igor Extensions... 5

Igor’s User Interface ... 6
The Command Window .. 6
Menus, Dialogs and Commands ... 7

Using Igor for Heavy-Duty Jobs .. 7
Igor Documentation.. 8

Igor Tips (Macintosh only) .. 8
Status Line Help, Tool Tips and Context-Sensitive Help (Windows only)..................................... 8
The Igor Help System.. 8
The Igor Manual... 9

Learning Igor ... 9
Getting Hands-On Experience .. 9

Chapter I-1 — Introduction to Igor Pro

I-2

Introduction to Igor Pro
Igor Pro is an integrated program for visualizing, analyzing, transforming and presenting experimental
data.

Igor Pro’s features include:
• Publication-quality graphics
• High-speed data display
• Ability to handle large data sets
• Curve-fitting, Fourier transforms, smoothing, statistics, and other data analysis
• Waveform arithmetic
• Image display and processing
• Combination graphical and command-line user interface
• Automation and data processing via a built-in programming environment
• Extensibility through modules written in the C and C++ languages

Some people use Igor simply to produce high-quality, finely-tuned scientific graphics. Others use Igor as
an all-purpose workhorse to acquire, analyze and present experimental data using its built-in program-
ming environment. We have tried to write the Igor program and this manual to fulfill the needs of the entire
range of Igor users.

Igor Objects
The basic objects that all Igor users work with are:
• Waves
• Graphs
• Tables
• Page layouts

A collection of objects is called an “experiment” and is stored in an experiment file. When you open an
experiment, Igor recreates the objects that comprise it.

Waves — The Key Igor Concept
We use the term “wave” to describe the Igor object that contains an array of numbers. Wave is short for
“waveform”. The wave is the most important Igor concept.

Igor was originally designed to deal with waveform data. A waveform typically consists of hundreds to
thousands of values measured at evenly spaced intervals of time. Such data is usually acquired from a
digital oscilloscope, scientific instrument or analog-to-digital converter card.

The distinguishing trait of a waveform is the uniform spacing of its values along an axis of time or other quan-
tity. An Igor wave has an important property called “X scaling” that you set to specify the spacing of your
data. Igor stores the Y component for each point of a wave in memory but it computes the X component based
on the wave’s X scaling.

In the following illustration, the wave consists of five data points numbered 0 through 4. The user has set
the wave's X scaling such that its X values start at 0 and increment by 0.001 seconds per point. The graph
displays the wave's stored data values versus its computed X values.

Chapter I-1 — Introduction to Igor Pro

I-3

Waves can have from one to four dimensions and can contain either numeric or text data.

Igor is also capable of dealing with data that does not fit the waveform metaphor. We call this XY data. Igor
can treat two waves as an XY pair. In an XY pair, the data values of one wave supply the X component and
the data values of another wave supply the Y component for each point in the pair.

A few analysis operations, such as Fourier transforms, inherently work only on waveform data. They take
a wave’s X scaling into account.

Other operations work equally well on waveform or XY data. Igor can graph either type of data and its pow-
erful curve fitting works on either type.

Most users create waves by loading data from a file. You can also create waves by typing in a table, evalu-
ating a mathematical expression, acquiring from a data acquisition device, and accessing a database.

How Objects Relate
This illustration shows the relationships among Igor's basic objects. Waves are displayed in graphs and
tables. Graphs and tables are displayed in page layouts. Although you can display a wave in a graph or
table, a wave does not need to be displayed to exist.

Each object has a name so that it can be referenced in an Igor command. You can explicitly set an object’s
name or accept a default name created by Igor.

0 0 3.74

1 .001 4.59

2 .002 4.78

3 .003 5.49

4 .004 5.66

Point
number X value Data value

5.5

5.0

4.5

4.0

43210
ms

Igor computes a wave’s X values.

Igor stores a wave’s data values in memory.

In a graph of waveform data, Igor plots a
wave’s data values versus its X values.

X scaling is a property of a wave that specifies
how to find the X value for a given point.

X scaling

Graph Table

Waves reside in memory.
Each wave has a unique name that you can assign to it.

Waves

Page Layout

You use a wave’s name to designate it for display
or analysis or in a mathematical expression.

The traces in a graph and columns in a table are
representations of waves.

Page layouts display multiple graphs and tables as
well as pictures and annotations for presentation.

Chapter I-1 — Introduction to Igor Pro

I-4

Graphs are used to visualize waves and to generate high-quality printouts for presentation. The traces in a
graph are representations of waves. If you modify a wave, Igor automatically updates graphs. Igor labels
the axes of a graph intelligently. Tick marks never run into one another and are always “nice” values no
matter how you zoom in or pan around.

In addition to traces representing waveform or XY data, a graph can display an image or a contour plot gen-
erated from 2D data.

Tables are used to enter, inspect or modify wave data. A table in Igor is not the same as a spreadsheet in
other graphing programs. A column in a table is a representation of the contents of a wave. The wave con-
tinues to exist even if you remove it from the table or close the table entirely.

Page layouts permit you to arrange multiple graphs and tables as well as pictures and annotations for pre-
sentation. If you modify a graph or table, either directly or indirectly by changing the contents of a wave,
Igor automatically updates its representation in a layout.

Both graphs and layouts include drawing tools for adding lines, arrows, boxes, polygons and pictures to
your presentations.

More Objects
Here are some additional objects that you may encounter:
• Numeric and string variables
• Data folders
• Notebooks
• Control panels
• 3D plots
• Procedures

A numeric variable stores a single number and a string variable stores a text string. Numeric and string vari-
ables are used for storing bits of data for Igor procedures.

A data folder can contain waves, numeric variables, string variables and other data folders. Data folders
provide a way to keep a set of related data, such as all of the waves from a particular run of an experiment,
together and separate from like-named data from other sets.

A notebook is like a text-editor or word-processor document. You can use a notebook to keep a log of results or
to produce a report. Notebooks are also handy for viewing Igor technical notes or other text documentation.

A control panel is a window containing buttons, checkboxes and other controls and readouts. A control panel
is created by an Igor user to provide a user interface for a set of procedures.

A 3D plot displays three–dimensional data as a surface, a scatter plot, or a path in space.

A procedure is a programmed routine that performs a task by calling Igor's built-in operations and func-
tions and other procedures. Procedures range from very simple to very complex and powerful. You can run
procedures written by WaveMetrics or by other Igor users. If you are a programmer or want to learn pro-
gramming, you can learn to write your own Igor procedures to automate your work.

Igor’s Toolbox
Igor's toolbox includes a wide range of built-in routines. You can extend it with user-defined procedures
written in Igor itself and separately-compiled Igor extensions (plug-ins) that you obtain from WaveMetrics,
from a colleague, from a third-party, or write yourself.

Built-In Routines
Each of Igor's built-in routines is categorized as a function or as an operation.

Chapter I-1 — Introduction to Igor Pro

I-5

A built-in function is an Igor routine, such as sin, exp or ln, that directly returns a result. A built-in operation
is a routine, such as Display, FFT or Integrate, that acts on an object and may create new objects but does
not directly return a result.

The best way to get a sense of the scope of Igor's built-in routines is to scan the sections Built-In Operations
by Category on page V-1 and Built-In Functions by Category on page V-6 in the reference volume of this
manual.

For getting reference information on a particular routine it is usually most convenient to choose
Help→Command Help and use the Igor Help Browser.

User-Defined Procedures
A user-defined procedure is a routine written in Igor’s built-in programming language by entering text in
a procedure window. It can call upon built-in or external functions and operations as well as other user-
defined procedures to manipulate Igor objects. Sets of procedures are stored in procedure files.

Igor Extensions
An extension is a “plug-in” - a piece of external code that adds functionality to Igor. We use the terms “external
operation” or “XOP” and “external function” or “XFUNC” for operations and functions added by extensions.
An extension can add menus, dialogs and windows to Igor as well as operations and functions.

To write an extension, you must be a C or C++ programmer and you need the optional Igor External Oper-
ations Toolkit. See Creating Igor Extensions on page IV-185.

Although creating an extension is a job for a programmer, anyone can use an extension. The Igor installer auto-
matically installs commonly used extensions in "Igor Pro Folder/Igor Extensions". These extensions are available
for immediate use. An example is the Excel file loader accessible through Data→Load Waves.

Less commonly used extensions are installed in "Igor Pro Folder/More Extensions". Available extensions are
described in the “XOP Index” help file (choose Windows→Help Windows→XOP Index.ihf). To activate an
extension, see Activating Extensions on page III-426.

You can create Igor procedures by entering text in a procedure window.

Procedures can call operations, functions or other procedures.
They can also perform waveform arithmetic.

Each procedure has a name
which you use to invoke it.

Chapter I-1 — Introduction to Igor Pro

I-6

Igor’s User Interface
Igor uses a combination of the familiar graphical user interface and a command-line interface. This
approach gives Igor both ease-of-use and programmability.

The job of the user interface is to allow you to apply Igor’s operations and functions to objects that you
create. You can do this in three ways:
• Via menus and dialogs
• By typing Igor commands directly into the command line
• By writing Igor procedures

The Command Window
The command window is Igor’s control center. It appears at the bottom of the screen.

At the bottom of the command window is the command line. Above the red divider is the history area
where executed commands are stored for review. Igor also uses the history area to report results of analyses
like curve-fitting or waveform statistics.

You enter commands in
the command line.

The name of the current
experiment appears as the
title of the command window.

When Igor executes a command it
transfers it to the history area.

Help Browser button.

Chapter I-1 — Introduction to Igor Pro

I-7

Menus, Dialogs and Commands
Menus and dialogs provide easy access to the most commonly-used Igor operations.

When you choose a menu item associated with an Igor operation, Igor presents a dialog. As you use the
dialog, Igor generates a command and displays it in the command box near the bottom of the dialog. When
you click the Do It button, Igor transfers the command to the command line where it is executed.

As you get to know Igor, you will find that some commands are easier to invoke from a dialog and others
are easier to enter directly in the command line.

There are some menus and dialogs that bypass the command line. Examples are the Save Experiment and
Open Experiment items in the File menu.

Using Igor for Heavy-Duty Jobs
If you generate a lot of raw data or need to do custom technical computing, you will find it worthwhile to
learn how to put Igor to heavy-duty use. It is possible to automate some or all of the steps involved in load-
ing, processing and presenting your data. To do this, you must learn how to write Igor procedures.

Igor includes a built-in programming environment that lets you manipulate waves, graphs, tables and all
other Igor objects. You can invoke built-in operations and functions from your own procedures to build
higher-level operations customized for your work.

Learning to write Igor procedures is easier than learning a lower-level language such as FORTRAN or C. The
Igor programming environment is interactive so you can write and test small routines and then put them
together piece-by-piece. You can deal with very high level objects such as waves and graphs but you also have
fine control over your data. Nonetheless, it is still programming. To master it requires an effort on your part.

The Igor programming environment is described in detail in Volume IV Programming. You can get started
by reading the first three chapters of that volume.

You can also learn about Igor programming by examining the WaveMetrics Procedures and example exper-
iments that were installed on your hard disk.

Copies the command to the Clipboard.
Useful when you are writing Igor procedures.

...Igor presents a dialog.When you choose a menu item...

The dialog generates a command
suitable for execution in Igor’s
command line.

Copies the command to the command line
where you can edit it and then execute it.

Transfers the command to the
command line and executes it.

Chapter I-1 — Introduction to Igor Pro

I-8

Igor Documentation
Igor includes an extensive online help system and a comprehensive PDF manual.

The online help provides guided tours, context-sensitive tips, general usage information for all aspects of
Igor, and reference information for Igor operations, functions and keywords.

The PDF manual contains mostly the same information except for the context-sensitive tips.

The PDF manual, being in book format, is better organized for linear reading while the online help is
usually preferred for reference information.

Igor Tips (Macintosh only)
Igor Tips present brief explanations of menus, dialogs and other user interface items.You turn Igor Tips on
and off using the Help menu. When on, tips appear as you move your mouse over icons, menu items and
dialog items.

Status Line Help, Tool Tips and Context-Sensitive Help (Windows only)
Igor’s Windows help system provides three ways to get immediate help for an icon, a menu item, or a
dialog item.

Status line help automatically shows brief descriptions of menu items and icons in the status line area at the
bottom of the main Igor Pro window.

Tool tips provide very brief descriptions of icons when you point the cursor at the item.

Context-sensitive help displays a pop-up window containing information about the menu item, icon or
dialog item of interest. Context-sensitive help is accessed as follows::

The Igor Help System
The Help menu provides access to Igor's help system, primarily through the Igor Help Browser.
• Use the Help menu or press Help (Macintosh) or F1 (Windows) to display the Igor Help Browser.
• Use the Igor Help Browser Help Topics tab to browse help topics.
• Use the Igor Help Browser Shortcuts tab to get a list of handy shortcuts and techniques.

Menus and Icons: Press Shift+F1 to get the question-mark cursor and click the
item of interest.

Dialogs: Click the question-mark button in the upper-right corner of dia-
log to get the question-mark cursor , then click a dialog item.

Igor Tips provides a bit of extra information
on the topic of your choice.

Turn Igor Tips on using the Help menu or by
pressing Option-Help.

Igor provides extensive Igor Tips for menu items,
dialog items and many other user-interface items.

Chapter I-1 — Introduction to Igor Pro

I-9

• Use the Igor Help Browser Command Help tab to get reference information on Igor operations and
functions. You can also right-click operation and function names in Igor windows to access the refer-
ence help.

• Use the Igor Help Browser Search tab to search Igor help, procedure and example files.

Most of the information displayed by the help browser comes from help files that are automatically loaded
at launch time. The Windows→Help Windows submenu provides direct access to these help files.

The Igor Manual
The Igor PDF manual resides in "Igor Pro Folder/Manual". You can access it by choosing Help→Manual.
The manual consists of five volumes and an index.

Volume I contains the Getting Started material, including the Guided Tour of Igor Pro.

Volumes II and III contain general background and usage information for all aspects of Igor other than pro-
gramming.

Volume IV contains information for people learning to do Igor programming.

Volume V contains reference information for Igor operations, functions and keywords.

Hard copy of the manual can be purchased from http://www.lulu.com/wavemetrics.

Learning Igor
To harness the power of Igor, you need to understand its fundamental concepts. Some of these concepts are
familiar to you. However, Igor also incorporates a few concepts that will be new to you and may seem
strange at first. The most important of these are waves and experiments.

In addition to this introduction, the primary resources for learning Igor are:
• The Guided Tour of Igor Pro in Chapter I-2

The guided tour shows you how to perform basic Igor tasks step-by-step and reinforces your under-
standing of basic Igor concepts along the way. It provides an essential orientation to Igor and is
highly-recommended for all Igor users.

• The Igor Pro PDF manual and online help files
You can access the PDF manual through Igor's Help menu or by opening it directly from the Manual
folder of the Igor Pro Folder where Igor is installed.
You can access the help files through the Igor Help Browser (choose Help→Igor Help Browser) or
directly through the Windows→Help submenu.

• The "Examples" experiments
The example experiments illustrate a wide range of Igor features. They are stored in the Examples
folder in the Igor Pro Folder. You can access them using the File→Example Experiments submenu
or directly from the Examples folder of the Igor Pro Folder where Igor is installed.

You will best learn Igor through a combination of doing the guided tour, reading select parts of the manual
(see suggestions following the guided tour), and working with your own data.

Getting Hands-On Experience
This introduction has presented an overview of Igor, its main constituent parts, and its basic concepts. The
next step is to get some hands-on experience and reinforce what you have learned by doing the Guided
Tour of Igor Pro on page I-11.

http://www.lulu.com/wavemetrics

Chapter I-1 — Introduction to Igor Pro

I-10

Chapter

I-2
I-2Guided Tour of Igor Pro

Overview.. 13
Terminology... 13
About the Tour .. 13
Guided Tour 1 - General Tour... 14

Launching Igor Pro.. 14
Entering Data.. 14
Making a Graph ... 16
Touching up a Graph .. 16
Adding a Legend ... 18
Adding a Tag.. 18
Using Preferences .. 20
Making a Page Layout .. 20
Saving Your Work ... 22
Loading Data .. 23
Appending to a Graph .. 24
Offsetting a Trace... 25
Unoffsetting a Trace .. 25
Drawing in a Graph... 26
Making a Window Recreation Macro... 27
Recreating the Graph .. 28
Saving Your Work ... 28
Using Igor Documentation... 28
Graphically Editing Data .. 30
Making a Category Plot (Optional)... 31
Category Plot Options (Optional) ... 32
The Command Window ... 34
Browsing Waves .. 36
Using the Data Browser .. 36
Synthesizing Data .. 36
Zooming and Panning .. 37
Making a Graph with Multiple Axes .. 38
Saving Your Work ... 40
Using Cursors... 40
Removing a Trace and Axis ... 41
Creating a Graph with Stacked Axes.. 41
Appending to a Layout... 43
Saving Your Work ... 43
Creating Controls... 44
Creating a Dependency... 45
Saving Your Work ... 46
End of the General Tour ... 47

Guided Tour 2 - Data Analysis ... 48
Launching Igor Pro.. 48

Chapter I-2 — Guided Tour of Igor Pro

I-12

Creating Synthetic Data .. 48
Quick Curve Fit to a Gaussian ... 49
More Curve Fitting to a Gaussian ... 50
Sorting ... 50
Fitting to a Subrange ... 51
Extrapolating a Fit After the Fit is Done... 52
Appending a Fit ... 53

Guided Tour 3 - Histograms and Curve Fitting... 55
Launching Igor Pro.. 55
Creating Synthetic Data .. 55
Histogram of White Noise.. 55
Histogram of Gaussian Noise .. 56
Curve Fit of Histogram Data.. 57
Curve Fit Residuals (Optional) .. 59
Writing a Procedure (Optional) ... 61
Saving a Procedure File (Optional) ... 64
Including a Procedure File (Optional) .. 64

For Further Exploration ... 66

Chapter I-2 — Guided Tour of Igor Pro

I-13

Overview
In this chapter we take a look at the main functions of Igor Pro by stepping through some typical operations.
Our goal is to orient you so that you can comfortably read the rest of the manual or explore the program on
your own. You will benefit most from this tour if you actually do the instructed operations on your com-
puter as you read this chapter. Screen shots are provided to keep you synchronized with the tour.

Terminology
If you have read Chapter I-1, Introduction to Igor Pro, you already know these terms.

About the Tour
This tour consists of three sections: Guided Tour 1 - General Tour on page I-14, Guided Tour 2 - Data Anal-
ysis on page I-48, and Guided Tour 3 - Histograms and Curve Fitting on page I-55.

The General Tour is a rambling exploration intended to introduce you to the way things work in Igor and give
you a general orientation. This tour takes 2 to 4 hours but does not have to be performed in one sitting.

The second and third tours guide you through Igor’s data analysis facilities including simple curve fitting.

When you’ve completed the first tour you may prefer to explore freely on your own before starting the sec-
ond tour.

Experiment The entire collection of data, graphs and other windows, program text
and whatnot that make up the current Igor environment or workspace.

Wave Short for waveform, this is basically a named array of data with optional
extra information.

Name Because Igor contains a built-in programming and data transformation
language, each object must have a unique name.

Command This is a line of text that performs some task. Igor is command-driven so
that it can be easily programmed.

Chapter I-2 — Guided Tour of Igor Pro

I-14

Guided Tour 1 - General Tour
In this exercise, we will generate data in three ways (typing, loading, and synthesizing) and we will gener-
ate graph, table, and page layout windows. We will jazz up a graph and a page layout with a little drawing
and some text annotation. At the end we will explore some of the more advanced features of Igor Pro.

Launching Igor Pro
The Igor Pro application is typically installed in:

/Applications/Igor Pro Folder (Macintosh)

C:\Program Files\WaveMetrics\Igor Pro Folder (Windows 32-bit)

C:\Program Files (x86)\WaveMetrics\Igor Pro Folder (Windows 64-bit)

1. Double-click the Igor Pro application file on your hard disk.
On Windows you can also start Igor using the Start menu.
If Igor was already running, choose the File→New Experiment menu item.

2. Use the Misc menu to turn preferences off.
Turning preferences off ensures that the tour works the same for everyone.

Entering Data
1. If a table window is showing, click in it to bring it to the front.

When Igor starts up, it creates a new blank table unless this feature is turned off in the Miscella-
neous Settings dialog. If the table is not showing, perform the following two steps:
1a. Choose the Windows→New Table menu item.

The New Table dialog appears.
1b. Click the Do It button.

A new blank table is created.
2. Type “0.1” and then press Return or Enter on your keyboard.

This creates a wave named “wave0” with 0.1 for the first point. Entering a value in the first row
(point 0) of the first blank column automatically creates a new wave.

Chapter I-2 — Guided Tour of Igor Pro

I-15

3. Type the following numbers, pressing Return or Enter after each one:
1.2
1.9
2.6
4.5
5.1
5.8
7.8
8.3
9.7
Your table should look like this:

4. Click in the first cell of the first blank column.
5. Enter the following numbers in the same way:

-0.12
-0.08
1.3
1
0.54
0.47
0.44
0.2
0.24
0.13

6. Choose Data→Rename.
7. Click “wave0” in the list and then click the arrow icon.
8. Replace “wave0” with “time”.

Notice that you can’t use the name “time” because it is the name of a built-in string function. We
apologize for usurping such a common name.

9. Change the name to “timeval”.
10. Select “wave1” from the list, click the arrow icon, and type “yval”.
11. Click Do It.

Notice the column headers in the table have changed to reflect the name changes.

Chapter I-2 — Guided Tour of Igor Pro

I-16

Making a Graph
1. Choose the Windows→New Graph menu item.

The New Graph dialog will appear. This dialog comes in a simple form that most people will use
and a more complex form that you can use to create complex multiaxis graphs in one step.

2. If you see a button labeled Fewer Choices, click it.
The button is initially labeled More Choices because the simpler form of the dialog is the default.

3. In the Y Wave(s) list, select “yval”.
4. In the X Wave list, select “timeval”.
5. Click Do It.

A simple graph is created.

Touching up a Graph
1. Position the cursor directly over the trace in the graph and double-click.

The Modify Trace Appearance dialog appears. You could also have chosen the corresponding
menu item from the Graph menu.
Note: The Graph menu appears only when a graph is the target window. The target window is
the window that menus and dialogs act on by default.

2. Choose Markers from the Mode pop-up menu.
3. Select the open circle from the pop-up menu of markers.
4. Set the marker color to blue.
5. Click Do It.

Your graph should now look like this:

6. Position the cursor over the bottom axis line.
The cursor changes to this shape: . This indicates the cursor is over the axis and also that you can
offset the axis (and the corresponding plot area edge) to a new position.

7. Double-click directly on the axis.
 The Modify Axis dialog appears. If another dialog appears, click cancel and try again, making
sure the cursor is showing.
Note the Live Update checkbox in the top/right corner of the Modify Axis dialog. When it is
checked, changes that you make in the dialog are immediately reflected in the graph. When it is
unchecked, the changes appear only when you click Do It. The Modify Axis dialog is the only one
with a Live Update checkbox.

Chapter I-2 — Guided Tour of Igor Pro

I-17

8. If it is not already showing, click the Axis tab.
9. Choose On from the Mirror Axis pop-up.
10. Click the Auto/Man Ticks tab.
11. Click the Minor Ticks checkbox so it is checked.
12. Click the Ticks and Grids tab.
13. Choose Inside from the Location pop-up.
14. Choose the left axis from the Axis pop-up menu in the top-left corner of the dialog and then

repeat steps 8 through 13.
15. Click Do It.

Your graph should now look like this:

16. Again double-click the bottom axis.

The Modify Axis dialog appears again.
17. Click the Axis tab.
18. Uncheck the Standoff checkbox.
19. Choose the left axis from the Axis pop-up menu and repeat step 18.
20. Click Do It.

Notice that some of the markers now overlap the axes. The axis standoff setting pushes out the
axis so that markers and traces do not overlap the axis. You can use Igor’s preferences to ensure
this and other settings default to your liking, as explained below.

21. Double-click one of the tick mark labels (such as “6”) on the bottom axis.
The Modify Axis dialog reappears, this time with the Axis Range tab showing. If another dialog
or tab appears, cancel and try again, making sure to double click one of the tick mark labels on
the bottom axis.

22. Choose “Round to nice values” from the pop-up menu that initially reads “Use data limits”.
23. Choose the left axis from the Axis pop-up menu and repeat step 22.
24. Click Do It.

Notice that the limits of the axes now fall on “nice” values.

Chapter I-2 — Guided Tour of Igor Pro

I-18

Adding a Legend
1. Choose the Graph→Add Annotation menu item.

The Add Annotation dialog appears.
2. Click the Text tab if it is not already selected.
3. Choose Legend from the pop-up menu in the top-left corner.

Igor inserts text to create a legend in the Annotation text entry area. The Preview area shows what
the annotation will look like. Note that the text \s(yval) generates the symbol for the yval
wave. This is an “escape sequence”, which creates special effects such as this.

4. In the Annotation area, change the second instance of “yval” to “Magnitude”.
5. Click the Frame tab and choose Box from the Annotation Frame pop-up menu.
6. Choose Shadow from the Border pop-up menu.
7. Click the Position tab and choose Right Top from the Anchor pop-up menu.

Specifying an anchor point helps Igor keep the annotation in the best location as you make the
graph bigger or smaller.

8. Click Do It.

Adding a Tag
1. Choose the Graph→Add Annotation menu item.
2. Choose Tag from the pop-up menu in the top-left corner.
3. In the Annotation area of the Text tab, type “When time is ”.
4. Choose “Attach point X value” from the Dynamic pop-up menu in the Insert area of the dialog.

Igor inserts the \0X escape code into the Annotation text entry area.
5. In the Annotation area, add “, Magnitude is ”.
6. Choose “Attach point Y value” from the Dynamic pop-up menu.
7. Switch to the Frame tab and choose None from the Annotation Frame pop-up menu.
8. Switch to the Tag Arrow tab and choose Arrow from the Connect Tag to Wave With pop-up

menu.

Chapter I-2 — Guided Tour of Igor Pro

I-19

9. Click the Position tab and choose “Middle center” from the Anchor pop-up menu.
The dialog should now look like this:

10. Click Do It.
Your graph should now look like this:

The tag is attached to the first point. An arrow is drawn from the center of the tag to the data point
but you can’t see it because it is hidden by the tag itself.

11. Position the cursor over the text of the tag.
The cursor changes to a hand. This indicates you can reposition the tag relative to the data point
it is attached to.

12. Drag the tag up and to the right about 1 cm.
You can now see the arrow.

13. With the cursor over the text of the tag, press Option (Macintosh) or Alt (Windows).
The cursor changes to this shape: . (You may need to nudge the cursor slightly to make it
change.)

Chapter I-2 — Guided Tour of Igor Pro

I-20

14. While pressing Option (Macintosh) or Alt (Windows), drag the box cursor to a different data point.
The tag jumps to the new data point and the text is updated to show the new X and Y values. Option-
drag (Macintosh) or Alt-drag (Windows) the tag to different data points to see their X and Y values.
Notice that the tip of the arrow touches the marker. This doesn’t look good, so let’s change it.

15. Double-click the text part of the tag.
The Modify Annotation dialog appears.

16. Click the Tag Arrow tab and change the Line/Arrow Standoff from “Auto” to “10”.
17. Click the Change button.

The tip of the arrow now stops 10 points from the marker.

Using Preferences
If you have already set preferences to your liking and do not want to disturb them, you can skip this section.

1. Use the Misc menu to turn preferences on.
2. Click the graph window if it is not already active.
3. Choose the Graph→Capture Graph Prefs menu item.

The Capture Graph Preferences dialog appears.
4. Click the checkboxes for XY plot axes and for XY plot wave styles.
5. Click Capture Preferences.
6. Choose Windows→New Graph.
7. Choose “yval” as the Y wave and “timeval” as the X wave.
8. Click Do It.

The new graph is created with a style similar to the model graph.
9. Press Option (Macintosh) or Alt (Windows) while clicking the close button of the new graph.

The new graph is killed without presenting a dialog.
10. Choose Graph→Capture Graph Prefs.
11. Click the checkboxes for XY plot axes and for XY plot wave styles.
12. Click Revert to Defaults.
13. Use the Misc menu to turn preferences off.

We turn preferences off during the guided tour to ensures that the tour works the same for every-
one. This is not something you would do during normal work.

Making a Page Layout
1. Choose the Windows→New Layout menu item.

The New Page Layout dialog appears. The names of all tables and graphs are shown in the list.
2. In the Objects to Lay Out list, select Graph0.
3. Command-click (Macintosh) or Ctrl-click (Windows) on Table0.
4. Click Do It.

A page layout window appears with a Table0 object on top of a Graph0 object.
The layout initially shows objects at 50% but you may prefer to work at 100%. You can use the pop-
up menu in the lower left corner of the window to change magnification.

5. Click the Table0 object in the layout window.
The table object becomes selected, resize handles are drawn around the edge and the cursor
becomes a hand when over the table.

Chapter I-2 — Guided Tour of Igor Pro

I-21

6. Click in the middle of the table and drag it so you can see the right edge of the table.
7. Position the cursor over the small black square (handle) in the middle of the right side of the table.

The cursor changes to a two headed arrow indicating you can drag in the direction of the arrows.
8. Drag the edge of the table to the left until it is close to the edge of the third column of numbers.

You need only get close — Igor snaps to the nearest grid line.
9. In a similar fashion, adjust the bottom of the table to show all the data but without any blank lines.
10. Drag the table and graph to match the picture:

11. Click this icon in the tool palette: .
This activates the drawing tools.

12. Click this icon in the drawing tool palette: .
This is the polygon tool.

Chapter I-2 — Guided Tour of Igor Pro

I-22

13. Click once just to the right of the table, click again about 2 cm right and 1 cm down and finally dou-
ble-click a bit to the right of the last click and just above the graph.

The double-click exits the “draw polygon” mode and enters “edit polygon mode”. If you wish to
touch up the defining vertices of the polygon, do so now by dragging the handles (the square
boxes at the vertices).

14. Click the Arrow tool in the palette.
This exits polygon edit mode.

15. Click the polygon to select it.
16. Click the draw environment pop-up icon, , and choose At End in the Line Arrow submenu.
17. Click this icon in the tool palette: .

This is the operate icon. The drawing tools are replaced by the normal layout tools.
We are finished with the page layout for now.

18. Choose Windows→Send To Back.

Saving Your Work
1. Identify or create a folder on your hard disk for saving your Igor files.

For example, you might create a folder for your Igor files in your user folder.
Don’t save your Igor files in the Igor Pro folder as this complicates updating Igor and making back-
ups.

2. Choose File→Save Experiment.
The save file dialog appears.

3. Make sure that Packed Experiment File is selected as the file format.
4. Type “Tour #1 a.pxp” in the name box.
5. Navigate to the folder where you want to keep your tour files.
6. Click Save.

The “Tour #1a.pxp” file contains all of your work in the current experiment, including waves that
you created, graphs, tables and page layout windows.
If you want to take a break, you can quit Igor Pro now.

first click

second click

final double-click

Chapter I-2 — Guided Tour of Igor Pro

I-23

Loading Data
Before loading data we will use a Notebook window to look at the data file.

0. If you are returning from a break, launch Igor and open your “Tour #1 a.pxp” experiment file.
Then turn off preferences using the Misc menu.
Opening the “Tour #1 a.pxp” experiment file restores the Igor workspace to the state it was in when
you saved the file. You can open the experiment file by using the Open Experiment item in the File
menu or by double-clicking the experiment file.

1. Choose the File→Open File→Notebook menu item.
2. Navigate to the folder “Igor Pro Folder:Learning Aids:Sample Data” folder and open “Tutorial

Data #1.txt.”
A Notebook window showing the contents of the file appears. If desired, we could edit the data and
then save it. For now we just observe that the file appears to be tab-delimited (tabs separate the col-
umns) and contains names for the columns. Note that the name of the first column will conflict with
the data we just entered and the other names have spaces in them.

3. Click the close button or press Command-W (Macintosh) or Ctrl+W (Windows).
A dialog appears asking what you want to do with the window.

4. Click the Kill button.
The term Kill means to “completely remove from the experiment”. The file will not be affected.
Now we will actually load the data.

5. Choose Data→Load Waves→Load Delimited Text.
An Open File dialog appears.

6. Again choose “Tutorial Data #1.txt” and click Open.
The Loading Delimited Text dialog appears. The name “timeval” is highlighted and an error mes-
sage is shown. Observe that the names of the other two columns were fixed by replacing the
spaces with underscore characters.

Chapter I-2 — Guided Tour of Igor Pro

I-24

7. Change “timeval” to “timeval2”.
The dialog should now look like this:

8. Click the Make Table box to select it and then click Load.
The data is loaded and a new table is created to show the data.

9. Click the close button of the new table window.
A dialog is presented asking if you want to create a recreation macro.

10. Click the No Save button.
The data we just loaded is still available in Igor. A table is just a way of viewing data and is not
necessary for the data to exist.

The Load Delimited Text menu item that you used is a shortcut that uses default settings for loading delim-
ited text. Later, when you load your own data files, choose Data→Load Waves→Load Waves so you can
see all of the options.

Appending to a Graph
0. If necessary, click in Graph0 to bring it to the front.

The Graph menu is available only when the target window is a graph.
1. Choose the Graph→Append Traces to Graph menu item.

The Append Traces dialog appears. It is very similar to the New Graph dialog that you used to
create the graph.

2. In the Y Wave(s) list, select voltage_1 and voltage_2.
3. In the X Wave list, select timeval2.
4. Click Do It.

Two additional traces are appended to the graph. Notice that they are also appended to the Leg-
end.

Chapter I-2 — Guided Tour of Igor Pro

I-25

5. Position the cursor over one of the traces in the graph and double-click.
The Modify Trace Appearance dialog appears with the trace you clicked on already selected.

6. If necessary, select voltage_1 in the list of traces.
7. Choose dashed line #2 from the Line Style pop-up menu.
8. Select voltage_2 in the list of traces.
9. Choose dashed line #3 from the Line Style pop-up menu.
10. Click Do It.

Your graph should now look like this:

Offsetting a Trace
1. Position the cursor directly over the voltage_2 trace.

The voltage_2 trace has the longer dash pattern.
2. Press and hold the mouse button for about 1 second.

An XY readout appears in the lower-left corner of the graph and the trace will now move with the
mouse.

3. With the mouse button still down, press Shift while dragging the trace up about 1 cm and release.
The Shift key constrains movement to vertical or horizontal directions.
You have added an offset to the trace. If desired, you could add a tag to the trace indicating that
it has been offset and by how much.

Unoffsetting a Trace
1. Choose the Edit→Undo Trace Drag menu item.

You can undo many of the interactive operations on Igor windows if you do so before performing
the next interactive operation.

2. Choose Edit→Redo Trace Drag.
The following steps show how to remove an offset after it is no longer undoable.

3. Double-click the voltage_2 trace.
The Modify Trace Appearance dialog will appear with voltage_2 selected. (If voltage_2 is not
selected, click it to select it.) The Offset checkbox will be checked.

4. Click the Offset checkbox.
This turns offset off for the selected trace.

Chapter I-2 — Guided Tour of Igor Pro

I-26

5. Click the Offset checkbox again.
The Trace Offset dialog appears showing the offset value you introduced by dragging.

6. Click the Cancel button or press Escape.
The Offset checkbox should still be unchecked.

7. Click Do It.
The voltage_2 trace is returned to its original position.

Drawing in a Graph
1. If necessary click in Graph0 to bring it to the front.
2. Choose the Graph→Show Tools menu item or press Command-T (Macintosh) or Ctrl+T

(Windows).
A toolbar is added to the graph. The second icon from the top () is selected indicating that
the graph is in drawing mode as opposed to normal (or “operate”) mode.

3. Click the top icon () to go into normal mode.
Normal mode is for interacting with graph objects such as traces, axes and annotations. Drawing
mode is for drawing lines, rectangles, polygons and so on.

4. Click the second icon to return to drawing mode.
5. Press Option (Macintosh) or Alt (Windows) and press and hold down the mouse button while

the cursor is in the draw environment icon (tree and grass).
A pop-up menu showing the available drawing layers and their relationship to the graph elements
appears (the items in the menu are listed in back-to-front order).

6. Choose UserBack from the menu.
We will be drawing behind the axes, traces and all other graph elements.

7. Click the rectangle tool and drag out a rectangle starting at the upper-left corner of the plot
area (y= 1.4, x=0 on the axes) and ending at the bottom of the plot area and about 1.5 cm in width
(y= -0.2, x= 1.6).

8. Click the line tool and draw a line as shown, starting at the left (near the peak of the top trace)
and ending at the right:

9. Click the draw environment icon and choose At Start from the Line Arrow item.
10. Click the Text tool icon .
11. Click just to the right of the line you have just drawn.

The Create Text dialog appears.

Chapter I-2 — Guided Tour of Igor Pro

I-27

12. Type “Precharge”.
13. From the Anchor pop-up menu, choose “Left center”.
14. Click Do It.
15. Click the graph’s zoom button (Macintosh) or maximize button (Windows).

Notice how the rectangle and line expand with the graph. Their coordinates are measured rela-
tive to the plot area (rectangle enclosed by the axes).

16. Click the graph’s zoom button (Macintosh) or restore button (Windows).
17. Click the Arrow tool and then double-click the rectangle.

The Modify Rectangle dialog appears showing the properties of the rectangle.
18. Enter 0 in the Thickness box in the Line Properties section.

This turns off the frame of the rectangle.
19. Choose Light Gray from the Fill Mode pop-up menu.
20. Choose black from the Fore Color pop-up menu under the Fill Mode pop-up menu.
21. Click Do It.

Observe that the rectangle forms a gray area behind the traces and axes.
22. Again, double-click the rectangle.

The Modify Rectangle dialog appears.
23. From the X Coordinate pop-up menu, choose Axis Bottom.

The X coordinates of the rectangle will be measured in terms of the bottom axis — as if they were
data values.

24. Press Tab until the X0 box is selected and type “0”.
25. Tab to the Y0 box and type “0”.
26. Tab to the X1 box and type “1.6”.
27. Tab to Y1 and type “1”.

The X coordinates of the rectangle are now measured in terms of the bottom axis and the left side
will be at zero while the right side will be at 1.6.
The Y coordinates are still measured relative to the plot area. Since we entered zero and one for
the Y coordinates, the rectangle will span the entire height of the plot area.

28. Click Do It.
Notice the rectangle is nicely aligned with the axis and the plot area.

29. Click the operate icon, , to exit drawing mode.
30. Press Option (Macintosh) or Alt (Windows), click in the middle of the plot area and drag about

2 cm to the right.
The axes are rescaled. Notice that the rectangle moved to align itself with the bottom axis.

31. Choose Edit→Undo Scale Change.

Making a Window Recreation Macro
1. Click the graph’s close button.

Igor presents a dialog which asks if you want to save a window recreation macro. The graph’s
name is “Graph0” so Igor suggests “Graph0” as the macro name.

2. Click Save.
Igor generates a window recreation macro in the currently hidden procedure window. A window
recreation macro contains the commands necessary to recreate a graph, table, or page layout. You
can invoke this macro to recreate the graph you just closed.

Chapter I-2 — Guided Tour of Igor Pro

I-28

3. Choose the Windows→Procedure Windows→Procedure Window menu item.
The procedure window is always present but is usually hidden to keep it out of the way. The win-
dow now contains the recreation macro for Graph0. You may need to scroll up to see the start of
the macro. Because of the way it is declared, Window Graph0() : Graph, this macro will be
available from the Graph Macros submenu of the Windows main menu.

4. Click the procedure window’s close button.
This hides the procedure window. Most other windows will put up a dialog asking if you want
to kill or hide the window, but the built-in procedure window and the help windows simply hide
themselves.

Recreating the Graph
1. Choose the Windows→Graph Macros→Graph0 menu item.

Igor executes the Graph0 macro which recreates a graph of the same name.
2. Repeat step #1.

The Graph0 macro is executed again but this time Igor gave the new graph a slightly different
name, Graph0_1, because a graph named Graph0 already existed.

3. While pressing Option (Macintosh) or Alt (Windows) click the close button of Graph0_1.
The window is killed without presenting a dialog.

Saving Your Work
1. Choose the File→Save Experiment As menu item.
2. Navigate back to the folder where you saved the first time.
3. Change the name to “Tour #1 b.pxp” and click Save.

If you want to take a break, you can quit from Igor now.

Using Igor Documentation
Now we will take a quick look at how find information about Igor.

In addition to guided tours such as this one, Igor includes context-sensitive help, general usage information
and reference information. The main guided tours as well as the general and reference information are
available in both the online help files and in the Igor Pro PDF manual.

We'll start with context-sensitive help.

1. On Macintosh only, turn Igor Tips on by choosing Help→Show Igor Tips.
On Macintosh Igor tips for icons, menu items and dialog items appear in yellow textboxes.
On Windows tips for icons and menu items appear in the status line at the bottom of the Igor Pro
frame window.

2. Click the Data menu item and move the cursor over the items in the menu.
Notice the tips in yellow textboxes on Macintosh and in the status line on Windows.

3. Choose Data→Load Waves→Load Waves.
Igor displays the Load Waves dialog. This dialog provides an interface to the LoadWave opera-
tion which is how you load data into Igor from text data files.

4. On Macintosh only, move the cursor over the Load Columns Into Matrix checkbox.
An Igor tip appears in a yellow textbox. You can get a tip for most dialog items this way.

Chapter I-2 — Guided Tour of Igor Pro

I-29

5. On Windows only, click the question-mark icon in the top-right corner of the dialog window
and then click the Load Columns Into Matrix checkbox.
Context-sensitive help appears in a yellow textbox. You can get a tip for most dialog items this
way.

6. Click the Cancel button to quit the dialog.
Now let's see how to get reference help for a particular operation.

7. Choose Help→Command Help.
The Igor Help Browser appears with the Command Help tab displayed.
The information displayed in this tab comes from the Igor Reference help file - one of many help
files that Igor automatically opens at launch. Open help files are directly accessible through Win-
dows→Help Windows but we will use the Igor Help Browser right now.

8. Make sure all three checkboxes in the Command Help tab of the help browser are checked and
that all three pop-up menus are set to All.
These checkboxes and pop-up menus control which operations, functions and keywords appear
in the list.

9. Click any item in the list and then type "Loa".
Igor displays help for the LoadData operation. We want the LoadWave operation.

10. Press the down-arrow key a few times until LoadWave is selected in the list.
Igor displays help for the LoadWave operation in the Help windoid.
Another way to get reference help is to Ctrl-click (Macintosh) or right-click (Windows) the name
of an operation or function and choose the "Help For" menu item. This works in the command
window and in procedure, notebook and help windows.
While we're in the Igor Help Browser, let's see what the other tabs are for.

11. Click each of the Help Browser tabs and note their contents.
You can explore these tabs in more detail later.
Next we will take a quick trip to the Igor Pro PDF manual. If you are doing this guided tour using
the PDF manual, you may want to just read the following steps rather than do them to avoid los-
ing your place.

Chapter I-2 — Guided Tour of Igor Pro

I-30

12. Click the Manual tab and then click the Open Online Manual button.
Igor opens the PDF manual in your PDF viewer - typically Adobe Reader or Apple's Preview pro-
gram.
If you use Adobe Reader for viewing PDF files, you should have a Bookmarks pane on the left
side of the PDF manual window. If not, choose View→Navigation Panel→Bookmarks in
Reader.
If you use Apple's Preview for PDF files, you should have a drawer on one side of the main page.
If not, choose View→Drawer in Preview.
Note in the Reader Bookmarks pane or the Preview drawer that the PDF manual is organized into
five volumes plus an index.

13. Use the Bookmarks pane to get a sense of what's in the manual.
Expand the volume bookmarks to see the chapter names.
You may have noticed that the Igor PDF manual is rather large - about 2,000 pages at last count.
You'll be happy to know that we don't expect you to read it cover-to-cover. Instead, read chapters
as the need arises.
The information in the manual is also in the online help files. The manual, being in book format,
is better organized for linear reading while the online help is usually preferred for accessing ref-
erence information.
In case you ever want to open it directly, you can find the PDF manual in "Igor Pro Folder/Man-
ual".

That should give you an idea of where to look for information about Igor. Now let's get back to our hands-
on exploration of Igor.

Graphically Editing Data
0. If you quit Igor after the last save, open your “Tour #1 b.pxp” experiment and turn off preferences.
1. Adjust the positions of the graph and table so you can see both.

Make sure you can see the columns of data when the graph is the front window.
2. If necessary, click in the Graph0 window to bring it to the front.

3. Click the drawing mode icon, , to activate the drawing tools.

Chapter I-2 — Guided Tour of Igor Pro

I-31

4. While pressing Option (Macintosh) or Alt (Windows) on the keyboard, move the cursor over
the polygon icon () and click and hold the mouse button.

A pop-up menu appears.
5. Choose the Edit→Edit Wave menu item.
6. Click one of the open circles of the yval trace.

The trace is redrawn using lines and squares to show the location of the data points.
7. Click the second square from the left and drag it 1 cm up and to the right.

Notice point 1 of yval and timeval changes in the table.
8. Press Command-Z (Macintosh) or Ctrl+Z (Windows) or choose Edit→Undo.
9. Click midway between the first and second point and drag up 1 cm.

Notice a new data point 1 of yval and timeval appears in the table.
10. Press Option (Macintosh) or Alt (Windows) and click the new data point with the tip of the

lightning bolt.
The new data point is zapped.
You could also have pressed Command-Z (Macintosh) or Ctrl+Z (Windows) to undo the insertion.

11. Press Command (Macintosh) or Ctrl (Windows), click the line segment between the second
and third point and drag a few cm to the right.
The line segment is moved and two points of yval and timeval are changed in the table.

12. Press Command-Z (Macintosh) or Ctrl+Z (Windows) or choose Edit→Undo.

13. Click in the operate icon, , to exit drawing mode.
14. Choose File→Revert Experiment and answer Yes in the dialog.

This returns the experiment to the state it was in before we started editing the data.

Making a Category Plot (Optional)
Category plots show continuous numeric data plotted against non-numeric text categories.

1. Choose the Windows→New Table menu item.
2. Click in the Do It button.

A new blank table is created. We could have used the existing table but it is best to keep unrelated
data separate.

3. Type “Monday” and then press Return or Enter.
A wave named “textWave0” was created with the text Monday as the value of the first point. Entering
a non-numeric value in the first row of the first blank column automatically creates a new text wave.

4. Type the following lines, pressing Enter after each one:
Tuesday
Wednesday
Thursday

5. Click in the first cell of the next column and enter the following values:
10
25
3
16

6. Click in the first cell of the next column and enter the following values:
0
12
30
17

Chapter I-2 — Guided Tour of Igor Pro

I-32

7. Choose Windows→New→Category Plot.
A dialog similar to the New Graph dialog appears. This dialog shows only text waves in the right-
hand list.

8. Click the From Target checkbox to select it.
This limits the list of waves to those in the target window. The target window is the table we just made.

9. In the Y Wave(s) list, select both items and select textWave0 in the X Wave list.
10. Click Do It.

A category plot is created.
11. Double-click one of the bars.

The Modify Trace Appearance dialog appears.
12. Using the “+Fill Type” pop-up menu, change the fills of each trace to any desired pattern.

You might also want to change the colors.
13. Click Do It.

Your graph should now look like this:

Category Plot Options (Optional)
This section explores various category-plot options. If you are not particularly interested in category plots,
you can stop now, or at any point in the following steps, by closing the graph and table and skipping
forward to the next section.

1. Double-click one of the bars and, if necessary, select the top trace in the list.
2. From the Grouping pop-up menu, choose Stack on Next.
3. Click Do It.

The left bar in each group is now stacked on top of the right bar.
4. Choose the Graph→Reorder Traces menu item.
5. Reverse the order of the items in the list by dragging the top item down. Click Do It.

The bars are no longer stacked and the bars that used to be on the left are now on the right. The
reason the bars are not stacked is that the trace that we set to Stack on Next mode is now last and
there is no next trace.

Chapter I-2 — Guided Tour of Igor Pro

I-33

6. Again using the Modify Trace Appearance dialog, set the top trace to Stack on next. Click Do It.
The category plot graph should now look like this:

7. Enter the following values in the next blank column in the table:
7
10
15
9
This creates a new wave named wave2.

8. Click in the graph to bring it to the front.
9. Choose Graph→Append to Graph→Category Plot.
10. In the Y list, select wave2 and click Do It.

The new trace is appended after the previous two. Because the second trace was in Stack on Next
mode, the new trace is on the bottom of each set of three stacked bars.

11. Using the Modify Trace Appearance dialog, change the grouping mode of the middle trace to
none.
Now the new bars are to the right of a group of two stacked bars. You can create any combination
of stacked and side-by-side bars.

12. Double-click directly on the bottom axis.
The Modify Axis dialog appears with the bottom axis selected.

13. Click the Auto/Man Ticks tab.

Chapter I-2 — Guided Tour of Igor Pro

I-34

14. Select the Tick In Center checkbox and then click Do It.
Notice the new positions of the tick marks.

15. Again double-click directly on the bottom axis.
16. Click the Axis tab.
17. Change the value of Bar Gap to zero and then click Do It.

Notice that the bars within a group are now touching.
18. Use the Modify Axis dialog to set the Category Gap to 50%.

The widths of the bars shrink to 50% of the category width.
19. Choose Graph→Modify Graph.
20. Select the “Swap X & Y Axes” checkbox and then click Do It.

This is how you create a horizontal bar plot.
21. Close both the graph and table windows without saving recreation macros.

The Command Window
Parts of this tour make use of Igor’s command line to enter mathematical formulae. Let’s get some practice now.
Your command window should look something like this:

The command line is the space below the separator whereas the space above the separator is called the
history area.

1. Click in the command line, type the following line and press Return or Enter.
Print 2+2

The Print command as well as the result are placed in the history area.

Chapter I-2 — Guided Tour of Igor Pro

I-35

2. Press the Up Arrow key.
The line containing the print command is selected, skipping over the result printout line.

3. Press Return or Enter.
The selected line in the history is copied to the command line.

4. Edit the command line so it matches the following and press Return or Enter.
Print "The result is ",2+2

The Print command takes a list of numeric or string expressions, evaluates them and prints the
results into the history.

5. Choose the Help→Igor Help Browser menu item.
The Igor Help Browser appears.
You can also display the help browser by pressing Help (Macintosh) or F1 (Windows), or by clicking
the question-mark icon near the right edge of the command window.

6. Click the Command Help tab in the Igor Help Browser.
7. Deselect the Functions and Programming checkboxes and select the Operations checkbox.

A list of operations appears.
8. In the pop-up menu next to the Operations checkbox, choose About Waves.
9. Select PlaySound in the list.

Tip: Click in the list to activate it and then type “p” to jump to PlaySound.

10. Click the Help windoid, scroll down to the Examples section, and select the first four lines of
example text (starting with “Make”, ending with “PlaySound sineSound).

11. Choose the Edit→Copy menu to copy the selection.
12. Close the Igor Help Browser.
13. Choose Edit→Paste.

All four lines are pasted into the command line area. You can view the lines using the miniature scroll
arrows that appear at the right-hand edge of the command line.

14. Press Return or Enter to execute the commands.
The four lines are executed and a short tone plays. (Windows: You may see an error message if
your computer is not set up for sound.)

15. Click once on the last line in the history area (PlaySound sineSound).
The entire line (less the bullet) is selected just as if you pressed the arrow key.

16. Press Return or Enter once to transfer the command to the command line and a second time to
execute it.
The tone plays again as the line executes.
We are finished with the “sineSound” wave that was created in this exercise so let’s kill the wave
to prevent it from cluttering up our wave lists.

17. Choose Data→Kill Waves.
The Kill Waves dialog appears.

18. Select “sineSound” and click Do It.
The sineSound wave is removed from memory.

19. Again click once on the history line “PlaySound sineSound”.
20. Press Return or Enter twice to re-execute the command.

An error dialog is presented because the sineSound wave no longer exists.
21. Click OK to close the error dialog.

Chapter I-2 — Guided Tour of Igor Pro

I-36

22. Choose Edit→Clear Command Buffer or press Command-K (Macintosh) or Ctrl+K (Windows).
When a command generates an error, it is left in the command line so you can edit and re-execute
it. In this case we just wanted to clear the command line.

Browsing Waves
1. Choose the Data→Browse Waves menu item.

The Browse Waves dialog appears. You can view the properties of the waves that are in memory
and available for use in the current experiment and can also examine waves that are stored in
individual binary files on disk.

2. Click “timeval” in the list.
The dialog shows the properties of the timeval wave.

3. Click in the Wave Note area of the dialog.
A wave note is text you can associate with a wave. You can both view and edit the text of the note.
The other fields in this dialog are read-only.

4. Type the following line:
This wave was created by typing data into a table.

5. Click the other waves in the list while observing their properties.
6. Click the done button to exit the dialog.

Using the Data Browser
The Data Browser provides another way to browse waves. You can also browse numeric and string variables.

1. Choose the Data→Data Browser menu item.
The Data Browser appears.

2. Make sure all of the checkboxes in the top-left corner of the Data Browser are checked.
3. Click on the timeval wave icon to select it.

Note that the wave is displayed in the plot pane at the bottom of the Data Browser and the wave’s
properties are displayed just above in the info pane.

4. Control-click (Macintosh) or right-click (Windows) on the timeval wave icon.
A contextual menu appears with a number of actions that you can perform on the selection.

5. Press Escape to dismiss the contextual menu.
You can explore that and other Data Browser features later on your own.

6. Click the Data Browser’s close box to close it.

Synthesizing Data
In this section we will make waves and fill them with data using arithmetic expressions.

1. Choose the Data→Make Waves menu item.
The Make Waves dialog appears.

2. Type “spiralY”, Tab, and then “spiralX” in the second box.
3. Change Rows to 1000.
4. Click Do It.

Two 1000 point waves have been created. They are now part of the experiment but are not visible
because we haven’t put them in a table or graph.

5. Choose Data→Change Wave Scaling.
6. If a button labeled More Options is showing, click it.

Chapter I-2 — Guided Tour of Igor Pro

I-37

7. In the Wave(s) list, click spiralY and then Command-click (Macintosh) or Ctrl-click (Windows) spi-
ralX.

8. Choose Start and Right for the SetScale Mode pop-up menu.
9. Enter “0” for Start and “50” for Right.
10. Click Do It.

This executes a SetScale command specifying the X scaling of the spiralX and spiralY waves. X
scaling is a property of a wave that maps a point number to an X value. In this case we are map-
ping point numbers 0 through 999 to X values 0 through 50.

11. If necessary, click in the command window to bring it to the front.
12. Type the following on the command line and then press Return or Enter:

spiralY= x*sin(x)

This is a waveform assignment statement. It assigns a value to each point of the destination wave (spi-
ralY). The value stored for a given point is the value of the righthand expression at that point. The
meaning of x in a waveform assignment statement is determined by the X scaling of the destination
wave. In this case, x takes on values from 0 to 50 as Igor evaluates the righthand expression for points
0 through 999.

13. Execute this in the command line:
spiralX= x*cos(x)

Now both spiralX and spiralY have their data values set.

Zooming and Panning
1. Choose the Windows→New Graph menu item.
2. If necessary, uncheck the From Target checkbox.
3. In the Y Wave(s) list, select “spiralY”.
4. In the X Wave list, select “_calculated_”.
5. Click Do It.

Note that the X axis goes from 0 to 50. This is because the SetScale command we executed earlier
set the X scaling property of spiralY which tells Igor how to compute an X value from a point num-
ber. Choosing _calculated_ from the X Wave list graphs the spiralY data values versus these cal-
culated X values.

6. Position the cursor in the interior of the graph.
The cursor changes to a cross-hair shape.

Chapter I-2 — Guided Tour of Igor Pro

I-38

7. Click and drag down and to the right to create a marquee as shown:

You can resize the marquee with the black squares (handles). You can move the marquee by
dragging the dashed edge of the marquee.

8. Position the cursor inside the marquee.
The mouse pointer changes to this shape: , indicating that a pop-up menu is available.

9. Click and choose Expand from the pop-up menu.
The axes are rescaled so that the area enclosed by the marquee fills the graph.

10. Choose Edit→Undo Scale Change or press Command-Z (Macintosh) or Ctrl+Z (Windows).
11. Choose Edit→Redo Scale Change or press Command-Z (Macintosh) or Ctrl+Z (Windows).
12. Press Option (Macintosh) or Alt (Windows) and position the cursor in the middle of the graph.

The cursor changes to a hand shape. You may need to move the cursor slightly before it changes
shape.

13. With the hand cursor showing, drag about 2 cm to the left.
14. While pressing Option (Macintosh) or Alt (Windows), click the middle of the graph and gently

fling it to the right.
The graph continues to pan until you click again to stop it.

15. Choose Graph→Autoscale Axes or press Command-A (Macintosh) or Ctrl+A (Windows).
Continue experimenting with zooming and panning as desired.

16. Press Command-Option-W (Macintosh) or Ctrl+Alt+W (Windows).
The graph is killed. Option (Macintosh) or Alt (Windows) avoided the normal dialog asking
whether to save the graph.

Making a Graph with Multiple Axes
1. Choose the Windows→New Graph menu item.
2. If you see a button labeled More Choices, click it.

We will use the more complex form of the dialog to create a multiple-axis graph in one step.
3. In the Y Wave(s) list, select “spiralY”.
4. In the X Wave list, select “spiralX”.
5. Click Add.

The selections are inserted into the lower list in the center of the dialog.
6. In the Y Wave(s) list, again select “spiralY”.

Chapter I-2 — Guided Tour of Igor Pro

I-39

7. In the X Wave list, select “_calculated_”.
8. Choose New from the Axis pop-up menu under the X Wave(s) list.
9. Enter “B2” in the name box.
10. Click OK.

Note the command box at the bottom of the dialog. It contains two commands: a Display com-
mand corresponding to the initial selections that you added to the lower list and an AppendTo-
Graph command corresponding to the current selections in the Y Wave(s) and X Wave lists.

11. Click Do It.
The following graph is created.

The interior axis is called a “free” axis because it can be moved relative to the plot rectangle. We will
be moving it outside of the plot area but first we must make room by adjusting the plot area margins.

12. Press Option (Macintosh) or Alt (Windows) and position the cursor over the bottom axis until
the cursor changes to this shape: .
This shape indicates you are over an edge of the plot area rectangle and that you can drag that
edge to adjust the margin.

13. Drag the margin up about 2 cm. Release the Option (Macintosh) or Alt (Windows).
14. Drag the interior axis down into the margin space you just created.

Chapter I-2 — Guided Tour of Igor Pro

I-40

15. Resize the graph so the spiral is nearly circular.
Your graph should now look like this:

Saving Your Work
1. Choose the File→Save Experiment As menu item.
2. Type “Tour #1 c.pxp” in the name box and click Save.

If you want to take a break, you can quit from Igor now.

Using Cursors
0. If you are returning from a break, open your “Tour #1 c.pxp” experiment and turn off preferences.
1. Click in the graph and choose the Graph→Show Info menu item.

A cursor info panel appears below the graph.
2. Turn on Igor Tips (Macintosh) or use context-sensitive help (Windows) to examine the info panel.

On Macintosh, choose Help→Show Igor Tips and let the cursor hover over an item in the info
panel. When you have seen all the help, turn Igor Tips off.
On Windows, press Shift+F1 to get the cursor and click an item in the info panel. You can see
similar help information in the status bar at the bottom of the Igor Pro frame window as you let
the cursor hover over an item in the info panel

3. Control-click (Macintosh) or right-click (Windows) in the name area for graph cursor A (the
round one).

4. Choose “spiralY” from the pop-up menu.
The A cursor is placed on point zero of spiralY.

5. Repeat for cursor B but choose “spiralY#1” from the pop-up menu.
The wave spiralY is graphed twice. The #1 suffix is used to distinguish the second instance from the
first. It is #1 rather than #2 because in Igor, indices start from zero.

6. Position the mouse pointer over the center of the slide control bar .

Chapter I-2 — Guided Tour of Igor Pro

I-41

7. Gently drag the slide bar to the right.
Both cursors move to increasing point numbers. They stop when one or both get to the end.

8. Practice moving the slide bar to the left and right.
Notice that the cursors move with increasing speed as the bar is displaced farther from the center.

9. Click once on the dock for cursor A (the round black circle).
The circle turns white.

10. Move the slide bar to the left and right.
Notice that only cursor B moves.

11. Click cursor B in the graph and drag it to another position on either trace.
You can also drag cursors from their docks to the graph.

12. Click cursor A in the graph and drag it completely outside the graph.
The cursor is removed from the graph and returns to its dock.

13. Choose Graph→Hide Info.
14. Click in the command window, type the following and press Return or Enter.

Print vcsr(B)

The Y value at cursor B is printed into the history area. There are many functions available for
obtaining information about cursors.

15. Click in the graph and then drag cursor B off of the graph.

Removing a Trace and Axis
1. Choose the Graph→Remove from Graph menu item.

The Remove From Graph dialog appears with spiralY listed twice. When we created the graph
we used spiralY twice, first versus spiralX to create the spiral and second versus calculated X val-
ues to show the sine wave.

2. Click the second instance of spiralY (spiralY#1) and click Do It.
The sine wave and the bottom-most (free) axis are removed. An axis is removed when its last
trace is removed.

3. Drag the horizontal axis off the bottom of the window.
This returns the margin setting to auto. We had set it to a fixed position when we option-dragged
(Macintosh) or Alt-dragged (Windows) the margin in a previous step.

Creating a Graph with Stacked Axes
1. Choose the Windows→New Graph menu item.
2. If you see a button labeled More Choices, click it.
3. In the Y Wave(s) list, select “spiralY”.
4. In the X Wave list, select “_calculated_”.
5. Click Add.
6. In the Y Wave(s) list, select “spiralX”.
7. In the X Wave list, select “_calculated_”.
8. Choose New from the Axis pop-up menu under the Y Wave(s) list.
9. Enter “L2” in the name box.
10. Click OK.

Chapter I-2 — Guided Tour of Igor Pro

I-42

11. Click Do It.
The following graph is created.

In the following steps we will stack the interior axis on top of the left axis.
12. Double-click the far left axis.

The Modify Axis dialog appears. If any other dialog appears, cancel and try again making sure
the cursor is over the axis.

13. Click the Axis tab.
The Left axis should already be selected in the pop-up menu in the upper-left corner.

14. Set the Left axis to draw between 0 and 45% of normal.
15. Choose L2 from the Axis pop-up menu.
16. Set the L2 axis to draw between 55 and 100% of normal.
17. In the Free Axis Position box, pop up the menu reading Distance from Margin and select Frac-

tion of Plot Area.
18. Verify that the box labeled “% of Plot Area” is set to zero.

Steps 17 and 18 move the L2 axis so it is in line with the Left axis.
Why don’t we make this the default? Good question — positioning as percent of plot area was
added in Igor Pro 6; the default maintains backward compatibility.

19. Choose Bottom from the Axis pop-up menu.
20. Click the Axis Standoff checkbox to turn standoff off.
21. Click Do It.
22. Resize and reposition the top two graph windows so they are side-by-side and roughly square.

Chapter I-2 — Guided Tour of Igor Pro

I-43

23. The graphs should look like this:

Appending to a Layout
1. Choose the Windows→Layouts→Layout0 menu item.
2. Adjust the layout window size and scrolling so you can see the blank area below the graph

that is already in the layout.

3. Click in the graph icon, , and choose “Graph1”.
Graph1 is added to the layout.

4. Again, click in the graph icon and choose “Graph2”.
Graph2 is added to the layout.

5. Click the marquee icon .
6. Drag out a marquee that fills the printable space under the original graph.
7. Choose Layout→Arrange Objects.

The Arrange Objects dialog appears.
8. Select both Graph1 and Graph2. Leave the Use Marquee checkbox checked.
9. Click Do It.

The two graphs are tiled inside the area defined by the marquee.
10. Click in the page area outside the marquee to dismiss it.
11. Choose Windows→Control→Send Behind or press Control-Command-E (Macintosh) or Ctrl+E

(Windows).

Saving Your Work
1. Choose the File→Save Experiment As menu item.
2. Type “Tour #1 d.pxp” in the name box and click Save.

If you want to take a break, you can quit Igor Pro now.

Chapter I-2 — Guided Tour of Igor Pro

I-44

Creating Controls
This section illustrates adding controls to an Igor graph — the type of thing a programmer might want to
do. If you are not interested in programming, you can skip to the End of the General Tour on page I-47.

0. If you are returning from a break, open your “Tour #1 d.pxp” experiment and turn off preferences.
1. Click in the graph with the spiral (Graph1) to bring it to the front.
2. Choose the Graph→Show Tools menu item or press Command-T (Macintosh) or Ctrl+T (Windows).

A toolbar is displayed to the left of the graph. The second icon is selected indicating that the
graph is in the drawing as opposed to normal mode.
The selector tool (arrow) is active. It is used to create, select, move and resize controls.

3. Choose Graph→Add Controls→Control Bar.
The Control Bar dialog appears.

4. Enter a height of 30 pixels and click Do It.
This reserves a space at the top of the graph for controls.

5. Click in the command line, type the following and press Return or Enter.
Variable ymult=1, xmult=1

This creates two numeric variables and sets both to 1.0.
6. Click in the graph and then choose Graph→Add Controls→Add Set Variable.

The SetVariable Control dialog appears.
A SetVariable control provides a way to display and change the value of a variable.

7. Choose ymult from the Value pop-up menu.
8. Enter 80 in the Width edit box.

This setting is back near the top of the scrolling list.
9. Set the High Limit, Low Limit, and Increment values to 10, 0.1, and 0.1 respectively.

You may need to scroll down to find these settings.
10. Click Do It.

A SetVariable control attached to the variable ymult appears in the upper-left of the control bar.
11. Double-click the ymult control.

The SetVariable Control dialog appears.
12. Click the Duplicate button (it’s at the bottom center of the dialog).
13. Choose xmult as the value.
14. Click Do It.

A second SetVariable control appears in the control bar. This one is attached to the xMult vari-
able.

15. Choose Graph→Add Controls→Add Button.
The Button Control dialog appears.

16. Enter “Update” in the Title box.
17. Click the New button adjacent to Procedure.

The Control Procedure dialog appears.
18. Make sure the “Prefer structure-based procedures” checkbox is not selected.
19. Edit the procedure text so it looks like this:

Function ButtonProc(ctrlName) : ButtonControl
String ctrlName

Wave spiralY, spiralX
NVAR ymult, xmult

Chapter I-2 — Guided Tour of Igor Pro

I-45

spiralY= x*sin(ymult*x)
spiralX= x*cos(xmult*x)

End

20. Click the Save Procedure Now button.
The Control Procedure dialog disappears and the text you were editing is inserted into the (cur-
rently hidden) procedure window.

21. Click Do It.
A Button control is added to the control bar.
The three controls are now functional but are not esthetically arranged.

22. Use the Arrow tool to rearrange the three controls into a more pleasing arrangement. Expand the
button so it doesn’t crowd the text by dragging its handles.

23. Click the top icon in the tool palette to enter “operate mode”.
24. Choose Graph→Hide Tools or press Command-T (Macintosh) or Ctrl+T (Windows).
25. Click the up arrow in the ymult control.

The value changes to 1.1.
26. Click the Update button.

The ButtonProc procedure that you created executes. The spiralY and spiralX waves are recalcu-
lated according to the expressions you entered in the procedure and the graphs are updated.

27. Experiment with different ymult and xmult settings as desired.
28. Set both values back to 1 and click the Update button.

You can use Tab to select a value and then simply type “1” followed by Return or Enter.

Creating a Dependency
A dependency is a rule that relates the value of an Igor wave or variable to the values of other waves or
variables. By setting up a dependency you can cause Igor to automatically update a wave when another
wave or variable changes.

1. Click in the command window to bring it to the front.
2. Execute the following commands in the command line:

Chapter I-2 — Guided Tour of Igor Pro

I-46

spiralY := x*sin(ymult*x)
spiralX := x*cos(xmult*x)

This is exactly what you entered before except here := is used in place of =. The := operator cre-
ates a dependency formula. In the first expression, the wave spiralY is made dependent on the
variable ymult. If a new value is stored in ymult then the values in spiralY are automatically
recalculated from the expression.

3. Click in the graph with the spiral (Graph1) to bring it to the front.
4. Adjust the ymult and xmult controls but do not click the Update button.

When you change the value of ymult or xmult using the SetVariable control, Igor automatically
executes the dependency formula. The spiralY or spiralX waves are recalculated and both graphs
are updated.

5. On the command line, execute this:
ymult := 3*xmult

Note that the ymult SetVariable control as well as the graphs are updated.
6. Adjust the xmult value.

Again notice that ymult as well as the graphs are updated.
7. Choose the Misc→ Object Status menu item.

The Object Status dialog appears. You can use this dialog to examine Igor objects that might oth-
erwise have no visual representation such as string and numeric variables.

8. Click the “The Current Object” pop-up menu and choose spiralY from the Dependent Objects
item (Macintosh) or drop-down list (Windows).
The list on the right indicates that spiralY depends on the variable ymult.

9. Double-click the ymult entry in the right hand list.
ymult becomes the current object. The list on the right now indicates that ymult depends on xmult.

10. Click the Delete Formula button.
Now ymult no longer depends on xmult.

11. Click Done.
12. Adjust the xmult setting.

The ymult value is no longer automatically recalculated but the spiralY and spiralX waves still are.
13. Click the Update button.
14. Adjust the xmult and ymult settings.

The spiralY and spiralX waves are no longer automatically recalculated. This is because the But-
tonProc function called by the Update button does a normal assignment using = rather than :=
and that action removes the dependency formulae.
Note: In real work, you should avoid the kind of multilevel dependencies that we created here

because they are too confusing.

In fact, it is best to avoid dependencies altogether as they are hard to keep track of and
debug. If a button action procedure or menu item procedure can do the job then use the
procedure rather than the dependency.

Saving Your Work
1. Choose the File→ Save Experiment As menu item.
2. Type “Tour #1 e.pxp” in the name box and click Save.

Chapter I-2 — Guided Tour of Igor Pro

I-47

End of the General Tour
This is the end of the general tour of Igor Pro.
If you want to take a break, you can quit from Igor Pro now.

Chapter I-2 — Guided Tour of Igor Pro

I-48

Guided Tour 2 - Data Analysis
In this tour we will concentrate on the data analysis features of Igor Pro. We will generate synthetic data
and then manipulate it using sorting and curve fitting.

Launching Igor Pro
1. Double-click the Igor Pro application file on your hard disk.

If Igor was already running, choose New Experiment from the File menu.
2. Use the Misc menu to turn preferences off.

Creating Synthetic Data
We need something to analyze, so we generate some random X values and create some Y data using a math
function.

1. Type the following in the command line and then press Return or Enter:
SetRandomSeed 0.1

This initializes the random number generator so you will get the same results as this guided tour.
2. Type the following in the command line and then press Return or Enter:

Make/N=100 fakeX=enoise(5)+5,fakeY

This generates two 100 point waves and fills fakeX with evenly distributed random values rang-
ing from 0 to 10.

3. Execute this in the same way:
fakeY = exp(-(fakeX-4)^2)+gnoise(0.1)

This generates a Gaussian peak centered at 4.
4. Choose the Windows→ New Graph menu item.
5. In the Y Wave(s) list, select “fakeY”.
6. In the X Wave list, select “fakeX”.
7. Click Do It.

The graph is a rat’s nest of lines because the X values are not sorted.
8. Double-click the red trace.

The Modify Trace Appearance dialog appears.
9. From the Mode pop-up choose Markers.
10. From the pop-up menu of markers choose the open circle.

Chapter I-2 — Guided Tour of Igor Pro

I-49

11. Click Do It.
Now the graph makes sense.

Quick Curve Fit to a Gaussian
Our synthetic data was generated using a Gaussian function so let’s try to extract the original parameters
by fitting to a Gaussian of the form:

y = y0 + A*exp(-((x-x0)/width)^2)

Here y0, A, x0 and width are the parameters of the fit.
1. Choose the Analysis→Quick Fit→gauss menu item.

Igor generated and executed a CurveFit command which you can see if you scroll up a bit in the
history area of the command window. The CurveFit command performed the fit, appended a fit
result trace to the graph, and reported results in the history area.
At the bottom of the reported results we see the values found for the fit parameters. The ampli-
tude parameter (A) should be 1.0 and the position parameter (x0) should be 4.0. We got 0.99222
± 0.0299 for the amplitude and 3.9997 ± 0.023 for the position.
Let’s add this information to the graph.

2. Choose Analysis→Quick Fit→Textbox Preferences.
The Curve Fit Textbox Preferences dialog appears.
You can add a textbox containing curve fit results to your graph. The Curve Fit Textbox Prefer-
ence dialog has a checkbox for each component of information that can be included in the textbox.

3. Click the Display Curve Fit Info Textbox to select it and then click OK.
You have specified that you want an info textbox. This will affect future Quick Fit operations.

4. Choose Analysis→Quick Fit→gauss again.
This time, Igor displays a textbox with the curve fit results. Once the textbox is made, it is just a
textbox and you can double-click it and change it. But if you redo the fit, your changes will be lost
unless you rename the textbox.
That textbox is nice, but it’s too big. Let’s get rid of it.

5. Choose Analysis→Quick Fit→Textbox Preferences again. Click the Display Curve Fit Info
Textbox to deselect it. Click OK.

Chapter I-2 — Guided Tour of Igor Pro

I-50

6. Choose Analysis→Quick Fit→gauss again.
The textbox is removed from the graph.
You could just double-click the textbox and click Delete in the Modify Annotation dialog. The next
time you do a Quick Fit you would still get the textbox unless you turn the textbox feature off.

More Curve Fitting to a Gaussian
The Quick Fit menu provides easy access to curve fitting using the built-in fit functions, with a limited set of
options, to fit data displayed in a graph. You may want more options. For that you use the Curve Fitting dialog.

1. Choose the Analysis→Curve Fitting menu item.
The curve fitting dialog appears.

2. Click the Function and Data tab.
3. From the Function pop-up menu, choose gauss.
4. From the Y Data pop-up menu, choose fakeY.
5. From the X Data pop-up menu, choose fakeX.
6. Click the Data Options tab.

The Weighting and Data Mask pop-up menus should read “_none_”.
7. Click the Output Options tab.

The Destination pop-up menu should read “_auto_” and Residual should read “_none_”.
8. Click Do It.

During the fit a Curve Fit progress window appears. After a few passes the fit is finished and Igor
waits for you to click OK in the progress window.

9. Click OK.
The curve fit results are printed in the history. They are the same as in the previous section.

Sorting
In the next section we will do a curve fit to a subrange of the data. For this to work, the data must be sorted
by X values.

1. Double-click one of the open circle markers in the graph.
The Modify Traces Appearance dialog appears with fakeY selected. If fakeY is not selected, click it.

2. From the Mode pop-up choose Lines between points and click Do It.
The fakeY trace reverts to a rat’s nest of lines.

3. Choose the Analysis→Sort menu item.
The Sorting dialog appears.

4. If necessary choose Sort from the Operation pop-up menu.
5. Select “fakeX” in the “Key Wave” list and both “fakeX” and “fakeY” in the “Waves to Sort” list.

This will sort both fakeX and fakeY using fakeX as the sort key.
6. Click Do It.

The rat’s nest is untangled. Since we were using the lines between points mode just to show the results
of the sort, we now switch back to open circles but in a new way.

7. Press Control and click (Macintosh) or right-click (Windows) on the fakeY trace.
A pop-up menu appears with the name of the trace at the top. If it is not “Browse fakeY” try again.

8. Choose Markers from the Mode item.

Chapter I-2 — Guided Tour of Igor Pro

I-51

Fitting to a Subrange
Here we will again fit our data to a Gaussian but using a subset of the data. We will then extrapolate the fit
outside of the initial range.

1. Choose the Graph→Show Info menu item.
A cursor info panel is appended to the bottom of the graph.
Two cursors are "docked" in the info panel, Cursor A and Cursor B.

2. Place cursor A (the round one) on the fakeY trace.
One way to place the cursor is to drag it to the trace. Another way is to control-click (Macintosh)
or right-click (Windows) on the name area which is just to the right of the cursor icon in the cursor
info panel.
Note that the cursor A icon in the dock is now black. This indicates that cursor A is selected,
meaning that it will move if you use the arrow keys on the keyboard or the slider in the cursor
info panel.

3. Move cursor A to point #14.
To move the cursor one point at a time, use the arrow keys on the keyboard or click on either side
of the slider in the cursor info panel.

4. Click the dock for cursor A in the cursor info panel to deselect it.
This is so you can adjust cursor B without affecting the position of cursor A.

5. Place cursor B (the square one) on the fakeY trace and move it to point #42.
Your graph should look like this:

6. In the Analysis→Quick Fit menu make sure the Fit Between Cursors item is checked. If it is
not, select it to check it.

Chapter I-2 — Guided Tour of Igor Pro

I-52

7. Choose Analysis→Quick Fit→gauss.
Note that the fit curve is evaluated only over the subrange identified by the cursors.

We would like the fit trace to extend over the entire X range, while fitting only to the data
between the cursors. This is one of the options available only in the Curve Fitting dialog.

8. Choose Analysis→Curve Fitting and then click the Function and Data tab.
The curve fitting dialog appears and the settings should be as you left them. Check that the func-
tion type is gauss, the X data is fakeY, the X data is fakeX.

9. Click the Data Options tab.
10. Click the Cursors button in the Range area.

This puts the text “pcsr(A)” and “pcsr(B)” in the range entry boxes.
pcsr is a function that returns the wave point number at the cursor position.

11. Select the Output Options tab and click the X Range Full Width of Graph checkbox to select it.
12. Click Do It.

The curve fit starts, does a few passes and waits for you to click OK.
13. Click OK.

The fit has been done using only the data between the cursors, but the fit trace extends over the
entire X range.
In the next section, we need the short version of the fit curve, so we will simply do the fit again:

14. Choose Analysis→Quick Fit→gauss.

Extrapolating a Fit After the Fit is Done
When you used the Quick Fit menu, and when you chose “_auto_” from the Destination pop-up menu in the
curve fit dialog, Igor created a wave named fit_fakeY to show the fit results. This is called the "fit destination
wave." It is just an ordinary wave whose X scaling is set to the extent of the X values used in the fit.
In the preceding sections you learned how to make the curve fit operation extrapolate the fit curve beyond
the subrange. Here we show you how to do this manually to illustrate some important wave concepts.
To extrapolate, we simply change the X scaling of fit_fakeY and re-execute the fit destination wave assign-
ment statement which the CurveFit operation put in the history area.

1. Choose the Data→Change Wave Scaling menu item.
2. If you see a button labeled More Options, click it.

Chapter I-2 — Guided Tour of Igor Pro

I-53

3. From the SetScale Mode pop-up menu, choose Start and End.
4. Double-click “fit_fakeY” in the list.

This reads in the current X scaling values of fit_fakeY. The starting X value will be about 1.77 and
the ending X will be about 4.53.

5. Press Tab until the Start box is selected and enter 1.0.
6. Tab to the End box and type “8.0”.
7. Click Do It

The fit_fakeY trace is stretched out and now runs between 1 and 8.
Now we need to calculate new Y values for fit_fakeY using its new X values.

8. In the history, find the line that starts “fit_fakeY=” and click it.
The entire line is selected. (The line in question is near the top of the curve fit report printed in
the history.)

9. Press Return or Enter once to copy the selection from the history to the command line and a
second time to execute it.
The fit_fakeY wave now contains valid data between 1 and 8.

Appending a Fit
The fit trace added automatically when Igor does a curve fit uses a wave named by adding “fit_” to the start
of the Y data wave’s name. If you do another fit to the same Y data, that fit curve will be overwritten. If you
want to show the results of several fits to the same data, you will have to somehow protect the fit destination
wave from being overwritten. This is done by simply renaming it.

1. Choose the Data→Rename menu item.
2. Double-click the wave named fit_fakeY to move it into the list on the right.
3. Edit the name in the New Name box to change the name to “gaussFit_fakeY” and click Do It.
4. Position the A and B cursors to point numbers 35 and 65, respectively.

Tip: Click in the dock for a given cursor to enable/disable its being moved by the slide control
and arrow keys. Click to either side of the central slide or use the arrow keys to move the
cursor one point number at a time.

Chapter I-2 — Guided Tour of Igor Pro

I-54

5. Choose Analysis→Quick Fit→line.
Because there are two traces on the graph, Quick Fit doesn’t know which one to fit and puts up
the Which Trace to Fit dialog.

6. Select fakeY from the menu and click OK.
The curve fit is performed without displaying the fit progress window because the line fit is not
iterative.

This concludes Guided Tour 2.

Chapter I-2 — Guided Tour of Igor Pro

I-55

Guided Tour 3 - Histograms and Curve Fitting
In this tour we will explore the Histogram operation and will perform a curve fit using weighting. The
optional last portion creates a residuals plot and shows you how to create a useful procedure from com-
mands in the history.

Launching Igor Pro
1. Double-click the Igor Pro application file on your hard disk.

If Igor was already running, choose New Experiment from the File menu.
2. Use the Misc menu to turn preferences off.

Creating Synthetic Data
We need something to analyze, so let’s generate some random values.

1. Type the following in the command line and then press Return or Enter:
SetRandomSeed 0.1

This initializes the random number generator so you will get the same results as this guided tour.
2. Type the following in the command line and then press Return or Enter:

Make/N=10000 fakeY= enoise(1)

This generates a 10,000 point wave filled with evenly distributed random values from -1 to 1.

Histogram of White Noise
Here we will generate a histogram of the evenly distributed “white” noise.

1. Choose the Analysis→Histogram menu item.
The Histogram dialog appears.

2. Select fakeY from the Source Wave list.
3. Verify that Auto is selected in the Output Wave menu.
4. Select the Auto-set bin range radio button.
5. Set the Number of Bins box to 100.

Note in the command box at the bottom of the dialog there are two commands:
Make/N=100/O fakeY_Hist;DelayUpdate
Histogram/B=1 fakeY,fakeY_Hist

The first command makes a wave to receive the results, the second performs the analysis. The
Histogram operation in the “Auto-set bin range” mode takes the number of bins from the output
wave.

6. Click the Do It button.
The histogram operation is performed.
Now we need to display the results.

7. Choose Windows→New Graph.
8. Select fakeY_Hist in the Y Wave(s) list and “_calculated_” in the X list.
9. Click the Do It button.

A graph is created showing the histogram results. We need to touch it up a bit.
10. Double-click the trace in the graph.

The Modify Trace Appearance dialog appears.
"Left" is selected in the Axis pop-up menu in the top/left corner of the dialog indicating that
changes made in the dialog will affect the left axis.

Chapter I-2 — Guided Tour of Igor Pro

I-56

11. Choose “Sticks to zero” from the Mode pop-up menu and click Do It.
The graph is redrawn using the new display mode.

12. Double-click one of the tick mark labels (e.g., “100) of the left axis.
The Modify Axis dialog appears, showing the Axis Range tab.

13. From the two pop-up menus in the Autoscale Settings area, choose “Round to nice values” and
“Autoscale from zero”.

14. Choose Bottom from the Axis pop-up menu.
15. From the two pop-up menus in the Autoscale Settings area, choose “Round to nice values” and

“Symmetric about zero”.
16. Click the Do It button.

Your graph should now look like this:

Histogram of Gaussian Noise
Now we'll do another histogram, this time with Gaussian noise.

1. Type the following in the command line and then press Return or Enter:
fakeY = gnoise(1)

2. Choose the Analysis→Histogram menu item.
The dialog should still be correctly set up from the last time.

3. Click the radio button labeled “Auto-set bins: 3.49*Sdev*N^-1/3”.
The information text at the bottom of the Destination Bins box tells you that the histogram will
have 48 bins.
This is a method by Sturges for selecting a “good” number of bins for a histogram. See the His-
togram operation on page V-272 for a reference.

4. Select the Bin-Centered X Values checkbox.
By default, the Histogram operation sets the X scaling of the output wave such that the X values are
at the left edge of each bin, and the right edge is given by the next X value. This makes a nice bar plot.
In the next section you will do a curve fit to the histogram. For curve fitting you need X values
that represent the center of each bin.

Chapter I-2 — Guided Tour of Igor Pro

I-57

5. Select the Create Square Root(N) Wave checkbox.
Counting data, such as a histogram, usually has Poisson-distributed values. The estimated mean
of the Poisson distribution is simply the number of counts (N) and the estimated standard devi-
ation is the square root of N.
The curve fit will be biased if this is not taken into account. You will use this extra wave for
weighting when you do the curve fit.

6. Click the Do It button.
Note that the histogram output as shown in Graph0 has a Gaussian shape, as you would expect
since the histogram input was noise with a Gaussian distribution.

7. Choose Data→Data Browser.
The Data Browser shows you the waves and variables in your experiment. You should see three
waves now: fakeY, fakeY_Hist, and W_SqrtN. FakeY_Hist contains the output of the Histogram
operation and W_SqrtN is the wave created by the Histogram operation to receive the square root
of N data.

8. Click in Graph0 and then double-click the trace to bring up the Modify Trace Appearance dia-
log.

9. Select Markers from the Mode menu, then select the open circle marker.
10. Click the Error bars checkbox.

The Error Bars dialog appears.
11. Select “+/- wave” from the Y Error Bars menu.
12. Pop up the Y+ menu and select W_SqrtN.

Note that W_SqrtN is also selected in the Y- menu. You could now select another wave from the
Y- menu if you needed asymmetric error bars.

13. Click OK, then Do It.

Curve Fit of Histogram Data
The previous section produces all the pieces required to fit a Gaussian to the histogram data, with proper
weighting to account for the variance of Poisson-distributed data.

1. Click in the graph to make sure it is the target window.
2. In the Analysis→Quick Fit menu make sure the Weight from Error Bar Wave item is checked.

If it is not, select it to check it.
3. Choose Analysis→Quick Fit→gauss.

With all the changes you’ve made, by now the graph looks like this:

As shown in the history area, the fit results are:

Chapter I-2 — Guided Tour of Igor Pro

I-58

Coefficient values ± one standard deviation
y0 =-0.35284 ± 0.513
A =644.85 ± 7.99
x0 =-0.0014111 ± 0.00997
width=1.406 ± 0.0118

The original data was made with a standard deviation of 1. Why is the width 1.406? The way Igor
defines its gauss fit function, width is sigma*21/2.

4. Enter this command in the command line:
Print 1.406/sqrt(2)

The result, 0.994192, is pretty close to 1.0.
It is often useful to plot the residuals from a fit to check for various kinds of problems. For that
you need to use the Curve Fit dialog.

5. Choose Analysis→Curve Fitting.
6. Click the Function and Data tab and choose gauss from the Function menu.
7. Choose fakeY_Hist (not fakeY) from the Y Data menu.
8. Leave the X Data pop-up menu set to “_calculated_”.
9. Click the Data Options tab. If there is text in the Start or End Range boxes, click the Clear but-

ton in the Range section.
10. Choose W_SqrtN from the Weighting pop-up menu.
11. Just under the Weighting pop-up menu there are two radio buttons. Click the top one which

is labeled “Standard Deviation”.
12. Click the Output Options tab and choose “_auto_” from the Destination pop-up menu.
13. Set the Residual pop-up menu to “_auto trace_”.

Residuals will be calculated automatically and added to the curve fit in our graph.
14. Click Do It.

The curve fit starts, does a few passes, and waits for you to click OK.

There is one small issue not addressed above. One of the bins contains zero; the square root of
zero is, of course, zero. So the weighting wave contains a zero, which causes the curve fit to ignore
that data point. It’s not clear what is the best approach to fixing that problem. Some replace the
zero with a one. These commands replace any zeroes in the weighting wave and re-do the fit:

W_SqrtN = W_SqrtN[p] == 0 ? 1 : W_SqrtN[p]
CurveFit/NTHR=0 gauss fakeY_Hist /W=W_SqrtN /I=1 /D /R

This doesn’t change the result very much, since there was just one zero in the histogram:
Coefficient values ± one standard deviation

y0 =-0.40357 ± 0.464
A =644.76 ± 7.98

Chapter I-2 — Guided Tour of Igor Pro

I-59

x0 =-0.0014186 ± 0.00996
width =1.4065 ± 0.0115

Curve Fit Residuals (Optional)
This section and the next one are primarily of interest to people who want to use Igor programming to auto-
mate tasks.
In the next section, as an illustration of how the history area can be used as a source of commands to gen-
erate procedures, we will create a procedure that appends residuals to a graph. The preceding section illus-
trated that Igor is able to automatically display residuals from a curve fit, so the procedure that we write in
the next section is not needed. Still, it demonstrates the process of creating a procedure. In preparation for
writing the procedure, in this section we append the residuals manually.
If the curve fit to a Gaussian function went well and if the gnoise function truly produces noise with a
Gaussian distribution, then a plot of the difference between the histogram data and the fitted function
should not reveal any curvature.

0. To remove the automatically generated residual from the Gaussian fit in the previous section,
Control-click (Macintosh) or right-click (Windows) directly on the residual trace at the top of
the graph and select Remove Res_fakeY_Hist from the pop-up menu.

1. Choose the Data→Duplicate Waves menu item.
2. Choose fakeY_Hist from the Template pop-up menu.
3. In the first Names box, enter “histResids”.
4. Click Do It.

You now have a wave suitable for containing residuals.
5. In the history area of the command window, find the line that reads (all on one line):

fit_fakeY_Hist= W_coef[0] +
W_coef[1]*exp(-((x-W_coef[2])/W_coef[3])^2)

W_coef is a wave created by the CurveFit operation to contain the fit parameters. W_coef[0] is the
y0 parameter, W_coef[1] is the A parameter, W_coef[2] is the x0 parameter and W_coef[3] is the
width parameter.
This line shows conceptually what the CurveFit operation did to set the data values of the fit des-
tination wave.

6. Click once on the line to select it and then press Return or Enter once.
The line is transferred to the command line.

7. Edit the line to match the following (all on one line):
histResids= fakeY_Hist -

(W_coef[0]+W_coef[1]*exp(-((x-W_coef[2])/W_coef[3])^2))

In other words, change “fit_fakeY_Hist” to “histResids”, click after the equals and type
“fakeY_Hist - (” and then add a “)” to the end of the line.
The expression inside the parentheses that you added represents the model value using the
parameters determined by the fit. This command computes residuals by subtracting the model
values from the data values on which the fit was performed.
Note: If the fit had used an X wave rather than calculated X values then it would have been

necessary to substitute the name of the X wave for the “x” in the expression.

8. Press Return or Enter.
This wave assignment statement calculates the difference between the measured data (the output of
the Histogram operation) and the theoretical Gaussian (as determined by the CurveFit operation).
Now we will append the residuals to the graph stacked above the current contents.

9. Choose Graph→Append Traces to Graph.
10. Select histResids from the Y wave(s) list and “_calculated_” from the X wave list.

Chapter I-2 — Guided Tour of Igor Pro

I-60

11. Choose New from the Axis pop-up menu under the Y Wave(s) list.
12. Enter “Lresid” in the Name box and click OK.
13. Click Do It.

The new trace and axis is added.
Now we need to arrange the axes. We will do this by partioning the available space between the
Left and Lresid axes.

14. Double-click the far-left axis.
The Modify Axis dialog appears. If any other dialog appears, cancel and try again making sure
the cursor is over the axis.
If you have enough screen space you will be able to see the graph change as you change settings in
the dialog. Make sure that the Live Update checkbox in the top/right corner of the dialog is selected.

15. Click the Axis tab.
The Left axis should already be selected in the pop-up menu in the top-left corner of the dialog.

16. Set the Left axis to draw between 0 and 70% of normal.
17. Choose Lresid from the Axis pop-up menu.
18. Set the Lresid axis to draw between 80 and 100% of normal.
19. Choose Fraction of Plot Area in the “Free axis position” menu.

The Lresid axis is a “free” axis. This moves it horizontally so it is in line with the Left axis.
20. Choose Bottom from the Axis pop-up menu.
21. Click the Axis Standoff checkbox to turn standoff off.

Just a couple more touch-ups and we will be done. The ticking of the Lresid axis can be improved.
The residual data should be in dots mode.

22. Choose Lresid from the Axis pop-up menu again.
23. Click the Auto/Man Ticks tab.
24. Change the Approximately value to 2.
25. Click the Axis Range tab.
26. In the Autoscale Settings area, choose “Symmetric about zero” from the menu currently read-

ing “Zero isn’t special”.
27. Click the Do It button.
28. Double-click the histResids trace.

The Modify Trace Appearance dialog appears with histResids already selected in the list.
29. Choose Dots from the Mode pop-up menu
30. Set the line size to 2.00.

Chapter I-2 — Guided Tour of Igor Pro

I-61

31. Click Do It.
Your graph should now look like this:

Writing a Procedure (Optional)
In this section we will collect commands that were created as we appended the residuals to the graph. We
will now use them to create a procedure that will append a plot of residuals to a graph.

1. Click the zoom button (Macintosh) or the maximize button (Windows) of the command win-
dow to enlarge it to fill the screen.

2. Find the fifth line from the bottom that reads:
•AppendToGraph/L=Lresid histResids

3. Select this line and all the lines below it and press Command-C (Macintosh) or Ctrl+C (Win-
dows) to copy them to the Clipboard.

4. Click the zoom button (Macintosh) or the restore button (Windows) of the command window
to return it to its normal size.

5. Choose the Windows→New→Procedure menu item.
6. Type “Append Residuals” (without the quotes) in the Document Name box and click New.

A new procedure window appears. We could have used the always-present built-in procedure win-
dow, but we will save this procedure window as a stand-alone file.

7. Add a blank line to the window, type “Function AppendResiduals()”, and press Return or Enter.
8. Press Command-V (Macintosh) or Ctrl+V (Windows) to paste the commands from the history

into the new window.
9. Type “End” and press Return or Enter.
10. Select the five lines that you pasted into the procedure window and then choose Edit→Adjust

Indentation.
This removes the bullet characters from the history and prepends tabs to apply the normal inden-
tation for procedures.
If you are running on an Asian-language system, you will have asterisks at the start of each line
and you must remove them manually.
Your procedure should now look like this:
Function AppendResiduals()

AppendToGraph/L=Lresid histResids
ModifyGraph nticks(Lresid)=2,standoff(bottom)=0,

axisEnab(left)={0,0.7};DelayUpdate
ModifyGraph axisEnab(Lresid)={0.8,1},

freePos(Lresid)=0;DelayUpdate
SetAxis/A/E=2 Lresid

Chapter I-2 — Guided Tour of Igor Pro

I-62

ModifyGraph mode(histResids)=2,lsize(histResids)=2
End

(Some commands in this manual are shown on two lines to fit them on the page but in reality will
be on one line. In Igor, a command must be entered on a single line of text.)

11. Delete the “;DelayUpdate” at the end of the two ModifyGraph commands.
DelayUpdate has no effect in a function.
We now have a nearly functional procedure but with a major limitation — it only works if the resid-
uals wave is named “histResids”. In the following steps, we will change the function so that it can be
used with any wave and also with an XY pair, rather than just with equally-spaced waveform data.

12. Convert the first two lines of the function to match the following:
Function AppendResiduals(ywave,xwave)

String ywave,xwave

if (CmpStr("_calculated_",xwave) == 0)
AppendToGraph/L=Lresid $ywave

else
AppendToGraph/L=Lresid $ywave vs $xwave

endif

13. In the last ModifyGraph command in the function, change both “histResids” to “$ywave”.
The “$” character converts the string expression that follows it into the name of an Igor object (see
String Substitution Using $ on page IV-15 for details).
Here is the completed procedure.
Function AppendResiduals(ywave,xwave)

String ywave,xwave

if (CmpStr("_calculated_",xwave) == 0)
AppendToGraph/L=Lresid $ywave

else
AppendToGraph/L=Lresid $ywave vs $xwave

endif
ModifyGraph nticks(Lresid)=2,standoff(bottom)=0,

axisEnab(left)={0,0.7}
ModifyGraph axisEnab(Lresid)={0.8,1},freePos(Lresid)=0
SetAxis/A/E=2 Lresid
ModifyGraph mode($ywave)=2,lsize($ywave)=2

End

Let’s try it out.
14. Click the Compile button at the bottom of the procedure window to compile the function.

If you get an error, edit the function text to match the listing above.
15. Click the close button in the Append Residuals procedure window. A dialog will ask if you

want to kill or hide the window. Click Hide.
If you press Shift while clicking the close button, the window will be hidden without a dialog. (Use
the Help→Shortcuts menu to learn about this and other shortcuts.)

16. Choose Windows→New Graph.
17. Choose fakeY_Hist from the Y Wave(s) list and _calculated_ from the X Wave list and click Do It.

A graph without residuals is created.
18. In the command line, execute the following command:

AppendResiduals("histResids", "_calculated_")

The AppendResiduals function runs and displays the residuals in the graph, above the original
histogram data.
Next, we will add a function that displays a dialog so we don’t have to type wave names into the
command line.

19. Use the Windows→Procedure Windows menu to show the Append Residuals procedure window.

Chapter I-2 — Guided Tour of Igor Pro

I-63

20. Enter the following function after the AppendResiduals function.
Function AppendResidualsDialog()

String ywave,xwave

Prompt ywave,"Residuals Data",popup WaveList("*",";","")
Prompt xwave,"X Data",

popup "_calculated_;"+WaveList("*",";","")
DoPrompt "Append Residuals", ywave, xwave
if (V_flag != 0)

return -1; // User canceled.
endif

AppendResiduals(ywave,xwave)
End

The second Prompt statement is shown above on two lines but must be entered on one line in
Igor.
This function will display a dialog to get parameters from the user and will then call the
AppendResiduals function.
Let’s try it out.

21. Click the Compile button at the bottom of the procedure window to compile the function.
If you get an error, edit the function text to match the listing above.

22. Shift-click the close button to hide the procedure window. Then activate the graph.
23. Control-click (Macintosh) or right-click (Windows) on the residual trace at the top of the graph

and select Remove histResids from the pop-up menu.
The axis displaying histData will stay short because the residuals were not appended to the graph
automatically.

24. On the command line, execute the following command:
AppendResidualsDialog()

The AppendResidualsDialog function displays a dialog to let you choose parameters.
25. Choose histResids from the Residuals Data pop-up menu.
26. Leave the X Wave pop-up set to “_calculated_”.
27. Click Continue.

The graph should once again contain the residuals plotted on a new axis above the main data.
Next we will add a menu item to the Macros menu.

28. Use the Windows→Procedure Windows menu to open the Append Residuals procedure window.
29. Enter the following code before the AppendResiduals function:

Menu "Macros"
"Append Residuals...", AppendResidualsDialog()

End

30. Click the Compile button.
Igor compiles the function and adds the menu item to the Macros menu.

31. Press Control-Command-E (Macintosh) or Ctrl+E (Windows) to send the procedure window to
the back, and then activate the graph.

32. Control-click (Macintosh) or right-click (Windows) on the residual trace at the top of the graph
and select “Remove histResids” from the pop-up menu.

33. Click the Macros menu and choose the “Append Residuals” item
The procedure displays a dialog to let you choose parameters.

34. Choose histResids from the Residuals Data pop-up menu.
35. Leave the X Wave pop-up menu set to “_calculated_”.

Chapter I-2 — Guided Tour of Igor Pro

I-64

36. Click the Continue button.
The graph should once again contain the residuals plotted on a new axis above the main data.

Saving a Procedure File (Optional)
Note: If you are using the demo version of Igor Pro beyond the 30-day trial period, you cannot save a procedure file.

Now that we have a working procedure, let’s save it so it can be used in the future. We will save the file in
the "Igor Pro User Files" folder - a folder created by Igor for you to store your Igor files.

1. Choose Help→Show Igor Pro User Files.
Igor opens the "Igor Pro User Files" folder on the desktop.
By default, this folder has the Igor Pro major version number in its name, for example, "Igor Pro
6 User Files", but it is generically called the "Igor Pro User Files" folder.
Note where in the file system hierarchy this folder is located as you will need to know this in a
subsequent step. The default locations are:
Macintosh:

/Users/<user>/Documents/WaveMetrics/Igor Pro 6 User Files

Windows XP:
C:\Documents and Settings\<user>\My Documents\WaveMetrics\Igor Pro 6 User Files

Windows VISTA and Windows 7:
C:\Users\<user>\My Documents\WaveMetrics\Igor Pro 6 User Files

We will save the procedure file in the "User Procedures" subfolder of the Igor Pro User Files
folder. You could save the file anywhere on your hard disk, but saving in the User Procedures
subfolder makes it easier to access the file as we will see in the next section.

2. Back in Igor, activate the Append Residuals procedure window again.
3. Choose the File→Save Procedure As menu item.
4. Enter the file name “Append Residuals.ipf”.
5. Navigate to your Shared Procedures folder and click Save.

The Append Residuals procedure file is now saved in a stand-alone file.
6. Click the close button on the procedure window.

Igor will ask if you want to kill or hide the file. Click Kill. This removes the file from the current
experiment, but it still exists on disk and you can open it as needed.
There are several ways to open the procedure file to use it in the future. One is to double-click it.
Another is to choose the File→Open File→Procedure menu item. A third is to put a #include
statement in the built-in procedure window, which is how we will open it in the next section.

Including a Procedure File (Optional)
The preferred way to open a procedure window that you intend to use from many different experiments is
to use a #include statement. This section demonstrates how to do that.
Note: If you are using the demo version of Igor Pro beyond the 30-day trial period, you did not create

the Append Residuals.ipf file in the preceding section so you can’t do this section. See The
Include Statement on page IV-149 for details about including procedure files.

1. In Igor, use the Windows→Procedure Windows menu to open the built-in procedure window.
2. At the top of the built-in procedure window, notice the line that says:

#pragma rtGlobals = 1

This is technical stuff that you can ignore.
3. Under the rtGlobals line, leave a blank line and then enter:

#include "Append Residuals"

Chapter I-2 — Guided Tour of Igor Pro

I-65

4. Click the Compile button at the bottom of the built-in procedure window.
Igor compiles the procedure window. When it sees the #include statement, it looks for the
Append Residuals.ipf procedure file in the User Procedures folder and opens it. You don't see it
because it was opened hidden.

5. Use the Windows→Procedure Windows menu to verify that the Append Residuals procedure
file is in fact open.
To remove the procedure file from the experiment, you would remove the #include statement
from the built-in procedure window.
#include is powerful because it allows procedure files to include other procedure files in a chain.
Each procedure file automatically opens any other procedure files it needs.
User Procedures is special because Igor searches it to satisfy #include statements.
Another special folder is Igor Procedures. Any procedure file in Igor Procedures is automatically
opened by Igor at launch time and left open till Igor quits. This is the place to put procedure files
that you want to be open all of the time.

This concludes Guided Tour 3.

Chapter I-2 — Guided Tour of Igor Pro

I-66

For Further Exploration
We developed the guided tours in this chapter to provide an overview of the basics of using Igor Pro and
to give you some experience using features that you will likely need for your day-to-day work. Beyond
these fundamentals, Igor includes a wide variety of features to facilitate much more advanced graphing and
analysis of your data.

As you become more familiar with using Igor, you will want to further explore some of the additional learn-
ing and informational aids that we have included with Igor Pro.

• The Igor Pro manual is installed on your hard disk in PDF format. You can access it through the Igor
Help Browser or open it directly from the Manual folder in the Igor Pro Folder.
The material in the manual is the same as the material in the online help files but is organized in
book format and is therefore better suited for linear reading. Unlike the help files, the PDF manual
includes an index. You may want to print selected chapters. You can purchase hard copy of the Igor
Pro manual from <http://www.lulu.com/wavemetrics>.
The most important chapters at this point in your Igor learning curve are Chapter II-3, Experiments,
Files and Folders and Chapter II-5, Waves. If you want to learn Igor programming, read Chapter
IV-1, Working with Commands, Chapter IV-2, Programming Overview, and Chapter IV-3, User-
Defined Functions.

• The Igor Help Browser provides online help, including reference material for all built-in operations
and functions, an extensive list of shortcuts, and the ability to search Igor help files, procedure files,
examples and technical notes for key phrases. See Igor Help Browser on page II-6 for more infor-
mation.

• The Examples folder contains a wide variety of sample experiments illustrating many of Igor’s
advanced graphing and programming facilities. You can access these most easily through the
File→Example Experiments submenus.

• The Learning Aids folder contains additional guided tours and tutorials including a tutorial on
image processing. You can access these through the File→Example Experiments→Tutorials sub-
menus.

• A tutorial on 3D visualization can be found in the Visualization help window, accessible through
the Windows→Help Windows menu.

• The More Help Files folder contains several supplementary help files. Use the File→Open
File→Help Files menu item to open them.

• The WaveMetrics Procedures folder contains a number of utility procedures that you may find
useful for writing your own procedures and for your more advanced graphing requirements. For
an overview of the WaveMetrics procedures and easy loading of the procedure files, choose Win-
dows→Help Windows→WM Procedures Index.

• The More Extensions folder contains a number of External Operations (XOPs), which add function-
ality not built into the Igor Pro application. Read the included help files to find out more about the
individual XOPs and how to install them, or consult the External Operations Index in the XOP Index
help file, which has brief description of each XOP.

• The Technical Notes folder contains miscellaneous additional information and services. Tech Note
#000 contains an index to all of the other notes.

• The Igor Pro mailing list is an Internet mailing list where Igor users share ideas and help each other.
See Igor Mailing List on page II-16 or select the Help→Support menu and then select Igor Mailing
List from the Support Options list for information about the mailing list.

• IgorExchange is a user-to-user support web page and a repository for user-created Igor Pro projects.
Choose Help→IgorExchange to visit it.

http://www.lulu.com/wavemetrics
http://www.igorexchange.com

Volume II User’s Guide: Part 1

Table of Contents
II-1 Getting Help .. II-1
II-2 The Command Window .. II-19
II-3 Experiments, Files and Folders II-27
II-4 Windows .. II-53
II-5 Waves ... II-75
II-6 Multidimensional Waves .. II-107
II-7 Numeric and String Variables II-115
II-8 Data Folders .. II-121
II-9 Importing and Exporting Data II-139
II-10 Dialog Features ... II-181
II-11 Tables ... II-189
II-12 Graphs .. II-235
II-13 Category Plots ... II-315
II-14 Contour Plots .. II-325
II-15 Image Plots .. II-347
II-16 Page Layouts ... II-373

Chapter

II-1
II-1Getting Help

Overview.. 3
Online Manual... 3
WaveMetrics Support Web Page .. 3
Online Help.. 3
Igor Tips (Macintosh) ... 4

User-Defined Igor Tips ... 4
Status Line Help, Tool Tips and Context-Sensitive Help (Windows)... 4

Status Line Help... 5
Tool Tips.. 5
Context-Sensitive Help ... 5

Menus... 5
Icons.. 5
Dialogs.. 5

Igor Shortcuts Help... 5
Help from a Procedure Window or the Command Line .. 5
The Help Button in Dialogs ... 6
Igor Help Browser .. 6

Help Topics Tab ... 6
Shortcuts Tab.. 6
Command Help Tab.. 6
Search Igor Files Tab ... 7

Search Expression... 8
Search Folders ... 8
Types of Files... 9
Search Results.. 9
Search Strategies ... 9
Search Speed.. 9

Manual Tab... 9
Support Tab .. 10

Igor Help Files ... 10
Igor Help Windows .. 10
Hiding and Killing a Help Window... 11
Executing Commands from a Help Window ... 11
Compiling Help Files.. 11
Creating Your Own Help File (For Advanced Users) ... 11

Syntax of a Help File ... 12
Creating Links .. 13
Checking Links... 13

Updating Igor .. 14
Technical Support ... 15

Email Support... 15
FTP Sites .. 15
World Wide Web .. 16
WaveMetrics Support Web Page... 16
Igor Mailing List... 16

Chapter II-1 — Getting Help

II-2

IgorExchange.. 16
Telephone Support .. 16
FAX Support... 16

Help Shortcuts ... 17

Chapter II-1 — Getting Help

II-3

Overview
There are a number of sources of information on using Igor:
• The Igor Pro online manual
• The online help system
• WaveMetrics support web page
• WaveMetrics Technical Support
• The Igor mailing list
• The IgorExchange user-to-user support web page

Online Manual
The Igor Pro installer installs the entire Igor Pro manual as an Adobe PDF (portable document format) file. You
need Adobe Reader or a comparable PDF viewer, such as Apple’s Preview, to view the online manual.

From within Igor Pro you can launch your PDF viewer program and view the online manual by choosing
Help→Manual. From the desktop you can view the manual by double-clicking the IgorMan.pdf file in “Igor
Pro Folder/Manual”.

The PDF manual includes a fast-search index for Acrobat Reader version 6 or later. To activate the fast
search index, open the IgorMan.pdf file in Acrobat Reader 6 or later, choose Edit→Search, and select the
IgorMan.pdx file.

The PDF manual is available in hard-copy form from http://www.lulu.com/wavemetrics.

WaveMetrics Support Web Page
For up-to-date information on Igor Pro, visit the WaveMetrics support Web page at:

http://www.wavemetrics.com/support/

From this web page you can search our support database, search archives of the Igor Mailing List and find
links to updaters.

You can access this page by choosing Help→Support Web Page.

Online Help
Igor provides several forms of online help:
• The Igor help system
• Macintosh Igor Tips
• Windows status line help, context-sensitive help, and tool tips

The Igor help system is the same on Macintosh and Windows. Its major elements are Igor help files and the
Igor Help Browser.

This table summarizes the ways to access online help in Igor.

Help Access Method What It Is Good For

The Igor Help Browser window
(Help menu)

Finding a specific topic or subtopic in the Igor help files, learning
about handy shortcuts, getting help for operations, functions and
programming keywords, and searching Igor files for specific phrases.

The Help button that appears in
many dialogs

Getting a general idea of how to use the dialog.

http://www.wavemetrics.com/support/
http://www.lulu.com/wavemetrics

Chapter II-1 — Getting Help

II-4

The main sources of information for help are the files in the Igor Help Files folder. Igor automatically opens
files in this folder when it starts up.

Igor also automatically opens help files in "Igor Pro User Files/Igor Help Files" (see Igor Pro User Files on
page II-46 for details). If you want an additional help file to be automatically opened, put it or an alias/short-
cut for it in that folder.

Addtional WaveMetrics help files can be found in "Igor Pro Folder/More Help Files". You can open these
help files by double-clicking them or using the Open File submenu in the File menu. You can search these
files (and all help files in the Igor Pro Folder and in the Igor Pro User Files folder) using the Search Igor Files
tab of the Igor Help Browser.

Many Igor extensions come with help files describing their use. These help files are stored in the same folder
as the extension itself — in either "Igor Pro Folder/Igor Extensions" or "Igor Pro Folder/More Extensions".

Igor’s help system is extensible. You can write your own help files and add balloons help or context-sensi-
tive help for your own menu items and controls. This is something that you might want to do if you write
Igor procedures to be used by others.

Igor Tips (Macintosh)
We’ve tried to provide concise yet useful tips for nearly every menu item, dialog item and icon in Igor.
There are two ways to show the Igor Tips window:
• Choose Help→Show Igor Tips.
• Press Option-Help.

If your keyboard lacks a Help key you must use the Help menu.

Once you’ve turned Igor Tips on, position the cursor over a menu item, dialog item or icon. In most cases,
Igor will present a window that will explain what that item is good for.

Note: Pressing Option-Help toggles Igor Tips off or on.

You can also use Igor Tips to get information about traces in graphs and columns in tables. However, these
Igor Tips appear only while you press Command-Option-Control and click a trace or column. Showing Igor
Tips with the Help menu will not do it.

User-Defined Igor Tips
You can define tips for menu items and controls created by your Igor procedures. See Help for User Menus
on page IV-112 and Help Text for User-Defined Controls on page III-384.

Status Line Help, Tool Tips and Context-Sensitive Help (Windows)
On Windows Igor provides three ways to get help for icons, menu items and dialog items. These are status
line help, tool tips, and context-sensitive help.

Templates in procedure windows* Getting the syntax of built-in and external functions and
operations and flow-control structures.

Igor Tips (Macintosh only) Clarifying the meaning of icons, menu items and dialog items.
Identifying traces in graphs and columns in tables.

Status line help (Windows only) Displaying a brief description of menu items and tools.

Tool tips (Windows only) Displaying a short description of a button or tool.

Context-sensitive help (Windows only) Getting more detail than is available from the status line help.
* Chapter III-13, Procedure Windows describes the use of templates in procedure windows. This chapter

covers the other help access methods listed in the table.

Chapter II-1 — Getting Help

II-5

Status Line Help
The status line area at the bottom of the main Igor Pro window shows brief descriptions of icons and menu
items. This help is shown automatically; you don’t have to do anything to make it appear.

Tool Tips
If you point at an icon in an Igor Pro window, a tool tip will appear after a short delay. It contains just a two
or three word description of the button.

You can adjust the delay before the tool tip appears, and the duration of display in the Help page of the
Miscellaneous Settings dialog, which you can choose from the Misc menu.

Context-Sensitive Help
Context-sensitive help (sometimes referred to as F1 help) is displayed in a pop-up window and provides
more detail than the status line help. It is accessed in several different ways depending on the type of item
you need help for.

Menus
For help on items in a menu, pull down the menu and highlight the item of interest. Then press the F1 key
to display the context-sensitive help window.

Icons
For help on icons in windows such as graphs and tables, hold down Shift and press F1. This changes the
mouse cursor to a question-mark; click on a button or icon to display the context-sensitive help window.

Dialogs
Help for individual items in Igor’s dialogs can be summoned by clicking the question-mark button at the
right end of the dialog’s title bar, then clicking on the item for which you want help.

Igor Shortcuts Help
Igor supports a number of very handy shortcuts. The Shortcuts tab of the Igor Help Browser lists these
shortcuts, organized in logical categories.

Help from a Procedure Window or the Command Line
There is a quick and easy way to get help for a function, operation or flow-control keyword from the
command line or from a procedure, notebook or help window. Type or select the name or keyword.
Control-click (Macintosh) or right-click (Windows) and choose help from the resulting menu.

Here are some keyboard shortcuts for summoning help.

Keyboard Shortcut What It Does

Macintosh Windows

Press Help Press F1 Displays Help Browser window

Press Shift-Help Press Ctrl+F1 Inserts template for selected function, operation or flow-
control keyword

Press Shift-Option-Help Press Ctrl+Alt+F1 Shows help for selected function, operation or flow-
control keyword

Chapter II-1 — Getting Help

II-6

The Help Button in Dialogs
The Help button in Igor dialog’s provides an overview of the dialog and tips for using it. Use Igor Tips (Mac-
intosh) or context-sensitive help (Windows) for information on individual dialog items.

Igor Help Browser
The Igor Help Browser is designed to provide quick access to the most frequently-used Igor reference mate-
rial and also to provide a starting point in searching for other kinds of information. You can display the Igor
Help Browser by
• Choosing Igor Help Browser from the Help menu.
• Pressing the Help key (Macintosh) or F1 key (Windows).
• Clicking the Igor Help Browser icon in the command window.

The Igor Help Browser consists of six tabs.

Help Topics Tab
The Help Topics tab provides a table of contents for the open Igor help files. When you first launch Igor, Igor
opens the help files in "Igor Pro Folder/Igor Help Files" and "Igor Pro User Files/Igor Help Files".

The Topics list initially presents all topics in all open help files. You can choose a specific help file from the
Show Topics From pop-up menu to narrow the scope of topics. Once you locate and select the topic of inter-
est in the Topics list, the Subtopics list displays subtopics within that topic, if any exist.

After selecting a topic and optionally a subtopic, click the Show Selected Topic button to see the help.

If you know that the information that you are looking for is in a help file that is not normally open, for exam-
ple, in a help file associated with an Igor extension, click the Open Another Help File button. Most addi-
tional help files can be found in "Igor Pro Folder/More Help Files", "Igor Pro Folder/Igor Extensions" or
"Igor Pro Folder/More Extensions".

If you don’t know what help file or what topic may contain the information of interest, use the Search Igor
Files tab instead of the Help Topics tab.

Shortcuts Tab
The Shortcuts tab presents a list of shortcuts, organized in functional groups.

Command Help Tab
The Command Help tab provides quick access to reference information on Igor functions, operations and
programming keywords. When you choose a function, operation or keyword in the list, Igor displays the
associated help.

Chapter II-1 — Getting Help

II-7

A checkbox for each of the three main categories adds or removes the associated items from the list. The
pop-up menu next to each checkbox further narrows the scope of the list.

The Copy Template button copies a template to the Clipboard which you can then paste into the command
line or into a procedure window. All functions and operations have templates, but only some keywords do.

Here is a tip to help you understand the distinction between an operation and a function: a function returns
a direct result (e.g., sin) while an operation does not (e.g., Display).

Search Igor Files Tab
The Search Igor Files tab provides a way for you to search Igor help files, procedure files, and notebooks for
information of interest.

Chapter II-1 — Getting Help

II-8

Search Expression
The expression can consist of one or more (up to 8) terms. Terms are separated by the word “and”. Here are
some examples:

The second example finds the exact phrase “spline interpolation” while the third example finds sections
that contain the words “spline” and “interpolation”, not necessarily one right after the other.

The only keyword supported in the search expression is “and”. “Or” and “near” are not supported. Also,
quotation marks in the search expression don’t mean anything special and should not be used.

If your search expression includes more than one term, a text box appears in which you can enter a number
that defines what “and” means. For example, if you enter 10, this means that the secondary terms must
appear with 10 paragraphs of the primary term to constitute a hit. A value of 0 means that the terms must
appear in the same paragraph. In a plain text file, such as a procedure file, a paragraph is a single line of
text. Blank lines count as one paragraph.

Search Folders
You can search the Igor Pro Folder and all subfolders by selecting the associated checkbox. This is intended
for situations in which you are looking for help on Igor features or examples of Igor programming.

You can search another folder and all subfolders by selecting the Another Folder checkbox and then by
clicking the Choose button to specify the folder. This is useful when searching your own files or if you want
to search a specific folder inside the Igor Pro Folder.

interpolation One term

spline interpolation One term

spline and interpolation Two terms

spline and interpolation and smoothing Three terms

Chapter II-1 — Getting Help

II-9

Types of Files
You can choose what type of files Igor should search: help files, procedure files, notebooks, or files with a
specific extension. You can also look for notebooks and procedure files inside packed Igor experiment files.

When Igor searches notebooks, it searches both formatted notebooks (including Igor technical notes) and
plain text notebooks. On Macintosh, any file whose file type is 'TEXT' is considered to be a plain text note-
book. On Windows, any file whose extension is “.txt” is considered to be a plain text notebook.

On Macintosh, Igor procedure files have the file type 'TEXT'. Other kinds of plain text files, such as data
files and readme files, also have the file type 'TEXT' so Igor can not distinguish a procedure file from some
other kind of plain text file. When you search procedure files, it searches all plain text files in the specified
folder and subfolders.

On Windows, procedure files use the extension “.ipf” while various kinds of plain text files use other extensions,
such as “.dat” and “.txt”. When you search procedure files, it searches only files with the “.ipf” extension.

On both platforms, you can search files with a specific extension (“.txt”, “.dat”) using the Files With Exten-
sion checkbox.

Search Results
Igor displays hits (occurrences of the search expression) in the Search Results windoid. At the top of the
windoid, Igor displays the total number of hits.

Each hit is displayed as a file reference, in blue text, and the contents of the paragraph containing the hit, in
black text. To open the file containing the hit, click the blue text.

To reduce clutter, if a single paragraph contains the search expression multiple times, this is considered to
be one hit and is displayed as one file reference.

When you click a hit that refers to a stand-alone help file, procedure file or notebook, Igor opens the file and
displays the paragraph containing the hit, highlighting the first term in the search expression.

If you click a hit that refers to a notebook or procedure file in a packed experiment, Igor can not open the
file directly. It presents a dialog with two options:
• Open the experiment containing the file that contains the hit.
• Create and open a copy of the file that contains the hit.

Search Strategies
Usually when you are searching for information about Igor, you should include help files and notebooks and
you should elect to search inside packed experiment files. This is because the examples provided in the Exam-
ples folder of the Igor Pro folder are mostly in the form of packed experiment files that include an explanatory
notebook. Igor technical notes are usually in the form of stand-alone (not packed) notebook files.

If you are searching for user-defined functions in the WaveMetrics Procedures folder, you should elect to
search procedure files. This gives you a handy way to find a function that does something that you need or
to find an example of Igor programming.

Search Speed
Igor’s searching does not use indexing. In other words, Igor opens and reads each file of the specified type
or types in the specified folder or folders, and searches for the search expression. It does not store anything
from one search to another. On slow computers, this may make searches annoyingly slow. In this case, you
can speed things up by reducing the number of types of files to be searched or by more narrowly targeting
the folder to be searched.

The online Igor Pro manual does provide indexed searches. This is described in the next section.

Manual Tab
The Manual tab provides a quick way for you to open the Igor Pro online manual.

Chapter II-1 — Getting Help

II-10

The Open Online Manual button launches your PDF viewer program and opens the IgorMan.pdf file. Igor
expects to find IgorMan.pdf in the “Igor Pro Folder:Manual” folder, where the Igor Pro installer installs it.

The Open Online Manual button displays an error message if it can not find the IgorMan.pdf file in the “Igor Pro
Folder:Manual” folder or if there is no program on your hard disk configured to open PDF files. In this case,
install Adobe Acrobat Reader from the Igor Pro CD or by downloading from <http://www.adobe.com/>.

Support Tab
The Support tab lists additional sources of help with Igor Pro.

Igor Help Files
The Igor installer places help files primarily in "Igor Pro Folder/Igor Help Files" and in "Igor Pro
Folder/More Help Files". Help files for Igor extensions are installed in "Igor Pro Folder/Igor Extensions" and
in "Igor Pro Folder/More Extensions".

When Igor is launched it automatically opens any Igor help files in "Igor Pro Folder/Igor Help Files" and in
"Igor Pro User Files/Igor Help Files". If you want Igor to automatically open another help file, create an alias
(Macintosh) or shortcut (Windows) for that help file and drag it into "Igor Pro User Files/Igor Help Files" (see
Special Folders on page II-44 for details).

Help files that you want to use occasionally can be stored anywhere on your hard disk. You can open them
manually by double-clicking in the desktop, choosing File→Open File, or clicking the Open Another Help
File button in the Help Topics tab of the Igor Help Browser.

Igor Help Windows
When Igor starts up, it automatically creates help windows by opening the Igor help files stored in "Igor
Pro Folder/Igor Help Files" and in "Igor Pro User Files/Igor Help Files". You can display a help window by
choosing it from the Help Windows submenu in the Windows menu.

Each Igor help file consists of a number of help topics, each of which may contain subtopics, and a list of
related topics.

All of the topics are in the help file, one after another, like a big word-processing document. To see a list of
topics, use the Igor Help Browser Help Topics tab. Blue underlined phrases are links that take you other
parts of the help file or to other help files.

Click the Find button to search for words or phrases in the active help window. Click the Search button to
search for words or phrases in multiple help files on disk.

A main topic.

A subtopic.

List of related topics.

Click to return to recently visited topics.

Click blue underlined text to
view another topic.

Click to search for text
in open window.

Click for Igor Help Browser. Search files on disk.

http://www.adobe.com/

Chapter II-1 — Getting Help

II-11

Clicking the Go Back button or pressing Command-B (Macintosh) or Ctrl+B (Windows) takes you back to pre-
vious places in the help that you have visited. If you also press the Shift key, Igor will hide the active help
window if you are going back to a different help window.

Hiding and Killing a Help Window
When you click the close button in a help window, Igor hides it. It also hides the help window if you choose
Hide from the Windows menu or press Command-W (Macintosh) or Ctrl+W (Windows).

If you are finished using an Igor help window, you can kill it. This closes the file, removes its topics from the
Help Browser and kills the window. It does not delete the file. To kill an Igor help file, you must press Option
(Macintosh) or Alt (Windows) while clicking the close FilterFIR or while choosing Close from the Windows menu.

Executing Commands from a Help Window
Help windows often show example Igor commands. To execute a command or a section of commands from
a help window, select the command text and press Control-Enter or Control-Return. This sends the selected
text to the command line and starts execution.

Compiling Help Files
Each Igor help file contains compiled help information that Igor uses to quickly find topics and subtopics. If you
open a help file that has been modified, Igor will ask if you want to “compile” it. Compiling is what creates this
information. This will happen only if you intentionally or accidentally modify a help file and then open it.

Windows: Prior to Igor Pro 5, Igor stored the compiled help information in a separate file with a “.igr” extension.
Now Igor stores the compiled help information in the help file itself. The “.igr” file is no longer needed.

Creating Your Own Help File (For Advanced Users)
You can create an Igor help file that extends the Igor help system. This is something you might want to do
if you write a set of Igor procedures or extensions for use by your colleagues. If your procedures or exten-
sions are generally useful, you might want to make them available to all Igor users. In either case, you can
provide documentation in the form of an Igor help file.

Here are the steps for creating an Igor help file.
1. Create a formatted-text notebook.

A good way to do this is to open the Igor Help File Template provided by WaveMetrics in the More
Help Files folder. Alternatively, you can start by duplicating another WaveMetrics-supplied help file
and then open it as a notebook using File→Open File→Notebook. Either way, you are starting with a
notebook that contains the rulers used to format an Igor help file.

2. Choose Save Notebook As from the File menu to create a new file. Use a “.ihf” extension so that Igor
will recognize it as a help file.

3. Enter your help text in the new file.
4. Save and kill the notebook.
5. Open the file as a help file using File→Open File→Help File.

When you open the file as a help file, it needs to be compiled. When Igor compiles a help file, it scans through it
to find out where the topics start and end and makes a note of subtopics. When the compilation is finished, it
saves the help file which now includes the help compiler information.

Once Igor has successfully compiled the help file, it will act like any other Igor help file. That is, when opened it
will appear in the Help Windows submenu, its topics will appear in the Help Browser and you can click links to
jump around.

Chapter II-1 — Getting Help

II-12

Here are the steps for modifying a help file.
1. If the help file is open, kill it by pressing Option (Macintosh) or Alt (Windows) and clicking the close but-

ton.
2. Open it as a notebook, using File→Open File→Notebook.
3. Modify it using normal editing techniques.
4. Choose Save Notebook from the File menu.
5. Click the close button and kill the notebook.
6. Reopen it as a help file using File→Open File→Help File.

Syntax of a Help File
Igor needs to be able to identify topics, subtopics, related-topics declarations and links in Igor help files. To do
this it looks for certain rulers, text patterns and text formats described in Creating Links on page II-13. You can
get most of the required text formats by using the appropriate ruler from the Igor Help File Template file.

Igor considers a paragraph to be a help topic declaration if it starts with a bullet character followed by a tab
and if the paragraph’s ruler is named Topic. By convention, the Topic ruler’s font is Geneva on Macintosh
or Arial on Windows, its text size is 12 and its text style is bold-underlined. The bullet and tab characters
should be plain, not bold or underlined.

The easiest way to create a new topic with the right formatting is to copy an existing topic and then modify it.

Once Igor finds a topic declaration, it scans the body of the topic. The body is all of the text until the next
topic declaration, a related-topics declaration or the end of the file. While scanning, it notes any subtopics.

Igor considers a paragraph to be a subtopic declaration if the name of the ruler governing the paragraph
starts with “Subtopic”. Thus if the ruler is named Subtopic or Subtopic+ or Subtopic2, the paragraph is a
subtopic declaration. By convention, the Subtopic ruler’s font is Geneva on Macintosh or Arial on Windows,
its text size is 10 and its text style is bold and underlined. Text following the subtopic name that is not bold
and underlined is not part of the subtopic name.

The easiest way to create a new subtopic with the right formatting is to copy an existing subtopic and then
modify it.

Igor considers a paragraph to be a related-topics declaration if the ruler governing the paragraph is named
RelatedTopics and if the paragraph starts with the text pattern “Related Topics:”. When Igor sees this
pattern it knows that this is the end of the current topic. The related-topics declaration is optional. Prior to
Igor Pro 4, Igor displayed a list of related topics in the Igor Help Browser. Igor Pro no longer displays this
list. The user can still click the links in the related topics paragraph to jump to the referenced topics.

Igor knows that it has hit the end of the current topic when it finds the related-topics declaration or when
it finds a new topic declaration. In either case, it proceeds to compile the next topic. It continues compiling
until it hits the end of the file.

When compiling the help file, Igor may encounter syntax that it can’t understand. For example, if you have
a related-topics declaration paragraph, Igor will expect the next paragraph to be a topic declaration. If it is
not, Igor will stop the compilation and display an error dialog. You need to open the file as a notebook, fix
the error, save and kill it and then reopen it as a help file.

Another error that is easy to make is to fail to use the plain text format for syntactic elements like bullet-tab,
“Related Topics:” or the comma and space between related topics. If you run into a non-obvious compile error
in a topic, subtopic or related topics declaration, recreate the declaration by copying from a working help file.

The help files supplied by WaveMetrics contain a large number of rulers to define various types of paragraphs
such as topic paragraphs, subtopic paragraphs, related topic paragraphs, topic body paragraphs and so on.
The Igor Help File Template contains many but not all of these rulers. If you find that you need to use a ruler
that exists in a WaveMetrics help file but not in your help file then copy a paragraph governed by that ruler
from the WaveMetrics help file and paste it into your file. This will transfer the ruler to your file.

Chapter II-1 — Getting Help

II-13

Creating Links
A link is text in an Igor help file that, when clicked, takes the user to some other place in the help. Igor con-
siders any pure blue, underlined text to be a link. Pure blue means that the RGB value is (0, 0, 65535). By
convention links use the Geneva font on Macintosh and the Arial font on Windows.

To create a link, select the text in the notebook that you are preparing to be a help file. Then choose Make Help
Link from the Notebook menu. This sets the text format for the selected text to pure blue and underlined.

The link text refers to another place in the help using one of the following forms:

When the user double-clicks a link, Igor performs the following search:
1. If the link is a topic name, Igor goes to that topic.
2. If the link is in topic[subtopic] form, Igor goes to that subtopic.
3. If steps 1 and 2 fail, Igor searches for a subtopic with the same name as the link. First, it searches for a

subtopic in the current topic. If that fails, it searches for a subtopic in the current help file. If that fails, it
searches for a subtopic in all help files.

4. If step 3 fails, Igor searches all help files in the Igor Pro folder. If it finds the topic in a closed help file, it
opens and displays it.

5. If all of the above fail, Igor displays a dialog suggesting that the required help file is not available.

You can create a link in a help file that will open a Web page or FTP site in the user’s Web or FTP browser.
You do this by entering the Web or FTP URL in the help file while you are editing it as a notebook. The URL
must appear in this format:

<http://www.wavemetrics.com>
<ftp://ftp.wavemetrics.com>

The URL must include the angle brackets and the “http://” or “ftp://” protocol specifier.

After entering the URL, select the entire URL (including the angle brackets) and choose Make Help Link
from the notebook menu. Once the file is compiled and opened as a help file, clicking the link will open the
user’s Web or FTP browser and display the specified URL.

It is currently not possible make ordinary text into a Web or FTP link. The text must be an actual URL in the
format shown above or you can insert a notebook action which brings up a web page using the BrowseURL
operation on page V-42. See Notebook Action Special Characters on page III-18 for details.

Checking Links
You can get Igor to check your help links as follows:
1. Open your Igor help file and any other help files that you link to.
2. Activate your help window and click at the very start of the help text.
3. Press Command-Shift-Option-H (Macintosh) or Ctrl+Shift+Alt+H (Windows). Igor will check your links

from where you clicked to the end of the file and note any problems by writing diagnostics to the history
area of the command window.

4. When Igor finishes checking, if it found bad links, kill the help file and open it as a notebook.
5. Use the diagnostics that Igor has written in the history to find and fix any link errors.
6. Save the notebook and kill it.
7. Open the notebook as a help file. Igor will compile it.
8. Repeat the check by going back to Step 1 until you have no bad links.

Link is help topic.

Link is in topic[subtopic] form.

Link is subtopic.

Chapter II-1 — Getting Help

II-14

You can abort the check by pressing Command-period (Macintosh) or Ctrl-Break (Windows) and holding it
for a second.

The diagnostic that Igor writes to the history in case of a bad link is in the form:
Notebook $nb selection={(33,292), (33,334)} …

This is set up so that you can execute it to find the bad link. At this point, you have opened the help file as
a notebook. Assuming that it is named Notebook0, execute
String/G nb = "Notebook0"

Now, you can execute the diagnostic commands to find the bad link and activate the notebook. Fix the bad
link and then proceed to the next diagnostic. It is best to do this in reverse order, starting with the last diag-
nostic and cutting it from the history after fixing the problem.

When fixing a bad link, check the following:
• A link is the name of a topic or subtopic in a currently open help file. Check spelling.
• There are no extraneous blue/underlined characters, such as tabs or spaces, before or after the link.

(You can not identify the text format of spaces and tabs by looking at them. Check them by selecting
them and then using the Set Text Format dialog.)

• There are no duplicate topics. If you specify a link in topic[subtopic] form and there are two topics
with the same topic name, Igor may not find the subtopic.

Updating Igor
WaveMetrics periodically releases updates for Igor. Updates provide bug fixes and new features. Updates
are free and are usually indicated by a .01 increment in version number (e.g., 6.20 to 6.21). By contrast,
upgrades are released roughly every two years, provide major new functionality, and usually require a pur-
chase.

Igor 6.20 or later (English version only) optionally checks during startup for available updates to the Igor
application by contacting one of our web sites. This update check is performed on a separate processing
thread to minimize any impact on starting Igor.

If an update is found, Igor presents a dialog in which you can choose to:

• Download the update
• Ignore the specific update
• Set the schedule for future update checks
• Disable automatic update checking
The dialog's buttons vary depending on the updates available but generally looks like this:

Chapter II-1 — Getting Help

II-15

If scheduled, Igor checks for updates during the first startup of the scheduled day, or after the scheduled
day has passed. Igor never automatically checks more than once per day.

The frequency of automatic update checks can be set in the Updates for Igor dialog.

The default update check frequency is weekly. If this is too often, you might elect to automatically check
once per month.

You can also completely disable the automatic update checks:

1. Choose Help→Updates For Igor to display the Updates for Igor dialog.
2. Choose Manual Check Only from the left popup menu.

You can check for updates manually by choosing Help→Updates For Igor, which presents this dialog:

Technical Support
WaveMetrics provides technical support via telephone and email.
Before contacting WaveMetrics, please gather this information so that we can help you more effectively:
• The exact version of Igor you are running. The version number is displayed in the About Igor dialog

displayed when Igor is launched.
• Which operating system you are running.

In most cases, we need to reproduce your problem in order to solve it. It is best if you can provide a simpli-
fied example showing the problem.

Email Support
Send technical questions to us via email at:

support@wavemetrics.com

For information on upgrades and other nontechnical information, send queries to:
sales@wavemetrics.com

FTP Sites
Several FTP sites store the latest versions of Igor technical notes, utilities and user contributions. A list of
these sites is maintained on our support web page at:

http://www.wavemetrics.com/support/

mailto:support@wavemetrics.com
http://www.wavemetrics.com/support/
mailto:sales@wavemetrics.com

Chapter II-1 — Getting Help

II-16

World Wide Web
You will find our Web site at:

http://www.wavemetrics.com/

You can also choose Help→WaveMetrics Home Page.

Our Web site contains a page for searching our support database, and links to Igor-related FTP sites and to
Igor users’ Web pages. In addition, it contains a number of cool graphs. We are always grateful for new cool
graphs. Contact us at sales@wavemetrics.com if you have a cool graph to share.

WaveMetrics Support Web Page
The support Web page includes a searchable support database and archives of the Igor Mailing List. The
WaveMetrics support Web address is:

http://www.wavemetrics.com/support/

You can also choose Help→Support Web Page.

Igor Mailing List
The Igor mailing list is an Internet discussion list that provides a way for Igor Pro users to help one another
and to share solutions and ideas. WaveMetrics also uses the list to post information on the latest Igor devel-
opments. For information about subscribing and other details about the mailing list, please visit this web page:

http://www.wavemetrics.com/users/mailinglist.htm

IgorExchange
IgorExchange is a user-to-user support and collaboration web site sponsored by WaveMetrics but run by
and for Igor users. For information about IgorExchange, please visit this web page:

http://www.igorexchange.com

Telephone Support
You can reach us at 503-620-3001 from 9 AM to 5 PM Pacific time.

It is often very helpful if you can try things on your computer while speaking to us so, if possible, call us
from a phone near your computer.

FAX Support
You can reach our FAX machine any time at 503-620-6754.

http://www.wavemetrics.com/
mailto:sales@wavemetrics.com
http://www.igorexchange.com
http://www.wavemetrics.com/users/mailinglist.htm
http://www.wavemetrics.com/support/

Chapter II-1 — Getting Help

II-17

Help Shortcuts
Action Shortcut (Macintosh) Shortcut (Windows)

To activate Igor Tips Press Option-Help. —

To get a contextual menu of
commonly-used actions

Press Control and click in the body
of an Igor help window.

Right-click in an Igor help window.

To activate the Igor Help
Browser

Press Help or click the Igor Help
Browser icon in the lower-right
corner of the command window.

Press F1 or click the Igor Help
Browser icon in the lower-right
corner of the command window.

To jump to a topic in an Igor
help window

Click a blue underlined topic link
in the help window.

Click a blue underlined topic link
in the help window.

To jump back to recently visited
topics

Click the Go Back button at the
bottom of the help window or
press Command-B.

Press Command-Shift-B to hide the
current help window when going
back to a different help window.

Click the Go Back button at the
bottom of the help window or
press Ctrl+B.

Press Shift+Ctrl+B to hide the
current Igor help window when
going back to a different Igor help
window.

To execute commands in an Igor
help window

Select the commands and press
Control-Return or Control-Enter.

Select the commands and press
Ctrl+Enter.

To kill a help window Option-click the close button. Press Alt and click the close button.

To insert a function or operation
template in a procedure
window or in the command line

Type or select the name of an Igor
operation or function and Control-
click it or press Shift-Help.

Type or select the name of an Igor
operation or function and right-
click it or press Ctrl+F1.

To get help for a function or
operation from a procedure,
notebook or help window or
from the command line

Type or select the name of an Igor
operation or function and Control-
click it or press Shift-Option-Help.

Type or select the name of an Igor
operation or function and right-
click it or press Ctrl+Alt+F1.

Chapter II-1 — Getting Help

II-18

Chapter

II-2
II-2The Command Window

Overview.. 20
Command Window Example.. 20
The Command Buffer ... 21
Command Window Title ... 22
History Area .. 22

Limiting Command History... 22
History Archive.. 22
History Carbon Copy .. 22

Searching the Command Window ... 24
Command Window Formats... 24
Getting Help from the Command Line ... 24
Command Window Shortcuts .. 25

Chapter II-2 — The Command Window

II-20

Overview
You can control Igor using menus and dialogs or using commands that you execute from the command
window. Some actions, for example waveform assignments, are much easier to perform by entering a com-
mand. Commands are also convenient for trying variations on a theme — you can modify and reexecute a
command very quickly. If you use Igor regularly, you may find yourself using commands more and more
for those operations that you frequently perform.

In addition to executing commands in the Command window, you can also execute commands in a note-
book, procedure or help window. These techniques are less commonly used than the command window.
See Notebooks as Worksheets on page III-5 for more information.

This chapter describes the command window and general techniques and shortcuts. See Chapter IV-1,
Working with Commands, for details on command usage and syntax.

The command window consists of a command line and a history area. When you enter commands in the
command line and press Return (Macintosh) or Enter (Windows and Macintosh), the commands are executed.
Then they are saved in the history area for you to review. If a command produces text output, that output
is also saved in the history area. A bullet character is prepended to command lines in the history so that you
can easily distinguish command lines from output lines.

The Command window includes a help button just below the History area scroll bar. Clicking the button dis-
plays the Help Browser window. See Igor Help Browser on page II-6 for more details about the Help Browser.

The total length of a command on the command line must not exceed 400 characters.

There is no line continuation character in Igor. However, it is nearly always possible to break a single
command up into multiple lines.

Command Window Example
Here is a quick example designed to illustrate the power of commands and some of the shortcuts that make
working with commands easy.
1. Choose New Experiment from the File menu.
2. Execute the following command by typing in the command line and then pressing Return or Enter.

Make/N=100 wave0; Display wave0

This displays a graph.
3. Press Command-J (Macintosh) or Ctrl+J (Windows).

This activates the command window.
4. Execute

SetScale x, 0, 2*PI, wave0; wave0 = sin(x)

The graph shows the sine of x from 0 to 2π.
Now we are going to see how to quickly retrieve, modify and reexecute a command.

5. Press the Up Arrow key.
This selects the command that we just executed.

6. Press Return or Enter.
This transfers the selection back into the command line.

Help Browser button
Command line

History area

Chapter II-2 — The Command Window

II-21

7. Change the “2” to “4”.
The command line should now contain:
SetScale x, 0, 4*PI, wave0; wave0 = sin(x)

8. Press Return or Enter to execute the modified command.
This shows the sine of x from 0 to 4π.

9. While pressing Option (Macintosh) or Alt (Windows), click the last command in the history.
This is another way to transfer a command from the history to the command line. The command line
should now contain:
SetScale x, 0, 4*PI, wave0; wave0 = sin(x)

10. Press Command-K (Macintosh) or Ctrl+K (Windows).
This “kills” the contents of the command line.
Now let’s see how you can quickly reexecute a previously executed command.

11. With Command and Option (Macintosh) or Ctrl and Alt (Windows) pressed, click the second-to-last
command in the history.
This reexecutes the clicked command (the 2*PI command).
Repeat this step a number of times, clicking the second-to-last command each time. This will alternate
between the 2*PI command and the 4*PI command.

12. Execute
WaveStats wave0

Note that the WaveStats operation has printed its results in the history where you can review them. You
can also copy a number from the history to paste into a notebook or an annotation.

There is a summary of all command window shortcuts at the end of this chapter.

The Command Buffer
The command line shows a single line of the command buffer. Normally the command buffer is either
empty or contains just one line of text. However you can copy multiple lines of text from any window and
paste them in the command buffer. When more than one line is in the command buffer, little scroll controls
appear at the right end of the command line.

You can clear the contents of the command buffer by choosing the Clear Command Buffer item in the Edit
menu or by pressing Command-K (Macintosh) or Ctrl+K (Windows).

When you invoke an operation from a typical Igor dialog, the dialog puts a command in the command buffer
and executes it. The command is then transferred to the history as if you had entered the command manually.

If an error occurs during the execution of a command, Igor leaves it in the command buffer so you can edit
and reexecute it. If you don’t want to fix the command, you should remove it from the command buffer by
pressing Command-K (Macintosh) or Ctrl+K (Windows).

Because the command buffer usually contains nothing or one command, we usually think of it as a single
line and use the term “command line”.

The large scroll controls work
with history area.

These little scroll controls indicate more than one line is in the command buffer.

 Browser button.

Chapter II-2 — The Command Window

II-22

Command Window Title
The title of the command window is the name of the experiment that is currently loaded. When you first
start Igor or if you choose New from the File menu, the title of the experiment and therefore of the command
window is “Untitled”.

When you save the experiment to a file, Igor sets the name of the experiment to the file name minus the file
extension. If the file name is “An Experiment.pxp”, the experiment name is “An Experiment”. Igor displays
“An Experiment” as the command window title.

For use in procedures, the IgorInfo(1) function returns the name of the current experiment.

History Area
The history area is a repository for commands and results.

Text in the history area can not be edited but can be copied to the Clipboard or to the command line.
Copying text to the Clipboard is done in the normal manner. To copy a command from the history to the
command buffer, select the command in the history and press Return or Enter. An alternate method is to
press Option (Macintosh) or Alt (Windows) and click in the history area.

To make it easy tocopy a command from the history to the command line, clicking a line in the history area
selects the entire line. You can still select just part of a line by clicking and dragging.

Up Arrow and Down Arrow move the selection range in the history up or down one line selecting an entire
line at a time. Since you normally want to select a line in the history to copy a command to the command line,
Up Arrow and Down Arrow skip over non-command lines. Left Arrow and Right Arrow move the insertion
point in the command line.

When you save an experiment, the contents of the history area are saved. The next time you load the exper-
iment the history will be intact. Some people have the impression that Igor recreates an experiment by reex-
ecuting the history. This is not correct. See How Experiments Are Loaded on page II-39 for details.

Limiting Command History
The contents of the history area can grow to be quite large over time. You can limit the number of lines of
text retained in the history using the Limit Command History feature in the Command Settings section of
the Miscellaneous Settings dialog which is accessible through the Misc menu.

If you limit command history, when you save the experiment, Igor checks the number of history lines. If
they exceed the limit, the oldest lines are deleted.

History Archive
When history lines are deleted through the Limit Command History feature, the History Archive feature
allows you to tell Igor to write the deleted lines to a text file in the experiment's home folder.

To enable the History Archive feature for a given experiment, create a plain text file in the home folder of
the experiment. The text file must be named "<Experiment Name> History Archive.txt" where <Experiment
Name> is the name of the current experiment. Now, when you save the experiment, Igor writes any deleted
history lines to the history archive file.

If the history archive file is open in any program, including Igor, the history archive feature will fail and no
history lines will be written.

History Carbon Copy
This feature is expected to be of interest only in rare cases for advanced Igor programmers such as Bela
Farago who requested it.

Chapter II-2 — The Command Window

II-23

You can designate a notebook to be a "carbon copy" of the history area by creating a plain text or formatted
notebook and setting its window name, via Windows->Window Control, to HistoryCarbonCopy. If the His-
toryCarbonCopy notebook exists, Igor inserts history text in the notebook as well as in the history. How-
ever, if a command is initiated from the HistoryCarbonCopy notebook (see Notebooks as Worksheets on
page III-5), Igor suspends sending history text to that notebook during the execution of the command.

If you rename the notebook to something other than HistoryCarbonCopy, Igor will cease sending history
text to it. If you later rename it back to HistoryCarbonCopy, Igor will resume sending history text to it.

The history trimming feature accessed via the Miscellaneous Settings dialog does not apply to the History-
CarbonCopy notebook. You must trim it yourself. Notebooks are limited to 16 million paragraphs.

When using a formatted notebook as the history carbon copy, you can control the formatting of commands
and results by creating notebook rulers named Command and Result. When Igor sends text to the history
carbon copy notebook, it always applies the Command ruler to commands. It applies the Result ruler to
results if the current ruler is Normal, Command or Result. You must create the Command and Result rulers
if you want Igor to use them when sending text to the history carbon copy.

This function creates a formatted history carbon copy notebook with the Command and Result rulers used
automatically by Igor as well as an Error ruler which we will use for our custom error messages:

Function CreateHistoryCarbonCopy()
NewNotebook /F=1 /N=HistoryCarbonCopy /W=(50,50,715,590)

Notebook HistoryCarbonCopy backRGB=(0,0,0)// Set background to black

Notebook HistoryCarbonCopy showRuler=0

// Define ruler to govern commands.
// Igor will automatically apply this to commands sent to history carbon copy.
Notebook HistoryCarbonCopy newRuler=Command,

rulerDefaults={"Geneva",10,0,(65535,65535,0)}

// Define ruler to govern results.
// Igor will automatically apply this to results sent to history carbon copy.
Notebook HistoryCarbonCopy newRuler=Result,

rulerDefaults={"Geneva",10,0,(0,65535,0)}

// Define ruler to govern user-generated error messages.
// We will apply this ruler to error messages that we send
// to history carbon copy via Print commands.
Notebook HistoryCarbonCopy newRuler=Error,

rulerDefaults={"Geneva",10,0,(65535,0,0)}
End

If the current ruler is not Normal, Command or Result, it is assumed to be a custom ruler that you want to
use for special messages sent to the history using the Print operation. In this case, Igor does not apply the
Result ruler but rather allows your custom ruler to remain in effect.

This function sends an error message to the history using the custom Error ruler in the history carbon copy
notebook:

Function PrintErrorMessage(message)
String message

Notebook HistoryCarbonCopy, ruler=Error
Print message

// Set ruler back to Result so that Igor's automatic use of the Command
// and Result rulers will take effect for subsequent commands.

Chapter II-2 — The Command Window

II-24

Notebook HistoryCarbonCopy, ruler=Result
End

XOP programmers can use the XOPNotice3 XOPSupport routine to control the color of text sent to the
History Carbon Copy notebook.

Searching the Command Window
You can search the command line or the history by choosing Find from the Edit menu or by using the key-
board shortcuts as shown in the Edit menu. Searching the command line is most often used to modify a pre-
viously executed command before reexecuting it. For example, you might want to replace each instance of a
particular wave name with another wave name.

If there is an active selection in the history, Find searches the history. Otherwise it searches the command line.
To be sure that Find will search the area that you want, you can click in that area before starting the search.

Command Window Formats
You can change the text format used for the command line. For example, you might prefer larger type. To do
this, click in the command line and then choose Set Text Format from the Command Buffer submenu of the
Misc menu. To set the text format for the history area, click in the history area and then choose Set Text Format
from the History Area submenu of the Misc menu. To do this, the history area must have some text in it.

You can set other properties, such as background color, by choosing Document Settings from the Command
Buffer or History Area submenus. The Document Settings dialog also sets the header and footer used when
printing the history.

When you change the text format or document settings, you are changing the current experiment only. You
may want to capture the new format and settings as a preference for new experiments. To do this, choose
Capture Prefs from the Command Buffer and History Area submenus.

Getting Help from the Command Line
When working with the command line, you might need help in formulating a command. There are short-
cuts that allow you to insert a template, view help, or find the definition of a user function.

To insert a template, type the name of the operation or function and then press Shift-Help (Macintosh) or
Ctrl+F1 (Windows).

To view help or to view the definition of a user function, type the name of the operation or function and
then press Shift-Option-Help (Macintosh) or Ctrl+Alt+F1 (Windows).

You can also insert a template or get help by Control-clicking (Macintosh) or right-clicking (Windows).

To view text window keyboard navigation shortcuts, see Text Window Navigation on page II-68.

This table may help you remember what the various keyboard shortcuts do.

Keyboard Shortcut What It Does
Macintosh Windows
Press Help Press F1 Displays help browser window
Press Shift-Help Press Ctrl+F1 Inserts template for selected operation or function
Press Shift-Option-Help Press Ctrl+Alt+F1 Displays help for selected operation or function

Chapter II-2 — The Command Window

II-25

Command Window Shortcuts

Action Shortcut (Macintosh) Shortcut (Windows)

To activate the command
window

Press Command-J. Press Ctrl+J.

To clear the command buffer Press Command-K. Press Ctrl+K.

To get a contextual menu of
commonly-used actions

Press Control and click the history
area or command line

Right-click the history area or
command line

To copy a line from the history to
the command buffer

Click the line and press Return or
Enter.

Press Option and click the line.

Click the line and press Enter.

Press Alt and click the line.

To reexecute a line from the
history

Click the line and press Return or
enter twice

Press Command-Option and click
the line.

Click the line and press Ctrl+Enter

Press Ctrl+Alt and click the line.

To find a recently executed
command in the history

Press the Up or Down Arrow keys. Press the Up or Down Arrow keys.

To find text in the history Click in the history area and press
Command-F.

Click in the history area and press
Ctrl+F.

To find text in the command line Click in the command line and press
Command-F.

Click in the command line and
press Ctrl+F.

To get a template Type the name of an operation or
function and press Shift-Help.

Type the name of an operation or
function and press Ctrl+F1.

To get help or view the definition
of a user function

Type the name of an operation or
function and press Shift-Option-Help.

Type the name of an operation or
function and press Ctrl+Alt+F1.

Chapter II-2 — The Command Window

II-26

Chapter

II-3
II-3Experiments, Files and Folders

Experiments ... 29
Saving Experiments .. 29

Saving as a Packed Experiment File.. 29
Saving as an Unpacked Experiment File.. 30

Opening Experiments... 32
Merging Experiments ... 32
Reverting an Experiment ... 33
New Experiments.. 33
Saving an Experiment as a Template ... 34
Browsing Experiments ... 34
Symbolic Paths .. 34

Symbolic Path Example .. 34
Automatically Created Paths ... 36
New Symbolic Path Dialog .. 36
Symbolic Path Status Dialog .. 37
Kill Paths Dialog .. 37

References to Files and Folders... 37
Avoiding Shared Igor Binary Files.. 38
Adopting Notebook and Procedure Files .. 38
Adopt All .. 38

How Experiments Are Loaded ... 39
Experiment Recreation Procedures... 39
Experiment Initialization Commands .. 40
Errors During Experiment Load.. 40
How Igor Searches for Missing Folders ... 41

Folder Search Techniques.. 42
How Experiments Are Saved.. 43

Experiment Save Errors .. 43
Macintosh File Troubleshooting... 44
Windows File Troubleshooting .. 44

Special Folders... 44
Igor Pro Folder ... 46
Igor Pro User Files ... 46
Igor Help Files Folder ... 46
Igor Extensions Folder .. 46
Igor Procedures Folder.. 47
User Procedures Folder... 47
WaveMetrics Procedures Folder ... 47
Activating Additional WaveMetrics Files.. 47
Activating Other Files ... 48
Activating Files in a Multi-User Scenario .. 48

Igor File-Handling .. 48
Open or Load File Dialog ... 48
Recent Files and Experiments .. 49

Chapter II-3 — Experiments, Files and Folders

II-28

Desktop Drag and Drop.. 50
Problems With File Names Using Non-ASCII Characters.. 50

Chapter II-3 — Experiments, Files and Folders

II-29

Experiments
An experiment is a collection of Igor objects, including waves, variables, graphs, tables, page layouts, note-
books, control panels and procedures. When you create or modify one of these objects you are modifying
the current experiment.

You can save the current experiment by choosing File→Save Experiment. You can open an experiment by
double-clicking its icon on the desktop or choosing File→Open Experiment.

Saving Experiments
There are two formats for saving an experiment on disk:
• As a packed experiment file. A packed experiment file has the extension .pxp.
• As an experiment file and an experiment folder (unpacked format). An unpacked experiment file

has the extension .uxp.
The packed format is recommended for most purposes. The unpacked format is useful for experiments that
include very large numbers of waves (thousands or more).

Extensions are not strictly necessary on Macintosh but they are recommended for ease of file sharing and
future compatibility.

Saving as a Packed Experiment File
In the packed experiment file, all of the data for the experiment is stored in one file. This saves space on disk
and makes it easier to copy experiments from one disk to another. For most work, we recommend that you use
the packed experiment file format.

The folder containing the packed experiment file is called the home folder.

To save a new experiment in the packed format, choose Save Experiment from the File menu. Igor displays
the following dialog:

The next illustration shows the icon for a packed experiment file.

Windows

Select Packed Experiment File.

You can select the default using
the Experiment section of the
Miscellaneous Settings dialog in
the Misc menu.

Macintosh

Chapter II-3 — Experiments, Files and Folders

II-30

Saving as an Unpacked Experiment File
In the unpacked format, an experiment is saved as an experiment file and an experiment folder. The file
contains instructions that Igor uses to recreate the experiment while the folder contains files from which
Igor loads data. The experiment folder is also called the home folder.

The main utility of this format is that it is faster for experiments that contain very large numbers of waves (thou-
sands or more). However the unpacked format is more fragile and thus is not recommended for routine use.

To save a new experiment in the unpacked format, choose Save Experiment from the File menu. Igor dis-
plays the following dialog:

Once you click the Save button with Packed deselected, Igor presents a second dialog to allow you to create
the experiment folder:

Contains the startup commands
that Igor executes to recreate
the experiment, including all
experiment windows.

Also contains data for waves, variables,
history, procedures, notebooks,
pictures and other items.

Macintosh

Select Unpacked Experiment File.

Windows

Click to create the
experiment folder.

Macintosh

Chapter II-3 — Experiments, Files and Folders

II-31

The next illustration shows the icons used with an unpacked experiment and explains where things are stored.

You normally have no need to deal with the files inside the experiment folder. Igor automatically writes
them when you save an experiment and reads them when you open an experiment.

If the experiment includes data folders (see Chapter II-8, Data Folders) other than the root data folder, then
Igor will create one subfolder in the experiment folder for each data folder in the experiment. The experi-
ment shown in the illustration above contains no data folders other than root.

Note that there is one file for each wave. These are Igor Binary data files and store the wave data in a compact
format. For the benefit of programmers, the Igor Binary file format is documented in Igor Technical Note #003.

The “procedure” file holds the text in the experiment’s built-in procedure window. In this example, the
experiment has an additional procedure window called Proc0 and a notebook.

The “variables” file stores the experiment’s numeric and string variables in a binary format.

The advantages of the unpacked experiment format are:
• Igor can save the experiment faster because it does not need to update files for waves, procedures

or notebooks that have not changed.
• You can share files stored in one experiment with another experiment. However, sharing files can

cause problems when you move an experiment to another disk. See References to Files and Folders
on page II-37 for an explanation.

The disadvantages of the unpacked experiment format are:
• It takes more disk space, especially for experiments that have a lot of small waves.

Windows

Click to create the
experiment folder.

Contains the startup commands that Igor
executes to recreate the experiment,
including all experiment windows.

Also contains data pictures and other items.

Contains files for waves, variables, history,
procedures and notebooks.

Macintosh Windows

Chapter II-3 — Experiments, Files and Folders

II-32

• You need to keep the experiment file and folder together when you move the experiment to another disk.

If you create an experiment with a very large number of waves, you might find it convenient to save it as
an unpacked experiment while you are actively working with it and later do a Save Experiment As using
the packed format for archiving.

Opening Experiments
You can open an experiment stored on disk by choosing Open Experiment from the File menu. You can first
save your current experiment if it has been modified. Then Igor presents the standard Open File dialog.

When you select an experiment and click the Open button, Igor loads the experiment including all waves, vari-
ables, graphs, tables, page layouts, notebooks, procedures and other objects that constitute the experiment.

Some people mistakenly believe that Igor recreates an experiment by reexecuting its history. See How
Experiments Are Loaded on page II-39 for the real story.

Merging Experiments
Normally Igor closes the currently opened experiment before opening a new one. But it is possible to merge
the contents of an experiment file into the current experiment. This is useful, for example, if you want to
create a page layout that contains graphs from two or more experiments. To do this, press Option (Macin-
tosh) or Alt (Windows) while choosing Open Experiment from the File menu.

Note: Merging experiments is an advanced feature that has some inherent problems and should be used
judiciously. If you are just learning to use Igor Pro, you should avoid merging experiments until
you have become proficient. You may want to skim the rest of this section or skip it entirely. It
assumes a high level of familiarity with Igor.

The first problem is that the merge operation creates a copy of data and other objects (e.g., graphs, proce-
dure files, notebooks) stored in a packed experiment file. Whenever you create a copy there is a possibility
that copies will diverge, creating confusion about which is the “real” data or object. One way to avoid this
problem is to discard the merged experiment after it has served its purpose.

The second problem has to do with Igor’s use of names to reference all kinds of data, procedures and other
objects. When you merge experiment B into experiment A, there is a possibility of name conflicts.

Igor prevents name conflicts for data (waves, numeric variables, string variables) by creating a new data
folder to contain the data from experiment B. The new data folder is created inside the current data folder
of the current experiment (experiment A in this case).

For other globally named objects, including graphs, tables, page layouts, control panels, notebooks, symbolic
paths, page setups and pictures, Igor renames objects from experiment B if necessary to avoid a name conflict.

Windows Macintosh

Chapter II-3 — Experiments, Files and Folders

II-33

During the merge experiment operation, Igor looks for conflicts between target windows, between window
recreation macros and between a target window and a recreation macro. If any such conflict is found, the
window or window macro from experiment B is renamed.

Because page layouts reference graphs, tables and pictures by name, renaming any of these objects may
affect a page layout. The merge experiment operation handles this problem for page layouts that are open
in experiment B. It does not handle the problem for page layout recreation macros in experiment B that have
no corresponding open window.

If there are name conflicts in procedures other than window recreation macros, Igor will flag an error when
it compiles procedures after finishing the merge experiment operation. You will have to manually resolve
the name conflict by removing or renaming conflicting procedures.

Procedure windows have titles but do not have standard Igor names. The merge experiment operation
makes no attempt to retitle procedure windows that have the same title.

The contents of the main procedure window from experiment B are appended to the contents of the main
procedure window for experiment A.

During a normal experiment open operation, Igor executes experiment initialization commands. This is not
done during an experiment merge.

Each experiment contains a default font setting that affects graphs and page layouts. When you do an exper-
iment merge, the default font setting from experiment B is ignored, leaving the default font setting for
experiment A intact. This may affect the appearance of graphs and layouts in experiment B.

The history from experiment B is not merged into experiment A. Instead, a message about the experiment
merge process is added to the history area.

The system variables (K0…K19) from experiment B are ignored and not merged into experiment A.

Although the merge experiment operation handles the most common name conflict problems, there are a
number problems that it can not handle. For example, a procedure, dependency formula or a control from
experiment B that references data using a full path may not work as expected because the data from exper-
iment B is loaded into a new data folder during the merge. Another example is a procedure that references
a window, symbolic path or picture that is renamed by the merge operation because of a name conflict.
There are undoubtedly many other situations where name conflicts could cause unexpected behavior.

Reverting an Experiment
If you choose Revert Experiment from the File menu, Igor asks if you’re sure that you want to discard
changes to the current experiment. If you answer Yes, Igor reloads the current experiment from disk, restor-
ing it to the state it was in when you last saved it.

New Experiments
If you choose New from the File menu, Igor first asks if you want to save the current experiment if it was
modified since you last saved it. Then Igor creates a new, empty experiment. The new experiment has no
experiment file until you save it.

By default, when you create a new experiment, Igor automatically creates a new, empty table. This is con-
venient if you generally start working by entering data manually. However, in Igor data can exist in
memory without being displayed in a table. If you wish, you can turn automatic table creation off using the
Experiment Settings category of the Miscellaneous Settings dialog (Misc menu).

Chapter II-3 — Experiments, Files and Folders

II-34

Saving an Experiment as a Template
A template experiment provides a way to customize the initial contents of a new experiment. When you
open a template experiment, Igor opens it normally but leaves it untitled and disassociates it from the tem-
plate experiment file. This leaves you with a new experiment based on your prototype. When you save the
untitled experiment, Igor creates a new experiment file.

Packed template experiments have ".pxt" as the file name extension instead of ".pxp". Unpacked template
experiments have ".uxt" instead of ".uxp".

To make a template experiment, start by creating a prototype experiment with whatever waves, variables,
procedures and other objects you would like in a new experiment.

On Macintosh, choose File→Save Experiment As, check the Save as Stationery checkbox, and save the tem-
plate experiment.

On Windows, choose File→Save Experiment As, choose Packed Experiment Template or Unpacked Exper-
iment Template from the "Save as type" menu, and save the template experiment.

You can convert an existing experiment file into a template file by changing the extension (".pxp" to ".pxt"
or ".uxp" to ".uxt").

The Macintosh Finder’s file info window has a Stationery Pad checkbox. Checking it turns a file into a sta-
tionery pad. When you double-click a stationery pad file, Mac OS X creates a copy of the file and opens the
copy. For most uses, the template technique is more convenient.

Browsing Experiments
You can see what data exists in the current experiment as well as experiments saved on disk using the Data
Browser. To open the browser, choose Data→Data Browser. The Data Browser is described in Chapter II-8,
Data Folders.

Symbolic Paths
A symbolic path is an Igor object that associates a short name with a folder on a disk drive. You can use this
short name instead of a full path to specify a folder when you load, open or save a file. A full path is a com-
plete specification of the location of a folder on a disk drive, as illustrated in the next section.

Igor creates some symbolic paths automatically and you can also create symbolic paths.

Symbolic Path Example
This example is intended to illustrate why you should use symbolic paths and how to use them. We will
assume that you have a folder full of text files containing data that you want to graph in Igor and that the
organization of your hard disk is as follows:

Chapter II-3 — Experiments, Files and Folders

II-35

To create a symbolic path for the folder, choose New Path from the Misc menu. This leads to the New Sym-
bolic Path dialog.

The NewPath command created by the dialog makes a symbolic path named Data which represents:

Macintosh HD:Users:Igor:Data Files:July Data: (Macintosh)

C:\Documents and Settings\<user>\My Documents\Data Files\July Data\ (Windows XP)

C:\Users\<user>\My Documents\Data Files\July Data\ (Windows VISTA and 7)

Note that on Windows, the NewPath command generated by the dialog has a Macintosh-style path using
colons to separate the folder levels. The command can also accept Windows-style paths with backslash char-
acters, but this can cause problems and is not recommended. For details, see Path Separators on page III-400.

The full path to this folder is:

Macintosh HD:Users:Igor:Data Files:July Data

Macintosh

Windows

The full path to this folder is:
C:\Documents and Settings\<user>\My Documents\Data Files\July Data (Windows XP)

C:\Users\<user>\My Documents\Data Files\July Data (Windows VISTA, Windows 7)

Leads to another dialog where
you can choose a folder.

Enter a short name for the path.

Select to redefine an existing symbolic path.Macintosh

Chapter II-3 — Experiments, Files and Folders

II-36

Once you’ve executed this, you can select the Data path in dialogs where you need to choose a folder.

For example, the Load Waves dialog would look like this:

You can also use the symbolic path in commands that you execute from the command line or from Igor pro-
cedures. Typically this is done using a /P=<symbolic path name> flag.

Automatically Created Paths
Igor automatically creates a symbolic path named Igor which refers to the folder containing the Igor appli-
cation. This is mainly of interest if you write Igor procedures.

Igor also automatically creates the home symbolic path. This path refers to the home folder for the current
experiment. For unpacked experiments, this is the experiment folder. For packed experiments, this is the
folder containing the experiment file. For new experiments that have never been saved, home is undefined.

Finally, Igor automatically creates a symbolic path if you do something that causes the current experiment
to reference a file not stored as part of the experiment. This happens when you:
• Load an Igor Binary file from another experiment into the current experiment
• Open a notebook file not stored with the current experiment
• Open a procedure file not stored with the current experiment

Creating these paths makes it easier for Igor to find the referenced files if they are renamed or moved. See
References to Files and Folders on page II-37 for more information.

New Symbolic Path Dialog
To access the New Symbolic Path dialog, choose New Path from the Misc menu. The dialog is illustrated in
the example Symbolic Path Example on page II-34.

Note that Igor generates a command using Macintosh style
with colons separating folder levels.

Windows

The “Data” symbolic path appears
in this list of paths. When you
select it, you specify that you
want to load a file from the “Hard
Disk:...:July Data” folder.

When you click, Igor asks you to
choose a file from the folder.

Igor uses the symbolic path name as
a shorthand reference to the folder.

Chapter II-3 — Experiments, Files and Folders

II-37

Symbolic Path Status Dialog
The Symbolic Path Status dialog shows you what paths exist in the current experiment. To invoke it, choose
Path Status from the Misc menu.

If you click <none>, the Objects from Path list shows objects that are not associated with any of the symbolic
paths. This includes waves that have not yet been saved to disk and waves, notebooks and procedure files
stored in packed experiment files.

Kill Paths Dialog
The Kill Symbolic Paths dialog removes from the current experiment symbolic paths that you no longer
need. Killing a path does nothing to the folder referenced by the symbolic path. It just deletes the symbolic
path name from Igor’s list of symbolic paths. To invoke the dialog, choose Kill Paths from the Misc menu.

A symbolic path is in use — and Igor won’t let you kill it — if the experiment contains a wave, notebook
window or procedure window linked to a file in the folder the symbolic path points to.

References to Files and Folders
An experiment can reference files that are not stored with the experiment. This happens when you load an
Igor Binary data file which is stored with a different experiment or is not stored with any experiment. It also
happens when you open a notebook or procedure file that is not stored with the current experiment. We
say the current experiment is sharing the wave, notebook or procedure file.

For example, imagine that you open an existing text file as a notebook and then save the experiment. The
data for this notebook is in the text file somewhere on your hard disk. It is not stored in the experiment.
What is stored in the experiment is a reference to that file. Specifically, the experiment file contains a
command that will reopen the notebook file when you next reopen the experiment.

Shows the objects that are
associated with files from the
selected path. This includes
waves, notebooks and
procedure windows.

“w” stands for “wave”
“p” stands for “procedure file”
“n” stands for “notebook”

Lists the symbolic paths in
the current experiment.

Shows the full path for the
selected symbolic path.

Select to kill all of the
listed symbolic paths.

Select the symbolic
paths to be killed.
Shift-click to select
multiple paths.

Chapter II-3 — Experiments, Files and Folders

II-38

Note: When an experiment refers to a file that is not stored as part of the experiment, there is a potential
problem. If you copy the experiment to a CD to take it to another computer, for example, the
experiment file on the CD will contain a reference to a file on your hard disk. If you open the
experiment on the other computer, Igor will ask you to find the referenced file. If you have
forgotten to also copy the referenced file to the other computer, Igor will not be able to completely
recreate the experiment.

For this reason, we recommend that you use references only when necessary and that you be aware of this
potential problem.

If you transfer files between platforms file references can be particularly troublesome. See Experiments and
Paths on page III-397.

Avoiding Shared Igor Binary Files
When you load a wave from an Igor Binary file stored in another experiment, you need to decide if you
want to share the wave with the other experiment or copy it to the new experiment. Sharing creates a refer-
ence from the current experiment to the wave’s file and this reference can cause the problem noted above.
Therefore, you should avoid sharing unless you want to access the same data from multiple experiments
and you are willing to risk the problem noted above.

If you load the wave via the Load Igor Binary dialog or via the Browse Waves dialog, Igor will ask you if
you want to share or copy. You can use the Miscellaneous Settings dialog to always share or always copy
instead of asking you.

If you load the wave via the LoadWave operation, from the command line or from an Igor procedure, Igor
will not ask what you want to do. You should normally use this operation’s /H flag, which uses “copy the
wave to home” and avoids sharing.

If you use the Data Browser to transfer waves from one experiment to another, Igor always copies the waves.

Adopting Notebook and Procedure Files
Adoption is a way for you to copy a notebook or procedure file into the current experiment and break the
connection to its original file. The reason for doing this is to make the experiment self-contained so that, if
you transfer it to another computer or send it to a colleague, all of the files needed to recreate the experiment
will be stored in the experiment itself.

To adopt a file, choose Adopt Window from the File menu. This item will be available only if the active
window is a notebook or procedure file that is stored separate from the current experiment and the current
experiment has been saved to disk.

If the current experiment is stored in packed form then, when you adopt a file, Igor does a save-as to a tem-
porary file. When you subsequently save the experiment, the contents of the temporary file are stored in the
packed experiment file. Thus, the adoption is not finalized until you save the experiment.

If the current experiment is stored in unpacked form then, when you adopt a file, Igor does a save-as to the
experiment’s home folder. When you subsequently save the experiment, Igor updates the experiment’s rec-
reation procedures to open the new file in the home folder instead of the original file. Note that if you adopt
a file in an unpacked experiment and then you do not save the experiment, the new file will still exist in the
home folder but the experiment’s recreation procedures will still refer to the original file. Thus, you should
save the experiment after adopting a file.

To “unadopt” a procedure or notebook file, choose Save Procedure File As or Save Notebook As from the
File menu.

Adopt All
You can adopt all referenced notebooks, procedure files and waves by pressing Shift and choosing File→Adopt
All. This is useful when you want to create a self-contained packed experiment to send to someone else.

Chapter II-3 — Experiments, Files and Folders

II-39

After clicking Adopt, choose File→Save Experiment As to save the packed experiment.

How Experiments Are Loaded
It is not essential to know how Igor stores your experiment or how Igor recreates it. However, understand-
ing this may help you avoid some pitfalls and increase your overall understanding of Igor.

Experiment Recreation Procedures
When you save an experiment, Igor creates procedures and commands, called “experiment recreation pro-
cedures” that Igor will execute the next time you open the experiment. These procedures are normally not
visible to you. They are stored in the experiment file.

The experiment file of an unpacked experiment contains plain text, but its extension is not “.txt”, so you
can’t open it with most word processors or editors. You can open it by choosing File→Open File→Notebook
and then selecting All Documents from the Show pop-up menu (Macintosh) or All Files from the Files Of
Type pop-up menu (Windows). This is not something you would normally do, but it can be instructive.

As an example, let’s look at the experiment recreation procedures for a very simple experiment.

When you open the experiment, Igor reads the experiment recreation procedures from the experiment file into
the procedure window and executes them. The procedures recreate all of the objects and windows that con-

This macro is executed by the Graph0() call above.

Recreates graph that existed when the experiment was saved.

Positions the procedure and command windows.

Loads the experiment’s waves.

Reads the experiment’s variables from the “variables” file.

Creates a user symbolic path.

Creates the home symbolic path.

Chapter II-3 — Experiments, Files and Folders

II-40

stitute the experiment. Then the experiment recreation procedures are removed from the procedure window
and your own procedures are loaded from the experiment’s procedure file into the procedure window.

For a packed experiment, the process is the same except that all of the data, including the experiment rec-
reation procedures, is packed into the experiment file.

Experiment Initialization Commands
After executing the experiment recreation procedures and loading your procedures into the procedure window,
Igor checks the contents of the procedure window. Any commands that precede the first macro, function or
menu declaration are considered initialization commands. If you put any initialization commands in your pro-
cedure window then Igor executes them. This mechanism initializes an experiment when it is first loaded.

Savvy Igor programmers can also define a function that is executed whenever Igor opens any experiment.
See User-Defined Hook Functions on page IV-257.

Errors During Experiment Load
It is possible for the experiment loading process to fail to run to a normal completion. This occurs most often
when you run out of memory or when you move or rename a file or folder and you can’t help Igor find it.
It also happens if you move an experiment to a different computer and forget to also move referenced files
or folders. See References to Files and Folders on page II-37 for details.

These errors occur while Igor is executing the experiment recreation procedures. Igor uses several tech-
niques to try to find the missing file or folder (see How Igor Searches for Missing Folders on page II-41).
The techniques include asking you for help via a dialog like this:

If you elect to abort the experiment load, Igor will alert you that the experiment is in an inconsistent state.
It displays some diagnostic information that might help you understand the problem and changes the
experiment to Untitled. You should use the New Experiment or Open Experiment items in the File menu
to clear out the partially loaded experiment.

If you elect to skip loading a wave file, you may get another error later, when Igor tries to display the wave
in a graph or table. In that case, you will see a dialog like this:

Chapter II-3 — Experiments, Files and Folders

II-41

In this example, Igor is executing the Graph0 macro from the experiment recreation procedures in an
attempt to recreate a graph. Since you elected to skip loading wave0, Igor can’t display it.

You have three options at this point, as explained in the following table.

With the first two options, Igor leaves the experiment untitled so that you don’t inadvertently wipe out the
original experiment file by doing a save.

How Igor Searches for Missing Folders
When Igor saves an experiment, it stores commands in the experiment file that will recreate the experi-
ment’s symbolic paths when you reopen the experiment. The commands look something like this (in the
fourth line, under Windows the path would start with “C:”):
NewPath home ":Test Exp Folder:"
NewPath/Z Data1 "::Data Folder #1:"
NewPath Data2 "::Data Folder #2:"
NewPath/Z Data3 "hd:Test Runs:Data Folder #3:"

The location of the home folder is specified relative to the experiment file. The locations of all other folders
are specified relative to the experiment folder or, if they are on a different volume, using absolute paths.
Using relative paths, where possible, ensures that no problems will arise if you move the experiment file
and experiment folder together to another disk drive or another location on the same disk drive.

The /Z flags indicate that the experiment does not need to load any files from the Data1 and Data3 folders.
In other words, the experiment has symbolic paths for these folders but no files need to be loaded from them
to recreate the experiment.

When you reopen the experiment, Igor executes these NewPath commands. If you have moved or renamed
folders or if you have moved the experiment file, the NewPath operation will be unable to find the folder.
Here is what Igor does in this case.

Option Effect

Quit Macro Stops executing the current macro but continues experiment load. In this
example, Graph0 would not be recreated. After the experiment load Igor dis-
plays diagnostic information.

Abort Experiment Load Aborts the experiment load immediately and displays diagnostic information.

Fix Macro In this example, you could fix the macro by deleting “wave0,”. You would
then click the Retry button. Igor would create Graph0 without wave0 and
would continue the experiment load.

Chapter II-3 — Experiments, Files and Folders

II-42

First of all, if the symbolic path is not needed to recreate the experiment then Igor does nothing. It generates
no error and just continues the load. The experiment will wind up without the missing symbolic path.

If the missing folder is needed to load some object then Igor will search for it using a number of techniques.
The search uses additional information that Igor stores in the experiment file when the experiment is saved.
This includes such things as the full path to the folder, the folder’s “directory ID” and an “alias record”,
which are explained in the next section.

Folder Search Techniques
1. Search by full path

A full path is one that starts from the volume that the folder is on. An example is “hd:Test Runs:Da-
ta Folder #3:” (Macintosh) or “C:\Test Runs\Data Folder #3\” (Windows).
This technique will find the folder if the full path to the folder is the same as when the experiment
was saved. This handles the case where you moved or renamed the experiment folder but did not
move or rename the missing folder.

2. Search by directory ID (Macintosh only)
The directory ID is a unique number that the Macintosh file system assigns to each folder on a par-
ticular volume. This technique will find the folder if the missing folder was moved or renamed but
not moved to a different volume.

3. Search using Alias Manager (Macintosh only)
The Alias Manager is a Macintosh feature designed to locate missing files and folders. If Igor is try-
ing to create a symbolic path that is not needed to recreate the experiment then Igor will skip the
Alias Manager search. The Alias Manager’s attempt to mount network volumes is generally not de-
sirable if the folder is not critical for the experiment load.

4. Search of the Igor Pro Folder
If the path is a full path that points to a folder inside the Igor Pro Folder (e.g., “hd:Igor Pro Folder:User
Procedures” on a Macintosh), then Igor looks for the folder inside the Igor Pro Folder, even if the Igor
Pro Folder is on a differently-named root volume (e.g., “C:\Igor Pro Folder\User Procedures” on a PC).

5. Search of the volume containing Igor
If the path is a full path (e.g., “hd:Igor Work:Data Files” on a Macintosh) then Igor searches for the
folder at the same location but on the volume containing the Igor application (e.g., “C:\Igor
Work\Data Files” on a PC).

6. Search of the volume containing the experiment file
This is the same as the previous search except that Igor uses the volume containing the experiment file.

The last three techniques are designed to help find files when you move an experiment from one platform to
another. They work only if the path is a full path, which will be the case if the target folder is on a different
volume from the experiment file. If this is not the case, then the path will be relative to the experiment file and
Igor will be able to find the target folder if it has the same relationship to the experiment file on both platforms.

Note: If you use Igor on both Macintosh and Windows, it is best if you use the same folder hierarchy
for your Igor files on both computers. This will give Igor the best chance of automatically finding
missing folders.

If all of these techniques fail, Igor asks if you want to look for the folder by putting up a the Missing Folder dialog.

Chapter II-3 — Experiments, Files and Folders

II-43

If you click the Look for Folder button, Igor presents another dialog in which you can find the missing folder.

If you click Skip this Path in the Missing Folder dialog then Igor will not create the symbolic path and there-
fore you will get one or more errors later, when Igor tries to use it. For example, if the experiment loads two
waves using the Data2 path then the experiment’s recreation commands would contain two lines like this:

LoadWave/C/P=Data2 "wave0.bwav"
LoadWave/C/P=Data2 "wave1.bwav"

If you were unable to find the Data2 folder then each of these LoadWave commands will present the
Missing Wave File dialog.

If you are unable to find the wave file and if the wave is used in a graph or table, you will get more errors later
in the experiment recreation process, when Igor tries to use the missing wave to recreate the graph or table.

How Experiments Are Saved
When you save an experiment for the first time, Igor just does a straight-forward save in which it creates a
new file, writes to it, and closes it. However, when you resave a pre-existing experiment, which overwrites
the previous version of the experiment file, Igor uses a "safe save" technique. This technique is designed to
preserve your original data in the event of an error during the save.

For purposes of illustration, we will assume that we are resaving an experiment file named "Experiment.pxp".
The safe save proceeds as follows:

1. Write the new data to a temporary file named "Experiment.pxpT0". If an error occurs during this
step, the save operation is stopped and Igor displays an error message.

2. Delete the original file, "Experiment.pxp".
3. Rename the temporary file with the original name. That is, rename "Experiment.pxpT0" as "Exper-

iment.pxp".
On Windows, the temporary file name is "Experiment.pxpT0" but on Macintosh it is "Experiment.pxpT0.noin-
dex". The ".noindex" suffix tells Apple's Spotlight program not to interfere with the save by opening the tem-
porary file at an inopportune time.

The next three subsections are for use in troubleshooting file saving problems only. If you are not having a
problem, you can skip them.

Experiment Save Errors
There are many reasons why an error may occur during the save of an experiment. For example, you may run
out of disk space, the server volume you are saving to might be disconnected, or you may have a hardware
failure, but these are uncommon.

The most common reason for a save error is that you cannot get write access to the file because:

1. The file is locked (Macintosh Finder) or marked read-only (Windows desktop).

Click to get another dialog in which
you can find the missing folder.

Click if you think that the
folder can not be found.

Click to abort the entire
experiment load.

Chapter II-3 — Experiments, Files and Folders

II-44

2. You don't have permission to write to the folder containing the file.
3. You don't have permission to write to this specific file.
4. The file has been opened by another application. This could be a virus scanner, an anti-spyware

program or an indexing program such as Apple's Spotlight.
Here are some troubleshooting techniques.

Macintosh File Troubleshooting
Open the file's Get Info window and verify that the file is not marked as locked. Also check the lock setting of
the folder containing the file.

Next try doing a Save As to a folder for which you know you have write access, for example, to your home
folder (e.g., "/Users/<user>" where <user> is your user name). If this works, the problem may be that you did
not have sufficient permissions to write to the original folder or to the original file. This would happen, for
example, if the folder was inside the Applications folder and you are not running as an administrator.

If you think you should be able to write to the original file location, look at the Ownership and Permissions
section (Mac OS X 10.4) or the Sharing and Permissions section (Mac OS X 10.5) of the Get Info window for
both the file and the folder containing it and make sure that you have read/write access.

If you are able to save a file to a new location but get an error when you try to resave the file, which overwrites
the original file, then this may be an issue of another program opening the file at an inopportune time. This
typically happens in step 3 of the safe-save technique described above. Try disabling your antivirus software.
For a technical explanation of this problem, see http://developer.apple.com/qa/qa2006/qa1497.html.

Windows File Troubleshooting
Open the file's Properties window and uncheck the read-only checkbox if it is checked. Do the same for the
folder containing the file.

Next try doing a Save As to a folder for which you know you have write access, for example, to your home
folder (e.g., My Documents). If this works, the problem may be that you did not have sufficient permissions
to write to the original folder or to the original file. This would happen, for example, if the folder was inside
the Program Files folder and you are not running as an administrator.

If you think you should be able to write to the original file location, you will need to investigate permissions.
By default, Windows runs in "Simple File Sharing" mode. In this mode, a file or folder's Properties window
does not tell you anything about permissions. Therefore, to investigate, you must leave simple file sharing
mode. You may want to enlist the help of a local expert as this can get complicated.

You turn simple file sharing off by choosing Tools→Folder Options from any folder's window. In the Folder
Options dialog, click the View tab and uncheck the Use Simple File Sharing checkbox at the bottom of the tab.
When you next display the Properties dialog for a file or folder, it will include a Security tab in which you can
inspect permissions.

In the Security tab of the Properties window, make sure you have read/write permission and modify permis-
sion. The modify permission is required in order for Igor to delete the file in step 2 of the safe-save technique
described above. Verify that you have write and modify permission for both the file and the folder containing
it.

If you are able to save a file to a new location but get an error when you try to resave the file, which overwrites
the original file, then this may be an issue of another program opening the file at an inopportune time. This
typically happens in step 3 of the safe-save technique described above. Try disabling your antivirus software.
For a technical explanation of this problem, see http://support.microsoft.com/kb/316609.

Special Folders
This section describes special folders that Igor automatically searches when looking for help files, Igor
extensions (plug-ins that are also called XOPs) and procedure files.

http://developer.apple.com/qa/qa2006/qa1497.html
http://support.microsoft.com/kb/316609

Chapter II-3 — Experiments, Files and Folders

II-45

The folder containing the Igor Pro application file is called the "Igor Pro Folder". Several subfolders in the
Igor Pro Folder are treated specially, as described below.

At launch time, Igor creates another special folder, called the Igor Pro User Files folder, outside of the Igor
Pro Folder. By default, this folder has the Igor Pro major version number in its name, for example, "Igor Pro
6 User Files", but it is generically called the "Igor Pro User Files" folder.

On Macintosh, the Igor Pro User Files folder is created by default in:

/Users/<user>/Documents/WaveMetrics

On Windows XP it is created by default in:

C:\Documents and Settings\<user>\My Documents\WaveMetrics

On Windows VISTA and Windows 7 it is created by default in:

C:\Users\<user>\My Documents\WaveMetrics

You can change the location of your Igor Pro User Files folder using Misc→Miscellaneous Settings but this
should rarely be necessary.

Several subfolders in the Igor Pro User Files folder are also treated specially as described in the following
sections. Here we see the Igor Pro Folder on the left and the Igor Pro User Files folder on the right with the
special subfolders highlighted:

Help files, extensions and procedure files are active if they, or aliases or shortcuts pointing to them, are in
the appropriate special subfolder. When you install Igor, special subfolders inside the Igor Pro Folder
contain files that are active. Examples include the standard WaveMetrics help files, standard WaveMetrics
extensions like the Excel file loader, and standard WaveMetrics procedure files that add items to Igor's
built-in menus.

You may want to activate additional help files, extensions and procedure files that are part of the Igor Pro
installation, that you create or that you receive from third parties. You can do this by adding files or

Chapter II-3 — Experiments, Files and Folders

II-46

aliases/shortcuts pointing to files to the special subfolders within the Igor Pro Folder. However, it is better
to use the special subfolders within the Igor Pro User Files folder because the Igor Pro Folder is not acces-
sible to non-administrative users and because adding your own files to the Igor Pro Folder complicates
backup and updating Igor.

Igor Pro Folder
The Igor Pro Folder is the folder containing the Igor application. Igor looks inside the Igor Pro Folder for
these special subfolders: Igor Help Files, Igor Extensions, Igor Procedures, User Procedures and WaveMet-
rics Procedures.

The Igor installer puts files in the special folders. Igor searches them when looking for help files, extensions
and procedure files. In most cases, you should not put files in these special folders - use the Igor Pro User
Files folder instead.

Igor Pro User Files
Igor automatically creates the Igor Pro User Files folder at launch time if it does not already exist. Igor looks
inside the Igor Pro User Files folder for these special subfolders: Igor Help Files, Igor Extensions, Igor Pro-
cedures, and User Procedures.

By default, the Igor Pro User Files folder has the Igor Pro major version number in its name, for example,
"Igor Pro 6 User Files", but it is generically called the "Igor Pro User Files" folder.

The default location of the Igor Pro User Files folder is:

Macintosh:
/Users/<user>/Documents/WaveMetrics/Igor Pro 6 User Files

Windows XP:
C:\Documents and Settings\<user>\My Documents\WaveMetrics\Igor Pro 6 User Files

Windows VISTA and Windows 7:
C:\Users\<user>\My Documents\WaveMetrics\Igor Pro 6 User Files

You can change the location of your Igor Pro User Files folder using Misc→Miscellaneous Settings but this
should rarely be necessary.

You can display the Igor Pro User Files folder on the desktop by choosing Help→Show Igor Pro User Files.
To display both the Igor Pro Folder and the Igor Pro User Files folder, press the shift key and choose
Help→Show Igor Pro Folder and User Files.

You can put files or aliases/shortcuts pointing to files in these subfolders. Igor searches them when looking
for help files, extensions and procedure files.

Igor Help Files Folder
When Igor starts up, it opens any Igor help files in "Igor Pro Folder/Igor Help Files" and in "Igor Pro User
Files/Igor Help Files". It treats any aliases, shortcuts and subfolders in Igor Help Files in the same way.

Standard WaveMetrics help files are pre-installed in "Igor Pro Folder/Igor Help Files".

If there is an additional help file that you want Igor to automatically open at launch time, put it or an
alias/shortcut for it in "Igor Pro User Files/Igor Help Files".

Igor Extensions Folder
When Igor starts up, it searches "Igor Pro Folder/Igor Extensions" and "Igor Pro User Files/Igor Extensions"
for Igor extension files. These extensions are available for use in Igor. It treats any aliases, shortcuts and sub-
folders in Igor Extensions in the same way. See Igor Extensions on page III-425 for details.

Standard WaveMetrics extensions are pre-installed in "Igor Pro Folder/Igor Extensions".

Chapter II-3 — Experiments, Files and Folders

II-47

If there is an additional extension that you want to use, put it or an alias/shortcut pointing to it in "Igor Pro
User Files/Igor Extensions". Additional WaveMetrics extensions are described in the "XOP Index" help file
and can be found in "Igor Pro Folder/More Extensions". You may also create your own Igor extensions or
obtain them from third parties.

Igor Procedures Folder
When Igor starts up, it automatically opens any procedure files in "Igor Pro Folder/Igor Procedures" and in
"Igor Pro User Files/Igor Procedures". It treats any aliases, shortcuts and subfolders in Igor Procedures in
the same way. Such procedure files are called "global" procedure files and are available for use from all
experiments. See Global Procedure Files on page III-347 for details.

Standard WaveMetrics global procedure files are pre-installed in "Igor Pro Folder/Igor Procedures".

If there is an additional procedure file that you want Igor to automatically open at launch time, put it or an
alias/shortcut pointing to it in "Igor Pro User Files/Igor Procedures". Additional WaveMetrics procedure
files are described in the "WM Procedures Index" help file and can be found in "Igor Pro Folder/WaveMet-
rics Procedures". You may also create your own global procedure files or obtain them from third parties.

User Procedures Folder
You can load a procedure file from another procedure file using a #include statement. This technique is
used when one procedure file requires another. See Including a Procedure File on page III-348 for details.

When Igor encounters a #include statement, it searches for the included procedure file in "Igor Pro
Folder/User Procedures" and in "Igor Pro User Files/User Procedures". Any aliases, shortcuts and subfold-
ers in User Procedures are treated the same way.

If there is an additional procedure file that you want to include from your procedure files, put it or an
alias/shortcut pointing to it in "Igor Pro User Files/User Procedures".

WaveMetrics Procedures Folder
The "Igor Pro Folder/WaveMetrics Procedures" folder contains an assortment of procedure files created by
WaveMetrics that may be of use to you. These files are described in the WM Procedures Index help file
which you can access through the Windows→Help Windows menu.

You can load a WaveMetrics procedure file from another procedure file using a #include statement. See
Including a Procedure File on page III-348 for details.

There is no WaveMetrics Procedures folder in the Igor Pro User Files folder.

Activating Additional WaveMetrics Files
If you want to activate a WaveMetrics file that is stored in the Igor Pro Folder, make an alias or shortcut for
the file and put it in the appropriate subfolder of the Igor Pro User Files folder.

For example, the HDF5 file loader package consists of an extension named HDF5.xop, a help file named
"HDF5 Help.ihf" and a procedure file named "HDF5 Browser.ipf". Here is how you would activate these
files:

1. Press the shift key and choose Help→Show Igor Pro Folder and User Files. This displays the Igor
Pro Folder and the Igor Pro User Files folder on the desktop.

2. Make an alias/shortcut for "Igor Pro Folder/More Extensions/File Loaders/HDF5.xop" and put it in
"Igor Pro User Files/Igor Extensions". This causes Igor to load the extension the next time Igor is
launched.

3. Make an alias/shortcut for "Igor Pro Folder/More Extensions/File Loaders/HDF5 Help.ihf" and put
it in "Igor Pro User Files/Igor Help Files". This causes Igor to automatically open the help file the
next time Igor is launched. This step is necessary only if you want the help file to be automatically
opened.

4. Make an alias/shortcut for "Igor Pro Folder/WaveMetrics Procedures/File Input Output/HDF5

Chapter II-3 — Experiments, Files and Folders

II-48

Browser.ipf" and put it in "Igor Pro User Files/Igor Procedures". This causes Igor to load the proce-
dure the next time Igor is launched and to keep it open until you quit Igor.

5. Restart Igor.
You can verify that the HDF5 extension and the HDF5 Browser procedure file were loaded by choosing
Data→Load Waves→New HDF5 Browser. You can verify that the HDF5 Help file was opened by choosing
Windows→Help Windows→HDF5 Help.ihf.

Activating Other Files
You may create an Igor package or receive a package from a third party. You should store each package in
its own folder in the Igor Pro User Files folder or elsewhere, at your discretion. You should not store such
files in the Igor Pro Folder because it complicates backup and updating.

To activate files from the package, create aliases/shortcuts for the package files and put them in the appro-
priate subfolder of the Igor Pro User Files folder.

If you have a single procedure file or a single Igor extension that you want to activate, you may prefer to
put it directly in the appropriate subfolder of the Igor Pro User Files folder.

Activating Files in a Multi-User Scenario
Our recommendation is that you activate files using the special subfolders in the Igor Pro User Files folder,
not in the Igor Pro Folder. An exception to this is the multi-user scenario where multiple users are running
the same copy of Igor from a server. In this case, if you want to activate a file for all users, put the file or an
alias/shortcut for it in the appropriate subfolder of the Igor Pro Folder. Users will have to restart Igor for
the change to take effect.

Igor File-Handling
Igor has many ways to open and load files. The following sections discuss some of the ways Igor deals with
the various files it is asked to open.

Open or Load File Dialog
When you open a file using an open file dialog, there is no question of how Igor should treat the file. This
is not always the case when you drop a file onto the Igor icon or double-click a file on the desktop.

Often, Igor can determine how to open or load a file, and it will simply do that without asking the you about
it. Sometimes Igor recognizes that a file (such as a plain text file or a formatted Igor notebook) can be appro-
priately opened several ways, and will ask you what to do by bringing up the Open or Load File Dialog.
The dialog presents a list of ways to open the file (usually into a window) or to load it as data. You can also
change the file’s name, extension, type, and creator code.

These open a file into a
particular kind of window,
or as an experiment.

These load data from a file using
a particular file loader.

These load data from a file by
presetting and invoking a file
loader dialog.

This checkbox only
appears on a Macintosh.

This button reads Open, Load or Dialog
depending on the Open As selection

This information
only appears on
a Macintosh.

Chapter II-3 — Experiments, Files and Folders

II-49

Tip: You can force this dialog to appear by holding down Shift when opening a file through the Recent
Files or Recent Experiments menus, or when dropping a file onto the Igor icon.

This is especially useful for opening Igor help files as a notebook file for editing, or to open a
notebook as a help file, causing Igor to compile it.

The list presents three kinds of methods for handling the file:
1. Open the file as a document window or an experiment.
2. Load the file as data without opening another file dialog.
3. Load the file as data through the Load Waves Dialog or a File Loader Extension dialog.

If you choose one of the Load <whatever> Dialog methods, Igor will open the selected dialog as if you had
chosen it from the Load Waves submenu of the Data menu.

Information about the file, or about how it was most recently opened, is displayed to the right of the list.
On a Macintosh, the file’s type and creator codes are also shown. The complete path to the file is shown
below the list.

You can rename the file, and it will be changed before the file is opened or loaded.

Use the Add/Fix file extension checkbox to conform the file’s extension (one is added if necessary) to what
is needed for the Windows operating system to automatically open the file with the Windows version of
Igor when the file is double-clicked. Adding an extension may also helps the Mac OS X Finder determine
how the file is to be handled.

While the Add/Fix file extension checkbox is selected, Igor will update the extension when you choose from
the list. Igor stops updating the extension when you deselect the checkbox.

Macintosh: Mac OS X uses both the file’s extension and its file type and creator codes when determining how
a file should be handled. Select the Fix file type and creator checkbox to change file’s type and creator codes
so that the Mac OS will automatically open the file with the Macintosh version of Igor when the file is
double-clicked, and so that it will be opened using the method selected in the list. (The file type depends on
how you choose to open or load the file, but the creator is always changed to Igor’s creator code.) The Fix
file type and creator checkbox will be disabled if the type and creator are already correct.

Note: Changing the file’s extension, file type, or creator does not convert the contents of the file in any
way. If you open what is actually an Igor Binary data file by choosing Open Help File,
WaveMetrics won’t be held liable for the results!

The file renaming and the type/creator checkbox are provided to help users share files between the Macin-
tosh and Windows versions of Igor.

Recent Files and Experiments
When you use a dialog to open or save an experiment or a file, Igor adds it to the Recent Experiments or
Recent Files submenu (in the File menu). When you choose an item from these submenus, Igor opens the
experiment or file the same way in which you last opened or saved it.

For example, if you last opened a text file as an unformatted notebook, selecting the file from Recent Files
will again open the file as an unformatted notebook. If you loaded it as a general text data file, Igor will load
it as data again.

Igor does not remember all the details of how you originally load a data file, however. If you load a text
data file with all sorts of fiddly tweaks about the format, Igor won’t load it using the those same tweaks. To
guarantee that Igor does load the data correctly, use the appropriate Load Data dialog.

Selecting an experiment or file with Shift held down, will cause the Open or Load File Dialog to appear, in
which you can choose how Igor will open or load that file.

Chapter II-3 — Experiments, Files and Folders

II-50

Desktop Drag and Drop
On the desktop, you can drop one or more files of almost any type onto the Igor Pro icon. Under Windows,
you can drag files into any Igor window. Igor will open files that it understands and ignore those that it
doesn’t. One use for this feature is to load multiple data files in one operation; simply select the data files
and drop them on the Igor icon.

If the file has been opened or loaded recently (it is listed in the Recent Files or Recent Experiments menu),
then Igor will reopen or reload it the same way. See Recent Files and Experiments on page II-49.

Sometimes Igor recognizes that a file (such as a plain text file or a formatted Igor notebook) can be appro-
priately opened several ways, and will ask you what to do by bringing up the Open or Load File Dialog.
Igor also opens the dialog if it does not recognize the file.

Tip: Holding down Shift before releasing the mouse button to drop the files onto Igor forces the Open
or Load File Dialog to be displayed.

This table shows how Igor attempts to handle various types of files.

Igor extension files or aliases (Macintosh) or shortcuts (Windows) for them must be in "Igor Pro User
Files/Igor Extensions", "Igor Pro Folder/Igor Extensions" or in a subfolder when Igor is launched. Dragging
an XOP onto the Igor icon will not activate an extension that wasn’t in the Igor Extensions folder when Igor
was launched.

Advanced programmers can customize Igor to handle specific types of files in different ways, such as auto-
matically loading files with an XOP. See User-Defined Hook Functions on page IV-257.

Problems With File Names Using Non-ASCII Characters
This section explains errors that you may encounter when attempting to access files or folders containing
characters that are not part of the current system encoding. For example, if you try to open a file with a Jap-
anese name while running with English as your system language, you will get an error.

The simplest way avoid these problems is to limit file names to the standard ASCII characters. These have
character codes ranging from 32 decimal to 127 decimal and include the upper- and lower-case English let-
ters, digits, and common punctuation symbols. All encodings include these characters as a subset so file
names consisting of these characters work regardless of which encoding is the system encoding.

If you experience these errors and do not want to change your file names, read the rest of this section to
understand the fundamental problem and how to deal with it.

Igor internally stores file paths using the "system encoding".

File File Extension What Igor Does

Experiment file .pxp or .uxp Opens the experiment.

Igor Binary wave (.ibw or .bwav) .ibw Loads as a data file, creating waves.

Text file that appears to contain no data Opens as plain-text notebook.

Text file that appears to contain data Loads as a data file, creating waves.

Igor help file (.ihf) .ihf Opens as help file.

Igor procedure file (.ipf) .ipf Opens as procedure file.

Igor notebook file (.ifn or .ift) .ifn or .ift Opens as notebook.

Igor Extension .xop Error dialog. See Activating Extensions on page
III-426.

Unknown file Displays the Open or Load File Dialog.

Chapter II-3 — Experiments, Files and Folders

II-51

On Mac OS X, the system encoding in effect for Igor is determined by the first language in the Languages
list in the International Preferences panel at the time the Finder is launched. Typical system encodings are
"Mac Roman", for Western European languages, and "Mac Japanese".

On Windows, the system encoding in effect for Igor is determined by the "Language for non-Unicode Pro-
grams" setting in the Advanced tab of the Regional and Language Options control panel at the time the
operating system starts up.

Operating systems store file and folder information using Unicode - a character encoding system that can
represent virtually all characters in all languages.

In the ideal world, Igor would be a Unicode program and dealing with a Unicode-based file system would
be easy. However, converting Igor, as well as all XOPs, to Unicode, is a massive task, so we have deferred
it. This means that Igor must internally convert Unicode file names and paths to the system encoding.

The conversion of Unicode file and folder names to system encoding brings some potential problems with
it. The problems stem from the fact that Unicode can represent any character while the system encoding can
represent only a specific subset of characters.

Imagine that you are running on Mac OS X with Mac Roman as the system encoding and you try to open a
file with a Japanese file name. Igor gets the Unicode version of the Japanese file name from Mac OS X and
tries to convert it to Mac Roman. This causes an error because Japanese characters can not be represented
in the Mac Roman encoding. A similar error occurs on Windows.

In order to access files with Japanese names, or use paths containing Japanese names, you must run with
Japanese as the system encoding. If you have booted the system with Japanese as the preferred language
then the system encoding is Japanese and you can access Japanese files. If another language is preferred
then you must make Japanese the preferred language and then reboot. (In Mac OS X you can also log out
and back in or relaunch the Finder by pressing option key while clicking the Finder icon in the dock.) Then
relaunch Igor.

A similar problem arises if you are running with Japanese as the system encoding and you try to access a
file whose name contains English special characters like the bullet character. When Igor tries to convert the
Unicode representation of the file name to Japanese, it gets an error because the English bullet character is
not in the Japanese encoding. In a case like this, you would have to switch the preferred language to English
to access the file from Igor.

Chapter II-3 — Experiments, Files and Folders

II-52

Chapter

II-4
II-4Windows

Overview.. 54
The Command Window ... 54
The Rest of the Windows.. 54

The Target Window.. 55
Window Names and Titles .. 56

Allowable Window Names .. 57
The Open File Submenu .. 58
The Windows Menu ... 58

Making a New Window.. 58
Activating Windows ... 58
Showing and Hiding Windows ... 58
Closing a Window ... 59

Killing Versus Hiding .. 59
Saving the Window Contents ... 59
Close Window Dialogs .. 60

Saving a Window as a Recreation Macro... 61
Window Macros Submenus ... 62

The Name of a Recreated Window .. 63
Changing a Window’s Style From a Macro.. 63

The Window Control Dialog.. 64
Arranging Windows.. 65
The Tile or Stack Windows Dialog.. 66
Window Position and Size Management ... 67

Move to Preferred Position ... 67
Move to Full Size Position... 67
Retrieve Window.. 67
Retrieve All Windows.. 67

Send to Back — Bring to Front... 67
Text Windows.. 68

Executing Commands ... 68
Text Window Navigation ... 68
Finding Text in the Active Window.. 69
Find and Replace ... 69
Finding Text in Multiple Windows... 69

Text Magnification .. 71
Window User Data ... 72
Chapters About Specific Windows .. 72
Window Shortcuts .. 73

Chapter II-4 — Windows

II-54

Overview
This chapter describes Igor’s windows in general terms, just a bit about the File menu, and the Windows
menu and window recreation macros in detail.

The Command Window
When Igor first starts, the command window appears at the bottom of the screen:

Commands are automatically entered and executed in the command window’s command line when you
use the mouse to “point-and-click” your way through dialogs. You may optionally type the commands
directly and press Return or Enter. Igor preserves a history of executed commands in the history area.

For more about the command window, see Chapter II-2, The Command Window, and Chapter IV-1,
Working with Commands.

The Rest of the Windows
At startup, by default, Igor displays a table window. There are also a number of additional windows which
are initially hidden:
• The main procedure window
• The Igor Help Browser
• Help windows for files in "Igor Pro Folder/Igor Help Files" and "Igor Pro User Files/Igor Help Files"

You can create additional windows for graphs, tables, page layouts, notebooks, panels and auxiliary pro-
cedure windows, as well as more help windows.

Scroll to see other previously executed
commands in the history area.

Scroll to see other unexecuted commands in the command buffer.

Command line.

History area.

Igor Help Browser button. Click for Help Browser.

Chapter II-4 — Windows

II-55

See the section Chapters About Specific Windows on page II-72.

Igor extensions may add other windows to Igor. For example, the Data Browser window, which lets you
see what data exists in the current experiment, is added by the Data Browser extension.

The Target Window
Igor commands and menus operate on the target window. The target window is the top graph, table, page
layout, notebook, control panel or XOP target window. The term “target” comes from the fact that these
windows can be the target of command line operations such as ModifyGraph, ModifyTable and so on. The
command window, procedure windows, help windows and dialogs can not be targets of command line
operations and thus are not target windows.

Prior to version 4, Igor attempted to draw a special icon to indicate which window was the target. However,
this special target icon is no longer drawn because of operating system conflicts.

The menu bar changes depending on the top window and the target window. For instance, if a graph is the
target window the menu bar contains the Graph menu:

The command window

Chapter II-4 — Windows

II-56

The menu bar changes to contain menus that apply to the target window, but you may type any command
into the command line, including commands that do not apply to the target window. Igor will apply the
command to the top window of the correct type.

For instance, in the example above, you could type a ModifyTable command while Graph0 was the target
window. Igor will apply the ModifyTable command to the top table, if there is one.

Sometimes the top window isn’t a target window, but it causes the menu bar to change. To continue our
example, if at this point you were to bring a procedure window to the top, the graph would still be the target
window, but the Graph menu would be replaced with the Procedure menu. Menu items chosen from the
Procedure menu apply to the top procedure window, but typed commands like AppendToGraph myWave
or DoWindow will still affect the target window, Graph0.

Window Names and Titles
Each graph, table, page layout or panel has a title and a name.

The title is what you see at the top of the window frame and in the Windows menu. Its purpose is to help
you visually identify the window, and is usually descriptive of its contents or purpose.

The window name is not the same as the title. The purpose of the name is to allow you to refer to the window
from a command, such as the DoWindow or AppendToGraph operations.

Graph0 is the target window,
even though the command
window and the Using Igor
help window are in front of it.

Items in the Graph menu will affect Graph0.

Commands typed here
will affect Graph0, the
target window.

Items in the Procedure menu will affect the Procedure window.

Graph0 is the target
window, even though the
command window and the
main procedure window
are in front of it.

Chapter II-4 — Windows

II-57

When you first create one of these windows, Igor gives it a name like Graph0, Table0, Layout0 or Panel0,
and a title based on the name and window contents. You can change the window’s title and name to some-
thing more descriptive using the Window Control dialog (Windows→Control submenu). Among other
things, it renames and retitles the target window.

Here we are about to change the title of the window named Layout0:

The Window Control dialog is also a good way to discover the name of the top window, since the window
shows only the window title.

The command window, procedure windows, and help windows have only a title. The title is the name of
the file in which they are stored. These windows do not have names because they can not be affected by
command line operations.

In summary, you set the title of windows in various ways:

Allowable Window Names
A window name is used for commands and therefore must follow the standard rules for naming Igor objects:
• The name must start with a letter.
• Additional characters can be alphanumeric or the underscore character.
• No other characters, including spaces, are allowed in standard Igor object names.
• No more than 31 characters are allowed.
• The name must not conflict with other object names (you see a message if it does).

For more information, see Object Names on page III-417.

Window Type How Titled Has Window
Name?

Graphs, tables, page
layouts, notebooks
and panels

Igor initially assigns a title based on the window name and
content. You can retitle these windows with the Window
Control dialog or the DoWindow/T command.

Yes

Command window Initially “Untitled”, it takes on the file name of saved experiment. No
Built-in procedure
window

Always titled “Procedure”. No

Auxiliary procedure
windows

Titled when created, they take on the file name if saved as a file. No

Igor Help windows Same as the Igor help file. No

Chapter II-4 — Windows

II-58

The Open File Submenu

The Windows Menu
You can use the Windows menu for making new windows, and for showing, arranging and closing (either
hiding or “killing”) windows. You can also execute “window recreation macros” that recreate windows
that have been killed and “style macros” that modify an existing window’s appearance.

Making a New Window

You can type these commands yourself directly in the command line. For example,
Display yData vs xData

creates a graph of the wave named yData on the Y axis, versus xData on the X axis.

You can create a new window by selecting the name of a window recreation macro from the Windows
menu. See Window Macros Submenus on page II-62.

You can also create a window using the File→Open File submenu.

Activating Windows
To activate a window, choose an item from Windows menu or from the Help Windows, Procedure Win-
dows, Graphs, Tables, Layouts, Other Windows, or Recent Windows submenus in the Windows menu.

The Recent Windows submenu shows windows recently activated. This information is saved when you
save an experiment to disk and restored when you later reopen the experiment.

If you press Command (Macintosh) or Ctrl (Windows) while clicking the menu bar, a temporary Recent
Windows menu will be accessible from the main menu bar. This shortcut is intended to save you the trouble
of navigating through the Windows menu to the permanent Recent Windows submenu.

By default, just the window’s title is displayed in the Windows menu. You can choose to display the title or
the name for target windows using the Windows Menu Shows popup menu in the Misc Settings category
of the Miscellaneous Settings dialog.

Showing and Hiding Windows
All built-in window types and some XOP window types can be hidden.

The File menu contains the Open File submenu for opening an
existing file as a notebook, Igor help window, or procedure
window.

When you choose an item from the submenu, the Open File
dialog appears for you to select a file.

You can use the various items in the Windows→New submenu
to create new windows.

The menu items that end with “…” invoke dialogs which
produce commands that Igor executes to create the windows.
These dialogs are explained in the chapter about the corre-
sponding window.

Chapter II-4 — Windows

II-59

To hide a window, press Shift and choose Windows→Hide or use the keyboard shortcut Command-Shift-
W (Macintosh) or Ctrl+Shift+W (Windows). You can also hide a window by pressing Shift and clicking the
close button.

You can hide multiple windows at once using the Windows→Hide submenu. For example, to hide all
graphs, choose Windows→Hide→All Graphs. If you press Shift while clicking the Windows menu, the
sense of the menu items changes. For example, Hide→All Graphs changes to Hide→All Except Graphs.

The command window is not included in mass hides of any kind. If you want to hide it you must do so
manually.

Similarly, you can show multiple windows at once using the Windows→Show submenu. For example, to
show all graphs, choose Windows→Show→All Graphs. If you press Shift while clicking the Windows menu,
the sense of the menu items changes. For example, Show→All Graphs changes to Show→All Except Graphs.

The Show All Except menu items do not show procedure windows and help files because there are so many
of them that it would be counterproductive.

The Windows→Show→Recently Hidden Windows item shows windows recently hidden by a mass hide
operation, such as Hide→All Graphs, or windows recently hidden manually (one-at-a-time using the close
button or Command-Shift-W or Ctrl+Shift+W). In the case of manually hidden windows, “recently hidden”
means within the last 30 seconds.

XOP windows do participate in Hide All XOP Windows and Show All XOP Windows only if XOP program-
mers specifically support these features.

Closing a Window
You can close a window by either choosing the Close item or by clicking in the window’s close button.
Depending on the top window’s type, this will either kill or hide the window, possibly after a dialog asking
for confirmation.

Killing Versus Hiding
“Killing” a window means the window is removed from the experiment. The memory used by the window
is released and available for other purposes. The window’s title is removed from the Windows menu.
Killing a window that represents a file on disk does not delete the file. You can also kill a window with a
DoWindow/K winName command.

“Hiding” a window simply means the window is made invisible, but is still part of the experiment and uses
the same amount of memory. It can be made visible again by choosing its title from the Windows menu.

The command window and the built-in procedure window can be hidden but not killed. All other built-in
windows can be hidden or killed.

When you create a window from a procedure, you can control what happens when the user clicks the close
button using the /K=<num> flag in the command that creates the window.

You can hide a window programmatically using the DoWindow/HIDE=1 operation. To show a hidden window
without activating it, use DoWindow/HIDE=0. To show the window and activate it, use DoWindow/F.

Saving the Window Contents
Notebooks and procedure windows can be saved either in their own file, or in a packed experiment file with
everything else. You can tell which is the case by choosing Notebook→Info or Procedure→Info. When you
kill a notebook or a procedure window that contains unsaved information, a dialog will allow you to save
it before killing the window.

Graph, table, panel and page layout windows are not saved as separate files, and are lost when you kill
them unless you save a window recreation macro which you can execute to later recreate the window.
Killing these windows and saving them as window recreation macros (stored in the built-in procedure

Chapter II-4 — Windows

II-60

window) frees up memory and reduces window clutter without losing any information. You can think of
window recreation macros as “freeze-dried windows”.

This table shows how windows are hidden, killed, and saved:

Close Window Dialogs
When you close a graph, table, layout or control panel, Igor presents a Close dialog.

If you click the Save button Igor creates a window recreation macro in the main procedure window. It sets
the macro’s subtype to Graph, Table, Layout or Panel so the name of the macro appears in the appropriate
Macros submenu of the Windows menu. You can recreate the window using this menu.

If you don’t plan to use the window again, you should click the No Save button and no window recreation
macro will be created.

If you have previously created a recreation macro for the window then the dialog will have a Replace button
instead of a Save button. Clicking Replace replaces the old window recreation macro with a new one. If you
know that you won’t need to recreate the window, you can delete the macro (see Saving a Window as a
Recreation Macro on page II-61).

When you close a notebook or procedure window (other than the built-in procedure window), Igor pres-
ents a “hide or kill dialog”.

Window Type Hideable? Killable? Save Recreation Macro? Stand-Alone File?

Graphs, Tables Yes Yes Yes Yes*

* The SaveGraphCopy operation (page V-612) and the SaveTableCopy operation (page V-620) can be
used to save a graph or table, along with all associated waves, as a stand-alone experiment file.

Layouts, Panels Yes Yes Yes No

Main procedure window Yes No No †

† The main procedure window is stored as a separate file in the home folder if the experiment is saved in
unpacked format, or within the experiment file if the experiment is saved in packed format.

Help Browser Yes No No No
Auxiliary procedures, Notebooks,
Help windows Yes Yes‡

‡ The only way to kill a help window is to press Option (Macintosh) or Alt (Windows) when clicking the
close button, or by pressing Command-Option-W (Macintosh) or Ctrl+Alt+W (Windows).

No Yes

Command window No No No No

Name of the
recreation macro.

Kills the window without
saving a recreation macro.

Saves (or replaces) a recreation
macro and kills the window.

:Graph subtype identifies window recreation
macro named Graph0 as a graph macro.

Chapter II-4 — Windows

II-61

Macintosh: When the Close Window dialog is showing, you can press Option to make the Kill button the default.
The Kill button will become highlighted while the “Save and then kill” button will become normal. You can then
press Return or Enter to kill the window. Similarly, press Shift to make the Hide button the default button.

To hide a window, press Shift while clicking the close button. To kill a graph, table, layout, or control panel
without the Close dialog, press Option (Macintosh) or Alt (Windows) while clicking the close button.

By specifying/K=<num> for the NewNotebook, Layout, Display, and NewPanel operations, you can
modify this behavior.

Saving a Window as a Recreation Macro
When you close a window that can be saved with a recreation macro, Igor offers to create one by displaying
the Close Window dialog. Igor stores the window recreation macro in the main procedure window of the
current experiment. The macro uses much less memory than the window, and reduces window clutter. You
can invoke the window recreation macro later to recreate the window. You can also create or update a
macro with the Window Control dialog.

The window macro contains all the necessary commands to reconstruct the window provided the underly-
ing data is still present. For instance, a graph recreation macro contains commands to append waves to the
graph, but does not contain any wave data. Similarly, a page layout recreation macro does not contain
graphs or tables (nor the commands to create them). The macros refer to waves, graphs and tables in the
current experiment by name.

Here is how you would use recreation macros to keep a graph handy, but out of your way:

Saves the file (if any) and removes
window from the experiment.

Removes the window from the
experiment without saving.

The Notebook contents are
stored in the experiment
file, not in a separate
notebook file.

Just hides the window.

Choosing Close or clicking the close button...

...summons the Close Window dialog.

Clicking Save...

...saves a window recreation macro for
the graph in the main procedure window.

Chapter II-4 — Windows

II-62

The window macro is evaluated in the context of the root data folder. This detail is of consequence only to
programmers. See Data Folders and Commands on page II-125 for more information.

You can create or replace a window macro without killing the window using The Window Control Dialog
described on page II-64. The most common reason to replace a window macro is to keep the macro consis-
tent with the window that it creates. This is useful if you are about to clone the window, having changed it
since the recreation macro was made.

Notice that the proposed name of the window recreation macro is the same as the name of the saved
window. You can save the window recreation macro under a different name, if you want, by entering the
new name in the dialog. If you do this, Igor creates a new macro and leaves the original macro intact. You
can run the new macro to create a new version of the window or you can run the old macro to recreate the
old version. This way you can save several versions of a window, while displaying only the most recent one.

Window recreation macros stay in an experiment’s procedure window indefinitely. If you know that you
won’t need to recreate a window for which a window recreation macro exists, you can delete the macro.

To locate a window macro quickly:
• Bring any procedure window to the top, press Option (Macintosh) or Alt (Windows) and choose the

window macro name from the appropriate macro submenu in the Windows menu.

To delete the macro (if you’re sure you won’t want it again), simply select all the text from the Macro dec-
laration line to the End line. Press Delete to remove the selected text.

See Saving and Recreating Graphs on page II-306 for details specific to graphs.

Window Macros Submenus
The Windows menu has hierarchical menus containing graph, table, page layout and panel recreation
macros. These menus also include graph, table or page layout style macros.

Window recreation macros are created by the Close Window and Window Control dialogs, and by the DoWin-
dow/R command. Style macros are created by the Window Control dialog and the DoWindow/R/S command.

When the graph window is needed again choosing
the macro from the Graph Macros menu runs the
macro that recreates the graph.

:GraphStyle subtype identifies window style macro
named Graph0Style as a graph-related macro.

:Graph subtype identifies window recreation macro named Graph0 as a graph-related macro.

Chapter II-4 — Windows

II-63

Igor places macros into the appropriate macro submenu by examining the macro’s subtype. The subtypes
are Graph, Table, Layout, Panel, GraphStyle, TableStyle and LayoutStyle. See Procedure Subtypes on page
IV-183 for details.

When you choose the name of a recreation macro from a macro submenu, the macro runs and recreates the
window. Choosing a style macro runs the macro which changes the target window’s appearance (its “style”).

However, if a procedure window is the top window and you press Option (Macintosh) or Alt (Windows) and
then choose the name of any macro, Igor displays that macro but does not execute it.

The Name of a Recreated Window
When you run a window recreation macro, Igor recreates the window with the same name as the macro
that created it unless there is already a window by that name. In this case, Igor adds an underscore followed
by a digit (e.g. _1) to the name of the newly created window to distinguish it from the preexisting window.

For example, this figure shows the result of running a graph recreation macro twice. There was no graph
named Graph0 when we started:

Changing a Window’s Style From a Macro
When you run a style macro by invoking it from the Windows menu, from the command line or from
another macro, Igor applies the commands in the macro to the top window. Usually these commands
change the appearance of the window. For example, a graph style macro may change the color of graph
traces or the axis tick marks.

Style macros are used most effectively with graph windows. For more information, see Saving and Recre-
ating Graphs on page II-306 and Graph Style Macros on page II-307.

Created when Graph0 was chosen from
the Graph Macros menu the first time.

Created when Graph0 was chosen from
the Graph Macros menu the second time.

Chapter II-4 — Windows

II-64

The Window Control Dialog

You can also change the window’s name. The window name is used to address the window from command
line operations such as DoWindow and also appears in the macro submenus of the Windows menu.

If the window name matches the name of an existing a window or style macro, the checkboxes will change
to Update Window Macro and Update Style Macro.

The dialog may look a little different for some window types. For instance, panels don’t have style macros,
so for panel windows the Create Style Macro item will be missing.

Similarly, notebooks can not be saved as macros, so both the Create Window Macro and Create Style Macro
items will be missing:

Choosing Control→Window Control brings up a dialog you can
use to change the top window’s title and name, and create or
update its recreation and style macros. You can access this dialog
quickly by pressing Command-Y (Macintosh) or Ctrl+Y (Win-
dows).

Here we are using the dialog to change the window named
Layout0 to have a new title of “My Cool Layout”.

Chapter II-4 — Windows

II-65

For more about names and titles, see Window Names and Titles on page II-56. Also see Saving a Window
as a Recreation Macro on page II-61 for a discussion of window recreation macros, and see Graph Style
Macros on page II-307 for details on style macros.

Arranging Windows
You can tile or stack windows by choosing the appropriate items from the Control submenu in the
Windows menu.

You can customize the behavior of the Tile and Stack items using the Tile or Stack Windows dialog.

You can also move windows around using the MoveWindow, StackWindows, and TileWindows commands.

Chapter II-4 — Windows

II-66

The Tile or Stack Windows Dialog
The Tile or Stack Windows dialog is useful for tiling a few windows or even for setting the size and position
of a single window.

Select individual windows from the Windows to Arrange list, and entire classes of windows with the checkboxes.

If you want subsequent selections of the Tile (or Stack) menu item to stack the same types of windows with
the same rows, columns, grout, tiling area, etc., you should select the “Capture as pref” checkbox. Windows
selected in the Windows to Arrange menu aren’t remembered by the preferences: only the window type
checkboxes. There are separate settings and preferences for Stack and for Tile.

Notice that although the TileWindows and StackWindows operations can tile and stack panels, panels
don’t show up here because they don’t resize very well.

The Window Tiling Area subdialog specifies the area where tiling and stacking take place.

You can specify the tiling area in one of four ways:
• By entering screen positions in units of points.
• By dragging the pictorial representation of the tiling area.
• Use the default tiling area by clicking the “Use default area” button.
• By positioning any nondialog window before you enter the dialog, and clicking the “Use top win-

dow” button.

Select this if you want subsequent selections of the Tile
menu item to tile the selected window types.

Click to get the Window Tiling
Area dialog.

Auto or 0 chooses the number of rows
and columns to fit the tiling area.

Keep this much space between tiled
windows, in points.

Each checkbox selects all windows of that type.

Choose Stack or Tile windows here.

Tile (or stack)
windows selected
here, too.

The default area is the largest rectangle
on the main screen above or below the
default Command Window position.

Change the position and size of the Default Command Window with the
Capture Prefs item in the Command Buffer submenu of the Misc menu.

Dark gray area indicates
where the desktop is.

Drag the body to reposition
the tiling area.

Drag the square handles to
resize the tiling area.

The top,left corner has coordinates of 0,0.

This rectangle
indicates the
tiling area.

Chapter II-4 — Windows

II-67

Window Position and Size Management
There are four items in the Control submenu of the Windows menu that help you manage the position and
size of windows.

Move to Preferred Position
Moves the active window to the position and size determined by preferences. For each type of window, you
can set the preferred position and size using the Capture Prefs dialog (e.g., Capture Graph Prefs for graphs).

Shortcut for Windows: Press Alt and click the maximize button.

Move to Full Size Position
Moves and sizes the active window to display as much of the content as practical. On Macintosh, this is the
same as clicking the zoom button. On Windows, the size is limited to the size of the frame window.

Shortcut: Press Shift-Option (Macintosh) or Shift+Alt (Windows) and click the maximize button.

Retrieve Window
Moves the active window and sizes it if necessary so that all of the window is visible.

Retrieve All Windows
Moves all windows and sizes them if necessary so that all of each window is within the screen on Macintosh
or within the frame on Windows. This is often useful when you open an experiment that was created on a
system with a larger screen or Windows frame than yours.

Send to Back — Bring to Front
The Send to Back item in the Windows menu sends the top window to the bottom of the desktop, behind
all other windows. This function can also be accessed by pressing Control-Command-E (Macintosh) or
Ctrl+E (Windows). After sending a window behind, you can bring it to the front by choosing Bring to Front
or by pressing Shift-Control-Command-E (Macintosh) or Ctrl+Shift+E (Windows). You can also press
Control-Command-E or Ctrl+E repeatedly to cycle through all windows.

Send to Back is handy to use in conjunction with Command-J (Macintosh) or Ctrl+J (Windows) which brings
the command window to the top of the desktop. You can press Command-J or Ctrl+J to bring the command
window to the top, enter a command, and then press Control-Command-E or Ctrl+E to get the command
window out of the way again.

Igor has a nifty feature that comes in handy if you have many windows tiled such that some are completely
behind others. If you press Option (Macintosh) or Alt (Windows) and choose Send to Back or press Command-
Option-E (Macintosh) or Ctrl+Alt+E (Windows), any window that is completely visible is sent to the back.

For example, imagine that you have eight graphs. You can tile them into two planes of four graphs per plane
using the Tile or Stack Windows dialog, or with the command: TileWindows/O=1/A=(2,2). Now, press-
ing Command-Option-E or Ctrl+Alt+E sends the top four graphs behind, revealing the bottom four graphs.

You can also send a window to the back with the DoWindow/B command and bring it to the front with the
DoWindow/F command.

Set size to optimally display
the window contents.

Position and size from preferences.

Retrieve windows that are partly or
completely off-screen.

Chapter II-4 — Windows

II-68

Text Windows
Igor Pro displays text in procedure, notebook, and Igor help windows as well as in the command and
history areas of the command window. This section discusses behavior common to all of these windows.

Executing Commands
You can execute commands selected in a notebook, procedure or help window by pressing Control-Enter
or Control-Return. You can also execute selected commands by Control-clicking (Macintosh) or right-click-
ing (Windows) and choosing Execute Selection.

For more on this, see Notebooks as Worksheets on page III-5.

Text Window Navigation
The term “keyboard navigation” refers to selection and scrolling actions that Igor performs in response to
the arrow keys and to the Home, End, Page Up, and Page Down keys. Macintosh and Windows have dif-
ferent conventions for these actions in windows containing text. You can use either Macintosh or Windows
conventions on either platform.

By default, Igor uses Macintosh conventions on Macintosh and Windows conventions on Windows. You
can change this using the Keyboard Navigation menu in the Misc Settings section of the Miscellaneous Set-
tings dialog. If you use Macintosh conventions on Windows, use Ctrl in place of the Macintosh Command
key. If you use Windows conventions on Macintosh, use Command in place of the Windows Ctrl key.

Macintosh Text Window Navigation

Key No Modifier Option Command

Left Arrow Move selection left one
character

Move selection left one
word

Move selection to start of
line

Right Arrow Move selection right one
character

Move selection right one
word

Move selection to end of
line

Up Arrow Move selection up one line Move selection up one
paragraph

Move selection up one
screen

Down Arrow Move selection down one
line

Move selection down one
paragraph

Move selection down one
screen

Home Scroll to start of document Scroll to start of document Not used

End Scroll to end of document Scroll to end of document Not used

Page Up Scroll up one screen Scroll up one screen Not used

Page Down Scroll down one screen Scroll down one screen Not used

Windows Text Window Navigation

Key No Modifier Ctrl

Left Arrow Move selection left one character Move selection left one word

Right Arrow Move selection right one character Move selection right one word

Up Arrow Move selection up one line Move selection up one paragraph

Down Arrow Move selection down one line Move selection down one paragraph

Home Move selection to start of line Move selection to start of document

End Move selection to end of line Move selection to end of document

Chapter II-4 — Windows

II-69

Finding Text in the Active Window
You can access the Find Text dialog via the Edit menu or by pressing Command-F (Macintosh) or Ctrl+F
(Windows). The Find Text dialog is available for help, procedure, and notebook windows, for the command
line and the history area, and for some XOP windows.

You can search for the next occurrence of a string (Edit→Find Selection) without using the dialog by selecting the
string and pressing Command-Control-H (Macintosh) or Ctrl+H (Windows). (Unreformed old-timers can change
the Macintosh key combination to its original setting of Command-H using the Miscellaneous Settings dialog.)

After doing a find, you can search for the same text again by pressing Command-G (Macintosh) or Ctrl+G
(Windows) (Find Same in the Edit menu). You can search for the same text but in the reverse direction by
pressing Command-Shift-G (Macintosh) or Ctrl+Shift+G (Windows).

You can abort a find by clicking the Stop button in the Find Text dialog or by pressing Command-period
(Macintosh) or Ctrl+Break (Windows).

Find and Replace
To find and replace:
1. Move the selection to the top of the active window.
2. Use Edit→Find to find the first instance of the target string.
3. Manually change the first instance, then copy the new text to the Clipboard.
4. Press Command-G (Macintosh) or Ctrl-G (Windows) to find the next occurrence.
5. Press Command-V (Macintosh) or Ctrl-V (Windows) to paste.
6. Repeat steps 4 and 5 until done.

Finding Text in Multiple Windows
You can perform a Find on multiple help, procedure and notebook windows at one time using the following
procedure.
1. Open a help, procedure or notebook window.
2. Press Command-F (Macintosh) or Ctrl+F (Windows) or choose Find from the Edit menu.
3. Choose Multiple Windows from the pop-up menu in the Find dialog.
4. Enter the text to find and click Find.

When you follow this procedure, the Find Text dialog looks something like this:

Page Up Scroll up 1 screen Scroll up 1 screen

Page Down Scroll down 1 screen Scroll down 1 screen

Windows Text Window Navigation

Key No Modifier Ctrl

Chapter II-4 — Windows

II-70

The windows that will be searched appear in the list, in the order in which they will be searched. You add
windows to the list by selecting one of the checkboxes to the left of the list. The search is done from the top
to the bottom of the list, or from the bottom to top if you have selected Search Backwards.

The selection in the list indicates the file to be searched next. You can change the selection by clicking the
list or using the arrow keys. However, this is usually not necessary.

You can abort a find by clicking the Stop button in the Find Text dialog or by pressing Command-period
(Macintosh) or Ctrl+Break (Windows).

When you turn multiple window find on, it stays on until you turn it off, by choosing Active Window Only
from the pop-up menu. The setting of this pop-up menu affects not only Find but also Find Same and Find
Selection. These last two operations do not display the Find Text dialog. To avoid confusion, use Find if you
are unsure whether multiple window find is off or on.

The multiple window find may sometimes cause surprising behavior. For example, you may expect that the
search will start with the active window. However, when doing a multiple window find, this is not the case.
The search starts with the item highlighted in the list. Also, the search does not start from the selection in that
window but rather from the top of the window, or from the bottom if you have selected Search Backwards.

When you click Find, Igor searches the windows in the list. When it finds the first occurrence of the target
string, it closes the dialog and displays the found text. At this point, you can do a Command-G (Macintosh)
or Ctrl+G (Windows) or choose Find Same from the Edit menu, to find the next occurrence of the target
string. When you do a Find Same, the search starts from the selection in the window in which the target
string was last found. This will normally be the active window but not if you activated another window
after the last find.

While you are doing a multiple-window find you can, as in a single window find, press Command-Shift-G
(Macintosh) or Ctrl+Shift+G (Windows) to search in the opposite direction (e.g., backwards if you were
searching forwards). This provides a handy way to move quickly back and forth between two occurrences
of the search string.

Chapter II-4 — Windows

II-71

If you do a find after finding the last occurrence of the search string, Igor will beep, indicating that there are
no more occurrences. At this point, if you want to go back to the preceding occurrence, you may need to
press Command-Shift-G or Ctrl+Shift+G twice. The reason for this is that, after hitting the end of the list of
windows to be searched, when you search backwards, Igor starts from the end of the list and finds the last
occurrence again.

If you open or kill a window of a type that is to be searched, Igor rebuilds the list of files to be searched and
resets the multiple-window find to the top of the list (or bottom if you are searching backwards). Igor also
resets the multiple-window find when you change any of the settings in the Find Text dialog.

If you choose Find Selection from the Edit menu or press Command-H or Ctrl+H, Igor resets the find mode
to active window only, enters the selected text as the search string, and then does the find. If what you really
wanted was to do a multiple-window find, then after doing the Find Selection, press Command-F or Ctrl+F
to active the Find Text dialog, choose Multiple Windows from the pop-up menu, and then click the Find
button. This will start the multiple window find from the start of the list.

You can use the Igor Help Browser to search in multiple files, including files that are not open in your
current experiment. See Igor Help Browser on page II-6 for further details.

Text Magnification
You can magnify the text in any window to make it bigger or smaller to suit your taste.

In help windows, procedure windows, plain text notebooks, and formatted text notebooks, you can use the
magnifying glass icon in the bottom-left corner of the window. You can also use the Magnification submenu
in the contextual menu for the window. To display the contextual menu, Control-click (Macintosh) or right-
click (Windows) in the body of the window.

You can also set the magnification for the command line, history area, and text areas in dialogs such as
Browse Waves and Add Annotation. These areas do not display the magnifying glass icon so you must use
the contextual menu.

You may notice some anomalies when you use text magnification. For example, in a formatted text note-
book, text may wrap at a different point in the paragraph and may change in relation to tab stops. This
happens because fonts are not available in fractional sizes and because the actual width of text does not
scale linearly with font size.

The Fit Width and Fit Page modes are inaccurate because of the availability of integer font sizes only.
However they still may be useful. These modes are based on the available space for printing the document,
which depends on the paper size chosen in the Page Setup dialog and the page margins as set in the Docu-
ment Settings dialog. Because the actual content of the document may be much narrower or much wider
than the available space for printing, these modes may sometimes give unexpected results.

You can set the default magnification for each type of text area by choosing a magnification from the Mag-
nification popup menu and then choosing Set As Default from the same popup menu. Any text areas whose
magnification is set to Default will use the newly specified default magnification. For example, if you want
text in all help files to appear larger, open any help file, choose a larger magnification, 125% for example,
and then choose Set As Default For Help Files. All help files whose current magnification is set to Default
will be updated to use the new default.

The default magnification for the command line and history area controls the magnification that will be
used the next time you launch Igor Pro.

The magnification setting is saved in formatted notebooks and help files only. If you change the magnifica-
tion setting for one of these files and then save and close the file, the magnification setting will be restored
when you reopen the file. For all other types of text areas, including procedure windows and plain text
notebooks, the magnification setting is not stored in the file. If you close and reopen such a file, it will
reopen using the default magnification for that type of text area.

Chapter II-4 — Windows

II-72

Window User Data
You can store arbitrary data with a window using the userdata keyword with the SetWindow operation
(page V-646). This is a topic of interest to advanced Igor programmers.

Each window has a primary, unnamed user data that is used by default. You can also store an unlimited
number of different user data strings by specifying a name for each different user data string. The name can
be anything you desire as long as it is a legal Igor name.

You can retrieve information from the default user data with the GetWindow operation (page V-251). To
retrieve any named user data, you must use the GetUserData operation (page V-250).

Following is a simple example of user data using the top window:
SetWindow kwTopWin,userdata= "window data"
Print GetUserData("","","")

Although there is no size limit to how much user data you can store, it does have to be generated as part of
the recreation macro for the window when experiments are saved. Consequently, huge user data can slow
down experiment saving and loading

User data is intended to replace or reduce the usage of global variables. Named user data is intended for
authors of packages that add features to existing windows. The primary author of a window should use the
default, unnamed user data.

Chapters About Specific Windows
Detailed information about each type of window can be found in these chapters:

Window Type Chapter

Command window Chapter II-2, The Command Window
Chapter IV-1, Working with Commands

Procedure windows Chapter III-13, Procedure Windows

Help Browser
Help windows

Chapter II-1, Getting Help

Graphs Chapter II-12, Graphs

Tables Chapter II-11, Tables

Layouts Chapter II-16, Page Layouts

Notebooks Chapter III-1, Notebooks

Control panels Chapter III-14, Controls and Control Panels

Chapter II-4 — Windows

II-73

Window Shortcuts
Action Shortcut (Macintosh) Shortcut (Windows)

To close a window: Click the close button or press
Command-W.

Click the close button
or press Ctrl+W.

To kill a window with no
dialog:

Press Option and click the close
button or press Command-Option-W.

Press Alt and click the close button
or press Ctrl+Alt+W.

To hide a window: Press Shift and click the close button
or press Command-Shift-W.

Press Shift and click the close button
or press Ctrl+Shift+W.

To invoke the Window
Control dialog:

Press Command-Y. Press Ctrl+Y.

To send the top window
behind all others:

Press Control-Command-E. Press Ctrl+E.

To bring the bottom
window on top of all others:

Press Shift-Control-Command-E. Press Ctrl+Shift+E.

To send all windows that
are completely visible
behind all others:

Press Command-Option-E. Press Ctrl+Alt+E.

To activate a recently
activated window:

Press Command, click the main menu
bar, and select from the Recent menu.

Press Ctrl, click the main menu bar,
and select from the Recent menu.

To move a window to its
preferred size and position:

Click the zoom button. Press Alt and click the maximize button.

To move a window to its
full-size position:

Press Shift-Option and click the
zoom button.

Press Shift +Alt and click the maximize
button.

To activate the command
window:

Press Command-J. Press Ctrl+J.

To clear the command buffer: Press Command-K. Press Ctrl+K.

To open the built-in
procedure window:

Press Command-M. Press Ctrl+M.

To cycle through all
procedure windows:

Press Command-Option-M. Press Ctrl+Alt+M.

To open the Help Browser: Press Help or Command-?. Press F1.

To find a phrase in a text
window:

Press Command-F. Press Ctrl+F.

To find the same phrase
again:

Press Command-G.

Press Command-Shift-G to search
backward.

Press Ctrl+G.

Press Ctrl+Shift+G to search backward.

To find the selected phrase: Press Command-E and Command-G.

Press Command-E and Command-
Shift-G to search backward.

This shortcut can be changed through
the Miscellaneous Settings dialog.

Press Ctrl+H.

Press Ctrl+Shift+H to search backward.

Chapter II-4 — Windows

II-74

Chapter

II-5
II-5Waves

Overview.. 77
Waveform Model of Data .. 77
XY Model of Data.. 78
Making Waves... 80
Wave Names.. 80
Number of Dimensions.. 81
Number Type and Precision.. 81
Default Wave Properties .. 82
Make Operation... 82

Make Operation Examples ... 83
Waves and the Miscellaneous Settings Dialog ... 83
Changing Dimension and Data Scaling... 83

Date, Time, and Date&Time Units .. 85
Duplicate Operation ... 86

Duplicate Operation Examples.. 87
Killing Waves .. 87

KillWaves Operation Examples... 88
Browsing Waves.. 89
Renaming Waves .. 91
Redimensioning Waves.. 91
Inserting Points.. 92
Deleting Points .. 93
Waveform Arithmetic and Assignments... 94

Indexing and Subranges ... 95
Interpolation in Wave Assignments ... 96
Lists of Values .. 96
Wave Initialization .. 97
Example: Normalizing Waves ... 97
Example: Converting XY Data to Waveform Data ... 97
Example: Concatenating Waves .. 98
Example: Decomposing Waves ... 98
Example: Complex Wave Calculations .. 98
Example: Comparison Operators and Wave Synthesis ... 99
Example: Wave Assignment and Indexing Using Labels ... 99
Mismatched Waves ... 100
NaNs, INFs and Missing Values ... 100
Strange Cases.. 101

Wave Dependency Formulas .. 101
Using the Wave Note.. 102
Integer Waves .. 102
Date/Time Waves .. 102
Text Waves... 103

Programmer Notes .. 104
Complete List of Wave Properties.. 104

Chapter II-5 — Waves

II-76

Chapter II-5 — Waves

II-77

Overview
We use the term “wave” to describe the Igor object that contains an array of numbers. Wave is short for
“waveform”. The main purpose of Igor is to store, analyze, transform, and display waves.

Chapter I-1, Introduction to Igor Pro, presents some fundamental ideas about waves. Chapter I-2, Guided
Tour of Igor Pro, is designed to make you comfortable with these ideas. In this chapter, we assume that you
have been introduced to them.

This chapter focuses on one-dimensional numeric waves. Waves can have up to four dimensions and can
store text data. Multidimensional waves are covered in Chapter II-6, Multidimensional Waves. Text waves
are discussed in this chapter.

The primary tools for dealing with waves are Igor’s built-in operations and functions and its waveform assign-
ment capability. The built-in operations and functions are described in detail in Chapter V-1, Igor Reference.

This chapter covers:
• waves in general
• operations for making, killing and managing waves
• setting and examining wave properties
• waveform assignment

and other topics.

Waveform Model of Data
A wave consists of a number of components and properties. The most important are:
• the wave name
• the X scaling property
• X units
• an array of data values
• data units

The waveform model of data is based on the premise that there is a straight-line mapping from a point
number index to an X value or, stated another way, that the data is uniformly spaced in the X dimension.
This is the case for data acquired from many types of scientific and engineering instruments and for math-
ematically synthesized data. If your data is not uniformly spaced, you can use two waves to form an XY
pair. See XY Model of Data on page II-78.

A wave is similar to an array in a standard programming language like BASIC, FORTRAN, Pascal, or C.

Index Value

array0 0 3.74

1 4.59

2 4.78

3 5.89

4 5.66

Point
Number X value (s)

data value
(V)

wave0 0 0 3.74

1 .001 4.59

2 .002 4.78

3 .003 5.89

4 .004 5.66

A waveAn array

Chapter II-5 — Waves

II-78

An array in a standard language has a name (array0 in this case) and a number of values. We can reference
a particular value using an index.

A wave also has a name (wave0 in this case) and data values. It differs from the array in that it has two indi-
ces. The first is called the point number and is identical to an array index or row number. The second is
called the X value and is in the natural X units of the data (e.g., seconds, meters). Like point numbers, X
values are not stored in memory but rather are computed.

The X value is related to the point number by the wave’s X scaling, which is a property of the wave that you can
set. The X scaling of a wave specifies how to compute an X value for a given point number using the formula:

x[p] = x0 + dx·p

where x[p] is the X value for point p. The two numbers x0 and dx constitute the wave’s X scaling property.
x0 is the starting X value. dx is the difference in X value from one point to the next. X values are uniformly
spaced along the data’s X dimension.

The SetScale operation (see page V-640) sets a wave’s X scaling. You can use the Change Wave Scaling
dialog to generate SetScale commands.

Why does Igor use this model for representing data? We chose this model because it provides all of the
information that needed to properly display, analyze and transform waveform data.

By setting your data’s X scaling, and X and data units in addition to its data values, you can make a proper
graph in one step. You can execute the command

Display wave0

to produce a graph like this:

If your data is uniformly spaced on the X axis, it is critical that you understand and use X scaling.

The X scaling information is essential for operations such as integration, differentiation and Fourier trans-
forms and for functions such as the area function (see page V-32). It also simplifies waveform assignment
by allowing you to reference a single value or range of values using natural units.

In Igor Pro 3.0, we extended Igor from one dimension to multiple (up to 4) dimensions. To the X dimension,
we added the Y, Z and T dimensions. X scaling extends to dimension scaling. For each dimension, there is
a starting index value (x0, y0, z0, t0) and a delta index value (dx, dy, dz, dt). See Chapter II-6, Multidimen-
sional Waves, for more about multidimensional waves.

XY Model of Data
If your data is not uniformly spaced along its X dimension then it can not be represented with a single wave.
You need to use two waves as an XY pair.

In an XY pair, the data values of one wave provide X values and the data values of the other wave provide
Y values. The X scaling of both waves is irrelevant so we leave it in its default state in which the x0 and dx
components are 0 and 1. This gives us

x[p] = 0 + 1·p

5.5

5.0

4.5

4.0

V

43210
ms

Chapter II-5 — Waves

II-79

This says that a given point’s X value is the same as its point number. We call this “point scaling”. Here is
some sample data that has point scaling.

The X values serve no purpose in the XY model. Therefore, we change our thinking and look at an XY pair
this way.

We can execute
Display yWave vs xWave

and it produces a graph like this.

Some operations, such as Fast Fourier Transforms and convolution, require equally spaced data. In these
cases, it may be desirable for you to create a uniformly spaced version of your data by interpolation. See
Converting XY Data to a Waveform on page III-118.

Some people who have uniformly spaced data still use the XY model because it is what they are accustomed
to. This is a mistake. If your data is uniformly spaced, it will be well worth your while to learn and use the
waveform model. It greatly simplifies graphing and analysis and makes it easier to write Igor procedures.

Point
Number X value ()

data value
(V)

yWave 0 0 3.74

1 1 4.59

2 2 4.78

3 3 5.89

4 4 5.66

Y wave

Point
Number X value ()

data value
(V)

xWave 0 0 0.0

1 1 .0013

2 2 .0021

3 3 .0029

4 4 .0042

X wave

Point
Number Value (V)

yWave 0 3.74

1 4.59

2 4.78

3 5.89

4 5.66

Y wave

Point
Number Value (s)

xWave 0 0.0

1 .0013

2 .0021

3 .0029

4 .0042

X wave

5.5

5.0

4.5

4.0

V

43210
ms

Chapter II-5 — Waves

II-80

Making Waves
You can make waves by:
• Loading data from a file
• Typing or pasting in a table
• Using the Make operation (via a dialog or directly from the command line)
• Using the Duplicate operation (via a dialog or directly from the command line)

Most people start by loading data from a file. Igor can load data from text files. In this case, Igor makes a
wave for each column of text in the file. Using external operations, Igor can also load data from binary files
or application-specific files created by other programs. For information on loading data from files, see
Chapter II-9, Importing and Exporting Data.

You can enter data manually into a table. This is recommended only if you have a small amount of data.
See Using a Table to Create New Waves on page II-197.

To synthesize data with a mathematical expression, you would start by making a wave using the Make
operation (see page V-411). This operation is also often used inside an Igor procedure to make waves for
temporary use.

The Duplicate operation (see page V-149) is an important and handy tool. Many built-in operations trans-
form data in place. Thus, if you want to keep your original data as well as the transformed copy of it, use
Duplicate to make a clone of the original.

Wave Names
All waves in Igor have names so that you can reference them from commands. You also use a wave’s name
to select it from a list or pop-up menu in Igor dialogs or to reference it in a waveform assignment statement.

You need to choose wave names when you use the Make, Duplicate or Rename operations via dialogs,
directly from the command line, and when you use the Data Browser.

All names in Igor are case insensitive; wave0 and WAVE0 refer to the same wave.

The rules for the kind of characters that you can use to make a wave name fall into two categories: standard
and liberal. Both standard and liberal names are limited to 31 characters in length.

Standard names must start with an alphabetic character (A - Z or a-z) and may contain alphabetic and
numeric characters and the underscore character only. Other characters, including spaces, dashes and peri-
ods, are not allowed. We put this restriction on standard names so that Igor can identify them unambigu-
ously in commands, including waveform assignment statements.

Liberal names, on the other hand, can contain any character except control characters (such as tab or car-
riage return) and the following four characters:

" ' : ;

Standard names can be used without quotation in commands and expressions but liberal names must be
quoted. For example:
Make wave0; wave0 = p // wave0 is a standard name
Make 'wave 0'; 'wave 0' = p // 'wave 0' is a liberal name

Igor can not unambiguously identify liberal names in commands unless they are quoted. For example, in
wave0 = miles/hour

miles/hour could be a single wave or it could be the quotient of two waves.

Chapter II-5 — Waves

II-81

To make them unambiguous, you must enclose liberal names in single straight quotes whenever they are
used in commands or waveform arithmetic expressions. For example:
wave0 = 'miles/hour'
Display 'run 98', 'run 99'

Warning: Some Igor procedures and extensions written prior to Igor Pro 3.0 will not work on objects with
liberal names. Providing for liberal names requires extra effort and testing on the part of Igor
programmers (See Programming with Liberal Names on page IV-151). We recommend that you
avoid using liberal names until you understand the potential problems and how to solve them.

See Object Names on page III-417 for a discussion of object names in general.

Number of Dimensions
Waves can consist of one to four dimensions. You determine this when you make a wave. You can change it
using the Redimension operation (see page V-583). See Chapter II-6, Multidimensional Waves for details.

Number Type and Precision
Each numeric wave has a numeric type and a numeric precision. You can set a wave’s type and precision
when you make it. You can change it using the Redimension operation (see page V-583) or the Redimen-
sion dialog. The numeric type can be real or complex.

Not all operations and functions work on complex waves. Also, when you use a complex wave in a real
number expression you will get an error message. See Example: Complex Wave Calculations on page II-98
for more information.

This table shows the numeric precisions available in Igor.

For most work, single precision waves are appropriate.

Single precision waves take up half the memory and disk space of double precision. With the exception of
the FFT, Igor uses double precision for all calculations regardless of the numeric precision of the source
wave. However, the narrower dynamic range and smaller precision of single precision is not appropriate
for all data. If you are not familiar with numeric errors due to limited range and precision, it is safer to use
double precision for analysis.

Integer waves are intended for data acquisition purposes and are not intended for use in analysis. See
Integer Waves on page II-102 for details.

Precision Type Range Bytes per Point

double floating point 10-324 to 10+307 (~15 decimal digits) 8

single floating point 10-45 to 10+38 (~7 decimal digits) 4

signed integer integer -2,147,483,647 to 2,147,483,648 4

signed word integer -32,768 to 32,767 2

signed byte integer -128 to 127 1

unsigned integer integer 0 to 4,294,967,295 4

unsigned word integer 0 to 65,535 2

unsigned byte integer 0 to 255 1

Chapter II-5 — Waves

II-82

Default Wave Properties
When you create a wave using the Make operation (see page V-411) operation with no optional flags, it has
the following default properties.

These are the key wave properties. For a comprehensive list of properties, see Complete List of Wave Prop-
erties on page II-104.

If you make a wave by loading it from a file or by typing in a table, it has the same default properties except
for the number of points.

However you make waves, you should use the Change Wave Scaling dialog to set their X scaling and units.

It is possible to change the default wave properties using the SetScale operation (see page V-640).

Make Operation
Most of the time you will probably make waves by loading data from a file (see Chapter II-9, Importing and
Exporting Data), by entering it in a table (see Using a Table to Create New Waves on page II-197), or by
duplicating existing waves (see Duplicate Operation on page II-86).

The Make operation is used for making new waves. See the Make operation (see page V-411) for additional
details.

Here are some reasons to use Make:
• To make waves to play around with.
• For plotting mathematical functions.
• To hold the output of analysis operations.
• To hold miscellaneous data, such as the parameters used in a curve fit or temporary results within

an Igor procedure.

The Make Waves dialog provides an interface to the Make operation. To use it, choose Make Waves from
the Data menu.

Property Default

Number of points 128

Precision single

X scaling x0=0, dx=1 (point scaling)

X units blank

Data units blank

Select for complex waves,
deselect for real.

Chapter II-5 — Waves

II-83

You can make 1 to 8 waves with this dialog. You can use it any number of times to create as many waves
as your memory will hold. It is most often used to create 1D numeric waves but can also create multidimen-
sional waves and text waves.

Waves have a definite number of points. Unlike a spreadsheet program which automatically ignores blank
cells at the end of a column, there is no such thing as an “unused point” in Igor. You can change the number
of points in a wave using the Redimension Waves dialog or the Redimension operation (see page V-583).

The “Overwrite existing waves” option is useful when you don’t know or care if there is a wave with the
same name as the one you are about to make.

Make Operation Examples
Make coefs for use in curve fitting:
Make/O coefs = {1.5, 2e-3, .01}

Make a wave for plotting a math function:
Make/O/N=200 test; SetScale x 0, 2*PI, test; test = sin(x)

Make a 2D wave for image or contour plotting:
Make/O/N=(20,20) w2D; w2D = (p-10)*(q-10)

Make a text wave for a category plot:
Make/O/T quarters = {"Q1", "Q2", "Q3", "Q4"}

It is often useful to make a clone of an existing wave. Don’t use Make for this. Instead use the Duplicate
operation (see page V-149).

Make/O does not preserve the contents of a wave and in fact will leave garbage in the wave if you change
the number of points, numeric precision or numeric type. Therefore, after doing a Make/O you should not
assume anything about the wave’s contents. If you know that a wave exists, you can use the Redimension
operation instead of Make. Redimension does preserve the wave’s contents (however, see the Redimension
operation (see page V-583)).

Waves and the Miscellaneous Settings Dialog
The state of the precision items in the Make Waves and Load Waves dialogs, and the way Igor Binary waves
are loaded (whether they are copied or shared) are preset with the Miscellaneous Settings dialog using the
Data Loading Settings category; see Miscellaneous Settings on page III-413.

Changing Dimension and Data Scaling
When you make a 1D wave, it has default X scaling, X units and data units. You should use the SetScale
operation (see page V-640) to change these properties.

The Change Wave Scaling dialog provides an interface to the SetScale operation. To use it, choose Change
Wave Scaling from the Data menu.

Chapter II-5 — Waves

II-84

Scaled dimension indices can represent ordinary numbers, dates, times or date&time values. In the most
common case, they represent ordinary numbers and you can leave the Units Type pop-up menu in the Set
X Properties section of the dialog on its default value: Numeric.

If your data is waveform data, you should enter the appropriate Start and Delta X values. If your data is XY
data, you should enter 0 for Start and 1 for Delta. This results in the default “point scaling” in which the X
value for a point is the same as the point number.

Normally you should leave the Set X Properties and Set Data Properties checkboxes selected. Deselect one
of them if you want the dialog to generate commands to set only X or only Data properties. When working
with multidimensional data, the X of Set X Properties can be changed to Y, Z or T via the pop-up menu. See
Chapter II-6, Multidimensional Waves.

If you want to observe the properties of a particular wave, double-click it in the list or select the wave and
then click the From Wave button. This sets all of the dialog items according to that wave’s properties.

Igor uses the dimension and data Units to automatically label axes in graphs. Igor can handle units consisting
of 49 characters or less. Typically, units should be short, standard abbreviations such as “m”, “s”, or “g”. If
your data has more complex units, you can enter the complex units or you may prefer to leave the units blank.

If you click More Options, Igor will display some additional items in the dialog. These items add some con-
venience but also tend to obscure the critical purpose of the dialog. With the additional options, the dialog
looks like this:

Units for the data
values.

Units for the selected
dimension.

Specifies the dimension for
which scaling is to be set.

Specifies a scaled
dimension index
(e.g., X value) from
an element number
(e.g., row number).

Adds optional
items to the dialog.

Select waves here. Shift-click
to select multiple waves.

Click to transfer wave properties to dialog settings.

Chapter II-5 — Waves

II-85

In spite of the fact that there is only one way of calculating X values, there are three ways you can specify
the x0 and dx values. The SetScale Mode pop-up menu changes the meaning of the scaling entries above.
The simplest way is to simply specify x0 and dx directly. This is the Start and Delta mode in the dialog and
is the only way of setting the scaling unless you click the More Options button. As an example, if you have
data that was acquired by a digitizer that was set to sample at 1 MHz starting 150 µs after t=0, you would
enter 150E-6 for Start and 1E-6 for Delta.

The other two ways of specifying X scaling are to set the starting and ending X values are and to calculate
dx from the number of points. In the Start and End mode you specify the X value of the last data point.
Using the Start and Right mode you specify the X at the end of the last interval. For example, assuming our
digitizer (above) created a 100 point wave, we would enter 150E-6 as Start for either mode. If we selected
the Start and End mode we would enter 249E-6 for End (150E-6 + 99*1E-6). If we selected Start and Right
we would enter 250E-6 for Right.

The min and max entries allow you to set a property of a wave called its “data full scale”. This property
doesn’t serve a critical purpose. Igor does not use it for any computation or graphing purposes. It is merely
a way for you to document the conditions under which the wave data was acquired. For example, if your
data comes from a digital oscilloscope and was acquired on the ±10v range, you could enter -10 for min and
+10 for max. When you make waves, both of these will initially be set to zero. If your data has a meaningful
data full scale, you can set them appropriately. Otherwise, leave them zero.

The data units, on the other hand are used for graphing purposes, just like the dimension units.

Date, Time, and Date&Time Units
The units “dat” are special, specifying that the scaled dimension indices or data values of a wave contain
date, time, or date&time information.

If you have waveform data then set the X units of your waveform to "dat".

If you have XY data then set the data units of your X wave to "dat". In this case your X wave must be double-
precision floating point in order to have enough precision to represent dates accurately.

Chapter II-5 — Waves

II-86

For example, if you have a waveform that contains some quantity measured once per day, you would set
the X units for the wave to “dat”, set the starting X value to the date on which the first measurement was
done, and set the Delta X value to one day. Choosing Date from the Units Type pop-up menu sets the X
units to “dat”. You can enter the starting value as a date rather than as a number of seconds since 1/1/1904,
which is how Igor represents dates internally. When Igor graphs the waveform, it will notice that the X units
are “dat” and will display dates on the X axis.

If instead of a waveform, you have an XY pair, you would set the data units of the X wave to “dat”, by
choosing Date from the Units Type pop-up menu in the Set Data Properties section of the dialog. When you
graph the XY pair, Igor will notice that the X wave contains dates and will display dates on the X axis.

The Units Type pop-up menus do not correspond directly to any property of a wave. That is, a wave doesn’t
have a units type property. Instead, these menus merely identify what kind of values you are dealing with
so that the dialog can display the values in the appropriate format.

For further discussion of how Igor represents dates, see Date/Time Waves on page II-102.

For information on dates and times in tables, see Date/Time Formats on page II-218.

For information on dates and times in graphs, see Date/Time Axes on page II-280.

Duplicate Operation
Duplicate is a handy and frequently-used operation. It can make new waves that are exact clones of existing
waves. It can also clone a section of a wave and thus provides an easy way to break a big wave up into
smaller waves.

Here are some reasons to use Duplicate:
• To hold the results of a transformation (e.g. integration, differentiation, FFT) while preserving the

original data.
• To hold the “destination” of a curve fit.
• For holding temporary results within an Igor procedure.
• To extract a section of a wave.

The Duplicate Waves dialog provides an interface to the Duplicate operation (see page V-149). To use it,
choose Duplicate Waves from the Data menu.

The cursors button is used in conjunction with a graph. You can make a graph of your template wave. Then
put the cursors on the section of the template that you want to extract. Choose Duplicate Waves from the
Data menu and click the cursors button. Then click Do It. This clones the section of the template wave iden-
tified by the cursors.

Select to show only those
waves used in the target
window.

Select the source wave here.

Valid names start with
a letter and contain
only letters, numbers
or underscores.

Use the Range
controls to clone a
section of a wave.

Select a data folder, if present.

Chapter II-5 — Waves

II-87

People sometimes make the mistake of using the Make operation when they should be using Duplicate. For
example, the destination wave in a curve fit must have the same number of points, numeric type and
numeric precision as the source wave. Duplicating the source wave insures that this will be true.

Duplicate Operation Examples
Clone a wave and then transform the clone:
Duplicate/O wave0, wave0_d1; Differentiate wave0_d1

Use Duplicate to inherit the properties of the template wave:
Make/N=200 wave0; SetScale x 0, 2*PI, wave0; wave0 = sin(x)
Duplicate wave0, wave1; wave1 = cos(x)

Make a destination wave for a curve fit:
Duplicate/O data1, data1_fit
CurveFit gauss data1 /D=data1_fit

Compare the first half of a wave to the second:
Duplicate/O/R=[0,99] data1, data1_1
Duplicate/O/R=[100,199] data1, data1_2
Display data1_1, data1_2

We often use the /O flag (overwrite) with Duplicate because we don’t know or care if a wave already exists
with the new wave name.

Killing Waves
The KillWaves operation (see page V-363) removes waves from the current experiment. This releases the
memory used by the waves. Waves that you no longer need clutter up lists and pop-up menus in dialogs.
By killing them, you reduce this clutter.

Here are some situations in which you would use KillWaves:
• You are finished examining data that you loaded from a file.
• You are finished using a wave that you created for experimentation.
• You no longer need a wave that you created for temporary use in an Igor procedure.

The Kill Waves dialog provides an interface to the KillWaves operation. To use it, choose Kill Waves from
the Data menu.

Chapter II-5 — Waves

II-88

Igor will not let you kill waves that are used in graphs, tables or user defined functions so they do not
appear in the list.

Note: Igor can not tell if a wave is referenced from a macro. Thus, Igor will let you kill a wave that is
referenced from a macro but not used in any other way. The most common case of this is when
you close a graph and save it as a recreation macro. Waves that were used in the graph are now
used only in the macro and Igor will let you kill them. If you execute the graph recreation macro,
it will be unable to recreate the graph.

KillWaves can delete the Igor Binary file from which a wave was loaded, called the “source file”. This is
normally not necessary because the wave you are killing either has never been saved to disk or was saved
as part of a packed experiment file and therefore was not loaded from a standalone file.

The “Kill all waves not in use” option is intended for those situations where you have created an Igor exper-
iment that contains procedures which load, graph and process a batch of waves. After you have processed
one batch of waves, you can kill all graphs and tables and then kill all waves in the experiment in prepara-
tion for loading the next batch. This affects only those waves in the current data folder; waves in any other
data folders will not be killed.

KillWaves Operation Examples
Here are some simple examples using KillWaves. See also the “Kill Waves” procedure file in the “WaveM-
etrics Procedures” folder.
// Kills all target windows and all waves.
// Does not kill nontarget windows (procedure and help windows).
Function KillEverything()

String windowName

do
windowName = WinName(0, 1+2+4+16+64)// Get next target window
if (CmpStr(windowName, "") == 0) // If name is ""

break // we are done so break loop
endif
DoWindow/K $windowName // Kill this target window

while (1)

KillWaves/A // Kill all waves
End

Chapter II-5 — Waves

II-89

// This illustrates killing a wave used temporarily in a procedure.
Function/D Median(w) // Returns median value of wave w

Wave w

Variable result

Duplicate/O w, temp // Make a clone of wave
Sort temp, temp // Sort clone
result = temp[numpnts(temp)/2]

KillWaves temp // Kill clone

return result
End

Browsing Waves
The Data Browser (Data menu) lets you see what waves (as well as strings and variables) exist at any given
time. It also lets you see what data folders exist and set the current data folder. The Data Browser is
described in detail in Chapter II-8, Data Folders. Note that the Data Browser is an external code module
(XOP) and will not be available if you have removed it from the Igor Extensions folder.

The Browse Waves dialog (also in the Data menu) lets you examine wave properties, such as the number
of points, numeric type, X scaling and wave note.

You can use the Browse Waves dialog to:
• Inspect the properties of your waves.
• Edit the wave note (arbitrary text that Igor stores with each wave).
• Move waves between memory and disk files.
Note: Use the Relocate to File button with care. This button can create a situation in which your

experiment depends on files stored separately from the experiment. This causes problems if you
move the experiment to another computer because you must also move the separate files. See
Chapter II-3, Experiments, Files and Folders for further explanation.

Controls the waves shown in the list. You can browse waves in
memory or from any symbolic path in the current experiment.

Determines the folder
used by the Save and
Relocate buttons.

Saves the wave in its own file,
and removes the wave from the
current experiment.

Saves a copy of the wave into
a file. The wave remains in
the current experiment.

Saves the wave in
its own file. The
wave remains in
the current
experiment.

You can inspect
or edit the wave
note here.

Select the wave
to inspect.

The wave’s
properties.

Chapter II-5 — Waves

II-90

The wave type shown in the Type field is abbreviated as follows:

Most often this dialog is used to check the X scaling of or number of points in a wave. It is also often used
to inspect or edit the wave note. See Using the Wave Note on page II-102 for details.

The Save and Kill button is useful in certain situations involving data acquisition. For example, when you
are repeating the same experiment many times under different conditions, you can document the condi-
tions in the wave note and then archive the wave in a data folder for later analysis.

The Path pop-up menu includes a “_default_” item in addition to all the symbolic paths that are defined in
the current experiment. The “_default_” item represents the path containing the file the wave was originally
loaded from (if any) or the experiment’s “home folder”.

The pop-up menu above the wave list determines what waves appear in the list. Normally, you will leave this
set to In Memory and the list will display only those waves that are in the current data folder of the current exper-
iment. The From Target item displays only those waves in the current data folder and in the target graph or table.

The other items in the pop-up are the names of symbolic paths that exist in the current experiment. If you
select one of these items, the list displays unpacked Igor Binary wave files stored in the path and the buttons
at the bottom of the dialog change.

Note: The “Load it” button has the same potential pitfall as described above for the Relocate to File button.
If you use this, your experiment will depend on the standalone Igor Binary file that you loaded.

Abbreviation Description

SP single precision floating point

DP double precision floating point

INT32 32 bit signed integer

INT16 16 bit signed integer

INT8 8 bit signed integer

UINT32 32 bit unsigned integer

UINT16 16 bit unsigned integer

UINT8 8 bit unsigned integer

CMPLX complex

Loads the wave from the
selected Igor binary file into
the current experiment.

You can inspect the wave
note but you can’t modify it
because the wave is not in
memory.

When you select a symbolic
path here the list displays
waves stored in Igor binary
files in that path.

Chapter II-5 — Waves

II-91

Renaming Waves
You can rename a wave using:
• The Data Browser
• The Rename dialog (Data menu)
• The Rename operation from the command line

The Rename operation (see page V-589) renames waves as well as other objects.

Here are some reasons for renaming waves:
• You have loaded a bunch of waves from a file and Igor auto-named the waves.
• You have decided on a naming convention for waves and you want to make existing waves follow

the convention.
• You are about to load a set of waves whose names will be the same as existing waves and you want

to get the existing waves out of the way but still keep them in memory. (You could also achieve this
by moving them to a new data folder.)

To use the Rename operation, choose Rename from the Data menu. This brings up the Rename Objects dialog.

Redimensioning Waves
Redimension can change the following properties of a wave:
• The number of dimensions in the wave.
• The number of elements in each dimension.
• The numeric precision (e.g., single to double).
• The numeric type (e.g., real to complex).

The Redimension Waves dialog provides an interface to the Redimension operation (see page V-583). To
use it, choose Redimension Waves from the Data menu.

Controls the type of
object to be renamed.

Select a wave here.

Enter the new
name here.

Chapter II-5 — Waves

II-92

When Redimension adds new elements to a wave, it sets them to zero for a numeric wave and to blank for
a text wave.

The following commands illustrate two ways of changing the numeric precision of a wave. Redimension
preserves the contents of the wave whereas Make does not.
Make/N=5 wave0=x
Edit wave0
Redimension/D wave0 // This preserves the contents of wave0.
Make/O/D/N=5 wave0 // This does not.

See Vector (Waveform) to Matrix Conversion on page II-113 for information on converting a 1D wave into
a 2D wave while retaining the data (i.e., reshaping).

You cannot change a wave from numeric to text or vice versa. The following examples illustrate how you
can make a text copy of a numeric wave and a numeric copy of a text wave:
Make/N=10 numWave = p
Make/T/N=(numpnts(numWave)) textWave = num2str(numWave)
Make/N=(numpnts(textWave)) numWave2 = str2num(textWave)

However, you can lose precision because num2str prints with only 6 digits of precision.

Inserting Points
There are two ways to insert new points in a wave. You can do this by:
• Using the InsertPoints operation.
• Typing or pasting in a table.

This section deals with the InsertPoints operation (see page V-347). For information on typing or pasting
in a table, see Chapter II-11, Tables.

Using the InsertPoints operation, you can insert new data points at the start, in the middle or at the end of
a 1D wave. You can also insert new elements in multidimensional waves. For example, you can insert new
columns in a 2D matrix wave. The inserted values will be 0 for a numeric wave and "" for a text wave.

Make all wave properties
match the selected wave or
property.

Select wave from list.

Edit wave dimensions in
boxes.

Chapter II-5 — Waves

II-93

The Insert Points dialog provides an interface to the InsertPoints operation. To use it, choose Insert Points
from the Data menu.

If the value that you enter for first point is greater than the number of elements in the selected dimension
of a selected wave, the new points are added at the end of the dimension. InsertPoints can change the
dimensionality of a wave. For example, if you insert a column in a 1D wave, you end up with at 2D wave.

If the top window is a table at the time that you select Insert Points, Igor will preset the dialog items based
on the selection in the table.

Deleting Points
There are two ways to delete points from a wave. You can do this by:
• Using the DeletePoints operation.
• Doing a cut in a table.

This section deals with the DeletePoints operation (see page V-125). For information on cutting in a table,
see Chapter II-11, Tables.

Using the DeletePoints operation, you can delete data points from the start, middle or end of a 1D wave.
You can also delete elements from multidimensional waves. For example, you can delete columns from a
2D matrix wave.

The Delete Points dialog provides an interface to the DeletePoints operation. To use it, choose Delete Points
from the Data menu.

If the value that you enter for first point is greater than the number of elements in the selected dimension
of a selected wave, DeletePoints will do nothing to that wave. If the number of elements is too large, Delete-
Points will delete from the specified first element to the end of the dimension. For multidimensional waves,
if you delete all but one element of a given dimension, the wave is changed to a lower dimensionality. For
example, if you have a 3D wave and delete all but one layer, you are left with a 2D wave.

Select to list only
those waves in the
top graph or table.

New points will be
inserted in front of
the point specified
here.

Select waves.

Enter the first point
to be deleted.

Select waves.

Select to list only
those waves in the
top graph or table.

Chapter II-5 — Waves

II-94

If the top window is a table at the time that you choose Delete Points, Igor will preset the dialog items based
on the selection in the table.

Waveform Arithmetic and Assignments
Waveform arithmetic is the most flexible and powerful part of Igor’s analysis capability. You can write
assignment statements that work on an entire wave or on a subset of a wave much as you would write an
assignment to a single variable in a standard programming language.

This section deals with waveform arithmetic on 1D waves. See also Multidimensional Wave Assignment
on page II-111.

In a wave assignment, a wave appears on the left side and a mathematical expression appears on the right
side. Here are some examples.
wave0 = sin(x)
wave0 = log(wave1/wave2)
wave0[0,99] = wave1[100 + p]

A wave on the left side is called the destination wave. A wave on the right side is called a source wave.

Usually, source waves have the same number of points and X scaling as the destination wave. In rare cases,
it is useful to write a wave assignment where this is not true. See Mismatched Waves on page II-100 for a
discussion of this.

When Igor executes a wave assignment, it evaluates the expression on the right-hand side one time for each
point in the destination wave. The result of each evaluation is stored in the corresponding point in the des-
tination wave.

During execution, the symbol p has a value equal to the number of the point in the destination wave which
is being evaluated and the symbol x has a value equal to the X value at that point. The X value for a given
point is determined by the number of the point and the X scaling for the wave. To see this, try the following:
Make/N=5 wave0; SetScale/P x 0, .1, wave0; Edit wave0.xy
wave0 = p
wave0 = x

The first assignment sets the value of each point of wave0 to the point number. The second assignment sets
the value of each point of wave0 to the X value for that point.

In Igor Pro 3.0, we extended Igor from one dimension to multiple (up to 4) dimensions. Just as the symbol p
returns the current element number in the rows dimension, the symbols q, r and s return the current element
number in the columns, layers and chunks dimensions. The symbol x in the rows dimension has analogs y, z
and t in the columns, layers and chunks dimensions. See Chapter II-6, Multidimensional Waves, for details.

A source wave returns its data value at the point being evaluated. In the example
wave0 = log(wave1/wave2)

Igor evaluates the right-hand expression once for each point in wave0. During each evaluation of the
expression, wave1 and wave2 return their data values at the point being evaluated.

The right-hand expression is evaluated in the context of the data folder containing the destination wave.
See Data Folders and Assignment Statements on page II-126 for details.

This command sequence illustrates some of these ideas.
Make/N=200 wave1, wave2 // 2 waves, 200 points each
SetScale/P x, 0, .05, wave1, wave2 // set X values from 0 to 10
Display wave1, wave2 // create a graph of waves
wave1 = sin(x) // assign values to wave1
wave2 = wave1 * exp(-x/5) // assign values to wave2

Chapter II-5 — Waves

II-95

Since wave1 has 200 points, the wave assignment wave1=sin(x) evaluates sin(x) 200 times, once for
each point in wave1. The first point of wave1 is point number 0 and the last point of wave1 is point number
199. The symbol p, not used in this example, goes from 0 to 199. The symbol x steps through the 200 X values
for wave1 which start from 0 and step by .05, as specified by the SetScale command. The result of each eval-
uation is stored in the corresponding point in wave1, making wave1 about 1.5 cycles of a sine wave.

Since wave2 also has 200 points, the wave assignment wave2=wave1*exp(-x/5) evaluates
wave1*exp(-x/5) 200 times, once for each point in wave2. In this assignment, the right-hand expression
contains a wave, wave1. As Igor executes the assignment, p goes from 0 to 199. Each of the 200 times the
right side is evaluated, wave1 returns its data value for the corresponding point. The result of each evalu-
ation is stored in the corresponding point in wave2 making wave2 about 1.5 cycles of a damped sine wave.

The effect of a wave assignment is to set the data values of the destination wave. Igor does not remember
the functional relationship implied by the assignment. In this example, if you changed wave1, wave2 would
not change automatically. If you wanted wave2 to have the same functional relationship to wave1 as it had
before you changed wave1, you would have to reexecute the wave2=wave1*exp(-x/5) assignment.

There is a special kind of wave assignment that does establish a functional relationship. See Wave Depen-
dency Formulas on page II-101 for details.

In Igor Pro 6.1 or later, you can use multiple processors to execute a waveform assignment statement that
takes a long time. See Automatic Parallel Processing with MultiThread on page IV-289 for details.

Indexing and Subranges
Igor provides two ways to refer to a specific point or range of points in a 1D wave: X value indexing and
point number indexing. Consider the following examples.
wave0(54) = 92 // sets wave0 at X=54 to 92
wave0[54] = 92 // sets wave0 at point 54 to 92
wave0(1,10) = 92 // sets wave0 from X=1 to X=10 to 92
wave0[1,10] = 92 // sets wave0 from point 1 to point 10 to 92

Parentheses specify the range start and end values in terms of X. It is the equivalent of using brackets with the
x2pnt function to translate X values to point numbers. Brackets index the wave in terms of point number —
the number or numbers inside the parentheses are in terms of point numbers of the indexed wave. If the wave
has point scaling then these two methods have identical effects. However, if you set the X scaling of the wave
to other than point scaling then these commands behave differently. In both cases the range is inclusive.

You can specify not only a range but also a point number increment. For example:
wave0[0,98;2] = 1 // sets even numbered points in wave0 to 1
wave0[1,99;2] = -1 // sets odd numbered points in wave0 to -1

The number after the semicolon is the increment. Igor begins at the starting point number and goes up to
and including the ending point number, skipping by the increment. At each resulting point number, it eval-
uates the right-hand side of the wave assignment and sets the destination point accordingly. Increments can
also be used when you specify a range in terms of X value but the increment is always in terms of point
number. For example:
wave0(0,100;5) = PI // sets wave0 at specified X values to PI

1.0

0.5

0.0

-0.5

-1.0

1086420

wave2 = wave1 * exp(-x/5)

wave1 = sin(x)

Chapter II-5 — Waves

II-96

Here, Igor starts from the point number corresponding to x = 0 and goes up to and including the point
number that corresponds to x = 100. The point number is incremented by 5 at each iteration.

You can take some shortcuts in specifying the range of a destination wave. The subrange start and end
values can both be missing. When the start is missing, point number zero is used and when the end is miss-
ing, the last point of the wave is assumed. You can also use a * character to specify the last point. A missing
increment value defaults to a single point.

Here are some examples that illustrate these shortcuts:
wave0[,50] = 13 // sets wave0 from point 0 to point 50
wave0[51,] = 27 // sets wave0 from point 51 to last point
wave0[, ;2] = 18.7 // sets every even point of wave0
wave0[1,*;2] = 100 // sets every odd point of wave0

A subrange of a destination wave may consist of a single point or a range of points but a subrange of a
source wave must consist of a single point. In other words the wave assignment:
wave1(4,5) = wave2(5,6) // Illegal!

is not legal. In this assignment, x ranges from 4 to 5. You can get the desired effect using:
wave1(4,5) = wave2(x+1) // OK!

By virtue of the range specified on the left hand side, x goes from 4 to 5. Therefore, x+1 goes from 5 to 6 and
the right-hand expression returns the values of wave2 from 5 to 6.

If, in specifying a subrange, you use an X value that is out of range, Igor clips it to the closest valid X value.
For example, the smallest X value of our sample waves is zero because of the X scaling that we assigned to
them. If you use wave1(-0.5) Igor clips the -0.5 to 0 and therefore returns wave1(0). Future versions
of Igor may regard this as an error so you should avoid using invalid subranges.

Interpolation in Wave Assignments
If you specify a fractional point number or an X value that falls between two data points, Igor will return a
linearly interpolated data value. For example, wave1[1.75] returns the value of wave1 3/4 of the way from
the data value of point 1 to the data value of point 2. This interpolation is done only for one-dimensional
waves. See Multidimensional Wave Assignment on page II-111, for information on assignments with mul-
tidimensional data.

This is a very powerful feature. Imagine that you have an evenly spaced calibration curve, called calibra-
tion, and you want to find the calibration values at a specific set of X coordinates as stored in a wave called
xData. If you have set the X scaling of the calibration wave, you can do the following:
Duplicate xData, yData
yData = calibration(xData)

This uses the interpolation feature of Igor’s wave assignment to find a linearly-interpolated value in the cal-
ibration wave for each X coordinate in the xData wave.

Lists of Values
You can assign values to a wave or to a subrange of a wave using a list of values. For example:
wave0 = {1, 3, 5} // sets length of wave0 to three

// and sets Y values to 1, 3, 5
wave0[10]= {1, 3, 5} // sets points 10 through 12 to 1, 3, 5

In these examples, {1, 3, 5} is a list of values.

If, in the second example, wave0 had less than 10 points, it would have been automatically extended with
zeros before setting points 10 through 12.

Chapter II-5 — Waves

II-97

Wave Initialization
From Igor’s command line, you can make a wave and initialize it with a single command, as illustrated in
the following examples:
Make wave0=sin(p/8) // wave0 has default number of points
Make coeffs={1,2,3} // coeffs has just three points

Example: Normalizing Waves
When comparing the shape of multiple waves you may want to normalize them so that the share a common
range. For example:

// Create some sample data
Make waveA = 3*sin(x/8)
Make waveB = 2*sin(pi/16 + x/8)

// Display the waves
Display waveA, waveB
ModifyGraph rgb(waveB)=(0,0,65535)

// Normalize the waves
Variable aMin = WaveMin(waveA)
Variable bMin = WaveMin(waveB)
waveA -= aMin
waveB -= bMin
Variable aMax = WaveMax(waveA)
Variable bMax = WaveMax(waveB)
waveA /= aMax
waveB /= bMax

Note the use of the temporary variables aMin and bMin. They are needed for two reasons. First, if we wrote
waveA -= WaveMin(waveA), then WaveMin would be called once for each point in waveA, which would
be a waste of time. Worse than that, the minimum value in waveA would change during the course of the
waveform assignment statement, giving incorrect results.

There are sometimes faster ways to do waveform arithmetic. For large waves, the FastOp and MatrixOp
operations provide increased speed:

waveA -= aMin // FastOp does not support wave-variable
FastOp waveA = (1/aMax) * waveA

MatrixOp/O waveA = waveA - aMin
MatrixOp/O waveA = waveA / aMax

Example: Converting XY Data to Waveform Data
There are some times when it is desirable to convert XY data to uniformly spaced waveform data. For exam-
ple, the Fast Fourier Transform requires uniformly spaced data. If you have measured XY data in the time
domain, you would need to do this conversion before doing an FFT on it.

We can make some sample XY data as follows:
Make/N=1024 xWave, yWave
xWave = 2*PI*x/1024 + gnoise(.001)
yWave = sin(xwave)

xWave has values from 0 to 2π with a bit of noise in them. Our data is not uniformly spaced in the x dimen-
sion but it is monotonic — always increasing, in this case. If it were not monotonic we could sort the XY pair.

Chapter II-5 — Waves

II-98

We can create a waveform representing our XY data as follows:
Duplicate ywave, wave0
SetScale x 0, 2*PI, wave0
wave0 = interp(x, xwave, ywave)

The SetScale command sets the scaling of wave0 so that its X values run from 0 to 2π. Its data values are
generated by picking a value off the curve represented by ywave versus xwave at each of these X values
using linear interpolation.

See Converting XY Data to a Waveform on page III-118 for more information. It illustrates how to use cubic
spline instead of linear interpolation. Also, see the WM Procedures Index help file, which you will find
under the Windows→Help Windows menu. This help file provides an index of standard easy-to-use pro-
cedures that deal with XY data. These procedures can be accessed by simply copying a single line and
pasting it into the procedure window.

Example: Concatenating Waves
Concatenating waves can be done much more easily using the Concatenate operation (see page V-65). This
simple example serves mainly to illustrate a use of wave assignments.

Suppose we have three waves of 100 points each: wave1, wave2 and wave3. We want to create a fourth wave,
wave4, which is the concatenation of the three original waves. Here is the sequence of commands to do this.
Make/N=300 wave4
wave4[0,99] = wave1[p] // set first third of wave4
wave4[100,199] = wave2[p-100] // set second third of wave4
wave4[200,299] = wave3[p-200] // set last third of wave4

In this example, we use a subrange of wave4 as the destination of our wave assignments. The right-hand
expressions index the appropriate values of wave1, wave2 and wave3. Remember that p ranges over the
points being evaluated in the destination. So, p ranges from 0 to 99 in the first assignment, from 100 to 199
in the second assignment and from 200 to 299 in the third assignment. In each of the assignments, the wave
on the right-hand side has only 100 points, from point 0 to point 99. Therefore, we index the wave on the
right-hand side to pick out the 100 values of that wave.

Example: Decomposing Waves
Here is a another example that illustrates a use of wave assignments. Suppose we have a 300 point wave,
wave4, that we want to decompose into three waves of 100 points each: wave1, wave2 and wave3. Here is
the sequence of commands to do this.
Make/N=100 wave1,wave2,wave3
wave1 = wave4[p] // get first third of wave4
wave2 = wave4[p+100] // get second third of wave4
wave3 = wave4[p+200] // get last third of wave4

In this example, we use a subrange of wave4 as the source of our data. We index the desired segment of
wave4 using point number indexing. Since wave1, wave2 and wave3 each have 100 points, p ranges from
0 to 99. In the first assignment, we access points 0 to 99 of wave4. In the second assignment, we access points
100 to 199 of wave4. In the third assignment, we access points 200 to 299 of wave4.

You could also use the Duplicate operation (see page V-149) to make a wave from a section of another wave.

Note that the wave assignment wave1=wave4 does not copy the first 100 points of wave4 to wave1 because
wave4 has more points than wave1. This is described in the section Mismatched Waves on page II-100.

Example: Complex Wave Calculations
Igor includes a number of built-in functions for manipulating complex numbers and complex waves. These
are illustrated in the following examples.

Chapter II-5 — Waves

II-99

Here, we make a time domain waveform and do an FFT on it to generate a complex wave. The examples
show how to pick out the real and imaginary part of the complex wave, how to find the sum of squares and
how to convert from rectangular to polar representation. For more information on frequency domain pro-
cessing, see Chapter III-9, Signal Processing.
// first, make a time domain waveform
Make/O/N=1024 wave0
SetScale x 0, 1, "s", wave0 // goes from 0 to 1 second
wave0=sin(2*PI*x)+sin(6*PI*x)/3+sin(10*PI*x)/5+sin(14*PI*x)/7
Display wave0 as "Time Domain"

// now, do FFT
Duplicate/O wave0, cwave0 // get copy to do FFT on
FFT cwave0 // cwave0 is now complex
cwave0 /= 512;cwave0[0] /= 2 // normalize amplitude
Display cwave0 as "Frequency Domain";SetAxis bottom, 0, 25

// calculate magnitude and phase
Make/O/N=513 mag0, phase0, power0 // these are real waves
CopyScales cwave0, mag0, phase0, power0
mag0 = real(r2polar(cwave0))
phase0 = imag(r2polar(cwave0))
phase0 *= 180/PI // convert to degrees
Display mag0 as "Magnitude and Phase";AppendToGraph/R phase0
SetAxis bottom, 0, 25
Label left, "Magnitude";Label right, "Phase"

// calculate power spectrum
power0 = magsqr(cwave0)
Display power0 as "Power Spectrum";SetAxis bottom, 0, 25

Example: Comparison Operators and Wave Synthesis
The comparison operators ==, >=, >, <= and < can be useful in synthesizing waves. Imagine that you want to
set a wave so that its data values all equal -π for x<0 and +π for x>=0. The following wave assignment accom-
plishes this:
wave1 = -pi*(x<0) + pi*(x>=0)

This works because the conditional statements return 1 when the condition is TRUE and 0 when it is FALSE,
and then the multiplication proceeds.
You can also make such assignments using the conditional operator (see Operators on page IV-5):
wave0 = (x>0) ? pi : -pi

A series of impulses can be made using the mod function and ==. This wave equation will assign 5 to every
tenth point starting with point 0, and 0 to all the other points:
wave1 = (mod(p,10)==0)*5

Example: Wave Assignment and Indexing Using Labels
A useful, and almost entirely overlooked, feature of dimension labels is that such labels can be used to refer to
wave values by a meaningful name. Thus, for example, you can create a wave to store coefficient values and
directly refer to these values by the name of the coefficient (e.g., coef[%Friction]) instead of a potentially confus-
ing and less meaningful numeric index (e.g., coef[1]). You can also view the wave values and labels in a table.

You create wave labels using the SetDimLabel operation (see page V-627); more details can be found under
Dimension Labels on page II-109. Label names may be up to 31 characters in length; if you use liberal
names, such as those containing spaces, make certain to enclose these names within single quotation marks.

In this example we create a wave and use the FindPeak operation (see page V-192) to get peak parameters
of the wave. Next we create an output parameter wave with appropriate labels and then assign the Find-
Peak results to the output wave using the labels.

Chapter II-5 — Waves

II-100

// Make a wave and get peak parameters
Make test=sin(x/30)
FindPeak/Q test

// Create a wave with appropriate row labels
Make/N=6 PeakResult
SetDimLabel 0,0,'Peak Found', PeakResult
SetDimLabel 0,1,PeakLoc, PeakResult
SetDimLabel 0,2,PeakVal, PeakResult
SetDimLabel 0,3,LeadingEdgePos, PeakResult
SetDimLabel 0,4,TrailingEdgePos, PeakResult
SetDimLabel 0,5,'Peak Width', PeakResult

// Fill PeakResult wave with FindPeak output variables
PeakResult[%'Peak Found'] =V_flag
PeakResult[%PeakLoc] =V_PeakLoc
PeakResult[%PeakVal] =V_PeakVal
PeakResult[%LeadingEdgePos] =V_LeadingEdgeLoc
PeakResult[%TrailingEdgePos]=V_TrailingEdgeLoc
PeakResult[%'Peak Width'] =V_PeakWidth

// Display the PeakResult values and labels in a table
Edit PeakResult.ld

In addition to the method illustrated above, you can also create and edit dimension labels by displaying the
wave in a table and showing the dimension labels with the data. See Showing Dimension Labels on page
II-193 for further details on using tables with labels.

Mismatched Waves
For most applications you will not need to mix waves of different lengths. In fact, doing this is more often
the result of a mistake than it is intentional. However, if your application requires mixing you will need to
know how Igor handles this.

Let’s consider the case of assigning the value of one wave to another with a command such as
wave1 = wave2

In this assignment, there is no explicit indexing, so Igor evaluates the expression as if you had written:
wave1 = wave2[p]

If wave2 has more points than wave1, the extra points have no effect on the assignment since p ranges from
0 to n-1, where n is the number of points in wave1.

If wave2 has fewer points than wave1 then Igor will try to evaluate wave2[p] for values of p greater than
the length of wave2. In this case, it simply returns the value of the last point in wave2.

It may be that you actually want the values in wave1 to span the values in wave2 by interpolating between
values in wave2. To get Igor to do this, you must explicitly index the appropriate X values on the right side.
For instance, if you have two waves of different lengths, you can do this:
big = small[p*(numpnts(small)-1)/(numpnts(big)-1)]

Of course, if you know how many points are in each wave, you can simply type the correct number rather
than typing out “numpnts(small)-1” and “numpnts(big)-1”.

NaNs, INFs and Missing Values
The data value of a point in a floating point numeric wave is normally a finite number but can also be a NaN
or an INF. NaN means “not a number”. An expression returns the value NaN when it makes no sense math-
ematically. For example, log(-1) returns the value NaN. You can also set a point to NaN, using a table or
a wave assignment, to represent a missing value. An expression returns the value INF when it makes sense
mathematically but has no finite value. log(0) returns the value -INF.

Chapter II-5 — Waves

II-101

The IEEE floating point standard defines the representation and behavior of NaN values. There is no way
to represent a NaN in an integer wave. If you attempt to store NaN in an integer wave, you will store a
garbage value.

Comparison operators do not work with NaN parameters because, by definition, NaN compared to any-
thing, even another NaN, is false. Use numtype to test if a value is NaN.

Igor ignores NaNs and INFs in curve fit and wave statistics operations. NaNs and INFs have no effect on
the scaling of a graph. When plotting, Igor handles NaNs and INFs properly, as missing and infinite values
respectively.

Igor does not ignore NaNs and INFs in many other operations, especially those that are DSP related such
as FFT. In general, any operation that numerically combines all or most of the data points from a wave will
give meaningless results if one or more points is a NaN or INF. Notable examples include the area and
mean functions and the Integrate and FFT operations. Some operations that only mix a few points such as
Smooth and Differentiate will “contaminate” only those points in the vicinity of the NaN or INF. You can
use the Interpolate operation (Analysis menu) to create a NaN-free version of a wave.

The “Remove Points” procedure file provides a user- function for removing NaNs from a wave. See the WM
Procedures Index help file, which you will find under the Windows→Help Windows menu, for informa-
tion on how to access it.

If you get NaNs from functions such as area or mean or operations such as Convolve or any other functions
or operations that sum points in waves, it indicates that some of the points in the wave are NaN. If you get
NaNs from curve-fitting results, it indicates that Igor’s curve fitting has failed. See Curve Fitting Trouble-
shooting on page III-233 for troubleshooting tips.

See Dealing with Missing Values on page III-121 for techniques for dealing with NaNs.

Strange Cases
You may get unexpected results if the destination of a wave assignment also appears in the right-hand
expression. Consider these examples:
wave1 -= wave1(5)
wave1 -= vcsr(A) // where cursor A is on wave1

Each of these examples is an attempt to subtract the value of wave1 at a particular point from every point
in wave1. This will not work as expected because the value of wave1 at that particular point is altered
during the assignment. At some point in the assignment, wave1(5) or vcsr(A) will return 0 since the value
at that point in wave1 will have been subtracted from itself.

You can get the desired result by using a variable to store the value of wave1 at the particular point.
K0 = wave1(5); wave1 -= K0
K0 = vcsr(A); wave1 -= K0

Wave Dependency Formulas
You can cause a wave assignment to “stick” to the wave by substituting “:=” for “=” in the statement. This
causes the wave to become dependent upon the objects referenced in the expression. For example:
K0 = 5
wave1 := sin(x/K0) // Note ":="
Display wave1

If you now execute “K0 = 8” you will see the wave automatically update. Similarly if you change the wave’s
X scaling using the SetScale operation (see page V-640), the wave will be automatically recalculated for the
new range of X values.

See Chapter IV-9, Dependencies, for further discussion.

Chapter II-5 — Waves

II-102

Using the Wave Note
One of the properties of a wave is the wave note. This is just some plain text that Igor stores with each wave.
The note is empty when you create a wave. There is no limit on its length.

You can inspect and edit a wave note using the Browse Waves dialog. You can set or get the contents of a wave
note from an Igor procedure using the Note operation (see page V-505) or the note function (see page V-505).

You can see part of a wave note for a wave displayed in a graph or table by pressing the Command-Option-
Control (Macintosh) or Shift+F1 (Windows) and then clicking the wave.

Originally we thought of the wave note as a place for an experimenter to store informal comments about a
wave and it is fine for that purpose. However, over time both we and many Igor users have found that the
wave note is also a handy place to store additional, user-defined properties of a wave in a structured way.
These additional properties are editable using the Browse Waves dialog but they can also be used and
manipulated by procedures.

To do this, you store keyword-value pairs in the wave note. For example, a note might look like this:
CELLTYPE:rat hippocampal neuron;
PATTERN:1VN21;
TREATMENT:PLACEBO;

You could then write Igor functions to set or retrieve the CELLTYPE, PATTERN and TREATMENT prop-
erties of a wave. Using these functions you can write other procedures to, for example, display all waves
whose TREATMENT property is PLACEBO in a graph.

You can use functions in the “Keyword-Value” procedure file to manipulate keyword-value strings. See the
WM Procedures Index help file, which you will find under the Windows→Help Windows menu, for infor-
mation on how to access the functions.

Integer Waves
Igor provides support for integer waves primarily to aid in data acquisition projects. They allow people
who are interfacing with hardware to write/read directly into integer waves. This allows for slightly quicker
live display and also saves the XOP writer from having to convert integers to floating point. Integer waves
are also appropriate for storing images. Aside from memory considerations there is no other reason to use
integer waves. You might expect that wave assignment statements would evaluate more quickly when an
integer wave is the destination. This is not the case, however, because Igor still uses floating point for the
assignment and only converts to integer for storage.

Note: Behavior on under/over-flow is undefined.

Date/Time Waves
Dates are represented in Igor date format - as the number of seconds since midnight, January 1, 1904. Dates
before that are represented by negative values. There is no practical limit to the range of dates that can be
represented except that on Windows dates must be greater than January 1, 1601.

A date can not be accurately stored in the data values of a single precision or integer wave. Make sure to
use double precision to store dates and times.

You must set the data units of a wave containing date or date/time data to "dat". This tells Igor that the wave
contains date/time data and affects the default display of axes in graphs and columns in tables.

The following example illustrates the use of date/time data. First we create some date/time data and view
it in a table:

Make/D/N=10/O testDate = date2secs(2011,4,p+1)
SetScale d 0, 0, "dat", testDate // Tell Igor this wave stores date/time data

Chapter II-5 — Waves

II-103

Note that we used SetScale d to set the data units of the wave to "dat".

Next we view the wave in a table:

Edit testDate
ModifyTable width(testDate)=120 // Make column wider

The data is displayed as dates but it is stored as numbers - specifically the number of seconds since January
1, 1904. We can see this by changing the column format:

ModifyTable format=1 // Display as integer

Now we return to date format:

ModifyTable format(testDate)=6 // Display as date again

Next we create some time data. This wave will not store dates and therefore does not need to be double-
precision:

Make/N=10/O testTime = 3600*p // Data is stored in seconds
AppendToTable testTime

Now we create a date/time wave by adding the time data to the date data. Since this wave will store dates
it must be double-precision and must have "dat" data units. We accomplish this by using the Duplicate
operation to duplicate the original date wave:

Duplicate/O testDate, testDateTime
AppendToTable testDateTime
ModifyTable width(testDateTime)=120 // Make wider

Igor displays the date/time wave in date format because it has "dat" units. We now change the column
format to date/time:

ModifyTable format(testDateTime)=8 // Set column to date/time format

Finally, we add the time:

testDateTime = testDateTime + testTime // Add time to date

To check the data type of your waves, choose Data→Browse Waves. The data type shown for date/time
waves should be DP (double-precision). If not, use Data→Redimension Waves to redimension as DP.

So far we have looked at storing dates in the data of a wave. Typically such a date wave is used to supply
the X wave of an XY pair. More rarely, you might want to store date data in the X values of a wave treated
as a waveform. For example:

Make/N=100 wave0 = sin(p/8)
SetScale/P x date2secs(2011,4,1), 60*60*24, "dat", wave0
Display wave0
Edit wave0.id; ModifyTable format(wave0.x)=6

Here the SetScale command is used to set the X scaling and units of the wave, not the data units as before.
In this case, the wave does not need to be double-precision because Igor always calculates X values using
double-precision regardless of the wave's data type.

Text Waves
Text waves are just like numeric waves except they contain bits of text rather than numbers. Like numeric
waves, text waves can have one to four dimensions.

To create a text wave:
• Type anything but a number into the first unused cell of a table.

Chapter II-5 — Waves

II-104

• Import data from a delimited text file that contains nonnumeric columns.
• Use the Make operation with the /T flag.

You can use the Make Waves dialog to generate text waves by choosing Text from the Type pop-up menu.
Most often you will create text waves by entering text in a table. See Using a Table to Create New Waves
on page II-197 for more information.

You can store anything in an element of a text wave. There is no length limit and there are no illegal char-
acters. You can edit text waves in a table or assign values to the elements of a text wave using a command-
line assignment statement.

You can use text waves in category plots, to automatically label individual data points in a graph (use
markers mode and choose a text wave via the marker pop-up menu) and for storing notes in a table. Pro-
grammers may find that text waves are handy for storing a collection of diverse data, such as inputs to or
outputs from a complex Igor procedure.

Here is how you can create and initialize text waves on the command line:
Make/T textwave= {"first element","2nd and last element"}

To see the text wave, create a table:
Edit textWave

Now you can try some wave assignments and see the result in the table:
textWave[2] = {"third element"}
textWave += "*"
textWave = "*" + textwave

Programmer Notes
Appending to a text wave is much faster than inserting or changing existing text. If you are going to replace
all the text in an existing text wave it may be faster to kill the existing text by setting the number of points
to zero using the command:
Redimension/N=0 textwave

You can then use the Redimension command again to set the number of points back to the desired value
before storing new data.

In user-defined functions you can let the compiler know a wave will be text by using the /T flag in conjunc-
tion with the Wave keyword.

Complete List of Wave Properties
Here is a complete list of the properties that Igor stores for each wave.

Property Comment

Name Used to reference the wave from commands and dialogs.
1 to 31 characters. Standard names start with a letter. May contain letters,
numbers or underscores.
Liberal names may contain almost any character but must be enclosed in
single quotes. See Wave Names on page II-80.
The name is assigned when you create a wave. You can use the Rename
operation (see page V-589) to change it.

Numeric type Real or complex.
Set when you create a wave.
Use the Redimension operation (see page V-583) to change it.

Chapter II-5 — Waves

II-105

Numeric precision Defines the range of numbers that the wave can hold.
Set when you create a wave.
Use the Redimension operation (see page V-583) to change it.

Length Number of data points in the wave. Also, size of each dimension for
multidimensional waves.
Set when you create a wave.
Use the Redimension operation (see page V-583) to change it.

X scaling (x0 and dx) Used to compute X values from point numbers. Also Y, Z and T scaling for
multidimensional waves.
The X value for point p is computed as X = x0 + p*dx.
Set by SetScale operation (see page V-640).

X units Used to auto-label axes. Also Y, Z and T units for multidimensional waves.
Set by SetScale operation (see page V-640).

Data units Used to auto-label axes.
Set by SetScale operation (see page V-640).

Data full scale For documentation purposes only. Not used.
Set by SetScale operation (see page V-640).

Note Holds arbitrary text related to wave.
Set by Note operation (see page V-505) or via Browse Waves dialog.
Readable via note function (see page V-505).

Dimension labels Holds short (31 character) label for each dimension index and for each
dimension. See Dimension Labels on page II-109.

Dependency Formula Holds right-hand expression if wave is dependent.
Set when you execute a dependency assignment using := or the SetFormula
operation (see page V-634).
Cleared when you do an assignment using plain =.

Creation date/time Date & time when wave was created.

Modification date/time Date & time when wave was last modified.

Lock Wave lock state. A locked wave can not be modified.
Set by SetWaveLock operation (see page V-646).

Source folder Identifies folder containing wave’s source file, if any.

File name Name of wave’s source file, if any.

Property Comment

Chapter II-5 — Waves

II-106

Chapter

II-6
II-6Multidimensional Waves

Overview.. 108
Creating Multidimensional Waves... 108
Programmer Notes.. 109
Dimension Labels ... 109
Graphing Multidimensional Waves... 110
Analysis on Multidimensional Waves ... 110
Multidimensional Wave Indexing.. 111
Multidimensional Wave Assignment .. 111
Vector (Waveform) to Matrix Conversion... 113
Matrix to Matrix Conversion... 113
Multidimensional Fourier Transform .. 114
Treating Multidimensional Waves as 1D .. 114

Chapter II-6 — Multidimensional Waves

II-108

Overview
Chapter II-5, Waves, concentrated on one-dimensional waves consisting of a number of rows. In Chapter
II-5, Waves, the rows were referred to as “points” and the symbol p stood for row number, which was called
“point number”. Scaled row numbers were called X values and were represented by the symbol x.

This chapter now extends the concepts from Chapter II-5, Waves, to allow waves having up to four dimen-
sions by adding the column, layer and chunk dimensions. The symbols q, r and s stand for column, layer
and chunk numbers. Scaled column, layer and chunk numbers are called Y, Z and T values and are repre-
sented by the symbols y, z and t.

We call a two-dimensional wave a “matrix”; it consists of rows (the first dimension) and columns (the
second dimension). After two dimensions the terminology becomes a bit arbitrary. We call the next two
dimensions “layers” and “chunks”.

Here is a summary of the terminology:

Historical Note: Prior to Igor Pro 3.0, we used the term Y values to signify the values stored in a (one-dimen-
sional) wave. We now call these “D values” or “data values” and use the term “Y” for the columns dimen-
sion. You may find that in places we still refer to “Y values” when we really mean data values.

Creating Multidimensional Waves
Multidimensional waves can be created using the following extension to the Make operation:
Make/N=(nrows,ncols,nlayers,nchunks) waveName

The Redimension operation has been extended in the same way.

Examples:
Make/N=20 wave1

Makes a conventional (1D) wave with 20 points (rows).
Make/N=(20,3) wave2d

Makes a matrix (2D) wave with 20 rows and 3 columns for a total of 60 points.
Redimension/N=(10,4) wave1,wave2d

Changes both wave1 and wave2d so they have 10 rows and 4 columns.

The operations InsertPoints and DeletePoints take a flag (/M=dimensionNumber) to specify the dimension
into which points are inserted. For example:
InsertPoints/M=1 2,5,wave2d //M=1 means column dimension

inserts 5 new columns in front of column number 2. If the “/M=1” had been omitted or if /M=0 had been
used then 5 new rows would have been inserted in front of row number 2.

You can also create multidimensional waves using the Make operation with a list of data values. For exam-
ple, while
Make wave1= {1,2,3}

creates a conventional 1D wave containing a single column of 3 rows,

Make wave2= {{1,2,3},{4,5,6}}

Dimension Number 0 1 2 3
Dimension Name row column layer chunk
Dimension Index p q r s
Scaled Dimension Index x y z t

Chapter II-6 — Multidimensional Waves

II-109

creates a 2D wave containing 2 columns by 3 rows of data.

The Duplicate operation can create an exact copy of a multidimensional wave or, using the /R flag, extract
a subrange. Here is the syntax of the /R flag:
Duplicate/R=[startRow,endRow][startCol,endCol] and so on...

You can use the character * for any end field to specify the last element in the given dimension or you can
just omit the end field. You can also specify just [] to include all of a given dimension. If the source wave
has more dimensions than you specify in the /R flag, then all of those dimensions are copied. Examples:
Make/N=(5,4,3) wave3d= p+10*q+100*r
Duplicate/R=[1,2][2,*] wave3d,wave3d1

duplicates rows 1 through 2, columns 2 through the end and all layers.
Duplicate/R=[][2,2][0,0] wave3d,wave3d2

creates a 3D wave consisting of all rows of column 2 layer 0 and containing 1 column and 1 layer. Igor con-
siders wave3d2 to be a 3 dimensional wave and not a 1 dimensional column vector because the column and
layer dimension numbers are not zero. This is a subtle distinction and can cause confusion. For example,
you may think you have extracted a 1D wave from a 3D object but you will find that wave3d2 will not show
up in the new graph dialog or other places where 1D vectors are required.

You can turn the 3D wave wave3d2 into a 1D wave using the following command:
Redimension/N=(-1,0) wave3d2

The -1 value does not to change the number of rows whereas the 0 value for the number of columns indi-
cates that there are no dimensions past rows (in other words, no columns, layers or chunks).

Programmer Notes
For historical reasons, you can treat the symbols x and p like global variables, meaning that you can store
into them as well as retrieve their values by referencing them. Unlike x and p, y, z, t, q, r and s act like func-
tions and you can’t store into them.

The command “SetScale d” sets the data full scale and data units for a wave. Prior to Igor Pro 3.0, we used
“SetScale y” for this purpose. With the extension of Igor to multiple dimensions, “SetScale y” was needed
for setting the column dimension scaling and units. For backward compatibility “SetScale y” acts like “Set-
Scale d” when used on a 1D wave.

Here are some functions and operations that are useful in programming with multidimensional waves:
DimOffset, DimDelta, DimSize
FindDimLabel, SetDimLabel, GetDimLabel

Dimension Labels
A dimension label is a name associated with a dimension or with an index into an element of a dimension.
Dimension labels are primarily an aid to the Igor procedure programmer when dealing with waves in
which certain elements have distinct purposes. Dimension labels can be set when loading from a file, and
can be displayed, created or edited in a table (see Showing Dimension Labels on page II-193).

You can give names to individual dimension indices in multidimensional or 1D waves. For example, if you
have a 3 column wave, you can give column 0 the name “red”, column 1 the name “green” and column 2
the name “blue”. You can use the names in wave assignments in place of literal numbers. To do so, you use
the % symbol in front of the name like so:
my3dwave[][%red]=my3dwave[p][%green] //Set red col equal to green col

To create a label for a given index of a given dimension, use the SetDimLabel operation.

Chapter II-6 — Multidimensional Waves

II-110

For example:
SetDimLabel 1,0,red,my3dwave

The 1 is the dimension number (columns), 0 is the dimension index (column #0) and red is the label.

The function GetDimLabel returns a string containing the name associated with a given dimension and
index. For example:
Print GetDimLabel(my3dwave,1,0)

prints “red” into the history area.

The FindDimLabel function returns the index value associated with the given label. It returns the special
value -2 if the label is not found. This function is useful in user-defined functions so that you can use a
numeric index instead of a dimension label when accessing a wave in a loop. Accessing wave data using a
numeric index is faster than using a dimension label.

In addition to setting the name for individual dimension index values, you can set the name for an entire
dimension by using an index value of -1. For example:
SetDimLabel 1,-1,colors,my3dwave

Dimension names can contain up to 31 characters and may contain spaces and other normally illegal char-
acters if you surround the name in single quotes or if you use the $ operator to convert a string expression
to a name. For example:
wavename[%'a name with spaces']
wavename[%$"a name with spaces"]

Dimension names have the same characteristics as object names. See Object Names on page III-417 for a
discussion of object names in general.

Graphing Multidimensional Waves
You can easily view two-dimensional waves as images and as contour plots using Igor’s built-in operations.
See Chapter II-14, Contour Plots, and Chapter II-15, Image Plots, for further information about these types
of graphs. You can also create waterfall plots where each column in the matrix wave corresponds to a sep-
arate trace in the waterfall plot. For more details, see Waterfall Plots on page II-300.

Additional facilities for displaying multi-dimensional waves in Igor Pro are provided by the Gizmo extension,
which create surface plots, slices through volumes and many other 3D plots. To get started with Gizmo,
choose Windows→New→3D Plots→3D Help.

It is possible to graph a subset of a wave, including graphing rows or columns from a multidimensional
wave. The New Graph dialog supports graphing subsets, and allows selection of 2D waves if the More
Choices button is clicked. See Subrange Display on page II-292 for more information.

Analysis on Multidimensional Waves
Igor Pro includes the following capabilities for analysis of multidimensional data:
• Multidimensional waveform arithmetic
• Matrix math operations
• Image processing
• Multidimensional Fast Fourier Transform
There are many analysis operations for 1D data that we have not yet extended to support multiple dimensions.
Multidimensional waves will not appear in dialogs for these operations. If you invoke them on multidimensional
waves from the command line or from an Igor procedure, Igor will treat the multidimensional waves as if they
were 1D. For example, the Smooth operation will treat a 2D wave consisting of n rows and m columns as if it were
a 1D wave with n*m rows. In some cases the operation will be useful. In other cases, it will make no sense.

Chapter II-6 — Multidimensional Waves

II-111

Multidimensional Wave Indexing
You can use multidimensional waves in wave expressions and assignment statements just as you do with 1D
waves (see Indexing and Subranges on page II-95). To specify a particular point in a wave, use the syntax:
wavename[rowIndex][columnIndex][layerIndex][chunkIndex]

Similarly, to specify a point using scaled dimension indices, use the syntax:
wavename(xIndex)(yIndex)(zIndex)(tIndex)

rowIndex is the number, starting from zero, of the row of interest. It is an unscaled index. xIndex is simply
the row index, offset and scaled by the wave’s X scaling property, which you set using the SetScale opera-
tion (Change Wave Scaling in Data menu). Using scaled indices you can access the wave’s data using its
natural units. You can use unscaled or scaled indices, whichever is more convenient. column/y, layer/z and
chunk/t indices are analogous to row/x indices.

Using [] notation specifies that the index that you are supplying is an unscaled dimension index. Using () nota-
tion specifies that you are supplying a scaled dimension index. You can even mix the [] notation with () notation.

Here are some examples:
Make/N=(5,4,3) wave3d= p+10*q+100*r
SetScale/I x,0,1,"" wave3d
SetScale/I y,-1,1,"" wave3d
SetScale/I z,10,20,"" wave3d
Print wave3d[0][1][2]
Print wave3d(0.5)[2](15)

The first Print command prints 210, the value in row 0, column 1 and layer 2. The second Print command
prints 122, the value in row 2 (where x=0.5), column 2 and layer 1 (where z=15).

Since wave3D has three dimensions, we do not (and must not) specify a chunk (4th dimension) index.

There is one important difference between wave access using 1D waves versus multidimensional waves.
For 1D waves alone, Igor performs linear interpolation when the specified index value (scaled or unscaled)
falls between two points. For multidimensional waves, Igor returns the value of the element whose indices
are closest to the specified indices.

When a multidimensional wave is the destination of a wave assignment statement, you can specify a sub-
range for each dimension. You can specify an entire dimension by using []. For example:
wave3d[2][][1,2]= 3

sets row 2 of all columns and layers 1 and 2 to the value 3.

Note that indexing of the form [] (entire dimension) or [1,2] (range of a dimension) can be used on the left
hand side only. This is because the indexing on the left side determines which elements of the destination
are to be set whereas indexing on the right side identifies a particular element in the source which is to con-
tribute to a particular value in the destination.

Multidimensional Wave Assignment
As with one-dimensional waves (waveform data), you can assign a value to a multidimensional wave using
a wave assignment statement.
Make/O/N=(3,3) wave0_2D, wave1_2D, wave2_2D
wave1_2D = 1.0; wave2_2D = 2.0
wave0_2D = wave1_2D / wave2_2D

The last command sets all elements of wave0_2D equal to the quotient of the corresponding elements of
wave1_2D and wave2_2D.

Chapter II-6 — Multidimensional Waves

II-112

Important: Wave assignments as shown in the above example where waves on the right hand side do not
include explicit indexing are defined only when all waves involved have the same dimensionality. The
result of the following assignment is undefined and may produce surprising results.
Make/O/N=(3,3) wave33
Make/O/N=(2,2) wave22
…
wave33= wave22

Whenever waves of mismatched dimensionality are used you should specify explicit indexing as described here.

In a wave assignment, Igor evaluates the right hand side one time for each element specified by the left hand
side. During this evaluation, the symbols p, q, r and s take on the value of the row, column, layer and chunk,
respectively, of the element in the destination for which a value is being calculated. So,
Make/O/N=(5,4,3) wave3D = 0
Make/O/N=(5,4) wave2d = 999
wave3D[][][0] = wave2D[p][q]

stores the contents of wave2D in layer 0 of wave3D. In this case, the destination (wave3D) has three dimen-
sions, so p, q and r are defined and s is undefined. The following discussion explains this assignment and
presents a way of thinking about wave assignments in general.

The left hand side of the assignment specifies that Igor is to store a value into all rows (the first []) and all
columns (the second []) of layer zero (the [0]) of wave3D. For each of these elements, Igor will evaluate the
right hand side. During the evaluation, the symbol p will return the row number of the element in wave3D
that Igor is about to set and the symbol q will return the column number. The symbol r will have the value
0 during the entire process. Thus, the expression wave2D[p][q] will return a value from wave2D at the cor-
responding row and column in wave3D.

As the preceding example shows, wave assignments provide a way of transferring data between waves.
With the proper indexing, you can build a 2D wave from multiple 1D waves or a 3D wave from multiple
2D waves. Conversely, you can extract a layer of a 3D wave into a 2D wave or extract a column from a 2D
wave into a 1D wave. Here are some examples that illustrate these operations.
// Build a 2D wave from multiple 1D waves (waveforms)
Make/O/N=5, wave0=p, wave1=p+1, wave2=p+2 // 1D waveforms
Make/O/N=(5,3) wave0_2D
wave0_2D[][0] = wave0[p] // Store into all rows, column 0
wave0_2D[][1] = wave1[p] // Store into all rows, column 1
wave0_2D[][2] = wave2[p] // Store into all rows, column 2

// Build a 3D wave from multiple 2D waves
Duplicate/O wave0_2D, wave1_2D; wave1_2D *= -1
Make/O/N=(5,3,2) wave0_3D
wave0_3D[][][0]= wave0_2D[p][q] // Store into all rows/cols, layer 0
wave0_3D[][][1]= wave1_2D[p][q] // Store into all rows/cols, layer 1

// Extract a layer of a 3D wave into a 2D wave
wave0_2D = wave0_3D[p][q][0] // Extract layer 0 into 2D wave

// Extract a column of a 2D wave into a 1D wave
wave0 = wave0_2D[p][0] // Extract column 0 into 1D wave

To understand assignments like these, first figure out, by looking at the indexing on the left hand side,
which elements of the destination wave are going to be set. (If there is no indexing on the left then all ele-
ments are going to be set.) Then think about the range of values that p, q, r and s will take on as Igor eval-
uates the right hand side to get a value for each destination element. Finally, think about how these values,
used as indices on the right hand side, select the desired source element.

To create such an assignment, first determine the indexing needed on the left hand side to set the elements of
the destination that you want to set. Then think about the values that p, q, r and s will take on. Then use p, q,
r and s as indices to select a source element to be used when computing a particular destination element.

Chapter II-6 — Multidimensional Waves

II-113

Here are some more examples:
// Extract a ROW of a 2D wave into a 1D wave
Make/O/N=3 row1
row1 = wave0_2D[1][p] // Extract row 1 of the 2D wave

In this example, the row index (p) for the destination is used to select the source column while the source row
is always 1.
// Extract a horizontal slice of a 3D wave into a 2D wave
Make/O/N=(2,3) slice_R2 // Slice consisting of all of row 2
slice_R2 = wave0_3D[2][q][p] // Extract row 2, all columns/layers

In this example, the row data for slice_R2 comes from the layers of wave0_3D because the p symbol (row
index) is used to select the layer in the source. The column data for slice_R2 comes from the columns of
wave0_3D because the q symbol (column index) is used to select the column in the source. All data comes
from row 2 in the source because the row index is fixed at 2.

You can store into a range of elements in a particular dimension by using a range index on the left hand
side. As an example, here are some commands that shift the horizontal slices of wave0_3D.
Duplicate/O wave0_3D, tmp_wave0_3D
wave0_3D[0][][] = tmp_wave0_3D[4][q][r]
wave0_3D[1,4][][] = tmp_wave0_3D[p-1][q][r]
KillWaves tmp_wave0_3D

The first assignment transfers the slice consisting of all elements in row 4 to row zero. The second assign-
ment transfers slice n-1 to slice n. To understand this, realize that as p goes from 1 to 4, p-1 indexes into the
preceding row of the source.

Vector (Waveform) to Matrix Conversion
Occasionally you will may need to convert between a vector form of data and a matrix form of the same
data values. For example, you may have a vector of 16 data values stored in a waveform named sixteenVals
that you want to treat as a matrix of 8 rows and 2 columns.

Though the Redimension operation normally doesn’t move data from one dimension to another, in the
special case of converting to or from a 1D wave Redimension will leave the data in place while changing
the dimensionality of the wave. You can use the command:
Make/O/N=16 sixteenVals // 1D
Redimension/N=(8,2) sixteenVals // now 2D, no data lost

to accomplish the conversion. When redimensioning from a 1D wave, columns are filled first, then layers,
followed by chunks. Redimensioning from a multidimensional wave to a 1D wave doesn’t lose data, either.

Matrix to Matrix Conversion
To convert a matrix from one matrix form to another, don’t directly redimension it to the desired form. For
instance, if you have a 6x6 matrix wave, and you would like it to be 3x12, you might try:
Make/O/N=(6,6) thirtySixVals //2D
Redimension/N=(3,12) thirtySixVals //this loses the last three rows

but Igor will first shrink the number of rows to 3, discarding the data for the last three rows, and then add
6 columns of zeroes.

The simplest way to work around this is to convert the matrix to a 1D vector, and then convert it to the new
matrix form:
Make/O/N=(6,6) thirtySixVals // 2D
Redimension/N=36 thirtySixVals // 1D vector preserves the data
Redimension/N=(3,12) thirtySixVals // data preserved

Chapter II-6 — Multidimensional Waves

II-114

Multidimensional Fourier Transform
Igor’s FFT and IFFT routines are mixed-radix and multidimensional. Mixed-radix means you do not need
a power of two number of data points (or dimension size). There is only one restriction on the dimensions
of a wave: when performing a forward FFT on real data, the number of rows must be even. Note, however,
that if a given dimension size is a prime number or contains a large prime in its factorization, the speed will
be reduced to that of a normal Discrete Fourier Transform (i.e., the number of operations will be on the
order of N2 rather than N•log(N)). For more information about the FFT, see Fourier Transforms on page
III-237 and the FFT operation on page V-173.

Treating Multidimensional Waves as 1D
Sometimes it is useful to treat a multidimensional wave as if it were 1D. For example, if you want to know
the number of NaNs in a 2D wave, you can pass the wave to WaveStats, even though WaveStats treats its
input as 1D.

In other cases, you need to understand the layout of data in memory in order to treat a multidimensional
wave as 1D.

A 2D wave consists of some number of columns. In memory, the data is laid out column-by-column. This
is called "column-major order".

For example, execute:

Make/N=(2,2) mat = p + 2*q
Edit mat

The wave mat consists of two columns. The first column contains the values 0 and 1. The second column
contains the values 2 and 3.

You can pass this wave to an operation or function that is not multidimensional-aware and it will treat the
wave as if it were one column containing 0, 1, 2, 3. For an example:

Print WaveMax(mat) // Prints 3

Here is an example of using the knowledge of how a multidimensional wave is laid out in memory:

Function DemoMDAs1D()
// Make a 2D wave
Make/O/N=(5,3) mat = p + 10*q
Variable numRows = DimSize(mat,0)

// Find the sum of each column
Variable numColumns = DimSize(mat,1)
Make/O/N=(numColumns) Sums
Sums = sum(mat, p*numRows, (p+1)*numRows-1)
Edit mat, Sums

End

The statement

Sums = sum(mat, p* numRows, (p+1)* numRows-1)

passes the 2D wave mat to the sum function which is not multidimensional-aware. Because sum is not mul-
tidimensional-aware, it requires that we formulate the startX and endX parameters treating mat as if it were
a 1D wave with the data arranged in column-major order (column-after-column).

You can also treat 3D and 4D waves as 1D. In a 3D wave, the data for layer n+1 follows the data for layer n.
In a 4D wave, the data for chunk n+1 follows the data for chunk n.

Chapter

II-7
II-7Numeric and String Variables

Overview.. 116
Creating Global Variables.. 116
Uses For Global Variables.. 116
Variable Names ... 116
System Variables ... 116
User Variables ... 117

Special User Variables .. 117
Numeric Variables ... 117
String Variables .. 118
Local and Parameter Variables in Procedures .. 119

Chapter II-7 — Numeric and String Variables

II-116

Overview
This chapter discusses the properties and uses of global numeric and string variables. For the fine points of
programming with global variables, see Accessing Global Variables and Waves on page IV-50.

Numeric variables are double precision floating point and can be real or complex. String variables can hold
an arbitrary number of characters. Igor stores all global variables when you save an experiment and restores
them when you reopen the experiment.

Numeric variables or numeric expressions containing numeric variables can be used in any place where literal
numbers are appropriate including as operands in assignment statements and as parameters to operations,
functions or macros (but require parentheses in operation flags, see Reference Syntax Guide on page V-14).

String variables or string expressions can be used in any place where strings are appropriate. String variables can
also be used as parameters where Igor expects to find the name of an object such as a wave, variable, graph, table
or page layout. For details on this see Converting a String into a Reference Using $ on page IV-48.

Creating Global Variables
There are 20 built-in numeric variables (K0 … K19), called system variables, that exist all the time. Igor uses
these mainly to return results from the CurveFit operation. All other variables are user variables. User vari-
ables can be created in one of two ways:
• Automatically in the course of certain operations.
• Explicitly by the user, via the Variable/G and String/G operations.

When you create a variable directly from the command line using the Variable or String operation, it is
always global and you can omit the /G flag. You need /G in Igor procedures to make variables global. The
/G flag has a secondary effect — it permits you to overwrite existing global variables.

Uses For Global Variables
Global variables have two properties that make them useful: globalness and persistence. Since they are
global, they can be accessed from any procedure. This provides an easy way to communicate values from
one procedure to another. Since they are persistent, you can use them to store settings over time.

Variable Names
Variable names consist of 1 to 31 characters. The first character must be alphabetic. The remaining charac-
ters can be alphabetic, numeric or the underscore character. Variable names must not conflict with the
names of other Igor objects, functions or operations. Names in Igor are case insensitive. You can rename a
variable using the Rename operation, or the Rename Objects dialog in the Misc menu. See Object Names
on page III-417 for more information.

System Variables
System variables are built in to Igor. They are mainly provided for compatibility with older versions of Igor
but are sometimes useful as “scratch” variables. You can see a list of system variables and their values by
choosing the Object Status item in the Misc menu.

There are 20 system variables named K0,K1...K19 and one named veclen. The K variables are used by the
curve fitting operations but are otherwise free for your use.

The veclen variable is present for compatibility reasons. In previous versions of Igor, it contained the default
number of points for waves created by the Make operation. This is no longer the case. Make will always create
waves with 128 points unless you explicitly specify otherwise using the /N=(<number of points>) flag.

Chapter II-7 — Numeric and String Variables

II-117

Although the CurveFit operation stores results in the K variables, it does so only for compatibility reasons
and it also creates user variables and waves to store the same results.

However, the CurveFit operation does use system variables for the purpose of setting up initial parameter
guesses if you specify manual guess mode. You can also use a wave for this purpose if you use the
kwCWave keyword. See the CurveFit operation on page V-94.

It is best to not rely on system variables unless necessary. Since Igor writes to them at various times, they
may change when you don’t expect it.

The Data Browser does not display system variables since this tends to obscure the (usually more interest-
ing) user variables.

Note: System variables are stored on disk as single precision values so that they can be read by older
versions of Igor. Thus, you should store values that you want to keep indefinitely in your own
global variables.

User Variables
You can create your own global variables by using the Variable/G (see Numeric Variables on page II-117)
and String/G operations (see String Variables on page II-118). Variables that you create are called “user
variables” whether they be numeric or string. You can browse the global user variables by choosing the Object
Status item in the Misc menu. You can also use the Data Browser window (Data menu) to view your variables.

Global user variables are mainly used to contain persistent settings used by your procedures. They are also
sometimes used to pass results from a macro to the macro that called it.

Special User Variables
In the course of some operations, Igor automatically creates special user variables. For example, the curve
fitting operation creates the user variable V_chisq and others to store various results generated by the
curve fit. The names of these variables always start with the characters “V_” for numeric variables or “S_”
for string variables. The meaning of these variables is documented along with the operations that generate
them in Chapter V-1, Igor Reference.

In addition, Igor sometimes checks for V_ variables that you can create to modify the default operation of
certain routines. For example, if you create a variable with the name V_FitOptions, Igor will use that to
control the CurveFit, FuncFit and FuncFitMD operations. The use of these variables is documented along
with the operations that they affect.

When used inside interpreted procedures (defined using Proc or Macro), V_ and S_ variables are created as
local variables. When used inside compiled procedures (defined using Function), such variables can be local
(but might be global under certain circumstances). See Accessing Variables Used by Igor Operations on
page IV-107 for details.

Numeric Variables
You create numeric user variables by using the Variable command from the command line or in a proce-
dure. The syntax for the Variable command is:
Variable [flags] varName [=numExpr] [,varName [=numExpr]]...

There are three optional flags parameters:
/C specifies complex variable.
/D obsolete. Used in previous versions to specify double precision (now all variables are double precision).
/G specifies variable is to be global and overwrites any existing variable.

The variable is initialized when it is created if you supply the initial value with a numeric expression using
=numExpr. If you create a numeric variable and specify no initializer, it is initialized to zero.

Chapter II-7 — Numeric and String Variables

II-118

You can create more than one variable at a time by separating the names and optional initializers for mul-
tiple variables with a comma.

If used in a procedure, the new variable is local to that procedure unless the /G (global) flag is used. If used
on the command line, the new variable is always global.

Here is an example of a variable creation with initialization:
Variable v1=1.1, v2=2.2, v3=3.3*sin(v2)/exp(v1)

Since the /C flag was not specified, the data type of v1, v2 and v3 is double precision real.

Since the /G flag was not specified, these variables would be global if you invoked the Variable operation
directly from the command line or local if you invoked it in a procedure.

Variable/G varname can be invoked whether or not a variable of the specified name already exists. If it
does exist as a variable, its contents are not altered by the operation unless the operation includes an initial
value for the variable.

To assign a value to a complex variable, use the cmplx() function:
Variable/C cv1 = cmplx(1,2)

You can kill (delete) a global user variable using the Data Browser or the KillVariables operation. The
syntax is:
KillVariables [flags] [variableName [,variableName]...]

There are two optional flags:
/A kills all global variables in the current data folder. If you use /A, omit variableName.
/Z doesn’t generate an error if a global variable to be killed does not exist. To kill all global variables

in the current data folder, use KillVariables/A/Z.

For example, to kill global variable cv1 without worrying about whether it was previously defined, use the
command:
KillVariables/Z cv1

Killing a variable reduces clutter and saves a bit of memory. You can not kill a system variable or local variable.

String Variables
You create user string variables by using a String declaration on the command line or in a procedure. The
syntax is:
String [/G] strName [=strExpr] [,strName [=strExpr]...]

The optional /G flag specifies that the string is to be global, and it overwrites any existing string variable.

The string variable is initialized when it is created if you supply the initial value with a string expression using
=strExpr. If you create a string variable and specify no initializer it is initialized to the empty string ("").

You can create more than one string variable at a time by separating the names and optional initializers for
multiple string variables with a comma.

If used in a procedure, the new string is local to that procedure unless the /G (global) flag is used. If used
on the command line, the new string is always global.

Here is an example of a variable creation with initialization:
String str1 = "This is string 1", str2 = "This is string 2"

Since /G was not used, these strings would be global if you invoked String directly from the command line
or local if you invoked it in a procedure.

Chapter II-7 — Numeric and String Variables

II-119

String/G strName can be invoked whether or not a variable of the given name already exists. If it does
exist as a string, its contents are not altered by the operation unless the operation includes an initial value
for the string.

You can kill (delete) a global string using the Data Browser or the KillStrings operation. The syntax is:
KillStrings [flags] [stringName [,stringName]...]

There are two optional flags:
/A kill all global strings in the current data folder. If you use /A, omit stringName.
/Z doesn’t generate an error if a global string to be killed does not exist. To kill all global strings in the

current data folder, use KillStrings/A/Z.

For example, to kill global string myGlobalString without worrying about whether it was previously
defined, use the command:
KillStrings/Z myGlobalString

Killing a string reduces clutter and saves a bit of memory. You can not kill a local string.

There are a number of functions that return or operate on string expressions. See Strings on page V-10 for
a list. There are also a number of ways to manipulate string variables. See Strings on page IV-12.

Local and Parameter Variables in Procedures
You can create variables in macros and user defined functions as parameters or local variables. These vari-
ables exist only while the macro or function is running. They can not be accessed from outside the macro
or function and do not retain their values from one invocation of the macro or function to the next. See Local
Versus Global Variables on page IV-47 for more information.

Chapter II-7 — Numeric and String Variables

II-120

Chapter

II-8
II-8Data Folders

Overview.. 122
Data Folder Syntax.. 123
Data Folder Operations and Functions.. 124

Data Folders Reference Functions... 125
Data Folders and Commands.. 125

Data Folders and User-Defined Functions... 125
Data Folders and Window Macros .. 125
Data Folders and Assignment Statements ... 126
Data Folders and Controls.. 126

Data Folders and Traces... 127
Using Data Folders ... 127

Hiding Waves, Strings, and Variables .. 127
Separating Similar Data .. 127
Using Data Folders Example.. 128

Problems with Data Folders .. 130
Data Browser ... 130

Current Data Folder .. 131
Display Checkboxes .. 132
Info Checkbox... 132
Plot Checkbox... 132
New Folder Button .. 132
Browse Expt. Button.. 133
Save Copy Button .. 134
Delete Button .. 134
The Preferences Button ... 134
The Execute Cmd Button .. 135
Using the Data Browser Find Dialog .. 135
Programming the Data Browser.. 136
DataBrowser Pop-Up Menu... 136
Other Data Browser Operations .. 136
Data Browser Shortcuts .. 137

Chapter II-8 — Data Folders

II-122

Overview
Using data folders, you can store your data within an experiment in a hierarchical manner. Hierarchical
storage is useful when you have multiple sets of similar data. By storing each set in its own data folder, you
can organize your data in a meaningful way and also avoid name conflicts.

Data folders contain four kinds of data objects:
• Waves
• Numeric variables
• String variables
• Other data folders

Igor’s data folders are very similar to a computer’s hierarchical disk file system except they reside wholly
in memory and not on disk. This similarity can help you understand the concept of data folders but you
should take care not to confuse them with the computer’s folders and files.

Data folders are particularly useful when you conduct several runs of an experiment. You can store the data
for each run in a separate data folder. The data folders can have names like “run1”, “run2”, etc., but the
names of the waves and variables in each data folder can be the same as in the others. In other words, the
information about which run the data objects belong to is encoded in the data folder name, allowing the
data objects themselves to have the same names for all runs. You can write procedures that use the same
wave and variable names regardless of which run they are working on.

Data folders are very handy for programmers who need to create temporary waves during a procedure.
You can create a temporary data folder with a name designed not to conflict with any other Igor object
names and then create waves without having to worry about conflict. When done, you can kill the data
folder and everything it contains with a single command rather than having to kill waves, variables, and
strings. You can also use a data folder to store persistent waves and global variables not intended to be seen
by the end user. As a programmer, you can use nested data folders as a sort of data structure.

All operations in Igor Pro are data-folder aware. On the command line you can specify waves from several
different data folders within one command.

You can use the Data Browser window (Data menu) to see the data folder hierarchy and to set the current
data folder:

You can use the Data Browser not only to see the hierarchy and set the current data folder but also to:
• Create new data folders.
• Move, duplicate, rename and delete objects.
• Browse other Igor experiment files and load data from them into memory.
• Save a copy of data in the current experiment to an experiment file or folder on disk.
• See and edit the contents of variables, strings or waves in the information pane by selecting an object

Current Data Folder.

Path to the Current Data Folder.

Top data folder.

Chapter II-8 — Data Folders

II-123

• See a simple plot of 1D or 2D waves by selecting one wave at a time in the main list while the Plot
pane is visible.

• See a simple plot of a wave while browsing other Igor experiments.
• See variable, string and wave contents by double-clicking their icons.
• See a simple histogram or wave statistics for one wave at a time.

Before using data folders, be sure to read Using Data Folders on page II-127, and Problems with Data
Folders on page II-130.

Programmers should read Programming with Data Folders on page IV-152.

A similar browser is used for wave selection in dialogs. For details see Dialog Wave Browser on page II-183.

Data Folder Syntax
Data folders are named objects like other Igor objects such as waves and variables. Data folder names follow
the same rules as wave names. See Liberal Object Names on page III-417.

Like the Macintosh file system, Igor Pro’s data folders use the colon character (:) to separate components
of a path to an object. This is analogous to Unix which uses / and Windows which uses \. (Reminder: Igor’s
data folders exist wholly in memory while an experiment is open. It is not a disk file system!)

A data folder named “root” always exists and contains all other data folders.

A given object can be specified in a command using:
• A full path
• A partial path
• Just the object name

The object name alone can only be used when the current data folder contains the object.

A full path starts with “root” and does not depend on the current data folder. A partial path starts with “:”
and is relative to the current data folder.

Assume the data folder structure shown below, where the arrow indicates that folder1 is the current data folder.

Each of the following commands creates a graph of one of the waves in this hierarchy:
Display wave2
Display :subfolder1:wave3
Display root:folder1:subfolder1:wave3
Display ::folder2:wave4

The last example illustrates the rule that you can use multiple colons to walk back up the hierarchy: from
folder1 (the current data folder), up one level, then down to folder2 and wave4. Here is another valid (but
silly) example:
Display root:folder1:subfolder1:::folder2:wave4

Chapter II-8 — Data Folders

II-124

Occasionally you will need to specify a data folder itself rather than an object in a data folder. In that case,
just leave off the object name. The path specification should therefore have a trailing colon. However, Igor
will generally understand what you mean if you forget the trailing colon.

If you need to specify the current data folder, you can use just a single colon. For example:
KillDataFolder :

kills the current data folder (and all its contents) and then sets the current data folder to the parent of the
current. Nonprogrammers might prefer to use the Data Browser to delete data folders.

Recall that the $ operator converts a string expression into a single name. Since data folders are named, the
following is valid:
String df1 = "folder1", df2="subfolder1"
Display root:$(df1):$(df2):wave3

This is a silly example but the technique would be useful if df1 and df2 were parameters to a procedure.

Note that parentheses must be used in this type of statement. That is a result of the precedence of $ relative to :.

When used at the beginning of a path, the $ operator works in a special way and can (and must) be used on
the entire path:
String path1 = "root:folder1:subfolder1:wave3"
Display $path1

When liberal names are used within a path, they must be in single quotes. For example:
Display root:folder1:'subfolder 1':'wave 3'
String path1 = "root:folder1:'subfolder 1':'wave 3'"
Display $path1

However, when a simple name is passed in a string, single quotes must not be used:
Make 'wave 1'
String name
name = "'wave 1'" // Wrong.
name = "wave 1" // Correct.
Display $name

Data Folder Operations and Functions
Most people will use the Data Browser (Data menu) to create, view and manipulate data folders. The fol-
lowing operations will be mainly used by programmers, who should read Programming with Data Folders
on page IV-152.
NewDataFolder path
SetDataFolder path
KillDataFolder path
DuplicateDataFolder srcPath, destPath
MoveDataFolder srcPath, destPath
MoveString srcPath, destPath
MoveVariable srcPath, destPath
MoveWave wave, destPath [newname]
RenameDataFolder path, newName
Dir

The following are functions that are used with data folders.
GetDataFolder(mode [, dfr])
CountObjects(pathStr,type)
GetIndexedObjName(pathStr,type,index)
GetWavesDataFolder(wave,mode)

Chapter II-8 — Data Folders

II-125

DataFolderExists(pathStr)
DataFolderDir(mode)

Data Folders Reference Functions
As of Igor Pro 6.1, function programmers can utilize data folder references in place of paths. Data folder
references are lightweight objects that refer directly to a data folder whereas a path, consisting of a sequence
of names, has to be looked up in order to find the actual target folder.

Here are functions that work with data folder references:
GetDataFolder(mode [, dfr])
GetDataFolderDFR()
GetIndexedObjNameDFR(dfr, type, index)
GetWavesDataFolderDFR(wave)
CountObjectsDFR(dfr, type)
DataFolderRefStatus(dfr)
NewFreeDataFolder()
DataFolderRefsEqual(dfr1, dfr2)

For information on programming with data folder references, see Data Folder References on page IV-62.

Data Folders and Commands
Igor normally evaluates commands in the context of the current data folder. This means that, unless qualified
with a path to a particular data folder, object names refer to objects in the current data folder. For example:
Macro MyMacro()

Make wave1
Variable/G myGlobalVariable

EndMacro

creates wave1 and myGlobalVariable in the current data folder. Likewise executing:
WaveStats wave1

creates WaveStats output variables (V_avg, etc.) in the current data folder.

Data Folders and User-Defined Functions
You must exercise some care when accessing global variables from “data-folder ignorant” user-defined
functions. See Accessing Global Variables and Waves on page IV-50 for details.

Data Folders and Window Macros
Window macros are evaluated in the context of the root data folder. Window macros begin with the
Window keyword, as in the example below. Macros that begin with the “Macro” or Proc keywords evaluate
their commands in the context of the current data folder.

Evaluating window macros this way ensures that a window is recreated correctly regardless of the current
data folder, and provides some compatibility with window macros created with prior versions of Igor Pro
which didn’t have data folders.

This means that object names within window macros or functions that don’t explicitly contain a data folder path
refer to objects in the root data folder. This is important when the current data folder is not the root data folder.

For example, given identically named waves organized as follows:

Chapter II-8 — Data Folders

II-126

A window recreation macro for a graph of root:myData (whose tag shows the wave’s data folder) will
resemble the following:

Window Graph0() : Graph
PauseUpdate; Silent 1 // building window...
Display myData // note: no data folder specified
Tag/N=text0/X=21.15/Y=35.00 myData, 50
AppendText/N=text0 "\\{\"%s\",GetWavesDataFolder(TagWaveRef(),0)}"

EndMacro

Observe that myData is referred to in the Display command without its data folder (root:myData would be
the fully qualified name of the wave object). If you change the current data folder to the subfolder and run
the window macro, the resulting graph will be identical because the myData wave in the root data folder
would be graphed.

Window Graph1() : Graph
PauseUpdate; Silent 1 // building window...
String fldrSav= GetDataFolder(1)
SetDataFolder root:subfolder: // note: data folder is specified
Display myData
SetDataFolder fldrSav
Tag/N=text0/X=21.15/Y=35.00 myData, 50
AppendText/N=text0 "\\{\"%s\",GetWavesDataFolder(TagWaveRef(),0)}"

EndMacro

Data Folders and Assignment Statements
Wave and variable assignment statements are evaluated in the context of the data folder containing the
wave or variable on the left-hand side of the statement:
root:subfolder:wave0 = wave1 + var1

is a shorter way of writing the equivalent:
root:subfolder:wave0 = root:subfolder:wave1 + root:subfolder:var1

This rule also applies to dependency formulae which use := instead of = as the assignment operator.

Data Folders and Controls
ValDisplay controls evaluate their value expression in the context of the root data folder.

SetVariable controls remember the data folder in which the controlled global variable exists, and continue
to function properly when the current data folder is different than the controlled variable.

Note: The system variables (K0 through K19) belong to no particular data folder (they are available
from any data folder), and there is only one copy of these variables. If you create a SetVariable
controlling K0 while the current data folder is “aFolder”, and another SetVariable controlling K0
while the current data folder is “bFolder”, they are actually controlling the same K0.

root

subfolder

Chapter II-8 — Data Folders

II-127

See Chapter III-14, Controls and Control Panels, for details about controls.

Data Folders and Traces
You cannot tell by looking at a trace in a graph which data folder it resides in. You could save and examine the
graph window recreation macro. The easiest way to find out what data folder a trace’s wave resides in is to use
the trace info help. On Macintosh, press Command-Option-Control and click on the trace in the graph window.
On Windows, press Shift+F1 to summon context-sensitive help and then click on the trace to get trace info.

Another method is to use the Modify Trace Appearance dialog. When you press and hold down the mouse
button on a trace in the dialog’s Trace list, Igor displays data folder (and X wave) information where the
commands are usually shown:

Using Data Folders
You can use data folders for many purposes, just like you use the folders on your hard disk for organizing
files in many different ways. Here are two common uses of data folders.

Hiding Waves, Strings, and Variables
Sophisticated Igor procedures may need a large number of global variables, strings and waves that aren’t
intended to be directly accessed by the user. The programmer who creates these procedures should keep all such
items within data folders they create with unique names designed not to conflict with other data folder names.

Users of these procedures should leave the current data folder set to the data folder where their raw data
and final results are kept, so that the procedure’s globals and waves won’t clutter up the dialog lists.

Programmers creating procedures should read Programming with Data Folders on page IV-152.

Separating Similar Data
One situation that arises during repeated testing is needing to keep the data from each test “run” separate
from the others. Often the data from each run is very similar to the other runs, and may even have the same
name. Without data folders you would need to choose new names after the first run.

By making one data folder for each test run, you can put all of the related data for one run into each folder.
The data can use identical names, because other identically named data is in different data folders.

Using data folders also keeps the data from various runs from being accidently combined, since only the data in
the current data folder shows up in the various dialogs or can be used in a command without a data folder name.

The Wavemetrics-supplied “Multi-peak Fitting” example experiment’s procedures work this way: they
create data folders to hold separate peak curve fit runs and global state information.

The Data Folder containing
the trace’s wave is shown
here, along with the trace’s
X wave, if any.

Select one trace here.

Chapter II-8 — Data Folders

II-128

Using Data Folders Example
This example will use data folders to:
• load data from two test runs into separate data folders
• create graphs showing each test run by itself
• create a graph comparing the two test runs

First we’ll use the Data Browser to create a data folder for each test run.

Open the Data Browser (in the Data menu), and set the Current Data Folder to root.
Click the root data folder, and click the New Folder button. Enter “Run1” for the new
data folder’s name. Click New Folder again and enter “Run2”. The Data Browser
window should resemble the one shown here.

Now let’s load sample data into each data folder, starting with Run1.

Set the Current Data Folder to Run1, then choose Load Delimited Text from the Data menu’s Load Data
submenu. Select the CSTATIN.ASH file from the Sample Data subfolder of the Learning Aids folder, and
click Open. In the resulting Load Waves dialog, name the loaded wave “rawData”. We will pretend this
data is the result of Run 1. Type “Display rawData” on the command line to graph the data.

Set the Current Data Folder to Run2, and repeat the wave loading steps, selecting the CSTATIN.ASV file
instead. In the resulting Load Waves dialog, name the loaded wave “rawData”. We will pretend this data
is the result of Run 2. Repeat the “Display rawData” command to make a graph of this data.

Notice that we used the same name for the loaded data. No conflict exists
because the other rawData wave is in another data folder. At this point, the
Data Browser should look something like this example (we’ve deselected
Display Variables and Display Strings).

The graphs of our loaded waves look like this:

You can easily make a graph displaying both rawData waves to compare them better. Using the New Graph
dialog, make sure Show Data Folders is selected in the Wave Browsers (see Dialog Wave Browser on page
II-183). You can then select both waves to display in a graph. Alternatively, you can execute two commands
on the Command Line: first execute Display rawData, change the current data folder to Run1, and then
execute AppendToGraph rawData (or use the Append To Graph dialog)

Graph of data in data folder “Run1” Graph of data in data folder “Run2”

10

0

x1
03

5004003002001000

 rawData (CSTATIN.ASH)

15
10

5
0

x1
03

5004003002001000

 rawData (CSTATIN.ASV)

Chapter II-8 — Data Folders

II-129

You can change the current data folder to anything you want and the graphs will continue to display the
same data; graphs remember which data folder the waves belong to, and so do graph recreation macros.
This is often what you want, but not always.

Suppose you have many test runs in your experiment, each safely tucked away in its own data folder, and
you want to “visit” each test run by looking at the data using a single graph which displays data from the
test run’s data folder only. When you visit another test run, you want the graph to display data from that
other data folder only.

Additionally, suppose you want the graph characteristics to be the same (the same axis labels, annotations,
line styles and colors, etc.). You could:
• Create a graph for the first test run
• Kill the window, and save the graph window macro.
• Edit the recreation macro to reference data in another data folder.
• Run the edited recreation macro.

The recreated graph will have the same appearance, but use the data from the other data folder. The editing
usually involves changing a command like:

SetDataFolder root:Run1:

to:
SetDataFolder root:Run2:

If the graph displays waves from more than one data folder, you may need to edit commands like:
Display rawData,::Run1:rawData

as well.

However, there is another way that doesn’t require you to edit recreation macros: use the ReplaceWave
operation to replace waves (traces) in the graph with waves from the other folder.
• Switch to the other data folder.
• Select the desired graph
• Type in the command line:

ReplaceWave allinCDF

This replaces all the waves in the graph with identically named waves from the Current Data Folder, if they
exist. There is no dialog for this command; see the ReplaceWave operation on page V-594 for more details.

Though we have only one wave, we can try it out:
• Set the Current Data Folder to Run1.
• Select the graph showing data from Run2 only (CSTATIN.ASV).
• Type in the command line:

ReplaceWave allinCDF

The graph will be updated to show the rawData wave from Run1.

15

10

5

0

x1
03

5004003002001000

 rawData (from Run2)

 rawData (from Run1, offset ΔY= -1000)

Chapter II-8 — Data Folders

II-130

You could create a Button control in the graph (see Button on page III-367) that executes a macro containing
the ReplaceWave allinCDF command. Then you would use the Data Browser to change the Current Data
Folder, and click the button to update the graph with waves from that data folder. You could also execute
the same macro directly from the Data Browser in response to the user dragging the current folder indica-
tor. To do so, use the command:
ModifyBrowser command3="ReplaceWave allinCDF"

For another Data Folder example, see the Data Folder Tutorial in “Igor Pro Folder:Learning Aids:Tutorials”.

Problems with Data Folders
If you are a nonprogrammer and do not use procedures written by others then you can probably use data
folders without problems. Just be aware that you need to set the current data folder (using the Data
Browser) to the data folder of interest and Igor will behave as if the other data folders do not exist.

If you are a programmer and have written your own procedures, you can use data folders after you have
made your procedures data-folder aware. However, rewriting legacy code to be data folder aware can be a
big job and you should make sure the benefits will outweigh the costs before undertaking such a project.

Nonprogrammers who use procedures written by others should avoid data folders until the procedures are
updated.

Igor procedures written for versions of Igor prior to Igor Pro 3.1 may not work properly if the current data
folder is not root and yet will not be able to access data in other data folders if the current data folder is set
to root. If you rely on procedures (and even some XOPs and XFUNCs) that are not data-folder aware, you
should do some testing to verify that they work properly before committing to data folder use.

Procedures that rely on global variables and waves are likely to fail when the current data folder is not root.
Unfortunately this is a very common occurrence. The reason for this is that non data-folder-aware proce-
dures refer to waves and variables with simple object names (no data folder paths). Igor will look in the
current data folder for objects that are actually in the root data folder. If the current data folder is not root,
Igor will not find the named objects and will generate an error.

Also with the introduction of data folders, the name of a wave is no longer sufficient to uniquely identify it
because the name does not tell you in which data folder the wave can be found (and waves with the same
name can exist in different data folders). For a discussion of how to deal with this problem, see Wave Ref-
erence Functions on page IV-177.

Note that the window recreation macros generated by Igor itself when you click the close button of a graph
or table window are data-folder aware and will work properly regardless of the current data folder setting.

Data Browser
The Data Browser is an extension that lets you navigate through the different levels of data folders, examine
values of variables, strings and waves, load data objects from other Igor experiments, and save a copy of
data from the current experiment to an experiment file or folder on disk.

To open the browser choose Data Browser from the Data menu.

The user interface of the browser is similar to that of the computer desktop. The basic Igor data objects (vari-
ables, strings, waves and data folders) are represented by unique icons and arranged in the main list based
on their hierarchy in the current experiment. The browser also sports several buttons that provide you with
additional functionality:

Chapter II-8 — Data Folders

II-131

The main list occupies most of the browser when it is first invoked. At the top of the data tree is the root
data folder which by default appears expanded. By double-clicking a data folder icon you can change the
display so that the tree is displayed with your selection as the top data folder instead of root. You can use
the pop-up menu above the main list to replace the current top data folder with another folder in the hier-
archy. Following the top folder are all the data objects that it contains. Objects are grouped by type and by
default they are listed in the order that they were created.

Current Data Folder
The “current data folder” is the folder that Igor uses by default for storing newly-created variables, strings,
waves and other data folders. There are two indicators for the current data folder. First, above the main list
there is a text box that contains the full path to the current data folder. Second, the main list has a painted
red arrow to the left of the icon for the current data folder.

When the current data folder is contained inside a collapsed data folder, an unpainted (empty) arrow indi-
cator points to the icon of the data folder containing the current data folder.

To set the current data folder, drag the current-folder indicator (red arrow) until it points to the desired data
folder. You can also set the current data folder directly by clicking next to the desired data folder while
pressing Option (Macintosh) or Alt (Windows).

Shows the complete path
to the Current Data Folder.

Set the Current Data Folder by
dragging the arrow or by
Option-clicking (Macintosh) or
Alt-clicking (Windows) next to
the folder.

“Collapsed” data folder
(contents of subfolder1
are hidden).

Double-click waves to create
tables showing their values.

Information about selected object.
Select the Info box to show.

Simple plot of selected wave.
Select the Plot box to show.

“Expanded” data folder
(contents of folder2 are
shown).

Use this pop-up to select
the top visible folder.

After collapsing folder1,
the arrow is hollow,
indicating that the current
data folder is somewhere
inside folder1.

Current data folder is
subfolder 1. The
arrow is filled with

Chapter II-8 — Data Folders

II-132

Display Checkboxes
The Display checkboxes group lets you determine which object types are shown in the main list. Data
folders are always shown.

Info Checkbox
Click in the Info Checkbox to display the Information pane of the Data Browser. The Information pane is
situated below the main list. When you select a data object in the main list, its properties or contents appear
in the information pane. For example, when you select a variable, its name is displayed in bold face and its
value is displayed below the name. You can edit the numerical value by selecting it and typing in a new
numerical value. If you modify the value of the variable, Accept and Cancel buttons will appear above the
Information pane. You must either accept the change or cancel it before doing anything else with Igor.

When you select a string in the main list, the contents of the string (up to 32000 characters) will be displayed
in the Information pane. Longer strings will be clipped. You can then select and edit any part of the string.

If you select a wave in the main list, the Information pane displays the wave type, size, dimensions, units,
start, delta and note. Each one of these fields is displayed as a bold face name followed by plane text value.
You can select and modify each one of the plane text fields by typing the new values. The only exception
here is the wave type field, where you need to Control-click (Macintosh) or right-click (Windows) to select a
new wave type from a pop-up menu. Note that when you change the wave type or any one of its dimen-
sions, you might irreversibly change your data.

Another option offered by the Information pane is to display WaveStats for any selected wave. The
WaveStats operation on page V-820 provides several statistical properties of a wave. To show WaveStats,
click the sigma icon next to the Info checkbox. Note that WaveStats calculations are performed in the back-
ground and should not affect your interaction with or the performance of Igor. When you click the sigma
icon, it changes to an i icon which you can click to return to normal mode.

Plot Checkbox
Click the Plot Checkbox to display the Plot pane of the Data Browser. The plot pane is situated below the
main list and the optional Information pane. It displays a small graph or image of a wave selected in the
main list above it.

Simple 1D real waves are drawn in red on a white background. Complex 1D waves are drawn as two traces
with the real part drawn in red and the imaginary in blue. 2D waves are drawn as an image that by default
is scaled to the size of the Plot pane and uses the Rainbow color table. To display the image using the aspect
ratio implied by the number of samples in each direction or to change the color table, Control-click in the
Plot pane (Macintosh) or right-click (Windows) and make the appropriate choice in the pop-up menu.

When you select 3D or 4D wave in the main list, the Plot pane displays animated images of one slice at a
time. The slices represent layers relative to the data cube (3D) or the selected chunk (4D). You can stop the
animation at any time by selecting from a pop-up menu in the Plot pane. You can also select the Plot pane
by clicking in it and then toggling the animation by pressing Enter. When the animation is stopped you can
use the cursor keys to navigate through layers and chunks.

New Folder Button
The New Folder button is used to create a new data folder inside the current data folder. The browser pro-
vides a simple dialog for specifying the name of the new data folder and tests that the name provided is
valid. When entering liberal object names, you should not use single quotes around the name.

This “skeleton” arrow indicates you can’t
set the current data folder here (it is
pointing at a wave, not a data folder).

Chapter II-8 — Data Folders

II-133

Browse Expt. Button
The Browse Expt. button loads data objects from Igor packed or unpacked experiments into the current exper-
iment (in memory). When you click Browse Expt., the browser presents the standard Open dialog. You can
choose to browse a packed Igor experiment file or to browse a folder on your hard disk and any subfolders.

To browse a disk folder, select the folder and click the Folder button.

When you browse a disk folder, the browser shows you all packed Igor experiment files or unpacked Igor
data files in the selected folder as well as in any subfolders.

To browse a packed experiment file, select the file in the dialog and click the Choose button.

At this stage, the browser will display, on the right-hand side, a new list containing icons representing the
data in the file or folder that you selected for browsing.

Each experiment in the new list is represented by a data folder which may contain any number of data
folders and data objects.

Note: Although data folders exist wholly in memory while an experiment is active, unpacked experiments
create a disk folder hierarchy that mirrors the data folder hierarchy. Packed experiments do not create
a disk folder hierarchy at all. The Data Browser displays a saved experiment’s data folders by
examining either the packed experiment’s file contents or the unpacked experiment’s disk hierarchy.

You may select one or more data objects and drag them to the main list. When the cursor appears on top of
a valid drop target (a data folder in the current experiment), the target is highlighted. When you release the
mouse button on a valid drop target, the browser loads the corresponding data objects into the specified
data folder. There is no change to the experiment from which the data is loaded.

Data folders, waves, numeric variables,
and string variables in the current

Data folders, waves, numeric variables,
and string variables in the browsed

Contents of experiments in
the browsed disk folder.

Browsing an Experiment Browsing a Disk Folder

File name of experiment being browsed
(also the root data folder of that experiment).

Name of disk
folder being

Chapter II-8 — Data Folders

II-134

Clicking in the Done Browsin’ button removes the additional list and resets the browser window to its size
prior to the load operation.

Save Copy Button
The Save Copy button copies data objects from the current experiment to an Igor packed experiment file or
to an unpacked folder on disk. Most users will not need to do this because the data will be saved when the
current experiment is saved.

Before clicking Save Copy, select the data that you want to save. When you click Save Copy the browser
presents a dialog in which you specify the name and location of the packed Igor experiment file which will
contain a copy of the saved data.

If you press Option (Macintosh) or Alt (Windows) while clicking Save Copy, the browser presents a dialog
in which you specify a folder on disk in which the data is to be saved in unpacked format. The unpacked
format is intended for advanced users with specialized applications.

By default, objects are written to the output without regard to the state of the Waves, Variables and Strings
checkboxes in the Display section of the Data Browser. However, there is a preference that you use change
this behavior. If you enable the appropriate checkbox in the Data Browser preferences dialog, then Save
Copy writes a particular type of object only if the corresponding Display checkbox is selected.

The Data Browser does not provide a method for adding or deleting data to or from a packed experiment
file on disk. It can only overwrite an existing file. To add or delete, you need to open the experiment (Open
Experiment in the File menu), make additions and deletions and then save the experiment. Advanced users
can add data to an unpacked folder using the SaveData operation on page V-607.

Delete Button
The Delete button is enabled whenever data objects are selected in the main list. The browser provides a
warning message listing the number of items that will be deleted. Note that clicking this button when the
root folder is selected deletes all data objects in the current experiment.

Note that if you try to delete a wave that’s displayed in a graph or table, it will not be deleted and you will
not get an error message.

To skip the warnings, press Option (Macintosh) or Alt (Windows) when clicking the Delete button.

Warning: If you mistakenly delete something, you cannot undo it except by reverting the entire experiment
to its last saved state.

The Preferences Button
The Preferences button sets the following:
• The font and font size used in the browser’s directory window.

1. Click the wave to be copied.

Copying a wave from a browsed experiment into the current experiment

2. Drag it to a data folder in
the current experiment.

Chapter II-8 — Data Folders

II-135

• Whether the browser will remember its window size and position when you relaunch Igor.
• The order of objects in data folders. You can choose to sort them by creation date, by name or by name

and type. If you choose Creation date, objects are ordered according to the time they were created, but
they are grouped according to type with waves appearing first followed by variables and strings. If you
choose to order objects by name only, objects are arranged in alphabetical order within each data folder.
Data folders always appear based on the tree structure and the order in which they were created.

• Whether the Save Copy button affects only the currently visible objects.

The Execute Cmd Button
The Execute Cmd button provides you with a shortcut for executing a command on selected objects in the
Data Browser window. When you click in the button you get a dialog where you can specify the command,
the execution mode and a secondary command for an overflow. If you set the commands once, you can skip
the dialog by pressing Option when you click in the button.

The format of commands is exactly the same as any Igor commands except that you use %s where the selec-
tion is to be inserted, e.g.,
Display %s
Print "%s"

When “Execute once for all selected items” is chosen, the Data Browser enters the full path for each selection
in place of %s. This may cause the command to exceed the maximum of 400 characters. Before that limit is
reached, the Data Browser executes the first command on the selection followed by executing the overflow
command on the remaining objects in the selection. For example, if you want to display many waves use
“Display %s” for your first command and “AppendToGraph %s” as the overflow command. The
command syntax should not include printf, sprintf or sscanf because of conflict between the formatting
string and the %s used here.

Using the Data Browser Find Dialog
If you choose the Find item in the Edit menu, the Data Browser displays a Find dialog. This dialog finds
waves, variables and data folders that might be buried in subdata folders. It also provides a convenient way
to select a number of objects at one time, based on a search string. Any object with a name containing your
search string will be found and selected. You can then use the Execute Cmd button to operate on the selection.

The Data Browser’s Find dialog specifies the objects that you would like to find or select. You may use the
“*” wildcard to specify object names of the form “abc*ef” where * represents zero or more arbitrary charac-
ters. Note that “abc*”, “*abc” and “abc” are completely equivalent.

Choosing Find Same in the Edit menu or pressing Command-G (Macintosh) or Ctrl+G (Windows) performs
a search in the forward direction for an item matching the same search string as was used in the previous
Find. When the search reaches the end of the data objects list, it will wrap around only if the wrap around
box is selected in the find dialog.

To find and select every item
whose name contains the
search string, click this button.

Chapter II-8 — Data Folders

II-136

Choosing Find Selection in the Edit menu or pressing Command-H (Macintosh) or Ctrl+H (Windows)
searches for an item matching the first item that is currently selected in the main list. All other search set-
tings are those specified in the Find dialog.

Programming the Data Browser
The Data Browser can be controlled from the command line or from Igor procedures. Detailed reference
information about the CreateBrowser, ModifyBrowser, and GetBrowserSelection commands can be found
in the Command Help tab of the Igor Help Browser.

Advanced Igor programmers can use the browser as an input device via the GetBrowserSelection function
or by modifying stored command strings. For an example, see the Data Folder Tutorial in “Igor Pro
Folder:Learning Aids:Tutorials”.

You can use the Data Browser as a modal dialog permitting a user to select one or more waves from multi-
ple data folders. For details, see the Data Browser help file.

DataBrowser Pop-Up Menu

Other Data Browser Operations
You can rename data objects by clicking the name of the object and editing the name.

The browser also supports icon dragging as means of moving or copying data objects from one data folder to
another. You can select multiple data objects by Shift-clicking (Macintosh) or Ctrl-clicking (Windows) on them.

You can move data objects from one data folder to another by dragging them.

You can copy data objects from one data folder to another by holding down Option (Macintosh) or Alt (Win-
dows) while dragging.

You can duplicate data objects within a folder by choosing Duplicate from the Edit menu or by pressing
Command-D (Macintosh) or Ctrl+D (Windows).

Note: Objects remain selected even when they are hidden inside collapsed data folders. If you select a
wave, collapse its data folder, Shift-select another wave, and drag it to another data folder, both
waves will be moved there.

However, when a selected object is hidden by deselecting the relevant Display checkbox, no
action (e.g., delete or duplicate) is taken upon it except if you use Save Copy and your preference
setting is to save nonvisible objects.

You can apply various Igor operations to objects by selecting the
objects in the Data Browser and choosing the operation from a
pop-up menu you obtain by Control-clicking (Macintosh) or
right-clicking (Windows).

Using the Display and New Image pop-up items, you can create
a new graph or image plot of the selected wave. You can also
select multiple waves, in the same or different data folders, to
display together in the same graph.

The Copy Full Path item copies the complete data folder paths
of the selected objects to the clipboard.

Chapter II-8 — Data Folders

II-137

Data Browser Shortcuts

Action Shortcut

To set the current data folder Drag the red arrow until it points to the desired data folder, or Option-
click (Macintosh) or Alt-click (Windows) next to the desired data folder.

To display a graph or an image of a
wave

Control-click (Macintosh) or right-click (Windows) and select an
option from the pop-up menu.

To view the contents of a
“collapsed” data folder

Click the triangle (Macintosh) or the plus button (Windows) next to
the data folder.

To “collapse” a data folder Click the triangle (Macintosh) or the minus button (Windows) next to
the data folder.

To move the selection up or down by
one object

Press Up Arrow or Down Arrow.

To move an object from one data
folder to another

Drag the object onto the destination data folder.

To move several objects from one
data folder to another

Select the objects by Shift-clicking them (Macintosh) or Ctrl-clicking
them (Windows). Drag the selected objects onto the desired data folder.

To copy an object from one data
folder to another

Drag the object while holding down Option (Macintosh) or Alt
(Windows).

To duplicate an object Select the object and press Command-D (Macintosh) or Ctrl+D
(Windows).

To rename an object Click the object’s name and type a new name. To finish, press Return,
Enter, Tab, or click outside the name.

To view a wave’s values in a table Double-click the wave’s icon.

To print the value of a variable or
string in the history area

Double-click the variable or string icon.

To delete an object without the
confirmation dialog

Press Option (Macintosh) or Alt (Windows) while clicking the Delete
button.

To find objects in the browser list Choose Find from the Edit menu, or press Command-F (Macintosh)
or Ctrl+F (Windows).

To find the same thing again Choose Find Same from the Edit menu, or press Command-G
(Macintosh) or Ctrl+G (Windows).

To execute a command on a set of
waves

Select the icon for each wave that the command is to act on and click
the Execute Cmd button.

To execute a command on a set of
waves without going through the
Execute Cmd dialog

Select the icon for each wave that the command is to act on, press
Option (Macintosh) or Alt (Windows), and click the Execute Cmd
button. This reexecutes the command entered previously in the
Execute Cmd dialog.

To see WaveStats for a selected wave Control-click (Macintosh) or right-click (Windows) in the information
pane and select the WaveStats mode from the pop-up menu.

To change colormap, activate
animation in plot pane

Control-click (Macintosh) or right-click (Windows) in the plot pane
and select the appropriate option from the pop-up menu.

To stop the animation in the plot pane Click in the plot pane and then press Return or Enter.

Chapter II-8 — Data Folders

II-138

To navigate between displayed
layers or chunks

Stop the animation in the plot pane and use the cursor keys, Page
Down, Page Up, Home, and End.

To close the information pane Double click the horizontal separator bar.

To save a copy of selected data in
unpacked format

Press Option (Macintosh) or Alt (Windows) while clicking the Save
Copy button.

Action Shortcut

Chapter

II-9
II-9Importing and Exporting Data

Loading Waves.. 141
Load Waves Submenu .. 142
Number Formats.. 143
The End of the Line ... 143

Loading Delimited Text Files .. 143
Date/Time Formats .. 144

Custom Date Formats .. 144
Column Labels ... 146
Examples of Delimited Text ... 146
The Load Waves Dialog for Delimited Text — 1D ... 147
Editing Wave Names... 148
Set Scaling After Loading Delimited Text Data .. 149
The Load Waves Dialog for Delimited Text — 2D ... 149
2D Label and Position Details .. 149
Loading Text Waves from Delimited Text Files.. 150
Delimited Text Tweaks ... 151
Troubleshooting Delimited Text Files .. 152

Loading Fixed Field Text Files .. 152
The Load Waves Dialog for Fixed Field Text .. 153

Loading General Text Files.. 153
Examples of General Text... 154
Comparison of General Text, Fixed Field and Delimited Text ... 154
The Load Waves Dialog for General Text — 1D... 155
Editing Wave Names for a Block... 155
The Load Waves Dialog for General Text — 2D... 156
Set Scaling After Loading General Text Data .. 156
General Text Tweaks ... 156
Troubleshooting General Text Files .. 157

Loading Igor Text Files .. 158
Examples of Igor Text ... 158
Igor Text File Format... 159
Setting Scaling in an Igor Text File.. 160
The Load Waves Dialog for Igor Text... 160
Loading MultiDimensional Waves from Igor Text Files ... 161
Loading Text Waves from Igor Text Files .. 161
The Igor Text File Type Code and File Extension ... 162

Loading UTF-16 Files ... 162
Loading Igor Binary Data .. 162

The Igor Binary File ... 163
The Load Waves Dialog for Igor Binary... 163
The LoadData Operation .. 164
Sharing Versus Copying Igor Binary Files... 165

Loading Image Files .. 165

Chapter II-9 — Importing and Exporting Data

II-140

The Load Image Dialog... 165
Image Loading Details .. 166

Loading Other Files .. 167
Loading Row-Oriented Text Data .. 168
Loading Sound Files ... 168
Loading HDF Data.. 169
Loading GIS Data.. 169
Loading Very Big Binary Files .. 169
Loading Waves Using Igor Procedures ... 170

Variables Set by the LoadWave Operation .. 170
Loading and Graphing Waveform Data .. 170
Loading and Graphing XY Data.. 173
Loading All of the Files in a Folder... 174

Saving Waves... 175
Saving Waves in a Delimited Text File ... 176
Saving Waves in a General Text File... 177
Saving Waves in an Igor Text File ... 177
Saving Waves in Igor Binary Files... 178
Saving Waves in Image Files.. 178
Saving Sound Files... 178

Exporting Text Waves .. 178
Exporting MultiDimensional Waves.. 179
Accessing SQL Databases .. 179

Chapter II-9 — Importing and Exporting Data

II-141

Loading Waves
Most Igor users create waves by loading data from a file created by another program. The process of loading
a file creates new waves and then stores data from the file in them. Optionally, you can overwrite existing
waves instead of creating new ones. The waves can be numeric or text and of dimension 1 through 4.

Igor provides a number of different routines for loading data files. There is no single file format for numeric
or text data that all programs can read and write.

There are two broad classes of files used for data interchange: text files and binary files. Text files are usually used
to exchange data between programs. Although they are called text files, they may contain numeric data, text data
or both. In any case, the data is encoded as plain text that you can read in a text editor. Binary files usually contain
data that is efficiently encoded in a way that is unique to a single program and can not be viewed in a text editor.

The closest thing to a universally accepted format for data interchange is the “delimited text” format. This
consists of rows and columns of numeric or text data with the rows separated by carriage return characters
(Macintosh), linefeed return characters (Unix), or carriage return/linefeed (Windows) and the columns sepa-
rated by tabs or commas. The tab or comma is called the “delimiter character”. Igor can read delimited text
files written by most programs.

FORTRAN programs usually create fixed field text files in which a fixed number of characters is used for
each column of data with spaces as padding between columns. The Load Fixed Field Text routine is
designed to read these files.

Text files are convenient because you can create, inspect or edit them with any text editor. In Igor, you can
use a notebook window for this purpose. If you have data in a text file that has an unusual format, you may
need to manually edit it before Igor can load it.

Text files generated by scientific instruments or custom programs often have “header” information, usually
at the start of the file. The header is not part of the block of data but contains information associated with
it. Igor’s text loading routines are designed to load the block of data, not the header. The Load General Text
routine can usually automatically skip the header. The Load Delimited Text and Load Fixed Field Text rou-
tines needs to be told where the block of data starts if it is not at the start of the file.

An advanced user could write an Igor procedure to read and parse information in the header using the
Open, FReadLine, StrSearch, sscanf and Close operations as well as Igor’s string manipulation capabilities.
Igor includes an example experiment named Load File Demo which illustrates this.

If you will be working on a Macintosh, and loading data from files on a PC, or vice-versa, you should look
at File System Issues on page III-400.

The following table lists the six types of built-in data loading routines in Igor and their salient features.

File Type Description

Delimited text Created by spreadsheets, database programs, data acquisition programs, text editors,
custom programs. This is the most commonly used format for exchanging data between
programs.

Row Format: <data><delimiter><data><CR>

Contains one block of data with any number of rows and columns. A row of column
labels is optional.

Can load numeric, text, date, time, and date/time columns.

Can load columns into 1D waves or blocks into 2D waves.

Columns may be equal or unequal in length.

Chapter II-9 — Importing and Exporting Data

II-142

In addition, extensions to Igor are available to load data from other types of files, including Excel, Matlab,
HDF, HDF5, JCAMP, DEM, DLG, Nicolet, various sound formats and general binary files. See Loading
Other Files on page II-167 for details.

Load Waves Submenu
You access all of these routines via the Load Waves submenu of the Data menu.

Fixed field text Created by FORTRAN programs.

Row Format: <data><padding><data><padding><CR>

Contains one block of data with any number of rows and columns.

Each column consists of a fixed number of characters including any space characters
which are used for padding.

Can load numeric, text, date, time and date/time columns.

Can load columns into 1D waves or blocks into 2D waves.

Columns are usually equal in length but do not have to be.

General text Created by spreadsheets, database programs, data acquisition programs, text editors,
custom programs.

Row Format: <number><white space><number><CR>

Contains one or more blocks of numbers with any number of rows and columns. A row
of column labels is optional.

Can not handle columns containing nonnumeric text, dates and times.

Can load columns into 1D waves or blocks into 2D waves.

Columns must be equal in length.

Igor’s Load General Text routine has the ability to automatically skip nonnumeric
header text.

Image Created by a wide variety of programs.

Format: Always binary. Varies according to file type.

Can load GIF, JPEG, PNG, PICT, TIFF, BMP, PhotoShop, Silicon Graphics, Sun raster,
and Targa graphics files.

Can load data into matrix waves, including TIFF image stacks.

Igor Text Created by Igor, custom programs. Used mostly as a means to feed data and commands
from custom programs into Igor.

Format: See Igor Text File Format on page II-159.

Can load numeric and text data.

Can load data into waves of dimension 1 through 4.

Contains one or more wave blocks with any number of waves and rows.

Consists of special Igor keywords, numbers and Igor commands.

Igor Binary Created by Igor, custom programs. Used by Igor to store wave data.

Each file contains data for one Igor wave of dimension 1 through 4.

Format: See Igor Technical Note #003, “Igor Binary Format”.

File Type Description

Chapter II-9 — Importing and Exporting Data

II-143

The Load Waves item in this submenu leads to the Load Waves dialog. This dialog invokes all of the built-
in loading routines except for the image loader and accesses all available options.

The Load Igor Binary, Load Igor Text, Load General Text, and Load Delimited Text items in the Load Waves
submenu are shortcuts that access the respective file loading routines with default options. We recommend that
you start with the Load Waves item so that you can see what options are available. There are no shortcut items
for loading fixed field text or image data because these formats require that you specify certain parameters.

The Load Image item leads to the Load Image dialog which provides the means to load various kinds of
image files.

The remaining items are provided by Igor File-Loader Extensions. These are plug-in software modules that
can be installed or removed easily as described under Loading Other Files on page II-167.

All of the built-in file loaders can load numeric data. The delimited text and fixed field text loaders can also
load string text, date, time and date/time data.

Number Formats
A number has the following form:

An example is “-17.394e+3”. Some FORTRAN programs write “d” or “D” instead of “e” or “E” to introduce
the exponent. Igor recognizes this.

The End of the Line
Different computer systems use different characters to mark the end of a line in a text file. The Macintosh
uses the carriage-return character (CR). Unix uses linefeed (LF). Windows uses a carriage-return and line-
feed (CRLF) combination. When loading waves, Igor treats a single CR, a single LF, or a CRLF as the end
of a line. This allows Igor to load text data from file servers on a variety of computers without translation.

Loading Delimited Text Files
A delimited text file consists of rows of values separated by tabs or commas with a carriage return, linefeed or
carriage return/linefeed combination at the end of the row. There may optionally be a row of column labels. Igor
can load each column in the file into a separate 1D wave or it can load all of the columns into a single 2D wave.
There is no limit to the number of rows or columns except that all of the data must fit in available memory.

In addition to numbers and text, the delimited text file may contain dates, times or date/times. The Load
Delimited Text routine attempts to automatically determine which of these formats is appropriate for each
column in the file. You can override this automatic determination if necessary.

Opens the Load Waves dialog. This presents
all options for most of the built-in file loaders.

File loaders added by extensions
stored in the Igor Extensions folder.

Skip the Load Waves dialog and
go directly to the Open File dialog.

Optional decimal point and fractional part.

Optional exponent, introduced by “e” or “E”.Optional leading sign.

[+/-] <digits> [.<digits>] [e/E[+/-] <exponent>]

Chapter II-9 — Importing and Exporting Data

II-144

A numeric column can contain, in addition to numbers, NaN and [±]INF. NaN means “Not a Number” and is
the way Igor represents a blank or missing value in a numeric column. INF means “infinity”. If Igor finds text in
a numeric or date/time column that it can’t interpret according to the format for that column, it treats it as a NaN.

If Igor encounters, in any column, a delimiter with no data characters preceding it (i.e., two tabs in a row)
it takes this as a missing value and stores a blank in the wave. In a numeric wave, a blank is represented by
a NaN. In a text wave, it is represented by an element with zero characters in it.

Date/Time Formats
The Load Delimited Text routine can handle dates in many formats. A few “standard” formats are sup-
ported and in addition, you can specify a “custom” format (see Custom Date Formats on page II-144).

The standard date formats are:

To use the dd/mm/yy format instead of mm/dd/yy, you must set a tweak. See Delimited Text Tweaks on
page II-151.

You can also use a dash or a dot as a separator instead of a slash.

Igor can also handle times in the following forms:

As of Igor Pro 6.23, Igor also accepts a colon instead of a dot before the fractional seconds.

The first three forms are time-of-day forms. The last one is the elapsed time. In an elapsed time, the hour is
in the range 0 to 9999.

The year can be specified using two digits (99) or four digits (1999). If a two digit year is in the range 00 …
39, Igor treats this as 2000 … 2039. If a two digit year is in the range 40 … 99, Igor treats this as 1940 … 1999.

The Load Delimited Text routine can also handle date/times which consist of one of these date formats, a
single space or the letter T, and then one of the time formats.

Custom Date Formats
If your data file contains dates in a format other than the “standard” format, you can use Load Delimited
Text to specify exactly what date format to use. You do this using the Delimited Text Tweaks dialog which
you access through the Tweaks button in the Load Waves dialog. Choose Other from the Date Format pop-
up menu. This leads to the Date Format dialog.

mm/dd/yy (month/day/year)

mm/yy (month/year)

dd/mm/yy (day/month/year)

[+][-]hh:mm:ss [AM PM] (hours, minutes, seconds)

[+][-]hh:mm:ss.ff [AM PM] (hours, minutes, seconds, fractions of seconds)

[+][-]hh:mm [AM PM] (hours, minutes)

[+][-]hhhh:mm:ss.ff (hours, minutes, seconds, fractions of seconds)

Chapter II-9 — Importing and Exporting Data

II-145

By clicking the Use Common Format radio button, you can choose from a pop-up menu of common for-
mats. After choosing a common format, you can still control minor properties of the format, such as
whether to use 2 or 4 digits years and whether to use leading zeros or not.

In the rare case that your file’s date format does not match one of the common formats, you can use a full
custom format by clicking the Use Custom Format radio button. It is best to first choose the common format
that is closest to your format and then click the Use Custom Format button. Then you can make minor
changes to arrive at your final format.

Chapter II-9 — Importing and Exporting Data

II-146

When you use either a common format or a full custom format, the format that you specify must match the
date in your file exactly.

When loading data as delimited text, if you use a date format containing a comma, such as “October 11,
1999”, you must make sure that LoadWave operation will not treat the comma as a delimiter. You can do
this using the Delimited Text Tweaks dialog.

When loading a date format that consists entirely of digits, such as 991011, you should use the LoadWave/B
flag to specify that the data is a date. Otherwise, LoadWave will treat it as a regular number. The /B flag can
not be generated from the dialog — you need to use the LoadWave operation from the command line.
Another approach is to use the dialog to generate a LoadWave command without the /B flag and then
specify that the column is a date column in the Loading Delimited Text dialog that appears when the
LoadWave operation executes.

Column Labels
Each column may optionally have a column label. When loading 1D waves, if you read wave names and if
the file has column labels, Igor will use the column labels for wave names. Otherwise, Igor will automati-
cally generate wave names of the form wave0, wave1 and so on.

Igor considers text in the label line to be a column label if that text can not be interpreted as a data value
(number, date, time, or datetime) or if the text is quoted using single or double quotes.

When loading a 2D wave, Igor optionally uses the column labels to set the wave’s column dimension labels.
The wave name does not come from column labels but is automatically assigned by Igor. You can rename
the wave after loading if you wish.

Igor expects column labels to appear in a row of the form:
<label><delimiter><label><delimiter>…<label><CR> (or CRLF or LF)

where <column label> may be in one of the following forms:

The default delimiter characters are tab and comma. There is a tweak (see Delimited Text Tweaks on page
II-151) for using other delimiters.

Igor expects that the row of column labels, if any, will appear at the beginning of the file. There is a tweak
(see Delimited Text Tweaks on page II-151) that you can use to specify if this is not the case.

Igor will clean up column labels found in the file, if necessary, so that they are legal wave names using stan-
dard name rules. The cleanup consists of converting illegal characters into underscores and truncating long
names to the maximum of 31 characters.

Examples of Delimited Text
Here are some examples of text that you might find in a delimited text file. These examples are tab-delimited.

Simple delimited text
ch0 ch1 ch2 ch3 (optional row of labels)
2.97055 1.95692 1.00871 8.10685
3.09921 4.08008 1.00016 7.53136
3.18934 5.91134 1.04205 6.90194

Loading this text would create four waves with three points each or, if you specify loading it as a matrix, a
single 3 row by 4 column wave.

<label> (label with no quotes)

"<label>" (label with double quotes)

'<label>' (label with single quotes)

Chapter II-9 — Importing and Exporting Data

II-147

Delimited text with missing values
ch0 ch1 ch2 ch3 (optional row of labels)
2.97055 1.95692 8.10685
3.09921 4.08008 1.00016 7.53136

5.91134 1.04205

Loading this text as 1D waves would create four waves. Normally each wave would contain three points but
there is an option to ignore blanks at the end of a column. With this option, ch0 and ch3 would have two points.
Loading as a matrix would give you a single 3 row by 4 column wave with blanks in columns 0, 2 and 3.

Delimited text with a date column
Date ch0 ch1 ch2 (optional row of labels)
2/22/93 2.97055 1.95692 1.00871
2/24/93 3.09921 4.08008 1.00016
2/25/93 3.18934 5.91134 1.04205

Loading this text as 1D waves would create four waves with three points each. Igor would convert the dates
in the first column into the appropriate number using the Igor system for storing dates (number of seconds
since 1/1/1904). Loading as a matrix would give you a single 3 row by 4 column wave with column 0 con-
taining dates encoded as numbers.

Delimited text with a nonnumeric column
Sample ch0 ch1 ch2 (optional row of labels)
Ge 2.97055 1.95692 1.00871
Si 3.09921 4.08008 1.00016
GaAs 3.18934 5.91134 1.04205

Loading this text as 1D waves would normally create four waves with three points each. The first wave would
be a text wave and the remaining would be numeric. You could also load this as a single 3x3 matrix, treating
the first row as column labels and the first column as row labels for the matrix. If you loaded it as a matrix but
did not treat the first column as labels, it would create a 3 row by 4 column text wave, not a numeric wave.

The Load Waves Dialog for Delimited Text — 1D
To load a delimited text file as 1D waves, invoke the Load Waves dialog by choosing the Load Waves menu item.

The basic process of loading 1D data from a delimited text file is as follows:
1. Bring up the Load Waves dialog.

Select if the file has a row of column
names you want to use for wave names.

Select to create double precision
waves, deselect for single precision.

When deselected, Igor presents
a subsequent dialog in which
you can enter wave names.

Loads data from the Clipboard
instead of from a file.

Leads to a subdialog that presents infrequently used options.

Click to select the file
to load.

Select the symbolic
path that points to the
folder containing the
file or “<none>”.

Select to make a table
showing the loaded waves.

Choose the type of file to be loaded.

When deselected,
columns in the file
are loaded into
individual 1D waves.

Chapter II-9 — Importing and Exporting Data

II-148

2. Choose Delimited Text from the File Type pop-up menu.
3. Click the File button to select the file containing the data.
4. Click Do It.

When you click Do It, the LoadWave operation runs. It executes the Load Delimited Text routine which
goes through the following steps:
1. Optionally, determine if there is a row of column labels.
2. Determine the number of columns.
3. Determine the format of each column (number, text, date, time or date/time).
4. Optionally, present another dialog allowing you to confirm or change wave names.
5. Create waves.
6. Load the data into the waves.

Igor looks for a row of labels only if you enable the “Read wave names” option. If you enable this option
and if Igor finds a row of labels then this determines the number of columns that Igor expects in the file.
Otherwise, Igor counts the number of data items in the first row in the file and expects that the rest of the
rows have the same number of columns.

In step 3 above, Igor determines the format of each column by examining the first data item in the column.
Igor will try to interpret all of the remaining items in a given column using the format that it determines
from the first item in the column.

If you choose Load Delimited Text from the Load Waves submenu instead of choosing Load Waves, Igor will
display a dialog from which you can select the delimited text file to load directly. This is a shortcut that skips
the Load Waves dialog and uses default options for the load. This will always load 1D waves, not a matrix.
Before you use this shortcut, take a look at the Load Waves dialog so you can see what options are available.

Editing Wave Names
The “Auto name & go” option is used mostly when you’re loading 1D data under control of an Igor proce-
dure and you want everything to be automatic. When loading 1D data manually, you normally leave the
“Auto name & go” option deselected. Then Igor presents an additional dialog in which you can confirm or
change wave names.

The context area gives you feedback on what Igor is about to load. You can’t edit the file here. If you want
to edit the file, abort the load and open the file as an Igor notebook or open it in a word processor.

Continues the load.

Edit wave names here.

Shows a bit of the file
you’re loading.

Skips highlighted column.

Aborts the load.

Controls how Igor will
interpret the column.

Chapter II-9 — Importing and Exporting Data

II-149

Set Scaling After Loading Delimited Text Data
If your 1D numeric data is uniformly spaced in the X dimension then you will be able to use the many oper-
ations and functions in Igor designed for waveform data. You will need to set the X scaling for your waves
after you load them, using the Change Wave Scaling dialog.

Note: If your 1D data is uniformly spaced it is very important that you set the X scaling of your waves.
Many Igor operations depend on the X scaling information to give you correct results.

If your 1D data is not uniformly spaced then you will use XY pairs and you do not need to change X scaling.
You may want to use Change Wave Scaling to set the data units.

The Load Waves Dialog for Delimited Text — 2D
To load a delimited text file as a 2D wave, choose the Load Waves menu item. Then, select the “Load
columns into matrix” checkbox.

When you load a matrix (2D wave) from a text file, Igor creates a single wave. Therefore, there is no need
for a second dialog to enter wave names. Instead, Igor automatically names the wave based on the base
name that you specify. After loading, you can then rename the wave if you want.

To understand the row/column label/position controls, you need to understand Igor’s view of a 2D delim-
ited text file:

In the simplest case, your file has just the wave data — no labels or positions. You would indicate this by
deselecting all four label/position checkboxes.

2D Label and Position Details
If your file does have labels or positions, you would indicate this by selecting the appropriate checkbox.
Igor expects that row labels appear in the first column of the file and that column labels appear in the first
line of the file unless you instruct it differently using the Tweaks subdialog (see Delimited Text Tweaks on
page II-151). Igor loads row/column labels into the wave’s dimension labels (described in Chapter II-6, Mul-
tidimensional Waves).

Position information can be used to set the wave’s dimension
scaling or it can be loaded as a separate 1D wave.

Select to load all columns
into a single 2D wave.

Generate the wave name
based on this.

Select to set the wave’s
dimension labels from the first
row/column labels in the file.

Select to treat a row/column as
containing position information
rather than as data.

Col 0 Col 1 Col 2 Col 3

6.0 6.5 7.0 7.5

Row 0 0.0 12.4 24.5 98.2 12.4

Row 1 0.1 43.7 84.3 43.6 75.3

Row 2 0.2 83.8 33.9 43.8 50.1

Optional
column labels

Optional
column

positions

Optional row positions

Optional row
labels

Wave data

Chapter II-9 — Importing and Exporting Data

II-150

Igor can treat column positions in one of two ways. It can use them to set the dimension scaling of the wave
(appropriate if the positions are uniformly-spaced) or it can create separate 1D waves for the positions. Igor
expects row positions to appear in the column immediately after the row labels or in the first column of the
file if the file contains no row labels. It expects column positions to appear immediately after the column
labels or in the first line of the file if the file contains no column labels unless you instruct it differently using
the Tweaks subdialog.

A row position wave is a 1D wave that contains the numbers in the row position column of the file. Igor
names a row position wave “RP_ ” followed by the name of the matrix wave being loaded. A column posi-
tion wave is a 1D wave that contains the numbers in the column position line of the file. Igor names a
column position wave “CP_” followed by the name of the matrix wave being loaded. Once loaded (into sep-
arate 1D waves or into the matrix wave’s dimension scaling), you can use row and column position infor-
mation when displaying a matrix as an image or when displaying a contour of a matrix.

If your file contains header information before the data, column labels and column positions, you need to
use the Tweaks subdialog to specify where to find the data of interest. The “Line containing column labels”
tweak specifies the line on which to find column labels. The “First line containing data” tweak specifies the
first line of data to be stored in the wave itself. The first line in the file is considered to be line zero.

If you instruct LoadWave to read column positions, it determines which line contains them in one of two
ways, depending on whether or not you also instructed it to read column labels. If you do ask LoadWave
to read column labels, then LoadWave assumes that the column positions line immediately follows the
column labels line. If you do not ask LoadWave to read column labels, then LoadWave assumes that the
column positions line immediately precedes the first data line.

Loading Text Waves from Delimited Text Files
With regard to text columns, the Load Delimited Text operation can work in one of three ways: auto-iden-
tify column type, treat all columns as numeric, treat all columns as text. You can specify which method you
want to use using the Tweaks subdialog of the Load Delimited Text dialog.

In the “auto-identify column type” method, Igor attempts to determine whether a column is numeric or text
by examining the file. This is the default method when you choose Data→Load Waves→Load Delimited
Text. Igor looks for the first nonblank value in each column and determines if the value is numeric or not.
If it is numeric, Igor loads the column into a numeric wave which could be plain numeric, date, time or
date/time as appropriate. If it is not numeric, Igor loads the column into a text wave.

In the “treat all columns as numeric” method, Igor loads all columns into numeric waves. This is the default
method when you use the LoadWave/J operation from the command line or from an Igor procedure. We
made LoadWave/J behave this way by default for backward-compatibility reasons. In ensures that Igor pro-
cedures will work the same in Igor Pro 3.0 and later as they did before. To use the “auto-identify column
type” method, you need to use LoadWave/J/K=0.

In the “treat all columns as text” method, Igor loads all columns into text waves. This method may have use
in rare cases in which you want to do text-processing on a file by loading it into a text wave and then using
Igor’s string manipulation capabilities to massage it.

There are a few issues relating to special characters that you may need to deal with when loading data into
text waves.

By default, the Load Delimited Text operation considers comma and tab characters to be delimiters which
separate one column from the next. If the text that you are loading may contain commas or tabs as values
rather than as delimiters, you will need to change the delimiter characters. You can do this using the Tweaks
subdialog of the Load Delimited Text dialog.

The Load Delimited Text operation always considers carriage return and linefeed characters to mark the end
of a line of text. It would be quite unusual to find a data file that uses these characters as values. In the
extremely rare case that you need to load a carriage return or linefeed as a value, you can use an escape
sequence. Replace the carriage return value with “\r” (without the quotes) and the linefeed value with “\n”.
Igor will convert these to carriage return and linefeed and store the appropriate character in the text wave.

Chapter II-9 — Importing and Exporting Data

II-151

In addition to “\r” and “\n”, Igor will also convert “\t” into a tab value and do other escape sequence con-
versions (see Escape Characters in Strings on page IV-13). These conversions create a possible problem
which should be quite rare. You may want to load text that contains “\r”, “\n” or “\t” sequences which
you do not want to be treated as escape sequences. To prevent Igor from converting them into carriage
return and tab, you will need to replace them with “\\r”, “\\n” and “\\t”.

Igor does not remove quotation marks when loading data from delimited text files into text waves. If nec-
essary, you can do this by opening the file as a notebook and doing a mass replace before loading or by dis-
playing the loaded waves in a table and using Edit→Replace.

Delimited Text Tweaks
There are many variations on the basic form of a delimited text file. We’ve tried to provide tweaks that allow
you to guide Igor when you need to load a file that uses one of the more common variations. To do this, use
the Tweaks button in the Load Waves dialog. Most people will not need to use the tweaks.

The Tweaks dialog can specify the space character as a delimiter. Use the LoadWave operation to specify
other delimiters as well.

The main reason for allowing space as a delimiter is so that we can load files that use spaces to align col-
umns. This is a common format for files generated by FORTRAN programs. Normally, you should use the
fixed field text loader to load these files, not the delimited text loader. If you do use the delimited text loader
and if space is allowed as a delimiter then Igor treats any number of consecutive spaces as a single delimiter.
This means that two consecutive spaces do not indicate a missing value as two consecutive tabs would.

When loading a delimited file, Igor normally expects the first line in the file to contain either column labels
or the first row of data. There are several tweaks that you can use for a file that doesn’t fit this expectation.

Lines and columns in the tweaks dialog are numbered starting from zero.

Using the “Line containing column labels” tweak, you can specify on what line column labels are to be
found if not on line zero. Using this and the “First line containing data” tweak, you can instruct Igor to skip
garbage, if any, at the beginning of the file.

The “First line containing data”, “Number of lines containing data”, “First column containing data”, and
“Number of columns containing data” tweaks are designed to allow you to load any block of data from any-
where within a file. This might come in handy if you have a file with hundreds of columns but you are only
interested in a few of them.

Automatically deduce column formats or treat all columns as numeric or as text.

Select “comma” as the decimal
character if you have a file with
European-style numbers.

Use these to specify where to find
the data in the file as well as to
load a subset of the data.

Determines what characters
to use to delimit one number
from the next.

Select if you have columns
of unequal length.

Choose dd/mm/yy if your file
has days before months.

Chapter II-9 — Importing and Exporting Data

II-152

If “Number of lines containing data” is set to “auto” or 0, Igor will load all lines until it hits the end of the
file. If “Number of columns containing data” is set to “auto” or 0, Igor will load all columns until it hits the
last column in the file.

The proper setting for the “Ignore blanks at the end of a column” tweak depends on the kind of 1D data stored
in the file. If a file contains some number of similar columns, for example four channels of data from a digital
oscilloscope, you probably want all of the columns in the file to be loaded into waves of the same length. Thus,
if a particular column has one or more missing values at the end, the corresponding points in the wave should
contain NaNs to represent the missing value. On the other hand, if the file contains a number of dissimilar
columns, then you might want to ignore any blank points at the end of a column so that the resulting waves
will not necessarily be of equal length. If you enable the “Ignore blanks at the end of a column” tweak then
LoadWave will not load blanks at the end of a column into the 1D wave. If this option is enabled and a par-
ticular column has nothing but blanks then the corresponding wave is not loaded at all.

Troubleshooting Delimited Text Files
You can examine the waves created by the Load Delimited Text routine using a table. If you don’t get the
results that you expected, you will need to try other LoadWave options or inspect and edit the text file until
it is in a form that Igor can handle. Remember the following points:
• Igor expects the file to consist of numeric values, text values, dates, times or date/times separated by

tabs or commas unless you set tweaks to the contrary.
• Igor expects a row of column labels, if any, to appear in the first line of the file unless you set tweaks

to the contrary. It expects that the column labels are also delimited by tabs or commas unless you
set tweaks to the contrary. Igor will not look for a line of column labels unless you enable the Read
Wave Names option for 1D waves or the Read Column Labels options for 2D waves.

• Igor determines the number of columns in the file by inspecting the column label row or the first
row of data if there is no column label row.

If merely inspecting the file does not identify the problem then you should try the following troubleshoot-
ing technique.
• Copy just the first few lines of the file into a test file.
• Load the test file and inspect the resulting waves in a table.
• Open the test file as a notebook.
• Edit the file to eliminate any irregularities, save it and load it again. Note that you can load a file as

delimited text even if it is open as a notebook. Make sure that you have saved changes to the note-
book before loading it.

• Inspect the loaded waves again.

This process usually sheds some light on what aspect of the file is irregular. Working on a small subset of
your file makes it easier to quickly do some trial and error investigation.

If you are unable to get to the bottom of the problem, email a small segment of the file to support@wavemet-
rics.com along with a description of the problem. Do not send the segment as plain text because email programs
may strip out or replace unusual control characters in the file. Instead, send a compressed version of the file.

Loading Fixed Field Text Files
A fixed field text file consists of rows of values, organized into columns, that are a fixed number of charac-
ters wide with a carriage return, linefeed, or carriage return/linefeed combination at the end of the row.
Space characters are used as padding to ensure that each column has the appropriate number of characters.
In some cases, a value will fill the entire column and there will be no spaces after it. FORTRAN programs
typically generate fixed field text files.

Igor’s Load Fixed Field Text routine works just like the Load Delimited Text routine except that, instead of
looking for a delimiter character to determine where a column ends, it counts the number of characters in
the column. All of the features described in the section Loading Delimited Text Files on page II-143 apply
also to loading fixed field text.

mailto:support@wavemetrics.com
mailto:support@wavemetrics.com

Chapter II-9 — Importing and Exporting Data

II-153

The Load Waves Dialog for Fixed Field Text
To load a fixed field text file, invoke the Load Waves dialog by choosing the Load Waves menu item.

The dialog is the same as for loading delimited text except for three additional items.

In the Number of Columns item, you must enter the total number of columns in the file. In the Field Widths
item, you must enter the number of characters in each column of the file, separated by commas. The last
value that you enter is used for any subsequent columns in the file. If all columns in the file have the same
number of characters, just enter one number.

If you select the All 9’s Means Blank checkbox then Igor will treat any column that consists entirely of the digit
9 as a blank. If the column is being loaded into a numeric wave, Igor sets the corresponding wave value to NaN.
If the column is being loaded into a text wave, Igor sets the corresponding wave value to "" (empty string).

Loading General Text Files
We use the term “general text” to describe a text file that consists of one or more blocks of numeric data. A
block is a set of rows and columns of numbers. Numbers in a row are separated by one or more tabs or
spaces. One or more consecutive commas are also treated as white space. A row is terminated by a carriage
return character, a linefeed character, or a carriage return/linefeed combination.

The Load General Text routine handles numeric data only, not date, time, date/time or text. Use Load Delimited
Text or Load Fixed Field Text for these formats. Load General Text can handle 2D numeric data as well as 1D.

The first block of data may be preceded by header information which the Load General Text routine will
automatically skip.

If there is a second block, it is usually separated from the first with one or more blank lines. There may also
be header information preceding the second block which Igor will also skip.

Chapter II-9 — Importing and Exporting Data

II-154

When loading 1D data, the Load General Text routine loads each column of each block into a separate wave.
It treats column labels as described above for the Load Delimited Text routine, except that spaces as well as
tabs and commas are accepted as delimiters. When loading 2D data, it loads all columns into a single 2D wave.

The Load General Text routine determines where a block starts and ends by counting the number of
numbers in a row. When it finds two rows with the same number of numbers, it considers this the start of
a block. The block continues until a row which has a different number of numbers.

Examples of General Text
Here are some examples of text that you might find in a general text file.

Simple general text
ch0 ch1 ch2 ch3 (optional row of labels)
2.97055 1.95692 1.00871 8.10685
3.09921 4.08008 1.00016 7.53136
3.18934 5.91134 1.04205 6.90194

The Load General Text routine would create four waves with three points each or, if you specify loading as
a matrix, a single 3 row by 4 column wave.

General text with header
Date: 3/2/93
Sample: P21-3A
ch0 ch1 ch2 ch3 (optional row of labels)
2.97055 1.95692 1.00871 8.10685
3.09921 4.08008 1.00016 7.53136
3.18934 5.91134 1.04205 6.90194

The Load General Text routine would automatically skip the header lines (Date: and Sample:) and would create
four waves with three points each or, if you specify loading as a matrix, a single 3 row by 4 column wave.

General text with header and multiple blocks
Date: 3/2/93
Sample: P21-3A
ch0_1 ch1_1 ch2_1 ch3_1 (optional row of labels)
2.97055 1.95692 1.00871 8.10685
3.09921 4.08008 1.00016 7.53136
3.18934 5.91134 1.04205 6.90194

Date: 3/2/93
Sample: P98-2C
ch0_2 ch1_2 ch2_2 ch3_2 (optional row of labels)
2.97055 1.95692 1.00871 8.10685
3.09921 4.08008 1.00016 7.53136
3.18934 5.91134 1.04205 6.90194

The Load General Text routine would automatically skip the header lines and would create eight waves
with three points each or, if you specify loading as a matrix, two 3 row by 4 column waves.

Comparison of General Text, Fixed Field and Delimited Text
You may wonder whether you should use the Load General Text routine, Load Fixed Field routine or the
Load Delimited Text routine. Most commercial programs create simple tab-delimited files which these rou-
tines can handle. Files created by scientific instruments, mainframe programs, custom programs, or
exported from spreadsheets are more diverse. You may need to try these routines to see which works better.
To help you decide which to try first, here is a comparison.

Advantages of the Load General Text compared to Load Fixed Field and to Load Delimited Text:
• It can automatically skip header text.

Chapter II-9 — Importing and Exporting Data

II-155

• It can load multiple blocks from a single file.
• It can tolerate multiple tabs or spaces between columns.

Disadvantages of the Load General Text compared to Load Fixed Field and to Load Delimited Text:
• It can not handle blanks (missing values).
• It can not tolerate columns of nonnumeric text or nonnumeric values in a numeric column.
• It can not load text values, dates, times or date/times.
• It can not handle comma as the decimal point (European number style).

The Load General Text routine can load missing values if they are represented in the file explicitly as “NaN”
(Not-a-Number). It can not handle files that represent missing values as blanks because this confounds the
technique for determining where a block of numbers starts and ends.

The Load Waves Dialog for General Text — 1D
To load a general text file as 1D waves, invoke the Load Waves dialog by choosing the Load Waves menu
item. The dialog appears as shown above for delimited text.

The basic process of loading data from a general text file is as follows:
1. Bring up the Load Waves dialog.
2. Choose General Text from the File Type pop-up menu.
3. Click the File button to select the file containing the data.
4. Click Do It.

When you click Do It, Igor’s LoadWave operation runs. It executes the Load General Text routine which
goes through the following steps:
1. Locate the start of the block of data using the technique of counting numbers in successive lines.

This step also skips the header, if any, and determines the number of columns in the block.
2. Optionally, determine if there is a row of column labels immediately before the block of numbers.
3. Optionally, present another dialog allowing you to confirm or change wave names.
4. Create waves.
5. Load data into the waves until the end of the file or a until a row that contains a different number

of numbers.
6. If not at the end of the file, go back to step one to look for another block of data.

Igor looks for a row of column labels only if you enable the “Read wave names” option. It looks in the line
immediately preceding the block of data. If it finds labels and if the number of labels matches the number
of columns in the block, it uses these labels as wave names. Otherwise, Igor will automatically generate
wave names of the form wave0, wave1 and so on.

If you choose the Load General Text item from the Load Waves submenu instead of the Load Waves item, Igor
will display a dialog from which you can select the general text file to load directly. This is a shortcut that skips
the Load Waves dialog and uses default options for the load. This will always load 1D waves, not a matrix.
Before you use this shortcut, take a look at the Load Waves dialog so you can see what options are available.

Editing Wave Names for a Block
In step 3 above, the Load General Text routine presents a dialog in which you can change wave names. This
works exactly as described above for the Load Delimited Text routine except that it has one extra button:
“Skip this block”.

Chapter II-9 — Importing and Exporting Data

II-156

Use “Skip this block” to skip one or more blocks of a multiple block general text file.

Click the Skip Column button to skip loading of the column corresponding to the selected name box. Shift-
click the button to skip all columns except the selected one.

The Load Waves Dialog for General Text — 2D
Igor can load a 2D wave using the Load General Text routine. However, Load General Text does not
support the loading of row/column labels and positions. If the file has such rows and columns, you must
load it as a delimited text file.

The main reason to use the Load General Text routine rather than the Load Delimited Text routine for
loading a matrix is that the Load General Text routine can automatically skip nonnumeric header informa-
tion. Also, Load General Text treats any number of spaces and tabs, as well as one comma, as a single delim-
iter and thus is tolerant of less rigid formatting.

Set Scaling After Loading General Text Data
If your 1D data is uniformly spaced in the X dimension then you will be able to use the many operations
and functions in Igor designed for waveform data. You will need to set the X scaling for your waves after
you load them, using the Change Wave Scaling dialog.

Note: If your data is uniformly spaced it is very important that you set the X scaling of your waves. Many
Igor operations depend on the X scaling information to give you correct results.

If your 1D data is not uniformly spaced then you will use XY pairs and you do not need to change X scaling.
You may want to use Change Wave Scaling to set the waves’ data units.

General Text Tweaks
The Load General Text routines provides some tweaks that allow you to guide Igor as it loads the file. To
do this, use the Tweaks button in the Load Waves dialog. Most people will not need to use these tweaks.

Aborts the load.Skips current block.Loads current block.

Shows a bit of the block
being loaded.

Edit wave names here.

Skips highlighted column.

Chapter II-9 — Importing and Exporting Data

II-157

The items at the top of the dialog are hidden because they apply to the Load Delimited Text routine only.
Load General Text always skips any tabs and spaces between numbers and will also skip a single comma.
The “decimal point” character is always period and it can not handle dates.

The items relating to column labels, data lines and data columns have two potential uses. You can use them
to load just a part of a file or to guide Igor if the automatic method of finding a block of data produces incor-
rect results.

Lines and columns in the tweaks dialog are numbered starting from zero.

Igor interprets the “Line containing column labels” and “First line containing data” tweaks differently for
general text files than it does for delimited text files. For delimited text, zero means “the first line”. For
general text, zero for these parameters means “auto”.

Here is what “auto” means for general text. If “First line containing data” is auto, Igor starts the search for data
from the beginning of the file without skipping any lines. If it is not “auto”, then Igor skips to the specified
line and starts its search for data there. This way you can skip a block of data at the beginning of the file. If
“Line containing column labels” is auto then Igor looks for column labels in the line immediately preceding
the line found by the search for data. If it is not auto then Igor looks for column labels in the specified line.

If the “Number of lines containing data” is not “auto” then Igor will stop loading after the specified number
of lines or when it hits the end of the first block, whichever comes first. This behavior is necessary so that it
is possible to pick out a single block or subset of a block from a file containing more than one block.

If a general text file contains more than one block of data and if “Number of lines containing data” is “auto”
then, for blocks after the first one, Igor maintains the relationship between the line containing column labels
and first line containing data. Thus, if the column labels in the first block were one line before the first line
containing data then Igor will expect the same to be true of subsequent blocks.

You can use the “First column containing data” and “Number of columns containing data” tweaks to load
a subset of the columns in a block. If “Number of columns containing data” is set to “auto” or 0, Igor will
load all columns until it hits the last column in the block.

Troubleshooting General Text Files
You can examine the waves created by the Load General Text routine using a table. If you don’t get the
results that you expected, you will need to inspect and edit the text file until it is in a form that Igor can
handle. Remember the following points:
• Load General Text can not handle dates, times, date/times, commas used as decimal points, or

blocks of data with nonnumeric columns. Try Load Delimited Text for this.
• It skips any tabs or spaces between numbers and will also skip a single comma.

Use these to specify where to
find the data in the file as well
as to load a subset of the data.

Load General Text can
not handle blanks.

Chapter II-9 — Importing and Exporting Data

II-158

• It expects a line of column labels, if any, to appear in the first line before the numeric data unless you
set tweaks to the contrary. It expects that the labels are also delimited by tabs, commas or spaces. It
will not look for labels unless you enable the Read Wave Names option.

• It works by counting the number of numbers in consecutive lines. Some unusual formats (e.g.,
1,234.56 instead of 1234.56) can throw this count off, causing it to start a new block prematurely.

• It can not handle blanks or nonnumeric values in a column. Each of these will start a new block of data.
• If it detects a change in the number of columns, it starts loading a new block into a new set of waves.

If merely inspecting the file does not identify the problem then you should try the technique of loading a
subset of your data. This is described under Troubleshooting Delimited Text Files on page II-152 and often
sheds light on the problem. In the same section, you will find instructions for sending the problem file to
WaveMetrics for analysis, if necessary.

Loading Igor Text Files
An Igor Text file consists of keywords, data and Igor commands. The data can be numeric, text or both and
can be of dimension 1 to 4. Many Igor users have found this to be an easy and powerful way to import data
from their own custom programs into Igor.

The file name extension for an Igor Text file is “.itx”. Old versions of Igor used “.awav” and this is still accepted.

Examples of Igor Text
Here are some examples of text that you might find in an Igor Text file.

Simple Igor Text
IGOR
WAVES/D unit1, unit2
BEGIN

19.7 23.9
19.8 23.7
20.1 22.9

END
X SetScale x 0,1, "V", unit1; SetScale d 0,0, "A", unit1
X SetScale x 0,1, "V", unit2; SetScale d 0,0, "A", unit2

Loading this would create two double-precision waves named unit1 and unit2 and set their X scaling, X
units and data units.

Igor Text with extra commands
IGOR
WAVES/D/O xdata, ydata
BEGIN

98.822 486.528
109.968 541.144
119.573 588.21
133.178 654.874
142.906 702.539

END
X SetScale d 0,0, "V", xdata
X SetScale d 0,0, "A", ydata
X Display ydata vs xdata; DoWindow/C TempGraph
X ModifyGraph mode=2,lsize=5
X CurveFit line ydata /X=xdata /D
X Textbox/A=LT/X=0/Y=0 "ydata= \\{W_coef[0]}+\\{W_coef[1]}*xdata"
X PrintGraphs TempGraph
X DoWindow/K TempGraph // kill the graph
X KillWaves xdata, ydata, fit_ydata // kill the waves

Chapter II-9 — Importing and Exporting Data

II-159

Loading this would create two double-precision waves and set their data units. It would then make a graph,
do a curve fit, annotate the graph and print the graph. The last two lines do housekeeping.

Igor Text File Format
An Igor Text file starts with the keyword IGOR. The rest of the file may contain blocks of data to be loaded
into waves or Igor commands to be executed and it must end with a blank line.

A block of data in an Igor Text file must be preceded by a declaration of the waves to be loaded. This declaration
consists of the keyword WAVES followed by optional flags and the names of the waves to be loaded. Next the
keyword BEGIN indicates the start of the block of data. The keyword END marks the end of the block of data.

A file can contain any number of blocks of data, each preceded by a declaration. If the waves are 1D, the
block can contain any number of waves but waves in a given block must all be of the same data type. Mul-
tidimensional waves must appear one wave per block.

A line of data in a block consists of one or more numeric or text items with tabs separating the numbers and
a carriage return at the end of the line. Each line should have the same number of items.

You can’t use blanks, dates, times or date/times in an Igor Text file. To represent a missing value in a
numeric column, use “NaN” (not-a-number). To represent dates or times, use the standard Igor date format
(number of seconds since 1/1/1904).

There is no limit to the number of waves or number of points except that all of the data must fit in available
memory.

The WAVES keyword accepts the following optional flags:

Normally you should make single or double precision floating point waves. Integer waves are normally used
only to contain raw data acquired via external operations. They are also appropriate for storing image data.

The /N flag is needed only if the data is multidimensional but the flag is allowed for one-dimensional data,
too. Regardless of the dimensionality, the dimension size list must always be inside parentheses. Examples:
WAVES/N=(5) wave1D
WAVES/N=(3,3) wave2D
WAVES/N=(3,3,3) wave3D

Integer waves are signed unless you use the /U flag to make them unsigned.

If you use the /C flag then a pair of numbers in a line supplies the real and imaginary value for a single point
in the resulting wave.

Flag Effect

/N=(…) Specifies size of each dimension for multidimensional waves.

/O Overwrites existing waves.

/R Makes waves real (default).

/C Makes waves complex.

/S Makes waves single precision floating point (default).

/D Makes waves double precision floating point.

/I Makes waves 32 bit integer.

/W Makes waves 16 bit integer.

/B Makes waves 8 bit integer.

/U Makes integer waves unsigned.

/T Specifies text data type.

Chapter II-9 — Importing and Exporting Data

II-160

If you specify a wave name that is already in use and you don’t use the overwrite option, Igor will display
a dialog so that you can resolve the conflict.

The /T flag makes text rather than numeric waves. See Loading Text Waves from Igor Text Files on page
II-161.

A command in an Igor Text file is introduced by the keyword X followed by a space. The command follows
the X on the same line. When Igor encounters this while loading an Igor Text file it executes the command.

Anything that you can execute from Igor’s command line is acceptable after the X. Introduce comments
with “X //”. There is no way to do conditional branching or looping. However, you can call an Igor proce-
dure defined in a built-in or auxiliary procedure window.

Commands, introduced by X, are executed as if they were entered on the command line or executed via the
Execute operation. Such command execution is not thread-safe. Therefore, you can not load an Igor text file
containing a command from an Igor thread.

Setting Scaling in an Igor Text File
When Igor writes an Igor Text file, it always includes commands to set each wave’s scaling, units and
dimension labels. It also sets each wave’s note.

If you write a program that generates Igor Text files, you should set at least the scaling and units. If your
1D data is uniformly spaced in the X dimension, you should use the SetScale operation to set your waves X
scaling, X units and data units. If your data is not uniformly spaced, you should set the data units only. For
multidimensional waves, use SetScale to set Y, Z and T units if needed.

The Load Waves Dialog for Igor Text
To load an Igor Text file, invoke the Load Waves dialog by choosing the Load Waves menu item.

The basic process of loading data from an Igor Text file is as follows:
1. Bring up the Load Waves dialog.
2. Choose Igor Text from the File Type pop-up menu.
3. Click the File button to select the file containing the data.
4. Click Do It.

When you click Do It, Igor’s LoadWave operation runs. It executes the Load Igor Text routine which loads
the file.

Click to select the file to load.

Select the symbolic path that
points to the folder containing
the file or “<none>”.

Select the type of file to be loaded.Select to make a table showing the loaded waves.

When selected, existing
waves with the same name
as waves being loaded will
be overwritten. You can
also force an overwrite by
using WAVES/O in the file.

Loads data from the
Clipboard instead of
from a file.

Chapter II-9 — Importing and Exporting Data

II-161

If you choose the Load Igor Text item from the Load Waves submenu instead of the Load Waves item, Igor
will display a dialog from which you can select the Igor Text file to load directly. This is a shortcut that skips
the Load Waves dialog.

Loading MultiDimensional Waves from Igor Text Files
In an Igor Text file, a block of wave data is preceded by a WAVES declaration. For multidimensional data,
you must use a separate block for each wave. Here is an example of an Igor Text file that defines a 2D wave:
IGOR
WAVES/D/N=(3,2) wave0
BEGIN

1 2
3 4
5 6

END

The “/N=(3,2)” flag specifies that the wave has three rows and two columns. The first line of data (1 and 2)
contains data for the first row of the wave. This layout of data is recommended for clarity but is not
required. You could create the same wave with:
IGOR
WAVES/D/N=(3,2) wave0
BEGIN

1 2 3 4 5 6
END

Igor merely reads successive values and stores them in the wave, storing a value in each column of the first
row before moving to the second row. All white space (spaces, tabs, return and linefeed characters) are
treated the same.

When loading a 3D wave, Igor expects the data to be in column/row/layer order. You can leave a blank line
between layers for readability but this is not required.

Here is an example of a 3 rows by 2 columns by 2 layers wave:
IGOR
WAVES/D/N=(3,2,2) wave0
BEGIN

1 2
3 4
5 6

11 12
13 14
15 16

END

The first 6 numbers define the values of the first layer of the 3D wave. The second 6 numbers define the
values of the second layer.

When loading a 4D wave, Igor expects the data to be in column/row/layer/chunk order. You can leave a
blank line between layers and two blank lines between chunks for readability but this is not required.

If loading a multidimensional wave, Igor expects that the dimension sizes specified by the /N flag are accu-
rate. If there is more data in the file than expected, Igor ignores the extra data. If there is less data than
expected, some of the values in the resulting waves will be undefined. In either of these cases, Igor will print
a message in the history area to alert you to the discrepancy.

Loading Text Waves from Igor Text Files
Loading text waves from Igor Text files is similar to loading them from delimited text files except that in an
Igor Text file you declare a wave’s name and type. Also, text strings are quoted in Igor Text files as they are
in Igor’s command line. Here is an example of Igor Text that defines a text wave:

Chapter II-9 — Importing and Exporting Data

II-162

IGOR
WAVES/T textWave0, textWave1
BEGIN

"This" "Hello"
"is" "out"
"a test" "there"

END

All of the waves in a block of an Igor Text file must have the same number of points and data type. Thus, you
can not mix numeric and text waves in the same block. You can have any number of blocks in one Igor Text file.

As this example illustrates, you must use double quotes around each string in a block of text data. If you
want to embed a quote, tab, carriage return or linefeed within a single text value, use the escape sequences
\", \t, \r or \n. Use \\ to embed a backslash. For less common escape sequences, see Escape Characters in
Strings on page IV-13.

The Igor Text File Type Code and File Extension
On Macintosh, Igor recognizes files of type IGTX as Igor Text. The file type can also be TEXT. If you are
writing a program that generates Igor text files, use file type IGTX, creator code IGR0 (last character is zero)
and the file name extension “.itx”.

On Windows, just use the file name extension “.itx”.

Loading UTF-16 Files
The LoadWave operation can load data from UTF-16 (two-byte Unicode) text files. It does not recognize
non-ASCII characters, but does ignore the byte-order mark at the start of the file (BOM) and null bytes con-
tained in UTF-16 text files. Consequently it can load data from UTF-16 files containing just numeric data
and ASCII text.

Loading Igor Binary Data
This section discusses loading Igor Binary data into memory. Igor stores Igor Binary data in two ways: one
wave per Igor Binary file in unpacked experiments and multiple waves within a packed experiment file.

When you open an experiment, Igor automatically loads the Igor Binary data to recreate the experiment’s
waves. The main reason to explicitly load an Igor Binary file is if you want to load data from another
program that knows how to create an Igor Binary file. The easiest way to load data from another experiment
is to use the Data Browser (see Data Browser on page II-130).

Warning: You can get into trouble if two Igor experiments load data from the same Igor Binary file. See
Sharing Versus Copying Igor Binary Files on page II-165 for details.

There are a number of ways to load Igor Binary data into the current experiment in memory. Here is a sum-
mary. For most users, the first and second methods — which are simple and easy to use — are sufficient.

Method Loads Action Purpose
Open
Experiment

(Chapter II-3)

Packed and
unpacked files

Restores experiment to the state in
which it was last saved.

To restore experiment.

Data Browser

(Chapter II-8)

Packed and
unpacked files

Copies data from one experiment to
another.

To collect data from different
sources for comparison.

Browse Waves
Dialog

(Chapter II-5)

Unpacked files
only

Copies data from one experiment to
another or shares between
experiments.

To collect data from different
sources for comparison.

Chapter II-9 — Importing and Exporting Data

II-163

The Igor Binary File
The Igor Binary file format is Igor’s native format for storing waves. This format stores one wave per file very
efficiently. The file includes the numeric contents of the wave (or text contents if it is a text wave) as well as all
of the auxiliary information such as the dimension scaling, dimension and data units and the wave note. In an
Igor packed experiment file, any number of Igor Binary wave files can be packed into a single file.

The file name extension for an Igor Binary file is “.ibw”. Old versions of Igor used “.bwav” and this is still
accepted. The Macintosh file type code is IGBW and the creator code is IGR0 (last character is zero).

The name of the wave is stored inside the Igor Binary file. It does not come from the name of the file. For
example, wave0 might be stored in a file called “wave0.ibw”. You could change the name of the file to any-
thing you want. This does not change the name of the wave stored in the file.

The Igor Binary file format was designed to save waves that are part of an Igor experiment. In the case of
an unpacked experiment, the Igor Binary files for the waves are stored in the experiment folder and can be
loaded using the LoadWave operation. In the case of a packed experiment, data in Igor Binary format is
packed into the experiment file and can be loaded using the LoadData operation.

Some Igor users have written custom programs that write Igor Binary files which they load into an experi-
ment. Igor Technical Note #003, “Igor Binary Format”, provides the details that a programmer needs to do
this. See also Igor Pro Technical Note PTN003.

The Load Waves Dialog for Igor Binary
To load an Igor Binary file, invoke the Load Waves dialog by choosing the Load Waves menu item.

Desktop Drag
and Drop

(Chapter II-3)

Unpacked files
only

Copies data from one experiment
to another or shares between
experiments.

To collect data from different
sources for comparison.

Load Waves
Dialog

Unpacked files
only

Copies data from one experiment
to another or shares between
experiments.

To create a LoadWave command
that can be used in an Igor
procedure.

LoadWaves
Operation

Unpacked files
only

Copies data from one experiment
to another or shares between
experiments.

To automatically load data using
an Igor Procedure.

LoadData
Operation

Packed and
unpacked files

Copies data from one experiment to
another.

To automatically load data using
an Igor Procedure.

Method Loads Action Purpose

Select the type of file to be loaded.Select to make a table showing the loaded wave.

Select the symbolic path that
points to the folder containing
the file or “<none>”.

Click to select the file to load.

Select to make a copy of the
wave in the current experiment.
Deselect to share the wave file
with another experiment.

When selected, an existing wave
with the same name as the wave
being loaded will be overwritten.

Chapter II-9 — Importing and Exporting Data

II-164

The basic process of loading data from an Igor Binary file is as follows:
1. Bring up the Load Waves dialog.
2. Choose Igor Binary from the File Type pop-up menu.
3. Click the File button to select the file containing the data.
4. Set the “Copy to home” checkbox.
5. Click Do It.

When you click Do It, Igor’s LoadWave operation runs. It executes the Load Igor Binary routine which
loads the file. If the wave that you are loading has the same name as an existing wave or other Igor object,
Igor will present a dialog in which you can resolve the conflict.

Notice the “Copy to home” checkbox. It is very important.

If it is selected, Igor will disassociate the wave from its source file after loading it into the current experi-
ment. When you next save the experiment, Igor will store a new copy of the wave with the current experi-
ment. The experiment will not reference the original source file. We call this “copying” the wave to the
current experiment.

If “Copy to home” is not selected, Igor will keep the connection between the wave and the file from which
it was loaded. When you save the experiment, it will contain a reference to the source file. We call this “shar-
ing” the wave between experiments.

We strongly recommend that you copy waves rather than share them. See Sharing Versus Copying Igor
Binary Files on page II-165 for details.

If you choose the Load Igor Binary item from the Load Waves submenu instead of the Load Waves item,
Igor will display a dialog from which you can select the Igor Binary file to load directly. This is a shortcut
that skips the Load Waves dialog. When you take this shortcut, you lose the opportunity to set the “Copy
to home” checkbox. Thus, during the load operation, Igor will present a dialog from which you can choose
to copy or share the wave.

The LoadData Operation
The LoadData operation provides a way for Igor programmers to automatically load data from packed Igor
experiment files or from a file-system folder containing unpacked Igor Binary files. It can load not only waves
but also numeric and string variables and a hierarchy of data folders that contains waves and variables.

The Data Browser’s Browse Expt button provides interactive access to the LoadData operation and permits
you to drag a hierarchy of data from one Igor experiment into the current experiment in memory. To
achieve the same functionality in an Igor procedure, you need to use the LoadData operation directly. See
the LoadData operation (see page V-388).

LoadData, accessed from the command line or via the Data Browser, has the ability to overwrite existing
waves, variables and data folders. Igor automatically updates any graphs and tables displaying the over-
written waves. This provides a very powerful and easy way to view sets of identically structured data, as
would be produced by successive runs of an experiment. You start by loading the first set and create graphs
and tables to display it. Then, you load successive sets of identically named waves. They overwrite the pre-
ceding set and all graphs and tables are automatically updated.

Click to share the wave between
two experiments. See Sharing
Versus Copying Igor Binary
Files on page II-165 for details.

Click to copy the wave. This
is the recommended setting.

Chapter II-9 — Importing and Exporting Data

II-165

Sharing Versus Copying Igor Binary Files
There are two reasons for loading a binary file that was created as part of another Igor experiment: you may
want your current experiment to share data with the other experiment or, you may want to copy data to the
current experiment from the other experiment.

There is a potentially serious problem that occurs if two experiments share a file. The file can not be in
two places at one time. Thus, it will be stored with the experiment that created it but separate from the other.
The problem is that, if you move or rename files or folders, the second experiment will be unable to find the
binary file.

Here is an example of how this problem can bite you.

Imagine that you create an experiment at work and save it as an unpacked experiment file on your hard
disk. Let’s call this “experiment A”. The waves for experiment A are stored in individual Igor Binary files
in the experiment folder.

Now you create a new experiment. Let’s call this “experiment B”. You use the Load Igor Binary routine to
load a wave from experiment A into experiment B. You elect to share the wave. You save experiment B on
your hard disk. Experiment B now contains a reference to a file in experiment A’s home folder.

Now you decide to take experiment B to another computer. You copy it to a CD and go to the other com-
puter. When you try to open experiment B, Igor can’t find the file it needs to load the shared wave. This file
is back on the hard disk of the original computer.

A similar problem occurs if, instead of moving experiment B to another computer, you change the name or
location of experiment A’s folder. Experiment B will still be looking for the shared file under its old name
or in its old location and Igor will not be able to load the file when you open experiment B.

Because of this problem, we recommend that you avoid file sharing as much as possible. If it is necessary to
share a binary file, you will need to be very careful to avoid the situation described above.

The Data Browser always copies when transferring data from disk into memory.

For more information on the problem of sharing files, see References to Files and Folders on page II-37.

Loading Image Files
You can load PICT, TIFF, JPEG, PNG, GIF, Photoshop, SGI, Sun Raster, BMP, and Targa image files into Igor
Pro using the Load Image dialog. The same file types are supported both on the Macintosh and on Windows.

Loading the following types requires that you have Apple’s QuickTime software installed on your com-
puter: PICT (on Windows only), JPEG, GIF, PhotoShop, SGI and Targa. All Mac OS X machines have Quick-
Time installed. Windows users who want to load these types of files can download QuickTime from
<http://www.apple.com/quicktime/>.

The Load Image Dialog
To load an image file into an Igor matrix wave, invoke the Load Image dialog by choosing the Load Image
menu item in the Load Waves submenu.

Experiment B contains a
reference to a file stored
in Experiment A.

The shared wave is
stored in an Igor Binary
file in this folder.

http://www.apple.com/quicktime/

Chapter II-9 — Importing and Exporting Data

II-166

This dialog looks and works much the same as the other Igor file loading dialogs.

When you choose a particular type of image file from the File Type pop-up menu, you are setting a file filter
that is used when displaying the image file selection dialog. If you are not sure that your image file has the
correct file type or file name extension, choose “Any” from the File pop-up menu so that the filter does not
restrict your selection. Note that when you choose “Any” QuickTime will be used to load the file and there-
fore you can only load images from file formats supported by QuickTime.

Names for the loaded matrix waves can be the name of the file or a name that you specify. If you enter a
matrix wave name in the dialog that conflicts with an existing wave name and you have not selected the
Overwrite Existing Waves checkbox, Igor will append a numeric suffix to the new wave names.

Image Loading Details
Except for certain kinds of TIFF and Sun Raster files, images are loaded into a 3D RGB, RGBA, or CMYK
wave. See the ImageLoad operation (see page V-301) for further details.

The wave is of type unsigned byte with layer 0 containing the red channel, layer 1 the green channel and layer
2 the blue channel. The wave may contain four layers if you load a CMYK image or if you load an image that
has an alpha channel in addition to the RGB information. Grayscale TIFF and Sun Raster images are loaded
as 2D waves. If you load a TIFF or Sun Raster image that contains a colormap, Igor creates (in addition to the
image wave) a colormap wave (usually with the suffix “_CMap”). You can display images using the NewIm-
age command or convert image waves into other forms using the ImageTransform operation.

There are two menu choices for the PNG format: Raw PNG and PNG. When Raw PNG is selected, the data
is read directly from the file into the wave. When PNG is selected, the file is loaded into memory, and off-
screen image is created, and the wave data is set by reading the offscreen image. In nearly all cases, you
should choose Raw PNG.

When you choose TIFF from the File Type pop-up menu, an additional checkbox appears: Load Multiple
Images From File. If your TIFF file contains a stack of images, select this checkbox. You can then set the
number of the first image to load (zero-based) and the number of images to load from the TIFF stack.

Chapter II-9 — Importing and Exporting Data

II-167

If just one image is loaded from the TIFF file then Igor creates a single 2D wave. If more than one image is
loaded, Igor creates a single 3D wave, each layer of which contains the data from one of the images in the
stacked TIFF file. Reading a TIFF image stack into a single 3D wave is supported only for images that are 8,
16 or 32- bits/pixel deep.

You can convert a number of 2D image waves into a 3D stack using the ImageTransform operation (stac-
kImages keyword).

HDF images can be loaded only by the HDF or HDF5 XOPs, see Loading HDF Data on page II-169 for
further details.

Loading Other Files
WaveMetrics provides a number of extensions that add additional file-loading capabilities to Igor. Most of
these file loaders add a menu item to the Load Waves submenu and an entry in the Open or Load File Dia-
log’s list so you can use it interactively. They also usually add a command line operation so you can use
them from an Igor procedure.

The following table lists many of the file loaders included with Igor Pro. Some more obscure file loaders are
also available..

If you are a C programmer, you can write your own extension to load data into Igor. To do this you need
the Igor External Operations Toolkit, available from WaveMetrics.

File Loader/Writer Description

GBLoadWave Loads numeric data from “general binary” files.

The XOP can load 8, 16 and 32 bit integer data and 32 and 64 bit IEEE data from a
binary file. It can also load a subset of the file. It can handle numerous kinds of files
including interleaved and byte-swapped files. You must know the format of the
binary file precisely.

GISLoadWave Loads Digital Elevation Model (DEM) and Digital Line Graph (DLG) data for standard
U.S. Geological Survey (USGS) format quadrangles. Such geographic data are the basic
elements of digital mapping. See Loading GIS Data on page II-169.

GWLoadWave Loads an old Macintosh-only file format from GW Instruments.

HDF Loader Loads HDF (Hierarchical Data Format) version 4 and earlier files. See Loading HDF
Data on page II-169.

HDF5 XOP Loads HDF version 5 files. See Loading HDF Data on page II-169.

IgorGIS Reads and writes various GIS files including shapefiles, GeoTIFF and many others. It
also supports transformations between spatial reference systems and creates underlay
images from vector data for use in fills. See Loading GIS Data on page II-169.

JCAMPLoadWave Loads JCAMP files, used in spectroscopy.

LoadWAVfile Windows only. Adds operations to load and save WAV sound files.

MLLoadWave Loads data from Matlab binary files. WaveMetrics thanks Yves Peysson and Bernard
Saoutic for this file loader.

NILoadWave Loads numeric data from files produced by a number of scientific instruments from
Nicolet Instruments.

SndLoadSaveWave Loads a variety of sound files on Macintosh and Windows. See Loading Sound Files
on page II-168.

TDM XOP Loads data from National Instruments TDM files.

XLLoadWave Loads numeric and text data from an Excel spreadsheet file. You need to know the cells
containing the numeric data, for example, B10 - D25.

Chapter II-9 — Importing and Exporting Data

II-168

The Igor installer puts file loaders and other extensions in "Igor Pro Folder/Igor Extensions" and "Igor Pro
Folder/More Extensions". To use an extension, put an alias (Macintosh) or shortcut (Windows) for it in "Igor
Pro User Files/Igor Extensions" (see Igor Pro User Files on page II-46 for details) and then relaunch Igor.

Each file loader has an associated Igor help file. The help file provides all the information you need to use
the file loader.

Loading Row-Oriented Text Data
All of the built-in text file loaders are column-oriented — they load the columns of data in the file into 1D
waves. There is a row-oriented format that is fairly common. In this format, the file represents data for one
wave but is written in multiple columns. Here is an example:
350 2.97 1.95 1.00 8.10 2.42
351 3.09 4.08 1.90 7.53 4.87
352 3.18 5.91 1.04 6.90 1.77

In this example, the first column contains X values and the remaining columns contain data values, written
in row/column order.

Igor Pro does not have a file-loader extension to handle this format, but there is a WaveMetrics procedure
file for it. To use it, use the Load Row Data procedure file in the “WaveMetrics Procedures:File Input
Output” folder. It adds a Load Row Data item to the Macros menu. When you choose this item, Igor will
present a dialog that presents several options. One of the options treats the first column as X values or as
data. If you specify treating the column as X values, Igor will use it to determine the X scaling of the output
wave, assuming that the values in the first column are evenly spaced. This is usually the case.

Loading Sound Files
The SndLoadSaveWave XOP loads a variety of sound files on Macintosh and Windows. It adds the Snd-
LoadWave, SndSaveAIFF and SndSaveWAV operations.

On Windows you must install QuickTime to use the SndLoadSaveWave XOP.

See the SndLoadSaveWave help file in the More Extensions:File Loaders folder for details.

See Sound on page IV-224 for general information on Igor’s sound-related features.

Put file loader extensions, or aliases for them,
anywhere inside the Igor Extensions folder. If
you’d like, you can make a File Loaders subfolder.

Chapter II-9 — Importing and Exporting Data

II-169

Loading HDF Data
HDF stands for “Hierarchical Data Format”. HDF is a complex and powerful format and you will need to
understand it as well as the structure of your HDF files to conveniently use it. Information on HDF is avail-
able via the World Wide Web from:
<http://www.hdfgroup.org/>

The current version of HDF is HDF5. Igor Pro includes an HDF5XOP that can read and write HDF5 files.
HDF5XOP is documented in the “HDF5 Help.ihf” file in “Igor Pro Folder:More Extensions:File Loaders”.
An HDF5 browser based on HDFXOP is also provided and documented in the help file.

Igor Pro also includes an older XOP that supports HDF version 3 and version 4 files. This HDF Loader XOP
is documented in “HDF Loader Help.ihf” file in the same folder.

Loading GIS Data
GIS stands for “Geographic information system”.
The IgorGIS package reads and writes various GIS files including shapefiles, GeoTIFF and many others. It
also supports transformations between spatial reference systems and creating underlay images from vector
data for use in fills. For details see the “IgorGIS Help.ihf” file.
The GISLoadWave XOP loads data from USGS Digital Elevation Model (DEM) and Digital Line Graph
(DLG) files into Igor waves. The GISLoadWave XOP is used with the GIS Utilities package. For details
choose File→Example Experiments→Feature Demos→GIS Utilities Demo.

Loading Very Big Binary Files
Binary data files can be loaded using the GBLoadWave operation or the FBinRead operation.

Most binary data files are not so large as to present issues for Igor. However, if your data file approaches
hundreds of millions or billions of bytes, size and memory issues arise.

GBLoadWave and FBinRead can handle very large files, up to hundreds of trillions of bytes, in theory.
However, other constraints put a limit on the amount of data you can load into Igor.

First there is the maximum amount of virtual memory that Igor can handle on your machine - between 2
and 4 GB. For details, see Memory Management on page III-427.

Even if you maximize the amount of virtual memory accessible by Igor, you still need as much physical
memory as possible to avoid slowing your computer to a crawl. 2 GB is good, 4 GB is better, if your com-
puter supports it.

Even if Igor can theoretically address 4 GB, this does not mean that you can create a 4 GB wave. You are
further limited by memory fragmentation, also discussed under Memory Management on page III-427.

If you want GBLoadWave or FBinRead to convert the type of the data, for example from 16-bit signed to
32-bit floating point, this requires an extra buffer during the load process which takes more memory.

Furthermore, Igor itself currently can not create a wave with more than 2 billion points because of the use
of signed longs throughout the program.

Finally, there is very little that you can do in Igor with a 1 billion point wave that won't take forever. Con-
sequently you need to load your data a piece at a time using the GBLoadWave or FBinRead.

Some experimentation will be necessary to determine how to deal with very large files. It is a good idea to
start with a reasonably-sized chunk of data, say 100 million bytes.

http://www.hdfgroup.org/

Chapter II-9 — Importing and Exporting Data

II-170

Loading Waves Using Igor Procedures
One of Igor’s strong points is that it you can write procedures to automatically load, process and graph data.
This is useful if you have accumulated a large number of data files with identical or similar structures or if
your work generates such files on a regular basis.

The input to the procedures is one or more data files. The output might be a printout of a graph or page
layout or a text file of computed results.

Each person will need procedures customized to his or her situation. In this section, we present some exam-
ples that might serve as a starting point.

Variables Set by the LoadWave Operation
The LoadWave operation uses the numeric variable V_flag and the string variables S_fileName, S_path,
and S_waveNames to provide information that is useful for procedures that automatically load waves.
When used in a function, the LoadWave operation creates these as local variables.

LoadWave sets the string variable S_fileName to the name of the file being loaded. This is useful for anno-
tating graphs or page layouts.

LoadWave sets the string variable S_path to the full path to the folder containing the file that was loaded.
This is useful if you need to load a second file from the same folder as the first.

LoadWave sets the variable V_flag to the number of waves loaded. This allows a procedure to process the
waves without knowing in advance how many waves are in a file.

LoadWave also sets the string variable S_waveNames to a semicolon-separated list of the names of the
loaded waves. From a procedure, you can use the names in this list for subsequent processing.

Loading and Graphing Waveform Data
Here is a very simple example designed to show the basic form of an Igor function for automatically loading
and graphing the contents of a data file. It loads a delimited text file containing waveform data and then
makes a graph of the waves.

In this function, we make the assumption that the files that we are loading contain three columns of wave-
form data. Tailoring the function for a specific type of data file allows us to keep it very simple.
Function LoadAndGraph(fileName, pathName)

String fileName // Name of file to load or "" to get dialog
String pathName // Name of path or "" to get dialog

// Load the waves and set the local variables.
LoadWave/J/D/O/P=$pathName fileName
if (V_flag==0) // No waves loaded. Perhaps user canceled.

return -1
endif

// Put the names of the three waves into string variables
String s0, s1, s2
s0 = StringFromList(0, S_waveNames)
s1 = StringFromList(1, S_waveNames)
s2 = StringFromList(2, S_waveNames)

Wave w0 = $s0 // Create wave references.
Wave w1 = $s1
Wave w2 = $s2

// Set waves' X scaling, X units and data units
SetScale/P x, 0, 1, "s", w0, w1, w2
SetScale d 0, 0, "V", w0, w1, w2

Chapter II-9 — Importing and Exporting Data

II-171

Display w0, w1, w2 // Create a new graph

// Annotate graph
Textbox/N=TBFileName/A=LT "Waves loaded from " + S_fileName

return 0 // Signifies success.
End

s0, s1 and s2 are local string variables into which we place the names of the loaded waves. We then use the
$ operator to create a reference to each wave, which we can use in subsequent commands.

Once the function is entered in the procedure window, you can execute it from the command line or call it
from another function. If you execute

LoadAndGraph("", "")

the LoadWave operation will display a dialog allowing you to choose a file. If you call LoadAndGraph with
the appropriate parameters, LoadWave will load the file without presenting a dialog.

You can add a “Load And Graph” menu item by putting the following menu declaration in the procedure
window:
Menu "Macros"

"Load And Graph...", LoadAndGraph("", "")
End

Because we have not used the “Auto name & go” option for the LoadWave operation, LoadWave will put
up another dialog in which you can enter names for the new waves. If you want the macro to be more auto-
matic, use /A or /N to turn “Auto name & go” on. If you want the procedure to specify the names of the
loaded waves, use the /B flag. See the description of the LoadWave operation (see page V-393) for details.

To keep the function simple, we have hard-coded the X scaling, X units and data units for the new waves.
You would need to change the parameters to the SetScale operation to suit your data. For more flexibility,
you would add additional parameters to the function.

It is possible to write LoadAndGraph so that it can handle files with any number of columns. This makes
the function more complex but more general.

For more advanced programmers, here is the more general version of LoadAndGraph.
Function LoadAndGraph(fileName, pathName)

String fileName // Name of file to load or "" to get dialog
String pathName // Name of path or "" to get dialog

// Load the waves and set the variables.
LoadWave/J/D/O/P=$pathName fileName
if (V_flag==0) // No waves loaded. Perhaps user canceled.

return -1
endif

Display // Create a new graph

String theWave
Variable index=0
do // Now append waves to graph

theWave = StringFromList(index, S_waveNames) // Next wave
if (strlen(theWave) == 0) // No more waves?

break // Break out of loop
endif
Wave w = $theWave
SetScale/P x, 0, 1, "s", w // Set X scaling
SetScale d 0, 0, "V", w // Set data units
AppendToGraph w

Chapter II-9 — Importing and Exporting Data

II-172

index += 1
while (1) // Unconditionally loop back up to “do”

// Annotate graph
Textbox/A=LT "Waves loaded from " + S_fileName

return 0 // Signifies success.
End

The do-loop picks each successive name out of the list of names in S_waveNames and adds the correspond-
ing wave to the graph. S_waveNames will contain one name for each column loaded from the file.

There is one serious shortcoming to the LoadAndGraph function. It creates a very plain, default graph.
There are three approaches to overcoming this problem:
• Use preferences.
• Use a style macro.
• Overwrite data in an existing graph.

Normally, Igor does not use preferences when a procedure is executing. To get preferences to take effect
during the LoadAndGraph function, you would need to put the statement “Preferences 1” near the begin-
ning of the function. This turns preferences on just for the duration of the function. This will cause the
Display and AppendToGraph operations to use your graph preferences.

Using preferences in a function means that the output of the function will change if you change your pref-
erences. It also means that if you give your function to a colleague, it will produce different results. This
dependence on preferences can be seen as a feature or as a problem, depending on what you are trying to
achieve. We normally prefer to keep procedures independent of preferences.

Using a style macro is a more robust technique. To do this, you would first create a prototype graph and create
a style macro for the graph (see Graph Style Macros on page II-307). Then, you would put a call to the style
macro at the end of the LoadAndGraph macro. The style macro would apply its styles to the new graph.

The last approach is to overwrite data in an existing graph rather than creating a new one. The simplest way
to do this is to always use the same names for your waves. For example, imagine that you load a file with
three waves and you name them wave0, wave1, wave2. Now you make a graph of the waves and set every-
thing in the graph to your taste. You now load another file, use the same names and use LoadWave’s over-
write option. The data from the new file will replace the data in your existing waves and Igor will
automatically update the existing graph. Using this approach, the function simplifies to this:
Function LoadAndGraph(fileName, pathName)

String fileName // Name of file to load or "" to get dialog
String pathName // Name of path or "" to get dialog

// load the waves, overwriting existing waves
LoadWave/J/D/O/N/P=$pathName fileName
if (V_flag==0) // No waves loaded. Perhaps user canceled.

return -1
endif

Textbox/C/N=TBFileName/A=LT "Waves loaded from " + S_fileName

return 0 // Signifies success.
End

There is one subtle change here. We have used the /N option with the LoadWave operation, which auto-
names the incoming waves using the names wave0, wave1, and wave2.

You can see that this approach is about as simple as it can get. The downside is that you wind up with unin-
formative names like wave0. You can use the LoadWave /B flag to provide better names.

Chapter II-9 — Importing and Exporting Data

II-173

If you are loading data from Igor Binary files or from packed Igor experiments, you can use the LoadData
operation instead of LoadWave. This is a powerful operation, especially if you have multiple sets of iden-
tically structured data, as would be produced by multiple runs of an experiment. See The LoadData Oper-
ation on page II-164 above.

Loading and Graphing XY Data
In the preceding example, we treated all of the columns in the file the same: as waveforms. If you have XY
data then things change a bit. We need to make some more assumptions about the columns in the file. For
example, we might have a collection of files with four columns which represent two XY pairs. The first two
columns are the first XY pair and the second two columns are the second XY pair.

Here is a modified version of our function to handle this case.
Function LoadAndGraphXY(fileName, pathName)

String fileName // Name of file to load or "" to get dialog
String pathName // Name of path or "" to get dialog

// load the waves and set the globals
LoadWave/J/D/O/P=$pathName fileName
if (V_flag==0) // No waves loaded. Perhaps user canceled.

return -1
endif

// Put the names of the waves into string variables.
String sx0, sy0, sx1, sy1
sx0 = StringFromList(0, S_waveNames)
sy0 = StringFromList(1, S_waveNames)
sx1 = StringFromList(2, S_waveNames)
sy1 = StringFromList(3, S_waveNames)

Wave x0 = $sx0 // Create wave references.
Wave y0 = $sy0
Wave x1 = $sx1
Wave y1 = $sy1

SetScale d 0, 0, "s", x0, x1 // Set wave data units
SetScale d 0, 0, "V", y0, y1

Display y0 vs x0 // Create a new graph
AppendToGraph y1 vs x1

Textbox/A=LT "Waves loaded from " + S_fileName // Annotate graph

return 0 // Signifies success.
End

The main difference between this and the waveform-based LoadAndGraph function is that here we append
waves to the graph as XY pairs. Also, we don’t set the X scaling of the waves because we are treating them
as XY pairs, not as waveforms.

It is possible to write a more general function that can handle any number of XY pairs. Once again, adding
generality adds complexity. Here is the more general version of the function.
Function LoadAndGraphXY(fileName, pathName)

String fileName // Name of file to load or "" to get dialog
String pathName // Name of path or "" to get dialog

// Load the waves and set the globals
LoadWave/J/D/O/P=$pathName fileName
if (V_flag==0) // No waves loaded. Perhaps user canceled.

return -1
endif

Chapter II-9 — Importing and Exporting Data

II-174

Display // Create a new graph

String sxw, syw
Variable index=0
do // Now append waves to graph

sxw=StringFromList(index, S_waveNames) // Next name
if (strlen(sxw) == 0) // No more?

break // break out of loop
endif
syw=StringFromList(index+1, S_waveNames)// Next name

Wave xw = $sxw // Create wave references.
Wave yw = $syw

SetScale d 0, 0, "s", xw // Set x wave's units
SetScale d 0, 0, "V", yw // Set y wave's units
AppendToGraph yw vs xw

index += 2
while (1) // Unconditionally loop back up to “do”

// Annotate graph
Textbox/A=LT "Waves loaded from " + S_fileName

return 0 // Signifies success.
End

Loading All of the Files in a Folder
In the next example, we assume that we have a folder containing a number of files. Each file contains three
columns of waveform data. We want to load each file in the folder, make a graph and print it. This example
uses the LoadAndGraph function as a subroutine.
Function LoadAndGraphAll(pathName)

String pathName // Name of symbolic path or "" to get dialog

String fileName
String graphName
Variable index=0

if (strlen(pathName)==0) // If no path specified, create one
NewPath/O temporaryPath // This will put up a dialog
if (V_flag != 0)

return -1 // User cancelled
endif
pathName = "temporaryPath"

endif

Variable result
do // Loop through each file in folder

fileName = IndexedFile($pathName, index, ".dat")
if (strlen(fileName) == 0) // No more files?

break // Break out of loop
endif
result = LoadAndGraph(fileName, pathName)
if (result == 0) // Did LoadAndGraph succeed?

// Print the graph.
graphName = WinName(0, 1) // Get the name of the top graph
String cmd
sprintf cmd, "PrintGraphs %s", graphName
Execute cmd // Explained below.

DoWindow/K $graphName // Kill the graph
KillWaves/A/Z // Kill all unused waves

endif

Chapter II-9 — Importing and Exporting Data

II-175

index += 1
while (1)

if (Exists("temporaryPath")) // Kill temp path if it exists
KillPath temporaryPath

endif
return 0 // Signifies success.

End

This function relies on the IndexedFile function to find the name of successive files of a particular type in a
particular folder. The last parameter to IndexedFile says that we are looking for files with a “.dat” extension.
On Macintosh, if we changed the last parameter to “TEXT”, IndexedFile would return all files of type TEXT,
regardless of their extension.

Once we get the file name, we pass it to the LoadAndGraph function. After printing the graph, we kill it
and then kill all the waves in the current data folder so that we can start fresh with the next file. A more
sophisticated version would kill only those waves in the graph.

To print the graphs, we use the PrintGraphs operation. PrintGraphs is one of a few built-in operations that
can not be directly used in a function. Therefore, we put the PrintGraphs command in a string variable and
call Execute to execute it.

If you are loading data from Igor Binary files or from packed Igor experiments, you can use the LoadData
operation. See The LoadData Operation on page II-164 above.

Saving Waves
Igor automatically saves the waves in the current experiment on disk when you save the experiment. Many
Igor users load data from files into Igor and then make and print graphs or layouts. This is the end of the
process. They have no need to explicitly save waves.

You can save waves in an Igor packed experiment file for archiving using the SaveData operation or using
the Save Copy button in the Data Browser. The data in the packed experiment can then be reloaded into
Igor using the LoadData operation or the Load Expt button in Data Browser. Or you can load the file as an
experiment using File→Open Experiment. See the SaveData operation on page V-607 for details.

The main reason for saving a wave separate from its experiment is to export data from Igor to another pro-
gram. To explicitly save waves to disk, you would use Igor’s Save operation.

The following table lists the four types of built-in data saving routines in Igor and their salient features.

File type Description

Delimited text Used for archiving results or for exporting to another program.
Row Format: <data><tab><data><terminator>*

Contains one block of data with any number of rows and columns. A row of column
labels is optional.
Columns may be equal or unequal in length.
Can export 1D or 2D waves.

General text Used for archiving results or for exporting to another program.
Row Format: <number><tab><number><terminator>*

Contains one or more blocks of numbers with any number of rows and columns. A
row of column labels is optional.
Columns in a block must be equal in length.
Can export 1D or 2D waves.

Chapter II-9 — Importing and Exporting Data

II-176

You can access all of the built-in routines via the Save Waves submenu of the Data menu.

Saving Waves in a Delimited Text File
To save a delimited text file, invoke the Save Delimit ed Text dialog via the Save Waves submenu of the
Data menu.

The Save Delimited Text routine writes a file consisting of numbers separated by tabs with a selectable line
terminator at the end of each line of text. When writing 1D waves, it can optionally include a row of column

Igor Text Used for archiving waves or for exporting waves from one Igor experiment to another.
Format: See Igor Text File Format on page II-159 above.
Contains one or more wave blocks with any number of waves and rows. A given
block can contain either numeric or text data.
Consists of special Igor keywords, numbers and Igor commands.
Can export waves of dimension 1 through 4.

Igor Binary Used for exporting waves from one Igor experiment to another.
Contains data for one Igor wave.
Format: See Igor Technical Note #003, “Igor Binary Format”.

* <terminator> can be carriage return, linefeed or carriage return/linefeed. You would use carriage re-
turn for exporting to a Macintosh program, carriage return/linefeed for Windows systems, and linefeed
for Unix systems.

File type Description

Select the symbolic path that points to the folder, if any.

Click to show only waves
modified since the experiment
was last saved.

Select the waves to be saved
to disk.

Click to show and select waves
in the target table or graph.

Select to automatically
overwrite the file if it
already exists

Options for matrix data

Select to write row of
column names.

Uses numeric formatting
from table window

Select terminator for end of text lines. For export to Macintosh
applications, use CR. For Windows systems, use CRLF. For
Unix systems, use LF.

Chapter II-9 — Importing and Exporting Data

II-177

labels. When writing a matrix, it can optionally write row labels as well as column labels plus row and
column position information.

Save Delimited Text can save waves of any dimensionality. Multidimensional waves are saved one wave
per block. Data is written in row/column/layer/chunk order. Multidimensional waves saved as delimited
text can not be loaded back into Igor as delimited text because the Load Delimited Text routine does not
support multiple blocks. They can be loaded back in as general text. However, for data that is intended to
be loaded back into Igor later, the Igor Text, Igor Binary or Igor Packed Experiment formats are preferable.

The order of the columns in the file depends on the order in which the wave names appear in the Save com-
mand. This dialog generates the wave names based on the order of the waves in the dialog list which in turn
depends on the order in which the waves were created. If you want to change the order then you should
click the To Cmd Line button instead of the Do It button and edit the command in Igor’s command line.

By default, the Save operation writes numeric data using the “%.15g” format for double-precision data and
“%.7g” format for data with less precision. These formats give you up to 15 or 7 digits of precision in the file.

To use different numeric formatting, create a table of the data that you want to export. Set the numeric for-
matting of the table columns as desired. Be sure to display enough digits in the table because the data will
be written to the file as it appears in the table. In the Save Delimited Text dialog, select the “Use table for-
matting” checkbox. When saving a multi-column wave (1D complex wave or multi-dimensional wave), all
columns of the wave are saved using the table format for the first table column from the wave.

The wfPrintf command line operation can also be used to save waves to text files using a specific numeric
format.

The Save operation is capable of appending to an existing file, rather than overwriting the file. This is useful
for accumulating results of a analysis that you perform regularly in a single file. You can also use this to
append a block of numbers to a file containing header information that you generated with the fPrintf oper-
ation. The append option is not available through the dialog. If you want to do this, see the discussion of
the Save operation (see page V-604).

Saving Waves in a General Text File
Saving waves in a general text file is very similar to saving a delimited text file. The Save General Text
dialog is identical to the Save Delimited Text dialog.

All of the columns in a single block of a general text file must have the same length. The Save General Text
routine writes as many blocks as necessary to save all of the specified waves. For example, if you ask it to
save two 1D waves with 100 points and two 1D waves with 50 points, it will write two blocks of data. Mul-
tidimensional waves are written one wave per block.

Saving Waves in an Igor Text File
Saving waves in an Igor Text file is also very similar to saving a delimited text file. The Save Igor Text dialog
is identical to the Save Delimited Text dialog.

The Igor Text format is capable of saving not only the numeric contents of a wave but its other properties
as well. It saves each wave’s dimension scaling, units and labels, data full scale and units and the wave’s
note, if any. All of this data is saved more efficiently as binary data when you save as an Igor packed exper-
iment using the SaveData operation.

As in the general text format, all of the columns in a single block of an Igor Text file must have the same
length. The Save Igor Text routine handles this requirement by writing as many blocks as necessary.

Save Igor Text can save waves of any dimensionality. Multidimensional waves are saved one wave per
block. The /N flag at the start of the block identifies the dimensionality of the wave. Data is written in
row/column/layer/chunk order.

Chapter II-9 — Importing and Exporting Data

II-178

Saving Waves in Igor Binary Files
Igor’s Save Igor Binary routine saves waves in Igor Binary files, one wave per file. Most users will not need
to do this since Igor automatically saves waves when you save an Igor experiment. You might want to save
a wave in an Igor Binary file to send it to a colleague.

The Save Igor Binary dialog is similar to the Save Delimited Text dialog. There is a difference in file naming
since, in the case of Igor Binary, each wave is saved in a separate file. If you select a single wave from the
dialog’s list, you can enter a name for the file. However, if you select multiple waves, you can not enter a
file name. Igor will use default file names of the form “wave0.ibw”.

When you save an experiment in a packed experiment file, all of the waves are saved in Igor Binary format.
The waves can then be loaded into another Igor experiment using the Data Browser (see page II-130) or The
LoadData Operation (see page II-164).

Saving Waves in Image Files
You can save some types of multidimensional waves as image files. The two main limitations of image files
are that they usually support only 8 bit depth and that some formats (e.g., JPEG) rely on lossy compression.
To avoid compression loss you should choose either TIFF or PNG file formats. At present, the extended
TIFF file format is a bit more flexible in that you can save in 8, 16, or 32 bits per sample and you can use
image stacks to support 3D and 4D waves. See the ImageSave operation on page V-314 for more details.

Saving Sound Files
You can save waves as sound files using the SndLoadSaveWave XOP. See the corresponding help file in the
More Extensions:File Loaders folder.

Exporting Text Waves
Igor does not quote text when exporting text waves as a delimited or general text file. It does quote text
when exporting it as an Igor Text file.

Certain special characters, such as tabs, carriage returns and linefeeds, cause problems during exchange of
data between programs because most programs consider them to separate one value from the next or one
line of text from the next. Igor Text waves can contain any character, including special characters. In most
cases, this will not be a problem because you will have no need to store special characters in text waves or,
if you do, you will have no need to export them to other programs.

When Igor writes a text file containing text waves, it replaces the following characters, when they occur
within a wave, with their associated escape codes:

Igor does this because these would be misinterpreted if not changed to escape sequences. When Igor loads a
text file into text waves, it reverses the process, converting escape sequences into the associated ASCII code.

This use of escape codes can be suppressed using the /E flag of the Save operation (see page V-604). This is
necessary to export text containing backslashes to a program that does not interpret escape codes.

Character Name ASCII Code Escape Sequence
CR carriage return 13 \r
LF linefeed 10 \n
tab tab 9 \t
\ backslash 92 \\

Chapter II-9 — Importing and Exporting Data

II-179

Exporting MultiDimensional Waves
When exporting a multidimensional wave as a delimited or general text file, you have the option of writing
row labels, row positions, column labels and column positions to the file. Each of these options is controlled
by a checkbox in the Save Waves dialog. There is a discussion of row/column labels and positions under 2D
Label and Position Details on page II-149.

Igor writes multidimensional waves in column/row/layer/chunk order.

Accessing SQL Databases
Igor Pro includes an XOP, called SQL XOP, which provides access to relational databases from IGOR pro-
cedures. It uses ODBC (Open Database Connectivity) libraries and drivers on Mac OS X and Windows to
provide this access.

For details on configuring and using SQL XOP, open the SQL Help file in “Igor Pro Folder:More Exten-
sions:Utilities”.

Chapter II-9 — Importing and Exporting Data

II-180

Chapter

II-10
II-10Dialog Features

Overview.. 182
Operation Dialogs... 182
Resizable Dialogs .. 183
Movable Dividers.. 183
Dialog Wave Browser... 183

Dialog Wave Browser Details .. 184
Operation Result Chooser.. 186
Operation Result Displayer ... 187

Chapter II-10 — Dialog Features

II-182

Overview
Most Igor Pro dialogs are designed with common features. This chapter describes some of those common
features.

Operation Dialogs
Menus and dialogs provide easy access to many of Igor Pro’s operations.

You will see a dialog:

As you click and type in the items in the dialog, Igor generates an appropriate command. The command
being generated is displayed in the command box near the bottom of the dialog. As you become more pro-
ficient, you will find that some commands are easier to invoke from a dialog and others are easier to enter
directly in the command line. There are some menus and dialogs that bypass the command line, usually
because they perform functions that have no command line equivalents.

Many dialogs include a From Target checkbox. If it is selected, the lists of waves available for you to choose
are restricted to waves that appear in the topmost graph or table window:

When you choose a menu item:

Read about Wave
Browsers below.

The dialog generates a
command suitable for
execution in the
command line.

Copies the command to the command line
where you can edit it and then execute it.

Copies the command to the Clipboard. Useful
when you are writing Igor procedures.

Transfers the command
to the command line
and executes it.

Chapter II-10 — Dialog Features

II-183

Sometimes, if your top graph or table contains waves that are not in the current data folder, or if you are
not viewing the current data folder in the wave browser, you may not see any waves. In that case, you may
need to hunt for them. If you are unfamiliar with data folders, this probably won’t be a problem.

Resizable Dialogs
Many dialogs are resizable. The dialog at the beginning of this chapter is one. On Macin-
tosh, you can identify a resizable dialog by the resizing handle in the lower-right corner. On
Windows, resizable dialogs are marked with a special icon in the upper-left corner.

When you resize a dialog, parts of the dialog that may need more space will be made larger. In the New Graph
dialog pictured above, the Wave Browsers are given more room when you increase the size of the dialog.

Movable Dividers
Many dialogs include movable dividers. These allow you to change the
proportion of dialog real estate allocated to different parts of the dialog.
The dividers may be hard to find- they look just like plain divider lines.
Moveable dividers can be recognized by the drag arrow cursor when
the mouse cursor is over a moveable divider.

In this case a vertical divider can be dragged left or right to give more
or less room to the Wave Browser in the left portion of the dialog.

Dialog Wave Browser
In dialogs in which a wave must be selected, Igor presents a list of suitable waves in a Dialog Wave Browser. As
shipped from the factory, Igor shows only waves in the current data folder. As shipped from the factory, Igor
shows a hierarchical list of data folders and waves and/or numeric or string variables. Here is a picture of a
typical dialog wave browser, after two waves have been made, and no data folders have been created:

The table is showing wave0,
wave1, and wave2.

The From Target
checkbox is selected…

… only wave0, wave1, and wave2 are available.

Chapter II-10 — Dialog Features

II-184

If you don't know what data folders are, or you prefer not to deal with them, you may prefer to hide the
data folders view. To do so, pop up the Options menu and select Hide Data Folders:

You can restore the data folders view by again popping up the Options menu and selecting Show Data
Folders. When you change from Show to Hide or from Hide to Show, all dialog wave browsers in all the
dialogs are changed, and the change is stored in preferences so that you won't have to make the selection
again.

To learn more about data folders, see Data Folders on page II-121.

Dialog Wave Browser Details
With data folders displayed, if you have created a couple of data folders, and some waves, the dialog wave
browser looks like this:

Options menu

Chapter II-10 — Dialog Features

II-185

The options menu turns display of data folders on or off, sets criteria for sorting the waves, and displays an
edit box for editing a filter string to select a subset of the waves.

Here is a view of the Wave Browser with the filter string displayed. Unless you
change it, the filter string is * which simply allows any names. The * is the “wild
card” character, which matches anything. In the picture below, the filter string
has been changed to *1, which will show only waves whose names end with the
character 1.

Double-click a data folder icon to make that data folder the top level for the hier-
archical display. To return to levels closer to the root, use the menu at the top of
the browser:

Depending on how the Wave Browser is used in a given dialog, it may support selection of multiple items
or it may allow selection of only one item. In multiple-selection browsers, you can hold down the mouse
button and drag over multiple items to select more than one item. To add additional items to a selection:
• Hold down Shift and click an item to extend the selection over all items between the current selec-

tion and the item clicked.
• Hold down Command (Macintosh) or Ctrl (Windows) and click an item to add just that item to the

current selection or to remove it if it is already selected.
In some dialogs, a pop-up version of the Wave Browser is used. It attempts (not entirely successfully) to
mimic a pop-up menu:

2D Wave.

1D Wave.

Click to open data folder.
Click to close data folder.

Click to pop up options menu.

Top-level data folder for list below.
Pops up menu to allow moving up the data folder hierarchy. As shown
here, the root folder is at the top so the menu contains nothing further.

Top-level data
folder changed by
double-clicking.

Pop-up menu to
move top-level data
folder back toward
the root:

Browser in pop-up window is just like standard Wave Browser.

When Hide Data Folders is selected, it presents an ordinary
menu of waves.

Pop-up window can be moved and resized.

Click outside window or press Esc to cancel.

Click on item selects and dismisses pop-up window.

Chapter II-10 — Dialog Features

II-186

Throughout this discussion, we have talked only about selecting waves. In a few cases, a Wave Browser
may be presented to select global variables, strings or even data folders. Here is a Wave Browser for selec-
tion of numeric variables:

or string variables:

Sometimes a dialog will offer some alternative choice that is not a wave. For instance, several operations
allow you to choose X values that come from either the Y wave’s X scaling or from an X wave. In that case,
the X wave browser will offer the choice “_calculated_” in addition to waves. Other dialogs may offer other
nonwave choices. These nonwave choices will be visible, usually at the top of the Wave Browser window,
regardless of the top-level data folder. Here is a picture of a Wave Browser from the Curve Fitting dialog
with several nonwave choices:

Operation Result Chooser
In most Igor dialogs that perform numeric operations (Analysis menu: Integrate, Smooth, FFT, etc.) there is
a group of controls allowing you to choose what to do with the result. Here is what the Result Chooser looks
like in the Integrate dialog:

The Result Chooser is not always laid out vertically as in this picture, but it generally offers all the choices
shown here.

#-sign badge indicates
a numeric variable.

Special “data folder” to display
special system variables.

$-sign badge indicates
a string variable.

Nonwave choices offered as
alternatives to choosing a wave.

When Select Existing Wave is
chosen, a Wave Browser is
presented to choose a wave that
will be overwritten with the results.

When Select Data Folder is chosen,
a Wave Browser is presented
allowing you to select a data folder
where a new wave will be created.

This space may contain a Wave Browser to select a wave to be
overwritten, or to select a data folder where a new wave will be
created. It only appears when such a selection is appropriate.

Chapter II-10 — Dialog Features

II-187

Note: Users of older versions of Igor will recall that in almost all cases, an operation dialog would replace
the original data in the wave with the result, thereby destroying the input data. The Result Chooser
eliminates having to cancel the dialog in order to make a duplicate of the input data.

The Output Wave menu offers choices of a wave to receive the result of the operation:

The Where menu offers choices for the location of a new wave created when you choose Auto or Make New
Wave. Usually you will want to choose Current Data Folder. If you don’t understand what this means, it is
almost certain that you should choose Current Data Folder.

Operation Result Displayer
In some Igor dialogs that perform numeric operations (Analysis menu: Integrate, Smooth, FFT, etc.) there is a
group of controls allowing you to choose how to display the result. Choices are offered to put the result into
the top graph, a new graph, the top table, or a new table. For two-dimensional results, New Image and New
Contour are also offered. If the result is complex, as is the case for an FFT, New Contour is not available.

Here is what the Result Displayer looks like in the Smooth dialog:

The contents of the displayer are not available here because the Display Output Wave checkbox is not
selected. This is the default state.

When you choose New Graph, there are four choices in the Graph menu for the contents and layout of the
new graph. In this menu, Src stands for Source. It is the wave containing the input data; Output is the wave
containing the result of the operation.

Auto Igor will create a new wave to receive the results. The source wave is not changed.
The new wave will have a name derived from the source wave by adding a suffix
that depends on the operation. choosing Auto makes the Where menu available.

Overwrite Source The source wave (the wave that contains the input data) will be overwritten with
the results of the operation. This will destroy the original data. This is how most
operations worked prior to Igor Pro 5. The Where menu will not be available.

Make New Wave This is like the Auto choice, but an edit box is presented that you use to type a
name of your own choosing. Igor will make a new wave with this name to receive
the results of the operation. This selection makes the Where menu available.

Select Existing Wave A Wave Browser will be presented allowing you to choose any existing wave to
be overwritten with the results. This choice preserves the contents of the source
wave, but destroys the contents of the wave chosen to receive the results.

Current Data Folder The new wave is created in the current data folder. If you don’t know about data
folders, this is probably the best choice.

Source Wave Data Folder The new wave is created in the same data folder as the source wave. It is
quite likely that the source wave will be in the current data folder, in which
case this choice is the same as choosing Current Data Folder.

Select Data Folder This choice presents a Wave Browser in which you can choose a data folder
where the new wave will be created.

Chapter II-10 — Dialog Features

II-188

In many cases, the second choice, Src and Output, Same Axes, will not be appropriate because the operation
changes the magnitude of data values or the range of the X values.

This picture shows the result of an FFT operation when Src and Output, Stacked Axes is chosen:

When you choose New Image or New Contour to display matrix results, the Graph Layout menu allows
only Output Only or Src and Output, Stacked Axes. The axes aren’t really stacked- it makes side-by-side
graphs. It makes little sense to put two images or two contours on one set of axes.

The Result Displayer doesn’t give you many options for formatting the graph, and doesn’t allow any
control over trace style, placement of axes, etc. It is intended to be a convenient way to get started with a
graph. You can then modify the graph in any way you choose.

If you want a more complex graph, you may need to use the New Graph dialog (choose New Graph from
the Windows menu) after you have clicked Do It in an operation dialog.

If you choose Top Graph instead of New Graph, the output wave will be appended to the top graph. It is
assumed that this graph will already contain the source wave, so there is no option to append the source
wave to the top graph. The Graph layout menu disappears, and two menus are presented to let you choose
axes for the new wave:

The menus allow you to choose the standard axes: left and right in the V Axis menu; top and bottom in the
H Axis menu. If the top graph includes any free axes (axes you defined yourself) they will be listed in the
appropriate menu as well.

In most cases the source wave will be plotted on the left and bottom axes. You will usually want to select
the right axis because of the differing magnitude of data values that result from most operations. You may
also want to select the top axis if the operation (like the FFT) changes the X range as well.

Here is the result of choosing right and top when doing an FFT (this is the same input data as in the graph above):

Note that the format of the graph is poor. We leave it to you to format it as you wish. If you want a stacked
graph, it may be better to choose the New Graph option.

-1.0
-0.5

0.0
0.5

1.0

6543210

30

20

10

0

1086420

-1.0

-0.5

0.0

0.5

1.0

6543210

30

25

20

15

10

5

0

1086420

Chapter

II-11
II-11Tables

Overview.. 191
Creating Tables.. 191

Table Creation with New Experiment.. 191
Creating an Empty Table for Entering New Waves ... 191
Creating a Table to Edit Existing Waves .. 192
Showing Index Values .. 192
Showing Dimension Labels.. 193
The Horizontal Index Row ... 193
Creating a Table While Loading Waves From a File .. 193

Parts of a Table .. 194
Showing and Hiding Parts of a Table .. 195
Arrow Keys in Tables ... 195
Keyboard Navigation in Tables .. 195
Decimal Symbol and Thousands Separator in Tables ... 197
Using a Table to Create New Waves.. 197

Creating a New Wave by Entering a Value ... 197
Creating New Waves by Pasting Data from Another Program.. 198
Troubleshooting... 198
Creating New Waves by Pasting Data from Igor.. 199

Table Names and Titles.. 199
Hiding and Showing a Table... 199
Killing and Recreating a Table .. 199
Index Columns .. 200
Column Names.. 200
Appending Columns .. 201
Removing Columns .. 202
Selecting Cells.. 202
The Insertion Cell .. 203
Entering Values ... 203
Date Values .. 204
Special Values.. 206

Missing Values (NaNs) ... 206
Infinities (INFs) .. 206

Clearing Values ... 206
Copying Values ... 206
Cutting Values... 207
Pasting Values ... 207

Mismatched Number of Columns... 207
Pasting and Index Columns ... 208
Pasting and Column Formats .. 208

Copy-Paste Waves .. 208
Inserting and Deleting Points.. 209

Insert Points Dialog and Tables ... 209
Delete Points Dialog and Tables.. 209

Chapter II-11 — Tables

II-190

Finding Table Values.. 209
Replacing Table Values .. 211

Selectively Replacing Table Values ... 212
Exporting Data from Tables .. 212
Changing Column Positions ... 212
Changing Column Widths... 213

Autosizing Columns By Double-Clicking.. 213
Autosizing Columns Using Menus... 213
Autosizing Limitations ... 214

Changing Column Styles ... 214
Modifying Column Properties .. 215

Column Titles ... 216
Numeric Formats ... 217
Date/Time Formats .. 218
Octal and Hexadecimal Formats ... 219

Editing Text Waves... 219
Large Amounts of Text in a Single Cell.. 219
Tabs, CRs and Invisible Characters... 219
Treatment of Names When Pasting Text.. 220
Tab Separators in Text... 220

Editing Multidimensional Waves... 220
Changing the View of the Data.. 222
Changing the Viewed Dimensions.. 222
ModifyTable Elements Command .. 223
Multidimensional Copy/Cut/Paste/Clear... 225

Replace-Paste of Multidimensional Data.. 225
Making a 2D Wave from Two 1D Waves.. 226
Insert-Paste of Multidimensional Data.. 227
Cutting and Pasting Rows Versus Columns .. 227
Create-Paste of Multidimensional Data .. 228
Making a 2D Wave from a Slice of a 3D Wave... 228
Making a 1D Wave from a Column of a Multidimensional Wave.. 228

Printing Tables... 229
Save Table Copy.. 229
Exporting Tables as Graphics.. 229

Exporting a Table as a Picture.. 230
Exporting a Table as an EPS file .. 230

Table Preferences .. 230
Table Style Macros .. 231
Table Shortcuts .. 232

Chapter II-11 — Tables

II-191

Overview
Tables are useful for entering, modifying or inspecting waves. You can also use a table for presentation pur-
poses by exporting it to another program as a picture or by including it in a page layout. However, it is not
optimized for this purpose.

If your data has a small number of points you will probably find it most convenient to enter it in a table. In
this case, creating a new empty table will be your first step.

If your data has a large number of points you will most likely load it into Igor from a file. In this case it is
not necessary to make a table. However, you may want to display the waves in a table to inspect them. Igor
Pro tables can handle virtually any number of rows and columns provided you have sufficient memory.

A table in Igor is similar to but not identical to a spreadsheet in other graphing programs. The main difference
is that in Igor data exists independent of the table. You can create new waves in Igor’s memory by entering data
in a table. Once you have entered your data, you may, if you wish, kill the table. The waves exist independently
in memory so killing the table does not kill the waves. You can still display them in a graph or in a new table.

In a spreadsheet, you can create a formula that makes one cell dependent on another. You can not create cell-
based dependencies in Igor. You can create dependencies that control entire waves using Analysis→Compose
Expression, Misc→Object Status, or the SetFormula operation (see page V-634).

To make a table, use the New Table item in the Windows menu. When the active window is a table, the
Table menu appears in Igor’s menu bar. This menu appends and removes columns, changes the appearance
of columns, and sets table preferences.

Waves in tables are updated dynamically. Whenever the values in a wave change, Igor automatically
updates any tables containing that wave. Because of this, tables are often useful for troubleshooting
number-crunching procedures.

Creating Tables

Table Creation with New Experiment
By default, when you create a new experiment, Igor automatically creates a new, empty table. This is con-
venient if you generally start working by entering data manually. However, in Igor data can exist in
memory without being displayed in a table. If you wish, you can turn automatic table creation off using the
Experiment Settings category of the Miscellaneous Settings dialog (Misc menu).

Creating an Empty Table for Entering New Waves
Choose New Table from the Windows menu.

After clicking the Do It button, you create an empty table in which you can enter data.

Enter a title for the table
here. If you leave it blank,
Igor will generate a
default title.

To create an empty table,
don’t select any waves
from the list.

Chapter II-11 — Tables

II-192

If you enter a numeric value, Igor will create a numeric wave. If you enter a nonnumeric value, Igor will
create a text wave.

To create multidimensional waves you must use the Make Waves dialog (Data menu).

After creating the wave, you may want to rename it. Choose Rename from the Table pop-up menu or from
the Data menu in the main menu bar.

Creating a Table to Edit Existing Waves
Choose New Table from the Windows menu.

Showing Index Values
As described in Chapter II-5, Waves, waves have built-in scaled index values. The New Table and Append
to Table dialogs allow you to display just the data in the wave or the index values and the data.

A 1D wave’s X index values are determined by its X scaling which is a property that you set using the
Change Wave Scaling dialog or SetScale operation. A 2D wave has X and Y scaling, controlling X and Y
scaled index values. Higher dimension waves have additional scaling properties and scaled index values.
Displaying index values in a table is of use mostly if you are not sure what a wave’s scaling is or if you want
to see the effect of a SetScale operation.

To create a numeric wave,
just enter a number. To
create a text wave, enter
nonnumeric text.

This creates a new wave
and displays it in the first
unused column.

Enter a title for the
table here. If you
leave it blank, Igor
will generate a
default title.

Select the waves to
appear in the table.
Shift-click to select
multiple waves.

Click for
Table pop-up
menu.

Chapter II-11 — Tables

II-193

Showing Dimension Labels
As described in Chapter II-6, Multidimensional Waves, waves have dimension labels. The New Table and
Append Columns to Table dialogs allow you to display just the data in the wave or the dimension labels
and the data. If you click the Edit Dimension Label And Data Columns radio button in either of these dia-
logs, Igor will display the wave’s dimension labels.

Dimension labels are of use only when individual rows or columns of data have distinct meanings. In an
image, for example, this is not the case because the significance of one row or column is the same as any other
row or column. It is the case when a multidimensional wave is really a collection of related but disparate data.

Here is an example of a table showing a 2D wave with dimension labels.

The table shows the yardage at various golf courses from the red (front), white (middle), and blue (back) tees.

The golf course names are dimension labels for particular rows of the wave. “Course” is the overall dimen-
sion label for the rows dimension. The colors are dimension labels for particular columns of the wave.
“Tees” is the overall dimension label for the columns dimension.

When you choose to display dimension labels, a table that contains multidimensional waves has one or
more columns of dimension labels and one row of dimension labels. If the table contains 1D waves only,
Igor does not display the row of dimension labels.

You can display dimension labels or dimension indices in a table, but you can not display both at the same
time for the same wave.

The Horizontal Index Row
When a multidimensional wave is displayed in a table, Igor adds the horizontal index row, which appears
below the column names and above the data cells. This row can display numeric dimension indices or
textual dimension labels.

By default, the horizontal index row displays dimension labels if the wave’s dimension label column is dis-
played in the table. Otherwise it displays numeric dimension indices. You can override this default using
the Table→Horizontal Index submenu.

Creating a Table While Loading Waves From a File
The Load Waves dialog (Data menu) has an option to create a table to show the newly loaded waves.

Select this box to make a
new table displaying the
waves loaded from a file.

Chapter II-11 — Tables

II-194

Parts of a Table
This diagram shows the parts of a table displaying 1D waves. If you display multidimensional waves, Igor
adds some additional items to the table, described under Editing Multidimensional Waves on page II-220.

The bulk of a table is the cell area. The cell area contains columns of numeric or text data values as well as
the column of point numbers on the left. If you wish, it can also display index columns or dimension label
columns. To the right are unused columns into which you can type or paste new data.

If the table displays multidimensional waves then it will include a row of column indices or dimension labels
below the row of names. Use the Append Columns to Table dialog to switch between the indices and labels.

In the top left corner is the target cell ID area. This identifies a wave element corresponding to the target
cell. For example, if a table displays a 2D wave, the ID area might show “R13 C22”, meaning that the target
cell is on row 13, column 22 of the 2D wave. For 3D waves the target cell ID includes the layer (“L”) and for
a 4D wave it includes the chunk (“Ch”).

If you scroll the target cell out of view you can quickly bring it back into view by clicking in the target cell ID

There is a special cell, called the insertion cell, at the bottom of each column of data values. You can add
points to a wave by entering a value or pasting in the insertion cell.

The Table pop-up menu provides a quick way to inspect or change a wave, remove or kill a wave and
change the appearance of one or more columns. You can get the Table pop-up menu by clicking the icon
or right-clicking (Windows) or Control-clicking (Macintosh) a column.

Table pop-up
Click to browse, rename, redimension,
remove, kill waves or to change the
style of the column.

Column name. Click to select entire column.

Accept box.
Click to accept entry.

Discard box.
Click to discard entry.

Entry line.
Enter numbers here.

Target cell ID

Target cell

Unused cell. Click here and
enter numeric or nonnumeric
text to create a new wave.

The cells after the insertion cell are
unused. They are not part of the wave.

The insertion cell appears after the
very last point in a wave.

Chapter II-11 — Tables

II-195

For waves displayed in multiple columns (complex waves and multidimensional waves), if you change the
display format of any data column from the wave, Igor changes the format for all data columns from that wave.

One of the items in the pop-up menu is Delay Update. Normally, when you change the value of a cell in the
table, Igor immediately updates any other tables or graphs to reflect the new value. Enabling Delay Update
forces this updating of other tables and graphs to be postponed until you click in another window or disable
Delay Update. When Delay Update has been enabled, there is a checkmark next to the menu item. You can
do this if you have a list of values to enter into a table and you don’t want other tables or graphs to be
updated until you are finished.

Delay Update does not delay updates when you remove or add cells to a wave. It only delays updates when
you change the value of a cell.

Showing and Hiding Parts of a Table
The Table menu has a Show submenu that shows or hides various parts of a table. This is of use only in
specialized situations such as when you are using a table subwindow in a control panel to display data but
don’t want the user to enter data. For normal use you should leave all of the items in the Show submenu
checked so that all parts of the table will be visible.

When the entry line is hidden, the user can not change values in the table.

Arrow Keys in Tables
By default, if you are in the process of entering data, the arrow keys accept the entry as if you pressed Enter
and then move the selected cell.

Some users prefer to use the arrow keys to move the selection in the entry line when an entry is in progress. You
can specify your preference via the Table Settings category in the Miscellaneous Settings dialog (Misc menu).

Keyboard Navigation in Tables
The term “keyboard navigation” refers to selection and scrolling actions in response to the arrow keys and to the
Home, End, Page Up, and Page Down keys. Macintosh and Windows have different conventions for these
actions in windows containing text. You can use either Macintosh or Windows conventions on either platform.

By default, Macintosh conventions apply on Macintosh and Windows conventions apply on Windows. You
can change this using the Keyboard Navigation menu in the Misc Settings section of the Miscellaneous Set-

Turn on to temporarily suspend
updating of other windows when you
change a number in the table.

Change appearance of selected
column. Press Shift to change all
columns.

Select one or more columns and click here.

Inspect a wave’s properties

Rename a wave

Change a wave’s length, precision or type
Kill wave if not in use elsewhere

Remove a wave from the table

Insert new points before the target cell

Delete the selected points

Chapter II-11 — Tables

II-196

tings Dialog. If you use Macintosh conventions on Windows, use Ctrl in place of Command. If you use
Windows conventions on Macintosh, use Command in place of Ctrl.

Macintosh Table Navigation

Key No Modifier Option Command

Left Arrow Move selection left one cell Not used Move selection to first
column

Right Arrow Move selection right one cell Not used Move selection to last
column

Up Arrow Move selection up one cell Show previous layer Scroll and move selection
to first row

Down Arrow Move selection down one
cell

Show next layer Scroll and move selection
to last row

Home Scroll to start of document Scroll to start of document Scroll to start of document

End Scroll to end of document Scroll to end of document Scroll to end of document

Page Up Scroll up one screen Scroll left one screen Scroll up one screen

Page Down Scroll down one screen Scroll right one screen Scroll down one screen

When viewing a 3D or 4D wave, Option-Up Arrow and Option-Down Arrow change the currently
viewed layer.

When viewing a 4D wave, Command-Option-Up Arrow and Command-Option-Down Arrow change
the currently viewed chunk.

Pressing shift-arrow-key extends the selection in the direction of the arrow key. Pressing cmd-shift-
arrow-key extends selection as far as possible in the direction of the arrow key.

Windows Table Navigation

Key No Modifier Alt Ctrl

Left Arrow Move selection left one cell Not used Move selection to first
column

Right Arrow Move selection right one
cell

Not used Move selection to last
column

Up Arrow Move selection up one cell Show previous layer Scroll and move selection
to first row

Down Arrow Move selection down one
cell

Show next layer Scroll and move selection
to last row

Home Move selection to first
visible cell

Not used Scroll and move selection
to first cell

End Move selection to last
visible cell

Not used Scroll and move selection
to last cell

Page Up Scroll up one screen Scroll left one screen Scroll up one screen

Page Down Scroll down one screen Scroll right one screen Scroll down one screen

When viewing a 3D or 4D wave, Alt+Up Arrow and Alt+Down Arrow change the currently viewed layer.

When viewing a 4D wave, Ctrl+Alt+Up Arrow and Ctrl+Alt+Down Arrow change the currently viewed
chunk.

Pressing shift-arrow-key extends the selection in the direction of the arrow key. Pressing cmd-shift-
arrow-key extends selection as far as possible in the direction of the arrow key.

Chapter II-11 — Tables

II-197

Decimal Symbol and Thousands Separator in Tables
By default, the decimal symbol for entering a number in a table is period. You can change this to comma or
Per System Setting using the Table→Table Misc Settings menu. The selected decimal symbol is used for
entering, copying, and pasting data in tables.

If comma is selected as the decimal symbol then it is not supported as a column separator when creating
new waves by pasting text into a table.

When you choose Per System Setting, the decimal symbol is determined by the Formats tab of the Interna-
tional Control panel (Macintosh) and by the Regional Options tab of the Regional and Language Options
control panel (Windows). Only period and comma are supported as the decimal symbol. If you choose any
decimal symbol other than comma, period will be used as the decimal symbol for tables.

When creating a new wave by entering data into an unused table cell, there are some rare situations when
what you are trying to enter cannot be properly interpreted unless you first choose the appropriate column
numeric format from the Table menu. For example, if the decimal symbol is comma and you want to enter
a time or date/time value with fractional seconds, you must choose Time or Date/Time from the
Table→Formats menu before entering the data.

If the decimal symbol is period then the thousands separator is comma. If the decimal symbol is comma
then the thousands separator is period. The thousands separator is permitted when entering data in a table.
You can also choose a column numeric format that displays thousands separators. However thousands sep-
arators are not permitted when creating new waves by pasting text into a table.

Using a Table to Create New Waves
If you click in any unused column, Igor will select the first cell in the first unused column. You can then
create new waves by entering a value or pasting data that you have copied to the Clipboard.

Creating a New Wave by Entering a Value
When you enter a data value in the first unused cell, Igor creates a single new 1D wave and displays it in the
table. This is handy for entering a small list of numbers or text items. If you enter a numeric value, including
date/time values, Igor creates a numeric wave. If you enter a nonnumeric value, Igor creates a text wave.

Igor gives the wave a default name, such as wave0 or wave1. You can rename the wave using the Rename
item in the Data menu or the Rename item in the Table pop-up menu. You can also rename the wave from
the command line by simply executing:
Rename oldName, newName

To add a new point to the
wave, click in the “insertion cell”
and enter another data value.

Click in the first unused cell
and enter a data value.

Igor creates a new wave
with a default name.

Chapter II-11 — Tables

II-198

When you create a new wave, the wave has one data point — point 0. The cell in point number 1 will appear
gray. This is the insertion cell. It indicates that the preceding cell is the last point of the wave. You can click
in the insertion cell and enter a value or do a paste. This adds one or more points to the wave.

If the new wave is numeric, it will be single or double precision, depending on the Default Data Precision
setting in the Miscellaneous Settings dialog. The number of digits displayed, however, depends on the
numeric format. See Numeric Formats on page II-217.

If you enter a date (e.g., 1/26/93), time (e.g., 10:23:30) or date/time (e.g., 1/26/93 10:23:30) value, Igor will
notice this. It will set the column’s numeric format to display the value properly. It will also force the new
wave to be double precision, regardless the Default Data Precision setting in the Miscellaneous Settings
dialog. This is necessary because single precision does not have enough range to store date and time values.

Creating New Waves by Pasting Data from Another Program
If you have data in a spreadsheet program or other graphing program, you may be able to import that data
into Igor using the copy and paste technique.

This will work if the other program can copy its data to the Clipboard as tab-delimited text. Most programs
that handle data in columns can do this. Tab-delimited data consists of a number of lines of text with fol-
lowing format:
value <tab> value <tab> value <terminator>

It may start with a line containing column names. The end of a line is marked by a terminator which may
be a carriage return, a linefeed, or a carriage return/linefeed combination. If pasted into a word processor,
tab delimited text would look something like this:
column1 column2 column3 (this line is optional)
27.95 -13.738 12.74e3
31.37 -12.89 13.97e3
. . .
. . .
. . .

In the other program, select the cells containing the data of interest and copy them to the Clipboard. In Igor,
select the first cell in the first unused column in a table and then select Paste from Igor’s Edit menu.

Igor scans the contents of the Clipboard to determine the number of rows and columns of numeric text data.
It also checks the first line of text in the Clipboard to see if it contains column names. It creates waves and
displays them in the table using the names found in the Clipboard or default names. If the text contains
names which conflict with existing names, Igor presents a dialog in which you can correct the problem.

If you attempt to paste nonnumeric data that does not start with a line of column names, Igor will use the
first line of data as column names. This, of course, is not what you want. There are three solutions. First,
you can paste the text into an Igor notebook, add a line of column names at the top, recopy all of the text
and then paste it into the table. Second, you can create some one point text waves by entering text values in
the table, select the newly created text values and overwrite them by doing a paste. Third, you can use the
Load Delimited Text routine to load data from the Clipboard. Load Delimited Text has an option not to look
for column names. See Loading Delimited Text Files on page II-143 for details.

Troubleshooting
If the waves that are created when you paste don’t contain the values you expect, chances are that the Clip-
board does not contain tab-delimited text. In this case you will need to undo the paste. To examine the con-
tents of the Clipboard, paste it into an Igor plain text notebook or into the word processor of your choice.
After editing the text, copy it to the Clipboard again and repaste it into the table.

Chapter II-11 — Tables

II-199

Creating New Waves by Pasting Data from Igor
You can also create new waves by copying data from existing waves. When you copy wave data in a table,
Igor stores not only the raw data but also the following properties of the wave or waves:
• Data units and dimension units
• Data full scale and dimension scaling
• Dimension labels
• The wave note

This feature duplicates a wave by copying it in a table and pasting into the unused area of the same table or a
different table. You can also copy from a table in one experiment and paste in a table in another experiment.

You can copy and paste the wave note only if you copy the entire wave. If you copy part of the wave, it does
not copy the wave note.

Table Names and Titles
Every table that you create has a name. The name is a short Igor object name that you or Igor can use to
reference the table from a command or procedure. When you create a new table, Igor assigns it a name of
the form Table0, Table1 and so on. You will most often use a table’s name when you kill and recreate the
table, as described in the next section.

A table also has a title. The title is the text that appears at the top of the table window. Its purpose is to iden-
tify the table visually. It is not used to identify the table from a command or procedure. The title can consist
of any text, up to 255 characters.

You can change the name and title of a table using the Window Control dialog. This dialog is a collection of
assorted window-related things. Choose Window Control from the Control submenu of the Windows menu.

Hiding and Showing a Table
You can hide a table by Shift-clicking the close button.

If the Minimize Is Hide checkbox is selected in the Miscellaneous Settings dialog (Misc menu), you can hide
a table by clicking the minimize icon. You can hide tables by clicking the minimize button while pressing
Option (Macintosh) or Alt (Windows).

You can show a table by choosing its name from the Windows→Tables submenu.

Killing and Recreating a Table
Igor provides a way for you to kill a table and then later to recreate it. Use this to temporarily get rid of a
table that you expect to be of use later.

The Window Control dialog changes
a table’s title and name.

Chapter II-11 — Tables

II-200

You kill a table by clicking the table window’s close button or by using the Close item in the Windows menu.
When you kill a table, Igor offers to create a window recreation macro. Igor stores the window recreation
macro in the procedure window of the current experiment. You can invoke the window recreation macro later
to recreate the table. The name of the window recreation macro is the same as the name of the table.

A table does not contain waves but is just a way of viewing them. Killing a table does not kill the waves
displayed in a table. If you want to kill the waves in a table, select all of them (Select All in Edit menu) and
then choose Kill All Selected Waves from the Table pop-up menu.

For further details, see Closing a Window on page II-59 and Saving a Window as a Recreation Macro on
page II-61.

Index Columns
There are two kinds of numeric values associated with a numeric wave: the stored data values and the com-
puted index values. For example, each point in a real 1D wave has two values: a data value and an X index
value. The data value is stored in memory. The X value is computed based on the point number and the
wave’s X scaling property. The correspondence between point numbers and X values is discussed in detail
under Waveform Model of Data on page II-77.

Because the index values for a wave are computed, a value in an index column in a table can not be altered by
editing the wave. Only values in data columns of a table can be edited. To alter the index values of a wave,
use the Change Wave Scaling dialog.

Column Names
Column names are related to but not identical to wave names. You need to use column names to append,
remove or modify table columns from the command line or from an Igor procedure.

A column name consists of a wave name and a suffix that identifies which part of the wave the column dis-
plays. For each real 1D wave there can be two columns: one for the X index values or dimension labels of
the wave and one for the data values of the wave. For complex waves there can be three columns: one for
the X index values or dimension labels of the wave, one for the real data values of the wave and one for the
imaginary data values of the wave.

If we have a real 1D wave named “test” then there are three column names associated with that wave: test.i
(“i” for “index”), test.l (“l” for “label”) and test.d (“d” for “data”). If we have a complex 1D wave named
“ctest” then there are four column names associated with that wave:ctest.i, ctest.l, ctest.d.real and ctest.d.imag.

For multidimensional waves, the “.i” and “.l” suffixes still specify a single column of index values or dimen-
sion labels while the “.d” suffix specifies all of the data columns.

Wave Name Column Name Column Contents

test test.i Index values of test

test test.l Dimension labels of test

test test.d Data values of test

ctest ctest.i Index values of ctest

ctest ctest.d.real Real part of data values of ctest

ctest ctest.d.imag Imaginary part of data values of ctest

Chapter II-11 — Tables

II-201

In the table-related commands, you can abbreviate column names as follows:

A 2D wave has X and Y index values. A 3D wave has X, Y and Z index values. A 4D wave has X, Y, Z and T
index values. Regardless of the dimensionality of the wave, however, it has only one index column in a table.
The index column for a 2D wave, for example, may show the X values or the Y values, depending on how you
are viewing the data. The index column will be labeled “wave.x” or “wave.y”, depending on the view. How-
ever, when referring to the column from an Igor command, you must always use the generic “wave.i”. A
dimension label column is always called “wave.l”, regardless of which dimension is showing in the table.

Prior to Igor Pro 3.0, Igor supported only 1D waves. The suffix used for the index column was “.x” and the suffix
used for the data column (previously called the Y column) was “.y”. For compatibility with earlier versions of
Igor, Igor Pro still accepts the old suffixes. Furthermore, when Igor generates a table recreation macro, it uses the
old suffixes for 1D waves to make it easier for you to open a new experiment in an older version of Igor.

The ability to display dimension labels was added in Igor Pro 4.0. Earlier versions of Igor will generate an
error if they encounter column names that end with “.l”.

See the section on Edit on page V-154 for some examples of commands using column names.

Appending Columns
To append columns to a table, choose Append Columns to Table from the Table menu.

Igor appends columns to the right end of the table. You can drag a column to a new position by pressing
Option (Macintosh) or Alt (Windows) and dragging the column name.

Full Column Specification Abbreviated Column Specification

test.d test

test.i, test.d test.id

test.l, test.d test.ld

ctest.d.real, ctest.d.imag ctest.d or ctest

ctest.i, ctest.d.real ctest.id.real

ctest.l, ctest.d.real ctest.ld.real

ctest.i, ctest.d.imag ctest.id.imag

ctest.l, ctest.d.imag ctest.ld.imag

ctest.i,ctest.d.real,ctest.d.imag ctest.id

ctest.l,ctest.d.real,ctest.d.imag ctest.ld

Select the columns
to append the table.
Shift-click to select
multiple columns.

Chapter II-11 — Tables

II-202

Removing Columns
To remove columns from a table, choose Remove Columns from Table from the Table menu.

You can also select the columns in the table, and use the Table pop-up menu to remove the selected columns.

Note that removing a column from a table does not kill the underlying wave. The column is not the wave but
just a view of the wave. Use the Kill Waves item in the Table pop-up menu to remove waves from the table
and kill them. Use the Kill Waves item in the Data menu to kill waves you have already removed from a table.

Selecting Cells
If you click in a cell, it becomes the target cell. The old target cell is deselected and the cell you clicked on is
highlighted. The target cell ID changes to reflect the row and column of the new target cell and the value of
the target cell is shown in the entry line. You click in a cell and make it the target when you want to enter a
new value for that cell or because you want to select a range of cells starting with that cell.

Here are the selections that you can make:

The selection in a table must be rectangular. Igor will not let you select a range that is not rectangular. If you
choose Select All, Igor will attempt to select all of the cells in the table. However, if you have columns of
different length, Igor will be limited to selecting a rectangular array of cells.

If, after clicking in a cell to make it the target cell, you drag the mouse, the cells over which you drag are
selected and highlighted to indicate that they are selected. You select a range of cells in preparation for
copying, cutting, pasting or clearing those cells. While you drag, the cell ID area shows the number of rows
and columns that you have currently selected. If you drag beyond the edges of the table, the cells will scroll
so that you can select as many cells as you want.

Moving the target cell accepts any data entry in progress.

Click Action

Click Selects a single cell and makes it the target cell

Shift-click Extends or reduces the selection range

Click in the point column Selects the entire row

Click in a column name Selects the entire column

Click in an unused column Selects the first unused cell

Choose Select All (Edit menu) Selects all cells (if possible)

Select the columns
to remove from the
table. Shift-click to
select multiple
columns.

Chapter II-11 — Tables

II-203

You can change which cell is the target cell using Return, Enter, Tab, or arrow keys. If you are entering a
value, these keys also accept the entry.

If you have a range of cells selected, these keys keep the target cell within that selected range. If it is at one
extreme of the selected range it will wrap around to the other extreme.

Since the arrow keys move the target cell, you cannot use them to move the insertion point in the entry line.

The used columns in a table are always contiguous. If you click in any unused column, Igor selects the first
unused cell. There are just two things you can do when the first unused cell is selected: create a new wave
by entering a value or create new waves by pasting data from the Clipboard. Igor will not allow you to
select any unused cell other than the first cell in the first unused column.

The Insertion Cell
At the bottom of every column of data values is a special
cell called the insertion cell. It appears after the very last
point in a wave.

Sometimes you know the number of points that you want
a wave to contain and don’t need to insert additional
points into the wave. However, if you want to enter a short
list of values into a table or to add new data to an existing
wave, you can do this by entering data in the insertion cell.

When you enter a value in an insertion cell, Igor extends the wave by one point. Then the insertion cell
moves down one position and you can insert another point.

The insertion cell can also be used to a extend a wave or waves by more than one point at a time. This is
described under Pasting Values on page II-207.

You can also insert points in waves using the Insert Points item which appears in both the Table pop-up
menu and the Data menu or using the InsertPoints operation from the command line.

Entering Values
You can alter the data value of a point in a wave by making the cell corresponding to that value the target
cell, typing the new value in the entry line, and then confirming the entry.

You can also accept the entry by clicking in any cell or by pressing any of the keys that move the target cell:
Return, Enter, Tab, or arrow keys. You can discard the entry by pressing Escape or by clicking the X icon.

If a range of cells is selected when you confirm an entry, the target cell will move within the range of
selected cells unless you click in a cell outside this range.

While you are in the process of entering a value, the Clear, Copy, Cut and Paste items in the Edit menu as
well as their corresponding command or accelerator key shortcuts affect the entry line. If you are not in the
process of entering, these operations affect the cells.

Key Action (When a Single Cell is Selected)

Return, Enter, Down Arrow Moves target cell down

Shift-Return, Shift-Enter, Up Arrow Moves target cell up

Tab, Right Arrow Moves target cell right

Shift-Tab, Left Arrow Move target cell left

Iinsertion cell

Unused cells

Chapter II-11 — Tables

II-204

Entering a value in an insertion cell is identical to entering a value in any other cell except that when the
entry is confirmed the wave is extended by one point.

Igor will not let you enter a value in an index column since index values are computed based on a waves
dimension scaling.

Dimension labels are limited to 31 characters. If you paste into a dimension label cell, Igor will clip the
pasted data to 31 characters.

When entering a value in a numeric column, if what you have entered in the entry line is not a valid numeric
entry, Igor will not let you confirm it. The check icon will be dimmed to indicate that the value can not be
entered. What is valid depends on a column’s numeric format. If a column is formatted to display data as
dates then 1.234 is not valid. If a column is formatted to display data as numbers then 1/30/93 is not valid.
In a numeric column, text like “Blank” or “January” is never valid. In a text column, anything is valid.

Date Values
Dates and times are represented in Igor date format — as a number of seconds since midnight, January 1,
1904. Dates before that are represented by negative values. There is no practical limit to the range of dates
that can be represented except that on Windows dates must be greater than January 1, 1601.

A date can not be accurately stored in the data values of a single precision wave. Make sure to use double
precision to store dates and times.

The way you enter dates and the way that Igor displays them in tables is controlled by the Table Date
Format dialog which you invoke through the Table menu. This dialog sets a global preference that deter-
mines the date format for all tables in all experiments.

If in the Table Date Format dialog you choose to use the system date format, which is the factory default
setting, Igor always displays dates in a table using the short date format as set by the Date & Time control
panel (Macintosh) or by the Regional Settings control panel (Windows). However, when parsing dates that
you enter in the table, Igor accepts only the following formats:
mm/dd/yy mm-dd-yy mm.dd.yy // Month-before-day format
dd/mm/yy dd-mm-yy dd.mm.yy // Day-before-month format

You can omit the day and just enter:
mm/yy mm-yy mm.yy // Month-before-day format
mm/yy mm-yy mm.yy // Day-before-month format

In this case, the day is assumed to be 1.

If the system short date shows the day before the month then Igor expects you to use the day-before-month
format. Otherwise, it expects you to use the month-before-day format.

The year can be entered using two digits (99) or four digits (1999). If a two digit year is in the range 00 …
39, Igor treats this as 2000 … 2039. If a two digit year is in the range 40 … 99, Igor treats this as 1940 … 1999.

Prior to Igor Pro 4.0, these were the only supported date formats. They are sufficient for most purposes.

On the other hand, if in the Table Date Format dialog you choose to use a common date format or a custom
date format, then Igor uses the same format for display and entry. When parsing entered dates, Igor expects
you to enter the exact format that you specify. These methods were added in Igor Pro 4.0. Here is what the
dialog looks like if the Use Common Format radio button is selected:

Chapter II-11 — Tables

II-205

You can access even more flexibility in those rare cases where it’s needed by clicking the Use Custom
Format radio button:

If you specify no separator in a common or custom date format, things get ambiguous unless leading zeros
are used. For example, 11399 could mean 1/13/99 or 11/3/99. For this reason, if you specify no separator, you
must also specify leading zeroes for the month and day of month.

When using a common or custom date format that includes separators (e.g., 10/05/99 or 10.05.99), Igor is
lenient about the number of digits in the year and whether or not leading zeros are used. Igor will accept
two or four digit years and leading zeros or no leading zeros for the year, month, and day of month. How-
ever, when using a format with no separators (e.g., 991005 or 19991005), Igor requires that you enter the
date exactly as the format specifies.

When you enter a value in the first unused column in a table, Igor must deduce what kind of value you are
entering (number, date, time, date/time, or text). It then sets the column format appropriately and interprets
what you have entered accordingly. An ambiguity occurs if you use date formats with no separators. For
example, if you enter 991005, are you trying to enter a date or a number? Igor has no way to know. There-
fore, if you want to create a new column consisting of dates with no separators, you must choose Date from
the Table Format submenu before you enter the value. This is not necessary for dates that include separators
because Igor can distinguish them from numbers.

If you choose a date format that includes alphabetic characters, such as “October 11, 1999”, you must enter
dates exactly as the format indicates, including spaces.

Chapter II-11 — Tables

II-206

There is a problem relating to pasting dates like “October 11, 1999” into a table. This problem does not affect
entering a date in the table entry line or pasting a date into an existing column. It affects only pasting into
an unused column in the table, an action which creates one or more new waves. During the paste, Igor treats
the text in the Clipboard as delimited text and accepts tabs or commas as delimiters. Since “October 11,
1999” contains a comma, Igor sees this as two values and will create two waves. The first wave will contain
the entire date and the second will contain just the year. There are two workarounds for this problem. One
is to do the paste and then kill the column containing just the year. The other is to use the LoadWave oper-
ation, via the Load Waves dialog, to load the contents of the Clipboard as delimited text, and to instruct
LoadWave to accept just tab, rather than tab and comma, as a delimiter. The choice of delimiters available
in the Tweaks subdialog of the Load Waves dialog.

For further discussion of how Igor represents dates, see Date/Time Waves on page II-102.

Special Values
There are two special values that can be entered in any numeric data column. They are NaN and INF.

Missing Values (NaNs)
NaN stand for “Not a Number” and is the value Igor uses for missing or blank data. Igor displays NaNs in
a table as a blank cell. NaN is a legal number in a text data file, in text pasted from the Clipboard and in a
numeric expression in Igor’s command line or in a procedure.

A point will have the value NaN when a computation has produced a meaningless result, for example if
you take the log of a negative number. You can enter a missing value in a cell of a table by entering NaN or
by deleting all of the text in the entry line and confirming the entry.

You can also get NaNs in a wave if you load a delimited text data file or paste delimited text which contains
two delimiters with no number in between.

Infinities (INFs)
INF stands for “infinity”. Igor displays infinities in a table as “INF”. INF is a legal number in a text data file,
in text pasted from the Clipboard and in a numeric expression in Igor’s command line or in a procedure.

A point will have the value INF or -INF when a computation has produced an infinity, for example if you
divide by zero. You can enter an infinity in a cell of a table by entering INF or -INF.

Clearing Values
You invoke the clear operation by choosing Clear from the Edit menu. Clear sets all selected cells in text and
dimension label columns to zero. It sets all selected cells in text columns to "" (empty string). It has no effect
on selected cells in index columns.

To set a block of numeric values to NaN (or any other numeric value), select the block and then choose Anal-
ysis→Compose Expression. In the resulting dialog, choose “_table selection_” from the Wave Destination
pop-up menu. Enter “NaN” as the expression and click Do It.

Copying Values
You invoke the copy operation by choosing Copy from the Edit menu. Copy copies all selected cells to the
Clipboard as text and as Igor binary. It is useful for copying ranges of points from one wave to another, from
one part of a wave to another part of that wave, and for exporting data to another application or to another
Igor experiment (see Exporting Data from Tables on page II-212).

You can also create new waves by copying data from existing waves. This is described earlier in this chapter
under Creating New Waves by Pasting Data from Igor on page II-199.

Chapter II-11 — Tables

II-207

See also Multidimensional Copy/Cut/Paste/Clear on page II-225.

Cutting Values
You invoke the cut operation by choosing Cut from the Edit menu. Cut starts by copying all selected cells
to the Clipboard as text and as Igor binary. Then it deletes the selected points from their respective waves,
thereby shortening the waves.

You cannot cut sections of an index column since index values are computed based on point numbers, not
stored. However, if you cut a section of a data or dimension label column, the index column corresponding
to the data column will also be shortened.

Pasting Values
You invoke the paste operation by choosing Paste from the Edit menu. There are three kinds of paste oper-
ations: a replace-paste, an insert-paste and a create-paste.

When dealing with multidimensional waves, there are other options. See Multidimensional
Copy/Cut/Paste/Clear on page II-225 for details.

When you do a paste, Igor starts by figuring out how many rows and columns of values are in the Clip-
board. The Clipboard may contain binary data that you just copied from an Igor table or it may contain
plain text data from another application such as a spreadsheet or a text editor.

If the data in the Clipboard is plain text, Igor expects that rows of values be separated by carriage return
characters, linefeed characters, or carriage return/linefeed pairs and that individual values in a row be sep-
arated by tabs or commas. This is normally no problem since most applications export data as tab-delimited
text. If you have trouble with a paste and are not sure about the format of the data in the Clipboard, you
can paste it into an Igor notebook to inspect or edit it.

Once Igor has figured out how many rows and columns are in the Clipboard, it proceeds to paste those
values into the table and therefore into the waves that the table displays.

If you select the first cell in the first unused column, the paste will be a create-paste. In this case, Igor makes
new waves, appends them to the table and then stores the data in the Clipboard in the new waves. It makes
one new wave for each column of text in the Clipboard. If the text starts with a row of column names, Igor
will use this row as the basis for the names of the new waves. Otherwise, Igor uses default wave names.

If you are attempting to paste text values, rather than numeric values and if the text in the Clipboard does
not include column names, Igor will mistake the first row of values for column names. See Creating New
Waves by Pasting Data from Another Program on page II-198 for solutions to this problem.

Mismatched Number of Columns
If the number of columns in the Clipboard is not the same as the number of columns selected in the table
then Igor will ask you how many columns to paste. This applies to the replace-paste and the insert-paste
but not to the create-paste.

For example, assume you have three columns of text in the Clipboard but you select two columns and then
do a paste, Igor presents the following dialog:

Paste Type What You Do What Igor Does

Replace-paste Choose Paste. Replaces the selected cells with data from the
Clipboard.

Insert-paste Press Shift and choose Paste. Inserts data from Clipboard as new cells.

Create-paste Click in the first cell in the first unused
column and then choose Paste.

Creates new waves containing Clipboard data.

Chapter II-11 — Tables

II-208

If you click Paste 3, Igor extends the selection to include the third column before doing the paste. However,
Igor can not extend the selection beyond the last used column, as illustrated by the following case:

Here Igor does not offer to paste three columns because it would have to extend the selection to include two
used columns and one unused column. The resulting paste would be a combination of a replace-paste and
an insert-paste. Igor is not able to do this.

Pasting and Index Columns
Since the values of an index column are computed based on point numbers they can not be altered by past-
ing. However if index columns and data columns are adjacent in a range of selected cells a paste can still be
done. The data values will be altered by the paste but the index values will not be altered.

Pasting and Column Formats
When you paste plain text data into existing numeric columns, Igor tries to interpret the text in the Clip-
board based on the numeric format of the columns. For example, if a column is formatted as dates then Igor
would look for text such as 2/1/93. If the column is formatted as time then Igor would look for text such as
10:00:00. If the column has a regular number format, Igor will look for regular numbers.

When you paste plain text data into unused columns, Igor does a create-paste. In this case, Igor inspects the
text in the Clipboard to determine if the data is in date format, time format, date and time format or regular
number format. When it appends new columns to the table, it applies the appropriate numeric format.

When pasting octal or hexadecimal text in a table, you must first set the column format to octal or hexadec-
imal so that Igor will correctly interpret the text.

If the column does not appear to be in any of these formats, Igor creates a text wave rather than a numeric wave.

See Date Values on page II-204 for details on entering dates.

Copy-Paste Waves
You can copy and paste entire waves within Igor. This is described under Creating New Waves by Pasting
Data from Igor on page II-199.

Pastes the three Clipboard
columns into wave1,
wave2, and wave3.

Pastes only the first two Clipboard
columns into wave1 and wave2.

Pastes only the first two Clipboard
columns into wave2 and wave3.

Chapter II-11 — Tables

II-209

Inserting and Deleting Points
In addition to pasting and cutting, you can also insert and delete points from waves using the Insert Points
and Delete Points dialogs via the Data menu or via the Table pop-up menu. You can use these dialogs to
modify waves without using a table but they do work intelligently when a table is the top window.

Insert Points Dialog and Tables

New points are inserted before the row specified by the “First point” parameter. Igor sets the value of the
new points to zero.

Delete Points Dialog and Tables

Finding Table Values
You can search tables for specific contents using the Find In Table dialog (Edit→Find).

Choose Insert Points from
the Table pop-up menu

When you choose Insert Points
from the Table pop-up menu, Igor
presets all of the items in the Insert
Points dialog. Just click Do It.

Select the row before
which you want to
insert new points.

Select the points that
you want to delete.

Choose Delete Points from
the Table pop-up menu

When you choose Delete Points
from the Table pop-up menu,
Igor presets all items in the
Delete Points dialog. Just click
Do It.

Chapter II-11 — Tables

II-210

Find In Table can search the current selection in the active table, the entire active table or all table windows.
You control this using the right-hand pop-up menu at the top of the dialog.

The All Table Windows mode searches standalone table windows only. It does not search embedded tables.
It is possible to search an embedded table in a control panel using the Top Table mode. Searching in tables
embedded in graphs and page layouts is not supported.

Find In Table can search for the following types of values which you control using the left-hand pop-up menu.

Find In Table does not search the point column.

Find Type Description

Row Displays the specified row but does not select it.

Text String Finds the specified text string in any type of column: text, numeric, date, time,
date/time, and dimension labels.

For example, searching for “-1” would find numeric cells containing -1.234 and -1e6. A
given cell is found only once, even if the search string occurs more than once in that cell.

The target string is limited to 254 characters.

Blank Cell Finds blank cells in any type of column: text, numeric, date, time, date/time, and
dimension labels. Finds blank cells in numeric columns (NaNs) and text columns (text
elements containing zero characters).

Numeric Value Finds numeric values within the specified range in numeric columns only. Does not
search the following types of columns: text, date, time, date/time, and dimension labels.

Date Finds date values within the specified range in date and date/time columns only. Does
not search the following types of columns: text, numeric, time and dimension labels.

Accepts input of dates in the format specified by Table Date Format dialog (Table menu).

Time of Day Finds a time of day within the specified range in time and date/time columns only. Does
not search the following types of columns: text, numeric, date and dimension labels.

A time of day is a time between 00:00:00 and 24:00:00. Times are entered as hh:mm:ss.ff
with the seconds part and fractional part optional.

Elapsed Time Finds an elapsed time within the specified range in time columns only. Does not search
the following types of columns: text, numeric, date, date/time and dimension labels.

Unlike a time of day, an elapsed time can be negative and can be greater than 24:00:00.
Times are entered as hh:mm:ss.ff with the seconds part and fractional part optional.

Date/Time Finds a date/time within the specified range in date/time columns only. Does not search
the following types of columns: text, numeric, date, time and dimension labels.

Date/time values consist of a date, a space and a time.

Chapter II-11 — Tables

II-211

The search starts from the “anchor” cell. If you are searching the top table or the current selection, the
anchor cell is the target cell. If you are searching all tables, the anchor cell is the first cell in the first-opened
table (or the last cell in the last-opened table if you are doing a backward search).

When you do an initial search via the Find dialog, the search includes the anchor cell. When you do a sub-
sequent search using Find Again, the search starts from the cell after the anchor cell (or before it if you are
doing a backward search).

A find in the top table starts from the target cell and proceeds forward or backward, depending on the state
of the Search Backwards checkbox. The search stops when it hits the end or beginning of the table, unless
Wrap Around Search is enabled, in which case the whole table is searched.

A find in the current selection also starts from the target cell and proceeds forward or backward, depending
on the state of the Search Backwards checkbox. The search stops when it hits the end or beginning of the
selection, unless Wrap Around Search is enabled, in which case the whole selection is searched.

If Search Rows First is selected, all rows of a given column are searched, then all rows of the next column. If
Search Columns First is selected, all columns of a given row are searched, then all columns of the next row.

To do a search of a 3D or 4D wave, you must create a table containing just that wave. Then the Table Find
will search the entirety of the wave. If the table contains more than one wave, the Table Find will not search
the parts (e.g. other layers of a 3D wave) of a 3D or 4D wave that are not shown in the table.

Choosing the Edit→Find Selection menu sets the Find mode to Find Text String, Find Blank Cells, Find Numeric
Value, Find Date, Find Time Of Day, Find Elapsed Time, or Find Date/Time based on the format of the target cell
except that, if the target cell is blank, the mode is set to Find Blank Cells regardless of the cell’s format.

You may find it convenient to use Find Again (Command-G on Macintosh, Ctrl+G on Windows) after doing
an initial find to find subsequent cells with the specified contents. Pressing Shift (Comand-Shift-G on Mac-
intosh, Ctrl+Shift+G on Windows) does a Find Again in the opposite direction.

Replacing Table Values
You can perform a mass replace in a table using the Replace In Table dialog (Edit→Replace).

Unlike Find In Table, which can search all tables, Replace In Table is limited to the top table or the current
selection, as set by the right-hand pop-up menu.

When you click Replace All, Replace In Table first finds the specified cell contents using the same rules as
Find In Table. It then replaces the contents with the specified replace value. It then continues searching and
replacing until it hits the end of the table or selection, unless Wrap Around Search is enabled, in which case
the whole table or selection is searched.

You can undo all of the replacements by choosing Edit→Undo Replace.

Chapter II-11 — Tables

II-212

Replace In Table does not affect X columns. You must use the Change Wave Scaling dialog (Data menu) for that.

Replace In Table goes through each candidate cell looking for the specified search value. If it finds the value,
it extracts the text from the cell and does the replacement on the extracted text. If the resulting text is legal
given the format of the cell, the replacement is done. If it is not legal, Replace In Table stops and displays
an error dialog showing where the error occurred.

Here are some additional considerations regarding Replace In Table.

Selectively Replacing Table Values
The Replace In Table dialog is designed to do a mass replace. You can do a selective replace using the Find
In Table dialog followed by a series of Find Again and Paste operations. Here is the process:
1. Choose Edit→Find and find the first cell containing the value you want to replace.
2. Edit that cell so it contains the desired value.
3. Copy that cell’s contents to the Clipboard.
4. Do Find Again (Command-G on Macintosh, Ctrl+G on Windows) to find the next cell you might

want to replace.
5. If you want to replace the found cell, do Paste (Command-V on Macintosh, Ctrl+V on Windows).
6. If not done, go back to step 4.

Exporting Data from Tables
You can use the Clipboard to export data from an Igor table to another application. If you do this you must
be careful to preserve the precision of the exported data.

When you copy data from an Igor table, Igor puts the data into the Clipboard in two formats: tab-delimited
text and Igor binary. If you later paste that data into an Igor table, Igor uses the Igor binary data so that you
retain all precision through the copy-paste operation. However if you paste the data into another applica-
tion, the other application uses the plain text data in the Clipboard. Therefore the precision of the data in
the other application is limited by the numeric output format that you use in the Igor table.

If you intend to export data from an Igor table to another application using the Clipboard, make sure that
the numeric format of the data in the table is appropriate for the precision of the data you are exporting.
You can set the numeric format for the columns of a table using the Table pop-up menu. See Changing
Column Styles on page II-214 for details. An alternative method is to use the Save operation, which writes
double-precision wave data using 15 digit precision, via Data→Save Waves→Save Delimited Text.

Changing Column Positions
You can rearrange the order of columns in the table. To do this, position the cursor over the name of the
column that you want to move. Press Option (Macintosh) or Alt (Windows) and the cursor changes to a hand.
If you now click the mouse you can drag an outline of the column to its new position.

Find Type Description

Text String In each cell, all occurrences of the find string are replaced with the replace string. For
example, if you replacing “22” with “33” and a cell contains the value 122.223, the
resulting value will be 133.333. The replace string is limited to 254 characters.

Using text string replace, it is possible to come up with a value that is not legal given a cell’s
formatting. For example, if you replace “22” with “9.9” in the example above, you get
“19.9.9.93”. This is not a legal numeric value so Replace In Table displays an error dialog.

Date You can replace a date in a date column or a date/time column. When replacing a date in a
date/time column, the time component is not changed.

Time of Day You can replace a time of day in a time column or a date/time column. When replacing a
time of day in a date/time column, the date component is not changed.

Chapter II-11 — Tables

II-213

When you release the mouse the column will be redrawn in its new position. Igor always keeps all of the
columns for a particular wave together so if you drag a column, you will move all of the columns for that wave.

The point column can not be moved and is always at the extreme left of the cell area.

Changing Column Widths

You can change the width of a column by dragging the vertical boundary to the right of the column name.

You can influence the manner in which column widths are changed by pressing certain modifier keys.

If Shift is pressed, all table columns except the Point column are changed to the same width.

The Command (Macintosh) or Ctrl (Windows) key determines what happens when you drag the boundary
of a data column of a multidimensional wave. If that key is not pressed, all data columns of the wave are
set to the same width. If that key is pressed then just the dragged column is changed.

Autosizing Columns By Double-Clicking
You can autosize a column by double-clicking the vertical boundary to the right of the column name.

You can influence the manner in which column widths are changed by pressing certain modifier keys.

If the no modifier keys are pressed and you double-click the boundary of a data column of a multidimen-
sional wave then the width of each data column is set individually.

When pressing Option (Macintosh) or Alt (Windows) and you double-click the boundary of a data column
of a multidimensional wave then the width of all data columns are set the same.

If Shift is pressed, all table columns except the Point column are autosized. Shift pressed with Option (Mac-
intosh) or Alt (Windows) will autosize all data columns of a given wave to the same width.

When pressing Command (Macintosh) or Ctrl (Windows), only the double-clicked column is autosized, not
all data columns of a multidimensional wave.

Autosizing Columns Using Menus
You can autosize columns by selecting them and choosing Autosize Columns from the Table menu or from
the table popup menu in the top-right corner of the table. You can also choose Autosize Columns from the
contextual menu that you get when you Control-click (Macintosh) or right-click (Windows) on a column.

Press Option (Macintosh) or Alt
(Windows), click in the column
name and drag.

Position the cursor over the column
divider line and drag.

To set the width of all columns, press
Shift.

To set the width of all columns
except the Point column, press Shift-
Option (Macintosh) or Shift+Alt
(Windows).

Chapter II-11 — Tables

II-214

You can influence the manner in which column widths are changed by pressing certain modifier keys.

If the no modifier keys are pressed and a data column of a multidimensional wave is selected, all data
columns of that wave are set individually.

If Option (Macintosh) or Alt (Windows) is pressed and a data column of a multidimensional wave is selected,
all data columns of that wave are set the same.

If Shift is pressed, all table columns except the Point column are autosized. Shift pressed with Option (Mac-
intosh) or Alt (Windows) will autosize all data columns of a given wave to the same width.

When pressing Command (Macintosh) or Ctrl (Windows), only the selected columns are autosized, not all
data columns of a multidimensional wave.

Autosizing Limitations
When you autosize a column, the width of every cell in that column must determined. For very long
columns (100,000 points or more), this may take a very long time. When this happens, cell checking stops
and the autosize is based only on the checked cells.

Similarly, if you autosize the data columns of a multidimensional wave with a very large number of
columns (10,000 or more columns), this could take a very long time. When this happens, columns checking
stops and the autosize is based only on the checked columns.

If the default time limits are not suitable, use the ModifyTable autosize keyword to set the time limits.

Changing Column Styles
You can change the presentation style of columns in a table using the Modify Columns dialog, the Table
menu in the main menu bar or the Table pop-up menu.

These items work on the selected
columns. If you press Shift, they
work on all columns.

Chapter II-11 — Tables

II-215

You can invoke the Modify Columns dialog from the Table pop-up menu or from the Table menu or by
double-clicking a column name.

You can select one or more columns in the Columns to Modify list. If you select more than one column, the
items in the dialog reflect the settings of the first selected column.

Once you have made your selection, you can change settings for the selected columns. After doing this, you
can then select a different column or set of columns and make more changes. Igor remembers all of the
changes you make, allowing you to do everything in one trip to the dialog.

There is a shortcut for changing a setting for all columns at once without using the dialog: Press Shift while
choosing an item from the Table pop-up menu or from the Table menu in the main menu bar.

Tables are primarily intended for on-screen data editing. You can use a table for presentation purposes by
exporting it to another program as a picture or by including it in a page layout. However, it is not ideal for
this purpose. For example, there no way to change the background color or the appearance of gridlines.

You can capture your favorite styles as preferences. See Table Preferences on page II-230.

Modifying Column Properties
You can independently set properties, such as color, column width, font, etc., for the index or dimension
label column and the data column of 1D waves. Except in rare cases all of the data columns of a multidi-
mensional wave should have the same properties. When you set the properties of one data column of a mul-
tidimensional wave using Igor’s menus or using the Modify Columns dialog, Igor sets the properties of all
data columns the same.

For example, if you are editing a 3 x 3 2D wave and you set the first data column to red, Igor will make the
second and third data columns will red too.

Despite Igor’s inclination to set all of the data columns of a multidimensional wave the same, it is possible
to set them differently. Select the columns to be modified. Press Command (Macintosh) or Ctrl (Windows)
before clicking the Table menu or Table pop-up menu and make a selection. Your selection will be applied
to the selected columns only instead of to all data columns from the selected waves.

Chapter II-11 — Tables

II-216

The ModifyTable operation supports a column number syntax that designates a column by its position in
the table. Using this operation, you can set any column to any setting. For example:
Make/O/N=(3,3) mat
Edit mat
ModifyTable rgb[1]=(50000,0,0), rgb[2]=(0,50000,0)

This sets mat’s first data column to red and its second to blue.

In Igor Pro 6 or later you can specify a range of columns using column number syntax:
ModifyTable rgb[1,3]=(50000,0,0)

The Modify Columns dialog sets the properties for both the real and imaginary columns of complex waves
at the same time. If you really want to set the properties of the real and imaginary columns differently, you
must use the column number syntax shown above.

Column Titles
The column title appears at the top of each column. By default, Igor automatically derives the column title
from the name of the wave displayed in the column. For example, if we display the X index and data values
of wave1 and data values of wave2, the table looks like this:

Note that Igor uses the suffixes “.x” and “.d” only if this is necessary to distinguish columns. If there is no
index column displayed, Igor omits the suffix.

Using the Modify Columns dialog, you can replace the automatically derived title with a title of your own.
For example:

Note: This changes only the title of the column in this table. It does not change wave names. We
provided the column title setting solely to make tables look better in presentations (in layouts and
exported pictures). If you are not using a table for a presentation, it is better to let Igor
automatically generate column titles since this has less potential for confusion. If you want to
rename a wave, use the Rename items in the Data and Table pop-up menus.

Use the Title item in the Modify Columns dialog to set the column title. Enter your own text to turn the auto-
matic title off. Remove all text from this item to turn the automatic title back on.

When you change a display property of a wave in a table using the Table menu or the Modify Columns
dialog, Igor sets all columns of multidimensional waves the same. This behavior is reasonable for most of
the settings (e.g., font, numeric format) but makes the column title setting useless for multidimensional
waves. In most cases, you can achieve what you want using dimension labels instead of column titles. If
you really need to use column titles for multidimensional waves, use the techniques described in Modify-
ing Column Properties on page II-215 to set the title for individual columns.

Chapter II-11 — Tables

II-217

Numeric Formats
Columns in tables display either text or numeric waves. For numeric waves, the column format determines
how the data values in the wave are entered and displayed. The column format has no effect on data
columns of text waves.

In addition to regular number formats, tables support date, time and date&time formats. The format is
merely a way of displaying a number. Even dates and times are stored internally in Igor as numbers. You
can enter a value in a numeric column of a table as a number, date, time or date&time if you set the format
for the column appropriately.

The following table lists all of the numeric formats. The symbol column shows the symbol that appears in
the Table pop-up menu and in the Modify Columns dialog.

When entering a number in a table, Igor normally interprets a dot character as the decimal separator. To
enter the first four digits of π, you must enter 3.141. However, if the decimal separator in the format section
of the International control panel (Mac OS X) or Regional Settings control panel (Windows) is set to comma,
Igor will accept comma as well as dot. You can enter either 3,141 or 3.141 for π. This feature applies only to
entering numbers in tables. It is intended to allow European users to conveniently use the numeric keypad.
This feature does not apply to entering the fractional part of a time value with fractional seconds. In this
case, you must enter a dot.

Numeric Format Description

General Displays numbers in a format appropriate to the number itself. Very large or small
numbers are displayed in scientific notation. Other numbers are displayed in decimal
form (e.g. 1234.567). The Digits setting controls the number of significant digits.
Integers are displayed with no fractional digits.

Integer Numbers are displayed as the nearest integer number. For example, 1234.567 is
displayed as 1235.

Integer with
comma

Numbers are displayed as the nearest integer number. In addition, commas are used to
separate groups of three digits. For example, 1234.567 is displayed as 1,235.

Decimal As many digits to the left of the decimal point as are required are used to display the
number. The Digits setting controls the number of digits to the right of the decimal point.
For example, if the number of digits is specified as two, 1234.567 is displayed as 1234.57.

Decimal with
comma

Identical to the decimal format except that commas are used to separate groups of
three digits to the left of the decimal point.

Scientific Numbers are displayed in scientific notation. The Digits setting controls the number
of digits to the right of the decimal point.

Date mm/dd/yy or dd/mm/yy or a custom format as set by the Table Date Format dialog.

See Date/Time Formats on page II-218.

Time [+][-]hhhh:mm:ss[.ff] [AM/PM].

See Date/Time Formats on page II-218.

Date & Time Date format plus space plus time format.

See Date/Time Formats on page II-218.

Octal Numbers are displayed in octal (base 8) notation. The fractional part of the number, if
any, is not displayed. The Digits setting controls the number of octal digits displayed.

Hexadecimal Numbers are displayed in hexadecimal (base 16) notation. The fractional part of the
number, if any, is not displayed. The Digits setting controls the number of octal digits
displayed.

Chapter II-11 — Tables

II-218

For each numeric column, you can control the number of digits displayed. You can set this using the Modify
Columns dialog or using the Table→Digits menu. The meaning of the number that you choose from the
Digits submenu depends on the numeric format.

The Digits submenu has no effect on columns displayed using the integer, date formats and also has no
effect on columns displaying text waves.

With the General format, you can choose to display trailing zeros or not.

With the time format, Igor accepts and displays times from -9999:59:59 to +9999:59:59. This is the supported
range of elapsed times. If you are entering a time-of-day rather than an elapsed time, you should restrict
yourself to the range 00:00:00 to 23:59:59.

With the Time and Date&Time formats, you can choose to display fractional seconds. Most people dealing
with time data use whole numbers of seconds. Therefore, by default, a table does not show fractional sec-
onds. If you want to see fractional seconds in a table, you must choose Show Fractional Seconds from the
Table→Format menu. Once you do this, the Table→Digits menu controls the number of digits that will
appear in the fractional part of the time.

If you always want to see fractional seconds, use the Capture Table Prefs dialog to capture columns whose
Show Fractional Seconds setting is on. This applies to tables created after you capture the preference.

When displaying fractional seconds, Igor always displays trailing zeros and the Show Trailing Zeros menu
item in the Table→Format menu has no effect.

When choosing a format, remember that single precision floating point data stores about 7 decimal digits
and double-precision floating point data stores about 15 decimal digits. If you want to inspect your data
down to the last decimal place, you need to select a format with enough digits.

The format affects the precision of data that you export via the Clipboard from a table to another applica-
tion. See Exporting Data from Tables on page II-212.

Date/Time Formats
The manner in which Igor displays dates and interprets dates that you enter is described under Date Values
on page II-204. The factory default date format is one of the following, depending on the default system date
format:
mm/dd/yy mm-dd-yy mm.dd.yy // Month-before-day format
dd/mm/yy dd-mm-yy dd.mm.yy // Day-before-month format

Other date formats are supported as described in Date/Time Formats on page II-144.

If you set the column format to time, then Igor displays time in elapsed time format. You can enter elapsed
times from -9999:59:59 to +9999:59:59. You can precede an elapsed time with a minus sign to enter a negative
elapsed time. You can also enter a fractional seconds value, for example 31:35:20.19. To view fractional sec-
onds, choose Show Fractional Seconds from the Format submenu of the Table menu.

Numeric Format You Specify

General Number of displayed digits

Decimal (0.0...0) Number of digits after the decimal point

Decimal with comma (0.0...0) Number of digits after the decimal point

Time and Date&Time Number of digits after the decimal point when displaying
fractional seconds

Scientific (0.0...0E+00) Number of digits after the decimal point

Octal Total number of octal digits to display.

Hexadecimal Total number of hexadecimal digits to display.

Chapter II-11 — Tables

II-219

You can also enter times in time-of-day format, for example 1:45 PM or 1:45:00 PM or 13:45 or 13:45:00. A
space before the AM or PM is allowed but not required. AM and am have no effect on the resulting time.
PM adds 12 hours to the time. PM has no effect if the hour is already 12 or greater.

Igor stores times the same way whether they are time-of-day times or elapsed times. The difference is in
how you think of the value and how you choose to display it in a graph.

Here are some valid time-of-day times:
00:00:00 (midnight) 12:00:00 (noon)
06:30:00 (breakfast time) 18:30:00 (dinner time)
06:30 (breakfast time) 18:30 (dinner time)
06:30 PM (dinner time) 18:30 PM (dinner time)

Here are some valid elapsed times:
-00:00:10 (T minus 10 and counting)
72:00:00 (an elapsed time covering three days)
4:17:33.25 (an elapsed time with fractional seconds)

Octal and Hexadecimal Formats
You can edit data values using octal (base 8) or hexadecimal (base 16) notation by choosing Octal or Hexa-
decimal from the Format submenu of the Table menu. These formats are usually used to display integer
data acquired from data acquisition hardware.

You can display any numeric wave as octal or hexadecimal. For display purposes, Igor treats the data as an
unsigned 32 bit number. Any fractional part is not displayed in the table.

You must set the number of digits to display using the Digits submenu of the Table menu or the Digits control
in the Modify Columns dialog or the sigDigits keyword in a ModifyTable command. The appropriate setting
depends on the source of your data. Typically it will be 3 or 6 digits for octal and 2, 4 or 8 digits for hexadecimal.

An 8 digit hexadecimal number represents 32 bits of data. Single precision floating point waves have only
about 24 bits of precision. Therefore, if you want to store 32 bit values you must use either the integer,
unsigned integer, or double-precision floating point data types for your waves.

When pasting octal or hexadecimal text in a table, make sure that the column format is set to octal or hexa-
decimal so that Igor will correctly interpret the text.

Editing Text Waves
You can create a text wave in a table by clicking in the first unused cell and entering nonnumeric text. For
the most-part, editing a text wave is self-evident. However, there are some issues, mostly relating to special
characters or large amounts of text, that you may run into.

Large Amounts of Text in a Single Cell
A text wave is handy for storing short descriptions of corresponding data in numeric waves. In some cases,
you may find it useful to store larger amounts of text. There is no limit on the number of characters in a
point of a text wave. However, the entry area of a table can display no more than 32,000 characters. You
cannot edit in a table a cell containing more than 32,000 characters.

The entry area of the table is capable of scrolling so that you can see and edit long text wave contents. The
scroll controls appear only if the active cell contains text that will not fit in one line.

Tabs, CRs and Invisible Characters
In rare cases, you may want to store text containing special characters such as tabs and carriage-returns in
text waves. Normally, the Tab and Return keys move the active cell. On a Macintosh, if instead you want to
enter a tab or return character into the active cell, press Option while pressing Tab or Return.

Chapter II-11 — Tables

II-220

On Windows, it is not possible to enter a carriage return or tab character into a text wave cell via a table. The
only way to do this is via the command line. For example, to enter “Hello<tab>Goodbye” on the Macintosh,
you can press Option-Tab to enter the tab character. On Windows, you would need to execute the following
from the command line:
textWave0[<point number] = "Hello\tGoodbye"

The reason for this difference is that all key combinations such as Alt+Tab, Shift+Tab and Ctrl+Tab are used
for other purposes either by Igor or by Windows.

On the Macintosh, “Hello\rGoodbye” appears in the table entry area as two lines of text. On Windows, it
appears as “Hello<box>Goodbye”, where <box> is a character that looks like a box. This difference arises
from a difference in the text display routines supplied by the two operating systems.

Macintosh: A return character is invisible when viewed in the body of a table. This is because a return
character has no visible representation in a font. There are other special characters that are
invisible and this varies from font to font. In general, this is not a problem because you have to
go to some lengths to get invisible characters into a text wave.
If you suspect that there may be invisible characters in your text wave, display it in a table and
set the column font to Chicago. This font has few invisible characters. The following commands
create and display a text wave containing all of the character codes (0 to 255).
Make/T/N=256 characters = num2char(p)
Edit characters; ModifyTable font(characters)=Chicago

Windows: Tabs, linefeeds, carriage returns, and other special characters appear in the table body as boxes.

Copying and pasting cells containing tabs and return characters between tables will work as expected.
However, if you paste text from other types of windows or from other programs, the tabs and CRs will be
considered to delimit columns or rows and will not be pasted in the cells themselves.

Treatment of Names When Pasting Text
When pasting data into the unused area of a table, Igor creates a new wave or waves. In this case, Igor looks
for wave names in the first row of the pasted text. If you are pasting text data that does not start with wave
names, Igor will mistakenly take your first row of data as wave names. See Creating New Waves by Pasting
Data from Another Program on page II-198 for solutions to this problem.

Tab Separators in Text
When pasting data into existing waves in a table, Igor expects columns to be separated by tabs. Previous ver-
sions of Igor accepted tabs or commas. This was changed to conform to the behavior of other graphing and
spreadsheet programs and so that you can paste text containing a comma into a single cell of a text wave.

Editing Multidimensional Waves
If you view a multidimensional wave in a table, Igor adds some items to the table that are not present for
1D waves. To see this, execute the following commands which create and display a 2D wave:
Make/O/N=(3,4) w2D = p + 10*q; Edit w2D.id

The first column in the table is labeled Row, indicating that it shows row numbers. The second column con-
tains the scaled row indices, which in this case are the same as the wave row numbers. The remaining
columns show the wave data. Notice the name at the top of the first column of wave data: “w2D[][0].d”.

Horizontal index row.

Chapter II-11 — Tables

II-221

The “w2D” identifies the wave. The “.d” specifies that the column shows wave data rather than wave indi-
ces. The “[][0]” identifies the part of the wave shown by this column. The “[]” means “all rows” and the
“[0]” means column 0. This is derived from the syntax that you would use from Igor’s command line to
store values into all rows of column 0 of the wave:
w2D[][0] = 123 // Set all rows of column 0 to 123

When displaying a multidimensional wave in a table, Igor adds a row to the table below the row of names.
This row is called the horizontal index row. It can display either the scaled indices or the dimension labels
for the wave elements shown in the columns below.

By default, if you view a 2D wave in a table and append the wave’s index column, Igor displays the wave’s
row indices in a column to the left of the wave data and displays the wave’s column indices in the horizontal
index row, above the wave data.

If you append the wave’s dimension label column, Igor displays the wave’s row labels in a column to the left
of the wave data and displays the wave’s column labels in the horizontal index row, above the wave data.

If you display neither index columns nor dimension labels, Igor still displays the wave’s column indices in
the horizontal index row.

If you want to show numeric indices horizontally and dimension labels vertically or vice versa, you can use
the Table→Horizontal Index submenu to override the default behavior. For example, if you want dimen-
sion labels vertically and numeric indices horizontally, append the wave’s dimension label column to the
table and then choose Table→Horizontal Index→Numeric Indices.

In the example above, the row and column indices are equal to the row and column element numbers. You
can set the row and column scaling of your 2D data to reflect the nature of your data. For example, if the
data is an image with 5 mm resolution in both dimensions, you should use the following commands:
SetScale/P x 0, .005, "m", w2D; SetScale/P y 0, .005, "m", w2D

When you do this, you will notice that the row and column indices in the table reflect the scaling that you
have specified.

1D waves have no column indices. Therefore, if you have no multidimensional waves in the table, Igor does
not display the horizontal index row. If you have a mix of 1D and multidimensional waves in the table, Igor
does display the horizontal index row but displays nothing in that row for the 1D waves.

When showing 1D data, Igor displays a column of point numbers at the left side of the table. This is called
the Point column. When showing a 2D wave, Igor will title the column Row or Column depending on how
you are viewing the 2D wave. If you have 3D or 4D waves in the table, Igor titles the column Row, Column,
Layer or Chunk, depending on how you are viewing the waves.

It is possible to display a mix of 1D waves and multidimensional waves such that none of these titles is appro-
priate. For example, you could display two 2D waves, one with the wave rows shown vertically (the normal
case) and one with the wave rows shown horizontally. In this case, Igor will title the Point column “Element”.

You can edit dimension labels in the main body of the table by merely clicking in the cell and typing. How-
ever, you can’t edit dimension labels in the horizontal index row this way. Instead you must double-click a
label in this row. Igor will then display a dialog into which you can enter a dimension label. You can also
set dimension labels using the SetDimLabel operation from the command line.

Chapter II-11 — Tables

II-222

Changing the View of the Data
A table can display waves of dimension 1 through 4. A one dimensional wave appears as a simple column
of numbers, or, if the wave is complex, as two columns, one real and one imaginary. A two dimensional
wave appears as a matrix. In the one and two dimensional cases, you can see all of the wave data at once.

If you display a three dimensional wave in a table, you can view and edit only one slice at a time. To see
this, execute the following commands:
Make/O/N=(5,4,3) w3D = p + 10*q + 100*r; Edit w3D.id

Initially you will see the slice of the wave whose layer index is 0 — layer zero of the wave. You can change
which layer you are viewing using icons that appear at the top of the table or using keyboard shortcuts.

When clicking the icons, pressing Shift reverses the direction.

If you display a four dimensional wave in a table, you can still view and edit only one layer at a time. You can
change which layer you are viewing by using the icons or keyboard shortcuts described above. To view the next
chunk in the 4D wave, press Option (Macintosh) or Alt (Windows) while clicking the down icon or press
Command-Option-Down Arrow (Macintosh) or Ctrl+Alt+Down Arrow (Windows). To view the previous chunk,
press Option or Alt while clicking the up icon or press Command-Option-Up Arrow or Ctrl+Alt+Up Arrow.

In addition to using the keyboard shortcuts, you can specify the layer and chunk that you want to use using
the ModifyTable elements operation.

Changing the Viewed Dimensions
When you initially view a 3D wave in a table, Igor shows a slice of the wave in the rows-columns plane. The
wave’s rows dimension is mapped to the table’s vertical dimension and the wave’s columns dimension is
mapped to the table’s horizontal dimension.

Using the Choose Dimensions icon, you can instruct Igor to map any wave dimension to the vertical
table dimension and any other wave dimension to the horizontal table dimension. This is primarily of
interest if you work with waves of dimension three or higher because you can view and edit any orthog-
onal plane in the wave. You can, for example, create a new wave that contains a slice of data from the 3D wave.

When you click the Choose Dimensions icon, Igor displays the Choose Dimensions dialog. This dialog spec-
ifies how the dimensions in the wave are to be displayed in the table.

Click here or press Command-Up Arrow (Macintosh) or
Ctrl+Up Arrow (Windows) to view the preceding layer

Click here or press Command-Down Arrow (Macintosh) or
Ctrl+Down Arrow (Windows) to view the preceding layer

Shows the layer currently
being viewed

Chapter II-11 — Tables

II-223

ModifyTable Elements Command
This section discusses choosing viewed dimensions using the ModifyTable “elements” keyword. You do
not need to know about this unless you want a thorough understand of editing 3D and 4D waves and
viewing them from different perspectives.

The best way to understand this section is to execute all of the commands shown.

Igor needs to know which wave dimension to map to the vertical table dimension and which wave dimen-
sion to map to the horizontal table dimension. In addition, for waves of dimension three or higher, Igor
needs to know which element of the remaining dimensions to display.

The form of the command is:
ModifyTable elements(<wave name>) = (<row>,<column>,<layer>,<chunk>)

The parameters specify which element of the wave’s rows, columns, layers and chunks dimensions you
want to view. The value of each parameter may be an element number (0 or greater) or it may be a special
value. There are three special values that you can use for any of the parameters:

In reading the following discussion, remember that the first parameter specifies how you want to view the
wave’s rows, the second parameter specifies how you want to view the wave’s columns, the third parame-
ter specifies how you want to view the wave’s layers and the fourth parameter specifies how you want to
view the wave’s chunks.

If you omit a parameter, it takes the default value of -1 (no change). Thus, if you are dealing with a 2D wave,
you can supply only the first two parameters and omit the last two.

To get a feel for this command, let’s start with the example of a simple matrix, which is a 2D wave.
Make/O/N=(3,3) wave0 = p + 10*q
Edit wave0.id

As you look down in the table, you see the rows of the matrix and as you look across the table, you see its
columns. Thus, initially, the rows dimension is mapped to the vertical table dimension in the and the
columns dimension is mapped to the horizontal table dimension. This is the default mapping. You can
change this with the following command:
ModifyTable elements(wave0) = (-3, -2)

The first parameter specifies how you want to view the wave’s rows and the second parameter specifies
how you want to view the wave’s columns. Since the wave has only two dimensions, the third and fourth
parameters can be omitted.

The -3 in this example maps the wave’s rows to the table’s horizontal dimension. The -2 maps the wave’s
columns to the table’s vertical dimension.

You can return the wave to its default view using:
ModifyTable elements(wave0) = (-2, -3)

When you consider a 3D wave, things get a bit more complex. In addition to the rows and columns dimen-
sions, there is a third dimension — the layers dimension. When you initially create a table containing a 3D
wave, it shows all of the rows and columns of layer 0 of the wave. Thus, as with the 2D wave, the rows
dimension is mapped to the vertical table dimension and the columns dimension is mapped to the horizon-
tal table dimension. You can control which layer of the 3D wave is displayed in the table using the icons
and keyboard shortcuts described above, or using the ModifyTable elements keyword.

-1 Means no change from the current value.
-2 Means map this dimension to the table’s vertical dimension.
-3 Means map this dimension to the table’s horizontal dimension.

Chapter II-11 — Tables

II-224

For example:
Make/O/N=(5,4,3) wave0 = p + 10*q + 100*r
ModifyTable elements(wave0)=(-2, -3, 1) //Shows layer 1 of 3D wave
ModifyTable elements(wave0)=(-2, -3, 2) //Shows layer 2 of 3D wave

In these examples, the wave’s layers dimension is fixed to a specific value whereas the wave’s rows and
columns dimensions change as you look down or across the table. The term “free dimension” refers to a
wave dimension that is mapped to either of the table’s dimensions. The term “fixed dimension” refers to a
wave dimension for which you have chosen a fixed value.

In the preceding example, we viewed a slice of the 3D wave in the rows-columns plane. We can view any
orthogonal plane. For example, this command shows us the data in the layers-rows plane:
ModifyTable elements=(-3, 0, -2) // Shows column 0 of 3D wave

The first parameter says that we want to map the wave’s rows dimension to the table’s horizontal dimen-
sion. The second parameter says that we want to see column 0 of the wave. The third parameter says that
we want to map the wave’s layers dimension to the table’s vertical dimension.

Dealing with a 4D wave is similar to the 3D case, except that, in addition to the two free dimensions, you
have two fixed dimension.
Make/O/N=(5,4,3,2) wave0 = p + 10*q + 100*r + 1000*s
ModifyTable elements(wave0)=(-2, -3, 1, 0) //Shows layer 1/chunk 0
ModifyTable elements(wave0)=(-2, -3, 2, 1) //Shows layer 2/chunk 1

If you change a wave (using Make/O or Redimension) such that one or both of the free dimensions has zero
points, Igor automatically resets the view to the default — the wave’s rows dimension mapped to the table’s
vertical dimension and the wave’s column dimension mapped to the table’s horizontal dimension. Here is
an example:
Make/O/N=(5,4,3) wave0 = p + 10*q + 100*r
Edit wave0.id
Modify elements(wave0) = (0, -2, -3)// Map layers to horizontal dim
Redimension/N=(5,4) wave0 // Eliminate layers dimension!

This last command has eliminated the wave dimension that is mapped to the table horizontal dimension.
Thus, Igor will automatically reset the table view.

If you use a dimension with zero points as a free dimension, Igor will also reset the view to the default:
Make/O/N=(3,3) wave0 = p + 10*q
Edit wave0.id
Modify elements(wave0) = (0, -2, -3) // Map layers to horizontal dim

This last command maps the wave’s layers dimension to the table’s horizontal dimension. However, the
wave has no layers dimension, so Igor will reset the view to the default.

The initial discussion of changing the view using keyboard shortcuts was incomplete for the sake of simplic-
ity. It said that Option-Down Arrow (Macintosh) or Alt+Down Arrow (Windows) displayed the next layer and
that Command-Option-Down Arrow or Ctrl+Alt+Down Arrow displayed the next chunk. This is true if rows
and columns are the free dimensions. A more general statement is that Option-Down Arrow or Alt+Down
Arrow changes the viewed element of the first fixed dimension and Command-Option-Down Arrow or
Ctrl+Alt+Down Arrow changes the viewed element of the second fixed dimension. Here is an example using
a 4D wave:
Make/O/N=(5,4,3,2) wave0 = p + 10*q + 100*r + 1000*s
Edit wave0.id
ModifyTable elements(wave0)=(0, -2, 0, -3)

The ModifyTable command specifies that the columns and chunks dimensions are the free dimensions. The
rows and layers dimensions are fixed at 0. If you now press Option-Down Arrow or Alt+Down Arrow, you
change the element of the first fixed dimension — the rows dimension in this case. If you press Command-

Chapter II-11 — Tables

II-225

Down Arrow or Ctrl+Alt+Down Arrow, you change the element of the second fixed dimension — the layers
dimension in this case.

Multidimensional Copy/Cut/Paste/Clear
The material in this section is primarily of interest if you intend to edit 3D and 4D data in a table. There are
also a few items that deal with 2D data.

For 1D and 2D waves, the subset that you copy and paste is obvious from the table selection. In the case of
3 and higher dimension waves, you can only see two dimensions in the table at one time and you can select
a subset of those two dimensions. Normally a copy copies just what you see to the Clipboard. However, if
you press Option (Macintosh) or Alt (Windows) while choosing Copy from the Edit menu or if you press
Command-Option-C (Macintosh) or the Ctrl+Alt+C (Windows), Igor copies data from all dimensions.

Consider the following example. We make a wave with 5 rows, 4 columns and 3 layers and display it in a table:
Make/O/N=(5,4,3) w3D = p + 10*q + 100*r; Edit w3D.id

The table now displays all rows and all columns of layer 0 of the wave. If you select all of the visible data cells
and do a copy, you will copy all of layer 0 to the Clipboard. However, if you do an Option-copy or Alt-copy,
you will copy all three layers to the Clipboard — layer 0 plus the two layers that are currently not visible.

The Option or Alt key changes the operation from acting on just the visible selected cells to acting on all
selected cells. The Shift key affects the paste operation only and does an insert-paste instead of a replace-paste.

This table shows the effect of the Option (Macintosh) or Alt (Windows) key.

The middle column of the preceding table mentions “replace-pasting”. When you do a paste, Igor normally
replaces the selection in the table with the data in the Clipboard. However, if you press Shift while pasting,
Igor inserts the data as new cells in the table. This is called an “insert-paste”. This table shows the effect of
the Shift and Option (Macintosh) or Alt (Windows) keys on a paste.

Replace-Paste of Multidimensional Data
When you copy data in a table and then select another section of the table or a section of another table and
do a paste, you are doing a replace-paste. The copied data replaces the selection when you do the paste.

Copy Paste Clear

No modifiers Copies visible Replace-pastes visible Clears visible

Option or Alt Copies all Replace-pastes all Clears all

Paste

No modifiers Replace-pastes visible

Option Replace-pastes all

Shift Insert-pastes visible

Shift and Option or Alt Insert-pastes all

Choosing Copy from the Edit
menu copies just the visible
layer.

Pressing Option (Macintosh)
or Alt (Windows) while
choosing Copy copies all
layers

Chapter II-11 — Tables

II-226

For 1D and 2D waves, the subset that you copy and paste is obvious from the table selection. In the case of
3 and higher dimension waves, you can only see two dimensions in the table at one time and you can select
a subset of those two dimensions.

When you do a replace-paste involving waves of dimension 3 or higher, the data in the Clipboard replaces
the data in the currently visible slice of the selected wave. Here is an example that illustrates this.

We make a wave with 5 rows, 4 columns and 3 layers and display it in a table:
Make/O/N=(5,4,3) w3D = p + 10*q + 100*r; Edit w3D.id

The table now displays all rows and all columns of layer 0 of the wave. Let’s look at layer 1 of the wave. To
do this, press Option-Down Arrow (Macintosh) or Alt+Down Arrow (Windows) while the table is active. This
changes the view to show layer 1 instead of layer 0.

Now, select all of the visible cells and do a copy (Command-C on Macintosh or Ctrl+C on Windows). This copies
all of layer 1 to the Clipboard. Now, press Option-Down Arrow or Alt+Down Arrow again to view layer 2 of the
wave. With all of the cells still selected, do a paste (Command-V on Macintosh or Ctrl+V on Windows). The data
copied from layer 1 replaces the data in layer 2 of the wave. Do an undo. Layer 2 is restored to its original state.
Now press Option-Up Arrow or Alt+Up Arrow two times. We are now looking at layer 0. Do a paste. The data
that we copied from layer 1 replaces the data in layer 0. Do an undo to return layer 0 to the original state.

Now let’s consider an example in which we copy and paste all of the wave data, not just one layer. To do
the copy, press Command-Option-C (Macintosh) or Ctrl+Alt+C (Windows) or press Option (Macintosh) or Alt
(Windows) and choose Copy from the Edit menu. We have now copied the entire wave, all three layers, to
the Clipboard. Next, press Option or Alt and choose Clear from the Edit menu. Use Option-Down Arrow
or Alt+Down Arrow and Option-Up Arrow or Alt+Up Arrow to verify that all three layers were cleared.
Now do the paste by pressing Command-Option-V (Macintosh) or Ctrl+Alt+V (Windows) or pressing Option
or Alt while choosing Paste from the Edit menu. This pastes all three layers from the Clipboard into the
selected wave. Use Option-Down Arrow and Option-Up Arrow or Alt+Down Arrow and Alt+Up Arrow to
verify that all three layers were pasted.

In this example, we make a 2D wave from two 1D waves. Execute:
Make/O/N=5 w1DA=p, w1DB=100+p; Edit w1DA, w1DB

Click the column name of w1DA to select all of it and do a copy. Select the first unused cell to the right of
w1DB and do a paste. We now have a clone of w1DA named w1DA1. Choose Redimension from the Table
pop-up menu. This brings up the Redimension Waves dialog with w1DA1 preselected. Find the New
Columns text box which currently has the number 0 in it. Enter 2 in place of the 0 and click Do It. We have
now made w1DA1 a 2D wave. Click the column name of the w1DB column to select all of it and do a copy.
Now click the column name of the second column of w1DA1 and do a paste. We now have a 2D wave gen-
erated from two 1D waves.

Making a 2D Wave from Two 1D Waves
1. Select all of the first 1D wave and choose Copy.
2. Click in the first unused cell in the table and choose Paste.
3. Choose Redimension from the Table pop-up menu.
4. In the Redimension Waves dialog, enter 2 for the number of columns and click Do It.
5. Select all of the second 1D wave and choose Copy.

Chapter II-11 — Tables

II-227

6. Select all of the second column of the 2D wave and choose Paste.

Insert-Paste of Multidimensional Data
When you copy data in a table and then select another section of the table or a section of another table and
do a paste while pressing Shift, you are doing an insert-paste. The copied data is inserted into the selected
wave or waves before the selected data. As in the case of the replace-paste, the insert-paste works on just
the visible layer of data if Option (Macintosh) or Alt (Windows) is not pressed or on all layers if the Option
or Alt is pressed. Here is an example that illustrates this.

We make a wave with 5 rows, 4 columns and 3 layers and display it in a table:
Make/O/N=(5,4,3) w3D = p + 10*q + 100*r; Edit w3D.id

Select all of the cells in rows 1 and 2 of the table. An easy way to do this is to click the “1” in the Row column
and drag down to the “2”. Now copy the selected cells by pressing Command-C (Macintosh) or Ctrl+C (Win-
dows). Since you did not press Option or Alt, this copies just the visible layer. Next, press shift and choose
Paste from the Edit menu to insert-paste the copied data. Notice that two new rows were inserted. Press
Command-Down Arrow or Ctrl+Down Arrow to see what was inserted in layer 1 of the 3D wave. Notice
that zeros were inserted. This is because the paste stored data only in the visible layer.

Press Option-Up Arrow or Alt+Up Arrow to view layer 0 again. Now choose Undo from the Edit menu to
undo the paste. Use Option-Down Arrow or Alt+Down Arrow to check the other layers of the wave and
then use Option-Up Arrow or Alt+Up Arrow to come back to layer zero.

Now we will do an insert-paste in all layers. Again, select rows 1 and 2 of the wave. Press Option or Alt and
choose Copy from the Edit menu. This copies data from all three layers to the Clipboard. Now press Shift-
Option or Shift+Alt and choose Paste from the Edit menu. This pastes data from the Clipboard into all three
layers of the wave. By pressing Shift, we did an insert-paste rather than a replace-paste and by pressing
Option or Alt, we pasted into all layers, not just the visible layer. Use Option-Down Arrow or Alt+Down
Arrow to verify that we have pasted data into all layers.

Cutting and Pasting Rows Versus Columns
Normally, you cut and paste rows of data. However, there may be cases where you want to cut and paste
columns. For example, if you have a 2D wave with 5 rows and 3 columns, you may want to cut the middle
column from the wave. Here is how Igor determines if you want to cut rows or columns.

If the selected wave is 2D or higher, and if one or more entire columns is selected, Igor cuts the selected
column or columns. In all other cases Igor cuts rows.

After copying or cutting wave data, you have data in the Clipboard. Normally, a paste overwrites the
selected rows or inserts new rows (if you press Shift).

To insert columns, you need to do the following:
1. Select exactly one entire column. You can do this by clicking in the column name.
2. Press Shift and choose Paste from the Edit menu or press Command-Shift-V (Macintosh) or

Ctrl+Shift+V (Windows).

If the wave data is real (not complex), Igor normally pastes the new column or columns before the selected
column. This behavior would provide you with no way to paste columns after the last column of a wave.
Therefore, if the selected column is the last column, Igor presents a dialog to ask you if you want to paste
the new columns before or after the last column.

If the wave data is complex, Igor pastes the new columns before the selected column if the selected column
is real or after the selected column if it is imaginary.

If you select more than one column or if you do not select all of the column, Igor will insert rows instead of
columns.

Chapter II-11 — Tables

II-228

Create-Paste of Multidimensional Data
When you copy data in a table and then select the first unused cell in the table and then do a paste, Igor
creates one or more new waves.

The number of waves created and the number of dimensions in each wave are the same as for the copied
data. Igor also copies and pastes the following wave properties:
• Data units and dimension units
• Data full scale and dimension scaling
• Dimension labels
• The wave note

Igor copies and pastes the wave note only if you copy the entire wave. If you copy part of the wave, it does
not copy the wave note.

You can use a create-paste to create a copy of a subset of the data displayed in the table. For 1D and 2D waves,
the subset that you copy and paste is obvious from the table selection. In the case of 3 and higher dimension
waves, you can only see two dimensions in the table at one time and you can choose a subset of those two dimen-
sions. If you do a copy and then a create-paste, Igor creates a new 2D wave containing just the data that was
visible when you did the copy. If you do an Option-copy (Macintosh) or Alt -copy (Windows) to copy all and then
a create-paste, Igor creates a new wave with the same number of dimensions and same data as what you copied.

Here is an example.

We make a wave with 5 rows, 4 columns and 3 layers and display it in a table:
Make/O/N=(5,4,3) w3D = p + 10*q + 100*r; Edit w3D.id

Select all of the visible cells and do a copy. Click in the first unused column, to the right of the last column
of w3D. Now do a paste. Igor creates a 2D wave consisting of the visible data that you copied.

Making a 2D Wave from a Slice of a 3D Wave
1. Select the slice of the 3D wave and choose Copy.
2. Click in the first unused cell and choose Paste.

Get rid of the new 2D wave by doing an undo. Select all of the w3D cells again
and do an Option-copy or Alt-copy (press Command-Option-C on Macintosh or Ctrl+Alt+C on Windows). Select
the unused cell again and do a paste. Igor creates a 3D wave consisting of the visible data that you copied and
the data in other layers of w3D, not currently showing in the table. To demonstrate this, view the other layers of
the new wave by pressing Option-Down Arrow or Alt+Down Arrow (to go to the next layer) and Option-Up
Arrow or Alt+Up Arrow (to go to the preceding layer). Get rid of the new 3D wave by doing an undo.

Here is how to extract a 1D wave from a 2D or 3D wave. Select all of the first column of w3D by clicking in
the column name. Now select the unused cell again and do a paste. Note the column name for the new
wave: “w3D1[][0]”. This indicates that the new wave is a 2D wave and that the table is showing all rows of
column zero, the only column in the wave. But we want to make a 1D wave, not a 2D wave. Click in any
cell in the new wave and choose Redimension w3D1 from the Table pop-up menu. This brings up the Red-
imension Waves dialog with w3D1 preselected. Find the New Columns text box which currently has the
number 1 in it. Enter 0 in place of the 1 and click Do It. We have now made w3D1 a 1D wave. Notice that
the column name is now “w3D1”.

Making a 1D Wave from a Column of a Multidimensional Wave
1. Select the column of the multidimensional wave and choose Copy.
2. Click in the first unused cell in the table and choose Paste.
3. Choose Redimension from the Table pop-up menu.
4. In the Redimension Waves dialog, enter 0 for the number of columns and

click Do It.

Chapter II-11 — Tables

II-229

Printing Tables
Before printing a table you should bring the table to the top of the desktop and set the page size and orien-
tation using the Page Setup dialog. Choose the Page Setup for All Tables item from the Files menu.

In each experiment, Igor stores one page setup for all tables. Thus, changing the page setup while a table is
active changes the page setup for all tables in the current experiment.

When you invoke the Page Setup dialog you must make sure that the table that you want to print is the top
window. Changing the page setup for graphs, page layouts or other windows does not affect the page setup
for tables.

You can print all or part of a table. To do this choose the Print Table or Print Table Selection item from the
File menu while the table is the active window.

On Macintosh, if the selection range consists of just the target cell, the entire table will be printed. If the selec-
tion range is more than just the target cell, only the selected cells will be printed. On Windows, use the Print
Range controls in the print dialog to print all of the table or just the selection.

Save Table Copy
You can save the active table as an Igor packed experiment file or as a tab or comma-delimited text file by
choosing File→Save Table Copy.

The main uses for saving as a packed experiment are to save an archival copy of data or to prepare to merge
data from multiple experiments (see Merging Experiments on page II-32). The resulting experiment file
preserves the data folder hierarchy of the waves displayed in the table starting from the “top” data folder,
which is the data folder that encloses all waves displayed in the table. The top data folder becomes the root
data folder of the resulting experiment file. Only the table and its waves are saved in the packed experiment
file, not variables or strings or any other objects in the experiment.

Save Table Copy does not know about dependencies. If a table contains a wave, wave0, that is dependent
on another wave, wave1 which is not in the table, Save Table Copy will save wave0 but not wave1. When
the saved experiment is open, there will be a broken dependency.

The main use for saving as a tab or comma-delimited text file is for exporting data to another program. When
saving as text, the data format matches the format shown in the table. Keep in mind that this will cause trun-
cation if the underlying data has more precision than shown in the table. The point column is never saved.

To save data as text with full precision, choose Data→Save Waves→Save Delimited Text.

When saving 3D and 4D waves as text, only the visible layer is saved. To save the entirety of a 3D or 4D wave,
choose Data→Save Waves→Save Delimited Text.

The SaveTableCopy operation on page V-620 provides options that are not available using the Save Table
Copy menu command.

Exporting Tables as Graphics
Although Igor tables are intended primarily for editing data, you can also use them for presentation pur-
poses. You can put a table into an Igor page layout, as discussed in Chapter II-16, Page Layouts. This section
deals with exporting a table to other applications as a picture or as an Encapsulated PostScript (EPS) file.

Typically you would do this if you are preparing a report in a word processor or page layout program or
making an illustration in a drawing program. If you are exporting to a program that has strong text format-
ting features, it may be better to copy the data from the table as text, using the Copy item in the Edit menu.
You can paste the text into the other program and then format it as you wish.

Chapter II-11 — Tables

II-230

Exporting a Table as a Picture
To export a table as a Macintosh picture via the Clipboard, choose Export Graphics from the Edit menu.
This copies the table to the Clipboard as a picture.

The picture that Igor puts into the Clipboard contains just the visible cells in the table window. You can
scroll, expand or shrink the window to control which cells will appear in the picture.

This dialog presents a lot of options that are more useful when exporting graphs or page layouts than when
exporting a table. For exporting a table, you should use the simplest option. On the Macintosh this is the
standard PICT with an expansion factor of 1, as shown above. Under Windows, use the Enhanced Metafile.
The meaning and use of the other options are explained in Chapter III-5, Exporting Graphics (Macintosh).

Igor can write a picture out to a file instead of copying it to the Clipboard. To do this, use the Save Graphics
submenu of the File menu.

Most word processing, drawing and page layout programs permit you to import a picture via the Clipboard
or via a file.

If you plan to print your report or illustration on a PostScript printer, you should make sure to use Post-
Script or TrueType fonts in the table. If you use a screen font then the text in the printed result may be some-
what distorted. Helvetica, Courier, Times and Palatino are common PostScript fonts.

Although we have not optimized tables for presentation purposes, we did put two features into tables specifi-
cally for presentation. First, you can hide the point column by setting its width to zero. Second, you can replace
the automatic column titles with column titles of your own. Use the Modify Columns dialog for both of these.

There are some features lacking that would be nice for presentation. You can’t change the background color
of a table. You can’t change or remove the grid lines. If you want to do these things, export the table to a
drawing program for sprucing up.

Exporting a Table as an EPS file
Many word processing, drawing and page layout programs permit you to import a picture via an Encap-
sulated PostScript (EPS) file. To export a table as EPS, choose EPS File from the pop-up menu in the Save
Graphics File dialog.

When exporting a graph with smooth curves, arrows, dashed lines and other fancy graphic items, EPS
sometimes produces better results than simpler methods. This is not the case with tables. So, the only reason
to export a table as an EPS file is if the program to which you are exporting can’t handle a simpler method
or handles EPS better. This is true of some PostScript drawing programs.

Table Preferences
Table preferences allow you to control what happens when you create a new table or add new columns to
an existing table. To set preferences, create a table and set it up to your taste. We call this your prototype
table. Then choose Capture Table Prefs from the Table menu.

The Export Graphics dialog puts a picture of the table into the Clipboard.

A simple export format
is best for tables.

On the Macintosh, that
means PICT that’s not
expanded.

Chapter II-11 — Tables

II-231

Preferences are normally in effect only for manual operations, not for automatic operations from Igor pro-
cedures. This is discussed in more detail in When Preferences Are Applied on page III-434.

When you initially install Igor, all preferences are set to the factory defaults. The dialog indicates which
preferences you have changed, and which are factory defaults.

The Window Position and Size preference affects the creation of new tables only.

The Column Styles preference affects the style of newly created tables and of columns added to an existing
table. This preference can store column settings for one or more columns, in addition to the point column,
depending on the number of columns in your prototype table.

The simplest and recommended way to use this is to have just one column (in addition to the point column) in
your prototype table. Igor will store two preferred column styles, one for the point column and one for all other
columns. Be sure to select the Repeat Column Style Prefs in Tables checkbox in the Miscellaneous Settings dialog.

If you have more than one data column in your prototype table then Igor will store additional preferred
column styles. When the number of columns in a table exceeds the number of captured column styles, Igor
assigns a style one of two ways:
• the factory default style is used,
• or the styles repeat with the first column (not the Point column) style, and then the second style, etc.

You make this choice in the Miscellaneous Settings dialog, with the Repeat Column Style Prefs in Tables
checkbox.

For example, assume that your prototype column has, in addition to the point column, a column with red text
and a column with blue text. With Repeat Column Style Prefs in Tables selected, any columns in a new table and
any columns you add to an existing table will alternate between red and blue. If it is not selected, the first column
will be red, the second column will be blue, and all successive added columns will be black (the factory default).

The page setup preference affects what happens when you create a new experiment, not when you create a
new table. Here is why.

Each experiment stores one page setup for all tables in that experiment. The preferences also store one page
setup for tables. When you set the preferred page setup for tables, Igor stores a copy of the current experi-
ment’s page setup for tables in the preferences file. When you create a new experiment, Igor stores a copy
of the preferred page setup for tables in the experiment.

Table Style Macros
The purpose of a table style macro is to allow you to create a number of tables with the same stylistic prop-
erties. Using the Window Control dialog, you can instruct Igor to automatically generate a style macro from
a prototype table. You can then apply the macro to other tables.

Igor can generate style macros for graphs, tables and page layouts. However, their usefulness is mainly for
graphs. See Graph Style Macros on page II-307. The principles explained there apply to table style macros also.

Indicates that the current
page setup is the factory
default page setup.

Captures preferences for the
selected items from the active table

Resets preferences for the selected
items to the factory defaults.

Chapter II-11 — Tables

II-232

Table Shortcuts
To view table keyboard navigation shortcuts, see Keyboard Navigation in Tables on page II-195.

Action Shortcut (Macintosh) Shortcut (Windows)

To add columns for
existing waves

Choose Append to Table from the
Table menu.

Choose Append to Table from the
Table menu.

To create new
numeric waves

Click in the first unused column and
enter a number or paste numeric data
from the Clipboard.

Copy all or part of an existing numeric
wave and paste in the first unused
column.

Click in the first unused column and
enter a number or paste numeric data
from the Clipboard.

Copy all or part of an existing numeric
wave and paste in the first unused
column.

To create new text
waves

Click in the first unused column and
enter nonnumeric text or paste text data
from the Clipboard.

Copy all or part of an existing text wave
and paste in the first unused column.

Click in the first unused column and
enter nonnumeric text or paste text data
from the Clipboard.

Copy all or part of an existing text wave
and paste in the first unused column.

To kill one or more
waves

Select the waves in the table and choose
Kill Waves from the Table pop-up menu.

Select the waves in the table and choose
Kill Waves from the Table pop-up menu.

To rename a wave Select one or more cells from the wave
and choose Rename from the Table
pop-up menu.

Select one or more cells from the wave
and choose Rename from the Table
pop-up menu.

To redimension a
wave

Select one or more cells from the wave
and choose Redimension from the
Table pop-up menu.

Select one or more cells from the wave
and choose Redimension from the
Table pop-up menu.

To add cells to a
column

Click in a row and choose Insert Points
from the Table pop-up.

Press Command-Shift-V. This does an
insert-paste.

Click in the insertion cell at the end of
the column and enter a value or paste.

Click in a row and choose Insert Points
from the Table pop-up.

Press Ctrl+Shift+V. This does an insert-
paste.

Click in the insertion cell at the end of
the column and enter a value or paste.

To remove cells from
a column

Select the cells to be removed and choose
Delete Points from the Table pop-up.

Press Command-X (Cut).

Select the cells to be removed and choose
Delete Points from the Table pop-up.

Press Ctrl+X (Cut).

To identify a
particular column

Press Command-Option-Control and
click in the column.

Press Shift-F1 to summon context-
sensitive help and then click in the
column.

To modify column
styles

Double-click a column title (goes to
Modify Columns dialog).

Select one or more columns and click
the Table pop-up menu.

Press Control and click the column title.

Double-click a column title (goes to
Modify Columns dialog).

Select one or more columns and click
the Table pop-up menu.

Right-click the column title.

To modify the style of
all columns at once

Press Shift while using the Table pop-
up menu.

Press Shift-Option to modify all but the
Point column.

Press Shift while using the Table pop-
up menu.

Press Alt+Shift to modify all but the
Point column.

Chapter II-11 — Tables

II-233

To modify the style of
a subset of the data
columns of
multidimensional
wave

Select the columns to modify, press
Command, then click the Table menu
or the Table pop-up menu, then make a
selection.

Select the columns to modify, press
Ctrl, then click the Table menu or the
Table pop-up menu, then make a
selection.

To select entire rows Drag in the point number column. Drag in the point number column.

To select entire
columns

Drag on the column titles. Drag on the column titles.

To change a wave’s
position

Press Option and drag the column title
to the new position.

Press Alt and drag the column title to
the new position.

To adjust the width
of a column

Drag the border at the right of the
column title.

Press Shift to resize all columns except
the point column.

Press Command while clicking to set
the width of a single data column of a
multidimensional wave.

Drag the border at the right of the
column title.

Press Shift to resize all columns except
the point column.

Press Ctrl while clicking to set the
width of a single data column of a
multidimensional wave.

To bring the target
cell into view

Click in the cell ID in the top left corner
of the table.

Click in the cell ID in the top left corner
of the table.

Action Shortcut (Macintosh) Shortcut (Windows)

Chapter II-11 — Tables

II-234

Chapter

II-12
II-12Graphs

Overview.. 238
Graph Features .. 238
The Graph Menu... 239
The Target Window.. 240
Typing in Graphs (Macintosh).. 240
Graph Names... 240
Creating Graphs .. 240
Waves and Axes .. 242
Types of Axes .. 242
Appending Traces .. 243
Trace Names .. 243
Removing Traces... 244
Replacing Traces ... 244
Plotting NaNs and INFs... 245
Scaling Graphs... 245

Autoscaling... 245
Manual Scaling... 246
Panning ... 247
Fling Mode.. 247

Setting the Range of an Axis.. 247
Manual Axis Ranges.. 248
Automatic Axis Ranges... 248

Overall Graph Properties... 248
Graph Dimensions... 249

Modifying Styles ... 251
Selecting Traces to be Modified... 252
Display Modes.. 252
Markers ... 253

Stroke Color... 254
Text Markers... 254
Arrow Markers... 255
Line Styles and Sizes ... 255
Fills ... 256
Bars... 256
Grouping, Stacking and Adding Modes .. 257
Color .. 259
Setting Trace Properties from an Auxiliary (Z) Wave.. 259
Color as f(z) Example .. 262
Trace Offsets ... 263
Trace Multipliers.. 264
Hiding Traces ... 264
Complex Display Modes .. 264
Gaps ... 264

Chapter II-12 — Graphs

II-236

Error Bars .. 265
Customize at Point... 266

Modifying Axes... 266
Axis Tab... 268
Auto/Man Ticks Tab.. 270
Ticks and Grids Tab... 271

Exponential Labels ... 271
Date/Time Tick Labels ... 271
Tick Dimensions ... 272
Grid... 272
Zero Line.. 273

Tick Options Tab.. 274
Tick Label Tweaks Checkboxes .. 274

Axis Label Tab.. 274
Label Options Tab.. 274
Log Axes.. 276
Manual Ticks .. 277

Computed Manual Ticks ... 277
User Ticks from Waves .. 278

Date/Time Axes.. 280
Custom Date Formats .. 281

Date/Time Examples ... 282
Manual Ticks for Date/Time Axes... 283

“Fake” Axes ... 284
Axis Labels ... 284
Annotations in Graphs ... 290
Info Box and Cursors.. 290

Programming With Cursors... 292
Identifying a Trace .. 292
Subrange Display .. 292

Subrange Display Syntax.. 293
Limitations .. 293

Printing Graphs... 294
Printing Poster-Sized Graphs... 295
Other Printing Methods.. 295

Save Graph Copy .. 295
Exporting Graphs.. 295
Creating Graphs with Multiple Axes... 296
Creating Stacked Plots.. 297

Staggered Stacked Plot.. 299
Waterfall Plots ... 300

Evenly-Spaced Waterfall Plot Example.. 301
Unevenly-Spaced Waterfall Plot Example ... 301
Fake Waterfall Plots... 302

Wind Barb Plots... 303
Creating Split Axes ... 303
Live Graphs and Oscilloscope Displays .. 304
Graph Preferences... 305

How to use Graph Preferences .. 306
Saving and Recreating Graphs.. 306
Graph Style Macros .. 307

Example of Creating a Style Macro... 307
Style Macros and Preferences .. 309
Applying the Style Macro... 309
Limitations of Style Macros.. 310
Where to Store Style Macros .. 310

Graph Pop-Up Menus .. 310

Chapter II-12 — Graphs

II-237

Graph Expansion... 311
Graph Shortcuts .. 312

Chapter II-12 — Graphs

II-238

Overview
Igor graphs are simultaneously:
• Publication quality presentations of data.
• Dynamic windows for exploratory data analysis.

A single graph can contain one or more of the following:

The various kinds of plots can be overlaid in the same plot area or displayed in separate regions of the graph.
Igor also provides extensive control over stylistic factors such as font, color, line thickness, dash pattern, etc.

This chapter describes how to create and modify graphs, how to adjust graph features precisely to your liking
and how to use graphs for data exploration. Although some of the techniques are applicable to graphs of 2D
data (contours and images), this chapter focuses on graphs of 1D numeric waves. Other Igor Pro plot types
are described in Chapter II-13, Category Plots, in Chapter II-14, Contour Plots, and in Chapter II-15, Image
Plots. Surface plots, isosurface plots, 3D scatter plots and other complex types of three dimensional plots can
be made using the Gizmo extension. To get started with Gizmo, choose Windows→New→3D Plots→3D
Help.

The use of drawing tools along with techniques for graphically editing data can be found in Chapter III-3,
Drawing. User-defined buttons and other controls are described in Chapter III-14, Controls and Control
Panels. Fancy textboxes and other annotations are covered in Chapter III-2, Annotations, whereas the in’s
and out’s of exporting publication-quality graphics are located in Chapter III-5, Exporting Graphics (Mac-
intosh), or Chapter III-6, Exporting Graphics (Windows).

Graph Features
Igor graphs are smart. If you expand a graph to fill a large monitor screen, Igor will adjust all aspects of the
graph to optimize the presentation for the larger graph size. The font sizes will be scaled to sizes that look
good for the large format and the graph margins will be optimized to maximize the data area without fouling
up the axis labeling. If you shrink a graph down to a small size, Igor will automatically adjust axis ticking to
prevent tick mark labels from running into one another. If Igor’s automatic adjustment of parameters does not
give the desired effect, you can override the default behavior by providing explicit parameters.

Igor graphs are dynamic. When you zoom in on a detail in your data, or when your data changes, perhaps
due to data transformation operations, Igor will automatically adjust both the tick mark labels and the axis
labels. For example, before zooming in, an axis might be labeled in milli-Hertz and later in micro-Hertz. No
matter what the axis range you select, Igor always maintains intelligent tick mark and axis labels.

If you change the values in a wave, any and all graphs containing that wave will automatically change to
reflect the new values.

Waveform plots Wave data versus scaled point number

XY plots Y wave data versus X wave data

Category plots Numeric wave data versus text wave data

Image plots Display of a matrix of data

Contour plots Contour of a matrix or an XYZ triple

Axes Any number of axes positioned anywhere

Annotations Textboxes, legends and dynamic tags

Cursors To read out XY coordinates

Drawing elements Arrows, lines, boxes, polygons, pictures …

Controls Buttons, pop-up menus, readouts …

Chapter II-12 — Graphs

II-239

You can zoom in on a region of interest, expand or shrink horizontally or vertically and you can pan
through your data with a hand tool. You can offset graph traces by simply dragging them around on the
screen. You can attach cursors to your traces and view data readouts as you glide the cursors through your
data. You can edit your data graphically.

Igor graphs are fast. They are updated almost instantly when you make a change to your data or to the
graph. In fact, Igor graphs can be made to update in a nearly continuous fashion to provide a real-time oscil-
loscope-like display during data acquisition.

You can also control virtually every detail of a graph. When you have the graph just the way you like it, you
can create a template called a “style macro” to make it easy to create more graphs of the same style in the
future. You can also set preferences from a reference graph so that new graphs will automatically be created
with the settings you prefer.

You can print or export graphs directly, or you can combine several graphs in a page layout window prior to
printing or export. You can export graphs and page layouts in a wide variety of formats suitable for editing
in a drawing program or for inclusion in a word processor or page layout program with publication-quality
results. See Chapter III-5, Exporting Graphics (Macintosh), or Chapter III-6, Exporting Graphics (Windows),
and Printing Graphs on page II-294 for information about maximizing the quality of printed graphs.

You can have as many graph windows open as memory allows. The amount of memory required for a
graph is proportional to the size of the graph and is also related to the number of colors displayed on your
monitor. In this age of cheap memory it is rare that the memory required for graphs will be a limiting factor.

The Graph Menu
The Graph menu contains items that apply only to graph windows. The menu appears in the menu bar only
when the active or target window is a graph.

When you choose an item from the Graph menu it affects the top-most graph; that graph will necessarily
be the “target window”.

For textboxes, legends and data tags.For user defined buttons and
other controls.

Adds drawing tools palette to left of window.

Adds cursors info panel to bottom of window.

Displays trace info when
mouse hovers over a trace.

Chapter II-12 — Graphs

II-240

The Target Window
Operations that apply only to graphs (such as ModifyGraph and ShowInfo) affect the top-most graph
window. Operations that apply to any window (such as Modify) affect the target window.

Typing in Graphs (Macintosh)
If you type on the keyboard while a graph is the top window, Igor brings the command window to the front
and your typing goes into the command line. (The only exception to this is when a graph contains a selected
SetVariable control.)

Graph Names
Every graph that you create has a graph name which you can use to manipulate the graph from the
command line or from a macro. When you create a new graph, Igor assigns it a name of the form “Graph0”,
“Graph1” and so on. When you close a graph, Igor offers to create a window recreation macro which you
can invoke later to recreate the graph.

The name of the window recreation macro is the same as the name of the graph. The graph name is not the same
as the graph title which is the text that appears in the graph’s window frame. You can change a graph’s name
and title with the Window Control dialog, accessed by pressing Command-Y (Macintosh) or Ctrl+Y (Windows).

Creating Graphs
You create a graph by choosing New Graph from the Windows menu.

You can also create a graph by choosing New Category Plot, New Contour Plot or New Image Plot from
the New submenu in the Windows menu.

Here is the simple version of the New Graph dialog:

You select the wave(s) to be displayed in the graph from the Y Wave(s) list. The wave is displayed as a trace
in the graph; by default the trace is a segmented line joining the Y values of the wave. Sometimes we refer
to traces as waves, though a trace is actually just a representation of the wave.

Click if you have multiple XY pairs, if you need several
pairs of axes, or if you want to plot a subset of a wave.

When selected, Y values are plotted on the horizontal axis.

Pick waves containing
Y data. Shift-click for
multiple selections.

Pick wave containing
X values or pick
calculated for
waveform data

Chapter II-12 — Graphs

II-241

In fact, you can display a wave more than once in a graph by using the More Choices button or the Append
Traces to Graph dialog. Igor distinguishes among the traces by a trace instance name such as “myWave#1”,
which is a kind of trace name that you will see Igor use when modifying graphs containing waves displayed
more than once. See Instance Notation on page IV-16 and the ModifyGraph operation on page V-451.

Normally the data values of the waves that you select in the Y Wave(s) list are plotted versus their calcu-
lated X values. This is called the waveform plotting mode. The calculated X values are derived from the
wave’s X scaling; see Waveform Model of Data on page II-77.

If you want to plot the data values of the Y waves versus the data values of another wave, select the other
wave in the X Wave list. This is called the XY plotting mode. In this mode, X scaling is ignored; see XY
Model of Data on page II-78.

If the lengths of the X and Y waves are not equal, then the number of points plotted is determined by the
shorter of the waves. You can pick only a single X wave to service all the Y data waves. If you have multiple
XY pairs, you will need to use the alternate form of this dialog as described later in this section.

If you want you can specify a title for the new window. The title is not used except to form the title bar of
the window. It is not used to identify windows and does not appear in the graph. If you specify no title, Igor
will choose an appropriate title based on the traces in the graph and the graph name. Igor automatically
assigns graph names of the form “Graph0”. The name of a window is important because it is used to iden-
tify windows in command line operations. The title is not important to Igor.

If you have created style macros for the current experiment they will appear in the Style pop-up menu. See
Graph Style Macros on page II-307 for details.

Normally, the new graph will be created using left and
bottom axes. You can select other axes using the pop-up
menus under the X and Y wave lists. Picking L=Vert-
Crossing will automatically select B=HorizCrossing and
vice versa. These free axes are used when you want to
create a Cartesian type plot where the axes cross at (0,0).
You can create additional free axes by choosing New
from the pop-up menu. Additional axes can be added to
these pop-ups by capturing axes preferences; see Graph Preferences on page II-305.

Axes created with the New Free Axis dialog are called “free axes” because they can be freely positioned
nearly anywhere in the graph window. The standard left, bottom, right, and top axes are always at the edge
of the plot area.

You should give the new axis a name that describes its intended use. The name must be unique within the
current graph and can’t contain spaces or other nonalphanumeric characters. The Left and Right radio
buttons determine the side of the axis on which tick mark labels will be placed. They also define the edge
of the graph from which axis positioning is based. See Modifying Axes on page II-266 for further details.

You can create a blank graph window containing no traces or axes by clicking the Do It button without selecting
any Y waves to plot. The New Contour Plot and New Image Plot dialogs create a blank graph window and then
append a contour or image plot to it. Blank graph windows are sometimes useful for programmers and, in con-
junction with drawing tools, for the creation of pure drawings, perhaps for inclusion in a page layout.

The New Graph dialog comes in two versions. The simpler version shown above is suitable for most pur-
poses. If, however, you have multiple pairs of XY data or when you will be using more than one pair of axes,
you can click the More Choices button to get a more complex version of the dialog.

Chapter II-12 — Graphs

II-242

Using this dialog you can create complex graphs in one step. The graph will be created based on the selec-
tions in the Y and X Wave lists as before and also on contents of the holding list. The above example was
created by first selecting wave0 from the Y Wave list, wave1 from the X Wave list and then clicking the Add
button. Next wave2 was selected from the Y Wave list, wave3 from the X Wave list and the left axis was
selected from the Axis pop-up menu under the Y Wave list and then the Add button was clicked. Finally
wave4 was chosen from the Y Wave list and _calculated_ was chosen from the X Wave list.

The more complex version of the dialog includes two-dimensional waves in the main list. You can edit the
range values for waves in the holding pen to specify individual rows or columns of a matrix or to specify
other subsets of data. See Subrange Display on page II-292 for details.

Waves and Axes
Axes are dependent upon waves for their existence. If you remove from a graph the last wave that uses a
particular axis then that axis will also be removed.

In addition, the first wave plotted against a given axis is called the controlling wave for the axis. There is only
one thing special about the controlling wave: its units define the units that will be used in creating the axis label
and occasionally the tick mark labels. This is normally not a problem since all waves plotted against a given axis
will likely have the same units. You can determine which wave controls an axis with the AxisInfo function.

Types of Axes
The four axes named left, right, bottom and top are termed standard axes. They are the only axes that many
people will ever need.

Each of the four standard axes is always attached to the corresponding edge of the plot area. The plot area
is the central rectangle in a graph window where traces are plotted. Axis and tick mark labels are plotted
outside of this rectangle. See Graph Dimensions on page II-249.

You can also add unlimited numbers of additional user-named axes termed free axes. Free axes are so
named because you can position them nearly anywhere within the graph window. In particular, vertical
free axes can be positioned anywhere in the horizontal dimension while horizontal axes can be positioned
anywhere in the vertical dimension. Axes can not be offset laterally but the same effect can be obtained by
shrinking the range over which they are drawn. See Modifying Axes on page II-266 for details.

Click to transfer Y Wave(s), X Wave and axes to holding list.

Holding list.

The new graph will be made
using these settings plus any
selection made in the top lists.

To delete one or more lines,
select and then press Delete.

Change list order by dragging
selected lines to new location.

Enter here a subrange of wave data for display.

Chapter II-12 — Graphs

II-243

The Axis pop-up menu entries L=VertCrossing and B=HorizCrossing you saw in the New Graph dialog
above are actually free axes that are each preset to cross at the numerical zero location of the other. They are
also set to suppress the tick mark and label at zero. For example, given this data:
Make ywave; SetScale/I x,-1,1,ywave; ywave= x^3

Then, using the New Graph dialog, we select ywave from the Y list and then L=VertCrossing from the Y
axis pop-up menu. This generates the following command and the resulting graph:
Display/L=VertCrossing/B=HorizCrossing ywave

If desired, you could remove the tick mark and label at -0.5. To do this you would double-click the axis to reach
the Modify Axis dialog, choose the Tick Options tab, and finally type -0.5 in one of the unused Inhibit Ticks boxes.

The free axis types described above all require that there be at least one trace that uses the free axis. For
special purposes Igor programmers can also create a free axis that does not rely on any traces by using the
NewFreeAxis operation (page V-493). Such an axis will not use any scaling or units information from any
associated waves if they exist. You can specify the properties of a free axis using the SetAxis operation
(page V-625) or the ModifyFreeAxis operation (page V-449), and you can remove them using the KillFree-
Axis operation (page V-362).

Appending Traces
You can append waves to a graph as a waveform or XY plot by choosing Append Traces to Graph from the
Graph menu. This presents a dialog identical to the New Graph dialog except that the title and style macro
items are not present. Like the New Graph dialog, this dialog provides a way to create new axes and pairs
of XY data. The Append to Graph submenu in the Graph menu provides the means to append category
plots, contour plots and image plots.

Igor’s curve fitting routines will append traces to your graph automatically if you request it (see Auto-Trace
on page III-178 for details).

Trace Names
The operations ModifyGraph (traces), RemoveFromGraph, ReorderTraces, ErrorBars and Tag take trace
names as parameters.

A trace displays data from a wave but a trace name is not necessarily the same as a wave name. For example:

Make wave0 = sin(x/8)

// Create first instance of wave0. Trace name is wave0 (equivalent to wave0#0).
Display wave0

// Create second instance of wave0. Trace name is wave0#1.
AppendToGraph wave0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

Chapter II-12 — Graphs

II-244

// Create third instance of wave0. Trace name is thirdInstance.
AppendToGraph wave0/TN=thirdInstance

This creates a graph with three traces named wave0, wave0#1 and thirdInstance. The trace name wave0 is
equivalent to wave0#0.

The addition of a # sign and a number to distinguish traces from the same wave is called "instance nota-
tion". For more information on instance notation, see Instance Notation.

For information on programming with trace names, see Programming With Trace Names on page IV-72.

Removing Traces
You can remove traces from a graph by choosing Remove from Graph from the Graph menu. Don’t over-
look the pop-up above the list that selects among traces, image plots and contour plots; set it to “Traces”.

Note that a contour plot has traces that you can remove, but they will come back when the contour plot is
updated. Rather than removing the contour traces, use the pop-up to select Contours, and remove the
contour plot itself, which automatically removes all of the contour-related traces. See Removing Contour
Traces from a Graph on page II-338.

If you remove the last wave associated with a given axis then that axis will also be removed. If you remove
all the waves you will be left with a blank graph with no traces or axes.

Replacing Traces
You can “replace” a trace in the sense of changing the wave that the trace is displaying in a graph. All the
other characteristics of the trace — such as mode, line size, color, and style — are unchanged. You can use
this to update a graph with data from a wave other than the one originally used to create the trace.

To replace a trace, use the Replace Wave item in the Graph menu to display the Replace Wave in Graph dialog:

A special mode allows you to browse through groups of data sets composed of identically-named waves
residing in different data folders (for a discussion of data folders, see Chapter II-8, Data Folders). For
instance, you might take the same type of data during multiple runs on different experimental subjects. If
you store the data for each run in a separate data folder, and you give the same names to the waves that
result from each run, you can select the Replace All in Data Folder checkbox and then select one of the data

Select to replace trace’s
Y or X wave with wave
from pop-up menu.

May include contours
and images.

Chapter II-12 — Graphs

II-245

folders containing data from a single run. All the waves in the chosen data folder whose names match the
names of waves displayed in the graph will replace the same-named waves in the graph.

You can also replace waves one at a time with any other wave. With the Replace All in Data Folder checkbox
unselected, choose a trace from the list below the menu. To replace the Y wave used by the trace, select the
Y checkbox; to replace the X wave select the X checkbox. You can replace both if you wish. Select the waves
to use as replacements from the menus to the right of the checkboxes. You can select _calculated_ from the
X wave menu to remove the X wave of an XY pair, converting it to a waveform display.

The menus allow you to select waves having lengths that don’t match the length of the corresponding X or
Y wave. In that case, use the edit boxes to the right to select a sub-range of the wave’s points. You can also
use these boxes to select a single row or column from a two-dimensional wave.

The dialog creates command lines using the ReplaceWave operation (page V-594).

Plotting NaNs and INFs
The data value of a wave is normally a finite number but can also be a NaN or an INF. NaN means “Not a
Number”, and INF means “infinity”. An expression returns the value NaN when it makes no sense math-
ematically. For example, log(-1) returns the value NaN. You can also set a point to NaN, using a table or
a wave assignment, to represent a missing value. An expression returns the value INF when it makes sense
mathematically but has no finite value. log(0) returns the value -INF.

Igor ignores NaNs and INFs when scaling a graph. If a wave in a graph is set to lines between points mode
then Igor draws lines toward an INF. By default, it draws no line to or from a NaN so a NaN acts like a
missing value. You can override the default, instructing Igor to draw lines through NaNs using the Gaps
checkbox in the Modify Trace Appearance dialog.

The following graph, generated by the wave assignments
wave1= log(abs(x-64)); wave1(40)=log(-1)

illustrate these points.

You can override the default, instructing Igor to draw lines through NaNs. See Gaps on page II-264 for details.

Scaling Graphs
Igor provides several ways of scaling waves in graphs. All of them allow you to control what sections of your
waves are displayed by setting the range of the graph’s axes. Each axis is either autoscaled or manually scaled.

Autoscaling
When you first create a graph all of its axes are in the autoscaling mode. This means that Igor automatically
adjusts the extent of the axes of the graph so that all of each wave in the graph is fully in view. If the data
in the waves changes, the axes are automatically rescaled so that all waves remain fully in view.

1.5

1.0

0.5

0.0

120100806040200

-INF at X = 64

NaN at X = 40

Chapter II-12 — Graphs

II-246

If you manually scale any axis, that axis changes to the manual scaling mode. The methods of manual
scaling are described in the next section. Axes in manual scaling mode are never automatically scaled.

If you choose Autoscale Axes from the Graph menu all of the axes in the graph are autoscaled and returned
to the autoscaling mode. You can set individual axes to autoscale mode and can control properties of the
autoscale mode using the Axis Range tab of the Modify Axis dialog described in Setting the Range of an
Axis on page II-247.

Manual Scaling
To manually scale one or more axes of a graph with the mouse, start by selecting the region of the graph
that you want to examine. Then select the scaling operation that you want from a pop-up menu that appears
when you click inside the region.

Click the mouse and drag it diagonally to frame the region of interest. Igor displays a dashed outline around
the region. This outline is called a marquee. A marquee has handles and edges that allow you to refine its
size and position.

To refine the size of the marquee move the cursor over one of the handles. The cursor changes to a double
arrow which shows you the direction in which the handle moves the edge of the marquee. To move the
edge click the mouse and drag.

To refine the position of the marquee move the cursor over one of the edges away from the handles. The
cursor changes to a hand. To move the marquee click the mouse and drag.

When you click inside the region of interest Igor
presents a pop-up menu from which you can
choose the scaling operation.

Choose the operation you want and release the
mouse. These operations can be undone and
redone; just press Command-Z (Macintosh) or
Ctrl+Z (Windows).

The expand operation scales all axes so that the
region inside the marquee fills the graph (zoom
in). It sets the scaling mode for all axes to manual.

The horiz expand operation scales only the horizon-
tal axes so that the region inside the marquee fills the graph horizontally. It has no effect on the vertical axes. It
sets the scaling mode for the horizontal axes to manual.

The vert expand operation scales only the vertical axes so that the region inside the marquee fills the graph
vertically. It has no effect on the horizontal axes. It sets the scaling mode for the vertical axes to manual.

The shrink operation scales all axes so that the waves in the graph appear smaller (zoom out). The factor
by which the waves shrink is equal to the ratio of the size of the marquee to the size of the entire graph. For

When you position the
cursor over various
parts of the marquee,
the cursor shape
indicates what clicking
and dragging will do.

Chapter II-12 — Graphs

II-247

example, if the marquee is one half the size of the graph then the waves shrink to one half their former size.
The point at the center of the marquee becomes the new center of the graph. The shrink operation sets the
scaling mode for all axes to manual.

The horiz shrink operation is like the shrink operation but affects the horizontal axes only. It sets the scaling
mode for the horizontal axes to manual.

The vert shrink operation is like the shrink operation but affects the vertical axes only. It sets the scaling
mode for the vertical axes to manual.

Igor programmers can add their own items to this pop-up menu. Also, the coordinates of the marquee can
be read under program control and can even be used to set up automatic (dependency) formulas. See the
GetMarquee operation on page V-243.

Another way to manually scale axes is to use the Axis Range tab of the Modify Axis dialog (see Manual
Axis Ranges on page II-248), or the SetAxis operation (page V-625).

Panning
After zooming in on a region of interest, you may want to view data that is just off screen. To do this, press Option
(Macintosh) or Alt (Windows) and move the mouse to the graph interior where the cursor changes to a hand. Now
drag the body of the graph. Pressing Shift will constrain movement to the horizontal or vertical directions.

This operation is undoable.

Fling Mode
If, while panning, you release the mouse button while the mouse is still moving, the panning will automat-
ically continue. While panning, release the Option or Alt key and change the force or direction of the mouse-
click gesture to change the panning speed or direction. Click the mouse button once to stop.

Setting the Range of an Axis
You can set the range and other scaling parameters for individual axes using the Axis Range tab in the
Modify Axis dialog. You can display the dialog with this tab selected by choosing Set Axis Range from the
Graph menu or by double-clicking a tick mark label of the axis you wish to modify. Information on the other
tabs in this dialog is available in Modifying Axes on page II-266.

Start by choosing the axis that you want to adjust from the Axis pop-up menu. You can adjust each axis in
turn, or a selection of axes, without leaving this dialog.

Only for vertical axes.

Chapter II-12 — Graphs

II-248

Manual Axis Ranges
When a graph is first created, it is in autoscaling mode. In this mode, the axis limits automatically adjust to
just include all the data. You can set the axis limits to fixed values by selecting the Manual Min and Manual
Max checkboxes. When you select one of these checkboxes, both are automatically selected. You can elect
to fix just one end of an axis range by de-selecting one of these checkboxes. The other end will then be
adjusted by Igor to include the minimum or maximum value of the data.

The fixed limits are set by editing the values in the boxes below the Manual Min and Manual Max check-
boxes. Initially these boxes are set to the automatic values of the limits.

There are a number of other ways to set the Min and Max limits. Clicking the Expand 5% button expands
the range between the min and the max by 5 percent. This has the effect of shrinking the graph traces plotted
on the axis by 5%. Clicking the Swap button exchanges the Min and Max parameters. This has the effect of
reversing the ends of the axis. You can plot waves upside-down or backwards. This works for linear, log
and date/time axes. If you don’t want the axis limits to be fixed, use the Reverse Axis checkbox in the
Autoscale Settings area.

An additional way to set the Min and Max parameters is to select a wave from the list and use the Quick
Set buttons. If you click the X Min/Max quick set button then the minimum and maximum X values of the
selected wave are transferred to the parameter boxes. If you click the Y Min/Max quick set button then the
minimum and maximum Y values of the selected wave are transferred to the parameter boxes. If you spec-
ified the full scale Y values for the wave then you can click the Full Scale quick set button. This transfers the
wave’s Y full scale values to the parameter boxes. The full scale Y values can be set using the Change Wave
Scaling item in the Data menu.

Automatic Axis Ranges
When the Manual Min and Manual Max checkboxes are not selected the given axis is in autoscaling mode.
In this mode the axis limits are determined by the data values in the waves displayed using the selected
axis. The items inside the Autoscale box control the method used to determine the axis range:

You can cause an autoscaled axis to be reversed by selecting the “Reverse axis” checkbox.

Autoscale mode usually sets the axis limits using all the data in waves associated with the traces that use
the axis. This can be undesirable if the associate horizontal axis is set to display only a portion of the total
X range. Select the Autoscale Only Visible Data checkbox to have Igor use only the data included within the
horizontal range for autoscaling.

Overall Graph Properties
You can specify certain overall properties of a graph by choosing Modify Graph from the Graph menu. This
brings up the Modify Graph dialog. You can also get to this dialog by double-clicking in any blank area
outside the plot rectangle.

Forces the end of the axis that is closest to zero to be
exactly zero.

The default mode. Axis range is set to the minimum and
maximum data values of all waves plotted using this axis.

Extends axis range to the next major tick mark.

Like “Round to nice values” but also ensures that traces
are inset from the ends of the axis.

The default mode.

Forces zero to be in the middle of the axis range.

Chapter II-12 — Graphs

II-249

Normally, X axes are plotted horizontally and Y axes vertically. You can reverse this behavior by selecting
the “Swap X & Y Axes” checkbox. This is commonly used when the independent variable is depth or height.
This method swaps X and Y for all traces in the graph. You can cause individual traces to be plotted verti-
cally by selecting the “Swap X & Y Axes” checkbox in the New Graph and Append Traces dialogs as you
are creating your graph.

Initially, the graph font is determined by the default font which you can set using the Default Font item in the
Misc menu. The graph font size is initially automatically calculated based on the size of the graph. You can over-
ride these initial settings using the “Graph font” and “Font size” settings. Igor uses the font and size you specify
in annotations and axis labels unless you explicitly set the font or size for an individual annotation or label.

Initially, the graph marker size is automatically calculated based on the size of the graph. You can override
this using the “Marker size” setting. You can set it to “auto” (or 0 which is equivalent) or to a number from
1 to 9. Igor uses the marker size you specify unless you explicitly set the marker size for an individual wave
in the graph.

The margin is the distance from an outside edge of the graph to the edge of the plot area of the graph. The plot
area, roughly speaking, is the area inside the axes. See Graph Dimensions on page II-249 for a definition. Ini-
tially, Igor automatically sets each margin to accommodate axis and tick mark labels and exterior textboxes,
if any. You can override the automatic setting of the margin using the Margins settings. You would do this,
for example, to force the left margins of two graphs to be identical so that they align properly when stacked
vertically in a page layout. The Units pop-up menu determines the units in which you enter the margin values.

You can also set graph margins interactively. If you press Option (Macintosh) or Alt (Windows) and position
the cursor over one of the four edges of the plot area rectangle, you will see the cursor change to this shape:

. Use this cursor to drag the margin. You can cause a margin to revert to automatic mode by dragging the
margin all the way to the edge of the graph window (or beyond). If you drag to within a few pixels of the edge,
the margin will be eliminated entirely (this requires good accuracy with the mouse). If you double click with
this cursor showing you will get the Modify Graph dialog with the corresponding margin setting selected.

If you specify a margin for a given axis, the value you specify solely determines where the axis appears.
Normally, dragging an axis will adjust its offset relative to the nominal automatic location. If, however, a
fixed margin has been specified then dragging the axis will drag the margin.

Graph Dimensions
The Modify Graph dialog provides several ways of controlling the width and height of a graph. Usually
you don’t need to use these. They are intended for certain specialized applications.

These techniques are powerful but can be confusing unless you understand the algorithms, described
below, that Igor uses to determine graph dimensions.

Chapter II-12 — Graphs

II-250

The graph can be in one of five modes with respect to each
dimension: auto, absolute, per unit, aspect, or plan. These
modes control the width and height of the plot area of the
graph. The plot area is the shaded area in the illustration.
The width mode and height mode are independent.

In this graph, the axis standoff feature, described in the Mod-
ifying Axes section on page II-266, is off so the plot area
extends to the center of the axis lines. If it were on, the plot
area would extend only to the inside edge of the axis lines.

Auto mode automatically determines the width or height of
the plot area based on the outside dimensions of the graph and other factors that you specify using Igor’s
dialogs. This is the normal default mode which is appropriate for most graphing jobs. The remaining modes
are useful for special purposes such as matching the axis lengths of two or more graphs or replicating a stan-
dard graph or a graph from a journal.

If you select any mode other than auto, you are putting a constraint on the width or height of the plot area
which also affects the outside dimensions of the graph. If you adjust the outside size of the graph, by drag-
ging the window’s size box, by tiling, by stacking or by using the MoveWindow operation, Igor first deter-
mines the outside dimensions as you have specified them and then applies the constraints implied by the
width/height mode that you have selected.

With Absolute mode, you specify the width or height of the plot area in absolute units; in inches, centime-
ters or points. For example, if you know that you want your plot area to be exactly 5 inches wide and 3.5
inches high, you should use those numbers with an absolute mode for both the width and height.

If you want the outside width and height to be an exact size, you must also specify a fixed value for all four
margins. For instance, setting all margins to 0.5 inches in conjunction with an absolute width of 5 inches and
a height of 3.5 inches yields a graph whose outside dimensions will be 6 inches wide by 4.5 inches high.

The Aspect mode maintains a constant aspect ratio for the plot area. For example, if you want the width to be
1.5 times longer than the height, you would set the width mode to aspect and specify an aspect ratio of 1.5.

The remaining modes, per unit and plan, are quite powerful and convenient for certain specialized types of
graphs, but are more difficult to understand. You should expect that some experimentation will be required
to get the desired results.

In Per unit mode, you specify the width or height of the plot area in units of length per axis unit. For exam-
ple, suppose you want the plot width to be one inch per 20 axis units. You would specify 1/20 = 0.05 inches
per unit of the bottom axis. If your axis spanned 60 units, the plot width would be three inches.

In Plan mode, you specify the length of a unit in the horizontal dimension as a scaling factor times the length of
a unit in the vertical dimension, or vice versa. The simplest use of plan scaling is to force a unit in one dimension
to be the same as in the other. To do this, you select plan scaling for one dimension and set the scaling factor to 1.

Until you learn how to use the per unit and plan modes, it is easy to create a graph that is ridiculously small
or large. Since the size of the graph is tied to the range of the axes, expanding, shrinking or autoscaling the
graph makes its size change.

You can also get confusing results if you over-constrain Igor. For example, it is possible to specify that the
width should be 1.5 times the height and that the height should be 1.5 times the width. You should avoid this.

Sometimes you can end up with a graph whose size makes it difficult to move or resize the window. Use
the Graph menu’s Modify Graph dialog to reset the size of the graph to something more manageable.

You may get surprising results when these modes are used in combination with the Fill Page, Custom Size
and Same Aspect radio buttons in the Print Graphs dialog. This is because of interactions between the
effects of the radio buttons and the modes. The Same Size radio button does not cause interaction and there-
fore is the simplest to use.

-100

-50

0

50

100

100806040200

Inside Width

Plot Area

Outside Width

Chapter II-12 — Graphs

II-251

If you want to fully understand how Igor arrives at the final size of a graph when the width or height is
constrained, you need to understand the algorithm Igor uses:
1. The initial width and height are calculated. When you adjust a window by dragging, the initial

width and height are based on the width and height to which you drag the window. When you
print a graph, the initial width and height are the width and height of the graph window.

2. If you are printing, the width and height are modified by the effects of the printing mode that you
have selected (full page, custom size, same size or same aspect). Usually, when using a width or
height mode, you should print the graph using the same size radio button.

3. The width modes absolute and per unit are applied which may generate a new width.
4. The height mode is applied which may generate a new height.
5. The width modes aspect and plan are applied which may generate a new width.

Because there are many interactions, it is possible to get a graph so big that you can’t adjust it manually. If this
occurs, use the Modify Graph dialog to set the width and height to a manageable size, using absolute mode.

When you are about to print, you can get a feel for the outcome of this algorithm by adjusting the graph
window to the shape of a page and then observing how the algorithm alters the graph size.

There is an additional overall graph property that you can access only via the command line. If you live in
a country that uses “,” rather than “.” as the decimal separator in numbers then you can use the following
command to cause tick mark labels to use comma as the separator:
ModifyGraph useComma=1

This displays tick mark labels such as “1,000.0” as “1.000,0”.

Modifying Styles
You can specify each trace’s appearance (or style) in a graph by choosing Modify Trace Appearance from
the Graph menu or by double-clicking a trace in the graph. This brings up the following dialog:

For image plots, choose Modify Image Appearance from the Graph menu, rather than Modify Trace Appearance.

For contour plots, you normally should choose Modify Contour Appearance. Use this to control the appear-
ance of all of the contour lines in one step. However, if you want to make one contour line stand out, use
the Modify Trace Appearance dialog. For example, you could make the contour line at z=0 a dashed line to
call special attention to it.

Illustrates current settings.

Chapter II-12 — Graphs

II-252

Selecting Traces to be Modified
Select the trace or traces whose appearance you want to modify from the Trace list. If you got to this dialog
by double-clicking a trace in the graph then that trace will automatically be selected. If you select more than
one trace, the items in the dialog will show the settings for the first selected trace.

Once you have made your selection, you can change settings for the selected traces. After doing this, you
can then select a different trace or set of traces and make more changes. Igor remembers all of the changes
you make, allowing you to do everything in one trip to the dialog.

Display Modes
Choose the mode of presentation for the selected trace from the Mode pop-up menu.

1.0

0.5

0.0

-0.5

-1.0

1086420

1.0

0.5

0.0

-0.5

-1.0

1086420

Sticks to zero modeLines between points mode

1.0

0.5

0.0

-0.5

-1.0

1086420

1.0

0.5

0.0

-0.5

-1.0

1086420

Sticks and markers modeDots mode

1.0

0.5

0.0

-0.5

-1.0

1086420

1.0

0.5

0.0

-0.5

-1.0

1086420

Lines and markers modeMarkers mode

Chapter II-12 — Graphs

II-253

Markers
If you choose the Markers or Lines and Markers mode you also get to choose the marker, marker size,
marker thickness, and whether the marker is opaque or not. The marker size is a fractional number from
1.0 to 9.0. It can also be set to 0 or “auto”, which chooses a marker size appropriate to the size of the graph.
The marker thickness is in points and can also be fractional. Setting the marker thickness to 0 makes the
markers disappear. The screen does not have enough resolution to show fractional points but they are
evident when you print the graph.

There is an interaction between marker size and marker thickness: Igor will adjust the marker size if this is
needed to make the marker symmetrical. The unadjusted width and height of the marker is 2*s+1 points
where s is the marker size setting.

Here is a table of the markers and the corresponding marker codes:

Markers 0-44 are compatible with Igor Pro 4. Markers 45 through 50 require Igor Pro 5.0 or later. Markers
51 through 62 require Igor Pro 6.1 or later and are available in new graphics only (see Graphics Technology
on page III-423). You can also create custom markers. See the SetWindow operation's markerHook key-
word.

1.0

0.5

0.0

-0.5

-1.0

1086420

Bars mode

1.0

0.5

0.0

-0.5

-1.0

1086420

Cityscape mode

1.0

0.5

0.0

-0.5

-1.0

1086420

Fill to zero mode

1.0

0.5

0.0

-0.5

-1.0

1086420

Fill to next mode

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62

Chapter II-12 — Graphs

II-254

Stroke Color
In the Markers or Lines and Markers modes you can specify a color
for marker objects that is different from the fill color for the mark-
ers. To use this select the Stroke Color checkbox and select a color
from the adjacent pop-up menu.

Text Markers
In addition to the built-in drawn markers, you can also instruct Igor to use one of the following as text markers:
• A single character from a font
• The contents of a text wave
• The contents of a numeric wave

A single character from a font is mainly of interest if you want to use a special symbol that is available in a
font but is not included among Igor’s built-in markers. The specified character is used for all data points.

The remaining options provide a way to display a third value in an XY plot. For example, a plot of earthquake
magnitude versus date could also show the location of the earthquake using a text wave to supply text mark-
ers. Or, a plot of earthquake location versus date could also show the magnitude using a numeric wave to
supply text markers. For each data point in the XY plot, the corresponding point of the text or numeric wave
supplies the text for the marker. The marker wave must have the same number of points as the X and Y waves.

To create a text marker, choose the Markers or Lines and Markers display mode. Then click the Markers
pop-up menu and choose the Text button.

This leads to a subdialog in which you can specify the source of the text as well as the font, style, rotation
and other properties of the markers.

You can offset and rotate all the text markers by the same amount but you can not set the offset and rotation
for individual data points — use tags for that. You may find it necessary to experimentally adjust the X and Y
offsets to get character markers exactly centered on the data points. For example, to center the text just above
each data point, choose Middle bottom from the Anchor pop-up menu and set the Y offset to 5-10 points. If
you need to offset some items differently from others, you will have to use tags (see Tags on page III-57).

Determines the reference point on the
rectangle enclosing the text. Igor places
this reference point at the coordinates of
the data point, plus the X and Y offset.

These pop-up menus show only waves
with the same number of points as the
main XY waves.

Chapter II-12 — Graphs

II-255

Igor determines the font size to use for text markers from the marker size, which you set in the Modify Trace
Appearance dialog. The font size used is 3 times the marker size.

You may want to show a text marker and a regular drawn marker. For this, you will need to display the
wave twice in the graph. After creating the graph and setting the trace to use a drawn marker, use Append
Traces to Graph (Graph menu) to append a second copy of the wave. Set this copy to use text markers.

Arrow Markers
Arrow markers can be used to create vector plots illustrating flow and gradient fields, for example. Arrow
markers are fairly special purpose and require quite a bit of advance preparation.

Here is a very simple example:

// Make XY data
Make/O xData = {1, 2, 3}, yData = {1, 2, 3}
Display yData vs xData // Make graph
ModifyGraph mode(yData) = 3 // Marker mode

// Make an arrow data wave to control the length and angle for each point.
Make/O/N=(3,2) arrowData // Controls arrow length and angle
Edit /W=(439,47,820,240) arrowData

// Put some data in arrowData
arrowData[0][0]= {20,25,30} // Col 0: arrow lengths in points
arrowData[0][1]= {0.523599,0.785398,1.0472} // Col 1: arrow angle in radians

// Set trace to arrow mode to turn arrows on
ModifyGraph arrowMarker(yData) = {arrowData, 1, 10, 1, 1}

// Make an RGB color wave
Make/O/N=(3,3) arrowColor
Edit /W=(440,272,820,439) arrowColor

// Store some colors in the color wave
arrowColor[0][0]= {65535,0,0} // Red
arrowColor[0][1]= {0,65535,0} // Green
arrowColor[0][2]= {0,0,65535} // Blue

// Turn on color as f(z) mode
ModifyGraph zColor(yData)={arrowColor,*,*,directRGB,0}

To see a demo of arrow markers choose File→Example Experiments→Graphing Techniques→Arrow Plot.

See the reference for a description of the arrowMarker keyword under the ModifyGraph (traces) operation on
page V-453 for further details.

Line Styles and Sizes
If you choose the “Lines between points”, “Lines and markers”, or Cityscape mode you also get to choose
the line style. You can change the dash patterns using the Dashed Lines item in the Misc main menu.

For any mode except the Markers mode you can set the line size. The line size is in points and can be frac-
tional. If the line size is zero, the line disappears.

Chapter II-12 — Graphs

II-256

Fills
For traces in the Bars and “Fill to zero” modes, Igor presents a choice of fill type. The fill type can be None,
which means the fill is transparent, Erase, which means the fill is white and opaque, Solid, or three patterns
of gray. You can also choose a pattern from a palette and can choose the fill types and colors for positive
going regions and negative going regions independently.

Here is a table of fill patterns with the corresponding numeric codes:

Bars
When Bars mode is used for a wave plotted on a normal continuous X axis (rather than a category axis, see
Chapter II-13, Category Plots), the bars are drawn from the X value for a given point up to but not including
the X value for the next point. Such bars are commonly called “histogram bars” because they are usually
used to show the number of counts in a histogram that fall between the two X values.

If you want your bars centered on their X values, then you should create a Category Plot, which is more
suited for traditional bar charts (see Chapter II-13, Category Plots). You can, however, adjust the X values
for the wave so that the flat areas appear centered about its original X value as for a traditional bar chart.
One way to do this without actually modifying any data is to offset the trace in the graph by one half the
bar width. You can just drag it, or use the Modify Trace Appearance dialog to generate a more precise offset
command. In our example, the bars are 0.5 X units wide:
ModifyGraph offset(wave0)={-0.25,0}

20

15

10

5

0

-3 -2 -1 0 1 2 3

 wave0
 wave0#1

Histogram mode
extends to X = 3.0

Last X value is 2.5

20

15

10

5

0

-3 -2 -1 0 1 2 3

 wave0
 wave0#1

Chapter II-12 — Graphs

II-257

Grouping, Stacking and Adding Modes
For the four modes that normally draw to y=0 (“Sticks to zero”, “Bars”, “Fill to zero”, and “Sticks and markers”)
you can choose variants that draw to the Y values of the next trace. The four variant modes are: “Sticks to next”,
“Bars to next”, “Fill to next” and “Sticks&markers to next”. Next in this context refers to the trace listed after
(below) the selected trace in the list of traces in the Modify Trace Appearance and the Reorder Traces dialogs.

If you choose one of these four modes, Igor automatically selects “Draw to next” from the Grouping pop-
up menu. You can also choose “Add to next” and “Stack on next” modes.

The Grouping pop-up menu is used to create special effects such as layer graphs and
stacked bar charts. “Keep with next” is used only with category plots and is described in
Chapter II-13, Category Plots.

“Draw to next” modifies the action of those modes that normally draw to y=0 so that they
draw to the Y values of the next trace that is plotted against the same pair of axes as the current trace. The
X values for the next trace should be the same as the X values for the current trace. If not, the next trace will
not line up with the bottom of the current trace.

“Add to next” adds the Y values of the current trace to the Y values of the next trace before plotting. If the
next trace is also using “Add to next” then that addition is performed first and so on. When used with one
of the four modes that normally draw to y=0, this mode also acts like “Draw to next”.

“Stack on next” works just like “Add to next” except Y values are not allowed to backtrack. On other words,
negative values act like zero when the Y value of the next trace is positive and positive values act like zero
with a negative next trace.

Here is a normal plot of a small sine wave and a bigger sine wave:

In this version, the small sine wave is set to “Add to next” mode:

1.0

0.5

0.0

-0.5

-1.0
120100806040200

1.0

0.5

0.0

-0.5

-1.0

120100806040200

Chapter II-12 — Graphs

II-258

And here we use “Stack on next”:

You can create layer graphs by plotting a number of waves in a graph using the fill to next mode. Depend-
ing on your data you may also want to use the add to next grouping mode. For example, in the following
normal graph, each trace might represent the thickness of a geologic layer:

We can show the layers in a more understandable way by using fill to next and add to next modes:

Because all the Grouping modes depend on the identity of the next trace, you may need to adjust the order-
ing of traces in a graph. You can do this using the Reorder Traces dialog. Choose Reorder Traces from the
Graph menu. Select traces you want to move. Adjust the ordering by dragging the selected traces up and
down in the list, dropping them in the appropriate spot.

Note: All of the waves you use for the various grouping, adding, and stacking modes should have the
same numbers of points, X scaling, and all be displayed using the same axes. Otherwise, if there
is not a point-to-point correspondence between the traces in your graph, you will get rather
unusual and confusing results when using any of these various graphing modes.

1.0

0.5

0.0

-0.5

-1.0

120100806040200

2.0

1.5

1.0

0.5

0.0

86420

4

3

2

1

0

86420

Chapter II-12 — Graphs

II-259

Color
You can choose a color for the selected trace from the Color pop-up
palette of colors.

If you don’t see a color you like, drag to the Other button and release.
You can then choose a color from the standard color picker dialog.

For more about the color pop-up palette, see The Color Environment on
page III-412.

Setting Trace Properties from an Auxiliary (Z) Wave
You can set the color of a trace on a point-by-point basis as a function of the values in an auxiliary wave.
You can also have the size of markers be a function of an auxiliary wave and you can set the marker number
directly from an auxiliary wave. The auxiliary wave is called the “Z wave” because other waves control the
X and Y position of a particular point on a trace while the Z wave controls a third property.

Setting the color or the marker size as a function of the values in an auxiliary wave can show three-dimen-
sional data (X,Y, and Z) on a two-dimensional plot. For example, you could position markers at the location
of earthquakes and vary their size to show the magnitude of each quake. You could show the depth of the
quake using marker color and show different types of quakes as different marker shapes.

If you click the “Set as f(z)” button, you will see the following dialog:

Color as f(z) has three modes: Color Table mode, Color Index Wave mode, and Three-column Color Wave
mode. These are selected in from the Color Mode menu.

If you select “Color as f(z)” and Color Table mode, the color of data points on the trace will be derived from
the Z wave you choose by linearly mapping its values into a built-in color table.

If you select 'Color as f(z)' and Color Table mode, the color of data points on the trace is derived from the Z
wave you choose by mapping its values into a built-in color table either linearly or logarithmically if the
Log Colors checkbox is checked.

The Z Wave pop-up browser lists all waves that are
the same length or greater than the trace to be
colored. It also shows multicolumn waves. For a
longer f(z) wave, or a multicolumn wave, the Subrange
button becomes available so that you can select a
specific point range or column from the wave.

Chapter II-12 — Graphs

II-260

You may wish to use the Log Colors option when the zWave spans many decades and you want to show
more detailed changes of the smaller values. With the normal linear colors, this exponential zWave (shown
in black and the log of zWave is shown in red) when applied to the thick yWave trace results in a trace that
is mostly red:

Using ModifyGraph logZColor(yWave)=1 spreads the colors out (the ColorScale has also been set to
use a log axis):

The zMin and zMax settings define the range of values in your Z wave to map onto the color table. Values
outside the range will take on the color at the end of the range. If you choose Auto for zMin or zMax, Igor
will use the smallest or largest value it finds in your Z wave. If any of your Z values are NaN, Igor will treat
those data points in the same way it does if your X or Y data is NaN. This depends on the Gaps setting in
the main dialog.

If you select Color Index Wave mode, the color of data points on the trace will be derived from the Z wave
you choose by mapping its values into the X scaling of the selected 3-column Color Index Wave. This is
similar to the way ModifyImage cindex maps image values (in place of the Z wave values) to a color in a
3-column color index matrix. See Indexed Color Details on page II-366.

If you select Three-column Color Wave mode, data points are colored according to Red, Green and Blue
values in the three columns of the selected wave. Each row of the three-column wave corresponds to a data
point on the trace. This mode gives absolute control over the colors of each data point on a trace.

Create a graph:
make/N=5 Ywave={1,2,3,2,1}
display Ywave
ModifyGraph mode=3,marker=19,msize=5

Chapter II-12 — Graphs

II-261

Then make a Z wave, select Color Table mode and the YellowHot color table:
Make/N=5 zWave = {1,2,3,4,5}
ModifyGraph zColor(Ywave)={zWave,*,*,YellowHot}

These commands generate this graph:

If instead you create a three-column wave and edit it to enter RGB values:
Make/N=(5,3) directColorWave

You can use this wave to directly control the marker colors:
ModifyGraph zColor(Ywave)={directColorWave,*,*,directRGB}

“Marker size as f(z)” works just like “Color as f(z)” in Color Table mode except the Z values map into the
range of marker sizes that you define using the min and max marker settings.

The “Marker number from Z wave” mode does not do any mapping. You must create a Z wave that contains
the actual marker numbers for each data point. See Markers on page II-253 for the marker number codes.

When you choose one or more of the property-as-f(z) modes, the corresponding item in the parent dialog
is replaced with an “f(z)” button. This indicates that the given property is being set from an auxiliary wave.
Clicking the button presents the same dialog shown above.

Here is an example that presents a third value as a function of marker size:
Make/N=100 datax,datay,dataz
datax=enoise(2); datay=enoise(2); dataz=exp(-(datax^2+datay^2))
Display datay vs datax; ModifyGraph mode=3,marker=8
ModifyGraph zmrkSize(datay)={dataz,*,*,1,10}

3.0

2.5

2.0

1.5

1.0

43210

Row directColorWavdirectColorWavdirectColorWav

0 1 2

0 0 0 0
1 6 5 5 3 5 0 0
2 0 6 5 5 3 5 0
3 0 0 6 5 5 3 5
4 6 5 5 3 5 0 2 6 2 1 4

Black
Red
Green
Blue
Hot pink

3.0

2.5

2.0

1.5

1.0

43210

Chapter II-12 — Graphs

II-262

Color as f(z) Example
If you have a graph that uses the color as f(z) mode, you may want to create a legend that identifies what
the colors correspond to. This section demonstrates using the features of the Legend operation for this pur-
pose.

Execute these commands, one-at-a-time:

// Make test data
Make /O testData = {1, 2, 3}

// Display in a graph in markers mode
Display testData
ModifyGraph mode=3,marker=8,msize=5

// Create a normal legend where the symbol comes from the trace
Legend/C/N=legend0/J/A=LT "\\s(testData) First\r\\s(testData)
Second\r\\s(testData) Third"

// Make a color index wave to control the marker color
Make /O testColorIndex = {0, 127, 225}

// Change the graph trace to use color as f(z) mode.
// Rainbow256 is the name of a built-in color table.
// The numbers 0 and 255 set the color index values that correspond to the
// first and last entries in the color table.
ModifyGraph zColor(testData)={testColorIndex,0,255,Rainbow256,0}

// Change the legend so that it shows the colors
Legend/C/N=legend0/J/A=LT "\\k(65535,0,0)\\W608 Red\r\\k(0,65535,0)\\W608
Green\r\\k(0,0,65535)\\W608 Blue"

The result is this graph:

-2

-1

0

1

-2 -1 0 1 2

3.0

2.5

2.0

1.5

1.0

2.01.51.00.50.0

 Red

 Green

 Blue

Chapter II-12 — Graphs

II-263

The last command used the \W escape sequence to specify which marker to use in the legend (08 for the
circle marker in this case) and the marker thickness (6 means 1.0 points).

The \k escape sequence specifies the color to use for stroking the marker specified by \W. You would use
\K to specify the marker fill color. Colors are specified in RGB format where each component falls in the
range 0 to 65535.

This example uses double-backslashes because a single backslash is an escape character in Igor literal
strings. Since we want a backslash in the final text, because that is what Igor requires for \k and \W, we
need to use a double-backslash in the literal strings.

If you were to enter the legend text in the Add Annotation dialog, you would use just a single backslash
and the dialog would generate the requires command, with double-backslashes.

Trace Offsets
You can offset a trace in a graph in the horizontal or vertical direction without changing the data in the associated
wave. This is primarily of use to offset traces so that you can compare their shape even though they have differ-
ent baseline values, to offset traces which have the same baseline value so that you can spread them out, or to
create a “poor man’s waterfall plot” (i.e., a waterfall plot without any hidden line removal). See Waterfall Plots
on page II-300 for more details about using Igor’s built-in capabilities for creating waterfall plots.

Each trace has an X and a Y offset, both of which are initially zero. If you select the Offset checkbox in the
Modify Trace Appearance dialog, you can use the Trace Offset subdialog to enter an X and Y offset for the
trace selected in the main dialog.

You can also set the offsets by clicking and dragging in the graph. To do this, click the trace you want to
offset. Hold the mouse down for about a second. You will see a readout box appear in the lower left of the
graph. The readout shows the X and Y offsets as you drag the trace. If it doesn’t take too long to display the
given trace, you will be able to view the trace as you drag it around on the screen. If the cursor changes to
a four pointed arrow then Igor has calculated that live update will be too slow. Drag the arrow to the spot
on the graph where you want the point that you clicked on to be moved. In either case, when you release
the mouse, Igor will set the wave’s X and Y offsets appropriately.

If you press Shift while offsetting a wave, Igor will constrain the offset to the horizontal or vertical dimension.

You can disable trace dragging by pressing Caps Lock, which may be useful for trackball users.

Offsetting is undoable, so if you accidently drag a trace where you don’t want it, choose Edit →Undo.

It is possible to attach a tag to a trace that will show its current offset values. See Dynamic Escape Codes
for Tags on page III-48, for details.

If autoscaling is in effect for the graph, Igor tries to take trace offsets into account. If you want to set a trace’s
offset without affecting axis scaling, use the Set Axis Range item in the Graphs menu to disable autoscaling.

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

600500400300200
x10-9

x offset= 7.39837e-08
y offset= -0.487352

Chapter II-12 — Graphs

II-264

When offsetting a trace that uses log axes, the trace offsets by the same distance it does when the axis is not
log. The shape of the trace is not changed — it is simply moved. If you were to try to offset a trace by adding
a constant to the wave’s data, it would distort the trace.

Trace Multipliers
In addition to offsetting a trace, as of Igor Pro 6, you can also provide a multiplier to scale a trace. The effec-
tive value used for plotting is then multiplier*data+offset. The Trace Offset subdialog also contains entries for
the multiplier. Note that the default value of zero means that no multiplier is provided — not that the data
should be multiplied by zero.

You can interactively scale a trace using the same click and hold technique described for trace offsets. But
first, you must place Cursor A somewhere on the trace to act as a reference point. Then, after entering offset
mode, you can press Option (Macintosh) or Alt (Windows) to adjust the scaling. You can press and release
the key as desired to alternate between scaling and offsetting.

The trace multiplier feature is an alternative method of offsetting a trace on a log axis (remember:
log(a*b)=log(a)+log(b)). For compatibility reasons and because the trace offsets method better handles switching
between log and linear axis modes, the multiplier method applies when interactively dragging a trace only if the
offset is zero and the multiplier is not zero (the default meaning “not set”). Consequently, to use the new tech-
nique, you must use the command line or the Trace Offset subdialog to set a nonzero multiplier (1 can be used).

Hiding Traces
You can hide a trace in a graph, without removing the trace from the graph or by changing any other prop-
erties of the trace, by selecting the Hide Trace checkbox in the Modify Trace Appearance dialog. When you
hide a trace, you can use the Autoscale checkbox to control whether or not the data of the hidden trace
should be used when autoscaling the graph.

Complex Display Modes
When displaying traces for complex data you can use
the Complex Mode pop-up menu to control how the
data are displayed. You can display the complex and
real components together or individually, and you can
also display the magnitude or phase.

The default display mode is Lines between points. To display a wave’s real and imaginary parts side-by-
side on a point-for-point basis, use the Sticks to zero mode.

Gaps
In Igor, a missing or undefined value in a wave is stored as the floating point value NaN (“Not a Number”).
Normally, Igor shows a NaN in a graph as a gap, indicating that there is no data at that point. In some cir-
cumstances, it is preferable to treat a missing value by connecting the points on either side of it.

25

20

15

10

5

0

-5

-10

v

3.02.52.01.51.00.50.0
Hz

real and imaginary parts using
Sticks to zero display mode

Point 4 real part

Point 4 imag part

Chapter II-12 — Graphs

II-265

You can control this using the Gaps checkbox in the Modify Trace Appearance dialog. If this checkbox is
selected (the default), Igor shows missing values as gaps in the data. If you deselect this checkbox, Igor
ignores missing values, connecting the available data points on either side of the missing value.

Error Bars
The Error Bars checkbox adds error bars to the selected trace. When you select this checkbox, Igor presents
the Error Bars subdialog.

Error bars are a style that you can add to a trace in a graph. Error values can be a constant number, a fixed
percent of the value of the wave at the given point, the square root of the value of the wave at the given
point, or they can be arbitrary values taken from other waves. In this last case, the error values can be set
independently for the up, down, left and right directions. See the ErrorBars operation on page V-159 for an
illustration of the names for the various parts of error bars.
Choose the desired mode from the “Y Error bars” and “X Error bars” pop-up menus.

The dialog changes depending on the selected mode. For the “% of base” mode, you enter the percent of the
base wave. For the “sqrt of base” mode, you don’t need to enter any further values. This mode is meaningful
only when your data is in counts. For the “constant” mode, you enter the constant error value for the X or Y
direction. For the “+/- wave” mode, you select the waves to supply the positive and negative error values.

If you select “+/- wave”, pop-up menus appear from which you can choose the waves to supply the upper
and lower or left and right error values, These waves are called error waves. The values in error waves
should normally all be positive since they specify the length of the line from each point to its error bar. This
is the only mode that supports single-sided error bars. Error waves do not have to have the same numeric
type and length as the base wave. If the value of a point in an error wave is NaN then the error bar corre-
sponding to that point is not drawn.

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.00.80.60.40.20.0

Gaps

No Gaps

Select error waves that are
the same length or greater
than the base. For a longer
error wave, the Subrange
button becomes available so
that you can select a specific
point range from the wave.

Chapter II-12 — Graphs

II-266

The “Cap width” setting sets the width of the cap on the end of an error bar as an integral number of points.
You can also set the “Cap width” to “auto” (or to zero) in which case Igor picks a cap width appropriate for
the size of the graph. In this case the cap width is set to twice the size of the marker plus one. For best results
the cap width should be an odd number.

For any mode you can set the thickness of the cap and the thickness of the error bar. The units for these set-
tings are points. These can be fractional numbers. Although only integral thicknesses can be displayed on
the screen, nonintegral thicknesses are properly produced on high resolution hard-copy devices. If you set
“Cap thickness” to zero no caps are drawn. If you set “Bar thickness” to zero no error bars are drawn.

If you enable the “XY Error box” checkbox then a box is drawn rather than an error bar to indicate the region
of uncertainty. No box is drawn for points for which one or more of the error values is NaN.

Here is a simple example of a graph with error bars.

The top trace used the “+/- Wave” mode with only a +wave. The last value of the error wave was made neg-
ative to reverse the direction of the error bar.

Customize at Point
You can customize the appearance of individual points on a trace in a graph displayed in bar, marker, dot
and lines to zero modes. To do this interactively, right click on the desired point on a trace and choose Cus-
tomize at Point from the contextual menu. The Modify Trace dialog will appear with an entry in the trace
list shown with the point number in square brackets. When such an entry is selected, only those properties
that can be customized will be available in the dialog. This feature was added in Igor Pro 6.20.

Modifying Axes
You can modify the style of presentation of each axis in a graph by choosing Modify Axis from the Graph
menu or by double-clicking directly on an axis. This brings up the Modify Axis dialog.

The precise appearance of the Modify Axis dialog depends on current axis settings such as whether the axis
is linear, log, or a category axis and also on whether you specify tick mark positions manually or allow Igor
to automatically choose them. This is what it looks like the first time you display the dialog, with a linear
numeric axis and automatic ticking. The dialog remembers which tab you used last and displays that tab,
so it may not look like the picture.

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

1.41.21.00.80.60.40.20.0-0.2

Chapter II-12 — Graphs

II-267

The dialog has tabs for various aspects of axis appearance, plus a few controls outside the tabs. These global
controls include the standard Igor dialog controls: Do It, To Cmd Line, To Clip, Help and Cancel buttons,
plus a box to display the commands generated by the dialog. At the top are the Axis menu and the Live
Update checkbox.

The Axis pop-up menu shows all axes that are in use in the top graph. Choose the axis that you want to
change from the Axis menu, or choose Multiple Selection if you want to affect more than one axis. Below
the Multiple Selection item are items that provide shortcuts for selecting certain classes of axes.

A multiple selection can be convenient if you want to set something like the color or line width for all the
axes in a graph the same way. When a multiple selection is active, the initial control settings reflect the set-
tings of the first selected axis in the list. Commands are generated to change some aspect of all the selected
axes any time a control is touched. This makes it quite easy to make sweeping changes, and rather difficult
to return to the unchanged state. Consequently, when multiple axes are selected, the dialog puts a warning
message at the top of the dialog:

Sometimes, with all the different things you can do to an axis, it is confusing to figure out exactly what you
want. In that case, you can select the Live Update checkbox and watch the graph change is you change set-
tings. In most cases graphs re-draw fast enough that this causes no problems. Consequently the Live
Update checkbox is turned on by default. A graph with a very large number of points, or a contour plot can
take quite a while to re-draw, causing annoying delays while you change settings. If it becomes annoying,
simply turn off the Live Update checkbox.

You select the appropriate tab for the types of changes you want to make:

Tab What It Does

Axis Settings that affect the appearance of the axis itself. Color, line type, log or linear, etc.
See Axis Tab on page II-268.

Auto/Man Ticks Settings that affect how many ticks are drawn; select automatic or user-defined tick
modes. See Auto/Man Ticks Tab on page II-270.

Ticks and Grids Settings that affect the appearance of tick marks. Select a grid and its style. See Ticks
and Grids Tab on page II-271.

Chapter II-12 — Graphs

II-268

Axis Tab
You can set the axis Mode for the selected axis to linear, log base 10, log base 2, or Date/Time. The Date/Time
mode is special — when drawing an axis, Igor looks at the controlling wave’s units to decide if it should be
a date/time axis. Consequently, if you select Date/Time axis, the dialog immediately changes the units of
the controlling wave. Because the dialog changes the wave’s units, there is a small warning message next
to the Date/Time radio button. See Date/Time Axes on page II-280 for details on how date/time axes work.

The Axis area of the Axis tab controls certain aspects of the axis layout:

Use the Mirror Axis pop-up menu to enable the mirror axis feature. A mirror axis is an axis that is the mirror
image of the opposite axis. You can mirror the left axis to the right or the bottom axis to the top. The normal
state is Off in which case there is no mirror axis. If you choose On from the pop-up, you get a mirror axis with
tick marks but no tick mark labels. If you choose “No ticks”, you get a mirror axis with no tick marks. If you
choose Labels you get a mirror axis with tick marks and tick mark labels. Mirror axes may not do exactly what
you want when using free axes, or when you shorten an axis using Draw Between. An embedded graph may
be a better solution if free axes don’t do what you need; see Chapter III-4, Embedding and Subwindows.

Free axes can also have mirror axes. Unlike the free axis itself, the mirror for a given free axis can not be
moved — it is always attached to the opposite side of the plot area. This feature can create stacked plots;
see Creating Stacked Plots on page II-297.

The “Draw between” items are used to create stacked graphs. You will usually leave these at 0 and 100%,
which draws the axis along the entire length or width of the plot area. You could use 50% and 100% to draw
the left axis over only the top half of the plot area (mirror axes are on in this example to indicate the plot area):

For additional examples of using “Draw between”, see Creating Stacked Plots on page II-297 and Creating
Split Axes on page II-303.

Tick Options More obscure settings for tick appearance.

Axis Label Create or change the axis label. See Axis Labels on page II-284.

Label Options Settings that affect appearance of axis and tick mark labels, such as rotation and
position relative to the axis. See Label Options Tab on page II-274.

Axis Range Settings that affect the range of the axis. See Setting the Range of an Axis on page II-247.

Tab What It Does

Limits axis to a subset of its normal size. Used to create stacked graphs
and inset graphs. There is no interactive way to set these values.

Value is in fractional points (72 per inch). Also sets the tick
thickness which you can override in the Ticks and Grids tab.

Used only for Category Axes. See Bar and Category Gaps on page II-317.

Moves axis in or out relative to its automatic position. Normally adjusted by
interactively dragging the axis.

Useful for fill-to-zero trace mode, which can cover the axis.

-1.0

-0.5

0.0

0.5

1.0

12080400

D
ra

w
n

fr
om

 0
%

 to
 1

00
%

-1.0

0.0

1.0

12080400

D
ra

w
n

fr
om

50
%

 to
 1

00
%

Chapter II-12 — Graphs

II-269

The Offset item is a way to control the distance between the edge of the graph and the axis. It specifies the
distance from the default axis position to the actual axis position. This setting is in units of the size of a zero
character in a tick mark label. Because of this, the axis offset adjusts reasonably well when you change the
size of a graph window. The default axis offset is zero. You can restore the axis offset to zero by dragging
the axis to or beyond the edge of the graph. If you enter a graph margin (see Overall Graph Properties on
page II-248), the margin overrides the axis offset.

Normally you will adjust the axis offset by dragging the axis in the graph. If the mouse is over an axis, the
cursor changes to a double-ended arrow indicating that you can drag the axis. If the axis is a mirror axis
you will not be able to drag it and the cursor will not change to the double-ended arrow.

The Offset item does not affect a free axis. To adjust the position of a free axis, use the settings in the Free
Axis Position area in the lower-left corner of the Axis Tab (see page II-268).

The Thickness item sets the thickness of an axis and associated tick marks in points. The thickness can be
fractional and if you set it to zero the axis and ticks disappear.

The Standoff checkbox disables normal behavior with respect to offsetting axes. Normally Igor offsets axes
so that waves do not cover them. For example, imagine that your Y axis goes from -1 to 0 and your waves
have Y values equal to -1. These Y values would cover up the X axis if not for Igor’s normal axis offset. This
is especially noticeable when you use markers. If you don’t like your axes to stand off, you can disable the
standoff using the “Axis standoff” checkbox.

If a free axis is attached to the same edge of the plot rectangle as a normal axis then the standoff setting for
the normal axis will be ignored. This is to make it easy to create stacked plots.

The Offset item applies only to the four standard axes (Bottom, Left, Top and Right); it does not apply to
free axes. To change the position of free axes, use the controls in the Free axis position area:

The free position can be adjusted by dragging the axis interactively. This is the recommended way to adjust
the position when using the absolute distance mode but it is not recommended when using the “crossing
at” mode. This is because the crossing value as set interactively will not be exact. You should use this dialog
to specify an exact crossing value.

Colors of axis components are controlled by items in the Color area. The axis label, tick mark labels and the
axis line (including the tick marks) can be colored independently, but usually you will want them all to be
the same color. The Set All to Axis Color button is a convenient way to do this — just choose a color in the
Axis Line palette, then click the button. The color of text in the axis label can also be controlled by escape
codes in the axis label text. See Axis Labels on page II-284. Tick marks can be assigned a color that is differ-
ent than the axis line, but this is not supported by the dialog.

The Font section of the Axis tab specifies the font, font size, and typeface used for the tick labels and the axis
label. You should leave this setting at “default” unless you want this particular axis to use a font different from

30

20

10

0

-6 -4 -2 0 2 4 6

Standoff on

30

20

10

0

-6 -4 -2 0 2 4 6

Standoff off

Use pop-up menu to specify how the
axis is to be positioned.

Choose this to position axis at a
particular numeric value on an axis.

Pop-up menu of all axes that are
perpendicular to the current axis.

Chapter II-12 — Graphs

II-270

the rest of the graph. You can set the default font for all graphs using the Default Font item in the Misc menu.
You can set the default font for this particular graph using the Modify Graph item in the Graph menu. The
axis label font can be controlled by escape codes within the axis label text. See Axis Labels on page II-284.

Auto/Man Ticks Tab
The items in the Auto/Man Ticks tab control the placement of tick marks along the axis. You can choose one
of three methods for controlling tick mark placement from the pop-up menu at the top of the tab. Choose
Auto Ticks to compute nice tick mark intervals using some hints from you; choose Computed Manual Ticks
to have complete control over the origin and interval for placing tick marks; use User Ticks from Waves to
choose waves that give you complete control over tick mark placement and labelling.

Here is what the tab looks like with Auto Ticks chosen:

With Auto Ticks chosen, you can specify a suggested number of major ticks for the selected axis by entering that
number in the Approximately parameter box. The actual number of ticks on the axis may vary from the sug-
gested number because Igor juggles several factors, including the approximate ticks parameter, to get round
number tick labels with reasonable spacing in a common numeric sequence (e.g., 1, 2, 5). In most cases, this auto-
matically produces a correct and attractive graph. This item is not available if the selected axis is a log axis.

You can turn minor ticks on or off for the selected axis using the Minor Ticks checkbox.

The Minimum Sep setting controls the display of minor ticks if minor ticks are enabled. If the distance between
minor ticks would be less than the specified minimum tick separation (measured in points) then Igor picks a
less dense ticking scheme. For log axes Minor Ticks and Tick Separation affect the drawing of subminor ticks.

The Manual Ticks section on page 277 describes how you can completely override Igor’s intelligent algo-
rithms for tick placement.

Choose a tick
placement mode
from the menu.

These sections are unavailable because Auto Ticks is chosen in the menu.

Chapter II-12 — Graphs

II-271

Ticks and Grids Tab
The Ticks and Grids tab has items to control the appearance of ticks and to select and control graph grids:

Exponential Labels
When numbers that would be used to label tick marks become very large or very small, Igor switches to
exponential notation. For example if the tick values for an axis are 0, 1000000000, 2000000000, 3000000000,
and 4000000000 then Igor will break the values into a small number and an exponent. In this case Igor
would choose 0,1,2,3 and 4 with the exponent being 109. Igor uses the small numbers to label the tick marks
and leaves the exponent for your use in the axis label. The use of the exponent in the axis label is covered
in the Axis Labels section on page 284. In the case of log axes, the tick marks include the exponent part.

With the Low trip and High trip settings, you can control the point at which tick mark labels switch from
normal notation to exponential notation. If the absolute value of the larger end of the axis is between the
low trip and the high trip, then normal notation is used. Otherwise, exponential is used. However, if the
exponent would be zero, normal notation is always used.

There are actually two independent sets of low trip and high trip parameters: one for normal axes and one
for log axes. The low trip point can be from 1e-38 to 1 and defaults to 0.1 for normal axes and to 1e-4 for log
axes. The high trip point can be from 1 to 1e38 and defaults to 1e4.

Under some circumstances, Igor may not honor your setting of these trip points. If there is no room for
normal tick mark labels, Igor will use exponential notation, even if you have requested normal notation.

The Engineering and Scientific radio buttons allow you to specify whether tick mark labels should use engi-
neering or scientific notation when exponential notation is used. It does not affect log axes. Engineering
mode is just exponential notation where the exponent is always a multiple of three.

With the Exponent Prescale item, you can force the tick and axis label scaling to values different from what
Igor would pick. For example, if you have data whose x scaling ranges from, say, 9pA to 120pA and you
display this on a log axis, Igor will label the tick marks with 10pA and 100pA. But if you really want the tick
marks labeled 10 and 100 with pA in the axis label, you can set the prescaleExp to 12. For details, see Axis
Labels on page II-284.

Date/Time Tick Labels
The Date/Time Tick Labels area of the tab is explained in the Date/Time Axes section on page 280.

Chapter II-12 — Graphs

II-272

Tick Dimensions
You can control the length and thickness of each type of tick mark that Igor makes and the location of tick
marks relative to the axis line using items in the Tick Dimensions area. Igor distinguishes four types of tick
marks: major, minor, “fifth”, and subminor:

The tick mark thicknesses normally follow the axis thickness. You can override the thickness of individual
tick types by replacing the word “Auto” with your desired thickness specified in fractional points. A value
of zero is equivalent to “Auto”.

The tick length is normally calculated based on the font and font size that will be used to label the tick
marks. You can enter your own values in fractional points. For example you might enter a value of 6 for the
major tick mark, 3 for the minor tick mark and 4.5 for the 5th or emphasized minor tick marks. The submi-
nor tick mark only applies to log axes.

Use the Location pop-up menu to specify that tick marks for the selected axis be outside the axis, crossing
the axis or inside the axis or you can specify no tick marks for the axis at all.

Grid
Grid lines can be added to the graph using the Grid pop-up menu. choose Off if you do not want a grid, On
if you want grid lines on major and minor tick marks or Major Only if you want grid lines on major tick
marks only.

The default appearance of the major, minor, and subminor grid lines varies. Normally the default grids are
sufficient, however Igor provides the ability to customize their appearance:

Igor provides five grid styles identified with numbers 1 through 5. Different grid styles have major and
minor grid lines that are light, heavy, dotted or solid. If the style is set to zero (the default) and the graph
background is white then grid style 2 is used. If the graph background is not white then grid style 5 is used.

Use the Grid Color palette to set the color of the grid lines. They are by default light blue.

The grid line thickness is set to a fraction of the axis line thickness. Since the axis line thickness is usually
one point, and computer monitors usually have a resolution of about a point, it generally is not possible to
see the differences in thickness on your screen. To see the difference, print the graph — printer resolution
is usually higher than screen resolution.

Sometimes the dotted lines in the grid disappear on color printers. This is because the colors are “dithered”,
that is, color shades are composed by printing several dots of varying colors, which are mixed in the eye.

0.1
2 3 4 5 6 7 8 9

11.00.80.60.40.20.0

Fifth or Emphasized

Major Minor Subminor

Normal Axis Log Axis

Major

Minor

Grid line thickness is a fraction of the
axis line thickness (see Axis Tab on
page II-268).

Chapter II-12 — Graphs

II-273

The grid line dots may disappear if the dots are smaller than the dithering cell. The solution is to increase
the grid line thickness, or to choose a color that can be printed without dithering, like black.

The examples here show graphs with thicker than normal axis lines and the thickest grid lines (thickness of
1 instead of the default 1/4).

By default, the grid color is light blue, but you can change it using the Grid Color palette. You can also use
the Axis pop-up menu or the Graph Background pop-up menu to avoid a trip to the Modify Axis dialog.

Using the settings "Draw from" and "to" you can restrict the length of the grid lines. This is useful if you
have used the similar settings on the Axis tab to shorten one of your axes, and you want grid lines to match.

Zero Line
You can turn the Zero Line for the selected axis on or off by selecting or deselect-
ing the Zero Line checkbox.

The zero line is a line perpendicular to the axis extending across the graph at the
point where the value of the axis is zero. The Zero Line checkbox is not available
for log axes.

If you turn the zero line on then you will be able to choose the line style from the Style pop-up menu. The
thickness of the line can be set in fractional points from 0 to 5. The zero line has the same color as the axis,
see the section Axis Tab on page II-268 for information on setting the axis line color.

1.0

0.5

0.0

1
2 3 4 5 6 7 8 9

10

Grid Style= 0
White Background

1.0

0.5

0.0

1
2 3 4 5 6 7 8 9

10

Grid Style= 0
Colored Background

(same as gridStyle=2) (same as gridStyle=5)

1.0

0.5

0.0

1
2 3 4 5 6 7 8 9

10

Grid Style= 1

1.0

0.5

0.0

1
2 3 4 5 6 7 8 9

10

Grid Style= 2

1.0

0.5

0.0

1
2 3 4 5 6 7 8 9

10

Grid Style= 3

1.0

0.5

0.0

1
2 3 4 5 6 7 8 9

10

Grid Style= 4

1.0

0.5

0.0

1
2 3 4 5 6 7 8 9

10

Grid Style= 5

Chapter II-12 — Graphs

II-274

The dashed line styles can be altered to your liking. See Dashed Lines on page III-412.

Tick Options Tab
The Tick Options tab has items to touch up certain aspects of the axes. There is a good chance that you will
never need to visit this tab. Here is what it looks like for a normal axis:

Tick Label Tweaks Checkboxes

The last three of these checkboxes can be tricky — this is a situation where using Live Update can be very
helpful, allowing you to see what happens as you select and deselect items.

Axis Label Tab
This is discussed in detail in Axis Labels on page II-284.

Label Options Tab
The Label Options tab has items to control the placement and orientation of axis and tick mark labels. You
can also hide these labels completely. The tab looks like this:

Checkbox Result

Thousands separator Tick labels like 10000 are drawn as 10,000.

Zero is '0' Select this to force the zero tick mark to be drawn as 0 where it would ordi-
narily be drawn as 0.0 or 0.00.

No trailing zeroes Tick labels that would normally be drawn as 1.50 or 2.00 are drawn as 1.5 or 2.

No leading zero Select if you want tick labels such as 0.5 to be drawn as .5

Tick Unit Prefix is Exponent If tick mark would have prefix and units (μTorr), force to exponential nota-
tion (10-6 Torr).

No Units in Tick Labels If tick mark would have units, suppress them.

Units in Every Tick Label If normal axis, force exponent or prefix and units into each label.

The Log Ticks box is not available because the selected axis is not a log axis.
See Log Axes on page II-276 for details.

Enter numerical values of ticks
you wish to suppress. Both tick
mark and its label are removed.
Enter “--” to restore.

You can limit ticks and tick
labels to a subrange of the axis
by entering limit values here.

Chapter II-12 — Graphs

II-275

Normally, you will adjust the position of the axis label by simply dragging it around on the graph. The
“Axis label position” or “Axis label margin” and the “Axis label lateral offset” settings are only used when
you want precise numerical control over the position.

The calculations used to position the axis label depend on the setting in the Label Position Mode menu. By
default this is set to Compatibility, which will work with older versions of Igor. The other modes may allow
you to line up labels on multiple axes more accurately. The choice of positioning mode affects the meaning
of the three settings below the menu.

In Compatibility mode, the method Igor uses to position the axis label depends on whether or not a free axis
is attached to the given plot rectangle edge. If no free axis is attached then the label position is measured
from the corresponding window edge; we call this the axis label margin. Thus if you reposition an axis the
axis label will not move. On the other hand, if a free axis is attached to the given plot rectangle edge then
the label position is measured from the axis and when you move the axis, the label will move with it.

Because the method used to set the axis label varies depending on circumstances, one or the other of the
Axis label margin or Axis label position boxes may be unavailable. If you have selected an axis on the same
edge as a free axis, the Axis label position box is made available. If you have selected an axis that does not
share an edge with a free axis, the Axis label margin box is made available. If you have selected multiple
axes it is possible for both items to be available.

The Axis label position is the distance from the axis to the label and is measured in points.

The Axis label margin is the distance from the edge of the graph to the label and is measured in points. The
default label margin is zero which butts the axis label up against the edge of the graph.

The Margin modes measure relative to an edge of the graph while the axis modes measure relative to the
position of the axis. Using an Axis mode will cause the label to follow a free axis when you move the axis.
The Margin modes are useful for aligning labels on stacked graphs. The Axis label margin setting applies
to Margin modes; the Axis label position setting applies to Axis modes.

The Absolute modes measure distance in points. Scaled modes have similar numerical values but are scaled
to respond to changes in the font size.

The Labels pop-up contains On, Axis Only and Off items. On gives normal axis labeling. Axis Only leaves
the axis label in place but removes the tick mark labels. Off removes the axis labels and tick mark labels.
This can be useful when you print multiple graphs on a page and want to give the impression that they
share an axis.

Axis and Tick label rotations can be set to any value between -360 and 360 degrees.

Note: (Windows only) Sometimes you may find that a rotated axis label contains characters that fail to rotate.
This is usually caused by the use of a bitmapped font. On Windows, only TrueType fonts can be

Usually set interactively by dragging
the label. Measured in points.

Offset tick labels from their normal
location. Measured in points.

Axis and Tick label rotations
range from -90 to 270 degrees.

Chapter II-12 — Graphs

II-276

rotated. Sometimes there are multiple versions of a given font and one of them is a bitmapped font.
The solution to this problem is to remove the bitmapped font from the Windows Fonts folder.
This problem frequently afflicts the Symbol font. This is due to the fact that Microsoft ships a
screen font version of Symbol font. You can fix this by removing the screen font. If you find
something like this in your Fonts folder:
Symbol
Symbol 8,10,12,14,18,24
The first is a TrueType font. The second is a screen font. Removing the second fixes the problem.
Another workaround is to use a font size other than 8, 10, 12, 14, 18, 24, such as 9 points.

Log Axes
Certain items in the Modify Axis dialog are not available when a log axis is selected:

Igor has three ways of ticking a log axis that are used depending on the range (number of decades) of the axis:
normal, small range and large range. The normal mode is used when the number of decades lies between
about one third to about ten (the exact upper limit depends on the physical size of the axis and the font size).

If the number of decades of range is less than two or greater than five, you can force Igor to use the
small/large range methods by selecting the LogLin checkbox, which may give better results for log axes
with small or very large range.

When you do this, all of the settings of a linear axis are enabled including manual ticking.

Here is a normal log axis with a range of 0.5 to 30:

If we zoom into a range of 1.5 to 4.5 we get this:

But if we then select the LogLin checkbox, we get better results:

When a log axis
is selected...

...Igor sets the number of ticks... ... you can’t use computed manual ticks...

... and the zero line is not available.

5 6 7 8 9
1

2 3 4 5 6 7 8 9
1 0

2 3

2x10
0 3 4

4.54.03.53.02.52.01.5

Chapter II-12 — Graphs

II-277

Selecting a log axis makes the Log Ticks box on the Tick Options tab available:

The “Max log cycles with minor ticks” setting controls whether minor ticks appear on a log axis. This setting
can range from 0 to 20 and defaults to 0. If it is 0 or “auto”, Igor automatically determines if minor ticks are
appropriate. Otherwise, if the axis has more cycles (decades) than this number then the minor ticks are not
displayed. Minor ticks are also not displayed if there is not enough room for them.

Similarly, you can control when Igor puts labels on the minor ticks of a log axis using the Max log cycles
with minor tick labels item. This is a number from 0 to 8; 0 disables the minor tick labels. As long as the axis
has fewer decades than this setting, the minor ticks are labeled.

Manual Ticks
If Igor’s automatic selection of ticks does not suit you, and you can’t find any adjustments
that make the tick marks just the way you want them, Igor provides two methods for
specifying the tick marks yourself. On the Auto/Man Ticks tab of the Modify Axis dialog,
you can choose either Computed Manual Ticks or User Ticks from Waves.

Computed Manual Ticks
Use Computed Manual Ticks to enter a numeric specification of the increment between tick marks and the
starting point for calculating where the tick marks fall. This style of manual ticking is available for normal
axes (including log axes when the loglin checkbox is selected on the Axis tab) and date/time axes only. User
Ticks from Waves can be used to select waves that you have created that completely specify the ticking. This
option is available for normal axes or log axes.

When you choose Computed Manual Ticks the corresponding area of the
Auto/Man Ticks tab becomes available.

If you click the “Set to auto values” button, Igor sets all of the items in the
Compute Manual Ticks box to the values they would have if you let Igor auto-
matically determine the ticking. This is usually the starting point.

Using the “Canonic tick” setting, you specify the value of any major tick mark
on the axis. Using the “Tick increment” setting, you specify the number of axis
units per major tick mark. Both of these numbers are specified as a mantissa
and an exponent. The canonic tick is not necessarily the first major tick on the
axis. Rather, it is a major tick on an infinitely long axis of which the axis in the
graph is a subset. That is, it can be any major tick. whether it shows on the graph or not.

Note: When you use computed manual ticks on a large range logarithmic axis, the values in the dialog
refer to the exponent of the tick value.)

For example, imagine that you want to show the temperature of an object as it cools off. You want to show time
in seconds but you want it to be clear where the integral minutes fall on the axis. You would turn on manual
ticking for the bottom axis and set the canonic tick to zero and the tick increment to 60. You could show the half
and quarter minute points by specifying three minor ticks per major tick (Number per major tick ins the Minor
Ticks box) with every second minor tick emphasized (Emphasize every). This produces the following graph:

Chapter II-12 — Graphs

II-278

Now, imagine that you want to zoom in on t = 60 seconds.

The canonic tick, at t = 0, does not appear on the graph but it still controls major tick locations.

User Ticks from Waves
With Computed Manual Ticks you have complete control over ticking as long as you want equally-spaced
ticks. If you want to specify your own ticking on a log axis, or you want ticks that are not equally spaced,
you need User Ticks from Waves.

The first step in setting up User Ticks from Waves is to create two waves: a 1D numeric wave and a text
wave. Numbers entered in the numeric wave specify the positions of the tick marks in axis units. The cor-
responding rows of the text wave give the labels for the tick marks.

Perhaps you want to plot data as a function of Tm/T (melting temperature over temperature, but you want
the tick labels to be at nice values of temperature. Starting with this data:

you might have this graph:

100

80

60

40

T
em

p
(C

)

120600
Time (s)

temp= -1.17 + 101.4 * e
(-.0099x)

Sigma = {2.9, 2.58, 0.000505}

70

65

60

55

50

45

40

T
em

p
(C

)

60
Time (s)

temp= -1.17 + 101.4 * e
(-.0099x)

Sigma = {2.9, 2.58, 0.000505}

Point InverseTemp Mobility

0 30 0.211521
1 20 0.451599
2 14.2857 0.612956
3 10 0.691259
4 5 0.886406
5 3.0303 0.893136
6 2.22222 0.921083
7 1.25 1

1.0

0.8

0.6

0.4

30252015105

Chapter II-12 — Graphs

II-279

Create the waves for labelling the axes:
Make/N=5 TickPositions
Make/N=5/T TickLabels

Assuming that Tm is 450 degrees and that you have determined that tick marks at 20, 30, 50, 100, and 400
degrees would look good, you would enter these numbers in the text wave, TickLabels. At this point, a con-
venient way to enter the tick positions in the numeric wave, TickPositions is a wave assignment that
embodies the relationship you think is appropriate:
TickPositions = 450/str2num(TickLabels)

Note that the str2num function was used to interpret the text in the label wave as numeric data. This only
works, of course, if the text includes only numbers.

Finally, double-click the bottom axis to bring up the Modify Axis dialog, select the Auto/Man Ticks tab and
select User Ticks from Waves. Choose the TickPositions and TickLabels waves:

The result is this graph:

Note that you can add other text to the labels, including special marks. For instance:

Finally, you can add a column to the text wave and add minor, subminor and emphasized ticks by entering
appropriate keywords in the other column. To add a column to a wave, select Redimension Waves from the
Data menu, select your text wave in the list and click the yellow arrow. Then change the number of columns
from 0 to 2 (or more).

This extra column must have the column label ‘Tick Type’. For instance:

1.0

0.8

0.6

0.4

203050100

TickLabels.d TickPositions

20 degrees 22.5

30 15

50 9

100 4.5

400 1.125

1.0

0.8

0.6

0.4

20 degrees3050100

Chapter II-12 — Graphs

II-280

Dimension labels allow you (or Igor) to refer to a row or column of a wave using a name rather than a
number. Thus, the Tick Type column doesn't have to be the second column (that is, column 1). For instruc-
tions on showing dimension labels in a table, see Showing Dimension Labels on page II-193.

Date/Time Axes
In addition to numeric axes, Igor supports axes labeled with dates, times or dates and times.

Dates and date/times are represented in Igor as the number of seconds since midnight, January 1, 1904. There is
no practical limit to the range of dates that can be represented except on Windows where dates must be greater
than January 1, 1601. Prior to Igor Pro 6.1 Igor supported dates in the range 1904 to 2040 only.

In Igor, a date can not be accurately represented in a single precision wave. Make sure you use double precision
waves to store dates and date/times. (A single precision wave can provide dates and date/times calculated from
its X scaling, but not from its data values.)

Times without dates can be thought of in two ways: as time-of-day times and as elapsed times.

Time-of-day times are represented in Igor as the number of seconds since midnight.

Elapsed times are represented as a number of seconds in the range -9999:59:59 to +9999:59:59. For integral
numbers of seconds, this range of elapsed times can be precisely represented in a signed 32-bit integer
wave. A single-precision floating point wave can precisely represent integral-second elapsed times up to
about +/-4600 hours.

Igor displays dates or times on an axis if the appropriate units for the wave controlling the axis is “dat”.
This is case-sensitive — “Dat” won’t work. You can set the wave’s units using the Change Wave Scaling
item in the Data menu, or the SetScale operation.

To make a horizontal axis be a date or time axis for a waveform graph, you must set the X units of the wave
controlling the axis to “dat”. For an XY graph you must set the data units of the wave supplying the X coor-
dinates for the curve to “dat”. To make the vertical axis a date or time axis in either type of graph, you must
set the data units of the wave controlling the axis to “dat”. (If you’re not sure what a “waveform graph” is,
see Creating Graphs on page II-240. If you are mystified by “wave controlling the axis”, see Waves and
Axes on page II-242.)

Blank entries make
ticks with no labels.

Dimension label “Tick Type” has
keywords to set tick types

Use keyword “Subminor” for subminor
ticks such as Igor uses on log axes.

TickLabels[][0].d TickLabels[][1].d TickPositions

Tick Type

20 degrees Major 22 .5

30 Major 1 5

50 Major 9

100 Major 4 .5

400 Major 1 .125

 Minor 21.4286

 Minor 20.4545

 Minor 19.5652

 Minor 18.75

 Emphasized 1 8

 Minor 17.3077

 Minor 16.6667

 Minor 16.0714

 Minor 15.5172

Chapter II-12 — Graphs

II-281

It is much easier to let the Modify Axis dialog change the wave scaling for you.

When you click the Date/Time radio button, Igor tracks down the controlling wave
for the axis and sets the appropriate units to “dat”.

For Igor to use a date or time axis, the following additional restrictions must be met:
the axis must span at least 2 seconds and both ends must be within the legal range for
a date/time value. If any of these restrictions is not met, Igor displays a single tick
mark.

When an axis is in the date/time mode, the Date/Time Tick Labels box in the
Ticks&Grids tab of the Modify Axis dialog is available.

From the Time Format pop-up menu, you can choose Normal, Military, or
Elapsed. Use Normal or Military for time-of-day times and Elapsed for elapsed
times. In normal mode, the minute before midnight is displayed as 11:59:00 PM
and midnight is displayed as 12:00:00 AM. In military mode, they are displayed
as 23:59:00 and 00:00:00.

Elapsed mode can display times from -9999:59:59 to +9999:59:59. This mode makes sense if the values dis-
played on the axis are actually elapsed times (e.g., 23:59:00). It makes no sense and will display no tick labels
if the values are actually date/times (e.g., 7/28/93 23:59:00).

The Date Format pop-up menu is relevant when you are displaying dates or date/times. It has no signifi-
cance for times. From the Date Format pop-up, you can choose Short, Long, Abbrev, or Other. In the short
mode, today’s date is displayed in month/day/year format, such as 7/28/93. In the long mode, it is displayed
as Wednesday, July 29, 1993. In the abbrev mode, it is displayed as Wed, Jul 28, 1993.

For further discussion of how Igor represents dates, see Date/Time Waves on page II-102.

Custom Date Formats
If you choose Other from the Date Format pop-up, a dialog is displayed giving you almost complete control
over the format of the tick labels. The dialog allows a broad range of automatic formats:

It also allows extensive control over custom formats (this is not quite the default appearance; we have
changed some selections to show a larger range of possibilities):

Chapter II-12 — Graphs

II-282

Depending on the extent of the axis, the tick mark labels may show date or date and time. You can suppress
the display of the date when both the date and time are showing by selecting the Suppress Date checkbox.
This checkbox is irrelevant when you choose the elapsed time mode in which dates are never displayed.

Use the Axis Range tab of the Modify Axis dialog to enter axis range values in terms of seconds, times, dates
or date/times. When you enter the dialog, Igor automatically chooses a format appropriate for the axis you
are working on.

Date/Time Examples
The following example shows how you can create a date/time graph of a waveform whose Y values are tem-
perature and whose X values, as set via the SetScale operation, are dates:
// Make a wave to contain temperatures for the year
Make /N=365 temperature // single precision data values

// Set its scaling so X values are dates
Variable t0, t1
t0 = Date2Secs(2000,1,1); t1 = Date2Secs(2001,1,1)
SetScale x t0, t1, "dat", temperature // double-precision X scaling

// Enter the temperature data in the wave's Y values
t0 = Date2Secs(2000,1,1); t1 = Date2Secs(2000,3,31) // winter
temperature(t0, t1) = 32 // it's cold
t0 = Date2Secs(2000,4,1); t1 = Date2Secs(2000,6,30) // spring
temperature(t0, t1) = 65 // it's nice
t0 = Date2Secs(2000,7,1); t1 = Date2Secs(2000,9,31) // summer
temperature(t0, t1) = 85 // it's hot
t0 = Date2Secs(2000,10,1); t1 = Date2Secs(2000,12,31) // fall
temperature(t0, t1) = 45 // cold again

// Smooth the data out
CurveFit sin temperature
temperature= K0+K1*sin(K2*x+K3)

// Graph the wave
Display temperature
SetAxis left, 0, 100;Label left "temp"
Label bottom "2000"

We chose Day
of Week, which
caused two
more controls to
be shown.

Custom
Format
selected.

100

80

60

40

20

0

te
m

p

1/1/2000 3/1/2000 5/1/2000 7/1/2000 9/1/2000 11/1/2000
2000

Chapter II-12 — Graphs

II-283

The SetScale operation sets the temperature wave so that its X values span the year 2000. In this example,
the date/time information is in the X values of the wave. X values are always double precision. The wave
itself is not declared double precision because we are storing temperature information, not date/time infor-
mation in the Y values.

Manual Ticks for Date/Time Axes
Just as with regular axes, there are times when Igor’s automatic choices of ticks for date/time axes simply
are not what you want. For these cases, you can use computed manual ticks with date/time axes.

To use computed manual ticks, display the Modify Axis dialog by double-clicking the axis, or by choosing
Modify Axis from the Graph menu. Select the Auto/Man Ticks tab, and choose Computed Manual Ticks
from the menu in that tab. This much is just like computed manual ticks for regular axes (see Manual Ticks
on page II-277).

The Computed Manual Ticks box is somewhat different for a date/time axis:

The first step is to click the Set to Auto Values button. Choose whether you need to enter a just the date, a
date and time or just the time for the canonic tick. This will depend on the range of the data. Choose the
units of the tick increment and the increment.

As an example, you might have data acquired over a period of some months showing data that have a
strong weekly variation. The automatic date/time axis never chooses weeks as the basis for the tick incre-
ment, so you will need to use manual ticks. Here is the graph that we start with (we fixed it up a bit — one
major change was to set the date format for the tick labels to show only two characters for the year, see
Custom Date Formats on page II-281):

And the Computed Manual Ticks box after clicking the Set to Auto Values button, and after setting it up for
weekly ticks with daily minor ticks:

Set the format
for the Canonic
tick entry box.

Choose units for the
Tick increment.

200

150

100

50

1/11/00 1/21/00 1/31/00
Day

Chapter II-12 — Graphs

II-284

The result:

“Fake” Axes
It is sometimes necessary to create an axis that is not related to the data in a simple way. One method uses free
axes that are not associated with a wave (see the operations NewFreeAxis, ModifyFreeAxis and KillFreeAxis).
The Transform Axis package uses this technique to make a mirror axis reflecting a different view of the data. An
example would be a mirror axis showing wave number to go with a main axis showing wavelength. A demon-
stration is available from the File menu, Example Experiments→Graphing Techniques→Transform Axis Demo.

Another technique is to use Igor’s drawing tools to create fake axes. The Polar Graph package is an example
of a this technique (for an example, see in the File menu, Example Experiments→Graphing Tech-
niques→New Polar Graph Demo). Another example is in Igor Technical Notes TN021: Ternary Graphs.

Axis Labels
The text for an axis label in a graph can come from one of two places. If you specify units for the wave which
controls an axis (using the Change Wave Scaling dialog), Igor will use these units to label the axis. You can
override this labeling by explicitly entering axis label text using the Axis Label tab of the Modify Axis
dialog. The text that you explicitly enter can, in turn, contain an escape sequence to refer to the wave’s units.

You can explicitly specify an axis label using the Axis Label tab in the Modify Axis dialog. You can display
the dialog with the Axis Label tab showing by choosing Label Axis from the Graph menu or by double-
clicking an axis label. If there is no axis label you must use the menu. This brings up the Modify Axis dialog
with the Axis Label tab displayed.

200

150

100

50

1/8/00 1/15/00 1/22/00 1/29/00
Day

Chapter II-12 — Graphs

II-285

After you set the label for a particular axis you can select another axis and set its label. Further label format-
ting options are available on the Label Options tab described on page II-274.

There are two parts to an axis label: the text for the label and the special effects such as font, font size, super-
script or subscript. You specify the text by typing in the text box. At any point in entering the text you can
choose a special effect from a pop-up menu in the Insert box.

The Label Preview box shows what the axis label will look like, taking the text and special effects into account.
You can not enter text in this box. You can also see your label on the graph if you click the Live Update checkbox.

When you choose a special effect, Igor inserts an
escape code in the text. An escape code consists of a
backslash character followed by one or more charac-
ters. It represents the special effect you chose. The
escape codes are cryptic but you can see their effects in
the Label Preview box.

Select the axis that you want to label from the menu of axes and then type the text for the axis label in the
textbox. You can insert special affects at any point in the text by clicking at that point and selecting the
special effect from the Insert pop-ups.

Choosing an item from the Font pop-up menu inserts a code that changes the font for subsequent characters
in the label. If you specify no font, Igor uses whatever font is in effect for the given axis. See Axis Tab on
page II-268. The font pop-up also has a “Recall font” item. This item is used to make elaborate axis labels.
See Elaborate Annotations and Axis Labels on page III-65.

Choosing an item from the Font Size pop-up menu inserts a code that changes the font size for subsequent
characters in the label. If you specify no font size, Igor uses the font size specified for the current axis. See
Axis Tab on page II-268. The font size pop-up also has a “Recall size” item. This item is used to make elab-
orate axis labels. See Elaborate Annotations and Axis Labels on page III-65.

Use to test your label under
conditions where axis has to be
scaled.

You can also click the Live
Update checkbox to see the label
as it really looks on your graph.

Create your label from text and
escape codes here.

And see what it will look like here.

Joules\E

axis label previewescape codetext

Joulesx106

Chapter II-12 — Graphs

II-286

The Special pop-up menu is shown here:

The most commonly used items are Superscript, Subscript and Normal. To create a superscript or subscript,
use the Special pop-up menu to insert the desired code, type the text of the super- or subscript and then finish
with the Normal code. For example, suppose you want to create an axis label that reads “Phase space density
(s3m-6)”. To do this, type “Phase space density (s”, choose the Superscript item from the Special pop-up menu,
type “3”, choose Normal, type “m”, choose Superscript, type “-6”, choose Normal and then type “)”.

Here is the label text and preview from the dialog:

See Chapter III-2, Annotations, for a complete discussion of these items.

The Text Color hierarchical menu inserts a code that sets the color of the label’s text.

The “Wave controlling axis” item inserts a code that prints the name of the first wave plotted on the given
axis. You might use this in conjunction with preferences or style macros to ensure that new graphs are auto-
matically labeled with the data names.

The Wave Symbol hierarchical menu inserts a code that draws the symbol used to plot the selected trace.
You might use this to create an axis label that is a one-line legend:

Chapter II-12 — Graphs

II-287

The Character hierarchical menu presents a table from which you can select text and special characters to
add to the axis label.

The Marker hierarchical menu inserts a code to draw a marker symbol. These symbols are independent of
any traces in the graph.

The items in the Units pop-up menu insert escape codes as shown here:

These codes allow you to create an axis label that automatically changes when the extent of the axis changes.

For example, if you specified units for the controlling wave of an axis you can make those units appear in
the axis label by choosing the Units item from the Units pop-up menu. If appropriate Igor will automatically
add a prefix (µ for micro, m for milli, etc.) to the label and will change the prefix appropriately if the extent
of the axis changes. The extent of the axis changes when you explicitly set the axis or when it is autoscaled.

If you are plotting a waveform (wave’s Y values plotted versus its X values) then the units for the Y axis come
from the wave’s data units and the units for the X axis come from the wave’s X units. However, if you are plot-
ting an XY pair (Y values of one wave plotted versus Y values of another wave) then the units for the Y axis come
from the data units of one wave and the units for the X axis come from the data units of the other wave.

If you choose the Scaling or Inverse Scaling items from the Units pop-up menu, Igor will automatically add
a power of 10 scaling (x10^3, x10^6, etc.) to the axis label if appropriate and will change this scaling if the
extent of the axis changes. The Trial Exponent buttons determine what power is used only in the label
preview so you can see what your label will look like under varying axis scaling conditions. Both of these
techniques can be ambiguous — it is never clear if the axis has been multiplied by the scale factor or if the
units contain the scale factor.

A less ambiguous method is to use the Exponential Prefix escape code. This is identical to the Scaling code except
the “x” is missing. You can then use it in a context where it is clear that it is a multiplier of units. For example, if
your axis range is 0 to 3E9 in units of cm/s, typing “Speed, \ucm/s” would create “Speed, 109cm/s”.

It is common to parenthesize scaling information in an axis label. For example the label might say “Joules
(x106)”. You can do this by simply putting parentheses around the Scaling or Inverse Scaling escape codes.
If the scaling for the axis turns out to be x100 Igor omits it and also omits the parentheses so you get “Joules”
instead of “Joules (x100)” or “Joules()”.

If you do not specify scaling but the range of the axis requires it, Igor labels one of the tick marks on the axis
to indicate the axis scaling. This is an emergency measure to prevent the graph from being misleading. You
can prevent this from happening by inserting the Manual Override escape code, \u#2, into your label. No
scaling or units information will be printed at the location of the escape code (or on the tick marks). You
will need to provide your own units or scaling by creating an annotation (Chapter III-2, Annotations) or a
simple text object (Chapter III-3, Drawing).

The following four examples illustrate what happens when the axis label does not contain any scaling or
units escape codes:

\u#2

\U
\u
\u#1
\E
\e

1.00.80.60.40.20.0
axis label

Axis range: 0..1 ; Wave units: none ; Axis label text: axis label

Chapter II-12 — Graphs

II-288

In the last three cases, Igor has added units or scaling to the last tick mark label because the axis label itself
does not contain the units and scaling information. You can suppress this by choosing Manual Override
from the Units pop-up menu.

The following two examples show what happens when the axis label does contain scaling and units escape
codes. (“\S” is the superscript escape code):

Here is a table showing how the escape codes react to different conditions:

The situation with log axes is a bit different. By their nature, log axes never have to be scaled and units/scal-
ing escape codes are not used in axis labels. If the controlling wave for a log axis has units then Igor auto-
matically uses the units along with the appropriate prefix for each major tick mark label. Here are two log
axes; one where the controlling wave does not have units and one where it does:

Axis Range Wave
Units

Units \U Exponential
Prefix \u

Inverse Exponen-
tial Prefix \u#1

Scaling \E Inverse
Scaling \e

0…1 none

0…1E9 none x109 109 10-9 x109 x10-9

0…1 Hz Hz Hz Hz

0…1E9 Hz GHz 109Hz 10-9Hz x109 x10-9

1.0x10
9
 0.80.60.40.20.0

axis label

Axis range: 0..1E9 ; Wave units: none ; Axis label text: axis label

1.0Hz0.80.60.40.20.0
axis label

Axis range: 0..1 ; Wave units: Hz ; Axis label text: axis label

1.0GHz0.80.60.40.20.0
axis label

Axis range: 0..1E9 ; Wave units: Hz ; Axis label text: axis label

1.00.80.60.40.20.0
Acceleration, 10

9
m/s

2

Axis range: 0..1E9 ; Wave units: none ; Axis label text: Acceleration, \um/s\S2

1.00.80.60.40.20.0
Frequency, GHz

Axis range: 0..1E9 ; Wave units: Hz ; Axis label text: Frequency, \U

Chapter II-12 — Graphs

II-289

Yet another variation on labeling and units is provided by Exponent Prescale, which is found on the Ticks
and Grids tab of the Modify Axis dialog. Using Exponent Prescale you can force the tick and axis label
scaling to values different from what Igor would pick. For example, if you have data whose x scaling ranges
from, say, 9pA to 120pA and you display this on a log axis, Igor will label the tick marks with 10pA and
100pA. But if you really want the tick marks labeled 10 and 100 with pA in the axis label, you can set the
prescaleExp to 12. For details, see Axis Labels on page II-284.

To see this, use the following commands:
Make/O jack=x
Display jack
SetScale x,9e-12,120e-12,"A",jack // X scale 9 to 120 pico Amps
ModifyGraph log(bottom)=1

At this point we have a graph with a logarithmic bottom axis, and the major tick
labels are 10 and 100 pA (we show only the bottom axis).

You would like to force the “pA” into the axis label, so you set Exponent Pres-
cale to 12.

Exponent Prescale also works with normal axes (that is, not log). It may interact
confusingly with the high and low trip points. Exponent Prescale only applies when the range of the axis is
such that it does not trigger a trip point (note that the trip point is compared with the axis values after the
exponent prescale is applied).

Here are examples of the above axis in both log and normal modes, with several values of Exponent Pres-
cale. For these examples the low trip has been set to 1e-12 to avoid the confusing interactions, and the axis
label was “\U” to display units, if any. In the examples with units, the units are “A”.

Log Axis with Units Normal Axis with Units Log Axis, no Units Normal Axis, no Units

Prescale Exponent = 12

Prescale Exponent = 9

Prescale Exponent = 6

Prescale Exponent = 0

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Frequency

Log Axis range: 1E3..1E9 ; Wave units: none ; Axis label text: Frequency

1kHz 10kHz 100kHz 1MHz 10MHz 100MHz 1GHz
Frequency

Log Axis range: 1E3..1E9 ; Wave units: Hz ; Axis label text: Frequency

9
10pA

2 3 4 5 6 7 8 9
100pA

9
10

2 3 4 5 6 7 8 9
100pA

9
10

2 3 4 5 6 7 8 9
100

pA
10080604020

pA

9
10

2 3 4 5 6 7 8 9
100

x10
-12

10080604020

x10
-12

9
0.01

2 3 4 5 6 7 8 9
0.1

nA
0.100.080.060.040.02

nA

9
0.01

2 3 4 5 6 7 8 9
0.1

x10
-9

0.100.080.060.040.02

x10
-9

9
10µA

2 3 4 5 6 7 8 9
100µA

µA
0.000100.00005

µA

9

10
-5

2 3 4 5 6 7 8 9

10
-4

x10
-6

10080604020

x10
-12

9
10pA

2 3 4 5 6 7 8 9
100pA

A
10080604020

pA

9

10
-11

2 3 4 5 6 7 8 9

10
-10 10080604020

x10
-12

Chapter II-12 — Graphs

II-290

Annotations in Graphs
You can add text annotation to a graph by choosing Add Annotation from the Graph menu. This brings up
the Add Annotation dialog. If text annotation is already on the graph you can modify it by double-clicking
it. This brings up the Modify Annotation dialog. See Chapter III-2, Annotations, for details.

Info Box and Cursors
You can put an information box (“info box” for short) on a graph by choosing Show Info from the Graph
menu while the graph is the target window. An info box displays a precise readout of values for waves in
the graph. It also provides a convenient way to specify a region of interest on a wave for operations such as
curve fitting (see Fitting a Subset of the Data on page III-179). To remove an info box from a graph while
the graph is the target window choose Hide Info from the Graph menu.

You can use up to five different pairs of cursors (AB through IJ). To view and select cursors, in the info
panel, Control-click (Macintosh) or right click (Windows) in the cursor home area and select cursors from the
“Show cursor pair” item in the pop-up menu. By default, cursors beyond B use the cross and letter style.

Icon style is the default for the A cursor, , and B cursor, ; for all other cursors it is the Cross and letter
style. You can specify other cursor styles in the cursor Style pop-up menu when you Control-click (Macin-
tosh) or right click (Windows) in the cursor name area: Hair style, which extends over the full range of the X
and Y axes; “Cross only style”, which is a smaller version of the Hair style; “Cross and letter style”, which
also includes cursor identifier. You can also specify colors and a dashed line format for the cursors.

Cursor BCursor A

Displays wave name.
Click for pop-up menu
to choose new wave.

Click to move
cursor to next data

Readout area. pop-up menu
for readout precision.

Horizontal scroll

Slide control

Vertical scroll controls

Cursor’s home

A Free Hair cursor in the Cross only style.Cross and letter style cursor attached to point [13,84].

2D slide control.

Chapter II-12 — Graphs

II-291

All of the cursor styles can be applied in various ways by choosing appropriate combinations of styles in
the Style pop-up menu. You can save your style settings as cursor style macros for easy reuse by choosing
Save style function under the Style function submenu in the Cursor pop-up menu.

When you first put an info box on a graph the cursors are at home and not associated with any wave. The
slide control is disabled and the readout area shows no values.

To activate a cursor, click it and drag it to the desired point on the wave whose values you want to examine.
Now the cursor appears on the graph and the cursor’s home is black indicating that the cursor is not home and
that it is active. The name of the wave which the cursor is on appears next to the cursor’s name. The slide control
is enabled indicating that you can move the cursor. On images and for free cursors, the slider changes to a small
square that you can drag up or down, left or right to move the cursor in the same way across the graph area.

In addition to attaching the cursors to points on a wave, you can use free cursors, which can move “at will”
anywhere within a graph. Simply choose Free in the cursor Style pop-up menu, following which you will
see “(free)” appended to the wave name in the info area. Free cursors can move anywhere within the graph
area and the cursor info area will update to show interpolated values at the cursor’s position. Free cursors
can be attached to both 1D and 2D traces in graphs.

The readout area shows the point number, X value, Y value, or Z value (when appropriate) for the point the
cursor is on. If you put both cursors on the graph the dX readout shows the difference between the X value
at cursor B and the X value at cursor A, the dY readout shows the difference between the Y value at cursor
B and the Y value at cursor A, and the dZ readout shows the difference between the Z value at cursor B and
the Z value at cursor A.

There are several ways to move a cursor. You can click it and drag it to a new point on the wave or to a new
wave. You can drag the slide control right or left to move the cursor continuously right or left. You can click
to one side or the other of the slide control or use the arrow keys on your keyboard to move the cursor by
one point (Shift-arrow moves by 10 points). Whenever you move the cursor the readout area is updated.
You can remove a cursor from the graph by dragging it away from the plotting area.

If you have both cursors on the graph and both are active, then the slide control moves both cursors at once.
If you want to move only one cursor you can use the mouse to drag that cursor to its new location. Another
way to move just one cursor is to deactivate the cursor that you don’t want to move. You do this by clicking
in the cursor’s empty home. This makes the empty home change from black to white indicating that the
cursor is not at home but also is not active. Then the slide control moves only the active cursor.

You can also move both cursors at once using direct drag. As long as both cursors are on the graph, you can
move both by holding shift before clicking and dragging one of the cursors. The selected state of the cursor
icon docks in the cursor info panel is irrelevant. You do not need to keep the Shift key depressed.

When you use the mouse to drag a cursor to a new location, Igor first searches for the wave the cursor is
currently attached to. Only if the new location is not near a point on the current wave are all the other waves
are searched. You can use this preferential treatment of the current wave to make sure the cursor lands on
the desired wave when many traces are overlapping in the destination region.

Chapter II-12 — Graphs

II-292

You can also put a cursor on a particular wave using a pop-up menu. Position the mouse over the “A: wave-
Name” or “B: waveName” area of the info box. Then click and choose a wave from the pop-up menu.

Sometimes the graph is not wide enough to see all of the readout area. In this case you can click the left or
right horizontal scroll control to make the readout area scroll horizontally.

If you click the up or down vertical scroll control the entire info box scrolls vertically revealing a list of the
traces and X waves in the graph. Click the vertical scroll again to return to the main info box.

The cursors provide a convenient way to specify a range of points on a wave which is of particular interest.
For example, if you want to do a curve fit to a particular range of points on a wave you can start by putting
cursor A on one end of the range and cursor B on the other. Then you can summon the Curve Fitting dialog
from the Analysis menu. In this dialog on the Data Options tab there is a range control. If you click the “cur-
sors” button in this dialog then the range of the fit will be set to the range from cursor A to cursor B.

Programming With Cursors
These functions and operations are useful for programming with cursors.

The ShowInfo and HideInfo operations show and hide the info panel containing the cursor's homes.

The Cursor operation sets the position of a cursor.

The CsrInfo function returns information about a cursor.

These functions return the current position of a cursor:

These functions return information about the wave to which a cursor is attached, if any:

The CursorStyle keyword marks a user-defined function for inclusion in the Style Function submenu of
the Cursor Info pop-up menu.

The section Cursors — Moving Cursor Calls Function on page IV-302 explains how to trigger a user-
defined function when a cursor is moved.

Identifying a Trace
A help tag or tool tip that identifies a trace and contains information on the waves displayed by a trace can
be displayed when you hover the mouse over a trace. To enable this mode, pull down the Graph menu and
select Show Trace Info Tags.

Subrange Display
In addition to using an entire wave for display in graphs, you can specify a subrange of your data to display.
This feature is mainly intended to allow the display of columns of a matrix as if they were extracted into
individual 1D waves but can also be used to display other subsets or to skip every nth data point. To use
this feature using the New Graph and Append Traces dialogs, you must be in the more complex version of
the dialogs used when you click the More Choices button. You may then add entries to the holding list and
from there you can edit the subrange settings.

pcsr qcsr hcsr vcsr xcsr zcsr

CsrWave CsrWaveRef CsrXWave CsrXWaveRef

Chapter II-12 — Graphs

II-293

Subrange Display Syntax
The Display operation (page V-129), AppendToGraph operation (page V-29), and ReplaceWave operation
(page V-594) support the following subrange syntax for a wave list item:
wavename[rdspec][rdspec][rdspec][rdspec]

where rdspec is a range or dimension specification and the brackets are part of the syntax (rather than indi-
cating options). Higher unneeded specs can be omitted. Only one my be a range spec and the others must
be a single numeric or dimension label value. A range spec may be [] or [*] to indicate the entire range of
the dimension, may be [start,stop], or [start,stop;inc] where stop may be *.

This can be restated as:

For non-XY plots, the X-axis label uses the dimension label (if any) for the active dimension (the one with a
range).

When cursors or tags are placed on a subranged trace, the point number used is the virtual point number
as if the subrange had been extracted into a 1D wave.

Subrange syntax is also supported for waves used with ErrorBars when an error bar wave is selected (see
Error Bars on page II-265), and color, marker size and marker number as f(Z) (see Setting Trace Properties
from an Auxiliary (Z) Wave on page II-259). These correspond to the ErrorBars operation (page V-159)
used with the wave keyword and to the ModifyGraph (traces) operation (page V-453) with the zmrkSize,
zmrkNum, and zColor keywords.

Limitations
In category plots, the category wave (the text wave) may not be subranged. Waves used to specify text using
ModifyGraph textMarker mode may not be subranged.

Subranged traces may not be edited using the draw tools (such as: option click on the edit poly icon in the
tool bar on a graph).

Waterfall plots may not use subranges.

When multiple subranges of the same wave are used in a graph, they are distinguished only using instance
notation and not using the subrange syntax. For example, given display w[][0],w[][1], you must use
ModifyGraph mode(w#0)=1,mode(w#1)=2 and not ModifyGraph
mode(w[][0])=1,mode(w[][1])=2 as you might expect.

The trace instance and subrange used to plot given trace is included in trace info information. See Identi-
fying a Trace on page II-292.

1. Only one dimension specifier may contain the range to be displayed.

Legal syntax for range is: [] or [*] for an entire dimension.

[start,stop] for a subrange; stop may be *, stop must be >= start;
the range is inclusive.

[start,stop;inc] for a subrange with the specified positive
nonzero increment (inc) value.

2. Other dimensions must contain a single numeric value, or dimension label using % syntax.

Legal syntax for nonrange
specifier is:

[value] or [%name].

3. Unspecified higher dimensions are treated as if zero was specified.

Chapter II-12 — Graphs

II-294

Printing Graphs
Before printing a graph you should set the page size and orientation using the Page Setup dialog. Choose
Page Setup from the Files menu. Often graphs are wider than they are tall and look better when printed
using the horizontal orientation.

When you invoke the Page Setup dialog you must make sure that the graph that you want to print is the
top window. Igor stores one page setup in each experiment for all graphs and stores other page setups for
other types of windows. You can set the default graph page setup for new experiments using the Capture
Graph Preferences dialog.

To print a graph, choose Print from the File menu while the graph is the active window. This brings up the
Print dialog. In addition to the standard items, the Print dialog contains items which allow you to control
how the graph is scaled and positioned within the printed page.

If you enable the Fill Page radio button, Igor fills the printed page with the graph, changing the aspect ratio
of the graph as necessary.

If you enable the Same Size radio button (the default), Igor sets the size of the printed graph equal to its size
on the screen. If you have constrained the size of the graph, using the Modify Graph dialog, then you nor-
mally should use the Same Size setting.

If you enable the Same Aspect radio button, Igor makes the graph as large as possible so that it fits on the
printed page and retains the aspect ratio of the graph on the screen.

If you enable the Custom Size radio button, Igor positions and sizes the graph according to the margins and
dimensions that you enter in the Graph Margin and Graph Size parameter boxes.

Igor Pro options
chosen in the menu.

Macintosh

Special items added
by Igor Pro.

Windows

Special items added
by Igor Pro.

Chapter II-12 — Graphs

II-295

You can use the custom size setting and the related Left, Top, Width and Height parameters to print a graph
of any size at any position on the page.

Printing Poster-Sized Graphs
Using the Custom Size setting in the Print dialog, you can specify a size for a graph that will not fit on a
single sheet of paper. When you do this, Igor uses multiple sheets of paper to print the graph. This makes
very large, poster-sized graphs. Another approach is to specify a custom size that does fit on a single sheet
and use the Reduce/Enlarge setting in the Page Setup dialog to enlarge the graph by, for example, 200%.

To make the multiple sheets into one big poster, you need to trim the edges of the sheets and tape them
together. Igor prints tiny alignment marks on the edges so you can line the pages up. You should trim the
unneeded borders so that the alignment marks are flush against the edge of the trimmed sheet. Then align
the sheets so that the alignment marks butt up against each other. All of the alignment marks should still
be visible. Then tape the sheets together.

If you need to reprint some of the sheets but not all you can use the Pages settings in the Print dialog. For
example, if you need to reprint just sheet two of a four sheet poster, enter “2” in the From parameter box
and “2” in the To parameter box. Now Igor will reprint only sheet number two.

Other Printing Methods
You can also print graphs by placing them in page layouts. See Chapter II-16, Page Layouts for details.

You can print graphs directly from macros using the PrintGraphs (see page V-569) operation.

Save Graph Copy
You can save the active graph as an Igor packed experiment file by choosing File→Save Graph Copy. The main
uses for saving as a packed experiment are to save an archival copy of data or to prepare to merge data from
multiple experiments (see Merging Experiments on page II-32). The resulting experiment file preserves the data
folder hierarchy of the waves displayed in the graph starting from the “top” data folder, which is the data folder
that encloses all waves displayed in the graph. The top data folder becomes the root data folder of the resulting
experiment file. Only the graph, its waves, dashed line settings, and any pictures used in the graph are saved in
the packed experiment file, not procedures, variables, strings or any other objects in the experiment.

Save Graph Copy does not work well with graphs containing controls. First, the controls may depend on
waves, variables or FIFOs (for chart controls) that Save Graph Copy will not save. Second, controls typically
rely on procedures which are not saved by Save Graph Copy.

Save Graph Copy does not know about dependencies. If a graph contains a wave, wave0, that is dependent
on another wave, wave1 which is not in the graph, Save Graph Copy will save wave0 but not wave1. When
the saved experiment is open, there will be a broken dependency.

The SaveGraphCopy operation on page V-612 provides options that are not available using the Save Graph
Copy menu command.

Exporting Graphs
You can export a graph to another application through the Clipboard or by creating a file. To export via the
Clipboard, use the Export Graphics item in the Edit menu. To export via a file, use the Save Graphics item
of the File menu.

The process of exporting graphics from a graph is very similar to exporting graphics from a layout. Because
of this, we have put the details in Chapter III-5, Exporting Graphics (Macintosh), and Chapter III-6, Export-
ing Graphics (Windows). These chapters describe the various export methods you can use and how to
choose a method that will give you the best results.

Chapter II-12 — Graphs

II-296

Creating Graphs with Multiple Axes
This section describes how to create a graph that has many axes attached to a given plot edge. For example:

To create the above example we first need some data:
Make/N=100 wave1,wave2,wave3; SetScale x,0,20,wave1,wave2,wave3
wave1=sin(x); wave2= 5*cos(x); wave3= 10*sin(x)*exp(-0.1*x)

Next, we use the New Graph dialog in the expanded mode to create two free axes attached to the left edge:

This creates the following initial graph:

-1.0

-0.5

0.0

0.5

1.0

 s
in

151050

4

2

0

-2

-4

 c
os

8

6

4

2

0

-2

-4

-6

 s
in

*e
xp

Position cursor over
left axis while
pressing Option
(Macintosh) or Alt
(Windows) to drag
left margin.

Both free axes, L1 & L2, are initially positioned 50 points in from left edge

Chapter II-12 — Graphs

II-297

Next, we drag the left margin to the right, drag the two free axes to the left, change the line styles of the
traces and finally create the axis labels (see Axis Labels on page II-284). In the axis label we use the Wave
Symbol from the Special pop-up menu to include the line style. Drag the axis labels into place to complete
the plot shown above.

Creating Stacked Plots
Igor’s ability to use an unlimited number of axes in a graph combined with the ability to shrink the length of an
axis makes it easy to create stacked plots. You can even create a matrix of plots and can also create inset plots.

Another way to make a stacked graph embedded subwindows. See Layout Mode and Guide Tutorial for
an example. It is also possible to do make stacked graphs in page layouts, using either embedded graph
subwindows or the traditional graph layout objects.

As an example, we will create the following graph:

First we create some data:
Make wave1,wave2,wave3,wave4
SetScale/I x 0,10,wave1,wave2,wave3,wave4
wave1= sin(2*x); wave2= cos(2*x)
wave3=cos(2*x)*exp(-0.2*x)
wave4=sin(2*x)*exp(-0.2*x)

Next, we use the extended form of the New Graph dialog:

1.0

0.5

0.0

-0.5

-1.0

1086420

1.0

0.5

0.0

-0.5

-1.0

1086420

Chapter II-12 — Graphs

II-298

Notice that two free axes were created with the arbitrary names L2 and B2. Clicking the Do It button gave
the following jumble of axes and traces:

Next, we double click one of the axes to get to the Modify Axis dialog and then go to the Axis tab if neces-
sary. We set the left and bottom axes to be drawn from 0 to 45% of normal. Next we set the L2 and B2 axes
to be drawn from 55 to 100% of normal and set their “Free axis position Distance” to 0.

This is a case in which Multiple Axis Selection is convenient. You can select the left and bottom axes, then
set these axes to draw from 0 to 45% simultaneously:

Remember that all selected axes are changed any time you touch any control in the dialog, so be careful
when you have multiple axes selected.

When the left and bottom axes are done, return to the Multiple Axis Selection dialog and select the L2 and
B2 axes and set them to draw between 55% and 100%. Then set the Free axis position Distance to 0.

Chapter II-12 — Graphs

II-299

Here is how the Modify Axis dialog should look:

Once everything is properly set up, click Do It. The graph need only be resized to replicate the above example.

Staggered Stacked Plot
Here is a common variant of the stacked plot:

This example was created from three of the waves used in the previous plot. Wave1 was plotted using the left
and bottom axes, wave2 used the right and bottom axes and wave3 used L2 and bottom axes. Then the Axis
tab of the Modify Axis dialog was used to set the left axis to be drawn from 0 to 33% of normal, the right axis
33 to 66% and the L2 axis 66 to 100%. The Axis Standoff checkbox was deselected for the bottom axis. This was
not necessary for the other axes; axis standoff is not used when axes are drawn on a reduced extent.

After returning from the Modify Axis dialog, the graph was resized and the frame around the plot area was
drawn using a polygon in plot-relative coordinates. This allows the frame to be exactly centered over the
plot rectangle. Here is a function that adds the plot frame:

1.0

0.5

0.0

-0.5

-1.0

1086420

1.0

0.5

0.0

-0.5

-1.0

-1.0

-0.5

0.0

0.5

1.0

Chapter II-12 — Graphs

II-300

Function AddPlotFrame()
SetDrawLayer UserBack
SetDrawEnv xcoord=prel,ycoord=prel,fillpat=0
DrawPoly 0,0,1,1,{0,0,0,1,1,1,1,0,0,0}
SetDrawLayer UserFront

End

To use this function, include the WaveMetrics-supplied “AddPlotFrame” file. See Including a Procedure
File on page III-348 for instructions on including a procedure file.

In case you need to change its color or thickness, you should note that it is in the UserBack draw layer. That
is so the axes will be drawn on top of the frame. You might find that decreasing the thickness of the plot
frame to, say, 0.25 points will highlight the axes nicely.

Waterfall Plots
You can create a graph displaying a sequence of traces in a perspective view. We refer to these types of
graphs as waterfall plots, which can be created and modified using, respectively, the NewWaterfall oper-
ation on page V-504 and ModifyWaterfall operation on page V-481. At present, there is no dialog interface
that you can use to create waterfall plots, so you must either execute these commands on the Command
Line or in an Igor Procedure.

To display a waterfall plot, you must first create or load a matrix wave. (If your data is in 1D waveform or
XY pair format, you may find it easier to create a Fake Waterfall Plots as described on page Fake Waterfall
Plots on page II-302.) In this 2D matrix, each of the individual matrix columns is displayed as a separate
trace in the waterfall plot. Each column from the matrix wave is plotted in, and clipped by, a rectangle
defined by the X and Z axes with the plot rectangle displaced along the angled Y axis, which is the right-
hand axis, as a function of the Y value.

You can display only one matrix wave per plot.

The traces can be plotted evenly-spaced, in which case their X and Y positions are determined by the X and
Y dimension scaling of the matrix. Alternatively they can be plotted unevenly-spaced as determined by sep-
arate 1D X and Y waves.

To modify certain properties of a waterfall plot, you must use the ModifyWaterfall operation. For other
properties, you will need to use the usual axis and trace dialogs.

Because the traces in the waterfall plot are from a single wave, any changes to the appearance of the water-
fall plot using the Modify Trace Appearance dialog or ModifyGraph operation will globally affect all of the
waterfall traces. For example, if you change the color in the dialog, then all of the waterfall traces will
change to the same color. If you want each of the traces to have a different color, then you will need to use
a separate wave to specify (as f(z)) the colors of the traces. See the example in the next section for an illus-
tration of how this can be done.

The X and Z axes of a waterfall are always at the bottom and left while the Y axis runs at a default 45 degrees
on the right-hand side. The angle and length of the Y axis can be changed using ModifyWaterfall. Except
when hidden lines are active, the traces are drawn in back to front order. Note that hidden lines are active
only when the trace mode is lines between points.

Marquee expansion is based only on the bottom and right (waterfall) axes. The marquee is drawn as a box
with the bottom face in the ZY plane at zmin and the top face is drawn in the ZY plane at zmax.

Cursors may be used and the readout panel provides X, Y and Z axis information. The hcsr and xcsr functions
are unchanged; the vcsr function returns the Y data value (waterfall) and the zcsr returns the data (Z axis) value.

Chapter II-12 — Graphs

II-301

Evenly-Spaced Waterfall Plot Example
In this example we create a waterfall plot with evenly-spaced X and Y values that come from the X and Y
scaling of the matrix being plotted.
Function EvenlySpacedWaterfallPlot()

// Create matrix for waterfall plot
Make/O/N=(200,30) mat1
SetScale x,-3,4,mat1
SetScale y,-2,3,mat1
mat1=exp(-((x-y)^2+(x+3+y)^2))
mat1=exp(-60*(x-1*y)^2)+exp(-60*(x-0.5*y)^2)+exp(-60*(x-2*y)^2)
mat1+=exp(-60*(x+1*y)^2)+exp(-60*(x+2*y)^2)

// Create waterfall plot
NewWaterfall /W=(21,118,434,510) mat1
ModifyWaterfall angle=70, axlen= 0.6, hidden= 3

// Apply color as a function of Z
Duplicate mat1,mat1ColorIndex
mat1ColorIndex=y
ModifyGraph zColor(mat1)={mat1ColorIndex,*,*,Rainbow}

End

Unevenly-Spaced Waterfall Plot Example
In this example we create a waterfall plot with unevenly-spaced X and Y values that come from separate
1D waves.

Function UnvenlySpacedWaterfallPlot()
// Create matrix for waterfall plot
Make/O/N=(200,30) mat2
SetScale x,-3,4,mat2 // Scaling is needed only to generate
SetScale y,-2,3,mat2 // the fake data
mat2=exp(-((x-y)^2+(x+3+y)^2))
mat2=exp(-60*(x-1*y)^2)+exp(-60*(x-0.5*y)^2)+exp(-60*(x-2*y)^2)
mat2+=exp(-60*(x+1*y)^2)+exp(-60*(x+2*y)^2)
SetScale x,0,0,mat2 // Scaling no longer needed because we will
SetScale y,0,0,mat2 // use X and Y waves in waterfall plot

// Make X and W waves
Make/O/N=200 xWave = 10^(p/200)
Make/O/N=30 yWave = 10^(p/30)

// Create waterfall plot
NewWaterfall /W=(21,118,434,510) mat2 vs {xWave,yWave}
ModifyWaterfall angle=70, axlen= 0.6, hidden= 3

5

4

3

2

1

0

43210-1-2-3

3

2

1

0

-1

-2

Chapter II-12 — Graphs

II-302

// Apply color as a function of Z
Duplicate mat2,mat2ColorIndex
mat2ColorIndex=y
ModifyGraph zColor(mat2)={mat2ColorIndex,*,*,Rainbow}

End

Fake Waterfall Plots
Creating a real waterfall plot requires a 2D wave. If your data is in the form of 1D waveforms or XY pairs,
it may be simpler to create a "fake waterfall plot".

In a fake waterfall plot, you plot your waveform or XY data using a regular graph and then create the water-
fall effect by offsetting the traces. Since fake waterfall plots use regular Igor traces, you can control their
appearance the same as in a regular graph.

The result, with hidden line removal, looks like this:

NOTE: Because of the offsetting in the X and Y directions, the axis tick mark labels can be misleading.

Igor includes a demo experiment showing how to create a fake waterfall plot. Choose File→Example
Experiments→Graphing Techniques→Fake Waterfall Plot.

5

4

3

2

1

0

8642

8

6

4

2

10

8

6

4

x
1

0
3

600595590585580575570

Chapter II-12 — Graphs

II-303

Wind Barb Plots
You can create a wind barb plot by creating an XY plot and telling Igor to use wind barbs for markers. You
turn markers into wind barbs using "ModifyGraph arrowMarker", passing to it a wave that specifies the
length, angle and number of barbs for each point.

If you want to color-code the wind barbs, you turn on color as f(z) mode using "ModifyGraph zColor",
passing to it a wave that specifies the color for each point.

Here is an example. Execute the commands one section at at time to see how it works.

// Make XY data
Make/O xData = {1, 2, 3}, yData = {1, 2, 3}
Display yData vs xData // Make graph
ModifyGraph mode(yData) = 3 // Marker mode

// Make a barb data wave to control the length, angle
// and number of barbs for each point.
// To control the number of barbs, column 2 must have a column label of WindBarb.
Make/O/N=(3,3) barbData // Controls barb length, angle and number of barbs
SetDimLabel 1, 2, WindBarb, barbData // Set column label to WindBarb
Edit /W=(439,47,820,240) barbData

// Put some data in barbData
barbData[0][0]= {20,25,30} // Column 0: Barb lengths in points
barbData[0][1]= {0.523599,0.785398,1.0472} // Column 1: Barb angle in radians
barbData[0][2]= {10,20,30} // Column 2: Wind speed code from 0 to 40

// Set trace to arrow mode to turn barbs on
ModifyGraph arrowMarker(yData) = {barbData, 1, 10, 1, 1}

// Make an RGB color wave
Make/O/N=(3,3) barbColor
Edit /W=(440,272,820,439) barbColor

// Store some colors in the color wave
barbColor[0][0]= {65535,0,0} // Red
barbColor[0][1]= {0,65535,0} // Green
barbColor[0][2]= {0,0,65535} // Blue

// Turn on color as f(z) mode
ModifyGraph zColor(yData)={barbColor,*,*,directRGB,0}

To see a demo of wind barbs choose File→Example Experiments→Feature Demos2→Barbs and Arrows.

See the arrowMarker keyword under ModifyGraph (traces) on page V-453 for details on the construction
of the barb data wave.

The various color as f(z) modes are explained under Setting Trace Properties from an Auxiliary (Z) Wave
on page II-259. You can eliminate the barbColor wave by using a color table lookup instead of a color wave.

Creating Split Axes
You can create split axes using the same techniques just described for creating stacked plots. Simply plot
your data twice using different axes and then adjust the axes so they are stacked. You can then adjust the
range of the axes independently. You can use draw tools to add cut marks.

WaveMetrics supplies a macro package to automate all aspects of creating split axes except setting the range
and adjusting the ticking details of the axes. To use the macro package, select the Graph→Packages→Split
Axes menu item. An example experiment using these macros is provided in the Examples folder.

Chapter II-12 — Graphs

II-304

Before using the macros, you should create the graph in
near final form using just the main axes. For best results,
especially if you will be using cut marks, you should
work with the graph at actual size before adding the split
axes. It is recommended that you create a recreation
macro just before executing the split axis macros. This is
so you can easily revert in case you need to change the
presplit setup.

After creating the split, you can execute the
AddSplitAxisMarks macro to add cut marks between the
two axes. You can then use the drawing tools to duplicate the cut marks if you want marks on the traces as
well as the axes. Of course, you can also draw your own cut marks. You should use the default Plot Relative
coordinate system for cut marks so they will remain in the correct location should you resize the graph.

Some programs draw straight lines between data points on either side of the split. While such lines provide
the benefit of connecting traces for the viewer, they also are misleading and inaccurate. This macro package
accurately plots both sections and does not attempt to provide a bridge between the two sections. If you feel
it is necessary, you can use drawing tools to add a connecting bridge. You can even erase sections of the exist-
ing traces by drawing a rectangle or polygon with zero line thickness and with the fill mode set to erase.

Live Graphs and Oscilloscope Displays
This section will be of interest mainly to those involved in data acquisition.

Normally, when the data in a wave is modified, all graphs containing traces derived from that wave are
redrawn from scratch. Although fast compared to other programs, this process generally takes at least one
second, thereby limiting the update rate to approximately one Hz. However, if you specify one or more
traces in a graph as being “live” then Igor will configure the graph such that updating the display does not
require redrawing from scratch and is therefore much faster than normal. With short (100 point) waves on
a fast computer you may be able to attain a 20 Hz update rate or better. The fast update will only be obtained
when certain conditions are observed.

Note: When graphs are redrawn in live mode, autoscaling is not done.

To specify a trace in a graph as being live you must use the live keyword with the ModifyGraph command.
There is no dialog support for this setting.
ModifyGraph live(traceName)= mode

Mode can be 0 or 1. Zero turns live mode off for the given trace.

WaveMetrics provides an example experiment that generates and displays synthetic data. You should use
this experiment to get a feel for the performance you might expect on your particular computer as a function
of the window size, number of points in the live wave, color setup of your monitor and the live modes. The
example experiment is called “Live mode” and can be found in the “Examples:Feature Demos” folder.

Although live mode 1 is not restricted to unity thickness solid lines or dots modes, you will get the best per-
formance if you do use these settings.

Another feature that may be of use is the quick append mode. It is intended for applications in which a data
acquisition task creates new waves periodically. It permits you to add the new waves to a graph very
quickly. To invoke a quick append, use the /Q flag in an AppendToGraph command. There is no dialog
support for this setting.

A side effect of quick append is that it marks the wave as not being modified since the last update of graphs
and therefore prevents other graphs containing the same wave, if any, from being updated. See the “Quick
Append” example experiment in the “Examples:Feature Demos” folder.

Chapter II-12 — Graphs

II-305

Graph Preferences
Graph preferences allow you to control what happens when you create a new graph or add new traces to
an existing graph. To set preferences, create a graph and set it up to your taste. We call this your prototype
graph. Then choose Capture Graph Prefs from the Graph menu.

Preferences are normally in effect only for manual operations, not for automatic operations from Igor pro-
cedures. This is discussed in more detail in Chapter III-17, Preferences.

When you initially install Igor, all preferences are set to the factory defaults. The dialog indicates which
preferences you have not changed by displaying “default” next to them.

The Window Position and Size preference affects the creation of new graphs only. New graphs will have
the same size and position as the prototype graph.

The Page Setup preference is somewhat unusual because all graphs share the same page setup settings, as
shown in the Page Setup dialog. The captured page setup is already in use by all other graphs. The utility
of this category is that new experiments will use the captured page setup for graphs.

The “XY Plots:Wave Styles” preference category refers to the various wave-specific settings in the graph,
such as the line type, markers and line size, set with the Modify Trace Appearance dialog. This category
also includes settings for Waveform plots. Each captured wave style is associated with the index of the
wave it was captured from. The index of the first wave displayed or appended to a graph is 0, the second
appended wave has an index of 1, and so on.These indices are the same as are used in style macros. See
Graph Style Macros on page II-307.

If preferences are on when a new graph with waves is created or when a wave is appended to an existing
graph, the wave style assigned to each is based on its index. The wave with an index of 2 is given the cap-
tured style associated with index 2 (the third wave appended to the captured graph).

You might wonder what style is applied to the fifth and sixth waves if only four waves appeared in the
graph from which wave style preferences were captured. You have two choices; either the factory default
style is used, or the styles repeat with the first wave style and then the second style. You make this choice
in the Miscellaneous Settings dialog, with the Repeat Wave Style Prefs in Graphs checkbox. With that box
selected, the fifth and sixth waves would get the first and second captured styles; if deselected, they would
both get the factory default style, as would any other waves subsequently appended to the graph.

The XY Plots:Axes and Axis Labels preferences category captures all of the axis-related settings for axes in
the graph. Only axes used by XY or Waveform plots have their settings captured. Axes used solely for an
category, image, or contour plot are ignored. The settings for each axis are associated with the name of the
axis it was captured from.

Indicates that the current
page setup is the factory
default page setup.

Captures preferences for
the selected items from the
active graph window. Resets preferences for the selected

items to the factory defaults.

Chapter II-12 — Graphs

II-306

Even if preferences are on when a new graph with waves is created or when a wave is newly appended to
an existing graph, the wave is still displayed using the usual default left and bottom axes unless you explic-
itly specify another named axis. The preferred axes are not automatically applied, but they are listed by
name in the New Graph, and the various Append to Graph dialogs, in the two Axis pop-up menus so that
you may select them.

For example, suppose you capture preferences for an XY plot using axes named “myRightAxis” and
“myTopAxis”. These names will appear in the X Axis and Y Axis pop-up menus in the New Graph and
Append Traces to Graph dialogs.
• If you choose them in the New Graph dialog and click Do It, a graph will be created containing newly-

created axes named “myRightAxis” and “myTopAxis” and having the axis settings you captured.
• If you have a graph which already uses axes named “myRightAxis” and “myTopAxis” and choose

these axes in the Append Traces to Graph dialog, the traces will be appended to those axes, as usual,
but no captured axis settings will be applied to these already-existing axes.

Captured axes may also be specified by name on the command line or in a macro or function, provided pref-
erences are on:
Function AppendWithCapturedAxis(wav)

Wave wav
Variable oldPrefState
Preferences 1; oldPrefState = V_Flag // Turn preferences on
Append/L=myCapturedAxis wav // Note: myCapturedAxis must

// be vertical to use /L
Preferences oldPrefState // Restore old prefs setting

End

The Category Plots:Axes and Axis Labels and Category Plots:Wave Styles are analogous to the correspond-
ing settings for XY plots. Since they are separate preference categories, you have can independent prefer-
ences for category plots and for XY plots. Similarly, preferences for image and contour plots are
independent of preferences for other types. See Chapter II-13, Category Plots, Chapter II-14, Contour Plots,
and Chapter II-15, Image Plots.

How to use Graph Preferences
Here is our recommended strategy for using graph preferences:
1. Create a new graph containing a single trace. Use the axes you will normally use.
2. Make the graph appear as you prefer using the Modify Graph dialog, Modify Trace Appearance

dialog, the Modify Axis dialog, etc. Move the graph to where you prefer it be positioned.
3. Choose the Graph→Capture Graph Prefs menu. Select the desired categories, and click Capture Prefs.
4. Bring up the Miscellaneous Settings dialog from the Misc menu, choose Graph Settings, and select

the Repeat Wave Style Prefs in Graphs checkbox.

Saving and Recreating Graphs
When you save an experiment all of its windows, including graphs, are saved as part of the experiment.
When you reopen the experiment all windows will be intact.

If you click in the close button of a graph window, Igor asks
you if you want to save a window recreation macro.

Igor presents the graph’s name as the proposed name for
the macro. You can replace the proposed name with any
valid macro name.

If you want to make a macro to recreate the graph, click Save or press Return or Enter. If you press Option
(Macintosh) or Alt (Windows) you will notice that the No Save button becomes the default allowing you to
press Return or Enter to dismiss the dialog without saving a recreation macro.

Chapter II-12 — Graphs

II-307

If you do choose to save, Igor will create a macro which, when invoked, will recreate the graph with its size,
position and stylistic presentation intact. The macro is placed in the procedure window where you can
inspect, modify or delete it as you like. The macro name also appears in the Graph Macros submenu of the
Windows menu.

You can invoke the macro by choosing it from the Windows menu or by typing its name on the command
line. The graph name for the graph that is recreated will be the same as the name of the macro that created it.

If you are sure that you don’t want to make a recreation macro for the graph you can press Option (Macin-
tosh) or Alt (Windows) while you click the close button of the graph window. This skips the dialog.

For a general discussion of saving, recreating, closing windows, see Chapter II-4, Windows.

Graph Style Macros
The purpose of a graph style macro is to allow you to create a number of graphs with the same stylistic
properties. Igor can automatically generate a style macro from a prototype graph. You can manually tweak
the macro if necessary. Later, you can apply the style macro to a new graph.

For example, you might frequently want to make a graph with a certain sequence of markers and colors and
other such properties. You could use preferences to accomplish this. The style macro offers another way and
has the advantage that you can have any number of style macros while there is only one set of preferences.

You create a graph style macro by making a prototype graph, setting each of the elements to your taste and
then, using the Window Control dialog, instructing Igor to generate a style macro for the window.

You can apply the style macro when you create a graph using the New Graph dialog. You can also apply it
to an existing graph by choosing the macro from the Graph Macros submenu of the Windows menu.

Example of Creating a Style Macro
As an example, we will create a style macro that defines the color and line type of five traces and some
aspects of the axes.

Since we want our style macro to define a style for five traces, we start by making five waves with the command
Make wave0, wave1, wave2, wave3, wave4

The length, numeric type and scaling of the waves does not matter. We need them only to have something
to put in our prototype graph.

We create the prototype graph using the New Graph item in the Windows menu. We want our graph to
have a right and a top axis as well as the standard left and bottom. Therefore we initially display wave0,
wave1 and wave2 in the prototype graph. Then, using the Append Traces to Graph item in the Graph menu,
we append wave3 and wave4 using the right and top axes.

Chapter II-12 — Graphs

II-308

You could create this graph with the New Graph dialog only, using the features provided by the More
Choices button.

All of the data in the waves is zero. To distinguish the five waves, we fill them with data using the following
command:
wave0=0; wave1=1; wave2=2; wave3=3; wave4=4

It will be clearer if both the left and the right axes cover the same range. So, we execute
SetAxis left, -1, 5; SetAxis right, -1, 5

Now, using the Modify Trace Appearance item in the Graph menu, we set the color and line style for each
of the waves to our liking:

Next, we set our axes to the desired state, using the Modify Axis dialog. Let’s turn minor ticks on and make
labels bold for all four axes. This is conveniently done by choosing Select All Axes from the Axis pop-up
menu at the top left corner of the dialog.

And then set up the appropriate controls in the Modify Axis dialog:

Now, we’re ready to generate the style macro. With the graph the active window, we use the Window
Control item in the Control submenu of the Windows menu. We enable the Create Style Macro checkbox.

Chapter II-12 — Graphs

II-309

When we click Do It, Igor generates a graph style macro and puts it in the procedure window.

The graph style macro for this example is:
Proc Graph0Style() : GraphStyle

PauseUpdate; Silent 1 // modifying window...
ModifyGraph/Z lStyle[1]=1,lStyle[2]=2,lStyle[3]=3,lStyle[4]=4
ModifyGraph/Z rgb[0]=(0,0,0),rgb[1]=(577,43860,60159)
ModifyGraph/Z rgb[2]=(56683,2242,1698)
ModifyGraph/Z rgb[3]=(65495,2134,34028),rgb[4]=(64512,62423,1327)
ModifyGraph/Z minor=1
ModifyGraph/Z fStyle=1
SetAxis/Z left -1,5
SetAxis/Z right -1,5

EndMacro

The macro will sometimes need some touchup. In this example, we see two SetAxis commands at the
bottom. For this example, we don’t really consider the axis range as part of the style, so we delete these lines.

Notice that the graph style macro does not refer to wave0, wave1, wave2, wave3 or wave4. Instead, it refers
to traces by index. For example,
ModifyGraph rgb[0]=(0,0,0)

sets the color for the trace whose index is 0 to black. A trace’s index is determined by the order in which the
traces were displayed or appended to the graph. In the Modify Trace Appearance dialog, the trace whose
index is zero appears at the top of the list.

The /Z flag used in the graph style macro ignores any potential errors if the command tries to modify a trace that
is not actually in the graph. For example, if you make a graph with three traces (indices from 0 to 2) and apply
this style macro to it, there will be no trace whose index is 3 at the time you run the macro. The command:
ModifyGraph rgb[3]= (65495,2134,34028)

would generate an error in this case. Adding the /Z flag continues macro execution and ignores the error.

Style Macros and Preferences
When Igor generates a graph style macro, it generates commands to modify the target graph according to
the prototype graph. It assumes that the objects in the target will be in their factory default states at the time the
style macro is applied to the target. Therefore, it generates commands only for the objects in the prototype
which have been modified. If Igor did not make this assumption, it would have to generate commands for
every possible setting for every object in the prototype and style macros would be very large.

Because of this, you should create the new graph with preferences off and then apply the style macro.

Applying the Style Macro
To use this macro, you would perform the following steps.
1. Turn preferences off by choosing Preferences Off from the Misc menu.
2. Create a new graph, using the New Graph dialog and optionally the Append Traces to Graph dialog.

Chapter II-12 — Graphs

II-310

3. Choose Graph0Style from the Graph Macros submenu in the Windows menu.
4. Turn preferences back on by choosing Preferences On from the Misc menu.

If you use only the New Graph dialog, you can use the shorter method:
1. Open the New Graph dialog, select the wave(s) to be displayed in the graph, and choose

Graph0Style from the Style pop-up menu in the dialog. Click Do It.

Igor automatically generates the Preferences Off and Preferences On commands to apply the style to the
new graph without being affected by preferences.

Limitations of Style Macros
Igor automatically generates style macro commands to set all of the properties of a graph that you set via
the ModifyGraph, Label and SetAxis operations. These are the properties that you set using the Modify
Trace Appearance, Modify Graph, and Modify Axis dialogs.

It does not generate commands to recreate annotations or draw elements. Igor’s assumption is that these
things will be unique from one graph to the next. If you want to include commands to create annotations
and draw elements in a graph, it is not too difficult, following these steps.
1. Make your prototype graph with annotations and draw elements.
2. Use the Window Control dialog to create a graph recreation macro (not a style macro).
3. In the procedure window, copy the relevant commands from the graph recreation macro to the end

of the style macro. These are the commands that start with Tag, Textbox, Legend, or any of the
drawing-related operations. All of these commands will be at the end of the recreation macro.

There is a problem in using a Tag command in a style macro. This command needs to reference a particular
trace in the graph. It might look something like this:
Tag/N=text0 wave0, 10, "This is a test."

wave0 was in the prototype graph but it would probably not be in the target graph when the style macro is
applied. Your options would be to remove the Tag command from the style macro or to use the WaveName
function to provide an appropriate wave name when the macro is executed.

For example, to tag the first trace in the graph, you would use:
Tag/N=text0 $WaveName("",0,1), 10, "This is a test."

Even this would run into problems if the X scaling of the wave associated with the trace in the target graph
was different from the X scaling of the wave associated with the trace in the prototype graph, because the
parameter that sets the X location of the tag (10 in this case) would not be appropriate.

Also, the Tag command actually uses the name of a trace, not a wave. If the same wave is displayed more
than once, or if more than one wave with the same name is displayed, using $WaveName may attach the tag
to the wrong trace.

Where to Store Style Macros
If you want a style macro to be accessible from a single experiment only, you should leave them in the main
procedure window of that experiment. If you want a style macro to be accessible from any experiment then
you should store it in an auxiliary procedure file. See Chapter III-13, Procedure Windows for details.

Graph Pop-Up Menus
There are a number of contextual pop-up menus that you can use to quickly set colors and other graph
properties. To bring up a contextual menu on Macintosh, hold the Control key and click or, on Windows,
use the right mouse button. This is termed a contextual click.

Different contextual menus are available for clicks on traces, the interior of a graph (but not on a trace) and
axes. If you hold the Shift key before a contextual click on a trace or axis, the menu will apply to all traces
or axes in the graph.

Chapter II-12 — Graphs

II-311

You are encouraged to explore these menus.

Sometimes it is difficult to contextual click in the plot area of a graph and not hit a trace. In this case, try
clicking outside the plot area (but not on an axis.)

You can be sure you are over an axis before a contextual click because the cursor will change to a two-
headed arrow.

Graph Expansion
Normally, graphs are shown actual size but sometimes, when working with very small or very large
graphs, it is easier to work with an expanded or contracted screen representation. You can set an expansion
or contraction factor for a graph by Control-clicking (Macintosh) or right-clicking (Windows) in the graph
body (away from traces or axes) and choosing a value from the Expansion menu item.

The expansion setting affects only the screen representation. The logical size for printing or exporting is not
affected.

Chapter II-12 — Graphs

II-312

Graph Shortcuts
Action Shortcut (Macintosh) Shortcut (Windows)

To autoscale a graph Press Command-A. Press Ctrl+A.

To modify the appearance
or front-to-back drawing
order of a trace

Press Control and click the trace to get
a contextual menu.

Press Shift-Control to modify all
traces.

Double-click the trace to summon a
dialog.

Right-click the trace to get a
contextual menu.

Press Shift while right-clicking to
modify all traces.

Double-click the trace to summon a
dialog.

To modify the appearance
of an axis, axis labels, grid
lines, tick marks

Press Control and click the axis.

Press Shift-Control to modify all axes.

Double-click an axis to summon a
dialog.

Right-click the axis.

Press Shift and right-click to modify
all axes.

Double-click an axis to summon a
dialog.

To modify the appearance
of a contour plot

Control-click and choose Modify
Contour from the contextual menu or
press Shift and double-click the contour
plot.

 See also Chapter II-14, Contour Plots.

Right-click and choose Modify
Contour from the contextual menu or
press Shift and double-click the
contour plot.

See also Chapter II-14, Contour Plots.

To modify the appearance
of an image plot

Control-click and choose Modify
Image from the contextual menu.

See also Chapter II-15, Image Plots.

Right-click and choose Modify Image
from the contextual menu.

See also Chapter II-15, Image Plots.

To set background colors Press Control and click in the graph
body, away from any traces.

Press Ctrl and click in the graph body,
away from any traces.

To set the range of an axis Double-click tick mark labels to
summon a dialog.

Double-click tick mark labels to
summon a dialog.

To pan the graph Press Option and drag the body of the
graph.

Press Shift also to constrain the
direction of panning.

Press Alt and drag the body of the
graph.

Press Shift also to constrain the
direction of panning.

To offset a trace Click and hold the trace for about a
second, then drag. You can avoid
inadvertently triggering this feature by
pressing Caps Lock before clicking a
trace.

Click and hold the trace for about a
second, then drag. You can avoid
inadvertently triggering this feature by
pressing Caps Lock before clicking a
trace.

To adjust the position of an
axis or axis label

Drag the axis or label. Drag the axis or label.

To change a graph margin Press Option and click the axis and
drag. Drag beyond edge of graph to
return to default position.

Press Option and double-click an axis or
just double-click outside of the graph
body and axes to summon a dialog.

Press Alt and click the axis and drag.
Drag beyond edge of graph to return
to default position.

Press Alt and double-click an axis or
just double-click outside of the graph
body and axes to summon a dialog.

To change an axis label Double-click the label to summon a
dialog.

Double-click the label to summon a
dialog.

Chapter II-12 — Graphs

II-313

To change an annotation Double-click the annotation to
summon a dialog.

Double-click the annotation to
summon a dialog.

To connect a tag to a
different point

Press Option and drag the tag to the
new point. Don’t drag the arrow or
line; drag the tag body. Drag it off the
graph window to remove it.

Press Alt and drag the tag to the new
point. Don’t drag the arrow or line;
drag the tag body. Drag it off the
graph window to remove it.

To attach a cursor to a
particular trace

Drag the cursor from the info panel to
the trace or click the cursor name in
the info panel and choose a trace name
from the pop-up menu.

Drag the cursor from the info panel to
the trace or click the cursor name in
the info panel and choose a trace name
from the pop-up menu.

To get information about a
particular trace

Press Command-Option-I to turn on
Trace Info tags.

Press Ctrl+Alt+I to turn on Trace Info
tags.

To show or hide a graph’s
tool palette

Press Command-T. Press Ctrl+T.

To move or resize a user-
defined control without
using the tool palette

Press Command-Option and click the
control. With Command-Option still
pressed, drag or resize it.

See also Chapter III-14, Controls and
Control Panels.

Press Ctrl+Alt and click the control.
With Ctrl+Alt still pressed, drag or
resize it.

See also Chapter III-14, Controls and
Control Panels.

To modify a user-defined
control

Press Command-Option and double-
click the control. This displays a
dialog that you use to modify all
aspects of the control. If the control is
already selected, you don’t need to
press Command-Option.

Press Ctrl+Alt and double-click the
control. This displays a dialog that you
use to modify all aspects of the control.
If the control is already selected, you
don’t need to press Ctrl+Alt.

To edit a user-defined
control’s action procedure

With the graph in modify mode (tools
showing, second icon from the top
selected) press Option and double-
click the control. This displays the
procedure window containing the
action procedure or beeps if there is
no action procedure.

With the graph in modify mode (tools
showing, second icon from the top
selected) press Alt and double-click
the control. This displays the
procedure window containing the
action procedure or beeps if there is
no action procedure.

To nudge a user-defined
control’s position

Select the control and press Arrow keys.

Press Shift to nudge faster.

Select the control and press Arrow keys.

Press Shift to nudge faster.

Action Shortcut (Macintosh) Shortcut (Windows)

Chapter II-12 — Graphs

II-314

Chapter

II-13
II-13Category Plots

Overview.. 316
Creating a Category Plot.. 316

Combining Category Plots and XY Plots ... 317
Modifying a Category Plot .. 317

Bar and Category Gaps ... 317
Tick Mark Positioning... 318
Fancy Tick Mark Labels .. 318
Horizontal Bars .. 319
Reversed Category Axis.. 319
Category Axis Range... 319
Bar Drawing Order.. 319

Stacked Bar Charts .. 320
Numeric Categories .. 322
Combining Numeric and Category Traces ... 322
Category Plot Pitfalls .. 322

Pitfall: X Scaling Moves Bars.. 322
Pitfall: Changing the Drawing Order Breaks Stacked Bars ... 323
Pitfall: Bars Disappear with “Draw to next” Mode .. 323

Category Plot Preferences.. 323
Category Plot Axes and Axis Labels ... 324
Category Plot Wave Styles ... 324
How to Use Category Plot Preferences... 324

Chapter II-13 — Category Plots

II-316

Overview
Category plots are two-dimensional plots with a continuous numeric variable on one axis and a nonnu-
meric (text) category on the other. Most often they are presented as bar charts with one or more bars occu-
pying a category slot either side-by-side or stacked or some combination of the two. You can also combine
them with error bars:

Category plots are created in ordinary graph windows when a text wave is used as the X data. For more on
graphs, see Chapter II-12, Graphs.

Creating a Category Plot
To create a category plot, first create your numeric wave(s) and your text category wave.

Note: The numeric waves used to create a category plot should have “point scaling” (X scaling with
Offset = 0 and Delta = 1). See Category Plot Pitfalls on page II-322 for an explanation.

Then use the Category Plot dialog (see the New submenu of the Windows menu). You can append to an
existing graph by choosing Category Plot from the Append to Graph submenu in the Graph menu. Select
the numeric waves in the Y Wave(s) list, and the category (text) wave in the X Wave list:

You can use the Display command directly to create a category plot:
Make/O control={100,300,50,500},test={50,200,70,300}
Make/O/T sample={"15 min","1 hr","6 hrs","24 hrs"}
Display control,test vs sample //vs text wave creates category plot
ModifyGraph hbFill(control)=5,hbFill(test)=7

8000

6000

4000

2000

0

c.
p.

m
.

Uninfected Virus #1 Virus #2 #2 Variant

 0 minutes
 10 minutes

Waves containing
category (text) data.
Select one.

Waves containing
numeric data. Select
one or more.

Chapter II-13 — Category Plots

II-317

SetAxis/A/E=1 left
Legend

Combining Category Plots and XY Plots
You can have ordinary XY plots and category plots in the same graph window. However, once an axis has
been used as either numeric or category, it is not usable as the other type.

For example, if you tried to append an ordinary XY plot to the above graph you would find that the bottom
(category) axis was not available in the Axis pop-up menu. If you try to append data to an existing category
plot using a different text wave as the category wave, the new category wave will be ignored.

The solution to these problems is to create a new axis using the Append Traces to Graph dialog or the
Append Category Plot dialog.

Modifying a Category Plot
Because category plots are created in ordinary graph windows, you can change the appearance of the cat-
egory plot using the same methods you use for XY plots. For example, you modify the bar colors and line
widths using the Modify Trace Appearance dialog. For information on traces, XY plots and graphs, see
Modifying Styles on page II-251.

The settings unique to category plots are described in the following sections.

Bar and Category Gaps
You can control the gap size between bars and between categories.

Generally, the category gap should be larger than the bar gap so that it is clear which bars are in the same
category. However, a category gap of 100% leaves no space for bars.

The gap sizes are set in the Modify Axis dialog (Graph menu or double-click the category axis):

Legend

500

400

300

200

100

0
15 min 1 hr 6 hrs 24 hrs

 control
 test

15 min 1 hr

Bar Gap

Bar Width (100%)

Category Width (100%)

Category Gap

Chapter II-13 — Category Plots

II-318

Tick Mark Positioning
You can cause the tick marks to appear in the center of each category
slot rather than at the edges. Bring up the Modify Axis dialog (Graph
menu or double-click the category axis) and select the “Tick in center”
checkbox in the “Auto/Man Ticks” pane. This looks best when there is
only one bar per category.

Fancy Tick Mark Labels
Tick mark labels on the category axis are drawn using the contents of your category text wave. In addition
to simple text, you can insert special escape codes in your category text wave to create multiline labels and
to include font changes and other special effects. The escape codes are exactly the same as those used for
axis labels and for annotation text boxes (see Modifying Annotations on page III-45). However, there is no
point-and-click way to insert the codes in this version of Igor Pro. You will have to either remember the
codes or use the Add Annotation dialog to create a string you can paste into a cell in a table (use the To Clip
button in the dialog).

Macintosh:Creating multiline labels is easy enough; just edit your category wave in a table and press Option-
Return (to insert a carriage return into the cell’s text) as needed:

Multiline labels will be center-aligned on a horizontal category axis and right-aligned on a left
axis but left-aligned on a right axis. You can override the default alignment using the alignment
escape codes as used in the Add Annotation dialog.

Sets the gap between bars within a category as a percentage of the
bar width. If there is only one bar per category, then this has no effect.

Sets the gap between the
last bar in one category and
the first bar in the next
category as a percentage of
the category width.

200

100

0

15 min 1 hr

200

100

0

15 min
(t0)

1 hr

Option-Returns aren’t displayed in table cells.

Press Option-Return to start a new line. Click this scroll arrow to see previous lines.

Chapter II-13 — Category Plots

II-319

Windows: You can make category labels with more than one line. Because it is impossible on Windows to
enter a return character in a table, you must make multiline labels on the command line, using
“\r” to separate the lines:
Make/T/N=5 CatWave // Mostly you won't need this line
CatWave[0]="Line 1\rLine2" // "\r" Makes first label with two lines

Multiline labels will be center-aligned on a horizontal category axis and right-aligned on a left axis but left-
aligned on a right axis. You can override the default alignment using the alignment escape codes as used in the
Add Annotation dialog. See the TextBox operation on page V-782 for a description of the formatting codes.

Horizontal Bars
To create a category plot in which the category axis runs vertically
and the bars run horizontally, create a normal vertical bar plot and
then select the Swap XY checkbox in the Modify Graph dialog
(Graph menu).

Reversed Category Axis
Although the ordering of the categories is determined by the ordering of the value (numeric) and category (text)
waves, you can reverse a category axis just like you can reverse a numeric axis. Double-click one of the category
axis tick labels or choose the Set Axis Range from the Graph menu to access the Axis Range pane in the Modify
Axes dialog. When the axis is in autoscale mode, select the Reverse Axis checkbox to reverse the axis range.

Category Axis Range
You can also enter numeric values in the min and max value items of the Axis Range pane of the Modify
Axes dialog. The X scaling of the numeric waves determine the range of the category axis. We used “point”
X scaling for the numeric waves, so the numeric range of the category axis for the 15 min, 1 hr, 6 hrs, 24hrs
example is 0 to 4. To display only the second and third categories, set the min to 1 and the max to 3.

Bar Drawing Order
When you plot multiple numeric waves against a single category axis you will have multiple bars within each
category group. (In the examples so far, there are two bars per category group.) The order in which the bars are
initially drawn is the same as the order of the numeric waves in the Display or AppendToGraph command:
Display control,test vs elapsed //control on left, test on right

200150100500

15 min

1 hr

15 min1 hr6 hrs24 hrs

15 min 1 hr 6 hrs 24 hrs

Normal Range

Reversed Range

x=0 x=4

x=4 x=0

500

400

300

200

100

0
1 hr 6 hrs

 control
 test

Chapter II-13 — Category Plots

II-320

You can change the drawing order in an existing graph using the Reorder Traces dialog (Graph menu) and
the Trace pop-up menu (see Graph Pop-Up Menus on page II-310).

The ordering of the traces is particularly important for stacked bar charts.

Stacked Bar Charts
You can stack one bar on top of the next by choosing one of several grouping modes in the Modify Trace
Appearance dialog (Graph menu or double-click in a bar). The modes are chosen from the Grouping pop-
up menu in the dialog. The pop-up menu options are:

For most uses, you will use the None and “Stack on next” modes which produce the familiar bar and
stacked bar charts.

In all of the Stacked Bar Chart examples that follow, the stacking mode is applied to the Gain Test #1 bar
and Gain Test #2 is the “next” bar.

We have offset Gain Test #1 horizontally by 0.1 so that you can see what is being drawn behind Gain Test #2.

Choosing “Draw to next” will cause the current bar to be in the same horizontal position as the next bar
and to be drawn from the y value of this trace to the Y value of the next trace.

Mode Mode Name Purpose

-1 Keep with next For special effects

0 None Side-by-side bars (default)

1 Draw to next Overlapping bars

2 Add to next Arithmetically combined bars

3 Stack on next Stacked bars

80

40

0

15 min 1 hr 6 hrs 24 hrs

 Gain Test #1 Gain Test #2

None Mode

Draw to Next Mode

80

40

0

15 min 1 hr 6 hrs 24 hrs

 Gain Test #1 Gain Test #2

Chapter II-13 — Category Plots

II-321

If the next bar is taller than the current bar then the current bar will not be visible because it will be hidden
by the next bar. The result is as if the current bar is drawn behind the next bar, as is done when bars are
displayed using a common numeric X axis.

“Add to next” is similar to “Draw to next” except the Y values of the current bar are added to the Y values
of the next bar(s) before plotting.

If the current Y value is negative and the next is positive then the final position will be shorter than the next
bar, as it is here for the 24 hrs bar.

“Stack on next” is similar to “Add to next” except bars are allowed only to grow, not shrink.

Negative values act like zero when added to a positive next trace (see the 24 hrs bar) and positive values act
like zero when added to a negative next trace (see the 1 hr bar). Zero height bars are drawn as a horizontal
line. Normally the values are all positive, and the bars stack additively, like the 15 min and 6 hrs bars.

“Keep with next” creates special effects in category plots. Use it when you want the current trace to be
plotted in the same horizontal slot as the next but you don’t want to affect the length of the current bar. For
example, if the current trace is a bar and the next is a marker then the marker will be plotted on top of the
bar. Here we set the Gain Test #2 wave to Lines from Zero mode, using a line width of 10 points.

“Keep with next” mode is also useful for category plots that don’t use bars; you can keep markers from dif-
ferent traces vertically aligned within the same category:

Add to Next Mode

80

40

0

15 min 1 hr 6 hrs 24 hrs

 Gain Test #1 Gain Test #2

80

40

0

15 min 1 hr 6 hrs 24 hrs

 Gain Test #1 Gain Test #2

Stack on Next Mode

80

40

0

15 min 1 hr 6 hrs 24 hrs

 Gain Test #1 Gain Test #2

Keep with Next Mode

Chapter II-13 — Category Plots

II-322

More details about these modes can be found in Grouping, Stacking and Adding Modes on page II-257.

Numeric Categories
You can create category plots with numeric categories by creating a text wave from your numeric category
data. Create a text wave containing the numeric values by using the num2str function. For example, if we
have years in a numeric wave:
Make years={1993,1995,1996,1997}

we can create an equivalent text wave:
Make/T/N=4 textYears= num2str(years)

Then create your category plot using textYears:
Display ydata vs textYears // vs 1993, 1995, 1996, 1997 (as text)

Combining Numeric and Category Traces
Normally when you create a category plot, you can append only another category trace (a numeric wave
plotted versus a text wave) to that plot. In rare cases, you may want to add a numeric trace to a category
plot. You can do this using the /NCAT flag. Here is an example:

Make/O/T catx = {"cat0", "cat1", "cat2"}
Make/O caty = {1, 3, 2}
Display caty vs catx
SetAxis/A/E=1 left

// Plot simulated original data for a category
Make/N=10/O cat1over = gnoise(1) + 1.5
SetScale/P x, 1.5, 1e-5, cat1over // Delta x can not be zero
AppendToGraph/NCAT cat1over
ModifyGraph mode(cat1over)=3, marker(cat1over)=19, rgb(cat1over)=(0,0,65535)

The /NCAT flag, used with AppendToGraph, tells Igor to allow adding a numeric trace to a category plot.
This flag was added in Igor Pro 6.20.

In Igor Pro 6.37 or later, the Display operation also supports the /NCAT flag. This allows you to create a
numeric plot and then append a category trace.

Category Plot Pitfalls
You may encounter situations in which the category plot doesn’t look like you expect it to.

Pitfall: X Scaling Moves Bars
Category plots position the bars using the X scaling of the value (numeric) waves. The X scaling of the cat-
egory (text) wave is completely ignored. It is usually best if you leave the X scaling of the category plot

0.1

1

La Ce Nd Sm

0.1

1

La Ce Nd Sm
None mode Keep with Next Mode

Chapter II-13 — Category Plots

II-323

waves at the default “point scaling.” In any event, the X scaling of the value (numeric) waves should be
identical. Differing X scaling will separate the bars in category plots containing multiple bars per category.
In the graph on the right the numeric waves have different X scaling

Pitfall: Changing the Drawing Order Breaks Stacked Bars
Stacked bar charts are heavily dependent on the concept of the “current bar” and the “next bar”. The modes
describe how the current bar is connected to the next bar, such as “Stack on next”.

If you change the drawing order of the traces, using the Reorder Traces dialog or the Trace pop-up menu,
one or more bars will have a new “next bar” (a different trace than before). Usually this means that a bar
will be stacking on a different bar. This is usually a problem only when the stacking modes of the traces
differ, or when smaller bars become hidden by larger bars.

After you change the drawing order, you may have to change the stacking mode(s). Bars hidden by larger bars
may have to be moved forward in the drawing order with the Reorder Traces dialog or the Trace pop-up menu.

Pitfall: Bars Disappear with “Draw to next” Mode
In “Draw to next” mode, if the next bar is taller than the current bar then the current bar will not be visible
because it will be hidden by the next bar.

You can change the drawing order with the Reorder Traces dialog or the Trace pop-up menu to move the
shorter bars forward in the drawing order, so they will be drawn in front of the larger bars.

Category Plot Preferences
You can change the default appearance of category plots by “capturing” preferences from a “prototype”
graph containing category plots. Create a graph containing a category plot (or plots) having the settings you
use most often. Then choose Capture Graph Prefs from the Graph menu. Select the Category Plots catego-
ries, and click Capture Prefs.

15 min 1 hr 6 hrs 24 hrs

SetScale/P x 0,1,"", control
SetScale/P x,0,1,"", test

15 min 1 hr 6 hrs 24 hrs

SetScale/P x 0,2,"", control
SetScale/P x,0,1,"", test

Same X scaling Different X scaling

The axis settings used for the text wave of
the category plot in the target graph will be
captured as the new preferred settings for
category (text wave) axes.

Factory default settings for both Category Plot
categories are currently in effect.

The wave styles of the numeric waves used in the
category plot in the target graph will be captured.

Chapter II-13 — Category Plots

II-324

Preferences are normally in effect only for manual operations, not for automatic operations from Igor pro-
cedures. This is discussed in more detail in Chapter III-17, Preferences.

Category Plot Axes and Axis Labels
When creating category plots with preferences turned on, Igor will use the Category Plot axis settings for
the text wave axis and XY plot axis settings for the numeric wave axis.

Only axes used by category plot text waves have their settings captured. Axes used solely for an XY plot,
image plot, or contour plot are ignored. Usually this means that only the bottom axis settings are captured (the
left axis is usually a numeric wave, and is therefore an XY Plot axis).

The category plot axis preferences are applied only when axes having the same name as the captured axis
are created by a Display or AppendToGraph operation when creating a category plot. If the axes existed
before the operation is executed, they will not be affected by the category plot axis preferences.

The names of captured category plot axes are listed in the X Axis pop-up menu of the New Category Plot
and Append Category Plot dialogs.

For example, suppose you capture preferences for a category plot that was created with the command:
AppendToGraph/R=myRightAxis/T=myTopAxis ywave vs textwave

Since only the X axis is a category axis, “myTopAxis” will appear in the X Axis pop-up menu in the category
plot dialogs. The Y Axis pop-up menu will be unaffected.
• If you choose “myTopAxis” in the X Axis pop-up menu of the New Category Plot dialog and click

Do It, a graph will be created containing a newly-created X axis named “myTopAxis” and having the
axis settings you captured.

• If you have a graph which already uses an axis named “myTopAxis” as a category axis and you
choose it from the X Axis pop-up menu in the Append Category Plot dialog, the category plot will
use the axis, but no captured axis settings will be (re)applied to it. (Of course, the preferred settings
were probably applied when the axis was created in the first place.)

You can capture category plot axis settings for the standard left or bottom axis, and Igor will save the set-
tings separately from left and bottom axis preferences captured for XY, image, and contour plots.

Remember, when creating category plots, Igor will use the category plot axis settings for the text wave axis
and XY plot axis settings for the numeric wave axis.

Category Plot Wave Styles
The captured category plot wave styles are automatically applied to a category plot when it is first created
(provided preferences are turned on; see How to Use Preferences on page III-432). “Wave styles” refers to
the various trace-specific settings for category plot numeric waves in the graph. The settings include trace
mode, line style, stacking mode, fill pattern, colors, etc., as set by the Modify Trace Appearance dialog.

If you capture the category plot preferences from a graph with more than one category plot, the first cate-
gory plot appended to a graph gets the wave style settings from the category first appended to the proto-
type graph. The second category plot appended to a graph gets the settings from the second category plot
appended to the prototype graph, etc. This is similar to the way XY plot wave styles work.

How to Use Category Plot Preferences
Here is our recommended strategy for using category preferences:
1. Create a new graph containing a single category plot. Use the axes you will normally use, even if they

are left and bottom. You can use other axes, too (choose New Axis in the Category Plot dialogs).
2. Use the Modify Trace Appearance dialog and the Modify Axes dialogs to make the category plot

appear as you prefer.
3. Choose Capture Graph Prefs from the Graph menu. Select the Category Plot checkboxes, and click

Capture Prefs.

Chapter

II-14
II-14Contour Plots

Overview.. 327
Contour Data ... 327

Gridded Data.. 327
XYZ Data... 328

Creating a Contour Plot ... 328
The Contour Plot Dialogs ... 330

Contour Data Pop-Up Menu... 330
X, Y, and Z Wave Lists... 330

Modifying a Contour Plot.. 331
Modify Contour Appearance Dialog .. 331

Contour Data Pop-Up Menu... 331
Levels.. 332
Update Contours Pop-Up Menu .. 332
Labels Pop-Up Menu ... 332
Line Colors Button.. 333
Show Boundary Checkbox.. 333
Show XY Markers Checkbox .. 333
Show Triangulation Checkbox ... 333
Interpolation Pop-Up Menu.. 334

All About Contour Traces.. 334
Contour Trace Names ... 334

Example: Contour Legend with Numeric Trace Names .. 334
Programming Notes... 335

The Color of Contour Traces.. 335
Color Tables... 335
Color Index Wave... 336
Color Index Wave Programming Notes.. 337
Log Color for Contour Traces ... 337
Overriding the Color of Contour Traces ... 338

Removing Contour Traces from a Graph... 338
Cursors on Contour Traces... 338
Contour Trace Updates... 338

Programming Note... 339
Drawing Order of Contour Traces .. 339
Extracting Contour Trace Data .. 340

Contour Instance Names ... 340
Examples ... 340

Programming Note... 341
Legends... 341
Contour Labels .. 341

Controlling Label Updates ... 341
Repositioning and Removing Contour Labels .. 341
Adding Contour Labels .. 342
Modifying Labels ... 342
Overriding the Contour Labels.. 342

Chapter II-14 — Contour Plots

II-326

Labels and Drawing Tools.. 343
Contouring Pitfalls.. 343

Insufficient Resolution .. 343
Crossing Contour Lines .. 344
Flat Areas in the Contour Data .. 344

Contour Preferences ... 344
Contour Appearance Preferences.. 345
Contour Axis Preferences ... 345
How to Use Contour Plot Preferences .. 345

References .. 345
Contour Plot Shortcuts... 346

Chapter II-14 — Contour Plots

II-327

Overview
A contour plot is a two-dimensional XY plot of a three-dimensional XYZ surface showing lines where the
surface intersects planes of constant elevation (Z).

One common example is a contour map of geographical terrain showing lines of constant altitude, but
contour plots are also used to show lines of constant density or brightness, such as in X-ray or CT images,
or to show lines of constant gravity or electric potential.

Contour Data
The contour plot is appropriate for data sets of the form:

z= f(x,y)
meaning there is only one Z value for each XY pair. This rules out 3D shapes such as spheres, for example.

You can create contour plots from two kinds of data:
• gridded data stored in a matrix
• XYZ triplets

Gridded Data
Gridded data is stored in a 2D wave, or “matrix wave”. By itself, the matrix wave defines a regular XY grid.
The X and Y coordinates for the grid lines are set by the matrix wave’s row X scaling and column Y scaling.

-1.0

-0.5

0.0

0.5

1.0

μm

-1.0 -0.5 0.0 0.5 1.0
μm

 14.5
 14

 14

 13.5

 13.5

 13.25

 13.25

 13

 12.75

 12.75

 12.75

 12.5

 12.5

Chapter II-14 — Contour Plots

II-328

You can also provide optional 1D waves that specify coordinates for the X or Y grid lines, producing a non-
linear rectangular grid like the one shown here (the dots mark XY coordinates specified by the 1D waves).

Contouring gridded data is computationally much easier than XYZ triplets and consequently much faster.

XYZ Data
XYZ triplets may be stored in a matrix wave of three columns, or in three separate 1D waves each supplying
X, Y, or Z values. You must use this format if your Z data does not fall on a rectangular grid. For example,
you can use this format for data on a circular grid or for Z values at random X and Y locations.

For best results, you should avoid having multiple XYZ triplets with the same X and Y values. If the contour
data is stored in separate waves, the waves should be the same length.

If your data is in XYZ form and you want to convert it to gridded data, you can use the ContourZ function
on an XYZ contour plot of your data to produce a matrix wave. The AppendImageToContour procedure in
the WaveMetrics Procedures folder produces such a matrix wave, and appends it to the top graph as an
image. Also see the Voronoi parameter of the ImageInterpolate operation on page V-295 for generating an
interpolated matrix.

XYZ contouring involves the generation of a Delaunay Triangulation of your data, which takes more time
than is needed for gridded contouring. You can view the triangulation by selecting the Show Triangulation
checkbox in the Modify Contour Appearance dialog.

Creating a Contour Plot
The first step in creating a contour plot is to create or load the data to be contoured.

Gridded (matrix) data or a 3-column matrix of XYZ triples can be loaded using the Load Waves dialog by
selecting the “Load columns into matrix” checkbox.

Leave the “Load columns into matrix” checkbox deselected to load columns into separate XYZ waves. You
can also load X, Y, and Z waves separately from different files.

Contour plots are appended to ordinary graph windows. All the features of graphs apply to contour plots:
axes, line styles, drawing tools, controls, etc. See Chapter II-12, Graphs.

You can create a contour plot in a new graph window with the New Contour Plot dialog. This dialog creates
a blank graph to which the plot is appended. Add a contour plot to an existing graph with the Append
Contour Plot dialog.

Loads multiple columns
into one matrix wave

Chapter II-14 — Contour Plots

II-329

You can also use the AppendMatrixContour (see page V-27) or AppendXYZContour (see page V-31)
operations:
Make/O/D/N=(50,50) mat2d //make some data to plot
SetScale x,-3,3,mat2d
SetScale y,-3,3,mat2d
mat2d = 3*(1-y)^2 * exp(-((x*(x>0))^2.5) - (y+0.5)^2)
mat2d -= 8*(x/5 - x^3 - y^5) * exp(-x^2-y^2)
mat2d -= 1/4 * exp(-(x+.5)^2 - y^2)
Display;AppendMatrixContour mat2d //This creates the contour plot
AppendImage mat2d //Adds a sense of depth

You can add a sense of depth to a matrix (gridded data) contour plot by using The Append Image Dialogs
to add an image plot to the same graph. If your data is in XYZ form, use the AppendImageToContour pro-
cedure (in the WaveMetrics Procedures folder) to create and append an image. For more on image plots,
see Chapter II-15, Image Plots.

Creating a New Contour Plot
Appending a Contour Plot

to an Existing Graph

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

 9 8
 7

 6

 6

 5

 5

 4

 4

 3

 3

 2

 1

 1

 0

 0
 -1

 -1

 1
 2

-3

-2

-1

0

1

2

-3 -2 -1 0 1 2

AppendMatrixContour mat2d AppendMatrixContour mat2d
AppendImage mat2d

Chapter II-14 — Contour Plots

II-330

The Contour Plot Dialogs
Choose New Contour Plot from the Windows menu to bring up the New Contour Plot dialog.

The Title, Style, X Axis and Y Axis items work the same as in the New Graph dialog (see Creating Graphs
on page II-240). You can specify a new title for the graph and select or create the axes used in the contour
plot. Use the Style pop-up menu to apply a style macro to the newly created graph window.

The Append Contour Plot dialog is similar, except that the Only Waves from Target, Title, and Style items
are missing.

Contour Data Pop-Up Menu
The first thing you should do when using this dialog is to choose the type of data you want to contour using
the Contour Data pop-up menu:

This limits the waves displayed in the Z Wave list to that particular kind of data. The pop-up menu also
determines whether the AppendMatrixContour or AppendXYZContour operation is used to generate the
final command.Select the Only Waves from Target checkbox to show only the waves in the target window
(most useful when the target window is a table).

X, Y, and Z Wave Lists
The second thing you should do is choose from the Z Wave list the data you want to contour. This limits
the choices shown in the X Wave and Y Wave lists to those which can be combined with that Z wave and
the selected contour operation.

When “Matrix of Z Values” is chosen from the Contour Data pop-up menu, choosing _calculated_ from the
X Wave list generates X coordinates from the row X scaling of the matrix selected in the Z Wave list. Choos-
ing _calculated_ from the Y Wave list uses the column Y scaling to provide Y coordinates.

Choose the type of data you want to contour.

Only waves of the selected
type which are suitable for
contouring, will be listed
here.

Click here to modify the
contour’s initial appearance
(contour levels, colors,
labels, etc.).

The Display; command
creates a blank graph to
append the contour to. Enter a title for the graph here. If you leave it blank, Igor will generate a default title.

Y values will be calculated from the matrix column scaling.

Chapter II-14 — Contour Plots

II-331

You can also select a 1D wave to provide the X or Y coordinates for a matrix of Z values; only those waves
with the proper length for the selected Z Wave are shown in the X Wave and Y Wave lists. For details, see
the AppendMatrixContour operation on page V-27 and AppendXYZContour operation on page V-31.

When “Matrix of X, Y, Z Columns” is chosen from the Contour Data pop-up menu, the X Wave and Y Wave
lists aren’t necessary and are hidden. Igor expects the matrix selected in the Z Wave list to have X coordi-
nates in the first column, Y in the second, and Z in the third.

When “X, Y, and Z Waves” is selected, the X Wave and Y Wave lists are updated whenever a new Z wave
is selected so that only waves with matching lengths are shown.

Modifying a Contour Plot
You can change the appearance of the contour plot using the Modify Contour Appearance dialog. This
dialog is also available as a subdialog of the New Contour Plot dialog.

Tip #1 You can open the Modify Contour Appearance dialog by Shift-double-clicking the plot area of a
graph. The graph must contain a contour plot for this to work.

Tip #2 Use the preferences to change the default contour appearance, so you won’t be making the same
changes over and over. See Contour Preferences on page II-344.

Another way to open the dialog is by Control-clicking (Macintosh) or right-clicking (Windows) in
the plot area and choosing Modify Contour from the resulting pop-up menu.

Modify Contour Appearance Dialog

Contour Data Pop-Up Menu
The Contour Data pop-up menu shows the “contour instance name” of the contour plot being modified.
The name of the contour plot is the same as the name of the Z wave containing the contour data.

The Z wave or matrix wave of the contour plot being modified.

Contour lines are drawn at these
Z levels.

Range of automatic levels normally
spans the range of Z values, but can
be changed by entering number(s)
here.

If updating your contour lines takes
a long time, you might want to
change this.

Sets colors of
contour lines.

Turns labels off, or controls when they are updated.

Chapter II-14 — Contour Plots

II-332

If the graph contains more than one contour plot, you can use this pop-up menu to change all contour plots
in the target graph.

If the graph contains two contour plots using the same Z wave name, an instance number is appended to those
Z wave names in this pop-up menu. See Instance Notation on page IV-16, and Contour Instance Names
on page II-340.

Levels
Each contour trace draws lines at one constant Z level. The Z levels are
assigned automatically or manually as specified in this part of the dialog.

Igor computes automatic levels by subdividing the range of Z values into
approximately the number of requested levels. You can instruct Igor to
compute the Z range automatically from the minimum and maximum of the
Z data, or to use a range that you specify in the dialog. Igor attempts to
choose “nice” contour levels that minimize the number of significant digits in the contour labels. To achieve
this, Igor may create more or fewer levels than you requested.

You can specify manual levels directly in the dialog in several ways:
• Linearly spaced levels (constant increment) starting with a first level and incrementing by a speci-

fied amount.
• A list of arbitrary levels stored in a wave you choose from a pop-up Wave Browser.
• A list of arbitrary levels you enter in the dialog that appears when you select the More Levels check-

box. These levels are in addition to automatic, manual, or from-wave levels.

The More Levels dialog can be used for different purposes:
• To add a contour level to those already defined by the automatic, manual, or from-wave levels. You

might do this to indicate a special feature of the data.
• As the only source of arbitrary contour levels, for complete control of the levels. You might do this

to slightly change a contour level to avoid problems (see Contouring Pitfalls on page II-343). Dis-
able the auto or manual levels by entering 0 for the number of levels. The only contour levels in effect
will be those entered in the More Levels dialog.

In the future, we may add a button in the More Levels dialog to copy the automatic or manual levels into the
More Levels dialog and automatically disable the automatic or manual levels. The Contour Levels WaveMet-
rics procedures will currently help in this regard (look in the WM Procedures Index help file for details).

Update Contours Pop-Up Menu
Igor normally recalculates and redraws the contour plot whenever any
change occurs that might alter its appearance. This includes changes to any
data waves and the wave supplying contour levels, if any. Since calculating
the contour lines can take a long time, you may want to disable this automatic update with the Update Con-
tours pop-up menu.

“Off” completely disables updating of the contours for any reason. Choose “once, now” to update the
contour when you click the Do It button. “Always” selects the default behavior of updating whenever the
contour levels change.

Labels Pop-Up Menu
Igor normally adds labels to the contour lines, and
updates them whenever the contour lines change
(see Update Contours Pop-Up Menu on page
II-332). Since updating plots with many labels can
take a long time, you may want to disable or
modify this automatic update with the Labels pop-up menu.

“None” removes any existing contour labels, and prevents any more from being generated.

Chapter II-14 — Contour Plots

II-333

“Don’t update any more” keeps any existing labels, and prevents any more updates. This is useful if you
have moved, removed, or modified some labels and you want to keep them that way.

“Update now, once” will update the labels when you click the Do It button, then prevents any more
updates. Use this if updating the labels takes too long for you to put up with automatic updates.

“If contours change”, the default, updates the labels whenever Igor recalculates the contour lines.

“Always update” is the most aggressive setting. It updates the labels if the graph is modified in almost any
way, such as changing the size of the graph or adjusting an axis. You might use this setting temporarily
while making adjustments that might otherwise cause the labels to overlap or be too sparse.

Click Label Tweaks to change the number format and appearance of the contour labels with the Contour
Labels dialog. See Modifying Labels on page II-342.

For more than you ever wanted to know about contour labels, see Contour Labels on page II-341.

Line Colors Button
Click the Line Colors button to assign colors to the contour lines according to their Z level, or to make them
all the same color:

Autoscaled color mapping assigns the first color in a color table to the minimum Z value of the contour data
(not to the minimum contour level), and the last color to the maximum Z value.

For details about the color index wave, see The Color of Contour Traces on page II-335.

You can override the color set by this dialog with the Modify Trace Appearance Dialog. Also see Overrid-
ing the Color of Contour Traces on page II-338.

Show Boundary Checkbox
Click this to generate a trace along the perimeter of the contour data in the XY plane. For a matrix contour, the
perimeter is simply a rectangle enclosing the minimum and maximum X and Y. The perimeter of XYZ triplet
contours connects the outermost XY points. This trace is updated at the same time as the contour level traces.

Show XY Markers Checkbox
Click this to generate a trace that shows the XY locations of the contour data. For a matrix contour, the loca-
tions are by default marked with dots; for XYZ triplet contours they are shown using markers. As with any
other contour trace, you can change the mode and marker of this trace with the Modify Trace Appearance
dialog. This trace is updated at the same time as the contour level traces.

Show Triangulation Checkbox
Click this to generate a trace that shows the Delaunay triangulation of the contour data. This is available for
only XYZ triplet contours. This trace is updated at the same time as the contour level traces.

Rainbow colors normally start with red
and end with violet. Click here to start
with violet and end with red.

The 3 columns in this matrix wave
should contain red, green, and blue
values. The color for a contour line at
level = Z comes from the row whose X
scaling most closely matches Z.

The default color setting
is the Rainbow color table
with autoscaled color
mapping.

Enter numbers here to map the first and last colors to specific Z

Chapter II-14 — Contour Plots

II-334

Interpolation Pop-Up Menu
XYZ triplet contours can be interpolated to increase the apparent resolution, resulting in smoother contour
lines. The interpolation uses the original Delaunay triangulation. Increasing the resolution requires more
time and memory; settings higher than x16 are recommended only to the very patient.

All About Contour Traces
Igor Pro creates XY pairs of double-precision waves to contain the contour trace data, and displays them as
ordinary graph traces. Each trace draws all the curves for one Z level. If a single Z level generates more than
one contour line, Igor uses a blank (NaN) at the end of each contour line to create a gap between it and the
following line.

The same method is used to display markers at the data’s XY coordinates, the XY domain’s boundary, and
(for XYZ triplet contours only) the Delaunay triangulation.

The names of these traces are fabricated from the name of the Z data wave or matrix. See Contour Trace
Names on page II-334.

One important special property of these waves is that they are private to the graph. These waves will not
show up in any other dialog and are not accessible from the command line. There is a trick you can use to
copy these waves, however. See Extracting Contour Trace Data on page II-340.

The contour traces (which are the visible manifestation of these waves), do show up in the Modify Trace
Appearance dialog, and can be named in commands just like other traces.

There is often no need to bother with the individual traces of a contour plot because the Modify Contour Appear-
ance dialog provides adequate control over the traces for most purposes. However, if you want to distinguish
one or more contour levels (to make them dashed lines, for example) you can do this by modifying the traces
using the Modify Trace Appearance dialog. Also see Overriding the Color of Contour Traces on page II-338.

Contour Trace Names
The name of a contour trace is usually something like “zwave=2.5”, indicating that the trace is the contour
of the z data set “zwave” at the z=2.5 level. A name like this must be enclosed in single, noncurly quotes
when used in a command:
ModifyGraph mode('zwave=2.5')=2

This trace naming convention is the default, but you can create a different naming convention when you
first append a contour to a graph by adding the proper /F parameters to AppendMatrixContour or
AppendXYZContour commands.

The contour dialogs do not generate these /F commands, but you can add them to commands the dialogs
generate by using the To Cmd Line button instead of the Do It button.

See the AppendMatrixContour operation on page V-27 and the AppendXYZContour operation on page
V-31 for a more thorough discussion of /F.

Example: Contour Legend with Numeric Trace Names
To make a legend contain slightly nicer wording you can omit the “zwave=” portion from trace names with
/F="%g":
AppendMatrixContour/F="%g" zw // trace names become just numbers

Chapter II-14 — Contour Plots

II-335

Note: You can manually edit the legend text to remove the single quotes around the trace names.
Double-click the legend to bring up the Modify Annotation dialog.

For details on creating contour plot legends, see Legends on page II-341.

Programming Notes
The TraceNameList function returns a string which contains a list of the names of contour traces in a graph.
You can use the name of the trace to retrieve a “wave reference” to the values in the trace with the Trace-
NameToWaveRef (see page V-799) . See also Extracting Contour Trace Data on page II-340.

If a graph happens to contain two traces with the same name, “instance notation” uniquely identifies them.
For example, two traces named “2.5” would show up in the Modify Trace Appearance dialog as “2.5” and
“2.5#1”. On the command line, you would use something like:
ModifyGraph mode('2.5'#1)=2

Notice how the instance notation (the “#1” part) is outside the single quotes. This instance notation is
needed when the graph contains two contour plots that generate identically named traces, usually when
they use the same /F parameters and draw a contour line at the same level (z=2.5).

See Instance Notation on page IV-16. Also see Contour Instance Names on page II-340.

The Color of Contour Traces
By default, contour traces are assigned a color from the Rainbow color table based on the contour trace’s Z
level. You can choose different colors in the Line Colors subdialog of the Modify Contour Appearance dialog.

The Line Colors dialog provides three choices for setting the contour trace colors:
1. All contour traces can be set to the same color.
2. The color for a trace can be selected from a “color index wave” (that you must create) by matching

the trace’s Z level with the color index wave X index.
3. The color for a trace can be computed from a chosen built-in color table by matching the trace’s Z

level with the range of available colors.

Color Tables
When you use a built-in color table to supply colors, Igor maps the Z level to an entry in the color table. By
default, Igor linearly maps the entire range of Z levels to the range of colors in the table by assigning the
minimum Z value of the contour data to the first color in the table, and the maximum Z value to the last
color:

 'zw=-2'
 'zw=-1'
 'zw=0'
 'zw=1'
 'zw=2'
 'zw=3'
 'zw=4'
 'zw=5'
 'zw=6'
 'zw=7'
 'zw=8'
 'zw=9'

 '-2'
 '-1'
 '0'
 '1'
 '2'
 '3'
 '4'
 '5'
 '6'
 '7'
 '8'
 '9'

/F="%s=%g" (default) /F="%g"

Chapter II-14 — Contour Plots

II-336

With the Modify Contour Appearance Dialog, you can assign a specific Z value to the color table’s first and
last colors. For example, you can use the first half of the color table by leaving First Color on Auto, and
typing a larger number (2* Z Max -Z Min, actually) for the Last Color.

Color Index Wave
You can create your own range of colors by creating a color index wave. The wave must be a 2D wave with
three columns containing red, green, and blue values that range from 0 (zero intensity) to 65535 (full inten-
sity), and a row for each color. Igor finds the color for a particular Z level by choosing the row in the color
index wave whose X index most closely matches the Z level:

Red
Orange
Yellow
Green
Cyan
Blue
Violet

Range
of Z
data

First Color

Example Color

Last Color

Rainbow
Color
Table

Minimum Z

Maximum Z

Example Z Level

k%k%

Automatic Mode Color Table Mapping

Using the First Half of a Color Table

Auto Levels mode shows the minimum and
maximum Z values of the contour data here.

Enter 2 * maximum Z - minimum Z to use only the first half of the color table.

red= 65535,
green= 10751.8,
blue= 10751.8

X scaling
index closest

to 0.5

X
index

Column 0
Red

Column 1
Green

Column 2
Blue

Choosing a color for Z contour level = 0.5

Chapter II-14 — Contour Plots

II-337

To choose the row, Igor converts the Z level into a row number as if executing:
colorIndexWaveRow= x2pnt(colorIndexWave,Z)

which rounds to the nearest row and limits the result to the rows in the color index wave.

When the color index wave has default X scaling (the X index is equal to row number), then row 0 contains
the color for z=0, row 1 contains the color for z=1, etc. By setting the X scaling of the wave (Change Wave
Scaling dialog), you can control how Igor maps Z level to color. This is similar to setting the First Color and
Last Color values for a color table.

Color Index Wave Programming Notes
Looking up a color in a color index wave can be expressed programmatically as:
red= colorIndexWave (Z level)[0]
green= colorIndexWave (Z level)[1]
blue= colorIndexWave (Z level)[2]

where () indexes into rows using X scaling, and [] selects a column using Y point number (column number).

Here is a code fragment that creates a color index wave that varies from blue to red:
Function BlueRedColorIndexWave(numberOfColors,zMin,zMax)

Variable numberOfColors
Variable zMin,zMax // from min, max of contour or image data

Make/O/N=(numberOfColors,3) myColors
Variable white=65535 // black is zero
Variable colorStep= white/(numberOfColors-1)

myColors[][0]= colorStep*p // red increases with row number,
myColors[][1]= 0 // no green
myColors[][2]= colorStep*(numberOfColors-1-p) // blue decreases

SetScale/I x,zMin,zMax,myColors // Match X scaling to Z range
End

Log Color for Contour Traces
In Igor Pro 6.22, the ability to map the color table and color index colors in a logarithmic fashion was added
with the ModifyContour logLines=1 command, which is controlled by the Log Color checkbox in the
Line Colors dialog. When checked, the colors change more rapidly at smaller contour z level values than at
larger values.

For a color index wave, the colors are mapped using the log(color index wave's x scaling) and log(contour
z level) values this way:

colorIndexWaveRow = (nRows-1)*(log(Z)-log(xMin))/(log(xmax)-log(xMin))

where,

nRows = DimSize(colorIndexWave,0)
xMin = DimOffset(colorIndexWave,0)
xMax = xMin + (nRows-1) * DimDelta(colorIndexWave,0)

The colorIndexWaveRow value is rounded before it is used to select a color from the color index wave.

A similar mapping is performed with color tables, where the xMin and xMax are replaced with the auto-
matically determined or manually provided zMin and zMax values.

Chapter II-14 — Contour Plots

II-338

Overriding the Color of Contour Traces
You can override the color set by the Line Color subdialog by using the Modify Trace Appearance dialog,
the ModifyGraph command, or by Control-clicking (Macintosh) or right-clicking (Windows) in the graph’s
plot area to pop up the Trace Pop-Up Menu. The color you choose will continue to be used until either:
1. The trace is removed when the contours are updated (because the levels changed, for instance),
2. Or you choose a new setting in the Line Color subdialog.

Removing Contour Traces from a Graph
Removing traces from a contour plot with the RemoveFromGraph operation or the Remove from Graph dialog
will work only temporarily. As soon as Igor updates the contour traces, any removed traces may be replaced.

You can prevent this replacement by disabling contour updates with the Modify Contour Appearance
dialog. It is better, however, to use the Modify Contour Appearance dialog to control which traces are
drawn in the first place.

To permanently remove a particular automatic or manual contour level, you are better off not using manual
levels or automatic levels at all. Use the More Levels dialog to explicitly enter all the levels, and enter zero
for the number of manual or automatic levels.

Tip: Make a legend in the graph to list the contour traces. The trace names normally contain the
contour levels. To do this, select the command window, type Legend, and press Return or Enter.

Similarly, if you don’t want the triangulation or XY marker traces to be drawn, use the Modify Contour
Appearance dialog to turn them off, rather than removing them with the Remove from Graph dialog.

Cursors on Contour Traces
You can attach cursors to a contour trace. Just like any other trace, the X and Y values are shown in the graph
info panel (choose Show Info from the Graph menu). When the cursor is attached to a contour line the Z
value (contour level) of the trace is also shown in the info panel:

There are several additional methods for displaying the Z value of a contour trace:
• The zcsr function returns the Z value of the trace the cursor is attached to. Zcsr returns a NaN if the

cursor is attached to a noncontour trace. You can use this in a macro, or print the result on the com-
mand line using: Print zcsr(A).

• If you add an image behind the contour, you can use cursors to display the X, Y, and Z values at any point.
• The name of the trace the cursor is attached to shows up in the info panel, and the name usually con-

tains the Z value.
• Contour labels show the Z value. Contour labels are tags that contain the \OZ escape code or TagVal(3).

See Contour Labels on page II-341. You can drag these labels around by holding down Option (Macin-
tosh) or Alt (Windows) to change the tag attachment point. See Changing a Tag’s Attachment Point on
page III-59.

Contour Trace Updates
Igor normally updates the contour traces whenever the contour data (matrix or XYZ triplets) changes or
whenever the contour levels change. Because creating the contour traces can be a lengthy process, you can
prevent these automatic updates through a pop-up menu item in the Modify Contour Appearance dialog.
See Update Contours Pop-Up Menu on page II-332.

Contour Label
shows contour
level (Z value).

Cursors B and A attached to contour traces.

Contour trace names indicate contour level. Z value of contour lines. ΔZ

Chapter II-14 — Contour Plots

II-339

Preventing automatic updates can be useful when you are repeatedly editing the contour data in a table or
from a procedure. Use the “once, now” pop-up item to manually update the traces.

Programming Note
Programmers should be aware of another update issue: contour traces are created in two steps. To under-
stand this, look at this graph recreation macro that appends a contour to a graph and then defines the
contour levels, styles and labels:
Window Graph1() : Graph

PauseUpdate; Silent 1 // building window...
Display /W=(11,42,484,303)
AppendMatrixContour zw
ModifyContour zw autoLevels={*,*,5}, moreLevels={0.5}
ModifyContour zw rgbLines=(65535,0,26214)
ModifyContour zw labels=0
ModifyGraph lSize('zw=0')=3
ModifyGraph lStyle('zw=0')=3
ModifyGraph rgb('zw=0')=(0,0,65535)
ModifyGraph mirror=2

EndMacro

First, the AppendMatrixContour operation runs and creates stub traces consisting of zero points. The Mod-
ifyContour and ModifyGraph operations that follow act on the stub traces. Finally, after all of the com-
mands that define the graph have executed, Igor does an update of the entire graph (the effect of the
PauseUpdate operation expires when the window macro finishes). This is the time when Igor does the
actual contour computations which convert the stub traces into fully-formed contour traces.

This delayed computation prevents unnecessary computations from occurring when ModifyContour com-
mands execute in a macro or function. The ModifyContour command often changes default contour level
settings, rendering any preceding computations obsolete. For the same reason, the New Contour Plot
dialog appends “;DelayUpdate” to the Append Contour commands when a ModifyContour command is
also generated.

The DoUpdate operation updates graphs and objects. You can call DoUpdate from a macro or function to
force the contouring computations to be done at the desired time.

Drawing Order of Contour Traces
The contour traces are drawn in a fixed order. From back-to-front, that order is:
1. triangulation (Delaunay Triangulation trace, only for XYZ contours),
2. boundary,
3. XY markers,
4. contour trace of lowest Z level,
... intervening contour traces are in order from low-to-high Z level...
N. contour of highest Z level.

You can temporarily override the drawing order with the Reorder Traces Dialog, the Trace Pop-Up Menu,
or the ReorderTraces operation. The order you choose will be used until the contour traces are updated.
See Contour Trace Updates on page II-338.

Note: The order of a contour plot’s traces relative to any other traces (the traces belonging to another
contour plot for instance) is not preserved by the graph’s window recreation macro.

Any contour trace reordering is lost when the experiment is closed.

Chapter II-14 — Contour Plots

II-340

Extracting Contour Trace Data
Advanced users may want to create a copy of a private XY wave pair that describes a contour trace. You
might do this to extract the Delaunay triangulation, or simply to inspect the X and Y values in a table, for
example. To extract contour wave pair(s), include the Extract Contours As Waves procedure file:
#include <Extract Contours As Waves>

which adds “Extract One Contour Trace” and “Extract All Contour Traces” menu items to the Graph menu.

Another way to copy the traces into a normal wave is to use the Data Browser to browse the saved experiment;
the contour traces are saved as waves in a temporary data folder whose name begins with “WM_CTraces_” and
ends with the contour’s “contour instance name”. See Chapter II-8, Data Folders, for more about data folders.

Contour Instance Names
Igor identifies a contour plot by the name of the wave providing Z values (the matrix wave or the Z wave).
This “contour instance name” is used in commands that modify the contour plot.

Note: Contour instance names are not the same as contour trace instance names: contour instance names refer
to the data from which the contour traces are derived. See Contour Trace Names on page II-334.

The Modify Contour Appearance dialog generates the correct contour instance name automatically.

Contour instance names work much the same way wave instance names for traces in a graph do. See
Instance Notation on page IV-16.

Examples
In the first example the contour instance name is “zw”:
Display; AppendMatrixContour zw // new contour plot
ModifyContour zw ctabLines={*,*,BlueHot} // change color table

In the unusual case that a graph contains two contour plots of the same data, an instance number must be
appended to the name to modify the second plot: zw#1 is the contour instance name of the second contour plot:
Display
AppendMatrixContour zw; AppendMatrixContour zw //two contour plots
ModifyContour zw ctabLines={*,*,RedWhiteBlue} //change first plot
ModifyContour zw#1 ctabLines={*,*,BlueHot} //change second plot

You might have two contour plots of the same data to show different subranges of the data side-by-side
(this example uses separate axes for each plot):

Chapter II-14 — Contour Plots

II-341

Programming Note
The ContourNameList function returns a string containing a list of contour instance names. Each name cor-
responds to one contour plot in the graph. ContourInfo (see page V-67) returns information about a par-
ticular named contour plot.

Legends
You can create two kinds of legends appropriate for contour plots using the Add Annotation dialog: a
Legend or a ColorScale. For more details about the Add Annotation dialog and creating legends, see
Chapter III-2, Annotations, and the Legends (see page III-54) and Color Scales (see page III-61) sections.

A Legend annotation will display the contour traces with their associated color. A ColorScale will display the
entire color range as a color bar with an axis that spans the range of colors associated with the contour data.

Contour Labels
Igor uses specialized tags to create the numerical labels for contour plots. Igor puts one label on every
contour curve. Usually there are several contour curves drawn by one contour trace. The tag uses the \OZ
escape code or the TagVal(3) function to print the contour level value in the tag instead of printing the literal
value. See Text Content on page III-45 for more about escape codes and tags.

You can select the rotation of contour labels using the Label Tweaks subdialog of the Modify Contour
Appearance Dialog. You can request tangent, horizontal, vertical or both orientations. If permitted, Igor
will prefer horizontal labels. The "Snap to" alternatives convert horizontal or vertical labels within 2 degrees
of horizontal or vertical to exactly horizontal or vertical.

Igor will position the labels so that they don't overlap other annotations and aren't outside the graph's plot
area. Contour labels are slightly special in that they are always drawn below all other annotations, so that
they will never show up on top of a legend or axis label. Igor chooses label locations and tangent label ori-
entations based on the slope of the contour trace on the screen.

Controlling Label Updates
By default, Igor automatically relabels the graph only when the contour data or contour levels change, but you
can control when labels update with the Labels pop-up menu in the Modify Contour Appearance dialog. See
Labels Pop-Up Menu on page II-332. Be aware that updating a graph containing many labels can be slow.

Repositioning and Removing Contour Labels
Contour labels are “frozen” so that they can’t be dragged, but since they are tags, you can Option-drag (Mac-
intosh) or Alt-drag (Windows) them to a new attachment point. See Changing a Tag’s Attachment Point on
page III-59. The labels are frozen to make them harder to accidentally move.

You can reposition contour labels, but they will be moved back, moved to a completely new position, or
deleted when labels are updated. You should turn off label updating before that happens. See Controlling
Label Updates on page II-341.

Legend Color Scale

Chapter II-14 — Contour Plots

II-342

Here’s a recommended strategy for creating contour labels to your liking:
1. Create the contour plot and set the graph window to the desired size.
2. Choose Modify Contour Appearance (or Shift-double-click the plot area), and click the Label

Tweaks button and choose the rotation for labels, and any other label formatting options you want.
3. Choose “update now, once” from the Labels pop-up menu, and then the Do It button.
4. Option-drag or Alt-drag any labels you don’t want completely off the graph.
5. Option-drag or Alt-drag any labels that are in the wrong place to another attachment point. You can drag

them to a completely different trace, and the value printed in the label will change to the correct value.

To drag a label away from its attachment point, you must first unfreeze it with Position pop-up menu in the
Annotation Tweaks dialog. See Overriding the Contour Labels on page II-342.

Adding Contour Labels
You can add a contour label with a Tag command like:
Tag/Q=ZW#1/F=0/Z=1/B=2/I=1/X=0/Y=0/L=1 'zw#1=2', 0 , "\\OZ"

or (if you are sane) use the Modify Annotation dialog to duplicate the annotation and then drag it to a new
location.

Modifying Labels
You can change the label font, font size, style, color,
and rotation of all labels for a contour plot by click-
ing Label Tweaks in the Modify Contour Appear-
ance dialog. This brings up the Contour Labels
subdialog.

You can choose the rotation of contour labels from
tangent, horizontal, vertical or both orientations. If
both vertical and horizontal labels are permitted,
Igor will choose vertical or horizontal with a prefer-
ence for horizontal labels. Selecting one of the
Tangent choices creates labels that are rotated to
follow the contour line. The "Snap to" alternatives convert labels within 2 degrees of horizontal or vertical
to exactly horizontal or vertical.

You can choose a specific font, size, and style. The “default” font is the graph’s default font, as set by the
Modify Graph dialog.

The background color of contour labels is normally the same as the graph plot color (usually white). With
the Background pop-up menu, you can select a specific background color for the labels, or choose the
window background color or the transparent mode.

You can choose among general, scientific, fixed-point, and integer formats for the contour labels. These corre-
spond to printf conversion specifications, “%g”, “%e”, “%f”, and “%d”, respectively (see the printf operation on
page V-566). These specifications are combined with TagVal(3) into a dynamic text string that is used in each tag.

For example, choosing a Number Format of “###0.0...0” with 3 Digits after Decimal Point in the Contour-
Labels dialog results in the contour tags having this as their text: \{"%.3f",tagVal(3)}. This format will
create contour labels such as “12.345”.

Overriding the Contour Labels
Since Igor implements contour labels using standard tags, you can adjust labels individually by simply
double-clicking the label to bring up the Modify Annotation dialog.

However, once you modify a label, Igor no longer considers it a contour label and will not automatically
update it any more. When the labels are updated, the modified label will be ignored, which may result in
two labels on a contour curve.

Chapter II-14 — Contour Plots

II-343

You may want to take complete, manual control of contour labels. In this case, set the Labels pop-up menu
in the Modify Contour Appearance dialog to “no more updates” so that Igor will no longer update them.
You can then make any desired changes without fear that Igor will undo them.

Contour labels are distinguished from other tags by means of the /Q flag. Tag/Q=contourInstanceName
assigns the tag to the named contour. Igor uses the /Q flag in recreation macros to assign tags to a particular
contour plot.

When you edit a contour label with the Modify Annotation dialog, the dialog adds a plain /Q flag (with no
=contourInstanceName following it) to the Tag command to divorce the annotation from its contour plot.

Add the /Q=ContourInstanceName to Tag commands to temporarily assign ownership of the annota-
tion to the contour so that it is deleted when the contour labels are updated.

Labels and Drawing Tools
One problem with Igor’s use of annotations as contour labels is that there isn’t any drawing layer above
them. If you use the drawing tools to create a rectangle in the same location as some contour labels, you will
encounter something like the following window.

You will need to remove the offending labels by Option-dragging (Macintosh) or Alt-dragging (Windows)
them elsewhere or entirely off the graph (see Repositioning and Removing Contour Labels on page
II-341). Do this after you have disabled label updates (see Update Contours Pop-Up Menu on page II-332).

Contouring Pitfalls
You may encounter situations in which the contour plot doesn’t look as you expect.

Insufficient Resolution
Contour curves are generally closed curves, or they intersect the data boundary. Under certain conditions, typ-
ically when using XYZ triplet data, the contouring algorithm may generate what appears to be an open curve (a
line rather than a closed shape). This open curve typically corresponds to a peak ridge or a valley trough in the
surface. At times, an open curve may also correspond to a line that intersects a nonobvious boundary.

The line may actually be a very narrow closed curve: zoom in by dragging out a marquee, click inside and
choose “expand” from the pop-up menu.

If it really is a line, increasing the resolution of the data in that region (by adding more X, Y, Z triplets) may
result in a closed curve. Selecting higher interpolation settings with the Interpolation Pop-Up may help.

Another solution is to shift the contour level slightly down from a peak or up from a valley. Or you could
choose a new set of levels that don’t include the level exhibiting the problem. See Levels on page II-332.

Chapter II-14 — Contour Plots

II-344

Crossing Contour Lines
Contour lines corresponding to different levels will not cross each other, but contour lines of the same level
may appear to intersect. This typically happens when a contour level is equal to a “saddle point” of the sur-
face. An example of this is a contour level of zero for the function:

z= sinc(x) - sinc(y)

You should shift the contour level away from the level of the saddle point. See Levels on page II-332.

Flat Areas in the Contour Data
Patches of constant Z values in XYZ triplet data don’t contour well at those levels. If the data has flat areas
equal to 2.0, for example, a contour level at Z=2.0 may produce ambiguous results. Gridded contour data
does not suffer from this problem.

You should shift the contour level above or below the level of the flat area. See Levels on page II-332.

Contour Preferences
You can change the default appearance of contour plots by “capturing” preferences from a “prototype”
graph containing contour plots.

Create a graph containing a contour plot (or plots) having the settings you use most often. Then choose
Capture Graph Prefs from the Graph menu. Select the Contour Plots category, and click Capture Prefs.

Preferences are normally in effect only for manual operations, not for automatic operations from Igor pro-
cedures. This is discussed in more detail in Chapter III-17, Preferences.

The Contour Plots category includes both Contour Appearance settings and axis settings.

z= sinc(x) - sinc(y)

6

5

4

3

6543

 -0.2
 0

 0.4

 0.2

 0.2

 0

 0

 0

 -0.4

 -0.2

The Contour Appearance
settings and the axis settings
used for the contour plot in the
target Graph will be captured
as the new preferred settings.

The factory default settings
for the Contour Plot category
are currently in effect.

Chapter II-14 — Contour Plots

II-345

Contour Appearance Preferences
The captured Contour Appearance settings are automatically applied to a contour plot when it is first
created (provided preferences are turned on). They are also used to preset the Modify Contour Appearance
dialog (which is also a subdialog of the New Contour Plot dialog).

If you capture the Contour Plot preferences from a graph with more than one contour plot, the first contour
plot appended to a graph gets the settings from the contour first appended to the prototype graph. The
second contour plot appended to a graph gets the settings from the second contour plot appended to the
prototype graph, etc. This is similar to the way XY plot wave styles work.

Contour Axis Preferences
Only axis settings used by the contour plot are captured. Axes used solely for an XY, category, or image plot
are not captured when the Contour Plots category is selected.

The contour axis preferences are applied only when axes having the same name as the captured axis are
created by AppendMatrixContour or AppendXYZContour commands. If the axes existed before those com-
mands are executed, they will not be affected by the axis preferences. The names of captured contour axes
are listed in the X Axis and Y Axis pop-up menus of the New Contour Plot and Append Contour Plot dia-
logs. This is similar to the way XY plot axis preferences work.

You can capture contour axis settings for the standard left and bottom axes, and Igor will save these sepa-
rately from left and bottom axis preferences captured for XY, category, and image plots. Igor will use the
contour axis settings for AppendMatrixContour or AppendXYZContour commands only.

How to Use Contour Plot Preferences
Here is our recommended strategy for using contour preferences:
1. Create a new graph containing a single contour plot (if you want to capture the Show Triangulation

and Interpolation settings, you must make an XYZ contour plot). Use the axes you will want for a
contour plot.

2. Use the Modify Contour Appearance dialog and the Modify Axis dialog to make the contour plot
appear as you prefer.

3. Choose Graph→Capture Graph Prefs, select the Contour Plots category, and click Capture Prefs.

References
Watson, David F., Contouring: A Guide to the Analysis and Display of Spatial Data, 340 pp., Pergamon Press,

New York, 1992.

Chapter II-14 — Contour Plots

II-346

Contour Plot Shortcuts
Because contour plots are drawn in a normal graph, all of the Graph Shortcuts (see page II-312) apply. Here
we list those which apply specifically to contour plots.

Action Shortcut (Macintosh) Shortcut (Windows)

To modify the
appearance of the
contour plot as a
whole

Control-click and choose Modify Contour
from the pop-up menu or

Press Shift and double-click the plot area of
the graph, away from any labels or traces.
This brings up the Modify Contour
Appearance dialog.

Right-click and choose Modify Contour
from the pop-up menu or

Press Shift and double-click the plot area of
the graph, away from any labels or traces.
This brings up the Modify Contour
Appearance dialog.

To modify a
contour label

Press Shift and double-click the plot area, and
click Label Tweaks in the Modify Contour
Appearance dialog.

Don’t double-click the label to use the Modify
Annotation dialog unless you intend to
maintain the label yourself. See Overriding
the Contour Labels on page II-342.

Press Shift and double-click the plot area, and
click Label Tweaks in the Modify Contour
Appearance dialog.

Don’t double-click the label to use the Modify
Annotation dialog unless you intend to
maintain the label yourself. See Overriding
the Contour Labels on page II-342.

To remove a
contour label

Press Option, click in the label, and drag it
completely off the graph.

Press Alt, click in the label, and drag it
completely off the graph.

To move a contour
label to another
contour trace

Press Option, click in the label and drag it
to another contour trace.

Press Alt, click in the label and drag it to
another contour trace.

To duplicate a
contour label

Double-click any label, click the Duplicate
button, and click the Do It button.

Double-click any label, click the Duplicate
button, and click the Do It button.

To modify the
appearance or
front-to-back
drawing order of a
contour trace

Press Control and click the trace to get a
pop-up menu.

Press Command-Shift to modify all traces.

Double-click the trace to summon the
Modify Trace Appearance dialog.

Also see Overriding the Color of Contour
Traces on page II-338 and Drawing Order
of Contour Traces on page II-339.

Right-click the trace to get a contextual
menu.

Press Shift while right-clicking to modify
all traces.

Double-click the trace to summon the
Modify Trace Appearance dialog.

Also see Overriding the Color of Contour
Traces on page II-338 and Drawing Order
of Contour Traces on page II-339.

Chapter

II-15
II-15Image Plots

Overview.. 349
False Color Images... 349
Indexed Color Images ... 349
Direct Color Images... 349

Loading an Image ... 349
Creating an Image Plot... 350

Image Plot Dialogs... 351
X, Y, and Z Wave Lists... 351
Use NewImage Command.. 351

Modifying an Image Plot ... 352
The Modify Image Appearance Dialog .. 352

How Images Are Displayed .. 353
Image X and Y Coordinates... 353

Image X and Y Coordinates - Evenly Spaced .. 354
Image X and Y Coordinates - Unevenly Spaced ... 354
Plotting a 2D Z Wave With 1D X and Y Center Data ... 355
Plotting 1D X, Y and Z Waves With Gridded XY Data.. 356
Plotting 1D X, Y and Z Waves With Non-Gridded XY Data... 356

Image Orientation ... 357
Image Rectangle Aspect Ratio... 358
Image Polarity ... 358
Color Tables ... 359
Color Table Ranges ... 359

Example: Overlaying Data on a Background Image .. 360
Color Table Ranges - Lookup Table (Gamma) .. 362

Example: Using a Lookup for Advanced Color/Contrast Effects.. 362
Specialized Color Tables... 362

Color Table Details ... 363
Igor Pro 4-Compatible Color Tables ... 363
Igor Pro 5-Compatible Color Tables ... 363

Gradient Color Tables.. 363
Special-Purpose Color Tables ... 364

Igor Pro 6-Compatible Color Tables ... 365
Igor Pro 6.2-Compatible Color Tables .. 366

Indexed Color Details... 366
Linear Indexed Color ... 366
Logarithmic Indexed Color ... 367
Example: Point-Scaled Color Index Wave ... 367

Direct Color Details .. 368
Creating Color Legends ... 368
Image Instance Names ... 370

Programming Note... 370
Image Preferences ... 370

Image Appearance Preferences ... 370

Chapter II-15 — Image Plots

II-348

Image Axis Preferences... 371
How to Use Image Preferences.. 371

Image Plot Shortcuts... 371
References .. 371

Chapter II-15 — Image Plots

II-349

Overview
You can display matrix data as an image plot in a graph window. Each matrix data value defines a colored
rectangle in the image plot. The size and position of these rectangles is controlled by the range of the graph
axes, the graph width and height modes, and the X and Y coordinates of the image rectangles.

Note: The terms “matrix data value”, “pixel”, and “Z value” are used interchangeably in this chapter.

Image data can be false color, indexed color or direct color.

False Color Images
In false color images the data values in the 2D matrix are linearly mapped onto a color table. This is a very
powerful way to view matrix data and is often more effective than either surface plots or contour plots. For
best results you can superimpose a contour plot on top of a false color image of the same data.

Igor has several built-in color tables (see Color Tables on page II-359). You can provide color index waves
that define custom color tables (described in Indexed Color Details on page II-366).

Indexed Color Images
Indexed color images use the data values stored in your 2D matrix as indices (usually integers) into a three-
column wave of color values that you supply. “True color” images such as those that come from video
cameras or scanners generally use indexed color. Indexed color images are more common than direct color
because they consume less memory. See Indexed Color Details on page II-366.

Direct Color Images
Direct color images contain the actual red, green and blue values at each point in the image matrix. Direct
color images use a 3D wave with 3 color planes containing absolute values for red, green and blue, provid-
ing 24-bit color. While an indexed color image contains at most the number of colors in the color index
wave, a direct color image can have a unique color for every pixel. See Direct Color Details on page II-368.

Loading an Image
To create an image plot, first create or load your matrix wave. You can load TIFF, PICT, JPEG, PNG, GIF,
BMP, PhotoShop, Targa, Silicon Graphics, and Sun Raster image files into matrix waves using the Image-
Load operation (see page V-301) or the Load Image dialog under the Data menu. Depending on the type of
image that you would like to read, this operation may require that you have Apple’s QuickTime software
(version 4 or newer) installed on your computer.

Chapter II-15 — Image Plots

II-350

Except for TIFF and Sun Raster images, all images are loaded onto a 3D Igor wave (unsigned byte with
plane 0 containing the red channel, plane 1 the green and plane 2 the blue channel). You can convert the 3D
wave into other forms using the ImageTransform operation (see page V-325).

When loading TIFF files into Igor, a number of additional options are available. For stacked TIFF files that
contain multiple images, you can read all of the images into a single 3D wave (where each image occupies
a sequential plane), into individual 2D waves, or you can specify a particular image, or range of images,
that you would like to read. Reading a TIFF image stack into a single 3D wave is applicable only for images
that are 8 or 16 bits/pixel deep.

If you want to load an image file but you are not sure about its file format, use the “any” or “*.*” specification
for the file type. Most of the supported file types can be uniquely recognized by the ImageLoad operation.

You can also load numeric text and binary files using the Load Waves dialog in the Data menu. Select the
“Load columns into matrix” checkbox:

You can also obtain images by acquisition of video using appropriate frame grabber’s XOPs (e.g., QTGrab-
ber) or load images using specific file loader XOPs (e.g., HDF5 Loader).

Creating an Image Plot
You can create an image plot in a new graph window with the New Image Plot dialog. This dialog creates
a blank graph to which the plot is appended. You can add an image plot to an existing graph with the
Append Image Plot dialog.

You can also use the NewImage operation (see page V-495) or the AppendImage operation (see page V-26).
Also see How Images Are Displayed on page II-353.

Image plots are displayed in an ordinary graph window. All the features of graphs apply to image plots:
axes, line styles, drawing tools, controls, etc. See Chapter II-12, Graphs.

You can show lines of constant image value by appending a contour plot to a graph containing an image.
Igor will draw the contour above all the image plots. See Creating a Contour Plot on page II-328 for an
example of combining contour plots and images in a graph.

Loads multiple columns
into one matrix wave

Appending an image plot
to an existing graphCreating a new image plot

Chapter II-15 — Image Plots

II-351

Image Plot Dialogs
Choose New Image Plot from the Windows menu to bring up the New Image Plot dialog:

The Title, Style, X Axis and Y Axis items work the same as in the New Graph dialog (See Creating Graphs
on page II-240). You can specify a new title for the graph and select or create the axes used in the image plot.
Use the Style pop-up menu to apply a style macro to the newly created graph window.

This dialog normally generates two commands — a Display command to make a blank graph window, and an
AppendImage command to append a image plot to that graph window. Selecting the “Use NewImage com-
mand” checkbox replaces Display and AppendImage with the NewImage command, which changes what
options you have for creating an image plot in this dialog (see Use NewImage Command on page II-351).

The Append Image Plot dialog is similar, except that the Only Waves from Target, Use NewImage com-
mand, Title, and Style items are missing.

X, Y, and Z Wave Lists
The X Wave, Y Wave, and Z Wave lists show the available waves that will be accepted by the AppendImage
operation. Select the Only Waves from Target checkbox to show only the waves in the target window (most
useful when the target window is a table).

You should select the matrix wave containing your image data in the Z Wave list. This will update the X Wave
and Y Wave lists to show only those waves, if any, that may be combined with the image data matrix wave.

Choosing _calculated_ from the X Wave list uses the row scaling (X scaling) of the matrix selected in the Z
Wave list to provide the X coordinates of the image rectangle centers.

Choosing _calculated_ from the Y Wave list uses the column scaling (Y scaling) of the matrix to provide Y
coordinates of the image rectangle centers.

You can also select a 1D wave to provide the X or Y values for a matrix of Z values; only those waves with
the proper length for the selected Z Wave are shown in the X Wave and Y Wave lists. See Image X and Y
Coordinates on page II-353 and the AppendImage operation on page V-26.

Use NewImage Command
The NewImage command nicely sets the window margins and axes to maximize the image in the window,
presets the window size to match the number of pixels in the image, and automatically reverses the left (ver-
tical) axes so that pictures aren’t displayed upside down.

However NewImage does not support window titles or 1D X and Y waves, axes other than left and top, or
graph style macros.

Click here to modify the image’s
initial appearance (color index
wave and color table settings).

The Display; command
creates a blank graph to
append the image to.

Enter a title for the graph
here. If you leave it blank, Igor
will generate a default title.

Select the matrix wave containing image data. The XY centers of the image rectangles will be calculated
from the row and column scaling of the selected Z wave.

Chapter II-15 — Image Plots

II-352

A useful option of NewImage is the “Do not treat this three-layer image as direct (rgb) color” checkbox that
appears only for three-layer Image Waves.

Selecting that option displays one layer from a three-layer wave as a false-color or indexed-color image (the
data values in one layer are linearly mapped onto a color table), instead of using all three layers to display
a direct color image (see Direct Color Details on page II-368).

Click the Appearance button to chose which layer is displayed.

The other two layers are not visible and are ignored except for possibly
autoscaling the color table Z limits. If Autoscale Only Visible Layer is
checked in the Modify Image Appearance dialog, the other layers are
then completely ignored.

Modifying an Image Plot
You can change the appearance of the image plot using the Modify Image Appearance dialog. This dialog
is also available as a subdialog of the New Image Plot dialog.

Tip #1: You can open the Modify Image dialog quickly by Control-clicking (Macintosh) or right-clicking
(Windows) and choosing Modify Image from the pop-up menu. The graph must contain an image
plot for this to work.

Tip #2: Use the preferences to change the default image appearance, so you won’t be making the same
changes over and over. See Image Preferences on page II-370.

The Modify Image Appearance Dialog
The Modify Image Appearance dialog applies to false color and indexed color images, but not direct color
images. See Direct Color Details on page II-368.

If your image is indexed color, choose the matching color index wave from the Color Index Wave pop-up
menu. For Color Index Wave details, see Indexed Color Details on page II-366.

If your image is false color, choose a built-in color table from the pop-up menu. Autoscaled color mapping
assigns the first color in a color table to the minimum value of the image data and the last color to the

Use this for indexed color images. The 3 columns in the Color
Index matrix wave should contain red, green, and blue values.

Specify colors for individual
Z-values in list.

Enter numbers here to
map the first and last
colors of the color table
to specific image data
values.

The default assumes
your data is a false
color image.

Enabled when Z-range
is not Auto. Specify
what is done for out-of-
range data.

Chapter II-15 — Image Plots

II-353

maximum value. (The dialog uses “Z” to refer to the values in the image wave.) For more information, see
Color Tables on page II-359.

Indexed and color table colors are distributed between the minimum and maximum Z values either linearly
or logarithmically, based on the ModifyImage log parameter, which is set by the Log Colors checkbox.

Only in rare cases will you want to choose a Lookup Wave; "_none_" is the usual choice. See Color Table
Ranges on page II-359 for a reason to use a Lookup Wave.

You can achieve special effects using a Color Index Wave to select colors for your image; see Indexed Color
Details on page II-366. The built-in color tables are easier to use, however.

Use Explicit Mode to select specific colors for specific Z values in the image. If an image element is exactly
equal to the number entered in the dialog, it will be given the assigned color. This is not very useful for
images made with floating-point data; it is intended for integer data. It is almost impossible to enter exact
matches for floating-point data.

When you select Explicit Mode for the first time, two entries are made for you assigning white to 0 and black
to 255. A third blank line is added for you to enter a new value. If you put something into the blank line,
another blank line is added.

To remove an entry, click in the blank areas of a line in the list to select it and press Delete (Macintosh) or
Backspace (Windows).

If you make an image using a three-layer wave containing direct RGB values, you cannot alter it with this
dialog (unless it has multiple chunks, in which case you can modify only the displayed chunk).

How Images Are Displayed
Igor displays images by drawing one “image rectangle” for each data value in the image matrix wave. The
size and position of these rectangles is controlled by the range of the graph axes, the graph width and height
modes, and the X and Y coordinates of the image rectangles.

Images are displayed behind all other objects in a graph except the background color.

If your image data is a floating point type, you can use NaN to represent missing data. This allows the graph
background color to show through. This feature is particularly useful when you want to create overlays.

Image X and Y Coordinates
Images display wave data elements as rectangles. They are displayed versus axes just like XY plots.

The intensity or color of each image rectangle is controlled by the corresponding data element of a matrix
(2D) wave or by a layer of a 3D or 4D wave.

When discussing image plots, we use the term pixel to refer to an element of the underlying image data and
rectangle to refer to the representation of a data element in the image plot.

For each of the spatial dimensions, X and Y, the edges of each image rectangle are defined by one of the
following:

• The dimension scaling of the matrix wave containing the image data or
• A 1D auxiliary X or Y wave
In the simplest case, all pixels have the same width and height so the pixels are squares of the same size.
Another common case consists of rectangular but not square pixels all having the same width and height.
Both of these are instances of evenly-spaced data. In these cases, you specify the rectangle centers using
dimension (X and Y) scaling. This is discussed further under Image X and Y Coordinates - Evenly Spaced
on page II-354.

Chapter II-15 — Image Plots

II-354

Less commonly, you may have pixels of unequal widths and/or unequal heights. In this case you must
supply auxiliary X and/or Y waves that specify the edges of the image rectangles. This is discussed further
under Image X and Y Coordinates - Unevenly Spaced on page II-354.

It is possible to combine these cases. For example, your pixels may have uniform widths and non-uniform
heights. In this case you use one technique for one axis and the other technique for the other axis.

Sometimes you may have data that is not really image data, because there is no well-defined pixel width
and/or height, but is stored in a matrix (2D) wave. Such data may be more suitable for a scatter plot but can
be plotted as an image. This is discussed further under Plotting a 2D Z Wave With 1D X and Y Center Data
on page II-355.

In other cases you may have 1D X, Y and Z waves. These cases are discussed under Plotting 1D X, Y and Z
Waves With Gridded XY Data on page II-356 and Plotting 1D X, Y and Z Waves With Non-Gridded XY
Data on page II-356.

The following sections include example commands. If you want to execute the commands, find the corre-
sponding section in the Igor help files by executing:

DisplayHelpTopic "Image X and Y Coordinates"

Image X and Y Coordinates - Evenly Spaced
When your data consists of evenly-spaced pixels in a matrix wave, you use the matrix wave's dimension
scaling to specify the image rectangle coordinates. You can set the scaling using the Change Wave Scaling
dialog (Data menu) or using the SetScale operation.
The scaled dimension value for a given pixel specifies the center of the corresponding image rectangle.
Here is an example that uses a 2x2 matrix to exaggerate the effect:
Make/O small={{0,1},{2,3}} // Set X dimension scaling
SetScale/I x 0.1,0.12,"", small
SetScale/P y 0.0,1.0,"", small // Set Y dimension scaling
Display
AppendImage small // _calculated_ X & Y
ModifyImage small ctab={-0.5,3.5,Grays}

Note that on the X axis the rectangles are centered on 0.10 and 0.12, the matrix wave's X (row) indices as
defined by its X scaling. On the Y axis the rectangles are centered on 0.0 and 1.0, the matrix wave's Y (col-
umn) indices as defined by its Y scaling. In both cases, the rectangle edges are one half-pixel width from the
corresponding index value.

Image X and Y Coordinates - Unevenly Spaced
If your pixel data is unevenly-spaced in the X and/or Y dimension, you must supply X and/or Y waves to
define the coordinates of the image rectangle edges. These waves must contain one more data point than the X
(row) or Y (column) dimension of the matrix wave in order to define the edges of each rectangle.

In this example, the matrix wave is evenly-spaced in the Y dimension but unevenly-spaced in the X dimen-
sion:

Make/O small={{0,1},{2,3}}
SetScale/P y 0.0,1.0,"", small // Set Y dimension scaling
Make smallx={1,3,4} // Define X edges with smallx
Display
AppendImage small vs {smallx,*}
ModifyImage small ctab={-0.5,3.5,Grays,0}

1.5

1.0

0.5

0.0

-0.5

0.130.120.110.100.09

1.5

1.0

0.5

0.0

-0.5

4.03.53.02.52.01.51.0

Chapter II-15 — Image Plots

II-355

The X coordinate wave (smallx) now controls the vertical edges of each image rectangle. smallx consists of
three data points which are necessary to define the vertical edges of the two rectangles in the image plot.
The values of smallx are interpreted as follows:

The 1D edge wave must be either strictly increasing or strictly decreasing.

If you have X and/or Y waves that specify edges but they do not have an extra point, you may be able to
proceed by simply adding an extra point. You can do this by editing the waves in a table or using the Insert-
Points operation. If this is not appropriate, see the next section for another approach.

Plotting a 2D Z Wave With 1D X and Y Center Data
In an image, each pixel has a well-defined width and height. If your data is sampled at specific X and Y
points and there is no well-defined pixel width and height, or if you don't know the width and height of
each pixel, you don't really have a proper image.

However, because this kind of data is often stored in a matrix wave with associated X and Y waves, it is
sometimes convenient to display it as an image, treating the X and Y waves as containing the center coor-
dinates of the pixels.

To do this, you must create new X and Y waves to specify the image rectangle edges. The new X wave must
have one more point than the matrix wave has rows and the new Y wave must have one more point than
the matrix wave has columns.

A set of image rectangle centers does not uniquely determine the rectangle edges. To see this, think of a 1x1
image centered at (0,0). Where are the edges? They could be anywhere.

Without additional information, the best you can do is to generate a set of plausible edges, as we do with
this function:

Function MakeEdgesWave(centers, edgesWave)
Wave centers // Input
Wave edgesWave // Receives output

Variable N=numpnts(centers)
Redimension/N=(N+1) edgesWave

edgesWave[0]=centers[0]-0.5*(centers[1]-centers[0])
edgesWave[N]=centers[N-1]+0.5*(centers[N-1]-centers[N-2])
edgesWave[1,N-1]=centers[p]-0.5*(centers[p]-centers[p-1])

End

This function demonstrates the use of MakeEdgesWave:

Function DemoPlotXYZAsImage()
Make/O mat={{0,1,2},{2,3,4},{3,4,5}} // Matrix containing Z values
Make/O centersX = {1, 2.5, 5} // X centers wave
Make/O centersY = {300, 400, 600} // Y centers wave
Make/O edgesX; MakeEdgesWave(centersX, edgesX) // Create X edges wave
Make/O edgesY; MakeEdgesWave(centersY, edgesY) // Create Y edges wave
Display; AppendImage mat vs {edgesX,edgesY}

End

If you have additional information that allows you to create edge waves you should do so. Otherwise you
can use the MakeEdgesWave function above to create plausible edge waves.

Point 0: 1.0 Sets left edge of first rectangle

Point 1: 2.75 Sets right edge of first rectangle and left edge of second rectangle

Point 2: 4.0 Sets right edge of last rectangle

Chapter II-15 — Image Plots

II-356

Plotting 1D X, Y and Z Waves With Gridded XY Data
In this case we have 1D X, Y and Z waves of equal length that define a set of points in XYZ space. The X and
Y waves constitute an evenly-spaced sampling grid though the spacing in X may be different from the
spacing in Y.

A good way to display such data is to create a scatter plot with color set as a function of the Z data. See
Setting Trace Properties from an Auxiliary (Z) Wave on page II-259.

It is also possible to transform your data so it can be plotted as an image, as described under Plotting a 2D
Z Wave With 1D X and Y Center Data. To do this you must convert your 1D Z wave into a 2D matrix wave
and then convert your X and Y waves to contain the horizontal an vertical centers of your pixels.

For example, we start with this X, Y and Z data:

Make/O centersX = {1,2,3,1,2,3,1,2,3}
Make/O centersY = {5,5,5,7,7,7,9,9,9}
Make/O zData = {1,2,3,4,5,6,7,8,9}

If we display the X and Y data in a graph we can see that the X and Y waves exhibit repeating patterns:

To display this as an image, we transform the data so that the Z wave becomes a 2D matrix representing
pixel values and the X and Y waves describe the centers of the rows and columns of pixels:

Redimension/N=(3,3) zData
Make/O/N=3 xCenterLocs = centersX[p] // 1, 2, 3
Make/O/N=3 yCenterLocs = centersY[p*3] // 5, 7, 9

We now have data as described under Plotting a 2D Z Wave With 1D X and Y Center Data on page II-355.

Plotting 1D X, Y and Z Waves With Non-Gridded XY Data
In this case you have 1D X, Y and Z waves of equal length that define a set of points in XYZ space. The X
and Y waves do not constitute a grid, so the method of the previous section will not work.

A 2D scatter plot is a good way to graphically represent such data:

Make/O/N=20 xWave=enoise(4),yWave=enoise(5),zWave=enoise(6) // Random points
Display yWave vs xWave
ModifyGraph mode=3,marker=19
ModifyGraph zColor(yWave)={zWave,*,*,Rainbow,0}

Although the data does not represent a proper image, you may want to display it as an image instead of a
scatter plot. You can use the ImageFromXYZ operation to create a matrix wave corresponding to your XYZ
data. The matrix wave can then be plotted as a simple image plot.

You can also Voronoi interpolation to create a matrix wave from the XYZ data:

3.0

2.5

2.0

1.5

1.0

86420

9

8

7

6

5

 centersX

 centersY

Chapter II-15 — Image Plots

II-357

Concatenate/O {xWave,yWave,zWave}, tripletWave
ImageInterpolate/S={-5,0.1,5,-5,0.1,5} voronoi tripletWave
AppendImage M_InterpolatedImage

Note that the algorithm for Voronoi interpolation is computationally expensive so it may not be practical
for very large waves. See also Loess on page V-402 and ImageInterpolate on page V-295 kriging as alterna-
tive approaches for generating a smooth surface from unordered scatter data.

Additional options for displaying this type of data as a 3D surface are described under "Scatter Plots" in the
"Visualization.ihf" help file and in the video tutorial "Creating a Surface Plot from Scatter Data" at
http://www.wavemetrics.com/products/igorpro/videotutorials.htm.

Image Orientation
By default, the AppendImage operation draws increasing Y values (matrix column indices) upward, and
increasing X (matrix row indices) to the right. Most image formats expect Y to increase downward:

Alternatively you can select the “Use NewImage command” checkbox in the New Image Plot dialog.
NewImage automatically reverses the left axes (see Use NewImage Command on page II-351).

You can flip an image vertically by reversing the Y axis, and horizontally by reversing the X axis, using the
Axis Range tab in the Modify Axes dialog:

You can also flip the image vertically by reversing the Y scaling of the matrix wave. Note that if you use the
NewImage operation (see page V-495), there is no need to flip the image.

TIFF file displayed with default AppendImage settings

Reverse autoscaled vertical
axes with this checkbox to
make images appear right-
side-up.

http://www.wavemetrics.com/products/igorpro/videotutorials.htm

Chapter II-15 — Image Plots

II-358

Image Rectangle Aspect Ratio
By default, Igor does not make the image rectangles square. Use the Modify Graph dialog (in the Graph
menu) to correct this by setting Plan width mode:

You can use the Plan height mode to accomplish the same result.

If DimDelta(matrixWave,0) ¦ DimDelta(matrixWave,1), you will need to enter the ratio (or inverse ratio) of
these two values in the Plan height (or width):
SetScale/P x 0,3,"", mat2dImage
SetScale/P y 0,1,"", mat2dImage
ModifyGraph width=0, height={Plan,3,left,bottom}
// or
ModifyGraph height=0, width={Plan,1/3,bottom,left}

Do not use the Aspect width or height modes; they make the entire image plot square even if it shouldn’t be.

Plan mode ensures the image rectangles are square, but it allows them to be of any size. If you want each
image rectangle to be a single (square) pixel, use the per Unit width and per Unit height modes. With point
X and Y scaling of an image matrix, use one point (not one inch) per unit:

You can also flip an image along its diagonal by setting the Swap XY checkbox.

Image Polarity
Sometimes the image’s pixel values are inverted, too. False color images can be inverted by reversing the color
table. Select the Reverse Colors checkbox in the Modify Image Appearance dialog. See Color Tables on page
II-359. To reverse the colors in an index color plot is harder: the rows of the color index wave must be reversed.

One point (pixel) per
unit draws image
rectangle as a single
pixel (with default X
and Y scaling).

One point equals one
pixel on the screen.

Chapter II-15 — Image Plots

II-359

Color Tables
The data values contained in your matrix are normally linearly mapped into a table of colors containing a
sweep of colors that lets the viewer easily identify the data values. The data values can be logarithmically
mapped by using the ModifyImage log=1 option, which is useful when the data values span multiple
orders of magnitude.

There are 56 built-in color tables you can use with false color images.

Note: You can not create your own color tables, but you can use a color index wave to create a custom
range of colors. See Indexed Color Details on page II-366.

The CTabList function (see page V-90) returns a list of all color table names. You can create a color index
wave from any built-in color table with the ColorTab2Wave operation (see page V-64).

The ColorsMarkersLinesPatterns example Igor experiment (In the Testing & Misc folder) implements a
Color Table Visual Guide. These various color tables are summarized in the section Color Table Details on
page II-363.

Color Table Ranges
The range of data values that maps into the range of colors in the table can be set either manually or auto-
matically using the Modify Image Appearance dialog.

When you choose to autoscale the first or last color, your image is scaled using, respectively, the minimum
or maximum data values.

After SetAxis/A/R left
ModifyGraph width={Plan,1,bottom,left}

After reversing
the Grays color table

Enter numbers here to
map the first and last
colors to specific matrix
data values (Z values).

Chapter II-15 — Image Plots

II-360

By changing the “First Color at Z=” and “Last Color at Z=” values you can examine subtle features in your data.

For example, when using the Grays color table, you can lighten the image by assigning the First Color
(which is black) to a number lower than the image minimum value. This maps a lighter color to the
minimum image value. To darken the maximum image values, assign the Last Color to a number higher
than the image maximum value, mapping a darker color to the maximum image value.

Data values greater than the range maximum are given the last color in the color table, or they can all be
assigned to a single color or made transparent. Similarly, data values less than the range minimum are
given the first color in the color table, or they can all be assigned to a single color (possibly different from
the max color), or made transparent.

Example: Overlaying Data on a Background Image
By setting the image range to render small values transparent, you can see the underlying image in those
locations, which helps visualize where the nontransparent values are located with reference to a back-
ground image. Here’s a fake weather radar example.

First, we create some “land” to serve as a background image:
Make/O/N=(80,90) landWave
landWave = 1-sqrt((x-40)*(x-40)+(y-45)*(y-45))/sqrt(40*40+45*45)
landWave = 7000*landWave*landWave
landWave += 200*sin((x-60)*(y-60)*pi/10)
landWave += 40*(sin((x-60)*pi/5)+sin((y-60)*pi/5))
NewImage landWave

Then we create some “weather” radar data ranging from about 0 to 80 dBZ:
Duplicate/O landWave overlayWeather // "weather" radar values
overlayWeather=60*exp(-(sqrt((x-10)*(x-10)+(y-10)*(y-10))/5)) // storm 1
overlayWeather+=80*exp(-(sqrt((x-60)*(x-60)+(y-40)*(y-40)))/10) // storm 2
overlayWeather+=40*exp(-(sqrt((x-20)*(x-20)+(y-70)*(y-70)))/3) // storm 3
SetScale d, 0, 0, "dBZ", overlayWeather

And append it using the same axes as the landWave to overlay the images. With the default color table
range, the landWave is totally obscured:
AppendImage/T overlayWeather
ModifyImage overlayWeather ctab= {*,*,dBZ14,0}
// Show the image's data range with a ColorScale

ctab = {0,255,Grays} ctab = {-100,255,Grays} ctab = {0,355,Grays}

Chapter II-15 — Image Plots

II-361

ModifyGraph width={Plan,1,top,left}, margin(right)=100
ColorScale/N=text0/X=107.50/Y=0.00 image=overlayWeather

Calibrate the image plot colors to National Weather Service values for precipitation mode by selecting the
dBZ14color table for data values ranging from 5 to 75, where values below 5 are transparent and values
above 75 are white:

Modify the ColorScale to show a range larger than the color table values (0-80):
ColorScale/C/N=text0 colorBoxesFrame=1,heightPct=90,nticks=10
ColorScale/C/N=text0/B=(52428,52428,52428) axisRange={0,80},tickLen=3.00

Chapter II-15 — Image Plots

II-362

Color Table Ranges - Lookup Table (Gamma)
Normally the range of data values and the range of colors are linearly related or logarithmically related if
the ModifyImage log parameter is set to 1. You can also cause the mapping to be nonlinear by specifying
a lookup (or “gamma”) wave, as described in this next example.

Example: Using a Lookup for Advanced Color/Contrast Effects
The ModifyImage operation (see page V-472) with the lookup parameter specifies a 1D wave that modifies
the mapping of scaled Z values into the current color table. Values in the lookup wave should range from
0.0 to 1.0. A linear ramp from 0 to 1 would have no effect while a ramp from 1 to 0 would reverse the color-
map. Used to apply gamma correction to grayscale images or for special effects.
Make luWave=0.5*(1+sin(x/30))
Make /n=(50,50) simpleImage=x*y
NewImage simpleImage
ModifyImage simpleImage ctab= {*,*,Rainbow,0}

// After inspecting the simple image, apply the lookup:
ModifyImage simpleImage lookup=luWave

This example is a simplified version of the Image Contrast Lookup panel available in the Image Processing
package. Choose Analysis→Packages→Image Processing to load the package, then choose Image Contrast
to open the panel.

Specialized Color Tables
Some of the color tables are designed for specific uses and specific numeric ranges.

The BlackBody color table shows the color of a heated “black body” (though not the brightness of that body)
over the temperature range of 1,000 to 10,000 K.

The Spectrum color table is designed to show the color corresponding to the wavelength of visible light as
measured in nanometers over the range of 380 to 780 nm.

The SpectrumBlack color table does the same thing, but over the range of 355 to 830 nm. The fading to black
is an attempt to indicate that the human eye loses the ability to perceive colors at the range extremities.

The GreenMagenta16, EOSOrangeBlue11, EOSSpectral11, dBZ14, and dBZ21 tables are designed to repre-
sent discrete levels in weather-related images, such as radar reflectivity measures of precipitation and wind
velocity and discrete levels for geophysics applications.

The LandAndSea, Relief, PastelsMap, and SeaLandAndFire color tables all have a sharp color transition which
is intended to denote sea level. The LandAndSea and Relief tables have this transition at 50% of the range. You
can put this transition at a value of 0 by setting the minimum value to the negative of the maximum value:
ModifyImage imageName, ctab={-1000,1000,LandAndSea,0} // image plot
ColorScale/C/N=scale0 ctab={-1000,1000,LandAndSea,0} // colorscale

The PastelsMap table has this transition at 2/3 of the range. You can put this transition at a value of 0 by
setting the minimum value to twice the negative of the maximum value:

Chapter II-15 — Image Plots

II-363

ModifyImage imageName, ctab={-2000,1000,PastelsMap,0} // image plot
ColorScale/C/N=scale0 ctab={-2000,1000,PastelsMap,0} // colorscale

This principle can be extended to the other color tables to position a specific color to a desired value. Some
trial-and-error is to be expected.

Note: The BlackBody, Spectrum, and SpectrumBlack color tables are based on algorithms from the
Color Science web site:
<http://www.physics.sfasu.edu/astro/color.html>.
Also see Color Science by Wyszecki and Stiles.

Color Table Details
The built-in color tables can be grouped into several categories. For most purposes you may only need to
use the “compatible” color tables; this is especially true if you wish to use your experiments with earlier
versions of Igor Pro.

Igor Pro 4-Compatible Color Tables
Igor Pro 4 supports10 built-in color tables: Grays, Rainbow, YellowHot, BlueHot, BlueRedGreen, Red-
WhiteBlue, PlanetEarth, Terrain, Grays16, and Rainbow16. These color tables have 100 color levels except
for Grays16 and Rainbow16, which only have 16 levels.

Igor Pro 5-Compatible Color Tables
Igor Pro 5 added 256-color versions of the eight 100-level color tables in Igor Pro 4 (Grays256, Rainbow256,
etc.), new gradient color tables, and new special-purpose color tables.

Gradient Color Tables
These are 256-color transitions between two or three colors.

Color Table Name Colors Notes
Red 256 Black → red → white.
Green 256 Black → green → white.
Blue 256 Black → blue → white.
Cyan 256 Black → cyan → white.
Magenta 256 Black → magenta → white.
Yellow 256 Black → yellow → white.
Copper 256 Black → copper → white.
Gold 256 Black → gold → white.
CyanMagenta 256
RedWhiteGreen 256
BlueBlackRed 256

http://www.physics.sfasu.edu/astro/color.html

Chapter II-15 — Image Plots

II-364

Special-Purpose Color Tables
The special purpose color tables are ones that will find use for particular needs, such as coloring a digital eleva-
tion model (DEM) of topography or for spectroscopy. These color tables can have any number of color entries.

The following table summarizes the various special-purpose color tables.

Color Table Name Colors Notes
Geo 256 Popular mapping color table for elevations. Sea level is around 50%.
Geo32 32 Quantized to classify elevations. Sea level is around 50%.
LandAndSea 255 Rapid color changes above sea level, which is at exactly 50%. Ocean depths

are blue-gray.
LandAndSea8 8 Quantized, sea level is at about 22%.
Relief 255 Slower color changes above sea level, which is at exactly 50%. Ocean

depths are black.
Relief19 19 Quantized, sea level is at about 47.5%.
PastelsMap 301 Desaturated rainbow-like colors, having a sharp green→yellow color

change at sea level, which is around 66.67%. Ocean depths are faded purple.
PastelsMap20 20 Quantized. Sea level is at about 66.67%.
Bathymetry9 9 Colors for ocean depths. Sea level is at 100%.
BlackBody 181 Red → Yellow → Blue colors calibrated to black body radiation colors

(neglecting intensity). The color table range is from 1,000 K to 10,000 K.
Each color table entry represents a 50 K interval.

Spectrum 201 Rainbow-like colors calibrated to the visible spectrum when the color table
range is set from 380 to 780 nm (wavelength). Each color table entry represents
2nm. Colors do not completely fade to black at the ends of the color table.

SpectrumBlack 476 Rainbow-like colors calibrated to the visible spectrum when the color table
range is set from 355 to 830 nm (wavelength). Each color table entry
represents 1 nm. Colors fade to black at the ends of the color table.

Cycles 201 Ten grayscale cycles from 0 to 100% to 0%.
Fiddle 254 Some randomized colors for “fiddling” with an image to detect faint

details in the image.
Pastels 256 Desaturated Rainbow.

Chapter II-15 — Image Plots

II-365

Igor Pro 6-Compatible Color Tables
Igor Pro 6 added 14 new color tables.

Color Table Name Colors Notes
RainbowCycle 360 Red, green, blue vary sinusoidally, each 120 degrees (120 values) out of

phase. The first and last colors are identical.
Rainbow4Cycles 360 4 cycles with one quarter of the angular resolution.
BlueGreenOrange 300 Three-color gradient.
BrownViolet 300 Two-color gradient.
ColdWarm 300 Multicolor gradient for temperature.
Mocha 300 Two-color gradient.
VioletOrangeYellow 300 Multicolor gradient for temperature.
SeaLandAndFire 256 Another topographic table. Sea level is at 25%.
GreenMagenta16 16 Similar to the 14-color National Weather Service Motion color tables (base

velocity or storm relative values), but friendly to red-green colorblind people.
EOSOrangeBlue11 11 Colors for diverging data (friendly to red-green colorblind people).
EOSSpectral11 11 Modified spectral colors (friendly to red-green colorblind people).
dBZ14 14 National Weather Service Reflectivity (radar) colors for Clear Air (-28 to +24

dBZ) or Precipitation (5 to 70 dBZ) mode.
dBZ21 21 National Weather Service Reflectivity (radar) colors for combined Clear Air

and Precipitation mode (-30 to 70 dBZ).
Web216 216 The 216 “web-safe” colors, provides a wide selection of standard colors in

a single color table. Intended for trace f(z) coloring using the ModifyGraph
zColor parameter.

Chapter II-15 — Image Plots

II-366

Igor Pro 6.2-Compatible Color Tables
Igor Pro 6.2 added 2 new color tables:

Indexed Color Details
The data values contained in your matrix are used to select a color from a color index wave that you supply.

The color index wave must be a 2D wave with three columns containing red, green, and blue values that
range from 0 (zero intensity) to 65535 (full intensity), and a row for each color.

Linear Indexed Color
For the normal linear indexed color, Igor finds the color for a particular matrix data value by choosing the
row in the color index wave whose X index corresponds to the image matrix data value:

Igor converts the matrix data value zImageValue into a row number colorIndexWaveRow using the follow-
ing computation:

colorIndexWaveRow = floor(nRows*(zImageValue-xMin)/xRangeInclusive)

where,

nRows = DimSize(colorIndexWave,0)
xMin = DimOffset(colorIndexWave,0)
xRangeInclusive = (nRows-1) * DimDelta(colorIndexWave,0)

Color Table Name Colors Notes
Mud 256 Dark brown to white, without the pink cast of the Mocha color table. For

Veeco atomic force microscopes.
Classification 25 5 hues for classification, 5 saturations for variations within each class.

Choosing a color from an X-scaled color index wave
for image matrix of Z values

red = 65535
green = 0
blue = 0

Column 0 Column 1 Column 2X scaling determines
color range Red Green Blue

Chapter II-15 — Image Plots

II-367

If colorIndexWaveRow exceeds the row range, then the Before First Color and After Last Color settings are
applied.

Igor 5 used a slightly different computation:

colorIndexWaveRow= round((zImageValue-xMin)/DimDelta(colorIndexWave,0))

By setting the X scaling of the color index wave (Data→Change Wave Scaling), you can control how Igor
maps the image matrix data value to a color. This is similar to setting the First Color at Z= and Last Color
at Z= values for a color table.

The X scaling of the 5 row shortindex wave shown in the picture above was set using:

SetScale/P x 0.18,0.25,"", shortindex // DimDelta = 0.25, xMin= 0.18

When used with an image having a zImageValue= 0.5, the computed row would be:

colorIndexWaveRow= floor(5*(0.5-0.18)/((5-1)*0.25)) = floor(1.6) = 1

resulting in a red pixel.

When dealing with very large images you will get the best speed if your image data is unsigned byte.

Logarithmic Indexed Color
For logarithmic indexed color (the ModifyImage log parameter is set to 1), colors are mapped using the
log(x scaling) and log(image z) values this way:

colorIndexWaveRow = floor(nRows*(log(zImageValue)-log(xMin))/(log(xmax)-log(xMin)))

where,

nRows = DimSize(colorIndexWave,0)
xMin = DimOffset(colorIndexWave,0)
xMax = xMin + (nRows-1) * DimDelta(colorIndexWave,0)

Displaying image data in log mode will be slower than in linear mode.

Example: Point-Scaled Color Index Wave
Here are the commands that created the point-scaled, unsigned 16-bit integer color index wave shown in
the preceding table:
Make/O/W/U/N=(1,3) shortindex // initially 1 row; more will be added
shortindex[0][]= {{0},{0},{0}} // black in first row
shortindex[1][]= {{65535},{0},{0}} // red in new row
shortindex[2][]= {{0},{65535},{0}} // green in new row
shortindex[3][]= {{0},{0},{65535}} // blue in new row
shortindex[4][]= {{65535},{65535},{65535}} // white in new row

These commands generate sample data and display it using the color index wave:
Make/O/N=(30,30)/B/U expmat // /B/U makes unsigned byte image
SetScale/I x,-2,2,"" expmat
SetScale/I y,-2,2,"" expmat
expmat= 4*exp(-(x^2+y^2)) // test image ranges from 0 to 4
Display;AppendImage expmat
ModifyImage expmat cindex= shortindex

Chapter II-15 — Image Plots

II-368

Direct Color Details
Direct color images use a 3D wave with 3 color planes containing absolute values for red, green and blue.
Generally, direct color waves will be either unsigned 8 bit integers or unsigned 16 bit integers.

For 8-bit integer waves, 0 represents zero intensity and 255 represents full intensity. For all other number types,
0 represents zero intensity but 65535 represents full intensity. Out-of-range values are clipped to the limits.

Try the following example, executing each line one at a time. For best results, set your monitor to thousands
or millions of colors.
Make/O/B/U/N=(40,40,3) matrgb;Display;Appendimage matrgb
matrgb[][][0]= 127*(1+sin(x/8)*sin(y/8)) // specify red, 0-255
matrgb[][][1]= 127*(1+sin(x/7)*sin(y/6)) // specify green, 0-255
matrgb[][][2]= 127*(1+sin(x/6)*sin(y/4)) // specify blue, 0-255

Redimension/S matrgb // switch to floating point, image turns black
matrgb*=256 // floating point must be larger to display correctly

Because the appearance of a direct color image is completely determined by the image data, the Modify
Image Appearance dialog has no effect on direct color images, and the dialog appears blank.

Creating Color Legends
You can create a color legend using a color scale annotation. You can find further details about creating
legends using the Add Annotation dialog in Chapter III-2, Annotations, particularly in the Legends (see
page III-54) and Color Scales (see page III-61) sections.

We will demonstrate with a simple image plot created by executing the following commands:
Make/O/N=(30,30) expmat
SetScale/I x,-2,2,"" expmat; SetScale/I y,-2,2,"" expmat
expmat= exp(-(x^2+y^2)) // data ranges from 0 to 1
Display;AppendImage expmat // by default, left and bottom axes
ModifyGraph width={Plan,1,bottom,left},mirror=0

This creates the following image, using the autoscaled Grays color table:

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

Chapter II-15 — Image Plots

II-369

Choose Add Annotation from the Graph menu. Choose “ColorScale” from the Annotation pop-up menu.
Switch to the Frame tab, set the Color Bar Frame to 0 and the Annotation Frame to None.

Switch to the Position tab, select Exterior and set the Anchor to Right Center:

Then click Do It. Igor will execute the following commands:
ColorScale/C/N=text0/F=0/A=RC/E image=expmat,frame=0.00

to generate the following image plot:

Double-click the color scale to edit it with the Modify Annotation dialog. Use the Position tab to change the
color scale’s orientation.

Chapter II-15 — Image Plots

II-370

Image Instance Names
Igor identifies an image plot by the name of the wave providing Z values (the image matrix wave selected
in the Z Wave list of the Image Plot dialogs). This “image instance name” is used in commands that modify
the image plot.

In this example the image instance name is “zw”:
Display; AppendImage zw // new image plot
ModifyImage zw ctab={*,*,BlueHot} // change color table

In the unusual case that a graph contains two image plots of the same data (to show different subranges of the
data side-by-side, for example), an instance number must be appended to the name to modify the second plot:
Display; AppendImage zw; AppendImage/R/T zw // two image plots
ModifyImage zw ctab={*,*,RedWhiteBlue} // change first plot
ModifyImage zw#1 ctab={*,*,BlueHot} // change second plot

The Modify Image Appearance dialog generates the correct image instance name automatically. Image
instance names work much the same way wave instance names for traces in a graph do. See Instance Nota-
tion on page IV-16.

Programming Note
The ImageNameList function (see page V-306) returns a string list of image instance names. Each name cor-
responds to one image plot in the graph. The ImageInfo function (see page V-293) returns information
about a particular named image plot.

Image Preferences
You can change the default appearance of image plots by “capturing” preferences from a “prototype”
graph containing image plots. Create a graph containing an image plot (or plots) having the settings you
use most often. Then choose Capture Graph Prefs from the Graph menu. Select the Image Plots category,
and click Capture Prefs.

Preferences are normally in effect only for manual operations, not for automatic operations from Igor pro-
cedures. Preferences are discussed in more detail in Chapter III-17, Preferences.

The Image Plots category includes both Image Appearance settings and axis settings.

Image Appearance Preferences
The captured Image Appearance settings are automatically applied to an image plot when it is first created
(provided preferences are turned on). They are also used to preset the Modify Image Appearance subdialog
of the New Image Plot dialog.

The factory default
settings for the Image
Plot category are
currently in effect.

The Image Appearance
settings and the axis settings
used for the image plot in the
target graph will be captured
as the new preferred settings.

Chapter II-15 — Image Plots

II-371

If you capture the Image Plot preferences from a graph with more than one image plot, the first image plot
appended to a graph gets the settings from the image first appended to the prototype graph. The second
image plot appended to a graph gets the settings from the second image plot appended to the prototype
graph, etc. This is similar to the way XY plot wave styles work.

Image Axis Preferences
Only axes used by the image plot have their settings captured. Axes used solely for an XY, category, or
contour plot are ignored.

The image axis preferences are applied only when axes having the same name as the captured axis are
created by an AppendImage command. If the axes existed before AppendImage is executed, they will not
be affected by the image axis preferences.

The names of captured image axes are listed in the X Axis and Y Axis pop-up menus of the New Image Plot
and Append Image Plot dialogs. This is similar to the way XY plot axis preferences work.

For example, suppose you capture preferences for an image plot using axes named “myRightAxis” and
“myTopAxis”. These names will appear in the X Axis and Y Axis pop-up menus in image plot dialogs.
• If you choose them in the New Image Plot dialog and click Do It, a graph will be created containing

newly-created axes named “myRightAxis” and “myTopAxis” and having the axis settings you captured.
• If you have a graph which already uses axes named “myRightAxis” and “myTopAxis” and choose

these axes in the Append Image Plot dialog, the image will be appended to those axes, as usual, but
no captured axis settings will be applied to these already-existing axes.

You can capture image axis settings for the standard left and bottom axes, and Igor will save these sepa-
rately from left and bottom axis preferences captured for XY, category, and contour plots. Igor will use the
image axis settings for AppendImage commands only.

How to Use Image Preferences
Here is our recommended strategy for using image preferences:
1. Create a new graph containing a single image plot. Use the axes you will normally use, even if they are

left and bottom. You can use other axes, too (select New Axis in the New Image Plot and Append Image
Plot dialogs).

2. Use the Modify Image Appearance, Modify Graph, and Modify Axis dialogs to make the image
plot appear as you prefer.

3. Choose Capture Graph Prefs from the Graph menu. Select the Image Plots category, and click Cap-
ture Prefs.

Image Plot Shortcuts
Since image plots are drawn in a normal graph, all of the Graph Shortcuts (see page II-312) apply. Here we
list those which apply specifically to image plots.

References
Light, Adam, and Patrick J. Bartlein, The End of the Rainbow? Color Schemes for Improved Data Graphics,

Eos, 85, 385-391, 2004.

Action Shortcut (Macintosh) Shortcut (Windows)

To modify the appear-
ance of the image plot
as a whole

Control-click in the plot area of the
graph and choose Modify Image from
the pop-up menu.

Right-click in the plot area of the graph
and choose Modify Image from the pop-
up menu.

Chapter II-15 — Image Plots

II-372

See also <http://geography.uoregon.edu/datagraphics/color_scales.htm>.

Wyszecki, Gunter, and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formula, 628
pp., John Wiley & Sons, 1982.

http://geography.uoregon.edu/datagraphics/color_scales.htm

Chapter

II-16
II-16Page Layouts

Overview.. 375
Memory Usage in Page Layouts ... 376
Layout Background Color ... 376
Layers.. 376

Activating the Layout Layer .. 377
Activating the Current Drawing Layer .. 377
Changing the Current Drawing Layer ... 377
DelayUpdate and Drawing Commands... 378
For Further Information on Drawing Layers... 378

Creating a Layout.. 378
Layout Menu ... 378
Layout Names and Titles ... 379
Hiding and Showing a Layout.. 379
Killing and Recreating a Layout ... 379
Page Setups .. 379

Changing Printers.. 380
Changing Computer Platforms ... 380

Zooming ... 380
Objects in the Layout Layer... 380

Layout Object Names .. 381
Layout Object Properties .. 381
Dummy Objects ... 382
Automatic Updating of Layout Objects ... 382

Subwindows in the Layout Layer .. 382
Layout Layer Tool Palette.. 383

Arrow Tool ... 383
Marquee Tool .. 384
Annotation Tool .. 385
Frame Pop-Up Menu .. 385
Misc Pop-Up Menu ... 385
Graph Pop-Up Menu .. 385
Table Pop-Up Menu ... 386

The Layout Layer Contextual Menu .. 386
Activate Object’s Window.. 386
Recreate Object’s Window.. 386
Kill Object’s Window .. 386
Show Object’s Window... 386
Hide Object’s Window.. 386
Scale Object ... 386
Convert Object to Embedded... 387
Recreate Selected Objects’ Windows .. 387
Kill Selected Objects’ Windows ... 387
Scale Selected Objects.. 387

Chapter II-16 — Page Layouts

II-374

Appending a Graph or Table to the Layout Layer... 387
Inserting a Picture in the Layout Layer ... 387

Placing a Picture... 389
Removing Objects from the Layout Layer .. 390
Modifying Layout Objects ... 390
High Fidelity.. 390
Annotations in the Layout Layer.. 391

Creating a New Annotation ... 391
Modifying an Existing Annotation ... 391
Positioning an Annotation.. 391
Positioning Annotations Programmatically .. 392
Legends in the Layout Layer.. 392
Default Font .. 393

Front-To-Back Relationship of Objects .. 393
Aligning Stacked Graph Objects... 393

Prepare the Graphs.. 394
Append the Graphs to the Layout .. 394
Align Left Edges of Layout Objects .. 394
Set Width and Height of Layout Objects.. 394
Set Vertical Positions of Layout Objects ... 394
Set Graph Plot Areas and Margins.. 394

Arranging Objects ... 395
Printing Graphs as Bitmaps... 396
Exporting Layouts... 397
Copying Objects from the Layout Layer ... 397

Copying as an Igor Object Only .. 397
Pasting Objects into the Layout Layer ... 397

Pasting into a Different Experiment.. 398
Pasting Color Scale Annotations ... 398

Page Layout Preferences .. 398
Layout Style Macros ... 399
Problems with Layouts .. 399

Picture Transparency .. 399
Graphs Transparency.. 399
Transparency on Screen and in the Printout ... 399

Page Layout Shortcuts.. 400

Chapter II-16 — Page Layouts

II-375

Overview
A page layout, or layout for short, is a type of window that you can use to compose pages containing:
• graphs
• tables
• annotations (textboxes and legends)
• pictures
• drawing elements (lines, arrows, rectangles, polygons, etc.)

Each layout represents one page. You can have as many layouts as memory allows.

Here is an example of a layout window.

A page layout has a number of layers. One layer, the layout layer, is for graphs, tables, annotations and pic-
tures. The other layers are for drawing elements. Drawing is discussed in detail in Chapter III-3, Drawing.
This chapter is primarily devoted to the layout layer.

Here are the notable features of page layouts.
• You can combine graphs, tables, pictures, annotations and drawing elements.
• Graphs, tables and legends in layouts are updated automatically.
• Complex graphs can be quickly and smoothly positioned.
• Layouts print at the full resolution of the printer.
• You can export all or part of a layout to another program.

There are two ways to add a graph or table to the layout layer:
• By creating a graph or table object. An object is a representation of a separate standalone graph or

table window. Layout objects are described under Objects in the Layout Layer on page II-380.

Dotted line encloses the
printable part of the page.

Page layout tools
are currently active

Annotations

Graphs

A draw element

Information Panel

Draw icon — click to
use drawing tools

Layout icon — click to
use page layout tools

A table

Zoom Control

Chapter II-16 — Page Layouts

II-376

• By creating an embedded graph or table subwindow. A subwindow is a self-contained graph or table
embedded in a layout window. Embedded subwindows are described under Subwindows in the
Layout Layer on page II-382.

The subwindow is a power-user feature added in Igor Pro 5. It is described in detail in Chapter III-4,
Embedding and Subwindows and can not be effectively used without a careful reading of that chapter.
Graph and table objects are less powerful but simpler to use and more intuitive. We recommend using
graph and table objects until you have had time to read and understand Chapter III-4.

In this chapter, the term “object” refers to graph, table, annotation and picture objects, not to graph or table
subwindows.

Memory Usage in Page Layouts
Igor uses techniques that make the layout layer operate quickly and smoothly even when you are working
with large, complex graphs. These techniques require that Igor store an image of the page in memory.

If you view a layout in color and then change the number of colors displayed on your monitor, Igor will
update the layout using the new number of colors. If Igor runs out of memory while doing this, it will
reduce the page magnification so that less memory is required.

Layout Background Color
You can choose a background color for a page layout. This is useful for creating slides.

You can specify a background color for the page layout by:
• Using the Background Color submenu in the Layout menu.
• Using the Background Color submenu in the Misc pop-up menu.
• Using the NewLayout command line operation.
• Using the ModifyLayout command line operation.

The background color is white by default. If you wish, after selecting a background color, you can capture
your preferred background color by choosing Capture Layout Prefs from the Layout menu.

Layers
A page in a layout has five layers. There is one layer for layout objects and four layers for drawing elements.

The two icons in the top-left corner of the layout window control whether you are in layout mode or
drawing mode.

All graphs, tables and annotations
go in the Layout layer.

Most manual drawing is done in the
User Front layer.

UserFront

ProgFront

Layout

UserBack

ProgBack

Chapter II-16 — Page Layouts

II-377

The layout layer is most useful for presenting multiple graphs and for annotations that refer to multiple
graphs. The drawing layers are useful for adding simple graphic elements such as arrows between graphs.

Activating the Layout Layer
When you click the layout icon, the layout layer is activated. You can use the layout tools to add objects to
or modify objects in the layout layer only.

Activating the Current Drawing Layer
When you click the drawing icon, the current drawing layer is activated. You can use the drawing tools to
add elements to or modify elements in the current drawing layer only.

Changing the Current Drawing Layer
Initially, the UserFront drawing layer will be the current drawing layer. To select a different drawing layer,
press Option (Macintosh) or Alt (Windows) and click the drawing environment pop-up icon.

You may never need to use the Drawing Layer pop-up menu. Most users will need to use just the layout
layer and the UserFront drawing layer. The ProgFront and ProgBack layers are intended to be used from
Igor procedures only.

Layout Mode icon — activates the layout layer.

Draw Mode icon — activates the selected draw layer.

When the layout icon is highlighted, the layout layer
and layout tools are activated.

Arrow tool — selects, moves or resizes a layout object

Marquee tool — identifies layout objects to cut, copy or tile

Annotation tool — creates or modifies textboxes and legends

Frame tool — sets frame for the selected layout object

Misc pop-up menu — controls units update mode

Graph pop-up menu — inserts a graph layout object

Table pop-up menu — inserts a table layout object

When the drawing icon is highlighted, the current
drawing layer and drawing tools are activated.

Arrow or selector tool

Simple text tool

Lines and arrows tool

Rectangle tool

Rounded rectangle tool

Oval tool
Polygon tool

Drawing environment pop-up

Mover pop-up

Option-click or Alt-click the
drawing environment icon

to get the Draw Layer pop-up menu:

Chapter II-16 — Page Layouts

II-378

If you click an element that is not in the active layer, Igor will ignore the click.

DelayUpdate and Drawing Commands
There is a DelayUpdate setting, accessible via the Misc pop-up menu, that controls when the layout will be
redrawn. If you execute drawing commands from the command line or from a procedure and if the Del-
ayUpdate setting is on, the layout will not be updated until you make it the active window. Therefore, if
you want to type drawing commands in the command line and see the effect in the layout immediately,
turn the DelayUpdate setting off.

For Further Information on Drawing Layers
The drawing layers function nearly identically in graph, page layout and control panel windows. For
details on drawing, see Chapter III-3, Drawing. The rest of this chapter discusses drawing only to describe
behavior that is unique to layout windows.

Creating a Layout
You create a layout by choosing New Layout from the Windows menu.

You can create a layout with no objects in it by clicking Do It without selecting any objects. You can append
objects to the layout later.

Layout Menu
The Layout menu contains items that apply to page layout windows only. It appears in the menu bar only
when the active window is a layout.

Choose a layout style macro, if any.
Usually, there will be no style macro

Select objects to put
into the layout layer.
Shift-click to select
multiple objects.

Enter a title for the
layout here or leave
this blank to get a
default title.

Select to initially tile or stack the
objects. It is often preferable to
leave these deselected and to use
the Arrange Objects dialog later.

These apply to the selected
layout object.

Sets object size, position,
frame and other properties.

For tiling or stacking layout objects.

Adds a textbox or legend to the layout layer.

Chapter II-16 — Page Layouts

II-379

Layout Names and Titles
Every layout that you create has a name. This is a short Igor-object name that you or Igor can use to refer-
ence the layout from a command or procedure. When you create a new layout, Igor assigns it a name of the
form Layout0, Layout1 and so on. You will most often use a layout’s name when you kill and recreate the
layout, see Killing and Recreating a Layout on page II-379.

A layout also has a title. The title is the text that appears at the top of the layout window. Its purpose is to
identify the layout visually. It is not used to identify the layout from a command or procedure. The title can
consist of any text, up to 255 characters.

You can change the name and title of a layout using the Window Control dialog. This dialog is a collection of
assorted window-related things. Choose Window Control from the Control submenu of the Windows menu.

Hiding and Showing a Layout
You can hide a layout by Shift-clicking the close button.

If the Minimize Is Hide checkbox is selected in the Miscellaneous Settings dialog (Misc menu), you can hide
a layout by clicking its minimize icon and hide all layouts by clicking the minimize button while pressing
Option (Macintosh) or Alt (Windows).

You can show a layout by choosing its name from the Windows→Layouts submenu.

Killing and Recreating a Layout
Igor provides a way for you to kill a layout and then later to recreate it. This temporarily gets rid of a layout
that you expect to be of use later.

You kill a layout by clicking the layout window’s close button or by using the Close item in the Windows menu.
When you kill a layout, Igor offers to create a window recreation macro. Igor stores the window recreation
macro in the procedure window of the current experiment. You can invoke the window recreation macro later
to recreate the layout. The name of the window recreation macro is the same as the name of the layout.

For further details, see Closing a Window on page II-59 and Saving a Window as a Recreation Macro on
page II-61.

Page Setups
The page setup is a collection of information created by the printer driver. It controls the page orientation,
the dimensions of the page, and the size of page margins. You can modify it using the Page Setup dialog
via the File menu or using the PrintSettings operation on page V-571.

Each page layout has its own associated page setup. When you create a new page layout, Igor creates a new,
default page setup. You can change the default page setup to get the page orientation and margins that you

The Window Control dialog changes
a layout’s title and name.

Chapter II-16 — Page Layouts

II-380

prefer using the Capture Layout Prefs item in the Layout menu. Igor uses this captured page setup when
you create a layout interactively. To use the captured page setup from an Igor procedure, see the Prefer-
ences operation on page V-564.

When you close a layout window, Igor asks if you want to create a layout recreation macro. If you do create
the macro, you can execute it later to recreate the layout. Igor then reuses the layout’s original page setup
for the recreated layout.

Page setups are stored in the experiment file when you save the current experiment.

Changing Printers
Page setups are customized for each printer. When you change printers and then attempt to print, some
printer drivers try to convert the page setup for the old printer into an equivalent page setup for the new
printer. This conversion is not always accurate. If you find that printing behaves unexpectedly when you
change printers, then you will need to use the Page Setup dialog to fix the page setup before you print.

Changing Computer Platforms
When you transfer an experiment saved by Igor Pro 3.0 or earlier from Macintosh to Windows, page setups
are lost. Igor will use a default setup for all page layouts in the experiment.

When you transfer an Igor Pro 3.1 (or later) experiment from one platform to another, page setup records
are only partially preserved. Igor attempts to preserve the page orientation and margins.

There is a more detailed discussion of this issue in Chapter III-15, Platform-Related Issues.

Zooming
You can zoom the page in to 200% or out to 50% or 25%. Use the Zoom submenu in the Layout menu or the
Zoom pop-up menu in the lower-left corner of the layout window.

By zooming out you see the entire page at once. You can zoom in to place drawing elements with higher
precision.

Igor stores the position of layout objects with a precision of one point. Therefore, zooming in does not allow
you to position them more precisely. Also, when you zoom in, Igor does not redraw graphs and other
objects in the layout layer; it merely shrinks or expands a stored representation of the object. However, Igor
does redraw graph and table subwindows and drawing elements.

Objects in the Layout Layer
The layout layer can handle four kinds of objects: graphs, tables, annotations and pictures. This table shows
how you can add each of these objects to the layout layer.

Object Type To Add Object to the Layout Layer

Graph Use the Graph pop-up menu in the layout window.
Use the Append to Layout dialog.
Use the AppendLayoutObject operation in user-functions, otherwise use the
AppendToLayout operation.

Table Use the Table pop-up menu in the layout window.
Use the Append to Layout dialog.
Use the AppendLayoutObject operation.

Chapter II-16 — Page Layouts

II-381

Layout Object Names
Each object in the layout layer has a name so that you can manipulate it from the command line or from an
Igor procedure as well as with the mouse. When you position the cursor over an object, its name, position
and dimensions are shown in the info panel at the bottom of the layout window.

For a graph or table, the object name is the same as the name of the graph or table window. For an annota-
tion, the object name is determined by the Textbox or Legend operation that created the annotation. When
you paste a picture from the Clipboard into a page layout, Igor automatically gives it a name like PICT_0
and adds it to the current experiment’s picture collection.

Layout Object Properties
This table shows the properties of each object in the layout layer.

All of the properties can also be set using the ModifyLayout operation from the command line or from an
Igor procedure.

Some special cases involving layout object transparency are discussed under Problems with Layouts on
page II-399.

Annotations Click the text (“A”) tool and then click in the page area.
Use the Add Annotation dialog.
Use the TextBox or Legend operations.

Pictures Paste from the Clipboard.
Use the Pictures dialog (Misc menu).
Use the AppendLayoutObject operation if the picture already exists in the current
experiment’s picture collection.

Object Property Comment

Left coordinate Measured from the left edge of the paper.

Set using mouse or Modify Objects dialog.

Top coordinate Measured from the top edge of the paper.

Set using mouse or Modify Objects dialog.

Width Set using mouse or Modify Objects dialog.

Height Set using mouse or Modify Objects dialog.

Frame None, single, double, triple, or shadow.

Set using Frame pop-up menu or Modify Objects dialog.

Transparency Set using Modify Objects dialog.

Fidelity Set using Modify Objects dialog.

This affects only what happens when you resize an object. If you resize a high
fidelity object, Igor redraws the object completely at the new size. If you resize a low
fidelity object, Igor stretches an existing picture of the object to fit the new size.

As of Igor Pro 6.1, the fidelity setting no longer affects graph objects.

Object Type To Add Object to the Layout Layer

Chapter II-16 — Page Layouts

II-382

Dummy Objects
If you append a graph or table to the layout layer, this creates a corresponding layout object. If you then kill
the graph or table window, the layout object remains and is said to be a “dummy object”. A dummy object
can be moved, resized or changed just as any other object.

If you later recreate the graph or table window or create a new graph or table with the same name as the
original, the object is reassociated with the window and ceases to be a dummy object.

Automatic Updating of Layout Objects
Graph and table objects are dynamic. When a graph or table changes, Igor automatically updates the cor-
responding layout object. Also, if you change the symbol for a wave in a graph and if that symbol is used
in a layout legend, Igor automatically updates the legend.

Normally, Igor waits until the layout window is activated before doing an auto-
matic update. You can force Igor to do the update immediately by deselecting
the DelayUpdate item in the Misc pop-up menu in the layout’s tool palette.

See DelayUpdate and Drawing Commands on page II-378 for information on
how DelayUpdate affects drawing elements.

Subwindows in the Layout Layer
The layout layer can handle two kinds of subwindows: graphs and tables. To add a subwindow to a layout:
1. Activate the layout layer by clicking the layout icon.
2. Select the marquee tool (dashed-line rectangle).
3. Drag out a marquee.
4. Click inside the marquee and choose New Graph Here or New Table Here.

You can also create a subwindow by right-clicking (Windows) or Control-clicking (Macintosh) while in
drawing mode and choosing an item from the New submenu.

You can convert a graph or table object to an embedded subwindow by right-clicking (Windows) or Control-
clicking (Macintosh) while in layout mode and choosing Convert To Embedded. Note that a graph contain-
ing a control panel or controls cannot be converted into an embedded graph, even though a graph object
with controls or control panels can be added to a layout. Such a graph object does not display the controls
or control panels, however.

You can convert a graph or table subwindow to a graph or table object by right-clicking (Windows) or Control-
clicking (Macintosh) while in layout mode and choosing Convert To Graph And Object or Convert To Table
and Object. In a graph window, you must click in the graph background, away from any traces or axes.

The subwindow is a power-user feature added in Igor Pro 5. It is described in detail in Chapter III-4,
Embedding and Subwindows and can not be effectively used without a careful reading of that chapter.

Chapter II-16 — Page Layouts

II-383

Layout Layer Tool Palette

Arrow Tool
When you click the arrow tool, it becomes highlighted. The arrow tool is used
to select, move or resize a graph, table, annotation or picture object. To select
an object, click it. Adjustment handles appear on the selected object.

When you position the cursor over an object, the info panel shows the name of
the object under the cursor. If you drag, the cursor changes to a hand and the
object will follow the cursor as you drag it. While you drag, the info panel
shows the left and top coordinates of the object as well as its width and height.

If you press Shift while dragging an object, the direction of movement is con-
strained either horizontally or vertically, depending on the first motion direc-
tion. If you momentarily release Shift and press it again, you can change the
direction of constraint.

By dragging the selected object’s handles, you can set the object’s width and height. While you drag, the info
panel shows the width and height of the object. If the object you are adjusting is a table, the info panel also shows
the width and height of the table in terms of rows and columns. If the object you are adjusting is an annotation
or picture, the info panel also shows the width and height of the object in terms of percent of its unadjusted size.

If you press Shift while dragging a corner handle, the resize will be proportional so that the object will main-
tain its original aspect ratio. The resize may deviate from precisely proportional if the page layout magni-
fication is less than 100 percent.

When you adjust the size of a table and then release the mouse, the table is auto-sized to an appropriate
integral number of rows and columns. To disable the auto-sizing, press Option (Macintosh) or Alt (Windows)
while resizing the table.

You can quickly force an annotation or picture back to its unadjusted size (100% by 100%) by pressing Option
(Macintosh) or Alt (Windows) and double-clicking the object. You can auto-size a table using the same method.

Double-clicking an object while the arrow tool is selected brings up the Modify Objects dialog, described in
Modifying Layout Objects on page II-390. Use this dialog to set the object’s properties.

When two or more objects are selected, you can align them using the Align submenu in the Layout menu.
You can also make the widths, heights, or widths and heights of the selected objects the same using items
in the Layout menu. In all of these actions, the first object that you select is used as the basis for aligning or
resizing other objects. Click in a blank area of the page to deselect all objects. Then click the object whose
position or size you want to replicate. Now Shift-click to select additional objects. Finally, choose the
desired action from the Layout menu.

While an object is selected, you can control its front-to-back ordering in the layout layer by choosing Bring
to Front, Move Forward, Send to Back or Move Backward from the Layout menu. This changes the order
of objects within the layout layer only. It has no effect on the drawing layers.

If you select a graph or table object, you can then double-click the name of the object in the info panel at the
bottom of the layout window. This activates the associated graph or table window.

After selecting an object by clicking it, you can select additional objects by Shift-clicking. If you Shift-click
an object that is already selected, it becomes deselected.

You can also select multiple objects by drag-clicking. Start by clicking in an area of the page where there are
no objects. With the mouse button held down, drag the mouse diagonally. While you do this, Igor displays
a gray selection rectangle. Drag the rectangle until it completely encloses all of the objects that you want to
select. You can select additional objects by pressing Shift while drag-selecting unselected objects. You can
deselect objects by pressing Shift while drag-selecting selected objects. You can also deselect objects by
pressing Shift and clicking them.

Chapter II-16 — Page Layouts

II-384

With multiple objects selected, you can perform the following actions:
• Delete the objects, using the Delete key or the Edit→Clear menu item.
• Copy the objects, using Edit→Copy.
• Cut the objects, using Edit→Cut.
• Drag the objects to a new location.
• Nudge the objects with the arrow keys.
• Change the frame on the objects using the frame tool.

You can not do the following actions on multiple objects:
• Change the order of the objects in the object list (move to front, move to back).
• Adjust the size of the objects using the mouse.

Marquee Tool
When you click the marquee tool, it becomes highlighted and the cursor changes to a crosshair. You can use the
marquee tool to identify multiple objects for cutting, copying, clearing or arranging. You can also use it to indi-
cate a part of the layout for export to another application and to control pasting of objects from the Clipboard.

To use the marquee tool, click the mouse and drag it diagonally to indicate the region of interest. Igor dis-
plays a dashed outline around the region. This outline is called a marquee. A marquee has handles and
edges that allow you to refine its size and position.

To refine the size of the marquee, move the cursor over one of the handles. The cursor changes to a double
arrow which shows you the direction in which the handle adjusts the edge of the marquee. To adjust the
edge, simply drag it to a new position.

To refine the position of the marquee, move the cursor over one of the edges away from the handles. The
cursor changes to a hand. To move the marquee, drag it.

To make it possible to export any section of a layout, an object is considered selected if it intersects the mar-
quee. This is in contrast to selection with the arrow tool, which requires that you completely enclose the object.

This table shows how to use the marquee.

When you click inside the marquee Igor presents a pop-up menu, called the Layout Marquee menu, from
which you can choose Cut, Copy, Paste, or Clear. This cuts, copies, pastes or clears the all objects that inter-
sect the marquee. These marquee items do the same thing as the corresponding items in the Edit menu.

The Marquee menu also contains items that allow you to insert a graph or table subwindow.

It is possible to add your own menu items to the Layout Marquee menu. See Marquee Menus on page
IV-123 for details.

To Accomplish This Do This

Cut, copy or clear multiple objects Drag a marquee around them and then use the Edit menu to cut,
copy or clear.

Paste objects into a particular area Drag a marquee where you want to paste and then use the Edit
menu to paste.

Tile or stack objects Drag a marquee to indicate the area into which you want to tile or
stack and then choose Arrange Objects from the Layout menu.

Export a section of the layout as a
picture

Drag a marquee to indicate the section that you want to export and then
choose Export Graphics from the Edit menu (to use the Clipboard) or
choose Save Graphics from the File menu (to save in a disk file).

Chapter II-16 — Page Layouts

II-385

See Copying Objects from the Layout Layer on page II-397 and Pasting Objects into the Layout Layer on
page II-397 for more details on copying and pasting. See Arranging Objects on page II-395 for details on
tiling and stacking.

When the marquee tool is selected, any selected object is deselected. Double-clicking while the marquee tool
is selected has no effect.

Annotation Tool
When you click the annotation tool, it becomes highlighted and the cursor changes to an I-beam. The annotation
tool creates new annotations or modifies existing annotations. Annotations include textboxes and legends.

Clicking an existing annotation invokes the Modify Annotation dialog. Clicking anywhere else on the page
invokes the Add Annotation dialog which you use to create a new annotation. See Annotations in the
Layout Layer on page II-391 for more details.

Frame Pop-Up Menu
When an object is selected, you can change its frame by selecting an item from the Frame pop-up menu.
Each object can have no frame or a single, double, triple or shadow frame.

When you change the frame of a graph, table or picture object, its outer dimensions (width and height) do
not change. Since the different frames have different widths, the inner dimensions of the object do change.
In the case of graphs this is usually the desired behavior. For tables, changing the frame shows a nonintegral
number of rows and columns. You can restore the table to an integral number of rows and columns by
pressing Option (Macintosh) or Alt (Windows) and double-clicking the table. For pictures, changing the
frame slightly resizes the picture to fit into the new frame. To restore the picture to 100% sizing, press
Option (Macintosh) or Alt (Windows) and double-click the picture.

When you change the frame of an annotation object, Igor does change the outer dimensions of the object to
compensate for the change in width of the frame.

Misc Pop-Up Menu
The Misc pop-up menu adjusts some miscellaneous settings related to the layout.

You can choose Points, Inches, or Centimeters. This sets the units used in the info panel.

You can enable or disable the DelayUpdate item. If DelayUpdate is on, when a graph or table which corre-
sponds to an object in the layout changes, the layout is not updated until you activate it (make it the front
window). If you disable DelayUpdate then changes to graphs or tables are reflected immediately in the
layout. This also affects drawing commands. If you want to see the effect of drawing commands immedi-
ately, turn the DelayUpdate setting off.

DelayUpdate does not affect embedded graph and table subwindows.

Prior to Igor Pro 6.10, DelayUpdate was a per-document setting. It is now a global setting that affects all
existing and future layouts instead of just the layout you set.

You can use the Background Color submenu to change the layout’s background color. See Layout Back-
ground Color on page II-376 for details.

Graph Pop-Up Menu
The Graph pop-up menu provides a handy way to append a graph object to the layout layer. It contains a list
of all the graph windows that are currently open. Choosing the name of a graph appends the graph object to
the layout layer. The initial size of the graph object in the layout is taken from the size of the graph window.

Chapter II-16 — Page Layouts

II-386

Table Pop-Up Menu
The Table pop-up menu provides a handy way to append a table object to the layout layer. It contains a list
of all the table windows that are currently open. Choosing the name of a table appends the table object to
the layout layer.

The Layout Layer Contextual Menu
When the layout layer is active, Control-clicking (Macintosh) or right-clicking
(Windows) displays the Layout Layer contextual menu. The contents of the
menu depend on whether you click directly on an object or on a part of the
page where there is no object.

Activate Object’s Window
This item activates the corresponding graph or table window.

Recreate Object’s Window
This item recreates the corresponding graph or table window by running the window recreation macro that
was created when the window was killed.

Kill Object’s Window
This item kills the corresponding graph or table window. Before it is killed, you will see a dialog you can
use to create or update its window recreation macro.

If you press Option (Macintosh) or Alt (Windows) while selecting this item, the window will be killed with
no dialog and without creating or updating the window recreation macro. Any changes you made to the
window will be lost so use this feature carefully.

Windows Only:Pressing Alt while right-clicking does not work. To use the Alt key feature, proceed as
follows: right-click, then select the menu item without releasing the left mouse button,
then press Alt, then release the left mouse button.

Show Object’s Window
This item shows the corresponding graph or table window if it is hidden.

Hide Object’s Window
This item hides the corresponding graph or table window if it is hidden.

Scale Object
This item changes the size of the layout object in terms of percent of its current size or percent of its normal size.
Although this can work on any type of object, it is most useful for scaling pictures relative to their normal size.

For a picture or annotation object, “normal” size is the inherent size of the picture or annotation before any
shrinking or expanding. For a graph or table object, “normal” size means the size of the corresponding
graph or table window.

Regardless of the scaling values you enter, Igor does not allow the size of any object to exceed the size of
the entire page.

If a graph’s size is hardwired via the Modify Graph dialog, the corresponding layout object can not be scaled.

Tip: You can quickly return a picture or annotation to its normal size by double-clicking it while
pressing Option (Macintosh) or Alt (Windows).

Chapter II-16 — Page Layouts

II-387

Convert Object to Embedded
This item converts a graph or table object to an embedded subwindow. In doing so, the separate graph or
table window which the object represented is killed, leaving just the embedded subwindow.

If you Control-click or right-click on a part of the page where there is no object, the Layout contextual menu
looks like this:

Recreate Selected Objects’ Windows
This item runs the recreation macro for each selected graph or table object for which the corresponding
window was killed. It does nothing for selected picture or annotation objects.

Kill Selected Objects’ Windows
This item kills the window corresponding to each selected graph or table object. It does nothing for selected
picture or annotation objects. Before each window is killed, you will see a dialog you can use to create or
update its window recreation macro.

If you press Option (Macintosh) or Alt (Windows) while selecting this item, each window will be killed with
no dialog and without creating or updating the window recreation macro. Any changes you made to the
window will be lost so use this feature carefully.

Scale Selected Objects
This item changes the size of each selected layout object in terms of percent of its current size or percent of
its normal size.

Appending a Graph or Table to the Layout Layer
You can append graphs and tables to a layout by choosing the Append to Layout item from the Layout menu.

You can also append a graph or table using the pop-up menus in the layout’s tool palette.

Inserting a Picture in the Layout Layer
You can insert a picture that you have created in another application, for example a drawing program, into
the layout layer. (You can also insert a picture into the drawing layers. This is recommended if you wanted
to group the picture with other drawing elements.)

Select to Tile or Stack.
You can also tile or stack
later using the Arrange
Objects dialog.

Select graphs and tables
to append. Shift-click to
select multiple objects.

Chapter II-16 — Page Layouts

II-388

You can insert a picture in a layout by copy-and-paste or by loading from a file. When loading from a file
you must go through Igor’s picture collection (Misc→Pictures) to load and then place the picture.

Here are the supported picture formats:

PDF is the standard format for Mac OS X graphics. PICT was used prior to OS X and can still be pasted or place
in layouts but is obsolete.

EMF is the standard format for Windows graphics. Both of these are platform-dependent and will display as
gray boxes if you move the Igor experiment to the other platform. The other formats are platform-independent.
For more details, see Picture Compatibility on page III-397.

If you will be exporting your page layout to an EPS file or printing to a Postscript printer, you will get the
best results if your imported pictures are EPS. There are some restrictions on exporting a layout that con-
tains pictures as EPS. If you plan to do this, see Chapter III-5, Exporting Graphics (Macintosh), or Chapter
III-6, Exporting Graphics (Windows), for details.

All pictures used in the layout layer or in the drawing layers are stored in the current experiment’s picture
collection. You can examine the picture collection, load pictures into it and remove pictures from it using
the Pictures dialog. This is described in greater detail in the section Pictures on page III-423.

This diagram shows the two methods for putting a picture into a layout and how this relates to the picture
collection.

Format How To Place Notes

PDF Paste or use Misc→Pictures Macintosh only

EMF (Enhanced
Metafile)

Paste or use Misc→Pictures Windows only

BMP (bitmap) Use Misc→Pictures Windows only

BMP is sometimes called DIB (device-independent
bitmap).

PNG (Portable
Network Graphics)

Use Misc→Pictures Cross-platform bitmap format

JPEG Use Misc→Pictures Cross-platform bitmap format

TIFF (Tagged Image
File Format)

Use Misc→Pictures Cross-platform bitmap format

EPS (Encapsulated
PostScript)

Use Misc→Pictures High resolution vector format. Requires PostScript
printer. A screen preview is displayed on screen.

Chapter II-16 — Page Layouts

II-389

Pasting a picture from the Clipboard or loading it from a file puts the picture into the experiment’s picture
collection and auto-names it.

Placing a Picture
Here is the Pictures dialog.

When you click Place Picture In Layout, Igor closes the Pictures dialog and displays an angle-bracket
cursor. If you drag out a rectangle in the page with the angle-bracket, Igor will paste the picture into that
rectangle. If you just click with the angle-bracket, Igor will paste the picture at its default size, putting the
top-left corner of the picture where you clicked.

You can’t scroll or zoom the page layout while the angle-bracket cursor is active. Therefore, you may need
to adjust the picture after placing it.

You can always reset a picture to its default size by pressing Option (Macintosh) or Alt (Windows) and
double-clicking it with the arrow tool.

Place

PICT file or
Enhanced Metafile

Picture Collection

PICT_0P
as

te

Load

PICT_1

Clipboard

Page Layout

Select the picture and then
click the Place button

Chapter II-16 — Page Layouts

II-390

Removing Objects from the Layout Layer
You can remove objects from a layout by choosing the Remove from Layout item from the Layout menu.

You can also remove objects by selecting them with the arrow tool or enclosing them with the marquee tool
and pressing Delete or by selecting the Clear or Cut items from the Edit menu.

Removing a picture from a layout does not remove it from the picture collection. To do this, use the Pictures
dialog.

Modifying Layout Objects
You can modify the properties of layout objects using the Modify Objects dialog. To invoke it, choose
Modify Objects from the Layout menu or double-click an object with the arrow tool.

The effect of each property is described under Layout Object Properties on page II-381.

Once you have modified an object you can select another object from the Object list and modify it.

High Fidelity
The High Fidelity property determines how a layout object is redrawn when it is resized. If selected, the
object is fully redrawn. If deselected (low fidelity mode), a stored picture of the object is stretched to fit the
new size. As of Igor Pro 6.1, this property does not affect graph objects which are always drawn in high
fidelity.

The low fidelity mode was created for speed considerations at a time when personal computers ran at 16
MHz. Now there is rarely any reason to use it.

Select the objects to remove.
Shift-click to select multiple
objects.

Measured from the top-left corner of the paper.

Select the object to remove.
You can select only one
object at a time.

Chapter II-16 — Page Layouts

II-391

Annotations in the Layout Layer
The term “annotation” includes textboxes, legends and tags. You can create annotations in graphs and lay-
outs. Annotations are discussed in detail in Chapter III-2, Annotations. This section discusses aspects of
annotations that are unique to page layouts.

In a graph, an annotation can be a textbox, legend or tag. A legend shows the plot symbols for the waves in
the graph. A tag is connected to a particular point of a particular wave. In a layout, tags are not applicable.
You can create textboxes and legends.

Don’t confuse annotations with the simple text elements that you can create in the drawing layers of graphs,
layouts and control panels. These simple text elements are intended for specialized purposes, such as creating
axes that Igor doesn’t directly support (e.g. polar axes). Annotations are intended for general purpose labeling.

Creating a New Annotation
To create a new annotation, choose Add Annotation from the Layout menu or select the annotation tool and click
anywhere on the page, except on an existing annotation. These actions invoke the Add Annotations dialog.

The many options in this dialog are explained in Chapter III-2, Annotations.

Modifying an Existing Annotation
If an annotation is selected when you pull down the Layout menu, you will see a Modify Annotation item
instead of the Add Annotation item. Use this to modify the text or style of the selected annotation. You can
also get to the Modify Annotation dialog by clicking the annotation while the annotation tool is selected.
Double-clicking an annotation while the arrow tool is selected brings up the Modify Object dialog, not the
Modify Annotation dialog.

Positioning an Annotation
An annotation is positioned relative to an anchor point on the edge of the printable part of the page. The dis-
tance from the anchor point to the textbox is determined by the X and Y offsets which are in percent of the
printable page. The X and Y offsets are automatically set for you when you drag a textbox around the page.
You can also set them using the annotation Tweaks subdialog but this is usually not as easy as just dragging.

Choose Textbox
or Legend.

Enter or edit text
here.

Chapter II-16 — Page Layouts

II-392

Positioning Annotations Programmatically
This diagram shows the anchor points. You don’t need to know this to position annotations by dragging.
You do need to know it to position them programmatically, from an Igor procedure.

Using the top-left anchor, a (0, 0) XY offset would put a tag in the top-left corner of the page:
Textbox/A=LT/X=0/Y=0 "Test 1"

An XY offset of (50, 50) would put a tag in the middle of the page.
Textbox/A=LT/X=50/Y=50 "Test 2"

Using the middle-center anchor, a (0, 0) XY offset would put a tag in the middle of the page:
Textbox/A=MC/X=0/Y=0 "Test 3"

An XY offset of (-50, 50) would put a tag in the top-left corner of the page.
Textbox/A=MC/X=-50/Y=50 "Test 4"

For most purposes, the left-top anchor is the easiest to use and is sufficient.

The anchor sets not only the reference point on the page but also the reference point on the annotation. For
example, if the anchor is right-top then the XY offset sets the position of the right-top corner of the annota-
tion, relative to the right-top corner of the page. For this reason, if you want several textboxes to be right-
aligned, you would want to use a right-top, right-center or right-bottom anchor.

Legends in the Layout Layer
When you invoke the Add Annotations dialog and choose Legend, Igor automatically sets the annotation’s
text to produce a legend containing a symbol for each wave in each graph object in the layout. In the picture
of the dialog above, you can see the text that Igor generated. This diagram explains it.

Left-bottom Middle-bottom Right-bottom

Left-center Middle-center Right-center

Left-top Middle-top Right-top

Escape code for
wave trace symbol

Specifies the graph Specifies the trace in the graph

\s(Graph0.data0) data0
\s(Graph1.data1) data1
\s(Graph2.data2) data2

 data0
 data1
 data2

You can put any text here

Chapter II-16 — Page Layouts

II-393

Igor generates the lines of the legend text starting with the bottom graph object in the layout and working
toward the top. You can edit the text to remove symbols that you don’t want or to change what appears
after the symbol.

If you change the symbol for a trace referenced in the legend, Igor will automatically update the layout
legend. If you append or remove waves to the graphs represented in the layout, Igor will also update the
layout legend. Updating happens when you activate the layout unless you have turned the layout’s Del-
ayUpdate setting off, in which case it happens immediately.

You can freeze a legend by converting it to a textbox. This stops Igor from automatically updating it when
waves are added to or removed from graphs. To do this, select the annotation tool and click in the legend.
In the resulting Modify Annotation dialog, change the pop-up menu in the top-left corner from Legend to
Textbox. You can also do this using the following command:
Textbox/C/N=text0 // convert legend named text0 into a textbox

Instead of specifying the name of the trace for a legend symbol, you can specify the trace number. For exam-
ple, "\s(Graph0.#0)" displays the legend for trace number 0 of Graph0.

Default Font
By default, annotations use the default font chosen in the Default Font dialog via the Misc menu. You can
override the default font using the Font pop-up menu in the Add Annotation dialog. If you change the
default font, Igor will automatically update the layout. This will happen when you activate the layout or
immediately if you have disabled the layout’s DelayUpdate setting.

Front-To-Back Relationship of Objects
New objects added to the layout layer are added in front of existing objects. You can
move objects in front of or in back of other objects using the Layout menu after
selecting a single object with the arrow tool.

These menu commands affect the layout layer only. To put drawing elements in
front of the layout layer, use the User Front drawing layer. To put drawing elements behind the layout
layer, User Back drawing layer.

Aligning Stacked Graph Objects
It is a common practice to stack a group of graphs vertically in a column. Sometimes, only one X axis is used
for a number of vertically stacked graph. Here is an example.

1.2v

0.8

0.4

0.0

Sample 1

1.2v

0.8

0.4

0.0

Sample 2

1.2v

0.8

0.4

0.0

1086420
μs

Sample 3

P
ul

se
 A

m
pl

itu
de

 (
V

ol
ts

)

Trigger

Chapter II-16 — Page Layouts

II-394

This section gives step-by-step instructions for creating a layout like the one above. It is also possible to do
this using a single graph (see Creating Stacked Plots on page II-297 for details) or using subwindows (see
Chapter III-4, Embedding and Subwindows).

To align the axes of multiple graph objects in a layout, it is critical to set the graph margins. This is explained
in detail as follows.

The basic steps are:
1. Prepare the graphs.
2. Append the graph objects to the layout.
3. Align the left edges of the graph objects.
4. Set the width and height of the graph objects.
5. Set the vertical positions of the graph objects.
6. Set the graph plot areas and margins to uniform values.

It is possible to do steps 3, 4, and 5 at once by using the Arrange Objects dialog. However, in this section,
we will do them one-at-a-time.

Prepare the Graphs
It is helpful to set the size of the graph windows approximately to the size you intend to use in the layout
so that what you see in the graph window will resemble what you get in the layout. You can do this man-
ually or you can use the MoveWindow operation. For example, here is a command that sets the target
window to 5 inches wide by 2 inches tall, one inch from the top-left corner of the screen.
MoveWindow/I 1, 1, 1 + 5, 1 + 2

In the example shown above, we wanted to hide the X axes of all but the bottom graph. We used the Axis tab
of the Modify Graph dialog to set the axis thickness to zero and the Label Options tab to turn the axis labels off.

Append the Graphs to the Layout
Click in the layout window or create a new layout using the New Layout item in the Windows menu. If
necessary, activate the layout tools by clicking the layout icon in the top-left corner of the layout. Use the
Graph pop-up menu or the Append to Layout item in the Layout menu to add the graphs. Drag each graph
to the general area where you want it.

Align Left Edges of Layout Objects
Drag one of the graphs to set its left position to the desired location. Then Shift-click the other graphs to
select them. Now choose Align→Left Edges from the Layout menu.

Set Width and Height of Layout Objects
Set the width and height of one of the graph objects by selecting it and dragging the resulting handles or by
double-clicking it and entering values in the Modify Objects dialog.

Click in a blank part of the page to deselect all objects. Now click the object whose dimensions you just set.
Now Shift-click to select the other graph objects. With all of the graph objects selected, choose Make Same
Width And Height from the Layout menu.

Set Vertical Positions of Layout Objects
Drag the graph objects to their approximate desired positions on the page. You can drag an object vertically
without affecting its horizontal position by pressing Shift while dragging. Once you have set the approxi-
mate position, fine tune the vertical positions using the arrow keys to nudge the selected object.

Set Graph Plot Areas and Margins
At this point, your axes would be aligned except for one subtle thing. The width of text (e.g., tick mark
labels) in the left margin of each graph can be different for each graph. For example, if one graph has left

Chapter II-16 — Page Layouts

II-395

axis tick mark labels in the range of 0.0 to 1.0 and another graph has labels in the range 10,000 to 20,000, Igor
would leave more room in the left margin of the second graph. The solution to this problem is to set the
graph margins, as well as the width of the plot areas, of each graph to the same specific value.

To do this, select all of the graph objects and then choose Make Plot Areas Uniform from the Layout menu.
This invokes the following dialog:

Note that, because we are stacking graphs vertically, we want their horizontal margins and plot areas to be
the same, which is why we have selected Horizontally from the pop-up menu. The three checkboxes are
selected because we want to set both the left and right margins as well as the plot area width.

Now click each of the three Estimate buttons. When you click the Estimate button next to the Set Left
Margins To checkbox, Igor sets the corresponding edit box to the largest left margin of all of the graphs
selected in the list. Igor does a similar thing for the other two Estimate buttons. As a result, after clicking
the three buttons, you should have reasonable values. Click Do It.

Now examine the stacked graph objects. It is possible that you may want to go back into the Make Plot
Areas Uniform dialog to manually tweak one or more of the settings.

After doing these steps, the horizontal plot areas in the stacked graphs will be perfectly aligned. This does
not, however, guarantee that the left axes will line up. The reason for this is the graphs’ axis standoff set-
tings. The axis standoff setting, if enabled, moves the left axis to the left of the plot area to prevent the dis-
played traces from colliding with the axis. If the graphs have different sized markers, for example, it will
offset the left axis of each graph by a different amount. Thus, although the plot areas are perfectly-aligned
horizontally, the left axes are not aligned. The solution for this is to use the Modify Axis dialog (Graph
menu) to turn axis standoff off for each graph.

Arranging Objects
You can tile or stack objects in a layout by choosing the Arrange Objects item from the Layout menu.

Chapter II-16 — Page Layouts

II-396

To arrange objects in a section of the page rather than the whole page, you must use the marquee tool to
specify the section before invoking the dialog. Then make sure the “Use marquee” checkbox is selected.

There are several ways to specify which objects to arrange. Any objects that you select in the Objects to
Arrange list will be arranged. In addition, you can include the selected object, all graphs, tables, textboxes
or pictures by enabling the appropriate checkbox. If you select no objects in the list and select none of the
checkboxes, then all of the objects in the layout will be arranged.

You can set the number of rows and columns of tiles or you can leave them both on auto. If auto, Igor figures
out a nice arrangement based on the number of objects to be tiled and the available space. Setting rows or
columns to zero is the same as setting it to auto.

If you set both the rows and columns to a number between 1 and 100, Igor tiles the objects in a grid deter-
mined by your row/column specification. If you set either rows or columns to a number between 1 and 100
but leave the other setting on auto, Igor figures out what the other setting should be to properly tile the
objects. In all cases, Igor tiles starting from the top-left cell in a grid defined by the rows and columns,
moving horizontally first and then vertically.

If the grid that you specify has fewer tiles than the number of objects to be tiled, once all of the available
tiles have been filled, Igor starts tiling from the top-left corner again.

Regardless of the parameters you specify, Igor clips coordinates so that a tiled object is never completely off
the page. Also, objects are never set smaller than a minimum size or larger than the page.

The order in which objects are tiled is determined by the order in which they appear in the command gen-
erated by the Arrange Objects dialog. This in turn depends on the front to back ordering of the objects in
the layout. Objects are tiled from left to right, top to bottom. Therefore, you can control exactly where each
object winds up by controlling the front to back ordering. Another approach is to use the Arrange Objects
dialog to compose the Tile command. Then, instead of clicking Do It, click To Cmd Line, putting the Tile
command in the command line. Now arrange the objects by editing the command line so that they are in
the order in which you want them tiled. Then press Return or Enter to execute the Tile command.

Printing Graphs as Bitmaps
You can print graphs in layouts using a high-res bitmap rather than the usual object draw method. Use this
when a printer driver has bugs that affect normal operations. It may also be useful for printing graphs with
very large numbers of data points. There are drawbacks to the bitmap method. A large amount of memory
will be needed and on the Macintosh, patterns will be too small to be useful. Also, the quality of lines,
dashed lines in particular, may be inferior.

To have Igor to print graphs in Layouts using the bitmap method, execute the following on the command line:
Variable/G V_PrintUsingBitmap = 1

Select the objects
to tile or stack.
Shift-click to select
multiple objects.

Select to tile or stack
into a section of the
page instead of the
whole page.

Sets the grid in which
tiling or stacking is done.

Sets the spacing between
objects in points.

Chapter II-16 — Page Layouts

II-397

This command creates a variable that is stored in the current experiment. You must execute this command
for each experiment in which you want to use bitmap printing. Also, this variable must be created in the
root Data Folder.

To return Igor to its default printing settings, set V_PrintUsingBitmap=0 or kill the variable.

Exporting Layouts
You can export a layout to another application through the Clipboard or by creating a file. To export via the
Clipboard, use the Export Graphics item in the Edit menu. To export via a file, use the Save Graphics item
in the File menu.

If you want to export a section of the page, use the marquee tool to specify the section first. To do this, the
layout icon in the top-left corner of the layout window must be selected. If you don’t use the marquee, Igor
exports the part of the page that has layout objects or drawing elements in it.

The process of exporting graphics from a layout is very similar to exporting graphics from a graph. Because
of this, we have put the details elsewhere: Chapter III-5, Exporting Graphics (Macintosh), and Chapter
III-6, Exporting Graphics (Windows). These chapters describe the various export methods and how to
select the method that will give you the best results.

Copying Objects from the Layout Layer
You can copy objects to the Clipboard by selecting them with the arrow tool or enclosing them with the
marquee tool and then choosing Copy from the Edit menu. You can also choose Copy from the pop-up
menu that appears when you click inside the marquee.

When you copy an object to the Clipboard, it is copied in two formats:
• As an Igor object in a format used internally by Igor
• As a picture that can be understood by other applications

Although you can do a copy for the purposes of exporting to another application, this is not the best way.
See Exporting Layouts on page II-397 for a discussion of exporting graphics to another application. This
section deals with copying objects for the purposes of pasting them in the same or another layout. Since it
is easy to append graphs and tables to a layout using the pop-up menus in the tool palette, the main utility
of this is for copying annotations or pictures from one layout to another.

Copying as an Igor Object Only
There are times when a straightforward copy operation is not desirable. Imagine that you have some graph
objects in a layout and you want to put the same objects in another layout. You could copy the graph objects and
paste them into the other layout. However, if the graphs are very complex, it could take a lot of time and memory
to copy them to the Clipboard as a picture. If your purpose is not to export to another application, there is really
no need to copy as a picture. If you press Option (Macintosh) or Alt (Windows) while choosing Copy, then Igor
will do the copy only as Igor objects, not as a picture. You can now paste the copied graphs in the other layout.

Pasting Objects into the Layout Layer
This section discusses pasting Igor objects that you have copied from the same or a different page layout.
For pasting a new picture that you have generated with another application, see Inserting a Picture in the
Layout Layer on page II-387.

To paste layout objects that you have copied to the Clipboard from the same Igor experiment, just choose
Paste from the Edit menu.

When you copy a graph, table or picture layout object from a layout to the Clipboard, it is copied as a picture
and as an Igor object, in an internal Igor format. The Igor format includes the name by which Igor knows

Chapter II-16 — Page Layouts

II-398

the layout object. If you later paste into a layout, Igor will use this name to determine what object should
be added to the layout. It normally does not paste the picture representation of the object. In other words,
the Igor format of the object that is copied to the Clipboard refers to a graph, table or picture by its name.

In rare cases, you may actually want to paste as a picture, not as an Igor object. You might plan to change
the graph but want a representation of it as it is now in the layout. To do this, press Option (Macintosh) or
Alt (Windows) while choosing Edit→Paste. This creates a new named picture in the current experiment.

Pasting into a Different Experiment
The reference in the Clipboard to Igor objects by name doesn’t work across Igor experiments. The second
experiment may have a different object with the same name or it may have no object with the name stored
in the Clipboard. The best you can do when pasting from one experiment to another is to paste a picture of
the object from the first experiment.

You can force Igor to paste the picture representation instead of the Igor object representation as described
above, by pressing Option (Macintosh) or Alt (Windows) while choosing Edit→Paste.

Pasting Color Scale Annotations
For technical reasons, Igor is not able to faithfully paste a color scale annotation that uses a color index wave
or that uses the lookup keyword of the ColorScale operation. If you paste such a color scale, Igor will change
it to a color table color scale annotation with no lookup.

Page Layout Preferences
Page layout preferences allow you to control what happens when you create a new layout or add new
objects to the layout layer of an existing layout. To set preferences, create a layout and set it up to your taste.
We call this your prototype layout. Then choose Capture Layout Prefs from the Layout menu.

Preferences are normally in effect only for manual operations, not for programmed operations in Igor pro-
cedures. This is discussed in more detail in Chapter III-17, Preferences.

When you initially install Igor, all preferences are set to the factory defaults. The dialog indicates which
preferences you have changed.

The “Window Position and Size” preference affects the creation of new layouts only.

The Object Properties preference affects the creation of new objects in the layout layer. To capture this, add
an object to the layout layer and use the Modify Objects dialog to set its properties. Then select the object
and choose Capture Layout Prefs. Select the Object Properties checkbox and click Capture Prefs.

The page setup preference affects what happens when you create a new layout, not when you recreate a
layout using a recreation macro.

Resets preferences for the selected
items to the factory defaults.

Object properties are captured from the selected
object. Nothing is captured if no object is selected.

Captures preferences for
the selected items from the
active layout window.

Indicates that the current
page setup is the factory
default page setup.

Select items that you want
to capture or revert.

Chapter II-16 — Page Layouts

II-399

Layout Style Macros
The purpose of a layout style macro is to allow you to create a number of layouts with the same stylistic
properties. Using the Window Control dialog, you can instruct Igor to automatically generate a style macro
from a prototype layout. You can then apply the macro to other layouts.

Igor can generate style macros for graphs, tables and page layouts. However, their usefulness is mainly for
graphs. See Graph Style Macros on page II-307. The principles explained there apply to layout style macros also.

Problems with Layouts
This section discusses problems that some people may encounter in using page layouts.

Picture Transparency
A picture is inherently opaque if the picture itself erases its own background. For a picture that you create
in a drawing program, this would be the case if you drew a white rectangle behind all of the other elements
in the picture. If a picture is inherently opaque, you can’t make it transparent by changing the layout trans-
parency property. It will always print opaque.

Graphs Transparency
A graph with a nonwhite background color is inherently opaque. You can’t make it transparent by chang-
ing the layout transparency property. It will always print opaque.

Transparency on Screen and in the Printout
The part of Igor that draws layout objects in the layout window is not smart enough to recognize when an
object is inherently opaque. Because of techniques used in drawing the screen, if you set an inherently
opaque object to transparent, it will appear transparent in the layout window but will print opaque.

Chapter II-16 — Page Layouts

II-400

Page Layout Shortcuts
Action Shortcut (Macintosh) Shortcut (Windows)

Change the layout
magnification

Click the magnification readout in the
lower-left corner of the layout window.

Click the magnification readout in the
lower-left corner of the layout window.

Modify layout object
properties

Select the arrow tool in Layout mode and
double-click the object.

Select the arrow tool in Layout mode and
double-click the object.

Edit an existing
annotation

Select the annotation tool in the Layout
mode and click in the annotation.

Select the annotation tool in the Layout
mode and click in the annotation.

Bring up a graph or
table window

Select corresponding object in the
layout layer and then double-click the
name of the object in the info panel.

Select corresponding object in the
layout layer and then double-click the
name of the object in the info panel.

Auto-size a picture or
annotation object to
100%

Select arrow tool in Layout mode, press
Option and double-click the picture or
annotation object.

Select arrow tool in Layout mode, press
Alt and double-click the picture or
annotation object.

Auto-size a table object
to an integral number
of rows and columns

Select arrow tool in Layout mode, press
Option and double-click the table
object.

Select arrow tool in Layout mode, press
Alt and double-click the table object.

Constrain the resizing
direction or dragging
an object

Press Shift while resizing or dragging
the object.

Press Shift while resizing or dragging
the object.

Copy, cut, or clear
multiple layout objects

Use the arrow tool or marquee tool to
select the objects, then choose copy, cut
or clear from the Edit menu.

Use the arrow tool or marquee tool to
select the objects, then choose copy, cut
or clear from the Edit menu.

Export a subset of the
layout via the
Clipboard

Using the marquee tool, select a page
area, then choose Export Graphics from
the Edit menu.

Using the marquee tool, select a page
area, then choose Export Graphics from
the Edit menu.

Export a subset of the
layout via the a
graphics file

Using the marquee tool, select a page
area and then choose Save Graphics
from the File menu.

Using the marquee tool, select a page
area and then choose Save Graphics
from the File menu.

Drawing tool shortcuts See Chapter III-3, Drawing. See Chapter III-3, Drawing.

Volume III User’s Guide: Part 2

Table of Contents
III-1 Notebooks ... III-1
III-2 Annotations ... III-41
III-3 Drawing ... III-69
III-4 Embedding and Subwindows III-87
III-5 Exporting Graphics (Macintosh) III-99
III-6 Exporting Graphics (Windows) III-107
III-7 Analysis ... III-115
III-8 Curve Fitting ... III-155
III-9 Signal Processing .. III-235
III-10 Analysis of Functions .. III-267
III-11 Image Processing .. III-297
III-12 Statistics .. III-329
III-13 Procedure Windows .. III-341
III-14 Controls and Control Panels III-359
III-15 Platform-Related Issues ... III-395
III-16 Miscellany ... III-411
III-17 Preferences .. III-431

Chapter

III-1
III-1Notebooks

Overview.. 3
Plain and Formatted Notebooks... 3
UTF-16 Files ... 4
Creating a New Notebook File.. 4
Opening an Existing File as a Notebook.. 4

Opening a File for Momentary Use... 4
Sharing a Notebook File Among Experiments.. 4

Notebooks as Worksheets.. 5
Showing, Hiding and Killing Notebook Windows.. 5
Parts of a Notebook .. 6

Write-Protect Icon.. 6
Magnifier Icon .. 6

Notebook Properties... 7
Document Properties.. 7
Paragraph Properties.. 8

Plain Notebook Paragraph Properties .. 9
Formatted Notebook Paragraph Properties... 9

Character Properties ... 10
Plain Notebook Text Formats .. 10
Formatted Notebook Text Formats ... 10
Text Sizes... 11
Vertical Offset... 11
Superscript and Subscript... 11

Notebook Read/Write Properties.. 12
Read-only .. 12
Write-protect... 12
Changeable By Command Only .. 12

Working with Rulers .. 13
Defining a New Ruler ... 14
Redefining a Ruler ... 14
Creating a Derived Ruler.. 14
Finding Where a Ruler Is Used.. 15
Removing a Ruler .. 15
Transferring Rulers Between Notebooks ... 15

Special Characters ... 16
Inserting Pictures ... 16
Saving Pictures ... 17

Special Character Names ... 17
The Special Submenu .. 17
Scaling Pictures .. 18
Updating Special Characters.. 18

Notebook Action Special Characters.. 18
Creating a Hyperlink Action.. 19

Chapter III-1 — Notebooks

III-2

Modifying Action Special Characters ... 20
Modifying the Action Frame.. 20
Modifying the Action Picture Scaling... 20
Notebook Action Helper Procedure Files .. 20

Using Igor-Object Pictures... 21
Updating Igor-Object Pictures ... 21
The Size of the Picture... 21
Activating The Igor-Object Window... 21
Breaking the Link Between the Object and the Picture.. 22
Compatibility Issues.. 22

Cross-Platform Pictures ... 22
Page Breaks .. 22
Headers and Footers... 23
Printing Notebooks... 24

Quality of Printed Pictures (Macintosh)... 24
Quality of Printed Pictures (Windows) .. 24

Import and Export Via Rich Text Format Files... 24
Saving an RTF File ... 25
Opening an RTF File.. 25
Rich Text Format Graphics... 26

Exporting a Notebook as HTML... 26
HTML Standards ... 27
HTML Horizontal Paragraph Formatting.. 27
HTML Vertical Paragraph Formatting ... 28
HTML Character Formatting ... 28
HTML Pictures ... 28
HTML Character Encoding .. 29
Embedding HTML Code .. 29

Finding Text... 30
Replacing Text ... 31
Notebook Names, Titles and File Names .. 31
Notebook Info Dialog... 31
Programming Notebooks .. 32

Logging Text... 33
Inserting Graphics ... 33
Updating a Report Form... 33
Updating Igor-Object Pictures ... 34
Retrieving Text ... 35
Generate Notebook Commands Dialog ... 35

Notebook Preferences... 36
Notebook Template Files ... 37
Notebook Shortcuts .. 38

Chapter III-1 — Notebooks

III-3

Overview
A notebook is a window in which you can store text and graphics, very much like a word processor docu-
ment. Typical uses for a notebook are:
• Keeping a log of your work.
• Generating a report.
• Examining or editing a text file created by Igor or another program.
• Documenting an Igor experiment.

A notebook can also be used as a worksheet in which you execute Igor commands and store text output
from them.

Plain and Formatted Notebooks
There are two types of notebooks:
• Plain notebooks.
• Formatted notebooks.

Formatted notebooks can store text and graphics and are useful for fancy reports. Plain notebooks can store
text only. They are good for examining data files and other text files where line-wrapping and fancy for-
matting is not appropriate.

This table lists the properties of each type of notebook.

Plain text files can be opened by many programs, including virtually all word processors, spreadsheets and
databases. The Igor formatted notebook file format is a proprietary WaveMetrics format that other applica-
tions can not open. However, you can save a formatted notebook as a Rich Text file, which is a file format
that many word processors can open.

On Macintosh, Igor stores the settings (font, size, style, etc.) for a plain text file in the file’s resource fork. The
data fork contains just the plain text. Under Windows, files have no resource fork. Therefore there is no way
for Igor to store settings for a plain text file on Windows. When you open a plain text notebook or an exper-
iment containing a plain text notebook on Windows, Igor uses preferences to set the notebook’s text format
and document settings, including headers and footers. Thus, format changes that you make to a plain text
notebook are lost on Windows unless you capture them as your preferred format.

Property Plain Formatted

Can contain graphics No Yes

Allows multiple paragraph formats (margins, tabs, alignment, line spacing) No Yes

Allows multiple text formats (fonts, text styles, text sizes, text colors) No Yes

Does line wrapping No Yes

Has rulers No Yes

Has headers and footers Yes Yes

File name extension .txt .ifn

Can be opened by most other programs Yes No

Can be exported to word processors via Rich Text file Yes Yes

Chapter III-1 — Notebooks

III-4

UTF-16 Files
You can open UTF-16 (two-byte Unicode) text files as plain text notebooks. Igor does not recognize non-
ASCII characters, but does ignore the byte-order mark at the start of the file (BOM) and null bytes contained
in UTF-16 text files. If you open a UTF-16 file and then save it from Igor, it will be saved as plain ASCII, not
UTF-16, and some information may be lost. This feature is intended mainly to enable you to inspect UTF-
16 data files.

Creating a New Notebook File
To create a new notebook, choose Notebook from the New submenu of the Windows menu. This displays
the New Notebook dialog.

This creates a new notebook window. The notebook file is not created until you save the notebook window
or save the experiment.

Normally you should store a notebook as part of the Igor experiment in which you use it. This happens
automatically when you save the current experiment unless you do an explicit Save Notebook As before
saving the experiment. Save Notebook As stores a notebook separate from the experiment. This is appro-
priate if you plan to use the notebook in multiple experiments.

Note: There is a risk in sharing notebook files among experiments. If you copy the experiment to
another computer and forget to also copy the shared files, the experiment will not work on the
other computer. See References to Files and Folders on page II-37 for more explanation.

If you do create a shared notebook file then you are responsible for copying the shared file when you copy
an experiment that relies on it.

Opening an Existing File as a Notebook
You can create a notebook window by opening an existing file. This might be a notebook that you created
in another Igor experiment or a plain text file created in another program. To do this, choose Notebook from
the Open File submenu of the File menu.

Opening a File for Momentary Use
You might want to open a text file momentarily to examine or edit it. For example, you might read a Read Me
file or edit a data file before importing data. In this case, you would open the file as a notebook, do your reading
or editing and then kill the notebook. Thus the file would not remain connected to the current experiment.

Sharing a Notebook File Among Experiments
On the other hand, you might want to share a notebook among multiple experiments. For example, you
might have one notebook in which you keep a running log of all of your observations. In this case, you could
save the experiment with the notebook open. Igor would then save a reference to the shared notebook file
in the experiment file. When you later open the experiment, Igor would reopen the notebook file.

As noted above, there is a risk in sharing notebook files among experiments. You might want to “adopt”
the opened notebook. See References to Files and Folders on page II-37 for more explanation.

Plain text stores text only
with no fancy formatting.

The document name will be
used as the file name when
you save the notebook file.Formatted text stores text

and graphics with fancy
formatting.

Chapter III-1 — Notebooks

III-5

Notebooks as Worksheets
Normally you enter commands in Igor’s command line and press Return or Enter to execute them. You can
also enter and execute commands in a notebook window. Some people may find using a notebook as a
worksheet more convenient than using Igor’s command line.

You can also execute commands from procedure windows and from help windows. The former is some-
times handy during debugging of Igor procedures. The latter provides a quick way for you to execute com-
mands while doing a guided tour or to try example commands that are commonly presented in help files.
The techniques described in the next paragraphs for executing commands from a notebook also apply to
procedure and help windows.

To execute a command from a notebook, enter the command in a notebook and press Control-Enter. You
can also select text already in the notebook and press Control-Enter. Under Windows, you can also right-
click to get the pop-up menu from which you can choose Execute Selection. On Macintosh, you can Control-
click to get the pop-up menu.

When you press Control-Enter, Igor transfers text from the notebook to the command line and starts exe-
cution. Igor stores both the command and any text output that it generates in the notebook and also in the
history area of the command window. However, if you opened the notebook for read-only or if you clicked
the write-protect icon, the command and output are sent to the history area only. If you don’t want to keep
the command output in the notebook, just undo it.

If you don’t want to store the commands or the output in the history area, you can disable this using the
Command Settings section of the Miscellaneous Settings dialog (Misc menu). However, if you opened the
notebook for read-only or if you clicked the write-protect icon, the command and output are sent to the
history area even if you have disabled this.

Showing, Hiding and Killing Notebook Windows
Notebook files can be opened (added to the current experiment), hidden, and killed (removed from the
experiment).

When you click the close button of an notebook window, Igor presents the Close Notebook Window dialog
to find out what you want to do.

If you just want to hide the window, you can press Shift while clicking the close button. This skips the dialog
and just hides the window.

Killing a notebook window closes the window and removes it from the current experiment but does not delete
the notebook file with which the window was associated. If you want to delete the file, do this on the desktop.

Just hides the window.

Removes the file from the
experiment without saving.

Saves the file and removes
it from the experiment.

Chapter III-1 — Notebooks

III-6

The Close item of the Windows menu and the keyboard shortcut, Command-W (Macintosh) or Ctrl+W (Win-
dows), behave the same as the close button, as indicated in these tables.

On the Macintosh when the Close Notebook Window dialog is showing, you can press Option to make the
Kill button the default. The Kill button will become bold while the Save and then kill button will become
normal. You can then press Return or Enter to kill the window. Similarly, press Shift to make the Hide
button the default button.

Parts of a Notebook
This illustration shows the parts of a formatted notebook window. A plain notebook window has the same
parts except for the ruler.

Write-Protect Icon
Notebooks (as well as procedure windows) have a write-enable/write-protect icon which appears in the
lower-left corner of the window and resembles a pencil. If you click this icon, Igor Pro will draw a line through
the pencil, indicating that the notebook is write-protected. The main purpose of this is to prevent accidental
manual alteration of shared procedure files, but you can also use it to prevent accidental manual alteration of
notebooks.

Note that write-protect is not the same as read-only. Write-protect prevents manual modifications while
read-only prevents all modifications. See Notebook Read/Write Properties on page III-12 for details.

Magnifier Icon
You can magnify procedure text to make it more readable. See Text Magnification on page II-71 for details.

Macintosh:
Action Modifier Key Result

Click close button, choose Close or press Command-W None Displays dialog

Click close button, choose Close or press Command-W Shift Hides window

Windows:
Action Modifier Key Result

Click close button, choose Close or press Ctrl+W None Displays dialog

Click close button, choose Close or press Ctrl+W Shift Hides window

Drag to change the width of the status area.Igor displays status info here.

You can hide the ruler
using the Notebook menu.

Write-protect icon
(indicating the notebook
can be modified).

Click for info about
the notebook.

Chapter III-1 — Notebooks

III-7

Notebook Properties
Everything in a notebook that you can control falls into one of three categories, as shown in this table.

Document Properties
To set document properties, choose Document Settings from the Notebook menu.

In a formatted notebook, the ruler displays the default tab stops and you can adjust them by dragging.
Although the default tab stops are indicated in the ruler, there is only one default tab width setting for the
entire document, not one for each ruler.

The next illustration shows the effects of the page margins and header and footer position settings. In addi-
tion, these settings affect the Rich Text format file which you can use to export a notebook to a word processor.

Category Settings

Document properties Page margins, background color, default tab stops, headers and footers.

Paragraph properties Paragraph margins, tab stops, line alignment, line spacing, default text format.

Character properties Font, text size, text style, text color, vertical offset.

Read/write properties Read-only, write-protect and changeableByCommandOnly.

Controls margins and
placement of headers and
footers during printing.

Position of top of header
area relative to the
physical top of page.

Not available because Use Default Header is selected. Displays another dialog for editing the footer.

Position of bottom of footer area
relative to the physical bottom of
page.

Number of first page when
printing.

Distance between tabs if no
explicit tabs are set

Sets background color for the entire window.

Chapter III-1 — Notebooks

III-8

Paragraph Properties
A set of paragraph properties is called a “ruler”. In some word processors, this is called a “style”. The
purpose of rulers is to make it easy to keep the formatting of a notebook consistent. This is described in
more detail under Working with Rulers on page III-13.

The paragraph properties are listed in this table.

Paragraph Property Description

First-line indent Horizontal position of the first line of the paragraph.

Left margin Horizontal position of the paragraph after the first line.

Right margin Horizontal position of the right side of the paragraph.

Line alignment Left, center, right or full.

Space before Extra vertical space to put before the paragraph.

Min line space Minimum height of each line in the paragraph.

Space after Extra vertical space to put after the paragraph.

Tab stops Left, center, right, decimal-aligned or comma-aligned tab stops.

Ruler font The default font to use for the paragraph.

Ruler text size Default text size to use for the paragraph.

Ruler text style Default text style to use for the paragraph.

Ruler text color Default text color to use for the paragraph.

Header position
Top margin

Bottom margin
Footer position

Left
margin

Right
margin

Controls where
printing of main text
starts and printing of
background color, if
not white. Sets
horizontal position of
headers and footers.

Controls where automatic page breaks occur
and printing of background color, if not white.

Controls where printing of main text starts
and printing of background color, if not white.

Sets position of bottom of footer.

Sets position of top of header.

Controls printing of
background color, if
not white. Sets right
edge of default
headers and footers.

Chapter III-1 — Notebooks

III-9

Plain Notebook Paragraph Properties
For each plain notebook, there is one set of paragraph properties that govern all paragraphs. Many of the
items are fixed — you can’t adjust them.

There is only one font, text size, text style and text color for the entire document which you can set using
the Notebook menu.

Although you can not set paragraph tab stops in a plain notebook, you can set and use the notebook’s
default tab stops, which affect the entire notebook.

Formatted Notebook Paragraph Properties
The paragraph properties for a formatted notebook are all under your control and can be different for each
paragraph. A new formatted notebook has one ruler, called the Normal ruler. You can control the proper-
ties of the normal ruler and you can define additional rulers.

The ruler font, ruler text size, ruler text style and ruler text color can be set using the pop-up menu on the
left side of the ruler. They set the default text format for paragraphs governed by the ruler. You can use the
Notebook menu to override these default properties. The Notebook menu permits you to hide or show the
ruler in a formatted notebook.

Paragraph Property Comment

First-line indent Fixed at zero.

Left margin Fixed at zero.

Right margin Fixed at infinity.

Line alignment Fixed as left-aligned.

Space before Fixed at zero.

Min line space Fixed at zero.

Space after Fixed at zero.

Tab stops None.

Font Set using Notebook menu.

Text size Set using Notebook menu.

Text style Set using Notebook menu.

Text color Set using Notebook menu.

Click to select a ruler,
create a new ruler or do
other ruler management.

Tabs can be left, center,
right, decimal or comma
justified.

Sets line alignment (left,
center, right or full).

Displays line
spacing dialog.

Ruler units.

Drag to set the left margin and
the first-line margin. Shift-drag
to set just the left margin.

Drag to set the first-line indent.

Click to set tab stops.

Drag to set default tab stops.

Right margin.

Chapter III-1 — Notebooks

III-10

Character Properties
The character properties are font, text size, text style, text color and vertical offset. The vertical offset is used
mainly to implement superscript and subscript. A specific collection of character properties is called a “text
format”. You can set the text format using the Notebook menu.

Plain Notebook Text Formats
A plain notebook has one text format which applies to all of the text in the notebook. You can set it, using the
Notebook menu, except for the vertical offset which is always zero. On Windows there is no way for Igor to
store settings for a plain text file. When you open a plain text notebook or an experiment containing a plain
text notebook on Windows, Igor uses preferences to set the notebook’s text format. Thus, text format changes
that you make to a plain text notebook are lost on Windows unless you capture them as your preferred format.

Formatted Notebook Text Formats
A formatted notebook can have any number of text formats. You can set the text format for the selected text
using the Notebook menu. This overrides the default text format of the ruler.

You should use the ruler to set the basic text format and use overrides for highlighting or other effects. For
example, you might override the ruler text format to underline a short stretch of text or to switch to Symbol
font for a Greek character.

On Macintosh, the Font, Text Size, and Text Styles submenus in the Notebook menu indicate the currently
selected font, size, and style using checkmarks and indicate the ruler font, size, and style using an underline.
On Macintosh or Windows you can see the ruler font, size, style and color settings using the Ruler pop-up
menu on the left side of the ruler.

To illustrate the distinction between the setting for the selection and the ruler setting, consider the font sub-
menu. The font for the selected text is checked. The ruler font is underlined (Macintosh only).

In this example, the current font, Geneva, is the same as the ruler font, so it is both checked and underlined.

If we redefined the ruler font, the selected text would automatically change to the new font.

This dialog sets all properties at once.
Use these
submenus to
set the text
format.

This is set automatically when you
choose “superscript” or “subscript”
from the Text Size submenu.

Chapter III-1 — Notebooks

III-11

In the next example, the current font is not the same as the ruler font. We have overridden the ruler font
with Palatino. Therefore, Palatino is checked but the ruler font, Geneva, is still underlined.

If we redefined the ruler font, the selected text would still override the ruler font and would remain Palatino.

Text Sizes
The Text Size submenu in the Notebook menu contains an Other item. This leads to the Set Text Size dialog.

The text sizes in your Text Size menu are stored in the Igor Preferences file so that the menu will include
your preferred sizes each time you run Igor.

Vertical Offset
The vertical offset property is available only in formatted notebooks and is used mainly to implement
superscript and subscript, as described in the next section.

Vertical offset is also useful for aligning a picture with text within a paragraph. For example, you might
want to align the bottom of the picture with the baseline of the text. The easiest way to do this is to use
Control-Up Arrow and Control-Down Arrow (Macintosh) or Ctrl+Alt+Up-Arrow and Ctrl+Alt+Down-
Arrow (Windows) combinations to tweak the vertical offset by one point at a time.

Superscript and Subscript
The last four items in the Text Size submenu of the Notebook menu have to do with super-
script and subscript. Igor implements superscript and subscript by setting the text size and the
vertical offset of the selected text to achieve the desired effect. They are not character proper-
ties but rather are effects accomplished using character properties.

You can enter a text size
in this box or you can
select it using the pop-up
menu.

Adds the currently
selected text size to the
Text Size menu if it is
not already there.

Removes the currently
selected text size from
the Text Size menu.

Chapter III-1 — Notebooks

III-12

The following table illustrates the use and effects of each of these items. Do the actions to get a feel for how
they work.

Notebook Read/Write Properties
There are three properties that control whether a notebook can be modified.

Read-only
The read-only property is set if you open the file for read-only using the Open Notebook dialog
(File→Open→Notebook) or if you execute OpenNotebook/R. It is also set if you open a file for which you
do not have read/write permission.

When the read-only property is set, a lock icon appears in the bottom/left corner of the notebook window
and you can not modify the notebook manually or via commands.

The read-only property can not be changed after the notebook is opened.

Use read-only if you want no modifications to be made to the notebook.

Write-protect
You can set the write-protect property to on or off by clicking the pencil icon in the bottom/left corner of the
notebook window or using the Notebook operation with the writeProtect keyword.

The write-protect property is intended to give the user a way to prevent inadvertent manual modifications
to the notebook. The user can turn the property on or off at will.

The write-protect property does not affect commands such as Notebook and NotebookAction. Even if
write-protect is on, they can still modify the notebook.

Use write-protect if you want to avoid inadvertent manual modifications to the notebook but want the user
to be able to take full control.

Changeable By Command Only
You can control the changeableByCommandOnly property using NewNotebook/OPTS=8 or using the
Notebook operation with the changeableByCommandOnly keyword.

This property is intended to allow programmers to control whether the user can manually modify the note-
book or not. Its main purpose is to allow a programmer to create a notebook subwindow in a control panel
for displaying status messages and other information that is not intended to be modified by the user. There
is no way to manually change this property - it can be changed by command only.

Action Effect on Character Properties Result

Type “XYZ”. XYZ

Highlight “Y” and then choose
Superscript.

Reduces text size and sets vertical offset for “Y”.

XYZ
Highlight “Z” and then choose
Superscript.

Sets text size and vertical offset for “Z” to make
it superscript relative to “Y”. XYZ

Highlight “Z” and then choose In Line. Sets text size and vertical offset for “Z” to be
same as for “Y”. XYZ

Highlight “YZ” and then choose
Normal.

Sets text size for “YZ” same as “X” and sets
vertical offset to zero.

XYZ

Chapter III-1 — Notebooks

III-13

When the changeableByCommandOnly property is on, a lock icon appears in the bottom/left corner of the
notebook window.

Use changeableByCommandOnly if you want no manual modifications to be made to the notebook but
want it to be modifiable via commands.

The changeableByCommandOnly property is intended for programmatic use only and is not saved to disk.

For further information on notebook subwindows, see Notebooks as Subwindows in Control Panels on
page III-96.

Working with Rulers
A ruler is a set of paragraph properties that you can apply to paragraphs in a formatted notebook. Using rulers,
you can make sure that paragraphs that you want to have the same formatting do have the same formatting. Also,
you can redefine the format of a ruler and all paragraphs governed by that ruler will be automatically updated.

In a simple notebook, you might use just the one built-in ruler, called Normal. In a fancier notebook, where
you are concerned with presentation, you might use several rulers.

Here is a sample notebook that uses three rulers: Normal, Heading_1 and Bullet.

The pop-up menu on the left side of the ruler shows which ruler governs the first currently selected para-
graph. You can use this pop-up menu to:
• Apply an existing ruler to the selected paragraph(s).
• Create a new ruler.
• Redefine an existing ruler.
• Find where a ruler is used.
• Rename a ruler.
• Remove a ruler from the document.

Controlled by “Normal”

Controlled by “Bullet”

Controlled by “Normal”

Controlled by “Heading_1”

The Ruler pop-up menu shows
the ruler controlling the first
selected paragraph.

Set the ruler’s text format which
determines the default character
properties for paragraphs governed
by the ruler.

Apply a ruler to the
selected paragraphs.

Ruler management.

Chapter III-1 — Notebooks

III-14

Defining a New Ruler
To create a new ruler, choose Define New Ruler from the Ruler pop-up menu.

On Macintosh, while in the dialog you can use the Notebook menu to set the ruler’s font, text size, text style,
and text color. On Windows, the Notebook menu is not available from the dialog, so you must use the Ruler
pop-up menu to set these properties.

Ruler names must follow rules for standard (not liberal) Igor names. They may be up to 31 characters in
length, must start with a letter and may contain letters, numbers and the underscore character.

In a sophisticated word processor, a ruler can be based on another ruler so that changing the first ruler auto-
matically changes the second. Igor rulers do not have this capability.

Redefining a Ruler
When you redefine a ruler, all paragraphs governed by the ruler are automatically updated. There are three
ways to redefine a ruler:
• Use the Redefine Ruler dialog.
• Use the Ruler Font, Ruler Text Size, Ruler Text Style or Ruler Text Color pop-up menu items.
• Use the Redefine Ruler from Selection item in the Ruler pop-up menu.

To invoke the Redefine Ruler dialog, choose Redefine Ruler from the Ruler pop-up menu.

Another handy way to redefine an existing, explicitly created ruler (e.g. Normal) is to adjust it, creating a
derived ruler (e.g. Normal+). Then choose Redefine Ruler from Selection from the Ruler pop-up menu. This
redefines the explicitly named ruler (Normal) to match the current ruler (Normal+).

Creating a Derived Ruler
You can adjust a ruler using its icons. When you do this, you create a derived ruler. A derived ruler is usually
a minor variation of an explicitly created ruler. Here is an example.

Enter a name for
the new ruler.

Use the ruler icons to
set the new ruler’s
properties.

Use the ruler icons
to redefine the ruler.

Chapter III-1 — Notebooks

III-15

If you redefine the Normal ruler, the Normal+ ruler is not automatically redefined. This is a limitation in
Igor’s implementation of rulers compared to a word-processor program.

Finding Where a Ruler Is Used
You can find the next or previous paragraph governed by a particular ruler. To do this press Option (Mac-
intosh) or Alt (Windows) while selecting the name of the ruler from the Ruler pop-up menu. To search back-
wards, press Shift-Option (Macintosh) or Shift+Alt (Windows) while selecting the ruler. If there is no next or
previous use of the ruler, Igor will emit a beep.

Removing a Ruler
Rulers that you no longer need clutter up the Ruler pop-up menu. You can remove them from the document
by choosing Remove Ruler from the Ruler pop-up menu.

You might want to know if a particular ruler is used in the document. The only way to do this is to search
for the ruler. See Finding Where a Ruler Is Used on page III-15.

Transferring Rulers Between Notebooks
The only way to transfer a ruler from one notebook to another is by copying text from the first notebook
and pasting it in the second. Rulers needed for the text are also copied and pasted. If a ruler that exists in
the source notebook also exists in the destination, the destination ruler takes precedence.

If you expect to create a lot of notebooks that share the same rulers then you should create a template doc-
ument with the common rulers. See Notebook Template Files on page III-37 for details.

This paragraph is governed
by the “Normal” ruler.

If you click the Center
Justification icon, you create
a derived ruler, called
“Normal+” which is Normal
plus center justification.

Choose the ruler to remove. You
can’t remove the Normal ruler.

Select the ruler to govern
paragraphs currently governed by
the ruler that you are removing.

Chapter III-1 — Notebooks

III-16

Special Characters
Aside from regular text characters, there are some special things that you can put into a paragraph in a for-
matted notebook. This table lists of all of the types of special characters and where they can be used.

The main way in which a special character differs from a normal character is that it is not simply a character
from a font. Another significant difference is that some special characters are dynamic, meaning that Igor
can update them automatically. Other special characters, while not dynamic, are linked to Igor graphs,
tables or page layouts (see Using Igor-Object Pictures on page III-21).

This example shows three kinds of special characters.

The time and date look like normal text but they are not. If you click any part of them, the entire time or
date is selected. They act like a single character.

An action is a special character which, when clicked, runs Igor commands. See Notebook Action Special
Characters on page III-18 for details.

Except for pictures, special characters are inserted using the Special submenu in the Notebook menu.

Inserting Pictures
You can insert pictures, including Igor-object pictures, by merely doing a paste. You can also insert pictures
using Edit→Insert File or using the Notebook insertPicture operation. The supported graphics formats are:

Special Character Type Where It Can Be Used

Picture Main body text, headers and footers.

Igor-object picture (from graph, table, layout) Main body text, headers and footers.

The date Main body text, headers and footers.

The time Main body text, headers and footers.

Notebook window title Headers and footers only.

Current page number Headers and footers only.

Total number of pages Headers and footers only.

Actions Main body text only.

Format Platform

Windows Bitmap (.bmp) Windows only

Enhanced Metafile (.emf) Windows only

Windows Metafile (.wmf) Windows only

Encapsulated Postscript (.eps) Macintosh and Windows

JPEG (.jpg) Macintosh and Windows

PDF (.pdf) Macintosh only

PICT (.pct) Macintosh only

A picture special character A time special character A date special character

Chapter III-1 — Notebooks

III-17

On Windows, Encapsulated Postscript appears as a gray box on screen unless it includes a Windows screen
preview and prints only on a PostScript printer.

When you insert a picture, the contents of the picture file are copied into the notebook. No link to the picture
file is created.

Saving Pictures
You can save a picture in a formatted text notebook as a standalone picture file. Select one picture and one
picture only. Then choose File→Save Graphics. You can also save a picture using the Notebook savePicture
operation.

Special Character Names
Each special character has a name. For most types, the name is automatically assigned by Igor when the
special character is created. However for action special characters you specify the name through the Spe-
cial→New Action dialog. When you click a special character, you will see the name in the notebook status
area. Special character names must be unique within a particular notebook.

The special character name is used only for specialized applications and usually you can ignore it. You can
use the name with the Notebook findSpecialCharacter operation to select special characters. You can get a
list of special character names from the SpecialCharacterList function (see page V-664) and get information
using the SpecialCharacterInfo function (see page V-662).

On Macintosh when you copy a graph, table, or layout and paste it into a notebook, an Igor-object picture
is created (see Using Igor-Object Pictures on page III-21). The Igor-object picture, like any notebook pic-
ture, is a special character and thus has a special character name, which whenever possible is the same as
the source graph, table, or layout window name. However, this may not always possible such as when, for
example, you paste Graph0 twice into a notebook, the first special character will be named Graph0 and the
second Graph0_1.

The Special Submenu
Using the Special submenu of the Notebook menu you can:
• Frame or scale pictures.
• Insert special characters.
• Control updating of special characters.
• Convert a picture to cross-platform PNG format.
• Specify an action character that executes commands.

PNG (.png) Macintosh and Windows

TIFF (*.tif) Macintosh and Windows

For framing and scaling pictures only

Convert picture to cross-platform bitmap

Insert a special character in the main
body or in headers and footers only.

Insert a special character in the main
body or in headers and footers only.

You must enable updating before
using Update Selection Now.

Updates date, time and Igor-object
picture special characters.

Create an action to run commands.

Chapter III-1 — Notebooks

III-18

Scaling Pictures
You can scale a picture by choosing an item from the Scale submenu or by using the Notebook command
line operation. There is currently no way to scale a picture using the mouse.

Updating Special Characters
The window title, page number and total number of pages are dynamic characters—Igor automatically
updates them when you print a notebook. These are useful for headers and footers. All other kinds of
special characters are not dynamic but Igor makes it easy for you to update them if you need to, using the
Update Selection Now or Update All Now items in the Special menu.

To prevent inadvertent updating, Igor disables these items until you
enable updating, using the Enable Updating item in the Special menu.
This enables updating for the active notebook.

If you are using a notebook as a form for generating reports, you will
probably want to enable updating. However, if you are using it as a log
of what you have done, you will want to leave updating in the disabled state.

Notebook Action Special Characters
An action is a special character that runs commands when clicked. Use actions to create interactive note-
books, which can be used for demonstrations or tutorials. Help files are formatted notebook files so actions
can also be used in help files.

You create actions in a formatted text notebook. You can invoke actions from formatted text notebooks or
from help files.

For a demonstration of notebook actions, see the Notebook Actions Demo experiment.

To create an action use the Note-
bookAction operation (see page V-
519) or choose Note-
book→Special→New Action to get
the Notebook Action dialog.

Each action has a name that is unique
within the notebook.

The title is the text that appears in the
notebook. The text formatting of the
notebook governs the default text
formatting of the title.

If the Link Style checkbox is selected,
the title is displayed like an HTML
link — blue and underlined. This
style overrides the color and under-
line formatting applied to the action
through the Notebook menu.

The help text is a tip that appears
when the cursor is over an action. On
Macintosh you must first turn on Igor Tips in the Help menu. On Windows, help text appears in the status bar.

An action can have an associated picture that is displayed instead of or in addition to the title. There are two
ways to specify a picture. You can paste one into the dialog using the Paste button or you can reference a
Proc Picture stored in a procedure file. The latter source may be useful for advanced programmers (see Proc
Pictures on page IV-44 for details).

Chapter III-1 — Notebooks

III-19

For most purposes it is better to use a picture rather than a Proc Picture. One exception is if you have to use
the same picture many times in the notebook, in which case you can save disk space and memory by using
a Proc Picture.

If you designate a Proc Picture using a module name (e.g., MyProcPictures#MyPicture), then the Proc
Picture must be declared static.

If you specify both a Proc Picture and a regular picture, the regular picture is displayed. If you specify no
regular picture and your Proc Picture name is incorrect or the procedure file that supplies the Proc Picture
is not open or not compiled, "???" is displayed in place of the picture.

In order for a picture to display correctly on both Macintosh and Windows, it must be in a cross-platform
format such as PNG. You can convert a picture to PNG by clicking the Convert To PNG button. This affects
the regular picture only. Proc Pictures are always in a cross-platform format.

Pictures and Proc Picture in actions are drawn transparently. The background color will show through
white parts of the picture unless the picture explicitly erases the background.

The action can display one of six things as determined by the Show popup menu:
• The title.
• The picture.
• The picture below the title.
• The picture above the title.
• The picture to the left of the title.
• The picture to the right of the title.

If there is no picture and you choose one of the picture modes, just the title will be displayed.

You can add padding to any external side of the action content (title or picture). The Internal Padding value
sets the space between the picture and the title when both are displayed. All padding values are in points.

If you enable the background color, the rectangle enclosing the action content is painted with the specified color.

You can enter any number of commands to be executed in the Commands area. When you click the action,
Igor sends each line in the Commands area to the Operation Queue, as if you called the Execute/P operation,
and the commands are executed.

In addition to regular commands, you can enter special operation queue commands like INSERTINCLUDE,
COMPILEPROCEDURES, and LOADFILE. These are explained under Operation Queue on page IV-256.

For sophisticated applications, the commands you enter can call functions that you define in a companion
“helper procedure file” (see Notebook Action Helper Procedure Files on page III-20).

If the Quiet checkbox is selected, commands are not sent to the history area after execution.

If the Ignore Errors checkbox is selected then command execution errors are not reported via error dialogs.

The Generate LoadFile Command button displays an Open File dialog and then generates an Execute/P
command to load the file into Igor. This is useful for generating a command to load a demo experiment, for
example. This button inserts the newly-generated command at the selection point in the command area so,
if you want the command to replace any pre-existing commands, delete any text in the command area
before clicking the button. If the selected file is inside the Igor Pro Folder or any subdirectory, the generated
path will be relative to the Igor Pro Folder. Otherwise it will be absolute.

Creating a Hyperlink Action
You can use a notebook action to create a hyperlink that displays a web page by calling the BrowseURL
operation from the action's command.

Chapter III-1 — Notebooks

III-20

Modifying Action Special Characters
You can modify an existing action by Control-clicking (Macintosh) or right-clicking (Windows) on it and
choosing Modify Action from the pop-up menu, or by selecting the action special character, and nothing
else, and then choosing Notebook→Special→Modify Action.

If you have opened a notebook as a help file and want to modify an action, you must close the help file
(press Option or Alt and click the close button) and reopen it as a notebook (choose File→Open
File→Notebook). After editing the action, save the changes, close the notebook, and reopen it as a help file
(choose File→Open File→Help File).

Modifying the Action Frame
If the notebook action has a picture, you can frame the action by choosing a frame style from the Note-
book→Special→Frame submenu.

Modifying the Action Picture Scaling
If the notebook action has a picture, you can scale the picture by choosing an item from the Note-
book→Special→Scale submenu.

Notebook Action Helper Procedure Files
In some instances you may want an action to call procedures in an Igor procedure file. The notebook action
helper procedure file feature provides a convenient way to associate a notebook or help file with a procedure file.

Each formatted notebook (and conse-
quently each help file) can designate
only one procedure file as an action
helper procedure file. Before choos-
ing the helper file you must save the
notebook as a standalone file on disk.
Then choose Note-
book→Special→Action Helper.

Click the File button to choose the
helper procedure file for the notebook.

For most cases we recommend that you name your action helper procedure file with the same name as the
notebook but with the .ipf extension. This will indicate that the files are closely associated.

The helper file will usually be located in the same directory as the notebook file. Less frequently, it will be in a
subdirectory or in a parent directory. It must be located on the same volume as the notebook file because Igor
finds the helper using a relative path, starting from the notebook directory. If the notebook file is moved, the
helper procedure file must be moved with it so that Igor will be able to find the helper using the relative path.

If Open Helper Procedure File When Notebook Is Opened is selected, the helper procedure file is opened along
with the notebook. This checkbox can usually be left deselected. However, if you use Proc Pictures stored in the
helper file, you should select it so that the pictures can be correctly rendered when the notebook is opened.

If Open Helper Procedure File When Action Is Clicked is selected, then, when you click an action, the pro-
cedure file loads, compiles, and executes automatically. This should normally be selected.

In both of these situations, the procedure file loads as a “global” procedure file, which means that it is not
part of the current experiment and is not closed when creating a new experiment.

If Close Helper procedure File When Notebook Is Closed is selected and you kill a notebook or help file that
has opened a helper file, the helper file is also killed. This should normally be selected.

To avoid unanticipated name conflicts between procedures in your helper file and elsewhere, it is a good idea
to declare the procedures static (see Static Functions on page IV-86). In order to call such private routines you

Chapter III-1 — Notebooks

III-21

also need to assign a module name to the procedure file and use the module name when invoking the routines
(see Regular Modules on page IV-216). For an example see the Notebook Actions Demo experiment.

Using Igor-Object Pictures
You create a picture from an Igor graph, table or page layout by choosing Edit→Export Graphics to copy a
picture to the clipboard. For graphs or layouts you can also choose Edit→Copy. When you do this, Igor
embeds in the picture some information about the graph, table or layout from which the picture was gen-
erated. We call this kind of picture an “Igor-object” picture.

The embedded information contains the name of the window from which the picture was generated, the
date/time at which it was generated, the size of the picture and the export mode used to create the picture.
Igor uses this information to automatically update the picture when you request it.

Igor can not link Igor-object pictures to a window in a different Igor experiment.

See Quality of Printed Pictures (Macintosh) on page III-24 for instructions on getting the best quality pic-
tures from Igor graphs and layouts.

Updating Igor-Object Pictures
Before updating Igor object pictures, you must enable updating using the Notebook→Special→Enable
Updating menu item. This is a per-notebook setting.

When you click an Igor-object picture, Igor displays the name
of the object from which the picture was generated and the
time at which it was generated in the notebook’s status area.

The first Graph0 shown in the status area is the name of the
picture special character and the second Graph0 is the name of
the source graph for the picture. There is no requirement that
these be the same but they usually will be.

If you change the Igor graph, table or layout, you can update the associated picture by selecting it and
choosing Update Selection Now from the Notebook→Special menu or by right-clicking and choosing
Update Selection from the contextual menu. You can update all Igor-object pictures as well as any other
special characters in the notebook by clicking anywhere so that nothing is selected and then choosing
Update All Now from the Notebook→Special menu.

An Igor object picture can be updated even if it was created on another platform using a platform-depen-
dent format. For example, you can create an EMF Igor object picture on Windows and paste it into a note-
book. If you open the notebook on Macintosh, the EMF will display as a gray box because EMF is a
Windows-specific format. However, if you right-click the EMF picture and choose Update Selection, Igor
will regenerate it using a Macintosh format.

An Igor-object picture never updates unless you do so. Thus you can keep pictures of a given object taken
over time to record the history of that object.

The Size of the Picture
The size of the picture is determined when you initially paste it into the notebook. If you update the picture,
it will stay the same size, even if you have changed the size of the graph window from which the picture is
derived. Normally, this is the desired behavior. If you want to change the size of the picture in the notebook,
you need to repaste a new picture over the old one.

Activating The Igor-Object Window
You can activate the window associated with an Igor-object picture by double-clicking the Igor object
picture in the notebook. If the window exists it is activated. If it does not exist but the associated window
recreation macro does exist, Igor runs the window recreation macro.

Chapter III-1 — Notebooks

III-22

Breaking the Link Between the Object and the Picture
Lets say you create a picture from a graph and paste it into a notebook. Now you kill the graph. When you
click the picture, Igor displays a question mark after the name of the graph in the notebook’s status area to
indicate that it can’t find the object from which the picture was generated. Igor can not update this picture.
If you recreate the graph or create a new graph with the same name, this reestablishes the link between the
graph and the picture.

If you change the name of a graph, this breaks the link between the graph and the picture. To reestablish it,
you need to create a new picture from the graph and paste it into the layout.

Compatibility Issues
Prior to Igor Pro 6.10, Igor-object pictures worked only on Macintosh and only for pictures created using
the Macintosh PICT format. In Igor Pro 6.10 and later, the Igor-object picture information is embedded for
the following picture formats:

If you open a pre-Igor Pro 6.10 notebook in Igor Pro 6.10, existing Igor object pictures in Macintosh PICT
format are recognized as Igor object pictures. If you do an update, they will be converted to PDF on Mac-
intosh and to EMF on Windows. PDF pictures are not supported in notebooks prior to Igor Pro 6.10 and
therefore these pictures will show up as gray boxes if you then open the notebook in an older version of
Igor.

A Windows format picture, when updated on Macintosh, is converted to a Macintosh format, and vice
versa.

Cross-Platform Pictures
If you want to create a notebook that contains pictures that display correctly on both Macintosh and Win-
dows, you can use the PNG (Portable Network Graphics) format. If some pictures are already in JPEG or
TIFF format, these too will display correctly on either platform.

You can convert other types of pictures to PNG using the Convert to PNG item in the Special submenu of
the Notebook menu.

Page Breaks
When you print a notebook, Igor automatically goes to the next page when it runs out of room on the
current page. This is an automatic page break.

In a formatted notebook, you can insert a manual page break using the Insert Page Break item in the Edit
menu. Igor displays a manual page break as a dashed line across the notebook window. You can’t insert a
manual page break into a plain notebook.

Format Platform
PDF Macintosh only
Enhanced Metafile Windows only
Bitmap PICT Macintosh only
DIB Windows only
PNG Image Cross-platform
JPEG Image Cross-platform
TIFF Image Cross-platform

Chapter III-1 — Notebooks

III-23

Unfortunately, there is no way to see where Igor will put automatic page breaks other than by printing the
document. This is a missing feature.

Headers and Footers
Both formatted and plain notebooks can have headers or footers.

You create headers and footers using the Document Settings dialog. This illustration shows just the parts of
this dialog that affect headers and footers.

For most uses, the default header or default footer will be sufficient. The default header consists of the date,
window title and page number. The other options are intended for use in fancy reports.

The Edit Header button and Edit Footer buttons lead to a dialog that looks like this.

The Page Number and Number of Pages special characters, shown above, are displayed on the screen as #
characters but are printed using the actual page number and number of pages in the document. The Date,
Time and Window Title special characters are automatically updated when the document is printed.

In the notebook header or footer dialog you can change text properties (font, size, style, color) for the entire
header using the Ruler pop-up menu. On the Macintosh you can also use the Notebook menu in the main
menu bar to set text properties for selected text. Under Windows the Notebook menu is not available and so
there is no way to set text properties for selected text from within the dialog. A workaround is to edit the
header or footer text in the notebook window, copy it, and then paste it into the header or footer dialog.

On the Macintosh, plain text files can have headers and footers. They are stored in the resource fork of the
notebook file; the data fork is plain text so that other programs see only text. Igor stores the header and
footer in a format that other applications do not understand.

Under Windows, files have no resource fork so plain text headers and footers can not be saved. Conse-
quently, when you open a plain text notebook, its headers and footers revert to the preferred headers and
footers, as set by the Capture Notebooks Prefs dialog. See also Notebook Issues on page III-409.

Sets position of the bottom
of the header from the
bottom of the paper.

Select to have different
footers on even and odd
pages.

Not available because Use
Default Header is selected.

Sets position of the top of
the header from the top of
the paper.The default header contains

the file name, date and page
number.

Select to have a special
footer on the first page.

Leads to a dialog in which
you can edit the footer(s).

This was created using the Short Date
item in the Insert Special pop-up menu.

These were created using the Page Number and
Total Pages items in the Insert Special pop-up menu.

Select which header to edit (first header, even header, odd header

Chapter III-1 — Notebooks

III-24

Printing Notebooks
On Macintosh, to print an entire notebook, click so that no text is selected and then choose Print Notebook
from the File menu. To print part of a notebook, select the section that you want to print and then choose
Print Notebook Selection from the File menu.

On Windows, choose whether to print the entire notebook or just the selection in the Print dialog.

Quality of Printed Pictures (Macintosh)
Igor prints graphs and page layouts at the highest resolution available on the chosen printer. However, on
Macintosh notebooks are printed at a resolution of 72 dots per inch. The reason for this is that font measure-
ments change at higher resolutions causing a lack of fidelity between the screen and the printed document.

Printing at low resolution causes smooth curves in pictures to appear jagged. This is a problem mostly for
Igor graphs that you paste into a notebook. This problem can be avoided by using the HiRes PICT format
or a PNG format with 4X resolution when creating the picture using Edit→Export Graphics.

Macintosh printer drivers do not handle HiRes PICTs properly when they are printed at 72 dots per inch. They
print the pictures at 72 dpi even though the pictures have higher resolution. To cope with this, Igor prints
HiRes PICTs in notebooks using a high resolution bitmap technique that circumvents the 72 dpi limitation.

When you use the PrintNotebook operation (see page V-571), you can override Igor’s default behavior to
make it print HiRes PICTs using the technique of your choice. The following commands illustrate this:
PrintNotebook/B=1 Notebook0 // use bitmap print HiRes PICT
PrintNotebook/B=0 Notebook0 // don't use bitmap print HiRes PICT

For a more detailed explanation of the different picture export methods and when to use which method, see
Chapter III-5, Exporting Graphics (Macintosh), and Chapter III-6, Exporting Graphics (Windows).

Quality of Printed Pictures (Windows)
On Windows, Igor prints notebooks at the default printer resolution. You don’t need to take any special
measures to get smooth curves to print smoothly. When creating a picture from a graph for the purpose of
pasting into a notebook, use the Enhanced Metafile format or a PNG format with 4X resolution in the Export
Graphics dialog.

Import and Export Via Rich Text Format Files
The Rich Text Format (RTF) is a file format created by Microsoft Corporation for exchanging formatted text
documents between programs. Microsoft also calls it the Interchange format. Many word processors and
some drawing and page layout programs can import or export RTF. RTF can also be used to move a docu-
ment from one type of computer to another, Mac to PC, for example.

You can save an Igor plain or formatted notebook as an RTF file and you can open an RTF file as an Igor
formatted notebook. You may find it useful to collect text and pictures in a notebook and to later transfer it
to your word processor for final editing.

An RTF file is a plain text file that contains RTF codes. For example, here is an Igor notebook and the corre-
sponding RTF codes.

Chapter III-1 — Notebooks

III-25

The “\rtf” code at the start of the file is what identifies a text file as an RTF file. Other codes define the text,
pictures, document formats, paragraph formats, and text formats and other aspects of the file.

When Igor writes an RTF file from a notebook, it must generate a complex sequence of codes. When it reads
an RTF file, it must interpret a complex sequence of codes. The RTF format is very complicated, has evolved
and allows some flexibility. As a result, each program writes and interprets RTF codes somewhat differ-
ently. Because of this and because of the different feature sets of different programs, RTF translation is
sometimes imperfect and requires that you do manual touchup.

Saving an RTF File
To create an RTF file, choose Save Notebook As from the File menu.

Opening an RTF File
When Igor opens a plain text file as a notebook, it looks for
the “\rtf” code that identifies the file as an RTF file. If it sees
this code, it asks if you want to convert the rich text codes
into an Igor formatted notebook.

If you answer Yes, Igor creates a new, formatted notebook.
It then interprets the RTF codes and sets the properties and
contents of the new notebook accordingly. When the conversion is finished, you sometimes need to fix up
some parts of the document that were imperfectly translated.

If you answer No, Igor opens the RTF file as a plain text file. Use this to inspect the RTF codes and, if you
are so inclined, to tinker with them.

{\rtf1\mac\deff1{\fonttbl{\f1\fnil Geneva;}{\f2\fnil Times;}}
{\stylesheet{\s0\sbasedon222\snext0\f1\fs20 Normal;}}
\deftab720\margl1080\margr1080\margt1080\margb1080\pgnstarts1
\sectd\headery720\footery720
\pard\plain
{\header\pard\plain\s1\tqc\tx5040\tqr\tx10060\fs20
\chdate Untitled0 \chpgn \par
}
\pard\plain
\pard\plain\s0\fs20
\fs48 This is a \ul test\ulnone .\par
}

When selected in the “Save as type:” or
“Format:” pop-up menu, Igor creates an
RTF file from the active notebook.

Chapter III-1 — Notebooks

III-26

Rich Text Format Graphics
This table shows how Igor deals with various graphics formats when importing an RTF file:

The Windows version of Igor displays Macintosh PICTs as gray boxes. However, if you save the picture in an
Igor file and open it with the Macintosh version of Igor, it will be displayed correctly. Similarly, The Macintosh
version of Igor displays Enhanced Metafiles as gray boxes but the Windows version displays them correctly.

In Microsoft Word, a picture can be “inline” or “floating”. The floating variety introduces considerable
complexity in the RTF file. Igor loads inline pictures from RTF files but ignores floating pictures.

This table shows how Igor writes pictures when exporting an RTF file:

* When exporting EPS, the PNG is created from the EPS preview only. If there is no EPS preview, a gray box is
exported.

Exporting a Notebook as HTML
Igor can export a notebook in HTML format. HTML is the format used for Web pages. For a demo of this
feature, see “Igor Pro Folder:Examples:Feature Demos:Web Page Demo.pxp”.

This feature is intended for two kinds of uses. First, you can export a simple Igor notebook in a form suitable
for immediate publishing on the Web. This might be useful, for example, to automatically update a Web
page or to programmatically generate a series of Web pages.

Second, you can export an elaborate Igor notebook as HTML, use an HTML editor to improve its formatting
or tweak it by hand, and then publish it on the Web. It is unlikely that you could use Igor alone to create an

Macintosh Igor Windows Igor

Macintosh PICT Loads picture. Draws picture. Loads picture. Draws gray box.

Windows DIB Loads picture. Draws gray box. Loads picture. Draws picture.

Windows DDB Not supported. Skips picture. Not supported. Skips picture.

Windows Metafile Not supported. Skips picture. Loads picture. Converts to Enhanced Metafile.
Draws picture.

Enhanced Metafile Loads picture. Draws gray box. Loads picture. Draws picture.

PNG Loads picture. Draws picture. Loads picture. Draws picture.

JPEG Loads picture. Draws picture. Loads picture. Draws picture.

Macintosh Igor Windows Igor

Macintosh PICT Writes PICT. Exports gray box.

Windows DIB Exports gray box. Writes 4X PNG.

Enhanced Metafile Exports gray box. Writes Enhanced Metafile.

PNG Writes PNG. Writes PNG.

JPEG Writes JPEG. Writes JPEG.

PDF Writes 4X PNG. Exports gray box.

TIFF Writes 4X PNG. Writes 4X PNG.

EPS Writes 4X PNG. * Writes 4X PNG. *

Chapter III-1 — Notebooks

III-27

elaborately formatted Web page because there is a considerable mismatch between the feature set of HTML
and the feature set of Igor notebooks. For example, the main technique for creating columns in a notebook
is the use of tabs. But tabs mean nothing in HTML, which uses tables for this purpose.

Because of this mismatch between notebooks and HTML, and so your Web page works with a wide variety
of Web browsers, we recommend that you keep the formatting of notebooks which you intend to write as
HTML files as simple as possible. For example, tabs and indentation are not preserved when Igor exports
HTML files, and you can’t rely on Web browsers to display specific fonts and font sizes. If you restrict your-
self to plain text and pictures, you will achieve a high degree of browser compatibility.

There are two ways to export an Igor notebook as an HTML file:
Choose File→Save Notebook As
Using the SaveNotebook/S=5 operation

The SaveNotebook operation (see page V-613) includes a /H flag which gives you some control over the
features of the HTML file:

The file’s character encoding.
Whether or not paragraph formatting (e.g., alignment) is exported.
Whether or not character formatting (e.g., fonts, font sizes) is exported.
The format used for graphics.

When you choose File→Save Notebook As, Igor uses the following default parameters:
Character encoding: UTF-8 (see HTML Character Encoding on page III-29).
Paragraph formatting is not exported.
Character formatting is not exported.
Pictures are exported in the PNG (Portable Network Graphics) format.

By default, paragraph and character formatting is not exported because this formatting is often not sup-
ported by some Web browsers, is at cross-purposes with Web browser behavior (e.g., paragraph space-
before and space-after), or is customarily left in the hands of the Web viewer (e.g., fonts and font sizes).

For creating simple Web pages that work with a majority of Web browsers, this is all you need to know
about Igor’s HTML export feature. To use advanced formatting, to use non-Roman characters, to use dif-
ferent graphics formats, and to cope with diverse Web browser behavior, you need to know more. Unfor-
tunately, this can get quite technical.

HTML Standards
Igor’s HTML export routine writes HTML files that conform to the HTML 4.01 specification, which is avail-
able from:

http://www.w3.org/TR/1999/PR-html40-19990824

It writes style information that conforms to the CSS1 (Cascading Style Sheet - Level 1) specification, which
is available from:

http://www.w3.org/TR/1999/REC-CSS1-19990111

HTML Horizontal Paragraph Formatting
Tabs mean nothing in HTML. A tab behaves like a single space character. Consequently, you can not rely
on tabs for notebooks that are intended to be written as HTML files. HTML has good support for tables,
which make tabs unnecessary. However, Igor notebooks don’t support tables. Consequently, there is no
simple way to create an HTML file from an Igor notebook that relies on tabs for horizontal formatting.

HTML files are often optimized for viewing on screen in windows of varying widths. When you make the
window wider or narrower, the browser automatically expands and contracts the width of the text. Conse-
quently, the roles played by the left margin and right margin in notebooks are unnecessary in HTML files.
When Igor writes an HTML file, it ignores the left and right paragraph margin properties.

http://www.w3.org/TR/1999/PR-html40-19990824
http://www.w3.org/TR/1999/REC-CSS1-19990111

Chapter III-1 — Notebooks

III-28

HTML Vertical Paragraph Formatting
The behavior of HTML browsers with regard to the vertical spacing of paragraphs makes it difficult to
control vertical formatting. For historical reasons, browsers typically add a blank line after each paragraph
(<P>) element and they ignore empty paragraph elements. Although it is possible to partially override this
behavior, this only leads to more problems.

In an Igor notebook, you would usually use the space-before and space-after paragraph properties in place
of blank lines to get paragraph spacing that is less than one line. However, because of the aforementioned
browser behavior, the space-before and space-after would add to the space that the browser already adds
and you would get more than one line’s space when you wanted less. Consequently, Igor ignores the space-
before and space-after properties when writing HTML files.

Because of this browser behavior, you will get close to WYSIWYG results only if you use one blank line
between paragraphs in your Igor notebook.

The minimum line height property is written as the CSS1 line-height property, which does not serve exactly
the same purpose. This will work correctly so long as the minimum line height that you specify is greater
than or equal to the natural line height of the text.

HTML Character Formatting
In an Igor notebook, you might use different fonts, font sizes, and font styles to enhance your presentation.
An HTML file is likely to be viewed on a wide range of computer systems and it is likely that your enhance-
ments would be incorrectly rendered or would be a hindrance to the reader. Consequently, it is customary
to leave these things to the person viewing the Web page.

If you use the SaveNotebook operation (see page V-613) and enable exporting font styles, only the bold,
underline and italic styles are supported.

In notebooks, the vertical offset character property is used to create subscripts and superscripts. When writing
HTML, Igor uses the CSS vertical-align property to represent the notebook’s vertical offset. The HTML property
and the Igor notebook property are not a good match. Also, some browsers do not support the vertical-align
property. Consequently, subscripts and superscripts in notebooks may not be properly rendered in HTML. In
this case, the only workaround is to use a picture instead of using the notebook subscript and superscript.

HTML Pictures
If the notebook contains one or more pictures, Igor writes PNG or JPEG picture files to a “media” folder.
For example, if the notebook contains two pictures and you save it as “Test.htm”, Igor writes the file
Test.htm and creates a folder named TestMedia. It stores in the TestMedia folder two picture files:
Picture0.png (or .jpg) and Picture1.png (or .jpg). The names of the picture files are always of the form Pic-
ture<N> where N is a sequential number starting from 0. If the folder already exists when Igor starts to store
pictures in it, Igor deletes all files in the folder whose names start with “Picture”, since these files are most
likely left over from a previous attempt to create the HTML file.

When you choose Save Notebook As from the File menu, Igor always uses the PNG format for pictures. If
you want to use the JPEG format, you must execute a SaveNotebook operation (see page V-613) from the
command line, using the /S=5 flag to specify HTML and the /H flag to specify the graphics format.

PNG is a lossless format that is excellent for storing web graphics and is supported by virtually all recent
web browsers. However, very old browsers (e.g., Internet Explorer 4.5) do not support it.

JPEG is a lossy format commonly used for web graphics. Prior to Igor Pro 5, Igor relied on QuickTime to
write JPEG files. This was true even when running on Windows. Now, Igor has built-in support for JPEG.
Igor still uses QuickTime if it is available but uses built-in routines if not.

HTML does not support Igor’s double, triple, or shadow picture frames. Consequently, when writing
HTML, all types of notebook frames are rendered as HTML thin frames.

Chapter III-1 — Notebooks

III-29

HTML Character Encoding
Character encoding refers to the way in which a particular character is represented in a computer’s memory
or in a computer file. For example, in the Macintosh Roman character encoding, the number 165 is the char-
acter code for a bullet symbol. However, in the Windows character encoding, the number 165 is the char-
acter code for a yen symbol. These are but two of dozens of possible character encodings. This raises the
question of what a Web browser should display when it encounters a particular character code.

An Internet standard called “RFC 2070” addresses this question. Unfortunately, the recommendations in
RFC 2070 are not generally understood by people who create Web pages, are difficult for an HTML-gener-
ator program to implement and are ignored by many popular Web browsers. For more information on
these issues, a good jumping off point is:

<http://www.cs.tut.fi/~jkorpela/chars/index.html>.

Igor supports three kinds of character encodings:
UTF-2 UTF-2 encoding is 16-bit Unicode. Unicode is a system for uniquely representing nearly all of the

characters in most of the commonly-used languages of the world. It provides a simple way to
create a document that contains characters from more than one writing system, such as English
and Japanese or English and Greek symbols (the characters in the Symbol font).

There are two main problems with UTF-2. First, most text editors don’t support it. Second, many
Web browsers don’t support it. For these reasons, it is better to use UTF-8.

UTF-8 UTF-8 encoding is a kind of packed Unicode. Whereas 16-bit Unicode represents each character
using two bytes, UTF-8 represents each character using 1 to 6 bytes.

UTF-8 has a very nice property — all of the US-ASCII characters (0x00-0x7F) are represented
using a single byte, the same byte used in US-ASCII. This means that you can edit the English text
in UTF-8 documents in most text editors.

UTF-8 is supported by most recent Web browsers and UTF-8 support will continue to expand.
For this reason, and because it can represent non-Roman text, Igor uses UTF-8 by default when
exporting a notebook as HTML.

Native There may be some cases in which you will not want to use UTF-8. The most reason for doing this
is to work around Web browser bugs. If you need to do this, you can use “native” encoding in
the SaveNotebook operation (see page V-613).

When you use native encoding, the document is created using the native character set of the
operating system. On Macintosh, this equates to “mac” (the Mac OS Roman character set). On
Windows, it equates to “Windows-1252” (the Windows Western character set).

The display of a document using one of these encodings is more browser-dependent than UTF-8
when the document contains “high-ASCII” and non-Roman characters. Also, non-Roman text
such as symbols from the Symbol font and Asian characters depend on the use of specific fonts
which may not be available in the Web viewer’s system.

In these encodings, the browser can not tell from a character code if the character is Roman,
Symbol or Asian. For this reason, if you use a mix of character sets, you must use the
SaveNotebook /H flag to enable exporting fonts to the HTML file.

Others Finally, there is a technique that may be of use for writing Asian text if, for some reason, UTF-8
does not work. Assume you have a notebook that consists almost entirely of Japanese text, which
on both Macintosh and Windows uses the “Shift-JIS” encoding. Using SaveNotebook/H, you can
specify that the characters in the file use Shift-JIS. Igor will write a Content-Type meta tag in the
file that specifies Shift-JIS. Web browsers that correctly interpret the Content-Type meta tag will
display the characters correctly.

Embedding HTML Code
If you are knowledgeable about HTML, you may want to access the power of HTML without completely
giving up the convenience of having Igor generate HTML code for you. You can do this by embedding
HTML code in your notebook, which you achieve by simply using a ruler named HTMLCode.

http://www.cs.tut.fi/~jkorpela/chars/index.html

Chapter III-1 — Notebooks

III-30

Normally, Igor translates the contents of the notebook into HTML code. However, when Igor encounters a
paragraph whose ruler is named HTMLCode, it writes the contents of the paragraph directly into the
HTML file. Here is a simple example:

Living things are generally classified into 5 kingdoms:

Monera
Protista
Fungi
Plantae
Animalia

In this example, the gray lines are governed by the HTMLCode ruler. Igor writes the text in these line
directly to the HTML file. This example produces a numbered list, called an “ordered list”, which is
announced using the HTML “OL” tag.

By convention, we make the ruler font color for the HTMLCode ruler gray. This allows us to distinguish at
a glance the HTML code from the normal notebook text. The use of the color gray is merely a convention.
It is the fact that the ruler is named HTMLCode that makes Igor write the contents of these paragraphs
directly to the HTML file.

Here is an example that shows how to create a simple table:
<TABLE border="1" summary="Example of creating a table in HTML.">
<CAPTION>A Simple Table</CAPTION>
<TR><TH><TH>Col 1<TH>Col 2<TH>Col 3
<TR><TH>Row 1<TD>10<TD>20<TD>30
<TR><TH>Row 2<TD>40<TD>50<TD>60
</TABLE>

Here is an example that includes a link:
<P>Visit the WaveMetrics web site</P>

Finding Text
You can access the Find Text dialog via the Edit menu or by pressing Command-F (Macintosh) or Ctrl+F
(Windows).

You can search for the next occurrence of a string, without using the dialog, by selecting the string and
choosing Find Selection in the Edit menu. The keyboard shortcut is Command-Control-H (Macintosh) or
Ctrl+H (Windows).

After doing a find, you can continue searching for the same text again by choosing Find Same in the Edit menu.
The keyboard shortcut is Command-G (Macintosh) or Ctrl+G (Windows). You can continue searching for the same
text, but in the reverse direction, by pressing Command-Shift-G (Macintosh) or Ctrl+Shift+G (Windows).

You can also perform a Find on multiple help, procedure and notebook windows at one time. See Finding
Text in Multiple Windows on page II-69.

Select to search the entire
window. Deselect to search
to the end of the document
(or start of the document if
searching backwards).

Press Shift while
clicking to temporarily
reverse the search
direction.

Chapter III-1 — Notebooks

III-31

Replacing Text
You can access the Replace Text dialog via the Edit menu or by pressing Command-R (Macintosh) or Ctrl+R
(Windows).

Another method for searching and replacing consists of copying the replacement text to the Clipboard and
using Find, Command-F (Macintosh) or Ctrl+F (Windows), followed by a series of Paste, Command-V (Mac-
intosh) or Ctrl+V (Windows), and Find Same commands, Command-G (Macintosh) or Ctrl+G (Windows).

Notebook Names, Titles and File Names
This table explains the distinction between a notebook’s name, its title and the name of the file in which it
is saved.

Igor automatically opens notebooks that are part of an Igor experiment when you open the experiment. If
you change a notebook’s file name outside of the experiment, Igor will be unable to automatically open it
and will ask for your help when you open the experiment.

A notebook file stored inside a packed experiment file does not exist separately from the experiment file, so
there is no way or reason to change the notebook’s file name.

Notebook Info Dialog
You can get general information on a notebook by selecting the Info item in the Notebook menu or by click-
ing the icon in the bottom/left corner of the notebook.

Item What It Is For How It Is Set

Notebook name Used to identify a notebook from an
Igor command.

Igor automatically gives new notebooks
names of the form Notebook0. You can
change it using the Window Control dialog
or using the DoWindow/C operation.

Notebook title For visually identifying the window.
The title appears in the window bar at
the top of the window and in the Other
Windows submenu of the Windows
menu.

Initially, Igor sets the title to the
concatenation of the notebook name and
the file name. You can change it using the
Window Control dialog or using the
DoWindow/T operation.

File name This is the name of the file in which the
notebook is stored.

You enter this in the New Notebook dialog.
Change it on the desktop.

Press Shift while clicking to
temporarily reverse the
search direction.

Select to search the
entire window. Deselect
to search to the end of
the document (or start
of the document if
searching backwards).

Chapter III-1 — Notebooks

III-32

The Note information shows you whether the notebook has been saved and if so whether it is stored in a
packed experiment file, in an unpacked experiment folder or in a stand-alone file. The selection information
may be of use to programmers writing Igor procedures to manipulate notebooks.

Programming Notebooks
Advanced users may want to write Igor procedures to automatically log results or generate reports using
a notebook. The operations that you would use are briefly described here. See Chapter V-1, Igor Reference,
for details.

There is currently no way to set headers and footers from Igor procedures. A workaround is to create a sta-
tionery (Macintosh) or template (Windows) notebook file with the headers and footers that you want and to
open this instead of creating a new notebook.

In addition, the SpecialCharacterList function (see page V-664) and SpecialCharacterInfo function (see
page V-662) may be of use.

The Notebook Demo #1 experiment, in the Examples:Feature Demos folder, provides a simple illustration
of generating a report notebook using Igor procedures.

See Notebooks as Subwindows in Control Panels on page III-96 for information on using a notebook as a
user-interface element.

Some example procedures follow.

Operation What It Does

NewNotebook Creates a new notebook window.

OpenNotebook Opens an existing file as a notebook.

SaveNotebook Saves an existing notebook to disk as a stand-alone file or packed into the experiment file.

PrintNotebook Prints all of a notebook or just the selected text.

Notebook Provides control of the contents and all of the properties of a notebook except for
headers and footers. Also sets the selection and to search for text or graphics.

NotebookAction Creates or modifies notebook action special characters.

GetSelection Retrieves the selected text.

DoWindow/K Kills a notebook.

Click to display the File
Information dialog.

Chapter III-1 — Notebooks

III-33

Logging Text
This example shows how to add an entry to a log. Since the notebook is being used as a log, new material
is always added at the end.
// Function AppendToLog(nb, str, stampDateTime)
// Appends the string to the named notebook.
// If stampDateTime is nonzero, appends date/time before the string.
Function AppendToLog(nb, str, stampDateTime)

String nb // name of the notebook to log to
String str // the string to log
Variable stampDateTime // nonzero if we want to include stamp

Variable now
String stamp

Notebook $nb selection={endOfFile, endOfFile}
if (stampDateTime)

now = datetime
stamp = Secs2Date(now,0) + ", " + Secs2Time(now,0) + "\r"
Notebook $nb text=stamp

endif
Notebook $nb text= str+"\r"

End

You can test this function with the following commands:
NewNotebook/F=1/N=Log1 as "A Test"
AppendToLog("Log1", "Test #1\r", 1)
AppendToLog("Log1", "Test #2\r", 1)

The sprintf operation (see page V-669) is useful for generating the string to be logged.

Inserting Graphics
There are two kinds of graphics that you can insert into a notebook under control of a procedure:
• A picture generated from a graph, table or layout (an “Igor-object” picture).
• A copy of a named picture stored in the current experiment’s picture collection.

The command
Notebook Notebook0 picture={Graph0(0,0,360,144), -1, 0}

creates a new picture of the named graph and inserts it into the notebook. The numeric parameters allow
you to control the size of the picture, the type of picture and whether the picture is black and white or color.
This creates an anonymous (unnamed) picture. It has no name and does not appear in the Pictures dialog.
However, it is an Igor-object picture with embedded information that allows Igor to recognize that it was
generated from Graph0 (the embedded information feature is not implemented on Windows).

The command
Notebook Notebook0 picture={PICT_0, 1, 0}

makes a copy of the named picture, PICT_0, stored in the experiment’s picture collection, and inserts the
copy into the notebook as an anonymous picture. The inserted anonymous picture is no longer associated
with the named picture from which it sprang.

See Pictures on page III-423 for more information on pictures.

Updating a Report Form
In this example, we assume that we have a notebook that contains a form with specific values to be filled
in. These could be the results of a curve fit, for example. This procedure opens the notebook, fills in the
values, prints the notebook and then kills it.

Chapter III-1 — Notebooks

III-34

// DoReport(value1, value2, value3)
// Opens a notebook file with the name "Test Report Form",
// searches for and replaces "<value 1>", "<value 2>" and "<value3>".
// Then prints the notebook and kills it.
// "<value 1>", "<value 2>" and "<value 3>" must appear in the form
// notebook, in that order.
// This procedure assumes that the file is in the Igor folder.
Function DoReport(value1, value2, value3)

String value1, value2, value3

OpenNotebook/P=Igor/N=trf "Test Report Form"
Notebook trf, findText={"<value 1>", 1}, text=value1
Notebook trf, findText={"<value 2>", 1}, text=value2
Notebook trf, findText={"<value 3>", 1}, text=value3

PrintNotebook/S=0 trf
DoWindow/K trf

End

To try this function, enter it in the Procedure window. Then create a notebook that contains “<value 1>”,
“<value 2>” and “<value 3>” and save it in the Igor folder using the file name “Test Report Form”. The note-
book should look like this:

Now the notebook and then, execute the following command:
DoReport("123", "456", "789")

This will print the form using the specified values.

Updating Igor-Object Pictures
This feature is not implemented on Windows.

The following command will update all pictures in the notebook made from Igor graphs, tables or layouts
from the current experiment.
Notebook Notebook0 specialUpdate=0

More precisely, it will update all dynamic special characters, including date and time characters as well as
Igor-object pictures.

This next fragment shows how to update just one particular Igor-object picture.
String nb = "Notebook0"
Notebook $nb selection={startOfFile, startOfFile}
Notebook $nb findPicture={"Graph0", 1}
if (V_Flag)

Notebook $nb specialUpdate=1
else

Beep // can't find Graph0
endif

Igor will normally refuse to update special characters unless updating is enabled, via the Enable Updating
dialog (Notebook menu). You can override this and force Igor to do the update by using 3 instead of 1 for
the specialUpdate parameter.

Chapter III-1 — Notebooks

III-35

Retrieving Text
Since you can retrieve text from a notebook, it is possible to use a notebook as an input mechanism for a
procedure. To illustrate this, here is a procedure that tags each point of a wave in the top graph with a string
read from the specified notebook. The do-loop in this example shows how to pick out each paragraph from
the start to the end of the notebook.
#pragma rtGlobals=1 // Make V_Flag and S_Selection be local variables.

// TagPointsFromNotebook(nb, wave)
// nb is the name of an open notebook.
// wave is the name of a wave in the top graph.
// TagPointsFromNotebook reads each line of the notebook and uses it
// to tag the corresponding point of the wave.
Function TagPointsFromNotebook(nb, wave)

String nb // name of notebook
String wave // name of the wave to tag

String name // name of current tag
String text // text for current tag
Variable p

p = 0
do

// move to current paragraph
Notebook $nb selection={(p, 0), (p, 0)}
if (V_Flag) // no more lines in file?

break
endif

// select all characters in paragraph up to trailing CR
Notebook $nb selection={startOfParagraph, endOfChars}

GetSelection notebook, $nb, 2 // Get the selected text
text = S_Selection // S_Selection is set by GetSelection
if (strlen(text) > 0) // skip if this line is empty

name = "tag" + num2istr(p)
Tag/C/N=$name/F=0/L=0/X=0/Y=8 $wave, pnt2x($wave, p), text

endif

p += 1
while (p < numpnts($wave)) // break if we hit the end of the wave

End

For examples using notebook action special characters, see the Notebook Actions Demo example experiment.

Generate Notebook Commands Dialog
The Generate Notebook Commands dialog automatically generates the commands required to reproduce
a notebook or a section of a notebook. This is intended to make programming a notebook easier. To use it,
start by manually creating the notebook that you want to later create automatically from an Igor procedure.
Then choose Generate Commands from the Notebook menu.

Generates commands to set document properties.

Generates commands to set paragraph properties.

Generates commands to set character properties.

Generates commands for text content, including
special characters.

Puts commands in the
Clipboard so that you
can paste them into the
Procedure window.

Chapter III-1 — Notebooks

III-36

After clicking Store commands in Clipboard, open the procedure window and paste the commands into a
procedure.

For a very simple formatted notebook, the commands generated look like this:
String nb = "Notebook2"
NewNotebook/N=$nb/F=1/V=1/W=(5,40,563,359)
Notebook $nb defaultTab=36,statusWidth=222,pageMargins={54,54,54,54}
Notebook $nb showRuler=0,rulerUnits=1,updating={1,60}
Notebook $nb newRuler=Normal,justification=0,margins={0,0,504}
Notebook $nb spacing={0,0,0},tabs={}
Notebook $nb rulerDefaults={"Helvetica",10,0,(0,0,0)}
Notebook $nb ruler=Normal,text="This is a test."

To make it easier for you to modify the commands, Igor uses the string variable nb instead of repeating the
literal name of the notebook in each command.

If the notebook contains an Igor-object picture, you will see a command that looks like
Notebook $nb picture={Graph0(0,0,360,144), 0, 1}

However, if the notebook contains a picture that is not associated with an Igor object, you will see a
command that looks like
Notebook $nb picture={putGraphicNameHere, 1, 0}

You will need to replace “putGraphicNameHere” with the name of a picture. Use the Pictures dialog, via
the Misc menu, to see what named pictures are stored in the current experiment or to add a named picture.
See Pictures on page III-423 for more information.

There is a shortcut that generates commands without going through the dialog. Select some text in the note-
book, press Option (Macintosh) or Alt (Windows) and choose Copy from the Edit menu. This generates com-
mands for the selected text and text formats. Press the Shift-Option (Macintosh) or Shift+Alt (Windows) to
also generate document and ruler commands.

Notebook Preferences
The notebook preferences affect the creation of new notebooks. There is one set of preferences for plain note-
books and another set of preferences for formatted notebooks.

To set notebook preferences, set the attributes of any notebook of the desired type (plain or formatted) and
then use the Capture Notebook Prefs item in the Notebook menu.

To determine what the preference settings are you must create a new notebook and examine its settings.

Notebook windows each have their own Page Setup values. New notebook windows will have their own
copy of the captured (or reverted) Page Setup values.

Preferences are stored in the Igor Preferences file. See Chapter III-17, Preferences, for further information
on preferences.

“default” indicates that this
preference was never
changed from the factory
default or was changed
and then reverted.

Click to revert to factory defaults for the selected items.Click to capture preferences for the selected

This includes whether or not
the ruler is initially showing
as well as all settings in the
Document Settings dialog.

Chapter III-1 — Notebooks

III-37

Notebook Template Files
A template notebook provides a way to customize the initial contents of a new notebook. When you open
a template notebook, Igor opens it normally but leaves it untitled and disassociates it from the template
notebook file. This leaves you with a new notebook based on your prototype. When you save the untitled
notebook, Igor creates a new notebook file.

Template notebooks have ".ift" as the file name extension instead of ".ifn".

To make a template notebook, start by creating a prototype formatted text notebook with whatever contents
you would like in a new notebook.

On Macintosh, choose File→Save Notebook As, check the Save as Stationery checkbox, and save the tem-
plate notebook.

On Windows, choose File→Save Notebook As, choose IGOR Formatted Notebook Template from the "Save
as type" menu, and save the template notebook.

You can convert an existing formatted text notebook file into a template file by changing the extension from
".ifn" to ".ift".

The Macintosh Finder’s file info window has a Stationery Pad checkbox. Checking it turns a file into a sta-
tionery pad. When you double-click a stationery pad file, Mac OS X creates a copy of the file and opens the
copy. For most uses, the template technique is more convenient.

Chapter III-1 — Notebooks

III-38

Notebook Shortcuts
To view text window keyboard navigation shortcuts, see Text Window Navigation on page II-68.

Action Shortcut (Macintosh) Shortcut (Windows)

To get a contextual menu
of commonly-used actions

Press Control and click in the body
of the notebook window.

Right-click the body of the notebook
window.

To execute commands in a
notebook window

Select the commands or click in the line
containing the commands and press
Control-Return or Control-Enter.

Select the commands or click in the
line containing the commands and
press Ctrl+Enter.

To display the Find dialog Press Command-F. Press Ctrl+F.

To find the same text again Press Command-G. Press Ctrl+G.

To find again but in the
reverse direction

Press Command-Shift-G. Press Ctrl+Shift+G.

To find selected text Press Command-E and Command-G.

This shortcut can be changed
through the Miscellaneous Settings
dialog.

Press Ctrl+H.

To find the selected text
but in the reverse direction

Press Command-E and Command-
Shift-G.

Press Ctrl+Shift+H.

To select a word Double-click. Double-click.

To select an entire line Triple-click. Triple-click.

To change a named ruler
without using the Redefine
Ruler dialog

Press Command while adjusting the
icons in the ruler.

Press Ctrl while adjusting the icons
in the ruler.

To find the next
occurrence of a ruler

Press Option while selecting a ruler
from the pop-up menu.

Press Alt while selecting a ruler
from the pop-up menu.

To find the previous
occurrence of a ruler

Press Shift-Option while selecting a
ruler from the pop-up menu.

Press Shift+Alt while selecting a
ruler from the pop-up menu.

To get miscellaneous
information on notebook

Click the document icon in the
bottom-left corner of the window.

Click the document icon in the
bottom-left corner of the window.

To generate Notebook
commands that will
recreate the selected text

Press Option and choose Copy from
the Edit menu. This puts the
commands in the Clipboard for text
and text formats.

Press Option-Shift while copying to
also generate document and ruler
commands.

Press Alt and choose Copy from the
Edit menu. This puts the commands
in the Clipboard for text and text
formats.

Press Alt+Shift while copying to also
generate document and ruler
commands.

To nudge a picture by one
point up or down

Select the picture and press Control-
Up Arrow or Control-Down Arrow.

Select the picture and press
Ctrl+Alt+Up Arrow or
Ctrl+Alt+Down Arrow.

Chapter III-1 — Notebooks

III-39

Chapter III-1 — Notebooks

III-40

Chapter

III-2
III-2Annotations

Overview.. 43
Annotations Quick Start .. 43
The Annotation Dialog... 44
Modifying Annotations.. 45
Text Content... 45

About Text Escape Codes ... 46
Font Escape Codes... 46
Font Size Escape Codes... 46
Relative Font Size Escape Codes ... 47
Special Escape Codes .. 47
Dynamic Escape Codes for Tags ... 48
Other Dynamic Escape Codes.. 48
TagVal and TagWaveRef Functions.. 49

Tabs ... 50
General Annotation Properties ... 50

Name.. 50
Frame ... 50
Color .. 51

Annotation Positioning .. 51
Textbox, Legend, and Color Scale Positioning in a Graph .. 52
Textbox and Legend Positioning in a Page Layout .. 54

Legends... 54
Legend Text .. 54

Symbol Conditions at a Point ... 55
Freezing the Legend Text .. 55

Marker Size ... 55
Wave Symbol Centering ... 55
Wave Symbol Width ... 56
Symbol With Color as f(z) .. 56

Tags ... 57
Tag Text... 57
Tag Wave and Attachment Point .. 57

Changing a Tag’s Attachment Point.. 59
Tag Arrows.. 59
Tag Line and Arrow Standoff ... 60
Tag Anchor Point.. 60

Tag Positioning .. 60
Tags Attached to Offscreen Points ... 61

Contour Labels Are Tags .. 61
Color Scales.. 61

ColorScale Main Tab ... 62
ColorScale Size and Orientation .. 62
ColorScale Axis Labels Tab .. 63
ColorScale Ticks Tab ... 64

Chapter III-2 — Annotations

III-42

Elaborate Annotations and Axis Labels... 65
Elaborate Annotations Versus Equation Editors .. 65
About Text Info Variables... 66
Simple Text Info Variables Example ... 66
Text Info Variables Escape Codes ... 66
Elaborate Text Info Variables Example .. 67
More Examples... 67

Programming with Annotations... 68
Changing Annotation Names .. 68
Changing Annotation Types.. 68
Changing Annotation Text... 68
Generating Text Programmatically... 68
Deleting Annotations .. 68

Chapter III-2 — Annotations

III-43

Overview
Annotations are custom objects that add information to a graph or a page layout. Most annotations contain text
that you might use to describe the contents of a graph, point out a feature of a wave, identify the axis that applies
to a wave, or create a legend. Igor automatically creates annotations for labeling contour plots. An annotation
can also contain color scales showing the data range associated with colors in contour and image plots.

There are four types of annotation: textboxes, legends, color scales, and tags.

A textbox contains one or more lines of text which optionally may be surrounded by a frame, rotated, col-
orized and aligned.

A legend is similar to a textbox except that it contains wave symbols for one or more waves in a graph.
Legends are automatically updated when waves are added to or removed from the graph, or when a wave’s
appearance is modified.

A tag is also similar to a textbox except that it is attached to a point in a wave and can contain dynamically
updated text describing that point. Tags can be added to a graph, but not to a page layout. In contour plots,
Igor automatically generates tags to label the contour lines.

A color scale is similar to a legend except that it contains a color bar with an axis
that spans the range of colors associated with the data. Color scales are automat-
ically updated when the associated image plot, contour plot, f(z) trace, or color
index wave is modified. A color scale can also be completely disassociated from any data by directly spec-
ifying a named color table and an explicit numeric range for the axis.

Annotations Quick Start
To Do This Do This

To add an annotation to a graph Choose Add Annotation from the Graph menu.

To add an annotation to a page
layout

Choose Add Annotation from the Layout menu or click with the
annotation (“A”) tool. For more information about annotations in page
layouts, see Annotations in the Layout Layer on page II-391.

To modify an annotation in a graph Double-click the annotation to bring up the Modify Annotation dialog.

To modify an annotation in a page
layout

Single-click the annotation with the annotation tool. This brings up
the Modify Annotation dialog.

-1

0

1

120100806040200

Tags are used to
point out a feature

on a wave.

This Legend shows
which wave is which.

 wave0
 wave1

Annotations can have
multiple Fonts and Sizes
and show the value of global
variables: V_max = 0.877651T

o
ge

ne
ra

te
 a

 m
ul

ti-
lin

e
ax

is
 la

be
l,

us
e

a
te

xt
bo

x
in

st
ea

d
of

 a
 r

ea
l a

xi
s

la
be

l.

This exterior textbox is used as a graph title.

1.00.80.60.40.20.0

Chapter III-2 — Annotations

III-44

When manipulating annotations with the mouse, be sure that the graph or page layout are in the “operate”
mode; not the “drawing” mode. The Tool bar indicates which mode the window is in:

The Annotation Dialog
You can use the annotation dialog to create new or modify existing annotations. The dialog title is Add
Annotation when a new annotation will be created and Modify Annotation when an existing annotation
will be changed or duplicated. See Modifying Annotations on page III-45. The annotation dialog seems
complex but comprises only a few major functions:
• A pop-up menu to choose the annotation type.
• A Name: setting.
• Tabs that group related Annotations settings. Some of the tabs apply to color scales only, and some

of the settings in various tabs apply only to specific types of annotations.
• A Preview box to show what the annotation will look like or to display commands.
• The normal Igor dialog buttons.

To change the annotation type Use the Annotation pop-up menu in the Modify Annotation dialog,
or use the proper Tag, TextBox, ColorScale, or Legend operation.

To move an existing annotation Click in the annotation and drag it to the new position. If the annotation
is frozen, this won’t work — double-click it and make it moveable in
the Annotation Position tab.

To change a tag’s attachment point, press Option (Macintosh) or Alt
(Windows) and drag the tag text to the new attachment point on the
wave. This works whether or not the tag is frozen.

To duplicate an existing annotation Double-click the annotation, then click the Duplicate Textbox
button in upper-right corner of the Modify Annotation dialog. If the
annotation is a tag, the button is titled Duplicate Tag, etc.

To delete an annotation Double-click the annotation, then click the Delete button in the
Modify Annotation dialog. A tag can be deleted by dragging its
attachment point off the graph.

To show the value of a global
variable in an annotation

Type “\{variableName}” in the annotation text. See also Other
Dynamic Escape Codes on page III-48.

To Do This Do This

Graph Window
Operate Draw

Mode Mode

Page Layout
Annotation Tool

Page Layout
Operate Draw

Mode Mode

Chapter III-2 — Annotations

III-45

Modifying Annotations
If an annotation is already in a graph you can modify it by double-clicking it while the graph is in the “oper-
ate” mode (see Annotations Quick Start on page III-43). The resulting Modify Annotation dialog is similar
to the Add Annotation dialog except for a few items:

Single-clicking an annotation with the annotation (“A”) tool in a page layout also brings up the Modify
Annotation dialog.

Text Content
You enter text into the Annotation text entry area in the Text tab. This “windoid” supports copy, cut, paste
and undo using Command-C, Command-X, Command-V and Command-Z (Macintosh) or Ctrl+C, Ctrl+X,
Ctrl+V and Ctrl+Z (Windows). Tab stops are provided; see Tabs on page III-50. If your annotation has a lot
of text, you can scroll and zoom this area for easier editing.

The annotation text may contain both plain text and “escape code” text which produces special effects such
as superscript, font, font size and style, alignment, text color and so on. The text can contain multiple lines;
just press Return. At any point when entering plain text you can choose a special effect from a pop-up menu
within the Insert group, and Igor will enter the correct escape code. Igor wizards can type them in directly.

This name is used only when programming.

Drag the preview to view
offscreen portions.

These pop-up menus
insert “escape codes”
into the Annotation text. Font Size 14 “escape code”.

Annotation text.

“Change” replaced “Do it”. Click this
to change the existing annotation.

“Delete” replaced “To Clip”. Click this
to delete the existing annotation.

Click this to make another
annotation just like the existing
annotation.

Enter a new name
for the annotation.

Chapter III-2 — Annotations

III-46

You can enter numbers into the text by simply typing them, or by referencing global variables or functions
using dynamic text. Dynamic text is explained in Other Dynamic Escape Codes on page III-48.

As you type annotation text, the Preview box shows what the resulting annotation will look like. You can
not enter text in the Preview box.

Sometimes the textbox you are creating will not fit in the preview box. You can move the previewed anno-
tation around to see the hidden parts. When you position the cursor over the preview box, it changes to a
hand; just drag the annotation.

If the preview area isn’t showing the annotation, change the pop-up menu (just above the Do It or Change
button) from Commands to Preview.

About Text Escape Codes
An escape code consists of a backslash character followed by one or more characters. It represents the
special effect you selected. The effects of the escape code persist until overridden by a following escape
code. The escape codes are cryptic but you can see their effects in the Preview box.

In the adjacent example, the subscript escape
code “\B” begins a subscript and is not dis-
played in the annotation; the “n” that follows is
plain text displayed as a subscript. The normal
escape code “\M” overrides the subscript mode
so that the plain text “= z” that follows has the original size and Y position (vertical offset) used for the “J”.

Font Escape Codes
Choosing an item from the Font pop-up menu inserts a
code that changes the font for subsequent characters in
the annotation. The checked font is the font currently in
effect at the current insertion point in the annotation text
entry area.

If you don’t choose a font, Igor uses the default font or the
graph font for annotations in graphs. You can set the
default font using the Default Font item in the Misc menu,
and the graph font using the Modify Graph item in the
Graph menu. The Font pop-up menu also has a “Recall font” item. This item is used to make elaborate anno-
tations as described under Text Info Variables Escape Codes on page III-66.

Font Size Escape Codes
Choosing an item from the Font Size pop-up menu inserts a code that changes
the font size for subsequent characters in the annotation. The checked font size
is the size currently in effect at the current insertion point in the annotation
text entry area.

(To insert a size not shown, choose any shown size, and edit the escape code
to contain the desired font size. Annotation font sizes may be 03 to 99 points;
two digits are required after the “\Z” escape code.)

If you specify no font size escape code for annotations in graphs, Igor chooses
a font size appropriate to the size of the graph unless you’ve specified a graph
font size in the Modify Graph dialog. The default font size for annotations in
page layouts is 10 points. The Font Size pop-up menu contains a “Recall size”
item which is used to make elaborate annotations as described in the section
About Text Info Variables on page III-66.

Jn = z

Normal “escape code”

J\Bn\M = z

Subscript “escape code”

inserts \F’Times’

inserts \Z10

Chapter III-2 — Annotations

III-47

Relative Font Size Escape Codes
Choosing an item from the Rel. Font Size pop-up menu inserts a code that changes the relative font size for
subsequent characters in the annotation. Use values larger than 100 to increase the font size, and values
smaller than 100 to decrease the font size.

To insert a size not shown, choose any shown relative size, and edit the escape code to contain the desired
relative font size. Annotation relative font sizes may be 001 to 999 (1% to 999%). Three digits are required
after the “\Zr” escape code.

Don’t use, say, 50% followed by 200% and expect to get exactly the original font size back; rounding inac-
curacies will prevent success (because font sizes are handled as only integers). For example, if you start with
15 point text and use \Zr050 (50%) the result is 7 point text. 200% of 7 points is only 14 point text:

Instead, use the Normal “\M” escape code (or an absolute font size or a recalled font size) to return to a
known font size. In the following example, the initial 15 point font size is saved in the main text info variable
(the “\[0” escape code, see Text Info Variables Escape Codes on page III-66), whose size is recalled by the
Normal escape code.

Special Escape Codes
Choosing an item from the Special pop-up menu inserts an escape code that makes subsequent characters
superscript, subscript or normal, affects the style, position or color of subsequent text, or inserts the symbol
with which a wave is plotted in a graph.

The first four items, Store Info, Recall Info, “Recall X position”, and “Recall Y position” are used to make
elaborate annotations as described under Elaborate Annotations and Axis Labels on page III-65.

The Style item brings up a subdialog that you use to change the style (bold, italic, etc.) for the annotation at
the current insertion point in the annotation text entry area. This subdialog has a Recall Style checkbox that
is used in elaborate annotations with text info variables.

The Superscript and Subscript items insert an escape code that makes subsequent characters superscript or
subscript. Use the Normal item to return the text to the original text size and Y position.

Voltmeter Readings
(past 30 days)

Voltmeter Readings

\JC\Z15Voltmeter Readings
\Zr050(past 30 days)
\Zr200Voltmeter Readings

Voltmeter Readings
(past 30 days)

Voltmeter Readings

\JC\Z15\[0Voltmeter Readings
\Zr050(past 30 days)
\MVoltmeter Readings

Symbol that a trace is
plotted with in a graph.

Because backslash normally
initiates an “escape code”.

Bold, Italic, etc.

Return to starting font size
and no offset from baseline.

Text Info Variables.

Choose a marker symbol
independent of any traces.

Choose font symbols from a
character map.

Chapter III-2 — Annotations

III-48

The Backslash item inserts a code to insert a backslash that prints, rather than one which introduces an escape
code. Igor does this by inserting two backslashes, which is an escape code that prints a backslash. Weird, huh?

The Normal item inserts a code to return to the original font size and baseline (which has no vertical offset such
as is used to produce super- and subscripts). More precisely, Normal sets the font size and baseline to the values
stored in text variable 0 (see About Text Info Variables on page III-66). The font and style are not affected.

The Justify items insert a code to align the current and following lines.

The Color item inserts a code to color the following text. The initial text color and the annotation background
color are set in the Frame Tab.

The Wave Symbol item inserts a code that prints the symbol (line, marker, etc.) used to display the wave trace
in the graph. This code is inserted automatically in a legend. You can use this menu item to manually insert a
symbol into a tag, textbox, or color scale. For graph annotations, the submenu lists all the trace name instances
in the top graph. For layout annotations, all the trace name instances in all graphs in the layout are listed.

The Character item presents a table from which you can select text and special characters to add to the annotation.

The Marker item inserts a code to draw a marker symbol. These symbols are independent of any traces in
the graph.

Dynamic Escape Codes for Tags
The Dynamic pop-up menu inserts escape codes that apply only to tags. These
codes insert information about the wave or point in the wave to which the tag is
attached. This information automatically updates whenever the wave or the attach-
ment point changes.

See also TagVal and TagWaveRef Functions on page III-49. These functions provide the same information
as the Dynamic pop-up menu items but with greater flexibility.

Other Dynamic Escape Codes
You can type the “dynamic text escape code” which inserts dynamically evaluated text into any kind of
annotation using the escape code sequence:
\{dynText}

where dynText may contain numeric and string expressions. If dynText references a numeric variable, string
variable or wave “object”, this makes the annotation dependent on the referenced object (see Chapter IV-9,
Dependencies, for further details). If the object changes, Igor automatically updates the dynamic text.

Dynamic Item Effect

Wave name Displays the name of the wave to which the tag is attached.

Trace name and instance Same as wave name but appends an instance number (e.g., #1) if there is
more than one trace in the graph associated with a given wave name.

Attach point number Displays the number of the tag attachment point.

Attach point X value Displays the X value of the tag attachment point.

Attach point Y value Displays the Y value of the tag attachment point.

Attach point Z value Displays the Z value of the tag attachment point. Available only for contour
traces, waterfall plots, or image plots.

Attach X offset value Displays the trace’s X offset.

Attach Y offset value Displays the trace’s Y offset.

Chapter III-2 — Annotations

III-49

Note: Making an annotation dependent on a variable or wave is often a bad idea because you might
inadvertently forget to create the variable or wave, delete it, or change its value. Thus, you should
use this feature only when other techniques are insufficient. In most cases, it is better to generate
text programmatically, as described in Generating Text Programmatically on page III-68.

The numeric and string expressions are evaluated in the context of the “root” data folder. If you are not using
data folders, just use the names of the waves and variables. If you are using data folders, use the full data folder
path of any nonroot objects in the expressions. For more on Data Folders, see Chapter II-8, Data Folders.

dynText can take two forms: an easy form for a single numeric expression, and a more complex form that
provides precise control over the formatting of the result.

The easy form is:
\{numeric-expression}

This evaluates the numeric expression and prints with generic (“%g”) formatting. For example:
Twice \{K0} is \{K0*2}

creates this textbox when K0 is 7:

If K0 changes, Igor automatically updates the textbox.

The full form for dynText is:
\{formatStr, list-of-numeric-or-string-expressions}

formatStr and list-of-numeric-or-string-expressions are treated the same as for the Printf operation. For
instance, this example has a format string, a numeric expression and a string expression:
\{"Twice K0 is %g, and today is %s", 2*K0, date()}

It produces this result:

Don’t try to use any annotation escape codes in the format string or numeric or string expressions; they
don’t work within the \{ … } context.

Also, the format string and string expressions do not support multiline text. If you need to use multiline
text, use the technique described in Generating Text Programmatically on page III-68.

As an aid in typing the expressions, Igor considers carriage returns within the braces to be equivalent to
spaces. Thus you can type in the Add Annotation dialog:
\{

"Twice K0 is %g, and today is %s",
2*K0,
date()

}

and get the same result as above. These carriage returns can be typed directly in the Add Annotations
dialog, or be typed as “\r” in a macro, function, or the command line.

TagVal and TagWaveRef Functions
If the annotation is a tag, you can use the functions TagVal (page V-780) and TagWaveRef (page V-781) to
display information about the data point to which the tag is attached. For example, the following displays
the Y value of the tag’s data point:
\{"%g", TagVal(2)}

This is identical in effect to the “\0Y” escape code which you can insert by choosing the “Attach point Y
value” item from the Dynamic pop-up menu. The benefit of using the TagVal function is that you can use
a formatting technique other than %g. For example:
\{"%5.2f",TagVal(2)}

Twice 7 is 14

Chapter III-2 — Annotations

III-50

TagVal is capable of returning all of the information that you can access via the Dynamic menu escape
codes. Use it when you want to control the numeric format of the text.

The TagWaveRef function returns a reference to the wave to which the tag is attached. You can use this ref-
erence just as you would use the name of the wave itself. For example, given a graph displaying a wave
named wave0 (in the root data folder), the following tag text displays the average value of the wave:
\{"%g",mean(wave0,-INF,INF)}

This is fine, but if you move the tag to another wave it will still show the average value of wave0. Using
TagWaveRef, you can make this show the average value of whichever wave is tagged:
\{"%g",mean(TagWaveRef(),-INF,INF)}

The TagVal and TagWaveRef functions work only while Igor is in the process of evaluating the annotation text,
so you should use them only in annotation dynamic text or in a function called from annotation dynamic text.

Also see the TraceNameToWaveRef function (page V-799), which returns a reference to a wave given a
graph’s trace name and can be freely used in macros and functions.

Tabs
The Text Tab’s Annotation text area actually has two functions which are controlled by the pop-up menu at
its top-left corner. If you choose Set Tabs from this pop-up menu, Igor shows the tab stops for the annotation.

By default, an annotation has 10 tab stops spaced 1/2 inch apart. You can change the tab stops by dragging
them along the ruler. You can remove a tab stop by dragging it down off the ruler. You can add a tab by
dragging it from the tab storage area at the left onto the ruler.

Igor supports a maximum of 10 tab stops per annotation and they are always left-aligned tabs. There is only
one set of tab stops per annotation and they affect the entire annotation.

When setting the tabs, the Insert Text pop-up menus are disabled; return the pop-up menu to Edit Text to
reenable them.

General Annotation Properties
Most annotation properties are common to all kinds of annotations.

Name
You can assign a name to the annotation with the Name item. In the Modify Annotation dialog, this is the
Rename item. The name is used to identify the annotation in a Tag, TextBox, ColorScale, or Legend opera-
tion. Annotation names must be unique to the window they are in. The names Igor automatically puts here
already are unique, but you can change them if you want. See Programming with Annotations on page
III-68 for more information.

Frame
In the Frame Tab, the Frame and Border pop-up menus allow you to frame the annotation with a box or
shadow box, to underline the textbox, or to have no frame at all. The line size of the frames and the shadow
are set by the Thickness and Shadow values.

Tab storage; drag from here to
ruler to add a tab stop Drag tab stop to left or right to move. Drag tab stop off ruler to remove.

Ruler

Chapter III-2 — Annotations

III-51

By default, framed annotations also have a 1-point “halo” that surrounds them to separate them from their
surroundings. The halo takes on the color of the annotation’s background color. You can change the width
of this halo to a value between 0 and 10 points by setting the desired thickness in the Halo box in the Frame
tab. A fractional value such as 0.5 is permitted.

Specifying a negative value for Halo allows the halo thickness to be overridden by the global variable
V_TBBufZone in the root data folder. If the variable doesn’t exist, the absolute value of the entered value is
used. The default halo value is -1. You can override the default halo by setting the V_TBBufZone global in
a IgorStartOrNewHook hook function. See the example in User-Defined Hook Functions on page IV-257.

Color
The Frame tab contains most of the annotation’s color settings.

Use the Foreground Color pop-up menu to set the initial text color. You can change the color of the text from
the initial foreground color by inserting a color escape code using the Special pop-up menu in the Text tab.

Use the Background pop-up menu to set the background mode and color.

Annotation Positioning
You can rotate the annotation into the four principal orientations with the in the Position tab's Rotation pop-
up menu. You can also enter an arbitrary rotation angle (in integral degrees) directly. Tags attached to

Background Color Mode Effect

Opaque The annotation background covers objects behind. You choose the
background color from a pop-up menu.

Transparent Objects behind the annotation show through.

Graph color The background is opaque and is the same color as the graph background
color. This is not available for annotations added to page layout windows.

Window color The background is opaque and is the same color as the window
background color.

The shadow and underline do not rotate

TextBox/D={,,4}TextBox/D={,,1}TextBox/D={,,0}

Annotation Halo Examples

0 points 4 points1 point (Default)

Sets background
color mode

Sets color of frame
and initial text color

Background:

Foreground Color:

Chapter III-2 — Annotations

III-52

contour traces and color scales have specialized rotation settings; see Modifying Labels on page II-342 and
ColorScale Size and Orientation on page III-62.

You can position an annotation anywhere in a window by dragging it and in many cases this is all you need
to know. However, if you attend to a few extra details you can make the annotation go to the correct posi-
tion even if you resize the window or print the window at a different size.

This is particularly important when a graph is placed into a page layout window, where the size of the
placed graph usually differs from the size of the graph window.

Annotations are positioned using X and Y offsets from “anchor points”. The meaning of these offsets and
anchors depends on the type of annotation and whether the window is a graph or layout. Tags, for instance,
are positioned with offsets expressed as a percentage of the horizontal and vertical sizes of the graph. See
Tag Positioning on page III-60.

Textbox, Legend, and Color Scale Positioning in a Graph
A textbox, legend, and color scale are positioned identically, so this description will use “textbox” to refer
to all of them. A textbox in a graph can be “interior” or “exterior” to the graph’s plot area. You choose this
positioning option with the Exterior checkbox:

The Anchor pop-up menu specifies the precise location of the reference point on the plot area or graph window
edges. It also specifies the location on the textbox which Igor considers to be the “position” of the textbox.

An interior textbox is positioned relative to a reference point on the edge of a graph’s plot area. (The plot
area is the central rectangle in a graph window where traces are plotted. The standard left, right, bottom,
and top axes surround this rectangle.)

An exterior textbox is positioned relative to a reference point on the edge of the window and the textbox is
normally outside the plot area.

Select to make
textbox exterior to
graph’s plot area.

right bottom

right top

left bottom

left center

left top

right center
middle bottom

middle top
middle center

Anchor Points for Interior Textboxes

Chapter III-2 — Annotations

III-53

The purpose of the exterior textbox is to allow you to place a textbox away from the plot area of the graph.
For example, you may want it to be above the top axis of a graph or to the right of the right axis. Igor tries
to keep exterior textboxes away from the graph by pushing the graph away from the textbox.

The direction in which it pushes the graph is determined by the textbox’s anchor. If, for example, the textbox
is anchored to the top then Igor pushes the graph down, away from the textbox. If the anchor is middle-
center, Igor does not attempt to push the graph away from the textbox. So, an exterior textbox anchored to
the middle-center behaves like an interior textbox.

If you specify a margin, using the Modify Graph dialog, this overrides the effect of the exterior textbox, and
the exterior textbox will not push the graph.

The XY Offset in the Position Tab gives the hori-
zontal and vertical offset from the anchor to the
textbox as a percentage of the horizontal and verti-
cal sizes of the graph’s plot area for interior text-
boxes or the window sizes for exterior textboxes.

The Position pop-up menu “freezes” the position of the textbox so that it can not be moved with the mouse.
This is useful if you are using the textbox to label an axis tick mark and don’t want to accidentally move it.

In the following example we wanted to center the textbox above and outside the plot area, so we chose an
exterior textbox, a middle top anchor point and X and Y offsets of 5 (percent of the graph window’s width
and height). The choice of a top anchor pushed the graph below the textbox; a middle anchor does not push
the graph left or right.

Anchor Points for Exterior Textboxes

right bottom

right top

middle bottom

Optional Control Bar area for Controls

left top

left center

left bottom

right centermiddle center

middle top

Annotation can’t
be moved with
mouse.Y Offset (%)

X Offset (%)

-1.0

-0.5

0.0

0.5

1.0

120100806040200

Sum of sines times exponential

5% X from Middle anchor

50% X

10
0%

 Y

5% Y from Top anchor Top Middle anchor

Top Middle of textbox

Chapter III-2 — Annotations

III-54

Textbox and Legend Positioning in a Page Layout
Annotations in a page layout window are positioned relative to an anchor point on the edge of the printable
part of the page. The distance from the anchor point to the textbox is determined by the X and Y offsets
which are in percent of the printable page. Annotations in a page layout can not be “frozen” as they can in
a graph (see above).

Legends
A legend is very similar to a textbox. It shows the “wave symbol” for some or all of the waves in a graph or
page layout. (We also call this a “legend symbol”.) To make a legend, choose Add Annotation from the
Graph or Layout menu.

The pop-up menu at the top left of the dialog sets the type of the annotation (TextBox, Legend, ColorScale or
Tag). If you choose Legend when there is no text in the text entry area, Igor automatically generates the text
needed for a “standard legend”. To keep the standard legend, just click Do It. However, you can also modify
the legend text as you can for any type of annotation.

Legend Text
The legend text consists of an escape sequence to specify the trace
whose symbol you want in the legend plus plain text. In this
example dialog above, \s(nickel) is the escape sequence that
inserts the trace symbol (a line and a filled square marker) for the
trace whose name is nickel. This escape sequence is followed by a
space and the name of the wave. The part after the escape sequences
is plain text that you can edit as needed.

Instead of specifying the name of the trace for a legend symbol, you can specify the trace number. For example,
"\s(#0)" displays the legend for trace number 0.

There are only two differences between a legend and a textbox. First, text for a legend is automatically generated
when you choose Legend from the pop-up menu while there is no text in the text entry area. Second, if you
append or remove a wave from the graph or rename a wave, the legend is automatically updated by adding or
removing wave symbols. Neither of these two actions occur for a textbox (or a tag or color scale, for that matter).

See Trace Names on page II-243 for details on trace names.

\s(nickel) nickel

Wave Symbol Text following Wave Symbol

nickel

Chapter III-2 — Annotations

III-55

Symbol Conditions at a Point
You can specify that a legend symbol shows the conditions at a specific point on a trace by appending the point
number in brackets to the trace name. For example \s(nickel[3]). This feature is useful when a trace uses f(z)
mode or when a single point on a trace has been customized. This feature was added in Igor Pro 6.20.

Freezing the Legend Text
Occasionally you may not want the legend to update automatically when you append waves to the graph.
You can freeze the legend text by converting the annotation to a textbox. To create a nonupdating legend,
bring up the Add Annotation dialog. Choose Legend from the pop-up menu to get Igor to create the legend
text, then choose TextBox from the pop-up menu. Now you have converted the legend to a textbox so it will
not be automatically updated.

Marker Size
A wave symbol will contain a marker if the wave is drawn with one. Normally the size of the marker drawn
in the annotation is based on the font size in effect when the marker is drawn. When you set the font size
before the wave symbol escape code, both the marker and following text will be adjusted in proportion:

You can also change the font size after the wave symbol, which sets the size of the following text. Here is
an example that uses a small marker size with large text.

The \Z12 sets the font size to 12 points. This controls the size of the marker. The \Z24 sets the font size of
the following text to 24 points.

The second method for setting the size of a marker is to choose “Same as on Graph” from the Marker Size
pop-up menu in the Symbols Tab.

With “Same as on Graph” chosen, the marker size will match the size of the corresponding marker in the
graph, regardless of the size of the annotation’s text font.

Wave Symbol Centering
Some wave symbols are vertically centered relative to either the text that precedes or the text that follows
the wave symbol escape code, and other symbols are drawn with their bottom at the baseline:

Marker Size
\Z10\s(wave0) wave0
\Z14\s(wave0) wave0
\Z18\s(wave0) wave0
\Z24\s(wave0) wave0

 wave0

 wave0
 wave0
 wave0

\Z12\s(wave0) \Z24wave0 wave0

Chapter III-2 — Annotations

III-56

Vertically centered symbols are centered based on the height of the current font and size except that, if the
symbol is followed by optional white space plus a font size escape code (i.e. \Z09, \Z]n, \]n, or \M), then
the centering is based on the following font size. This automatically centers a symbol with following text that
is much bigger or smaller than the symbol.

“White space” in this context is a run of space characters or tab characters. Note that on the Macintosh
Option-Space is not considered to be “white space”, and line breaks are not white space on any platform.

Wave Symbol Width
The wave symbol width is the width in which all wave symbols are
drawn.

This width is controlled by the font size of the text preceding the
wave symbol, or it is set explicitly to a given number of points using the Symbol Width value in the Symbols
Tab.

You can widen or narrow the overall symbol size by entering a nonzero width value. If you use large
markers with small text, you may find it necessary to reduce the wave symbol width using this setting. For
some line styles that have long dash/gap patterns, you will want to enter an explicit value large enough to
show the pattern, such as 36 (1/2 inch) or 72 points. The maximum is 1000 points.

Symbol With Color as f(z)
If you create a graph that uses color as f(z) you may want to create a legend. See Color as f(z) Example on
page II-262 for a discussion of how to do this.

Vertically centered Wave Symbols:

 Lines between points
 Dots
 Markers
 Lines and markers
 Cityscape

Wave Symbols drawn from the baseline:

 Lines from zero
 Histogram bars
 Fill to zero
 Sticks and markers

 wave0 Awave0

...centers the wave symbol with
the following (24 point) text.

...followed by font size escape code...

“white space”...

\Z12\s(wave0) \Z24wave0 \Z12\s(wave0)A\Z24wave0

This “A” isn’t “white space”...

...so the following font size escape code...

...is ignored when centering
the wave symbol (the symbol
is centered for 12 point text).

symbol vertical center offset

baseline

nickel
symbol width

The word “Auto” or the number 0 means the
Symbol Width is controlled by font size

Chapter III-2 — Annotations

III-57

Tags
A tag is like a textbox but with several added capabilities. A tag is attached to a particular point on a par-
ticular trace, image, or waterfall plot in a graph:

Tags can not be added to page layouts (a graph containing a tag can be added to the page layout, of course).
Igor automatically generates tags to label contour plots.

Tag Text
Text in a tag can contain anything a textbox or legend can handle, and more. The Dynamic pop-up menu
of the Text Tab inserts escape codes that apply only to tags. These codes insert information about the wave
the tag is attached to, or about the point in the wave to which the tag is attached. This information is
“dynamically” updated whenever the wave or the attachment point changes. See Dynamic Escape Codes
for Tags on page III-48.

The TagVal and TagWaveRef functions are also useful when creating a tag with dynamic text. See TagVal
and TagWaveRef Functions on page III-49.

Tag Wave and Attachment Point
You specify which wave the tag is attached to in the Position Tab, by choosing a wave from the “Tag on”
pop-up menu.

-0.5

56545250484644

Tag Text

40

30

20

10

0

403020100

Pixel value is 255
at x=25 and y=25
point number = 1275

Tag attachment point at x = 50

Dynamic menu
used only by
tags

Chapter III-2 — Annotations

III-58

You specify which point the tag is attached to by entering the point number in the “At p=” entry or an X
value in the “At x=” entry. The X value is in terms of the X scaling of the wave to which you are attaching
the tag. This is not necessarily the same as the X axis position of the point if the wave is displayed in XY
mode (versus a wave providing X values). This is the X value of the wave’s point to which the tag is attached.
If this distinction mystifies you, see Waveform Model of Data on page II-77.

The attachment point of a tag in a (2D) image or waterfall plot is treated a bit differently than for 1D waves.
In images it is the sequential point number linearly indexed into the matrix array. The dialog will convert
this point number displayed in the “At p=” entry into the X and Y values, and vice versa.

Because it is the point number that determines the actual attachment point, entered “At x=” and “At y=”
values are not necessarily exactly where the tag is attached. In the following dialog the X and Y values were
entered as 0, but the nearest point (434) results in an actual attachment point of (-0.0689655,-0.0689655):

Choose which
trace or image the
tag is attached to

Entering a value in any of these
items updates the other two.

The At p= value is rounded to
point closest to At x= and At
y= values.

Chapter III-2 — Annotations

III-59

Sometimes, however, it is just easier to manually position the tag by dragging it with the cursor, as
described in the next section.

Changing a Tag’s Attachment Point
Once a tag is on a graph you can attach it to a different point by pressing Option (Macintosh) or Alt (Win-
dows), clicking in the tag, and dragging the special tag cursor you will see to the new attachment point
of the wave. You must drag the tag cursor to the point on the trace to which you want to attach the tag, not
to the position on the screen where you want the tag text to appear. The dot in the center of the tag cursor
shows where the tag will be attached.

If you drag the tag cursor off the graph, the tag will be deleted from the graph.

Tag Arrows
You can indicate a tag’s attachment point with an arrow or line drawn from the tag’s anchor point using
the “Connect Tag to Wave with” pop-up menu in the Tag Arrows tab.

You can adjust how close the arrow or line comes to the data point by setting the Line/Arrow Standoff dis-
tance (in points). In the Preview, the standoff is demonstrated by how close the arrow is drawn to the edge
of the preview area

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

1.0

0.8

0.6

0.4

0.2

0.0

This tag is attached
to the image expmat

at (x,y)=(-0.0689655,-0.0689655) Notice that no point in
the image is centered
on (x,y) = (0,0).

1. Move cursor over tag text. 2. Hold down Option or Alt. 3. Drag to new attachment point. 4. Tag attaches to and moves to
the new point.

Chapter III-2 — Annotations

III-60

The Advanced Line/Arrow options are compatible with Igor 6.02 or later; they give you added control of
the line and arrow characteristics.

A Line Thickness value of 0 corresponds to the default (nonadvanced) line thickness of 0.5 points, other-
wise, enter a value up to 10.0 points. To make the line disappear, select No Line from the “Connect Tag to
Wave with” popup menu.

The line color is normally set by the annotation frame color (in the Frame tab). You can override this by
checking the Override Line Color checkbox and choosing a color from the popup menu.

Change the attachment line’s style from the default solid line using the line style popup menu.

If “Connect Tag to Wave with” popup is set to Arrow, you can alter the default appearance of the arrow
head using the remaining controls: full or half arrow head (left or right), filled or outlined arrow head, and
alter the arrow head’s length from the default (Auto) to the given length in points.

The Sharp option is a small value between -1.0 and 1.0 (0 is the default).

The Fat option can be Auto (or 0) for the default width-to-length ratio of 0.5. Larger
numbers result in fatter arrows. If the number is small (say, 0.1), the arrow may seem
to disappear unless the Arrow Length is made longer. Printed arrows can be narrower
than screen-displayed arrows.

Tag Line and Arrow Standoff
You can specify how close to bring the line or arrow to that trace with the “Line/Arrow standoff” setting in the
Frame Tab. You can set the distance by entering an explicit distance in points, or typing “auto” (a value of “0”
also means “auto”) which varies the distance according to the output device resolution and graph size. Use a
value of 1 to bring the line as near to the trace as possible. When the wave is graphed with markers, you might
prefer to set the standoff to a value larger than the marker size so that the line or arrow does not intersect the
marker. The left tag in the above example is using the auto standoff, and the right tag has a standoff of 6 points.

Tag Anchor Point
A tag has an Anchor point that is on the tag itself. If there is an arrow or line, it is drawn from the anchor
point on the tag to the attachment point on the trace. The anchor setting also determines the precise spot on
the tag which represents the position of the tag.

The line is always drawn behind the tag so that if the anchor point is middle center the line doesn’t deface
the text; the examples above have a middle center anchor.

Tag Positioning
The position of a tag is determined by the position of the point to which it is attached and by the “Tag XY
offset” settings. The “XY offset” gives the horizontal and vertical distance from the attachment point to the
tag’s anchor in percentage of the horizontal and vertical sizes of the graph’s plot area.

Once a tag is on a graph you can change its “XY offset” and therefore its position by merely dragging it.
You can prevent the tag from being dragged by choosing “frozen” in the Position pop-up menu in the Posi-
tion Tab. Igor freezes tags when it creates them for contour labels.

Sharp = -0.5

Sharp = 0.0

Sharp = 0.5

Anchors on Tags
middle center

left bottom

left center

left top
Peak Reading from wave1
X = 1.5625
Y = 0.999966

right bottom

right top

middle bottom

right center

middle top

Chapter III-2 — Annotations

III-61

The interior/exterior setting used with textboxes does not apply to tags (see Textbox, Legend, and Color
Scale Positioning in a Graph on page III-52).

Tags Attached to Offscreen Points
When only a portion of a wave is shown in a graph, it is possible that the attachment point of a tag isn’t
shown in the graph; it is “off screen” or “out-of-range”.

This usually occurs because the graph has been manually expanded or the axes are not autoscaled. Igor
draws the attachment line toward the offscreen attachment point.

In this example graph, the attachment point at x=3.75 falls within the range of displayed X axis values.

If we zoom the graph’s X range to exclude the x=3.75 attachment point...

... the tag attachment point is offscreen but the tag is still drawn.

However, you can suppress the drawing of a tag whose attachment point is offscreen by choosing “Hide
the Tag” from the If Offscreen pop-up menu in the Position Tab.

If you want to see or modify a tag that is hidden, autoscale the graph so that it will no longer be hidden.

Contour Labels Are Tags
Igor uses specialized tags to create the numerical labels for contour plots. The specialization adds a "tan-
gent" feature to automatically orient the tag along the path of the contour lines. See Contour Labels on page
II-341 for details.

Color Scales
A color scale is like a tag because it is associated with data, except the color
scale describes the range of the data rather than one particular value.

A color scale summarizes the range of data using a color bar and one or
more axes.

0.8
0.6
0.4
0.2

0
-0.2

543210

Tag attached at x= 3.75

0.8
0.6
0.4
0.2

0
-0.2

3.02.52.01.51.0

Tag attached a

-3

-2

-1

0

1

2

-2 0 2

6

4

2

0

-2

M
eters

Chapter III-2 — Annotations

III-62

ColorScale Main Tab
A color scale is associated with an f(z) trace, image plot, contour plot in a graph, or with any color index
wave or color table. This association can be changed in the ColorScale Main tab.

You can infer from the Graph pop-up menu that color scales can be associated with image and contour plots
and f(z) traces in a graph other than the graph (or layout) in which the color scale is displayed.

Many of the color scale settings are similar to graph axis settings, such as the Linear/Log/Log2 setting and
the default font settings in this ColorScale Main tab.

ColorScale Size and Orientation
The size and orientation of the color scale is set in the dialog’s Position tab:

These settings apply
only to ColorScales.

Chapter III-2 — Annotations

III-63

The size of a color scale is indirectly controlled by the size and orientation of the “color bar” inside the anno-
tation, and by the various axis and ticks parameters. The annotation adjusts itself to accommodate the color
bar, tick labels, and axis label(s).

When set to “Auto” or “0” the Width and Height settings cause the color scale to auto-size with the graph
along the color scale’s axis dimension. Horizontal color scales auto-size horizontally but not vertically, and
vice versa. The long dimension of the color bar is maintained at 75% of the corresponding plot area dimen-
sion. The short dimension is set to 15 points.

You can specify custom setting of either scale dimension. Choosing Percent from the menu resizes the corre-
sponding dimension in response to graph size changes. Points fixes the dimension so that it never changes.

ColorScale Axis Labels Tab
The axis label for the main axis and the second axis (if any) is set in the ColorScale Axis Labels tab:

The axis label text is limited to one line. This text is the same as is used for text boxes, legends, and tags in
the Text tab, but it is truncated to one line when the Annotation pop-up menu is changed to ColorScale.

The Units pop-up menu inserts escape codes related to the data units of the item the color scale is associated
with. In the case of an image or contour plot, the codes relate to the data units of the image or contour
matrix, or of an XYZ contour’s Z data wave. See Changing Dimension and Data Scaling on page II-83.
These codes work as they do in the Modify Axis dialog. For example, inserting the code “\U” adds the data
units to the axis label, and “\u#2” removes the data units from the axis:

Rotation, Margin, and Lateral Offset adjust the axis label’s orientation and position relative to the color axis.

The second axis label is enabled only if the Color Scale Ticks tab has created a second axis through user-
supplied tick value and label waves.

Chapter III-2 — Annotations

III-64

ColorScale Ticks Tab
The color scale’s axis ticks settings are similar to those for a graph axis:

The main axis tick marks can be automatically computed by selecting Automatic Ticks, or you can supply
two waves (one numeric with the tick positions, and one text wave with the corresponding tick labels):

Create waves… … select User Ticks from Waves… … result.

Chapter III-2 — Annotations

III-65

You can also specify user-defined tick values and labels to create a second axis, which might be useful to
display a temperature range in Fahrenheit and in Celsius or a distance in feet and meters. The second axis
is drawn on the opposite side of the color bar from the main axis:

The Tick Dimensions are common to both axes. The length of -1 means Auto (0 means 0), otherwise the dimen-
sions are in points. To eliminate tick marks (but not the labels), set the Thickness (not the Length) to 0.

Elaborate Annotations and Axis Labels
For the purposes of this discussion we will use the term “annotation” to include textboxes, tags, legends and
axis labels.

You control the nuances of text in annotations by embedding escape sequences in the text. You can insert
these escape sequences by choosing an item from a pop-up menu in the Insert group in the Label Axis and
Add Annotation dialogs or by directly typing them into the text. When you choose an item from a pop-up
menu the escape sequence is inserted at the current insertion point in the annotation text or, if a range of
text is selected, the escape sequence replaces the range of text.

Simple escape sequences allow you to set things like the font, font size, subscript or superscript and insert-
ing wave symbols. Tags support sequences for inserting dynamic text. All of this simple stuff is described
in the sections following Modifying Annotations on page III-45. The secret to creating elaborate annota-
tions is something we call text info variables.

Remember, you can use text info variables in annotations and in axis labels.

Elaborate Annotations Versus Equation Editors
Creating simple annotations and axis labels is very easy in Igor. Creating more elaborate mathematical, scientific,
or engineering annotations involves subscripts, superscripts, changes of X and Y position and of font and style.

The good news is that Igor can do all of this. The bad news is that Igor uses escape codes to do it rather than
a nifty WYSIWYG equation editor.

If you create many of these elaborate annotations, you might consider using an equation editor. You can export
their output as a picture and then import it into the drawing layer of a graph or into any layer of a page layout.
The main disadvantages of this approach are the additional cost of the editor and the fact that the picture format
may not be cross-platform or give the highest quality. If you will be exporting your graph or page layout as EPS
or printing to a PostScript printer, you should seek out an editor that can export as EPS for best results in Igor.

Chapter III-2 — Annotations

III-66

About Text Info Variables
The text info variable is a mechanism that uses escape sequences that have a higher degree of “intelligence”
than simple changes of font, font size, or style. Using text info variables, you can create quite elaborate anno-
tations if you have the patience to do it. Since you need to know about them only to do fancy things, if you
are satisfied with simple annotations, skip the rest of these Text Info Variable sections.

A text info variable saves information about a particular “spot” (text insertion point) in an annotation. Spe-
cifically, it saves the font, font size, style (bold, outlined, etc.), and horizontal and vertical positions of the
spot. Each annotation has 10 text info variables, numbered 0 through 9. You can embed an escape sequence
in an annotation’s text to store information about the insertion point in a particular variable. Later, you can
embed an escape sequence to recall part or all of that information. In the Label Axis and Add Annotation
dialogs, there are items in the Font, Font Size and Special pop-up menus to do this.

Simple Text Info Variables Example
To get a feel for this, let’s look at a simple example. We want to create a textbox that says:
x = A cos(ωt)

To do this, we need to switch to the Symbol font to do the omega. Then we want to switch back to the normal
font, whatever that was, to finish the annotation. We could do this without a text info variable as follows:
Macintosh: x = A cos(\F'Symbol'w\F'Geneva't)
Windows: x = A cos(\F'Symbol'w\F'Arial't)

Here the escape sequence \F'Symbol' sets the font to Symbol and \F'Geneva' sets it back to Geneva
(\F'Arial' sets it back t o Arial). We have assumed that the default font is Geneva (or Arial). Using a text
info variable we can accomplish the same thing without making that assumption. The text to do this is:
\[1x = A cos(\F'Symbol'w\F]1t)

The \[1 is an escape sequence that says “save all of the information about the current insertion point in
text info variable 1”. So text info variable 1 now contains the font, font size, style, and horizontal and vertical
positions of the insertion point. You can insert this escape sequence by choosing Store Info from the Special
pop-up menu. (Note that one advantage is enhanced cross-platform compatibility.)

The \F'Symbol' escape sequence says “start using Symbol font”. You can insert this escape sequence by
choosing Symbol from the Font pop-up menu (assuming you have Symbol font installed). The w is an
omega in the Symbol font.

The \F]1 is an escape sequence that says “restore the font to what it was when text info variable 1 was last
saved”. You can insert this escape sequence by choosing “Recall font” from the Font pop-up menu.

Text Info Variables Escape Codes
At the start of the annotation, each text info variable is initialized to the default font and size for the graph or page
layout the annotation is (or will be) in. The default font and font size of a graph is established in the Modify Graph
dialog. The default font for a page layout is the experiment’s default font (often Geneva (Macintosh) or Arial (Win-
dows), see the Misc menu); the default font size is 10 points. The X and Y positions are initially undefined.

Here are all of the text info variable escape codes; digit means one of 0, 1, 2, … 9.

\[digit Saves font, size, style and current X and Y positions in text info variable.
\]digit Restores all but XY position from text info variable.
\Xdigit Restores X position from text info variable.
\Ydigit Restores Y position from text info variable. X and Y positions of a variable are undefined

until you store into it.
\F]digit Restores font from text info variable.
\Z]digit Restores font size from text info variable.
\f]digit Restores style of type from text info variable.

Chapter III-2 — Annotations

III-67

Text info variable 0 has a special property. It defines the “main” font size which is restored using the \M
escape sequence. \M also sets the Y offset from the baseline to zero. No other text info variable 0 settings
(font, style, or offsets) are used by \M.

Because the initial font, size and style are stored in text info variable 0, the previous example could be made
even more simple:
x = A cos(\F'Symbol'w\F]0t)

Note the right bracket,], used with \F, \Z, and \f. This indicates that what follows is the number of a text
info variable. The sequence \Z09 means “set the font size to 9” whereas the sequence \Z]9 means “set
the font size as stored in text info variable 9”.

Elaborate Text Info Variables Example
Let’s look at an elaborate example using text info variables. We want to create a textbox that looks some-
thing like this:

Here is the annotation text with escape sequences to produce an approximation to this equation:
Macintosh (the integral sign is Option-b in many fonts):
\Z14\[0a\Bn\M = \[1\S1\X1\M\Bπ\M\X1-½\B-\[2π\M\X2\Sπ\M cos(nx)dx

Windows (the integral sign and Greek letters are in Symbol font):
\Z14\[0a\Bn\M = \[1\S1\X1\M\B\F'Symbol'p\M\X1\X1-ò\B-\[2p\M\X2\Sp\M\F]0cos(nx)dx

This produces the following textbox:

The escape sequences were generated using the Font, Font Size and Special items in the pop-up menus of
the Add Annotation dialog. Here is an explanation of each escape sequence:

More Examples

an
1
π
--- nx()cos xd

π–

π
=

an = 1π−∨−π
πcos(nx)dx

Recall X
position 1 Go to superscript

Recall X
position 2

Go back to main
size and Y position

Save current info
in text variable 2

Go to subscript

Go to subscript

Go to superscript

Go back to main
size and Y position

Recall X
position 1

Save current info
in text variable 1

Go to subscript

Set font size to 14

Go back to main
size and Y position

Save current info in text variable 0.
This also defines the “main” size.

\Z14\[0a\Bn\M = \[1\S1\X1\M\Bπ\M\X1-½\B-\[2π\M\X2\Sπ\M cos(nx)dx

Macintosh

\Z14\[0a\Bn\M = \[1\S1\X1\M\B\F'Symbol'p\M\X1\X1-ò\B-\[2p\M\X2\Sp\M\F]0cos(nx)dx

Windows
Use Symbol font to make the
Greek symbols and integral sign

Which means you have to restore
the original font before “cos(nx)dx”.

This will also save the current font for
printing the expression “cos(nx)dx”

In addition to the previous, on Windows...

\Z14\[0y =\Z20\F'Symbol'\[1S\F]0\X1\Z20\B\Bi=0\M\X1\Z20\S\S\Z09 N\M f(i)y =Σ
i=0

 N

 f(i)

y = Ka
b
 + 2 \Z10\[0y = \Z14K\[1\Ba\M\]1\X1\Sb\M\]0 + 2

Chapter III-2 — Annotations

III-68

Programming with Annotations
You can create, modify and delete annotations with the Legend, Tag, and Textbox operations. The Annota-
tionInfo function returns information about one existing annotation. The AnnotationList function (see page
V-23) returns a list of the names of existing annotations. Look at the demo experiment Tags as Markers
Demo in the Examples:Techniques folder for inspiration.

Changing Annotation Names
Each annotation has a name which is unique within the graph or page layout it is in. You supply this name to
the Legend, Tag, Textbox, and AnnotationInfo routines to identify the annotation you want to change. You
can rename an annotation by using the /C/N=oldName/R=newName syntax with the operations. For example:
TextBox/C/N=oldTextBoxName/R=newTextBoxName

Changing Annotation Types
To change the type of an annotation, apply the corresponding operation to the named annotation. For
example, to change a Tag or Legend into a TextBox, use:
TextBox/C/N=annotationName

Changing Annotation Text
To change the text of an existing annotation, identify the annotation using /N=annotationName, and supply
the new text. For example, to supply new text for the textbox named text0, use:
TextBox/C/N=text0 "This is the new text"

To append text to an annotation, use the AppendText operation:
AppendText/N=text0 "but this text appears on a new line"

Generating Text Programmatically
You can write an Igor procedure to create or update an annotation using text generated from the results of
an analysis or calculation. For example, here is a function that creates or updates a textbox in the top graph
or layout window. The textbox is named FitResults.
Function CreateOrUpdateFitResults(slope, intercept)

Variable slope, intercept

String fitText
sprintf fitText, "Fit results: Slope=%g, Intercept=%g", slope, intercept
TextBox/C/N=FitResults fitText

End

You would call this function, possibly from another function, after executing a CurveFit command that per-
formed a fit to a line, passing K0 as the intercept parameter and K1 as the slope parameter. K0 and K1 are
outputs from the CurveFit operation.

Usually it is better to calculate text this way, using the sprintf operation, than to use dynamic text, as
described in Dynamic Escape Codes for Tags on page III-48, because dynamic text relies on global vari-
ables that you might inadvertently delete or whose value you might inadvertently change.

Deleting Annotations
To programmatically delete an annotation, use:
TextBox/K/N=text0

Chapter

III-3
III-3Drawing

Overview.. 71
The Tool Palette... 71

Arrow Tool ... 72
Selecting, Moving, and Resizing Objects .. 72
Rotating Objects .. 72
Duplicating Objects .. 72
Deleting Objects .. 72
Modifying Objects .. 72

Simple Text Tool ... 72
Lines (and Arrows) Tool .. 73
Rectangle , Rounded Rectangle , Oval ... 74
Arcs and Circles ... 74
Polygon Tool .. 75

Creating a New Polygon ... 75
Editing a Polygon ... 75

Drawing and Editing Waves.. 76
Drawing Environment Pop-Up Menu ... 77

Changing Attributes... 77
Mover Pop-Up Menu ... 77

Object Orientation .. 78
Grid... 78
Set Grid from Selection .. 78
Style Function.. 78

Coordinate Systems .. 79
Absolute .. 79
Relative.. 79
Plot Relative (Graphs Only) ... 79
Axis-Based (Graphs Only).. 79

Layers.. 80
Export/Import.. 80

Copy/Paste Within Igor .. 80
Pasting a Picture Into a Drawing Layer ... 81
Copying from Igor to a Drawing Program .. 81

Programming... 81
Drawing Operations ... 81
Programming Usage Notes ... 82

SetDrawLayer... 82
SetDrawEnv.. 82
Draw<object> Operations .. 82
DrawPoly and DrawBezier .. 83

Literal Versus Wave ... 83
Screen Representation.. 83

GraphWaveDraw, GraphWaveEdit, and GraphNormal ... 84
Programming Strategies... 84

The Replace Layer Method... 84

Chapter III-3 — Drawing

III-70

The Replace Group Method ... 84
The Append Method ... 84
Grouping... 85
Example: Drop Lines ... 85

Drawing Shortcuts .. 86

Chapter III-3 — Drawing

III-71

Overview
Igor’s drawing tools are useful in page layout and graph windows for highlighting material with boxes,
circles and arrows and can also be used to create simple diagrams. These drawing tools are object-oriented
and optimized for the creation of publication quality graphics. All line sizes and object coordinates can be
specified using real numbers. For example you can specify that a line thickness be 0.76 points.

You can graphically edit a wave’s data values when it is displayed in a graph; data points can be deleted,
added or modified. You can also create new waves by simply drawing them.

In control panel windows, you can use the drawing tools to create a fancy background for controls.

Like all other aspects of Igor, drawing tools are fully programmable. This allows programmers to create
packages of code that add new graph types to Igor’s repertoire. Although only programmers can create
such packages, everyone can make use of them.

The drawing tools are available only in page layout, graph and control panel windows.

The Tool Palette
To use the drawing tools you first need to invoke the tool palette. In graphs and control panels this is done
by the Show Tools menu command in the Graph or Panel menu. This command adds a tool palette along
the left edge of the window. The tool palette is always available in page layout windows.

With the exception of Undo, Cut, Copy, Clear, Paste, Select All and Duplicate in the Edit menu, all drawing
commands are located in the tool palette.

Once displayed, the tool palette works in two modes:
• Operate mode: Click the top (operate) button to enter Operate mode. In this mode, the drawing tool

palette is not available, and you interact with the window as normal.
• Drawing mode: Click the second (drawing) button to enter Drawing mode. The entire tool palette

will then be displayed, and you can add text, arrows, boxes, and other shapes to the window.

The two bottom icons in the tool palette — the Drawing Environment icon (tree and grass) and the Mover
icon (bulldozer) — are pop-up menus. Both present alternate menus if you hold down Option (Macintosh)
or Alt (Windows) before clicking. The icons with the triangle symbol will also present a pop-up menu if you
click and hold on the icon.

All drawing tools except the polygon tool remain in effect after an object is drawn so that you may draw
multiple objects of the same type.

QuickTime™ andTIFF (PackBits) decoare needed to see th

Graph Window
Operate Draw

Mode Mode

Page Layout
Operate Draw

Mode Mode

Arrow or selector tool
Simple text tool

Lines and arrows tool

Rectangle tool

Rounded rectangle tool

Oval tool

Polygon tool

Draw environment pop-up menu

Mover pop-up menu

Chapter III-3 — Drawing

III-72

Arrow Tool
Use this tool to select, move and resize one or more drawing objects or a single user-defined control.

Selecting, Moving, and Resizing Objects
Click a drawing object once to select it. When selected, small black squares called handles appear, defining
the object’s size. You can drag these handles to resize single or multiple objects. By pressing Shift, an object
resize can be constrained to the horizontal, vertical, or diagonal directions depending on how close the
cursor is to these directions. If Option (Macintosh) is used rather than Shift, then the diagonal resize is
replaced with a proportional resize.

If you click an object and it does not become selected then the object may be in a different drawing layer or
it may not in fact be a drawing object at all.

You can select multiple drawing objects by shift clicking additional objects. You can remove an object from
a selection by shift clicking a second time.

You can also select multiple drawing objects by dragging a selection rectangle around a set of drawing
objects. Unless you first press Option (Macintosh) or Alt (Windows), only objects that are completely
enclosed by the selection rectangle are included in the selection. With Option (Macintosh) or Alt (Windows)
pressed, objects that are merely touched by the selection rectangle will also be included. You can append
additional objects to a selection by holding down Shift before dragging out a selection rectangle.

You can select all objects in the current layer with the Select All item in the Edit menu.

Rotating Objects
You can rotate draw objects by clicking just beyond a selection's visible resizing handles.

When the mouse is over the invisible rotation handles the cursor changes shape:

Click and drag the invisible rotation handles to rotate the object.

Duplicating Objects
You can duplicate selected drawing objects using the Duplicate command found in the Edit menu. If, right
after duplicating an object, you reposition the duplicated object and duplicate again then the new object will
be offset from the last by the amount you just defined.

Deleting Objects
You can delete selected drawing objects by pressing Delete.

Modifying Objects
Double-clicking a drawing object will bring up a dialog for that object. You can then change any of the infor-
mation listed in the dialog, and click the Do it button when you are finished. The object will be redisplayed
with the changes.

Simple Text Tool
The text tool is usually used to create a single line of simple text with the same font, size, style and rotation.
As of Igor Pro 6.1, text can actually be fancy text using multiple lines and all the escape codes used by
TextBox operation. However the Create Text dialog displayed by the text tool supports simple text only.
Therefore, in graph and page layout windows you should use textboxes, legends and tags to create complex
text, rather than the text tool.

Resizing Rotating

Chapter III-3 — Drawing

III-73

 The text tool is the only way to add text to control panel windows.

To create a line of text, click the simple text icon. The cursor will change shape to a text entry vertical line.
Then move the cursor to the location in the window where you want the text origin, and click there. The
following dialog will be presented:

Casual users can ignore the Anchor pop-up menu. It is used mainly by programmers to ensure that text is
aligned properly about the numeric origin (X0,Y0). Any rotation is applied first and then the rotated text is
aligned relative to the origin as specified by the anchor setting.

To edit or change a text object, double-click the object with the Arrow tool.

Lines (and Arrows) Tool
You can use the Lines tool to draw lines by clicking at the desired start point and then dragging to the
desired stop point. Press Shift while drawing to constrain the line to be vertical or horizontal.

If you click and hold on the Lines icon you will get a pop-up menu that takes you to a dialog where you can
specify the line numerically. You will see a similar dialog if you use the arrow tool to double-click a line. It
will allow you to change the properties of the line.

The color of the line is principally set by the foreground color setting. The background color setting is only
used when the line pattern setting is something other than Solid. You will see a pop-up palette of colors
rather than the above menu of color names if the dialog is on a color screen.

Origin

Line start

Line end

Chapter III-3 — Drawing

III-74

The dash pattern pop-up palette is the same as the one used for graph traces. You can adjust the dash pat-
terns by use of the Dashed Lines command in the Misc menu.

The arrow fatness parameter is the desired ratio of the width of the arrow head to its length.

The line thickness and arrow length parameters are specified in terms of points and may be fractional.

Line start and end coordinates depend on the chosen coordinate system. See Coordinate Systems on page
III-79 for detailed discussion. Programmers should note that the ends of a line are centered on the start and
end coordinates. This is more obvious when the line is very thick.

Rectangle , Rounded Rectangle , Oval
These tools create objects that are defined by an enclosing rectangle. Click and hold on the appropriate icon
to get a dialog where you can specify the object numerically. You will see a similar dialog if you use the
arrow tool to double-click an object.

Press Shift while initially dragging out the object to create a square or circle. If you hold down Shift while
resizing an object with the arrow tool, you will constrain the object in the horizontal, vertical, or diagonal
directions depending on how close the cursor is to one of these directions. Thus, when you Shift-drag along
a diagonal the sides will be constrained to equal length, but if you Shift-drag along a horizontal or vertical
direction the object will be resized along only one of these directions. If instead you hold down Option,
dragging along a diagonal resizes the object proportionally.

The Erase fill mode functions by filling the area with the current background color of the window. The fill
background color is used only when a fill pattern other than Solid (or Erase) is chosen.

An object is always drawn inside the mathematical rectangle defined by its coordinates no matter how thick
the lines. This differs from straight lines which are centered on their coordinates.

To adjust the corners of a rounded rectangle, double-click the object and edit the RRect Radius setting in the
resulting dialog (similar to the above). Units are in points.

Arcs and Circles
To draw an arc or a circle by center and radius, click and hold on the Oval icon and choose Draw Arc from
the resulting pop-up menu. Click and drag to define the center and the radius or start angle. Click again
without moving the mouse to create a circle or move and click to define the stop angle for an arc. A variety
of click and click-drag methods are supported and experimentation is encouraged.

To edit an arc, click and hold on the Oval icon in the draw tool panel and then choose Edit Arc from the
resulting pop-up menu. If necessary, click on an arc to select it. You can then drag the origin, radius, start
angle, and stop angle.

Lower-right corner

Upper-left corner

Chapter III-3 — Drawing

III-75

To change the appearance of an arc, double click to get to the Modify Arc dialog. Unlike Ovals, Arcs honor the
current dash pattern and arrowhead setting in the same way as polygons and Beziers. The center of an arc or
circle can be in any coordinate system (see Coordinate Systems on page III-79) but the radius is always in Points.

Polygon Tool
This tool creates or edits drawing objects called polygons and, in graphs, it can create or edit waves.

A polygon is an open or closed shape with one or more line segments, or edges. Polygons can be filled with
a color and pattern and can have arrow heads attached to the start or end.

Although you may create a closed polygon by making the beginning and ending points the same, Igor does
not recognize it as a closed shape. You can thus open the Polygon by moving either the beginning or ending
points. This is subject to change in a future release.

Creating a New Polygon
You can create a polygon in one of two ways:
• Segment Mode: Each click defines a new vertex.
• Freehand Mode: Igor adds new vertices as you sweep out a smooth curve.

To create a polygon using segment mode, click the polygon icon once. Then click at the desired location for the
beginning of the polygon. As you move the cursor, you will drag a line segment. A second click anchors the first
line segment, and begins the second. You can keep drawing line segments until the polygon is finished.

Stop drawing by either double-clicking to define the last point or by clicking at the first vertex. You will
then automatically enter edit mode (the cursor will change to), where you can reshape the polygon. Ver-
tices are marked with square handles when in edit mode. To exit edit mode click the arrow tool.

To create a polygon using freehand mode, to edit an existing polygon, or to draw or edit a Bezier curve,
click and hold in the polygon icon until the pop-up menu appears.
• Draw Poly: This command is identical to a single click the icon.
• Freehand Poly: Choose the freehand command to sweep out a smooth curve as long as you hold

down the mouse button. When you release the mouse button, you will automatically enter edit
mode, where you can change the shape.

• Edit Poly: Use this to edit a preexisting polygon and is described in detail in the next section.
• Draw Bezier: Click and drag to define anchor and control points. Click on the first point to close a curve.
• Edit Bezier: Use this to edit a preexisting Bezier and is described in detail in the next section. If

needed, you may need to click on a Bezier curve to select it.

Editing a Polygon
To enter edit mode, click and hold on the polygon icon, and choose Edit Poly from the pop-up menu. Then
click the polygon object you want to edit.

While in edit mode you can move vertices, add or delete vertices and move line segments:

Point zapper — press Option (Macintosh) or Alt (Windows)

Segment mover — press Command (Macintosh) or Ctrl (Windows)

Normal cursor

Chapter III-3 — Drawing

III-76

There are a number of operations you can perform to change the polygon:
• Move a vertex: Click and drag the cursor on a vertex to move the vertex and stretch the associated edges.
• Create a new vertex: Click midway in a line segment.
• Delete vertices: Press Option (Macintosh) or Alt (Windows). The cursor will change to the point

zapper shape shown in the above illustration. Click the vertex you want to delete.
• Offset pairs of vertices: Press Command (Macintosh) or Ctrl (Windows). The cursor will change shape

(see the illustration above). This will allow you to move an edge, offsetting the associated pair of vertices.

There are a number of operations you can perform to edit a Bezier curve:
• Move a control point: Press Option (Macintosh) or Alt (Windows) while dragging (normally, both

control points on either side of an anchor point are adjusted simultaneously.
• Create a new anchor point: Click on the curve between anchor points.
• Delete an anchor point: Press Option (Macintosh) or Alt (Windows) and then click on the anchor point.

Holding Shift while dragging will constrain movement to horizontal or vertical directions.

You can always undo the most recent edit operation.

Exit the edit mode by clicking the arrow tool.

After exiting edit mode, you can use the environ-
ment icon to adjust the other attributes of the poly-
gon. You can even add arrows to the start or end of
the polygon. Or you can double-click a polygon
and the Modify Polygon dialog will appear.

The X0 and Y0 settings determine the location of
the first point.

You can change the size of the polygon by modify-
ing the Xscale and Yscale parameters (shown in the
dialog). For example, enter 0.5 for both settings to
shrink the polygon to half its normal size.

Drawing and Editing Waves
When used in graphs, you can use the polygon tool to create or edit waves using the
same techniques just described for drawing polygons. If you press Option (Macin-
tosh) or Alt (Windows) and hold down the polygon icon, you will see a pop-up menu.

The first four commands will create and add a pair of waves with names of the
form W_XPolynn and W_YPolynn where nn are digits chosen to ensure the
names are unique. Draw Wave and Freehand Wave work exactly like the corre-
sponding polygon drawing described above. The monotonic variants prevent you from backtracking in the
X direction. As with polygons, you enter edit mode when you finish drawing.

You can edit an existing wave (or pair of waves if displayed as an XY pair) by choosing one of the Edit Wave
commands and then clicking the wave trace you wish to edit. Again, the monotonic variant prevents back-
tracking in the X direction. If you edit a wave that is not displayed in XY mode then you won’t be able to
adjust the X coordinates since they are calculated from point numbers.

You can also use the GraphWaveEdit and GraphWaveDraw operations as described in Programming on
page III-81. Note that no dialogs are available for these commands.

Chapter III-3 — Drawing

III-77

Drawing Environment Pop-Up Menu
The Environment icon (which shows a tree and grass) does two things:
• Change the attributes of objects: Click and hold on the Environment icon. This action will display

a menu that you use to change properties such as line thickness, color, fill pattern, and other visual
attributes.

• Change the current drawing layer: Press and hold down Option (Macintosh) or Alt (Windows), and
click the Environment icon. This will display a list of available drawing layers for you to choose
from. See Layers on page III-80.

Changing Attributes
You can change the attributes of existing objects, or you can change the
default attributes of objects you are yet to create:
• To change the attributes of existing objects, first select those objects.

Then use the Drawing Environment pop-up menu to modify the
attributes.

• To change the default attributes of objects yet to be created, make
sure no objects are selected before bringing up the Drawing Environ-
ment menu. Change the attributes you want to modify. From that
point on, all new objects will have the new attributes, until you
change them again.

The items on this menu do not affect all types of objects. The following is a list of exceptions:
• The Fill Mode and Fill Color commands affect only enclosed shapes.
• The Line Dash and Line Arrow commands do not affect rectangles and ovals.

You can also bring up the Modify Draw Envi-
ronment dialog that you use to change multi-
ple attributes. You can bring up this dialog in
two ways: You can choose All from the pop-up
menu, or you can double-click an object or
group of objects. Use this dialog to set or view
all of the attributes accessible by the pop-up
menu, plus a few more.

See Coordinate Systems on page III-79 for
further details about coordinates.

Double-clicking a group of objects (or a single
grouped object) will also bring up this dialog.
In this case, the properties shown will be those
of the first object in the group but if you change
a property then all selected objects will be
affected. Double-clicking a single drawing object with the selector tool will bring up a specific dialog for
that object that will include coordinates and similar properties specific to the given object. These dialogs are
useful to view or change the properties of an object.

Mover Pop-Up Menu
The Mover pop-up menu performs two types of actions:
• Adjust the drawing order within the same layer, adjust object positions, group and ungroup objects, and

perform other object movement tasks. Display this menu by clicking and holding on the Mover icon.
• Select offscreen objects: If you press Option (Macintosh) or Alt (Windows) before clicking the Mover

icon you will see a list of offscreen objects. In this case selecting an item will select the corresponding
drawing object and will then bring up the Properties dialog for that object. Use this to set the
numeric coordinates for an object to bring it back onscreen. Alternately you can cancel out of the
dialog and then press Delete to remove the object.

Chapter III-3 — Drawing

III-78

Object Orientation
The following illustration shows the menus you get when you click and hold on the Mover icon:

Use the Bring to Front, Send to Back, Forward and Backward commands to adjust the drawing order within
the current drawing layer.

The Align command adjusts the positions of all the selected drawing objects relative to the first selected
object. If you just drag-select a set of objects you will not know which is the first selected. For this reason,
you should first select one of the objects and then with Shift held down, drag select the remainder of the
objects. It is OK if the first selected object is included in the drag selection.

The Distribute command evens up the horizontal or vertical spacing between selected objects. The original
order is maintained. This operation is especially handy when working with buttons or other controls in a
user-defined panel.

The Retrieve command is used to bring offscreen objects back into the viewable area. The above example
submenu for the Retrieve item was created by simply dragging two rectangles and an oval out of the
window. Other ways that objects can find themselves offscreen are discussed next in the Coordinate
Systems section and in Export/Import on page III-80.

Grid
You can display a grid and force objects to snap to the grid (visible or not). The
mover pop-up menu has a Grid item which presents a submenu.
The default grid is in inches with 8 subdivisions. The grid origin is at the top left of
the window or subwindow. Use the ToolsGrid operation on page V-795 to set grid
properties. You can independently specify the X and Y grids and set the origin,
major grid spacing, and number of subdivisions.

Set Grid from Selection
If a single object is selected, Set Grid from Selection will set the grid origin at the top left corner of the object.
It two objects are selected, the origin will be set to the top left corner of the first object and the major grid
spacing will be defined by the distance to the top left corner of the second object. If either the horizontal or
vertical separation is small then a uniform (equal X and Y) grid will be defined by the larger distance, oth-
erwise the horizontal and vertical grids will be set from the corresponding distances.

Style Function
Style Function presents a submenu you use to create a style function or to run one that you previously cre-
ated. Style functions are created in the main procedure window with names like MyGridStyle00. You can
edit these to provide more meaningful names.

When grid snap is on, you can turn it off temporarily by engaging Caps Lock.

When dragging an object, the corner nearest to where you clicked to start dragging the object is the corner
that will be snapped to the grid. You can also snap existing objects to the grid by selecting the Align to Grid
menu item (mover popup).

Chapter III-3 — Drawing

III-79

Coordinate Systems
A unique feature of Igor’s drawing tools is the ability to choose different coordinate systems. You can choose
different systems on an object-by-object basis and for X and Y independently. This capability is mainly for use
in graphs to allow your drawings to adjust to changes in window size or to changes in axis scaling.

You specify the coordinate system using pop-up menus found
in all the above dialogs.

Absolute
In absolute mode, coordinates are measured in points relative to the top-left corner of the window. Positive x is
toward the right and positive y is toward the bottom. In this mode the position and size of objects are unaffected
by changes in window size. This is the default and recommended mode in page layouts and control panels.

If you shrink a window, it is possible that some objects will be left behind and may find themselves outside
of the window (offscreen). In addition, if you copy an object with absolute coordinates from one window
and then paste it in another smaller window it will be placed where the coordinates specify, even if it is off-
screen. If you think this has happened, use the Mover pop-up menu to retrieve any offscreen objects or
expand the window until the stray objects are visible.

Relative
In this mode, coordinates are measured as fractions of the size of the window. Coordinate values x=0, y=0
represent the top-left corner while x=1,y=1 corresponds to the bottom-right corner. Use this mode if you
want your drawing object to remain in the same relative position as you change the window size.

This mode will produce near but not exact WYSIWYG results in graphs. This is because the margins of a
graph depend on many factors and only loosely on the window size. This mode gives good results for
objects that don’t have to be positioned precisely, such as an arrow pointing from near a trace to near an
axis. It would not be suitable if you want the arrow to be positioned precisely at a particular data point or
at a particular spot on an axis. For that you would use one of the next two coordinate systems.

Plot Relative (Graphs Only)
This system is just like Relative except it is based on the plot rectangle rather than the window rectangle.
The coordinates x=0, y=0 represent the top-left corner while x=1,y=1 corresponds to the bottom-right corner.
This is the default and recommended mode for graphs. The following diagram illustrates both relative coor-
dinate systems:

The Plot Relative system is ideal for objects that should maintain their size and location relative to the axes.
A good example is cut marks as used with split axes. In most cases, Plot Relative is a better choice than the
more complex axis-based system discussed next.

Axis-Based (Graphs Only)
The pop-up menu for the X coordinate system will include a list of all the horizontal axes and the pop-up
menu for the Y coordinate will include all the vertical axes. When you choose an axis coordinate system,

(1,1) Relative

(1,1) Plot Relative

(0,0) Plot Relative

(0,0) Relative

Plot Area

Chapter III-3 — Drawing

III-80

the position on the screen is calculated just as it is for wave data plotted against that axis (with the exception
that drawing object coordinates are not limited to the plot area). This mode is ideal when you want an object
to stick to a feature in a wave even if you zoom in and out.

Axes are treated as if they extend to infinity in both directions. For this reason along with the fact that axis
ranges can be very dynamic, it is very easy to end up with objects that are offscreen. Again, you can use the
Mover pop-up menu to retrieve objects or, if you press Option (Macintosh) or Alt (Windows) before clicking the
Mover icon, you can edit the numerical coordinates of each offscreen object. You can also end up with objects
that are huge or tiny. It is best to have the graph in near final form before using axis-based drawing objects.

Axis-based coordinates are of particular interest to programmers but are also handy for a number of inter-
active tasks. For example you can easily create a rectangle that shades an exact area of a plot. If you use axis
coordinate systems then the rectangle will remain correct as the graph is resized and as the axis ranges are
changed. You can also create precisely positioned drop lines and scale (calibrator) bars.

Layers
Layers allow you to control the front-to-back layering of drawing objects relative to other window compo-
nents. For example, if you want to demarcate a region of interest in a graph, you can draw a shaded rectan-
gle into a layer behind the graph traces. If you drew the same rectangle into a layer above the traces then
the traces would be covered up.

Each window type supports a number of separate drawing layers. For example, in graphs, Igor provides
three pairs of drawing layers. You can see the layer structure for the current window and change to a dif-
ferent layer by pressing Option (Macintosh) or Alt (Windows) before clicking the environment icon.

It is not necessary to use the layering system. If you do not have a need for it, it is much simpler to stick to
the default layer, UserFront.

The following illustration shows the Layer pop-up menu for each of the window types. The current layer
is indicated with the check mark:

You will note that drawing layers appear in pairs named ProgSomething and UserSomething. User layers
are provided for interactive drawing while Prog layers are provided for Igor programmers. This usage is
just a recommended convention and is not enforced. The purpose of the recommendation is to give Igor
procedures free access to the Prog layers. If you were to draw into a Prog layer and then ran a procedure
that used that layer then your drawing could be damaged or erased.

Note that only drawing objects in the current layer may be selected with the Arrow tool. If you find you can
not select a drawing object then it must be in a different drawing layer. You will have to try the other layers
until you find the right one. To move an object between layers you have to cut, switch layers and then paste.

Export/Import

Copy/Paste Within Igor
You can use the Edit menu to cut, copy, clear and paste drawing objects just as you would expect.

Graph Page Layout Panel

Option
(Macintosh)

Alt
(Windows)

Chapter III-3 — Drawing

III-81

Drawn objects retain all of their Igor properties as long as they are not modified by any other program. If,
however, you export an Igor drawing to a program and then copy it back to Igor, the picture will no longer
be editable by Igor, even if you made no changes to the picture.

When selected drawing objects are copied to the Clipboard and then pasted, they retain their coordinates.
However, this can cause the pasted objects to be placed offscreen if the object’s coordinates don’t fall within
the displayed portion of the coordinate systems.

If you find that pasting does not yield what you expected, perhaps it is because some objects were pasted
off-screen. You can use the Mover icon to examine or retrieve any of these offscreen objects.

Pasting a Picture Into a Drawing Layer
Pasting a picture from a drawing program may work differently than you expect. Igor does not attempt to take
the picture apart to give you access to the component objects. Instead, Igor treats the entire picture as a single
object that you can move and resize but not otherwise adjust. The principal reason for this limitation is that Igor’s
drawing capabilities are too limited to have a good chance of successfully modifying many pasted pictures.

You can change the scale of a pasted picture by either dragging the handles when the object is selected or
by double-clicking the object and then setting the x and y scale factors in the resulting dialog.

Warning: There are some compatibilty issues regarding the various import and export types. See Pictures on
page III-423 for details.

Copying from Igor to a Drawing Program
You can export an Igor drawing to a drawing program such as MacDraw, however the fine resolution avail-
able within Igor will be lost.

Drawing objects that are offscreen can create problems when a graph or page layout window is exported to
a drawing program. Depending on how far outside objects extend, the drawing program may simply accept
them, ignore them, or it may become confused. To reduce the problem, Igor does not include objects that
are clearly offscreen when exporting. “Clearly offscreen” means that the bounding rectangle for the given
object does not intersect the export rectangle.

Programming
All of the drawing capabilities in Igor can be used from Igor procedures. This provides a remarkable degree
of power and flexibility (and even fun).

The programmable nature is especially useful in creating new graph types. For example, even though Igor
does not support polar plots as a native graph type we were able to create a polar plot package that pro-
duces high-quality polar graphs. Nonprogrammers can use the package as-is while programmers can
modify the code to suit their purposes or can extract useful code snippets for their own projects. The polar
plot package is provided on the Igor Pro distribution disks along with other packages and examples. See
the Polar Graphs Demo experiment in the Examples:Graphing Techniques folder.

This section describes drawing programming in general terms and provides strategies for use along with
example code.

You can get a quick start on a drawing programming project by first drawing interactively and then asking
Igor to create a recreation macro for the window (click the close button and look in the Procedure window).
You can then extract useful code snippets for your project. Frequently all you will have to do is replace
literal coordinate values with calculated values and you are in business.

Drawing Operations
Here is a list of the Operations related to drawing. See Chapter V-1, Igor Reference, for details.

Chapter III-3 — Drawing

III-82

DrawArc [/W=winName/X/Y] xOrg, yOrg, arcRadius, startAngle, stopAngle
or DrawBezier [/W=winName] xOrg, yOrg, hScaling, vScaling, xWaveName, yWaveName
DrawBezier [/W=winName] xOrg, yOrg, hScaling, vScaling, {x0,y0,x1,y1 …}
and DrawBezier/A [/W=winName] {xn,yn,xn+1,yn+1 …}
DrawLine [/W=winName] x0, y0, x1, y1
DrawOval [/W=winName] left, top, right, bottom
DrawPoly [/W=winName] xOrg, yOrg, hScaling, vScaling, xWaveName, yWaveName
or DrawPoly [/W=winName] xOrg, yOrg, hScaling, vScaling,{x0,y0,x1,y1 …}
and DrawPoly/A [/W=winName] {xn,yn,xn+1,yn+1 …}
DrawRect [/W=winName] left, top, right, bottom
DrawRRect [/W=winName] left, top, right, bottom
DrawText [/W=winName] x0, y0, textStr
GraphWaveDraw [/B/F/L/M/O/R/T/W=winName] [yWaveName,xWaveName]
GraphWaveEdit [/M/W=winName] traceName
GraphNormal [/W=winName]
DrawAction [/L=layerName/W=winName] keyword=value [, keyword=value …]
SetDrawLayer [/K/W=winName] layerName
SetDrawEnv [/W=winName] keyword [=value][, keyword [=value]]…
ShowTools [/A/W=winName] [toolName]
HideTools [/A/W=winName]

Programming Usage Notes
The following notes provide information that is supplementary to Chapter V-1, Igor Reference. These notes
are designed to give you a view of how the commands can work together, as well as some tips on efficiency
and usage. You may wish to refer to Igor’s online reference for these operations as you study this section.

SetDrawLayer
Use this command to specify which layer the following drawing commands will affect. If you use the /K
flag then the current contents of the given drawing layer will be killed (erased). See Programming Strate-
gies on page III-84 for considerations in the use of this command and the /K flag.

SetDrawEnv
This is the workhorse command of the drawing facility. It is used to specify the characteristics for a single
object, to specify the default drawing environment for future objects and to create groups of objects.

You can issue several SetDrawEnv commands in sequence; their effect is cumulative. By default, the group of
SetDrawEnv commands affects only the next drawing command. Drawing commands that follow the first
will use the default settings that were in effect before the SetDrawEnv commands were issued. For instance,
these SetDrawEnv commands change the font and font size for only the first of the two DrawText commands:
SetDrawEnv fname="New York"
SetDrawEnv fsize=18 // 18 point New York, commands accumulate
DrawText 0,1,"This is in 18 point New York"
DrawText 0,0,"Has font and size in use before SetDrawEnv commands"

Use the save keyword in the SetDrawEnv specification to make the settings permanent. The usual use of
the save keyword is at the end of the last SetDrawEnv command in a series. The permanent settings allow
you to draw a number of objects all with the same characteristics without having to reissue SetDrawEnv
commands before each object.

To create a grouping of objects, simply bracket a group of drawing commands with SetDrawEnv commands
using the gstart and gstop keywords. Grouping is purely a user interface concept. Objects are drawn exactly
the same regardless of grouping. You should use grouping when you think it will be useful to the user.

Draw<object> Operations
These operations, along with SetDrawEnv, operate differently depending on whether or not drawing
objects are selected in the target window. If, for example, a rectangle is selected in the target window and a
DrawRect command is executed then the selected rectangle will be changed. If, on the other hand, no rect-
angle is selected then a new rectangle will be created. This behavior exists to support interactive drawing

Chapter III-3 — Drawing

III-83

and is not useful to Igor programmers, since there is no programmatic way to select a drawing object. Nor-
mally, you will be creating new objects rather than modifying existing objects.

As you can see from the format of the commands, generally all you specify in the commands themselves
are the coordinates. Properties such as color and line thickness are specified by SetDrawEnv commands
preceding the Draw<object> commands. The exception is DrawText where you specify the text to be drawn.

DrawPoly and DrawBezier
The DrawPoly operation on page V-143 and DrawBezier operation on page V-141 come in the following
two types:
• Literal: You can specify the vertices or control points with a set of literal numbers. (Polygons and

bezier curves created interactively are always of the literal variety.)
• Wave: You can use waves to define the vertices or control points.

Because polygons and bezier curves can be of unlimited length, the /A flag allows object definitions to
extend over multiple lines.

It is legal to specify a polygon with only a single point. Use this to set up a loop to append vertices to the
origin vertex. Note that if you fail to add vertices and leave the polygon with just one vertex then the user
will not be able to see or select the polygon.

Literal Versus Wave
As a programmer, you must choose either the literal or the wave polygon type when creating a polygon or
bezier curve. This section explains the differences between the two.

The advantage of the literal method is that it does not clutter the experiment with numerous waves that may
be distracting to the user. It also has the advantage that all such objects are independent of one another.

With the wave method, objects are not independent. If the user duplicates an object, or runs a window recreation
macro several times, then all the objects would be linked via the wave. If the user then edits one of the objects,
those edits would affect all of the associated objects; this could also be considered an advantage of the method.

A disadvantage of the literal method is that when Igor creates a recreation macro for a window containing
literal method objects then all of the vertices or control points have to be specified in text. This can create
huge macros that take a lot of time to create and to run. Because Igor uses the recreation macro technique
when saving and restoring experiments, the use of large literal method objects can dramatically lengthen
experiment save and restore time.

Wave method objects do not have this disadvantage. One nifty feature of the wave method is that you can
read back the vertices or control points after the user has edited the object. Another advantage of the wave
method is that you can calculate new vertices or control points at any time and the dependent objects will
be automatically updated.

Screen Representation
It is important to note that the value of the first polygon vertex does not determine the location of the first
vertex on the screen. The location is specified by the xOrg, yOrg parameters. Effectively the value of the first
vertex is subtracted from all the vertices and then the value of the origin is added to all vertices. Thus both of
the following lines will create the exact same representation on the screen:

DrawPoly 120,50,1,1,{0,0,20,40,60,15}
DrawPoly 120,50,1,1,{200,300,220,340,260,315}

When programming, the first vertex is usually 0,0. The hScaling, vScaling parameters are probably not of
any interest to programmers; use 1 for both values.

Chapter III-3 — Drawing

III-84

GraphWaveDraw, GraphWaveEdit, and GraphNormal
These operations relate to graph modes that are only tangentially related to drawing.
• GraphWaveDraw puts the graph in a mode where the user can draw a wave using the same user

interface as polygon drawing.
• GraphWaveEdit allows the user to edit a wave using the same user interface as polygon editing.
• GraphNormal puts the user into normal operation mode, and is the equivalent of clicking the top

icon in the tool palette.

These commands are provided so a program can allow the user to sketch a region in a graph. The program
can then read back what the user did. Unlike the other drawing modes, these wave drawing and edit modes
allow user defined buttons to be active. This is so you can provide a “done” button for the user. The button
procedure should call GraphNormal to exit the drawing or edit mode.

The GraphWaveEdit command operates a little differently depending on whether or not you specify a wave
with the command. If you do specify a wave then only that wave can be edited by the user. If you let the
user choose a wave then he or she can switch to a new trace by just clicking it.

Programming Strategies
There are two distinct ways you can structure your drawing program:
• Append: You can append the contents of one or more layers.
• Replace Layer: You can replace the contents of the layers.
• Replace Group: You can replace the contents of a named group.

The Replace Layer Method
This method is used when you want to maintain a fairly complex drawing completely under program con-
trol. For example you may want to extend Igor by adding a new axis type or a new display method or you
may want to create a completely new kind of graph. The Polar Graphs package mentioned above utilizes
the replace method.

The key to the replace method is the use of the /K flag with the SetDrawLayer command. This “kills” (deletes)
the entire contents of the specified layer. This is the reason for the existence of the Prog layers. After clearing
out the layer you must then redraw the entire contents. To do this you will usually have to maintain some sort
of data structure or database to hold all the information and status required to maintain the drawing.

For example if you are creating an artificial axis package, you will need to maintain user settings similar to those
you see in Igor’s modify axis dialog. In many cases setting up a few global variables or waves in a data folder
will be sufficient. As an example, see the Drawing Axes procedure file in the WaveMetrics Procedures folder.

The Replace Group Method
With named groups created with the SetDrawEnv gname keyword, you can use DrawAction to delete the
group or to set the insertion point for new draw commands. See the DrawAction operation on page V-139
for an example.

The Append Method
In this method, you will be adding a small drawing when the user runs a macro or clicks a button. Such
drawings are often small and modular — a drop line or a calibration bar or a shading rectangle.

Generally, the drawing will be something the user could have done manually and may want to modify. If
you need to specify a layer at all it should be a User layer. Often there will be no need to set the drawing
layer at all — just use the current layer.

You may, however, need to set the layer for specific circumstances. A shading rectangle is an example of an
object that should go in a specific layer, since it must be below the traces of a graph. In this case, if you use
the SetDrawLayer operation, then you should set the current layer back with “SetDrawLayer UserTop”.

Chapter III-3 — Drawing

III-85

If you are using the append method, you should avoid using the Prog layers. This is because they are
intended for use where the entire layer is to be replaced under program control.

Another consideration is whether or not you should set the default drawing environment. In general you
should not since you, the programmer, are just a guest of the user and it would be rude for you to change
the user’s settings. On the other hand, if you are appending a fairly complex drawing, it might be inconve-
nient to have to keep making the same settings over and over.

Grouping
Finally, you may want to make sure your drawing is grouped. That way when the user clicks on your
drawing the whole thing will be selected and can be easily moved.

Example: Drop Lines
In this example, we want to create a macro to add a line from a particular point on a wave to the bottom
axis. To be useful this macro would have to be able to add drop lines to any axis. That was not done here
because it would add a lot of complexity that might obscure the example. This macro draws a line from the
point that Cursor A is on to the bottom axis.
#pragma rtGlobals= 1 // keep V_min, etc local

Macro AddDropLine(doArrow)
Variable doArrow= 2
Prompt doArrow,"Include arrow head?",popup "No;Yes"

PauseUpdate; Silent 1
doArrow -= 1 // pop-up menu items start from 1
Variable csrposy,csrposx,axposy
csrposx= hcsr(A)
csrposy= vcsr(A)
GetAxis/Q Left; axposy= V_min
SetDrawEnv xcoord= bottom,ycoord= left
if(doArrow)

SetDrawEnv arrow= 1,arrowlen= 8,arrowfat= 0.5
else

SetDrawEnv arrow= 0
endif
DrawLine csrposx,csrposy,csrposx,axposy

End

Chapter III-3 — Drawing

III-86

Drawing Shortcuts
Action Shortcut (Macintosh) Shortcut (Windows)

To temporarily invoke
the Arrow tool while in
Operate mode

Press Command-Option.

You can now select an object and move
or resize it. This shortcut works even if
the tool palette is not showing.

Press Ctrl+Alt.

You can now select an object and move
or resize it. This shortcut works even if
the tool palette is not showing.

To invoke the dialog to
modify a control or
drawing object while in
Operate mode

Press Command-Option and double-
click the control or drawing object.

This shortcut works even if the tool
palette is not showing. Also, if the
palette is showing, the Drawing mode’s
Arrow tool becomes selected after the
dialog is dismissed.

Press Ctrl+Alt and double-click the
control or drawing object.

This shortcut works even if the tool
palette is not showing. Also, if the
palette is showing, the Drawing mode’s
Arrow tool becomes selected after the
dialog is dismissed.

To nudge a selected
drawing object or
control

Use the Arrow keys. Press Shift to nudge
faster.

Use the Arrow keys. Press Shift to nudge
faster.

Chapter

III-4
III-4Embedding and Subwindows

Overview.. 88
Subwindow Terminology .. 88
Restrictions... 89
Creating Subwindows.. 90

Positioning and Guides... 90
Frames ... 91

Subwindow User-Interface Concepts .. 91
Subwindow Layout Mode and Guides .. 92
Layout Mode and Guide Tutorial ... 93
Graph Control Bars and Subpanels... 95
Page Layouts and Subwindows .. 96

Notebooks as Subwindows in Control Panels.. 96
Subwindow Command Concepts... 97

Subwindow Syntax.. 97
Subwindow Sizing... 97
Subwindow Operations and Functions.. 98

Chapter III-4 — Embedding and Subwindows

III-88

Overview
You can embed graphs, tables, and control panels into other graph, control panel, and page layout win-
dows. In addition, you can embed notebooks in control panels only. The embedded window is called a sub-
window and the enclosing window is called the host. Subwindows may be nested in a hierarchy of arbitrary
depth. The top host window in the hierarchy is known as the base. In the following example, the smaller,
inset graph is a subwindow:

Although you can create graphs like this by careful positioning of free axes, it is much easier to accomplish
using embedding. In the next example, the two graphs are subwindows embedded in a host panel:

This example is derived from the CWT demo experiment which you can find in the Analysis section of your
Examples folder.

Subwindow Terminology
When a window is inserted into another window it is said to be embedded. In some configurations (see Restric-
tions on page III-89), an embedded window does not support the same functionality that it has as a standalone
window. It is then called a presentation-only object. For example, when a table is embedded in a panel, it has
scroll bars and data entry features just like a standalone table. But when a table is embedded in a graph or in
a page layout, it is a presentation-only object with no scroll bars or other user interface elements.

Chapter III-4 — Embedding and Subwindows

III-89

Restrictions
The following table summarizes the rules for allowed host and embedded subwindow configurations.

Host

Graph Table Panel Layout

Su
bw

in
do

w Graph Yes No Yes Yes

Table Yes*

* Tables embedded in a graphs or layouts are presentation-only objects. They do
not support editing of data.

No Yes Yes*

Panel Yes†

† Panels can be embedded in base graphs only.

No Yes No

Layout No No No No

Notebook No No Yes No

Embedded
subwindow

Operate mode

Host
window

Selected
subwindow

Draw mode

Subwindow
Layout mode

Guide

Selected
subwindow

Plot frame

Subwindow frame

Chapter III-4 — Embedding and Subwindows

III-90

Creating Subwindows
You can create subwindows either from the command line (see Subwindow Command Concepts on page
III-97) or interactively using contextual menus. To add a subwindow interactively, add tools to the target
window (Show Tools menu item), click the lower icon to enter Drawing mode, and then right-click (Win-
dows) or Control-click (Macintosh) in the interior of the window and choose the desired type of subwindow
from the New menu:

You will be presented with the standard dialog for creating a new window but the result will be a subwindow:

You can position the subwindow by clicking on its heavy frame to enter Subwindow-Layout mode (see
Subwindow Layout Mode and Guides on page III-92). Finally, click the top icon of the tools to adjust the
graphs using Operate (Normal) mode.

Positioning and Guides
Subwindows may be positioned in their hosts in a wide variety of ways. You can specify the position of a
subwindow numerically using either absolute (fixed distance) or relative modes. You can also attach key
locations in a subwindow to named guides.

Guides are horizontal or vertical reference locations defined by the immediate host of a subwindow and
may be either fixed (built-in) or moveable (user-defined). Built-in guides represent fixed locations of the
host such as its frame or the interior plot area of graphs. Built-in guides can not be moved except by moving
the object to which the guide refers.

All host windows have built-in guides named FL, FT, FR, and FB for Frame Left, Frame Top, Frame Right,
and Frame Bottom. Graphs also have the corresponding PL, PR, PT, and PB for the interior plot area. In
addition, base graphs (top level host graph windows) have built-in guides GL, GR, GT, and GB for the
Graph area.

Chapter III-4 — Embedding and Subwindows

III-91

The graph area is the total area of the graph window excluding the areas occupied by the tool palette and
the cursor information panel. The frame area is the total area of the graph window excluding the areas occu-
pied by the tool palette, the cursor information panel and the control bar.

User-defined guides may be based on built-in or other user-defined guides. They may be defined as being
either a fixed distance from a guide or a relative distance between two guides.

Reference points of a subwindow that may be attached to guides include the outer left, right, top and
bottom for all subwindow types and, for graphs only, the interior plot area.

Guides are especially useful when creating stacked graphs. By attaching the plot left (PL) location on each
graph to a user-defined guide, all left axes will be lined up and will move in unison when you drag the
guide around. This is illustrated in Layout Mode and Guide Tutorial on page III-93.

Frames
You may specify a frame style for each subwindow. Frames, if any, are drawn inside the rectangle that
defines the location of the subwindow and the normal content is then inset by the frame thickness. Frames
may also be specified for base graph and panel windows. This is handy when you want to include a frame
when you export or print a graph. You can adjust the frame for a window or subwindow using a contextual
menu (right-click (Windows) or Control-click (Macintosh)).

Subwindow User-Interface Concepts
Each host window has two main modes corresponding to the top two icons in the
window’s toolbar. Choose Show Tools from the Graph or Panel menu to show the
toolbar in which clicking the top icon selects Operate (Normal) mode and clicking
the second icon selects Drawing mode.

When using subwindows, there is a third mode: Subwindow Layout (see Subwindow Layout Mode and
Guides on page III-92).

When not using subwindows, a particular window is the target window — the default window for
command-line commands that do not explicitly specify a window. The addition of subwindows leads to the
analogous concept of the active subwindow.

You make a subwindow the active subwindow by clicking it. In Operate mode the active subwindow is
indicated by a yellow and black border. In Drawing mode it is indicated by a heavy black border with the
name of the subwindow shown in the upper left corner.

Left Right Top Bottom

Host Window Frame FL FR FT FB

Host Graph Rectangle GL GR GT GB

Inner Graph Plot Rectangle PL PR PT PB

FR GRFL and GL

ControlBar/R 78

Operate mode

Draw mode

Chapter III-4 — Embedding and Subwindows

III-92

Panel subwindows are exceptions in that clicking them in Operate mode does not make them the active sub-
window. You must click them while in Drawing mode.

As an example, execute the following:
Make/O jack=sin(x/8)/x,sam=x
Display jack
Display/W=(0.5,0.14,0.9,0.7)/HOST=# sam

Notice the yellow and black border around the newly created
subwindow:.

This indicates that it is the active subwindow. Now double
click on the curve in the host window (but not within the sub-
window border). Change the color of the trace jack to blue
and notice that the subwindow is no longer active. Now move
the mouse over the subwindow and notice that the cursor
changes to the usual shapes corresponding to the parts of the
graph that it is hovering over. Drag out a selection rectangle in
the plot area of the subwindow and notice that the Marquee
pop-up menu is available for use on the subwindow and that the subwindow has been activated. Depend-
ing on your actions in a window, Igor activates subwindows as appropriate and generally you do not have
to be aware of which subwindow is active.

Choose Show Tools from the Graph menu and notice that the tools are provided by the main window. Tools
and the cursor information panel are hosted by the base window but may apply to subwindows.

Click the drawing icon in the tool bar.

Notice the subwindow, which had been indicated as active
using the yellow/black border, now has a heavy frame.

You are now in a mode where you can use drawing tools on
the subwindow. To draw in the main window, click outside
the subwindow to make the host window active.

When in Operate mode, the main menu bar always references the
base window. In order to make changes to a subwindow of a dif-
ferent type, you can use a context click to access a menu specific to the subwindow. In Drawing mode, the main
menu references the active subwindow. For example, if the base window is a graph with an embedded table, the
menu bar contains a Graph menu when in Operate mode. However, when the embedded table is selected in
Drawing mode, the main menu bar contains a Table menu.

When in Drawing mode, you can right-click (Windows) or Control-click (Macintosh) to get a pop-up menu
from which you can choose frame styles and insert new subwindows or delete the active subwindow.
Deleting a subwindow is not undoable.

The info box (see Info Box and Cursors on page II-290) in a graph targets the active subgraph. You can not
simultaneously view or move cursors in two different subgraphs.

Subwindow Layout Mode and Guides
To layout one or more subwindows in a host window, enter Drawing mode, click the selector (arrow) tool and
click in a subwindow. A heavy frame will be drawn with the name of the subwindow in the upper left. Now
click on the frame to enter subwindow layout mode. In this mode, the subwindow is drawn with a light frame
with handles in the middle of each side. In addition, built-in and user guides are drawn as dashed lines.

A subwindow can be moved by dragging its frame and resized using the handles. If a handle is positioned
near a guide, it will snap in place and attach itself to the guide. However, if one or more handles are
attached to guides and then the subwindow is moved using the frame, all attachments will be deleted.

Chapter III-4 — Embedding and Subwindows

III-93

A graph subwindow is drawn using two frames. The inner frame represents the plot area of the graph. Its
handles can be attached to guides to allow easy alignment of multiple graph subwindows.

You can create user-defined guides by pressing Alt (Windows) or Option (Macintosh) and then click-drag-
ging an existing guide. By default, the new guide will be a fixed distance from its parent. You can convert
the new guide to relative mode (where the guide is specified as a fraction of the distance between two
guides) by right-clicking (Windows) or Control-click (Macintosh) on the new guide and then choosing a
partner guide from the “make relative to” list of other guides. You can also use the right-click menu to
convert a relative guide to fixed or to delete a guide, if it is not in use.

Layout Mode and Guide Tutorial
In a new experiment, execute these commands:
Make/O jack=sin(x/8),sam=cos(x/8)
Display
Display/HOST=# jack
ShowTools

The first Display command created an empty graph and the second inserted a subgraph. We used the
command line just to get going quickly. The graph is in Operate mode and it looks like this:

Click the lower icon in the tool bar to enter Drawing mode and notice the subwindow is drawn with a black
frame with the name of the subwindow (G0):

Use the arrow tool to click on the black frame around the subgraph. You are now in Subwindow Layout
mode as indicated by the two rectangles with handles on each edge of the graph.

Chapter III-4 — Embedding and Subwindows

III-94

Position the mouse over the outer rectangle until the cursor changes to a four-headed arrow. Drag the sub-
window up as high as it will go and then drag the bottom handle up to just above the halfway point so that
the subgraph is in the upper half of the window.

Click outside the subwindow to leave Subwindow Layout mode and then click again to select the main
(empty) graph as the active subwindow. Right-click (Windows) or Control-click (Macintosh) below the sub-
graph and choose the New→Graph menu item:

Pick sam as the Y wave in the resulting dialog and click Do It. This creates a new subwindow and makes it
active. Click on the heavy frame to enter Subwindow Layout mode for the new subgraph and position it in
the lower half of the window.

While still in Subwindow Layout mode for the second graph, notice the red/green dashed lines around the
periphery. These are fixed guides and are properties of the base window. Hold down Alt (Windows) or
Option (Macintosh) and move the mouse over the left hand dashed line. When you notice the cursor chang-
ing to a two headed arrow, click and drag to the right about 3 cm to create a user-defined guide. Use the
same technique to create another user-defined guide based on the right edge also inset by about 3 cm:

Move the mouse over the new guides and notice the cursor changes to a two headed arrow indicating they
can be moved.

While still in Subwindow Layout mode for the second graph, click in the black handle centered on the left
axis and drag the handle over the position of the left user guide. Notice that it snaps into place when it is
near. Release the mouse button and use the same technique to connect the right edge of the interior plot
area to the right user guide.

Now place the top subgraph in Subwindow Layout mode and connect its left and right plot area handles
to the user guides:

Chapter III-4 — Embedding and Subwindows

III-95

While still in Subwindow Layout mode, drag the user guides around and notice that both graphs follow.

The two guides we created are of a type that is a fixed distance from
another (the frame left (FL) and frame right (FR) in this case). We will
now create a relative guide. Hold down Alt (Windows) or Option (Macin-
tosh) and move the mouse over the bottom dashed line near the window
frame. When you notice the cursor changing to a two headed arrow, click
and drag up to about the middle of the graph to create another user-
defined guide. Position the mouse over the new guide, right-click (Win-
dows) or Control-click (Macintosh), and choose Make Relative to→FT
from the menu.

Now, as you resize the window, the guide will remain at the same relative distance between the bottom
(FB) and the top (FT). Use the handles to attach the bottom of the top graph to the new guide and then put
the bottom graph into Subwindow Layout mode and attach its top to the guide:

Graph Control Bars and Subpanels
Prior to Igor Pro 5, you could use the arrow tool in a graph to drag down a control bar from the top of the
window. You would then use this area for buttons. Now you can drag out control areas from all four sides
of a graph window.You do this by entering Drawing mode and clicking just inside an outer edge of the
window. Subpanels are automatically created and anchored to appropriate guides. If you want to create an
Igor Pro 4-compatible control area with no subpanel, you can either delete the automatically generated sub-
panel or you can use the ControlBar command.

To adjust the size of a control bar, be sure the subpanel is not currently active to avoid putting it into layout
mode by a click near the frame. Unlike most other draggable objects in Igor, the cursor does not change
shape to indicate it is over the control area margins.

Chapter III-4 — Embedding and Subwindows

III-96

Page Layouts and Subwindows
Subwindows in Page Layouts can be a bit confusing because you use two different modes to position con-
ventional graph and table objects versus subwindows. In the normal mode for a page layout (top icon in
the toolbar), you can adjust the positioning of conventional layout objects but not subwindows because they
are in operate mode.

In operate mode, subwindow graphs act just like conventional graph windows and allow marquee expan-
sion, double clicking on graph elements to bring up dialogs, dragging textboxes and axes and other normal
graph behavior. But to adjust the position of subwindows, you have to enter Subwindow Layout (see Sub-
window Layout Mode and Guides on page III-92).

Although a bit confusing, the use of subwindows in Page Layouts is very useful because the Page Layout is
then self-contained and need not refer to other windows. An additional feature of subwindows is the ability
to see more detail when you expand the layout above 100%. Conventional layout objects are simply expanded
images originally taken at 100% while subwindows are actually drawn at the increased resolution.

Here are a few reasons to use the conventional window or object layout method rather than subwindows:
• You can use cursors and buttons in a full graph but not in a subgraph.
• You can place the same graph in multiple layouts.
• You can have a graph window be a different (and more convenient) size than the layout object.
In a page layout, you can insert a graph subwindow or table by first using the marquee tool to specify the
desired location and then using the pop-up menu available in the interior of the marquee to choose one of
several subwindow types. If you need to reposition the new subwindow, you will need to enter Drawing
mode and use the selector (arrow) tool of the drawing palette, not the layout arrow tool.

You can convert conventional layout graph and table objects to subwindows via the contextual menu for
the object. In operate mode (select the top icon in the layout tool panel), Control-click or right-click any-
where on the layout object and choose Convert Graph/Table To Embedded. Portions of a graph that are not
allowed in layouts, such as buttons and subpanels, will be lost in the conversion.

Similarly, you can convert a subgraph or subtable to a conventional window and layout object via the contextual
menu. In operate mode, Control-click or right-click and choose Convert To Graph/Table and Object. In a graph
you must click in an area free of traces or axes, such as in the graph margin, to get the correct popup menu.

Notebooks as Subwindows in Control Panels
You can create a notebook subwindow in a control panel using the NewNotebook operation. A notebook sub-
window might be used to present status information to the user or to permit the user to enter multi-line text.
Here is an example:

NewPanel /W=(150,50,654,684)
NewNotebook /F=1 /N=nb0 /HOST=# /W=(36,36,393,306)
Notebook # text="Hello World!\r"

The notebook subwindow can be plain text (/F=0) or formatted text (/F=1).

By default, the notebook ruler is hidden and the notebook status area width is set to zero when a notebook sub-
window is created. You can change this using the Notebook operation.

To make it easier to use for text input or display, when a formatted text notebook subwindow is first created and
when you resize the width of the subwindow, Igor automatically adjusts the Normal ruler's right indent so that
all of the text governed by the Normal ruler fits in the subwindow. This adjustment is done for the Normal ruler
only. Other rulers, including Normal+ (variations of Normal) rulers, are not adjusted.

You can programmatically insert text in the notebook using the Notebook operation.

If you create a window recreation macro for the control panel, by default the contents of the notebook subwin-
dow are saved in the recreation macro. If you later run the macro to recreate the control panel, the notebook sub-

Chapter III-4 — Embedding and Subwindows

III-97

window's contents will be restored. This also applies to experiment recreation which automatically uses window
recreation macros.

If you do not want the contents of the notebook subwindow to be preserved in the recreation macro, you must
disable the autosave property, like this:

Notebook Panel0#nb0, autosave=0

When you create a window recreation macro while autosave is on, it will contain commands that look something
like this:

Notebook kwTopWin, zdata="GaqDU%ejN7!Z)ts!+J\\.F^>EB"
Notebook kwTopWin, zdata= "jmRiCVsF?/]21,HG<k,\"@i1,&\\.F^>EB"
Notebook kwTopWin, zdataEnd=1

The Notebook zdata command sends to the notebook encoded binary data in an Igor-private format that repre-
sents the contents of the notebook when the recreation macro was created. In real life, there would be a number
of zdata commands, one after the other, which cumulatively define the contents of the notebook. The notebook
accumulates all of the zdata text. The zdataEnd command causes the notebook to decode the binary data and
use it to restore the notebook's contents.

When you save an experiment containing a control panel, a window recreation macro is created for you by Igor
and when you open the experiment, Igor runs the recreation macro to recreate the control panel. If autosave is
off, after saving and reopening the experiment, the notebook will be empty. If autosave is on, the window recre-
ation macro will include zdata and zdataEnd commands that restore the contents of the notebook subwindow.

The encoded binary data includes a checksum. If the Notebook zdata commands have been altered, the check-
sum will fail and you will receive an error when the Notebook zdataEnd command executes.

Subwindow Command Concepts
All operations that create window types that can be subwindows can take a /HOST=hcSpec flag in order
to create a subwindow in a specific host. In addition, operations and functions that can modify or operate
on a subwindow can affect a specific subwindow using the /W=hcSpec flag (for operations) or an hcSpec
as a string parameter (for functions).

Subwindow Syntax
The Command Line syntax for identifying a subwindow for a command is summarized in this table.

The window “path” uses the # symbol as a separator between a window name and the name of a subwin-
dow. If you have a panel subwindow named P0 inside a graph subwindow named G0 inside a panel named
Panel0, the absolute path to the panel subwindow would be Panel0#G0#P0. The relative path from the
main panel to the panel subwindow would be #G0#P0.

Subwindow Sizing
When /HOST is used in conjunction with Display, NewPanel, NewWaterfall, NewImage and Edit com-
mands to create a subwindow, the values used with the window size /W=(a,b,c,d) flag can have one of
two different meanings. If all the values are less than 1.0, then the values are taken to be fractional relative

Subwindow Specification Location

baseName Base host window

baseName#sub1 Absolute path from base host window

#sub1 Relative path from the active window or subwindow

Active window or subwindow

Host of active subwindow

Chapter III-4 — Embedding and Subwindows

III-98

to the host’s frame. If any of the values are greater than 1.0, then they are taken to be fixed locations mea-
sured in points or, for panels, pixels relative to the top left corner of the host.

Guides may override the numeric positioning set by /W. All operations supporting /HOST may take the
/FG=(gleft,gtop,gright,gbottom) flag where gleft-gbottom are the names of built-in or user-defined
guides. FG stands for Frame Guide and this flag specifies that the outer frame of the subwindow is attached
to the guides. A * character may be substituted for a name to indicate that the default value should be used.

The inner plot area of a graph subwindow may be attached to guides using the analogous PG flag. Thus a
subgraph may need up to three specifications. For example:
Display/host=#/W=(0,10,400,200)/FG=(FL,*,FR,*)/PG=(PL,*,PR,*) sam

When the subwindow position is fully specified using guides, the /W flag is not needed but it is OK to
include it anyway.

Subwindow Operations and Functions
Here are the main operations and functions that will be useful in dealing with subwindows. For full docu-
mentation, see Chapter V-1, Igor Reference.

ChildWindowList(hostName)

DefineGuide [/W= winName] newGuideName = {[guideName1, val
[, guideName2]]} [,…]

KillWindow winNameStr

MoveSubwindow [/W=winName] key = (values)[, key = (values)]…

RenameWindow oldName, newName

SetActiveSubwindow subWinName

Chapter

III-5
III-5Exporting Graphics (Macintosh)

Overview.. 100
Macintosh PICT Format.. 100
PDF Format... 101
Encapsulated PostScript (EPS) Format ... 101
Platform-Independent Bitmap Formats ... 101

Choosing a Graphics Format... 102
Exporting Graphics Via the Clipboard .. 102
Exporting Graphics Via a File ... 103

Exporting a Graphic File for Transfer to a Windows Computer .. 103
Exporting a Section of a Layout .. 104
Exporting Colors ... 104
Exporting and Printing Graphs of Large Data Sets ... 104

Graphs in Page Layouts.. 104
Font Embedding.. 104
PostScript Font Names (OS X) .. 105

Chapter III-5 — Exporting Graphics (Macintosh)

III-100

Overview
This chapter discusses exporting graphics from Igor graphs, page layouts and tables to another program on
Macintosh. You can export graphics through the Clipboard by choosing Edit→Export Graphics, or through
a file, by choosing File→Save Graphics.

Igor Pro supports a number of different graphics export formats. You can usually obtain very good results
by choosing the appropriate format, which depends on the nature of your graphics, your printer and the
characteristics of the program to which you are exporting.

Unfortunately, experimentation is sometimes required to find the best export format for your particular cir-
cumstances. This section provides the information you need to make an informed choice.

This table shows the available graphic export formats:

Macintosh PICT Format
PICT is the legacy pre-OS X Macintosh graphics format. In Igor Pro 6.1, it has been replaced by the PDF format.
In an emergency, when you are exporting to an older program that does not support PDF (such as Microsoft
Office prior to 2008,) you can cause Igor to revert to the old QuickDraw graphics mode. See Graphics Technol-
ogy on page III-423 for details.

Export Format Export Method Notes

Quartz PDF Clipboard, file The standard format for OS X. Best format for general use. Generated
via the operating system and consequently more capable than Igor
PDF.

LowRes PDF Clipboard, file Mostly just a compatibility placeholder for the legacy Macintosh
PICT format. May have specialized uses but generally should not
be used. Use Quartz PDF instead.

Igor PDF Clipboard, file PDF generated by Igor's own code rather than by the OS. May have
specialized uses but generally should not be used. Use Quartz PDF
instead.

Bitmap PICT Clipboard, file Legacy Macintosh-specific vector format. Largely obsolete as of
Mac OS X.

Resolution is 72 dpi. Expanded export can be used with some
programs to simulate higher resolution.

EPS
(Encapsulated
Postscript)

File only Platform-independent except for the screen preview.

Supports high resolution.

Useful only when printing on a PostScript printer, creating a PDF file,
or exporting to PostScript-savvy program (e.g., Adobe Illustrator, Tex).

PNG
(Portable Network
Graphics)

Clipboard, file Platform-independent bitmap format.

Uses lossless compression. Supports high resolution.

JPEG Clipboard, file Platform-independent bitmap format.

Uses lossy compression. Supports high resolution.

TIFF Clipboard, file Platform-independent bitmap format.

Supports high resolution but not compression.

QuickTime
Formats

File only Additional bitmap formats are added by QuickTime, if installed.
QuickTime formats appear in lower half of Format menu in Save
Graphics dialog.

Chapter III-5 — Exporting Graphics (Macintosh)

III-101

PDF Format
PDF (Portable Document Format) is Adobe's platform-independent vector graphics format that has been
adopted by Apple as the standard graphics format for OS X. This is the best format as long as your destina-
tion program supports it.

The Quartz PDF format is generated by the operating system and consequently is more capable than Igor's
existing native PDF generator. For example, it does a better job of embedding fonts and fully supports
imported pictures.

The Igor PDF format is generated by Igor's own code rather than by the OS. Due to the following limita-
tions, it should not be used unless you need to export in CMYK color mode (See Exporting Colors on page
III-104 for details.) Limitations are:

• If the window contains any drawings imported into Igor from other programs, they will be rendered
in the PDF as opaque bitmap images.

• You will need to pay attention to fonts. See Font Embedding on page III-104 for details.

Encapsulated PostScript (EPS) Format
Encapsulated PostScript is a widely-used, platform-independent vector graphics format consisting of Post-
Script commands in plain text form. It usually gives the best quality, but it works only when printed to a
PostScript printer or exported to a PostScript-savvy program such as Adobe Illustrator. You should use
only PostScript fonts (e.g., Helvetica).

Because PostScript is very complex, few programs can display it on screen. Consequently EPS includes an
optional screen preview. In most programs, you need to print a document containing the EPS in order to
see what you really have, as opposed to the preview that you see on screen.

On Macintosh, the EPS screen preview format is standard PICT, stored in the resource fork of the EPS file.
If you transfer a Macintosh EPS file to Windows, the screen preview will be lost because Windows does not
support the resource fork. So you will see a plain box instead of the preview on the screen of the Windows
program, but the EPS should print correctly.

On Windows, the screen preview format is TIFF and is embedded in the EPS file. If you transfer it to Macin-
tosh, the preview may or may not be understood, depending on the program into which you are importing.
Embedding the TIFF preview makes the Windows EPS file a binary file, which is not editable with a text
editor.

Some poorly written applications are confused by the screen preview. They ignore the EPS rules and use
the size of the preview image rather than the PostScript bounding box, resulting in improper recreation of
the EPS graphic. If you get unsatisfactory results, try using Igor’s Suppress Preview option. The resulting
EPS will display as a plain box in most programs but will print correctly.

EPS files normally use the RGB encoding to represent color but you can also use CMYK. See Exporting
Colors on page III-104 for details.

Igor Pro exports EPS files using PostScript language level 2. This allows much better fill patterns when
printing and also allows Adobe Illustrator to properly import Igor’s fill patterns. For backwards compati-
bility with old printers, you can force Igor to use level 1 by specifying /PLL=1 with the SavePICT operation.

If the graph or page layout that you are exporting as EPS contains a non-EPS picture imported from another
program, Igor exports the picture as an image incorporated in the output EPS file.

Igor Pro 5.02 and later can embed TrueType fonts as outlines. See Font Embedding on page III-104 for details.

Platform-Independent Bitmap Formats
PNG (Portable Network Graphics) is a platform-independent bitmap format that uses lossless compression
and supports high resolution. It is a superior alternative to JPEG or GIF. Although Igor can export and
import PNG via the Clipboard, not all programs can paste PNG from the Clipboard.

Chapter III-5 — Exporting Graphics (Macintosh)

III-102

JPEG is a lossy image format whose main virtue is that it is accepted by all web browsers. However, all
modern web browsers support PNG so there is little reason to use JPEG. Although Igor can export and
import JPEG via the Clipboard, not all programs can paste JPEGs.

TIFF is an Adobe format often used for digital photographs. Igor’s implementation of TIFF export does not
use compression. TIFF files normally use the RGB scheme to specify color but you can also use CMYK. See
Exporting Colors on page III-104 for details. There is no particular reason to use TIFF over PNG unless you
are exporting to a program that does not support PNG. Igor can export and import TIFF via the Clipboard
and most OS X programs can import TIFF.

A number of additional bitmap file formats are supported through Apple’s QuickTime. The formats added
by QuickTime are listed in the bottom half of the Format pop-up menu in the Save Graphics dialog.

Choosing a Graphics Format
Because of the wide variety of types of graphics, destination programs, printer capabilities, operating
system behaviors and user-priorities, it is not possible to give definitive guidance on choosing an export
format. But here is an approach that will work in most situations.

If the destination will accept PDF, then that is probably your best choice because of its high-quality vector
graphics and platform-independence.
Encapsulated PostScript (EPS) is also a very high quality format and is the format of choice if you are:
• Exporting to a word processor for printing on a PostScript printer.
• Exporting to a word processor for creating a PDF file.
• Exporting to a PostScript-savvy drawing program such as Adobe Illustrator.

If EPS and PDF are not appropriate, your next choice would be a high-resolution bitmap. The PNG format
is preferred because it is platform-independent and is compressed. If the application to which you are
exporting does not support PNG, your next choice would be TIFF or JPEG.

Exporting Graphics Via the Clipboard
To export a graphic from the active graph, page layout or table window via the Clipboard, choose
Edit→Export Graphics. This displays the Export Graphics dialog. For a graph, it looks like this:

When you click the OK button, Igor will copy the graph, page layout, or table to the Clipboard. You can
then switch to another program and do a paste.

For a page layout or table, the dialog is the same except that you can’t enter the width and height.

When a graph or page layout is active and in operate mode, choosing Edit→Copy copies to the Clipboard
whatever format was last used in the Export Graphics dialog. (This is new as of Igor Pro 6.01. Previously
the format was always a 1X standard vector PICT.) For a table, Edit→Copy copies the selected numbers to
the Clipboard and does not copy graphics.

Choose inches, “cm” for
centimeters, or points.See table in Overview

on page III-100.

Enter dimensions.

Deselect if you want
black and white only.

Chapter III-5 — Exporting Graphics (Macintosh)

III-103

When a page layout has an object selected or when the marquee is active, choosing Edit→Copy copies an
Igor object in a format used internally by Igor along with a 1x standard vector PICT and does not use the
format from the Export Graphics dialog

Igor can export PNG images to the Clipboard and can then paste them back in. On the Macintosh, the Clip-
board type is 'PNGf' but because there is no standard for PNG on the Clipboard it is therefore unlikely
that other programs can import them except as files.

Exporting Graphics Via a File
To export a graphic from the active graph, page layout or table window via a file, choose File→Save Graph-
ics. The Save Graphics File dialog for a graph looks like this:

The controls in the Format area of the dialog change to reflect options appropriate to each export format.

When you click the Do It button, Igor will write the graphic to a file. You can then switch to another
program and import the file.

If you select <Use Dialog> from the Path list, Igor will present a Save dialog from which you can choose a
folder in which to save the file.

The controls in the Format area of the dialog change to reflect options appropriate to each export format.

Exporting a Graphic File for Transfer to a Windows Computer
The best method for transferring Igor graphics to a Windows computer is to transfer the entire Igor exper-
iment file, open it in Igor for Windows, and export the graphic via one of the Windows-compatible methods
available in Igor for Windows.

If your graph or layout contains embedded pictures in PDF or PICT format, you will need to convert them
to the cross-platform format, PNG, because PDFs and Macintosh PICTs are not displayed in Igor for Win-
dows. If any embedded pictures are in JPEG, TIFF, or EPS formats, these will work without conversion. See
Chapter III-15, Platform-Related Issues, especially the section Picture Compatibility on page III-397.

If you don’t have a copy of Igor for Windows available, you have these choices:
1. Export PDF if the destination program can accept it.
2. Export an EPS file. This works only if the Windows program can import EPS files, and requires that

it be printed on a PostScript printer.
Furthermore, the PICT screen preview that Igor puts into a Macintosh EPS file is not displayable
on Windows. Use the Suppress Preview checkbox to eliminate the preview. This will render the
graphic unviewable on-screen, but it will still print (on a PostScript printer) just fine.

3. Export a PNG.

Select to overwrite an
existing file, if any.

Enter a file name.

Deselect if you want
black and white only.

Choose a folder for the file. If
you select <Use Dialog>, Igor
will present a Save dialog.

Click to export at the same size as the graph window... ...or enter a custom size here.

Chapter III-5 — Exporting Graphics (Macintosh)

III-104

Exporting a Section of a Layout
To export a section of a page layout, use the marquee tool to identify the section and then choose Export
Graphics (Edit menu) or Save Graphics (File menu). If you don’t use the marquee, Igor exports the area of
the layout that is in use plus a small margin.

Exporting Colors
The PDF, EPS and TIFF graphics formats normally use the RGB scheme to specify color. Some publications
require the use of CMYK instead of RGB, although the best results are obtained if the publisher does the
RGB to CMYK conversion using the actual characteristics of the output device. For those publications that
insist on CMYK, you can use the SavePICT /C=2 flag

Exporting and Printing Graphs of Large Data Sets
When exporting or printing an image plot, Igor normally uses a fast algorithm but has to resort to a much
slower, memory-intensive algorithm if the image contains holes (the displayed matrix wave contains NaNs)
or if it is displayed on a nonuniform grid (you specified X and Y coordinate waves when creating the plot).

The best method of exporting a graph for placement in another program is normally a vector format such
as HiRes PICT or EPS. However, graphs containing large images or very large waveforms may take a long
time to export or print. You may be able to solve this by using a high-resolution bitmap format for such
graphs. This has the added advantage of working well with non-PostScript printers.

Graphs in Page Layouts
If you discover that a page layout is taking much too long to print, you can print graph objects in the layout layer
of the layout using a high-resolution bitmap rather than the usual vector method. Use this only in an emergency
when a printer driver has bugs that affect normal operations and when printing graphs with very large numbers
of data points. There are drawbacks to the bitmap method. A large amount of memory will be needed and pat-
terns will be too small to be useful. Also, the quality of lines (especially dashed lines) may be degraded.

To force Igor to print graph objects in a page layout using the bitmap method, execute the following on the
command line:
Variable/G root:V_PrintUsingBitmap= 1

You may want to set this variable to zero after printing a problem layout so as not to affect other layouts in
the same experiment.

Font Embedding
You can embed TrueType fonts in EPS files and in PDF files. This means you can print EPS or PDF files on
systems lacking the equivalent PostScript fonts. This also helps for publications that require embedded fonts.

Font embedding is done automatically for the Quartz PDF format and you do not need to bother with this
section unless you are using EPS or Igor PDF formats.

There are three levels of font embedding: No embedding, embed only nonstandard fonts, and embed all
fonts. For most purposes, embed only nonstandard fonts is the best choice.

Igor embeds TrueType fonts as synthetic PostScript Type 3 fonts derived from the TrueType font outlines.
Only the actual characters used are included in the fonts and only single byte fonts are supported.

You should not use font embedding if you plan on exporting to a drawing program such as Adobe Illustra-
tor and wish to edit the text in that program.

Not all fonts and font styles on your system can be embedded. Some fonts may not allow embedding and
others may not be TrueType or may give errors. Be sure to test your EPS files on a local printer or by import-

Chapter III-5 — Exporting Graphics (Macintosh)

III-105

ing into Adobe Illustrator before sending them to your publisher. You can test your PDF files with Adobe
Reader. You can also use the “TrueType Outlines.pxp” example experiment to validate fonts for embed-
ding. You will find this experiment file in your Igor Pro Folder in the “Examples:Testing & Misc:” folder.

For EPS, the “embed only nonstandard fonts” method determines if a font is nonstandard by attempting to
look up the font name in the TTPSFNames table described in PostScript Font Names (OS X) on page III-105
after doing any font substitution using the TTtoPS table. In addition, if a nonplain font style name is the
same as the plain font name, then embedding is done. This means that standard PostScript fonts that do not
come in italic versions (such as Symbol), will be embedded for the italic case but not for the plain case.

For PDF, “embed only nonstandard fonts” embeds fonts other than the basic fonts guaranteed by the PDF spec-
ification to be built-in to any PDF reader. Those fonts are Helvetica and TImes in plain, bold, italic and bold-italic
forms as well as Symbol and Zapf Dingbats only in plain style. If embedding is not used or if a font can not be
embedded, fonts other than those just listed will be rendered as Helvetica and will not give the desired results

PostScript Font Names (OS X)
When generating PostScript, Igor needs to generate proper PostScript font names. This presents problems
under Macintosh OS X. Igor also needs to be able to substitute PostScript fonts for non-PostScript fonts.

If you use only the basic fonts in the following table or if you use Font Embedding on page III-104, then you
do not have to read any further. Igor has built-in PostScript font names for these as well as a built-in trans-
lation table that you use to specify standard system TrueType fonts but get proper PostScript fonts when
exporting. The built-in name translations are:

TrueType Name PostScript Name

Helvetica Helvetica

Arial Helvetica

Helvetica-Narrow Helvetica-Narrow

Arial Narrow Helvetica-Narrow

Palatino Palatino

Book Antiqua Palatino

Bookman Bookman

Bookman Old Style Bookman

Avant Garde AvantGarde

Century Gothic AvantGarde

New Century Schlbk NewCenturySchlbk

Century Schoolbook NewCenturySchlbk

Courier Courier

Courier New Courier

Zapf Chancery ZapfChancery

Monotype Corsiva ZapfChancery

Zapf Dingbats ZapfDingbats

Monotype Sorts ZapfDingbats

Symbol Symbol

Chapter III-5 — Exporting Graphics (Macintosh)

III-106

If you want to use fonts that are not in this table then you need to customize Igor’s table as follows.
1. Open the experiment containing the graphic you wish to export and then create an EPS file. Igor

will print in the history warnings about any fonts that are not in the table. The first time an EPS is
generated from a given experiment, Igor creates a data folder containing a pair of text waves con-
taining the names from the built-in table.

2. Using the Data Browser (Data Menu), navigate to “root:Packages:PSFontInfo:”. You will see two
waves named TTtoPS and TTPSFNames. Double click the icons to open the waves in a table. You
will need to edit one or both of these tables.

3. Edit the TTtoPS wave to add a row at the bottom of the table that provides the screen font name on the
left and the base PostScript font name on the right. If they are the same, you don’t need to do this step.

4. Edit the TTPSFNames wave to add a row at the bottom of the table that provides the base PostScript
font name in column 0, the normal font name in column 1, the bold name in column 2, the italic
name in column 3 and the bold-italic name in column 4.

If you don’t know the proper PostScript font names for the font you wish to use, you may be able to find
this information in a file named 5090.fontnamelist.pdf on Adobe’s web site.

This technique adds names only to the current experiment. If you want all experiments to have access to a
set of names, you can create (or edit) a tab-delimited text file named UserFontNames.txt in "Igor Pro User
Files/Igor Extensions" (see Igor Pro User Files on page II-46 for details). It must have the same structure as
the TTPSFNames wave just described but should contain only the new fonts you are adding. Your screen
font name should match the PostScript base name. If it doesn’t, you may need to add an entry in the TTtoPS
translation wave described above.

Igor gets the TrueType to PostScript translation table from the operating system if it is available. When you
add a new font to your system, the installation program may update the system translation table. Because
of this, the TTtoPS wave may contain more or different entries than described above. If you install a new
font, you can force Igor to update the TTtoPS wave in a given experiment by deleting or renaming the wave
and then writing out a dummy EPS file.

In addition to the UserFontNames.txt in the Igor Extensions folder, Igor also looks for a file named PSFont-
Names.txt. This file, if present, contains additional font names provided by WaveMetrics to extend Igor’s
built-in table. Although you can use this table rather than UserFontNames.txt you probably should not
since your changes will be lost the next time a new version of Igor Pro is released.

Times Times

Times New Roman Times

TrueType Name PostScript Name

Chapter

III-6
III-6Exporting Graphics (Windows)

Overview.. 108
Metafile Formats .. 108
BMP Format.. 109
PDF Format... 109
Encapsulated PostScript (EPS) Format ... 109
Platform-Independent Bitmap Formats ... 110

Choosing a Graphics Format... 110
Exporting Graphics Via the Clipboard .. 110
Exporting Graphics Via a File ... 111
Exporting a Section of a Layout .. 112
Exporting Colors ... 112
Exporting and Printing Graphs of Large Data Sets ... 112

Graphs in Page Layouts.. 112
Font Embedding.. 112
PostScript Font Names ... 113

Chapter III-6 — Exporting Graphics (Windows)

III-108

Overview
This chapter discusses exporting graphics from Igor graphs, page layouts and tables to another program on
Windows. You can export graphics through the Clipboard by choosing Edit→Export Graphics, or through
a file, by choosing File→Save Graphics.

Igor Pro supports a number of different graphics export formats. You can usually obtain very good results
by choosing the appropriate format, which depends on the nature of your graphics, your printer and the
characteristics of the program to which you are exporting.

Unfortunately, experimentation is sometimes required to find the best export format for your particular cir-
cumstances. This section provides the information you need to make an informed choice.

This table shows the available graphic export formats:

Metafile Formats
The metafile formats are Windows vector graphics formats that support drawing commands for the indi-
vidual objects such as lines, rectangles and text that make up a picture. Drawing programs can decompose
a metafile into its component parts to allow editing the individual objects. Most word processing programs
treat a metafile as a black box and call the operating system to display or print it.

WMF is an obsolete format and is not produced by Igor when running in the default advanced graphics
mode. In an emergency, when you are exporting to an older program that does not support EMF, you can
cause Igor to revert to the old graphics mode. See Graphics Technology on page III-423 for details.

Enhanced Metafile (EMF) is the primary Windows-native graphics format. EMF is easy to use because nearly all
Windows programs can import it and because it can be copied to the Clipboard as well as written to a file. Some
programs, notably some older versions of Microsoft Office, require that you choose Paste Special rather than
Paste to paste an EMF from the Clipboard.

Although drawing programs can decompose an EMF into its component parts to allow editing the individ-
ual objects, they often get it wrong due to the complexity of the metafile format. The default advanced

Export Format Export Method Notes

EMF (Enhanced
Metafile)

Clipboard, file Windows-specific vector format.

BMP (Bitmap) Clipboard, file Windows-specific bitmap format.

Does not use compression.

PDF Clipboard, file Platform-independent and high quality.

EPS
(Encapsulated
Postscript)

File only Platform-independent except for the screen preview.

Supports high resolution.

Useful only when printing on PostScript printer, creating a PDF file or
exporting to PostScript-savvy program (e.g., Adobe Illustrator, Tex).

PNG (Portable
Network
Graphics)

Clipboard, file Platform-independent bitmap format.

Uses lossless compression. Supports high resolution.

JPEG Clipboard, file Platform-independent bitmap format.

Uses lossy compression. Supports high resolution.

TIFF Clipboard, file Platform-independent bitmap format.

Supports high resolution but not compression.

QuickTime
Formats

File only Additional formats are added by QuickTime, if installed. QuickTime
formats appear in lower half of Format menu in Save Graphics dialog.

Chapter III-6 — Exporting Graphics (Windows)

III-109

graphics mode introduced in Igor Pro 6.1 may be especially stressful and you may find it necessary to revert
to the old graphics mode. See Graphics Technology on page III-423 for details.

BMP Format
BMP is a Windows bitmap format. It is accepted by a wide variety of programs but requires a lot of memory
and disk space because it is not compressed. A BMP is also known as a DIB (device-independent bitmap).

If the program to which you are exporting supports PNG then PNG is a better choice.

PDF Format
PDF (Portable Document Format) is Adobe’s platform-independent vector graphics format. However, not
all programs can import PDF. In fact, although Igor can export PDF, it can not itself import PDF.

If a window contains drawings imported into Igor from other programs, they will be rendered in the PDF
as opaque bitmap images.

PDF files normally use the RGB encoding to represent color but you can also use CMYK. See Exporting
Colors on page III-112 for details.

PDF export can (and should) embed TrueType fonts. See Font Embedding on page III-112 for details.

Encapsulated PostScript (EPS) Format
Encapsulated PostScript is a widely-used, platform-independent vector graphics format consisting of Post-
Script commands in plain text form. It usually gives the best quality, but it works only when printed to a
PostScript printer or exported to a PostScript-savvy program such as Adobe Illustrator. You should use
only PostScript fonts (e.g., Helvetica).

Because PostScript is very complex, few programs can display it on screen. Consequently EPS includes an
optional screen preview. In most programs, you need to print a document containing the EPS in order to
see what you really have, as opposed to the preview that you see on screen.

On Macintosh, the EPS screen preview format is standard PICT, stored in the resource fork of the EPS file.
If you transfer a Macintosh EPS file to Windows, the screen preview will be lost because Windows does not
support the resource fork. So you will see a plain box instead of the preview on the screen of the Windows
program, but the EPS should print correctly.

On Windows, the screen preview format is TIFF and is embedded in the EPS file. If you transfer it to Macin-
tosh, the preview may or may not be understood, depending on the program into which you are importing.
Embedding the TIFF preview makes the Windows EPS file a binary file, which is not editable with a text
editor.

Some poorly written applications are confused by the screen preview. They ignore the EPS rules and use
the size of the preview image rather than the PostScript bounding box, resulting in improper recreation of
the EPS graphic. If you get unsatisfactory results, try using Igor’s Suppress Preview option. The resulting
EPS will display as a plain box in most programs but will print correctly.

EPS files normally use the RGB encoding to represent color but you can also use CMYK. See Exporting
Colors on page III-112 for details.

Igor Pro exports EPS files using PostScript language level 2. This allows much better fill patterns when
printing and also allows Adobe Illustrator to properly import Igor’s fill patterns. For backwards compati-
bility with old printers, you can force Igor to use level 1 by specifying /PLL=1 with the SavePICT operation.

If the graph or page layout that you are exporting as EPS contains a non-EPS picture imported from another
program, Igor exports the picture as an image incorporated in the output EPS file.

Igor Pro 5.02 and later can embed TrueType fonts as outlines. See Font Embedding on page III-112 for details.

Chapter III-6 — Exporting Graphics (Windows)

III-110

Platform-Independent Bitmap Formats
PNG (Portable Network Graphics) is a platform-independent bitmap format. It uses lossless compression
and supports high resolution. It is a superior alternative to JPEG or GIF. Although Igor can export and
import PNG via the Clipboard, not all programs can paste PNG from the Clipboard.

JPEG is a lossy format whose main virtue is that it is accepted by all web browsers. However, all modern
web browsers support PNG so there is little reason to use JPEG. Although Igor can export and import JPEG
via the Clipboard, not all programs can paste JPEGs.

TIFF is an Adobe format often used for digital photographs. Igor’s implementation of TIFF export does not
use compression. TIFF files normally use the RGB scheme to specify color but you can also use CMYK. See
Exporting Colors on page III-112 for details. There is no particular reason to use TIFF over PNG unless you
are exporting to a program that does not support PNG. Igor can export and import TIFF via the Clipboard
and most OS X programs can import TIFF.

A number of additional bitmap file formats are supported through Apple’s QuickTime, if it is installed on
your system. The formats added by QuickTime are listed in the bottom half of the Format pop-up menu in
the Save Graphics dialog.

Choosing a Graphics Format
Because of the wide variety of types of graphics, destination programs, printer capabilities, operating
system behaviors and user-priorities, it is not possible to give definitive guidance on choosing an export
format. But here is an approach that will work in most situations.

If the destination will accept PDF, then that is probably your best choice because of its high-quality vector
graphics and platform-independence.
Encapsulated PostScript (EPS) is also a very high quality format and is the format of choice if you are:
• Exporting to a word processor for printing on a PostScript printer.
• Exporting to a word processor for creating a PDF file.
• Exporting to a PostScript-savvy drawing program such as Adobe Illustrator.

If EPS and PDF are not appropriate, your next choice would be a high-resolution bitmap. The PNG format
is preferred because it is platform-independent and is compressed. If the application to which you are
exporting does not support PNG, your next choice would be TIFF or JPEG.

Exporting Graphics Via the Clipboard
To export a graphic from the active graph, page layout or table window via the Clipboard, choose
Edit→Export Graphics. This displays the Export Graphics dialog. For a graph, it looks like this:

When you click the OK button, Igor will copy the graph, page layout or table to the Clipboard. You can then
switch to another program and do a paste.

From the Format pop-up menu, you can choose Windows Metafile, Enhanced Metafile, Bitmap, PostScript
Enhanced Metafile and PNG Image.

Enter dimensions.

Deselect if you want
black and white only.

See table in Overview
on page III-108.

Choose inches, cm for
centimeters, or points.

Chapter III-6 — Exporting Graphics (Windows)

III-111

If Bitmap or PNG Image is chosen, then you can select a resolution.

For a page layout or table, the dialog is the same except that you can’t enter the width and height. Windows
Metafile Format (WMF) is not available for page layouts.

To paste an enhanced metafile, some versions of Microsoft Office require that you choose Paste Special instead
of Paste. If you just choose Paste, the enhanced metafile is converted into a less capable Windows metafile.

When a graph or page layout is active and in operate mode, choosing Edit→Copy copies to the Clipboard
whatever format was last used in the Export Graphics dialog. (This is new as of Igor Pro 6.01. Previously
the format was always an enhanced metafile.) For a table, Edit→Copy copies the selected numbers to the
Clipboard and does not copy graphics.

When a page layout has an object selected or when the marquee is active, choosing Edit→Copy copies an
Igor object in a format used internally by Igor along with an enhanced metafile and does not use the format
from the Export Graphics dialog.

Igor can export PNG images to the Clipboard and can then paste them back in. Igor exports PNG images
under Windows by registering the format with the name “PNG” which is supported by some Microsoft
products. Igor can also export PDF, JPEG and TIFF formats to the Clipboard (registered as “PDF”, “JPEG”
and “TIFF”) but few if any programs can import these

Exporting Graphics Via a File
To export a graphic from the active graph, page layout or table window via a file, choose File→Save Graph-
ics. The Save Graphics dialog for a graph looks like this:

The controls in the Format area of the dialog change to reflect options appropriate to each export format.

When you click the Do It button, Igor will write a graphics file. You can then switch to another program and
import the file.

If you select _Use Dialog_ from the Path pop-up menu, Igor will present a Save dialog from which you can
choose a folder in which to save the file.

You may also be able to create an EPS file using a PostScript printer driver. Igor’s Save EPS File routine pro-
duces smaller files than the printer driver and should be used in most cases. However, if your graph or
layout includes non-EPS graphics imported from other programs, you may get better results using the
printer driver because Igor renders such imported graphics as images rather than object graphics.

Select to overwrite an
existing file, if any.

Click to export at the same size as the graph window... ...or enter a custom size here.

Enter the file name here.

Deselect if you want
black and white only.

Choose a folder to write
the file to. If you choose
<Use Dialog>, Igor will
present a Save dialog.

Chapter III-6 — Exporting Graphics (Windows)

III-112

Exporting a Section of a Layout
To export a section of a page layout, use the marquee tool to identify the section and then choose
Edit→Export Graphics or File→Save Graphics. If you don’t use the marquee, Igor exports the area of the
layout that is in use plus a small margin.

Exporting Colors
The EPS and TIFF graphics formats normally use the RGB scheme to specify color. Some publications
require the use of CMYK instead of RGB, although the best results are obtained if the publisher does the
RGB to CMYK conversion using the actual characteristics of the output device. For those publications that
insist on CMYK, you can use the SavePICT /C=2 flag.

Exporting and Printing Graphs of Large Data Sets
When exporting a graph as Encapsulated PostScript or printing a graph on a PostScript printer, Igor or the
printer driver must convert the Windows graphics language into PostScript. Then the PostScript printer
must convert the PostScript into dots on a page. When dealing with very large data sets the conversion to
dots in the printer can be very slow.

When exporting or printing an image plot, Igor normally uses a fast algorithm but has to resort to a much
slower, memory-intensive algorithm if the image contains holes (the displayed matrix wave contains NaNs)
or if it is displayed on a nonuniform grid (you specified X and Y coordinate waves when creating the plot).

The best method of exporting a graph for placement in another program is normally a vector format such
as EMF or EPS. However, graphs containing large images or very large waveforms may take a long time to
export or print. You may be able to solve this by using a high-resolution bitmap format for such graphs.
This has the added advantage of working well with non-PostScript printers.

Graphs in Page Layouts
If you discover that a page layout is taking much too long to print, you can print graph objects in the layout layer
of the layout using a high-resolution bitmap rather than the usual vector method. Use this only in an emergency
when a printer driver has bugs that affect normal operations and when printing graphs with very large numbers
of data points. There are drawbacks to the bitmap method. A large amount of memory will be needed and pat-
terns will be too small to be useful. Also, the quality of lines (especially dashed lines) may be degraded.

To force Igor to print graph objects in a page layout using the bitmap method, execute the following on the
command line:
Variable/G root:V_PrintUsingBitmap= 1

You may want to set this variable to zero after printing a problem layout so as not to affect other layouts in
the same experiment.

Font Embedding
As of Igor Pro 5.02, you can now embed TrueType fonts in EPS files. This means you can print EPS files on
systems lacking the equivalent PostScript fonts. This also helps for publications that require fonts to be
embedded.

There are three levels of font embedding: No embedding, embed only nonstandard fonts, and embed all
fonts. For most purposes, embed only nonstandard fonts is the best choice.

Igor embeds TrueType fonts as synthetic PostScript Type 3 fonts derived from the TrueType font outlines.
Only the actual characters used are included in the fonts and only single byte fonts are supported.

You should not use font embedding if you plan on exporting to a drawing program such as Adobe Illustra-
tor and wish to edit the text in that program.

Chapter III-6 — Exporting Graphics (Windows)

III-113

Not all fonts and font styles on your system can be embedded. Some fonts may not allow embedding and
others may not be TrueType or may give errors. Be sure to test your EPS files on a local printer or by import-
ing into Adobe Illustrator before sending them to your publisher. You can also use the “TrueType Out-
lines.pxp” example experiment to validate fonts for embedding. You will find this experiment file in your
Igor Pro Folder in the “Examples:Testing & Misc:” folder.

For EPS, the “embed only nonstandard fonts” method determines if a font is nonstandard by attempting to
look up the font name in the TTPSFNames table described in PostScript Font Names on page III-113 after
doing any font substitution using the TTtoPS table. In addition, if a nonplain font style name is the same as
the plain font name, then embedding is done. This means that standard PostScript fonts that do not come
in italic versions (such as Symbol), will be embedded for the italic case but not for the plain case.

For PDF, “embed only nonstandard fonts” embeds fonts other than the basic fonts guaranteed by the PDF spec-
ification to be built-in to any PDF reader. Those fonts are Helvetica and TImes in plain, bold, italic, and bold-italic
styles as well as plain versions of Symbol and Zapf Dingbats. If embedding is not used or if a font can not be
embedded, fonts other than those just listed will be rendered as Helvetica and will not give the desired results.

PostScript Font Names
When generating PostScript, Igor needs to generate proper PostScript font names. This presents problems
under Windows. Igor also needs to be able to substitute PostScript fonts for non-PostScript fonts.

If you use only the basic fonts in the following table or if you use Font Embedding on page III-112, then you
do not have to read any further. Igor has built-in PostScript font names for these as well as a built-in trans-
lation table that you use to specify standard system TrueType fonts but get proper PostScript fonts when
exporting. The built-in name translations are:

If you want to use fonts that are not in this table then you need to customize Igor’s table as follows.
1. Open the experiment containing the graphic you wish to export and then create an EPS file. Igor

will print in the history warnings about any fonts that are not in the table. The first time an EPS is
generated from a given experiment, Igor creates a data folder containing a pair of text waves con-
taining the names from the built-in table.

2. Using the Data Browser (Data Menu), navigate to root:Packages:PSFontInfo:. You will see two
waves named TTtoPS and TTPSFNames. Double click the icons to open the waves in a table. You

TrueType Name PostScript Name

Arial Helvetica

Arial Narrow Helvetica-Narrow

Book Antiqua Palatino

Bookman Old Style Bookman

Century Gothic AvantGarde

Century Schoolbook NewCenturySchlbk

Courier New Courier

Monotype Corsiva ZapfChancery

Monotype Sorts ZapfDingbats

Symbol Symbol

Times New Roman Times

Chapter III-6 — Exporting Graphics (Windows)

III-114

will need to edit one or both of these tables.
3. Edit the TTtoPS wave to add a row at the bottom of the table that provides the screen font name on the

left and the base PostScript font name on the right. If they are the same, you don’t need to do this step.
4. Edit the TTPSFNames wave to add a row at the bottom of the table that provides the base PostScript

font name in column 0, the normal font name in column 1, the bold name in column 2, the italic
name in column 3 and the bold-italic name in column 4.

If you don’t know the proper PostScript font names for the font you wish to use, you may be able to find
this information in a file named 5090.fontnamelist.pdf on Adobe’s web site.

This technique adds names only to the current experiment. If you want all experiments to have access to a
set of names, you can create (or edit) a tab-delimited text file named UserFontNames.txt in "Igor Pro User
Files\Igor Extensions" (see Igor Pro User Files on page II-46 for details). It must have the same structure as
the TTPSFNames wave just described but should contain only the new fonts you are adding. Your screen
font name should match the PostScript base name. If it doesn’t, you may need to add an entry in the TTtoPS
translation wave described above.

Igor gets the TrueType to PostScript translation table from the operating system if it is available. When you
add a new font to your system, the installation program may update the system translation table. Because
of this, the TTtoPS wave may contain more or different entries than described above. If you install a new
font, you can force Igor to update the TTtoPS wave in a given experiment by deleting or renaming the wave
and then writing out a dummy EPS file.

In addition to the UserFontNames.txt in the Igor Extensions folder, Igor also looks for a file named PSFont-
Names.txt. This file, if present, contains additional font names provided by WaveMetrics to extend Igor’s
built-in table. Although you can use this table rather than UserFontNames.txt you probably should not
since your changes will be lost the next time a new version of Igor Pro is released.

Chapter

III-7
III-7Analysis

Overview.. 117
Analysis of Multidimensional Waves .. 117
Waveform Versus XY Data.. 117
Converting XY Data to a Waveform .. 118

Using the XY Pair to Waveform Panel.. 119
Using the Interp Function... 119
Using the Interpolate External Operation.. 120

Dealing with Missing Values .. 121
Replace the Missing Values With Another Value... 122
Remove the Missing Values ... 122
Work Around Gaps in Data ... 122
Replace Missing Data with Interpolated Values... 123
Replace Missing Data Using the Interpolate XOP .. 123
Replace Missing Data Using Median Smoothing ... 123

Interpolation .. 123
Differentiation and Integration... 124
Areas and Means... 124

X Ranges and the Mean, faverage, and area Functions.. 125
Finding the Mean of Segments of a Wave.. 126
Area for XY Data.. 126

Wave Statistics... 126
Histograms... 128

Histogram Caveats .. 131
Graphing Histogram Results ... 131
Histogram Dialog .. 133
Histogram Example... 134

Curve Fitting to a Histogram.. 134
Computing a Histogram with Logarithmic Bins .. 136
Computing an “Integrating” Histogram.. 136

Sorting... 136
Simple Sorting .. 137
Sorting to Find the Median Value ... 137
Multiple Sort Keys ... 138
Sorting Text... 138
MakeIndex and IndexSort Operations ... 139

Decimation ... 139
Decimation by Omission .. 139
Decimation by Smoothing .. 140

Miscellaneous Operations.. 141
WaveTransform ... 141

Compose Expression Dialog ... 142
Table Selection Item... 142
Create Formula Checkbox .. 142

Chapter III-7 — Analysis

III-116

Matrix Math Operations .. 143
Normal Wave Expressions ... 143
matrixXXX Operations.. 143
MatrixOp Operation.. 143
Matrix Commands... 143
Macintosh and LAPACK Library.. 144

Analysis Programming .. 144
Passing Waves to User Functions and Macros.. 144
Returning Created Waves from User Functions ... 144
Returning Created Waves from Macros... 145
Writing Functions that Process Waves ... 145

WaveSum Example .. 146
RemoveOutliers Example.. 146
LogRatio Example .. 147
WavesMax Example... 148
WavesAverage Example.. 148

Finding the Mean of Segments of a Wave.. 149
Computing a Logarithmic Histogram .. 151
Working with Mismatched Data ... 152

References .. 153

Chapter III-7 — Analysis

III-117

Overview
Igor Pro is a powerful data analysis environment. The power comes from a synergistic combination of
• An extensive set of basic built-in analysis operations
• A fast and flexible waveform arithmetic capability
• Immediate feedback from graphs and tables
• Extensibility through an interactive programming environment
• Extensibility through external code modules (XOPs and XFUNCs)

Analysis tasks in Igor range from simple experiments using no programming to extensive systems tailored
for specific fields. Chapter I-2, Guided Tour of Igor Pro, shows examples of the former. WaveMetrics’
“Peak Measurement” procedure package is an example of the latter.

This chapter presents some of the basic analysis operations and discusses the more common analyses that
can be derived from the basic operations. The end of the chapter shows a number of examples of using
Igor’s programmability for “number crunching”.

Discussion of Igor Pro’s more specialized analytic capabilities is in chapters that follow.

See the WaveMetrics procedures, technical notes, and sample experiments that come with Igor Pro for more
examples.

Analysis of Multidimensional Waves
Many of the analysis operations in Igor Pro operate on 1D (one-dimensional) data. However, Igor Pro does
includes the following capabilities for analysis of multidimensional data:
• Multidimensional waveform arithmetic
• Matrix math operations
• Multidimensional Fast Fourier Transform
• 2D and 3D image processing operations
• 2D and 3D interpolation operations and functions

Some of these topics are discussed in Chapter II-6, Multidimensional Waves and in Chapter III-11, Image
Processing. The present chapter focuses on analysis of 1D waves.

There are many analysis operations that are designed only for 1D data. Multidimensional waves will not appear
in dialogs for these operations. If you invoke them on multidimensional waves from the command line or from
an Igor procedure, Igor may treat the multidimensional waves as if they were 1D. For example, the Histogram
operation will treat a 2D wave consisting of n rows and m columns as if it were a 1D wave with n*m rows. In
some cases (e.g., WaveStats), the operation will be useful. In other cases, it will make no sense at all.

Waveform Versus XY Data
Igor is highly adapted for dealing with waveform data. In a waveform, data values are uniformly spaced
in the X dimension. This is discussed under Waveform Model of Data on page II-77.

If your data is uniformly spaced, you can set the spacing using the SetScale operation. This is crucial
because most of the built-in analysis operations and functions need to know this to work properly.

If your data is not uniformly spaced, you can represent it using an XY pair of waves. This is discussed under
XY Model of Data on page II-78. Some of the analysis operations and functions in Igor can not handle XY
pairs directly. To use these, you must either make a waveform representation of the XY pair or use Igor pro-
cedures that build on the built-in routines.

Chapter III-7 — Analysis

III-118

Converting XY Data to a Waveform
Sometimes the best way to analyze XY data is to make a uniformly-spaced waveform representation of it
and analyze that instead. Most analysis operations are easier with waveform data. Other operations, such
as the FFT, can be done only on waveform data. Often your XY data set is nearly uniformly-spaced so a
waveform version of it is a very close approximation.

Often your XY data set is nearly uniformly-spaced so a waveform version of it is a very close approxima-
tion.

In fact, often XY data imported from other programs has an X wave that is completely unnecessary in Igor
because the values in the X wave are actually a simple "series" (values that define a regular intervals, such
as 2.2, 2.4, 2.6, 2.8, etc), in which case conversion to a waveform is a simple matter of assigning the correct
X scaling to the Y data wave, using SetScale (or the Change Wave Scaling dialog):

SetScale/P x, xWave[0], xWave[1]-xWave[0], yWave

Now the X wave is superfluous and can be discarded:

KillWaves/Z xWave

The XY Pair to Waveform panel can be used to set the Y wave's X scaling when it detects that the X wave
contains series data. The panel can be rather picky about what it considers a series, though, so you may need
to use the SetScale command or dialog when the series is of low accuracy due to truncation or rounding in
the original data set. See Using the XY Pair to Waveform Panel on page III-119.

If your X wave is not a series, then to create a waveform representation of XY data you need to use interpolation.
To create a waveform representation of XY data you need to do interpolation. Interpolation creates a waveform
from an XY pair by sampling the XY pair at uniform intervals. The diagram below shows how the XY pair defin-
ing the upper curve is interpolated to compute the uniformly-spaced waveform defining the lower curve.

Each arrow indicates an interpolated waveform value:

Igor provides three tools for doing this interpolation: The XY Pair to Waveform panel, the built-in interp
function and the Interpolate external operation. To illustrate these tools we need some sample XY data. The
following commands make sample data and display it in a graph:
Make/N=100 xData = .01*x + gnoise(.01)
Make/N=100 yData = 1.5 + 5*exp(-((xData-.5)/.1)^2)
Display yData vs xData

This creates a Gaussian shape. The x wave in our XY pair has some noise in it so the data is not uniformly
spaced in the X dimension.

The x data goes roughly from 0 to 1.0 but, because our x data has some noise, it may not be monotonic. This
means that, as we go from one point to the next, the x data usually increases but at some points may
decrease. We can fix this by sorting the data.
Sort xData, xData, yData

This command uses the xData wave as the sort key and sorts both xData and yData so that xData always
increases as we go from one point to the next.

XY Data

Waveform Data

Chapter III-7 — Analysis

III-119

Using the XY Pair to Waveform Panel
The XY Pair to Waveform panel creates a waveform from XY data using the SetScale or Interpolate2 oper-
ations, based on an automatic analysis of the X wave's data.

The required steps are:

1. Select XY Pair to Waveform from Igor's Data→Packages submenu.
The panel is displayed:

2. Select the X and Y waves (xData and yData) in the popup menus. When this example's xData wave
is analyzed it is found to be "not regularly spaced (slope error avg= 0.52...)", which means that Set-
Scale is not appropriate for converting yData into a waveform.

3. Use Interpolate is selected here, so you need a waveform name for the output. Enter any valid wave
name.

4. Set the number of output points. Using a number roughly the same as the length of the input waves
is a good first attempt. You can choose a larger number later if the fidelity to the original is insuffi-
cient. A good number depends on how uneven the X values are - use more points for more uneven-
ness.

5. Click Make Waveform.
6. To compare the XY representation of the data with the waveform representation, append the wave-

form to a graph displaying the XY pair. Make that graph the top graph, then click the "Append to
<Name of Graph>" button.

7. You can revise the Number of Points and click Make Waveform to overwrite the previously created
waveform in-place.

Using the Interp Function
We can use the interp function (see page V-356) to create a waveform version of our Gaussian. The required
steps are:
1. Make a new wave to contain the waveform representation.
2. Use the SetScale operation to define the range of X values in the waveform.
3. Use the interp function to set the data values of the waveform based on the XY data.

Here are the commands:
Duplicate yData, wData
SetScale/I x 0, 1, wData
wData = interp(x, xData, yData)

To compare the waveform representation to the XY representation, we append the waveform to the graph.
AppendToGraph wData

Chapter III-7 — Analysis

III-120

Let’s take a closer look at what these commands are doing.

First, we cloned yData and created a new wave, wData. Since we used Duplicate, wData will have the same
number of points as yData. We could have made a waveform with a different number of points. To do this,
we would use the Make operation instead of Duplicate.

The SetScale operation sets the X scaling of the wData waveform. In this example, we are setting the X
values of wData to go from 0 up to and including 1.0. This means that our waveform representation will
contain 100 values at uniform intervals in the X dimension from 0 to 1.0.

The last step uses a waveform assignment to set the data values of wData. This assignment evaluates the
right-hand expression once for each point in wData. For each evaluation, x takes on a different value from
0 to 1.0. The interp function returns the value of the curve yData versus xData at x. For instance, x=.40404
(point number 40 of wData) falls between two points in the XY curve. The interp function linearly interpo-
lates between those values to estimate a data value of 3.50537:

We can wrap these calculations up into an Igor procedure that can create a waveform version of any XY pair.
Function XYToWave1(xWave, yWave, wWaveName, numPoints)

Wave/D xWave // X wave in the XY pair
Wave/D yWave // Y wave in the XY pair
String wWaveName // Name to use for new waveform wave
Variable numPoints // Number of points for waveform

Make/O/N=(numPoints) $wWaveName // Make waveform.
Wave wWave= $wWaveName
WaveStats/Q xWave // Find range of x coords.
SetScale/I x V_min, V_max, wWave // Set X scaling for wave.
wWave = interp(x, xWave, yWave) // Do the interpolation.

End

This function uses the WaveStats operation to find the X range of the XY pair. WaveStats creates the vari-
ables V_min and V_max (among others). See Accessing Variables Used by Igor Operations on page IV-107
for details.

The function makes the assumption that the input waves are already sorted. We left the sort step out
because the sorting would be a side-effect and we prefer that procedures not have nonobvious side effects.

To use the WaveMetrics-supplied XYToWave1 function, include the “XY Pair To Waveform” procedure
file. See The Include Statement on page IV-149 for instructions on including a procedure file.

If you have blanks (NaNs) in your input data, the interp function will give you blanks in your output wave-
form as well. The Interpolate XOP, discussed in the next section, interpolates across gaps in data and does
not produce gaps in the output.

Using the Interpolate External Operation
The Interpolate XOP provides not only linear but also cubic and smoothing spline interpolation. Further-
more, it does not require the input to be sorted and can automatically make the destination waveform and
set its X scaling. It also has a dialog that makes it easy to use interactively.

6

5

4

3

2

0.440.420.400.380.360.34

interp(0.40404,xData,yData) = 3.50537

x = 0.40404

 yData vs xData
 wData

Chapter III-7 — Analysis

III-121

The Interpolate XOP is automatically installed by the Igor installer in the “Igor Extensions” folder. It adds
an Interpolate item to the Analysis menu.

To use it on our sample XY data, choose Interpolate and set up the dialog as shown below.

Choosing “_default_” as the “Y destination” auto-names the destination wave by appending “_CS” to the
name of the input “Y data” wave. Choosing “_none_” as the “X destination” creates a waveform from the
input XY pair rather than a new XY pair.

Here is a rewrite of the XYToWave1 function that uses the Interpolate XOP rather than the interp function.
Function XYToWave2(xWave, yWave, wWaveName, numPoints)

Wave/D xWave // x wave in the XY pair
Wave/D yWave // y wave in the XY pair
String wWaveName // name to use for new waveform wave
Variable numPoints // number of points for waveform

Interpolate2/T=2/N=(numPoints)/E=2/Y=$wWaveName xWave, yWave
End

Gaps in the input data are ignored. Most often, this is what is desired but if you want to maintain gaps in
the output data you will have to install them yourself. You can use the fact that the interp function main-
tains gaps to restore gaps in the Interpolate XOP output. For example:
yDest= yDest + 0*interp(x, xSource, ySource)

Only when the output of interp is a NaN is data in the destination wave affected. This works because NaN
multiplied by anything (even zero) is NaN.

To use the WaveMetrics-supplied XYToWave2 function, include the “XY Pair To Waveform” procedure
file. See The Include Statement on page IV-149 for instructions on including a procedure file.

The cubic spline algorithm used by the Interpolate XOP is derived from the cubic spline function in Numerical
Recipes in C (see References on page III-153). The XOP also provides a smoothing spline based on Reinsch (1967).

Dealing with Missing Values
A missing value is represented in Igor by the value NaN which means “Not a Number”. A missing value
is also called a “blank”, because it appears as a blank cell in a table.

When a NaN is combined arithmetically with any value, the result is NaN. To see this, execute the command:
Print 3+NaN, NaN/5, sin(NaN)

By definition, a NaN is not equal to anything. Consequently, the condition in this statement:

if (myValue == NaN)

Chapter III-7 — Analysis

III-122

is always false.

The workaround is to use the numtype function:

if (NumType(myValue) == 2) // Is it a NaN?

See also NaNs, INFs and Missing Values on page II-100 for more about how NaN values.

Some routines deal with missing values by ignoring them. The CurveFit operation (see page V-94) is one
example. Others may produce unexpected results in the presence of missing values. Examples are the FFT
operation and the area and mean functions.

Here are some strategies for dealing with missing values.

Replace the Missing Values With Another Value
You can replace NaNs in a wave with this statement:

wave0 = NumType(wave0)==2 ? 0:wave0 // Replace NaNs with zero

If you're not familiar with the :? operator, see Operators on page IV-5.

For multi-dimensional waves you can replace NaNs using MatrixOp. For example:

Make/O/N=(3,3) matNaNTest = p + 10*q
Edit matNaNTest
matNaNTest[0][0] = NaN; matNaNTest[1][1] = NaN; matNaNTest[2][2] = NaN
MatrixOp/O matNaNTest=ReplaceNaNs(matNaNTest,0) // Replace NaNs with 0

Remove the Missing Values
For 1D waves you can remove NaNs using WaveTransform zapNaNs. For example:

Make/N=5 NaNTest = p
Edit NaNTest
NaNTest[1] = NaN; NaNTest[4] = NaN
WaveTransform zapNaNs, NaNTest

There is no built-in operation to remove NaNs from an XY pair if the NaN appears in either the X or Y wave.
You can do this, however, using the RemoveNaNsXY procedure in the "Remove Points" WaveMetrics pro-
cedure file which you can access through Help→Windows→WM Procedures Index.

There is no operation to remove NaNs from multi-dimensional waves as this would require removing the
entire row and entire column where each NaN appeared.

Work Around Gaps in Data
Many analysis routines can work on a subrange of data. In many cases you can just avoid the regions of
data that contain missing values. In other cases you can extract a subset of your data, work with it and then
perhaps put the modified data back into the original wave.

Here is an example of extract-modify-replace (even though Smooth properly accounts for NaNs):
Make/N=100 data1= sin(P/8)+gnoise(.05); data1[50]= NaN
Display data1
Duplicate/R=[0,49] data1,tmpdata1 // start work on first set
Smooth 5,tmpdata1
data1[0,49]= tmpdata1[P] // put modified data back
Duplicate/O/R=[51,] data1,tmpdata1 // start work on 2nd set
Smooth 5,tmpdata1
data1[51,]= tmpdata1[P-51]
KillWaves tmpdata1

Chapter III-7 — Analysis

III-123

Replace Missing Data with Interpolated Values
You can replace NaN data values prior to performing operations that do not take kindly to NaNs by replac-
ing them with smoothed or interpolated values using the Smooth operation (page V-654), the Loess oper-
ation (page V-402), or the Interpolate XOP.

Replace Missing Data Using the Interpolate XOP
By using the same number of points for the destination as you have source points, you can replace NaNs
without modifying the other data.

If you have waveform data, simply duplicate your data and perform linear interpolation using the same
number of points as your data. For example, assuming 100 data points:
Duplicate data1,data1a
Interpolate/T=1/N=100/Y=data1a data1

If you have XY data, the XOP has the ability to include the input x values in the output X wave. For example:
duplicate data1, yData1, xData1
xData1 = x
Display yData1 vs xData1
Interpolate2/T=1/N=100/I/Y=yData1a/X=xData1a xData1,yData1

If, after performing an operation on your data, you wish to put the modified data back in the source wave
while maintaining the original missing values you can use a wave assignment similar to this:
yData1 = (numtype(yData1) == 0) ? yData1 : yData1a

This technique can also be applied using interpolated results generated by the Smooth operation (page
V-654) or the Loess operation (page V-402).

Replace Missing Data Using Median Smoothing
You can use the Smooth dialog to replace each NaN with the median of surrounding values.

Select the Median smoothing algorithm, select "NaNs" from the Replace popup, and choose "Median" for
the "with:" radio button. Enter the number of surrounding points used to compute the median (an odd
number is best).

You can choose to overwrite the NaNs or create a new waveform with the result. The Smooth dialog pro-
duces commands like this:

Duplicate/O data1,data1_smth;DelayUpdate
Smooth/M=(NaN) 5, data1_smth

Interpolation
Igor Pro has a number of interpolation tools that are designed for different applications. We summarize
these in the table below.

Data Operation/Function Interpolation Method

1D waves wave assignment, e.g., val=wave(x) Linear

1D waves Smooth Running median, average, binomial,
Savitsky-Golay

1D XY waves interp() Linear

1D single or XY waves Interpolate XOP Linear, cubic spline, smoothing spline

1D or 2D single or XY Loess Locally-weighted regression

Triplet XYZ waves ImageInterpolate Voronoi

Chapter III-7 — Analysis

III-124

All the interpolation methods in this table consist of two common steps. The first step involves the identi-
fication of data points that are nearest to the interpolation location and the second step is the computation
of the interpolated value using the neighboring values and their relative proximity. You can find the spe-
cific details in the documentation of the individual operation or function.

Differentiation and Integration
The Differentiate operation (see page V-127) and Integrate operation (see page V-348) provide a number
of algorithms for operation on one-dimensional waveform and XY data. These operations can either replace
the original data or create a new wave with the results. The easiest way to use these operations is via dialogs
available from the Analysis menu. These handy dialogs even provide for graphing the results.

For most applications, trapezoidal integration and central differences differentiation are appropriate meth-
ods. See the reference section for details. However, when operating on XY data, the different algorithms
have different requirements for the number of points in the X wave. If your X wave does not show up in the
dialog, try choosing a different algorithm or click the help button to see what the requirements are.

When operating on waveform data, X scaling is taken into account (although this can be turned off using the
/P flag). You can use the SetScale operation (see page V-640) to define the X scaling of your Y data wave.

Although these operations work along just one dimension, they can be targeted to operate along rows or
columns of a matrix (or even higher dimensions) using the /DIM flag.

The Integrate operation replaces or creates a wave with the numerical integral. For finding the area under
a curve, see Areas and Means on page III-124.

Areas and Means
You can compute the area and mean value of a wave in several ways using Igor.

Perhaps the simplest way to compute a mean value is with the Wave Stats dialog in the Analysis menu. The
dialog is pictured under Wave Statistics on page III-126. You select the wave, type in the X range (or use
the current cursor positions), click Do It, and Igor prints several statistical results to the history area. Among
them is V_avg, which is the average, or mean value. This is the same value that is returned by the mean
function (see page V-439), which is faster because it doesn’t compute any other statistics. The mean function
will return NaN if any data within the specified range is NaN. The WaveStats operation, on the other hand,
ignores such missing values.

WaveStats and the mean function use the same method for computing the mean: find the waveform values
within the given X range, sum them together, and divide by the number of values. The X range serves only
to select the values to combine; the range is rounded to the nearest point numbers.

1D X, Y, Z waves Data→Packages→XYZ to Matrix Voronoi

1D X, Y, Z waves Loess Locally-weighted regression

2D waves ImageInterpolate Bilinear, splines, Kriging, Voronoi

2D waves Interp2D() Bilinear

2D waves (points on the
surface of a sphere)

SphericalInterpolate Voronoi

3D waves Interp3D(), Interp3DPath,
ImageTransform extractSurface

Trilinear

3D scatter data Interpolate3D Barycentric

Data Operation/Function Interpolation Method

Chapter III-7 — Analysis

III-125

If you consider your data to describe discrete values, such as a count of events, then you should use either
WaveStats or the mean function to compute the average value. You can most easily compute the total
number of events, which is an area of sorts, using the sum function (see page V-767). It can also be done
easily by multiplying the WaveStats outputs V_avg and V_npnts.

If your data is a sampled representation of a continuous process such as a sampled audio signal, you should
use the faverage function to compute the mean, and the area function to compute the area. These two func-
tions use the same linear interpolation scheme as does trapezoidal integration to estimate the waveform
values between data points. The X range is not rounded to the nearest point; partial X intervals are included
in the calculation through this linear interpolation.

The diagram below shows the calculations each function performs for the data shown. The two values 43
and 92.2 are linear interpolation estimates.

Comparison of area, faverage and mean functions over interval (12.75,13.32)

Note that only the area function is affected by the X scaling of the wave. faverage eliminates the effect of X
scaling by dividing the area by the same X range that area multiplied by.

One problem with these functions is that they can not be used if the given range of data has missing values
(NaNs). See Dealing with Missing Values on page III-121 for details.

X Ranges and the Mean, faverage, and area Functions
The X range input for the mean, faverage and area functions are optional. Thus, to include the entire wave
you don’t have to specify the range:
Make/N=10 wave=2; Edit wave.xy // X ranges from 0 to 9
Print area(wave) // entire X range, and no more
18

Sometimes, in programming, it is not convenient to determine whether a range is beyond the ends of a
wave. Fortunately, these functions also accept X ranges that go beyond the ends of the wave.

WaveStats/R=(12.75,13.32) wave
V_avg = (55+88+100+87)/4 = 82.5

mean(wave,12.75,13.32) = (55+88+100+87)/4 = 82.5

area(wave,12.75,13.32) = 0.05 · (43+55) / 2 first trapezoid

+ 0.20 · (55+88) / 2 second trapezoid

+ 0.20 · (88+100) / 2 third trapezoid

+ 0.12 · (100+92.2) / 2 fourth trapezoid

= 47.082

faverage(wave,12.75,13.32) = area(wave,12.75,13.32) / (13.32-12.75)

= 47.082/0.57 = 82.6

120

80

40

0

13.613.413.213.012.812.6

0.05 0.2 0.2 0.12

43

92.255
88 100

7

87

Chapter III-7 — Analysis

III-126

Print area(wave, 0, 9) // entire X range, and no more
18

You can use expressions that evaluate to a range beyond the ends of the wave:
Print leftx(wave),rightx(wave)
0 10
Print area(wave,leftx(wave),rightx(wave)) // entire X range, and more
18

or even an X range of ±×:
Print area(wave, -Inf, Inf) // entire X range of the universe
18

Finding the Mean of Segments of a Wave
Under Analysis Programming on page III-144 is a function that finds the mean of segments of a wave
where you specify the length of the segments. It creates a new wave to contain the means for each segment.

Area for XY Data
To compute the area of a region of data contained in an XY pair of waves, use the areaXY function (see page
V-32). There is also an XY version of the faverage function; see faverageXY on page V-169.

Technical Note 018, “Area and Integration” discusses XY area computations in greater detail and provides
routines for cubic spline area and integration, area of exponential data and integration of spectroscopic or
chromatographic peaks.

Wave Statistics
The WaveStats operation (see page V-820) computes various descriptive statistics relating to a wave and
prints them in the history area of the command window. It also stores the statistics in a series of special vari-
ables or in a wave so you can access them from a procedure.

The statistics printed and the corresponding special variables are:

Variable Meaning

V_npnts Number of points in range, not including points whose value is NaN or INF.

V_numNaNs Number of NaNs in range.

V_numINFs Number of INFs in range.

V_avg Average of data values.

V_sdev
Standard deviation of data values,

(“Variance” is V_sdev2.)

V_rms

V_adev

σ 1
V_npnts 1–
---------------------------- Yi V_avg–()2

=

RMS (Root Mean Square) of Y values
1

V_npnts
------------------- Yi

2

 =

Average deviation
1

V_npnts
------------------- xi x–

i 0=

V_npnts 1–

=

Chapter III-7 — Analysis

III-127

To use the WaveStats operation, choose Wave Stats from the Analysis menu.

The WaveStats dialog expects that the range you specify, if any, be in terms of the X values of the source
wave. You set this using the Change Wave Scaling dialog or SetScale operation (see page V-640). The
WaveStats operation can use a point range, too (see page V-820).

V_skew

V_kurt

V_minloc X location of minimum data value.

V_min Minimum data value.

V_maxloc X location of maximum data value.

V_max maximum data value.

V_minRowLoc Row containing minimum Z value (2D or higher waves).

V_minColLoc Column containing minimum Z value (2D or higher waves).

V_maxColLoc Column containing maximum Z value (2D or higher waves).

V_maxRowLoc Row containing maximum Z value (2D or higher waves).

V_minLayerLoc Layer containing minimum Z value (3D or higher waves).

V_maxLayerLoc Layer containing maximum Z value (3D or higher waves).

V_minChunkLoc Chunk containing minimum Z value (4D waves only).

V_maxChunkLoc Chunk containing maximum Z value (4D waves only).

V_startRow First wave point. Zero if you do not use /R.

V_endRow Last wave point. Last point if you do not use /R.

Variable Meaning

Skewness
1

V_npnts

xi x–

σ

3

i 0=

V_npnts 1–

=

Kurtosis
1

V_npnts

xi x–

σ

4
3–

i 0=

V_npnts 1–

=

Select to list only
waves in the top
graph or table.

Select one wave.

Select range of input wave to analyze. Values are in terms
of wave’s X scaling. Leave blank to use entire wave.

Select to prevent reporting
of results in history area.

Click “cursors” to set the
range from cursors on the
top graph. Click “clear” to
clear the range.

Chapter III-7 — Analysis

III-128

The “Suppress printing” option is normally used when you call WaveStats from an Igor procedure. The
procedure uses the special variables set by WaveStats.

Igor ignores NaNs and INFs in computing the average, standard deviation, RMS, minimum and maximum.
NaNs result from computations that have no defined mathematical meaning. They can also be used to rep-
resent missing values. INFs result from mathematical operations that have no finite value.

Following is a macro that illustrates the use of WaveStats. The macro shows the average and standard devi-
ation of a source wave, assumed to be displayed in the top graph. It draws lines to indicate the average and
standard deviation.
#pragma rtGlobals=1 // Use modern global access method.

Function ShowAvgStdDev(source)
Wave source // source waveform

Variable left=leftx(source),right=rightx(source) // source X range
WaveStats/Q source
SetDrawLayer/K ProgFront
SetDrawEnv xcoord=bottom,ycoord=left,dash= 7
DrawLine left, V_avg, right, V_avg // show average
SetDrawEnv xcoord=bottom,ycoord=left,dash= 7
DrawLine left, V_avg+V_sdev, right, V_avg+V_sdev // show +std dev
SetDrawEnv xcoord=bottom,ycoord=left,dash= 7
DrawLine left, V_avg-V_sdev, right, V_avg-V_sdev // show -std dev
SetDrawLayer UserFront

End

You could try this function using the following commands.
Make/N=100 wave0 = gnoise(1)
Display wave0; ModifyGraph mode(wave0)=2, lsize(wave0)=3
ShowAvgStdDev(wave0)

When you use WaveStats with a complex wave, you can choose to compute the same statistics as above for
the real, imaginary, magnitude and phase of the wave. By default WaveStats only computes the statistics
for the real part of the wave. When computing the statistics for other components, the operation stores the
results in a multidimensional wave M_WaveStats.

If you are working with large amounts of data and you are concerned about computation speed you might
be able to take advantage of the /M flag that limits the calculation to the first order moments.

If you are working with 2D or 3D waves and you want to compute the statistics for a domain of an arbitrary
shape you should use the ImageStats operation (see page V-322) with an ROI wave.

Histograms
A histogram totals the number of input values that fall within each of a number of value ranges (or “bins”)
usually of equal extent. For example, a histogram is useful for counting how many data values fall in each
range of 0-10, 10-20, 20-30, etc. This calculation is often made to show how students performed on a test:

2

1

0

-1

-2

806040200

Chapter III-7 — Analysis

III-129

The usual use for a histogram in this case is to figure out how many students fall into certain numerical
ranges, usually the ranges associated with grades A, B, C, and D. Suppose the teacher decides to divide the
0-100 range into 4 equal parts, one per grade. The Histogram operation (see page V-272) can be used to
show how many students get each grade by counting how many students fall in each of the 4 ranges. Let’s
use the Histogram dialog and enter the obvious values:

The Histogram operation analyzes the source wave (scores), and puts the histogram result into a destina-
tion wave (studentsWithGrade).

Note: The Histogram operation does not produce a “bar chart”. For information on how to make a bar
chart, see Bars on page II-256, or Chapter II-13, Category Plots. Also see Graphing Histogram
Results on page III-131.

The first of the “bins” has been set manually to start at 0 and to count values up to (but not including) 25.
We expect the four bins to span the range of 0–100. The Histogram dialog created the needed
studentsWithGrade destination wave:
Make/N=4/D/O studentsWithGrade; DelayUpdate

and then used it in the Histogram operation:
Histogram/B={0,25,4} scores,studentsWithGrade

Let’s create a text wave of grades to plot studentsWithGrade versus a grade letter in a category plot:

100

80

60

40

20

0

S
co

re

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Student ID

 Two students scored 100

 One student scored 0

Chapter III-7 — Analysis

III-130

Make/O/T grades= {"D", "C", "B", "A"}
Display studentsWIthGrade vs grades
SetAxis/A/E=1 left

Everything looks good in the category plot. Let’s double-check that all the students made it into the bins:
•print sum(studentswithgrade)
 23

There are two missing students. They are ones who scored 100 on the test. The four bins we defined are actually:

The problem is that the test scores actually encompass 101 values, not 100. To include the perfect scores in
the last bin, we could add a small number such as 0.001 to the bin width:

The students who scored 25, 50 or 75 would be moved down one grade, however. Perhaps the best solution
is to add another bin for perfect scores:
Make/O/T grades= {"D", "C", "B", "A", "A+"}
Histogram/B={0,25,5} scores,studentsWithGrade

This example was intended to point out the care needed when choosing the histogram binning. Our
example used “manual binning”. The Histogram operation actually sets the binning in five ways:

Bin 1: 0 - 24.99999

Bin 2: 25 - 49.99999

Bin 3: 50 - 74.99999

Bin 4: 75 - 99.99999

Bin 1: 0 - 25.00999

Bin 2: 25.001 - 49.00199

Bin 3: 50.002 - 74.00299

Bin 4: 75.003 - 100.0399

Chapter III-7 — Analysis

III-131

These five options correspond to the radio buttons in the Histogram dialog:

Note: The option “Set from destination wave” is not available because the dialog Output Wave menu
is set to Make New Wave. To use Set from destination wave you must choose Existing Wave in
the Output Wave menu.

Histogram Caveats
You must create the destination wave, using the Make operation or the Histogram dialog, before computing
the histogram. Depending on how you want to set the histogram’s bins, you may need to set the X scaling
of the destination wave also, using the SetScale operation (see page V-640).

The Histogram operation does not distinguish between 1D waves and multidimensional waves. If you use
a multidimensional wave as the source wave, it will be analyzed as if the wave were one dimensional. This
may still be useful- you will get a histogram showing counts of the data values from the source wave as they
fall into bins.

If you would like to perform a histogram of 2D or 3D image data, you may want to use the ImageHistogram
operation (see page V-293), which supports specific features that apply to images only.

Graphing Histogram Results
Our example above displayed the histogram results as a category plot because the bins corresponded to text
values. Often histogram bins are displayed on a numeric axis. In this case you need to know how Igor dis-
plays a histogram result.

Bin Mode What It Does

Manual bins Sets number of points and X scaling of the destination (output) wave based on
parameters that you explicitly specify.

Auto-set bins Sets X scaling of destination wave to cover the range of values in the source wave.
Does not change the number of points (bins) in the destination wave. Thus, you
must set the number of destination wave points before computing the histogram.
When using the Histogram Dialog, if you select Make New Wave or Auto from the
Output Wave menu, the dialog must be told how many points the new wave should
have. It displays the Number of Bins box to let you specify the number.

Set bins from destination
wave

Does not change the X scaling or the number of points in the destination wave.
Thus, you need to set the X scaling and number of points of the destination
wave before computing the histogram.

When using the Histogram Dialog, the Set from destination wave radio button is
only available if you choose Select Existing Wave from the Output Wave menu.

Auto-set bins: 1+log2(N) Examines the input data and sets the number of bins based on the number of input
data points. Sets the bin range the same as if Auto-set bin range were selected.

Auto-set bins:
3.49*Sdev*N^-1/3

Examines the input data and sets the number of bins based on the number of
input data points and the standard deviation of the data. Sets the bin range the
same as if Auto-set bin range were selected.

Chapter III-7 — Analysis

III-132

For example, this histBins destination wave has 12 points (bins), the first bin starting at -3, and each bin is
0.5 wide. The X scaling is shown in the table:

When histBins is graphed in both bars and markers modes, it looks like this:

Note that the markers are positioned at the start of the bars. You can offset the marker trace by half the bin
width if you want them to appear in the center of the bin.

Alternatively, you can make a second histogram using the Bin-Centered X Values option:

15

10

5

0

3210-1-2-3

First bin ends just before x = -2.5

Last bin ends just before x=3

Last bin starts at x = 2.5

First bin starts at x = -3

8 source values >= -1 and < -0.5

Histogram /B={-3,0.5,12} data, histBins
(12 bins, each 0.5 X units wide)

Chapter III-7 — Analysis

III-133

Histogram Dialog
To use the Histogram operation, choose Histogram from the Analysis menu.

To use the “Manually set bins” or “Set from destination wave” bin modes, you need to decide the range of
data values in the source wave that you want the histogram to cover. You can do this visually by graphing the
source wave or you can use the WaveStats operation to find the exact minimum and maximum source values.

The dialog requires that you enter the starting bin value and the bin width. If you know the starting bin
value and the ending bin value then you need to do some arithmetic to calculate the bin width. One way to
do this is to click the To Cmd Line button and edit the Histogram command in Igor’s command line. For
example, if you want 12 bins from -3 to +3, you could execute
Histogram/B={-3, (3 - (-3))/12, 12} test, hist

A line of text at the bottom of the Destination Bins box tells you the first and last values, as well as the width
and number of bins. This information can help with trial-and-error settings.

If you use the “Manually set bins” or any of the “Auto-set” modes, Igor will set the X units of the destination
wave to be the same as the Y units of the source wave.

If you enable the Accumulate checkbox, Histogram does not clear the destination wave. Use this to accumu-
late results from several histograms in one destination. If you want to do this, don’t use the “Auto-set bins”
option since it makes no sense to change bins in mid-stream. Instead, use the “Set from destination wave”
mode. To use the Accumulate option, the destination wave must be double- or single-precision and real.

The “Bin-Centered X Values” and “Create Square Root(N) Wave” options are useful for curve fitting to a
histogram. If you do not use Bin-Centered X Values, any X position parameter in your fit function will be
shifted by half a bin width. The Square Root(N) Wave creates a wave that estimates the standard deviation
of the histogram data; this is based on the fact that counting data have a Poisson distribution. The wave
created by this option does not try to do anything special with bins having zero counts, so if you use the

The dialog creates a destination (“result”) wave for you, or select an existing wave.

When selected,
Igor adds to
destination wave
rather than
overwriting it.

Select a single
source wave.

Makes a wave called W_SqrtN, which is used for weighting during a curve fit to a histogram.

Divides the counts
in each bin by a
factor such that
the area of the
histogram is 1.0.

For manual binning,
or when Auto or
Make New Wave is
selected in the
Output Wave menu.

These are used for
manual binning only.

Chapter III-7 — Analysis

III-134

square root(N) wave to weight a curve fit, these zero-count bins will be excluded from the fit. You may need
to replace the zeroes with some appropriate value.

The binning modes were added in Igor Pro. In earlier versions of Igor, the accumulate option had two effects:
• Did not clear the destination wave.
• Effectively used the “Set bins from destination wave” mode.

To maintain backward compatibility, the Histogram operation still behaves this way if the accumulate
(“/A”) flag is used and no bin (“/B”) flag is used. This dialog always generates a bin flag. Thus, the accumu-
late flag just forces accumulation and has no effect on the binning.

You can use the Histogram operation on multidimensional waves but they are treated as though the data
belonged to a single 1D wave. If you are working with 2D or 3D waves you may prefer to use the Image-
Histogram operation (see page V-293), which computes the histogram of one layer at a time.

Histogram Example
The following commands illustrate a simple test of the histogram operation.
Make/N=1024 noise = gnoise(1) // make raw data
Make hist // make destination for histogram
Histogram/B={-3, (3 - -3)/100, 100} noise, hist // do histogram
Display hist; Modify mode(hist)=1

These commands produce the following graph.

Curve Fitting to a Histogram
By default, a histogram wave has the X scaling set such that an X value gives the value at the left end of a
bin. Usually if you are going to fit a curve to a histogram, you want centered X values. You can change the
X scaling to centered values with this command:
setscale/P x leftx(hist)+deltax(hist)/2, deltax(hist),hist

In this command, hist is the name of a wave containing a histogram. Substitute whatever name your wave has.

It is easier to simply use the option to have the Histogram operation produce output with bin-centered X
values. Using the example from the previous section, add the /C flag:
Histogram/C/B={-3, (3 - -3)/100, 100} noise, hist // do histogram

Because the values in the source wave are Gaussian deviates generated by the gnoise function, the histo-
gram should have the familiar Gaussian bell-shape. You can estimate the characteristics of the population
the samples were taken from by fitting a Gaussian curve to the data. First try fitting a Gaussian curve to the
example histogram:
CurveFit gauss hist /D // curve fit to histogram

Chapter III-7 — Analysis

III-135

The solution from the curve fit was (if you try this example on your computer, the results will be somewhat
different because the random noise added by gnoise will be different):

y0 = -0.19106 ± 0.78
 A = 24.618 ± 0.871
 x0 = -0.037059 ± 0.031
 width = 1.4361 ± 0.0748

Note that the peak position (x0) is shifted approximately half a bin below zero. Since the gnoise() function
produces random numbers with mean of zero, we would expect x0 to be close to zero. The shifted value of
x0 is a result of Igor’s way of storing the X values for histogram bins. Setting the X value to the left edge is
good for displaying a bar chart, but bad for curve fitting.

One solution to the problem is simply to correct the curve fit result after the fact:
W_coef[2] += 0.03 // add half a bin width to the peak position

This solution has many drawbacks, including the fact that the fit curve on the graph is still wrong because
it was calculated using the uncorrected value of x0.

Another solution is to use the bin-centered X value option before doing the curve fit, as was done above:
Histogram/C/B={-3, (3 - -3)/100, 100} noise, hist // do histogram
CurveFit gauss hist /D // curve fit to histogram

The result of the curve fit is closer to what we expect:
y0 = -0.19106 ± 0.78

 A = 24.618 ± 0.871
 x0 = -0.0070593 ± 0.031
 width = 1.4361 ± 0.0748

But this shifts the trace showing the histogram by half a bin on the graph. If the trace is displayed using
markers or dots, this may be what is desired, but if you have used bars, the display is incorrect.

Another possibility is to make an X wave to go with the histogram data. This X wave would contain X
values shifted by half a bin. Use this X wave as input to the curve fit, but don’t use it on the graph:
Duplicate hist, hist_x
hist_x = x + deltax(hist)/2
CurveFit gauss hist /X=hist_x/D

Use this method to graph the original histogram wave without modifying the X scaling, so a graph using bars is
correct. It also gives a curve fit that uses the center X values, giving the correct x0. You could also use the Histo-
gram operation twice, once with the /C flag to get bin-centered X values, and once without to get the shifted X
scaling appropriate for bars. Both methods have the drawback of creating an extra wave that you must track.

There is one last refinement to curve fitting to a histogram. Since the histogram represents counts, the
values in a histogram should have uncertainties described by a Poisson distribution. The standard devia-
tion of a Poisson distribution is equal to the square root of the mean, which implies that the estimated error
of a histogram bin depends on the magnitude of the value. This, in turn, implies that the errors are not con-
stant and a curve fit will give a biased solution.

30

25

20

15

10

5

0

-3 -2 -1 0 1 2

Chapter III-7 — Analysis

III-136

The correct solution is to use a weighting wave; use the /N flag with the Histogram operation to get the
appropriate wave. This example makes a new data set using gnoise to make gaussian-distributed values,
makes a histogram with bin-centered X values and the appropriate weighting wave, and then does two
curve fits, one without weighting and one with:
Make/N=1024 gdata=gnoise(1)
Make/N=20/O gdata_Hist
Histogram/C/N/B=4 gdata,gdata_Hist
Display gdata_Hist
ModifyGraph mode=3,marker=8
CurveFit gauss gdata_Hist /D
CurveFit gauss gdata_Hist /W=W_SqrtN /I=1 /D

Note the “/W=W_SqrtN /I=1” addition to the second CurveFit command; this adds the weighting using
the weighting wave created by the Histogram operation. Also, /B=4 was used to have the Histogram oper-
ation set the number of bins and bin range appropriately for the input data.

The results from the unweighted fit:
y0 =-3.3383 ± 2.98
A =133.26 ± 3.51
x0 =0.024088 ± 0.0252
width=1.5079 ± 0.0578

And from the weighted fit:
y0 =0.33925 ± 0.804
A =135.21 ± 5.25
x0 =0.0038416 ± 0.031
width=1.3604 ± 0.0405

Computing a Histogram with Logarithmic Bins
Analysis Programming on page III-144 describes how you can compute a histogram with logarithmic bins.
The built-in Histogram operation can not do this.

Computing an “Integrating” Histogram
In a histogram, each bin of the destination wave contains a count of the number of occurrences of values in
the source that fell within the bounds of the bin. In an integrating histogram, instead of counting the occur-
rences of a value within the bin, we add the value itself to the bin. When we’re done, the destination wave
contains the sum of all values in the source which fell within the bounds of the bin.

Igor comes with an example experiment called “Integrating Histogram” that illustrates how to do this with
a user function. This experiment is in the “Examples:Analysis” folder.

Sorting
The Sort operation (see page V-659) sorts one or more 1D numeric or text waves in ascending or descending
order.

The Sort operation is often used to prepare a wave or an XY pair for subsequent analysis. For example, the
interp function assumes that the X input wave is monotonic.

There are other sorting-related operations: MakeIndex and IndexSort. These are used in rare cases and are
described the section MakeIndex and IndexSort Operations on page III-139. Also see the SortList opera-
tion (page V-660).

To use the Sort operation, choose Sort from the Analysis menu.

Chapter III-7 — Analysis

III-137

The sort key wave controls the reordering of points. However, the key wave itself is not reordered unless
it is also selected as a destination wave in the “Waves to Sort” list.

The number of points in the destination wave or waves must be the same as in the key wave. When you
select a wave from the dialog’s Key Wave list, Igor shows only waves with the same number of points in
the Waves to Sort list.

The key wave can be a numeric or text wave, but it must not be complex. The destination wave or waves can
be text, real or complex except for the MakeIndex operation in which case the destination must be text or real.

The number of destination waves is limited by the 400 character limit in Igor’s command buffer. To sort a
very large number of waves, use several Sort commands in succession, being careful not to sort the key
wave until the very last.

Simple Sorting
In the simplest case, you would select a single wave as both the source and the destination. Then, Sort
would merely sort that wave.

If you want to sort an XY pair such that the X wave is in order, you would select the X wave as the source
and both the X and Y waves as the destination.

Sorting to Find the Median Value
The following user-defined function illustrates a simple use of the Sort operation to find the median value
of a wave.
Function/D Median(w, x1, x2) // Returns median value of wave w

Wave w
Variable x1, x2 // range of interest

Variable result

Duplicate/R=(x1,x2) w, tempMedianWave // Make a clone of wave
Sort tempMedianWave, tempMedianWave // Sort clone
SetScale/P x 0,1,tempMedianWave
result = tempMedianWave((numpnts(tempMedianWave)-1)/2)
KillWaves tempMedianWave

The values in the
selected wave(s)
will be reordered.

Select to list only
those waves in the
top graph or table.

Select a single (key)
wave. Wave(s) are
sorted by this
wave’s values.

Select Sort,
MakeIndex, or
IndexSort. Usually
all you need is Sort.

Select to do descending
sort, deselect to do
ascending sort.

Chapter III-7 — Analysis

III-138

return result
End

We used the name tempMedianWave rather than just temp to minimize the chance of a conflict. It is possi-
ble that a procedure in the chain of procedures leading to Median has created a wave named temp.

It is easier and faster to use the StatsMedian operation (page V-722) to find the median value in a wave.

Multiple Sort Keys
If the key wave has two or more identical values, you may want to use a secondary source to determine the
order of the corresponding points in the destination. This requires using multiple sort keys. The Sorting
dialog does not provide a way to specify multiple sort keys but the Sort operation does. Here is an example
demonstrating the difference between sorting by single and by multiple keys. Notice that the sorted wave
(tdest) is a text wave, and the sort keys are text (tsrc) and numeric (nw1):
Make/O/T tsrc={"hello","there","hello","there"}
Duplicate/O tsrc,tdest
Make nw1= {3,5,2,1}
tdest= tsrc + " " + num2str(nw1)
Edit tsrc,nw1,tdest

Single-key text sort:
Sort tsrc,tdest // nw1 not used

Execute this to scramble tdest again:
tdest= tsrc + " " + num2str(nw1)

Execute this to see a two key sort (nw1 breaks ties):
Sort {tsrc,nw1},tdest

The reason that “hello 3” sorts after “hello 2” is because nw1[0] = 3 is greater than nw1[2] = 2.

You can sort by more than two keys by specifying more than two waves inside the braces.

Sorting Text
You can sort text waves with the Sort operation or the Sorting dialog. See Multiple Sort Keys on page
III-138 for an example.

By default, text sorting is case-insensitive; “hello” sorts equally with “HELLO”. You can make the sorting
case-sensitive by adding the /C flag to the generated command. If you use the Sorting dialog, use the To
Cmd Line button, and type /C after Sort in the generated command.

Chapter III-7 — Analysis

III-139

MakeIndex and IndexSort Operations
The MakeIndex and IndexSort operations are infrequently used. You will normally use the Sort operation.

Applications of MakeIndex and IndexSort include:
• Sorting large quantities of data
• Sorting individual waves from a group one at a time
• Accessing data in sorted order without actually rearranging the data
• Restoring data to the original ordering

The MakeIndex operation creates a set of index numbers. IndexSort can then use the index numbers to rearrange
data into sorted order. Together they act just like the Sort operation but with an extra wave and an extra step.

The advantage is that once you have the index wave you can quickly sort data from a given set of waves at
any time. For example, if you have hundreds of waves you can not use the normal sort operation on a single
command line. Also, when writing procedures it is more convenient to loop through a set of waves one at
a time than to try to generate a single command line with multiple waves. This is particularly true when not
all waves from a given set will fit into memory at one time.

You can also use the index values to access data in sorted order without using the IndexSort operation. For
example, if you have data and index waves named wave1 and wave1index, you can access the data in
sorted order on the right hand side of a wave assignment like so:
wave1[wave1index[p]]

If you create an index wave, you can undo a sort and restore data to the original order. To do this, simply
use the Sort operation with the index wave as the source.

To understand the MakeIndex operation, consider that the following commands
Duplicate data1,data1index
MakeIndex data1,data1index

are identical in effect to
Duplicate data1,data1index
data1index= P
Sort data1,data1index

Like the Sort operation, the MakeIndex operation can handle multiple sort keys.

Decimation
If you have a large data set it may be convenient to deal with a smaller but representative number of points.
In particular, if you have a graph with hundreds of thousands of points, it probably takes a long time to
draw or print the graph. You can probably do without many of the data points without altering the graph
much. Decimation is one way to accomplish this.

There are at least two ways to decimate data:
1. Keep only every nth data value. For example, keep the first value, discard 9, keep the next, discard

9 more, etc. We call this Decimation by Omission (see page III-139).
2. Replace every nth data value with the result of some calculation such as averaging or filtering. We

call this Decimation by Smoothing (see page III-140).

Decimation by Omission
To decimate by omission, create the smaller output wave and use a simple assignment statement (see Waveform
Arithmetic and Assignments on page II-94) to set their values. For example, If you are decimating by a factor
of 10 (omitting 9 out of every 10 values), create an output wave with 1/10th as many points as the input wave.

Chapter III-7 — Analysis

III-140

For example, make a 1000 point test input waveform:
Make/O/N=1000 wave0
SetScale x 0, 5, wave0
wave0 = sin(x) + gnoise(.1)

Now, make a 100 point waveform to contain the result of the decimation:
Make/O/N=100 decimated
SetScale x 0, 5, decimated // preserve the x range
decimated = wave0[p*10] // for(p=0;p<100;p+=1) decimated[p]= wave0[p*10]

Decimation by omission can be obtained more easily using the Resample operation and dialog by using an
interpolation factor of 1 and a decimation factor of (in this case) 10, and a filter length of 1.
Duplicate/O wave0, wave0Resampled
Resample/DOWN=10/N=1 wave0Resampled

Note: Before Igor 6.01, the minimum filter length was 3. For backwards compatibility with Igor 6.0 you must
instead use /N=3 and a window type whose first and last values are 0 and whose middle value is 1.
Most windows do this, including the default Hanning and the Bartlett windows; /WINF=None
doesn’t. The result is the same as if /N=1 were specified with Igor 6.01 or later.

Resample/DOWN=10/N=3 wave0Resampled // Works with Igor 6.0 and 6.01 or later

Decimation by Smoothing
While decimation by omission completely discards some of the data, decimation by smoothing combines
all of the data into the decimated result. The smoothing can take many forms: from simple averaging to
various kinds of lowpass digital filtering.

The simplest form of smoothing is averaging (sometimes called “boxcar” smoothing). You can decimate by aver-
aging some number of points in your original data set. If you have 1000 points, you can create a 100 point repre-
sentation by averaging every set of 10 points down to one point. For example, make a 1000 point test waveform:
Make/O/N=1000 wave0
SetScale x 0, 5, wave0
wave0 = sin(x) + gnoise(.1)

Now, make a 100 point waveform to contain the result of the decimation:
Make/O/N=100 wave1
SetScale x 0, 5, wave1
wave1 = mean(wave0, x, x+9*deltax(wave0))

Notice that the output wave, wave1, has one tenth as many points as the input wave.

The averaging is done by the waveform assignment
wave1 = mean(wave0, x, x+9*deltax(wave0))

This evaluates the right-hand expression 100 times, once for each point in wave1. The symbol “x” returns
the X value of wave1 at the point being evaluated. The right-hand expression returns the average value of
wave0 over the segment that corresponds to the point in wave1 being evaluated.

1.0

0.0

-1.0

543210

-1.0

0.0

1.0

43210

wave0

wave1

Chapter III-7 — Analysis

III-141

It is essential that the X values of the output wave span the same range as the X values of the input range.
In this simple example, the SetScale commands satisfy this requirement.

There is a WaveMetrics-supplied macro for decimation. To use it, include the “Decimation” file. The
Include Statement on page IV-149 describes how to include a procedure file.

Results similar to the example above can be obtained more easily using the Resample operation (page
V-595) and dialog.

Resample is based on a general sample rate conversion algorithm that optionally interpolates, low-pass fil-
ters, and then optionally decimates the data by omission. The lowpass filter can be set to “None” which
averages an odd number of values centered around the retained data points. So decimation by a factor of
10 would involve averaging 11 values centered around every 10th point.

The decimation by averaging above can be changed to be 11 values centered around the retained data point
instead 10 values from the beginning of the retained data point this way:
Make/O/N=100 wave1Centered
SetScale x 0, 5, wave1Centered
wave1Centered = mean(wave0, x-5*deltax(wave0), x+5*deltax(wave0))

Each decimated result (each average) is formed from different values than wave1 used, but it isn’t any less
valid as a representation of the original data.

Using the Resample operation:
Duplicate/O wave0, wave2
Resample/DOWN=10/WINF=None/N=11 wave2 // no /UP means no interpolation

gives nearly identical results to the wave1Centered = mean(…) computation, the exceptions being only the
initial and final values, which are simple end-effect variations.

The /WINF and /N flags of Resample define simple low-pass filtering options for a variety of decimation-
by-smoothing choices. The default /WINF=Hanning window gives a smoother result than /WINF=None.
See the WindowFunction operation (page V-829) for more about these window options.

Miscellaneous Operations

WaveTransform
When working with large amounts of data (many waves or multiple large waves), it is frequently useful to
replace various wave assignments with wave operations which execute significantly faster. The Wave-
Transform operation (see page V-823) is designed to help in these situations. For example, to flip the data
in a 1D wave you can execute the following code:

Function flipWave(inWave)
wave inWave

Variable num=numPnts(inWave)
Variable n2=num/2
Variable i,tmp
num-=1
Variable j
for(i=0;i<n2;i+=1)

tmp=inWave[i]
j=num-i
inWave[i]=inWave[j]
inWave[j]=tmp

endfor
End

Chapter III-7 — Analysis

III-142

You can obtain the same result (about 250 times faster) using the command
WaveTransform/O flip waveName

In addition to “flip”, WaveTransform can also fill a wave with point index or the inverse point index, shift
data points, normalize, convert to complex-conjugate, compute the squared magnitude or the phase, etc.

Compose Expression Dialog
The Compose Expression item in the Analysis menu brings up the Compose Expression dialog.

This dialog generates a command that sets the value of a wave, variable or string based on a numeric or
string expression created by pointing and clicking. Any command that you can generate using the dialog
could also be typed directly into the command line.

The command that you generate with the Compose Expression dialog consists of three parts: the destina-
tion, the assignment operator and the expression. The command resembles an equation and is of the form:
<destination> <assignment-operator> <expression>

For example:
wave1 = K0 + wave2 // a wave assignment command
K0 += 1.5 * K1 // a variable assigment command
str1 = "Today is" + date() // a string assignment command

Table Selection Item
The Destination Wave pop-up menu contains a “_table selection_” item. When you choose “_table
selection_”, Igor assigns the expression to whatever is selected in the table. This could be an entire wave or
several entire waves, or it could be a subset of one or more waves.

To use this feature, start by selecting in a table the numeric wave or waves to which you want to assign a
value. Next, choose Compose Expression from the Analysis menu. Choose “_table selection_” in the Desti-
nation Wave pop-up menu. Next, enter the expression that you want to assign to the waves. Notice the
command that Igor has created which is displayed in the command box toward the bottom of the dialog. If
you have selected a subset of a wave, Igor will generate a command for that part of the wave only. Finally,
click Do It to execute the command.

Create Formula Checkbox
The Create Formula checkbox in the Compose Expression dialog generates a command using the := operator
rather than the = operator. The := operator establishes a dependency such that, if a wave or variable on the right
hand side of the assignment statement changes, Igor will reassign values to the destination (left hand side). We
call the right hand side a formula. Chapter IV-9, Dependencies, provides details on dependencies and formulas.

3. Compose the right-
hand expression.

4. Click to test the
expression. If there
is an error, Igor will
display an alert.

The Insert pop-up menus
insert object names and
functions here.

1. Select the wave, numeric
variable or string variable
to be set.

2. Select an assignment
operator.

Chapter III-7 — Analysis

III-143

Matrix Math Operations
There are three basic methods for performing matrix calculations: normal wave expressions, the
matrixXXX operations, and the MatrixOp operation.

Normal Wave Expressions
You can add matrices to other matrices and scalars using normal wave expressions. You can also multiply
matrices by scalars. For example:
Make matA={{1,2,3},{4,5,6}}, matB= {{7,8,9},{10,11,12}}
matA= matA+0.01*matB

gives new values for
matA ={{1.07,2.08,3.09},{4.1,5.11,6.12}}

matrixXXX Operations
A number of matrix operations are implemented in Igor; most have names starting with the word “matrix”.
For example, you can multiply a string of matrices (and column and row vectors) using the MatrixMultiply
operation (page V-425). This operation. The /T flag allows you to specify that a given matrix’s data should
be transposed before being used in the multiplication.

Many of Igor’s matrix operations use the LAPACK library. To learn more about LAPACK see:
LAPACK Users’ Guide, 3rd ed., SIAM Publications, Philadelphia, 1999.
or the LAPACK web site:

http://www.netlib.org/lapack/lug/lapack_lug.html

Unless noted otherwise, LAPACK routines support real or complex, IEEE single and double precision
matrix waves. Most matrix operations create the variable V_flag and set it to zero if the operation is success-
ful. If the flag is set to a negative number it indicates that one of the parameters passed to the LAPACK rou-
tines is invalid. If the flag value is positive it usually indicates that one of the rows/columns of the input
matrix caused the problem.

MatrixOp Operation
The MatrixOp operation (page V-425) improves the execution efficiency and simplifies the syntax of matrix
expressions. For example, the expression
MatrixOp matA = (matD - matB x matC) x matD

is equivalent to matrix multiplications and subtraction following standard precedence rules.

Matrix Commands
Here are the matrix math operations and functions. For full documentation, see Chapter V-1, Igor Reference.
General:
MatrixConvolve coefMatrix, dataMatrix
MatrixCorr [flags] waveA [, waveB]
MatrixDet(matrixA)
MatrixDot(waveA, waveB)
MatrixFilter [flags] Method dataMatrix
MatrixMultiply matrixA[/T], matrixB[/T] [, additional matrices]
MatrixOp [/O] destwave = matrixExpression
MatrixRank(matrixA [, maxConditionNumber])
MatrixTrace(matrixA)
MatrixTranspose [/H] matrix

EigenValues, eigenvectors and decompositions:
MatrixEigenV [flags] matrixWave

http://www.netlib.org/lapack/lug/lapack_lug.html

Chapter III-7 — Analysis

III-144

MatrixInverse [flags] srcWave
MatrixLUD matrixA
MatrixSchur [/Z] srcMatrix
MatrixSVD matrixA

Linear equations and least squares:
MatrixGaussJ matrixA, vectorsB
MatrixLinearSolve [flags] matrixA matrixB
MatrixLLS [flags] matrixA matrixB
MatrixLUBkSub matrtixL, matrixU, index, vectorB
MatrixSolve method, matrixA, vectorB
MatrixSVBkSub matrixU, vectorW, matrixV, vectorB

Macintosh and LAPACK Library
Any matrix operation that uses the LAPACK library will use Apple’s veclib implementation if it is avail-
able. On computers that include Velocity Engine, single-precision matrix operations may use the Velocity
Engine. It is possible to disable use of veclib using the SetIgorOption operation (see page V-638):
SetIgorOption UseVeclib=[1 or 0 or ?]

Analysis Programming
This section contains data analysis programming examples. There are many more examples in the Wave-
Metrics Procedures, Igor Technical Notes, and Sample Experiments folders.

Passing Waves to User Functions and Macros
As you look through various examples you will notice two different ways to pass a wave to a function:
using a Wave parameter or using a String parameter.

The string method is used in macros and in user functions for passing the name of a wave that the function
is to create or for passing the base name of a family of waves. The wave parameter method is used in user
functions when the wave will always exist before the function is called. For details, see Accessing Waves
in Functions on page IV-66.

Returning Created Waves from User Functions
A function can return only a number or string, not a wave. But functions can return the name (or better, the
full path) of the created wave(s). See also Accessing Waves in Functions on page IV-66.

A function that creates a single wave can be defined as a string function that returns the path to the created
wave. The calling routine uses that string to refer to the wave:

Function CallingFunction()
String pathToWave= fCreateANoiseWave(5)
WAVE w = $pathToWave
WaveStats w
Print NameOfWave(w) // Prints (only) the name of the created wave

End

Using a Wave Parameter Using a String Parameter

Function Test1(w)
Wave w

Function Test2(wn)
String wn

Usable in functions, not in macros. Usable in functions and macros.

w is a “formal” name. Use it just as if it were the
name of an actual wave.

Use the $ operator to convert from a string to wave
name.

Chapter III-7 — Analysis

III-145

Function/S fCreateANoiseWave(noiseValue)
Variable noiseValue

Make/O theNoiseWave= gnoise(noiseValue) // The same name, or pass a name
return GetWavesDataFolder(theNoiseWave,2) // String is full path to wave

End

To return paths to more than one wave, use Pass-By-Reference on page IV-45:
Function CallingFunction()

String pw1, pw2
pbrCreateTwoNoiseWaves(5,3,pw1,pw2)
WAVE w1 = $pw1
WAVE w2 = $pw2

End

Function/S pbrCreateTwoNoiseWaves(noise1,noise2,path1,path2)
Variable noise1, noise2 // Inputs
String &path1, &path2 // Outputs (pass-by-reference ala Fortran)

Make/O noiseWave1= gnoise(noise1)
path1= GetWavesDataFolder(noiseWave1,2)

Make/O noiseWave2= gnoise(noise2)
path1= GetWavesDataFolder(noiseWave2,2)

return 0 // Or some other useful value
End

Returning Created Waves from Macros
A Macro or Proc can not return any value and functions can return only a number or string, so how can you
write one that passes back to the calling routine a wave created in the subroutine?

For a macro, you’ll need to take advantage of the fact that waves are global objects with names. Pass to the
subroutine a name parameter to be used to create the wave. The calling routine then knows what the name
of the created wave is because it supplied the name:
Macro CallingRoutine()

String name="noiseWave"
CreateANoiseWave(name,5)
WaveStats $name

End

Proc CreateANoiseWave(name,noiseValue)
String name // Create a wave with this name
Variable noiseValue // with this much noise

Make/O $name= gnoise(noiseValue)
End

If CreateANoiseWave needs to create more than one wave, pass more than one name parameter. This tech-
nique can also be used by functions as in the WavesAverage Example on page III-148.

A method that works (but is bug-prone) is to just document the name of the wave created by the called
routine and use that name in the calling routines. The problem with that is when you change the name of
the created wave you need to update each calling routine.

Writing Functions that Process Waves
The user function is a powerful, general-purpose analysis tool. You can do practically any kind of analysis.
However, complex analyses require programming skill and patience.

It is useful to think about an analysis function in terms of its input parameters, its return value and any side
effects it may have. By return value, we mean the value that the function directly returns. For example, a
function might return a mean or an area or some other characteristic of the input. By side effects, we mean

Chapter III-7 — Analysis

III-146

changes that the function makes to any objects. For example, a function might change the values in a wave
or create a new wave.

This table shows some of the common types of analysis functions.

It is also possible to write an analysis function that has both a meaningful return value and side effects.

The following example functions are intended to show you the general form for some common analysis
function types. We have tried to make the examples useful while keeping them simple.

WaveSum Example
Input: Source wave
Return value: Number
Side effects: None

// WaveSum(w)
// Returns the sum of the entire wave, just like Igor’s sum function.
Function WaveSum(w)

Wave w

Variable i, n=numpnts(w), total=0
for(i=0;i<n;i+=1)

total += w[i]
endfor

return total
End

To use this, you would execute something like
Print "The sum of wave0 is:", WaveSum(wave0)

RemoveOutliers Example
Input: Source wave
Return value: Number
Side effects: Source wave is modified

Often a user function used for number-crunching needs to loop through each point in an input wave. The
following example illustrates this.
// RemoveOutliers(theWave, minVal, maxVal)
// Removes all points in the wave below minVal or above maxVal.
// Returns the number of points removed.
Function RemoveOutliers(theWave, minVal, maxVal)

Wave theWave
Variable minVal, maxVal

Input Parameters Return Value Side Effects Example Function

A source wave A number None WaveArea

A source wave Not used The source wave is modified RemoveOutliers

A source wave String A new destination wave is created LogRatio

A source wave and a destination
wave

Not used The destination wave is modified

The base name of a family of
waves

A number None WavesMax

The base name of a family of
waves

String One or more new waves are
created

WavesAverage

Chapter III-7 — Analysis

III-147

Variable i, numPoints, numOutliers
Variable val
numOutliers = 0
numPoints = numpnts(theWave) // number of times to loop

for (i = 0; i < numPoints; i += 1)
val = theWave[i]
if ((val < minVal) || (val > maxVal)) // is this an outlier?

numOutliers += 1
else // if not an outlier

theWave[i - numOutliers] = val // copy to input wave
endif

endfor

// Truncate the wave
DeletePoints numPoints-numOutliers, numOutliers, theWave
return numOutliers

End

To test this function, try the following commands.
Make/O/N=10 wave0= gnoise(1); Edit wave0
Print RemoveOutliers(wave0, -1, 1), "points removed"

RemoveOutliers uses the for loop to iterate through each point in the input wave. It uses the built-in
numpnts function to find the number of iterations required and the local variable p as the loop index. This
is a very common practice.

The line “if ((val < minVal) || (val > maxVal))” decides whether a particular point is an outlier.
|| is the logical OR operator. It operates on the logical expressions “(val < minVal)” and “(val >
maxVal)”. This is discussed in detail under Bitwise and Logical Operators on page IV-33.

To use the WaveMetrics-supplied RemoveOutliers function, include the Remove Points.ipf procedure file:
#include <Remove Points>

See The Include Statement on page IV-149 for instructions on including a procedure file.

LogRatio Example
Input: Source waves
Return value: String
Side effects: Destination wave created

// LogRatio(source1, source2)
// Creates a new wave that is the log of the ratio of input waves.
// Returns full path to destination wave as a string.
Function/S LogRatio(source1, source2)

Wave source1, source2

String destName = NameOfWave(source1) + "_" + NameOfWave(source2)
destName = CleanupName(destName,1) // obey name length limitation

Duplicate/O source1, $destName
WAVE dest = $destName
dest = log(source1/source2)
return GetWavesDataFolder(dest,2) // string is full path to wave

End

To use this in a macro, you would execute something like
Display $LogRatio(wave0, wave1)

To use this in a function, you would execute something like
String pathToWave= LogRatio(wave0, wave1)
Display $pathToWave

Chapter III-7 — Analysis

III-148

The “Wave dest = $destName” line creates a local wave reference which refers to the wave whose name
is in the destName string variable. This is necessary because “$destName = <expression>” is not
allowed in user functions.

This simple function illustrates two commonly used techniques.

The first technique is the algorithmic derivation of a destination wave name based on a source wave name.
The algorithm used here is to concatenate the two wave names. This could result in a name longer than the
31 character wave name limit, which is corrected here by the CleanupName function (see page V-56). A
better function would check for this and use an alternate name if necessary. Another common algorithm is
to derive the destination wave name by appending a suffix to the source wave name.

The second technique is the use of Duplicate/O to generate a destination wave. Using Duplicate guarantees
that the destination wave has the same number of points, precision, and scaling as the source wave. Using
/O (overwrite) prevents an error if the destination wave already exists.

WavesMax Example
Input: Base name
Return value: Number
Side effects: None

// WavesMax(baseName)
// Returns the maximum value in all waves whose names start with
// the specified base name.
Function WavesMax(baseName)

String baseName

String wn // contains the name of a particular wave
String wl // contains a list of wave names
Variable theMax
Variable index=0

// get list of waves whose names start with baseName
wl = WaveList(baseName+"*", ";", "")

theMax = -INF
do

wn = StringFromList(index, wl, ";") // get next wave
if (strlen(wn) == 0) // no more names in list?

break // break out of loop
endif
WaveStats/Q $wn // WaveStats finds max value
theMax = max(V_max, theMax) // and puts it in V_max
index += 1

while (1) // do unconditional loop

return theMax
End

This function illustrates the common technique of iterating through a list of waves.

WavesAverage Example
Input: Base name
Return value: String
Side effects: Creates destination wave

// WavesAverage(baseName, destName)
// Produces a new wave, each point of which contains the average of the
// corresponding points of a number of source waves.
// All waves whose name starts with the specified base name are source waves.
// This function assumes that all waves that start with the base name have
// the same number of points and that there is at least one such wave.

Chapter III-7 — Analysis

III-149

// Returns full path to destination wave as a string.
Function/S WavesAverage(baseName, destName)

String baseName // name for source wave
String destName // name for destination wave

String wn // contains the name of a particular wave
String wl // contains a list of wave names
Variable index=0

// get list of waves whose names start with baseName
wl = WaveList(baseName+"*", ";", "")

// Make destination wave based on the first source wave
wn = StringFromList(0, wl)
Duplicate/O $wn, $destName

WAVE dest = $destName // create wave reference for destination
dest = 0

do
wn = StringFromList(index, wl) // get next wave
if (strlen(wn) == 0) // no more names in list?

break // break out of loop
endif
WAVE source = $wn // create wave reference for source
dest += source // add source to dest
index += 1

while (1) // do unconditional loop

dest /= index // divide by number of waves
return GetWavesDataFolder(dest,2)// string is full path to wave

End

The name of the destination wave is passed in as a parameter. A wave with that name is created using
Duplicate. We iterate through the list of waves using the StringFromList operation (see page V-760). We
need to use WAVE references for both the source waves and the destination wave because of the limitations
on the use of the $ operator in a function.

Finding the Mean of Segments of a Wave
An Igor user who considers each of his waves to consist of a number of segments with some number of
points in each segment asked us how he could find the mean of each of these segments. We wrote the Find-
SegmentMeans function to do this.
Menu "Macros"
 "Find Segment Means", FindSegmentMeans()
End

Function FindSegmentMeans()
String source // name of wave that we want to analyze
Variable n // number of points in each segment
Prompt source, "Source wave", popup WaveList("*", ";", "")
Prompt n, "Number of points in each segment"
DoPrompt "Find Segment Means", source,n

SegmentMeans($source, n)
End

Function/S SegmentMeans(source, n)
Wave source
Variable n

Chapter III-7 — Analysis

III-150

String dest // name of destination wave
Variable segment, numSegments
Variable startX, endX, lastX

dest = NameOfWave(source)+"_m" // derive name of dest from source
numSegments = trunc(numpnts(source) / n)
if (numSegments < 1)

DoAlert 0, "Destination must have at least one point"
return ""

endif
Make/O/N=(numSegments) $dest
WAVE destw = $dest
lastX = pnt2x(source, numpnts(source)-1)

for (segment = 0; segment < numSegments; segment += 1)
startX = pnt2x(source, segment*n) // start X for segment
endX = pnt2x(source, (segment+1)*n - 1)// end X for segment
// this handles case where numpnts(source)/n is not an integer
endX = min(endX, lastX)
destw[segment] = mean(source, startX, endX)

endfor
return GetWavesDataFolder(destw,2)// string is full path to wave

End

This diagram illustrates a source wave with three ten-point segments and a destination wave that will
contain the mean of each of the source segments. The macro makes the destination wave.

To test FindSegmentMeans, try the following commands.
Make/N=100 wave0=p+1; Edit wave0
FindSegmentMeans(wave0,10)
Append wave0_m

The loop index is the variable “segment”. It is the segment number that we are currently working on, and
also the number of the point in the destination wave to set.

Using the segment variable, we can compute the range of points in the source wave to work on for the
current iteration: segment*n up to (segment+1)*n - 1. Since the mean function takes arguments in terms of
a wave’s X values, we use the pnt2x function to convert from a point number to an X value.

We wrote this in three parts: two functions and a menu definition. The FindSegmentMeans function uses
Prompt statements along with DoPrompt to make a simple dialog for entering the parameters for the function.
Users of previous versions of Igor will recognize that this capability used to be available only in macros.

The SegmentMeans function does the actual work. The two functions are partitioned this way so that you
can call SegmentMeans in another function or on the command line without having to use the dialog.

Finally, the menu definition makes an entry in the Macros menu so that it is convenient to invoke the dialog.

If it is guaranteed that the number of points in the source wave is an integral multiple of the number of
points in a segment, then the function can be speeded up and simplified by using a waveform assignment
statement in place of the loop. Here is the statement.
destw = mean(source, pnt2x(source,p*n), pnt2x(source,(p+1)*n-1))

Destination wave

segment 2segment 1segment 0

Source wave, three 10 point segments

Chapter III-7 — Analysis

III-151

The variable p, which Igor automatically increments as it evaluates successive points in the destination
wave, takes on the role of the segment variable used in the loop. Also, the startX, endX and lastX variables
are no longer needed.

Using the example shown in the diagram, p would take on the values 0, 1 and 2 as Igor worked on the des-
tination wave. n would have the value 10.

Computing a Logarithmic Histogram
The built-in Histogram operation always uses bins of equal width. Here is some code that uses logarithmic bins.

This code is split into two user functions, LogHist and DoLogHist, using the same organization that we
used for the previous example. The function LogHist calls DoLogHist to do the low-level, point-by-point
computations. LogHist supplies a graphical user interface using Prompt and DoPrompt, while the
DoLogHist function can be called from a user function without invoking a dialog. The menu definition pro-
vides a convenient way to invoke the LogHist function.

LogHist produces two destination waves - an XY pair. The X wave holds the coordinates of the start of the
bins and the Y wave holds the counts. The waves are named using the name of the source wave with “_hx”
and “_hy” suffixes.
#pragma rtGlobals=1 // Use modern global access method.

Menu "Analysis"
"Log Histogram...", LogHist()

End

// DoLogHist(sw, dwX, dwY, startX, logDeltaX)
// Creates the logarithmic histogram of the source wave by summing the
// appropriate numbers into the destination y wave.
// sw is the source wave.
// dwX is the destination x wave.
// dwY is the destination y wave.
// startX, logDeltaX are explained below in LogHist().
Function DoLogHist(sw, dwX, dwY, startX, logDeltaX)

Wave sw, dwX, dwY
Variable startX, logDeltaX
Variable pt, pp, dpnts, spnts

// first find bin edges and put them in dwX
dpnts = numpnts(dwX)
for (pt = 0; pt < dpnts; pt += 1)

dwX[pt]= 0^(pt*logDeltaX+startX) // this value is 10^startX when p == 0
endfor

// now find which bin of dwY each Y value in sw belongs in and increment it.
spnts = numpnts(sw)
for (pt = 0; pt < spnts; pt += 1)

pp = (log(sw[pt]) - startX) / logDeltaX
if(pp == limit(pp,0,dpnts)) // unless it is out of range or NaN

dwY[pp] += 1
endif

endfor
End

// LogHist(sourceWave, numDecades, startDecade, binsPerDecade)
// Creates XY pair of waves that represent the logarithmic histogram of the
// source wave. If the source wave is named "data" then the output waves will
// be named "data_hx" and "data_hy".
// The product of numDecades and binsPerDecade specifies the number of bins in
// the histogram.
// startDecade specifies the X coordinate of the left edge of first bin. The bin
// starts at 10^startDecade.
// binsPerDecade specifies the bin width. Values less than 1 result in bins that
// span multiple decades. For example, set binsPerDecade to 0.5 to create bins
// that span two decades.
// Example
// Make/N=100 test = 10^(1+abs(gnoise(3)))
// Display test; ModifyGraph log(left)=1, mode=8,msize=2
// LogHist("test",12,0,1)

Chapter III-7 — Analysis

III-152

Function LogHist()

String sourceWave= StrVarOrDefault("root:Packages:LogHist:sourceWave","_demo_")
Variable numDecades = NumVarOrDefault("root:Packages:LogHist:numDecades",10)
// first bin at 0.0001
Variable startDecade = NumVarOrDefault("root:Packages:LogHist:startDecade",-4)
Variable binsPerDecade= NumVarOrDefault("root:Packages:LogHist:binsPerDecade",1)
Prompt sourceWave, "Source wave", popup "_demo_;"+WaveList("*", ";", "")
Prompt startDecade, "start decade (first bin starts at 10^startDecade)"
Prompt numDecades, "Number of decades in destination waves"
Prompt binsPerDecade, "bins per decade"
DoPrompt "Log Histogram", sourceWave, numDecades, startDecade, binsPerDecade

if(CmpStr(sourceWave,"_demo_") == 0)
sourceWave= "demoData"
Make/O/N=100 $sourceWave=0.0001+10^(gnoise(2)) // about 10^-4 to 10^6
CheckDisplayed/A $sourceWave
if(V_Flag == 0)

Display $sourceWave; ModifyGraph log(left)=1, mode=8,msize=2
endif
startDecade=-4
numDecades=10
binsPerDecade=1

endif
if(binsPerDecade < 0)

binsPerDecade = 1
endif
// Save values for next attempt
NewDataFolder/O root:Packages
NewDataFolder/O root:Packages:LogHist
String/G root:Packages:LogHist:sourceWave = sourceWave
Variable/G root:Packages:LogHist:numDecades= numDecades
Variable/G root:Packages:LogHist:startDecade= startDecade
Variable/G root:Packages:LogHist:binsPerDecade= binsPerDecade
String destXWave, destYWave
// Concoct names for dest waves.
// This does not work if sourceWave is a full or partial path requiring single
// quotes (e.g., root:Data:'wave 0').
Variable numBins= numDecades * binsPerDecade
Variable logDeltaX=1/binsPerDecade // Log delta X (1 gives 1 decade per bin)
destXWave = sourceWave + "_hx"
destYWave = sourceWave + "_hy"
Make/O/N=(numBins+1) $destXWave=0, $destYWave=0
DoLogHist($sourceWave, $destXWave, $destYWave, startDecade, logDeltaX)
CheckDisplayed/A $destYWave
if(V_Flag == 0)

Display $destYWave vs $destXWave
AutoPositionWindow/E/M=1
ModifyGraph mode=4, marker=19, log(bottom)=1

endif
End

To test LogHist, choose “Log Histogram” from the Analysis menu, and choose “_demo_” from the Source
wave pop-up menu in the resulting dialog.

To use the WaveMetrics-supplied logarithmic histogram procedures, include the “Log Histogram” proce-
dure file. See The Include Statement on page IV-149 for instructions on including a procedure file.

Working with Mismatched Data
Occasionally, you may find yourself with several sets of data each sampled at a slightly different rate or
covering a different range of the independent variable (usually time). If all you want to do is create a graph
showing the relationship between the data sets then there is no problem.

However, if you want to subtract one from another or do other arithmetic operations then you will need to either:
• Create representations of the data that have matching X values. Although each case is unique, usually

you will want to use the Interpolate XOP (see Using the Interpolate External Operation on page III-120)
or the interp function (see Using the Interp Function on page III-119) to create data sets with common X
values. You can also use the Resample operation (page V-595) to create a wave to match another.

Chapter III-7 — Analysis

III-153

• Properly set each wave’s X scaling, and perform the waveform arithmetic using X scaling values and
Igor’s automatic linear interpolation. See Mismatched Waves on page II-100.

The WaveMetrics procedure file Wave Arithmetic Panel uses these techniques to perform a variety of oper-
ations on data in waves. You can access the panel by choosing Packages→Wave Arithmetic from the Anal-
ysis menu. This will open the procedure file and display the control panel. Click the help button in the panel
to learn how to use it.

References
Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C, 2nd ed., 994 pp.,

Cambridge University Press, New York, 1992.

Reinsch, Christian H., Smoothing by Spline Functions, Numerische Mathematic, 10, 177-183, 1967.

Chapter III-7 — Analysis

III-154

Chapter

III-8
III-8Curve Fitting

Overview.. 158
Curve Fitting Terminology.. 158
Overview of Curve Fitting... 159

Iterative Fitting... 159
Initial Guesses ... 160
Termination Criteria... 160
Errors in Curve Fitting... 160

Data for Curve Fitting ... 160
Curve Fitting Using the Quick Fit Menu... 161

Limitations of the Quick Fit Menu .. 161
Using the Curve Fitting Dialog... 161

A Simple Case — Fitting to a Built-In Function: Line Fit .. 162
Function and Data Tab... 163
Two Useful Additions: Holding a Coefficient and Generating Residuals............................... 164

Automatic Guesses Didn’t Work... 166
Notes on the Built-in Fit Functions ... 167
Fitting to a User-Defined Function.. 173

Creating the Function .. 173
Coefficients Tab for a User-Defined Function.. 175
Making a User-Defined Function Always Available .. 175
Removing a User-Defined Fitting Function.. 176
User-Defined Fitting Function Details .. 176

Fitting to an External Function (XFUNC) .. 176
The Coefficient Wave .. 176

Default.. 177
Explicit Wave .. 177
New Wave ... 177
Errors .. 178

The Destination Wave... 178
No Destination .. 178
Auto-Trace ... 178
Explicit Destination .. 179
New Wave ... 179

Fitting a Subset of the Data .. 179
Selecting a Range to Fit.. 179
Using a Mask Wave.. 181

Weighting.. 181
Fitting to a Multivariate Function ... 182

Selecting a Multivariate Function .. 183
Selecting Fit Data for a Multivariate Function ... 183
Fitting a Subrange of the Data for a Multivariate Function ... 184

Model Results for Multivariate Fitting ... 184
Time Required to Update the Display.. 185
Multivariate Fitting Examples ... 185

Example One — Remove Planar Trend Using Poly2D... 185

Chapter III-8 — Curve Fitting

III-156

Example Two — User-Defined Simplified 2D Gaussian Fit .. 186
Problems with the Curve Fitting Dialog .. 187

Inputs and Outputs for Built-In Fits... 188
Detailed Description of the Curve Fitting Dialog Tabs... 188

Global Controls .. 189
Function and Data Tab.. 189
Data Options Tab ... 191
Coefficients Tab.. 192
Output Options Tab .. 192

Computing Residuals ... 193
Residuals Using Auto Trace... 193

Removing the Residual Auto Trace ... 194
Residuals Using Auto Wave .. 194
Residuals Using an Explicit Residual Wave .. 194

Explicit Residual Wave Using New Wave.. 195
Calculating Residuals After the Fit ... 195

Estimates of Error.. 196
Confidence Bands and Coefficient Confidence Intervals .. 196

Calculating Confidence Intervals After the Fit .. 197
Confidence Band Waves.. 198
Some Statistics... 198
Confidence Bands and Nonlinear Functions.. 199

Covariance Matrix... 199
Correlation Matrix ... 199

Fitting with Constraints ... 199
Constraints Using the Curve Fitting Dialog .. 200
Complex Constraints Using a Constraints Wave.. 200
Constraint Expressions ... 201
Equality Constraint.. 201
Example Fit with Constraint .. 201
Constraint Matrix and Vector .. 202
Constrained Curve Fit Pitfalls.. 203

NaNs and INFs in Curve Fits .. 204
Special Variables for Curve Fitting... 204

V_FitOptions .. 205
Bit 0: Controls X Scaling of Auto-Trace Wave.. 206
Bit 1: Robust Fitting .. 206
Bit 2: Suppresses Curve Fit Window ... 206
Bit 3: Save Iterates... 206

V_chisq .. 206
V_q ... 206
V_FitError and V_FitQuitReason .. 206
V_FitIterStart .. 207
S_Info ... 208

Errors in Variables: Orthogonal Distance Regression ... 208
ODR Fitting is Not Threadsafe .. 208
Weighting Waves for ODR Fitting .. 209
ODR Initial Guesses... 209
Holding Independent Variable Adjustments .. 209
ODR Fit Results.. 209
Constraints and ODR Fitting ... 210
Error Estimates from ODR Fitting... 210
ODR Fitting Examples .. 210

Fitting Implicit Functions .. 213
Example: Fit to an Ellipse ... 213

Fitting Sums of Fit Functions .. 215
Linear Dependency: A Major Issue... 215

Chapter III-8 — Curve Fitting

III-157

Constraints Applied to Sums of Fit Functions .. 216
Example: Summed Exponentials... 216
Example: Function List in a String .. 217

Curve Fitting with Multiple Processors... 218
Multithreaded Curve Fits ... 218
Multiple Curve Fits Simultaneously ... 219

Constraints and ThreadSafe Functions ... 219
User-Defined Fitting Function: Detailed Description.. 219

Discussion of User-Defined Fitting Function Formats... 220
Format of a Basic Fitting Function .. 220
Intermediate Results for Very Long Expressions.. 221
Conditionals ... 221
Fit Function Dialog Adds Special Comments ... 222
Functions that the Fit Function Dialog Doesn’t Handle Well ... 223
Format of a Multivariate Fitting Function ... 223
All-At-Once Fitting Functions .. 224
Structure Fit Functions.. 228

Basic Structure Fit Function Example.. 229
The WMFitInfoStruct Structure .. 230
Multivariate Structure Fit Functions.. 231

Fitting Using Commands... 231
Batch Fitting.. 231

Curve Fitting Examples.. 232
Singularities ... 232
Special Considerations for Polynomial Fits .. 233
Errors Due to X Values with Large Offsets ... 233
Curve Fitting Troubleshooting ... 233
Curve Fitting References.. 234

Chapter III-8 — Curve Fitting

III-158

Overview
Igor Pro’s curve fitting capability is one of its strongest analysis features. Here are some of the highlights.
• Linear and general nonlinear curve fitting.
• Fit by ordinary least squares, or by least orthogonal distance for errors-in-variables models.
• Fit to implicit models.
• Built-in functions for common fits.
• Automatic initial guesses for built-in functions.
• Fitting to user-defined functions of any complexity.
• Fitting to functions of any number of independent variables, either gridded data or multicolumn data.
• Fitting to a sum of fit functions.
• Fitting to a subset of a waveform or XY pair.
• Produces estimates of error.
• Supports weighting.

The idea of curve fitting is to find a mathematical model that fits your data. We assume that you have the-
oretical reasons for picking a function of a certain form. The curve fit finds the specific coefficients which
make that function match your data as closely as possible.

You cannot use curve fitting to find which of thousands of functions fit a data set.

People also use curve fitting to merely show a smooth curve through their data. This sometimes works but
you should also consider using smoothing or interpolation, which are described in Chapter III-7, Analysis.

You can fit to three kinds of functions:
• Built-in functions.
• User-defined functions.
• External functions (XFUNCs).

The built-in fitting functions are line, polynomial, sine, exponential, double-exponential, Gaussian, Lorent-
zian, Hill equation, sigmoid, lognormal, Gauss2D (two-dimensional Gaussian peak) and Poly2D (two-
dimensional polynomial).

You create a user-defined function by entering the function in the New Fit Function dialog. Very compli-
cated functions may have to be entered in the Procedure window.

External functions, XFUNCs, are written in C or C++. To create an XFUNC, you need the optional “Igor
External Operations Toolkit” and a C/C++ compiler. You don’t need the toolkit to use an XFUNC that you
get from WaveMetrics or from another user.

Curve fitting works with equations of the form ; although you can fit functions of any
number of independent variables (the xn’s) most cases involve just one. For more details on multivariate
fitting, see Fitting to a Multivariate Function on page III-182.

You can also fit to implicit functions; these have the form . See Fitting Implicit Functions
on page III-213.

You can do curve fits with linear constraints (see Fitting with Constraints on page III-199).

Curve Fitting Terminology
Built-in fits are performed by the CurveFit operation. User-defined fits are performed by the FuncFit or
FuncFitMD operation. We use the term “curve fit operation” to stand for CurveFit, FuncFit, or FuncFitMD,
whichever is appropriate.

y f x1 x2 … xn, , ,()=

f x1 x2 … xn, , ,() 0=

Chapter III-8 — Curve Fitting

III-159

Fitting to an external function works the same as fitting to a user-defined function (with some caveats con-
cerning the Curve Fitting dialog — see Fitting to an External Function (XFUNC) on page III-176).

If you use the Curve Fitting dialog, you don’t really need to know much about the distinction between built-
in and user-defined functions. You may need to know a bit about the distinction between external functions
and other types. This will be discussed later.

We use the term “coefficients” for the numbers that the curve fit is to find. We use the term “parameters”
to talk about the values that you pass to operations and functions.

Overview of Curve Fitting
In curve fitting we have raw data and a function with unknown coefficients. We want to find values for the
coefficients such that the function matches the raw data as well as possible. The “best” values of the coeffi-
cients are the ones that minimize the value of Chi-square. Chi-square is defined as:

where y is a fitted value for a given point, yi is the measured data value for the point and σi is an estimate
of the standard deviation for yi.

The simplest case is fitting to a straight line: . Suppose we have a theoretical reason to believe that
our data should fall on a straight line. We want to find the coefficients a and b that best match our data.

For a straight line or polynomial function, we can find the best-fit coefficients in one step. This is nonitera-
tive curve fitting, which uses the singular value decomposition algorithm for polynomial fits.

Iterative Fitting
For the other built-in fitting functions and for user-defined functions, the operation is iterative as the fit tries
various values for the unknown coefficients. For each try, it computes chi-square searching for the coeffi-
cient values that yield the minimum value of chi-square.

The Levenberg-Marquardt algorithm is used to search for the coefficient values that minimize chi-square.
This is a form of nonlinear, least-squares fitting.

As the fit proceeds and better values are found, the chi-square value decreases. The fit is finished when the
rate at which chi-square decreases is small enough.

During an iterative curve fit, you will see the Curve Fit progress window. This shows you the function
being fit, the updated values of the coefficients, the value of chi-square, and the number of passes.

Normally you will let the fit proceed until completion when the Quit button is disabled and the OK button
is enabled. When you click OK, the results of the fit are written in the history area.

If the fit has gone far enough and you are satisfied, you can click the Quit button, which finishes the iteration
currently under way and then puts the results in the history area as if the fit had completed on its own.

Sometimes you can see that the fit is not working, e.g., when chi-square is not decreasing or when some of
the coefficients take on very large nonsense values. You can abort it by pressing Command-period (Macin-
tosh) or Ctrl+Break (Windows), which discards the results of the fit. You will need to adjust the fitting coef-
ficients and try again.

y yi–

σi

2

i

y ax b+=

Chapter III-8 — Curve Fitting

III-160

Initial Guesses
The Levenberg-Marquardt algorithm is used to search for the minimum value of chi-square. Chi-square
defines a surface in a multidimensional error space. The search process involves starting with an initial
guess at the coefficient values. Starting from the initial guesses, the fit searches for the minimum value by
travelling down hill from the starting point on the chi-square surface.

We want to find the deepest valley in the chi-square surface. This is a point on the surface where the coef-
ficient values of the fitting function minimize, in the least-squares sense, the difference between the exper-
imental data and fit data. Some fitting functions may have only one valley. In this case, when the bottom of
the valley is found, the best fit has been found. Some functions, however, may have multiple valleys, places
where the fit is better than surrounding values, but it may not be the best fit possible.

When the fit finds the bottom of a valley it concludes that the fit is complete even though there may be a
deeper valley elsewhere on the surface. Which valley is found first depends on the initial guesses.

For built-in fitting functions, you can automatically set the initial guesses. If this produces unsatisfactory
results, you can try manual guesses. For fitting to user-defined functions you must supply manual guesses.

Termination Criteria
A curve fit will terminate after 40 passes in searching for the best fit, but will quit if 9 passes in a row produce
no decrease in chi-square. This can happen if the initial guesses are so good that the fit starts at the minimum
chi-square. It can also happen if the initial guesses are way off or if the function does not fit the data at all.

Unless you know a great deal about the fitting function and the data, it is unwise to assume that a solution
is a good one. In almost all cases you will want to see a graph of the solution to compare the solution with
the data. You may also want to look at a graph of the residuals, the differences between the fitted model
and the data. Igor makes it easy to do both in most cases.

Errors in Curve Fitting
In certain cases you may encounter a situation in which it is not possible to decide where to go next in searching
for the minimum chi-square. This results in a “singular matrix” error. This is discussed under Singularities on
page III-232. Curve Fitting Troubleshooting on page III-233 can help you find the solution to the problem.

Data for Curve Fitting
You must have measured values of both the dependent variable (usually called “y”) and the independent
variables (usually called “x” especially if there is just one). These are sometimes called the “response vari-
able” and “explanatory variables.” You can do a curve fit to waveform data or to XY data. That is, you can
fit data contained in a single wave, with the data values in the wave representing the Y data and the wave’s
X scaling representing equally-spaced X data. Or you can fit data from two (or more) waves in which the
data values in one wave represent the Y values and the data values in another wave represent the X data.
In this case, the data do not need to be equally spaced. In fact, the X data can be in random order.

You can read more about waveform and XY data in Chapter II-5, Waves.

Chapter III-8 — Curve Fitting

III-161

Curve Fitting Using the Quick Fit Menu
The Quick Fit menu is the easiest, fastest way to do a
curve fit.

The Quick Fit menu gives you quick access to curve fits
using the built-in fitting functions. The data to be fit are
determined by examining the top graph; if a single trace
is found, the graphed data is fit to the selected fitting func-
tion. If the graph contains more than one trace a dialog is
presented to allow you to select which trace should be fit.

The graph contextual menu also gives access to the Quick
Fit menu. If you Control-click (Macintosh) or right-click
(Windows) on a trace in a graph, you will see a Quick Fit
item at the bottom of the resulting contextual menu.
When you access the Quick Fit menu this way, it automat-
ically fits to the trace you clicked on. This gives you a way
to avoid the dialog that Quick Fit uses to select the correct
trace when there is more than one trace on a graph.

When you use the Quick Fit menu, a command is generated to perform the fit and automatically add the
model curve to the graph. By default, if the graph cursors are present, only the data between the cursors is
fit. You can do the fit to the entire data set by selecting the Fit Between Cursors item in the Quick Fit menu
in order to uncheck the item. When unchecked, fits are done disregarding the graph cursors.

If the trace you are fitting has error bars and the data for the error bars come from a wave, Quick Fit will
use the wave as a weighting wave for the fit. Note that this assumes that your error bars represent one stan-
dard deviation. If your error wave represents more than one standard deviation, or if it represents a confi-
dence interval, you should not use it for weighting. You can select the Weight from Error Bar Wave item to
unmark it, preventing Igor from using the error bar wave for weighting.

By default, a report of curve fit results is printed to the history. If you select Textbox Preferences, the Curve
Fit Textbox Preferences dialog is displayed. It allows you to specify that a textbox be added to your graph
containing most of the information that is printed in the history. You can select various components of the
information by selecting items in the Dialog.

In the screen capture above, the poly2D and Gauss2D fit functions are not available because the top graph
does not contain a contour plot or image plot, in which case the fitting functions would be available.

For a discussion of the built-in fit functions, see Notes on the Built-in Fit Functions on page III-167.

Limitations of the Quick Fit Menu
The Quick Fit menu does not give you access to the full range of curve fitting options available to you. It
does not give you access to user-defined fitting functions, automatic residual calculation, masking, or con-
fidence interval analysis. A Quick Fit always uses automatic guesses; if the automatic guesses don’t work,
you must use the Curve Fitting dialog to enter manual guesses.

If your graph displays an image that uses auxiliary X and Y waves to set the image pixel sizes, Quick Fit
will not be able to do the fit. This is because these waves for an image plot have an extra point that makes
them unsuitable for fitting. A contour plot uses X and Y waves that set the centers of the data, and these can
be used for fitting. Quick Fit will do the right thing with such a contour plot.

Using the Curve Fitting Dialog
If you want options that are not available via the Quick Fit menu, the next easiest way to do a fit is to choose
Curve Fitting from the Analysis menu. This displays the Curve Fitting dialog, which presents an interface
for selecting a fitting function and data waves, and for setting various curve fitting options. You can use the

Chapter III-8 — Curve Fitting

III-162

dialog to enter initial guesses if necessary. The Curve Fitting dialog can also be used to create a new user-
defined fitting function.

Most curve fits can be accomplished using the Curve Fitting dialog. If you need to do many fits using the
same fit function fitting to numerous data sets you will probably want to write a procedure in Igor’s pro-
gramming language to do the job.

The facility for creating a user-defined fitting function using the Curve Fitting dialog will handle most
common cases, but is probably not the best way to create very complex fitting function. In such cases, you
will need to write a fitting function in a procedure window. This is described later under User-Defined
Fitting Function: Detailed Description on page III-219.

Some very complicated user-defined fitting functions may not work well with the Curve Fitting dialog. In
some cases, you may need to write the fitting function in the Procedure window, and then use the dialog to
set up and execute the fit. In other cases it may be necessary to enter the operation manually using either a
user procedure or by typing on the command line. These cases should be quite rare.

A Simple Case — Fitting to a Built-In Function: Line Fit
To get started, we will cover fitting to a simple built-in fit: a line fit. You may have a theoretical reason to
believe that your data should be described by the function y = ax + b. You may simply have an empirical
observation that the data appear to fall along a line and you now want to characterize this line. It’s better if
you have a theoretical justification, but we’re not all that lucky.

The Curve Fitting dialog is organized into four tabs. Each tab contains controls for some aspect of the fitting
operation. Simple fits to built-in functions using default options will require only the Function and Data tab.

We will go through the steps necessary to fit a line to data displayed in a graph. Other built-in functions
work much the same way.

You might have data displayed in a graph like this:

Now you wish to find the best-fitting line for this data. The following commands will make a graph like this
one, but with the random scatter arranged in a different random way. If you would like to perform the
actions yourself as you read the manual, you can make the data shown here and the graph by typing these
commands on the command line:
Make/N=20/D LineYData, LineXData
SetRandomSeed 0.5 // So the example always makes the same "random" numbers
LineXData = enoise(2)+2 // enoise makes random numbers
LineYData = LineXData*3+gnoise(1) // so does gnoise
Display LineYData vs LineXData
ModifyGraph mode=3,marker=8

The first line makes two waves to receive our “data”. The second line fills the X wave with uniformly-dis-
tributed random numbers in the range of zero to four. The third line fills the Y wave with data that falls on
a line having a slope of three and passing through the origin, with some normally-distributed noise added
(your graph will look somewhat different because the noise will have different values). The final two lines
make the graph and set the display to markers mode with open circles as the marker.

10

8

6

4

2

3.53.02.52.01.51.00.5

Chapter III-8 — Curve Fitting

III-163

Function and Data Tab
You display the Curve Fitting dialog by choosing Curve Fitting from the Analysis menu. If you have not
used the dialog yet, it looks like this, with the Function and Data tab showing:

The first step in doing a curve fit is to choose a fit function. We are doing a
simple line fit, so pop up the Function menu and choose “line”.

Select the Y data from the Y Data menu. If you have waveform data, be sure that
the X data menu has “_Calculated_” selected.

If you have separate X and Y data waves, you must select the X wave in the X
Data menu. Only waves having the same number of data points as the Y wave
are shown in this menu. A mismatch in the number of points is usually the problem if you don’t see your
X wave in the menu.

For the line fit example, we select LineYData from the Y Data menu, and LineX-
Data from the X Data menu.

Note: The menu shown here is what you see in a pop-up Wave Browser
when data folders are hidden. For most users, this is the preferred
view. You can, however, select Show Data Folders to display a
hierarchical view of the data folders in your experiment. Read about
the Wave Browser widget in Dialog Wave Browser on page II-183.

If you have a large number of waves in your experiment, it may be easier if you
select the From Target checkbox. When it is selected only waves from the top
graph or table are shown in the Y and X wave menus, and an attempt is made to select wave pairs used by
a trace on the graph.

At this point, everything is set up to do the fit. For this simple case it is not necessary to visit the other tabs
in the dialog. When you click Do It, the fit proceeds. The line fit example graph winds up looking like this:

If you haven’t used the dialog yet, it comes up with the Function and Data tab showing.

Step One: choose a fit function from the
Function menu.

Step Two: choose data to fit from the Y
Data menu.

If you have an X wave (as in the example)
choose it in the X Data menu.

Step Three: Click the Do It button.

Chapter III-8 — Curve Fitting

III-164

In addition to the model line shown on the graph, various kinds of information appears in the history window:

•CurveFit line LineYData /X=LineXData /D
fit_LineYData= W_coef[0]+W_coef[1]*x
W_coef={-0.037971,2.9298}
V_chisq= 18.25; V_npnts= 20; V_numNaNs= 0; V_numINFs= 0;
V_startRow= 0;V_endRow= 19;V_q= 1;V_Rab= -0.879789;
V_Pr= 0.956769;V_r2= 0.915408;
W_sigma={0.474,0.21}
Coefficient values ± one standard deviation

a =-0.037971 ± 0.474
b =2.9298 ± 0.21

Two Useful Additions: Holding a Coefficient and Generating Residuals
Well, you’ve done the fit and looked at the graph and you decide that you have reason to believe that the
line should go through the origin. Because of the scatter in the measured Y values, the fit line misses the
origin. The solution is to do the fit again, but with the Y intercept coefficient held at a value of zero.

You might also want to display the residuals as a visual check of the fit.

Bring up the dialog again. The dialog remembers the settings you used last time, so the line fit function is
already chosen in the Function menu, and your data waves are selected in the Y Data and X Data menus.

Select the Coefficient tab. Each of the coefficients has a row in the Coefficients list:

10

8

6

4

2

3.53.02.52.01.51.00.5

Command line generated by the dialog.

Fit coefficients as a wave.

This line can be copied and used to reevaluate
the model curve.

Standard deviations of the Fit coefficients
as a wave.

Coefficient values in a list using the names shown in
the dialog.

The Coefficients list has a
row for each fit coefficient.

2. Set the coefficient value in
the Initial Guess column. To
make a line fit pass through
the origin, set a to zero.

1. Select the checkbox
under the “Hold?” label.

If you can’t remember what the coefficients mean, check the equation display.

To hold a coefficient:

Chapter III-8 — Curve Fitting

III-165

Click the checkbox in the column labelled “Hold?” to fix the value of that coefficient. To specify a coefficient
value, fill in the corresponding box in the Initial Guess column. Until you select the Hold box the initial
guess box is not available because built-in fits don’t require initial guesses.

To fill in a value, click in the box. You can now type a value. When you have finished, press Enter (Windows)
or Return (Macintosh) to exit editing mode for that box.

Now we want to calculate the fit residuals and add them to the graph. Click the Output Options tab and
choose _auto trace_ from the Residual menu:

There are a number of options for the residual. We chose _auto trace_ to calculate the residual and add it to
the graph. You may not always want the residuals added to your graph; choose _auto wave_ to automatically
calculate the residuals but not display them on your graph. Both _auto trace_ and _auto wave_ create a wave
with the same name as your Y wave with “Res_” prefixed to the name. Choosing _New Wave_ generates com-
mands to make a new wave with your choice of name to fill with residuals. It is not added to your graph.

Now when we click Do It, the fit is recalculated with a held at zero so that the line passes through the origin.
Residuals are calculated and added to the graph:

Note that the line on the graph doesn’t cross the vertical axis at zero, because the horizontal axis doesn’t
extend to zero.

Holding a at zero, the result of the fit printed in the history is:

•K0 = 0;
•CurveFit/H="10" line LineYData /X=LineXData /D /R

fit_LineYData= W_coef[0]+W_coef[1]*x

10

8

6

4

2

3.53.02.52.01.51.00.5

2
1
0

-1
-2

The /H flag shows that one or more coefficients are held.

Chapter III-8 — Curve Fitting

III-166

Res_LineYData= LineYData[p] - (W_coef[0]+W_coef[1]*LineXData[p])
W_coef={0,2.915}
V_chisq= 18.2565; V_npnts= 20; V_numNaNs= 0; V_numINFs= 0;
V_startRow= 0; V_endRow= 19; V_q= 1; V_Rab= 0; V_Pr= 0.956769;
V_r2= 0.906186;
W_sigma={0,0.0971}
Coefficient values ± one standard deviation

a = 0 ± 0
b = 2.915 ± 0.0971

Automatic Guesses Didn’t Work
Most built-in fits will work just like the line fit. You simply choose a function from the Function menu,
choose your data wave (or waves if you have both X and Y waves) and select output options on the Output
Options tab. For built-in fits you don’t need the Coefficients tab unless you want to hold a coefficient.

In a few cases, however, automatic guesses don’t work. Then you must use the Coefficient tab to set your
own initial guesses. One important case in which this is true is if you are trying to fit a growing exponential,

, where b is positive.

Here are commands to create an example for this section. Once again, you may wish to enter these com-
mands on the command line to follow along:
make/n=20 RisingExponential
SetScale/I x 0,1,RisingExponential
RisingExponential = 2*exp(3*x)+gnoise(1)
Display RisingExponential
ModifyGraph mode=3,marker=8

These commands make a 20-point wave, set its X scaling to cover the range from 0 to 1, fill it with exponen-
tial values plus a bit of noise, and make a graph:

The first-cut trial to fitting an exponential function is to select exp from the Function menu and the Ris-
ingExponential wave in the Y Data menu (if you are continuing from the previous section, you may need
to go to the Coefficients tab and un-hold the y0 coefficient, and to the Output Options tab and de-select
auto trace in the Residual menu). Automatic guesses assume that the exponential is well described by a
negative coefficient in the exponential, so the fit doesn’t work:
•CurveFit exp RisingExponential /D
 Fit converged properly
 fit_RisingExponential= W_coef[0]+W_coef[1]*exp(-W_coef[2]*x)
 W_coef={109.92,-114.59,0.3282}
 V_chisq= 432.163; V_npnts= 20; V_numNaNs= 0; V_numINFs= 0;
 W_sigma={256,254,0.86}
 Coefficient values ± one standard deviation
 y0 = 109.92 ± 2.56e+04
 A = -114.59 ± 2.54e+04
 K = 0.3282 ± 86

The solution is to provide your own initial guesses. Click the Coefficients tab and choose Manual Guesses
in the menu in the upper right:

a is zero because it was held.

y aebx=

40

30

20

10

1.00.80.60.40.20.0

Assumes a decaying exponential and doesn’t fit the
example data correctly.

Chapter III-8 — Curve Fitting

III-167

The Initial Guesses column in the Coefficients list is now available for you to type your own initial guesses,
including a negative value for invTau:

In response, Igor generates some extra commands for setting the initial guesses and this time the fit works
correctly:

•K0 = 0;K1 = 2;K2 = -3;
•CurveFit/G exp RisingExponential /D
 Fit converged properly
 fit_RisingExponential= W_coef[0]+W_coef[1]*exp(-W_coef[2]*x)
 W_coef={-0.93965,2.3035,-2.8849}
 V_chisq= 14.4714; V_npnts= 20; V_numNaNs= 0; V_numINFs= 0;
 W_sigma={0.764,0.391,0.163}
 Coefficient values ± one standard deviation
 y0 = -0.93965± 76.4
 A = 2.3035± 39.1
 K = -2.8849± 16.3

It may well be that finding a set of initial guesses from scratch is difficult.
Automatic guesses might be a good starting point which will provide
adequate initial guesses when modified. For this the dialog provides the
Only Guess mode.

When this mode is selected, click Do It to create the automatic initial guesses, and then stop without trying
to do the fit. Now, when you bring up the Curve Fitting dialog again, you can choose the coefficient wave
created by the auto guess (W_coef if you chose _default_ in the Coefficient Wave menu). Choosing this
wave will set the initial guesses to the automatic guess values. Now choose Manual Guesses and modify
the initial guesses. The Graph Now button may help you find good initial guesses (see Coefficients Tab for
a User-Defined Function on page III-175).

Notes on the Built-in Fit Functions
For the most part you will get good results using automatic guesses. A few require additional input beyond
what is summarized in the preceding sections. This section contains notes on the fitting functions that give
a bit more detail where it may be helpful.

gauss
Fits a Gaussian peak.

Note that the width parameter is sqrt(2) times the standard deviation of the peak. This is different from the
wi parameter in the Gauss function, which is simply the standard deviation.

Extra commands generated to set the manual initial guesses.

/G flag specifies manual guesses.

y0 A
x x0–

width

2
–exp+

Chapter III-8 — Curve Fitting

III-168

lor
Fits a Lorentzian peak.

exp_XOffset
Fits a decaying exponential.

In this equation, x0 is a constant, not a fit coefficient. During generation of automatic guesses, x0 will be set
to the first X value in your fit data. This eliminates problems caused by floating-point roundoff.

You can set the value of x0 using the /K flag with the CurveFit operation, but it is recommended that you
accept the automatic value. Setting x0 to a value far from the initial X value in your input data is guaranteed
to cause problems.

Note: The fit coefficient τ is the inverse of the equivalent coefficient in the exp function. It is actually the
decay constant, not the inverse decay constant.

Automatic guesses don’t work for growing exponentials (negative τ). To fit a negative value of τ, use
Manual Guess on the Coefficients tab, or CurveFit/G on the command line.

dblexp_XOffset
Fits a sum of two decaying exponentials.

In this equation, x0 is a constant, not a fit coefficient. During generation of automatic guesses, x0 wall be set to the
smallest X value in your fit data. This eliminates problems caused by floating-point roundoff.

You can set the value of x0 using the /K flag with the CurveFit operation, but it is recommended that you
accept the automatic value. Setting x0 to a value far from the initial X value in your input data is guaranteed
to cause problems.

Note: The fit coefficients τ1 and τ2 are the inverse of the equivalent coefficients in the dblexp function.
They are actual decay constants, not inverse decay constants.

See the notes for exp_XOffset on page III-168 for growing exponentials. You will
also need to use manual guesses if the amplitudes have opposite signs:

If the two decay constants (τ1 and τ2) are not quite distinct you may not get accu-
rate results.

exp
Fits a decaying exponential. Similar to exp_XOffset, but not as robust. Included for backward compatibility;
in new work you should use exp_Xoffset.

y0
A

x x0–()2 B+
-------------------------------+

y0 A
x x0–

τ

 exp+

y0 A1
x x0–

τ1

 exp A2

x x0–

τ2

 exp+ +

Chapter III-8 — Curve Fitting

III-169

Note that offsetting your data in the X direction will cause changes in A. Use exp_XOffset for a result that
is independent of X position.

Note: The fit coefficient B is the inverse decay constant.

Automatic guesses don’t work for growing exponentials (negative B). To fit a negative value of B, use
Manual Guess on the Coefficients tab, or CurveFit/G on the command line.

Floating-point arithmetic overflows will cause problems when fitting exponentials with large X offsets. This
problem often arises when fitting decays in time as times are often large. The best solution is to use the
exp_XOffset fit function. Otherwise, to fit such data, the X values must be offset back toward zero.

You could simply change your input X values, but it is usually best to work on a copy. Use the Duplicate
command on the command line, or the Duplicate Waves item in the Data menu to copy your data.
For an XY pair, execute these commands on the command line (these commands assume that you have
made a duplicate wave called myXWave_copy):
Variable xoffset = myXWave_copy[0]
myWave_copy[0] -= xoffset

Note that these command assume that you are fitting data from the beginning of the wave. If you are fitting
subset, replace [0] with the point number of the first point you are fitting. If you are using graph cursors
to select the points, substitute [pcsr(A)]. This assumes that the round cursor (cursor A) marks the begin-
ning of the data.

If you are fitting to waveform data (you selected _calculated_ in the X Data menu) then you need to set the
x0 part of the wave scaling to offset the data. If you are fitting the entire wave, simply use the Change Wave
Scaling dialog from the Data menu to set the x0 part of the scaling to zero. If you are fitting a subset selected
by graph cursors, it is easier to change the scaling on the command line:
SetScale/P x leftx(myWave_copy)-xcsr(A), deltax(myWave_copy), myWave_copy

This command assumes that you have used the round cursor (cursor A) to mark the beginning of the data.

Subtracting an X offset will change the amplitude coefficient in the fit. Often the only coefficient of interest
is the decay constant (invTau) and the change in the amplitude can be ignored. If that is not the case, you
can calculate the correct amplitude after the fit is done:
W_coef[1] = W_coef[1]*exp(W_coef[2]*xoffset)

If you are fitting waveform data, the value of xoffset would be -leftx(myWave_copy).

dblexp
Fits a sum of decaying exponentials. Similar to dblexp_XOffset, but suffers from floating-point roundoff
problems if the data do not start quite close to x=0. Included for backward compatibility; in new work you
should use exp_Xoffset.

Note that offsetting your data in the X direction will cause changes in A1 and A2. Use dblexp_XOffset for a
result that is independent of X position.

Note: The fit coefficients B1 and B2 are inverse decay constants.

y0 A Bx–()exp+

y0 A1 B1x–()exp A2 B2x–()exp+ +

Chapter III-8 — Curve Fitting

III-170

See the notes for exp for growing exponentials. You will also need to use manual
guesses if the amplitudes have opposite signs:

If the two decay constants (B1 and B2) are not quite distinct you may not get accu-
rate results.

Fitting data with a large X offset will have the same sort of troubles as when fitting
with exp. The best solution is to use the dblexp_XOffset fit function; you can also solve the problem using
a procedure similar to the one outlined for exp on page III-168.

sin
Fits a sinusoid.

phi is in radians. To convert to degrees, multiply by 180/PI.

A sinusoidal fit takes an additional parameter that sets the approximate
frequency of the sinusoid. This is entered in terms of the approximate
number of data points per cycle. When you choose sin from the Func-
tion menu, a box appears where you enter this number.

If you enter a number less than 6, the default value will be 7. It may be necessary to try various values to
get good results. You may want to simply use manual guesses.

The nature of the sin function makes it impossible for a curve fit to distinguish phases that are different by
2π. It is probably easier to subtract 2nπ than to try to get the fit to fall in the desired range.

line
Fit a straight line through the data.

Never requires manual guesses.

If you want to fit a line through the origin, in the Coefficients tab select the Hold box for coefficient a and
set the Initial Guess value to zero.

poly n
Fits a polynomial with n terms, or order n-1.

A polynomial fit takes an additional parameter that sets the number
of polynomial terms. When you choose poly from the Function
menu, a box appears where you enter this number.

The minimum value is 3 corresponding to a quadratic polynomial.

A polynomial fit never requires manual guesses.

y0 A fx φ+()sin+()

a bx+()

K0 K1x K2x2 …+ + +()

Chapter III-8 — Curve Fitting

III-171

poly_XOffset n
Fits a polynomial with n terms, or order n-1. The constant x0 is not an adjustable fit coefficient; it allows you
to place the polynomial anywhere along the X axis. This would be particularly useful for situations in which
the X values are large, for instance when dealing with date/time data.

The poly_XOffset fit function takes additional parameters that set
the number of polynomial terms and the value of x0. When you
select poly_XOffset from the Function menu, boxes appear where
you enter these numbers.

The minimum value for Polynomial Terms 3 corresponding to a
quadratic polynomial.

When Set Constant X0 is set to Auto, x0 is set to the minimum X
value found in the data you are fitting. You can set x0 to any value you wish. Values far from the X values
in your data set will cause numerical problems.

A polynomial fit never requires manual guesses.

HillEquation
Fits Hill’s Equation, a sigmoidal function.

The coefficient base sets the y value at small X, max sets the y value at large X, rate sets the rise rate and x1/2
sets the X value at which Y is at (base + max)/2.

Note that X values must be greater than 0. Including a data point at X ≤ 0 will result in a singular matrix
error and the message, “The fitting function returned NaN for at least one X value.”

You can reverse the values of base and max to fit a falling sigmoid.

sigmoid
Fits a sigmoidal function with a different shape than Hill’s equation.

The coefficient base sets the y value at small X, base+max sets the Y value at large X, x0 sets the X value at
which Y is at (base + max)/2 and rate sets the rise rate. Smaller rate causes a faster rise.

power
Fits a power law.

K1 x x0–() K2 x x0–()2 …+ +)

base max base–()

1
x1 2⁄

x

 +

rate
----------------------------------+

base max

1
x0 x–

rate

 exp+

--------------------------------------+

Chapter III-8 — Curve Fitting

III-172

May be difficult to fit, requiring good initial guesses, especially for pow > 1 or pow close to zero.

Note that X values must be greater than 0. Including a data point at will result in a singular matrix
error and the message, “The fitting function returned NaN for at least one X value.”

lognormal
Fits a lognormal peak shape. This function is gaussian when plotted on a log X axis.

Coefficient y0 sets the baseline, A sets the amplitude, x0 sets the peak position in X and width sets the peak width.

Note that X values must be greater than 0. Including a data point at will cause a singular matrix error
and the message, “The fitting function returned NaN for at least one X value.”

gauss2D
Fits a Gaussian peak in two dimensions.

Coefficient cor is the cross-correlation term; it must be between -1 and 1 (the small illustration was done with
cor equal to 0.5). A constraint automatically enforces this range. If you know that a value of zero for this term
is appropriate, you can hold this coefficient. Holding cor at zero usually speeds up the fit quite a bit.

In contrast with the gauss fit function, xWidth and yWidth are standard deviations of the peak.

Note that the Gauss function lacks the cross-correlation parameter cor.

poly2D n
Fits a polynomial of order n in two dimensions.

A poly2D fit takes an additional parameter that specifies the order of the polynomial. When you choose
poly2D from the Function menu, a box appears where you enter this number:

The minimum value is 1, corresponding to a first-order polynomial, a plane. The coefficient wave for
poly2D has the constant term (C0) in point zero, and following points contain groups of increasing order.
There are two first-order terms, C1*x and C2*y, then three second-order terms, etc. The total number of
terms is (N+1)(N+2)/2, where N is the order.

y0 Axpow+()

X 0≤

y0 A
x x0⁄()ln

width

2
–exp+

X 0≤

z0 A 1–

2 1 cor2–()

x x0–

xwidth

2 y y0–

ywidth

2 2cor x x0–() y y0–()
xwidth ywidth⋅

--–+
 exp+

C0 C1x C2y C3x2 C4xy C5y2 …+ + + + + +()

Chapter III-8 — Curve Fitting

III-173

Poly2d never requires manual guesses.

Fitting to a User-Defined Function
Fitting to a user-defined function is much like fitting to a built-in function, with two main differences:
• You must define the fitting function.
• You must supply initial guesses.

To illustrate the creation of a user-defined fit function, we will create a function to fit a log function:
.

Creating the Function
To create a user-defined fitting function, click the New Fit Function button in the Function and Data tab of
the Curve Fitting Dialog. The New Fit Function dialog is displayed:

You must fill in a name for your function, fill in the Fit Coefficients list with names for the coefficients, fill
in the Independent Variables list with names for independent variables, and then enter a fit expression in
the Fit Expression window.

The function name must conform to nonliberal naming rules. That means it must start with a letter, contain
only letters, numbers or underscore characters, and it must be 31 or fewer characters in length (see Object
Names on page III-417). It must not be the same as the name of another object like a built-in function, user
procedure, or wave name.

For the example log function, we enter “LogFit”:

Press Tab to move to the first entry in the Fit Coefficient list. There is
always one blank entry in the list where you can add a new coefficient name; since we haven’t entered any-
thing yet, there is only one blank entry.

Each time you enter a name, press Return (Macintosh) or Enter (Windows). Igor accepts that name and makes
a new blank entry where you can enter the next name. We enter C1 and C2 as the names:

Press Tab to move to the blank entry in the Independent Variables list. Most fit functions will require just a
single independent variable. We choose to name our independent variable x:

y C1 C+ 2 x()ln=

Chapter III-8 — Curve Fitting

III-174

It is now time to enter the fit expression. You will notice that when you have entered a name in the Independent
Variables list, some text is entered in the expression window. The return value of the fit function (the Y value in
most cases) is marked with something like “f(x) = ”. If you had entered “temperature” as the independent vari-
able, it would say “f(temperature) = ”.

This “f() = “ text is required; otherwise the return value of the function will be unknown.

The fit expression is not an algebraic expression. It must be entered in the same form as a command on the
command line. If you need help constructing a legal expression, you may wish to read Assignment State-
ments on page IV-4. The expression you need to type is simply the right-hand side of an assignment state-
ment. The log expression in our example will look like this:

Multiplication requires an explicit *.

The dialog will check the fit expression for simple errors. For instance, it will not make the Save Fit Function
Now button available if any of the coefficients or independent variables are missing from the expression.

The dialog cannot check for correct expression syntax. If all the easily-checked items are correct, the Save
Fit Function Now and Test Compile buttons are made available. Clicking either of them will enter a new
function in the Procedure window and attempt to compile procedures. If you click the Save Fit Function
Now button and compilation is successful, you are returned to the Curve Fitting dialog with the new func-
tion chosen in the Function menu.

If compile errors occur, the compiler’s error message is displayed in the status box, and the offending part of
your expression is highlighted. A common error might be to misspell a coefficient name somewhere in your
expression. For instance, if you had typed CC1 instead of C1 somewhere you might see something like this:

When everything is ready to go, click the Save Fit Function Now button to construct a function in the Pro-
cedure window. It includes comments in the function code that identify various kinds of information for
the dialog. Our example function looks like this:
Function LogFit(w,x) : FitFunc

WAVE w
Variable x

//CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will
//CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog.
//CurveFitDialog/ Equation:
//CurveFitDialog/ f(x) = C1+C2*log(x)
//CurveFitDialog/ End of Equation
//CurveFitDialog/ Independent Variables 1
//CurveFitDialog/ x
//CurveFitDialog/ Coefficients 2

Note that C1 appears in the
expression. Otherwise, the dialog
would show that C1 is missing.

Chapter III-8 — Curve Fitting

III-175

//CurveFitDialog/ w[0] = C1
//CurveFitDialog/ w[1] = C2

return w[0]+w[1]*log(x)
End

You shouldn’t have to deal with the code in the Procedure window unless your function is so complex that
the dialog simply can’t handle it. You can look at User-Defined Fitting Function: Detailed Description on
page III-219 for details on how to write a fitting function in the Procedure window.

Having entered the fit expression correctly, click the Save Fit Function Now button, which returns you to
the main Curve Fitting dialog. The Function menu will now have LogFit chosen as the fitting function.

Coefficients Tab for a User-Defined Function
To fit a user-defined function, you will need to enter initial guesses in the Coefficients tab.

Having created a user-defined fitting function (or simply having selected a preexisting one) you will find
that the error message window at the bottom of the dialog now states: “You have selected a user-defined
fit function so you must enter an initial guess for every fit coefficient. Go to the Coefficients Tab to do this.”

When you have selected a user-defined fitting function,
the Initial Guess column of the Coefficients List is avail-
able. You must enter a number in each row. Some func-
tions may be difficult to fit; in such a case the initial guess
may have to be pretty close to the final solution.

To help you find good initial guesses, the Coefficients tab
includes the Graph Now button. This button will add a trace
to the top graph showing your fitting function using the
initial guesses you have entered.

You can change the values in the initial guess column and
click the Graph Now button as many times as you wish.
The trace will be updated with the changes each time.

The Graph Now button makes a wave using the name of
your Y data wave prefixed with “fit_”. The auto trace des-
tination wave also uses a wave with the same name when
you execute the fit.

On the Coefficients tab you have the option of selecting an “epsilon” wave. An epsilon wave contains one
epsilon value for each point in your coefficients wave. By default the Epsilon menu is set to _none_ indicat-
ing that the epsilon values are set to the default values.

Each epsilon value is used to calculate partial derivatives with respect to the fit coefficients. The partial
derivatives are used to determine the search direction for coefficients that give the smallest chi-square.

In most cases the epsilon values are not critical. However, you can supply your own if you have reason to
believe that the default epsilon values are not providing acceptable partial derivatives (sometimes a singu-
lar matrix error can be avoided by using custom epsilon values). To specify epsilon values, choose the wave
from the Epsilon menu. The values in the selected wave are entered in the Epsilon column in the Coeffi-
cients list. You can change the values by clicking and typing in the box you want to change. To specify
epsilon values, type them into the boxes in the Epsilon column in the Coefficients list. If you select a wave
from the Epsilon menu, the values in that wave will be entered in the list. If you choose _New Wave_, the
dialog will generate commands to create an epsilon wave and fill it with the values in the Epsilon column.

Making a User-Defined Function Always Available
Note that, because the fitting function is created in the Procedure window, it is stored as part of the exper-
iment file. That means that it will be available for fitting while you are working on the experiment in which
it was created, but will not be available when you work on other experiment files.

Chapter III-8 — Curve Fitting

III-176

You can make the fit function available whenever you start up Igor Pro. Make a new procedure window
using the Procedure item under New in the Windows menu. Find the fit function in the Procedure window,
select all the text from Function through end and choose Cut from the Edit menu. Paste the code into your
new procedure window. Finally, choose Save Procedure Window from the File menu and save in"Igor Pro
User Files/Igor Procedures" (see Igor Pro User Files on page II-46 for details). The next time you start Igor
Pro you will find that the function is available in all your experiments.

Removing a User-Defined Fitting Function
To remove a user-defined fitting function that you don’t want any more, choose Procedure Window from
the Windows menu. Find the function in the Procedure window (you can use Find from the Edit menu and
search for the name of your function). Select all of the function definition text from the word “Function”
through the word “End” and delete the text.

If you have followed the directions in the section above for making the function always available, find the
procedure file in "Igor Pro User Files/Igor Procedures", remove it from the folder, and then restart.

User-Defined Fitting Function Details
The New Fit Function dialog is the easiest way to enter a user-defined fit function. But if your fit expression
is very long, or it requires multiple lines with local variables or conditionals, the dialog can be cumbersome.
Certain special situations may call for a format that is not supported by the dialog.

For a complete discussion of user-defined fit function formats and the uses for different formats, see User-
Defined Fitting Function: Detailed Description on page III-219.

Fitting to an External Function (XFUNC)
An external function, or XFUNC, is a function provided via an Igor extension or plug-in. A programmer
uses the XOP Toolkit to build an XFUNC. You don’t need the toolkit to use one. An XFUNC must be
installed before it can be used. See Igor Extensions on page III-425.

An XFUNC can speed up curve fitting greatly if your fitting function requires a great deal of computation.
The speed of fitting is usually dominated by other kinds of overhead and the effort of writing an XFUNC
is not justified.

Fitting to an external function is just like fitting to a user-defined function, except that the Curve Fitting
dialog has no way to find out how many fit coefficients are required. When you switch to the Coefficients
tab, you will see an alert telling you of that fact. The solution to this problem is to select a coefficient wave
with the correct number of points. You must create the wave before entering the Curve Fitting dialog.

When you select a coefficient wave the contents of the wave are used to build the Coefficients list. The wave
values are entered in the Initial Guess column. If you change an initial guess, the dialog will generate the
commands necessary to enter the new values in the wave.

The Coefficient Wave menu normally shows only those waves whose length is the same as the number of fit
coefficients required by the fitting function. When you choose an XFUNC for fitting, the menu shows all waves.
You have to know which one to select. We suggest using a wave name that identifies what the wave is for.

Igor doesn’t know about coefficient names for an XFUNC. Coefficient names will be derived from the name
of the coefficient wave you select. That is, if your coefficient wave is called “coefs”, the coefficient names
will be “coefs_0”, “coefs_1”, etc.

Of course, implementing your function in C or C++ is more time-consuming and requires both the XOP
Toolkit from WaveMetrics, and a software development environment. See Creating Igor Extensions on
page IV-185 for details on using the XOP Toolkit to create your own external function.

The Coefficient Wave
When you fit to a user-defined function, your initial guesses are transmitted to the curve fitting operation
via a coefficient wave. The coefficients that result from the fit are output in a coefficient wave no matter
what kind of function you select. For the most part, the Curve Fitting dialog hides this from you.

Chapter III-8 — Curve Fitting

III-177

When you create a user-defined function, the dialog creates a function that takes a wave as the input con-
taining the fit coefficients. But through special comments in the function code, the dialog gives names to
each of the coefficients. A built-in function has names for the coefficients stored internally. Using these
names, the dialog is able to hide from you some of the complexities of using a coefficient wave.

In the history printout following a curve fit, the coefficient values are reported both in the form of a wave
assignment, using the actual coefficients wave, and as a list using the coefficient names. For instance, here is
the printout from the example user-defined fit earlier (Fitting to a User-Defined Function on page III-173):
•FuncFit LogFit W_coef logData /D
 Fit converged properly
 fit_logData= LogFit(W_coef,x)
 W_coef={1.0041,0.99922}
 V_chisq= 0.00282525; V_npnts= 30; V_numNaNs= 0; V_numINFs= 0;
 W_sigma={0.00491,0.00679}
 Coefficient values ± one standard deviation
 C1 = 1.0041± 0.491
 C2 = 0.99922± 0.679

The wave assignment version can be copied to the command line and executed, or it can be used as a
command in a user procedure. The list version is easier to read.

You control how to handle the coefficients wave using the Coefficient Wave menu on the Coefficients tab
(this shows a Wave Browser in Show Data Folders mode):

Default
When _default_ is chosen it creates a wave called W_coef. For built-in fits this wave is used only for output.
For user-defined fits it is also input. The dialog generates commands to put your initial guesses into the
wave before the fit starts.

Explicit Wave
The Coefficient Wave menu lists any wave whose length matches the number of fit coefficients. If you select
one of these waves, it is used for input and output from any fit. In the illustration above, myCoefWave is
an explicit coefficient wave.

When you choose a wave from the menu the data in the wave is used to fill in the Initial Guess column in
the Coefficients list. This can be used as a convenient way to enter initial guesses. If you choose an explicit
wave and then edit the initial guesses, the dialog generates commands to change the values in the selected
coefficient wave before the fit starts. To avoid altering the contents of the wave, you can choose _default_
or _New Wave_. The initial guesses will be put into the new or default coefficients wave.

New Wave
A variation on the explicit coefficients wave is _New Wave_. This works just like an explicit wave except
that the dialog generates commands to make the wave before the fit starts, so you don’t have to remember
to make it before entering the dialog. The wave is filled in with the values from the Initial Guess column.

Fit Coefficient values as a wave assignment.

Fit Coefficient sigmas as a wave assignment.

Fit Coefficient values and sigmas in a list using the coefficient names.

Chapter III-8 — Curve Fitting

III-178

The _New Wave_ option is convenient if you are doing a number of fits and you want to save the fit coef-
ficients from each fit. If you use _default_ the results of a fit will overwrite the results from any previous fit.

Errors
Estimates of fitting errors (the estimated standard deviation of the fit coefficients) are automatically put into
a wave called W_sigma. There is no user choice for this output.

The Destination Wave
When performing a curve fit, it will calculate the model curve corresponding to the fit coefficients. As with
most results, the model curve is stored as an array of numbers in a wave. This wave is the “destination wave”.

The main purpose of the destination wave is to show what the fit function looks like with various coeffi-
cients during the fit operation and with the final fit coefficients when the operation is finished. You can
choose no destination wave, an explicit destination wave or you can use the auto-trace feature.

You choose the destination wave option on the Output Options tab of the dialog:

No Destination
You would choose no destination wave if you don’t want graphic feedback during the fitting process and
you don’t need to graphically compare your raw data to the fitting function. This might be the case if you
are batch fitting a large number of data sets. Choose _none_ in the Destination menu.

Auto-Trace
In most cases, auto-trace is recommended; choose _auto_ from the Destination menu. When you choose
this, it automatically creates a new wave with 200 points, sets its X scaling appropriately, and appends it to
the top graph if the Y data wave is displayed in it. The new wave is generated by prepending “fit_” to the
name of the Y data wave. If a wave of that name already exists, it is overwritten. If the name exceeds the 31
character maximum for a wave, the name is truncated.

If you want to fit more than one function to the same raw data using auto-trace, you should rename the
auto-trace wave after the fit so that it will not be overwritten by a subsequent fit. You can rename it using
the Rename item in the Data menu or by executing a Rename command directly from the command line.
You may also want to save the W_coef and W_sigma waves using the same technique.

Usually the auto-trace wave is set up as a waveform even if you are fitting to XY data. The X scaling of the
auto-trace wave is set to spread the 200 points evenly over the X range of the raw data. When preferences are
on, the auto-trace wave appended to the graph has the preferred line style (color, size, etc.) except that the line
mode is always set to “lines between points”, which is best suited to showing the curve fitting results.

Evenly-spaced data are not well suited to displaying a curve on a logarithmic axis. If your data are dis-
played using a log axis, the fit will create an XY pair of waves. The X wave will be named by prepending
“fitX_” to the name of the Y data wave. This X wave is filled with exponentially-spaced X values spread out
over the X range of the fit data. Of course, if you subsequently change the axis to a linear axis, the point
spacing will not look right.

With _auto_ chosen in the Destination menu, the dialog displays a box labelled Length:. Use this to change
the number of points in the destination wave. You can set this to any number greater than 3. The more points,
the smoother the curve (up to a point). More points will also take longer to draw so the fit will be slower.

Waves having same length
as Y data wave are shown in
addition to other options.

The Destination menu
(showing Data Folders).

Chapter III-8 — Curve Fitting

III-179

Explicit Destination
You can specify an explicit destination wave rather than using auto-trace. Use this to easily calculate func-
tion values corresponding to your data values and aids in calculating the residuals from the fit. An explicit
destination wave must have the same number of points as the Y data wave, so you should create it using
the Duplicate operation. The Destination menu shows only waves that have the same number of points as
the selected Y Data wave.

The explicit destination wave is not automatically appended to the top graph. Therefore, before executing
the curve fit operation, you would normally execute commands like:
Duplicate/O yData, yDataFit
AppendToGraph yDataFit vs xData

If you are fitting waveform data rather than XY data, you would omit “vs xData” from the AppendToGraph
command.

New Wave
As a convenience, the Curve Fitting dialog can create a destination wave for you if you choose _New Wave_
from the Destination menu. It does this by generating a Duplicate command to duplicate your Y data wave
and then uses it just like any other explicit destination wave. The new wave is not automatically appended
to your graph, so you will have to do that yourself after the fit is completed.

Fitting a Subset of the Data
A common problem is that you don’t want to include all of the points in your data set in a curve fit. There
are two methods for restricting a fit to a subset of points. You will find these options on the Data Options
tab of the Curve Fitting dialog:

Selecting a Range to Fit
You can select a contiguous range of points in the Range box. The values that you use to specify the range
for a curve fit are in terms of point or row numbers of the Y data wave. Note that if you are fitting to an XY
pair of waves and your X values are in random order, you will not be selecting a contiguous range as it
appears on a graph.

To simplify selecting the range, you can use graph cursors to select the start and end of the range. To use
cursors, display your raw data in a graph. Display the info panel in the graph by selecting ShowInfo from
the Graph menu. Drag the cursors onto your raw data. Then use the Cursors button in the Curve Fitting
dialog to generate a command to fit the cursor range.

Use the Data Options tab to exclude points from the fit,
and to specify weighting for the fit.

You can select a
contiguous range of
points.

You can select non-
contiguous points
using a mask wave.

Chapter III-8 — Curve Fitting

III-180

Here is what the graph will look like after the fit.

In this example, we used auto-trace for the destination. Notice that the trace appears over the selected range
only. If we want to show the destination over a wider range, we need to change the destination wave’s X
scaling. These commands change the destination wave to show more points over a wider range:
Redimension/N=500 fit_data // change to 500 points
SetScale x 13, 20, fit_data // set domain from 13 to 20
fit_data= W_coef[0]+W_coef[1]/((x-W_coef[2])^2+W_coef[3])

The last line was copied from the history area, where it was displayed after the fit.

This produces the following graph.

If you use an explicit destination wave rather than auto-trace, it is helpful to set the destination wave to
blanks (NaN) before performing the fit. As the fit progresses, it will store new values only in the destination
wave range that corresponds to the range being fit. Also, it stores into the destination wave only at points
where the source wave is not NaN or INF. If you don’t preset the destination wave to blanks, you will wind
up with a combination of new and old data in the destination wave.

These commands illustrate presetting the destination wave and then performing a curve fit to a range of an
XY pair.
Duplicate/O yData, yDataFit // make destination
yDataFit = NaN // preset to blank (NaN)
AppendToGraph yDataFit vs xData
CurveFit lor yData(xcsr(A),xcsr(B)) /D=yDataFit

Another way to make the fit curve cover a wider range is to select the checkbox labelled X Range Full Width
of Graph. You will find the checkbox on the Output Options tab of the Curve Fitting dialog.

Enter number of first point
to include in the fit.

Enter number of last point
to include in the fit.

Click to fit to data
between graph cursors.

Click to remove entries
from the range boxes.

Chapter III-8 — Curve Fitting

III-181

Using a Mask Wave
Sometimes the points you want to exclude are not contiguous. This might be the case if you are fitting to a
data set with occasional bad points. Or, in spectroscopic data you may want to fit regions of baseline and
exclude points that are part of a spectroscopic peak. You can achieve the desired result using a mask wave.

The mask wave must have the same number of points as the Y Data wave. You fill in the mask wave with
a NaN (Not-a-Number, blank cell) or zero corresponding to data points to exclude and nonzero for data
points you want to include. You must create the mask wave before bringing up the Curve Fitting dialog.
Here is a table displaying a dataset with some bad data points and a wave to be used as a mask wave:

Enter a NaN in a table by typing “NaN” and pressing Return or Enter. You can also use a wave assignment
on the command line. In the case shown here, a suitable command to set point four would be
BadPointMask[4] = NaN

You can use a mask with NaN points to suppress display of the masked points in a graph if you select the
mask wave as an f(z) wave in the Modify Trace Appearance dialog.

When you have a suitable mask wave, you choose it from the Data Mask menu on the Data Options tab.

Weighting
You may provide a weighting wave if you want to assign greater or lesser importance to certain data points.
You would do so for one of two reasons:
• To get a better, more accurate fit.
• To get more accurate error estimates for the fit coefficients.

The weighting wave is used in the calculation of chi-square. chi-square is defined as

where y is a fitted value for a given point, yi is the original data value for the point and wi is the standard
error for the point. The weighting wave provides the wi values. The values in the weighting wave can be
either 1/σi or simply σi, where σi is the standard deviation for each data value. If necessary, the weighting
value is squared and the inverse taken before it is used to perform the weighting.

You specify the wave containing your weighting values by choosing it from the Weighting menu in the
Data Options tab. In addition you must specify whether your wave has standard deviations or inverse stan-
dard deviations in it. You do this by selecting one of the buttons below the menu:

These large values
are clearly bad
data points.

These blank cells
will exclude the bad
points from the fit.

y yi–

wi

2

i

Chapter III-8 — Curve Fitting

III-182

Usually you would use standard deviations. Inverse standard deviations are permitted for historical reasons.

There are several ways in which you might obtain values for σi. For example, you might have a priori knowl-
edge about the measurement process. If your data points are average values derived from repeated mea-
surements, then the appropriate weight value is the standard error. That is the standard deviation of the
repeated measurements divided by N1/2. This assumes that your measurement errors are normally distrib-
uted with zero mean.

If your data are the result of counting, such as a histogram or a multichannel detector, the appropriate
weighting is . This formula, however, makes infinite weighting for zero values, which isn’t correct and
will eliminate those points from the fit. It is common to substitute a value of 1 for the weights for zero points.

You can use a value of zero to completely exclude a given point from the fit process, but it is better to use a
data mask wave for this purpose.

If you do not provide a weighting wave, then unity weights are used in the fit and the covariance matrix is
normalized based on the assumption that the fit function is a good description of the data. The reported
errors for the coefficients are calculated as the square root of the diagonal elements of the covariance matrix
and therefore the normalization process will provide valid error estimates only if all the data points have
roughly equal errors and if the fit function is, in fact, appropriate to the data.

If you do provide a weighting wave then the covariance matrix is not normalized and the accuracy of the
reported coefficient errors rests on the accuracy of your weighting values. For this reason you should not
use arbitrary values for the weights.

In some cases, it is desirable to use weighting but you know only proportional weights, not absolute mea-
surement errors. In this case, you can use weighting and after the fit is done, calculate reduced chi-square.
The reduced chi-square can be used to adjust the reported error estimates for the fit coefficients.

See Guided Tour 3 - Histograms and Curve Fitting on page I-55 for an example of curve fitting using
weighting.

Fitting to a Multivariate Function
A multivariate function is a function having more than one independent variable. This might arise if you
have measured data over some two-dimensional area. You might measure surface temperature at a variety
of locations, resulting in temperature as a function of both X and Y. It might also arise if you are trying to
find dependencies of a process output on the various inputs, perhaps initial concentrations of reagents, plus
temperature and pressure. Such a case might have a large number of independent variables.

Fitting a multivariate function is pretty much like fitting to a function with a single independent variable.
This discussion assumes that you have already read the instructions above for fitting a univariate function.

You can create a new multivariate user-defined function by clicking the New Fit Function button. In the
Independent Variables list, you would enter more than one variable name. You can use as many indepen-
dent variables as you wish (within generous limits set by the length of a line in the procedure window).

A univariate function usually is written as y = f(x), and the Curve Fitting dialog reflects this in using “Y
Data” and “X Data” to label the menus where you select the input data.

Multivariate data isn’t so convenient. Functions intended to fit spatial data are often written as z = f(x,y);
volumetric data may be g = f(x,y,z). Functions of a large number of independent variables are often written

Weighting wave chosen
in the Weighting menu.

You will usually have standard
deviation in your weighting wave.
Inverse standard deviations are
provided for backward compatibility.

y()

Chapter III-8 — Curve Fitting

III-183

as y = f(x1,x2,…). To avoid confusion, we just keep the Y Data and X Data labels and use them to mean depen-
dent variable and independent variables.

The principle difference between univariate and multivariate functions is in the selection of input data. If you
have four or fewer independent variables, you can use a multidimensional wave to hold the Y values. This
would be appropriate for data measured on a spatial grid, or any other data measured at regularly-spaced
intervals in each of the independent variables. We refer to data in a multidimensional wave as “gridded data.”

Alternately, you can use a 1D wave to hold the Y values. The independent variables can then be in N 1D
waves, one wave for each independent variable, or a single N-column matrix wave. The X wave or waves
must have the same number of rows as the Y wave.

Selecting a Multivariate Function
When the Curve Fitting dialog is first used, multivariate functions are not listed in the Function menu. The
first thing you must do is to turn on the listing of multivariate functions. You do this by choosing Show Mul-
tivariate Functions from the Function menu:

The Show Multivariate Functions setting is saved in the preferences. Unless you turn it off again, you never
need select it again.

Now you can select your multivariate function from the menu.

Selecting Fit Data for a Multivariate Function
When you have selected a multivariate function, the Y Data menu is filled with 1D waves and any multidi-
mensional waves that match the number of independent variables required by the fit function.

Selecting X Data for a 1D Y Data Wave
If your Y data are in a 1D wave, you must select an X wave for each independent variable. There is no way to
store X scaling data in the Y wave for more than one independent variable, so there is no _calculated_ item.

With a 1D wave selected in the Y Data menu, the X Data menu lists both 1D waves and 2D waves with N
columns for a function with N independent variables.

As you select X waves, the wave names are
transferred to a list below the menu. When
you have selected the right number of waves
the X Data menu is disabled. The order in
which you select the X waves is important. The
first selected wave gives values for the first
independent variable, etc.

If you need to remove an X Data wave from the list, simply click the wave name and press Backspace (Win-
dows) or Delete (Macintosh). To change the order of X Data waves, select one or more waves in the list and
drag them into the proper order.

Two built-in multivariate functions.

A 1D Y Data wave was selected for
function of two independent variables.

Now, two 1D X Data waves have been
selected. The data selection is finished.

Chapter III-8 — Curve Fitting

III-184

Selecting X Data for Gridded Y Data
When you select a multidimensional Y wave, the independent variable values can come from the dimen-
sion scaling of the Y wave or from 1D waves containing values for the associated dimensions of the Y wave.
That is, if you have a 2D matrix Y wave, you could select a wave to give values for the X dimension and a
wave to give values for the Y dimension. The Independent Variable menus list only waves that match the
given dimension of the Y wave.

Fitting a Subrange of the Data for a Multivariate Function
Selecting a subrange of data for a 1D Y wave is just like selecting a subrange for a univariate function.
Simply enter point numbers in the Start and End range boxes in the Data Options tab.

If you are fitting gridded Y data, the Data Options tab displays eight boxes to set start and end ranges for
each dimension of a multidimensional wave. Enter row, column, layer or chunk numbers in these boxes:

If your Y wave is a matrix wave displayed in a graph as an image, you can use the cursors to select a subset
of the data. With the graph as the target window, clicking the Cursors button will enter text in the range
boxes to do this.

Using cursors with a contour plot is not straightforward, and the dialog does not support it.

You can also select data subranges using a data mask wave (see Using a Mask Wave on page III-181). The
data mask wave must have the same number of points and dimensions as the Y Data wave.

Model Results for Multivariate Fitting
As with fitting to a function of one independent variable, it will create waves containing the model output
and residuals automatically. This is done if you choose _auto_ for the destination and _auto trace_ for the
residual on the Output Options tab. There are some differences in detail, however.

For a univariate fit, it by default makes a smooth curve having 200 points to display the model fit. This
action depends on being able to sensibly interpolate between successive values of the independent variable.
Multicolumn independent variables, on the other hand, probably don’t have successive values of all the
independent variables in sequential order, so it is not possible to do this. Consequently, it calculates a model
point for each point in the dependent variable data wave. If the data wave is displayed as a simple 1D trace
in the top graph window, the fit results will be appended to the graph.

A matrix wave with 20 rows and 30 columns is chosen in the Y Data menu.

Choose _calculated_ if the Ydata for this dimension is to come from the wave’s
dimension scaling. (This menu has data folders hidden.)

Only 1D waves matching the Y wave’s dimension size are listed in these menus.

The Z and T menus are not used— the function has two independent variables
and the Y wave has two dimensions.

These boxes are unavailable because the selected fit function has
only two independent variables, and a 2D Y wave is selected.

Set starting and ending.

row and
column
numbers in these boxes.

Chapter III-8 — Curve Fitting

III-185

Residuals are always calculated on a point-for-point basis, so calculating residuals for a multicolumn mul-
tivariate fit is just like a univariate fit.

Displaying results of fitting to a multidimensional wave is more problematic. If the dependent variable has
three or more dimensions, it is not easy to display the results. The model and residual waves will be created
and the results calculated but not displayed. You can make a variety of 3D plots using Gizmo: just choose
the appropriate plot type from the Windows→New→3D Plots menu.

Fits to a 2D matrix wave are displayed on the top graph if the Y Data wave is displayed there as either an
image or a contour. The model results are plotted as a contour regardless of whether the data are displayed
as an image or a contour. Model results contoured on top of data displayed as an image can be a very pow-
erful visualization technique.

Residuals are displayed in the same manner as the data in a separate, automatically-created graph window.
The window size will be the same as the window displaying the data.

Time Required to Update the Display
Because contours and images can take quite a while to redraw, the time to update the display at every iter-
ation may cause fits to contour or image data to be very slow. To suppress the updates, click the Suppress
Screen Updates checkbox on the Output Options tab.

Multivariate Fitting Examples
Here are two examples of fitting to a multivariate function — the first uses the built-in poly2D function to
fit a plane to a gridded dataset to remove a planar trend from the data. The second defines a simplified 2D
gaussian function and uses it to define the location of a peak in XY space using random XYZ data.

Example One — Remove Planar Trend Using Poly2D
Here is an example in which a matrix is filled with a two-dimensional sinusoid with a planar trend that
overwhelms the sinusoid. The example shows how you might fit a plane to the data to remove the trend.
First, make the data matrix, fill it with values, and display the matrix as an image:
Make/O/N=(20,20) MatrixWave
SetScale/I x 0,2*pi,MatrixWave
SetScale/I y 0,2*pi,MatrixWave
MatrixWave = sin(x) + sin(y) + 5*x + 10*y
Display;AppendImage MatrixWave

These commands make a graph displaying an image like the one that follows. Note the gradient from the
lower left to the upper right:

We are ready to do the fit.
1. Choose Curve Fitting from the Analysis menu to bring up the Curve Fitting dialog.
2. If you have not already done so, choose Show Multivariate Functions from the Function menu.
3. Choose Poly2D from the Function menu.
4. Make sure the 2D Polynomial Order is set to 1.
5. Choose MatrixWave from the Y Data menu.
6. Click the Output Options tab.
7. Choose _auto trace_ from the Residual menu.

6

4

2

0

6543210

Chapter III-8 — Curve Fitting

III-186

The result is the original graph with a contour plot showing the fit to the data, and a new graph of the resid-
uals, showing the sinusoidal signal left over from the fit:

Similarly, you can use the ImageRemoveBackground operation, which provides a one-step operation to do
the same fit. It has no dialog support, however.

Example Two — User-Defined Simplified 2D Gaussian Fit
In this example, we have data defining a spot which we wish to fit with a 2D Gaussian to find the center of
the spot. For some reason this data is in the form of XYZ triplets with random X and Y coordinates. These
commands will generate the example data:
Make/n=300 SpotXData, SpotYData, SpotZData
SpotXData = enoise(1)
SpotYData = enoise(1)
// make a gaussian centered at {0.55, -0.3}
SpotZData = 2*exp(-((SpotXData-.55)/.2)^2 -((SpotYData+.3)/.2)^2)+gnoise(.1)
Display; AppendXYZContour SpotZData vs {SpotXData,SpotYData}

Now bring up the Curve Fitting dialog and click the New Fit Function button so that you can enter your
user-defined fit function. We have reason to believe that the spot is circular so the gaussian can use the same
width in the X and Y directions, and there is no need for the cross-correlation term. Thus, the new function
has a z0 coefficient for the baseline offset (which doesn’t show in the figure below), A for amplitude, x0 and
y0 for the X and Y location and w for width. Here is what it looks like in the New Fit Function dialog:

Click Save Fit Function Now to save the function in the Procedure window and return to the Curve Fitting
dialog. The new function is selected in the Function menu automatically.

To perform the fit choose:
1. SpotZData in the Y Data menu.

6

4

2

0

6543210

6

4

2

0

6543210

 80
 70

 60

 50

 40
 30

 20
 10

Original graph Residual graph showing sinusoidal signal

1.0

0.5

0.0

-0.5

-1.0

1.00.50.0-0.5

 1.6
 1.4

 1.2
 1

 0.6

 0.4

 0.2

 0.2

 0.2

 0

 0

 0

 0 0

 0

 0 0

 0

 0

 0

 0

 0

 0

 0

 -0.2

Chapter III-8 — Curve Fitting

III-187

2. SpotXData in the X Data menu.
3. SpotYData in the X Data menu.

At this point, the data selection area of the Function and Data tab looks like this:

Continuing,
4. Click the Coefficients tab (the error box at the bottom shows that we must enter initial guesses).
5. Enter initial guesses: we set z0 to 0, A to 2, x0 to 0.5, y0 to -0.3, and width to 0.5.
6. For our problem, residuals and destination aren’t really important since we just want to know the

coordinates of the spot center. We click Do It and get this in history:
FuncFit SimpleGaussian W_coef SpotZData /X={SpotXData,SpotYData} /D
 Fit converged properly
 fit_SpotZData= SimpleGaussian(W_coef,x,y)

W_coef={0.0094545,2.0668,0.54885,-0.29678,0.19363}
 V_chisq= 2.55898; V_npnts= 300; V_numNaNs= 0; V_numINFs= 0;
 W_sigma={0.00569,0.0468,0.00383,0.00616,0.00428}
 Coefficient values ± one standard deviation
 z0 = 0.0094545 ± 0.00569
 A = 2.0668 ± 0.0468
 x0 = 0.54885 ± 0.00383
 y0 = -0.29678 ± 0.00616
 w = 0.19363 ± 0.00428

The output shows that the fit has determined that the center of the spot is {0.54885, -0.29678}.

Problems with the Curve Fitting Dialog
Occasionally you may find that things don’t work the way you expect when using the Curve Fitting dialog.
Common problems are:
• You can’t find your user-defined function in the Function menu.

This usually happens for one of two reasons: either your function is a multivariate function or it is
an old-style function. The problem is solved by choosing Show Multivariate Functions or Show Old-
Style Functions from the Function menu on the Function and Data tab.
If you find that choosing Show Old-Style Functions makes your fit function appear, you may want
to consider clicking the Edit Fit Function button, which makes the Edit Fit Function dialog appear.
Part of the initialization for the dialog involves revising your fit function to make it conform to cur-
rent standards. While you’re there you can give your fit coefficients mnemonic names.

• You get a message that “Igor can’t determine the number of coefficients…”.
This happens when you click the Coefficients tab when you are using an external function or a user-
defined function that is so complicated that the dialog can’t parse the function code to determine
how many coefficients are required.
The only way to get around this is to choose an explicit coefficient wave (The Coefficient Wave on
page III-176). The dialog will then use the number of points in the coefficient wave to determine the
number of coefficients.

Chapter III-8 — Curve Fitting

III-188

Inputs and Outputs for Built-In Fits
There are a number of variables and waves that provide various kinds of input and output to a curve fit.
Usually you will use the Curve Fitting dialog and the dialog will make it clear what you need, and detailed
descriptions are available in various places in this chapter. For a quick introduction, here is a table that lists
the waves and variables used for fitting to a built-in function.

Detailed Description of the Curve Fitting Dialog Tabs
This section describes all the controls on every tab and on the main pane of the Curve Fitting dialog, in
excruciating, nitty-gritty detail. Enjoy!

Wave or Variable Type What It Is Used For

Dependent
variable data
wave

Input Contains measured values of the dependent variable of the curve to
fit. Often referred to as “Y data”.

Independent
variable data wave

Input Contains measured values of the independent variable of the curve to
fit. Often referred to as “X data”.

Destination wave Optional output For graphical feedback during and after the fit. The destination
wave continually updates during the fit to show the fit function
evaluated with the current coefficients.

Residual wave Optional output Difference between the data and the model.

Weighting wave Optional input Used to control how much individual Y data points contribute to
the search for the output coefficients.

System variables
K0, K1, K2 …

Input and
output

Built-in fit functions only.

Optionally takes initial guesses from the system variables and
updates them at the end of the fit.

Coefficients wave

By default,
W_coef.

Input and
Output

Takes initial guesses from the coefficients wave, updates it during
the fit and leaves final coefficients in it.

See the reference for CurveFit and FuncFit for additional options.

Epsilon wave Optional input User-defined fit functions only.

Used by the curve fitting algorithm to calculate partial derivatives
with respect to the coefficients.

W_sigma Output Creates this wave and stores the estimates of error for the
coefficients in it.

V_<xxx> Input There are a number of special variables, such as V_FitOptions, that
you can set to tweak the behavior of the curve fitting algorithms.

V_<xxx> Output Creates and sets a number of variables such as V_chisq and
V_npnts. These contain various statistics found by the curve fit.

M_Covar Output Optionally creates a matrix wave containing the “covariance
matrix”. It can be used to generate advanced statistics.

Other waves Optional input
and output

User-supplied or automatically generated waves for displaying
confidence and prediction bands, and for specifying constraints on
coefficient values.

Chapter III-8 — Curve Fitting

III-189

Global Controls
The controls at the bottom of the dialog are always available:

Do It: copies the generated commands to the command line and executes them.

To Cmd Line: copies the generated commands to the command line but does not execute them. You might
use this button if you want to edit the command line to add an option not supported by the dialog.

To Clip: copies the generated commands to the Clipboard. You can then paste the commands into a note-
book or procedure window. Useful for writing procedures for curve fitting.

Help: takes you to an Igor Help window displaying general help for the dialog.

Cancel: leaves the dialog without doing anything.

Function and Data Tab
The Function and Data tab has a variety of appearances depending on the function chosen in the Function
menu. Here is what it looks like when the built-in gauss function is chosen:

Show fit function
Equation button
is the default.

Click here to display
commands generated
by the dialog.

The dialog displays messages about problems here.

This area displays
either the fit function
equation or the
commands generated
by the dialog.

The display area with the Commands button turned on:

The Data wave selection
area as it appears for a
univariate function.

Chapter III-8 — Curve Fitting

III-190

Function menu: The main purpose is to choose a function to fit.

The menu also has two items that control what functions are displayed in the menu.

Choose Show Multivariate functions to include functions of more than one inde-
pendent variable.

Choose Show Old-Style Functions to display functions that lack the FitFunc key-
word. See User-Defined Fitting Function: Detailed Description on page III-219
for details on the FitFunc keyword. You may need to choose this item if you have
fitting functions from a version of Igor Pro older than version 4.

Some of the fit functions require additional information that is collected by cus-
tomized items that appear when you select the function.

Polynomial Terms: appears when you choose the poly function to fit a polynomial.
Note that the number of terms is one greater than the degree — set this to three for
a quadratic polynomial.

Set Constant X0: appears when you select the exp_XOffset or dblexp_XOffset func-
tion to fit an exponential or sum of two exponentials. X0 is a constant subtracted
from the X values to move the X range for fitting closer to zero. This eliminates
numerical problems that arise when evaluating exponentials over X ranges even
moderately far from zero. Setting X0 to Auto causes it to be set to the minimum X
value in your input data. Setting to a number overrides this default behavior.

Expected Points/Cycle: appears when you choose the sin function. Use it to set the
approximate number of data points in one cycle of the sin function. Helps the auto-
matic initial guess come up with good guesses. If it is set to less than four, Igor will
use the default of seven.

2D Polynomial Order: appears when you choose the Poly2D function to fit a two-
dimensional polynomial (a multivariate function — only appears in the menu when
you have chosen Show Multivariate Functions). Sets the order of the polynomial, not
the number of terms. Because a given order includes a term for X and a term for Y
plus cross terms, the number of terms is (N+1)(N+2)/2 where N is the order.

New Fit Function: click this button to bring up a dialog in which you can define your own fitting function.

Edit Fit Function: this button is available when you have chosen a user-defined function from the Function
menu. Brings up a dialog in which you can edit your user-defined function.

Y Data: select a wave containing the dependent variable data to fit. When a multivariate function is chosen
in the Function menu, the Y Data menu shows1D waves and waves with dimensions matching the number
of independent variables used by the function.

X Data: this area changes depending on the function and Y Data wave chosen:

With a univariate function, just the X data menu is shown. Choose _calculated_ if you have just a Y wave;
the X values will come from the Y wave’s X scaling. The X Data menu shows only waves with the same
number of points as the Y wave.

X Data area when a univariate
function is selected.

A multivariate function and 1D
Y wave are selected.

A multivariate function and N-
Dimensional Y wave are

Chapter III-8 — Curve Fitting

III-191

When a multivariate function and a 1D Y wave are selected, it adds a list box below the X wave menu. You
must select one X wave for each independent variable used by the fit function, or a single multicolumn wave
with the correct number of columns. As you select X waves, they are added to the list. The order of waves in
the list is important — it determines which is identified with each of the function’s independent variables.

Remove waves from the list by highlighting a wave and pressing Delete (Macintosh) or Backspace (Windows).

With a multivariate function and a multidimensional Y wave selected, it displays four independent vari-
able wave menus, one for each dimension that a wave can have. The picture above was taken with a 2D
function selected, so two of the menus are available. Each menu displays waves of length matching the cor-
responding dimension of the Y Data wave. Choose “_calculated_” if the independent variable values will
come from the Y wave’s dimension scaling.

From Target: when From Target is selected, the Y Data and X Data menus show only waves that are dis-
played in the top table or graph. Makes it easier to find waves in the menus when you are working on an
experiment with many waves. When you click the From Target checkbox, it will attempt to select appropri-
ate waves for the X and Y data.

Use Multiple Processors: If you are running on a computer with multiple processors, this checkbox is on
by default. In certain cases, it causes the curve fit code to break some computations into more than one
thread that can run simultaneously. See Curve Fitting with Multiple Processors on page III-218.

Data Options Tab

Range: enter point numbers for starting and ending points when fitting to a subset of the Y data.

Historical Note: these boxes used to require X values, they now require point numbers.

Cursors: available when the top window is a graph displaying the Y data and the graph has the graph
cursors on the Y data trace. Click this button to enter text in the Start and End range boxes that will restrict
fitting to the data between the graph cursors.

Note: If the data use both a Y wave and an X wave, and the X values are in random order, you won’t
get the expected result.

Clear: click this button to remove text from the Start and End range boxes.

The range box changes if you have selected a multivariate function and multidimen-
sional Y wave. The dialog presents Start and End range boxes for each dimension of
the Y wave.

Weighting: select a wave that contains weighting values. Only waves that match the
Y wave in number of points and dimensions are shown in this menu. See Weighting
on page III-181 for details.

Wave Contains: select Standard Deviation if the weighting wave contains values of
standard deviation for each Y data point. A larger value decreases the influence of a
point on the fit.

Chapter III-8 — Curve Fitting

III-192

Select 1/Standard Deviation if your weighting wave contains values of the reciprocal of the standard devi-
ation. A larger value increases the influence of the point on the fit.

Data Mask: select a wave that contains ones and zeroes or NaN’s indicating which Y Data points should be
included in the fit. Only waves that match the Y wave in number of points and dimensions are shown in
this menu. A one indicates a data point that should be included, a zero or NaN (Not a Number or blank in
a table) indicates a point that should be excluded.

Coefficients Tab
The coefficients tab is quite complex. It is completely explained in the various sections on how to do a fit.
See Two Useful Additions: Holding a Coefficient and Generating Residuals on page III-164, Automatic
Guesses Didn’t Work on page III-166, Coefficients Tab for a User-Defined Function on page III-175, and
The Coefficient Wave on page III-176.

Output Options Tab
The output options tab has settings that control the reporting and display of fit results:

Destination: select a wave to receive model values from the fit. Updated on each iteration so you can follow
the fit progress by the graph display. See The Destination Wave on page III-178 for details on the Destina-
tion menu, the Length box shown above and on the New Wave box that isn’t shown above.

X Range Full Width of Graph: If you have restricted the range of the fit using graph cursors, the auto des-
tination wave will cover only the range selected. Select this checkbox to make the auto destination cover the
full width of the graph.

Residual: select a wave to receive calculated values of residuals, or the differences between the model and
the data. See Computing Residuals on page III-193 for details on residuals and on the various selections
you can make from this menu.

Error Analysis: selects various kinds of statistical error analysis. See Confidence Bands and Coefficient
Confidence Intervals on page III-196 for details.

Add Textbox to Graph: when selected, a textbox with information about the fit will be added to the graph
containing the Y data. Click the Textbox Preferences button to display a dialog in which you can select
various bits of information to be included in the text box.

Create Covariance Matrix: when this is selected, the dialog generates the command to create a covariance
matrix for the fit. See Covariance Matrix on page III-199 for details on the covariance matrix.

Suppress Screen Updates: when this is selected, graphs and tables are not updated while the fit progresses.
This can greatly speed up the fitting process, especially if the fit involves a contour or image plot, but
reduces the feedback you get during the fit.

Chapter III-8 — Curve Fitting

III-193

Computing Residuals
A residual is what is left when you subtract your fitting function model from your raw data.

Ideally, your raw data is equal to some known function plus random noise. If you subtract the function from
your data, what’s left should be noise. If this is not the case, then the function doesn’t properly fit your raw data.

The graphs below illustrate some exponential raw data fitted to an exponential function and to a quadratic (3
term polynomial). The residuals from the exponential fit are random whereas the residuals from the quadratic
display a trend overlaid on the random scatter. This indicates that the quadratic is not a good fit for the data.

The easiest way to make a graph such as these is to let it proceed automatically using the Residual pop-up
menu in the Output Options tab of the Curve Fitting dialog. The graphs above were made this way with
some minor tweaks to improve the display.

The residuals are recalculated at every iteration of a fit. If the residuals are displayed on a graph, you can
watch the residuals change as the fit proceeds.

In addition to providing an easy way to compute residuals and add the residual plot to a graph, it prints
the wave assignment used to create the residuals into the history area as part of the curve fitting process.
For instance, this is the result of a line fit to waveform data:
•CurveFit line LineYData /X=LineXData /D /R
 fit_LineYData= W_coef[0]+W_coef[1]*x
 Res_LineYData= LineYData - (W_coef[0]+W_coef[1]*LineXData)
 W_coef={0.73804,2.4492}
 V_chisq= 15.6414; V_npnts= 20; V_numNaNs= 0; V_numINFs= 0;
 V_q= 1; V_Rab= -0.337408; V_Pr= 0.934854;
 W_sigma={0.482,0.219}
 Coefficient values ± one standard deviation
 a = 0.73804 ± 48.2
 b = 2.4492 ± 21.9

In this case, a wave called “LineYData” was fit with a straight line model. _auto trace_ was selected for both
the destination (/D flag) and the residual (/R flag), so the waves fit_LineYData and Res_LineYData were cre-
ated. The third line above gives the equation for calculating the residuals. You can copy this line if you wish
to recalculate the residuals at a later time. You can edit the line if you want to calculate the residuals in a
different way. See Calculating Residuals After the Fit on page III-195.

Residuals Using Auto Trace
If you choose _auto trace_ from the Residual menu, it will automatically create a wave for residual values
and, if the Y data are displayed in the top graph, it will append the residual wave to the graph.

The automatically-created residual wave is named by prepending “Res_” to the name of the Y data wave.
If the resulting name is too long, it will be truncated. If a wave with that name already exists, it will be
reused, overwriting the values already in the wave. The residual wave is made with the same number of
points as the data wave, with one residual value calculated for each data point.

1200

1000

800

600

400

200

0

1.00.80.60.40.20.0

-100

0

100

Raw data with quadratic fit

Residuals from quadratic fit
1200

1000

800

600

400

200

0

1.00.80.60.40.20.0

-100

0

100

Raw data with exponential fit

Residuals from exponential fit

Chapter III-8 — Curve Fitting

III-194

If you fit to a subrange of the data, residual values are calculated only for the points within the subrange.
Thus, you can use the auto-residual option with a piece-wise fit to build up the residuals by several curve
fitting operations.

If you fit the same data again, the same residual wave will be used. Thus, to preserve a previous result, you
must rename the residual wave. This can be done using the Rename item in the Data menu, or the Rename
command on the command line.

Residuals are displayed on a stacked graph like those above. This is done by shortening the axis used to
display the Y data, and positioning a new free axis above the axis used for the Y data. The residual plot occu-
pies the space made by shortening the data axis. The axis that Igor creates is given a name derived from the
axis used to display the Y data, either “Res_Left” or “Res_Right” if the Y data are displayed on the standard
axes. If the data axis is a named free axis, the automatically-generated axis is given a name created by
prepending “Res_” to the name of the data axis.

Igor tries hard to make the appended residual plot look nice by copying the formatting of the Y data trace and
making the residual trace identical so that you can identify which residual trace goes with a given Y data trace.
The axis formatting for the residual axis is copied from the vertical axis used for the data trace, and the residual
axis is positioned directly above the data axis. Any other vertical axes that might be in the way are also short-
ened to make room. Here are two examples of graphs that have been modified by the auto-trace residuals:

It is likely that the automatic formatting won’t be quite what you want, but it will probably be close enough
that you can use the Modify Axis and Modify Trace Appearance dialogs to tweak the formatting. For details
see Chapter II-12, Graphs, especially the sections Creating Graphs with Multiple Axes on page II-296 and
Creating Stacked Plots on page II-297.

Removing the Residual Auto Trace
When an auto-trace residual plot is added to a graph, it modifies the axis used to plot the original Y data. If
you remove the auto-trace residual from the graph, the residual axis is removed and in most cases the Y
data axis is restored to its previous state.

In some complicated graphs the restoration of the data axis isn’t done correctly. To restore the graph,
double-click the Y data axis to bring up the Modify Axes dialog and select the Axis tab. You will find two
settings labeled “Draw between … and … % of normal”. Typically, the correct settings will be 0 and 100.

Residuals Using Auto Wave
Because the changes to the graph formatting are substantial, you may want the automatic residual wave
created and filled in but not appended to the graph. To accomplish this, simply choose _Auto Wave_ from
the Residual pop-up menu in the Curve Fitting dialog. Once the wave is made by the curve fitting process,
you can append it to a graph, or use it in any other way you wish.

Residuals Using an Explicit Residual Wave
You can choose a wave from the Residual pop-up menu and that wave will be filled with residual values.
In this case, it does not append the wave to the top graph. You can use this technique to make graphs with
the formatting completely under your own control, or to use the residuals for some other purpose.

5

4

3

2

1

0

-1.0 -0.5 0.0 0.5 1.0

120

100

80

60

40

20

0

12080400

-0.4

0.0

0.4

0

4

2

0

-1.0 -0.5 0.0 0.5 1.0

0.8

0.4

0.0

120100806040200

0.0

0

Chapter III-8 — Curve Fitting

III-195

Only waves having the same number of points as the Y data wave are listed in the menu. If you don’t want
to let the dialog create the wave, you would first create a suitable wave by duplicating the Y data wave
using the Duplicate Waves item in the Data menu, or using the Duplicate command:
Duplicate yData, residuals_poly3

It is often a good idea to set the wave to NaN, especially when fitting to a subrange of the data:
residuals_poly3=NaN

After the wave is duplicated, it would typically be appended to a graph or table before it is used in curve fitting.

Explicit Residual Wave Using New Wave
The easiest way to make an explicit residual wave is to let the Curve Fitting dialog do it for you. You do this
by choosing _New Wave_ in the Residual menu. A box appears allowing you to enter a name for the new
wave. The dialog will then generate the required commands to make the wave before the curve fit starts. The
wave made this way will not be added to a graph. You will need to do that yourself after the fit is finished.

Calculating Residuals After the Fit
You may wish to avoid the overhead of calculating residuals during the fitting process. This section
describes ways to calculate the residuals after a curve fit without depending on automatic wave creation.

Graphs similar to the ones at the top of this section can be made by appending a residuals wave using a free
left axis. Then, under the Axis tab of the Modify Axes dialog, the distance for the free axis was set to zero
and the axis was set to draw between 80 and 100% of normal. The normal left axis was set to draw between
0 and 70% and axis standoff was turned off for both left and bottom axes.

Here are representative commands used to accomplish this.
// Make sample data
Make/N=500 xData, yData
xData = x/500 + gnoise(1/1000)
yData = 100 + 1000*exp(-.005*x) + gnoise(20)

// Do exponential fit with auto-trace
CurveFit exp yData /X=xData /D
Rename fit_yData, fit_yData_exp

// Calculate exponential residuals using interpolation in
// the auto trace wave to get model values
Duplicate yData, residuals_exp
residuals_exp = yData - fit_yData_exp(xData)

// Do polynomial fit with auto-trace
CurveFit poly 3, yData /X=xData /D
Rename fit_yData fit_yData_poly3

// Find polynomial residuals
Duplicate yData, residuals_poly3
residuals_poly3 = yData - fit_yData_poly3(xData)

Calculating model values by interpolating in the auto trace wave may not be sufficiently accurate. Instead,
you can calculate the exact value using the actual fitting expression. When the fit finishes, it prints the equa-
tion for the fit in the history. With a little bit of editing you can create a wave assignment for calculating
residuals. Here are the assignments from the history for the above fits:
fit_yData= poly(W_coef,x)
fit_yData= W_coef[0]+W_coef[1]*exp(-W_coef[2]*x)

We can convert these into residuals calculations like this:
residuals_poly3 = yData - poly(W_coef,xData)
residuals_exp = yData - (W_coef[0]+W_coef[1]*exp(-W_coef[2]*xData))

Chapter III-8 — Curve Fitting

III-196

Note that we replaced “x” with “xData” because we have tabulated x values. If we had been fitting equally
spaced data then we would not have had a wave of tabulated x values and would have left the “x” alone.

This technique for calculating residuals can also be used if you create and use an explicit destination wave.
In this case the residuals are simply the difference between the data and the destination wave. For example,
we could have done the exp fit and residual calculations as follows:
Duplicate yData, yDataExpFit,residuals_exp
// explicit destination wave using /D=wave
CurveFit exp yData /X=xData /D=yDataExpFit
residuals_exp = yData - yDataExpFit

Estimates of Error
Igor automatically calculates the estimated error (standard deviation) for each of the coefficients in a curve
fit. When you perform a curve fit, it creates a wave called W_sigma. Each point of W_sigma is set to the
estimated error of the corresponding coefficients in the fit. The estimated errors are also indicated in the
history area, along with the other results from the fit. If you don’t provide a weighting wave, the sigma
values are estimated from the residuals. This implicitly assumes that the errors are normally distributed
with zero mean and constant variance and that the fit function is a good description of the data.

The coefficients and their sigma values are estimates (usually remarkably good estimates) of what you
would get if you performed the same fit an infinite number of times on the same underlying data (but with
different noise each time) and then calculated the mean and standard deviation for each coefficient.

Confidence Bands and Coefficient Confidence Intervals
You can graphically display the uncertainty of a model fit to data by adding confidence bands or prediction
bands to your graph. These are curves that show the region within which your model or measured data are
expected to fall with a certain level of probability. A confidence band shows the region within which the
model is expected to fall while a prediction band shows the region within which random samples from that
model plus random errors are expected to fall.

You can also calculate a confidence interval for the fit coefficients. A confidence interval estimates the inter-
val within which the real coefficient will fall with a certain probability.

Note: Confidence and prediction bands are not available for multivariate curve fits.

You control the display of confidence and prediction bands and the calculation of coefficient confidence
intervals using the Error Analysis section of the Output Options tab of the Curve Fitting dialog:

Using the line fit example at the beginning of this chapter (see A Simple Case — Fitting to a Built-In Func-
tion: Line Fit on page III-162), we set the confidence level to 95% and selected all three error analysis options
to generate this output and graph:

•CurveFit line LineYData /X=LineXData /D /F={0.950000, 7}
fit_LineYData= W_coef[0]+W_coef[1]*x

Until the Error Analysis checkbox is selected,
the error analysis controls are not available.

You enter the desired confidence level, a number
from 0 to 100, in the box.

Some commonly-used values can be entered
quickly using the menu.

Choose what you want to calculate. Confidence
intervals for fit coefficients are chosen by default.

Dialog has added the /F with parameters to
select error analysis options.

Chapter III-8 — Curve Fitting

III-197

W_coef={-0.037971,2.9298}
V_chisq= 18.25; V_npnts= 20; V_numNaNs= 0; V_numINFs= 0;
V_startRow= 0; V_endRow= 19; V_q= 1; V_Rab= -0.879789;
V_Pr= 0.956769;V_r2= 0.915408;
W_sigma={0.474,0.21}
Fit coefficient confidence intervals at 95.00% confidence level:
W_ParamConfidenceInterval={0.995,0.441,0.95}
Coefficient values ± 95.00% Confidence Interval

 a = -0.037971 ± 0.995
 b = 2.9298 ± 0.441

You can do this with nonlinear functions also, but be aware that it is only an approximation for nonlinear
functions:
Make/O/N=100 GDataX, GDataY // waves for data
GDataX = enoise(10) // Random X values
GDataY = 3*exp(-((GDataX-2)/2)^2) + gnoise(0.3) // Gaussian plus noise
Display GDataY vs GDataX // graph the data
ModifyGraph mode=2,lsize=2 // as dots
CurveFit Gauss GDataY /X=GDataX /D/F={.99, 3}

The dialog supports only automatically-generated waves for confidence bands. The CurveFit and FuncFit oper-
ations support several other options including an error bar-style display. See CurveFit on page V-94 for details.

Calculating Confidence Intervals After the Fit
You can use the values from the W_sigma wave to calculate a confidence interval for the fit coefficients after
the fit is finished. Use the StudentT function to do this. The following information was printed into the
history following a curve fit:

Fit converged properly
fit_junk= f(coeffs,x)
coeffs={4.3039,1.9014}
V_chisq= 101695; V_npnts= 128; V_numNaNs= 0; V_numINFs= 0;
W_sigma={4.99,0.0679}

Coefficient confidence intervals are stored in the wave
W_ParamConfidenceInterval. Note that the last point in the
wave contains the confidence level used in the calculation.When confidence intervals are available they are

listed here instead of the standard deviation.

10

8

6

4

2

0

3.02.52.01.51.00.5

Confidence band

Prediction band

Line fit to data

Prediction band

Confidence band

95% of measured
points should fall within
the prediction band.

If you could repeat the
experiment numerous times, 95%
of the time the fit line should fall
within the confidence band.

3

2

1

0

-10 -5 0 5

Chapter III-8 — Curve Fitting

III-198

To calculate the 95 per cent confidence interval for fit coefficients and deposit the values into another wave,
you could execute the following lines:
Duplicate W_sigma, ConfInterval
ConfInterval = W_sigma[p]*StudentT(0.95, V_npnts-numpnts(coeffs))

Naturally, you could simply type “126” instead of “V_npnts-numpnts(coeffs)”, but as written the line will
work unaltered for any fit. When we did this following the fit in the example, these were the results:
ConfInterval = {9.86734,0.134469}

Clearly, coeffs[0] is not significantly different from zero.

Confidence Band Waves
New waves containing values required to display confidence and prediction bands are created by the curve
fit if you have selected these options. The number of waves and the names depend on the type number and
the style. For a contour band, there are two waves for the upper and a lower contour. Only one wave is
required to display error bars. For details, see the CurveFit operation on page V-94.

Some Statistics
Calculation of the confidence and prediction bands involve some statistical assumptions. First, of course,
the measurement errors are assumed to be normally distributed. Departures from normality usually have
to be fairly substantial to cause real problems.

If you don’t supply a weighting wave, the distribution of errors is estimated from the residuals. In making
this estimate, the distribution is assumed to be not only normal, but also uniform with mean of zero. That
is, the error distribution is centered on the model and the standard deviation of the errors is the same for
all values of the independent variable. The assumption of zero mean requires that the model be correct; that
is, it assumes that the measured data truly represent the model plus random normal errors.

Some data sets are not well characterized by the assumption that the errors are uniform. In that case, you
should specify the error distribution by supplying a weighting wave (see Weighting on page III-181). If you
do this, your error estimates are used for determining the uncertainties in the fit coefficients, and, therefore,
also in calculating the confidence band.

The confidence band relies only on the model coefficients and the estimated uncertainties in the coefficients,
and will always be calculated taking into account error estimates provided by a weighting wave. The pre-
diction band, on the other hand, also depends on the distribution of measurement errors at each point.
These errors are not taken into account, however, and only the uniform measurement error estimated from
the residuals are used.

The calculation of the confidence and prediction bands is based on an estimate of the variance of a predicted
model value:

Here, is the predicted value of the model at a given value of the independent variable X, is the vector
of partial derivatives of the model with respect to the coefficients evaluated at the given value of the inde-
pendent variable, and is the covariance matrix. Often you see the term multiplied by , the
sample variance, but this is included in the covariance matrix. The confidence interval and prediction inter-
val are calculated as:

 and .

The quantities calculated by these equations are the magnitudes of the intervals. These are the values used
for error bars. These values are added to the model values () to generate the waves used to display the
bands as contours. The function is the point on a Student’s t distribution having probabil-
ity , and is the sample variance. In the calculation of the prediction interval, the value used for

is the uniform value estimated from the residuals. This is not correct if you have supplied a weighting

V Ŷ() aTCa=

a δF δp x⁄=

Ŷ a

C aTCa σ2

CI t n p 1 α 2⁄–,–() V Ŷ()[]1 2/= PI t n p– 1 α 2⁄–(,) σ2 V Ŷ()+[]1 2/=

Ŷ
t n p 1 α 2⁄–,–()

1 α 2⁄– σ2

σ2

Chapter III-8 — Curve Fitting

III-199

wave with nonuniform values because there is no information on the correct values of the sample variance
for arbitrary values of the independent variable. You can calculate the correct prediction interval using the
StudentT function. You will need a value of the derivatives of your fitting function with respect to the
fitting coefficients. You can either differentiate your function and write another function to provide deriv-
atives, or you can use a numerical approximation. Igor uses a numerical approximation.

Confidence Bands and Nonlinear Functions
Strictly speaking, the discussion and equations above are only correct for functions that are linear in the fitting
coefficients. In that case, the vector a is simply a vector of the basis functions. For a polynomial fit, that means
1, x, x2, etc. When the fitting function is nonlinear, the equation results from an approximation that uses only
the linear term of a Taylor expansion. Thus, the confidence bands and prediction bands are only approximate.
It is impossible to say how bad the approximation is, as it depends heavily on the function.

Covariance Matrix
If you select the Create Covariance Matrix checkbox in the Output Options tab of the Curve Fitting dialog,
it generates a covariance matrix for the curve fitting coefficients. This is available for all of the fits except the
straight-line fit. Instead, a straight-line fit generates the special output variable V_rab giving the covariance
between the slope and Y intercept.

By default (if you are using the Curve Fitting dialog) it generates a matrix wave having N rows and col-
umns, where N is the number of coefficients. The name of the wave is M_Covar. This wave can be used in
matrix operations. If you are using the CurveFit, FuncFit or FuncFitMD operations from the command line
or in a user procedure, use the /M=2 flag to generate a matrix wave.

Originally, curve fits created one 1D wave for each fit coefficient. The waves taken all together made up the
covariance matrix. For compatibility with previous versions, the /M=1 flag still produces multiple 1D waves
with names W_Covarn. Please don’t do this on purpose.

The diagonal elements of the matrix, M_Covar[i][i], are the variances for parameter i. The variance is the
square of sigma, the standard deviation of the estimated error for that parameter.

The covariance matrix is described in detail in Numerical Recipes in C, page 531 and section 14.5. Also see the
discussion under Weighting on page III-181.

Correlation Matrix
Use the following commands to calculate a correlation matrix from the covariance matrix produced during
a curve fit:
Duplicate M_Covar, CorMat // You can use any name instead of CorMat
CorMat = M_Covar[p][q]/sqrt(M_Covar[p][p]*M_Covar[q][q])

A correlation matrix is a normalized form of the covariance matrix. Each element shows the correlation
between two fit coefficients as a number between -1 and 1. The correlation between two coefficients is
perfect if the corresponding element is 1, it is a perfect inverse correlation if the element is -1, and there is
no correlation if it is 0.

Curve fits in which an element of the correlation matrix is very close to 1 or -1 may signal “identifiability”
problems. That is, the fit doesn’t distinguish between two of the parameters very well, and so the fit isn’t
very well constrained. Sometimes a fit can be rewritten with new parameters that are combinations of the
old ones to get around this problem.

Fitting with Constraints
It is sometimes desirable to restrict values of the coefficients to a fitting function. Sometimes fitting func-
tions may allow coefficient values that, while fine mathematically, are not physically reasonable. At other
times, some ranges of coefficient values may cause mathematical problems such as singularities in the func-

Chapter III-8 — Curve Fitting

III-200

tion values, or function values that are so large that they overflow the computer representation. In such
cases it is often desirable to apply constraints to keep the solution out of the problem areas. It could be that
the final solution doesn’t involve any active constraints, but the constraints prevent termination of the fit
on an error caused by wandering into bad regions on the way to the solution.

Curve fitting supports constraints on the values of any linear combination of the fit coefficients. The Curve
Fitting dialog supports constraints on the value of individual coefficients.

The algorithm used to apply constraints is quite forgiving. Your initial guesses do not have to be within the
constraint region (that is, initial guesses can violate the constraints). In most cases, it will simply move the
parameters onto a boundary of the constraint region and proceed with the fit. Constraints can even be contra-
dictory (“infeasible” in curve fitting jargon) so long as the violations aren’t too severe, and the fit will simply
“split the difference” to give you coefficients that are a compromise amongst the infeasible constraints.

Constraints are not available for the built-in line, poly and poly2D fit functions. To apply constraints to
these fit functions you must create a user-defined fit function.

Constraints Using the Curve Fitting Dialog
The Coefficients Tab of the Curve Fitting dialog includes a menu to enable fitting with constraints. When
you select the checkbox, the constraints section of the Coefficients list becomes available:

Filling in a value in the left column causes the dialog to generate a command to constrain the corresponding coef-
ficient to values greater than the value you enter. Filling in a value in the right column constrains the correspond-
ing coefficient to values less than the value you enter. A box that is left empty does not generate any constraint.

The figure above was made with the gauss function chosen. The following commands are generated by the
dialog:

More complicated constraints are possible, but cannot be entered in the Curve Fitting dialog. This requires
that you make a constraints wave before you enter the dialog. Then choose the wave from the menu. See
the following sections to learn how to construct the constraints wave.

Complex Constraints Using a Constraints Wave
You can constrain the values of linear combinations of coefficients, but the Curve Fitting dialog provides
support only for simple constraints. You can construct an appropriate text wave with constraints before
entering the Curve Fitting dialog. Select the wave from the Constraints menu in the Coefficients tab. You
can also use the CurveFit or FuncFit commands on the command line with a constraints wave.

Each element of the text wave holds one constraint expression. Using a text wave makes it easy to edit the expres-
sions in a table. Otherwise, you must use a command line like the second line in the example shown above.

The fit will constrain the x0
coefficient to be between 40 and 60.

Constraints menu…

… and Constraint columns in the
Coefficients list are made available.

Make/O/T/N=2 T_Constraints
T_Constraints[0] = {"K2 > 40","K2 < 60"}
CurveFit gauss aa /D /C=T_Constraints

A Make command to make a text wave to
contain constraint expressions.

A wave assignment to put constraint
expressions into the wave.

/C parameter added to CurveFit command line to request a constrained fit.

Chapter III-8 — Curve Fitting

III-201

Constraint Expressions
Constraint expressions can be arbitrarily complex, and can involve any or all of the fit coefficients. Each
expression must have an inequality symbol (“<”, “<=”, “>”, or “>=”). In the expressions the symbol Kn (K0,
K1, etc.) is used to represent the nth fitting coefficient. This is like the Kn system variables, but they are
merely symbolic place holders in constraint expressions. Expressions can involve sums of any combination
of the Kn’s and factors that multiply or divide the Kn’s. Factors may be arbitrarily complex, even nonlinear,
as long as they do not involve any of the Kn’s. The Kn’s cannot be used in a call to a function, and cannot
be involved in a nonlinear expression. Here are some legal constraint expressions:
K0 > 5
K1+K2 < numVar^2+2 // numVar is a global numeric variable
K0/5 < 2*K1
(numVar+3)*K3 > K1+K2/(numVar-2)
log(numVar)*K3 > 5 // nonlinear factor doesn’t involve K3

These are not legal:
K0*K1 > 5 // K0*K1 is nonlinear
1/K1 < 4 // This is nonlinear: division by K1
ln(K0) < 1 // K0 not allowed as parameter to a function

When constraint expressions are parsed, the factors that multiply or divide the Kn’s are extracted as literal
strings and evaluated separately. Thus, if you have <expression>*K0 or K0/<expression>, <expression> must
be executable on its own.

Note: You cannot use a text wave with constraint expressions for fitting from a threadsafe function. You
must use the method described in Constraint Matrix and Vector on page III-202.

Equality Constraint
You may wish to constrain the value of a fit coefficient to be equal to a particular value. The constraint algo-
rithm does not have a provision for equality constraints. One way to fake this is to use two constraints that
require a coefficient to be both greater than and less than a value. For instance, “K1 > 5” and “K1 < 5” will
require K1 to be equal to 5.

If it is a single parameter that is to be held equal to a value, this isn’t the best method. You are much better off
holding a parameter. In the Curve Fitting dialog, simply select the Hold box in the Coefficients list on the Coef-
ficients tab and enter a value in the Initial Guess column. If you are using a command line to do the fit,
FuncFit/H="01"…

will hold K1 at a particular value. Note that you have to set that value before starting the fit.

Example Fit with Constraint
This example fits to a sum of two exponentials, while constraining the sum of the exponential amplitudes
to be less than some limit that might be imposed by theoretical knowledge. The examples here are available
in the Curve Fitting section of the Using Igor help file, where they can be conveniently executed directly
from the help window. The example uses command lines because the constraint is too complicated to enter
into the Curve Fitting dialog.

First, make the data and graph it:
Make/O/N=50 expData= 3*exp(-0.2*x) + 3*exp(-0.03*x) + gnoise(.1)
Display expData
ModifyGraph mode=3,marker=8

Do a fit without constraints:
CurveFit dblExp expData /D/R

The following command makes a text wave with a single element containing the string “K1 + K3 < 5” which
implements a restriction on the sum of the individual exponential amplitudes.

Chapter III-8 — Curve Fitting

III-202

Make/O/T CTextWave={"K1 + K3 < 5"}

The wave is made using commands so that it could be written into this help file. It may be easier to use the
Make Waves item from the Data menu to make the wave, and then display the wave in a table to edit the
expressions. Make sure you make Text wave. Do not leave any blank lines in the wave.

Now do the fit again with constraints:
CurveFit dblExp expData /D/R/C=CTextWave

In this case, the difference is slight; in the graph of the fit with constraints, notice that the fit line is slightly
lower at the left end and slightly higher at the right end than in the standard curve fit, and that difference
is reflected in the residual values at the ends:

The output from a curve fit with constraints includes these lines reporting on the fact that constraints were
used, and that the constraint was active in the solution:
 --Curve fit with constraints--

Active Constraint: Desired: K1+K3<5 Achieved: K1+K3=5

In most cases you will see a message similar to this one. If you have conflicting constraints, it is likely that
one or more constraints will be violated. In that case, you will get a report of that fact. The following com-
mands add two more constraints to the example. The new constraints require values for the individual
amplitudes that sum to a number greater than 5, while still requiring that the sum be less than 5 (so these
are “infeasible constraints”):
Make/O/T CTextWave={"K1 + K3 < 5", "K1 > 3.3", "K3 > 2.2"}
CurveFit dblExp expData /D/R/C=CTextWave

In most cases, you would have added the new constraints by editing the constraint wave
in a table.

The curve fit report shows that all three constraints were violated to achieve a solution:
--Curve fit with constraints--

Constraint VIOLATED: Desired: K1+K3<5 Achieved: K1+K3=5.32378
Constraint VIOLATED: Desired: K1>3.3 Achieved: K1=3.1956
Constraint VIOLATED: Desired: K3>2.2 Achieved: K3=2.12818

Constraint Matrix and Vector
When you do a constrained fit, it parses the constraint expressions and builds a matrix and a vector that
describe the constraints.

Each constraint expression is parsed to form a simple expression like , where the Ki’s
are the fit coefficients, and the Ci’s and D are constants. The constraints can be expressed as the matrix oper-
ation CK ≤ D, where C is a matrix of constants, K is the fit coefficient vector, and D is a vector of limits. The
matrix has dimensions N by M where N is the number of constraint expressions and M is the number of fit
coefficients. In most cases, almost all the elements of the matrix are zeroes. In the previous example, the C
matrix and D vector are:

Standard curve fit Fit with constraints

5

4

3

2

1

403020100

0.2
0.1
0.0

-0.1

5

4

3

2

1

403020100

-0.2
-0.1
0.0
0.1
0.2

C0K0 C1K1 … D≤+ +

Chapter III-8 — Curve Fitting

III-203

This is the form used internally by the curve-fitting code. If you wish, you can build a matrix wave and one-
dimensional wave containing the C and D constants. Instead of using /C=textwave to request a fit with con-
straints, use /C={matrix, 1Dwave}.
In general, it is confusing and error-prone to create the right waves for a given set of constraints. However,
it is not allowed to use the textwave method for curve fitting from a threadsafe function (see Multiple
Curve Fits Simultaneously on page III-219). Fortunately, Igor can create the necessary waves when it
parses the expressions in a text wave.
You can create waves containing the C matrix and D vector using the /C flag (note that this flag goes right
after the CurveFit command name, not at the end). If you have executed the examples above, you can now
execute the following commands to build the waves and display them in a table:
CurveFit/C dblExp expData /D/R/C=CTextWave
Edit M_FitConstraint, W_FitConstraint

The C matrix is named M_FitConstraint and the D vector is named W_FitConstraint (by convention, matrix
names start with “M_”, and 1D wave names start with “W_”).

In addition to their usefulness for specifying constraints in a threadsafe function, you can use these waves
later to check the constraints. The following commands multiply the generated fit coefficient wave
(W_coefs) by the constraint matrix and appends the result to the table made previously:
MatrixMultiply M_FitConstraint, W_coef
AppendToTable M_Product

The result of the MatrixMultiply operation is the matrix wave
M_Product. Note that the values in M_Product are all larger than
the values in W_FitConstraint because the constraints were infea-
sible and resulted in constraint violations.

Constrained Curve Fit Pitfalls
Bad Values on the Constraint Boundary
The most likely problem with constrained curve fitting is a value on a constraint boundary that produces a
singular matrix error during the curve fit. For instance, it would be reasonable in many applications to
require a preexponential multiplier to be positive:

 and require K1 to be positive.

It would be natural to write a constraint expression “K1 > 0”, but this can lead to problems. If some iteration
tries a negative value of K1, the constraints will set K1 to be exactly zero. But when K1 is zero, the function
has no dependence on K2 and a singular matrix error results. The solution is to use a constraint that requires
K1 to be greater than some small positive number: “K1 > 0.1”, for instance. The value of the limit must be
tailored to your application. If you expect the constraint to be inactive when the solution is found, and the
fit reports that the constraint was active, you can decrease the limit and do the fit again.

Severe Constraint Conflict
Although the method used for applying the constraints can find a solution even when constraints conflict
with each other (are infeasible), it is possible to have a conflict that is so bad that the method fails. This will
result in a singular matrix error.

C matrix D vector

0 1 0 1 0 5

0 -1 0 0 0 -3.3

0 0 0 -1 0 -2.2

y K0 K1e
K2x

+=

Chapter III-8 — Curve Fitting

III-204

Constraint Region is a Poor Fit
It is possible that the region of coefficient space allowed by the constraints is such a bad fit to the data that
a singular matrix error results.

Initial Guesses Far Outside the Constraint Region
Usually if the initial guesses for a fit lie outside the region allowed by the constraints, the fit coefficients will
shift into the constraint region on the first iteration. It is possible, however, for initial guesses to be so far from
the constraint region that the solution to the constraints fails. This will cause the usual singular matrix error.

Constraints Conflict with a Held Parameter
You cannot hold a parameter and apply a constraint to the same parameter. Thus, this is not allowed:
Make/T CWave="K1 > 5"
FuncFit/H="01" myFunc, myCoefs, myData /C=CWave

NaNs and INFs in Curve Fits
Curve fits ignore NaNs and INFs in the input data. This is a convenient way to eliminate individual data
values from a fit. A better way is to use a data mask wave (see Using a Mask Wave on page III-181).

Special Variables for Curve Fitting
There are a number of special variables used for curve fitting input (to provide additional control of the fit)
and for output (to provide additional statistics). Knowledgeable users can use the input variables to tweak
the fitting process. However, this is usually not needed. Some output variables help users knowledgeable
in statistics to evaluate the quality of a curve fit.

To use an input variable interactively, create it from the command line using the Variable operation before
performing the fit.

Most of the output variables are automatically created by the CurveFit or FuncFit operations. Some, as indi-
cated below, are not automatically created; you must create them yourself if you want the information they
provide.

If you are fitting using a procedure, both the input and output variables can be local or global. It is best to
make them local. See Accessing Variables Used by Igor Operations on page IV-107 for information on how
to use local variables.

If you perform a curve fit interactively via the command line or via the Curve Fitting dialog, the variables
will be global. If you use multiple data folders (described in Chapter II-8, Data Folders), you need to
remember that input and output variables are searched for or created in the current data folder.

The following table lists all of the input and output special variables. Some variables are discussed in more
detail in sections following the table.

Variable I/O Meaning

V_FitOptions Input Miscellaneous options for curve fit.

V_FitTol Input Normally, an iterative fit terminates when the fractional decrease of chi-
square from one iteration to the next is less than 0.001. If you create a
global variable named V_FitTol and set it to a value between 0.1 and
0.00001 then that value will be used as the termination tolerance. Values
outside that range will have no effect.

V_tol Input (poly fit only) The “singular value threshold”. See Special Considerations
for Polynomial Fits on page III-233.

Chapter III-8 — Curve Fitting

III-205

V_FitOptions
There are a number of options that you can invoke for the fitting process by creating a variable named
V_FitOptions and setting various bits in it. Set V_FitOptions to 1 to set Bit 0, to 2 to set Bit 1, etc.

V_chisq Output A measure of the goodness of fit. It has absolute meaning only if you’ve
specified a weighting wave containing the reciprocal of the standard error
for each data point.

V_q Output (line fit only) A measure of the believability of chi-square. Valid only if
you specified a weighting wave.

V_siga, V_sigb Output (line fit only) The probable uncertainties of the intercept (K0 = a) and slope
(K1 = b) coefficients for a straight-line fit (to y = a + bx).

V_Rab Output (line fit only) The coefficient of correlation between the uncertainty in a
(the intercept, K0) and the uncertainty in b (the slope, K1).

V_Pr Output (line fit only) The linear correlation coefficient r (also called Pearson’s r).
Values of +1 or -1 indicate complete correlation while values near zero
indicate no correlation.

V_r2 Output (line fit only) The coefficient of determination, usually called simply "r-
squared".

V_npnts Output The number of points that were fitted. If you specified a weighting wave
then points whose weighting was zero are not included in this count. Also
not included are points whose values are NaN or INF.

V_nterms Output The number of coefficients in the fit.

V_nheld Output The number of coefficients held constant during the fit.

V_numNaNs Output The number of NaN values in the fit data. NaNs ignored during a curve
fit.

V_numINFs Output The number of INF values in the fit data. NaNs ignored during a curve fit.

V_FitError Input/
Output

Used from a procedure to attempt to recover from errors during the fit.

V_FitQuitReason Output Provides additional information about why a nonlinear fit stopped
iterating.

You must create this variable; it is not automatically created.

V_FitIterStart Output Use of V_FitIterStart is obsolete; use all-at-once fit functions instead. See
All-At-Once Fitting Functions on page III-224 for details.

Set to 1 when an iteration starts. Identifies when the user-defined fitting
function is called for the first time for a particular iteration.

You must create this variable; it is not automatically created.

V_FitMaxIters Input Controls the maximum number of passes without convergence before
stopping the fit. By default this is 40. You can set V_FitMaxIters to any
value greater than 0. If V_FitMaxIters is less than 1 the default value of 40
is used.

V_FitNumIters Output Number of iterations.

You must create this variable; it is not automatically created.

S_Info Output Keyword-value pairs giving certain kinds of information about the fit.

You must create this variable; it is not automatically created.

Variable I/O Meaning

Chapter III-8 — Curve Fitting

III-206

Bit 0: Controls X Scaling of Auto-Trace Wave
If V_FitOptions exists and has bit 0 set (Variable V_fitOptions=1) and if the Y data wave is on the top
graph then the X scaling of the auto-trace destination wave is set to match the appropriate x axis on the
graph. This is useful when you want to extrapolate the curve outside the range of x data being fit.

A better way to do this is with the /X flag (not parameter- this flag goes immediately after the CurveFit or
FuncFit operation and before the fit function name). See CurveFit for details.

Bit 1: Robust Fitting
You can get a form of robust fitting where the sum of the absolute deviations is minimized rather than the
squares of the deviations, which tends to deemphasize outlier values. To do this, create V_FitOptions and
set bit 1 (Variable V_fitOptions=2). Warning 1: No attempt to adjust the results returned for the esti-
mated errors or for the correlation matrix has been made. You are on your own. Warning 2: Don’t set this
bit and then forget about it. Warning 3: Setting Bit 1 has no effect on line, poly or poly2D fits.

Bit 2: Suppresses Curve Fit Window
Normally, an iterative fit puts up an informative window while the fit is in progress. If you don’t want this
window to appear, create V_FitOptions and set bit 2 (Variable V_fitOptions=4). This may speed
things up a bit if you are performing batch fitting on a large number of data sets.

Bit 3: Save Iterates
It is sometimes useful to know the path taken by a curve fit getting to a solution (or failing to). To save his
information, create V_FitOptions and set bit 3 (Variable V_FitOptions=8). This creates a matrix wave
called M_iterates, which contains the values of the fit coefficients at each iteration. The matrix has a row for
each iteration and a column for each fit coefficient. The last column contains the value of chi square for each
iteration.

V_chisq
V_chisq is a measure of the goodness of fit. It has absolute meaning only if you’ve specified a weighting
wave. See the discussion in the section Weighting on page III-181.

V_q
V_q (straight-line fit only) is a measure of the believability of chi-square. It is valid only if you specified a
weighting wave. It represents the quantity q which is computed as follows:
q = gammq((N-2)/2, chisq/2)

where gammq is the incomplete gamma function 1-P(a,x) and N is number of points. A q of 0.1 or higher indi-
cates that the goodness of fit is believable. A q of 0.001 indicates that the goodness of fit may be believable. A
q of less than 0.001 indicates systematic errors in your data or that you are fitting to the wrong function.

V_FitError and V_FitQuitReason
When an error occurs during a curve fit, it normally causes any running user-defined procedure to abort.

This makes it impossible for you to write a procedure that attempts to recover from errors. However, you
can prevent an abort in the case of certain types of errors that arise from unpredictable mathematical cir-
cumstances. Do this creating a variable named V_FitError and setting it to zero before performing a fit. If

Chapter III-8 — Curve Fitting

III-207

an error occurs during the fit, it will set bit 0 of V_FitError. Certain errors will also cause other bits to be set
in V_FitError:

Reentrant curve fitting means that somehow a second curve fit started execution when there was already
one running. That could happen if your user-defined fit function tried to do a curve fit, or if a button action
procedure that does a fit responded too soon to another click.

There is more than one reason for a fit to stop iterating without an error. To obtain more information about
the reason that a nonlinear fit stopped iterating, create a variable named V_FitQuitReason. After the fit,
V_FitQuitReason is zero if the fit terminated normally, 1 if the iteration limit was reached, 2 if the user
stopped the fit, or 3 if the limit of passes without decreasing chi-square was reached.

Other types of errors, such as missing waves or too few data points for the fit, are likely to be programmer
errors. V_FitError does not catch those errors, but you can still prevent an abort if you wish, using the
special function AbortOnRTE and Igor's try-catch-endtry construct. Here is an example function that
attempts to do a curve fit to a data set that may contain nothing but NaNs:

Function PreventCurveFitAbort()
Make/O test = NaN
try

CurveFit/N/Q line, test; AbortOnRTE
catch

if (V_AbortCode == -4)
Print "Error during curve fit:"
Variable CFerror = GetRTError(1) // 1 to clear the error
Print GetErrMessage(CFerror)

endif
endtry

End

If you run this function, the output is:

 Error during curve fit:
 You must have at least as many data points as fit parameters.

No error alert is presented because of the call to GetRTError; the error is reported to the user of this code
by printing the error message to the history window using GetRTErrMessage.

V_FitIterStart
V_FitIterStart provides a way for a user-defined function to know when the fitting routines are about to
start a new iteration. The original, obsolete purpose of this is to allow for possible efficient computation of
user-defined fit functions that involve convolution. Such functions should now use all-at-once fit functions.
See All-At-Once Fitting Functions on page III-224 for details.

Error Bit Set

Any error 0

Singular matrix 1

Out of memory 2

Function returned NaN or INF 3

Fit function requested stop 4

Reentrant curve fitting 5

Chapter III-8 — Curve Fitting

III-208

S_Info
If you create a string variable in a function that calls CurveFit or Funcfit, Igor will fill it with keyword-value
pairs giving information about the fit:

Use StringByKey to get the information from the string. You should set keySepStr to "=" and listSepStr to
";".

Errors in Variables: Orthogonal Distance Regression
When you fit a model to data, it is usually assumed that all errors are in the dependent variable, and that
independent variables are known perfectly (that is, X is set perfectly and Y is measured with error). This
assumption is often not far from true, and as long as the errors in the dependent variable are much larger
than those for the independent variable, it will not usually cause much difference to the curve fit.

When the errors are normally distributed with zero mean and constant variance, and the model is exact,
then the standard least-squares fit gives the maximum-likelihood solution. This is the technique described
earlier (see Overview of Curve Fitting on page III-159).

In some cases, however, the errors in both dependent and independent variables may be comparable. This
situation has a variety of names including errors in variables, measurement error models or random regres-
sor models. An example of a model that can result in similar errors in dependent and independent variables
is fitting the track of an object along a surface; the variables involved would be measurements of cartesian
coordinates of the object’s location at various instants in time. Presumably the measurement errors would
be similar because both involve spatial measurement.

Fitting such data using standard or ordinary least squares can lead to bias in the solution. To solve this prob-
lem, we offer Orthogonal Distance Regression (ODR). Rather than minimizing the sum of squared errors in
the dependent variable, ODR minimizes the orthogonal distance from the data to the fitted curve by adjust-
ing both the model coefficients and an adjustment to the values of the independent variable. This is also
sometimes called “total least squares”.

For ODR curve fitting, Igor Pro uses the freely available ODRPACK95. The CurveFit, FuncFit, and
FuncFitMD operations can all do ODR fitting using the /ODR flag (see the documentation for the CurveFit
operation on page V-94 for details on the /ODR flag, and the Curve Fitting References on page III-234 for
information about the ODRPACK95 implementation of ODR fitting).

ODR Fitting is Not Threadsafe
The ODRPACK95 code is not threadsafe, so ODR fitting cannot be used in a threadsafe user function even
though CurveFit, FuncFit and FuncFitMD are threadsafe. Since the selection of ODR fitting is made at run-
time, ODR fitting will compile in a threadsafe user function but will issue a runtime error.

Keyword Information Following Keyword

DATE The date of the fit.

TIME The time of day of the fit.

FUNCTION The name of the fitting function.

AUTODESTWAVE If you used the /D parameter flag to request an autodestination wave, this
keyword gives the name of the wave.

YDATA The name of the Y data wave.

XDATA A comma-separated list of X data waves, or "_calculated_" if there were no
X waves. In most cases there is just one X wave.

Chapter III-8 — Curve Fitting

III-209

Weighting Waves for ODR Fitting
Just as with ordinary least-squares fitting, you can provide a weighting wave to indicate the expected mag-
nitude of errors for ODR fitting. But in ODR fitting, there are errors in both the dependent and independent
variables, so ODR fits accept weighting waves for both. You use the /XW flag to specify weighting waves
for the independent variable.

If you do not supply a weighting wave, it is assumed the errors have a variance of 1.0. This may be accept-
able if the errors in the dependent and independent variables truly have similar magnitudes. But if the
dependent and independent variables are of very different magnitudes, the chances are good that the errors
are also of very different magnitudes, and weighting is essential for a proper fit. Unlike the case for ordinary
least squares, where there is only a single weighting wave, ODR fitting depends on both the magnitude of
the weights as well as the relative magnitudes of the X and Y weights.

ODR Initial Guesses
An ordinary least squares fit that is linear in the coefficients can be solved directly. No initial guess is
required. The built-in line, poly, and poly2D curve fit functions are linear in the coefficients and do not
require initial guesses.

An ordinary least-squares fit to a function that is nonlinear in the coefficients is an iterative process that
requires a starting point. That means that you must provide an initial guess for the fit coefficients. The accu-
racy required of your initial guess depends greatly on the function you are fitting and the quality of your
data. The built-in fit functions also attempt to calculate a good set of initial guesses, but for user-defined fits
you must supply your own initial guesses.

An ODR fit introduces a nonlinearity into the fitting equations that requires iterative fitting and initial
guesses even for fit functions that have linear fit coefficients. In the case of line, poly, and poly2D fit func-
tions, ODR fitting uses an ordinary least squares fit to get an initial guess. For nonlinear built-in fit func-
tions, the same initial guesses are used regardless of fitting method.

Because the independent variable is adjusted during the fit, an initial guess is also required for the adjust-
ments to the independent variable. The initial guess is transmitted via one or more waves (one for each
independent variable) specified with the /XR flag. The X residual wave is also an output- see the ODR Fit
Results on page III-209.

In the absence of the /XR flag, initial guesses for the adjustments to the independent variable values are set
to zero. This is usually appropriate; in areas where the fitting function is largely vertical, you may need
nonzero guesses to fit successfully. One example of such a situation would be the region near a singularity.

Holding Independent Variable Adjustments
In some cases you may have reason to believe that you know some input values of the independent vari-
ables are exact (or nearly so) and should not be adjusted. To specify which values should not be adjusted,
you supply X hold waves, one for each independent variable, via the /XHLD flag. These waves should be
filled with zeroes corresponding to values that should be adjusted, or ones for values that should be held.

This is similar to the /H flag to hold fit coefficients at a set value during fitting. However, in the case of ODR
fitting and the independent variable values, holds are specified by a wave instead of a string of ones and
zeroes. This was done because of the potential for huge numbers of ones and zeroes being required. To save
memory, you can use a byte wave for the holds. In the Make Waves dialog, you select Byte 8 Bit from the
Type menu. Use the /B flag with the Make operation on page V-411.

ODR Fit Results
An ordinary least-squares fit adjusts the fit coefficients and calculates model values for the dependent vari-
able. You can optionally have the fit calculate the residuals — the differences between the model and the
dependent variable data.

ODR fitting adjusts both the fit coefficients and the independent variable values when seeking the least
orthogonal distance fit. In addition to the residuals in the dependent variable, it can calculate and return to

Chapter III-8 — Curve Fitting

III-210

you a wave or waves containing the residuals in the independent variables, as well as a wave containing
the adjusted values of the independent variable.

Residuals in the independent variable are returned via waves specified by the /XR flag. Note that the con-
tents of these waves are inputs for initial guesses at the adjustments to the independent variables, so you
must be careful — in most cases you will want to set the waves to zero before fitting.

The adjusted independent variable values are placed into waves you specify via the /XD flag.

Note that if you ask for an auto-destination wave (/D flag; seeThe Destination Wave on page III-178) the
result is a wave containing model values at a set of evenly-spaced values of the independent variables. This
wave will also be generated in response to the /D flag for ODR fitting.

You can also specify a specific wave to receive the model values (/D=wave). The values are calculated at the
values of the independent variables that you supply as input to the fit. In the case of ODR fitting, to make a
graph of the model, the appropriate X wave would be the output from the /XD flag, not the input X values.

Constraints and ODR Fitting
When fitting with the ordinary least-squares method (/ODR=0) you can provide a text wave containing con-
straint expressions that will keep the fit coefficients within bounds. These expressions can be used to apply
simple bound constraints (keeping the value of a fit coefficient greater than or less than some value) or to
apply bounds on linear combinations of the fit coefficients (constrain a+b>1, for instance).

When fitting using ODR (/ODR=1 or more) only simple bound constraints are supported.

Error Estimates from ODR Fitting
In a curve fit, the output includes an estimate of the errors in the fit coefficients. These estimates are com-
puted from the linearized quadratic approximation to the chi-square surface at the solution. For a linear fit
(line, poly, and poly2D fit functions) done by ordinary least squares, the chi-square surface is actually qua-
dratic and the estimates are exact if the measurement errors are normally distributed with zero mean and
constant variance. If the fitting function is nonlinear in the fit coefficients, then the error estimates are an
approximation. The quality of the approximation will depend on the nature of the nonlinearity.

In an ODR fit, even when the fitting function is linear in the coefficients, the fitting equations themselves
introduce a nonlinearity. Consequently, the error estimates from an ODR fit are always an approximation.
See the Curve Fitting References on page III-234 for detailed information.

ODR Fitting Examples
A simple example: a line fit with no weighting. If you run these commands, the call to SetRandomSeed will
make your “measurement error” (provided by gnoise function on page V-255) the same as the example
shown here:
SetRandomSeed 0.5 // so that the "random" data will always be the same...
Make/N=10 YLineData, YLineXData
YLineXData = p+gnoise(1) // gnoise simulates error in X values
YLineData = p+gnoise(1) // gnoise simulates error in Y values
// make a nice graph with errors bars showing standard deviation errors
Display YLineData vs YLineXData
ModifyGraph mode=3,marker=8
ErrorBars YLineData XY,const=1,const=1

Now we’re ready to perform a line fit to the data. First, a standard curve fit:
CurveFit line, YLineData/X=YLineXData/D

This command results in the following history report:
fit_YLineData= W_coef[0]+W_coef[1]*x
W_coef={1.3711,0.78289}
V_chisq= 15.413; V_npnts= 10; V_numNaNs= 0; V_numINFs= 0;
V_startRow= 0; V_endRow= 9; V_q= 1; V_Rab= -0.797202; V_Pr= 0.889708;
V_r2= 0.791581;
W_sigma={0.727,0.142}

Chapter III-8 — Curve Fitting

III-211

Coefficient values ± one standard deviation
a = 1.3711 ± 0.727
b = 0.78289 ± 0.142

Next, we will use /ODR=2 to request orthogonal distance fitting:
CurveFit/ODR=2 line, YLineData/X=YLineXData/D

which gives this result:
Fit converged properly
fit_YLineData= W_coef[0]+W_coef[1]*x
W_coef={1.0311,0.86618}
V_chisq= 9.18468; V_npnts= 10; V_numNaNs= 0; V_numINFs= 0;
V_startRow= 0; V_endRow= 9;
W_sigma={0.753,0.148}
Coefficient values ± one standard deviation

a = 1.0311 ± 0.753
b = 0.86618 ± 0.148

Add output of the X adjustments and Y residuals:
Duplicate/O YLineData, YLineDataXRes, YLineDataYRes
CurveFit/ODR=2 line, YLineData/X=YLineXData/D/XR=YLineDataXRes/R=YLineDataYRes

And a graph that uses error bars to show the residuals:
Display YLineData vs YLineXData
ModifyGraph mode=3,marker=8
AppendToGraph fit_YLineData
ModifyGraph rgb(YLineData)=(0,0,65535)
ErrorBars YLineData BOX,wave=(YLineDataXRes,YLineDataXRes),
wave=(YLineDataYRes,YLineDataYRes)

The boxes on this graph do not show error estimates, they show the residuals from the fit. That is, the differ-
ences between the data and the fit model. Because this is an ODR fit, there are residuals in both X and Y; error
bars are the most convenient way to show this. Note that one corner of each box touches the model line.

In the next example, we do an exponential fit in which the Y values and errors are small compared to the X
values and errors. The curve fit history report has been edited to include just the output of the solution.
First, fake data and a graph:
SetRandomSeed 0.5 // so that the "random" data will always be the same…
Make/D/O/N=20 expYdata, expXdata
expYdata = 1e-6*exp(-p/2)+gnoise(1e-7)
expXdata = p+gnoise(1)
display expYdata vs expXdata
ModifyGraph mode=3,marker=8

A regular exponential fit:
CurveFit exp, expYdata/X=expXdata/D

Coefficient values ± one standard deviation
y0 =-1.0805e-08 ± 4.04e-08
A =7.0438e-07 ± 9.37e-08
invTau =0.38692 ± 0.116

An ODR fit with no weighting, with X and Y residuals:

8

6

4

2

0

86420-2

Chapter III-8 — Curve Fitting

III-212

Duplicate/O expYdata, expYdataResY, expYdataResX
expYdataResY=0
expYdataResX=0
CurveFit/ODR=2 exp, expYdata/X=expXdata/D/R=expYdataResY/XR=expYdataResX

Coefficient values ± one standard deviation
y0 =-1.0541e-08 ± 4.03e-08
A =7.0443e-07 ± 9.37e-08
invTau =0.38832 ± 0.116

And a graph:
Display /W=(137,197,532,405) expYdata vs expXdata
AppendToGraph fit_expYdata
ModifyGraph mode(expYdata)=3
ModifyGraph marker(expYdata)=8
ModifyGraph lSize(expYdata)=2
ModifyGraph rgb(expYdata)=(0,0,65535)
ErrorBars expYdata
BOX,wave=(expYdataResX,expYdataResX),wave=(expYdataResY,expYdataResY)

Because the Y values are very small compared to the X values, and we didn’t use weighting to reflect
smaller errors in Y, the residual boxes are tall and skinny. If the vertical graph scale were the same as the
horizontal scale, the boxes would be approximately square.

Now with appropriate weighting. It’s easy to decide on the correct weighting since we added “measure-
ment error” using gnoise():
Duplicate/O expYdata, expYdataWY
expYdataWY=1e-7
Duplicate/O expYdata, expYdataWX
expYdataWX=1
// Caution: Next command wrapped to fit on page.
CurveFit/ODR=2 exp, expYdata/X=expXdata/D/R=expYdataResY/XR =expYdataResX/W=expYdataWY
/XW=expYdataWX/I=1

Coefficient values ± one standard deviation
y0 =-9.8498e-09 ± 3e-08
A =1.0859e-06 ± 5.39e-07
invTau =0.57731 ± 0.248

800

600

400

200

0

-200

151050

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

151050

Chapter III-8 — Curve Fitting

III-213

Fitting Implicit Functions
Occasionally you may need to fit data to a model that doesn’t have a form that can be expressed as y=f(x).
An example would be fitting a circle or ellipse using an equation like

Because this equation can’t be expressed as y=f(x), you can’t write a standard user-defined fitting function for it.

This problem is related to the errors in variables problem in which data has measurement errors in both the
dependent and independent variables. You have two inputs, or independent variables (x and y), both with
(probably) similar measurement errors. It differs from errors in variables fitting in that the function output
is zero instead of being a dependent variable.

The ODRPACK95 package also supports fitting to implicit functions, which you can do with the /ODR=3
flag. You create a fitting function with multiple independent variables (in the case of the ellipse above, two
for x and y). The fitting process will attempt to find x and y residuals and fit coefficients to minimize the
distance from the data to the zero contour of the function.

It may be a good idea at this point to read the section about errors in variables fitting; see Errors in Vari-
ables: Orthogonal Distance Regression on page III-208; much of it applies also to implicit fits.

There are a few differences between regular fitting and implicit fitting. For implicit fits, there is no autodes-
tination, and the report printed in the history does not include the wave assignment showing how to get
values of the fitted model (doing that is actually not at all easy).

Because of the details of the way ODRPACK95 operates, when you do an implicit fit, the curve fit progress
window does not update, and it appears that the fit takes just one iteration. That is because all the action
takes place inside the call to ODRPACK95.

The fit function must be written to return zero when the function solution is found. So if you have an equa-
tion of the form f(xi) = 0, you are ready to go; you simply create a fit function that implements f(xi). If it in
the form f(xi) = constant, you must move the constant to the other side of the equation: f(xi)-constant = 0. If
it is a form like f(xi) = g(xi), you must write your fitting function to return f(xi) - g(xi).

Example: Fit to an Ellipse
In this example we will show how to fit an equation like the one above. In the example the center of the
ellipse will be allowed to be at nonzero x0, y0.

First, we must define a fitting function. The function includes special comments to get mnemonic names for
the fit coefficients (see Fit Function Dialog Adds Special Comments on page III-222). To try the example,
you will need to copy this function and paste it into the Procedure window:
Function FitEllipse(w,x,y) : FitFunc

Wave w
Variable x
Variable y

//CurveFitDialog/
//CurveFitDialog/ Coefficients 4
//CurveFitDialog/ w[0] = a
//CurveFitDialog/ w[1] = b
//CurveFitDialog/ w[2] = x0
//CurveFitDialog/ w[3] = y0

return ((x-w[2])/w[0])^2 + ((y-w[3])/w[1])^2 - 1
End

An implicit fit seeks adjustments to the input data and fit coefficients that cause the fit function to return
zero. To implement the ellipse function above, it is necessary to subtract 1.0 to account for “= 1” on the right
in the equation above.

x2

a2
----- y2

b2
-----+ 1=

Chapter III-8 — Curve Fitting

III-214

The hard part of creating an example is creating fake data that falls on an ellipse. We will use the standard
parametric equations to do the job (y = a*cos(theta), x=b*sin(theta)). So far, we will not add “measurement
error” to the data so that you can see the ellipse clearly on a graph:
Make/N=20 theta,ellipseY,ellipseX
theta = 2*pi*p/20
ellipseY = 2*cos(theta)+2
ellipseX=3*sin(theta)+1

A graph of the data (you could use the Windows→New Graph menu, and then the Modify Trace Appear-
ance dialog):
Display ellipseY vs ellipseX
ModifyGraph mode=3,marker=8
ModifyGraph width={perUnit,72,bottom},height={perUnit,72,left}

The last command line sets the width and height modes of the graph so that the ellipse is shown in its true
aspect ratio. Now add some “measurement error” to the data:
SetRandomSeed 0.5 // so that the "random" data will always be the same…
ellipseY += gnoise(.3)
ellipseX += gnoise(.3)

Now you can see why we didn’t do that before — it’s a pretty lousy ellipse!

Now, finally, do the fit. That requires making a coefficient wave and filling it with the initial guesses, and
making a pair of waves to receive estimated values of X and Y at the fit:
Duplicate ellipseY, ellipseYFit, ellipseXFit
Make/D/O ellipseCoefs={3,2,1,2} // a, b, x0, y0
FuncFit/ODR=3 FitEllipse, ellipseCoefs /X={ellipseX, ellipseY} /XD={ellipseXFit,ellipseYFit}

The call to the FuncFit operation has no Y wave specified (it would ordinarily go right after the coefficient
wave, ellipseCoefs) because this is an implicit fit.

The results:
Fit converged properly
 ellipseCoefs={3.1398,1.9045,0.92088,1.9971}
 V_chisq= 1.74088; V_npnts= 20; V_numNaNs= 0; V_numINFs= 0;
 W_sigma={0.158,0.118,0.128,0.0906}
 Coefficient values ± one standard deviation
 a =3.1398 ± 0.158
 b =1.9045 ± 0.118
 x0 =0.92088 ± 0.128
 y0 =1.9971 ± 0.0906

And add the destination waves (the ones specified with the /XD flag) to the graph:
AppendToGraph ellipseYFit vs ellipseXFit
ModifyGraph mode=3,marker(ellipseYFit)=1
ModifyGraph rgb=(1,4,52428)

It is difficult to compute the model representing the solution, as it requires finding roots of the implicit func-
tion. A quick way to add a smooth model curve to a graph is to fill a matrix with values of the fit function
at a range of X and Y and then add a contour plot of the matrix to your graph. Then modify the contour plot
to show only the zero contour.

3

2

1

0

43210-1-2

Chapter III-8 — Curve Fitting

III-215

Here are commands to add a contour of the example function to the graph above:
Make/N=(100,100) elllipseContour
SetScale/I x -3,4.5,elllipseContour
SetScale/I y -.2, 5, elllipseContour
elllipseContour = FitEllipse(ellipseCoefs, x, y)
AppendMatrixContour elllipseContour
ModifyContour elllipseContour labels=0,autoLevels={*,*,0},moreLevels=0,moreLevels={0}
ModifyContour elllipseContour rgbLines=(0,0,0)

Fitting Sums of Fit Functions
Sometimes the appropriate model is a combination, typically a sum, of simpler models. It might be a sum
of exponential decay functions, or a sum of several different peaks at various locations. Peak fitting can
include a baseline function implemented as a separate user-defined fit function. With standard curve fit-
ting, you have to write a user-defined function that implements the sum.

Instead, you can use an alternate syntax for the FuncFit operation to fit to a list of fit functions that are
summed automatically. The results for each fit function are returned via separate coefficient waves, making
it easy to keep the results of each term in the sum separate. The syntax is described in the FuncFit operation
on page V-215.

The sum-of-fit-functions feature can mix any kind of fit function — built-in, or any of the variants described
in User-Defined Fitting Function: Detailed Description on page III-219. However, even if you use only
built-in fit functions you must provide initial guesses for each of the fit functions because the fit cannot
discern how the various features of the data are partitioned amongst the list of fit functions.

Linear Dependency: A Major Issue
When you fit a list of fit functions you must be careful not to introduce linear dependencies between the
coefficients of the list of functions. The most likely such dependency will arise from a constant Y offset used
with all of the built-in fit functions, and commonly included in user functions. This Y offset accounts for
any offset error that is common when making real-world measurements. For instance, the equation for the
built-in exp function is:

If you sum two terms, you get two y0’s (primes used for the second copy of the function):

As long as B and B' are distinct, the two exponential terms will not be a problem. But y0 and y'0 are linearly depen-
dent — they cannot be distinguished mathematically. If you increase one and decrease the other the same
amount, the result is exactly the same. This is sure to cause a singular matrix error when you try to do the fit.

The solution is to hold one of the y0 coefficients. Because each fit function in the list has its own coefficient
wave, and you can specify a hold string for each function, this is easy (see Example: Summed Exponentials
on page III-216).

There are many ways to introduce linear dependence. They are not always so easy to spot!

3

2

1

0

43210-1-2

y0 A Bx–()exp+

y0 A Bx–()exp y0′ A′ B′x–()exp+ + +

Chapter III-8 — Curve Fitting

III-216

Constraints Applied to Sums of Fit Functions
The sums of fit functions feature does not include a keyword for specifying constraints on a function-by-
function basis. But you can use the normal constraint specifications - you just have to translate the the con-
straint expressions to take account of the list of functions. (If you are interested in using constraints, but
don't know about the syntax for constraints, see Fitting with Constraints on page III-199.)

Constraint expressions use Kn to designate fit coefficients where n is simply the sequential number of the
fit coefficient within the list of coefficients. n starts with zero. In order to reference fit coefficients for a fit
function in a list of summed fit functions, you must account for all the fit coefficients in all the fit functions
in the list before the fit function you are trying to constrain. For example, if you have this:

FuncFit {{exp,expTerm1},{exp,expTerm2,hold="1"},{exp,expTerm3,hold="1"}} ...

in order to constrain coefficients of the second exponential term, you must know first that the built-in exp
fit function has three fit coefficients. Here is the equation of the exp fit function:

f(x) = y0 + A*exp(-x*invTau)

The vertical offset (y0) of the first summed exp term is represented in a constraint expression as "K0", the
amplitude as "K1", and invTau as "K2". Constraint expressions for the second exp term continue the count
starting with "K3" for y0 (but see the section Linear Dependency: A Major Issue on page III-215 and note
that you are not allowed to hold and constrain a fit coefficient simultaneously), and use "K4" for the ampli-
tude and "K5" for invTau.

Example: Summed Exponentials
This example fits a sum of three exponentials using the built-in exp fit function. For real work, we recom-
mend the exp_XOffset function; it handles data that’s not at X=0 better, and the decay constant fit coefficient
is actually the decay constant. The exp fit function gives you the inverse of the decay constant.

First, make some fake data and graph it:
Make/D/N=1000 expSumData
SetScale/I x 0,1,expSumData
expSumData = 1 + exp(-x/0.5) + 1.5*exp(-x/.1) + 2*exp(-x/.01)+gnoise(.03)
Display expSumData
ModifyGraph mode=2,rgb=(1,4,52428)

The fake data was purposely made with a Y offset of 1.0 in order to illustrate how to handle the vertical
offset terms in the fit function.

Next, we need to make a coefficient wave for each of the fit functions. In spite of the linear dependence
between the vertical offset in each copy of the function, you must include all the fit coefficients in the coef-
ficient waves. Otherwise when the function is evaluated the fit won’t have all the needed information.
Make/D/O expTerm1 = {1, 1, 2}
Make/D/O expTerm2 = {0, 1.5, 10}
Make/D/O expTerm3 = {0, 2, 100}

Each of these lines makes one coefficient wave with three elements. The first element is y0, the second is
amplitude, and the third is the inverse of the decay constant. Since the data is fake, we have a pretty good
idea of the initial guesses!

5

4

3

2

1.00.80.60.40.20.0

Chapter III-8 — Curve Fitting

III-217

To reflect the baseline offset of 1.0, the y0 coefficient for only the first exponential coefficient wave was set
to 1. If y0 were set to 1.0 for all three, the offset would be 3.0.

Now we can do the fit. A FuncFit command with a list of fit functions and coefficient waves can be pretty long:
FuncFit {{exp, expTerm1},{exp, expTerm2, hold="1"},{exp, expTerm3, hold="1"}}
expSumData/D

The entire list of functions is enclosed in braces and each fit function specification in the list is enclosed in
braces as well. At a minimum you must provide a fit function and a coefficient wave for each function in
the list, as was done here for the first exponential term.

The specification for each function can also contain various keywords; the second and third terms here
contain the hold keyword in order to include a hold string. The string used will cause the fit to hold the y0
coefficient for the second and third terms at zero. That prevents problems caused by linear dependence
between the three fit functions. Since the coefficient waves for the second and third terms set their respec-
tive y0 to zero, this puts all the vertical offset into the one coefficient for the first term.

In this example the hold strings are literal quoted strings. They can be any string expression but see below
for restrictions if you use a function list contained in a string:

String holdStr = "1"
FuncFit {{exp,expTerm1},{exp,expTerm2,hold=holdStr},

{exp,expTerm3,hold="1"}} expSumData/D // All on one line

The history report for a sum of fit functions is enhanced to show all the functions:
Fit converged properly
fit_expSumData= Sum of Functions(,x)
expTerm1={1.027,1.045,2.2288}
expTerm2={0,1.4446,10.416}
expTerm3={0,2.0156,102.28}
V_chisq= 0.864844; V_npnts= 1000; V_numNaNs= 0; V_numINFs= 0;
V_startRow= 0; V_endRow= 999; V_startCol= 0; V_endCol= 0;
V_startLayer= 0; V_endLayer= 0; V_startChunk= 0; V_endChunk= 0;
W_sigma={0.0184,0.0484,0.185,0,0.052,0.495,0,0.0239,2.34}
For function 1: exp:
Coefficient values ± one standard deviation

y0 = 1.027 ± 0.0184
A = 1.045 ± 0.0484
invTau = 2.2288 ± 0.185

For function 2: exp:
Coefficient values ± one standard deviation

y0 = 0 ± 0
A = 1.4446 ± 0.052
invTau = 10.416 ± 0.495

For function 3: exp:
Coefficient values ± one standard deviation

y0 = 0 ± 0
A = 2.0156 ± 0.0239
invTau = 102.28 ± 2.34

Example: Function List in a String
The list of functions in the FuncFit command in the first example is moderately long, but it could be much
longer. If you wanted to sum 20 peak functions and a baseline function, the list could easily exceed the limit
of 400 characters in a command line.

Fortunately, you can build the function specification in a string variable and use the string keyword. Doing
this on the command line for the first example looks like this:
String myFunctions="{exp, expTerm1}"
myFunctions+="{exp, expTerm2, hold=\"1\"}"

Chapter III-8 — Curve Fitting

III-218

myFunctions+="{exp, expTerm3, hold=\"1\"}"
FuncFit {string = myFunctions} expSumData/D

These commands build the list of functions one function specification at a time. The second and third lines
use the += assignment operator to add additional functions to the list. Each function specification includes
its pair of braces.

Notice the treatment of the hold strings — in order to include quotation marks in a quoted string expression,
you must escape the quotation marks. Otherwise the command line parser thinks that the first quote around
the hold string is the closing quote.

The function list string is parsed at run-time outside the context in which FuncFit is running. Consequently,
you cannot reference local variables in a user-defined function. The hold string may be either a quoted literal
string, as shown here, or it can be a reference to a global variable, including the full data folder path:

String/G root:myDataFolder:holdStr="1"
String myFunctions="{exp, expTerm1}"
myFunctions+="{exp, expTerm2, hold=root:myDataFolder:holdStr}"
myFunctions+="{exp, expTerm3, hold=root:myDataFolder:holdStr}"
FuncFit {string = myFunctions} expSumData/D

Curve Fitting with Multiple Processors
If you are lucky enough to be using a computer with multiple processors, you no doubt want to take advan-
tage of them. Because curve fitting can be a time-consuming, computation-intensive process, curve fitting
will take advantage of multiple processors in two ways.

First, you can split the computations required for a curve fit into multiple threads to get the benefit of multiple
processors, even on a single curve fit. This has been done for built-in fit functions and for user-defined fitting
functions in the basic form (see User-Defined Fitting Function: Detailed Description on page III-219).

Second, the CurveFit, FuncFit, and FuncFitMD operations are “thread safe”. That means that you can do more
than one curve fit simultaneously, with computations being done on multiple processors simultaneously. This
requires that you write a function using the threaded programming techniques (see ThreadSafe Functions
and Multitasking on page IV-295). This is not a task for a beginning programmer. See the example experiment
“MultipleFitsInThreads.pxp” in the File→Example Experiments→Curve Fitting menu.

Multithreaded Curve Fits
To take advantage of multiple processors for curve fit computations, use the /NTHR flag. This flag specifies
how many threads to use in computing the model values and derivatives of the fit function. Setting
/NTHR=0 uses the “best” number of threads; /NTHR=n uses exactly n threads. Usually n should be equal
to the number of processors.

In the Curve Fit dialog you will find a checkbox, Use Multiple Processors. It is selected by default if your
computer appears to have multiple processors, and not selected by default if your computer has just one
processor. Selecting the checkbox adds /NTHR=0 to the generated command, using the best number of
threads. Deselecting it sets /NTHR=1 to use just one processor no matter how many you have.

There is significant overhead when running multiple concurrent threads. The benefit you get from multiple
threads will depend on the computation time spent actually computing the model and derivatives. This
means that large problems (many data points) will benefit more than small problems. Fit functions that take
longer to compute will benefit more than simple fit functions, and user-defined fits benefit more than built-
in fits because built-in fits run more efficient code.

Because of the efficiency of the built-in fit function computation, we find that multiple processors do not
help fits to built-in functions. In fact, the overhead may actually hurt performance for smaller problems.
Consequently, the default for /NTHR=0 for built-in fits is to use just one thread. On a multiprocessor com-
puter this means that only one processor will be used.

Chapter III-8 — Curve Fitting

III-219

User-defined fit functions, because they are implemented in Igor Pro’s programming language, run more
slowly. Our testing indicates that user-defined fit functions may benefit from running on more than one
processor, especially for problems having more than a few hundred data points. Very complex user-defined
functions that execute more slowly will get more benefit for smaller problems. When you use /NTHR=0, the
fit uses as many threads as your machine has processors.

So far, only built-in fits and basic user-defined fit functions are multithreaded.

Multiple Curve Fits Simultaneously
Another way to take advantage of multiple processors for curve fitting is to run the curve fit from threaded
Igor code. If you do this, you can use multiple threads to run multiple curve fits simultaneously, or you can
run a single curve fit as a background process.

Potentially, programming multiple curve fits in a threaded user-defined function could result in better per-
formance on a multiprocessor computer because the fits could be running simultaneously. Because all of the
curve fit computations will be simultaneous, unlike the situation with a single fit using /NTHR=n, the perfor-
mance gain could be greater than for single fits with multiple processors. Only testing can tell you for sure.

Note that any user-defined fit function used with curve fitting from threaded procedures must be a thread-
safe function (see ThreadSafe Functions on page IV-87 for details).

For an example of multiple curve fits in threaded user-defined functions, see the example experiment “Mul-
tipleFitsInThreads.pxp”. You will find it under the File→Example Experiments→Curve Fitting menu.

Constraints and ThreadSafe Functions
The usual way to specify constraints to a curve fit is via expressions in a text wave (see Fitting with Con-
straints on page III-199). As part of the process of parsing these expressions and getting ready to use them
in a curve fit involves evaluating part of the expressions. That, in turn, requires sending them to Igor’s
command-line interpreter, in a process very similar to the way the Execute operation works. Unfortunately,
this is not threadsafe.

Instead, you must use the method described in Constraint Matrix and Vector on page III-202. Unfortu-
nately, it is hard to understand, inconvenient to set up, and easy to make mistakes. The best way to do it is
to set up your constraint expressions using the normal text wave method (see Constraint Expressions on
page III-201) and use the /C flag with a trial fit. Igor will generate the matrix and vector required.

In most cases, the basic expressions will not change from one fit to another, just the limits of the constraints
will change. If that is the case, you can use the matrix provided by Igor, and alter the numbers in the vector
to change the constraint limits.

User-Defined Fitting Function: Detailed Description
When you use the New Fit Function dialog to create a user-defined function, the dialog uses the information
you enter to create code for your function in the Procedure window. Using the New Fit Function dialog is
the easiest way to create a user-defined fitting function, but it is possible also to write the function directly
in the Procedure window.

Certain kinds of complexities will require that you write the function yourself. It may be that the easiest way
to create such a function is to create a skeleton of the function using the dialog, and then modify it by editing
in the procedure window.

This section describes the format of user-defined fitting functions so that you can understand the output of
the New Fit Function dialog, and so that you can write one yourself.

You can use a variety of formats for user-defined fit functions tailored to different situations, and involving
varying degrees of complexity to write and use. The following section describes the simplest format, which
is also the format created by the New Fit Function dialog.

Chapter III-8 — Curve Fitting

III-220

Discussion of User-Defined Fitting Function Formats
You can use three formats for user-defined fitting functions: the Basic format discussed above, the All-At-
Once format, and Structure Fit Functions, which use a structure as the only input parameter. Additionally,
Structure Fit Functions come in basic and all-at-once variants.

Each of these formats address particular situations. The Basic format was the original format; it returns just
one model value at a time. The All-At-Once format addresses problems in which the operations involved
naturally calculate all the model values at once. Such problems are ones that involve operations like convo-
lution, integration, or FFT. Structure Fit Functions use a structure as the only function parameter, allowing
arbitrary information to be transmitted to the function during fitting. This makes it very flexible, but also
makes it necessary that FuncFit be called from a user-defined function.

Format of a Basic Fitting Function
A basic user-defined fitting function has the following form:
Function F(w, x) : FitFunc

WAVE w; Variable x

<body of function>
<return statement>

End

You can choose a more descriptive name for your function.

The function must have exactly two parameters. The first parameter is the coefficients wave, conventionally
called w. The second parameter is the independent variable, conventionally called x. If your function has this
form, it will be recognized as a curve fitting function and will allow you to use it with the FuncFit operation.

The FitFunc keyword marks the function as being intended for curve fitting. Functions with the FitFunc
keyword that have the correct format are included in the Function menu in the Curve Fitting dialog.

The FitFunc keyword is not required. The FuncFit operation will allow any function that has a wave and a
variable as the parameters. In the Curve Fitting dialog you can choose Show Old-Style Functions from the
Function menu to display a function that lacks the FitFunc keyword, but you may also see functions that
just happen to match the correct format but aren’t fitting functions.

Basic Fit Function All-At-Once Function Structure Function

Can be selected, created, and edited
within the Curve Fitting dialog.

Can be selected, but not created or
edited, within the Curve Fitting
dialog.

Cannot be used from the Curve
Fitting dialog.

With appropriate comments,
mnemonic coefficient names.

No mnemonic coefficient names. Must be used with FuncFit called
from a user-defined function.

Straight-forward programming:
one X value, one return value.

Programming requires a good
understanding of wave
assignment; there are some issues
that can be difficult to avoid.

Hardest to program: requires
both an understanding of
structures and writing a driver
function that calls FuncFit.

Not an efficient way to write a fit
function that uses convolution,
integration, FFT, or any operation
that uses all the data values in a
single operation.

Most efficient for problems
involving operations like
convolution, integration, or FFT.
Often much faster than the Basic
format, even for problems that
don’t require it.

Very flexible: any arbitrary
information can be transmitted to
the fit function. More information
about the fit progress transmitted
via the structure.

See Format of a Basic Fitting
Function on page III-220.

See All-At-Once Fitting
Functions on page III-224.

See Structure Fit Functions on
page III-228.

Chapter III-8 — Curve Fitting

III-221

Note that the function does not know anything about curve fitting. All it knows is how to compute a return
value from its input parameters. The function is called during a curve fit when it needs the value for a
certain X and a certain set of fit coefficients.

Here is an example of a user-defined function to fit a log function. This might be useful since log is not one
of the functions provided as a built-in fit function.
Function LogFit(w,x) : FitFunc

WAVE w
Variable x

return w[0]+w[1]*log(x)
End

In this example, two fit coefficients are used. Note that the first is in the zero element of the coefficient wave.
You cannot leave out an index of the coefficient wave- an unused element of the wave will result in a sin-
gular matrix error.

Intermediate Results for Very Long Expressions
The body of the function is usually fairly simple but can be arbitrarily complex. If necessary, you can use
local variables to build up the result, piece-by-piece. You can also call other functions or operations and use
loops and conditionals.

If your function has many terms, you might find it convenient to use a local variable to store intermediate
results rather than trying to put the entire function on one line. For example, instead of:
return w[0] + w[1]*x + w[2]*x^2

you could write:
Variable val // local variable to accumulate result value
val = w[0]
val += w[1]*x
val += w[2]*x^2
return val

Conditionals
Flow control statements including if statements are allowed in fit functions. You could use this to fit a
piece-wise function, or to control the return value in the case of a singularity in the function.

Here is an example of a function that fits two lines to different sections of the data. It uses one of the param-
eters to decide where to switch from one line to the other:
Function PieceWiseLineFit(w,x) : FitFunc

WAVE w
Variable x

variable result
if (x < w[4])

result = w[0]+w[1]*x
else

result = w[2]+w[3]*x
endif
return result

End

This function can be entered into the New Fit Function dialog. Here is what the dialog looked like when we
created the function above:

Chapter III-8 — Curve Fitting

III-222

Fit Function Dialog Adds Special Comments
In the example above of a piece-wise linear fit function, the New Fit Function dialog uses coefficient names
instead of indexing a coefficient wave, but there isn’t any way to name coefficients in a fit function. The New
Fit Function dialog adds special comments to a fit function that contain extra information. For instance, the
PieceWiseLineFit function as created by the dialog looks like this:
Function PieceWiseLineFit(w,x) : FitFunc

WAVE w
Variable x

//CurveFitDialog/ These comments were created by the Curve Fitting dialog. Alteri
//CurveFitDialog/ make the function less convenient to work with in the Curve Fit
//CurveFitDialog/ Equation:
//CurveFitDialog/ variable result
//CurveFitDialog/ if (x < breakX)
//CurveFitDialog/ result = a1+b1*x
//CurveFitDialog/ else
//CurveFitDialog/ result = a2+b2*x
//CurveFitDialog/ endif
//CurveFitDialog/ f(x) = result
//CurveFitDialog/ End of Equation
//CurveFitDialog/ Independent Variables 1
//CurveFitDialog/ x
//CurveFitDialog/ Coefficients 5
//CurveFitDialog/ w[0] = a1
//CurveFitDialog/ w[1] = b1
//CurveFitDialog/ w[2] = a2
//CurveFitDialog/ w[3] = b2
//CurveFitDialog/ w[4] = breakX

variable result
if (x < w[4])
 result = w[0]+w[1]*x
else
 result = w[2]+w[3]*x
endif
return result

End

If you click the Edit Fit Function button, the function code is analyzed to determine the number of coeffi-
cients. If the comments that name the coefficients are present, the dialog uses those names. If they are not
present, the coefficient wave name is used with the index number appended to it as the coefficient name.

Having mnemonic names for the fit coefficients is very helpful when you look at the curve fit report in the
history window. The minimum set of comments required to have names appear in the dialog and in the
history is a lead-in comment line, plus the Coefficients comment lines. For instance, the following version
of the function above will allow the Curve Fitting dialog and history report to use coefficient names:
Function PieceWiseLineFit(w,x) : FitFunc

WAVE w
Variable x

//CurveFitDialog/
//CurveFitDialog/ Coefficients 5
//CurveFitDialog/ w[0] = a1
//CurveFitDialog/ w[1] = b1

Note: there’s a line
that you can’t see
at the top of the
code.

Special comments give the Curve Fitting dialog
extra information about the fit function.

The function code as it appears in the text
window of the New Fit Function dialog.

Independent variable name (or
names, for a multivariate function).

Coefficient names.

This prefix in the comment identifies the comment
as belonging to the curve fitting dialog.

The actual function code.

Chapter III-8 — Curve Fitting

III-223

//CurveFitDialog/ w[2] = a2
//CurveFitDialog/ w[3] = b2
//CurveFitDialog/ w[4] = breakX

variable result
if (x < w[4])
 result = w[0]+w[1]*x
else
 result = w[2]+w[3]*x
endif
return result

End

The blank comment before the line with the number of coefficients on it is required- the parser that looks at
these comments needs one lead-in line to throw away. That line can contain anything as long as it includes
the lead-in “//CurveFitDialog/”.

Functions that the Fit Function Dialog Doesn’t Handle Well
In the example functions it is quite clear by looking at the function code how many fit coefficients a function
requires, because the coefficient wave is indexed with a literal number. The number of coefficients is simply
one more than the largest index used in the function.

Occasionally a fit function uses constructions other than a literal number for indexing the coefficient wave.
This will make it impossible for the Curve Fitting dialog to figure out how many coefficients are required. In
this case, the Coefficients tab can’t be constructed until you specify how many coefficients are needed. You do
this by choosing a coefficient wave having the right number of points from the Coefficient Wave menu.

You cannot edit such a function by clicking the Edit Fit Function button. You must write and edit the func-
tion in the Procedure window.

Here is an example function that can fit an arbitrary number of Gaussian peaks. It uses the length of the
coefficient wave to determine how many peaks are to be fit. Consequently, it uses a variable (cfi) rather
than a literal number to access the coefficients:
Function FitManyGaussian(w, x) : FitFunc

WAVE w
Variable x

Variable returnValue = w[0]
Variable i
Variable numPeaks = floor((numpnts(w)-1)/3)
Variable cfi

for (i = 0; i < numPeaks; i += 1)
cfi = 3*i+1
returnValue += w[cfi]*exp(-((x-w[cfi+1])/w[cfi+2])^2)

endfor
return returnValue

End

Format of a Multivariate Fitting Function
A multivariate fitting function has the same form as a univariate function, but has more than one indepen-
dent variable:
Function F(w, x1, x2, ...) : FitFunc

WAVE w;
Variable x1
Variable x2
Variable ...

<body of function>

The first coefficient is a baseline offset.

Each peak takes three coefficients:
amplitude, x position and width.

Loop over the peaks,
calculating them one at a time.

Calculate index of amplitude for this peak.

Expression of a single Gaussian peak.

Each peak is added to the result.

Chapter III-8 — Curve Fitting

III-224

<return statement>
End

A function to fit a planar trend to a data set could look like this:
Function Plane(w, x1, x2) : FitFunc

WAVE w
Variable x1, x2

return w[0] + w[1]*x1 + w[2]*x2
End

There is no limit on the number of independent variables, with the exception that the entire Function dec-
laration line must fit within a single command line of 400 characters. Thus, if you use a three-character func-
tion name, a one-character name for the coefficients wave parameter, and two-character names for the
independent variable parameters, you could write a fitting function with 128 independent variables.

The New Fit Function dialog will add the same comments to a multivariate fit function as it does to a basic
fit function. The Plane() function above might look like this (we have truncated the first two special
comment lines to make them fit):
Function Plane(w,x1,x2) : FitFunc

WAVE w
Variable x1
Variable x2

//CurveFitDialog/ These comments were created by the Curve...
//CurveFitDialog/ make the function less convenient to work...
//CurveFitDialog/ Equation:
//CurveFitDialog/ f(x1,x2) = A + B*x1 + C*x2
//CurveFitDialog/ End of Equation
//CurveFitDialog/ Independent Variables 2
//CurveFitDialog/ x1
//CurveFitDialog/ x2
//CurveFitDialog/ Coefficients 3
//CurveFitDialog/ w[0] = A
//CurveFitDialog/ w[1] = B
//CurveFitDialog/ w[2] = C

return w[0] + w[1]*x1 + w[2]*x2
End

All-At-Once Fitting Functions
The scheme of calculating one Y value at a time doesn’t work well for some fitting functions. This is true of
functions that involve a convolution such as might arise if you are trying to fit a theoretical signal convolved
with an instrument response. Fitting to a solution to a differential equation might be another example.

For this case, you can create an “all at once” fit function. Such a function provides you with an X and Y
wave. The X wave is input to the function; it contains all the X values for which your function must calculate
Y values. The Y wave is for output — you put all your Y values into the Y wave.

Because an all-at-once function is called only once for a given set of fit coefficients, it will be called many
fewer times than a basic fit function. Because of the saving in function-call overhead, all-at-once functions
can be faster even for problems that don’t require an all-at-once function.

Here is the format of an all-at-once fit function:
Function myFitFunc(pw, yw, xw) : FitFunc

WAVE pw, yw, xw

yw = <expression involving pw and xw>
End

Chapter III-8 — Curve Fitting

III-225

Note that there is no return statement because the function result is put into the wave yw. Even if you
include a return statement the return value is ignored during a curve fit.

The X wave contains all the X values for your fit, whether you provided an X wave to the curve fit or not. If you
did not provide an X wave, xw simply contains equally-spaced values derived from your Y wave’s X scaling.

There are some restrictions on all-at-once fitting functions:
1) You can’t create or edit an all-at-once function using the Curve Fitting dialog. You must create it by

editing in the Procedure window. All-at-once functions are, however, listed in the Function menu
in the Curve Fitting dialog.

2) There is no such thing as an “old-style” all-at-once function. It must have the FitFunc keyword.
3) You don’t get mnemonic coefficient names.

Here is an example that fits an exponential decay using an all-at-once function. This example is silly — there
is no reason to make this an all-at-once function. It is simply an example showing how a real function works
without the computational complexities. Here it is, as an all-at-once function:
Function allatonce(pw, yw, xw) : FitFunc

WAVE pw, yw, xw

// a wave assignment does the work
yw = pw[0] + pw[1]*exp(-xw/pw[2])

End

This is the same function written as a standard user fitting function:
Function notallatonce(pw, x) : FitFunc

WAVE pw
Variable x

return pw[0] + pw[1]*exp(-x/pw[2])
End

In the all-at-once function, the argument of exp() includes xw, a wave. The basic format uses the input
parameter x, which is a variable containing a single value. The use of xw in the all-at-once version of the
function uses the implied point number feature of wave assignments (see Waveform Arithmetic and
Assignments on page II-94).

There are a couple of things to watch out for when creating an all-at-once fitting function:

1. You must not change the yw wave. That is, don’t use Make or Redimension operations on yw. This
will get you into trouble:
Function allatonce(pw, yw, xw) : FitFunc

WAVE pw, yw, xw

Redimension/N=2000 yw // BAD!
yw = pw[0] + pw[1]*exp(-xw/pw[2])

End

2. You may not get the same number of points in yw and xw as you have in the waves you provide
as the input data. If you fit to a restricted range, if there are NaNs in the input data, or if you use a
mask wave to select a subset of the input data, you will get a wave with a reduced number of points.
Your fitting function must be written to handle that situation or you must not use those features.

3. It is tricky (but not impossible) to write an all-at-once fitting function that works correctly with the auto-
destination feature (that is, _auto_ in the Destination menu, or /D by itself in a FuncFit command).

4. The xw and yw waves are not your data waves. They will be destroyed when fitting is finished.

The example above uses xw as an argument to the exp function, and it uses the special features of a wave
assignment statement to satisfy point 2.

Chapter III-8 — Curve Fitting

III-226

The next example fits a convolution of a Gaussian peak with an exponential decay. It fits a baseline offset,
amplitude and width of the Gaussian peak and the decay constant for the exponential. This might model an
instrument with an exponentially decaying impulse response to recover the width of an impulsive signal.
Function convfunc(pw, yw, xw) : FitFunc

WAVE pw, yw, xw

// pw[0] = gaussian baseline offset
// pw[1] = gaussian amplitude
// pw[2] = gaussian position
// pw[3] = gaussian width
// pw[4] = exponential decay constant of instrument response

// Make a wave to contain an exponential with decay constant pw[4]. The
// wave needs enough points to allow any reasonable decay constant to
// get really close to zero. The scaling is made symmetric about zero to
// avoid an X offset from Convolve/A
Variable dT = deltax(yw)
make/D/O/N=201 expwave // long enough to allow decay to zero
setscale/P x -dT*100,dT,expwave

// fill expwave with exponential decay
expwave = (x>=0)*pw[4]*dT*exp(-pw[4]*x)

// Normalize exponential so that convolution doesn't change
// the amplitude of the result
Variable sumexp
sumexp = sum(expwave, -inf,inf)
expwave /= sumexp

// Put a Gaussian peak into the output wave
yw = pw[0]+pw[1]*exp(-((x-pw[2])/pw[3])^2)
// and convolve with the exponential; NOTE /A
convolve/A expwave, yw

End

Some things to be aware of with regard to this function:
1) A wave is created inside the function to store the exponential decay. Making a wave can be a time-

consuming operation; it is less convenient for the user of the function, but can save computation
time if you make a suitable wave ahead of time and then simply reference it inside the function.

2) The wave containing the exponential decay is passed to the convolve operation. The use of the /A
flag prevents the convolve operation from changing the length of the output wave yw. You may
wish to read the section on Convolution on page III-251.

3) The output wave yw is used as a parameter to the convolve operation. Because the convolve oper-
ation assumes that the data are evenly-space, this use of yw means that the function does not satisfy
points 2) or 3) above. If you use input data to the fit that has missing points or unevenly-spaced X
values, this function will fail.

You may also find the section Waveform Arithmetic and Assignments on page II-94 helpful.

Here is a much more complicated version of the fitting function that solves these problems, and also is more
robust in terms of accuracy. The comments in the code explain how the function works.

Note that this function makes at least two different waves using the Make operation, and that we have used
Make/D to make the waves double-precision. This can be crucial. To improve performance and reduce
clutter in your Igor experiment file, we create the intermediate waves as free waves
Function convfunc(pw, yw, xw) : FitFunc

WAVE pw, yw, xw

// pw[0] = gaussian baseline offset
// pw[1] = gaussian amplitude
// pw[2] = gaussian position

Chapter III-8 — Curve Fitting

III-227

// pw[3] = gaussian width
// pw[4] = exponential decay constant of instrument response (this
// parameter is actually the inverse of the time constant, in
// order to be just like Igor's built-in exp fit function, which
// was written in the days when a floating-point divide took much
// longer than a multiply).

// Make a wave to contain an exponential with decay constant pw[4]. The
// wave needs enough points to allow any reasonable decay constant to
// get really close to zero. The scaling is made symmetric about zero to
// avoid an X offset from Convolve/A

// resolutionFactor sets the degree to which the exponential will be
// over-sampled with regard to the problems parameters. Increasing this
// number increases the number of time constants included in the calculation.
// It also decreases the point spacing relative to the problem's time
// constants. Increasing will also increase the time required to compute.

Variable resolutionFactor = 10

// dt contains information on important time constants. We wish to set
// the point spacing for model calculations much smaller than exponential
// time constant or gaussian width.

Variable dT = min(1/(resolutionFactor*pw[4]), pw[3]/resolutionFactor)

// Calculate suitable number points for the exponential. Length of
// exponential wave is 10 time constants; doubled so exponential can start
// in the middle; +1 to make it odd so exponential starts at t=0, and t=0 is
// exactly the middle point. That is better for the convolution.

Variable nExpWavePnts = round(10/(pw[4]*dT))*2 + 1

// Important: Make a double-precision waves.
// We make free waves to improve performance and so that
// the intermediate waves clean themselves up at the end of
// function execution.

Make/D/FREE/O/N=(nExpWavePnts) expwave // Double-precision free wave

// In this version of the function, we make a y output wave ourselves, so
// that we can control the resolution and accuracy of the calculation. It
// also will allow us to use a wave assignment later to solve the problem
// of variable X spacing or missing points.

Variable nYPnts = max(resolutionFactor*numpnts(yw), nExpWavePnts)
Make/D/FREE/O/N=(nYPnts) yWave // Double-precision free wave

// This wave scaling is set such that the exponential will
// start at the middle of the wave
setscale/P x -dT*(nExpWavePnts/2),dT,expwave

// Set the wave scaling of the intermediate output wave to have the resolution
// calculated above, and to start at the first X value.
setscale/P x xw[0],dT, yWave

// fill expwave with exponential decay
expwave = (x>=0)*pw[4]*dT*exp(-pw[4]*x)

// Normalize exponential so that convolution doesn't change
// the amplitude of the result
Variable sumexp
sumexp = sum(expwave, -inf,inf)
expwave /= sumexp

Chapter III-8 — Curve Fitting

III-228

// Put a Gaussian peak into the intermediate output wave. We use our own wave
// (yWave) because the convolution requires a wave with even spacing in X,
// whereas we may get X values input that are not evenly spaced.
// Also, we do not add the vertical offset here- it will cause problems
// with the convolution. Before the convolution Igor zero-pads the
// wave, so the baseline here must be zero. Otherwise there is
// a step function at the start of the convolution.
yWave = pw[1]*exp(-((x-pw[2])/pw[3])^2)

// Now convolve with the exponential; NOTE /A
convolve/A expwave, yWave

// Move appropriate values corresponding to input X data into the output Y
// wave. We use a wave assignment involving the input X wave. This will
// extract the appropriate values from the intermediate wave, interpolating
// values where the intermediate wave doesn’t have a value precisely at an X
// value that is required by the input X wave. This wave assignment also
// solves the problem with auto-destination: The function can be called with
// an X wave that sets any X spacing, so it doesn’t matter what X values
// are required. This is the appropriate place to add the vertical offset.
yw = yWave(xw[p]) + pw[0]

End

None of the computations involve the wave yw. That was done so that the computations could be done at finer
resolution than the resolution of the fitted data. By making a separate wave, it is not necessary to modify yw.

The actual return values are picked out of yWave using the special X-scale-based indexing available for one-
dimensional waves in a wave assignment.

Structure Fit Functions
Sometimes you may need to transmit extra information to a fitting function. This might include constants
that need to be set to reflect conditions in a run, but should not be fit; or a wave containing a look-up table
or a measured standard sample that is needed for comparison. Perhaps your fit function is very complex
and needs some sort of book-keeping data.

If you use a basic fit function or an all-at-once function, such information must be transmitted via global
variables and waves. That, in turn, requires that this global information be looked up inside the fit function.
The global data requirement makes it difficult to be flexible: the fit function is tied to certain global variables
and waves that must be present for the function to work. In addition to adding complexity and difficulty to
management of global information, it adds a possible time-consuming operation: looking up the global
information requires examining a list of waves or variables, and comparing the names to the desired name.

Structure fit functions are ideal for such problems because they take a single parameter that is a structure of your
own design. The first few members of the structure must conform to certain requirements, but the rest is up to
you. You can include any kind of data in the structure. An added bonus is that you can include members in the
structure that identify for the fit function which fit coefficient is being perturbed when calculating numerical
derivatives, that signal when the fit function is being called to fill in the auto-destination wave, and identify
when a new fit iteration is starting. You can pass back a flag to have FuncFit abandon fitting.

To use a structure fit function, you must do three things:
1) Define a structure containing certain standard items at the top.
2) Write a fitting function that uses that structure as its only parameter.
3) Write a wrapper function for FuncFit that creates an instance of your structure, initializes it and in-

vokes FuncFit with the /STRC parameter flag.

You should familiarize yourself with the use of structures before attempting to write a structure fit function
(see Structures in Functions on page IV-82).

Chapter III-8 — Curve Fitting

III-229

Structure fit functions come in basic and all-at-once variants; the difference is determined by the members
at the beginning of the structure. The format for the structure for a basic structure fit function is:
Structure myBasicFitStruct

Wave coefw
Variable x
…

EndStructure

The name of the structure can be anything you like that conforms to Igor’s naming rules; all that is required
is that the first two fields be a wave and a variable. By convention we name the wave coefw and the variable
x to match the use of those members. These members of the structure are equivalent to wave and variable
parameters required of a basic fit function.

You may wish to use an all-at-once structure fit function for the same reason you might use a regular all-at-once
fit function. The same concerns apply to all-at-once structure fit functions; you should read and understand All-
At-Once Fitting Functions on page III-224 before attempting to write an all-at-once structure fit function.

The structure for an all-at-once structure fit function is:
Structure myAllAtOnceFitStruct

Wave coefw
Wave yw
Wave xw
…

EndStructure

The first three members of the structure are equivalent to the pw, yw, and xw parameters required in a
regular all-at-once fit function.

A simple example of fitting with a structure fit function follows. More examples are available in the File
menu: select appropriate examples from Examples→Curve Fitting.

Basic Structure Fit Function Example
As an example of a basic structure fit function, we will write a fit function that fits an exponential decay
using an X offset to compensate for numerical problems that can occur when the X range of an exponential
function is small compared to the X values. The X offset must not be a fit coefficient because it is not math-
ematically distinguishable from the decay amplitude. We will write a structure that carries this constant as
a custom member of a structure. This function will duplicate the built-in exp_XOffset function (see Notes
on the Built-in Fit Functions on page III-167).

First, we create fake data by executing these commands:
Make/D/O/N=100 expData,expDataX
expDataX = enoise(0.5)+100.5
expData = 1.5+2*exp(-(expDataX-100)/0.2) + gnoise(.05)
Display expData vs expDataX
ModifyGraph mode=3,marker=8

Now the code. Copy this code and paste it into your Procedure window:
// The structure definition
Structure expFitStruct

Wave coefw // required coefficient wave
Variable x // required X value input
Variable x0 // constant

EndStructure

// The fitting function
Function fitExpUsingStruct(s) : FitFunc

Struct expFitStruct &s

Chapter III-8 — Curve Fitting

III-230

return s.coefw[0] + s.coefw[1]*exp(-(s.x-s.x0)/s.coefw[2])
End

// The driver function that calls FuncFit:
Function expStructFitDriver(pw, yw, xw, xOff)

Wave pw // coefficient wave- pre-load it with initial guess
Wave yw
Wave xw
Variable xOff
Variable doODR

// An instance of the structure. We initialize the x0 constant only,
// Igor (FuncFit) will initialize coefw and x as required.
STRUCT expFitStruct fs
fs.x0 = xOff // set the value of the X offset in the structure

FuncFit fitExpUsingStruct, pw, yw /X=xw /D /STRC=fs

// no history report for structure fit functions. We print our own
// simple report here:
print pw
Wave W_sigma
print W_sigma

End

Finally, make a coefficient wave loaded with initial guesses and invoke our driver function:

Make/D/O expStructCoefs = {1.5, 2, .2}
expStructFitDriver(expStructCoefs, expData, expDataX, 100)

This is a very simple example, intended to show only the most basic aspects of fitting with a structure fit
function. An advanced programmer could add a control panel user interface, plus code to automatically
calculate initial guesses and provide a default value of the x0 constant.

The WMFitInfoStruct Structure
In addition to the required structure members, you can include a WMFitInfoStruct structure member
immediately after the required members. The WMFitInfoStruct structure, if present, will be filled in by
FuncFit with information about the progress of fitting, and includes a member allowing you to stop fitting
if your fit function detects a problem.

Adding a WMFitInfoStruct member to the structure in the example above:
Structure expFitStruct

Wave coefw // Required coefficient wave.
Variable x // Required X value input.
STRUCT WMFitInfoStruct fi // Optional WMFitInfoStruct.
Variable x0 // Constant.

EndStructure

And the members of the WMFitInfoStruct:

WMFitInfoStruct Structure Members
Member Description
char IterStarted Nonzero on the first call of an iteration.

char DoingDestWave Nonzero when called to evaluate the autodestination wave.

char StopNow Fit function sets this to nonzero to indicate that a problem has
occurred and fitting should stop.

Chapter III-8 — Curve Fitting

III-231

The IterStarted and ParamPerturbed members may be useful in some obscure cases to short-cut
lengthy computations. The DoingDestWave member may be useful in an all-at-once structure fit function.

Multivariate Structure Fit Functions
To fit multivariate functions (those having more than one dimension or independent variable) you simply
use an array for the X member of the structure. For instance, for a basic 2D structure fit function:
Structure My2DFitStruct

Wave coefw
Variable x[2]
…

EndStructure

Or a 2D all-at-once structure fit function:
Structure My2DAllAtOnceFitStruct

Wave coefw
Wave yw
Wave xw[2]
…

EndStructure

Fitting Using Commands
A few curve fitting features are not completely supported by the Curve Fitting dialog, such as constraints
involving combinations of fit coefficients, or user-defined fit functions involving more complex construc-
tions. Also, you might sometimes want to batch-fit to a number of data sets without interacting with the
dialog for each data set. These circumstances will require that you use command lines to do fits.

The easiest way to do this is to use the Curve Fitting dialog to generate command lines that do almost what you
want. If you simply want to add a more complex feature, such as a more complicated constraint expression, click
the To Cmd Line button, then edit the commands generated by the dialog to add the features you want.

If you are writing a user procedure that does curve fitting, you can click the To Clip button to copy the com-
mands generated by the dialog. Then paste the commands into the Procedure window. Edit them as needed
by your application.

Curve fitting is done by three operations — CurveFit, FuncFit, and FuncFitMD. You will find details on
these operations in Chapter V-1, Igor Reference.

Batch Fitting
If you are doing batch fitting, you probably want to call a curve fitting operation inside a loop. In that case,
you probably don’t want a history report for every fit- it could possible make a very large amount of text in
the history. You probably don’t want the progress window during the fits- it slows down the fit and will
make a flashing window as it appears and disappears. Finally, you probably don’t want graphs and tables
updating during the fits, as this can slow down computation considerably.

Here is an example function that will do all of this, plus it checks for an error during the fit. If the use of the
$ operator is unfamiliar you will want to consult Accessing Waves in Functions on page IV-66.

Int32 IterNumber Number of iterations completed.
Int32 ParamPerturbed Index of the fit coefficient being perturbed for the calculation of

numerical derivatives. Set to -1 when evaluating a solution
point with no perturbed coefficients.

WMFitInfoStruct Structure Members
Member Description

Chapter III-8 — Curve Fitting

III-232

Function FitExpToListOfWaves(theList)
String theList

Variable i=0
string aWaveName = ""
Variable V_fitOptions = 4 // suppress progress window
Variable V_FitError = 0 // prevent abort on error
do

aWaveName = StringFromList(i, theList)
WAVE/Z aWave = $aWaveName
if (!WaveExists(aWave))

break
endif

// /N suppresses screen updates during fitting
// /Q suppresses history output during fitting
CurveFit/N/Q exp aWave /D/R
WAVE W_coef

// save the coefficients
Duplicate/O W_coef $("cf_"+aWaveName)
// save errors
Duplicate/O W_sigma, $("sig_"+aWaveName)
if (V_FitError != 0)

// Mark the results as being bad
WAVE w = $("cf_"+aWaveName)
w = NaN
WAVE w = $("sig_"+aWaveName)
w = NaN
WAVE w = $("fit_"+aWaveName)
w = NaN
WAVE w = $("Res_"+aWaveName)
w = NaN
V_FitError = 0

endif
i += 1

while(1)
End

Curve Fitting Examples
The Igor Pro Folder includes a number of example experiments that demonstrate the capabilities of curve
fitting. These examples cover fitting with constraints, multivariate fitting, multipeak fitting, global fitting,
fitting a line between cursors, and fitting to a user-defined function. All of these experiments can be found
in Igor Pro Folder:Examples:Curve Fitting.

Singularities
You may occasionally run across a situation where you see a “singular matrix” error. This means that the
system of equations being solved to perform the fit has no unique solution. This generally happens when
the fitted curve contains degeneracies, such as if all Y values are equal.

In a fit to a user-defined function, a singular matrix results if one or more of the coefficients has no effect on
the function’s return value. Your coefficients wave must have the exact same number of points as the number
of coefficients that you actually use in your function or else you must hold constant unused coefficients.

Chapter III-8 — Curve Fitting

III-233

Certain functions may have combinations of coefficients that result in one or more of the coefficients having

no effect on the fit. Consider the Gaussian function:

If K1 is set to zero, then the following exponential has no effect on the function value. The fit will report
which coefficients have no effect. In this example, it will report that K2 and K3 have no effect on the fit. How-
ever, as this example shows, it is often not the reported coefficients that are at fault.

Special Considerations for Polynomial Fits
Polynomial fits use the singular value decomposition technique. If you encounter singular values and some
of the coefficients of the fit have been zeroed, you are probably asking for more terms than can be supported
by your data. You should use the smallest number of terms that gives a “reasonable” fit. If your data does
not support higher-order terms then you can actually get a poorer fit by including them.

If you really think your data should fit with the number of terms you specified, you can try adjusting the
singular value threshold. You do this by creating a special variable called V_tol and setting it to a value
smaller than the default value of 1e-10. You might try 1e-15.

Another way to run into trouble during polynomial fitting is to use a range of X values that are very much
offset from zero. If you suspect this may be the cause of problems you should be able to get good results by
temporarily offsetting your x values, performing the fit and then restoring the original x values.

Errors Due to X Values with Large Offsets
The single and double exponential fits can be thrown off if you try to fit to a range of X values that are very
much offset from zero. In general, any function, which, when extrapolated to zero, returns huge or infinite
values, can create problems. The solution is to temporarily offset your x values, perform the fit and then
restore the original x values. You may need to perform a bit of algebra to fix up the coefficients.

As an example consider a fit to an exponential where the x values range from 100 to 101. We temporarily
offset the x values by 100, perform the fit and then restore the x values by adding 100. When we did the fit,
rather than fitting to k0+k1*exp(-k2*x) we really did the fit to c0+c1*exp(-c2*(x-100)). A little rearrangement
and we have c0+c1*exp(-c2*x)*exp(c2*100). Comparing these expressions, we see that k0= c0,
k1= c1*exp(c2*100) and k2= c2.

A better solution to the problem of fitting exponentials with large X offsets is to use the built-in exp_XOffset
and dblexp_XOffset fit functions. These fit functions automatically incorporate the X shifting; see Notes on
the Built-in Fit Functions on page III-167 for details.

The same problem can occur when fitting to high-degree polynomials. In this case, the algebra required to
transform the solution coefficients back to unoffset X values is nontrivial. It would be better to simply rede-
fine your problem in terms of offset X value.

Curve Fitting Troubleshooting
If you are getting unsatisfactory results from curve fitting you should try the following before giving up.

Make sure your data is valid. It should not be all one value. It should bear some resemblance to the function
that you’re trying to fit it to.

If the fit is iterative try different initial guesses.

If you are fitting to a user-defined function, check the following:
• Your coefficients wave must have exactly the same number of points as the number of coefficients

that you actually use in your function unless you hold constant the unused coefficients.
• Your initial guesses should not be zero unless the expected range is near unity or you have specified

an epsilon wave.

K0 K1 x K2–() K3⁄()2exp+

Chapter III-8 — Curve Fitting

III-234

• Ensure that your function is working properly. Try plotting it over a representative domain.
• Examine your function to ensure all your coefficients are distinguishable. For example in the frag-

ment (k0+k1)*x, k0 and k1 are indistinguishable. If this situation is detected, the history will contain
the message: “Warning: These parameters may be linearly dependent:” followed by a line listing the
two parameters that were detected as being indistinguishable.

• Because the derivatives for a user-defined fit function are calculated numerically, if the function depends
only weakly on a coefficient, the derivatives may appear to be zero. The solution to that problem is to
create an epsilon wave and set its values large enough to give a nonzero difference in the function output.
The epsilon wave sets the perturbation to a coefficient that is applied to estimate derivatives.

• A variation the previous problem is a function that changes in a step-wise fashion, or is “noisy”
because an approximation is used that is good to only a limited precision. Again, create an epsilon
wave and set the values large enough to give nonzero differences that are of consistent sign.

• Verify that each of your coefficients has an effect on the function.
• Make sure that the optimal value of your coefficients is not infinity (it takes a long time to increment

to infinity).
• Check to see if your function could possibly return NaN or INF for any value of the coefficients. You

might be able to add constraints to prevent this from happening. You will see warnings if a singular
matrix error resulted from NaN or INF values returned by the fitting function.

Curve Fitting References
An explanation of the Levenberg-Marquardt nonlinear least squares optimization can be found in Chapter
14.4 of:
Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C, 2nd ed., 994 pp.,

Cambridge University Press, New York, 1992.

The algorithm used for applying constraints is given in:
Shrager, Richard, Quadratic Programming for Nonlinear Regression, Communications of the ACM, 15, 41-45, 1972.

The method is described in gory mathematical detail in:
Shrager, Richard, Nonlinear Regression With Linear Constraints: An Extension of the Magnified Diagonal

Method, Journal of the Association for Computing Machinery, 17, 446-452, 1970.

References for the ODRPACK95 package used for orthogonal distance regression:
Boggs, P.T., R.H. Byrd, and R.B. Schnabel, A Stable and Efficient Algorithm for Nonlinear Orthogonal Dis-

tance Regression, SIAM Journal of Scientific and Statistical Computing, 8, 052-1078, 1987.

Boggs, P.T., R.H. Byrd, J.R. Donaldson, and R.B. Schnabel, Algorithm 676 - ODRPACK: Software for Weighted
Orthogonal Distance Regression, ACM Transactions on Mathematical Software, 15, 348-364, 1989

Boggs, P.T., J.R. Donaldson, R.B. Schnabel and C.H. Spiegelman, A Computational Examination of Orthog-
onal Distance Regression, Journal of Econometrics, 38, 69-201, 1988.

An exhaustive, but difficult to read source for nonlinear curve fitting:
Seber, G.A.F, and C.J. Wild, Nonlinear Regression, John Wiley & Sons, 1989.

A discussion of the assumptions and approximations involved in calculating confidence bands for nonlin-
ear functions can be found in the beginning sections of Chapter 5.

General books on curve fitting and statistics:
Draper, N., and H. Smith, Applied Regression Analysis, John Wiley & Sons, 1966.

Box, G.E.P., W.G. Hunter, and J.S. Hunter, Statistics for Experimenters, John Wiley & Sons, 1978.

Chapter

III-9
III-9Signal Processing

Overview.. 237
Fourier Transforms ... 237

Why Some Waves Aren’t Listed.. 237
Changes in Wave Type and Number of Points ... 238
Magic Number of Points and the IFFT ... 238
Changes in X Scaling and Units... 238
FFT Amplitude Scaling ... 239
Phase Polarity... 241
Effect of FFT and IFFT on Graphs ... 241
Effect of the Number of Points on the Speed of the FFT.. 241

Finding Magnitude and Phase.. 241
Magnitude and Phase Using WaveMetrics Procedures... 242

FTMagPhase Functions.. 242
FTMagPhaseThreshold Functions.. 242
DFTMagPhase Functions... 242
CmplxToMagPhase Functions.. 242

Spectral Windowing ... 242
Hanning Window .. 244
Other Windows.. 245
Multidimensional Windowing .. 245

Power Spectra .. 246
Periodogram ... 246

Power Spectral Density Functions ... 246
PSD Demo Experiment .. 246

Hilbert Transform ... 246
Time Frequency Analysis .. 247

Wigner Transform ... 247
Continuous Wavelet Transform .. 248
Discrete Wavelet Transform... 250

Convolution ... 251
Correlation ... 253
Level Detection.. 254

Finding a Level in Waveform Data ... 254
Finding a Level in XY Data .. 255

Edge Statistics .. 256
Pulse Statistics ... 256
Peak Measurement.. 256
Smoothing .. 258

Built-in Smoothing Algorithms ... 259
Binomial Smoothing.. 259
Savitzky-Golay Smoothing... 260
Box Smoothing ... 261
Median Smoothing .. 261
Percentile, Min, and Max Smoothing.. 262

Chapter III-9 — Signal Processing

III-236

Loess Smoothing .. 262
Custom Smoothing Coefficients .. 263
End Effects .. 264

Rotate Operation ... 264
Unwrap Operation.. 265
References .. 266

Chapter III-9 — Signal Processing

III-237

Overview
Analysis tasks in Igor range from simple experiments using no programming to extensive systems tailored
for specific fields. Chapter I-2, Guided Tour of Igor Pro, shows examples of the former. WaveMetrics’
“Peak Measurement” technical note is an example of the latter.

The Signal Processing chapter covers basic analysis operations with emphasis on signal transformations.

Fourier Transforms
Igor uses the Fast Fourier Transform (FFT) algorithm to compute a Discrete Fourier Transform (DFT). The
FFT is usually called from an Igor procedure as one step in a larger process, such as finding the magnitude
and phase of a signal. Igor’s FFT uses a prime factor decomposition multidimensional algorithm. Prime
factor decomposition allows the algorithm to work on nearly any number of data points. Previous versions
of Igor were restricted to a power-of-two number of data points.

This section concentrates on the one-dimensional FFT. See Multidimensional Fourier Transform on page
II-114 for information on multidimensional aspects of the FFT.

You can perform a Fourier transform on a wave by choosing Analysis→Fourier Transforms. This brings up
the Fourier Transforms dialog:

Select the type of transform by clicking the Forward or Reverse radio button. Select the wave that you want
to transform from the Wave list. If you enable the From Target box under the Wave list, only appropriate
waves in the target window will appear in the list.

Why Some Waves Aren’t Listed
What do we mean by “appropriate” waves?

The data can be either real or complex. If the data are real, the number of data points must be even. This is
an artificial limitation that was introduced in order to guarantee that the inverse transform of a forward-
transformed wave is equal to the original wave. For multidimensional data, only the number of rows must
be even. You can work around some of the restrictions of the inverse FFT with the command line.

Select the type
and destination
of the output.

Optional
prewindowing.

Multidimensional
padding.

Optional range
specification for
1D only.

Select Forward or
Reverse Fourier
Transform.

Chapter III-9 — Signal Processing

III-238

The inverse FFT requires complex data. There are no restrictions on the number of data points. However,
for historic and compatibility reasons, certain values for the number of points are treated differently as
described in the next sections.

Changes in Wave Type and Number of Points
If the wave is a 1D real wave of N points (N must be even), the FFT operation results in a complex wave
consisting of N/2+1 points containing the “one-sided spectrum”. The negative spectrum is not computed,
since it is identical for real input waves.

If the wave is complex (even if the imaginary part is zero), its data type and number of points are unchanged
by the forward FFT. The FFT result is a “two-sided spectrum”, which contains both the positive and the neg-
ative frequency spectra, which are different if the imaginary part of the complex input data is nonzero.

The diagram below shows the two-sided spectrum of 128-point data containing a zero imaginary
component.

Magic Number of Points and the IFFT
When performing the inverse FFT, the input is always complex, but the result may be either real or complex.

Because versions of Igor prior to 3.0 only allowed an integral power of two (2n) to be forward-transformed,
Igor could tell from the number of points in the forward-transformed wave what kind of result to create for
the inverse transform. To ensure compatibility, Igor versions 3.0 and after continue to treat certain numbers
of points as “magical.”

If the number of points in the wave is an integral power of two (2n), then the wave resulting from the IFFT
is complex. If the number of points in the wave is one greater than an integral power of two (1+2n), then the
wave resulting from the IFFT is real and of length (2n+1).

If the number of points is not one of the two magic values, then the result from the inverse transform is real
unless the complex result is selected in the Fourier Transforms dialog.

Changes in X Scaling and Units
The FFT operation changes the X scaling of the transformed wave. If the X-units of the transformed wave
are time (s), frequency (Hz), length (m), or reciprocal length (m-1), then the resulting wave units are set to
the respective conjugate units. Other units are currently ignored. The X scaling’s X0 value is altered depend-
ing on whether the wave is real or complex, but dx is always set the same:

FFT

IFFT

FFT

IFFT

IFFT

150

100

50

0

-50

-100

-500 0 500Hz

150

100

50

0

-50

-100

5000 Hz

real

2•N points

complex

2•N points

complex

1+2
N-1

 points

complex

2•N points

complex

1+N points

real

2
N

 points

complex

2
N

 points

complex

2
N

 points

two-sided

spectrum

one-sided

spectrum

Chapter III-9 — Signal Processing

III-239

If the original wave is real, then after the FFT its minimum X value (X0) is zero and its maximum X value is:

If the original wave is complex, then after the FFT its maximum X value is XN/2 - dXFFT, its minimum X
value is -XN/2, and the X value at point N/2 is zero.

The IFFT operation reverses the change in X scaling caused by the FFT operation except that the X value of
point 0 will always be zero.

FFT Amplitude Scaling
Various programs take different approaches to scaling the amplitude of an FFTed waveform. Different
scaling methods are appropriate for different analyses and there is no general agreement on how this is
done. Igor uses the method described in Numerical Recipes in C (see References on page III-266) which
differs from many other references in this regard.

The DFT equation computed by the FFT for a complex waveorig with N points is:

waveorig and waveFFT refer to the same wave before and after the FFT operation.

The IDFT equation computed by the IFFT for a complex waveFFT with N points is:

To scale waveFFT to give the same results you would expect from the continuous Fourier Transform, you
must divide the spectral values by N, the number of points in waveorig.

However, for the FFT of a real wave, only the positive spectrum (containing spectra for positive frequen-
cies) is computed. This means that to compare the Fourier and FFT amplitudes, you must account for the
identical negative spectra (spectra for negative frequencies) by doubling the positive spectra (but not
waveFFT[0], which has no negative spectral value).

For example, here we compute the one-sided spectrum of a real wave, and compare it to the expected
Fourier Transform values:
Make/N=128 wave0
SetScale/P x 0,1e-3,"s",wave0 // dx=1ms,Nyquist frequency is 500Hz
wave0= 1 - cos(2*Pi*125*x) // signal frequency is 125Hz, amp. is -1
Display wave0;ModifyGraph zero(left)=3

ΔxFFT
1

N Δxoriginal⋅
---------------------------------= where, N original length of wave≡

xN 2⁄
N
2
---- ΔxFFT⋅ N

2
---- 1

N Δxoriginal⋅
---------------------------------⋅= =

1
2 Δxoriginal⋅
--------------------------------=

Nyquist Frequency=

waveFFT n[] waveorig k[] e2πi kn N⁄⋅ , where i 1–=⋅
k 0=

N 1–

=

waveIFT n[] 1
N
---- waveFFT k[] e 2– πi kn N⁄⋅ , where i 1–=⋅

k 0=

N 1–

⋅=

Chapter III-9 — Signal Processing

III-240

FFT wave0

Igor computes the “one-sided” spectrum and updates the graph:

The Fourier Transform would predict a zero-frequency (“DC”) result of 1, which is what we get when we
divide the FFT value of 128 by the number of input values which is also 128. In general, the Fourier Trans-
form value at zero frequency is:

The Fourier Transform would predict a spectral peak at -125Hz of amplitude (-0.5 + i0), and an identical
peak in the positive spectrum at +125Hz. The sum of those expected peaks would be (-1+0·i).

(This example is contrived to keep the imaginary part 0; the real part is negative because the input signal
contains -cos(…) instead of + cos(…).)

Igor computed only the positive spectrum peak, so we double it to account for the negative frequency peak
twin. Dividing the doubled peak of -128 by the number of input values results in (-1+i0), which agrees with
the Fourier Transform prediction. In general, the Fourier Transform value at a nonzero frequency ƒ is:

The only exception to this is the Nyquist frequency value (the last value in the one-sided FFT result), whose
value in the one-sided transform is the same as in the two-sided transform (because, unlike all the other fre-
quency values, the two-sided transform computes only one Nyquist frequency value). Therefore:

The frequency resolution dXFFT = 1/(Noriginal·dxoriginal), or 1/(128*1e-3) = 7.8125 Hz. This can be verified by
executing:
Print deltax(wave0)

Which prints into the history area:
7.8125

You should be aware that if the input signal is not a multiple of the frequency resolution (our example was
a multiple of 7.8125 Hz) that the energy in the signal will be divided among the two closest frequencies in
the FFT result; this is different behavior than the continuous Fourier Transform exhibits.

2.0

1.5

1.0

0.5

0

0.120.100.080.060.040.020

100

50

0

-50

5004003002001000

x = 0
y = 128

Nyquist
frequency

500 Hz
x = 125 Hz

y = -64

Fourier Transform Amplitude 0() 1
N
---- r2polar waveFFT 0()()()real⋅=

Fourier Transform Amplitude f() 2
N
---- r2polar waveFFT f()()()real⋅=

Fourier Transform Amplitude fNyquist() 1
N
---- r2polar waveFFT fNyquist()()()real⋅=

Chapter III-9 — Signal Processing

III-241

Phase Polarity
There are two different definitions of the Fourier transform regarding the phase of the result. Igor uses a method
that differs in sign from many other references. This is mainly of interest if you are comparing the result of an
FFT in Igor to an FFT in another program. You can convert from one method to the other as follows:
FFT wave0;wave0=conj(wave0) // negate the phase angle by changing

// the sign of the imaginary component.

Effect of FFT and IFFT on Graphs
Igor displays complex waves in Lines between points mode by default. But, as demonstrated above, if you
perform an FFT on a wave that is displayed in a graph and the display mode for that wave is lines between
points, then Igor changes its display mode to Sticks to zero. Also, if you perform an IFFT on a wave that is
displayed in a graph and the display mode for that wave is Sticks to zero then Igor changes its display mode
to Lines between points.

Effect of the Number of Points on the Speed of the FFT
Although the prime factor FFT algorithm does not require that the number of points be a power of two, the
speed of the FFT can degrade dramatically when the number of points can not be factored into small prime
numbers. The following graph shows the speed of the FFT on a complex vector of varying number of points.
Note that the time (speed) axis is log. The results are from a Power Mac 9500/120.

The arrow is at N=4096, a power of two. For that number of points, the FFT time was less than 0.02 seconds
while other nearby values exceed one second. The moral of the story is that you should avoid numbers of
points that have large prime factors (4078 takes a long time- it has prime factors 2039 and 2). You should
endeavor to use a number with small prime factors (4080 is reasonably fast — it has prime factors
2*2*2*2*3*5*17). For best performance, the number of points should be a power of 2, like 4096.

Finding Magnitude and Phase
The FFT operation can create a complex, real, magnitude, magnitude squared, or
phase result directly when you choose the desired Output Type.

If you choose to use the complex wave result of the FFT operation you can compute
the magnitude and phase using the WaveTransform operation (see page V-823)
(with keywords magnitude, magsqr, and phase), or with various procedures from
the WaveMetrics Procedures folder (described in the next section).

If you want to unwrap the phase wave (to eliminate the phase jumps that occur between ±180 degrees), use
the Unwrap operation or the Unwrap Waves dialog in the Data menu. See Unwrap on page V-803. In two
dimensions you can use ImageUnwrapPhase operation (see page V-339).

0.01

2

4

6
8

0.1

2

4

6
8

1

2

F
F

T
 T

im
e,

 s

41404120410040804060

Chapter III-9 — Signal Processing

III-242

Magnitude and Phase Using WaveMetrics Procedures
For backward compatibility you can compute FFT magnitude and phase using the WaveMetrics-provided
procedures in the “WaveMetrics Procedures:Analysis:DSP (Fourier Etc)” folder.
You can access them using Igor’s “#include” mechanism. See The Include Statement on page IV-149 for
instructions on including a procedure file.
The WM Procedures Index help file, which you can access from the Windows→Help Windows menu, is a
good way to find out what routines are available and how to access them.

FTMagPhase Functions
The FTMagPhase functions provide an easy interface to the FFT operation. FTMagPhase has the following
features:
• Automatic display of the results.
• Original data is untouched.
• Can display magnitude in decibels.
• Optional phase display in degrees or radians.
• Optional 1D phase unwrapping.
• Resolution enhancement.
• Supports non-power-of-two data with optional windowing.
Use #include <FTMagPhase> in your procedure file to access these functions.

FTMagPhaseThreshold Functions
The FTMagPhaseThreshold functions are the same as the FTMagPhase procedures, but with an extra feature:
• Phase values for low-amplitude signals may be ignored.
Use #include <FTMagPhaseThreshold> in your procedure file to access these functions.

DFTMagPhase Functions
The DFTMagPhase functions are similar to the FTMagPhase procedures, except that the slower Discrete
Fourier Transform is used to perform the calculations:
• User-selectable frequency start and end.
• User-selectable number of frequency bands.
The procedures also include the DFTAtOneFrequency procedure, which computes the amplitude and
phase at a single user-selectable frequency.

Use #include <DFTMagPhase> in your procedure file to access these functions.

CmplxToMagPhase Functions
The CmplxToMagPhase functions convert a complex wave, presumably the result of an FFT, into separate
magnitude and phase waves. It has many of the features of FTMagPhase, but doesn’t do the FFT.

Use #include <CmplxToMagPhase> in your procedure file to access these functions.

Spectral Windowing
The FFT computation makes an assumption that the input data repeats over and over. This is important if
the initial value and final value of your data are not the same. A simple example of the consequences of this
repeating data assumption follows.

Suppose that your data is a sampled cosine wave containing 16 complete cycles:
Make/O/N=128 cosWave=cos(2*pi*p*16/128)
Display cosWave
ModifyGraph mode=4,marker=8

Chapter III-9 — Signal Processing

III-243

Notice that if you copied the last several points of cosWave to the front, they would match up perfectly with
the first several points of cosWave. In fact, let’s do that with the Rotate operation (see page V-603):
Rotate 3,cosWave // wrap last three values to front of wave
SetAxis bottom,-5,20 // look more closely there

The rotated points appear at x=-3, -2, and -1. This indicates that there is no discontinuity as far as the FFT is
concerned.

Because of the absence of discontinuity, the FFT magnitude result matches the ideal expectation:
ideal FFT amplitude = cosine amplitude * number of points/2 = 1 * 128 / 2 = 64

FFT/Out=3/Dest=cosWave cosWave
SetAxis/A

Notice that all other FFT magnitudes are zero. Now let us change the data so that there are 16.5 cosine cycles:
Make/O/N=128 cosWave=cos(2*pi*p*16.5/128)

When we rotate this data as before, you can see what the FFT will perceive to be a discontinuity between
the point 127 and point 0 of the unrotated data. In this next graph, the original point 127 has been rotated
to x= -1 and point 0 is still at x=0.

-1.0

-0.5

0

0.5

1.0

120100806040200

-1.0

-0.5

0

0.5

1.0

20151050-5

60

50

40

30

20

10

0

0.50.40.30.20.10

1.0

0.5

0

-0.5

-1.0

120100806040200

Chapter III-9 — Signal Processing

III-244

Rotate 3,cosWave
SetAxis bottom,-5,20

When the FFT of this data is computed, the discontinuity causes “leakage” of the main cosine peak into sur-
rounding magnitude values.

FFT/Out=3/Dest=cosWave cosWave
SetAxis/A

How does all this relate to spectral windowing? Spectral windowing reduces this leakage and gives more
accurate FFT results. Specifically, windowing reduces the number of adjacent FFT values affected by leak-
age. A typical window accomplishes this by smoothly attenuating both ends of the data towards zero.

Hanning Window
Windowing the data before the FFT is computed can reduce the leakage demonstrated above. The Hanning
window is a simple raised cosine function defined by the equation:

Let us apply the Hanning window to the 16.5 cycle cosine wave data:
Make/O/N=128 cosWave=cos(2*pi*p*16.5/128)
Hanning cosWave

By smoothing the ends of the wave to zero, there is no discontinuity when wrapping around the ends.

In applying a window to the data, energy is lost. Depending on your application you may want to scale the
output to account for coherent or incoherent gain. The coherent gain is sometimes expressed in terms of

1.0

0.5

0

-0.5

-1.0

20151050-5

40

30

20

10

0.50.40.30.20.10
Hz

1.0

0

120100806040200

1-cos()2 p
N-1

2

1.0

0.5

0

-0.5

-1.0

120100806040200

Chapter III-9 — Signal Processing

III-245

amplitude factor and it is equal to the sum of the coefficients of the window function over the interval. The
incoherent gain is a power factor defined as the sum of the squares of the same coefficients. In the case that
we are considering the correction factor is just the reciprocal of the coherent gain of the Hanning window

so we can multiply the FFT amplitudes by 2 to correct for them:
cosWave *= 2 // account for coherent gain
FFT /Out=3/Dest=cosWave cosWave

Note that frequency values in the neighborhood of the peak are less affected by the leakage, and that the
amplitude is closer to the ideal of 64.

Other Windows
The Hanning window is not the ultimate window. Other windows that suppress more leakage tend to
broaden the peaks. The FFT and WindowFunction operations have the following built-in windows: Han-
ning, Hamming, Bartlett, Blackman, Cosa(x), KaiserBessel, Parzen, Riemann, and Poisson.
You can create other windows by writing a user-defined function or by executing a simple wave assign-
ment statement such as this one which applies a triangle window:
data *= 1-abs(2*p/numpnts(data)-1)

Use point indexing to avoid X scaling complications. You can determine the effect a window has by applying it
to a perfect cosine wave, preferably a cosine wave at 1/4 of the sampling frequency (half the Nyquist frequency).

Other windows are provided in the WaveMetrics-supplied “DSP Window Functions” procedure file.

Multidimensional Windowing
When performing FFTs on images, artifacts are often produced because of the sharp boundaries of the
image. As is the case for 1D waves, windowing of the image can help yield better results from the FFT.

To window images, you will need to use the ImageWindow operation, which implements the Hanning,
Hamming, Bartlett, Blackman, and Kaiser windowing filters. See the ImageWindow operation on page
V-341 for further details. For a windowing example, see Correlations on page III-308.

coherent gain 1 2πx N⁄()cos–
2

-- xd
0

1

≡ 0.5=

50

40

30

20

10

0

0.50.40.30.20.10
H

1.0

0

120100806040200

1-abs
2p

numpnts(data) -1()

Chapter III-9 — Signal Processing

III-246

Power Spectra
Periodogram
The periodogram of a signal s(t) is an estimate of the power spectrum given by

,

where F(f) is the Fourier transform of s(t) computed by a Discrete Fourier Transform (DFT) and N is the nor-
malization (usually the number of data points).
You can compute the periodogram using the FFT but it is easier to use the DSPPeriodogram operation,
which has the same built-in window functions but you can also select your own normalization to suppress
the DC term or to have the results expressed in dB as:

20log10(F/F0)
or

10log10(P/P0)
where P0 is either the maximum value of P or a user-specified reference value.

DSPPeriodogram can also compute the cross-power spectrum, which is the product of the Fourier trans-
form of the first signal with the complex conjugate of the Fourier transform of the second signal:

 where F(f) and G(f) are the DFTs of the two waves.

Power Spectral Density Functions
The PowerSpectralDensity routine supplied in the “Power Spectral Density” procedure file computes
Power Spectral Density by averaging power spectra of segments of the input data. This is an early proce-
dure file that does not take advantage of the new built-in features of the FFT or DSPPeriodogram opera-
tions. The procedure is still supported for backwards compatibility.

The PowerSpectralDensity functions take a long data wave on input and calculate the power spectral
density function. These procedures have the following features:
• Automatic display of the results.
• Original data is untouched.
• Pop-up list of windowing functions.
• User setable segment length.
Use #include <Power Spectral Density> in your procedure file to access these functions. See The
Include Statement on page IV-149 for instructions on including a procedure file.

PSD Demo Experiment
The PSD Demo experiment (in the Examples:Analysis: folder) uses the PowerSpectralDensity procedure
and explains how it works in great detail, including justification for the scaling applied to the result.

Hilbert Transform
The Hilbert transform of a function f(x) is defined by

.

P f() F f() 2

N
----------------=

P f() F f()G* f()
N

------------------------=

FH x() 1
π
--- f t()

t x–
---------- td

∞–

∞

=

Chapter III-9 — Signal Processing

III-247

The integral is evaluated as a Cauchy principal value. For numerical computation it is customary to express
the integral as the convolution

.

Noting that the Fourier transform of (-1/πx) is i*sgn(x), we can evaluate the Hilbert transform using the convo-
lution theorem of Fourier transforms. The HilbertTransform operation (see page V-271) is a convenient short-
cut. In the next example we compute the Hilbert transform of a cosine function that gives us a sine function:
Make/N=512 cosWave=cos(2*pi*x*20/512)
HilbertTransform/Dest=hCosWave cosWave
Display cosWave,hCosWave
ModifyGraph rgb(hCosWave)=(0,0,65535)

Time Frequency Analysis
When you compute the Fourier spectrum of a signal you dispose of all the phase information contained in
the Fourier transform. You can find out which frequencies a signal contains but you do not know when
these frequencies appear in the signal. For example, consider the signal

.

The spectral representation of f(t) remains essentially unchanged if we interchange the two frequencies f1
and f2. In other words, the Fourier spectrum is not the best analysis tool for signals whose spectra fluctuate
in time. One solution to this problem is the so-called “short time Fourier Transform”, in which you can
compute the Fourier spectra using a sliding temporal window. By adjusting the width of the window you
can determine the time resolution of the resulting spectra.

Two alternative tools are the Wigner transform and the Continuous Wavelet Transform (CWT).

Wigner Transform
The Wigner transform (also known as the Wigner Distribution Function or WDF) maps a 1D time signal U(t) into
a 2D time-frequency representation. Conceptually, the WDF is analogous to a musical score where the time axis
is horizontal and the frequencies (notes) are plotted on a vertical axis. The WDF is defined by the equation

Note that the WDF W(t,ν) is real (this can be seen from the fact that it is a Fourier transform of an Hermitian
quantity). The WDF is also a 2D Fourier transform of the Ambiguity function.

The localized spectrum can be derived from the WDF by integrating it over a finite area dtdn. Using Gauss-
ian weight functions in both t and n, and choosing the minimum uncertainty condition dtdn=1, we obtain
an estimate for the local spectrum

For an application of the WignerTransform operation (see page V-828), consider the two-frequency signal:
Make/N=500 signal
signal[0,350]=sin(2*pi*x*50/500)
signal[250,]+=sin(2*pi*x*100/500)
WignerTransform /Gaus=100 signal
DSPPeriodogram signal // spectrum for comparison

FH x() 1–
πx

 f x()⊗=

f t()
2πf1t()sin 0 t t1<≤

2πf2t()sin t1 t t2<≤

=

W t ν,() xU t x 2⁄+()U∗ t x 2⁄–()e i2πxν–d
∞–

∞

=

Ŵ t ν δt;,() U t'() 2π t t'–
δt

 2

– i2πνt'–()expexp t'd
2

∝

Chapter III-9 — Signal Processing

III-248

The signal used in this example consists of two “pure” frequencies that have small amount of temporal overlap.

The temporal dependence is clearly seen in the Wigner transform. Note that the horizontal (time) transi-
tions are not sharp. This is mostly due to the application of the minimum uncertainty relation dtdn=1 but it
is also due to computational edge effects. By comparison, the spectrum of the signal while clearly showing
the presence of two frequencies it provides no indication of the temporal variation of the signal’s frequency
content. Furthermore, the different power in the two frequencies may be attributed to either a different
duration or a different amplitude.

Continuous Wavelet Transform
The Continuous Wavelet Transform (CWT) is a time-frequency representation of signals that graphically
has a superficial similarity to the Wigner transform.

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

4003002001000

0.5

0.4

0.3

0.2

0.1

0.0

5004003002001000
s

1.0

0.8

0.6

0.4

0.2

0.0

N
or

m
al

iz
ed

 S
pe

ct
ru

m

0.50.40.30.20.10.0
Hz

Chapter III-9 — Signal Processing

III-249

A wavelet transform is a convolution of a signal s(t) with a set of functions which are generated by transla-
tions and dilations of a main function. The main function is known as the mother wavelet and the translated
or dilated functions are called wavelets. Mathematically, the CWT is given by

.

Here b is the time translation and a is the dilation of the wavelet.

From a computational point of view it is natural to use the FFT to compute the convolution which suggests
that the results are dependent on proper sampling of s(t).

When the mother wavelet is complex, the CWT is also a complex valued function. Otherwise the CWT is real.
The squared magnitude of the CWT is equivalent to the power spectrum so that a typical display
(image) of the CWT is a representation of the power spectrum as a function of time offset b. One should note
however that the precise form of the CWT depends on the choice of mother wavelet y and therefore the extent of
the equivalency between the squared magnitude of the CWT and the power spectrum is application dependent.

The CWT operation (see page V-108) is implemented using both the FFT and the discrete sum approach.
You can use either one to get a representation of the effective wavelet using a delta function as an input.
When comparing two CWT results you should always check that both use exactly the same definition of
the wavelet function, same normalization and same computation method. For example,
Make/N=1000 signal=sin(2*pi*x*50/1000)
CWT/OUT=4/SMP2=1/R2={1,1,40}/WBI1=Morlet/WPR1=5/FSCL signal

CWT /M=1/OUT=4/SMP2=1/R2={1,1,40}/WBI1=Morlet/FSCL /ENDM=2 signal

Using the complex Morlet wavelet in the direct sum method (/M=1) and displaying the squared magnitude
we get

W a b,() 1
a

------- s t()ψ t b–
a

 td=

W a b,() 2

50

40

30

20

10

10008006004002000

50

40

30

20

10

10008006004002000

Chapter III-9 — Signal Processing

III-250

It is apparent that the last image has essentially the same results as the one generated using the FFT
approach but in this case the edge effects are completely absent.

Discrete Wavelet Transform
The Discrete Wavelet Transform (DWT) has been supported in an IGOR XOP. As of IGOR Pro 5.0, the DWT
operation (see page V-151) is available as a built-in command. To maintain backward compatibility and
avoid conflicts with the XOP, the operation is named DWT.

The DWT is similar to the Fourier transform in that it is a decomposition of a signal in terms of a basis set
of functions. In Fourier transforms the basis set consists of sines and cosines and the expansion has a single
parameter. In wavelet transform the expansion has two parameters and the functions (wavelets) are gener-
ated from a single “mother” wavelet using dilation and offsets corresponding to the two parameters.

,

where the two-parameter expansion coefficients are given by

and the wavelets obey the condition

.

Here Ψ is the mother wavelet, a is the dilation parameter and b is the offset parameter.

The two parameter representation can complicate things quickly as one goes from 1D signal to higher
dimensions. In addition, because the number of coefficients in each scale varies as a power of 2, the DWT
of a 1D signal is not conveniently represented as a 2D image (as is the case with the CWT). It is therefore
customary to “pack” the results of the transform so that they have the same dimensionality of the input. For
example, if the input is a 1D wave of 128 (=27) points, there are 7-1=6 significant scales arranged as follows:

Scale Storage Location

1 64-127

2 32-63

3 16-31

4 8-15

5 4-7

6 2-3

50

40

30

20

10

10008006004002000

f t() cabψab t()
b

a
=

cab f t()ψab t() td=

ψab t() 2
a
2

Ψ 2at b–()=

Chapter III-9 — Signal Processing

III-251

An interesting consequence of the definition of the DWT is that you can find out the shape of the wavelet
by transforming a suitable form of a delta function. For example:
Make/N=1024 delta=0
delta[22]=1
DWT/I delta
Display W_DWT // Daubechies 4 coefficient wavelet

Convolution
You can use convolution to compute the response of a linear system to an input signal. The linear system is
defined by its impulse response. The convolution of the input signal and the impulse response is the output
signal response. Convolution is also the time-domain equivalent of filtering in the frequency domain.

Igor implements general convolution with the Convolve operation (see page V-77). (Smoothing is also a
form of convolution; see Smoothing on page III-258.) To use the Convolve operation, you can choose Anal-
ysis→Convolve.

The built-in Convolve operation computes the convolution of two waves named “source” and “destination” and
overwrites the destination wave with the results. The operation can also convolve a single source wave with
multiple destination waves (overwriting the corresponding destination wave with the results in each case). The
Convolve dialog allows for more flexibility by preduplicating the second waves into new destination waves.

0.2

0.1

0.0

-0.1

10008006004002000

Decide how to
reconstruct values
beyond the ends of
the waves.

Select one Source 1
wave to convolve with
waves selected in
Source 2 list.

Choose where to
store the result(s).

Display options.

Chapter III-9 — Signal Processing

III-252

If the source wave is real-valued, each destination wave must be real-valued and if source wave is complex,
each destination wave must be complex, too. Double and single precision waves may be freely intermixed;
the calculations are performed in the higher precision.

Convolve combines neighboring points before and after the point being convolved, and at the ends of the
waves not enough neighboring points exist. This is a general problem in any convolution operation; the
smoothing operations use the End Effect pop-up to determine what to do. The Convolve dialog presents
three algorithms in the Algorithm group to deal with these missing points.

The Linear algorithm is similar to the Smooth operation’s Zero end effect method; zeros are substituted for
the values of missing neighboring points.

The Circular algorithm is similar to the Wrap end effect method; this algorithm is appropriate for data
which is assumed to endlessly repeat.

The acausal algorithm is a special case of Linear which eliminates the time delay that Linear introduces.

Depending on the algorithm chosen, the number of points in the destination waves may increase by the
number of points in the source wave, less one. For linear and acausal convolution, the destination wave is
first zero-padded by one less than the number of points in the source wave. This prevents the “wrap-
around” effect that occurs in circular convolution. The zero-padded points are removed after acausal con-
volution, and retained after linear convolution.

Use linear convolution when the source wave contains an impulse response (or filter coefficients) where the
first point of srcWave corresponds to no delay (t = 0).

Use Circular convolution for the case where the data in the source wave and the destination waves are con-
sidered to endlessly repeat (or “wrap around” from the end back to the start), which means no zero padding
is needed.

Linear Convolution
2

1

0

20151050-5

0

70 srcWave

Original destWave
(15 points)

Linear Convolution

Convolved destWave
(has 8 - 1 = 7 additional points)

zero-delay
point

Chapter III-9 — Signal Processing

III-253

Use acausal convolution when the source wave contains an impulse response where the middle point of the
source wave corresponds to no delay (t = 0).

Correlation
You can use correlation to compare the similarity of two sets of data. Correlation computes a measure of
similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum
at the time when the two signals match best. If the two signals are identical, this maximum is reached at t =
0 (no delay). If the two signals have similar shapes but one is delayed in time and possibly has noise added
to it then correlation is a good method to measure that delay.

2

1

0

20151050-5

0

70 srcWave

Original destWave
(15 points)

Circular Convolution

zero-delay
point

Convolved destWave
(has no additional points)

2

1

0

20151050-5

0

70 srcWave

Original destWave
(15 points)

Acausal Convolution

zero-delay
point

destWave result shifted left by
trunc(source wave length/2) = 4 points
compared to linear convolution

Convolved destWave
(has no additional points)

Chapter III-9 — Signal Processing

III-254

Igor implements correlation with the Correlate operation (see page V-82). The Correlate dialog in the Anal-
ysis menu works similarly to the Convolve dialog. The source wave may also be a destination wave, in
which case afterward it will contain the “auto-correlation” of the wave. If the source and destination are
different, this is called “cross-correlation”.

The same considerations about combining differing types of source and destination waves applies to cor-
relation as to convolution. Correlation must also deal with end effects, and these are dealt with by the cir-
cular and linear correlation algorithm selections. See Convolution on page III-251.

Level Detection
Level detection is the process of locating the X coordinate at which your data passes through or reaches a given
Y value. This is sometimes called “inverse interpolation”. Stated another way, level detection answers the ques-
tion: “given a Y level, what is the corresponding X value?” Igor provides two kinds of answers to that question.

One answer assumes your Y data is a list of unique Y values that increases or decreases
monotonically. In this case there is only one X value that corresponds to a Y value. Since
search position and direction don’t matter, a binary search is most appropriate. For this
kind of data, use the BinarySearch or BinarySearchInterp functions.

The other answer assumes that your Y data varies irregularly, as it would with
acquired data. In this case, there may be multiple X values that cross the Y level; the
X value returned depends on where the search starts and the search direction
through the data. The FindLevel, FindLevels, EdgeStats, and PulseStats operations
deal with this kind of data.

A related, but different question is “given a function y = f(x), find x where y is zero (or some other value)”.
This question is answered by the FindRoots operation. See Finding Function Roots on page III-285, and the
FindRoots operation on page V-194.

The following sections pertain to detecting level crossings in data that varies irregularly. The operations
discussed are not designed to detect peaks; see Peak Measurement on page III-256.

Finding a Level in Waveform Data
You can use the FindLevel operation (see page V-189) to find a single level crossing, or the FindLevels oper-
ation (see page V-190) to find multiple level crossings in waveform data. Both of these operations can option-
ally smooth the waves they search to reduce the effects of noise. A subrange of the data can be searched, by

1.0

0.8

0.6

0.4

0.2

0.0

1.21.00.80.60.40.20.0

 sent
 received

14

12

10

8

6

4

2

0

1.20.60-0.6-1.2

“received” lags “sent”
by 0.13 seconds

Correlation of sent
and received

Chapter III-9 — Signal Processing

III-255

either ascending or descending X values, depending on the startX and endX values you supply to the opera-
tion’s /R flag.

FindLevel locates the first level crossing encountered in the search range, starting at startX and proceeding
toward endX until a level crossing is found. The search is performed sequentially. The outputs of FindLevel
are two special numeric variables: V_Flag and V_LevelX. V_Flag indicates the success or failure of the
search (0 is success), and V_LevelX contains the X coordinate of the level crossing.

For example, given the following data:

the command:
FindLevel/R=(-0.5,0.5) signal,0.36

prints this level crossing information into the history area:
V_Flag= 0; V_LevelX= -0.200751;

Finding a Level in XY Data
You can find a level crossing in XY data by searching the Y wave and then figuring out where in the X wave
that X value can be found. This requires that the values in the X wave be sorted in ascending or descending
order. To ensure this, the command:
Sort xWave,xWave,yWave

sorts the waves so that the values in xWave are ascending, and the XY correspondence is preserved.

The following macros find the X location where a Y level is crossed within an X range, and store the result
in the special variable V_LevelX:
Function FindLevelXY()

String swy,swx // strings contain the NAMES of waves
Variable startX=-inf,endX=inf // startX,endX correspond to VALUEs in wx, not any X

scaling
Variable level
// Put up a dialog to get info from user
Prompt swy,"Y Wave",popup WaveList("*",";","")
Prompt swx,"X Wave",popup WaveList("*",";","")
Prompt startX, "starting X value"
Prompt endX, "ending X value"
Prompt level, "level to find"
DoPrompt "Find Level XY", swy,swx,startX, endX, level

WAVE wx = $swx
WAVE wy = $swy

// Here's where the interesting stuff begins
Variable startP,endP //compute point range covering startX,endX
startP=BinarySearch(wx,startX)
endP=BinarySearch(wx,endX)
FindLevel/Q/R=[startP,endP] wy,level // search Y wave, assume success
Variable p1,m
p1=x2pnt(wy,V_LevelX-deltaX(wy)/2) //x2pnt rounds; circumvent it
// Linearly interpolate between two points in wx
// that bracket V_levelX in wy

1.0

0.5

0.0

-0.5

-1.0 -0.5 0.0 0.5 1.0V_LevelX

1. search starts here,
at startX

2. search in this direction (toward endX) for
location where signal crosses level

3. FindLevel finds crossing here,
at x = V_LevelX

endX

level

Chapter III-9 — Signal Processing

III-256

m=(V_LevelX-pnt2x(wy,p1))/(pnt2x(wy,p1+1)-pnt2x(wy,p1)) // slope
V_LevelX=wx[p1] + m * (wx[p1+1] -wx[p1]) //point-slope equation

End

This function does not handle a level crossing that isn’t found; all that is missing is a test of V_Flag after
searching the Y wave with FindLevel.

Edge Statistics
The EdgeStats operation (see page V-152) produces simple statistics (measurements, really) on a region of
a wave that is expected to contain a single edge as shown below. If more than one edge exists, EdgeStats
works on the first edge it finds. The edge statistics are stored in special variables which are described in the
EdgeStats reference. The statistics are edge levels, X or point positions of various found “points”, and the
distances between them. These found points are actually the locations of level crossings, and are usually
located between actual waveform points (they are interpolation locations).

EdgeStats is based on the same principles as FindLevel. EdgeStats does not work on an XY pair. See Con-
verting XY Data to a Waveform on page III-118.

Pulse Statistics
The PulseStats operation (see page V-578) produces simple statistics (measurements) on a region of a wave
that is expected to contain three edges as shown below. If more than three edges exist, PulseStats works on
the first three edges it finds. PulseStats handles two other cases in which there are only one or two edges.
The pulse statistics are stored in special variables which are described in the PulseStats reference.

PulseStats is based on the same principles as EdgeStats. PulseStats does not work on an XY pair. See Con-
verting XY Data to a Waveform on page III-118.

Peak Measurement
The building block for peak measurement is the FindPeak operation. You can use it to build your own peak
measurement procedures or you can use procedures provided by WaveMetrics.

We have created several peak finding and peak fitting Technical Notes. They are described in a summary Igor
Technical Note, TN020s-Choosing a Right One.ifn in the Technical Notes folder. There is also an example

point 1

point 2

level 3 point 3

x1 x2 x3 endX

point 4

point 0

level 1

level 2

startLevel

endLevel

startX

point 1
point 3

level 1 level 2

startLevel

endLevel
point 2

level 3

startX endX

point 4

point 0

Case 1: 3 edges.

Chapter III-9 — Signal Processing

III-257

experiment, called Multi-peak Fit, that does fitting to multiple Gaussian, Lorentzian and Voigt peaks. Multi-
peak Fit is less comprehensive but easier to use than Tech Note 20.

The FindPeak operation (see page V-192) searches a wave for a minimum or maximum by analyzing the
smoothed first and second derivatives of the wave. The smoothing and differentiation is done on a copy of
the input wave (so that the input wave is not modified). The peak maximum is detected at the smoothed
first derivative zero-crossing, where the smoothed second derivative is negative. The position of the
minimum or maximum is returned in the special variable V_PeakLoc. This and other special variables set
by FindPeak are described in the operation reference.

The following describes the process that FindPeak goes through when it executes a command like this:
FindPeak/M=0.5/B=5 peakData // 5 point smoothing, min level = 0.5

The box smoothing is performed first:

Then two central-difference differentiations are performed to find the first and second derivatives:

If you use the /M=minLevel flag, FindPeak ignores peaks that are lower than minLevel (i.e., the Y value of a
found peak must exceed minLevel). The minLevel value is compared to the smoothed data, so peaks that appear
to be large enough in the raw data may not be found if they are very near minLevel. If /N is also specified
(search for minimum or “negative peak”), FindPeak ignores peaks whose amplitude is greater than minLevel
(i.e., the Y value of a found peak will be less than minLevel). For negative peaks, the peak minimum is at the
smoothed first derivative zero-crossing, where the smoothed second derivative is positive.

This command shows an example of finding a negative peak:
FindPeak/N/M=0.5/B=5 negPeakData // 5 point smoothing, max level=0.5

1.0

0.8

0.6

0.4

0.2

0.0

0.70.60.50.40.30.20.10.0
s

1.0

0.8

0.6

0.4

0.2

0

0.70.60.50.40.30.20.10
s

V_PeakLoc

Raw peak data Smoothed peak data

minLevel

-1500
-1000
-500

0
500

1000
1500

0.500.450.400.350.300.250.20
s

 40
30
20
10

0
-10
-20

0.500.450.400.350.300.250.20
s

 Smoothed and Differentiated Smoothed and Twice Differentiated

V_PeakLoc

V_PeakLoc

1.5

1.0

0.5

0.0

0.70.60.50.40.30.20.1

minLevel

V_PeakLoc

negative peak example
use FindPeak/N with /M=minLevel

Chapter III-9 — Signal Processing

III-258

To find multiple peaks, write a procedure that calls FindPeak from within a loop. After a peak is found,
restrict the range of the search with /R so that the just-found peak is excluded, and search again. Exit the
loop when V_Flag indicates a peak wasn’t found.

The FindPeak operation does not work on an XY pair. See Converting XY Data to a Waveform on page III-118.

Smoothing
Smoothing is a filtering operation used to reduce the variability of data. It is sometimes used to reduce noise.

This section discusses smoothing 1-dimensional waveform data with the Smooth, FilterFIR, and Loess
operations. Also see the FilterIIR and Resample operations.

Note: Smoothing XY data can be handled by the Loess operation and the Median.ipf procedure file (see
Median Smoothing on page III-261).

Note: The MatrixFilter, MatrixConvolve, and ImageFilter operations smooth image and 3D data.

Igor has several built-in 1D smoothing algorithms. In addition, you can supply your own smoothing coefficients.

Choose Analysis→Smooth to see the Smoothing dialog:

Depending on the smoothing algorithm chosen, there may be additional parameters to specify in the dialog.

 raw data
 smoothed data (binomial, 5 passes)

Specify the amount of
smoothing.

Select the smoothing algorithm.

Decide how to reconstruct
values beyond the ends of
the waves.

Select waves to
be smoothed.

Chapter III-9 — Signal Processing

III-259

Built-in Smoothing Algorithms
Igor has numerous built-in smoothing algorithms for 1-dimensional waveforms, and one that works with
the XY Model of Data on page II-78:

The first four algorithms precompute or apply one set of smoothing coefficients according to the smoothing
parameters, and then replaces each data wave with the convolution of the wave with the coefficients.

You can determine what coefficients have been computed by smoothing a wave containing an impulse. For
instance:
Make/O/N=32 wave0=0;wave0[15]=1;Smooth 5,wave0 // Smooth an impulse
Display wave0;ModifyGraph mode=8,marker=8 // Observe coefficients

Compute the FFT of the coefficients with magnitude output to view the frequency response. See Finding
Magnitude and Phase on page III-241.

The last two algorithms (the Smooth/M and Loess operations) are not based on creating a fixed set of
smoothing coefficients and convolution, so this technique is not applicable.

Binomial Smoothing
The Binomial smoothing operation is a Gaussian filter. It convolves your data with normalized coefficients
derived from Pascal’s triangle at a level equal to the Smoothing parameter. The algorithm is derived from
an article by Marchand and Marmet (1983).

This graph shows the frequency response of the binomial smoothing algorithm expressed as a percentage
of the sampling frequency. For example, if your data is sampled at 1000 Hz and you use 5 passes, the signal
at 200 Hz (20% of the sampling frequency) will be approximately 0.1.

Algorithm Operation Data

Binomial Smooth 1D waveform

Savitzky-Golay Smooth/S 1D waveform

Box (Average) Smooth/B 1D waveform

Custom Smoothing FilterFIR 1D waveform

Median Smooth/M 1D waveform

Percentile, Min, Max Smooth/M/MPCT 1D waveform

Loess Loess 1D waveform, XY 1D waves, false-color images*, matrix
surfaces*, and multivariate data*.

* The Loess operation supports these data formats, but the Smooth dialog does not provide an interface to
select them.

0.25

0.20

0.15

0.10

0.05

0

302520151050

Chapter III-9 — Signal Processing

III-260

Savitzky-Golay Smoothing
Savitzky-Golay smoothing uses a different set of precomputed coefficients popular in the field of chemistry.
It is a type of Least Squares Polynomial smoothing. The amount of smoothing is controlled by two param-
eters: the polynomial order and the number of points used to compute each smoothed output value. This
algorithm was first proposed by A. Savitzky and M.J.E. Golay in 1964. The coefficients were subsequently
corrected by others in 1972 and 1978; Igor uses the corrected coefficients.

The maximum Points value is 32767; the minimum is either 5 (2nd order) or 7 (4th order). Note that 2nd and
3rd order coefficients are the same, so we list only the 2nd order choice. Similarly, 4th and 5th order coeffi-
cients are identical.

Even though Savitzky-Golay smoothing has been widely used, there are advantages to the binomial
smoothing as described by Marchand and Marmet in their article.

The following graphs show the frequency response of the Savitzky-Golay algorithm for 2nd order and 4th order
smoothing. The large responses in the higher frequencies show why binomial smoothing is often a better choice.

1.0

0.8

0.6

0.4

0.2

0.0

R
es

po
ns

e

50403020100
% Sampling Frequency

Binomial Smoothing
 1 pass 7 passes
 2 passes 11 passes
 3 passes 25 passes
 5 passes 51 passes

1.0

0.8

0.6

0.4

0.2

0.0

R
es

po
ns

e

50403020100
% Sampling Frequency

2nd Order
Savitzky-Golay

 5 points
 7 points
 11 points
 25 points

1.0

0.8

0.6

0.4

0.2

0.0

R
es

po
ns

e

50403020100
% Sampling Frequency

4th Order
Savitzky-Golay

 7 points
 11 points
 25 points

Chapter III-9 — Signal Processing

III-261

Box Smoothing
Box smoothing is similar to a moving average, except that an equal number of points before and after the
smoothed value are averaged together with the smoothed value. The Points parameter is the total number
of values averaged together. It must be an odd value, since it includes the points before, the center point,
and the points after. For instance, a value of 5 averages two points before and after the center point, and the
center point itself:
Make/O/N=32 wave0=0;wave0[15]=1;Smooth/B 5,wave0 //Smooth impulse
Display wave0;ModifyGraph mode=8,marker=8 // Observe coefficients

The following graph shows the frequency response of the box smoothing algorithm.

Median Smoothing
Median smoothing does not use convolution with a set of coefficients. Instead, for each point it computes
the median of the values over the specified range of neighboring values centered about the point. NaN
values in the waveform data are allowed and are excluded from the median calculations.

Note: For simple XY data median smoothing, include the Median.ipf procedure file:

#include <Median>

and use the Analysis→Packages→Median XY Smoothing menu item. Currently this procedure
file does not handle NaNs in the data and only implements method 1 as described below.

Note: For image (2D matrix) median smoothing, use the MatrixFilter or ImageFilter operation with the
median method. ImageFilter can smooth 3D matrix data.

There are several ways to use median smoothing (Smooth/M) on 1D waveform data:
1) Replace all values with the median of neighboring values.
2) Replace each value with the median if the value itself is NaN. See Replace Missing Data Using

Median Smoothing on page III-123.
3) Replace each value with the median if the value differs from the median by a the specified threshold

amount.
4) Instead of replacing the value with the computed median, replace it with a specified number,

including 0, NaN, +inf, or -inf.

0.20

0

302520151050

1.0

0.8

0.6

0.4

0.2

0.0

R
es

po
ns

e

50403020100
% Sampling Frequency

Box Smoothing
 1 point 11 points
 3 points 25 points
 5 points 51 points
 7 points

Chapter III-9 — Signal Processing

III-262

Median smoothing can be used to replace “outliers” in data. Outliers are data that seem “out of line” from
the other data. One measure of this “out of line” is excessive deviation from the median of neighboring
values. The Threshold parameter defines what is considered “excessive deviation”.
// Example uses integer wave to simplify checking the results
Make/O/N=20/I dataWithOutliers= 4*p+gnoise(1.5) // simple line with noise
dataWithOutliers[7] *=2 // make an outlier at point 7
Display dataWithOutliers
Duplicate/O dataWithOutliers,dataWithOutliers_smth
Smooth/M=10 5, dataWithOutliers_smth // threshold=10, 5 point median
AppendToGraph dataWithOutliers_smth

Percentile, Min, and Max Smoothing
Median smoothing is actually a specialization of Percentile smoothing, as are Min and Max.

Percentile smoothing returns the smallest value in the smoothing window that is greater than the smallest
percentile % of the values:

As an example, assume that percentile = 25, the number of points in the smoothing window is 7, and for one
input point the values in the window after sorting are:

{0, 1, 8, 9, 10, 11, 30}

The 25th percentile is found by computing the rank R:

R = (percentile /100)*(num +1)

In this example, R evaluates to 2 so the second item in the sorted list, 1 in this example, is the percentile value
for the input point.

The percentile algorithm uses an interpolated rank to compute the value of percentiles other than 0 and 100.
See the Smooth operation for details.

Loess Smoothing
The Loess operation smooths data using locally-weighted regression smoothing. This algorithm is some-
times classified as a “nonparametric regression” procedure.

Percentile Type Description

0 Min The smoothed value is the minimum value in the smoothing window. 0 is the
minimum value for percentile.

50 Median The smoothed value is the median of the values in the smoothing window.

100 Max The smoothed value is the maximum value in the smoothing window. 100 is the
maximum value for percentile.

50

40

30

20

10

0

10987654

 dataWithOutliers
 dataWithOutliers_smth

5-point median for point 7 includes
all values within the box.

Median (middle value) is the
3rd largest value in the box
which is dataWithOutliers[8]=33

The difference at point 7
abs(value-median) = 19

exceeds the threshold of 10,
so the value is replaced
with the median = 33.

Chapter III-9 — Signal Processing

III-263

The regression can be constant, linear, or quadratic. A robust option that ignores outliers is available. In
addition, for small data sets Loess can generate confidence intervals.

See the Loess operation on page V-402 help for a discussion of the basic and robust algorithms, examples,
and references.

This implementation works with waveforms, XY pairs of waves, false-color images, matrix surfaces, and
multivariate data (one dependent data wave with multiple independent variable data waves). Loess dis-
cards NaN input values.

The Smooth Dialog, however, provides an interface for only waveforms and XY pairs of waves (see XY Model
of Data on page II-78), and does not provide an interface for confidence intervals or other less common options.

Here’s an example from the Loess operation help of interpolating (smoothing) an XY pair and creating an
interpolated 1D waveform (Y vs. X scaling). Note: the Make commands below are wrapped to fit the page:
// 3. 1-D Y vs X wave data interpolated to waveform (Y vs X scaling)
// with 99% confidence interval outputs (cp and cm)
// NOx = f(EquivRatio)
// Y wave
Make/O/D NOx = {4.818, 2.849, 3.275, 4.691, 4.255, 5.064, 2.118, 4.602, 2.286, 0.97,
3.965, 5.344, 3.834, 1.99, 5.199, 5.283, 3.752, 0.537, 1.64, 5.055, 4.937, 1.561};

// X wave (Note that the X wave is not sorted)
Make/O/D EquivRatio = {0.831, 1.045, 1.021, 0.97, 0.825, 0.891, 0.71, 0.801, 1.074,
1.148, 1, 0.928, 0.767, 0.701, 0.807, 0.902, 0.997, 1.224, 1.089, 0.973, 0.98, 0.665};

// Graph the input data
Display NOx vs EquivRatio; ModifyGraph mode=3,marker=19

// Interpolate to dense waveform over X range
Make/O/D/N=100 fittedNOx
WaveStats/Q EquivRatio
SetScale/I x, V_Min, V_max, "", fittedNOx
Loess/CONF={0.99,cp,cm}/DEST=fittedNOx/DFCT/SMTH=(2/3) srcWave=NOx,factors={EquivRatio}

// Display the fit (smoothed results) and confidence intervals
AppendtoGraph fittedNOx, cp,cm
ModifyGraph rgb(fittedNOx)=(0,0,65535)
ModifyGraph mode(fittedNOx)=2,lsize(fittedNOx)=2
Legend

Note: Loess is memory intensive, especially when generating confidence intervals. Read the Memory
Details section of the Loess operation (see page V-402) if you use confidence intervals.

Custom Smoothing Coefficients
You can smooth data with your own set of smoothing coefficients by selecting the Custom Coefs algorithm.
Use this option when you have low-pass filter (smoothing) coefficients created by another program or by
the Igor Filter Design Laboratory.

Choose the wave that contains your coefficients from the pop-up menu that appears. Igor will convolve
these coefficients with the input wave using the FilterFIR operation (see page V-180). You should use Fil-

5

4

3

2

1

0

1.21.11.00.90.80.7

 NOx vs EquivRatio Original Y vs X
 fittedNOx Smoothed waveform result
 cp +99% confidence interval
 cm -99% confidence interval

Chapter III-9 — Signal Processing

III-264

terFIR when convolving a short wave with a much longer one. Use the Convolve operation (see page V-77)
when convolving two waves with similar number of points; it’s faster.

All the values in the coefficients wave are used. FilterFIR presumes that the middle point of the coefficient
wave corresponds to the delay = 0 point. This is usually the case when the coefficient wave contains the two-
sided impulse response of a filter, which has an odd number of points. (For a coefficient wave with an even
number of points, the “middle” point is numpnts(coefs)/2-1, but this introduces a usually unwanted
delay in the smoothed data).

In the following example, the coefs wave smooths the data by a simple 7 point Bartlett (triangle) window
(omitting the first and last Bartlett window values which are 0):

// This example shows a unit step signal smoothed
// by a 7-point Bartlett window
Make/O/N=10 beforeWave = (p>=5) // unit step at p == 5
Make/O coefs={1/3,2/3,1,2/3,1/3} // 7 point Bartlett window
WaveStats/Q coefs
coefs/= V_Sum
Duplicate/O beforeWave,afterWave
FilterFIR/E=3/COEF=coefs afterWave
Display beforeWave,afterWave

End Effects
The first four smoothing algorithms compute the output value for a given point using the point’s neighbors.
Each algorithm combines an equal number of neighboring points before and after the point being
smoothed. At the start or end of a wave some points will not have enough neighbors, so a method for fab-
ricating neighbor values must be implemented.

You choose how to fabricate those values with the End Effect pop-up menu in the Smoothing dialog. In the
descriptions that follow, i is a small positive integer, and wave[n] is the last value in the wave to be smoothed.

The Bounce method uses wave[i] in place of the missing wave[-i] values and wave[n-i] in place of the
missing wave[n+i] values. This works best if the data is assumed to be symmetrical about both the start and
the end of the wave. If you don’t specify the end effect method, Bounce is used.

The Wrap method uses wave[n-i] in place of the missing wave[-i] values and vice-versa. This works best if
the wave is assumed to endlessly repeat.

The Zero method uses 0 for any missing value. This works best if the wave starts and ends with zero.

The Repeat method uses wave[0] in place of the missing wave[-i] values and wave[n] in place of the missing
wave[n+i] values. This works best for data representing a single event.

When in doubt, use Repeat.

Rotate Operation
The Rotate operation (see page V-603) rotates the data values of the selected waves by a specified number
of points. Choose Data→Rotate Waves to display the Rotate dialog.

1.0
0.8
0.6
0.4
0.2
0.0

9876543210

 beforeWave
 afterWave

coefs zero-
delay

coefficient

coefs two-point
delay coefficient

0.30

0.20

0.10

0.00

43210

Chapter III-9 — Signal Processing

III-265

Think of the data values of a wave as a column of numbers. If the specified number of points is positive the
points in the wave are rotated downward. If the specified number of points is negative the points in the
wave are rotated upward. Values that are rotated off one end of the column wrap to the other end.

The rotate operation shifts the X scaling of the rotated wave so that, except for the points which wrap
around, the X value of a given point is not changed by the rotation. To observe this, display the X scaling
and data values of the wave in a table and notice the effect of Rotate on the X values.

This change in X scaling may or may not be what you want. It is usually not what you want if you are rotat-
ing an XY pair. In this case, you should undo the X scaling change using the SetScale operation:
SetScale/P x,0,1,"",waveName // replace waveName with name of your wave

Also see the example of rotation in Spectral Windowing on page III-242.

Unwrap Operation
The Unwrap operation (see page V-803) scans through each specified wave trying to undo the effect of a
modulus operation. For example, if you perform an FFT on a wave, the result is a complex wave in rectangular
coordinates. You can create a real wave which contains the phase of the result of the FFT with the command:
wave2 = imag(r2polar(wave1))

However the rectangular-to-polar conversion leaves the phase information modulo 2π. You can restore the
continuous phase information with the command:
Unwrap 2*Pi, wave2

The Unwrap operation is designed for 1D waves only. Unwrapping 2D data is considerably more difficult.
See the ImageUnwrapPhase operation on page V-339 for more information

The Unwrap dialog looks like this.

Enter the number source
wave. operations, this
are to be rotated.

Select the waves to
be rotated.

Select to list only
those waves in the
top graph or table.

Select the waves to
be unwrapped.

Select to list only
those waves in the
top graph or table.

The waves are
assumed to be wrapped
with this modulus.

Chapter III-9 — Signal Processing

III-266

References
Cleveland, W.S., Robust locally weighted regression and smoothing scatterplots, J. Am. Stat. Assoc., 74, 829-

836, 1977.

Marchand, P., and L. Marmet, Binomial smoothing filter: A way to avoid some pitfalls of least square poly-
nomial smoothing, Rev. Sci. Instrum., 54, 1034-41, 1983.

Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C, 2nd ed., 994 pp.,
Cambridge University Press, New York, 1992.

Savitzky, A., and M.J.E. Golay, Smoothing and differentiation of data by simplified least squares proce-
dures, Analytical Chemistry, 36, 1627–1639, 1964.

Wigner, E. P., On the quantum correction for thermo-dynamic equilibrium, Physics Review, 40, 749-759, 1932.

Chapter

III-10
III-10Analysis of Functions

Operations that Work on Functions... 268
Function Plotting... 268

Using Dependencies.. 269
Using Controls ... 269
Plotting a User-Defined Function.. 269

Solving Differential Equations .. 270
Terminology ... 270
ODE Inputs ... 270
ODE Outputs .. 271
The Derivative Function ... 271
A First-Order Equation ... 273
A System of Coupled First-Order Equations... 274
Optimizing the Derivative Function... 275
Higher Order Equations ... 276
Free-Run Mode... 277
Stiff Systems.. 279
Error Monitoring.. 280
Solution Methods... 281
Interrupting IntegrateODE... 281
Stopping and Restarting IntegrateODE.. 282
Stopping IntegrateODE on a Condition ... 282

Integrating a User Function... 284
Finding Function Roots.. 285

Roots of Polynomials with Real Coefficients... 285
Roots of a 1D Nonlinear Function... 287
Roots of a System of Multidimensional Nonlinear Functions .. 289
Caveats for Multidimensional Root Finding ... 290

Finding Minima and Maxima of Functions .. 291
Extreme Points of a 1D Nonlinear Function .. 291
Extrema of Multidimensional Nonlinear Functions... 293
Stopping Tolerances .. 294
Problems with Multidimensional Optimization ... 295

References .. 296

Chapter III-10 — Analysis of Functions

III-268

Operations that Work on Functions
Some Igor operations work on functions rather than data in waves. These operations take as input one or
more functions that you define in the Procedure window. The result is some calculation based on function
values produced when Igor evaluates your function.

Because the operations evaluate a function, they work on continuous data. That is, the functions are not
restricted to data values that you provide from measurements. They can be evaluated at any input values.
Of course, a computer works with discrete digital numbers, so even a “continuous” function is broken into
discrete values. Usually these discrete values are so close together that they are continuous for practical pur-
poses. Occasionally, however, the discrete nature of computer computations causes problems.

The following operations use functions as inputs:
• IntegrateODE computes numerical solutions to ordinary differential equations. The differential

equations are defined as user functions. The IntegrateODE operation is described under Solving
Differential Equations on page III-270.

• FindRoots computes solutions to f(x)=a, where a is a constant (often zero). The input x may
represent a vector of x values. A special form of FindRoots computes roots of polynomials. The
FindRoots operation is described in the section Finding Function Roots on page III-285.

• Optimize finds minima or maxima of a function, which may have one or more input variables. The
Optimize operation is described in the section Finding Minima and Maxima of Functions on page
III-291.

• Integrate1D integrates a function between two specified limits. Despite its name, it can also be used
for integrating in two or more dimensions. See Integrating a User Function on page III-284.

Function Plotting
Function plotting is very easy in Igor, assuming that you understand what a waveform is (see Waveform
Model of Data on page II-77) and how X scaling works. Here are the steps to plot a function.
1. Decide how many data points you want to plot.
2. Make a wave with that many points.
3. Use the SetScale operation to set the wave’s X scaling. This defines the domain over which you are

going to plot the function.
4. Display the wave in a graph.
5. Execute a waveform assignment statement to set the data values of the wave.
Here is an example.
Make/O/N=500 wave0
SetScale/I x, 0, 4*PI, wave0 // plot function from x=0 to x=4π
Display wave0
wave0 = 3*sin(x) + 1.5*sin(2*x + PI/6)

-4

-2

0

2

121086420

Chapter III-10 — Analysis of Functions

III-269

To evaluate the function over a different domain, you need to reexecute the SetScale command with differ-
ent parameters. This redefines “x” for the wave. Then you need to reexecute the waveform assignment
statement. For example,
SetScale/I x, 0, 2*PI, wave0 // plot function from x=0 to x=2π
wave0 = 3*sin(x) + 1.5*sin(2*x + PI/6)

Reexecuting commands is easy, using the shortcuts shown in History Area on page II-22.

Using Dependencies
If you get tired of reexecuting the waveform assignment statement each time you change the domain, you
can use a dependency to cause Igor to automatically reexecute it. To do this, use := instead of =.
wave0 := 3*sin(x) + 1.5*sin(2*x + PI/6)

See Chapter IV-9, Dependencies, for details.

You have made wave0 depend on “X”. The SetScale operation changes the meaning of “X” for the wave.
Now when you do a SetScale on wave0, Igor will automatically reexecute the assignment.

You can take this further by using global variables instead of literal numbers in the right-hand expression.
For example:
Variable/G amp1=3, amp2=1.5, freq1=1, freq2=2, phase1=0, phase2=PI/6
wave0 := amp1*sin(freq1*x + phase1) + amp2*sin(freq2*x + phase2)

Now, wave0 depends on these global variables. If you change them, Igor will automatically reexecute the
assignment.

Using Controls
For a slick presentation of function plotting, you can put controls in the graph to set the values of the global
variables. When you change the value in the control, the global variable changes, which reexecutes the
assignment. This changes the wave, which updates the graph. Here is what the graph would look like.

We’ve added two additional global variables and connected them to the Starting X and Ending X controls.
This allows us to set the domain. These controls are both linked to an action procedure that does a SetScale
on the wave.

Controls are explained in detail in Chapter III-14, Controls and Control Panels.

Plotting a User-Defined Function
In the preceding example we used the built-in sin function in the right-hand expression. We can also use a user-
defined function. Here is an example using a very simple function - the normal probability distribution function.
Function NormalProb(x)

Variable x

Chapter III-10 — Analysis of Functions

III-270

// the constant is 1/sqrt(2*pi) evaluated in double-precision
return 0.398942280401433*exp(-(0.5*x^2))

End

Make/N=100 wave0; SetScale/I x, 0, 3, wave0; wave0 = NormalProb(x)
Display wave0

Note that, although we are using the NormalProb function to fill a wave, the NormalProb function itself has
nothing to do with waves. It merely takes an input and returns a single output. We could also test the Nor-
malProb function at a single point by executing
Print NormalProb(0)

This would print the output of the function in the history area.

It is the act of using the NormalProb function in a wave assignment statement that fills the wave with data
values. As it executes the wave assignment, Igor calls the NormalProb function over and over again, 100
times in this case, passing it a different parameter each time and storing the output from the NormalProb
function in successive points of the destination wave.

For more information on Wave Assignments, see Waveform Arithmetic and Assignments on page II-94.
You may also find it helpful to read Chapter IV-1, Working with Commands.

WaveMetrics provides a procedure package that provides a convenient user interface to graph mathematical
expressions. To use it, pull down the Analysis menu and choose Packages→Function Grapher. This will display
a graph with controls to create and display a function. Click the Help button in the graph to learn how to use it.

Solving Differential Equations
Numerical solutions to initial-value problems involving ordinary differential equations can be calculated using
the IntegrateODE operation (see page V-351). You provide a user-defined function that implements a system of
differential equations. The solution to your differential equations are calculated by marching the solution
forward (or backward) from the initial conditions in a series of steps or increments in the independent variable.

Terminology
Referring to the independent variable and the dependent variables is very cumbersome, so we refer to these
as X and Y[i]. Of course, X may represent distance or time or anything else.

A system of differential equations will be written in terms of derivatives of the Y[i]s, or dy[i]/dx.

ODE Inputs
You provide to IntegrateODE a function to calculate the derivatives or right-hand-sides of your system of
differential equations. You also provide a wave (or waves) to receive the solution. This solution wave will
have a row for each output point you want, and a column or a wave for each equation in the system. So, for

0.4

0.3

0.2

0.1

3.02.52.01.51.00.50.0

Chapter III-10 — Analysis of Functions

III-271

a system of four equations (fourth-order system), if you provide an X wave to specify where you want
values, you might have this situation:

You might also use a multicolumn Y wave:

Igor will calculate a solution value for each element of the Y wave (or waves). Before executing Integrate-
ODE, you must load the initial conditions (the initial Y[i] values) into the first row of the Y waves. Igor then
calculates the solution starting from those values; the first solution value will be stored into the second
element of the Y waves.

Note: If you are using the /R flag with IntegrateODE to start the integration at a point other than the
beginning of the Y wave, the initial conditions must be in the first row specified by the /R flag.
See Stopping and Restarting IntegrateODE on page III-282.

ODE Outputs
The algorithms Igor uses to integrate your ODE systems use adaptive step-size control. That is, the algorithms
will advance the solution by the largest increment in X that will result in errors at least as small as you require.
If the solution is changing rapidly, or the solution has some other difficulty, the step sizes may get very small.

IntegrateODE has two schemes for returning solution results to you: you can specify X values where you
need solution values, or you can let the solution “free run”.

In the first mode, results are returned to you at values of x corresponding to the X scaling of your Y waves,
or at X values that you provide via an X wave or by providing X0 and deltaX and letting Igor calculate the
X values. The actual calculation may require X increments smaller than those you ask for. Igor returns
results only at the X values you ask for.

In free-run mode, IntegrateODE returns solution values for every step taken by the integration algorithm.
In some cases, this may give you extremely small steps; you are now forewarned! Free-run mode returns to
you not only the Y[i] values from the solution, but also values of x[i]. Free-run mode can be useful in that
to some degree it will return results closely spaced when the solution is changing rapidly and with larger
spacing when the solution is changing slowly.

The Derivative Function
You must provide a user-defined function to calculate derivatives corresponding to the equations you want
to solve. All equations are solved as systems of first-order equations. Higher-order equations must be trans-
formed to multiple first-order equations (an example is shown later).

X wave, four Y waves (A, B, C, and D).

First row contains initial conditions.

Subsequent rows receive solution values.

X wave specifies where to report solutions.
In free-run mode, X wave receives X values for solution rows.

Chapter III-10 — Analysis of Functions

III-272

The derivative function has this form:
Function D(pw, xx, yw, dydx)

Wave pw // parameter wave (input)
Variable xx // x value at which to calculate derivatives
Wave yw // wave containing y[i] (input)
Wave dydx // wave to receive dy[i]/dx (output)

dydx[0] = <expression for one derivative>
dydx[1] = <expression for next derivative>
<etc.>

return 0
End

Note the return statement at the end of the function. The function result should normally be 0. If it is 1, Inte-
grateODE will stop. If the return statement is omitted, the function returns NaN which IntegrateODE treats
the same as 0. But it is best to explicitly return 0.

Because the function may produce a large number of outputs, the outputs are returned via a wave in the
parameter list.

The parameter wave is simply a wave containing possible adjustable constants. Using a wave for these makes
it convenient to change the constants and try a new integration. It also will make it more convenient to do a
curve fit to a differential equation. You must create the parameter wave before invoking IntegrateODE. The
contents of the parameter wave are of no concern to IntegrateODE and are not touched. In fact, you can change
the contents of the parameter wave inside your function and those changes will be permanent.

Other inputs are the value of x at which the derivatives are to be evaluated, and a wave (yw in this example)
containing current values of the y[i]’s. The value of X is determined when it calls your function, and the
waves yw and dydx are both created and passed to your function when Igor needs new values for the deriv-
atives. Both the input Y wave and the output dydx wave have as many elements as the number of derivative
equations in your system of ODEs.

The values in the yw wave correspond to a row of the table in the example above. That is:

The wave yw contains the present value (or estimated value) of Y[i] at X =xx. You may need this value to
calculate the derivatives.

Your derivative function is called many times during the course of a solution, and it will be called at values
of X that do not correspond to X values in the final solution. The reason for this is two-fold: First, the solu-
tion method steps from one value of X to another using estimates of the derivatives at several intermediate
X values. Second, the spacing between X values that you want may be larger than can be calculated accu-

Function D(pw, xx, yw, dydx)
Wave pw // parameter wave (input)
Variable xx // x value at which to calculate derivatives
Wave yw // wave containing y[i] (input)
Wave dydx // wave to receive dy[i]/dx (output)

dydx[0] = <expression for one derivative>
dydx[1] = <expression for next derivative>
<etc.>

return 0
End

Chapter III-10 — Analysis of Functions

III-273

rately, and Igor may need to find the solution at intermediate values. These intermediate values are not
reported to you unless you call the IntegrateODE operation (see page V-351) in free-run mode.

Because the derivative function is called at intermediate X values, the yw wave is not the same wave as the
Y wave (or waves) you create and pass to IntegrateODE. Note that one row of your Y wave (or one value
from each Y wave) corresponds to the elements of the one-dimensional yw wave that is passed in to your
derivative function. While the illustration implies that values from your Y wave are passed to the derivative
function, in fact the values in the yw wave passed into the derivative function correspond to whatever Y values the
integrator needs at the moment. The correspondence to your Y wave or waves is only conceptual.

You should be aware that, with the exception of the parameter wave (pw above) the waves are not waves
that exist in your Igor experiment. Do not try to resize them with InsertPoints/DeletePoints and don’t do
anything to them with the Redimension operation. The yw wave is input-only; altering it will not change
anything. The dydx wave is output-only; the only thing you should do with it is to assign appropriate deriv-
ative (right-hand-side) values.

Some examples are presented in the following sections.

A First-Order Equation
Let’s say you want a numerical solution to a simple first-order differential equation:

First you need to create a function that calculates the derivative. Enter the following in the procedure window:
Function FirstOrder(pw, xx, yw, dydx)

Wave pw // pw[0] contains the value of the constant a
Variable xx // not actually used in this example
Wave yw // has just one element- there is just one equation
Wave dydx // has just one element- there is just one equation

// There's only one equation, so only one expression here.
// The constant a in the equation is passed in pw[0]
dydx[0] = -pw[0]*yw[0]

return 0
End

Once the function is entered, execute the following commands:
Make/D/O/N=101 YY // wave to receive results
YY[0] = 10 // initial condition- y0=10
Display YY // make a graph
Make/D/O PP={0.05} // set constant a to 0.05
IntegrateODE FirstOrder, PP, YY

This results in the following graph with the expected exponential decay:

The IntegrateODE command shown in the example is the simplest you can use. It names the derivative
function, FirstOrder, a parameter wave, PP, and a results wave, YY.

xd
dy ay–=

10

8

6

4

2

100806040200

Chapter III-10 — Analysis of Functions

III-274

Because the command shown above does not explicitly set the X values, the output results are calculated
according to the X scaling of the results wave YY. You can change the spacing of the X values by changing
the X scaling of YY:
SetScale/P x 0,3,YY // now the results will be at an x interval of 3
IntegrateODE FirstOrder, PP, YY

The same thing can be achieved by using your specified x0 and deltax with the /X flag:
IntegrateODE/X={0,3} FirstOrder, PP, YY

We presume that you have your own reasons for using the /X={X0, deltaX} form. Note that when you do
this, it doesn’t use the X scaling of your Y wave. If you graph the Y wave the values on the X axis may not
match the X values used during the calculation.
Finally, you don’t have to use a constant spacing in X if you provide an X wave. You might want to do this
to get closely-spaced values only where the solution changes rapidly. For instance:
Make/D/O/N=101 XX // same length as YY
XX = exp(p/20) // X values get farther apart as X increases
Display YY vs XX // make an XY graph
ModifyGraph mode=2 // plot with dots so you can see the points
IntegrateODE/X=XX FirstOrder, PP, YY

Note that throughout these examples the initial value of YY has remained at 10.

A System of Coupled First-Order Equations
While many interesting systems are described by simple (possibly nonlinear) first-order equations, more
interesting behavior results from systems of coupled equations.

The next example comes from chemical kinetics. Suppose you mix two substances A and B together in a
solution and they react to form intermediate phase C. Over time C transforms into final product D:

Here, k1, k2, and k3 are rate constants for the reactions. The concentrations of the substances might be given
by the following coupled differential equations:

10

8

6

4

2

0

250200150100500

10

8

6

4

2

0

14012010080604020

�
�

��� � �

�
�

� � �

�
�

Chapter III-10 — Analysis of Functions

III-275

To solve these equations, first we need a derivative function:
Function ChemKinetic(pw, tt, yw, dydt)

Wave pw // pw[0] = k1, pw[1] = k2, pw[2] = k3
Variable tt // time value at which to calculate derivatives
Wave yw // yw[0]-yw[3] containing concentrations of A,B,C,D
Wave dydt // wave to receive dA/dt, dB/dt etc. (output)
dydt[0] = -pw[0]*yw[0]*yw[1] + pw[1]*yw[2]
dydt[1] = dydt[0] // first two equations are the same
dydt[2] = pw[0]*yw[0]*yw[1] - pw[1]*yw[2] - pw[2]*yw[2]
dydt[3] = pw[2]*yw[2]

return 0
End

We think that it is easiest to keep track of the results using a single multicolumn Y wave. These commands make
a four-column Y wave and use dimension labels to keep track of which column corresponds to which substance:
Make/D/O/N=(100,4) ChemKin
SetScale/P x 0,10,ChemKin // calculate concentrations every 10 s
SetDimLabel 1,0,A,ChemKin // set dimension labels to substance names
SetDimLabel 1,1,B,ChemKin // this can be done in a table if you make
SetDimLabel 1,2,C,ChemKin // the table using edit ChemKin.ld
SetDimLabel 1,3,D,ChemKin
ChemKin[0][%A] = 1 // initial conditions: concentration of A
ChemKin[0][%B] = 1 // and B is 1, C and D is 0
ChemKin[0][%C] = 0 // note indexing using dimension labels
ChemKin[0][%D] = 0
Make/D/O KK={0.002,0.0001,0.004} // rate constants
Display ChemKin[][%D] // graph concentration of the product

// Note graph made with subrange of wave
IntegrateODE/M=1 ChemKinetic, KK, ChemKin

Note that the waves yw and dydt in the derivative function have four elements corresponding to the four
equations in the system of ODEs. At a given value of X (or t) yw[0] and dydt[0] correspond to the first equa-
tion, yw[1] and dydt[1] to the second, etc.

Note also that we have used the /M=1 flag to request the Bulirsch-Stoer integration method. For well-
behaved systems, it is likely to be the fastest method, taking the largest steps in the solution.

Optimizing the Derivative Function
The Igor compiler does no optimization of your code. Because IntegrateODE may call your function thou-
sands (or millions!) of times, efficient code can significantly reduce the time it takes to calculate the solution.
For instance, the ChemKinetic example function above was written to parallel the chemical equations to
make the example clearer. There are three terms that appear multiple times. As written, these terms are cal-

��

��
�

��

��
� ��

�
������

�
��

��

��
� �

�
������

�
����

�
��

��

��
� �

�
��

0.5

0.4

0.3

0.2

0.1

0.0

8006004002000

Chapter III-10 — Analysis of Functions

III-276

culated again from scratch each time they are encountered. You can save some computation time by pre-
calculating these terms as in the following example:
Function ChemKinetic2(pw, tt, yw, dydt)

Wave pw // pw[0] = k1, pw[1] = k2, pw[2] = k3
Variable tt // time value at which to calculate derivatives
Wave yw // yw[0]-yw[3] containing concentrations of A,B,C,D
Wave dydt // wave to receive dA/dt, dB/dt etc. (output)

// Calculate common subexpressions
Variable t1mt2 = pw[0]*yw[0]*yw[1] - pw[1]*yw[2]
Variable t3 = pw[2]*yw[2]

dydt[0] = -t1mt2
dydt[1] = dydt[0] // first two equations are the same
dydt[2] = t1mt2 - t3
dydt[3] = t3

return 0
End

These changes reduced the time to compute the solution by about 13 per cent. Your mileage may vary. Larger
functions with subexpression repeated many times are prime candidates for this kind of optimization.

Note also that IntegrateODE updates the display every time 10 result values are calculated. Screen updates
can be very time-consuming, so IntegrateODE provides the /U flag to control how often the screen is
updated. For timing this example we used /U=1000000 which effectively turned off screen updating.

Higher Order Equations
Not all differential equations (in fact, not many) are expressed as systems of coupled first-order equations,
but IntegrateODE can only handle such systems. Fortunately, it is always possible to make substitutions to
transform an Nth-order differential equation into N first-order coupled equations.

You need one equation for each order. Here is the equation for a forced, damped harmonic oscillator (using y
for the displacement rather than x to avoid confusion with the independent variable, which is t in this case):

If we define a new variable v (which happens to be velocity in this case):

Then

Substituting into the original equation gives us two coupled first-order equations:

t2

2

d

d y 2λ td
dy ω2y+ + F t()=

v
td

dy=

t2

2

d

d y
td

dv=

td
dv 2λv– ω2y– F t()+=

td
dy v=

Chapter III-10 — Analysis of Functions

III-277

Of course, a real implementation of these equations will have to provide something for F(t). A derivative
function to implement these equations might look like this:
Function Harmonic(pw, tt, yy, dydt)

Wave pw // pw[0]=damping, pw[1]=undamped frequency
// pw[2]=Forcing amplitude, pw[3]=Forcing frequency

Variable tt
Wave yy // yy[0] = velocity, yy[1] = displacement
Wave dydt

// simple sinusoidal forcing
Variable Force = pw[2]*sin(pw[3]*tt)

dydt[0] = -2*pw[0]*yy[0] - pw[1]*pw[1]*yy[1]+Force
dydt[1] = yy[0]

return 0
End

And the commands to integrate the equations:
Make/D/O/N=(300,2) HarmonicOsc
SetDimLabel 1,0,Velocity,HarmonicOsc
SetDimLabel 1,1,Displacement,HarmonicOsc
HarmonicOsc[0][%Velocity] = 5 // initial velocity
HarmonicOsc[0][%Displacement] = 0 // initial displacement
Make/D/O HarmPW={.01,.5,.1,.45} // damping, freq, forcing amp and freq
Display HarmonicOsc[][%Displacement]
IntegrateODE Harmonic, HarmPW, HarmonicOsc

Free-Run Mode
Most of the examples shown so far use the Y wave scaling to set the X values where a solution is desired. In
the section A First-Order Equation on page III-273 examples are also shown in which the /X flag is used to
specify the sequence of X values, either by setting X0 and deltaX or by supplying a wave filled with X values.

These methods have the advantage that you have complete control over the X values where the solution is
reported to you. They also are completely deterministic- you know before running IntegrateODE exactly
how many points will be calculated and how big your waves need to be.

They also have the potential drawback that you may force IntegrateODE to use smaller X increments than
required. If your ODE system is expensive to calculate, this may exact a considerable cost in computation time.

IntegrateODE also offers a “free-run” mode in which the solution is allowed to proceed using whatever X
increments are required to achieve the requested accuracy limit. This mode has two possible advantages- it
will use the minimum number of solution steps required and it may also produce a higher density of points
in areas where the solution changes rapidly (but watch out for stiff systems, see page III-279).

Free-run mode has the disadvantage that in certain cases the solution may require miniscule steps to tip toe
through difficult terrain, inundating you with huge numbers of points that you don’t really need. You also
don’t know ahead of time how many points will be required to cover a certain range in X.

10

5

0

-5

300250200150100500

Chapter III-10 — Analysis of Functions

III-278

To illustrate the use of free-run mode, we will return to the example used in the section A First-Order Equa-
tion on page III-273. (Make sure the FirstOrder function is compiled in the procedure window.) Because we
don’t know how many points will be produced, we will make the waves large:
Make/D/O/N=1000 FreeRunY // wave to receive results
FreeRunY = NaN
FreeRunY[0] = 10 // initial condition- y0=10

Free-run mode requires that you supply an X wave. Unlike the previous use of an X wave, in free-run mode
the X wave is filled by IntegrateODE with the X values at which solution values have been calculated. Like
the Y waves, you must provide an initial value in the first row of the X wave. As before, it must have the
same number of rows as the Y waves:
Make/O/D/N=1000 FreeRunX // same length as YY
FreeRunX = NaN // prevent display of extra points
FreeRunX[0] = 0 // initial value of X

In free-run mode, only the points that are required are altered. Thus, if you have some preexisting wave
contents, they will be seen on a graph. We prevent the resulting confusion by filling the X wave with NaN’s
(Not a Number, or blanks). Igor graphs do not display points that have NaN values.

Make a graph:
Display FreeRunY vs FreeRunX // make an XY graph
ModifyGraph mode=3, marker=19 // plot with dots to show the points

Make the parameter wave and set the value of the equation’s lone coefficient:
Make/D/O PP={0.05} // set constant a to 0.05

And finally do the integration in free-run mode. The /XRUN flag specifies a suggested first step size and
the maximum X value. When the solution passes the maximum X value (100 in this case) or when your
waves are filled, IntegrateODE will stop.
FreeRunX = NaN;FreeRunX[0] = 0
IntegrateODE/M=1/X=FreeRunX/XRUN={1,100} FirstOrder, PP, FreeRunY

In the earlier example, we (rather arbitrarily) chose 100 steps to make a reasonably smooth plot. In this case,
it took 6 steps to cover the same X range, and the steps are closest together at the beginning where the expo-
nential decay is most rapid:

Asking for more accuracy will cause smaller steps to be taken (9 when we executed the following command):
FreeRunX = NaN;FreeRunX[0] = 0
IntegrateODE/M=1/X=FreeRunX/XRUN={1,100}/E=1e-14 FirstOrder, PP, FreeRunY

10

8

6

4

2

0

140120100806040200

10

8

6

4

2

0

120100806040200

Chapter III-10 — Analysis of Functions

III-279

After IntegrateODE has finished, you can use Redimension and the V_ODETotalSteps variable to adjust the
size of the waves to just the points actually calculated:
Redimension/N=(V_ODETotalSteps+1) FreeRunY, FreeRunX

Note that we added 1 to V_ODETotalSteps to account for the initial value in row zero.

Stiff Systems
Some systems of differential equations involve components having very different time (or decay) constants.
This can create what is called a “stiff” system; even though the short time constant decays rapidly and con-
tributes negligibly to the solution after a very short time, ordinary solution methods (/M = 0, 1, and 2) are
unstable because of the presence of the short time-constant component. IntegrateODE offers the Backward
Differentiation Formula method (BDF, flag /M=3) to handle stiff systems.

A rather artificial example is the system (see “Numerical Recipes in C”, edition 2, page 734; see References
on page III-296)
du/dt = 998u + 1998v
dv/dt = -999u - 1999v

Here is the derivative function that implements this system:
Function StiffODE(pw, tt, yy, dydt)

Wave pw // not actually used because the coefficients
// are hard-coded to give a stiff system

Variable tt
Wave yy
Wave dydt

dydt[0] = 998*yy[0] + 1998*yy[1]
dydt[1] = -999*yy[0] - 1999*yy[1]

return 0
End

Commands to set up the wave required and to make a suitable graph:
Make/D/O/N=(3000,2) StiffSystemY
Make/O/N=0 dummy // dummy coefficient wave
StiffSystemY = 0
StiffSystemY[0][0] = 1 // initial condition for u component
make/D/O/N=3000 StiffSystemX
Display StiffSystemY[][0] vs StiffSystemX
AppendToGraph/L=vComponentAxis StiffSystemY[][1] vs StiffSystemX

// make a nice-looking graph with dots to show where the solution points are
ModifyGraph axisEnab(left)={0,0.48},axisEnab(vComponentAxis)={0.52,1}
DelayUpdate
ModifyGraph freePos(vComponentAxis)={0,kwFraction}
ModifyGraph mode=2,lsize=2,rgb=(0,0,65535)

These commands solve this system using the Bulirsch-Stoer method using free run mode to minimize the
number of solution steps computed:
StiffSystemX = nan // hide unused solution points
StiffSystemX[0] = 0 // initial X value
IntegrateODE/M=1/X=StiffSystemX/XRUN={1e-6, 2} StiffODE, dummy, StiffSystemY
Print "Required ",V_ODETotalSteps, " steps to solve using Bulirsch-Stoer"

which results in this message in the history area:
 Required 401 steps to solve using Bulirsch-Stoer

These commands solve this system using the BDF method:
StiffSystemX = nan // hide unused solution points
StiffSystemX[0] = 0 // initial X value

Chapter III-10 — Analysis of Functions

III-280

IntegrateODE/M=3/X=StiffSystemX/XRUN={1e-6, 2} StiffODE, dummy, StiffSystemY
Print "Required ",V_ODETotalSteps, " steps to solve using BDF"

This results in this message in the history area:
 Required 133 steps to solve using BDF

I think you will agree that the difference between 401 steps and 133 is significant! Be aware, however, that
the BDF method is not the most efficient for nonstiff problems.

Error Monitoring
To achieve the fastest possible solution to your differential equations, Igor uses algorithms with adaptive
step sizing. As each step is calculated, an estimate of the truncation error is also calculated and compared
to a criterion that you specify. If the error is too large, a smaller step size is used. If the error is small com-
pared to what you asked for, a larger step size is used for the next step.

Igor monitors the errors by scaling the error by some (hopefully meaningful) number and comparing to an
error level.

The Runge-Kutta and Bulirsch-Stoers methods (IntegrateODE flag /M=0 or /M=1) estimates the errors for
each of your differential equations and the largest is used for the adjustments:

The Adams-Moulton and BDF methods (IntegrateODE flag /M=2 or /M=3) estimate the errors and use the
root mean square of the error vector:

.

Igor sets eps to 10-6 by default. If you want a different error level, use the /E=eps flag to set a different value
of eps. Using the harmonic oscillator example, we now set a more relaxed error criterion than the default:
IntegrateODE/E=1e-3 Harmonic, HarmPW, HarmonicOsc

The error scaling can be composed of several parts, each optional:

By default Igor uses constant scaling, setting h=1 and Ci=1, and does not use the yi and dyi/dx terms making
Scalei = 1. In that case, eps represents an absolute error level: the error in the calculated values should be less
than eps. An absolute error specification is often acceptable, but it may not be appropriate if the output
values are of very different magnitudes.

You can provide your own customized values for Ci using the /S=scaleWave flag. You must first create a
wave having one point for each differential equation. Fill it with your desired scaling values, and add the
/S flag to the IntegrateODE operation:
Make/O/D errScale={1,5}
IntegrateODE/S=errScale Harmonic, HarmPW, HarmonicOsc

Typically, the constant values should be selected to be near the maximum values for each component of
your system of equations.

Finally, you can control what Igor includes in Scalei using the /F=errMethod flag. The argument to /F is a
bitwise value with a bit for each component of the equation above:
Use errMethod = 2 if you want the errors to be a fraction of the current value of Y. That might be appropriate for
solutions that asymptotically approach zero when you need smaller errors as the solution approaches zero.

Max
Errori
Scalei

 eps<

1
N

Errori
Scalei

2

1 2⁄

eps<

Scalei h Ci yi dyi dx⁄+ +()⋅=

Chapter III-10 — Analysis of Functions

III-281

The Scale numbers can never equal zero, and usually it isn’t appropriate for Scalei to get very small. Thus,
it isn’t usually a good idea to use errMethod = 2 with solutions that pass through zero. A good way to avoid
this problem can be to add the values of the derivatives (errMethod = (2+4)), or to add a small constant:
Make/D errScale=1e-6
IntegrateODE/S=errScale/F=(2+1) …

Finally, in some cases you need the much more stringent requirement that the errors be less than some
global value. Since the solutions are the result of adding up myriad sequential solutions, any truncation
error has the potential to add up catastrophically if the errors happen to be all of the same sign. If you are
using Runge-Kutta and Bulirsch-Stoers methods (IntegrateODE flag /M=0 or /M=1), you can achieve global
error limits by setting bit 3 of errMethod (/F=8) to multiply the error by the current step size (h in the equation
above). If you are using Adams-Moulton and BDF methods (IntegrateODE flag /M=2 or /M=3) bit 3 does
nothing; in that case, a conservative value of eps would be needed.

Caution: Higher accuracy will make the solvers use smaller steps, requiring more computation time. The
trade-off for smaller step size is computation time. If you get too greedy, the step size can get so
small that the X increments are smaller than the computer’s digital resolution. If this happens
Igor will stop the calculation and complain.

Solution Methods
Igor makes four solution methods available, Runge-Kutta-Fehlberg, Bulirsch-Stoers with Richardson
extrapolation, Adams-Moulton and Backward Differentiation Formula.

Runge-Kutta-Fehlberg is a robust method capable of surviving solutions or derivatives that aren’t smooth,
or even have discontinuous derivatives. Bulirsch-Stoers, for well-behaved systems, will take larger steps
than Runge-Kutta-Fehlberg, so it may be considerably faster. Step size for a given problem is larger so you
get greater accuracy. Of course, if you ask for values closer together than the achievable step size, you get
no advantage from this.

Details of these methods can be found in the second edition of Numerical Recipes(see References on page III-296).

The Adams-Moulton and Backward Differentiation Formula (BDF) methods are adapted from the CVODE
package developed at Lawrence Livermore National Laboratory. In our very limited experience, for well-
behaved nonstiff systems the Bulirsch-Stoers method is much more efficient than either the Runge-Kutta-Fehl-
berg method or the Adams-Moulton method, in that it requires significantly fewer steps for a given problem.

As shown above, stiff systems benefit greatly by the use of the BDF method. However, for nonstiff methods,
it is not as efficient as the other methods.

See IntegrateODE on page V-351 for references on these methods.

Interrupting IntegrateODE
Numerical solutions to differential equations can require considerable computation and, therefore, time. If
you find that a solution is taking too long you can abort the operation by pressing Command-period (Mac-
intosh) or by clicking the Abort button in the status bar (Windows). You may need to press and hold to make
sure IntegrateODE notices.

When you abort an integration, IntegrateODE returns whatever results have been calculated. If those
results are useful, you can restart the calculation from that point, using the last calculated result row as the
initial conditions. Use the /R=(startX) flag to specify where you want to start.

errMethod What It Does
1 Add a constant Ci from scaleWave (or 1’s if no scaleWave).
2 Add the current value of yi’s, the calculated result.
4 Add the current value of the derivatives, dyi/dx.
8 Multiply by h, the current step size

Chapter III-10 — Analysis of Functions

III-282

For Igor programmers, the V_ODEStepCompleted variable will be set to the last result. It is probably a good
idea to restart a step or two before that:
IntegrateODE/R=(V_ODEStepCompleted-1) …

Stopping and Restarting IntegrateODE
Any result can be used as initial conditions for a new solution. Thus, you can use the /R flag to calculate just
a part of the solution, then finish later using the /R flag to pick up where you left off. For instance, using the
harmonic oscillator example:
Make/D/O/N=(500,2) HarmonicOsc = 0
SetDimLabel 1,0,Velocity,HarmonicOsc
SetDimLabel 1,1,Displacement,HarmonicOsc
HarmonicOsc[0][%Velocity] = 5 // initial velocity
HarmonicOsc[0][%Displacement] = 0 // initial displacement
Make/D/O HarmPW={.01,.5,.1,.45} // damping, freq, forcing amp and freq
Display HarmonicOsc[][%Displacement]

IntegrateODE/M=1/R=[,300] Harmonic, HarmPW, HarmonicOsc

The calculation has been done for points 0-300. Note the comma in /R=[,300], which sets 300 as the end point,
not the start point. Now you can restart at 300 and continue to the 400th point:
IntegrateODE/M=1/R=[300,400] Harmonic, HarmPW, HarmonicOsc

or finish the entire 500 points. Perhaps you need to start from an earlier point:
IntegrateODE/M=1/R=[350] Harmonic, HarmPW, HarmonicOsc

Stopping IntegrateODE on a Condition
Sometimes it is useful to be able to stop the calculation based on output values from the integration, rather
than stopping when a certain value of the independent variable is reached. For instance, a common way to
simulate a neuron firing is to solve the relevant system of equations until the output reaches a certain value.

10

5

0

-5

5004003002001000

10

5

0

-5

5004003002001000

10

5

0

-5

5004003002001000

Chapter III-10 — Analysis of Functions

III-283

At that point, the solution should be stopped and the initial conditions reset to values appropriate to the
triggered condition. Then the calculation can be re-started from that point.

The ability to stop and re-start the calculation is a general solution to the problem of discontinuities in the
system you are solving. Integrate the system up to the point of the discontinuity, stop and re-start using a
derivative function that reflects the system after the discontinuity.

There are two ways to stop the integration depending on the solution values.

The first way is to use the /STOP={stopWave, mode} flag, supplying a stopWave containing stopping condi-
tions. StopWave must have one column for each equation in your system. Each column can specify stopping
on a value of the solution for the equation corresponding to the column, or stopping on a value of the deriv-
ative corresponding to that equation, or both. Each row has different significance:

In the chemical kinetics example above (see A System of Coupled First-Order Equations on page III-274)
the system has four equations so you need a stop wave with four columns. This wave:

will stop the integration when the concentration of species C (column 2) is less than 0.15, or when the con-
centration of species D (column 3) is greater than 0.4, or when the derivative of the concentration of species
C is less than zero.

When you have multiple stopping criteria, as in this example, you can specify either OR stopping mode or
AND stopping mode using the mode parameter of the /STOP flag. If mode is 0, OR mode is applied - any
of the conditions with a non-zero flag will stop the integration. If mode is 1, AND mode is applied - all con-
ditions with a non-zero flag must be satisfied in order for the integration to be stopped.

The second way to stop the integration is by returning a value of 1 from the derivative function. You can
apply any condition you like in the function so it is possible to make much more complex stopping condi-
tions this way than using the /STOP flag. However, the derivative function is called for a many intermediate
points during a single step, some of which aren't necessarily even on the eventual solution trajectory. That
means that you could be applying your stopping criterion to values that are not meaningful to the final solu-
tion. That may be particularly true at a time when the internal step size is contracting - the derivative func-
tion may be called for points beyond the eventual solution point as the solver tries a step size that doesn't
succeed.

Row Meaning

0 Stop flag for solution value

0: Ignore condition on solution for this equation
1: Stop when solution value is greater than the value in row 1
-1: Stop when solution value is less than the value in row 1

1 Value of solution at which to stop

2 Stop flag for derivative

0: Ignore condition on derivative for this equation
1: Stop when derivative value is greater than the value in row 3
-1: Stop when derivative value is less than the value in row 3

3 Value of derivative at which to stop

Row ChemKin_Stop[][0] ChemKin_Stop[][1] ChemKin_Stop[][2] ChemKin_Stop[][3]

0 0 0 -1 1

1 0 0 0.15 0.4

2 0 0 -1 0

3 0 0 0 0

Chapter III-10 — Analysis of Functions

III-284

Integrating a User Function
You can use the Integrate1D function to numerically integrate a user function. For example, if you want to
evaluate the integral

,

you need to start by defining the user function
Function userFunc(v)

Variable v

return exp(-v^3*sin(2*pi/v^2))
End

The Integrate1D function supports three integration methods: Trapezoidal, Romberg and Gaussian Quadrature.
Printf "%.10f\r" Integrate1D(userfunc,0.1,0.5,0) // default trapezoidal
0.3990547412
Printf "%.10f\r" Integrate1D(userfunc,0.1,0.5,1) // Romberg
0.3996269165
Printf "%.10f\r" Integrate1D(userfunc,0.1,0.5,2,100) // Gaussian Q.
0.3990546953

For comparison, you can also execute:
Make/O/N=1000 tmp
Setscale/I x,.1,.5,"" tmp
tmp=userfunc(x)
Printf "%.10f\r" area(tmp,-inf,inf)
0.3990545084

Integrate1D can also handle complex valued functions. For example, if you want to evaluate the integral

‘

a possible user function could be
Function/C cUserFunc(v)

Variable v
Variable/C arg=cmplx(0,v*sin(v))
return exp(arg)

End

Note that the user function is declared with a /C flag and that Integrate1D must be assigned to a complex
number in order for it to accept a complex user function.
Variable/C complexResult=Integrate1D(cUserFunc,0.1,0.2,1)
print complexResult
(0.0999693,0.00232272)

Also note that if you just try to print the result without using a complex variable as shown above, you need
to use the /C flag with print:
Print/C Integrate1D(cUserFunc,0.1,0.2,1)

in order to force the function to integrate a complex valued expression.

I a b,() x3 2π x2⁄()sin–[]exp xd
a

b

=

I a b,() ix xsin{ }exp xd
a

b

=

Chapter III-10 — Analysis of Functions

III-285

You can also evaluate multidimensional integrals with the help of Integrate1D. The trick is in recognizing the
fact that the user function can itself return a 1D integral of another function which in turn can return a 1D inte-
gral of a third function and so on. Here is an example of integrating a 2D function: f(x,y) = 2x + 3y +xy.
Function do2dIntegration(xmin,xmax,ymin,ymax)

Variable xmin,xmax,ymin,ymax
Variable/G globalXmin=xmin
Variable/G globalXmax=xmax
Variable/G globalY
return Integrate1D(userFunction2,ymin,ymax,1)

End

Function userFunction1(inX)
Variable inX
NVAR globalY=globalY
return (3*inX+2*globalY+inX*globalY)

End

Function userFunction2(inY)
Variable inY
NVAR globalY=globalY
globalY=inY
NVAR globalXmin=globalXmin
NVAR globalXmax=globalXmax
return Integrate1D(userFunction1,globalXmin,globalXmax,1)

End

Finding Function Roots
Igor has the ability to find roots or zeros of a nonlinear function, a system of nonlinear functions, or of a polyno-
mial with real coefficients. You do this on the command line with the FindRoots operation (see page V-194).

Here we discuss how the operation works, and give some examples. The discussion falls naturally into
three sections: polynomial roots, roots of 1D nonlinear functions, and roots of systems of multidimensional
nonlinear functions.

Igor’s FindRoots operation finds function zeroes. Naturally, you can find other solutions as well. If you
have a function f(x) and you want to find the X values that result in f(x) = 1, you would find roots of the
function g(x) = f(x)-1. The FindRoots operation provides the /Z flag to make this more convenient. See Fin-
dRoots on page V-194 for more information.

Another related problem is to find places in a curve defined by data points where the data pass through
zero (or another value). In this case, you don’t have an analytical expression of the function. For this, use
either the FindLevel operation (see page V-189) or the FindLevels operation (see page V-190); applications
of these operations are discussed under Level Detection on page III-254.

Roots of Polynomials with Real Coefficients
The FindRoots operation can find all the complex roots of a polynomial with real coefficients. As an exam-
ple, we will find the roots of

x4 -3.75x2 - 1.25x + 1.5

We just happen to know that this polynomial can be factored as (x+1)(x-2)(x+1.5)(x-0.5) so we already know
what the roots are. But let’s use Igor to do the work.

Chapter III-10 — Analysis of Functions

III-286

First, we need to make a wave with the polynomial coefficients. The wave must have N+1 points, where N
is the degree of the polynomial. Point zero is the coefficient for the constant term, the last point is the coef-
ficient for the highest-order term:
Make/D/O PolyCoefs = {1.5, -1.25, -3.75, 0, 1}

Alternatively, you might make this wave by typing in a table. Choose New Table
from the Windows menu and type in the upper-left cell.

Change the name of the wave by pressing Control (Macintosh) or Ctrl (Windows) and
clicking in the title cell of the wave, where you see “wave0” in the illustration above.
Then type your new name in the resulting dialog.

This wave can be used with the poly function (see page V-552) to generate polynomial values. For instance:
Make/D/O PWave // a wave with 128 points
SetScale/I x -2.5,2.5,PWave // give it an X range of (-2.5, 2.5)
PWave = Poly(PolyCoefs, x) // fill it with polynomial values

Display PWave // and make a graph of it
ModifyGraph zero(left)=1 // add a zero line to show the roots

These commands make the following graph:

Now use FindRoots to find the roots:
FindRoots/P=PolyCoefs // roots are now in W_polyRoots
edit W_polyRoots // display the roots in a table

The table shows that Igor has found the roots that we expected:

Note that the imaginary part of the roots are zero, because this polynomial was constructed from real fac-
tors. In general, this won’t be the case:
Make/D/O PolyCoefs2={1,2,3,4}
FindRoots/P=PolyCoefs2

20

15

10

5

0

-2 -1 0 1 2

Chapter III-10 — Analysis of Functions

III-287

The FindRoots operation uses the Jenkins-Traub algorithm for finding roots of polynomials:
Jenkins, M.A., “Algorithm 493, Zeros of a Real Polynomial”, ACM Transactions on Mathematical Software, 1,

178-189, 1975, used by permission of ACM (1998).

Roots of a 1D Nonlinear Function
Unlike the case with polynomials, there is no general method for finding all the roots of a nonlinear func-
tion. Igor searches for a root of the function using Brent’s method, and, depending on circumstances will
find one or two roots in one shot.

You must write a user-defined function to define the function whose roots you want to find. Igor will call
your function with values of X in the process of searching for a root. The format of the function is as follows:
Function myFunc(w,x)

Wave w
Variable x

return <an arithmetic expression>
End

The wave w is a coefficient wave — it specifies constant coefficients that you may need to include in the
function. It provides a convenient way to alter the coefficients so that you can find roots of members of a
function family without having to edit your function code every time. Igor will not alter the values in w.

As an example we will find roots of the function y = a+b*sinc(c*(x-x0)). Here is a user-defined function to
implement this:
Function mySinc(w, x)

Wave w
Variable x

return w[0]+w[1]*sinc(w[2]*(x-w[3]))
End

Enter this code into the Procedure window (display the Procedure window by choosing Procedure Window
from the Procedure Windows submenu of the Windows menu), then close the Procedure window. You can
make a graph of the function:
Make/D/O SincCoefs={0, 1, 2, .5} // a sinc function offset by 0.5
Make/D/O SincWave // a wave with 128 points
SetScale/I x -10,10,SincWave // give it an X range of (-2, 2)
SincWave = mySinc(SincCoefs, x) // fill it with function values

Display SincWave // and make a graph of it
ModifyGraph zero(left)=1 // add a zero line to show the roots
ModifyGraph minor(bottom)=1 // add minor ticks to the graph

Now we’re ready to find roots. The algorithm for finding roots requires that the roots first be bracketed, that
is, you need to know two X values that are on either side of the root (that is, that give Y values of opposite
sign). Making a graph of the function as we did here is a good way to figure out bracketing values. For
instance, inspection of the graph above shows that there is a root between x=1 and x=3. The FindRoots
command line to find a root in this range is

20

15

10

5

0

-2 -1 0 1 2

Chapter III-10 — Analysis of Functions

III-288

FindRoots/L=1/H=3 mySinc, SincCoefs

The /L flag sets the lower bracket and the /H flag sets the upper bracket. Igor then finds the root between
these values, and prints the results in the history:
Possible root found at 2.0708
Y value there is -1.46076e-09

Igor reports to you both the root (in this case 2.0708) and the Y value at the root, which should be very close
to zero (in this case it is -1.46x10-9). Some pathological functions can fool Igor into thinking it has found a
root when it hasn’t. The Y value at the supposed root should identify if this has happened.

The bracketing values don’t actually have to be at points of opposite sign. If the bracket encloses an extreme
point, Igor will find it and then find two roots. Thus, you might use this command:
FindRoots/L=0/H=5 mySinc, SincCoefs

The Y values at X=0 and X=5 are both positive. Igor finds the minimum point at about X=2.7 and then uses
that with the original bracketing values as the starting points for finding two roots. The result, printed in
the history:
Looking for two roots...

Results for first root:
Possible root found at 2.0708
Y value there is -2.99484e-11

Results for second root:
Possible root found at 3.64159
Y value there is 3.43031e-11

Finally, it isn’t always necessary to provide bracketing values. If the /L and /H flags are absent, Igor assigns
them the values 0 and 1. In this case, there is no root between X=0 and X=1, and there is no extreme point.
So Igor searches outward in a series of expanding jumps looking for values that will bracket a root (that is,
for X values having Y values of opposite sign). Thus, in this case, the following simple command works:
FindRoots mySinc, SincCoefs

Igor finds the first of the roots we found previously:
Possible root found at 2.0708
Y value there is 2.748e-13

You may have noticed by now that FindRoots is reporting Y values that are merely small instead of zero. It
isn’t usually possible to find exact roots with a computer. And asking for very high accuracy requires more
iterations of the search algorithm. If function evaluation is time-consuming and you don’t need much accu-
racy, you may not want to find the root with high accuracy. Consequently, you can use the /T flag to alter
the acceptable accuracy:
FindRoots/T=1e-3 mySinc, SincCoefs // low accuracy
Possible root found at 2.07088

Y value there is -5.5659e-05
Print/D V_root, V_YatRoot

2.07088376061435 -5.56589998578327e-05

FindRoots/T=1e-15 mySinc, SincCoefs // high accuracy
Possible root found at 2.0708

Y value there is 0
Print/D V_root, V_YatRoot

2.0707963267949 0

This also illustrates another point: the results of FindRoots are stored in variables. We used these variables
in this case to print the results to higher accuracy than the six digits used by the report printed by FindRoots.

Chapter III-10 — Analysis of Functions

III-289

Roots of a System of Multidimensional Nonlinear Functions
Finding roots of a system of multidimensional nonlinear functions works very similarly to finding roots of
a 1D nonlinear function. You provide user-defined functions that define your functions. These functions
have nearly the same form as a 1D function, but they have a parameter for each independent variable. For
instance, if you are going to find roots of a pair of 2D functions, the functions will look like this:
Function myFunc1(w, x1, x2)

Wave w
Variable x1, x2

return <an arithmetic expression>
End

Function myFunc2(w, x1, x2)
Wave w
Variable x1, x2

return <an arithmetic expression>
End

These function look just like the 1D function mySinc we wrote in the previous section, but they have two
input X variables, one for each dimension. The number of functions must match the number of dimensions.

We will use the functions f1= w[0]*sin((x-3)/w[1])*cos(y/w[2]) and f2 = w[0]*cos(x/w[1])*tan((y+5)/w[2]).
Enter this code into your procedure window:
Function myf1(w, xx, yy)

Wave w
Variable xx,yy

return w[0]*sin(xx/w[1])*cos(yy/w[2])
End

Function myf2(w, xx, yy)
Wave w
Variable xx,yy

return w[0]*cos(xx/w[1])*tan(yy/w[2])
End

Before starting, let’s make a contour plot to see what we’re up against. Here are some commands to make
a convenient one:
Make/D/O params2D={1,5,4} // nice set of parameters for both f1 and f2
Make/D/O/N=(50,50) f1Wave, f2Wave // matrix waves for contouring
SetScale/I x -20,20,f1Wave, f2Wave// nice range of X values for these functions
SetScale/I y -20,20,f1Wave, f2Wave // and Y values
f1Wave = myf1(params2D, x, y) // fill f1Wave with values from f1(x,y)
f2Wave = myf2(params2D, x, y) // fill f2Wave with values from f2(x,y)
Display /W=(5,42,399,396) // graph window for contour plot
AppendMatrixContour f1Wave
AppendMatrixContour f2Wave
ModifyContour f2Wave labels=0 // suppress contour labels to reduce clutter
ModifyContour f1Wave labels=0
ModifyContour f1Wave rgbLines=(65535,0,0) // make f1 red
ModifyContour f2Wave rgbLines=(0,0,65535) // make f2 blue
ModifyGraph lsize('f2Wave=0')=2 // make zero contours heavy
ModifyGraph lsize('f1Wave=0')=2

Places where the zero contours for the two functions cross are the roots we are looking for. In the contour
plot you can see several, for instance the points (0,0) and (7.8, 6.4) are approximate roots.

The algorithm that searches for roots needs a starting point. You can specify this in the FindRoots command
with the /X flag, or if you don’t use /X, Igor will start by default at the origin, Xn = 0. You must also specify
both functions and a coefficient wave for each function. In this case we will use the same coefficient wave

Chapter III-10 — Analysis of Functions

III-290

for each. The functions and coefficient waves are specified in pairs. Since we are looking for roots of two 2D
functions, we have two function-wave pairs:
FindRoots myf1,params2D, myf2,params2D

Igor finds a root at the origin, and prints the results. The X,Y coordinates of the root are stored in the wave W_Root:
Root found after 4 function evaluations.

W_Root={0,0}
Function values at root:

W_YatRoot={0,0}

The wave W_YatRoot holds the values of each of the functions evaluated at the root.
If that’s not the root you want to find, use /X to specify a different starting point:

FindRoots/X={7.7,6.3} myf1,params2D, myf2,params2D
Root found after 47 function evaluations.

W_Root={-1.10261e-14,12.5664}
Function values at root:

W_YatRoot={2.20522e-15,-1.89882e-15}

Caveats for Multidimensional Root Finding
Finding roots of multidimensional nonlinear
functions is not straightforward. There is no gen-
eral, foolproof way to do it. The method Igor uses
is to search for minima in the sum of the squares
of the functions. Since the squared values must
be positive, the only places where this sum can be
zero is at points where all the functions are zero
at the same time. That point is a root, and it is also
a minimum in the summed squares of the func-
tions.

To find the zero points, Igor searches for local
minima by travelling downhill from the start-
ing point. Unfortunately, a local minimum
doesn’t have to be a root, it just has to be some-
place where the sum of squares of the functions
is less than surrounding points.

The adjacent graph shows how this can
happen.
The two heavy lines are the zero contours for
two functions (they happen to be fifth-order
2D polynomials). Where these zero contours
cross are the roots for the system of the two functions.

The thin lines are contours of f1(x,y)2+f2(x,y)2, with dotted lines for high values; minima are surrounded by thin,
solid contours. You can see that every intersection between the heavy zero contours is surrounded by thin con-
tours showing that these are minima in the sum of the squared functions. One such point is labeled “Root”.

There is at least one point, labelled “False Root”, where there is a minimum but the zero contours don’t
cross. That is not a root, but FindRoots may find it anyway. For instance, a real root:
•findroots /x={3,6} MyPoly2d, nn1coefs, MyPoly2d, nn2coefs

Root found after 11 function evaluations.
W_Root={5.4623,7.28975}

Function values at root:
W_YatRoot={-4.15845e-13,1.08297e-12}

This point is the point marked “Root”. However:

20

15

10

5

0
20151050

Possible
False Root

Zero contour
for f2(x,y)

Zero contour
for f1(x,y)

Root

Chapter III-10 — Analysis of Functions

III-291

•findroots/x={9,10} MyPoly2d, nn1coefs, MyPoly2d, nn2coefs
Root found after 52 function evaluations.

W_Root={8.38701,9.10129}
Function values at root:

W_YatRoot={0.0686792,0.0129881}

You can see from the values in W_YatRoot that this is not a root. This point is marked “False root” on the
figure above.

The polynomials used in this example have too many coefficients to be conveniently shown here. To see
this example and others in action, try out the demo experiment. It is called “MD Root Finder Demo” and
you will find it in your Igor Pro folder, in the Examples:Analysis: folder.

Finding Minima and Maxima of Functions
Igor has the ability to find extreme points (maxima or minima) of a nonlinear function. You do this on the
command line with the Optimize operation (see page V-530).

Here we discuss how the operation works, and give some examples. The discussion falls naturally into two
sections: extrema of 1D nonlinear functions and extrema of multidimensional nonlinear functions.

Another related problem is to find peaks or troughs in a curve defined by data points. In this case, you don’t
have an analytical expression of the function. To do this with one dimensional data, use the FindPeak oper-
ation (see page V-192).

Extreme Points of a 1D Nonlinear Function
The Optimize operation finds local maxima or minima of functions. That is, if a function has some X value
where the nearby Y values are all higher than at that X value, it is deemed to be a minimum. Finding the
point where a functions value is lower or higher than any other point anywhere is a much more difficult
problem that is not addressed by the Optimize operation.

You must write a user-defined function to define the function for which the extreme points are calculated.
Igor will call your function with values of X in the process of searching for a root. The format of the function
is as follows:
Function myFunc(w,x)

Wave w
Variable x

return f(x) // an expression...
End

The wave w is a coefficient wave — it specifies constant coefficients that you may need to include in the func-
tion. It provides a convenient way to alter the coefficients so that you can find extreme points of members of
a function family without having to edit your function code every time. Igor will not alter the values in w.

Although the coefficient wave must be present in the Function declaration, it does not have to be referenced
in the function body. This may save computation time, arriving at the solution faster. You will have to create
a dummy wave to list in the FindRoots command.

As an example we will find extreme points of the equation y = a+b*sinc(c*(x-x0)). A suitable user-defined
function might look like this (Note that this is the same function used as an example in the section Roots of
a 1D Nonlinear Function on page III-287. If you have just completed that example, you may already have
the function and graph ready to go):
Function mySinc(w, x)

Wave w
Variable x

return w[0]+w[1]*sinc(w[2]*(x-w[3]))
End

Chapter III-10 — Analysis of Functions

III-292

Copy this code into the Procedure window (display the Procedure window by choosing Procedure
Window from the Procedure Windows submenu of the Windows menu), then close the window. You can
make a graph of the function:
Make/D/O SincCoefs={0, 1, 2, .5} // a sinc function offset by 0.5
Make/D/O SincWave // a wave with 128 points
SetScale/I x -10,10,SincWave // give it an X range of [-10, 10]
SincWave = mySinc(SincCoefs, x) // fill it with function values

Display SincWave // and make a graph of it
ModifyGraph minor(bottom)=1 // add minor ticks to the graph

Now we’re ready to find extreme points. The algorithm for finding extreme points requires that the extreme
points first be bracketed, that is, you need to know two X values that are on either side of the extreme point
(that is, two points that have a lower or higher point between). Making a graph of the function as we did
here is a good way to figure out bracketing values. For instance, inspection of the graph above shows that
there is a minimum between x=1 and x=4. The Optimize command line to find a minimum in this range is
Optimize/L=1/H=4 mySinc, SincCoefs

The /L flag sets the lower bracket and the /H flag sets the upper bracket. Igor then finds the minimum
between these values, and prints the results in the history:
Optimize probably found a minimum. Optimize stopped because
the Optimize operation found a minimum within the specified tolerance.
Current best solution: 2.7467
Function value at solution: -0.217234
 13 iterations, 14 function calls
V_minloc = 2.7467, V_min = -0.217234, V_OptNumIters = 13, V_OptNumFunctionCalls = 14

Igor reports to you both the X value that minimizes the function (in this case 2.7467) and the Y value at the
minimum.

The bracketing values don’t necessarily have to bracket the solution. Igor first tries to find the desired extre-
mum between the bracketing values. If it fails, the bracketing interval is expanded searching for a suitable
bracketing interval. If you don’t use /L and /H, Igor sets the bracketing interval to [0,1]. In the case of the
mySinc function, that doesn’t include a minimum. Here is what happens in that case:
Optimize mySinc, SincCoefs

Optimize probably found a minimum. Optimize stopped because
the Optimize operation found a minimum within the specified tolerance.
Current best solution: 2.74671
Function value at solution: -0.217234
 16 iterations, 47 function calls
V_minloc = 2.74671, V_min = -0.217234, V_OptNumIters = 16, V_OptNumFunctionCalls = 47

Note that Igor found the same minimum that it found before.

The mySinc function makes it easy to find bracketing values because of the oscillatory nature of the func-
tion. Other functions may be more difficult if they contain just one extreme point, or if they have local
extreme points but are unbounded elsewhere. Even in an easy case like mySinc, you can’t be sure which
extreme point Igor will find, so it is always better to supply a good bracket if you possibly can.

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-10 -5 0 5 10

Chapter III-10 — Analysis of Functions

III-293

You may wish to find maximum points instead of minima. Use the /A flag to specify this:
Optimize/A/L=0/H=2 mySinc, SincCoefs

Optimize probably found a maximum. Optimize stopped because
the Optimize operation found a maximum within the specified tolerance.
Current best solution: 0.499999
Function value at solution: 1
 16 iterations, 17 function calls
V_maxloc = 0.499999, V_max = 1, V_OptNumIters = 16, V_OptNumFunctionCalls = 17

The results of the Optimize operation are stored in variables. Note that the report that Optimize prints in
the history includes only six digits of the values. You can print the results to greater precision using the
printf operation and the variables:
Printf "The max is at %.15g. The Y value there is %.15g\r", V_maxloc, V_max

yields this in the history:
The max is at 0.499999480759779. The Y value there is 0.99999999999982

Extrema of Multidimensional Nonlinear Functions
Finding extreme points of multidimensional nonlinear functions works very similarly to finding extreme
points of a 1D nonlinear function. You provide a user-defined function having almost the same format as
for 1D functions. A 2D function will look like this:
Function myFunc1(w, x1, x2)

Wave w
Variable x1, x2

return f1(x1, x2) // an expression...
End

This function looks just like the 1D function mySinc we wrote in the previous section, but it has two input
X variables, one for each dimension.

We will make a 2D function based on the sinc function. Copy this code into your procedure window:
Function Sinc2D(w, xx, yy)

Wave w
Variable xx,yy

return w[0]*sinc(xx/w[1])*sinc(yy/w[2])
End

Before starting, let’s make a contour plot to see what we’re up against. Here are some commands to make
a convenient one:
Make/D/O params2D={1,3,2} // nice set of parameters
Make/D/O/N=(50,50) Sinc2DWave // matrix wave for contouring
SetScale/I x -20,20,Sinc2DWave // nice range of X values for these functions
SetScale/I y -20,20,Sinc2DWave // and Y values
Sinc2DWave = Sinc2D(params2D, x, y) // fill f1Wave with values from f1(x,y)
Display /W=(5,42,399,396) // graph window for contour plot
AppendMatrixContour Sinc2DWave
ModifyContour Sinc2DWave labels=0// suppress contour labels to reduce clutter

Chapter III-10 — Analysis of Functions

III-294

The algorithm that searches for extreme points needs a starting guess which you provide using the /X flag.
Here is a command to find a minimum point:
Optimize/X={1,5} Sinc2D,params2D

This command results in the following report in the history:
Optimize probably found a minimum. Optimize stopped because
the gradient is nearly zero.
 Current best solution:
W_Extremum={-0.000147116,8.98677}
 Function gradient:
W_OptGradient={-4.65661e-08,1.11923e-08}
 Function value at solution: -0.217234
 11 iterations, 36 function calls
 V_min = -0.217234, V_OptTermCode = 1, V_OptNumIters = 11, V_OptNumFunctionCalls = 36

Note that the minimum is reported via a wave called W_extremum. Had you specified a wave using the /X
flag, that wave would have been used instead. Another wave, W_OptGradient, receives the function gra-
dient at the solution point.

There are quite a few options available to modify the workings of the Optimize operation. See Optimize
operation on page V-530 for details, including references to reading material.

Stopping Tolerances
The Optimize operation stops refining the solution when certain criteria are met. The most desirable result
is that it stops because the function gradient is very close to zero, since that is (almost) diagnostic of an
extreme point. The algorithm also will take very small steps near an extreme point, so this is also a stopping
criterion. You can set the values for the stopping criteria using the /T={gradTol, stepTol} flag.

Optimize stops when these conditions are met:

or

Note that these conditions use values of the gradient (gi) and step size (Δxi) that are scaled by a measure of
the magnitude of values encountered in the problem. In these equations, xi is the value of a component of
the solution and f is the value of the function at the solution; typXi is a “typical” value of the X component
that is set by you using the /R flag and f is a typical function value magnitude which you set using the /Y
flag. The values of typXi and f are one if the /R and /F flags are not present.

-20

-10

0

10

20

-20 -10 0 10 20

Minima

Maxima

max
1 i n≤ ≤

gi
max xi typXi,()

max f funcSize(,)
---⋅

gradTol≤

max
1 i n≤ ≤

Δxi
max xi typXi(,)

stepTol≤

Chapter III-10 — Analysis of Functions

III-295

The default values for gradTol and stepTol are {8.53618x10-6, 7.28664x10-11}. These are the values recom-
mended by Dennis and Schnabel (see the references in Optimize operation on page V-530) for well-
behaved functions when the function values have full double precision resolution. These values are
(6.022x10-16)1/3 and (6.022x10-16)2/3 as suggested by Dennis and Schnabel (see the references in Optimize
operation on page V-530), where 6.022x10-16 is the smallest double precision floating point number that,
when added to 1, is different from 1. Usually the default is pretty good.

Due to floating point truncation errors, it is possible to set gradTol and stepTol to values that can never be
achieved. In that case you may get a message about “no solution was found that is better than the last iteration”.

Problems with Multidimensional Optimization
Finding minima of multidimensional functions is by no means foolproof. The methods used by the Opti-
mize operation are “globally convergent” which means that under suitable circumstances Optimize will be
able to find some extreme point from just about any starting guess.

If the gradient of your function is zero, or very nearly so at the starting guess, Optimize has no information
on which way to go to find an extreme point. Note that the Sinc2D function has a maximum exactly at (0,0).
Here is what happens if you try to find a minimum starting at the origin:
Optimize/X={0,0} Sinc2D,params2D

==== The Optimize operation failed to find a minimum. ====
Optimize stopped because
The function gradient at your starting guess is too near zero, suggesting that
it is a critical point.
A different starting guess usually solves this problem.
 Current best solution:
W_Extremum={0,0}
 Function gradient:
W_OptGradient={0,0}
 Function value at solution: 1
 0 iterations, 3 function calls
 V_min = 1, V_OptTermCode = 6, V_OptNumIters = 0, V_OptNumFunctionCalls = 3

In this example the function gradient is zero at the origin because there is a function maximum there. A gra-
dient of zero could also be a minimum or a saddle point.

The algorithms used by the Optimize operation assume that your function is smooth, that is, that the first
and second derivatives are continuous. Optimize may work with functions that violate this assumption, but
it is not guaranteed.

Although Optimize tends to look downhill to the nearest minimum (or uphill to the nearest maximum), it is
not guaranteed to find any particular minimum, especially if your starting guess is near a point where the gra-
dient is small. Sometimes using a different method (/M=(stepMethod, hessianMethod) will result in a different
answer. You can limit the maximum step size to keep progress more or less local (/S=maxStep). If you set the
maximum step size too small, however, Optimize may stop early because the maximum step size is exceeded
too many times. Here is an example using the Sinc2D function. If the starting guess is near the origin, the gra-
dient is small and the solution shoots off into the hinterlands (only a portion of the history report is shown):
Optimize/X={1,1} Sinc2D,params2D

W_Extremum={-61.1192,298.438}
 Function gradient:
W_OptGradient={-1.04095e-08,-1.19703e-08}

Use /S to limit the step size, and find a minimum nearer to the starting guess:
Optimize/X={1,1}/S=10 Sinc2D,params2D

W_Extremum={-0.00014911,8.9868}
 Function gradient:
W_OptGradient={9.31323e-09,5.92775e-08}

But if the maximum step is too small, it doesn’t work:

Chapter III-10 — Analysis of Functions

III-296

Optimize/X={1,1}/S=1 Sinc2D,params2D

==== The Optimize operation failed to find a minimum. ====
Optimize stopped because
the maximum step size was exceeded in five consecutive iterations.
This can happen if the function is unbounded (there is no minimum),
or the function approaches the minimum asymptotically. It may also be that the
maximum step size (1) is too small.

Another way to get a solution near by is to set the initial trust region to a small value. This works if you
select double dogleg or More Hebdon as the step selection method. It does not apply to the default line
search method. Here is an example (note that the double dogleg method is selected using /M={1,0}):
Optimize/X={1,1}/M={1,0}/F=1 Sinc2D,params2D

W_Extremum={-0.000619834,8.9872}
 Function gradient:
W_OptGradient={1.09896e-07,2.9017e-08}

References
The IntegrateODE operation is based on routines in Numerical Recipes, and are used by permission:
Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C, 2nd ed., 994 pp.,

Cambridge University Press, New York, 1992.

The Adams-Moulton and BDF methods are based on the CVODE package developed at Lawrence Liver-
more National Laboratory:
Cohen, Scott D., and Alan C. Hindmarsh, CVODE User Guide, LLNL Report UCRL-MA-118618, September 1994.

The CVODE package was derived in part from the VODE package. The parts used in Igor are described in
this paper:
Brown, P.N., G. D. Byrne, and A. C. Hindmarsh, VODE, a Variable-Coefficient ODE Solver, SIAM J. Sci. Stat.

Comput., 10, 1038-1051, 1989.

The Optimize operation uses Brent’s method for univariate functions. Numerical Recipes has an excellent dis-
cussion in section 10.2 of this method (but we didn’t use their code).

For multivariate functions Optimize uses code based on Dennis and Schnabel. To truly understand what
Optimize does, read their book:
Dennis, J. E., Jr., and Robert B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear

Methods, 378 pp., Society for Industrial and Applied Mathematics, Philadelphia, 1996.

The FindRoots operation uses the Jenkins-Traub algorithm for finding roots of polynomials:
Jenkins, M.A., “Algorithm 493, Zeros of a Real Polynomial”, ACM Transactions on Mathematical Software, 1,

178-189, 1975..

Chapter

III-11
III-11Image Processing

Overview.. 299
Image Transforms ... 299
Color Transforms .. 299

Grayscale or Value Transforms ... 300
Explicit Lookup Tables .. 300
Histogram Equalization .. 301
Adaptive Histogram Equalization .. 301

Threshold ... 302
Threshold Examples ... 302

Spatial Transforms.. 304
Rotating Images ... 304
Image Registration... 304

Mathematical Transforms.. 304
Standard Wave Operations .. 304

More Efficient Wave Operations .. 305
Interpolation and Sampling ... 305
Fast Fourier Transform ... 305

Calculating Convolutions.. 306
Spatial Frequency Filtering ... 306
Calculating Derivatives ... 307
Calculating Integrals or Sums... 308
Correlations ... 308

Wavelet Transform .. 308
Hough Transform .. 310
Fast Hartley Transform... 310

Convolution Filters ... 311
Edge Detectors... 311

Using More Exotic Edge Detectors.. 312
Morphological Operations... 314
Image Analysis .. 317

ImageStats... 317
ImageLineProfile.. 318
Histograms.. 318
Unwrapping Phase .. 320
HSL Segmentation ... 320
Particle Analysis... 321
Seed Fill ... 323

Other Tools... 323
Working with ROI ... 324

Generating ROI Masks... 324
Converting Boundary to a Mask .. 324
Marquee Procedures .. 325

Subimage Selection.. 325
Handling Color .. 325

Chapter III-11 — Image Processing

III-298

Background Removal .. 325
Additive Background... 325
Multiplicative Background ... 326

General Utilities: ImageTransform Operation... 327
References ... 328

Chapter III-11 — Image Processing

III-299

Overview
Image processing is a broad term describing most operations that you can apply to image data which may
be in the form of a 2D, 3D or 4D waves. Image processing may sometimes provide the appropriate analysis
tools even if the data have nothing to do with imaging. In Chapter II-15, Image Plots, we described opera-
tions relating to the display of images. Here we concentrate on transformations, analysis operations and
special utility tools that are available for working with images.

You can use the IP Tutorial experiment (inside the Learning Aids folder in your Igor Pro folder) in parallel with
this chapter. The experiment contains in addition to some introductory material, the sample images and most of
the commands that appear in this chapter. To execute the commands you can select them in the Image Processing
help file and press Control-Enter.

For a listing of all image analysis operations, see Image Analysis on page V-3.

Image Transforms
The two basic classes of image transforms are color transforms and grayscale/value transforms. Color trans-
forms involve conversion of color information from one color space to another, conversions from color
images to grayscale, and representing grayscale images with false color. Grayscale value transforms
include, for example, pixel level mapping, mathematical and morphological operations.

Color Transforms
There are many standard file formats for color images. When a color image is stored as a 2D wave it either has
an associated or implied colormap and the RGB value of every pixel is obtained by mapping values in the 2D
wave into the colormap.

When the image is a 3D wave, each image plane corresponds to an individual red, green, or blue color com-
ponent. If the image wave is of type unsigned byte (/B/U), values in each plane are in the range [0,255]. Oth-
erwise, the range of values is [0,65535].

There are two other types of 3D image waves. The first consists of 4 layers corresponding to RGBA where
the 'A' represents the alpha (transparency) channel. The second contains more than three planes in which
case the planes are grayscale images that can be displayed using the command:
ModifyImage imageName plane=n

Multiple color images can be stored in a single 4D wave where each chunk corresponds to a separate RGB image.

You can find most of the tools for converting between different types of images in the ImageTransform
operation. For example, you can convert a 2D image wave that has a colormap to a 3D RGB image wave.
Here we create a 3-layer 3D wave named M_RGBOut from the 2D image named 'Red Rock' using RGB
values from the colormap wave named 'Red RockCMap':
ImageTransform /C='Red RockCMap' cmap2rgb 'Red Rock'
NewImage M_RGBOut // Resulting 3D wave is M_RGBOut

Note: The images in the IP Tutorial experiment are not stored in the root data folder, so many of the
commands in the tutorial experiment include data folder paths. Here the data folder paths have
been removed for easier reading. If you want to execute the commands you see here, use the
commands in the IP Tutorial help window. See Chapter II-8, Data Folders, for more information
about data folders.

In many situations it is necessary to dispose of color information and convert the image into grayscale. This
usually happens when the original color image is to be processed or analyzed using grayscale operations.
Here is an example using the RGB image which we have just generated:
ImageTransform rgb2gray M_RGBOut
NewImage M_RGB2Gray // Display the grayscale image

Chapter III-11 — Image Processing

III-300

The conversion to gray is based on the YIQ standard where the gray output wave corresponds to the Y channel:
gray=0.299*red+0.587*green+0.114*blue.

If you wish to use a different set of transformation constants say {ci}, you can perform the conversion on the
command line:
gray2DWave=c1*image[p][q][0]+c2*image[p][q][1]+c3*image[p][q][2]

For large images this operation may be slow. A more efficient approach is:

Make/O/N=3 scaleWave={c1,c2,c3}
ImageTransform/D=scaleWave scalePlanes image // Creates M_ScaledPlanes
ImageTransform sumPlanes M_ScaledPlanes

In some applications it is desirable to extract information from the color of regions in the image. We there-
fore convert the image from RGB to the HSL color space and then perform operations on the first plane
(hue) of the resulting 3D wave. In the following example we convert the RGB image wave peppers into
HSL, extract the hue plane and produce a binary image in which the red hues are nonzero.
ImageTransform /U rgb2hsl peppers// Note the /U for unsigned short result
MatrixOP/O RedPlane=greater(5000,M_RGB2HSL[][][0])+greater(M_RGB2HSL[][][0],60000)
NewImage RedPlane // Here white corresponds to red hues in the source

As you can see, the resulting image is binary, with white pixels corresponding to regions where the original
image was predominantly red. The binary image can be used to discriminate between red and other hue
regions. The second command line above converts hue values that range from 0 to 65535 to 1 if the color is
in the "reddish" range, or zero if it is outside that range. The selection of values below 5000 is due to the fact
that red hues appear on both sides of 0° (or 360°) of the hue circle.

Hue based image segmentation is also supported through the ImageTransform operation (see page V-325)
using the hslSegment, matchPlanes or selectColor keywords. The same operation also supports color
space conversions from RGB to CIE XYZ (D65 based) and from XYZ to RGB. See also Handling Color on
page III-325 and HSL Segmentation on page III-320.

Grayscale or Value Transforms
This class of transforms applies only to 2D waves or to individual layers of higher dimensional waves. They
are called "grayscale" because 2D waves by themselves do not contain color information. We divide grayscale
transforms into level mappings and mathematical operations.

Explicit Lookup Tables
Here is an example of using an explicit lookup table (LUT) to create the negative of an image the hard way:
Make/B/U/O/N=256 negativeLookup=255-x // Create the lookup table
Duplicate/O baboon negativeBaboon
negativeBaboon=negativeLookup[negativeBaboon]// The lookup transformation

5004003002001000

Chapter III-11 — Image Processing

III-301

NewImage baboon
NewImage negativeBaboon

In this example the negativeBaboon image is a derived wave displayed with standard linear LUT. You can
also obtain the same result using the original baboon image but displaying it with a negative LUT:
NewImage baboon
Make/N=256 negativeLookup=1-x/255 // Negative slope LUT from 1 to 0
ModifyImage baboon lookup=negativeLookup

If you are willing to modify the original data you can execute:
ImageTransform invert baboon

Histogram Equalization
Histogram equalization maps the values of a grayscale image so that the resulting values utilize the entire
available range of intensities:
NewImage MRI
ImageHistModification MRI
NewImage M_ImageHistEq

Adaptive Histogram Equalization
The ImageHistModification operation calculates a lookup table based on the cumulative histogram of the
whole source image. The lookup table is then applied the output image. In cases where there are significant
spatial variations in the histogram, a more local approach may be needed, i.e., perform the histogram equal-
ization independently for different parts of the image and then combine the regional results by matching
them across region boundaries. This is commonly referred to as "Adaptive Histogram Equalization".
ImageHistModification MRI
Duplicate/O M_ImageHistEq, globalHist
NewImage globalHist
ImageTransform/N={2,7} padImage MRI // To make the image divisible
ImageHistModification/A/C=10/H=2/V=2 M_paddedImage
NewImage M_ImageHistEq

The original image is 238 by 253 pixels. Because the number of rows and columns must be divisible by the
number of equalization intervals, we first padded the image using the ImageTransform padImage. The
result is an image that is 240 by 260. If you do not find the resulting adaptive histogram sufficiently different

60
40

20
0

6040200

60
40

20
0

6040200

25
0

20
0

15
0

10
0

50
0

200150100500

25
0

20
0

15
0

10
0

50
0

200150100500

Chapter III-11 — Image Processing

III-302

from the global histogram equalization, you can increase the number of vertical and horizontal regions that
are processed:
ImageHistModification/A/C=100/H=20/V=20 M_paddedImage

You can now compare the global and adaptive histogram results. Note that the adaptive histogram per-
formed better (increased contrast) over most of the image. The increase in the clipping value (/C flag) gave
rise to a minor artifact around the boundary of the head.

Threshold
The threshold operation is an important member of the level mapping class. It converts a grayscale image
into a binary image. A binary image in Igor is usually stored as a wave of type unsigned byte. While this
may appear to be wasteful, it has advantages in terms of both speed and in allowing you to use some bits
of each byte for other purposes (e.g., bits can be turned on or off for binary masking). The threshold opera-
tion, in addition to producing the binary thresholded image, can also provide a correlation value which is
a measure of the threshold quality.

You can use the ImageThreshold operation (see page V-323) either by providing a specific threshold value
or by allowing the operation to determine the threshold value for you. There are five methods for automatic
threshold determination:

Iterated: Iteration over threshold levels to maximize correlation with the original image.
Bimodal: Attempts to fit a bimodal distribution to the image histogram. The threshold level is
chosen between the two modal peaks.
Adaptive: Calculates a threshold for every pixel based on the last 8 pixels on the same scan line. It
usually gives rise to drag lines in the direction of the scan lines. You can compensate for this artifact
as we show in an example below.
Fuzzy Entropy: Considers the image as a fuzzy set of background and object pixels where every
pixel may belong to a set with some probability. The algorithm obtains a threshold value by
minimizing the fuzziness which is calculated using Shannon’s Entropy function.
Fuzzy Means: Minimizes a fuzziness measure that is based on the product of the probability that
the pixel belongs in the object and the probability that the pixel belongs to the background.

Each of the thresholding methods has its advantages and disadvantages. It is sometimes useful to try all the
methods before you decide which method applies best to a particular class of images. The following
example illustrates the different thresholding methods for an image of light gray blobs on a dark gray back-
ground (the “blobs” image in the IP Tutorial).

Threshold Examples
Here is a comparison of Igor’s built-in threshold methods:
ImageThreshold/Q/T=128 blobs // manual threshold at 128
Rename M_ImageThresh UserDefined
NewImage UserDefined

25
0

20
0

15
0

10
0

50
0

200150100500

25
0

20
0

15
0

10
0

50
0 200150100500

Global Adaptive

Chapter III-11 — Image Processing

III-303

ImageThreshold/Q/M=1 blobs // iterated method
Rename M_ImageThresh iterated
NewImage iterated

ImageThreshold/Q/M=2 blobs // bimodal method
Rename M_ImageThresh bimodal
NewImage bimodal
ImageThreshold/Q/I/M=3 blobs // adaptive method
Rename M_ImageThresh adaptive
NewImage adaptive

ImageThreshold/Q/M=4 blobs // fuzzy-entropy method
Rename M_ImageThresh fuzzyE
NewImage fuzzyE
ImageThreshold/Q/M=5 blobs // fuzzy-M method
Rename M_ImageThresh fuzzyM
NewImage fuzzyM

250200150100500 250200150100500

User Defined Iterated

250200150100500 250200150100500

Bimodal Adaptive

250200150100500 250200150100500

fuzzyE fuzzyM

Chapter III-11 — Image Processing

III-304

In the this example, you can add the /C flag to each ImageThreshold operation and remove the /Q flag to
get some feedback about the quality of the threshold (the correlation coefficient will be printed to the his-
tory). It is easy to determine visually that in this case the adaptive and the bimodal algorithms performed
rather poorly. Note that you can improve the results of the adaptive algorithm by running the adaptive
threshold also on the transpose of the image (so that the operation becomes column based) and then com-
bining the two outputs with a binary AND.

Spatial Transforms
Spatial transforms describe a class of operations that change the position of the data within the wave. These
include the operations ImageTransform (with multiple keywords), MatrixTranspose, ImageRotate and
ImageRegistration.

Rotating Images
You can rotate images using the ImageRotate operation (see page V-313). There are two issues that are
worth noting in connection with image rotations where the rotation angle is not a multiple of 90 degrees.
First, the image size is always increased to accommodate all source pixels in the rotated image (no clipping
is done). The second issue is that rotated pixels are calculated using bilinear interpolation so the result of N
consecutive rotations by 360/N degrees will not, in general, equal the original image. In cases of multiple
rotations you should consider keeping a copy of the original image as the same source for all rotations.

Image Registration
In many situations one has two or more images of the same object where the differences between the images
have to do with acquisition times, dissimilar acquisition hardware or changes in the shape of the object
between exposures. To facilitate comparison between such images it is necessary to register them, i.e., to
adjust them so that they match each other. The ImageRegistration operation (see page V-307) modifies a
test image to match a reference image when the key features are not too different. The algorithm is capable
of subpixel resolution but it does not handle very large offsets or large rotations. The algorithm is based on
an iterative processing that proceeds from coarse to fine detail. The optimization is performed using a mod-
ified Levenberg-Marquardt algorithm and results in an affine transformation for the relative rotation and
translation with optional isometric scaling and contrast adjustment. The algorithm is most effective with
square images where the center of rotation is not far from the center of the image.

ImageRegistration is based on an algorithm described by Thévenaz and Unser.

Mathematical Transforms
This class of transforms includes standard wave assignments, interpolation and sampling, Fourier, Wave-
let, Hough, and Hartley transforms, convolution filters, edge detectors and morphological operators.

Standard Wave Operations
Grayscale image waves are regular 2D Igor waves that can be processed using normal Igor wave assign-
ments (Waveform Arithmetic and Assignments on page II-94 and Multidimensional Wave Assignment
on page II-111). For example, you can perform simple linear operations:
Duplicate/O root:images:blobs sample
Redimension/S sample // create a single precision sample
sample=10+5*sample // linear operation
NewImage sample // keep this image displayed

Note that the display of the image is invariant for this linear operation.

Nonlinear operations are just as easy:
sample=sample^3-sample // not particularly useful

You can add noise and change the background using simple wave assignment:

Chapter III-11 — Image Processing

III-305

sample=root:images:blobs // rest to original
sample+=gnoise(20)+x+2*y // add Gaussian noise and background plane

As we have shown in several examples above, it is frequently necessary to create a binary image from your
data. For instance, if you want an image that is set to 255 for all pixels in the image wave sample that are
between the values of 50 and 250, and set to 0 otherwise, you can use the following one line wave assignment:
MatrixOP/O sample=255*greater(sample,50)*greater(250,sample)

More Efficient Wave Operations
There are several operations in this category that are designed to improve performance of certain image calcu-
lations. For example, you can obtain one plane (layer) from a multiplane image using a wave assignment like:
Make/N=(512,512) newImagePlane
newImagePlane[][]=root:Images:peppers[p][q][0]

Alternatively, you can execute:
ImageTransform/P=0 getPlane root:Images:peppers

or
MatrixOp/O outWave=root:Images:peppers[][][0]

ImageTransform and MatrixOp are much faster for this size of image than the simple wave assignment. See
General Utilities: ImageTransform Operation on page III-327 and MatrixOp.

Interpolation and Sampling
You can use the ImageInterpolate operation (see page V-295) as both an interpolation and sampling tool.
In the following example we create an interpolated image from a portion of the MRI image. The resulting
image is sampled at four times the original resolution horizontally and twice vertically.
NewImage root:images:MRI
ImageInterpolate /S={70,0.25,170,70,0.5,120} bilinear root:images:MRI
NewImage M_InterpolatedImage

As the keyword suggests, the interpolation is bilinear. You can use the same operation to sample the image.
In the following example we reduce the image size by a factor of 4:
NewImage root:images:MRI // display for comparison
ImageInterpolate /f={0.5,0.5} bilinear root:images:MRI
NewImage M_InterpolatedImage // the sampled image

Note that in reducing the size of certain images, it may be useful to apply a blurring operation first (e.g.,
MatrixFilter gauss). This becomes important when the image contains thin (smaller than sample size) hor-
izontal or vertical lines.

If the bilinear interpolation does not satisfy your requirements you can use spline interpolations of degrees
2-5. Here is a comparison between the bilinear and spline interpolation of degree 5 used to scale an image:
ImageInterpolate /f={1.5,1.5} bilinear MRI
Rename M_InterpolatedImage Bilinear
NewImage Bilinear
ImageInterpolate /f={1.5,1.5}/D=5 spline MRI
NewImage M_InterpolatedImage

Fast Fourier Transform
There are many books on the application of Fourier transforms in imaging so we will only discuss some of
the technical aspects of using the FFT operation (see page V-173) in Igor.

It is important to keep in mind is that for historical reasons, the default FFT operation overwrites and modifies
the image wave. As of Igor Pro 5 you can also specify a destination wave in the FFT operation and your source
wave will be preserved. The second issue that you need to remember is that the transformed wave is con-
verted into a complex data type and the number of points in the wave is also changed to accommodate this

Chapter III-11 — Image Processing

III-306

conversion. The third issue is that when performing the FFT operation on a real wave the result is a one-sided
spectrum, i.e., you have to obtain the rest of the spectrum by reflecting and complex-conjugating the result.

A typical application of the FFT in image processing involves transforming a real wave of 2N rows by M
columns. The complex result of the FFT is (N+1) rows by M columns. If the original image wave has wave
scaling of dx and dy, the new wave scaling is set to 1/(N*dx) and 1/(M*dy) respectively.

The following examples illustrate a number of typical applications of the FFT in imaging.

Calculating Convolutions
To calculate convolutions using the FFT it is necessary that the source wave and the convolution kernel
wave have the same dimensions (see MatrixOp convolve for an alternative). Consider, for example,
smoothing noise via convolution with a Gaussian:
// Create and display a noisy image.
Duplicate /O root:images:MRI mri // an unsigned byte image.
Redimension/s mri // convert to single precision.
mri+=gnoise(10) // add noise.
NewImage mri
ModifyImage mri ctab= {*,*,Rainbow,0}// show the noise using false color.

// Create the filter wave.
Duplicate/O mri gResponse // just so that we have the same size wave.
SetScale/I x -1,1,"" gResponse
SetScale/I y -1,1,"" gResponse

// Change the width of the Gaussian below to set the amount of smoothing.
gResponse=exp(-(x^2+y^2)/0.001)

// Calculate the convolution.
Duplicate/O mri processedMri
FFT processedMri // Transform the source
FFT gResponse // Transform the kernel
processedMri*=gResponse // (complex) multiplication in frequency space
IFFT processedMri

// Swap the IFFT to properly center the result.
ImageTransform swap processedMri
Newimage processedM
ModifyImage processedMri ctab= {*,*,Rainbow,0}

In practice one can perform the convolution with fewer instructions. The example above has a number of
commands that are designed to make it clearer. Also note that we used the SetScale operation (see page
V-640) to create the Gaussian filter. This was done to make sure that the Gaussian was created at the center
of the filter image, a choice that is compatible with the ImageTransform swap operation. This example is
also not ideal because one can take advantage of the properties of the Gaussian (the Fourier transform of a
Gaussian is also Gaussian) and perform the convolution as follows:
// Calculate the convolution.
Duplicate/O mri shortWay
FFT shortWay
shortWay*=cmplx(exp(-(x^2+y^2)/0.01),0)
IFFT shortWay
Newimage shortWay
ModifyImage shortWay ctab={*,*,Rainbow,0}

Spatial Frequency Filtering
The concept behind spatial frequency filtering is to transform the data into spatial frequency space. Once in
frequency domain we can modify the spatial frequency distribution of the image and then inverse-trans-
form to obtain the modified image.

Chapter III-11 — Image Processing

III-307

Here is an example of low and high pass filtering. The converge image consists of wide black lines converging
to a single point. If you draw a horizontal line profile anywhere below the middle of the image you will get a
series of 15 rectangles which will give rise to a broad range of spatial frequencies in the horizontal direction.

// Prepare for FFT; we need SP or DP wave.
Duplicate/O root:images:converge converge
Redimension /s converge
FFT converge
Duplicate/O converge lowPass // new complex wave in freq. domain
lowPass=lowPass*cmplx(exp(-(p)^2/5),0)
IFFT lowPass
NewImage lowPass // nonoptimal lowpass

Duplicate/O converge hiPass
hiPass=hiPass*cmplx(1-1/(1+(p-20)^2/2000),0)
IFFT hiPass
NewImage hiPass // nonoptimal highpass

We arbitrarily chose the Gaussian form for the low-pass filter. In practical applications it is usually important
to select an exact “cutoff” frequency and at the same time choose a filter that is sufficiently smooth so that it
does not give rise to undesirable filtering artifacts such as ringing, etc. The high-pass filter that we used above
is almost a notch filter that rejects low frequencies. Both filters are essentially one-dimensional filters.

Calculating Derivatives
Using the derivative property of Fourier transform, you can calculate, for example, the x-derivative of an
image in the following way:
Duplicate/O root:images:mri xDerivative // retain the original.
Redimension/S xDerivative
FFT xDerivative
xDerivative*=cmplx(0,p) // neglecting 2pi factor & wave scaling.
IFFT xDerivative
NewImage xDerivative

10
00

90
0

80
0

70
0

60
0

50
0

40
0

30
0

20
0

10
0

0 3002001000

10
00

90
0

80
0

70
0

60
0

50
0

40
0

30
0

20
0

10
0

0 3002001000

10
00

90
0

80
0

70
0

60
0

50
0

40
0

30
0

20
0

10
0

0 3002001000

Converge High PassLow Pass

Chapter III-11 — Image Processing

III-308

Although this approach may not be appealing in all applications, its advantages are apparent when you
need to calculate higher order derivatives. Also note that this approach does not take into account any wave
scaling that may be associated with the rows or the columns.

Calculating Integrals or Sums
Another useful property of the Fourier transform is that the transform values along the axes correspond to
integrals of the image. There is usually no advantage in using the FFT for this purpose. However, if the FFT
is calculated anyway for some other purpose, one can make use of this property. A typical situation where
this is useful is in calculating correlation coefficient (normalized cross-correlation).

Correlations
The FFT can be used to locate objects of a particular size and shape in a given image. The following example
is rather simple in that the test object has the same scale and rotation angle as the ones found in the image.
// Test image contains the word Test.
NewImage test // We will be looking for the two T's
Duplicate/O root:images:oneT oneT// the object we are looking for
NewImage oneT

Duplicate/O test testf // because the FFT overwrites
FFT testf
Duplicate/O oneT oneTf
FFT oneTf
testf*=oneTf // not a "proper" correlation
IFFT testf
ImageThreshold/O/T=1.25e6 testf // remove noise (due to overlap with other
characters
NewImage testf // the results are the correlation spots for the T's

When using the FFT it is sometimes necessary to operate on the source image with one of the built-in window
functions so that pixel values go smoothly to zero as you approach image boundaries. The ImageWindow oper-
ation (see page V-341) supports the Hanning, Hamming, Bartlett, Blackman, and Kaiser windows. Normally the
ImageWindow operation (see page V-341) works directly on an image as in the following example:
// The redimension is required for the FFT operation anyway, so you
// might as well perform it here and reduce the quantization of the
// results in the ImageWindow operation.
Redimension/s blobs
ImageWindow /p=0.03 kaiser blobs
NewImage M_WindowedImage

To see what the window function looks like:
Redimension/S blobs // SP or DP waves are necessary
ImageWindow/i/p=0.01 kaiser blobs // just creates the window data
NewImage M_WindowedImage // you can also make a surface plot from this.

Wavelet Transform
The wavelet transform is used primarily for smoothing, noise reduction and lossy compression. In all cases
the procedure we follow is first to transform the image, then perform some operation on the transformed
wave and finally calculate the inverse transform.

100806040200 100806040200 100806040200

Test ResultOne T

Chapter III-11 — Image Processing

III-309

The next example illustrates a wavelet compression procedure. Start by calculating the wavelet transform
of the image. Your choice of wavelet and coefficients can significantly affect compression quality. The com-
pressed image is the part of the wave that corresponds to the low order coefficients in the transform (similar
to low pass filtering in 2D Fourier transform). In this example we use the ImageInterpolate operation (see
page V-295) to create a wave from a 64x64 portion of the transform.
DWT /N=4/P=1/T=1 root:images:MRI,wvl_MRI // Wavelet transform
// reduce size by a factor of 16
Imageinterpolate/s={0,1,64,0,1,64} bilinear wvl_MRI

To reconstruct the image and evaluate compression quality, inverse-transform the compressed image and
display the result:
DWT /I/N=4/P=0/T=1 M_InterpolatedImage,iwvl_compressed
NewImage iwvl_compressed

The reconstructed image exhibits a number of compression-related artifacts, but it is worth noting that
unlike an FFT based low-pass filter, the advantage of the wavelet transform is that the image contains a fair
amount of high spatial frequency content. The factor of 16 mentioned above is not entirely accurate because
the original image was stored as a one byte per pixel while the compressed image consists of floating point
values (so the true compression ratio is only 4).

To illustrate the application of the wavelet transform to denoising, we start by adding Gaussian distributed
noise with standard deviation 10 to the MRI image:
Redimension/S Mri // SP so we can add bipolar noise
Mri+=gnoise(10) // Gaussian noise added
NewImage Mri
ModifyImage Mri ctab={*,*,Rainbow,0}// false color for better discrimination.
DWT/D/N=20/P=1/T=1/V=0.5 Mri,dMri // increase /V for more denoising
NewImage dMri // display denoised image
ModifyImage dMri ctab={*,*,Rainbow,0}

200150100500
6040200

Original Compressed

200150100500 250200150100500

MRI dMRI

Chapter III-11 — Image Processing

III-310

Hough Transform
The Hough Transform is a mapping algorithm in which lines in image space map to single points in the
transform space. It is most often used for line detection. Specifically, each point in the image space maps to
a sinusoidal curve in the transform space. If pixels in the image lie along a line, the sinusoidal curves asso-
ciated with these pixels all intersect at a single point in the transform space. By counting the number of sinu-
soids intersecting at each point in the transform space, lines can be detected. Here is an example of an image
that consists of one line.
Make/O/B/U/N=(100,100) lineImage
lineImage=(p==q ? 255:0) // single line at 45 degrees
Newimage lineimage
ImageTransform hough lineImage
Newimage M_Hough

The Hough transform of a family of lines:
lineImage=((p==100-q)|(p==q)|(p==50)|(q==50)) ? 255:0
ImageTransform Hough lineImage

The last image shows a series of bright pixels in the center. The first and last points correspond to lines at 0
and 180 degrees. The second point from the top corresponds to the line at 45 degrees and so on.

Fast Hartley Transform
Hartley transform is similar to the Fourier transform except that it uses only real values. The transform is
based on the cas kernel defined by:

.

The discrete Hartley transform is given by

The Hartley transform has two interesting mathematical properties. First, the inverse transform is identical
to the forward transform, and second, the power spectrum is given by the expression:

The implementation of the Fast Hartley Transform is part of the ImageTransform operation (see page
V-325). It requires that the source wave is an image whose dimensions are a power of 2.
ImageTransform /N={18,3}/O padImage Mri// make the image 256^2
ImageTransform fht mri
NewImage M_Hartley

100500 100500

Single Line Multiple Lines

cas vx() vx()cos vx()sin+=

H u v,() 1
MN
--------- f x y,() 2π ux

M
------ vy

N
-----–

 2π ux
M
------ vy

N
-----–

 sin+
 cos

y 0=

N 1–

x 0=

M 1–

=

P f() H f()[]2 H f–()[]2+
2

--=

Chapter III-11 — Image Processing

III-311

Convolution Filters
Convolution operators usually refer to a class of 2D kernels that are convolved with an image to produce a desir-
able effect (simple linear filtering). In some cases it is more efficient to perform convolutions using the FFT (sim-
ilar to the convolution example above), i.e., transform both the image and the filter waves, multiply the
transforms in the frequency domain and then compute the inverse transformation using the IFFT. The FFT
approach is more efficient for convolution with kernels that are greater than 13x13 pixels. However, there is a
very large number of useful kernels which play an important role in image processing that are 3x3 or 5x5 in size.
Because these kernels are so small, it is fairly efficient to implement the corresponding linear filter as direct con-
volution without using the FFT.

In the following example we implement a low-pass filter with equal spatial frequency response along both axes.
Make /O/N=(9,9) sKernel // first create the convolution kernel
SetScale/I x -4.5,4.5,"", sKernel
SetScale/I y -4.5,4.5,"", sKernel

// Equivalent to rect(2*fx)*rect(2*fy) in the spatial frequency domain.
sKernel=sinc(x/2)*sinc(y/2)

// Remember: MatrixConvolve executes in place; save your image first!
Duplicate/O root:images:MRI mri
Redimension/S mri // to avoid integer truncation
MatrixConvolve sKernel mri
NewImage mri
ModifyImage mri ctab= {*,*,Rainbow,0} // just to see it better

The next example illustrates how to perform edge detection using a built-in convolution filter in the Image-
Filter operation (see page V-288):
Duplicate/O root:images:blobs blobs
ImageFilter findEdges blobs
NewImage blobs

Other notable examples of image filters are Gauss, Median and Sharpen. You can also apply the same operation
to 3D waves. The filters Gauss3D, avg3D, point3D, min3D, max3D and median3Dare the extensions of their 2D
counterparts to 3x3x3 voxel neighborhoods. Note that the last three filters are not true convolution filters.

Edge Detectors
In many applications it is necessary to detect edges or boundaries of objects that appear in images. The edge
detection consists of creating a binary image from a grayscale image where the pixels in the binary image
are turned off or on depending on whether they belong to region boundaries or not. In other words, the
detected edges are described by an image, not a vector (1D wave). If you need to obtain a wave describing
boundaries of regions, you might want to use the ImageAnalyzeParticles operation (see page V-281).

250200150100500

Chapter III-11 — Image Processing

III-312

Igor supports eight built-in edge detectors (methods) that vary in performance depending on the source
image. Some methods require that you provide several parameters which tend to have a significant effect
on the quality of the result. In the following examples we illustrate the importance of these choices.
// Create and display a simple artificial edge image.
Make/B/U/N=(100,100) edgeImage
edgeImage=(p<50? 50:5)
Newimage edgeImage

// Try a simple Sobel detector using iterated threshold detection.
ImageEdgeDetection/M=1/N Sobel, edgeImage
NewImage M_ImageEdges
ModifyImage M_ImageEdges explicit=0 // to see binary image in color
ModifyImage M_ImageEdges ctab= {*,*,Rainbow,0}

This result (the red line) is pretty much what we would expect. Here are other examples that work similarly well:
ImageEdgeDetection/M=1/N Kirsch, edgeImage // same output wave

or
ImageEdgeDetection/M=1/N Roberts, edgeImage // same output wave

The innocent looking /M=1 flag implies that the operation uses an iterative automatic thresholding. This
appears to work well in the examples above, but it fails completely when using the Frei filter:
ImageEdgeDetection/M=1/N Frei, edgeImage

On the other hand, the bimodal fit thresholding works much better here:
ImageEdgeDetection/M=2/N Frei, root:edgeImage

The performance of this filter improves dramatically if you add a little noise to the image:
edgeImage+=gnoise(1)
ImageEdgeDetection/M=1/N/S=1 Canny, edgeImage

Using More Exotic Edge Detectors
The more exotic edge detectors consist of multistep operations that usually involve smoothing and differ-
entiation. Here is an example that illustrates the effect of smoothing:
Duplicate/O root:images:blobs blobs
ImageEdgeDetection/M=1/N/S=1 Canny,blobs
Duplicate/O M_ImageEdges smooth1
ImageEdgeDetection/M=1/N/S=2 Canny,blobs
Duplicate/O M_ImageEdges smooth2
ImageEdgeDetection/M=1/N/S=3 Canny,blobs
Duplicate/O M_ImageEdges smooth3
NewImage smooth1
ModifyImage smooth1 explicit=0
NewImage smooth2
ModifyImage smooth2 explicit=0
NewImage smooth3
ModifyImage smooth3 explicit=0

As you can see, the third image (smooth3) is indeed much cleaner than the first or the second, however, that
result is obtained at the cost of loosing some of the small blobs. The following commands will draw a circle
around one of the blobs that is missing in the third image:
DoWindow/F Graph0
SetDrawLayer UserFront
SetDrawEnv linefgc= (65280,0,0),fillpat= 0
DrawOval 0.29,0.41,0.35,0.48
DoWindow/F Graph1
SetDrawLayer UserFront
SetDrawEnv linefgc= (65280,0,0),fillpat= 0

Chapter III-11 — Image Processing

III-313

DrawOval 0.29,0.41,0.35,0.48
DoWindow/F Graph2
SetDrawLayer UserFront
SetDrawEnv linefgc= (65280,0,0),fillpat= 0
DrawOval 0.29,0.41,0.35,0.48

It is instructive to make a similar set of images using the Marr and Shen detectors.
// Note: This will take considerably longer time to execute!
Duplicate/O root:images:blobs blobs
ImageEdgeDetection/M=1/N/S=1 Marr,blobs
Duplicate/O M_ImageEdges smooth1
ImageEdgeDetection/M=1/N/S=2 Marr,blobs
Duplicate/O M_ImageEdges smooth2
ImageEdgeDetection/M=1/N/S=3 Marr,blobs
Duplicate/O M_ImageEdges smooth3
NewImage smooth1
ModifyImage smooth1 explicit=0
NewImage smooth2
ModifyImage smooth2 explicit=0
NewImage smooth3
ModifyImage smooth3 explicit=0
SetDrawLayer UserFront
SetDrawEnv linefgc= (65280,0,0),fillpat= 0
DrawOval 0.29,0.41,0.35,0.48

The three images of the calculated edges demonstrate the reduction of noise with the increase in the size of
the convolution kernel. It’s also worth noting that the blob that disappeared when we used the Canny detec-
tor is clearly visible using the Marr detector.

In the following example we use the Shen-Castan detector with various smoothing factors. Note that this edge
detection algorithm does not use the standard thresholding (you have to specify the threshold using the /F flag).
Duplicate/O root:images:blobs blobs
ImageEdgeDetection/N/S=0.5 shen,blobs
Duplicate/O M_ImageEdges smooth1
ImageEdgeDetection/N/S=0.75 shen,blobs
Duplicate/O M_ImageEdges smooth2
ImageEdgeDetection/N/S=0.95 shen,blobs
Duplicate/O M_ImageEdges smooth3
NewImage smooth1
ModifyImage smooth1 explicit=0
NewImage smooth2
ModifyImage smooth2 explicit=0
NewImage smooth3
ModifyImage smooth3 explicit=0
SetDrawLayer UserFront
SetDrawEnv linefgc=(65280,0,0),fillpat=0
DrawOval 0.29,0.41,0.35,0.48

As you can see in this example, the Shen detector produces a thin, though sometimes broken, boundary.
The noise reduction is a trade-off with edge quality.

One of the problems of edge detectors that employ smoothing is that they usually introduce errors when
there are two edges that are relatively close to each other. In the following example we construct an artificial
image that illustrates this point:
Make/B/U/O/N=(100,100) sampleEdge=0
sampleEdge[][49]=255
sampleEdge[][51]=255
NewImage sampleEdge
ImageEdgeDetection/N/S=1 Marr, sampleEdge
Duplicate/O M_ImageEdges s2

Chapter III-11 — Image Processing

III-314

NewImage s2
ImageEdgeDetection/M=1/S=3 Canny, sampleEdge
Duplicate/O M_ImageEdges s3
NewImage s3

Note that the Marr detector completely misses the edge with the smoothing setting set to 1. Also, the posi-
tion of the edge moves away from the true edge with increased smoothing in the Canny detector.

Morphological Operations
Morphological operators are tools that affect the shape and boundaries of regions in the image. Starting with
dilation and erosion, the typical morphological operation involves an image and a structure element. The struc-
ture element is normally much smaller in size than the image. Dilation consists of reflecting the structure element
about its origin and using it in a manner similar to a convolution mask. This can be seen in the next example:
Make/B/U/N=(20,20) source=0
source[5,10][8,10]=255 // source is a filled rectangle
NewImage source
Imagemorphology /E=2 BinaryDilation source// dilation with 1x3 element
Duplicate M_ImageMorph row
NewImage row // display the result of dialation
Imagemorphology /E=3 BinaryDilation source// dilation by 3x1 column
Duplicate M_ImageMorph col
NewImage col // display column dilation
Imagemorphology /E=5 BinaryDilation source// dilation by a circle
NewImage M_ImageMorph // display circle dilation

The result of erosion is the set of pixels x, y such that when the structure element is translated by that
amount it is still contained within the set.
Make/B/U/N=(20,20) source=0
source[5,10][8,10]=255 // source is a filled rectangle
NewImage source
Imagemorphology /E=2 BinaryErosion source// erosion with 1x3 element
Duplicate M_ImageMorph row
NewImage row // display the result of erosion
Imagemorphology /E=3 BinaryErosion source// erosion by 3x1 column
Duplicate M_ImageMorph col
NewImage col // display column erosion
Imagemorphology /E=5 BinaryErosion source// erosion by a circle
NewImage M_ImageMorph // display circle erosion

10
0

80
60

40
20

0

100806040200

10
0

80
60

40
20

0

100806040200

10
0

80
60

40
20

0

100806040200

Source CannyMarr

151050 151050 151050 151050

Source ColRow Circle

Chapter III-11 — Image Processing

III-315

We note first that erosion by a circle erased all source pixels. We get this result because the circle structure
element is a 5x5 “circle” and there is no x, y offset such that the circle is completely inside the source. The
row and the col images show erosion predominantly in one direction. Again, try to imagine the 1x3 struc-
ture element (in the case of the row) sliding over the source pixels to produce the erosion.

The next pair of morphological operations are the opening and closing. Functionally, opening corresponds
to an erosion of the source image by some structure element (say E), and then dilating the result using the
same structure element E again. In general opening has a smoothing effect that eliminates small (narrow)
protrusions as we show in the next example:
Make/B/U/N=(20,20) source=0
source[5,12][5,14] = 255
source[6,11][13,14] = 0
source[5,8][10,10] = 0
source[10,12][10,10] = 0
source[7,10][5,5] = 0
NewImage source
ImageMorphology /E=1 opening source // open using 2x2 structure element
Duplicate M_ImageMorph OpenE1
NewImage OpenE1
ImageMorphology /E=4 opening source // open using a 3x3 structure element
NewImage M_ImageMorph

As you can see, the 2x2 structure element removed the thin connection between the top and the bottom
regions as well as the two protrusions at the bottom. On the other hand, the two protrusions at the top were
large enough to survive the 2x2 structure element. The third image shows the result of the 3x3 structure
element which was large enough to eliminate all the protrusions but also the bottom region as well.

The closing operation corresponds to a dilation of the source image followed by an erosion using the same
structure element.
Make/B/U/N=(20,20) source=0
source[5,12][5,14] = 255
source[6,11][13,14] = 0
source[5,8][10,10] = 0
source[10,12][10,10] = 0
source[7,10][5,5] = 0
NewImage source
ImageMorphology /E=4 closing source // close using 3x3 structure element
Duplicate M_ImageMorph CloseE4
NewImage CloseE4

151050 151050 151050 151050

Source ColRow Circle

151050 151050 151050

Source Open 3x3Open 2x2

Chapter III-11 — Image Processing

III-316

ImageMorphology /E=5 closing source // close using 5x5 structure element
NewImage M_ImageMorph

The center image above corresponds to a closing using a 3x3 structure element which appears to be large
enough to close the gap between the top and bottom regions but not sufficiently large to fill the gaps between
the top and bottom protrusions. The image on the right was created with a 5x5 “circle” structure element,
which was evidently large enough to close the gap between the protrusions at the top but not at the bottom.

There are various definitions for the Top Hat morphological operation. Igor’s Top Hat calculates the difference
between an eroded image and a dilated image. Other interpretations include calculating the difference between
the image itself and its closing or opening. In the following example we illustrate some of these variations.
duplicate root:images:mri source
ImageMorphology /E=1 tophat source // close using 2x2 structure element
Duplicate M_ImageMorph tophat
NewImage tophat
ImageMorphology /E=1 closing source // close using 3x3 structure element
Duplicate M_ImageMorph closing
closing-=source
NewImage closing
ImageMorphology /E=1 opening source // close using 3x3 structure element
Duplicate M_ImageMorph opening
opening=source-opening
NewImage opening

151050 151050 151050

Source Open 3x3Open 2x2

200150100500 200150100500

Source Top Hat

Chapter III-11 — Image Processing

III-317

As you can see from the four images, the built-in Top Hat implementation enhances the boundaries (con-
tours) of regions in the image whereas the opening or closing tophats enhance small grayscale variations.

The watershed operation locates the boundaries of watershed regions as we show below:
Make/O/N=(100,100) sample
sample=sinc(sqrt((x-50)^2+(y-50)^2)/2.5)// looks like concentric circles.
ImageTransform/O convert2Gray sample
NewImage sample
ModifyImage sample ctab= {*,*,Terrain,0}// color for better discrimination
ImageMorphology /N/L watershed sample
AppendImage M_ImageMorph
ModifyImage M_ImageMorph explicit=1, eval={0,65000,0,0}

Note that omitting the /L flag in the watershed operation may result in spurious watershed lines as the algo-
rithm follows 4-connectivity instead of 8.

Image Analysis
The distinction between image processing and image analysis is rather fine. The pure analysis operations
are: ImageStats, line profile, histogram, hsl segmentation and particle analysis.

ImageStats
You can obtain global statistics on a wave using the standard WaveStats operation (see page V-820). The
ImageStats operation (see page V-322) works specifically with 2D and 3D waves. The operation can define
a completely arbitrary ROI using a standard ROI wave (see Working with ROI on page III-324). A special
flag /M=1, speeds up the operation when you only want to know the minimum, maximum and average
values in the ROI region, skipping over the additional computation time required to evaluate higher
moments. This operation was designed to work in user defined adaptive algorithms.

ImageStats can also operate on a specific plane of a 3D wave using the /P flag.

200150100500 200150100500

Closing Opening

10
0

80
60

40
20

0

100806040200

Chapter III-11 — Image Processing

III-318

ImageLineProfile
The ImageLineProfile operation (see page V-300) is somewhat of a misnomer as it samples the image along
a path consisting of an arbitrary number of line segments. To use the operation you first need to create the
description of the path using a pair of waves. Here is a simple example:
NewImage root:images:baboon // Display the image that we want to profile
// Create the pair of waves representing a straight line path.
Make/O/N=2 xPoints={21,57}, yPoints={40,40}
AppendToGraph/T yPoints vs xPoints // display the path on the image
// Calculate the profile.
ImageLineProfile xwave=xPoints, ywave=yPoints, srcwave=root:images:baboon
Display W_ImageLineProfile vs W_LineProfileX // display the profile

You can create a more complex path consisting of an arbitrary number of points. In this case you may want
to take advantage of the W_LineProfileX and W_LineProfileY waves that the operation creates and plot the
profile as a 3D path plot (see “Path Plots” in the Visualization help file). See also the IP Tutorial experiment
for more elaborate examples.

Note: If you are working with 3D waves with more than 3 layers, you can use
ImageLineProfile/P=plane to specify the plane for which the profile is computed.

If you are using the line profile to extract a sequential array of data (a row or column) from the
wave it is more efficient (about a factor of 3.5 in speed) to extract the data using ImageTransform
getRow or getCol.

Histograms
The histograms is a very important tool in image analysis. For example, the simplest approach to automat-
ing the detection of the background in an image is to calculate the histogram and to choose the pixel value
which occurs with the highest frequency. Histograms are also very important in determining threshold
values and in enhancing image contrast. Here are some examples using image histograms:
NewImage root:images:mri
ImageHistogram root:images:mri
Duplicate W_ImageHist origMriHist
Display /W=(201.6,45.2,411,223.4) origMriHist

It is obvious from the histogram that the image is rather dark and that the background is most likely zero. The
small counts for pixels above 125 suggests that the image is a good candidate for histogram equalization.

180

160

140

120

55504540353025

60
40

20
0

6040200

200150100500 14

12

10

8

6

4

2

0

250200150100500

Chapter III-11 — Image Processing

III-319

ImageHistModification root:images:mri
ImageHistogram M_ImageHistEq
NewImage M_ImageHistEq
Display /W=(201.6,45.2,411,223.4) W_ImageHist

Comparing the two histograms two features stand out: first, there is no change in the dark background
because it is only one level (0). Second, the rest of the image which was mostly between the values of 0 and
120 has now been stretched to the range 57-255.

The next example illustrates how you can use the histogram information to determine a threshold value.
NewImage root:images:blobs
ImageHistogram root:images:blobs
Display /W=(201.6,45.2,411,223.4) W_ImageHist

The resulting histogram is clearly bimodal. Let’s fit it to a pair of Gaussians:
// Guess coefficient wave based on the histogram.
Make/O/N=6 coeff={0,3000,50,10,500,210,20}
Funcfit/Q twoGaussians,coeff,W_ImageHist /D
ModifyGraph rgb(fit_W_ImageHist)=(0,0,65000)

The curve shown in the graph is the functional fit of the sum of two Gaussians. You can now choose, by
visual inspection, an x-value between the two Gaussians — probably somewhere in the range of 100-150.
In fact, if you test the same image using the built-in thresholding operations that we have discussed above,
you will see that the iterated algorithm chooses the value 125, fuzzy entropy chooses 109, etc.

Histograms of RGB or HSL images result in a separate histogram for each color channel:
ImageHistogram root:images:peppers
Display W_ImageHistR,W_ImageHistG,W_ImageHistB
ModifyGraph rgb(W_ImageHistG)=(0,65000,0),rgb(W_ImageHistB)=(0,0,65000)

200150100500 14

12

10

8

6

4

2

0

x1
03

250200150100500

3000

2500

2000

1500

1000

500

0

250200150100500

Chapter III-11 — Image Processing

III-320

Histograms of 3D waves containing more than 3 layers can be computed by specifying the layer with the
/P flag. For example,
Make/N=(10,20,30) ddd=gnoise(5)
ImageHistogram/P=10 ddd
Display W_ImageHist

Unwrapping Phase
Unwrapping phase in two dimensions is more complicated than in one dimension because the operation’s
results must be independent of the unwrapping path. The path independence means that any path integral
over a closed contour in the unwrapped domain must vanish. In many situations there are points in the
domain around which closed contour path integrals do not vanish. Such points are called “residues”. The res-
idues are positive if a counter-clockwise path integral is positive. When unwrapping phase in two dimen-
sions, the residues are typically ±1. This suggests that whenever two opposing residues are connected by a line
(known as a “branch cut”), any contour integral whose path does not cross the branch cut will vanish. When
a positive and negative residues are side by side they combine to a “dipole” which may be removed because
a path integral around the dipole also vanishes. It follows that unwrapping can be performed using paths that
either do not encircle unbalanced residues or paths that do not cross branch cuts.

The ImageUnwrapPhase operation (see page V-339) performs 2D phase unwrapping using either a fast
method that ignores possible residues or a slower method which locates residues and attempts to find paths
around them. The fast method uses direct integration of the differential phases. It can lead to incorrect
results if there are residues in the domain. The slow method first identifies all residues, draws them into an
internal bitmap adding branch cuts and then applying repeatedly the algorithm used in ImageSeedFill to
obtain the paths around the residues and branch cuts until all pixels have been processed. Sometimes the
distribution of residues and branch cuts is such that the domain of the data is covered by several regions,
each of which is completely bounded by branch cuts or the data boundary. In this case, the phase is com-
puted independently in each individual region with an offset that is based on the first processed pixel in
that region. Note that when you use ImageUnwrapPhase using a method that computes the residues, the
operation creates the variables V_numResidues and V_numRegions. You can also obtain a copy of the inter-
nal bitmap which could be useful for analyzing the results.

The ImageUnwrapPhase Demo in the Examples:Analysis folder provides a detailed example illustrating
different types of residues, branch cuts and resulting unwrapped phase.

HSL Segmentation
When you work with color images you have two analogs to grayscale thresholding. The first is simple
thresholding of the luminance of the image. To do this you need to convert the image from RGB to HSL and
then perform the thresholding on the luminance plane. The second equivalent of thresholding is HSL seg-
mentation, where the image is subdivided into regions of HSL values that fall within a certain range. In the
following example we segment the peppers image to locate regions corresponding to red peppers:
NewImage root:images:peppers
ImageTransform/H={330,50}/L={0,255}/S={0,255} root:images:peppers
NewImage M_HueSegment

15

10

5

0

x1
03

250200150100500

 W_ImageHistR
 W_ImageHistG
 W_ImageHistB

Chapter III-11 — Image Processing

III-321

Note that we used /H={330,50}. The apparent flip of the limits is allowed in the case of hue values to cover
the single range from hue angle 330 degrees to hue angle 50 degrees.

There are two additional approaches for color segmentation that should be mentioned here. You can use
ImageTransform matchPlanes operation to segment an image for pixels that satisfy prescribed value ranges
in all planes. This operation has the advantage that it can be applied to images in any color space. Another
segmentation operation is ImageTransform selectColor which is based on RGB color space and a user pro-
vided tolerance value. The same concept can be applied with ImageSeedFill to get the effect of a “magic
wand” selection.

Particle Analysis
Typical particle analysis consists of three steps. First you need to preprocess the image. This may include
noise removal or reduction, possible background adjustments (see ImageRemoveBackground operation
on page V-312) and thresholding. Once you obtain a binary image, your second step is to invoke the Imag-
eAnalyzeParticles operation (see page V-281). The third and final step is making some sense of all the data
produced by the ImageAnalyzeParticles operation or “post-processing”.

Issues related to the preprocessing have been discussed elsewhere in this chapter. We will assume that we
are starting with a preprocessed, clean, binary image which contains some particles.
NewImage root:images:blobs // display the original image

// Step 1:create binary image.
// Note the /I flag to invert the output wave so that particles are marked by
zero.
ImageThreshold/I/Q/M=1 root:images:blobs // Note the /I flag!!

// Step 2:Here we are invoking the operation in quiet mode, specifying particles
// of size equal or greater than 2 pixels. We are also asking for particles
moment
// Information, boundary waves and a particle masking wave.
ImageAnalyzeParticles /Q/A=2/E/W/M=2 stats M_ImageThresh

// Step 3:post processing choices
// Display the detected boundaries on top of the particles
AppendToGraph/T W_BoundaryY vs W_BoundaryX

// If you browse the numerical data:
Edit W_SpotX,W_SpotY,W_circularity,W_rectangularity,W_ImageObjPerimeter
AppendToTable W_xmin,W_xmax,W_ymin,W_ymax,M_Moments,M_RawMoments

Note that particles that intersect the boundary of the image may give rise to inaccuracies in particle statis-
tics. It is therefore useful sometimes to remove these particles before performing the analysis.

The raw values generated by ImageAnalyzeParticles operation can be used for further processing.

The following example illustrates slightly different pre and post-processing.
NewImage screws
// Here we have a synthetic background so the conversion to binary is easy.
screws=screws==163 ? 255:0
ImageMorphology /O/I=2/E=1 binarydilation screws
ImageMorphology /O/I=2/E=1 erosion screws

// Now the particle analysis operation with the option to fill the holes.
ImageAnalyzeParticles/E/W/Q/M=3/A=5/F stats, screws

NewImage root:images:screws
AutoPositionWindow/E $WinName(0,1)
// Show the detected boundaries.
AppendToGraph/T W_BoundaryY vs W_BoundaryX
AppendToGraph/T W_SpotY vs W_SpotX
Duplicate/O w_spotx w_index

Chapter III-11 — Image Processing

III-322

w_index=p
ModifyGraph mode(W_SpotY)=3
ModifyGraph textMarker(W_SpotY)={w_index,"default",1,0,5,0.00,0.00}
ModifyGraph msize(W_SpotY)=6

Now for some shape classification in which we plot particle area versus perimeter:
Display/W=(23.4,299.6,297,511.4) W_ImageObjArea vs W_ImageObjPerimeter
ModifyGraph
mode=3,textMarker(W_ImageObjArea)={w_index,"default",0,0,5,0.00,0.00}
ModifyGraph msize=6

The classification diagram we just created uses two parameters (area and perimeter) that are very sensitive
to image noise. We can see that there are two basic classes that can be associated with the roundness of the
boundaries but it is difficult to accept the classification of particle 9.

In the following we compute another classification based on the eccentricity of the objects:
Make/O/N=(DimSize(M_Moments,0)) ecc
ecc=sqrt(1-M_Moments[p][3]^2/M_Moments[p][2]^2)

Display /W=(23.4,299.6,297,511.4) ecc
ModifyGraph mode=3,textMarker(ecc)={w_index,"default",0,0,5,0.00,0.00}
ModifyGraph msize=6

30
0

25
0

20
0

15
0

10
0

50
0 4003503002502001501005000 1

2 3 4

5
6

7

89

10
11

12
13

2000

1500

1000

500

300250200150

0

1

23
4

5

6

7

8

9

10

11

12

13

Chapter III-11 — Image Processing

III-323

The second classification produces a distinct separation of the screws from the washers and nuts. It also
illustrates the importance of selecting the best classification parameters.

You can use the ImageAnalyzeParticles operation also for the purpose of creating masks for particular par-
ticles. For example, to create a mask for particle 9 in the example above:
ImageAnalyzeParticles /L=(w_spotX[9],w_spotY[9]) mark screws
NewImage M_ParticleMarker

You can use this feature of the operation to color different classes of objects using an overlay.

Seed Fill
In some situations you may need to define segments of the image based on a contiguous region of pixels
whose values fall within a certain range. The ImageSeedFill operation (see page V-317) helps you do just that.
NewImage mri
ImageSeedFill/B=64 seedX=132,seedY=77,min=52,max=65,target=255,srcWave=mri
AppendImage M_SeedFill
ModifyImage M_SeedFill explicit=1, eval={255,65535,65535,65535}

Here we have used the /B flag to create an overlay image but it can also be used to create an ROI wave for
use in further processing. This example represents the simplest use of the operation. In some situations the
criteria for a pixel’s inclusion in the filled region are not so sharp and the operation may work better if you
use the adaptive or fuzzy algorithms. For example (Note: the command is wrapped over two lines):

ImageSeedFill/B=64/c seedX=144,seedY=83,min=60,max=150,target=255,
srcWave=mri,adaptive=3

Note that the min and max values have been relaxed but the adaptive parameter provides alternative con-
tinuity criterion.

Other Tools
Igor provides a number of utility operations that help you manage and manipulate image data.

0.8

0.6

0.4

0.2

121086420

0

1

2 3

4

5

6 7 8

9

10
11

12

13

200150100500

Chapter III-11 — Image Processing

III-324

Working with ROI
Many of the image processing operations support a region of interest (ROI). The region of interest is the
portion of the image that we want to affect by an operation. Igor supports a completely general ROI, spec-
ified as a binary wave (unsigned byte) that has the same dimensions as the image. Set the ROI wave to zero
for all pixels within the region of interest and to any other value outside the region of interest. Note that in
some situations it is useful to set the ROI pixels to a nonzero value (e.g., if you use the wave as a multipli-
cative factor in a mathematical operation). You can use ImageTransform with the invert keyword to quickly
convert between the two options.

The easiest way to create an ROI wave is directly from the command line. For example, an ROI wave that
covers a quarter of the blobs image may be generated as follows:
Duplicate root:images:blobs myROI
Redimension/B/U myROI
myROI=64 // arbitrary nonzero value
myROI[0,128][0,127]=0 // the actual region of interest

// Example of usage:
ImageThreshold/Q/M=1/R=myROI root:images:blobs
NewImage M_ImageThresh

If you want to define the ROI using graphical drawing tools you need to open the tools and set the drawing
layer to progFront. This can be done with the following instructions:
SetDrawLayer progFront
ShowTools/A rect // selects the rectangle drawing tool first

Generating ROI Masks
You can now define the ROI as the area inside all the closed shapes that you draw. When you complete
drawing the ROI you need to execute the commands:
HideTools/A // Drawing tools are not needed any more.
// M_ImageThresh is the top image in this example.
ImageGenerateROIMask M_ImageThresh
// The ROI wave has been created; To see it,
NewImage M_ROIMask

The Image Processing procedures provide a utility for creating an ROI wave by drawing on a displayed
image.

Converting Boundary to a Mask
A third way of generating an ROI mask is using the ImageBoundaryToMask operation (see page V-285). This
operation takes a pair of waves (y versus x) that contain pixel values and scan-converts them into a mask.
When you invoke the operation you also have to specify the rectangular width and height of the output mask.
// Create a circle.
Make/N=100 ddx,ddy
ddx=50*(1-sin(2*pi*x/100))
ddy=50*(1-cos(2*pi*x/100))

250200150100500

Chapter III-11 — Image Processing

III-325

ImageBoundaryToMask width=100,height=100,xwave=ddx,ywave=ddy
// The result is an image not a curve!
NewImage M_ROIMask

Note that the resulting binary wave has the values 0 and 255, which you may need to invert before using
them in certain operations.

In many situations the operation ImageBoundaryToMask is followed by ImageSeedFill in order to convert
the mask to a filled region. You can obtain the desired mask in one step using the keywords seedX and
seedY in ImageBoundaryToMask but you must make sure that the mask created by the boundary waves is
a closed domain.

ImageBoundaryToMask width=100,height=100,xwave=ddx,ywave=ddy,
seedX=50,seedY=50
ModifyImage M_ROIMask explicit=0

Marquee Procedures
A fourth way to create an ROI mask is using the Marquee2Mask procedures. To use this in your own exper-
iment you will have to add the following line to your procedure window:
#include <Marquee2Mask>

You can now create the ROI mask by selecting one or more rectangular marquees (drag the mouse) in the
image. After you select each marquee click inside the marquee and choose MarqueeToMask or Append-
MarqueeToMask.

Subimage Selection
You can use an ROI to apply various image processing operations to selected portions of an image. The ROI
is a very useful tool especially when the region of interest is either not contiguous or not rectangular. When
the region of interest is rectangular, you can usually improve performance by creating a new subimage
which consists entirely of the ROI. If you know the coordinates and dimensions of the ROI it is simplest to
use the Duplicate/R operation. If you want to make an interactive selection you can use the marquee
together with CopyImageSubset marquee procedure (after making a marquee selection in the image, click
inside the marquee and choose CopyImageSubset).

Handling Color
Most of the image operations are designed to work on grayscale images. If you need to perform an opera-
tion on a color image certain aspects become a bit more complicated. In the next example we illustrate how
you might sharpen a color image.
NewImage root:images:rose
ImageTransform rgb2hsl root:images:rose // first convert to hsl
ImageTransform/P=2 getPlane M_RGB2HSL
ImageFilter Sharpen M_ImagePlane // you can also use sharpenmore
ImageTransform /D=M_ImagePlane /P=2 setPlane M_RGB2HSL
ImageTransform hsl2rgb M_RGB2HSL
NewImage M_HSL2RGB

Background Removal
There are many approaches to removing the effect of a nonuniform background from an image. If the non
uniformity is additive, it is sometimes useful to fit a polynomial to various points which you associate with
the background and then subtract the resulting polynomial surface from the whole image. If the nonunifor-
mity is multiplicative, you need to generate an image corresponding to the polynomial surface and use it
to scale the original image.

Additive Background
Duplicate/O root:images:blobs addBlobs
Redimension/S addBlobs // convert to single precision

Chapter III-11 — Image Processing

III-326

addBlobs+=0.01*x*y // add a tilted plane
NewImage addBlobs

To use the ImageRemoveBackground operation (see page V-312), we need an ROI mask designating
regions in the image that represent the background. You can create one using one of the ROI construction
methods that we discussed above. For the purposes of this example, we choose the ROI that consists of the
7 rectangles shown in the Degraded Source image below.
// Show the ROI background selection.
AppendImage root:images:addMask
ModifyImage addMask explicit=1, eval={1,65000,0,0}

// Create a corrected image and display it.
ImageRemoveBackground /R=root:images:addMask /w/P=2 addBlobs
NewImage M_RemovedBackground

If the source image contains relatively small particles on a nonuniform background, you may remove the back-
ground (for the purpose of particle analysis) by iterating grayscale erosion until the particles are all gone. You
are then left with a fairly good representation of the background that can be subtracted from the original image.

Multiplicative Background
This case is much more complicated because the removal of the background requires division of the image
by the calculated background (it is assumed here that the system producing the image has an overall
gamma of 1). The first complication has to do with the possible presence of zeros in the calculated back-
ground. The second complication is that the calculations give us the additional freedom to choose one con-
stant factor to scale the resulting image. There are many approaches for correcting a multiplicative
background. The following example shows how an image can be corrected if we assume that the peak
values (identified by the ROI mask) would all have the same value in the absence of a background.
Duplicate/O root:images:blobs mulBlobs
Redimension/S mulBlobs // convert to single precision
mulBlobs*=(1+0.005*x*y)
NewImage mulBlobs

// Show us the ROI foreground selection; you can use histogram
// equalization to find fit regions in the dark area.
AppendImage root:images:multMask
ModifyImage multMask explicit=1, eval={1,65000,0,0}

ImageRemoveBackground /R=root:images:multMask/F/w/P=2 mulBlobs
// Normalize the fit.
WaveStats/Q/M=1 M_RemovedBackground

// Renormalize the fit--we can use that one free factor.
M_RemovedBackground=(M_RemovedBackground-V_min)/(V_max-V_min)
// Remove zeros by replacing with average value.
WaveStats/Q/M=1 M_RemovedBackground

250200150100500 250200150100500

Degraded Source Background Removed

Chapter III-11 — Image Processing

III-327

MatrixOP/O M_RemovedBackground=M_RemovedBackground+V_avg*equal(M_RemovedBackground,0)
MatrixOP/O mulBlobs=mulBlobs/M_RemovedBackground // scaled image.

In the example above we have manually created the ROI masks that were needed for the fit. You can auto-
mate this process (and actually improve performance) by subdividing the image into a number of smaller
rectangles and selecting in each one the highest (or lowest) pixel values. An example of such procedure is
provided in connection with the ImageStats operation above.

General Utilities: ImageTransform Operation
As we have seen above, the ImageTransform operation (see page V-325) provides a number of image util-
ities. As a rule, if you are unable to find an appropriate image operation check the options available under
ImageTransform. Here are some examples:

When working with RGB or HSL images it is frequently necessary to access one plane at a time. For exam-
ple, the green plane of the peppers image can be obtained as follows:
NewImage root:images:peppers // display original
Duplicate/O root:images:peppers peppers
ImageTransform /P=1 getPlane peppers
NewImage M_ImagePlane // display green plane in grayscale

The complementary operation can insert a plane into a 3D wave. For example, suppose you wanted to
modify the green plane of the peppers image:
DoWindow/K WM_temp
ImageHistModification/o M_ImagePlane
ImageTransform /p=1 /D=M_ImagePlane setPlane peppers
NewImage peppers // display the processed image

Some operations are restricted to waves of particular dimensions. For example, if you want to use the Adap-
tive histogram equalization, the number of horizontal and vertical partitions is restricted by the require-
ment that the image be an exact multiple of the dimensions of the subregion. The ImageTransform
operation provides three image padding options: If you specify a negative number to the changed rows or
columns, the corresponding rows and columns are removed from the image. If the numbers are positive,
rows and columns are added. By default the added rows and columns contain exactly the same pixel values
as the last row and column in the image. If you specify the /W flag the operation duplicates the relevant
portion of the image into the new rows and columns. Here are some examples:
Duplicate/o root:images:baboon baboon
NewImage baboon
ImageTransform/N={-20,-10} padImage baboon
Rename M_PaddedImage, cropped
NewImage cropped
ImageTransform/N={40,40} padImage baboon
Rename M_PaddedImage, padLastVals
NewImage padLastVals
ImageTransform/W/N={100,100} padImage baboon
NewImage M_PaddedImage

Another utility operation is the conversion of any 2D wave into a normalized (0-255) 8-bit image wave. This
is accomplished with the ImageTransform operation using the keyword convert2gray. Here is an example:
// Create some numerical data
Make/O/N=(50,80) numericalWave=x*sin(x/10)*y*exp(y/100)
ImageTransform convert2gray numericalWave
NewImage M_Image2Gray

The conversion to an 8-bit image is required for certain operation. It is also useful sometimes when you
want to reduce the size of your image waves.

Chapter III-11 — Image Processing

III-328

References
Ghiglia, Dennis C., and Mark D. Pritt, Two Dimensional Phase Unwrapping — Theory, Algorithms and Software,

John Wiley & Sons, 1998.
Gonzalez, Rafael C., and Richard E. Woods, Digital Image Processing, 3rd ed., Addison-Wesley, 1992.
Pratt, William K., Digital Image Processing, 2nd ed., John Wiley & Sons, 1991.
Thévenaz, P., and M. Unser, A Pyramid Approach to Subpixel Registration Based on Intensity, IEEE Trans-

actions on Image Processing, 7, 27-41, 1998.

Chapter

III-12
III-12Statistics

Overview.. 330
Grouping by Functionality .. 330

Statistical Test Operations .. 330
Statistical Test Operations by Name.. 331
Statistical Test Operations by Data Format .. 332
Statistical Test Operations for Angular/Circular Data.. 334
Statistical Test Operations: Nonparametric Tests.. 334

Noise Functions.. 334
Cumulative Distribution Functions .. 335
Probability Distribution Functions.. 335
Inverse Cumulative Distribution Functions .. 336
General purpose operations and functions.. 336

Hazard and Survival functions... 337
Procedures.. 337
Obsolete XOP... 338
References .. 338

Chapter III-12 — Statistics

III-330

Overview
This chapter describes operations and functions for statistical analysis together with some general guide-
lines for their use. This is not a statistics tutorial; for that you can consult one of the references at the end of
this chapter or the references listed in the documentation of a particular operation or function. The material
below assumes that you are familiar with techniques and methods of statistical analysis.

Grouping by Functionality
Prior to Igor Pro 6.0 there were few built-in operations and functions for statistical analysis. They included:
Binomial, erf, erfc, Sort, StudentA, StudentT and WaveStats. Additional functionality was provided by the
(now obsolete) StatFuncs XOP. As of Igor Pro 6.0, with few exceptions, new statistical analysis operations
and functions are named with the prefix “Stats” and belong to a new Statistics class in the help browser.
Naming exceptions include the random “noise” generation functions that have traditionally been named
based on the distribution they represent.

There are six natural groups of Statistics operations and functions. They include: test operations, noise func-
tions, probability distribution functions (PDFs), cumulative distribution functions (CDFs), inverse CDFs
and general purpose operations and functions.

Statistical Test Operations
Test operations analyze the input data to examine the validity of a specific hypothesis. The common test involves
a computation of some numeric value (also known as “test statistic”) which is usually compared with a critical
value in order to determine if you should accept or reject the test hypothesis (H0). Most tests compute a critical
value for the given significance alpha which has the default value 0.05 or a user-provided value via the /ALPH
flag. Some tests directly compute the P value which you can compare to the desired significance value.

Critical values have been traditionally published in tables for various significance levels and tails of distri-
butions. They are by far the most difficult technical aspect in implementing statistical tests. The critical
values are usually obtained from the inverse of the CDF for the particular distribution, i.e., from solving
cdf(criticalValue)=1-alpha, where alpha is the significance. In some distributions (e.g., Friedman’s) the calcu-
lation of the CDF is so computationally intensive that it is impractical (using desktop computers in 2006) to
compute for very large parameters. Igor’s tests provide whenever possible exact critical values as well as
the common relevant approximations.

Comparison of critical values with published table values can sometimes be interesting as there does not
appear to be a standard for determining the published critical value when the CDF takes a finite number of
discrete values (step-like). In this case the CDF attains the value (1-alpha) in a vertical transition so one could
use the X value for the vertical transition as a critical value or the X value of the subsequent vertical transi-
tion. Some tables reflect a “conservative” approach and print the X value of subsequent transitions.

Statistical test operations can print their results to the history window and save them in a wave in the
current data folder. Result waves have a fixed name associated with the operation. Elements in the wave
are designated by dimension labels. You can use the /T flag to display the results of the operation in a table
with dimension labels. The argument for this flag determines what happens when you kill the table. You
can use/Q in all test operations to prevent printing information in the history window and you can use the
/Z flag to make sure that the operations do not report errors except by setting the V_Flag variable to -1.

Statistical test operations tend to include several variations of the named test. You can usually choose to
execute one or more variations by specifying the appropriate flags. The following table can be used as a
guide for identifying the operation associated with a given test name.

Chapter III-12 — Statistics

III-331

Statistical Test Operations by Name

Test Name Where to find it

Angular Distance StatsAngularDistanceTest

Bartlett’s test for variances StatsVariancesTest

BootStrap StatsResample

Brown and Forsythe StatsANOVA1Test

Chi-squared test for means StatsChiTest

Cochran’s test StatsCochranTest

Dunn-Holland-Wolfe StatsNPMCTest

Dunnette multicomparison test StatsDunnettTest, StatsLinearRegression

Fisher's Exact Test StatsContingencyTable

Fixed Effect Model StatsANOVA1Test

Friedman test on randomized block StatsFriedmanTest

F-test on two distributions StatsFTest

Hodges-Ajne (Batschelet) StatsHodgesAjneTest

Hartigan test for unimodality StatsDIPTest

Hotelling StatsCircularTwoSampleTest, StatsCircularMeans

Jackknife StatsResample

Jarque-Bera Test StatsJBTest

Kolmogorov-Smirnov StatsKSTest

Kruskal-Wallis StatsKWTest

Kuiper Test StatsCircularMoments

Levene’s test for variances StatsVariancesTest

Linear Correlation Test StatsLinearCorrelationTest

Linear Order Statistic StatsCircularMoments

Mann-Kendall StatsKendallTauTest

Moore test StatsCircularTwoSampleTest, StatsCircularMeans

Nonparametric multiple contrasts StatsNPMCTest

Nonparametric angular-angular correlation StatsCircularCorrelationTest

Nonparametric second order circular analysis StatsCircularMeans

Nonparametric serial randomness (nominal) StatsNPNominalSRTest

Parametric angular-angular correlation StatsCircularCorrelationTest

Parametric angular-Linear correlation StatsCircularCorrelationTest

Parametric second order circular analysis StatsCircularMeans

Parametric serial randomness test StatsSRTest

Rayleigh StatsCircularMoments

Repeated Measures StatsANOVA2RMTest

Chapter III-12 — Statistics

III-332

Statistical Test Operations by Data Format
The following tables group statistical operations and functions according to the format of the input data.

Data Type: Single wave.

Scheffe equality of means StatsScheffeTest

Spearman StatsRankCorrelationTest

Student-Newman-Keuls StatsNPMCTest

Tukey Test StatsTukeyTest StatsLinearRegression,
StatsMultiCorrelationTest, StatsNPMCTest

Two-Factor ANOVA StatsANOVA2NRTest

T-test StatsTTest

Watson’s nonparametric two-sample U2 StatsWatsonUSquaredTest, StatsCircularTwoSampleTest

Watson-Williams StatsWatsonWilliamsTest

Weighted-rank correlation test StatsWRCorrelationTest

Wheeler-Watson nonparametric test StatsWheelerWatsonTest

Wilcoxon-Mann-Whitney two-sample StatsWilcoxonRankTest

Wilcoxon signed rank StatsWilcoxonRankTest

Analysis Method Comments

StatsChiTest Compares with known binned values

StatsCircularMoments WaveStats for circular data

StatsKendallTauTest Similar to Spearman’s correlation

StatsMedian Returns the median

StatsNPNominalSRTest Nonparametric serial randomness test

StatsQuantiles Computes quantiles and more

StatsResample Bootstrap analysis

StatsSRTest Serial randomenss test

StatsTrimmedMean Returns the trimmed mean

StatsTTest Compares with known mean

Sort Reorders the data

WaveStats Basic statistical description

StatsJBTest Jarque-Bera test for normality

StatsKSTest Limited scope test for normality

StatsDIPTest Hartigan test for unimodality

Test Name Where to find it

Chapter III-12 — Statistics

III-333

Data Type: Two waves.

Data Type: Multiple waves or multidimensional waves.

Analysis Method Comments

StatsChiTest Statistic for comparing two distributions

StatsCochranTest Randomized block or repeated measures test

StatsCircularTwoSampleTest Second order analysis of angles

StatsDunnettTest Compares multiple groups to a control

StatsFTest Computes ratio of variances

StatsFriedmanTest Nonparametric ANOVA

StatsKendallTauTest Similar to Spearman’s correlation

StatsTTest Compares the means of two distributions

StatsANOVA1Test One-way analysis of variances

StatsLinearRegression Linear regression analysis

StatsLinearCorrelationTest Linear correlation coefficient and its error

StatsRankCorrelationTest Computes Spearman’s rank correlation

StatsVariancesTest Compares variances of waves

StatsWilcoxonRankTest Two-sample or signed rank test

StatsWatsonUSquaredTest Compares two populations of circular data

StatsWatsonWilliamsTest Compares mean values of angular distributions

StatsWheelerWatsonTest Compares two angular distributions

Analysis Method Comments

StatsANOVA1Test One-way analysis of variances

StatsANOVA2Test Two-factor analysis of variances

StatsANOVA2RMTest Two-factor repeated measure ANOVA

StatsCochranTest Randomized block or repeated measures test

StatsContingencyTable Contingency table analysis

StatsDunnettTest Comparing multiple groups to a control

StatsFriedmanTest Nonparametric ANOVA

StatsNPMCTest Nonparametric multiple comparison tests

StatsScheffeTest Tests equality of means

StatsTukeyTest Multiple comparisons based on means

StatsWatsonWilliamsTest Compares mean values of angular distributions

StatsWheelerWatsonTest Compares two angular distributions

Chapter III-12 — Statistics

III-334

Statistical Test Operations for Angular/Circular Data

Statistical Test Operations: Nonparametric Tests

Noise Functions
The following functions return numbers from a pseudo-random distribution of the specified shapes and
parameters. Except for enoise and gnoise where you have an option to select a random number generator,
the remaining noise functions use a Mersenne Twister algorithm for the initial uniform pseudo-random dis-
tribution. Note that whenever you need repeatable results you should use SetRandomSeed prior to execut-
ing any of the noise functions.

The following noise generation functions are available:

StatsAngularDistanceTest StatsHodgesAjneTest

StatsCircularMoments StatsWatsonUSquaredTest

StatsCircularMeans StatsWatsonWilliamsTest

StatsCircularTwoSampleTest StatsWheelerWatsonTest

StatsCircularCorrelationTest

Operation Comments

StatsAngularDistanceTest

StatsFriedmanTest

StatsCircularTwoSampleTest Parametric or nonparametric

StatsCircularCorrelationTest Parametric or nonparameteric

StatsCircularMeans Parametric or nonparameteric

StatsHodgesAjneTest

StatsKendallTauTest

StatsKWTest

StatsNPMCTest

StatsNPNominalSRTest

StatsRankCorrelationTest

StatsWatsonUSquaredTest

StatsWheelerWatsonTest

StatsWilcoxonRankTest

binomialNoise logNormalNoise

enoise lorentzianNoise

expnoise poissonNoise

gammaNoise StatsPowerNoise

gnoise StatsVonMisesNoise

hyperGNoise wnoise

Chapter III-12 — Statistics

III-335

Cumulative Distribution Functions
A cumulative distribution function (CDF) is the integral of its respective probability distribution function
(PDF). CDFs are usually well behaved functions with values in the range [0,1]. CDFs are important in com-
puting critical values, P values and power of statistical tests.

Many CDFs are computed directly from closed form expressions. Others can be difficult to compute
because they involve evaluating a very large number of states, e.g., Friedman or USquared distributions. In
these cases you have the following options:
1. Use a built-in table that consists of exact, precomputed values.
2. Compute an approximate CDF based on the prevailing approximation method or using a Monte-

Carlo approach.
3. Compute the exact CDF.
Built-in tables are ideal if they cover the range of the parameters that you need. Monte-Carlo methods can
be tricky in the sense that repeated application may return small variations in values. Computing the exact
CDF may be desirable, but it is often impractical. In most situations the range of parameters that is practical
to compute on a desktop machine is already covered in the built-in tables. Larger parameters not have been
considered because they take days to compute or because they require 64 bit processors. In addition, most
of the approximations tend to improve with increasing size of the parameters.

The functions to calculate values from CDFs are as follows:

Probability Distribution Functions
Probability distribution functions (PDF) are sometimes known as probability densities. In the case of con-
tinuous distributions, the area under the curve of the PDF for each interval equals the probability for the
random variable to fall within that interval. The PDFs are useful in calculating event probabilities, charac-
teristic functions and moments of a distribution.

The functions to calculate values from PDFs are as follows:

StatsBetaCDF StatsHyperGCDF StatsQCDF

StatsBinomialCDF StatsKuiperCDF StatsRayleighCDF

StatsCauchyCDF StatsLogisticCDF StatsRectangularCDF

StatsChiCDF StatsLogNormalCDF StatsRunsCDF

StatsCMSSDCDF StatsMaxwellCDF StatsSpearmanRhoCDF

StatsDExpCDF StatsInvMooreCDF StatsStudentCDF

StatsErlangCDF StatsNBinomialCDF StatsTopDownCDF

StatsEValueCDF StatsNCFCDF StatsTriangularCDF

StatsExpCDF StatsNCTCDF StatsUSquaredCDF

StatsFCDF StatsNormalCDF StatsVonMisesCDF

StatsFriedmanCDF StatsParetoCDF StatsQCDF

StatsGammaCDF StatsPoissonCDF StatsWaldCDF

StatsGeometricCDF StatsPowerCDF StatsWeibullCDF

StatsBetaPDF StatsGammaPDF StatsParetoPDF

StatsBinomialPDF StatsGeometricPDF StatsPoissonPDF

StatsCauchyPDF StatsHyperGPDF StatsPowerPDF

StatsChiPDF StatsLogNormalPDF StatsRayleighPDF

Chapter III-12 — Statistics

III-336

Inverse Cumulative Distribution Functions
The inverse cumulative distribution functions return the values at which their respective CDFs attain a
given level. This value is typically used as a critical test value. There are very few functions for which the
inverse CDF can be written in closed form. In most situations the inverse is computed iteratively from the
CDF.

The functions to calculate values from inverse CDFs are as follows:

General purpose operations and functions
This group includes operations and functions that existed before IGOR Pro 6.0 and some general purpose
operations and functions that do not belong to the main groups listed.

StatsDExpPDF StatsMaxwellPDF StatsRectangularPDF

StatsErlangPDF StatsBinomialPDF StatsStudentPDF

StatsErrorPDF StatsNCChiPDF StatsTriangularPDF

StatsEValuePDF StatsNCFPDF StatsVonMisesPDF

StatsExpPDF StatsNCTPDF StatsWaldPDF

StatsFPDF StatsNormalPDF StatsWeibullPDF

StatsInvBetaCDF StatsInvKuiperCDF StatsInvQpCDF

StatsInvBinomialCDF StatsInvLogisticCDF StatsInvRayleighCDF

StatsInvCauchyCDF StatsInvLogNormalCDF StatsInvRectangularCDF

StatsInvChiCDF StatsInvMaxwellCDF StatsInvSpearmanCDF

StatsInvCMSSDCDF StatsInvMooreCDF StatsInvStudentCDF

StatsInvDExpCDF StatsInvNBinomialCDF StatsInvTopDownCDF

StatsInvEValueCDF StatsInvNCFCDF StatsInvTriangularCDF

StatsInvExpCDF StatsInvNormalCDF StatsInvUSquaredCDF

StatsInvFCDF StatsInvParetoCDF StatsInvVonMisesCDF

StatsInvFriedmanCDF StatsInvPoissonCDF StatsInvWeibullCDF

StatsInvGammaCDF StatsInvPowerCDF

StatsInvGeometricCDF StatsInvQCDF

binomial Sort StatsTrimmedMean

binomialln StatsCircularMoments StudentA

erf StatsCorrelation StudentT

erfc StatsMedian WaveStats

inverseErf StatsQuantiles StatsPermute

inverseErfc StatsResample

Chapter III-12 — Statistics

III-337

Hazard and Survival functions
Igor does not provide built-in functions to calculate the Survival or Hazard functions. They can be calcu-
lated easily from the Probability Distribution Functions on page III-335 and Cumulative Distribution
Functions on page III-335.

In the following, the cumulative distribution functions are denoted by F(x) and the probability distribution
functions are denoted by p(x).

The Survival Function S(x) is given by

The Hazard function h(x) is given by

The cumulative hazard function H(x) is

Inverse Survival Function Z(a) is

where G() is the inverse CDF (see Inverse Cumulative Distribution Functions on page III-336).

Procedures
Several procedure files are provided to extend the built-in statistics capability described in this chapter.
Some of these procedure files provide user interfaces to the built-in statistics functionality. Others extend
the functionality.

In the Analysis menu you will find a Statistics item that brings up a submenu. Selecting any item in the
submenu will cause all the statistics-related procedure files to be loaded, making them ready to use. Alter-
natively, you can load all the statistics procedures by adding the following include statement to the top of
your procedure window:
#include <AllStatsProcedures>

Functionality provided by the statistics procedure files includes the 1D statistics Report package for auto-
matic analysis of single 1D waves, and the ANOVA Power Calculations Panel, as well as functions to create
specialized graphs:

Convenience functions:

statsAutoCorrPlot() statsPlotLag() statsPlotHistogram()

statsBoxPlot() statsProbPlot()

WM_2MeanConfidenceIntervals() WM_MCPointOnRegressionLines()

WM_2MeanConfidenceIntervals2() WM_MeanConfidenceInterval()

S(x) = 1 − F(x)

h(x) =
p(x)
S(x)

=
p(x)

1 − F(x)
.

H (x) = h(u)du
−€

x

∨
H (x) = − ln 1 − F(x)[]

Z(α) = G(1 − α),

Chapter III-12 — Statistics

III-338

Obsolete XOP
Much of the statistics functionality prior to Igor Pro 6 was provided by the StatFuncs XOP. This XOP is now obso-
lete; all functionality provided by the XOP is available in the form of built-in functions and operations. The XOP
is still available for backward compatibility, but you should move your work to the new built-in equivalents.

This table specifies how to map the old functions into new ones.

References
Ajne, B., A simple test for uniformity of a circular distribution, Biometrica, 55, 343-354, 1968.
Bradley, J.V., Distribution-Free Statistical Tests, Prentice Hall, Englewood Cliffs, New Jersey, 1968.
Cheung, Y.K., and J.H. Klotz, The Mann Whitney Wilcoxon distribution using linked lists, Statistica Sinica,

7, 805-813, 1997.
Copenhaver, M.D., and B.S. Holland, Multiple comparisons of simple effects in the two-way analysis of

variance with fixed effects, Journal of Statistical Computation and Simulation, 30, 1-15, 1988.
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.
Fisher, N.I., Statistical Analysis of Circular Data, 295pp., Cambridge University Press, New York, 1995.

WM_BernoulliCdf() WM_OneTailStudentA()

WM_BinomialPdf() WM_OneTailStudentT()

WM_CIforPooledMean() WM_PlotBiHistogram()

WM_CompareCorrelations() WM_RankForTies()

WM_EstimateMinDetectableDiff() WM_RankLetterGradesWithTies()

WM_EstimateReqSampleSize() WM_RegressionInversePrediction()

WM_EstimateReqSampleSize2() WM_SSEstimatorFunc()

WM_EstimateSampleSizeForDif() WM_SSEstimatorFunc2()

WM_GetANOVA1Power() WM_SSEstimatorFunc3()

WM_GetGeometricAverage() WM_VarianceConfidenceInterval()

WM_GetHarmonicMean() WM_WilcoxonPairedRanks()

WM_GetPooledMean() WM_StatsKaplanMeier()

WM_GetPooledVariance()

Old New

pnoise() poissonNoise()

gammanoise() gammaNoise()

statTTest() StatsTTest

statFTest() StatsFTest

statsChiTest() StatsChiTest

StatsPearsonTest() StatsCorrelation

WM_2MeanConfidenceIntervals() WM_MCPointOnRegressionLines()

Chapter III-12 — Statistics

III-339

Iman, R.L., and W.J. Conover, A measure of top-down correlation, Technometrics, 29, 351-357, 1987.
Kendall, M.G., Rank Correlation Methods, 3rd ed., Griffin, London, 1962.
Klotz, J.H., Computational Approach to Statistics, <http://www.stat.wisc.edu/~klotz/Book.pdf>.
Moore, B.R., A modification of the Rayleigh test for vector data, Biometrica, 67, 175-180, 1980.
Press, William H., et al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New York, 1992.
van de Wiel, M.A., and A. Di Bucchianico, Fast computation of the exact null distribution of Spearman’s rho

and Page’s L statistic for samples with and without ties, J. of Stat. Plan. and Inference, 92, 133-145, 2001.
Wallace, D.L., Simplified Beta-Approximation to the Kruskal-Wallis H Test, J. Am. Stat. Assoc., 54, 225-230, 1959.
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

http://www.stat.wisc.edu/~klotz/Book.pdf

Chapter III-12 — Statistics

III-340

Chapter

III-13
III-13Procedure Windows

Overview.. 342
Types of Procedure Files.. 342
Working with the Built-in Procedure Window .. 342

Compiling the Procedures.. 343
Templates Pop-Up Menu.. 343
Procedures Pop-Up Menu .. 343
Magnifier Icon .. 344
Write-Protect Icon.. 344

Creating Procedures ... 344
Creating New Procedure Files .. 345
Opening an Auxiliary Procedure File .. 345
Showing Procedure Windows .. 345
Hiding and Killing Procedure Windows... 346
Shared Procedure Files... 347

Saving Shared Procedure Files .. 347
Global Procedure Files ... 347

Saving Global Procedure Files ... 348
Including a Procedure File... 348
Creating Packages... 349
Invisible Procedure Files.. 349

Invisible Procedure Windows Using #pragma hide... 349
Invisible Procedure Windows Using Independent Modules.. 349
Invisible Procedure Files Using The Files Visibility Property... 349

Inserting Text... 350
Adopting a Procedure File... 351
Auto-Compiling .. 351
Debugging Procedures... 351
Finding Text... 351
Replacing Text ... 352
Printing Procedure Text ... 352
Indentation... 353
Document Settings.. 353
Syntax Coloring... 354
Text Character Settings .. 354
Procedure Window Preferences ... 354
Double and Triple-Clicking... 355
Matching Characters... 355
Code Comments.. 355
UTF-16 Files ... 355
Procedure Window Shortcuts ... 356

Chapter III-13 — Procedure Windows

III-342

Overview
This chapter explains what procedure windows are, how they are created and organized, and how you work
with them. It does not cover programming. See Chapter IV-2, Programming Overview for an introduction.

A procedure window is where Igor procedures are stored. Igor procedures are the macros, functions and
menu definitions that you create or that Igor creates automatically for you.

The content of a procedure window is stored in a procedure file. In the case of a packed Igor experiment,
the procedure file is packed into the experiment file.

Types of Procedure Files
There are four types of procedure files:
• The experiment procedure file, displayed in the built-in procedure window
• Auxiliary experiment procedure files, displayed in auxiliary procedure windows
• Shared procedure files, displayed in auxiliary procedure windows
• Global procedure files, displayed in auxiliary procedure windows

The built-in procedure window holds experiment-specific procedures of the currently open experiment.
This is the only procedure window that beginning or casual Igor users may need.

All other procedure windows are called auxiliary to distinguish them from the built-in procedure window.
You create an auxiliary procedure window using Windows→New→Procedure. You can then save it to a
standalone file, using File→Save Procedure As, or allow Igor to save it as part of the current experiment.

A global procedure file contains procedures that you might want to use in any experiment. It must be saved
as a standalone file in the "Igor Procedures" folder of your Igor Pro User Files folder. Procedure files in "Igor
Procedures" are automatically opened by Igor at startup and left open until Igor quits. This is the easiest
way to make procedures available to multiple experiments.

A shared procedure file contains procedures that you want to use in more than one experiment but that you
don't want to be open all of the time. It must be saved as a standalone file. The recommended location is the
"User Procedures" folder of your Igor Pro User Files folder.

An auxiliary experiment procedure file contains procedures that you want to use in a single experiment but
want to keep separate from the built-in procedure window for organizational purposes. In a packed exper-
iment it is saved as a packed file within the experiment file. In an unpacked experiment it is saved as a
standalone file in the experiment folder.

Working with the Built-in Procedure Window
Procedures that are specific to the current experiment are usually stored in the built-in procedure window.
Also, when Igor automatically generates procedures it stores them in the built-in procedure window.

A menu definition and
a function in the built-
in Procedure window.

Click to get general info
on the procedure file.

Click to insert a template for a function, operation or flow control structure.
Option-click (Macintosh) or Alt-click (Windows) to get help.

Write-protect icon.

Click to find a macro, user function
or menu definition in this procedure
window. Option-click (Macintosh) or
Alt-click (Windows) to search all
procedure windows.

Text magnifier icon.

Chapter III-13 — Procedure Windows

III-343

To show the built-in procedure window, choose Procedure Window from the Procedure Windows
submenu of the Windows menu or press Command-M (Macintosh) or Ctrl+M (Windows). To hide it, click
the close button or press Command-W (Macintosh) or Ctrl+W (Windows).

To create a procedure, just type it into the procedure window.

The contents of the built-in procedure window are automatically stored when you save the current Igor
experiment. For unpacked experiments the contents are stored in a file called “procedure” in the experi-
ment folder. For packed experiments they are stored in the packed experiment file. When you open an
experiment Igor loads its procedures back into the built-in procedure window.

Compiling the Procedures
When you modify the text in the procedure window, you
will notice that a Compile button appears at the bottom of
the window.

Clicking the Compile button scans the procedure
window looking for macros, functions and menu defi-
nitions. Igor compiles user-defined functions, generat-
ing low-level instructions that can be executed quickly.

Igor also compiles the code in the procedure window if you choose Compile from the Macros menu or if
you activate any window other than a procedure or help window.

Templates Pop-Up Menu
The Templates pop-up menu lists all of the built-in
and external operations and functions in alphabet-
ical order and also lists the common flow control
structures.

If you choose an item from the menu, Igor inserts the
corresponding template in the procedure window.

If you select, click in, or click after a recognized
operation, function or flow-control keyword in the
procedure window, two additional items are listed
at the top of the menu. The first item inserts a tem-
plate and the second takes you to help.

If you select, click in, or click after a term for which
Igor can provide a template, an item that inserts a
template is added at the top of the menu. If Igor can provide help for the term, another item is added leading to
the help. See Procedure Window Shortcuts on page III-356.

Procedures Pop-Up Menu
The Procedures pop-up menu provides a quick way for you to find procedures in the procedure window.

Chapter III-13 — Procedure Windows

III-344

If you choose an item, Igor finds it. The menu normally lists just those procedures in the active window but if
you press Option (Macintosh) or Alt (Windows), Igor will include procedures from all open procedure windows.

If you select, click in, or click after a recognized user procedure, an additional item is listed at the top of the
menu which finds the selected procedure. Certain kinds of syntax errors prevent Igor from recognizing the
selected procedure in which case, the menu will not include an item to find the procedure.

Magnifier Icon
You can magnify procedure text to make it more readable. See Text Magnification on page II-71 for details.

Write-Protect Icon
Procedure windows have a write-enable/write-protect icon which appears in the lower-left corner of the
window and resembles a pencil. If you click this icon, Igor Pro will draw a line through the pencil, indicat-
ing that the procedure window is write-protected. The main purpose of this is to prevent accidental altera-
tion of shared procedure files.

Igor opens included user procedure files for writing but turns on the write-protect icon so that you will get
a warning if you attempt to change them. If you do want to change them, simply click the write-protect icon
to turn protection off.

If a procedure file is opened for reading only, you will see a lock icon instead of the pencil icon. A file
opened for read-only can not be modified.

WaveMetrics procedures, in the WaveMetrics Procedures folder, are assumed to be the same for all Igor users
and should not be modified by users. Therefore, Igor Pro opens WaveMetrics procedures for reading only.

Creating Procedures
There are three ways to create procedures:
• Automatically by Igor
• Manually, when you type in a procedure window
• Semiautomatically, when you use various dialogs (e.g., the dialog that adds controls to a panel and

the Curve Fitting dialog)

Igor offers to automatically create a window recreation macro when you close a target window. A window
recreation macro is a procedure that can recreate a graph, table, page layout or control panel window. Igor
always stores window recreation macros in the built-in procedure window. See Saving a Window as a Rec-
reation Macro on page II-61 for details.

You can add procedures by merely typing them in a procedure window.

List of functions and macros.

List of menu definitions.

Finds definition of selected procedure.

Chapter III-13 — Procedure Windows

III-345

You can create user-defined controls in a graph or control panel. Each control has an optional action pro-
cedure that runs when the control is used. You can create a control and its corresponding action procedure
using dialogs that you access through the Add Controls submenu in the Graph or Panel menus. These
action procedures are initially stored in the built-in procedure window.

Creating New Procedure Files
You create a new procedure file if you want to write procedures to be used in more than one experiment.

Note: There is a risk in sharing procedure files among experiments. If you copy the experiment to
another computer and forget to also copy the shared files, the experiment will not work on the
other computer. See References to Files and Folders on page II-37 for further details.

If you do create a shared procedure file then you are responsible for copying the shared file when you copy
an experiment that relies on it.

To create a new procedure file, choose Procedure from the New submenu of the Windows menu.

This creates a new procedure window. The procedure file is not created until you save the procedure window
or save the experiment.

You can explicitly save the procedure window by choosing File→Save Procedure As or by closing it and
choosing to save it in the resulting dialog. This saves the file as an auxiliary procedure file, separate from
the experiment.

If you don’t save the procedure window explicitly, Igor will save it as part of the current experiment the
next time you save the experiment.

Opening an Auxiliary Procedure File
You can open a procedure file using the File→Open File→Procedure menu item.

When you open a procedure file, Igor displays it in a new procedure window. The procedures in the
window can be used in the current experiment. When you save the current experiment, Igor will save a ref-
erence to the shared procedure file in the experiment file. When you later open the experiment, Igor will
reopen the procedure file.

For commonly used auxiliary files, it is better to use the include statement than to explicitly open the files.
See Including a Procedure File on page III-348.

Showing Procedure Windows
We usually hide procedure windows when we are not doing programming. To show the built-in procedure
window, choose Procedure Window from the Procedure Windows submenu of the Windows menu or
press Command-M (Macintosh) or Ctrl+M (Windows). To show auxiliary procedure windows, use the
Windows→Procedure Windows menu item.

If you have more than one procedure window, you can cycle to the next procedure window by pressing
Command-Option-M (Macintosh) or Ctrl+Alt+M (Windows). Pressing Command-Shift-Option-M (Macin-
tosh) or Ctrl+Shift+Alt+M (Windows) hides the active procedure window and shows the next one.

The document name will be
used as the file name when
you save the procedure file.Procedure files are

always plain text files.

Chapter III-13 — Procedure Windows

III-346

You can also show a procedure window by choosing a menu item added by that window while pressing
Option (Macintosh) or Alt (Windows). This feature works only if the top window is a procedure window.

You can show all procedure windows and hide all procedure windows using the Windows→Show and
Windows→Hide submenus.

Hiding and Killing Procedure Windows
The built-in procedure window always exists as part of the current experiment. You can hide it by clicking
in the close button, pressing Command-W (Macintosh) or Ctrl+W (Windows) or by choosing Hide from the
Windows menu. You can not kill it.

Auxiliary procedure files can be opened (added to the experiment), hidden and killed (removed from the
experiment). This leads to a difference in behavior between auxiliary procedure windows and the built-in
procedure window.

When you click the close button of an auxiliary procedure file, Igor presents the Close Procedure Window
dialog to find out what you want to do.

If you just want to hide the window, you can press Shift while clicking the close button. This skips the dialog
and just hide the window.

Killing a procedure window closes the window and removes it from the current experiment but does not
delete or otherwise affect the procedure file with which the window was associated. If you have made
changes or the procedure was not previously saved, you will be presented with the choice of saving the file
before killing the procedure.

The Close item of the Windows menu and the equivalent, Command-W (Macintosh) or Ctrl+W (Windows),
behave the same as the close button, as indicated in these tables.

Macintosh:
Actions Modifier Key Result

Click close button, choose Close, press Command-W Displays dialog

Click close button, choose Close, press Command-W Shift Hides window

Click close button, choose Close, press Command-W Option Displays dialog

Windows:
Actions Modifier Key Result

Click close button, choose Close, press Ctrl+W Displays dialog

Click close button, choose Close, press Ctrl+W Shift Hides window

Click close button, choose Close, press Ctrl+W Alt Displays dialog

Saves the file and removes it
from the experiment.

Removes the file from the
experiment without saving.

Just hides the window.

Chapter III-13 — Procedure Windows

III-347

Macintosh: When the Close Procedure Window dialog is showing, you can press Option to make the Kill button
the default. The Kill button will become bold while the “Save and then kill” button will become normal. You can
then press Return or Enter to kill the window. Similarly, press Shift to make the Hide button the default button.

Shared Procedure Files
You may develop procedures that you want to use in several but not all of your experiments. You can facil-
itate this by creating a shared procedure file. This is a procedure file that you save in its own file, separate
from any experiment. Such a file can be opened from any experiment.

There are two ways to open a shared procedure file from an experiment: by explicitly opening it, using the
File→Open File submenu or by adding an include statement to your experiment procedure window. The
include method is preferred and is described in detail under Including a Procedure File on page III-348.

When Igor encounters an include statement, it searches for the included file in "Igor Pro Folder/User Pro-
cedures" and in "Igor Pro User Files/User Procedures" (see Igor Pro User Files on page II-46 for details). The
Igor Pro User Files folder is the recommended place for storing user files. You can locate it by choosing
Help→Show Igor Pro User Files.

You can store your shared procedure procedure file directly in "Igor Pro User Files/User Procedures" or you
can store it elsewhere and put an alias (Macintosh) or shortcut (Windows) for it in "Igor Pro User Files/User
Procedures". If you have many shared procedure files you can put them all in your own folder and put an
alias/shortcut for the folder in "Igor Pro User Files/User Procedures".

When you explicitly open a procedure file using the Open File submenu, you are adding it to the current
experiment. When you save the experiment, Igor saves a reference to the procedure file in the experiment
file. When you close the experiment, Igor closes the procedure file. When you later reopen the experiment,
Igor reopens the procedure file.

When you use an include statement, the included file is not considered part of the experiment but is still
referenced by the experiment. Igor automatically opens the included file when it hits the include statement
during procedure compilation.

Note: There is a risk in sharing procedure files among experiments. If you copy the experiment to
another computer and forget to also copy the shared files, the experiment will not work on the
other computer. See References to Files and Folders on page II-37 for more explanation.

Saving Shared Procedure Files
If you modify a shared procedure file, Igor saves it when you save the experiment that is sharing it. How-
ever, you might want to save the procedure file without saving the experiment. For this, choose File→Save
Procedure.

Global Procedure Files
Global procedure files contain procedures that you want to be available in all experiments. They differ from
other procedure files in that Igor opens them automatically and never closes them.

When Igor starts running, it searches "Igor Pro Folder/Igor Procedures" and "Igor Pro User Files/Igor Proce-
dures" (seeIgor Pro User Files on page II-46 for details), as well as files and folders referenced by aliases or
shortcuts. Igor opens any procedure file that it finds during this search as a global procedure file.

You should save your global procedure files in "Igor Pro User Files/Igor Procedures". You can locate this
folder by choosing Help→Show Igor Pro User Files.

Igor opens global procedure files with write-protection on since they presumably contain procedures that you
have already debugged and which you don’t want to inadvertently modify. If you do want to modify a global
procedure file, click the write-protect icon (pencil in lower-left corner of the window).

Chapter III-13 — Procedure Windows

III-348

When you create a new experiment or open an existing one, Igor normally closes any open procedure files,
but it leaves global procedure files open. You can explicitly close a global procedure window at any time and
then you can manually reopen it. Igor will not automatically reopen it until the next time Igor is launched.

Although its procedures can be used by the current experiment, a global procedure file is not part of the
current experiment. Therefore, Igor does not save a global procedure file or a reference to a global proce-
dure file inside an experiment file.

Note: There is a risk in using global procedure files. If you copy an experiment that relies on a global
procedure file to another computer and forget to also copy the global procedure file, the
experiment will not work on the other computer.

Saving Global Procedure Files
If you modify a global procedure file, Igor will save it when you save the current experiment even though
the global procedure file is not part of the current experiment. However, you might want to save the pro-
cedure file without saving the experiment. For this, use the File→Save Procedure menu item.

Including a Procedure File
You can put an include statement in any procedure file. An include statement automatically opens another
procedure file. This is the recommended way of accessing files that contain utility routines which you may
want to use in several experiments. Using an include statement is preferable to opening a procedure file
explicitly because it doesn’t rely on the exact location of the file in the file system hierarchy.

Here is a typical include statement:
#include <MatrixToXYZ>

This automatically opens the MatrixToXYZ.ipf file supplied by WaveMetrics in "Igor Pro Folder/WaveM-
etrics Procedures/Data Manipulation". The angle brackets tell Igor to search the "Igor Pro Folder/WaveM-
etrics Procedures" hierarchy.

To see what WaveMetrics procedure files are available, choose Help→Help Windows→WM Procedures Index.

You can include your own utility procedure files by using double-quotes instead of the angle-brackets
shown above:
#include "Your Procedure File"

The double-quotes tell Igor to search the "Igor Pro Folder/User Procedures" and "Igor Pro User Files/User
Procedures" hierarchies (see Igor Pro User Files on page II-46 for details) for the named file. Igor searches
those folders and subfolders and files or folders referenced by aliases/shortcuts in those folders.

These are the two main variations on the include statement. For details on less frequently used variations,
see The Include Statement on page IV-149.

Included procedure files are not considered part of the experiment but are automatically opened by Igor
when it compiles the experiment’s procedures.

To prevent accidental alteration of an included procedure file, Igor opens it either write-protected (User
Procedures) or read-only (WaveMetrics Procedures). See Write-Protect Icon on page III-344.

A #include statement must omit the file’s “.ipf” extension, if it has one:
#include <Strings as Lists> // RIGHT

#include <Strings as Lists.ipf> // WRONG

See Cross-Platform Procedure Compatibility on page III-406 for details.

Chapter III-13 — Procedure Windows

III-349

Creating Packages
A package is a set of procedure files, help files and other support files that add significant functionality to
Igor.

Igor comes pre-configured with numerous WaveMetrics packages accessed through the Data→Packages,
Analysis→Packages, Misc→Packages, Windows→New→Packages and Graph→Packages submenus as
well as others.

Intermediate to advanced programmers can create their own packages. See Packages on page IV-226 for
details.

Invisible Procedure Files
If you create a package of Igor procedures to be used by regular Igor users (as opposed to programmers),
you may want to hide the procedures to reduce clutter or to eliminate the possibility that they might inad-
vertently change them. You can do this by making the procedure files invisible.

Invisible procedure files are omitted from Igor’s Procedure Windows submenu which appears in the
Windows menu. This keeps them out of the way of regular users.

There are three ways to make a procedure file invisible. In order of difficulty they are:

• Using the #pragma hide compiler directive
• Using an independent module
• Using the operating-system-supplied file visibility property

Invisible Procedure Windows Using #pragma hide
In Igor Pro 6.1 or later, you can make a procedure file invisible by inserting this compiler directive in the file:

#pragma hide=1

This prevents the procedure window from being listed in the Windows→Procedures submenu. Procedures
windows that include this compiler directive become invisible on the next compile.

You can make these windows visible during development by executing:

SetIgorOption IndependentModuleDev=1

and return them to invisible by executing:

SetIgorOption IndependentModuleDev=0

You must force a compile for this to take effect.

Prior to Igor Pro 6.30 this feature worked for #included procedure files only, not for packed and standalone
procedure files.

Invisible Procedure Windows Using Independent Modules
You can also make a set of procedure files invisible by making them an independent module. The indepen-
dent module technique is more difficult to implement but has additional advantages. For details, see The
IndependentModule Pragma on page IV-43.

Invisible Procedure Files Using The Files Visibility Property
This section discusses making procedure files invisible by setting the operating-system-supplied file "visi-
ble" property.

Note: This is an old technique that is no longer recommended. It may not be supported in future
versions of Igor.

Chapter III-13 — Procedure Windows

III-350

When Igor opens a procedure file, it asks the operating system if the file is invisible (Macintosh) or hidden
(Windows). We will use the term “invisible” to mean invisible on Macintosh and hidden on Windows.

If the file is invisible, Igor makes the file inaccessible to the user. Igor checks the invisible property only
when it opens the file. It does not pay attention to whether the property is changed while the file is open.

You create Igor procedures using normal visible procedure files, typically all in a folder or hierarchy of fold-
ers. When it comes time to ship to the end user, you set the files to be invisible. If you set a file to be invisible,
you should also make it read-only.

You can use the SetFileFolderInfo operation (see page V-632) to set the visibility and read-only properties
of a file:
SetFileFolderInfo /INV=1 /RO=1 "<path to file>"

The file will be invisible in Igor the next time you open it, typically by opening an experiment or using a
#include statement.

The file will still be visible in the Macintosh Finder until you restart the Finder.

On Windows, merely setting the hidden property is not sufficient to actually hide the file. It is actually
hidden only if the Hide Files of These Types radio button in the View Options dialog is turned on. You can
access this dialog by opening a folder in the Windows desktop and choosing View→Options from the
folder’s menu bar. Although the hidden property in Windows does not guarantee that the file will be
hidden in the Windows desktop, it does guarantee that it will be hidden from within Igor.

After the files are set to be invisible and read-only, if you want to edit them in Igor, you must close them (typi-
cally by closing the open experiment), set the files to be visible and read/write again, and then open them again.

Igor’s behavior is changed in the following ways for a procedure file set to invisible:
1. The window will not appear in the Windows→Procedure Windows menu.
2. Procedures in the window will not appear in the Procedure pop-up menu at the bottom of all pro-

cedure windows.
3. Procedures in the window will not appear in the contextual pop-up menu in other procedure win-

dows (Control-click on Macintosh, right-click on Windows).
4. If the user presses Option (Macintosh) or Alt (Windows) while choosing the name of a procedure from

a menu, Igor will do nothing rather than its normal behavior of displaying the procedure window.
5. When cycling through procedure windows using Command-Shift-Option-M (Macintosh) or

Ctrl+Shift+Alt+M (Windows), Igor will omit the procedure window.
6. The Button Control dialog, Pop-Up Menu Control dialog, and other control dialogs will not allow

you to edit procedures in the invisible file.
7. The Edit Procedure and Debug buttons will not appear in the Macro Execute Error dialog.
8. If an error occurs in a function in the invisible file and the Debug On Error flag (Procedure menu)

is on, the debugger will act as if Debug On Error were off.
9. The debugger won’t allow you to step into procedures in the invisible file.
10. The ProcedureText function (see page V-575) and DisplayProcedure operation (see page V-132)

will act as if procedures in the invisible file don’t exist. (The MacroList and FunctionList functions
will, however work as usual.)

11. The GetIgorProcedure and SetIgorProcedure XOPSupport routines in the XOP Toolkit will act as if pro-
cedures in the invisible file don’t exist. (The GetIgorProcedureList function will, however work as usual.)

Inserting Text
On occasion, you may want to copy text from one procedure file to another. The Insert File item in the Edit
menu makes this easy. With the procedure window active, choose Insert File. This will display a dialog in
which you can find the file and will then insert its contents into the procedure window.

Chapter III-13 — Procedure Windows

III-351

Adopting a Procedure File
Adoption is a way for you to copy a procedure file into the current experiment and break the connection to
its original file. The reason for doing this is to make the experiment self-contained so that, if you transfer it
to another computer or send it to a colleague, all of the files needed to recreate the experiment will be stored
in the experiment itself.

To adopt a file, choose Adopt Window from the File menu. This item will be available only if the active
window is a notebook or procedure file that is stored separate from the current experiment and the current
experiment has been saved to disk.

If the current experiment is stored in packed form then, when you adopt a file, Igor does a save-as to a tem-
porary file. When you subsequently save the experiment, the contents of the temporary file are stored in the
packed experiment file.

If the current experiment is stored in unpacked form then, when you adopt a file, Igor does a save-as to the
experiment’s home folder. When you subsequently save the experiment, Igor updates the experiment’s rec-
reation procedures to open the new file in the home folder instead of the original file. If you adopt a file in
an unpacked experiment and then you do not save the experiment, the new file will still exist in the home
folder but the experiment’s recreation procedures will still refer to the original file. Thus, you should nor-
mally save the experiment soon after adopting a file.

Adoption does not cause the original file to be deleted. You can delete it from the desktop if you want.

To “unadopt” a procedure file, choose Save Procedure File As from the File menu.

It is possible to do adopt multiple files at one time. For details see Adopt All on page II-38.

Auto-Compiling
If you modify a procedure window and then activate a nonprocedure window other than a help window,
Igor automatically compiles the procedures. If you have a lot of procedures and compiling takes a long
time, you may want to turn auto-compiling off.

You can do this by deselecting the Auto-compile item in the Macros menu. This item appears only when
the procedures need to be compiled (you have modified a procedure file or opened a new one). If you dese-
lect this item, Igor will not auto-compile and compilation will be done only when you click the Compile
button or choose Compile from the Macros menu.

Debugging Procedures
Igor includes a symbolic debugger. This is described in The Debugger on page IV-188.

Finding Text
You can access the Find Text dialog via the Edit menu or by pressing Command-F (Macintosh) or Ctrl+F
(Windows).

Select to search the
entire window. Deselect
to search to the end of
the document (or start
of the document if
searching backwards).

Press Shift while clicking
to temporarily reverse
the search direction.

Chapter III-13 — Procedure Windows

III-352

You can search for the next occurrence of a string by selecting the string and pressing Command-Control-
H (Macintosh) or Ctrl+H (Windows) (Find Selection in the Edit menu).

After doing a find, you can search for the same text again by pressing Command-G (Macintosh) or Ctrl+G
(Windows) (Find Same in the Edit menu). You can search for the same text but in the reverse direction by
pressing Command-Shift-G (Macintosh) or Shift+Ctrl+G (Windows).

These keyboard shortcuts can be handy. For example, imagine that you are looking at the definition of a
function and you want to see where it is used. You can double-click the name of the function to select it and
then press Command-Control-H (Macintosh) or Ctrl+H (Windows) to search for the next occurrence. Then,
you can press Command-G (Macintosh) or Ctrl+G (Windows) to find it again or Command-Shift-G (Macin-
tosh) or Ctrl+Shift+G (Windows) to go back to the previous occurrence.

You can also perform a Find on multiple help, procedure and notebook windows at one time. See Finding
Text in Multiple Windows on page II-69.

The Procedures pop-up menu at the bottom of the procedure window provides other ways to find the def-
inition of a procedure in the same or in another procedure file. If you click the pop-up menu, you get a list
of all procedures in the active procedure window. If you Option-click (Macintosh) or Alt click (Windows) on
the pop-up menu, you get a list of all procedures in all procedure windows. If you select the name of a pro-
cedure and then click the pop-up menu, the first item in the pop-up menu will take you directly to the def-
inition of that procedure, no matter what procedure file it is in.

Replacing Text
You can access the Replace Text dialog via the Edit menu or by pressing Command-R (Macintosh) or Ctrl+R
(Windows).

The Search Selected Text Only option is handy for limiting the replacement to a particular procedure.

Replacing text is not undoable. Save the file before doing a mass replace so you can revert-to-saved if necessary.

Another method for searching and replacing consists of (Macintosh) using Command-F (Find) followed by
a series of Command-V (Paste) and Command-G (Find Same) or on Windows, Ctrl+F followed by a series of
Ctrl+V and Ctrl+G.

Printing Procedure Text
Each procedure file has its own page setup record which you can set using the Page Setup item of the File
menu. You can use preferences (see Procedure Window Preferences on page III-354) to set the page setup
record for new procedure windows.

As of Igor Pro 6.20, to make Igor start up faster, each opened help file and procedure file uses a copy of the
same page setup record copied from the preferences for plain text notebooks. This change was made to cope
with recent Macintosh HP drivers that take a very long time to create a new page setup record. This means
that page setup records stored in help and procedure files loaded during launch are ignored.

Press Shift while clicking
to temporarily reverse the
search direction.

Select to search the
entire window. Deselect
to search to the end of
the document (or start
of the document if
searching backwards).

Chapter III-13 — Procedure Windows

III-353

You can print all or part of a procedure file.

Macintosh: To print all of the file, click so that no text is selected and then use the Print Procedure File item
in the File menu. To print part of it, select the text to be printed and then use the Print Procedure Selection
item in the File menu.

Windows: Choose File→Print Procedure File and use the Selection radio button in the Print dialog.

Indentation
We use indentation to indicate the structure of a procedure. This is described in Indentation Conventions
on page IV-22.

To make it easy to use the indentation conventions, Igor maintains indentation when you press Return or
Enter in a procedure window. It automatically inserts enough tabs in the new line to have the same inden-
tation as the previous line.

To indent more, as when going into the body of a loop, press Return or Enter and then Tab. To indent less,
as when leaving the body of a loop, press Return or Enter and then Delete. When you don’t want to change
the level of indentation, just press Return.

Included in the Edit menu for Procedure windows, is the Adjust Indentation item, which adjusts indenta-
tion of all selected lines of text to match Igor standards. The Edit menu also contains Indent Left and Indent
Right commands that add or remove indentation for all selected lines.

Document Settings
The Document Settings dialog controls settings that affect the procedure window as a whole. You can
summon it via the Procedure menu.

Note: On Windows there is no way for Igor to store settings for an auxiliary procedure file, which is stored
as a plain text file. When you open a procedure file or an experiment containing a procedure file on
Windows, Igor uses preferences to set the procedure file’s text format (text font, size, style). Thus, text
format changes that you make to a procedure file are lost on Windows unless you capture them as
your preferred format. The settings for the main procedure window are stored in the experiment file.

Number of first page when printing.

Position of bottom of footer area
relative to physical bottom of page.

Distance between tabs.Controls margins and
placement of headers and
footers during printing.

Position of top of header
area relative to physical
top of page.

Sets background color of entire
window.

Displays another dialog in
which footer can be edited.

Not available because
Use Default Header is
selected.

Chapter III-13 — Procedure Windows

III-354

Syntax Coloring
The procedure editor colorizes comments, literal strings, flow control, and other function syntax elements.
Colors of various elements can be adjusted using the following commands:

The settings last only for the length of the Igor session. See SetIgorOption operation on page V-638.

Values for r, g, and b range from 0 to 65535.

Text Character Settings
You can specify the font, text size, style and color using items in the Procedure menu. Since procedure
windows are always plain text windows (as opposed to notebooks, which can be formatted text) these text
settings are the same for all characters in the window. On Macintosh, text format settings are stored in the
resource fork of the procedure file. On Windows, where there is no resource fork, text format settings are
not stored and revert to the preferred settings when a procedure window is opened.

Procedure Window Preferences
The procedure window preferences affect the creation of new procedure windows. This includes the cre-
ation of auxiliary procedure windows and the initialization of the built-in procedure window that occurs
when you create a new experiment.

To set procedure preferences, set the attributes of any procedure window and then use the Capture Proce-
dure Prefs item in the Procedure menu.

To determine the current preference settings, you must create a new procedure window and examine its settings.

Procedure windows each have their own Page Setup values. New procedure windows will have their own
copy of the captured (or default) Page Setup values.

Command Effect
SetIgorOption colorize,doColorize=<1 or 0> Turn all colorize on or off
SetIgorOption colorize,OpsColorized=<1 or 0> Turn operation keyword colorization on or off
SetIgorOption colorize,BIFuncsColorized=<1 or 0> Turn function keyword colorization on or off
SetIgorOption colorize,keywordColor=(r,g,b) Set color for language keywords
SetIgorOption colorize,commentColor=(r,g,b) Set color for comments
SetIgorOption colorize,stringColor=(r,g,b) Set color for strings
SetIgorOption colorize,operationColor=(r,g,b) Set color for operation keywords
SetIgorOption colorize,functionColor=(r,g,b) Set color for built-in function keywords
SetIgorOption colorize,poundColor=(r,g,b) Set color for #keywords such as #pragma

SetIgorOption colorize,UserFuncsColorized=1 Turn colorizing on for user functions

SetIgorOption colorize,userFunctionColor=(r,g,b) Set color for user-defined functions

Click to revert to factory defaults for the selected items.

“default” indicates that this
preference was never
changed from the factory
default or was changed
and then reverted.

Click to capture preferences
for the selected items.

Chapter III-13 — Procedure Windows

III-355

Preferences are stored in the Igor Preferences file. See Chapter III-17, Preferences, for further information
on preferences.

Double and Triple-Clicking
Double-clicking a word conventionally selects the entire word. Igor extends this idea a bit. In addition to
supporting double-clicking, if you triple-click in a line of text, it selects the entire line. If you drag after
triple-clicking, it extends the selection an entire line at a time.

Matching Characters
Igor includes a handy feature to help you check parenthesized expressions. If you double-click a parenthe-
sis, Igor tries to find a matching parenthesis on the same line of text. If it succeeds, it selects all of the text
between the parentheses. If it fails, it beeps. Consider the command
wave1 = exp(log(x)))

If you double-clicked on the first parenthesis, it would select “log(x)”. If you double-clicked on the last
parenthesis, it would beep because there is no matching parenthesis.

If you double-click in-between adjacent parentheses Igor considers this a click on the outside parenthesis.

Igor does matching if you double-click the following characters:

* No matching is done on two-byte typographic quotes, which are used in Asian fonts.

Code Comments
The Edit menu for procedures contains two items, Commentize and Decommentize, to help you edit and
debug your procedure code when you want to comment out large blocks of code, and later, to remove these
comments. Commentize inserts comment symbol at the start of each selected line of text. Decommentize
deletes any comment symbols found at beginning of each selected line of text.

UTF-16 Files
You can open UTF-16 (two-byte Unicode) text files as procedure windows. Igor does not recognize non-
ASCII characters, but does ignore the byte-order mark at the start of the file (BOM) and null bytes contained
in UTF-16 text files. If you open a UTF-16 file and then save it from Igor, it will be saved as plain ASCII, not
UTF-16, and some information may be lost.

Left and right parentheses (xxx)

Left and right brackets [xxx]

Left and right braces {xxx}

Plain single quotes 'xxx'

Plain double quotes "xxx"

Typographic single quotes ‘xxx’*

Typographic double quotes “xxx”*

Chapter III-13 — Procedure Windows

III-356

Procedure Window Shortcuts
To view text window keyboard navigation shortcuts, see Text Window Navigation on page II-68.

Action Shortcut (Macintosh) Shortcut (Windows)

To show the built-in
procedure window

Press Command-M. Press Ctrl+M.

To hide the active
procedure file and
cycle to the next

Press Command-Shift-Option-M. Press Ctrl+Shift+Alt+M.

To cycle through the
open procedure
windows

Press Command-Option-M. Press Ctrl+Alt+M.

To get a contextual
menu of commonly-
used actions

Press Control and click in the body of
the procedure window.

Right-click the body of the procedure
window.

To execute commands
in a procedure
window

Select the commands or click in the line
containing the commands and press
Control-Return or Control-Enter.

Select the commands or click in the line
containing the commands and press
Ctrl+Enter.

To insert a template Type or select the name of an operation
or function and press Shift-Help.

Control-click the name of an operation
or function.

Type or select the name of an operation
or function and press Ctrl+F1.

Right-click the name of an operation or
function.

To get help for an
operation or function

Type or select the name of an operation
or function and press Shift-Option-
Help.

Control-click the name of an operation
or function.

Type or select the name of an operation
or function and press Ctrl+Alt+F1.

Right-click the name of an operation or
function.

To find a procedure in
the active procedure
window

Click the Procedures pop-up menu at
bottom of the procedure window.

Click the Procedures pop-up menu at
bottom of the procedure window.

To find a procedure in
any procedure
window

Press Option and click the Procedures
pop-up menu at bottom of any
procedure window.

Press Alt and click the Procedures pop-
up menu at bottom of any procedure
window.

To find the definition
of a procedure when
you have selected an
invocation of it

Click the Procedures pop-up menu at
bottom of the procedure window or
press Shift-Option-Help.

Click the Procedures pop-up menu at
bottom of the procedure window or
press Ctrl+Alt+F1.

To find the same text
again

Press Command-G. Press Ctrl+G.

To find again but in
the reverse direction

Press Command-Shift-G. Press Ctrl+Shift+G.

To find the selected
text

Press Command-E and Command-G.

This shortcut can be changed through
the Miscellaneous Settings dialog.

Press Ctrl+H.

Chapter III-13 — Procedure Windows

III-357

To find the selected
text but in the reverse
direction

Press Command-E and Command-
Shift-G.

This shortcut can be changed through
the Miscellaneous Settings dialog.

Press Ctrl+Shift+H.

To find a user-defined
menu’s procedure

Open any procedure window and press
Option while selecting a user-defined
menu item.

Open any procedure window and press
Alt while selecting the user-defined
menu item.

To select a word Double-click. Double-click.

To select an entire line Triple-click. Triple-click.

Action Shortcut (Macintosh) Shortcut (Windows)

Chapter III-13 — Procedure Windows

III-358

Chapter

III-14
III-14Controls and Control Panels

Overview.. 361
Modes of Operation.. 361
Using Controls .. 362

Buttons .. 362
Charts... 362
Checkboxes .. 363
CustomControl .. 363
GroupBox ... 363
ListBox .. 363
Pop-Up Menus .. 363
Set Variable .. 364

Set Variable Controls and Data Folders .. 364
Sliders ... 364
TabControl ... 364
TitleBox ... 365
Value Displays .. 365

Creating Controls ... 365
General Command Syntax ... 367
Button ... 367

Button Example .. 369
Custom Button Example ... 370

Charts and FIFOs ... 371
CheckBox .. 372
CustomControl .. 373
GroupBox ... 376
ListBox .. 376
PopupMenu ... 377
SetVariable ... 378
Slider .. 379
TabControl ... 380
TitleBox.. 382
ValDisplay .. 382

Numeric Readout Only.. 383
LED Display .. 383
Bar Only ... 383
Numeric Readout and Bar... 383
Optional Limits ... 383
Optional Title .. 384

Killing a Control.. 384
Getting Information About a Control .. 384
Updating a Control ... 384
Help Text for User-Defined Controls... 384
Modifying a Control ... 385
Disabling and Hiding a Control ... 385

Chapter III-14 — Controls and Control Panels

III-360

Background Color ... 385
Control Structures... 386

Control Structure Example... 387
Control Structure eventMod Field .. 387
Control Structure blockReentry Field... 388
Control Structure blockReentry Advanced Example ... 388
User Data for Controls .. 389

Control User Data Examples... 389
Action Procedures for Multiple Controls .. 390
Controls in Graphs.. 390

Drawing Limitations ... 391
Updating Problems.. 391

Control Panels ... 391
Embedding into Control Panels .. 392

Exterior Subwindows ... 392
Floating Panels .. 392
Control Panel Preferences.. 392
Controls Shortcuts... 394

Chapter III-14 — Controls and Control Panels

III-361

Overview
We use the term controls for a number of user-programmable objects that can be employed by Igor program-
mers to create a graphical user interface for Igor users. We call them controls even though some of the objects
only display values. The term widgets is sometimes used by other application programs, especially on non-
Macintosh systems.

Here is a summary of the types of controls available.

The programmer can specify a procedure to be called when the user clicks on or types into a control. This
is called the control’s action procedure. For example, the action procedure for a button may interrogate values
in pop-up menu, checkbox, and SetVariable controls and then perform some action.

Control panels are simple windows that contain these controls. These windows have no other purpose. You
can also place controls in graph windows and in panel panes embedded into graphs. Controls are not
available in any other window type such as tables, notebooks, or layouts. When used in graphs, controls are
not considered part of the presentation and thus are not included when a graph is printed or exported.

Nonprogrammers will want to skim only the Modes of Operation and Using Controls sections, and skip the
remainder of the chapter. Igor programmers should study the entire chapter.

Modes of Operation
With respect to controls, there are two modes of operation: one mode to use the control and another
to modify it. To see this, choose Show Tools from the Graph or Panel menu. Two icons will appear in
the top-left corner window. When the top icon is selected, you are able to use the controls. When the
next icon is selected, the draw tool palette appears below the second icon. To modify the control,
select the arrow tool from the draw tool palette.

When the top icon is selected or when the icons are hidden, you are in the use or operate mode. You
can momentarily switch to the modify or draw mode by pressing Command-Option (Macintosh) or
Ctrl+Alt (Windows). Use this to drag or resize a control as well as to double-click it. Double-clicking

Control Type Control Description

Button Calls a procedure that the programmer has written.

Chart Emulates a mechanical chart recorder. Charts can be used to monitor data acquisition
processes or to examine a long data record. Programming a chart is quite involved.

CheckBox Sets an off/on value for use by the programmer’s procedures.

CustomControl Custom control type. Completely specified and modified by the programmer.

GroupBox An organizational element. Groups controls with a box or line.

ListBox Lists items for viewing or selecting.

PopupMenu Used by the user to choose a value for use by the programmer’s procedures.

SetVariable Sets and displays a numeric or string global variable. The user can set the variable by
clicking or typing. For numeric variables, the control can include up/down buttons for
incrementing/decrementing the value stored in the variable.

Slider Duplicates the behavior of a mechanical slider. Selects either discrete or continuous values.

TabControl Selects between groups of controls in complex panels.

TitleBox An organizational element. Provides explanatory text or message.

ValDisplay Presents a readout of a numeric expression which usually references a global variable.
The readout can be in the form of numeric text or a thermometer bar or both.

Chapter III-14 — Controls and Control Panels

III-362

with the Command-Option (Macintosh) or Ctrl+Alt (Windows) pressed brings up a dialog that you use to
modify the control.

You can also switch to modify mode by choosing an item from the Select Control submenu of the Graph or
Panel menu.

Important:To enable the Add Controls submenu in the Graph and Panel menus, you must be in modify
mode; either by clicking the second icon or by pressing Command-Option (Macintosh) or the
Ctrl+Alt (Windows) while choosing the Add Controls submenu.

Using Controls
The following panel window illustrates most of the control types.

Buttons
When you click a button, it runs whatever procedure the programmer may have specified.

If nothing happens when you click a button, then there is no procedure assigned to the button. If the pro-
cedure window(s) haven’t been compiled, clicking a button that has an assigned procedure will produce
this dialog:

You should choose Compile from the Macros menu to correct this situation. If no error occurs then the
button will now be functional.

Buttons usually have a rounded appearance, but a programmer can assign
a custom picture so that the button can have nearly any appearance.

Charts
Chart controls can be used to emulate a mechanical chart recorder that writes on paper with moving pens
as the paper scrolls by under the pens. Charts can be used to monitor data acquisition processes or to
examine a long data record.

Pop-Up Menus

Checkbox

Button

Set Variables

Value displays

Slider
GroupBox

GroupBox

TitleBox

Chapter III-14 — Controls and Control Panels

III-363

Note: Although programming a chart is quite involved, using a chart is actually very easy. However,
since most users will never use a chart control, their use is described in Charts and FIFOs on page
III-371.

Checkboxes
Clicking a checkbox changes its selected state and may run a procedure if the
programmer specified one. A checkbox may be connected to a global vari-
able. Checkboxes can be configured to look and behave like radio buttons.

CustomControl
CustomControls are used to create completely new types of controls that are custom-made by the program-
mer. You can define and control the appearance and all aspects of a custom control’s behavior. See Custom-
Control on page III-373 for examples.

GroupBox
GroupBox controls are organizational or decorative elements. They are
used to graphically group sets of controls. They may either draw a box or
a separator line and can have optional titles.

ListBox
ListBox controls can present a single or multiple column list of items
for viewing or selection. ListBoxes can be configured for a variety of
selection modes. Items in the list can be made editable and can be con-
figured as checkboxes.

Pop-Up Menus
These controls come in two forms: one where the current item is shown in the pop-up menu box

and another where there is no current item and a title is shown in the box.

The first form is usually used to choose one of many items while the second is used to run one of many
commands.

Pop-up menus can also be configured to act like Igor’s color, line
style, pattern, or marker pop-up menus; these always show the
current item.

Yes

No

Yes

Chapter III-14 — Controls and Control Panels

III-364

Set Variable
Set Variable controls also can take on a number of forms and can display numeric values. Unlike Value
Display controls that display the value of an expression, Set Variable controls are connected to individual
global variables and can be used to set or change those variables in addition to reading out their current
value. Set Variable controls can also be used with global string variables to display or set short one line
strings. Set Variable controls are automatically updated whenever their associated variables are changed.

When connected to a numeric variable, these controls can optionally have up or down arrows that incre-
ment or decrement the current value of the variable by an amount specified by the programmer. Also, the
programmer can set upper and lower limits for the numeric readouts.

New values for both numeric and string variables can be entered
by directly typing into the control. If you click the control once
you will see a thick border form around the current value.

You can then edit the readout text using the standard techniques including Cut, Copy, and Paste. If you
want to discard changes you have made, press Escape. To accept changes, press Return, Enter, or Tab or
click anywhere outside of the control. Tab enters the current value and also takes you to the next control if
any. Shift-Tab is similar but takes you to the previous control if any.

If the control is connected to a numeric variable and the text you have entered can not be converted to a
number then a beep will be emitted when you try to enter the value and no change will be made to the value
of the variable. If the value you are trying to enter exceeds the limits set by the programmer then your value
will be replaced by the nearest limit.

When a numeric control is selected for editing, the Up and Down Arrow keys on the keyboard act like the
up and down buttons on the control.

Changing a value in a Set Variable control may run a procedure if the programmer has specified one.

Set Variable Controls and Data Folders
Note: If you are not using Data Folders (described in Chapter II-8, Data Folders), you can skip this

section.

Set Variable controls remember the data folder in which the variable exists, and continue to function prop-
erly when the current data folder is different than the controlled variable. See Set Variable on page III-364.

The system variables (K0 through K19) belong to no particular data folder (they are available from any data
folder), and there is only one copy of these variables. If you create a SetVariable controlling K0 while the
current data folder is “aFolder”, and another SetVariable controlling K0 while the current data folder is
“bFolder”, they are actually controlling the same K0.

Sliders
Slider controls can be used to graphically select either discrete or
continuous values. When used to select discrete values, a slider is
similar to a pop-up menu or a set of radio buttons. Sliders can be
live, updating a variable or running a procedure as the user drags the slider, or they can be configured to
wait until the user finishes before performing any action.

TabControl
TabControls are used to create complex panels containing many more controls than would otherwise fit.
When the user clicks on a tab, the programmers procedure runs and hides the previous set of controls while
showing the new set.

Chapter III-14 — Controls and Control Panels

III-365

TitleBox
TitleBox controls are mainly decorative elements. They are used
provide explanatory text in a control panel. They may also be
used to display textual results. The text can be unchanging, or
can be the contents of a global string variable. In either case, the
user can’t inadvertently change the text.

Value Displays
These can take on a number of forms ranging from a simple numeric readout to a thermometer bar. Regardless
of the form, value displays are just readouts. There is no interaction with the user. They display the current
value of whatever expression the programmer specified. Often this will be just the value of a numeric variable,
but it can be any numeric expression including calls to user-defined functions and external functions.

Here is a sampling of the forms that Value Display controls can assume.

When a thermometer bar is shown, the left edge of the thermometer region represents a low limit set by the
programmer while the right edge represents a high limit. The low and high limits appear in some of the
above examples. The bar is drawn from a nominal value set by the programmer and will be red if the
current value exceeds the nominal value and will be blue if it is less than the nominal value. In the above
examples the nominal value is 60. There is no numeric indication of the nominal value. If the nominal value
is less than the low limit then the bar will grow from the left to the right. If the nominal value is greater than
the high limit then the bar will grow from the right to the left.

If you carefully observe a thermometer bar that is connected to an expression whose value is slowly chang-
ing with time you will see that the bar is drawn in a zig-zag fashion. This provides a much finer resolution
than if the bar were to be extended or contracted by an entire column of screen pixels at once.

Creating Controls
The ease of creating the various controls varies widely. Anyone capable of writing a simple macro can
create Buttons and Checkboxes, but creating Charts and CustomControls requires more expertise. Most
controls can be created and modified using dialogs. You will find these dialogs under the Add Controls
submenu in the Graph or Panel main menu.

Current value

High limit

Low limit

Low limit High limit

Blue

Red

LED displays
in a GroupBox.

Chapter III-14 — Controls and Control Panels

III-366

The Add Controls and Select Control menus are disabled until the arrow tool in the toolbar is
enabled. (You use the toolbar’s arrow tool to position and resize controls.) To do this, choose
Show Tools from the Graph or Panel main menu and then click the second icon from the top (in
the graph or panel’s tool bar).

Note: You can also temporarily use the arrow tool without the toolbar showing by pressing
Command-Option (Macintosh) or Ctrl+Alt (Windows). Holding down these keys while
selecting from the Graph or Panel menu, you can also choose from the normally-disabled Add
Controls and Select Control menus.

When you click a control with the arrow tool, small handles are drawn that allow you to resize the control.
Note that some controls can not be resized in this way and some can only be resized in one dimension. You
will know this when you try to resize a control and it doesn’t budge. You can also use the arrow tool to repo-
sition a control. You can select a control by name with the Select Control submenu in the Graph or Panel menu.

With the arrow tool, you can double-click most controls to get a dialog that modifies or duplicates the con-
trol. Charts and CustomControls do not have dialog support.

When you right-click (Windows) or Control-click (Macintosh) a control, you get a contextual menu that varies
depending on the type of control.

You can select multiple controls, mix selections with draw objects and perform operations such as move,
cut, copy, paste, delete with undo and align. You can’t group buttons or use Send to Back as you can with
Igor’s draw objects.

In panels, when you do a Select All it includes all controls and draw objects, but in the case of graphs, only
draw objects are selected. This is because draw objects in graphs are used for presentation graphics whereas
in panels they are used to construct the user interface.

If you want to copy controls from one window to another, simply use the Edit menu to copy and paste.

Note: If user controls are copied to the Clipboard, then the command and control names are also copied
as text. This is handy when modifying controls that have no dialog support.

Hold down Option (Macintosh) or Alt (Windows) while choosing the Copy command to copy the
complete set of procedures that create the copied controls.

If you copy a control from the extreme right side or bottom of a window, it may not be visible when you paste
it into a smaller window. Use the smaller window’s Retrieve submenu in the Mover menu to make it visible.

Chapter III-14 — Controls and Control Panels

III-367

General Command Syntax
All of the control commands use the following general syntax:
ControlOperation Name [,keyword[=value] [,keyword[=value]]…]

Name is the control’s name; it must be unique to the window containing the control. If Name is not already
in use then a new control will be created. If a control with the same name already exists then that control
will be modified, so that multiple commands using the same name result in only one control. This is useful
for creating controls that require many keywords.

All keywords are optional. Not all controls accept all keywords, and some controls accept a keyword but
do not actually use the value(s). The value for a keyword with one control can have a different form than
the value for the same keyword used with other controls; the “value” keyword is a prime example of this.
See the specific control operation documentation in Chapter V-1, Igor Reference for details.
Some controls utilize a format keyword to set a format string. The format string can be any printf style format
that expects a single numeric value. Think of the output as being the result of the following command:
printf formatString , value_being_displayed

See the printf operation on page V-566 for a discussion of printf format strings. The maximum length of the
format string is 63. The format is used only for controls that display numeric values and only for the prin-
cipal value within a control (e.g., not used for the limit values for the ValDisplay control)

All of the clickable controls can optionally call a user-defined function usually when the user releases the
mouse button. We use the term action procedure for such a function or macro. Each control passes one or
more parameters to the action procedure. The dialogs for each control can create a blank user function with
the correct parameters.

Read the following section on Buttons for general techniques that apply to all controls. You should also refer
to Chapter V-1, Igor Reference, for each of the control-related operations and functions.

Button
The Button operation (page V-43) creates or modifies a rounded-edge or custom button with the title text
centered in the button. The default font depends on the operating system, but you can change the font, font
size, text color and use annotation-like escape codes (see About Text Escape Codes on page III-46). The
amount of text does not change the button size, which you can set to what you want. However, the size of
a custom button is determined only by the size of its Proc picture.

Here we create a simple button that will just emit a beep when pressed. Start by choosing the Add Button
menu item in the Graph or Panel menu to get the Button Control dialog:

Chapter III-14 — Controls and Control Panels

III-368

Clicking the procedure’s New button brings up a dialog containing a procedure template that you can edit,
rename, and save:

The controls can work with procedures using two formats: the “classic” procedure format used in Igor 3
and 4, and the “structure-based” format introduced in Igor 5.

Selecting the “Prefer structure-based procedures” checkbox creates new procedure templates using the
structure-based format.

Tip: If you haven’t edited a template (or if you delete the template), selecting or deselecting the
checkbox will switch the template between the two formats:

Chapter III-14 — Controls and Control Panels

III-369

Click Help to get help about the type of control the procedure works with. In this example, clicking Help
would show the help file for the Button operation, which lists the details about the WMButtonAction struc-
ture in the Details section.

All we did in the above dialogs was click the New Procedure button, change the function name from
ButtonProc to MyBeepProc and add the Beep command.

The fact that you can create the action procedure for a control in a dialog may lead you to believe that the
procedure is stored with the button. This is not true. The procedure is actually stored in a procedure
window. This way you can use the same action procedure for several controls. The parameters which are
passed to a given procedure can be used to differentiate the individual controls.

As you can see from the above example, the user defined action procedure that you will need to write for
buttons must have the following form:
Function ButtonProc(ctrlName) : ButtonControl

String ctrlName

End

Replace ButtonProc with a descriptive name and fill in the body of the function. The ButtonControl
subtype at the end of the function declaration line is optional but highly recommended. If it is present then
the function will show up in the pop-up list of available procedures in the Button Control dialog. The other
controls have similar subtypes.

It is legal for the action procedure to be written as a Macro (or Proc) rather than as a Function, but Functions
are much faster than Macros.

You can use an additional kind of action procedure whose input parameter is a control-specific data struc-
ture. The Control Procedure dialog allows you to create either kind of action procedure. For more details,
see Control Structures on page III-386, the Button operation (page V-43), and Using Structures with
Windows and Controls on page IV-85.

Button Example
Here is how to make a button whose title alternates between Start and Stop.

Enter the following in the Procedure window:
Function StartStopButton(ctrlName) : ButtonControl

String ctrlName

if(cmpstr(ctrlName,"bStart") == 0)
Button $ctrlName,title="Stop",rename=bStop
MyStartProc() // or whatever you want when start is pressed

else
Button $ctrlName,title="Start",rename=bStart

Chapter III-14 — Controls and Control Panels

III-370

MyStopProc() // or whatever you want when stop is pressed
endif

End

Additionally, you will also need to create the functions MyStartProc() and MyStopProc() to actually
do something when the button is clicked.

Then create the button in a graph or panel window with:
Button bStart,size={50,20},proc=StartStopButton,title="Start"

Custom Button Example
You can create custom buttons by following these steps:
1) Using a graphics-editing program, create a picture that shows the button in its normal (“relaxed”)

state, then in the pressed-in state, and then in the disabled state. Each portion of the picture should
be the same size:

If the button blends into the background it will look better if the buttons are created on the background you
will use in the panel. Igor looks at the pixels in the upper left corner, and if they are a light neutral color,
Igor will omit those pixels when the button is drawn.

2) Copy the picture to the Clipboard.
3) Switch to Igor and open the Pictures dialog, and click Load New Picture from Clipboard.

4) Click Copy Proc Picture to create Proc Picture text on the Clipboard. Click Done.
5) Select a procedure window, paste the text, and give a suitable name to the picture:

Chapter III-14 — Controls and Control Panels

III-371

6) Choose this picture in the Button Control dialog:

Charts and FIFOs
For further details see FIFOs and Charts on page IV-282.

Chart controls can be used to emulate a mechanical chart recorder that writes on paper with moving pens
as the paper scrolls by under the pens. Charts can be used to monitor data acquisition processes or to
examine a long data record. Although programming a chart is quite involved, using a chart is very easy.

However, users of the Chart control do need to know the basics of the data acquisition process:

The First-In-First-Out (FIFO) buffer is an invisible Igor component that buffers the data coming from data
acquisition hardware and software and also writes the data to a file. The data that is streaming through the
FIFO can be observed using a Chart control. When data acquisition is finished the process can be reversed
with data coming back out of the file and into the FIFO where it can be reviewed using the Chart. The FIFO
file is optional but if missing then all data pushed out the end of the FIFO will be lost.

Chart controls can take on quite a number of forms from the simple to the sophisticated:

Data
Acquisition

FIFO buffer
FIFO
Data
File

Chapter III-14 — Controls and Control Panels

III-372

Charts can operate in two modes — live and review. When a chart is in live mode and data acquisition is in
progress, the chart “paper” will scroll by from right to left under the influence of the acquisition process.
When in review mode, you are in control of the chart. When you position the mouse over the chart area you
will see that the cursor turns into a hand. You can move the chart paper right or left by dragging with the
hand. If you give the paper a push it will continue scrolling until it hits the end. You can place the chart in
review mode even as data acquisition is in progress by clicking in the paper with the hand cursor. To go
back to live mode, give the paper a hard push to the left. When the paper hits the end then the chart will go
to into live mode. You can also go back to live mode by clicking anywhere in the margins of the Chart.

Depending on the exact details of the data acquisition hardware and software you may run the risk of corrupt-
ing the data if you use review mode while acquisition is in progress. The person that created the hardware
and software system you are using should have provided guidelines for the use of review mode during acqui-
sition. In general, if the acquisition process is paced by hardware then it should be OK to use review mode.

In the above chart with lots of bells and whistles you may have noticed the line directly under the scrolling paper
area. This line represents the current extent of data while the gray bar represents the data that is being shown in
the chart. The right edge of the gray bar represents the right edge of the section of data being shown in the chart
window. The above example is shown in live mode. Here are two examples shown in review mode:

While data acquisition is in progress, the horizontal line represents the extent of the data in the FIFO’s
memory. After acquisition is over then the line includes all of the data in the FIFO’s output file (if any).

If you are in review mode while data acquisition is taking place you will notice that the gray bar will indi-
cate the view area is moving even though the paper appears to be motionless. This is because the FIFO is
moving out from under the chart. Eventually it will reach a position where the chart display can not be valid
since the data it wants to display has been flushed off the end of the FIFO. When this happens the view area
will go blank. Because it is very time-consuming for Igor to try to keep the chart updated in this situation
your data acquisition rate may suffer.

CheckBox
The CheckBox operation (page V-51) creates or modifies a checkbox or a radio button. CheckBox controls
automatically size themselves in both height and width. Checkboxes can optionally be connected to a global
variable. For information on using checkboxes as radio buttons, see the example in the CheckBox reference
section. You can use the font and fsize keywords to adjust the checkbox label.

The user-defined action procedure that you will need to write for CheckBoxes must have the following form:

Review of live data

Use hand to move or fling “paper” Click to position right edge of “paper”

End caps indicate file review

Review of data from a file

Chapter III-14 — Controls and Control Panels

III-373

Function CheckProc(ctrlName,checked) : CheckBoxControl
String ctrlName
Variable checked

End

The checked parameter will be set to the new checkbox value (0 or 1). Checkboxes do not usually need an
action procedure since one can read the state of the checkbox with the ControlInfo operation (page V-71).

You can create custom checkboxes by following steps similar to those for custom Buttons (see Custom
Button Example on page III-370), except the picture has six states side-by-side instead of three. The check-
box states are:

CustomControl
The CustomControl operation creates or modifies a custom control, all aspects of which are completely
defined by the programmer. See the CustomControl operation on page V-103 for a complete description.

What you can create with a CustomControl can be fairly simple such as this counter that increments when
you click on it.

 Four clicks later: .

The following code implements the counter custom control using the kCCE_frame event. In the panel, click
on the number to increment the counter; also try clicking and then dragging outside the control.

static constant kCCE_mouseup= 2
static constant kCCE_frame= 12

// PNG: width= 280, height= 49
Picture Numbers0to9

ASCII85Begin
M,6r;%14!\!!!!.8Ou6I!!!$:!!!!R#Qau+!00#^OT5@]&TgHDFAm*iFE_/6AH5;7DfQssEc39jTBQ
=U"5QO:5u`*!m@2jnj"La,mA^'a?hQ[Z.[.,Kgd(1o5*(PSO8oS[GX%3u'11dTl)fII/"f-?Jq*no#
Qb>Y+UBKXKHQpQ&qYW88I,Ctm(`:C^]$4<ePf>Y(L\U!R2N7CEAn![N1I+[hTtr.VepqSG4R-;/+$3
IJE.V(>s0B@E@"n"ET+@5J9n_E:qeR_8:Fl?m1=DM;mu.AEj!)]K4CUuCa4T=W)#(SE>uH[A4\;IG/
e]FqJ4u,2`*p=N5sc@qLD5bH89>gIBdF-1i6SF28oH@"3c2m)bDr&,UB$]i]/0bA.=qbR2#\-D9E?O
2>3D>`($p(Kn)F8aF@)LYiXn[h2K):5@^kF?94)j*1Xtq1U2oFZmY.te?0G)EQ%5,RVT-c)DVa+%mP
%+bS*_hN$hC*8uCJuIWqTHJR.U?32`_B)(g_8e#*YXa>=faEdJsF]6iJlrQ@QAX7huJUmXj8:PBTb2
Y:DYf*Sci'Q"3_;@RDQA:A/([2sO8r$hW)\B$XBGASJ:6OpC+GL<FjVfeNm20U<l<9J%cndX3'HP+k
R.IV?U>ns*_;Zt[]6G6"Rb-*'Nm-E8]LXXXo7Ub>A**7Bm5cS*">HbQ&_RhmUe]$iu@T?Cci:e-_`k
sE+H.GRSMT(9to;IZuH`T4%Yt<jF$+W?Yh6Q*_`C4sGig=L@DKoT%.H=#e_H"QEeeBVNTWBSMYr3dj
O=T%d&4kT9#cWPHS>kAG;3=or2(IK*IBF$^qK,+m0NSDK_!+e0#3fAI>HfKa<sk0641u\W@r+Y:$.i

Image Order Control State

Left Deselected enabled.

Deselected enabled and clicked down (about to be selected).

Deselected disabled.

Selected enabled.

Selected enabled and clicked down (about to be deselected).

Right Selected disabled.

Chapter III-14 — Controls and Control Panels

III-374

i$grCPR#&6,;+>nTs_IKS6XcYR)A$fJiC6Z_d2S!$R>_ZH+[<p:JI0ub]\BhE(0RP@((KTRTGo;#SY
LT^9;D7X#km%UV20?$RS"FZoIF!(`FY-iL?n$%#o;-Wj(\PaBS6ZRQe@:kC>%ULrhTWLNM=n@fUbRp
SKkLe\kJ)Sd]u7!?pRJk-!XL[/MZX'"n4?a?JIKO0k'KUm1IZ+roB=:Bq'$&E<#$Krp%p,E"4sI>[-
0F#^ff5SN':2fO)LNC?L4(2ga=!aLm8)tVbGAM?L`l^=$D_YP7Z(sOFs)BL5er5G95p3?m%hM^lSr'
*E^O@8=u6hL`L$mPcq!Bl-iHuGA6hiip%`cFjl9>W?'E-&5T%Y.]i2A@1i%p8XJ5[khb:&"JXYSC\r
10Ss8<Ye;S^"Nc0%-DFouAiPQ9OemnR!"sHH$JKt@!"d0E"'M(P%:`p'15_10`!<nVt"TALQ>PF8WL
Z:#f!!!!j78?7R6=>B
ASCII85End

End

Structure CC_CounterInfo
Int32 theCount // current frame of 10 frame sequence of numbers in

EndStructure

Function MyCC_CounterFunc(s)
STRUCT WMCustomControlAction &s

STRUCT CC_CounterInfo info

if(s.eventCode==kCCE_frame)
StructGet/S info,s.userdata
s.curFrame= mod(info.theCount+(s.curFrame!=0),10)

elseif(s.eventCode==kCCE_mouseup)
StructGet/S info,s.userdata
info.theCount= mod(info.theCount+1,10)
StructPut/S info,s.userdata // will be written out to control

endif

return 0
End

Window Panel0() : Panel
PauseUpdate; Silent 1 // building window...
NewPanel /W=(69,93,271,252)
CustomControl cc2,pos={82,46},proc=MyCC_CounterFunc,picture=

{ProcGlobal#Numbers0to9,10}
EndMacro

You can create even more sophisticated controls, such as this voltage meter control.

The following code creates the voltage meter control. This example illustrates both draw and drawOSBM
custom drawing along with several other events. Move the mouse over the surface of the meter to see how
it responds.

static constant kCCE_mousemoved= 4
static constant kCCE_draw= 10
static constant kCCE_drawOSBM= 17

// PNG: width= 223, height= 180
Picture PanelMeterNoScale

ASCII85Begin
M,6r;%14!\!!!!.8Ou6I!!!#V!!!#+#Qau+!1Tp)iW&rY&TgHDFAm*iFE_/6AH5;7DfQssEc39jTBQ
=U#(]?65u`*!mG0F:)b1m'nPpnh+J:S?W-P8e=<.L=]Rg..(`<SC?kdiP`^-.-n1-1"nC6)E%8T9@)
rPq5JlUFnl#(^QpIATX4WfnXZ@%P$r:]i[\<HT3D#d/2%Xe=B,O0rbf1e2OqDRDC@(\\;D7jSgHeq>
\(g_'S0C#?+**/o`kOVHs`5,FtA6/n>RlVFW&@%cMZP0oV)$VJ,\0)`oG?Vc]h#!dQbl7OlG:P1*FA
XE-;($H_-Zi35FAXE-;($H_-ZfNp`qu=!9Y*7pjQc.fr?&0genMa4o8PI;D,Nr4fgui3g2rKUkP<5Q
1_K3EELh7caK>f[W"Zb@'=t+U\u6:RW"Zb@'=t+U\u6:RW"Zb@'=t+U\u6:RW"Zb@'=t+U\u6:RW"Z
b@'=t+U\u6:RW"Zb@'=t+U\u6:RW"Zb@'=t+U\u6:RW"Zb@'=t+U\u6:RW"Zb@'=t+U\u6:RW"Zb@'

Chapter III-14 — Controls and Control Panels

III-375

=t+U\u6:RW"Zb@'=t+U\u6:RW"Zb@'=t+U\u6:RW"Zb@'=t+U\u6:RW"Zb@'=t+U\u6:RW"Zb@'=t+
U\u6:RW"Zb@'=t+U\u6:RW"Zb@'=q*,]R*nUT1h:1']eQWA9.FS:AD]ufh%imdAE,ZBjYKP.M+"[d\
`n,=D.ML$j<gcJhH>A0'*Bl@^eTKJ)PC0'\+m<nBE'0)0#]f7R;%cFpb:=3G==4ioMiFiK<"dW,",
dkoPlB%r3(E`XPc)N@.U!Ttho2I0A9LJ%P6g"9,6U\5q=a_EhILrSA1;SE(X[+l5[l1+A\m&\V%C>O
VD5)@lp2,'I!>NN,Jg%iM!C!Pl89fMH^iJ@kEM`RKLVs0p,MPBo1V>Wj,@hNH,lJ.1hdrsu4dW,#dR
0Fb'5^-)'0l_R'pb")`QUE`(T\J*6D>:_7:=K$RdDke-i%^0%ZST7kcfXt=\oc^=omAjPpMJ."J?I=
BMPBT9:cO[3HN!)4j3:C"r&ruS*5M6dWFqB:Su,GP^'QiihgbFl]oVW_k05Qof)GZh\&Q@fm+3&Oh&
aqJkV#Z:R@q8Z8+O^7prdjk'<X.O^Vl_[3R$JES);g=^hPkMchR.j]X(IbK6*F#cN&=c)LJUNAQeI#
B&o9`fCtCHDk6n+:^l+?e`*:bVT"s;2]YuCl0RDOjGQ)MHWB,EB3CO%Mhg"CNA:.(g9I+E*ChNe.nV
&>lM;OK`,0iikucRjj'S1NPs'B?Br>S@JULjp"Wsu58CBQRpQ%XA5'<<bf40/fmbX1Od^a:b`gEgG6
Q$6<<n"%GkBXVqb[V+(UsA:mYG-G^[Y$!g`_!@8i1%[RguG#n%J8;nB=>FH8n=JLQS:D$p`37/+4!S
\L36g0SCYDd78Y&tHC*sho#S%1A:lq:M`RO^_`C#0q-LZ:.Eh:\pTV1l096P-Zmm_>-X5`--pB<0'#
$&E5sATscV%:cf/kLLpZsQUcrKD,'E>^#\CbN$WRIl[,RH-MC,qj09@'+YMP=@G%J*>,PMl&TjoQ3g
!m/e$:!Kqj$H*k@;]o,bqaQ^GS"5$9,TGG)MEIJZI!tk]eT6M5XbPXT2/SNC9p'.9D@IY%hK#*VmFc
u/(3<7j?We3/?9<9.j[PI(ep2O^4+%"1I2P1r%V%E3^V%,Ej,oDD(g$F(eT*^pFi8]PlXN;QNVX,Am
gJBN(j2C92n)MZR)=k>cd-oF=Z7S/e$%BrSM`RMf^&0g:X`O@_&r3di3^L1B2IcB1,*OpPP+I]X25
,HoJ/*ne\g5KT5-kqG1X@X_p4Rir]<B(FtpM:lU%0pai.J%U9o^Q/gS@>MpF\U>anO.8Augk^@DBY
..%c.!3Vq#:R3Bi\'nZhX8Qh0iP*T)6GKc!&Wm_S0s&GI%)mbpMe7Wr,p`4%G_\bg%,MJsr:gca80,
8CN4E=jKRdh[h*Y(sL8pRm=U\$togFGpMY`k]W5(AF>.4_qYg2s-\tJ4%#[a]hi>m(KPp\7+i2qmVO
o3i'!3W3n"[JhmfB`?.90d@pI^Er:Ja;%foOpS^9frco"t0f>\ZR%nQm.Aq)q;@<OujVG:2CE*1jD1
-;2q\PC-l%^$H'All@!*>4*.3ui&$ZtL/kn1<:QFTMfgXpDV;'=t+U])Dg%&&%AlD@.Hc!!!!j78?7
R6=>B
ASCII85End

End

Function drawneedle(v)
Variable v // volts

if(v<0)
v= 0

elseif(v>10)
v= 10

endif

// Note: constants are specific to panel meter image
Variable theta= 2.39 - 1.67*v/10
Variable x0= 110, y0= 131,len= 96
Variable x= x0 + len*cos(theta)
Variable y= y0 - len*sin(theta)

SetDrawEnv linefgc= (65535,0,0)
DrawLine x0,y0,x,y

End

Function drawscale(vmin,vmax,n)
Variable vmin,vmax,n

variable i
Variable theta0= 2.39 // Note: constants are specific to panel meter image
Variable dtheta= -1.67/n
Variable x00= 110, y00= 131,len= 85,ticklen=10,labellen=15
String s

SetDrawEnv textxjust= 1,textyjust= 1,save
for(i=0;i<=n;i+=1)

Variable theta= theta0 + i*dtheta
Variable x0= x00 + len*cos(theta)
Variable y0= y00 - len*sin(theta)
sprintf s,"%.2g",vmin+i*(vmax-vmin)/n
DrawLine x0,y0,x00 + (len+ticklen)*cos(theta),y00- (en+ticklen)*sin(theta)
DrawText x00 + (len+labellen)*cos(theta),y00 - (len+labellen)*sin(theta),s
if(i!=n)

DrawLine x0,y0,x00 + len*cos(theta+dtheta),y00 - len*sin(theta+dtheta)
endif

endfor
End

Structure CC_MeterInfo
double voltage // voltage value (0-10)
STRUCT Point lastMouse

EndStructure

Function MyCC_MeterFunc(s)
STRUCT WMCustomControlAction &s

STRUCT CC_MeterInfo info

Chapter III-14 — Controls and Control Panels

III-376

if(s.eventCode==kCCE_drawOSBM)
drawscale(0,10,10)

elseif(s.eventCode==kCCE_draw)
StructGet/S info,s.userdata
drawneedle(info.voltage)

elseif(s.eventCode==kCCE_mousemoved)
StructGet/S info,s.userdata

// Beware: Next command is wrapped to fit on the page
variable dist= sqrt((s.mouseLoc.h-info.lastMouse.h)^2+(s.mouseLoc.v-

info.lastMouse.v)^2)
info.voltage= info.voltage + (dist-info.voltage)/10
info.lastMouse= s.mouseLoc
StructPut/S info,s.userdata // will be written out to control
s.needAction= 1 // want redraw

endif

return 0
End

Window Panel0() : Panel
PauseUpdate; Silent 1 // building window...
NewPanel /W=(150,50,450,250)
CustomControl cc3,pos={10,10},proc=MyCC_MeterFunc
// This should be after the setting of the proc
CustomControl cc3,picture= {ProcGlobal#PanelMeterNoScale,1}

EndMacro

GroupBox
The GroupBox operation creates or modifies a listbox control. See the GroupBox operation on page V-265
for a complete description and examples.

ListBox
The ListBox operation creates or modifies a listbox control. See the ListBox operation on page V-378 for a
complete description and examples.

The simplest listbox needs at least one text wave to contain the list items. Without
the text wave, a listbox control has no list items.

ListBox list0 size={200,60},mode=1

Create the text wave by opening a table and start typing a nonnumeric first list item (this is to make certain
the wave is created as a text wave). You can rename the text wave by Control-clicking (Macintosh) or right-
clicking (Windows) the name and choosing “Rename textwave0”.

Note: If you want to create a text wave in a particular data folder, set the current data folder first (using
the Data Browser in the Data menu).

Then select the wave you created in the ListBox Control dialog as the text wave for the list:

Chapter III-14 — Controls and Control Panels

III-377

Right-clicking (Windows) or Control-clicking (Macintosh) a listbox shows a contextual menu for editing the
list waves or action procedure, and to create a numeric selection wave (if the ListBox is a multiselection list-
box):

PopupMenu
The PopupMenu operation (page V-557) creates or modifies a pop-up menu control. Pop-up menus
provide a choice of colors, line styles, patterns, markers, or text items:

The control automatically sizes itself as a function of the title or the currently selected menu item. You can
specify the bodyWidth keyword to force the body (nontitle portion) of the pop-up menu to be a fixed size.
You might do this to get a set of pop-up menus of nicely aligned with equal width. The bodywidth keyword
also affects the nontext pop-up menus.

The font and fsize keywords affect only the title of a pop-up menu — the pop-up menu itself uses standard
system fonts.

Unlike color, line style, pattern, or marker pop-up menus, text pop-up menu controls can operate in two
distinct modes as set by the mode keyword’s value.

If the argument to the mode keyword is nonzero then it is considered to be the number
of the menu item to be the initial current item and displays the current item in the pop-
up menu box. This is the selector mode. There is often no need for an action procedure
since the value of the current item can be read at any time using the ControlInfo operation (page V-71).

If mode is zero then the title appears inside the pop-
up menu box (hence the name title-in-box mode). This
mode is generally used to select a command for the
action procedure to execute. The current item has no meaning except when the pop-up menu is activated
and the selected item (command) is passed to the action procedure.

The menu that pops up when the control is clicked is determined by a string expression that you pass as the
argument to the value keyword.
Create the color, line style, pattern or marker pop-up menus by setting the string expression to one of these
fixed values: "*COLORPOP*", "*LINESTYLEPOP*", "*MARKERPOP*", or "*PATTERNPOP*".
For text pop-up menus, the string expression must evaluate to a list of items separated by semicolons. For
example:
PopupMenu name value= "Item 1; Item 2; Item 3"
PopupMenu name value= "_none_;" + WaveList("*",";","")

It is possible to apply certain special effects to the menu items, such as disabling an item or marking an item
with a check. See Special Characters in Menu Item Strings on page IV-118 for details.

Chapter III-14 — Controls and Control Panels

III-378

It is important to note that the literal text of the string expression is stored with the control rather than the
results of the evaluation of the expression. The expression is reevaluated every time the user clicks on the
pop-up menu box.

The string expression evaluates as if it were typed on the Command line within the current data folder.
Additionally, it is important to specify the data folder containing any string variables, numeric variables,
or waves used in the string expression:
PopupMenu name value=#"func(root:folder:wave0, root:gVar)"

For this reason, the expression can not use numeric or string variables that are local to a procedure since
such variables cease to exist when the procedure finishes execution.

To incorporate the value of local variables in the value expression use the Execute operation:
String str= "\"_none_;first;second;\"" // str contains quotes
Execute "PopupMenu name value=" + str

The reason that the evaluation of the menu expression takes place when the user clicks on the menu is to
ensure that dynamic menus such as the above WaveList example will reflect the current conditions rather
than the conditions that were in effect when the PopupMenu control was created.

Because of this, the pop-up menu does not automatically update if the value of the string expression changes.
You can use the ControlUpdate operation (page V-75) to force the pop-up menu to update. Here is an example:
NewPanel/N=PanelX
String/G gPopupList="First;Second;Third"
PopupMenu oneOfThree value=gPopupList // pop-up shows “First”
gPopupList="1;2;3" // pop-up is unchanged
ControlUpdate/W=PanelX oneOfThree // pop-up shows “1”

If the value expression can not be evaluated at the time the command is compiled, you can defer the eval-
uation of the expression by enclosing the value this way:
PopupMenu name value= #"pathToNonExistentGlobalString"

(the value=gPopupList example requires that gPopupList exist during compilation.)

If a deferred expression has quotes in it, they need to be “escaped” with backslashes (for a description of
this syntax, see When Dependencies are Updated on page IV-210):
PopupMenu name value= #"\"_none_;\"+UserFunc(\"foo\")"

The optional user defined action procedure is called after the user makes a selection from the popup menu.
Popup menu procedures have the following form:
Function PopMenuProc(ctrlName,popNum,popStr) : PopupMenuControl

String ctrlName
Variable popNum
String popStr

End

popNum will be the item number, starting from one, and popStr will be the text of the selected item. For the color
pop-up menus the easiest way to determine the selected color is to use the ControlInfo operation (page V-71).

Another form of the action procedure uses structures. See Using Structures with Windows and Controls
on page IV-85.

SetVariable
The SetVariable operation (page V-641) creates or modifies a SetVariable control. These controls are tied to
numeric or string global variables (or even to one value in a numeric or text wave) and can be used to both view
and set these values. When used with numeric variables, up/down arrows that the user can use to increment or
decrement the variable will be drawn unless you set the increment value to zero (see the limits keyword).

Chapter III-14 — Controls and Control Panels

III-379

You can set the width of the control but the height is determined from the font and font size. The width of
the readout area is the width of the control less the width of the title and up/down arrows. However, you
can use the bodyWidth keyword to specify a fixed width for the body (nontitle) portion of the control.

For example, executing the commands:
Variable/G globalVar=99
SetVariable setvar0 size={120,20},frame=1,font="Helvetica", value=globalVar

Results in the following SetVariable control:

To associate a SetVariable control with a variable that is not in the current data folder at the time SetVariable
runs, you must use a data folder path:
Variable/G root:Packages:ImagePack:globalVar=99
SetVariable setvar0 value=root:Packages:ImagePack:globalVar

Unlike PopupMenu controls, SetVariable controls remember the current data folder when the SetVariable
command executes. Thus an equivalent set of commands is:
SetDataFolder root:Packages:ImagePack
Variable/G globalVar=99
SetVariable setvar0 value=globalVar

Also see Set Variable Controls and Data Folders on page III-364.

You can control the style of the numeric readout via the format keyword. For example, the string "%.2d"
will display the value with 2 digits past the decimal point. You should not use the format string to include
text in the readout because Igor has to read back the numeric value. You may be able to add suffixes to the
readout but prefixes will not work. When used with string variables the format string is not used.

The user defined action procedure that you may need to write for SetVariables must have the following form:
Function SetVarProc(ctrlName,varNum,varStr,varName) : SetVariableControl

String ctrlName
Variable varNum
String varStr
String varName

End

varName will be the name of the variable being used. If the variable is a string variable then varStr will
contain its contents and varNum will be set to the results of an attempt to convert the string to a number. If
the variable is numeric then varNum will contain its contents and varStr will be set to the results of a
number to string conversion.

Note that when the user presses and holds in the up or down arrows then the value of the variable will be
steadily changed by the increment value but your action procedure will not be called until the user releases
the mouse button.

Another form of the action procedure uses structures. See Using Structures with Windows and Controls
on page IV-85.

Slider
The Slider operation (page V-651) creates or modifies a slider con-
trol. The control can be used to set the value of a global variable or
be used alone to indicate a value to be retrieved with the ControlInfo
command. The value is changed by dragging the “thumb” part of
the control. The slider can be drawn vertically or horizontally.

There are many options for labelling the numeric range such as
setting the number of ticks.

Chapter III-14 — Controls and Control Panels

III-380

You can also provide custom labels in two waves (one numeric and another providing the corresponding
text label):
Make/O tickNumbers= {0,25,60,100}
Make/O/T tickLabels= {"Off","Slow","Medium","Fast"}
Slider speed,pos={86,28},size={74,73}
Slider speed,limits={0,100,0},value= 40
Slider speed,userTicks={tickNumbers,tickLabels}

The action procedure for the slider can be used to apply the slider value to a process. The action procedure
is called not only when the user moves the thumb, but also when the mouse button clicks down and up on
the thumb, and when a procedure modifies the slider’s controlled or controlling variable.

See the Slider operation on page V-651 for a complete description and more examples.

TabControl
The TabControl operation (page V-769) creates or modifies a TabControl control. Tabs are used to group
controls into visible and hidden groups.

The tabs are numbered: the first tab is tab 0 and the second is tab 1, etc.

You add tabs to the control by providing additional tab titles:
TabControl tb, tabLabel(0)="Settings",tabLabel(1)="More Settings"

When you click on a tab, the control’s action procedure receives the number of the clicked-on tab.

The showing and hiding of the controls are accomplished by user-written code in the tab control’s action
procedure. In this example, the “This”, “That”, and “Color” controls are shown when the “Settings” tab is
clicked, and the “Multiplier” checkbox and SetVariable controls are hidden. When the “More Settings” tab
is clicked, the action procedure makes opposite occur.

The simplest way to create a tabbed user interface is to create an over-sized panel with all the controls
visible and not inside the tab control. Place controls in their approximate positions relative to one another:

By positioning the controls this way you can more easily modify each control until you are satisfied with
them. Before you put them into the tab control, get a list of the nontab control names:
•Print ControlNameList("" ,"\r", "!tb") // all but “tb”
thisCheck
thatCheck
colorPop
multCheck
multVar

Chapter III-14 — Controls and Control Panels

III-381

and figure out which tab you want them to be visible in:

Write the action procedure for the tab control to show and hide the controls:
Function TabProc(ctrlName,tabNum) : TabControl

String ctrlName
Variable tabNum

Variable isTab0= tabNum==0
Variable isTab1= tabNum==1

// note: disable=0 means "show", disable=1 means "hide"
ModifyControl thisCheck disable= !isTab0 // hide if not Tab 0
ModifyControl thatCheck disable= !isTab0 // hide if not Tab 0
ModifyControl colorPop disable= !isTab0 // hide if not Tab 0

ModifyControl multCheck disable= !isTab1 // hide if not Tab 1
ModifyControl multVar disable= !isTab1 // hide if not Tab 1
return 0

End

(A more elegant method, which will be important when you have many controls, is to systematically give
the controls inside each tab a prefix or suffix that is unique to that tab, such as tab0_thisCheck,
tab0_thatCheck, tab1_multVar, and use the ModifyControlList operation to show and hide the con-
trols. See the ModifyControlList operation (page V-448) for an example.)

Then assign the action procedure to the tab control with the Tab Control dialog or a command like this:
TabControl tb proc=TabProc

Click on the tabs to see whether the showing and hiding is working correctly.

When it works correctly, click on one tab and then move the controls that belong inside into the tab area.
Click on the next tab and them move that tab’s controls into the tab area. You will need to use the operate
mode to change the tab by clicking (and thus running the action procedure) and use the modify mode to
move the controls. The “temporary selection” shortcut of pressing Command-Option (Macintosh) or
Ctrl+Alt (Windows) is really handy here.

Save a recreation macro for the panel (Windows→Control→Window Control) to record the final control
positions in a panel macro. Rewrite the macro as a function that initially creates the panel:
Function CreatePanel()

DoWindow/K TabPanel // start over
NewPanel/N=TabPanel/W=(596,59,874,175) as "Tab Demo Panel"
TabControl tb,pos={15,19},size={250,80},proc=TabProc
TabControl tb,tabLabel(0)="Settings"
TabControl tb,tabLabel(1)="More Settings",value= 0
CheckBox thisCheck,pos={53,52},size={39,14},title="This"
CheckBox thisCheck,value= 1,mode=1

Tab 0: Settings Tab 1: More Settings

thisCheck multCheck

thatCheck multVar

colorPop

Chapter III-14 — Controls and Control Panels

III-382

CheckBox thatCheck,pos={53,72},size={39,14},title="That"
CheckBox thatCheck,value= 0,mode=1
PopupMenu colorPop,pos={126,60},size={82,20},title="Color"
PopupMenu colorPop,mode=1,popColor= (65535,0,0)
PopupMenu colorPop,value= #"\"*COLORPOP*\""
CheckBox multCheck,pos={50,60},size={16,14},disable=1
CheckBox multCheck,title="",value= 1
SetVariable multVar,pos={69,60},size={120,15},disable=1
SetVariable multVar,title="Multiplier",value=multiplier

End

See the TabControl operation on page V-769 for a complete description and examples.

TitleBox
The TitleBox operation creates or modifies a TitleBox control. The control’s text can be unchanging, or can
be the contents of a global string variable. See the TitleBox operation on page V-793 for a complete descrip-
tion and examples.

ValDisplay
The ValDisplay operation (page V-804) creates or modifies a value display control. This is a very flexible
and multifaceted control and can range from a simple numeric readout to a thermometer bar or a hybrid of
both. A ValDisplay control is “connected” to a numeric expression that you provide as an argument to the
value keyword. The display will be automatically updated whenever anything that the numeric expression
depends on is changed.

ValDisplay controls evaluate their value expression in the context of the root data folder (see Chapter II-8,
Data Folders, and Programming with Data Folders on page IV-152). To reference a data object that is not
in the root, you must use a data folder path, such as “root:Folder1:var1”.

Here are a few selected keywords extracted from the ValDisplay operation on page V-804:
size={width,height}
barmisc={lts, valwidth}
limits={low,high,base}

The appearance of the ValDisplay control depends primarily on the valwidth and size parameters and the
width of the title. However, you can use the bodyWidth keyword to specify a fixed width for the body (non-
title) portion of the control. Essentially, space for each element is allocated from left to right, with the title
receiving first priority. If the control width hasn’t all been used by the title, then the value readout width is
the smaller of valwidth pixels of room or what is left. If the control width hasn’t been used up, the bar is dis-
played in the remaining control width:

Here are the various major possible forms of ValDisplay controls. Some of these examples modify previous
examples; check the names of the ValDisplay controls. For instance, the second bar-only example is a mod-
ification of the valdisp1 control created by the first bar-only example.

The Title

Bar Width =
Control Width
-Title Width

-Value Readout Width

Value
Readout

Width

Title Width

Control Width

Chapter III-14 — Controls and Control Panels

III-383

Numeric Readout Only
// default readout width (1000) is >= default control width (50)
ValDisplay valdisp0 value=K0

LED Display
// Create the three LED types.
ValDisplay led1,pos={67,17},size={75,20},title="Round LED"
ValDisplay led1,limits={-50,100,0},barmisc={0,0},mode=1
ValDisplay led1,bodyWidth= 20,value= #"K1",zeroColor=(0,65535,0)

ValDisplay led2,pos={38,48},size={104,20},title="Rectangular LED"
ValDisplay led2,frame=5,limits={0,100,0},barmisc={0,0},mode=2
ValDisplay led2,bodyWidth= 20,value= #"K2"
ValDisplay led2,zeroColor= (65535,49157,16385)

ValDisplay led3,pos={60,76},size={82,20},title="Bicolor LED"
ValDisplay led3,limits={-40,100,-100},barmisc={0,0},mode= 2
ValDisplay led3,bodyWidth= 20,value= #"K3"

Bar Only
// readout width = 0
ValDisplay valdisp1,frame=1,barmisc={12,0},limits={-10,10,0},value=K0
K0= 5 // halfway from base of 0 to high limit of 10.

The nice thing about a bar-only ValDisplay is that you can make it 5 to 200 pixels tall whereas with a
numeric readout, the height is set by the font sizes of the readout and printed limits.
// Set control height= 80
ValDisplay valdisp1, size={50,80}

Numeric Readout and Bar
// 0 < readout width (50) < control width (150)
ValDisplay valdisp2 size={150,20},frame=1,limits={-10,10,0}
ValDisplay valdisp2 barmisc={0,50},value=K0 // no limits shown

Optional Limits
Whenever the numeric readout is visible, the optional limit values may be displayed too.
// Set limits font size to 10 points. Readout widths unchanged.
ValDisplay valdisp2 barmisc={10,50}
ValDisplay valdisp0 barmisc={10,1000}

Chapter III-14 — Controls and Control Panels

III-384

Optional Title
The control title steals horizontal space from the numeric readout and the bar, pushing them to the right.
You may need to increase the control width to prevent them from disappearing.
// Add titles. Readout widths, control widths unchanged.
ValDisplay valdisp2 title="Readout+Bar"
ValDisplay valdisp0 title="K0="

The limits values low, high, and base and the value of valExpr control how the bar, if any, is drawn. The bar
is drawn from a starting position corresponding to the base value to an ending position determined by the
value of valExpr, low and high. low corresponds to the left side of the bar, and high corresponds to the right.
The position that corresponds to the base value is linearly interpolated between low and high.

For example, with low = -10, high=10, and base= 0, a valExpr value of 5 will draw from the center of the bar
area (0 is centered between -10 and 10) to the right, halfway from the center to the right of the bar area (5 is
halfway from 0 to 10):

You can force the control to not draw bars with fractional parts by specifying mode=3.

Killing a Control
You can kill (delete) a control from within a procedure using the KillControl operation (page V-361). This
might be useful in creating control panels that change their appearance depending on other settings.

You can interactively kill a control by selecting it with the arrow tool or the Select Control submenu and press
Delete. Moving a control out of the window does not delete it; you just end up with a control that is offscreen.

Getting Information About a Control
You can use the ControlInfo operation (page V-71) to obtain information about a given control. This is
useful to obtain the current state of a checkbox or the current setting of a pop-up menu.

Updating a Control
You can use the ControlUpdate operation (page V-75) to cause a given control to redraw with its current
value. You can use this in a user-defined function or macro after changing the value or appearance of a
control and to display the changes before the normal graph or panel update occurs.

Help Text for User-Defined Controls
You can easily add help Igor Tips (Macintosh) or context-sensitive/status line help text (Windows) for your
controls. Each dialog has a button titled Igor Tips (Macintosh) or Edit Help (Windows) that leads to a subdi-

5

high = 10base = 0low = -10
low limit

high limit

value of valExpr

Draws Blue Bar Draws Red Bar

bar “snakes”
up/down/up for
additional
resolution

Chapter III-14 — Controls and Control Panels

III-385

alog where you can edit the help text. You can also use the command line. You are limited to using a total
of 255 characters for your help message. Here is an example:
Button button0 title="Beep", help={"This button beeps."}

This creates a button with a Macintosh Igor Tip, or under Windows, this text appears as context-sensitive
help and in the status line when the mouse passes over the control. The help text that appears on the status
line is limited to the first 127 characters of text or the text up to the first line break. The help={"This
button beeps."} section sets the help text for the button. You can use the help keyword with the Check-
box, PopupMenu, ValDisplay, and SetVariable operations as well as the Button operation.

There is no way to specify help for the individual items in a user-defined pop-up menu.

Modifying a Control
The control operations create a new control if the name parameter doesn’t match a control already in the
window. The operations modify an existing control if the name does match a control in the window, but
generate an error if the control kind doesn’t match the operation.

For example, if a panel already has Button control named button0, you can modify, say, the disable state
for that button with another Button button0 command:
Button button0 disable=1 // hide

However, if you use a Checkbox instead of Button, you will get a “button0 is not a Checkbox” error.

You can use the ModifyControl operation (page V-447) and ModifyControlList operation (page V-448) to
modify a control without needing to know what kind of control it is:
ModifyControl button0 disable=1 // hide

This is really handy when used in conjunction with tab controls.

Disabling and Hiding a Control
All controls support the keyword “disable=d” where d can be 0 (normal operation), 1 (hidden), or 2 (user input
disabled). Charts and ValDisplays do not change appearance when disable=2 because they are read-only.

SetVariables also have the noedit keyword. This appears to be redundant with the disable=2 mode but there is
one quasi-important difference: noedit still allows user input via the up or down arrows but disable=2 does not.

Background Color
The background color of Panel windows (see Control Panels on page III-391) and the area at the top of a graph
as reserved by the ControlBar operation (page V-70) is a shade of gray chosen to match the standard Macintosh
or Windows system look. This gray is used when the background color is the default pure white where the red,
green and blue components are all 65535. Any other color, including not quite pure white, will be honored.

However some controls or portions of controls are drawn by the system and may look out of place if you
choose a different background color. The cbRGB keyword is used to set the control background in Panels
(ModifyPanel operation on page V-476) and Graphs (ModifyGraph (colors) operation on page V-471).

Most controls are drawn with a background color that matches the window background color giving the impres-
sion of transparency. A few controls are drawn with true transparent labels and no background color is needed.

For special purposes, you can specify a background color for an individual control using the labelBack
keyword (see the reference descriptions of the individual controls for further details).

Chapter III-14 — Controls and Control Panels

III-386

On the Macintosh prior to Igor Pro 4, the background color of controls was white. This matched the window
color which was also white. The new technique is somewhat nonbackwards compatible and a few people may
prefer the old white on white look. In many cases simply setting the window background to slightly off-white:
ModifyGraph cbRGB=(65534,65534,65534)

will do the job. In other cases, you may need to specify the background color of individual controls using
the labelBack keyword.

On Windows, the background color of the controls themselves is dependent on the current Appearances
Settings. Specifically, the background color of controls is set by the 3D Objects color in the Appearance Tab
of the Display Properties control panel. You should be aware that any color you choose now may not result
in pleasing esthetics when these settings are changed in the future.

On Windows if you do not explicitly set the background color, the standard Windows 3D Objects color is
used. This works well with buttons and other standard Windows controls, even when the user changes the
3D Objects color later. You can change the background color to track the 3D Objects color by choosing the
current 3D Objects color from the color pop-up palette, or by executing a command to set the background
to maximum Macintosh white:
ModifyGraph cbRGB=(65535,65535,65535)
ModifyPanel cbRGB=(65535,65535,65535)

Control Structures
The action procedure for a control can also use a predefined, built-in structure as a parameter to the func-
tion. The control will use this more efficient method whenever the function properly matches the structure
prototype for a control, otherwise it will use the “old-style” method.

An action procedure using a structure has the format:
Function newActionProcName(CB_Struct)

STRUCT WMCheckboxAction &CB_Struct
…

End

The names of the various control structures are listed in the next table. You should consult the reference
information for each individual control to see what members each control structure contains.

Action functions should respond only to documented eventCode values. Other event codes may be added
along with more fields. Although the return value is not currently used, action functions should always
return zero.

The constants used to specify the size of structure char arrays are internal to Igor Pro and may change.

Control Type Structure Name

Button WMButtonAction

CheckBox WMCheckboxAction

CustomControl WMCustomControlAction

ListBox WMListboxAction

PopupMenu WMPopupAction

SetVariable WMSetVariableAction

Slider WMSliderAction

TabControl WMTabControlAction

Chapter III-14 — Controls and Control Panels

III-387

Control Structure Example
This example illustrates the extended event codes available with a Button control (as well as a application
of user data). The function prints various text messages to the History area depending what actions you
take while in the button area.

Function structureTest()
NewPanel
Button b0,proc= NewButtonProc

End

Structure MyButtonInfo
Int32 mousedown
Int32 isLeft

EndStructure

Function NewButtonProc(s)
STRUCT WMButtonAction &s

STRUCT MyButtonInfo bi
Variable biChanged= 0

StructGet/S bi,s.userdata
if(s.eventCode==1)

bi.mousedown= 1
bi.isLeft= s.mouseLoc.h < (s.ctrlRect.left+s.ctrlRect.right)/2
biChanged= 1

elseif(s.eventCode==2 || s.eventCode==3)
bi.mousedown= 0
biChanged= 1

elseif(s.eventCode==5)
print "Enter button"

elseif(s.eventCode==6)
print "Leave button"

endif

if(s.eventCode==4) // mousemoved
if(bi.mousedown)

if(bi.isLeft)
printf "L"

else
printf "R"

endif
else

printf "*"
endif

endif
if(biChanged)

StructPut/S bi,s.userdata // written out to control
endif

return 0
End

Control Structure eventMod Field
The eventMod field appears in the built-in structure for each type of control. It is a bitfield defined as fol-
lows:

EventMod Bit Meaning

Bit 0 Left mouse button is down.

Bit 1 Shift key is down.

Bit 2 Option (Macintosh) or Alt (Windows) is down.

Chapter III-14 — Controls and Control Panels

III-388

See Setting Bit Parameters on page IV-12 for details about bit settings.

Control Structure blockReentry Field
The blockReentry field appears in the built-in structure for each type of control. It allows you to prevent
Igor from sending your control action procedure another event while you are servicing the first event. This
is useful for action procedures that take a long time to service a click event. In such cases you typically do
not want to service a second click until you finish servicing the first. This technique prevents an accidental
double-click on a button from invoking a time-consuming procedure twice.

You tell Igor that you want to block further events until your action procedure returns by setting the block-
Reentry field to 1 when your action procedure is called:

Function ButtonProc(ba) : ButtonControl
STRUCT WMButtonAction &ba

// Tell Igor not to invoke ButtonProc again until this invocation is finished
ba.blockReentry = 1
. . .

Igor tests this field before invoking your action procedure while it is already running from a previous invo-
cation. You do not need to test this field or reset it to 0 - just set it to 1 to block reentry.

Control Structure blockReentry Advanced Example
This example further illustrates the use of the blockReentry field. It is of interest only to those who want to
experiment with this issue.

The ReentryDemoPanel procedure below creates a panel with two buttons. Each button prints a message
in the history area when the action procedure receives the "mouse up" message, then pauses for two sec-
onds, and then prints another message in the history before returning. The pause is a stand-in for a proce-
dure that takes a long time.

The top button does not block reentry so, if you click it twice in quick succession, the action procedure is
reentered and you get nested messages in the history area.

The bottom button does block reentry so, if you click it twice in quick succession, the action procedure is
not reentered.

Because of architectural differences, reentry of the action procedure occurs on Macintosh but not on
Windows so on Windows, both buttons behave the same.

Function ButtonProc(ba) : ButtonControl
STRUCT WMButtonAction &ba

switch(ba.eventCode)
case 2: // mouse up

// Block bottom button only
ba.blockReentry= CmpStr(ba.ctrlName,"Block") == 0
print "Start button ",ba.ctrlName
Variable t0= ticks
do

DoUpdate
while(ticks < (t0+120))
Print "Finish button",ba.ctrlName
break

Bit 3 Command (Macintosh) or Ctrl (Windows) is down.

Bit 4 Contextual menu click: right-click or Control-click (Macintosh).

EventMod Bit Meaning

Chapter III-14 — Controls and Control Panels

III-389

endswitch

return 0
End

Window ReentryDemoPanel() : Panel
PauseUpdate; Silent 1// building window...
NewPanel /K=1 /W=(322,55,622,255)
Button NoBlock,pos={25,10},size={150,20},proc=ButtonProc,title="No Block Reentry"
Button Block,pos={25,50},size={150,20},proc=ButtonProc,title="Block

Reentry"
End

User Data for Controls
You can store arbitrary data with a control using the userdata keyword. You can set user data for the following
controls: Button, CheckBox, CustomControl, ListBox, PopupMenu, SetVariable, Slider, and TabControl.

Each control has a primary, unnamed user data that is used by default. You can also store an unlimited
number of different user data strings by specifying a name for each different user data string. The name can
be anything you desire as long as it is a legal Igor name.

You can retrieve information from the default user data using the ControlInfo operation (page V-71), which
returns such information in the S_UserData string variable. To retrieve any named user data, you must use
the GetUserData operation (page V-250).

Although there is no size limit to how much user data you can store, it does have to be generated as part of
the recreation macro for the window when experiments are saved. Consequently, huge user data can slow
down experiment saving and loading

User data is intended to replace or reduce the usage of global variables.

Control User Data Examples
A simple example of user data with a button:
NewPanel
Button b0,userdata="user data for button b0"
Print GetUserData("","b0","")

A more complex example using user data for buttons. Copy the following code into the Procedure window
of a new experiment and run the Panel() macro. Then click on the buttons.
Structure mystruct

Int32 nclicks
double lastTime

EndStructure

Function ButtonProc(ctrlName) : ButtonControl
String ctrlName

STRUCT mystruct s1
String s= GetUserData("", ctrlName,"")
if(strlen(s) == 0)

print "first click"
else

StructGet/S s1,s
// Warning: Next command is wrapped to fit on the page.
printf "button %s clicked %d time(s), last click = %s\r",ctrlName, s1.nclicks,

Secs2Date(s1.lastTime, 1)+" "+Secs2Time(s1.lastTime,1)
endif
s1.nclicks += 1
s1.lastTime= datetime
StructPut/S s1,s
Button $ctrlName,userdata= s

End

Window Panel0() : Panel
PauseUpdate; Silent 1 // building window...
NewPanel /W=(150,50,493,133)

Chapter III-14 — Controls and Control Panels

III-390

SetDrawLayer UserBack
Button b0,pos={12,8},size={50,20},proc=ButtonProc,title="Click"
Button b1,pos={65,8},size={50,20},proc=ButtonProc,title="Click"
Button b2,pos={119,8},size={50,20},proc=ButtonProc,title="Click"
Button b3,pos={172,8},size={50,20},proc=ButtonProc,title="Click"
Button b4,pos={226,8},size={50,20},proc=ButtonProc,title="Click"

EndMacro

Action Procedures for Multiple Controls
You can use the same action procedure for different controls of the same type (for all the Buttons in one
window, for example). The name of the control is passed to the action procedure so that it can know which
control was clicked. This is usually the name of the control in the target/active window, which is what most
control operations assume.

When you call an action procedure from another procedure (rather than because a control was clicked), the
name of the control may not be sufficient to identify the control; the window name may also be needed. This
must be passed in through a global string. The window name can then be used to specify which window
the named control is in by adding win=winName to the command, as in:
Button button0 win=$graphNameStr, title="Hello"

Controls in Graphs
Although controls can be placed anywhere in a graph, you can and should reserve an area just for controls
at the edge of a graph window. Controls in graphs operate much more smoothly if they reside in these
reserved areas. The ControlBar operation (page V-70) or the Control Bar dialog can be used to set the height
of a nonembedded control area at the top of the graph.

You can also embed a panel in the graph, which gives you more freedom on where to place the controls (see
Chapter III-4, Embedding and Subwindows for further details and Embedding into Control Panels on
page III-392 for a different approach). The simplest way to add a panel is to click near the edge of the graph
and drag out a control area:

Control bar separator line
(adjust using arrow tool)

Click at the top, right, bottom,
or left edge of the graph.

Chapter III-14 — Controls and Control Panels

III-391

The background color of a control area or embedded panel can be set by clicking the background to exit any
subwindow layout mode, and then Control-clicking (Macintosh) or right-clicking (Windows) in the back-
ground and then selecting a color from the contextual menu’s pop-up color palette. See Background Color
on page III-385 for further details.

The contextual menu adjusts the style of the frame around the panel.

You can use the same contextual menu to remove an embedded panel, leaving only the bare control area
underneath. Remove the control area by dragging the inside edge back to the outside edge of the graph.

Drawing Limitations
The drawing tools can not be used in bare control areas of a graph. If you want
to create a fancy set of controls with drawing tools, you will have to embed a
panel subwindow into the graph.

Updating Problems
You may occasionally run into certain updating problems when you use con-
trols in graphs. One class of update problems occurs when the action procedure
for one control changes a variable used by a ValDisplay control in the same graph and also forces the graph
to update while the action procedure is being executed. This short-circuits the normal chain of events and
results in the ValDisplay not being updated.

You can force the ValDisplay to update using the ControlUpdate operation (page V-75). Another solution
is to use a control panel instead of a graph.

The ControlUpdate operation can also solve problems in updating pop-up menus. This is described above
under PopupMenu on page III-377.

Control Panels
Control panels are windows designed to contain controls. The NewPanel operation (page V-500) is used to
create a panel.

Drag the dashed line to define the
inside edge of the embedded panel.

PRIGHT is the name of the resulting
embedded panel subwindow. The
label disappears in “operate” mode.

Adjust the position of the embedded
window by clicking the subwindow
frame and dragging its handles. The
dashed lines represent the edges of the
plot and graph areas, and the
subwindow frame snap and attach to
them.

Chapter III-14 — Controls and Control Panels

III-392

Drawing tools can be used in panel windows to decorate control panels. Only two drawing layers are pro-
vided and both are behind the controls layer. There is probably little reason to distinguish between the user
and prog layers since users have no reason to draw in panels.

The Drawing tools can be used in panel windows to decorate control panels. Background color can be set
by Control-clicking (Macintosh) or right-clicking (Windows) in the background and then selecting a color
from the pop-up color palette. See Background Color on page III-385 for further details.

Embedding into Control Panels
You can embed a graph, table, notebook, or another panel into a
control panel window (see Chapter III-4, Embedding and Sub-
windows for further details). You may find this preferable to
putting control areas around a graph when you have many con-
trols, or you may embed a graph in order to display an annotation,
colorscale, or image plot. Use the contextual menu while in
drawing mode to add an embedded window. Click on the frame
of the embedded window to adjust the size and position.

You can use a notebook subwindow in a control panel to display
status information or to accept lengthy user input. See Notebooks
as Subwindows in Control Panels on page III-96 for details.

Exterior Subwindows
Exterior subwindows are panels that act like subwindows but live in their own windows attached to a host
graph window. The host graph and its exterior subwindows move together and, in general, act as single
window. Exterior subwindows have the advantage of not disturbing the host graph and, unlike normal
subwindows, are not limited in size by the host graph.

Note: Exterior subwindows must be panels and the only host supported is a graph window.

To create an exterior subwindow panel, use NewPanel with the /EXT flag in combination with /HOST.

Floating Panels
Floating control panels float above all other windows (except dialogs). To create a floating panel, use New-
Panel with the /FLT flag.

Control Panel Preferences
Control panel preferences allow you to control what happens when you create a new control panel. To set
preferences, create a panel and set it up to your taste. We call this your prototype panel. Then choose Capture
Panel Prefs from the Panel menu.

Preferences are normally in effect only for manual operations, not for automatic operations from Igor pro-
cedures. This is discussed in more detail in Chapter III-17, Preferences.

When you initially install Igor, all preferences are set to the factory defaults. The dialog indicates which
preferences you have changed.

Indicates that the current
window position and size
are the factory defaults.

Captures preferences for the
selected items from the active
control panel window.

Resets preferences for
the selected items to
the factory defaults.

Chapter III-14 — Controls and Control Panels

III-393

The preferences affect the creation of new panels only.

Selecting the Show Tools category checkbox captures (or reverts) whether or not the drawing tools palette
is initially shown or hidden when a new panel is created.

Chapter III-14 — Controls and Control Panels

III-394

Controls Shortcuts
Action Shortcut (Macintosh) Shortcut (Windows)

To show or hide a panel’s or
graph’s tool palette

Press Command-T. Press Ctrl+T.

To move or resize a user-
defined control without
using the tool palette

Press Command-Option and click the
control. With Command-Option still
pressed, drag or resize it.

Press Ctrl+Alt and click the control.
With Ctrl+Alt still pressed, drag or
resize it.

To add a user-defined
control without using the
tool palette

Press Command-Option and choose
from the Panel or Graph menu’s Add
Control submenu.

Press Ctrl+Alt and choose from the
Panel or Graph menu’s Add Control
submenu.

To modify a user-defined
control

Press Command-Option and double-
click the control.

This displays a dialog for modifying
all aspects of the control. If the control
is already selected, you don’t need to
press Command-Option.

Press Ctrl+Alt and double-click the
control.

This displays a dialog for modifying
all aspects of the control. If the control
is already selected, you don’t need to
press Ctrl+Alt.

To edit a user-defined
control’s action procedure

With the panel in modify mode (tools
showing, second icon from the top
selected) press the Control key and
click the control. This displays a
contextual menu with a “Go to
<action procedure>” item.

With the panel in modify mode (tools
showing, second icon from the top
selected) right-click the control. This
displays a contextual menu with a
“Go to <action procedure>” item.

To create an embedded
graph or table in the panel

With the panel in modify mode, press
the Control key and click the panel
background. Choose the subwindow
type from the resulting contextual
menu’s “New” submenu.

With the panel in modify mode,
right-click the panel background.
Choose the subwindow type from the
resulting contextual menu’s “New”
submenu.

To change an embedded
window’s border style

With the panel in modify mode, press
the Control key and click the embedded
window. Choose the border style from
the resulting contextual menu’s
“Frame” and “Style” submenus.

With the panel in modify mode, right-
click the embedded window. Choose
the border style from the resulting
contextual menu’s “Frame” and
“Style” submenus.

To remove an embedded
window

With the panel in modify mode, press
the Control key and click the embedded
window. Choose the Delete from the
resulting contextual menu.

With the panel in modify mode,
right-click the embedded window.
Choose the Delete from the resulting
contextual menu.

To eliminate a control area
at the edge of a graph

In modify mode or while pressing
Command-Option, click the inside
edge of the control area and drag it to
the outside edge of the graph.

In modify mode or while pressing
Ctrl+Alt, click the inside edge of the
control area and drag it to the outside
edge of the graph.

To nudge a user-defined
control’s position

Select the control and press arrow keys.

Press Shift to nudge faster.

Select the control and press arrow keys.

Press Shift to nudge faster.

Chapter

III-15
III-15Platform-Related Issues

Platform-Related Issues ... 396
Windows-Specific Issues.. 396
Cross-Platform File Compatibility.. 396

Experiment Files — Working with Earlier Versions .. 396
Crossing Platforms .. 396
Transferring Files Using File Transfer Programs.. 396
File Name Extensions, File Types, and Creator Codes... 397
Experiments and Paths ... 397
Picture Compatibility .. 397
Page Setup Compatibility ... 398
Pre-Carbon Page Setup Records.. 399

File System Issues ... 400
File and Folder Names .. 400
Path Separators .. 400
UNC Paths .. 401
Unix Paths... 401
FlushFileBuffers ... 401

Keyboard and Mouse Usage ... 402
Command Window Input .. 403
Other Input Issues ... 403

Cross-Platform Text and Fonts ... 403
Character Set Compatibility ... 403
Text Styles ... 404
Carriage Returns and Linefeeds .. 404
Font Substitution.. 404

Example.. 405
Cross-Platform Procedure Compatibility.. 406

File Paths ... 406
File Types and Extensions .. 406
Points Versus Pixels... 408
Window Position Coordinates... 409

Notebook Issues .. 409
PNG Pictures in Notebooks ... 409

Chapter III-15 — Platform-Related Issues

III-396

Platform-Related Issues
Igor Pro runs on Macintosh and Windows. This chapter contains information that is platform-specific and
also information for people who use Igor on both platforms.

Windows-Specific Issues
On Windows, the name of the Igor program file must be “Igor.exe”, exactly. If you change the name, Igor
extensions will not work because they will be unable to find Igor.

If you press Shift while launching Igor, Igor will skip loading extensions. (This feature is mainly of interest
to the programmers at WaveMetrics who launch and quit Igor dozens of times a day during development.)
If you want to do this on Windows, you should wait until you see Igor’s startup window before pressing
the Shift key because Windows has its own interpretation for Shift during launch of a program.

If you save an experiment while a graph, table, layout, panel or notebook window is minimized, when you
reopen that experiment, the window will again be minimized. This feature is not supported for any other
kinds of windows, including the command window and all procedure windows. Instead, these other types
of windows are reopened in their normal size.

Cross-Platform File Compatibility
Version 3.1 was the first version of Igor Pro that ran on Windows as well as Macintosh.

If you plan to use Igor on both platforms, it is a good idea to keep the same folder hierarchy for your Igor
Pro files on both platforms. For example, if your Macintosh Igor files are in "hd:Igor Data Files: . . .", then it
is best if you put your Windows Igor files in "C:\Igor Data Files\ . . .". Doing this will maximize the chances
that Igor can find files referenced from Igor experiment files.

Experiment Files — Working with Earlier Versions
You may occasionally want to send an experiment file to a colleague who has an earlier version of Igor or
open it on a computer with an earlier version of Igor.

If you use new features from a particular version of Igor Pro, you may get errors when you open an exper-
iment file in an older version. Usually you can ignore or correct the errors and recover the file.

Crossing Platforms
When crossing from one platform to another, page setups are only partially translated. Igor tries to preserve
the page orientation and margins.

When crossing platforms, Igor attempts to do font substitution where necessary. If Igor can not determine
an appropriate font it will display the font substitution dialog where you can choose the font.

Platform-specific picture formats are displayed as gray boxes when you attempt to display them on the
non-native platform. This includes the Macintosh PICT format and its variants when displayed on
Windows and the Windows Metafile and Enhanced Metafile formats when displayed on Macintosh. The
EPS, PNG, JPEG, and TIFF formats are platform-independent and are displayed on both platforms.

Transferring Files Using File Transfer Programs
Some transfer programs offer the option of translating file formats as they transfer the program from one
computer to another. This translation usually consists of replacing each carriage return character with a car-
riage return/linefeed pair (Macintosh to Windows) or vice-versa (Windows to Macintosh). This is called a
“text mode” transfer, as opposed to a “binary mode” transfer. This translation is appropriate for plain text
files only. In Igor, plain text notebooks, procedure files, and Igor Text data files are plain text. All other files
are not plain text and will be corrupted if you transfer in text mode. If you get flaky results after transferring
a file, transfer it again making sure text mode is off.

Chapter III-15 — Platform-Related Issues

III-397

If you have a problem opening a binary file after doing a transfer, compare the number of bytes in the file
on both computers. If they are not the same, the transfer has corrupted the file.

File Name Extensions, File Types, and Creator Codes
On Windows, the file name extension indicates the nature of a file. When you double-click a file, Windows
uses the extension to determine which program to launch. Mac OS 9 used the Mac-specific file type property
to determine the nature of the file and the Mac-specific file creator code to determine which program to
launch. Mac OS X still supports the file type and creator code properties but de-emphasizes them in favor of
the file name extension. For this reason it is best to use the correct file name extension regardless of platform.

The file name extension and corresponding Macintosh file type for Igor Pro files are:

The Macintosh creator code for Igor is 'IGR0' (last character is zero).

Experiments and Paths
An Igor experiment sometimes refers to wave, notebook, or procedure files that are stored separate from
the experiment file itself. This is discussed under References to Files and Folders on page II-37. In this case,
Igor creates a symbolic path that points to the folder containing the referenced file. It writes a NewPath
command in the experiment file to recreate the symbolic path when the experiment is opened. When you
move the experiment to another computer or to another platform, this path may not be valid. However, Igor
goes to great lengths to find the folder, if possible.

Igor stores the path to the folder containing the file as a relative path, relative to the experiment file, if pos-
sible. This means that Igor will be able to find the folder, even on another computer, if the folder’s location
in the disk hierarchy is the same on both computers. You can minimize problems by using the same disk
hierarchy on both computers.

If the folder is not on the same volume as the experiment file, then Igor can not use a relative path and must use
an absolute path. Absolute paths cause problems because, although your disk hierarchy may be the same on
both computers, often the name of the root volume will be different. For example, on the Macintosh your hard
disk may be named “hd” while on Windows it may be named “C:”. If Igor is unable to find a folder that is ref-
erenced by a full path, it looks for the folder in the same place in the hierarchy, but on the root volume containing
the experiment file. If this fails, it looks for the folder in the same place in the hierarchy, but on the root volume
containing the Igor application file. Also, if the path points inside the Igor Pro Folder, then Igor looks for the
folder in the same place in the hierarchy, but inside the Igor Pro Folder containing the Igor application file.

If all of these methods fail, Igor displays a dialog asking you to locate the folder.

Picture Compatibility
Igor displays pictures in graphs, page layouts, control panels and notebooks. The pictures are stored in the
Pictures collection (Misc→Pictures) and in notebooks. Graphs, page layouts and control panels reference
pictures stored in the Pictures collection while notebooks store private copies of pictures.

Extension File Type What’s in the File

.pxp IGsU Packed experiment file

.pxt IGsS Packed experiment template (stationery)

.uxp IGSU Unpacked experiment file

.uxt IGSS Unpacked experiment template (stationery)

.ifn WMT0 Igor formatted notebook (last character is zero)

.txt TEXT Igor plain notebook

.ihf WMT0 Igor help file

.ibw IGBW Igor binary data file

Chapter III-15 — Platform-Related Issues

III-398

This table shows the graphic formats that Igor can use to store pictures:

PICT was the standard format for Mac OS 9 graphics but has been supplanted by PDF on Mac OS X. EMF
is the standard format for Windows graphics. PICT, PDF, EMF and BMP are platform-dependent and will
display as gray boxes if you move the Igor experiment to the other platform. The other formats are plat-
form-independent.

Although Igor does not display nonnative graphic formats, it does preserve them. For example, you can
create an experiment on Macintosh and paste a Macintosh PDF into a page layout, graph, or notebook
window. If you save the experiment and open it on Windows, the PDF will be displayed as a gray box. You
can now paste a Windows metafile into the page layout, graph, or notebook window. If you save the exper-
iment and open it on Macintosh, the Window metafile will be displayed as a gray box but the PDF will be
displayed correctly. If you now save and open the experiment on Windows again, and the Windows meta-
file will be displayed correctly.

If you want PDF, PICT, EMF, or BMP/DIB pictures to be displayed correctly on both platforms, you must
convert the pictures to PNG. To convert to PNG, use the Pictures dialog (Misc menu) for pictures in graphs
and page layouts, or for pictures in notebooks, use the Special submenu in the Notebook menu.

Note: Converting a picture to PNG makes it a bitmap format and may degrade resolution. This is fine
for graphics intended to be viewed on the screen but not for graphics intended to be printed at
high resolution. You can convert to a high resolution PNG without losing much picture quality.
However, this takes a lot of memory during the conversion and when the PNG is displayed.
Because PNGs are compressed, they usually do not require excessive disk space when saved.

The ability to store pictures in JPEG, TIFF and EPS formats was added in Igor Pro 5. If you create an exper-
iment with pictures in these formats, they will display as gray boxes if opened in older versions of Igor.

Prior to version 3.1, Igor stored graph and page layout pictures on the Macintosh in the experiment file’s
resource fork. When you transfer a file created by an Igor version older than 3.1 from the Macintosh to a
PC, the resource fork is lost and Igor will display a placeholder rectangle in place of the picture.

Page Setup Compatibility
Page setup records store information regarding the size and orientation of the page. Page setups contain
platform- and printer-dependent data. They are most important in regards to page layout windows but also
affect printing of other kinds of windows.

Format How To Create Notes

PICT Paste or use Misc→Pictures Macintosh only

PDF Paste or use Misc→Pictures Macintosh only

EMF (Enhanced
Metafile)

Paste or use Misc→Pictures Windows only

BMP (bitmap) Use Misc→Pictures Windows Only.

BMP also called DIB (device-independent bitmap).

PNG (Portable
Network Graphics)

Use Misc→Pictures Cross-platform bitmap format

JPEG Use Misc→Pictures Cross-platform bitmap format

TIFF (Tagged Image
File Format)

Use Misc→Pictures Cross-platform bitmap format

EPS (Encapsulated
PostScript)

Use Misc→Pictures High resolution vector format. Requires PostScript
printer. A screen preview is displayed on screen.

Chapter III-15 — Platform-Related Issues

III-399

On Macintosh, Igor stores page setups in experiment files, notebook files, and procedure files. In each
experiment file, Igor stores a separate page setup for each page layout, notebook, and procedure window,
and stores a single page setup for all graphs and single page setup for all tables.

On Windows, Igor stores page setups the same as on Macintosh except that it does not store page setups in
plain notebook or procedure files. This is true whether the file is embedded in a packed experiment file or
is a stand-alone file. When you open a plain notebook or procedure file on Windows, Igor creates a new
page setup record by copying the preferred page setup record as set by the Capture Notebook Prefs or
Capture Procedure Prefs dialogs.

When you transfer an experiment from one platform to another, page setup records are only partially pre-
served. Igor attempts to preserve the page orientation and margins.

Prior to version 3.1, Igor stored page setup records on the Macintosh in the experiment file’s resource fork.
When you transfer a file created by an Igor version older than 3.1 from from the Macintosh to a PC, the
resource fork is lost and Igor has no way to know the orientation of the page setups. Therefore, when
opening one of these old Macintosh experiment files on Windows, any page layouts in the experiment will
use the page setup that you captured using the Capture Layout Prefs dialog or a default page setup if you
have not captured a preferred page setup.

Pre-Carbon Page Setup Records
Carbon is a set of routines that Apple created for the transition from Macintosh OS 9 to OS X. The page setup
record now used by the Macintosh operating system is called a Carbon page setup record. Prior to that the oper-
ating system used a different type of page setup record which we will call an “old Macintosh page setup record.”

Experiments saved on Macintosh by pre-Carbon versions of Igor Pro (prior to version 4.05A) contain old
page setup records. When you open one of these experiments under OS X, the old page setup record is
passed to a system routine that is supposed to convert it to a Carbon page setup record. This usually works
correctly but sometimes it corrupts the page setup record. The corruption usually appears as a nonsensical
scaling value in the Page Setup dialog for the affected window. If the window is a page layout window, this
results in a page that is grossly too small or too big. You can usually fix it by entering 100% for the scaling
value in the page setup dialog.

Igor Pro 6 attempts to detect and fix this corruption if the scaling value is less than 50% or greater than 200%.
It repairs the page setup record by replacing it with a new default page setup record and then sets the ori-
entation of the new page setup record to match the orientation of the old record. All other properties, such
as the scaling, of the old page setup record are lost.

If corruption occurs and the automatic repair is not successful, you can use the SetIgorOption operation
(see page V-638) to control the old page setup record conversion. The command format is:
SetIgorOption RepairOldPageSetups = val

The parameter val is one of the following:

The effect of SetIgorOption lasts only until you quit Igor.

val Effect

0 Never repair old page setup records.

1 Repair if the old page setup appears corrupted (default).

2 Always repair old page setup records.

3 Always present a page setup dialog.

4 Always repair and then present a page setup dialog.

Chapter III-15 — Platform-Related Issues

III-400

File System Issues
This section discusses file system issues that you need to take into account if you use Igor on both Macintosh
and Windows.

File and Folder Names
On Windows, the following characters are illegal in file and folder names: backslash (\), forward slash (/),
colon (:), asterisk (*), question mark (?), double-quote ("), left angle bracket (<), right angle bracket (>), ver-
tical bar (|). On Macintosh, the only illegal character is colon.

This means, for example, that you can not create a file with a name like “Data 1/23/98” on Windows. You
can create a file with this name on Macintosh. If you write an Igor procedure that generates a file name like
this, it will run on Macintosh but fail on Windows.

Therefore, if you are concerned about cross-platform compatibility, you must not use any of the Windows
illegal characters in a file or folder name, even if you are running on Macintosh. Furthermore, you should
not use “high ASCII” characters (see Character Set Compatibility on page III-403), because they don’t
translate across platforms. Also, don’t use period except before a file name extension.

Prior to Igor Pro 6.1, the Macintosh version of Igor could not handle file or folder names exceeding 31 char-
acters. Igor Pro 6.1 and later support long file names (up to 255 characters) on Macintosh as well as Win-
dows. Most WaveMetrics XOPs now also support long file names on Macintosh. However XOP file names
are still limited to 31 characters plus the ".xop" extension.

The following Igor Pro features will not work with long file names on Mac OS X because Igor calls Apple
routines that do not support long file names for these features:

NewMovie
ImageSave when using QuickTime
ImageLoad when using QuickTime

File and folder names in Windows can theoretically be up to 255 characters in length. Because of some lim-
itations in Windows and also in Igor, you will encounter errors if you use file names that long. However,
both Igor and Windows are capable of dealing with file names up to about 250 characters in length. It is
unlikely that you will approach this limit.

An exception to this is that Igor limits names of XOP files to 31 characters, plus the “.xop” extension. Igor
will not recognize an XOP file with a longer name.

Paths in Windows are limited to 259 characters in length. Neither Windows nor Igor can deal with a path
that exceeds this limit. For example, if you create a directory with a 250 character name and try to create a
file with a 15 character name, neither Windows nor Igor will permit this.

This boils down to the following: Feel free to use long file and directory names, but expect to see errors if
you use outrageously long names or if you have directories so deeply nested that paths approach the theo-
retical limit.

Path Separators
The Macintosh file system uses a colon to separate elements in a file path. For example:
hd:Igor Pro Folder:Examples:Sample Graphs:Contour Demo.pxp

The Windows file system uses a backslash to separate elements in a file path. For example:
C:\Igor Pro Folder\Examples\Sample Graphs:Contour Demo.pxp

Some Igor operations (e.g., LoadWave) allow you to enter file paths. Igor accepts Macintosh-style or
Windows-style paths regardless of the platform on which you are running.

Note: Igor uses the backslash character as an escape character in literal strings. This can cause problems
when using Windows-style paths.

Chapter III-15 — Platform-Related Issues

III-401

For example, the following command creates a textbox with two lines of text. “\r” is an escape code inserts
a carriage return character:
Textbox "This is line 1.\rThis is line 2."

Because Igor interprets a backslash as an escape character, the following command will not execute properly:
LoadWave "C:\Data Files\really good data.ibw"

Instead of loading a file named “really good data.ibw”, Igor would try to load a file named “Data
Files<CR>eally good data.ibw”, where <CR> represents the carriage return character. This happens because
Igor interprets “\r” in literal strings to mean carriage return.

To solve this problem, you must use “\\” instead of “\” in a file path. Igor will correctly execute the following:
LoadWave "C:\\Data Files\\really good data.ibw"

This works because Igor interprets “\\” as an escape sequence that means “insert a backslash character here”.
Another solution to this problem is to use a Macintosh-style path, even on Windows:
LoadWave "C:Data Files:really good data.ibw"

Igor will convert the Macintosh-style path to a Windows-style path before using it. This avoids the back-
slash ambiguity.

For a complete list of escape sequences, see Escape Characters in Strings on page IV-13.

If you are writing procedures that need to extract sections of file paths or otherwise manipulate file paths,
the ParseFilePath function on page V-537 may come in handy.

UNC Paths
“UNC” stands for “Universal Naming Convention”. This is a Windows convention for identifying resources
on a network. One type of network resource is a shared directory. Consequently, when running under Win-
dows, in order to reference a network directory from an Igor command, you need to use a UNC path.

The format of a UNC path that points to a file in a folder on a shared server volume or directory is:
"\\server\share\directory\filename"

“server” is the name of the file server and “share” is the name of the top-level shared volume or directory
on that server.

Because Igor treats a backslash as an escape character, in order to reference this from an Igor command, you
would have to write:

"\\\\server\\share\\directory\\filename"

As described in the preceding section, you could also use Macintosh path syntax by using a colon in place
of two backslashes. However, you can not do this for the “\\server\share” part of the path. Thus, using
Macintosh syntax, you would write:

"\\\\server\\share:directory:filename"

Unix Paths
Unix paths use the forward slash character as a path separator. Igor does not recognize Unix paths. Use
Macintosh paths instead.

FlushFileBuffers
On Windows, by default Igor calls the Windows FlushFileBuffers routine before closing a file. FlushFile-
Buffers flushes data cached in a hard drive's circuitry for the file being closed, ensuring that the data is
written to disk. This guarantees the file's integrity in the event of a power failure.

When writing a lot of small files one right after another, for example when saving an unpacked experiment
with a very large number of waves or data folders, calling FlushFileBuffers can adversely affect perfor-

Chapter III-15 — Platform-Related Issues

III-402

mance. In this case, you can use SetIgorOption to disable calling FlushFileBuffers. This is rarely necessary
and should be done only in the circumstances described in this paragraph.

To turn FlushFileBuffers off execute:

SetIgorOption UseFlushFileBuffers=0 // Turn off

To turn FlushFileBuffers on execute:

SetIgorOption UseFlushFileBuffers=1 // Turn on (default)

To query the state execute:

SetIgorOption UseFlushFileBuffers=?; Print V_Flag // Query

This does nothing on Macintosh.

SetIgorOption is usually called from the command line. It can not be executed from a user-defined function.
It's effect lasts until Igor quits.

Keyboard and Mouse Usage
This section describes how keyboard and mouse usage differs on Macintosh versus Windows. It is intended
to help Igor users more easily adapt when switching platforms.

There are three main differences between Macintosh and Windows input mechanisms:
1. The Macintosh mouse may have one button and the Windows mouse has two.
2. The Macintosh keyboard has four modifier keys (Shift, Command, Option, Control) while the Win-

dows keyboard has three (Shift, Ctrl, Alt).
3. The Macintosh keyboard has Return and an Enter keys while the Windows keyboard (usually) has

two Enter keys.

For the most part, Igor maps between Macintosh and Windows input as follows:

There are a few exceptions to this mapping. For example, Option-Tab enters a tab into a text wave in a table.
Alt-Tab does not do this on Windows because Alt-Tab is reserved by the Windows operating system.

In notebooks, procedure windows and help windows, pressing Control-Return or Control-Enter executes
the selected text or, if there is no selection, to execute the line of text containing the caret.

Macintosh Windows Macintosh Windows

Shift Shift Return Enter

Command Ctrl Enter Enter

Option Alt Control-click Right-click

Control <not mapped>

Chapter III-15 — Platform-Related Issues

III-403

Command Window Input
This table compares command window mouse actions:

You can quickly move the command window (or any built-in Igor window) to its preferred position. On
Macintosh, press Option and click the zoom button. On Windows, press Alt and click the maximize button.

Other Input Issues
The accelerators (keyboard shortcuts) for Indent Left and Indent Right in the Edit menu are Command-[
and Command-] on Macintosh but are Ctrl+Shift+L and Ctrl+Shift+L R on Windows. This is because
Windows does not allow using Ctrl+[or Ctrl+] as an accelerator.

Here are some shortcuts related to the Igor help system:

Cross-Platform Text and Fonts

Character Set Compatibility
The Macintosh and Windows character encodings are the same for the common characters, such as upper and
lower case letters, numbers and common punctuation. These are sometimes called the “low ASCII” characters
because they have ASCII codes below 128 and appear in the first half of the ASCII character encoding table.
The remaining characters, such as accented vowels, bullets and other symbols, are called “high ASCII” char-
acters. The encoding for high ASCII characters is different on the Macintosh and Windows. For example, the
character code for a bullet on the Macintosh is the character code for a yen symbol on Windows.

In most cases, Igor does an automatic translation to compensate for these encoding differences. For example,
when Igor opens a formatted notebook file or a packed experiment file containing notebooks and procedures,
Igor automatically translates. There are some characters for which no translation is possible because the char-
acters are missing from one platform or the other. For example, the Macintosh has a “Š” character but
Windows does not. For these characters, Igor does not do any translation. The character will appear incorrect
on the nonoriginating platform but will appear correct if the file is moved back to the originating platform.

For some fonts, this translation causes a problem, because the fonts do not use the normal character encod-
ings. Symbol font is an example. It has the same encoding on both platforms and therefore Igor does not do
any translation.

When Igor opens a plain text notebook or a procedure file that is a stand-alone file (i.e., is not stored in a
packed experiment file) it has no way to know which platform the file came from and therefore can not do
character translation. This may result in funny characters appearing, such as a yen symbol where you expect
a bullet symbol. If you use such characters in procedure files, this problem may cause errors when you
compile or execute the procedures. The only solution is to avoid using high ASCII characters in plain text files.

Like the Symbol font, Asian fonts use the same character encoding on Macintosh and Windows and so Igor
does not translate text governed by an Asian font. When opening an experiment using Asian text, it is

Action Macintosh Windows

Copy history selection to command line Option-click Alt+click

Copy history to command and start execution Command-Option-click Ctrl+Alt+click

Invoke contextual menu Control-click Right-click

Action Macintosh Windows

Invoke Igor Help Browser Help F1

Insert operation or function template Shift-Help Ctrl+F1

Go to help for operation or function Shift-Option-Help Ctrl+Alt+F1

Chapter III-15 — Platform-Related Issues

III-404

important that your preferred procedure file font be an Asian font. This is the factory default if you are
running on an Asian version of the Macintosh or Windows operating system. This is important because Igor
uses the preferred procedure file font in cases where it has no other way to determine which font should be
used for the file, such as when you open a stand-alone procedure file on Macintosh or any procedure file
(even packed into an experiment file) on Windows.

Text Styles
The outline and shadow text styles are available on Macintosh only. On Windows, these styles have no effect
and Igor disables Outline and Shadow items in menus and Outline and Shadow checkboxes in dialogs.

Carriage Returns and Linefeeds
The character or character pattern that marks the end of a line of text in a plain text file is called the “line
terminator”. There are three common line terminators, carriage return (CR, ASCII 13, used on Macintosh),
linefeed (LF, ASCII 10, used on Unix) and carriage return plus linefeed (CRLF, used on Windows).

When Igor Pro opens a text file (procedure file, plain text notebook or plain text data file), it accepts CR, LF
or CRLF as the line terminator.

If you create a new procedure file or plain text notebook, Igor writes CR on Mac OS and CRLF on Windows.
As of Igor Pro 5.04, if you open an existing plain text file, edit it and then save it, Igor preserves the original
terminator as determined by examining the first line in the file.

By default, the FReadLine operation treats CR, LF, or CRLF as terminators. Use this to write a procedure
that can read lines from a text file without caring whether it is a Macintosh, Windows, or Unix file.

Font Substitution
When a font specified in a command or document is not installed Igor will apply font substitution to choose
an installed font to use in place of the missing font. Dealing with these missing fonts often occurs when
transferring a Windows-originated document to Macintosh or vice versa.

Igor employs two levels of font substitution: user-level editable substitution and built-in uneditable substitution.

The first level is an optional user-level font substitution facility that you will usually encounter for the first
time when Igor displays the Substitute Font Dialog while opening an experiment or file. Use the dialog to
choose a temporary or permanent replacement for the missing font:

Chapter III-15 — Platform-Related Issues

III-405

Note: The Substitute Font Dialog appears when neither level of font substitution specifies a replacement
for the missing font. You can prevent this dialog from appearing by selecting the Don’t Prompt for
Missing Fonts checkbox, which is also present in the Edit Font Substitutions Dialog.

The second level is Igor’s built-in substitution table which substitutes between fonts normally installed on
various Macintosh and Windows operating systems. For example, it substitutes Arial (a standard Windows
font) for Geneva (a standard Macintosh font) if Geneva is not installed (which it usually isn’t on a Windows
computer).

If you prefer to replace Geneva with Verdana, you can use the Edit Font Substitution Dialog (accessed from
the Misc menu) to edit the user-level substitutions, which take precedence over any built-in substitutions.

The user-level font substitution table is maintained in the “Igor Font Substitutions.txt” text file in Igor’s
preferences folder. The file format is:
<name of missing font to replace> = <name of font to use instead>

one entry per line. For example:
Palatino=New Times Roman

spaces or tabs are allowed around the equals sign.

When a missing font is replaced, Igor uses the name of the replacement font instead of the name of the font
in the command.

The name of the missing font is replaced only in the sense that the altered or created object (window, control,
etc.) uses and remembers only the name of the replacement font. Recreation macros (and experiment recre-
ation procedures) use the name of the replacement font when the experiment is saved.

The command, however, is unaltered and still contains the name of the missing font.

Example
Suppose an opened experiment’s recreation procedures contain commands like these:
Display // create a blank graph
ModifyGraph gFont="this font doesn't exist"

Suppose also that we haven’t created an entry in the Edit Font Substitution dialog for a missing font named
“this font doesn’t exist”.

Because the ModifyGraph gFont command refers to a nonexistent font, the Substitute Font Dialog
appears. Suppose we select a replacement font of Futura.

There are three consequences:
1) The recreation macro of the created graph looks like this:

Window Graph0() : Graph
PauseUpdate; Silent 1 // building window...
Display /W=(5,44,400,252)
ModifyGraph gFont="Futura"

EndMacro

2) If another ModifyGraph gFont="this font doesn't exist" command is executed, the Sub-
stitute Font dialog does not appear, but silently converts the font to Futura.

3) Igor adds the font substitution to the Missing Font list you see in the Edit Font Substitution Dialog:

Chapter III-15 — Platform-Related Issues

III-406

Cross-Platform Procedure Compatibility
Igor procedures are about 99.5% platform-independent. For the other 0.5%, you need to test which platform
you are running on, using the IgorInfo(2) function, and act accordingly.

File Paths
As described under Path Separators on page III-400, the Macintosh uses colons to separate elements of a
file path while Windows uses backslashes. So that you can write a single procedure that works on both plat-
forms, Igor accepts paths with either colons or backslashes on either platform.

The use of backslashes is complicated by the fact that Igor uses the backslash character as an escape character
in literal strings. This is also described in detail under Path Separators on page III-400. The simplest solution
to this problem is to use a colon to separate path elements, even when you are running on Windows.

If you are writing procedures that need to extract sections of file paths or otherwise manipulate file paths,
the ParseFilePath function on page V-537 may come in handy.

File Types and Extensions
On Mac OS 9, all files had a file type property. This property is a four letter code that is stored with the file
by the Macintosh file system. For example, plain text files have the file type TEXT. Igor binary wave files
have the file type IGBW. The file type property controls the icon displayed for the file and which programs
can open the file.

In Mac OS X, the file type can be represented by the file type property or by the file name extension. Either
or both can be used, with the extension preferred.

On Windows, the file type is indicated by the file name extension and files do not have file type properties.

For the most part, in Igor programming you do not need to worry about file types or extensions. However,
there are some Igor operations and functions, such as Open and IndexedFile, which take a string parameter
containing a file type or list of file types. For example, these commands present a dialog from which a user
can choose plain text files or Igor formatted notebook files:
Variable fileRef
Open/R/T="TEXTWMT0" fileRef as ""
Close fileRef

Chapter III-15 — Platform-Related Issues

III-407

If you use these operations and functions in procedures, then you need to understand how Igor maps file
name extensions to file types.

Igor associates a file type with a file name extension. For example, Igor considers “.txt” files to be of type
TEXT and considers “.ifn” files to be of type WMT0. The following table shows how Igor maps from exten-
sion to file type:

In addition to the standard Windows extensions listed above, Igor also recognizes files with the “.bwav”
and “.awav” extensions. These are recognized as equivalent to “.ibw” and “.itx” for backward compatibility
with old versions of Igor.

Windows Extension Macintosh File Type What’s in the File

.uxp IGSU Unpacked experiment file

.uxt IGSS Unpacked experiment template (stationery)

.pxp IGsU Packed experiment file

.pxt IGsS Packed experiment template (stationery)

.ibw IGBW Binary wave file

.itx IGTX Igor Text file

.xop IXOP Igor extension file

.ibv IGB- Igor binary variable

.ibt IGT- Igor binary misc things

.txt TEXT Text file

.ifn WMT0 Igor formatted notebook file

.ift WMTS Igor formatted notebook template (stationery)

.eps EPSF Encapsulated PostScript file

.rtf RTF Rich Text file

.tif TIFF TIFF file

.jpg JPEG JPEG file

.tga TPIC Targa file

.gif GIFf GIF file

.sgi SGI Silicon Graphics file

.png .PNG Portable Network Graphics file

.psd 8BPS Photoshop file

.pct PICT Macintosh PICT file

.bmp BMPp Windows bitmap file

.* ???? Any type file

Chapter III-15 — Platform-Related Issues

III-408

Igor also maps the following extensions to the associated file type. However, the file types listed in this table
are fictitious. They are not file types that are really used on Macintosh but they still work, for example, in
the Open operation.

Igor maps all extensions not listed above to the file type '????' which signifies “unknown file type”. This
includes files that have no extension.

The TextFile function will recognize only files of type TEXT. On Windows, a file must have the “.txt” exten-
sion to be of type TEXT.

The IndexedFile function requires that you supply a file type or a file extension as a parameter. Thus, the follow-
ing commands will print the name of the first file in the Igor directory whose type is TEXT (extension is “.txt”):
Print IndexedFile(Igor, 0, "TEXT")
Print IndexedFile(Igor, 0, ".txt")

This will print the name of the second file of any type:
Print IndexedFile(Igor, 1, "????")

Points Versus Pixels
Most measurements of length in Igor are in terms of points. A point is roughly 1/72 of an inch.

A pixel is the area taken up by the smallest displayable dot on an output device such as a CRT or a printer.
The physical width and height of a pixel depends on the device. CRTs typically display 60 to 120 pixels per
inch (commonly called “dots per inch” or DPI). Printers typically display 150 to 2400 DPI.

The physical size of a screen pixel can vary from one CRT to another. The size of a pixel on a given CRT can
often be adjusted by the user by twiddling knobs on the back of the CRT or using buttons on the front panel.
Because of this, software programs don’t know about or worry about the physical size of a pixel but instead
deal with an assumed or “logical” size.

On the Macintosh, the logical width and height of a screen pixel is always 1/72 of an inch, which equates to a
logical resolution of 72 DPI. The user can change the physical resolution but not the logical resolution. If a mon-
itor’s physical resolution is close to 72 DPI, there will be a pretty good match between the logical and physical
sizes. On such monitors, if you make a graph 5 inches (360 points) wide, it will appear roughly 5 inches wide.

On Windows, the default logical width and height of a screen pixel is 1/96 of an inch which equates to a
logical resolution of 96 DPI. The user can change both the physical resolution and the logical resolution
using the Windows Display Properties control panel. It is common to have a significant discrepancy
between the logical and physical sizes. In other words, if you make a graph 5 inches (360 points) wide, it
may appear 6 or 7 inches wide. If you want the physical size of an object on the screen to match its logical
size, you need to find an appropriate combination of physical and logical resolutions.

Windows Extension Fictitious Macintosh
File Type

What’s in the File

.ihf IHLP Igor help file (WMT0 files on Macintosh)

.ipf IPRC Procedure file (TEXT files on Macintosh)

.dat .DAT Data file

.csv .CSV Comma-separated file

.emf .EMF Enhanced metafile

.wmf .WMF Windows metafile

.bmp .BMP Bitmap file

.png .PNG PNG file

.htm HTML HTML file

Chapter III-15 — Platform-Related Issues

III-409

Window Position Coordinates
With one exception, Igor stores and interprets window position coordinates in units of points. For example
the command
Display/W=(5, 42, 405, 242)

specifies the left, top, right, and bottom coordinates of the window in points relative to a reference point
which is, roughly speaking, the top/left corner of the menu bar. Other Igor operations that use window
position coordinates in points include Edit, Layout, NewNotebook, PlayMovie and MoveWindow.

The exception is the control panel window. To make it easier to create control panels that look the same on
Macintosh and Windows, the NewPanel operation interprets its /W coordinates as pixels and operations
that create or modify controls also interpret coordinates as pixels.

Most users do not need to worry about the exact meaning of these coordinates. However, for the benefit of
programmers, here is a discussion of how Igor interprets them.

On the Macintosh, the reference point, (0, 0), is the top/left corner of the menu bar on the main screen. On
Windows, the reference point is 20 points above the bottom/left corner of the main Igor menu bar. This dif-
ference is designed so that a particular set of coordinates will produce approximately the same effect on
both platforms, so that experiments and procedures can be transported from one platform to another.

The coordinates specify the location of the content region, in Macintosh terminology, or the client area, in
Windows terminology, of the window. They do not specify the location of the window frame or border.

On the Macintosh, a point is always interpreted to be one pixel.

On Windows, the correspondence between a point and a pixel can be controlled by the user, as described
under Points Versus Pixels on page III-408. Since Igor stores window positions in units of points, if the user
changes the number of pixels per point, the size of Igor windows in pixels will change. The exception is that
control panels will not change because Igor interprets their coordinates as pixels.

Notebook Issues
On Macintosh, Igor stores the settings (font, size, style, etc.) for a plain text file in the file’s resource fork.
The data fork contains just the plain text. On Windows, text files have no resource fork. Therefore there is
no way for Igor to store settings for a plain text file on Windows. When you open a plain text notebook or
an experiment containing a plain text notebook on Windows, Igor uses preferences to set the notebook’s
text format. Thus, text format changes that you make to a plain text notebook are lost on Windows unless
you capture them as your preferred text format.

PNG Pictures in Notebooks
If you want to display notebook pictures on both platforms, they must be in one of these cross-platform for-
mats: PNG, JPEG, TIFF. Although EPS is a cross-platform format, the EPS screen preview on Macintosh is
PICT, which is not cross-platform.

If you have pictures in PICT or EMF format and you want them to be viewable on both platforms, you
should convert them to PNG. Igor uses PNGs for Igor help files which need to be platform-independent.

There are two ways to create a PNG picture in an Igor notebook. You can load it from a file using Misc→Pic-
tures and then place it in a notebook or you can convert a picture that you have pasted into a notebook using
Notebook→Special→Convert to PNG.

The Convert to PNG command in the Notebook→Special menu converts the selected picture or pictures into
PNG. It skips selected pictures that are already PNG or that are foreign (not native to the platform on which you
are running). You can determine the type of a picture in a notebook by clicking in it and looking at the notebook
status line. If you select just one picture and do the conversion, Igor will let you undo it. However, if you select
anything other than a single picture, the conversion will not be undoable. You can interrupt a conversion by
pressing Command-period (Macintosh) or Ctrl+Break (Windows) and holding until Igor stops the conversion.

Chapter III-15 — Platform-Related Issues

III-410

When you create a PNG file from within Igor, you can create it at screen resolution or at higher resolution.
If you want crisp screen display when viewed at 100 percent magnification, use screen resolution when you
create the PNG file. If you want better quality when viewed at higher magnifications and when printed, use
higher than screen resolution when you create the PNG file. Using higher resolution requires a lot of
memory during the conversion and when the picture is displayed but usually does not require excessive
disk space when saved because PNGs are compressed. Once you have created a PNG file, you can load it
into another program or into Igor using Misc→Pictures.

The next three paragraphs explain how Igor treats screen resolution PNGs differently from high resolution
PNGs. You can skip this if you don’t care about the technical details.

Normally, Igor stretches pictures if necessary to preserve the logical size of the pictures at different screen
resolutions. However, PNG, being a bitmap type of picture, looks best when displayed without stretching.
Therefore, Igor treats PNGs in notebooks specially. If the PNG was created at screen resolution, Igor dis-
plays the PNG without stretching. This gives a crisp, undistorted display when viewed at 100 percent mag-
nification, but the physical size of the picture is not preserved. This is usually what you want for screen
dumps and for graphics intended mostly for viewing on screen at 100% magnification as opposed to print-
ing or viewing on screen at higher magnifications.

For example, suppose you create a 5 inch by 4 inch graph on the Macintosh and export that graph as a
screen-resolution PNG. You paste the PNG into a notebook. On the Macintosh, the screen resolution is 72
dpi, so the PNG will be 72 dpi. Thus, the dimensions of the PNG in pixels is 360 by 288 (5*72 by 4*72). If you
save the notebook and open it on Windows, Igor notices that the PNG is screen resolution and will therefore
displays it using 360 by 288 pixels. This means that Igor does not need to stretch the PNG so it displays
crisply. However, because Windows screen resolution is typically 96 dpi, the logical size of the PNG on
Windows will be smaller than 5 inches by 4 inches by a factor of 72/96.

If instead of creating a screen-resolution PNG, you create a high-resolution PNG, Igor will stretch the PNG
by a factor of 96/72 on Windows. This makes the logical size of the PNG the same on both platforms but it
will be somewhat distorted on Windows because of the stretching.

Chapter

III-16
III-16Miscellany

Dashed Lines ... 412
The Color Environment ... 412
Miscellaneous Settings ... 413

Graph Settings.. 413
Table Settings ... 413
Command Settings .. 413
Experiment Settings .. 414
Data Loading Settings ... 414
Color Settings (Macintosh) ... 414
Typography Settings (Macintosh) ... 414
Asian Language Settings (Macintosh) .. 415
Compatibility Settings... 416
Misc Settings... 416
Help Settings (Windows).. 417

Object Names... 417
Standard Object Names .. 417
Liberal Object Names .. 417
Name Spaces... 418

Renaming Objects ... 418
The Object Status Dialog.. 419

User Functions.. 421
Broken Objects.. 422

Graphics Technology.. 423
Pictures ... 423

Importing Pictures ... 424
The Picture Collection Stores Named Pictures.. 424
Pictures Dialog ... 425
NotebookPictures .. 425

Igor Extensions .. 425
WaveMetrics XOPs .. 425
Third Party Extensions.. 426
Activating Extensions.. 426
XOPs on Intel Macintosh .. 426
Running PowerPC XOPs on Intel Macintosh .. 426

Memory Management .. 427
Increasing Virtual Memory Space in Windows VISTA and Windows 7... 427
Increasing Virtual Memory Space in Windows XP .. 427

Macintosh System Requirements ... 428
Windows System Requirements... 428
Crashes ... 428

Crash Logs on Mac OS X .. 429
Crashes On Windows.. 429

Chapter III-16 — Miscellany

III-412

Dashed Lines
The dashed lines built into Igor can be edited with the Dashed Lines dialog (Misc menu).

You can edit one dashed line pattern at a time. The example shows the last dashed line (number 17) being
edited. You can select another line with the Dashed Line pop-up menu. Dashed line 0 (the solid line) cannot
be edited. If you need to create a custom dashed line pattern, we recommend that you modify the high num-
bered dashed lines, leaving the low number ones in their default state. This ensures that the low numbered
patterns will be the same for everyone.

Dashed lines are described by pairs of dash and gap lengths. You can add or remove pairs with the More
Pairs and Fewer Pairs buttons. The lengths can be adjusted by entering dash and gap values, or by dragging
the dash (filled boxes) and gap (hollow boxes) handles.

You can also change dashed lines with the SetDashPattern operation (see page V-626).

Dashed lines are stored with the experiment, so each experiment may have different dashed lines. You can
capture the current dashed lines as the preferred dashed lines for new experiments.

The Color Environment
Igor has a main color palette that contains colors that you can use for traces in graphs, text, axes, back-
grounds and so on. The main color palette appears as a pop-up menu in a number of dialogs, such as the
Modify Trace Appearance dialog. This section discusses this palette.

Igor also has color tables and color index waves you can select among
when displaying contour plots and images. These are discussed in
Chapter II-14, Contour Plots, and Chapter II-15, Image Plots.

You can select from colors presented in a color palette.

You can use the Other button to select colors that are not in the palette. As
you use Igor, colors are added to the palette in the Recent Colors area.

On Macintosh only, the recent colors are remembered by Igor when it quits and restored when it restarts if
you have selected the “Save and restore color palette’s recent colors” checkbox in the Miscellaneous Settings
dialog’s Color Settings category.

Choose one of 17
dashed lines to edit.

Enter the length of
the following gap.

Enter the length of
a drawn segment.

Drag a handle or enter a
number to change a length.

You can specify
up to 8 pairs.

If this is selected, new experiments
will have the same 17 dashed lines.

Click to return the current line to what it
was before this dialog was brought up.

Click to return the current line
to the factory default.

Choose the units used in the ruler
and for the Dash and Gap values.

Chapter III-16 — Miscellany

III-413

If you run your monitor in 256 (8 bit) color mode, Igor has to make compromises in an attempt to provide rea-
sonably accurate colors while still allowing other programs to display reasonably accurate colors. It is recom-
mended that you set your monitor to the thousands of colors (16 bit) or millions of colors (32 bit) mode.

Miscellaneous Settings
You can customize some aspects of how Igor works using the Miscellaneous Settings dialog. The miscella-
neous settings are grouped into categories.

Changes to miscellaneous settings take effect immediately when you click the Save Settings button. They
affect the current experiment as well as new and old (reopened) experiments.

Graph Settings
The Repeat Wave Style Prefs in Graphs checkbox affects the way wave trace style preferences are applied
when waves are appended to a graph. The factory default is selected. See Graph Preferences on page II-305.

When the Enable “Fling” Mode checkbox is checked, dragging in a graph with Option or Alt pressed and
the mouse down will “fling” (scroll) the graph contents in the direction of the drag. To stop the motion, click
in the graph while keeping the mouse still.

Table Settings
The Repeat Column Style Prefs in Tables checkbox affects the way column style preferences are applied when
columns are appended to a table. The factory default is selected. See Table Preferences on page II-230.

Command Settings
The Limit Command History Text checkbox determines the number of lines of history text that Igor will
retain in a given experiment. The factory default is deselected (no limit). Limiting history can save space on
disk but more importantly can reduce clutter in the history area of the command window. It can also reduce
the time it takes to open and save an experiment.

If you select the Limit Command History Text checkbox and enter the number of lines of history that you want
to keep, Igor will automatically trim the history to that number of lines when you save the experiment. In addi-
tion, when Igor adds text to the history, it checks the number of lines. If it exceeds the requested maximum by
500 lines, Igor trims the history at that time, rather than waiting until you save the experiment. This is done so
that if, for example, you run an experiment overnight, the history will not grow without bound.

You can enter and execute commands in a notebook as well as
from the command window.

These settings let you determine whether Igor stores commands
and output in the history area as well as in the notebook. See Notebooks as Worksheets on page III-5 for
general information on using a notebook as a worksheet.

Reverts the items in the active
category to their factory defaults.

Sets the active category.

Chapter III-16 — Miscellany

III-414

Experiment Settings
The Saved Experiment Format pop-up menu controls the way Igor experiments are saved.
You can override this choice in the Save Experiment dialog. The choice here merely presets
the dialog’s Packed checkbox. The factory default is Packed. See Saving Experiments on
page II-29 for details.

Unlike most spreadsheet and graphing programs, data can exist in Igor without being visible in a table. The
“Make a new table for new experiments” checkbox controls whether you will get a new empty table when
you choose New Experiment from the File menu. The default state is selected. This is convenient if you gen-
erally start working by entering data manually. If you do not enter data manually, you may find it more
convenient to turn this checkbox off and create a table only when you need one.

Data Loading Settings
The Loaded Igor Binary Data pop-up menu determines how Igor handles the loading
of Igor Binary waves from disk files. This menu addresses a subtlety that caught many
early Igor users off guard. Igor Binary data can be shared between experiments. Old
versions of Igor defaulted to sharing loaded Igor Binary data, but many users thought that a loaded wave
was another isolated copy of the data.

Use this pop-up menu to choose how Igor handles Igor Binary waves loaded from a disk file. Copy to Home
makes an isolated copy of the wave in the experiment’s home folder. If the experiment is saved in packed
format, the isolated copy is stored in the experiment’s packed file, which contains all the things usually
stored in a home folder.

If you choose Ask if Copy to Home, you always get a chance to change your mind with a dialog. If you
choose Share or Always Copy to Home, you can change your mind only if you use the Load Waves dialog;
the Load Igor Binary dialog uses the setting you make here without asking for confirmation. The factory
default is Ask if Copy to Home. See Sharing Versus Copying Igor Binary Files on page II-165 for details.

Default Data Precision presets the numerical precision checkboxes in the Make Waves and Load
Waves dialogs. The factory default is Double. Note that this affects only the dialogs; if you use
commands entered manually on the command line the default is single precision. See Number
Type and Precision on page II-81 for details.

Color Settings (Macintosh)
Selecting the “Save and restore color palette’s recent colors” checkbox restores the recent colors that were
in the color palette when Igor quit. If deselected, Igor starts up with no recent colors. The factory default is
deselected (don’t restore colors).

The Color Palette menu sets the accuracy with which colors are drawn when you run in 256 color (8 bit) mode.
It is recommended that you set your monitor to the thousands of colors (16 bit) or millions of colors (32 bit) mode.

Typography Settings (Macintosh)
This section discusses the way Igor draws text in graphs and page layouts.

By default, Igor handles text in graphs and page layouts in a method designed to provide good readability of
text on the screen and also good fidelity between text on the screen and text on the printed page. If you are
satisfied with Igor’s default performance in these regards, then you don’t need to read the following material.

There is a trade-off to be made between readability of text on the screen and fidelity of text between the
screen and the printed page. Unfortunately, there is no way to have maximum readability and maximum
fidelity at the same time. You can control this trade-off via three checkboxes in the Typography section of
the Miscellaneous Settings dialog.

Achieving text fidelity requires certain actions on the part of Igor, Apple’s QuickDraw graphics software
and the printer driver. Lack of fidelity stems from the fact that screen resolution is low while printer reso-
lution is high. Because of roundoff and other effects, the width of a string on the screen does not necessarily

Chapter III-16 — Miscellany

III-415

match the width of that same string when printed. The reasons for this are too complex to explain here.
Apple’s technical note TN-TEXT TE 21 gives some idea of the issues involved.

The “Use fractional character widths”, “Use outline fonts”, and “Use preci-
sion text sizes” checkboxes control aspects of how Igor draws text in graphs
and page layouts.

The default and recommended state for the “Use fractional character widths”
and “Use precision text sizes” checkboxes is on. Turning “Use outline fonts” on makes text in some fonts, such
as Geneva and Monaco, difficult to read on screen. Because of this, the default state for this checkbox is off.

When the “Use fractional character widths” checkbox is on, Igor uses Apple’s QuickDraw to keep track of
the position of characters using higher precision arithmetic. This slightly distorts text on the screen but
improves the fidelity with printed text.

When the “Use outline fonts” checkbox is on, Igor uses Apple’s QuickDraw to create the outline versions
of fonts (TrueType or PostScript) instead of the bitmap versions. This also distorts text on the screen but
improves the fidelity with printed text. The “Use outline fonts” checkbox makes a big difference with some
fonts, such as Geneva, Monaco and Courier, and makes little difference with other fonts, such as Helvetica,
Palatino and Times. Results on your computer may be different because you have different versions of these
fonts, different system software or different printer driver software.

The “Use precision text sizes” checkbox to do a more precise calculation when converting screen text sizes to
printer text sizes. The only reason to turn this feature off is to make this version of Igor behave like Igor Pro 2.0.

If all three checkboxes are deselected, you will get the same behavior as in Igor Pro 2.0. This produces good
looking text but with less emphasis on text fidelity. Use it only for backward compatibility.

If you change the state of the “Use fractional character widths” or “Use outline fonts”, Igor will automati-
cally update all open graphs and page layouts. This is not needed if you change just the Use precision text
sizes checkbox because this does not affect what is drawn on the screen.

Asian Language Settings (Macintosh)
The Font/Keyboard Synchronization settings control whether or not Igor will automatically match the key-
board input method and the active font. Synchronization applies to text documents and to tables.

The “Sync keyboard to font in text windows” checkbox determines whether Igor will set the keyboard
script when you choose a font or click in a section of text in a particular font. If this is selected and you click
in Asian text, Igor will activate the Asian keyboard method. If you click in Roman text, Igor will deactivate
the Asian keyboard method. Igor chooses the Asian keyboard method if the font is Asian and the text at the
insertion point in the document is Asian. Thus, if you mix Asian and Roman characters all in an Asian font,
Igor will activate the appropriate keyboard for the text at the insertion point.

Chapter III-16 — Miscellany

III-416

The “Sync font to keyboard in text windows checkbox” determines whether Igor will change the font auto-
matically if you manually change the keyboard input method. If this is selected and you change the key-
board input method to Asian, Igor will automatically switch to an Asian font. If you change the keyboard
input method to Roman, Igor will automatically switch to a Roman font. You may prefer to enter Roman
text in an Asian font. If so then you should deselect this checkbox and manually change the font as needed.

The “Sync keyboard to font in table text columns” checkbox determines whether Igor will set the keyboard
script when you click in a text column in a table. If this is on and you click in a column whose font is Asian,
Igor will activate the Asian keyboard methods. If you click in a column whose font is Roman, Igor will deac-
tivate the Asian keyboard method.

The “Sync keyboard to font in table numeric columns” checkbox determines whether Igor will set the key-
board script when you click in a numeric column in a table. We recommend that you leave this deselected and
use Roman numbers in numeric columns because Igor currently does not understand non-Roman numbers.

The “Use Asian Font for Dialog Text Areas” checkbox controls the font that Igor will use for certain special
dialog text entry areas, such as the text entry area in the Add Annotation and Browse Waves dialogs.
Because they require advanced capabilities such as scrolling and undo, these areas are not standard Macin-
tosh text boxes but rather are implemented using WaveMetrics’ special routines. Normally these areas use
the Geneva font. This prevents Asian users from entering Asian characters. When the Use Asian Font for
Dialog Text Areas checkbox is selected, Igor will use an Asian font for these areas.

Compatibility Settings
The “Native GUI Appearance for User-defined Controls” checkbox sets the default user-defined control
appearance. Deselect it to use the Igor Pro 5 user-defined control appearance.

Deselecting the Floating Tool Palettes and Floating Graph Info Palettes checkboxes sets the tool and info
palette locations to be internal to the associated window, as in Igor Pro 5, rather than using the default float-
ing palettes. The settings will affect only new ShowInfo and ShowTools commands; current info and tool
palette locations are not affected.

Misc Settings
The “Use short menu bar names” checkbox, when selected, shortened some menu names. If deselected, it
uses long menu names. The factory default is deselected (long names). You may want to select this if you
are running on a small screen or have many user-defined menus.

The “Maximum pop-up menu items” setting limits the number of menu items in some pop-up menus, such as
the pop-up menus of waves, variables, string variables, and the Current Object pop-up menu in the Object Status
dialog. Choosing a small value (the minimum is 50) prevents excessive start-up time for dialogs at the expense
of listing all the items in the pop-up menus. We recommend that you set this to several hundred. Igor displays
the spinning hand watch cursor when building large pop-up menus. You can type Command-period (Macin-
tosh) or Ctrl+Break (Windows) to stop building the pop-up menu. Some dialogs have multiple pop-up menus that
cause the cursor to reappear; you can type Command-period (Macintosh) or Ctrl+Break (Windows) again.

“Preferred units of length” controls the default units used in the Modify Graph, Print Graph,
Export Graph, and Save Graphics dialogs. It does not affect page layouts or notebooks. These
have their own preference settings for units (use the Capture Layout Preferences and Capture
Notebook Preferences dialogs). This also does not affect the control dialogs (for adding buttons, check-
boxes, etc.). These dialogs always use points as the default unit of measure.

“Operations that overwrite or delete folders” determines what to do when a MoveFolder or CopyFolder
command is about to overwrite a folder on disk or when a DeleteFolder command is about to delete a folder
on disk.

The factory default setting is “Display dialog to ask user for permission”. This means that Igor will ask for
permission each time one of these operations is about to overwrite or delete a folder on disk. This setting is
intended to reduce the chance of accidental or malicious deletion of files.

Chapter III-16 — Miscellany

III-417

The other choices are “Always give permission” and “Always deny permission”. “Always give permis-
sion” grants blanket permission to overwrite or delete folders. Choosing this increases the risk of accidental
or malicious deletion of files so you should exercise caution.

(Macintosh) “Use Command-H for Find Selection (instead of Command-Control-H)” controls the keyboard
shortcut for the “Find Selection” menu item in the Edit menu. The Find Selection keyboard shortcut defaults
to Command-Control-H, allowing Command-H to hide Igor on Mac OS X, per Apple’s recommendation.
The Igor Pro 4 keyboard shortcut of Command-H can be restored by selecting this checkbox. When selected,
hiding Igor on Mac OS X requires selecting “Hide Igor” with the mouse.

Keyboard Navigation affects the behavior of keys such as Page Down, Page Up,
End and Home.

The Windows Menu Shows popup menu determines how target windows are identified in the submenus
of the Windows menu. By default, just the window’s title is displayed. You can choose to display the title
and/or the name using this setting.

Help Settings (Windows)
These are controls governing the display of tool tips, the little windows that pop up automatically when
you point at buttons and icons.

Object Names
Every Igor object has a name which you give to the object when you create it or which Igor automatically
assigns. You use an object’s name to refer to it in dialogs, from commands and from Igor procedures. The
named objects are:

In Igor Pro, the rules for naming waves and data folders are not as strict as the rules for naming all other
objects, including string and numeric variables, which are required to have standard names. These sections
describe the standard and liberal naming rules.

Standard Object Names
Here are the rules for standard object names:
• May be 1 to 31 characters in length.
• Must start with an alphabetic character (A-Z or a-z).
• May include alphabetic or numeric characters or the underscore character.
• Must not conflict with other names (of operations, functions, etc.).

All names in Igor are case insensitive. wave0 and WAVE0 refer to the same wave.

Characters other than letters and numbers, including spaces and periods, are not allowed. We put this
restriction on names so that Igor can identify them unambiguously in commands, including waveform
arithmetic expressions.

Historical Note: Prior to Igor Pro 3.0, wave names were limited to 18 characters.

Liberal Object Names
The rules for liberal names are the same as for standard names except that almost any character can be used
in a liberal name. Liberal name rules are allowed for waves and data folders only.

Waves Data folders Variables (numeric and string)

Windows Symbolic paths Pictures

Annotations Controls Rulers

Chapter III-16 — Miscellany

III-418

If you are willing to expend extra effort when you use liberal names in commands and waveform arithmetic
expressions, you can use wave and data folder names containing almost any character. If you create liberal
names then you will need to enclose the names in single (not curly) quotation marks whenever they are
used in commands or waveform arithmetic expressions. This is necessary to identify where the name ends.
Liberal names have the same rules as standard names except you may use any character except control
characters and the following:

" ' : ;

Here is an example of the creation and use of liberal names:
Make 'wave 0'; // 'wave 0' is a liberal name
'wave 0' = p
Display 'wave 0'

Note: Providing for liberal names requires extra effort and testing on the part of Igor programmers (see
Programming with Liberal Names on page IV-151) so you may occasionally experience
problems using liberal names with user-defined procedures.

Name Spaces
When you refer to an object by name, in a user function for example, each object must be referenced unam-
biguously. In general, an object must have a unique name so. Sometimes the object type can be inferred
from the context, in which case the name can be the same as objects of other types. Objects whose names
can be the same are said to be in different name spaces.

Data folders are in their own name space. Therefore the name of a data folder can be the same as the name
of any other object, except for another data folder at the same level of the hierarchy.

Waves and variables (numeric and string) are in the same name space and so Igor will not let you create a
wave and a variable in a single data folder with the same name.

An annotation is local to the window containing it. Its name must be unique only among annotations in the
same window. The same applies for controls and rulers. Data folders, waves, variables, windows, symbolic
paths and pictures are global objects, not associated with a particular window.

The names of global objects, except for data folders, are required to be distinct from the names of macros,
functions (built-in, external or user-defined) and operations (built-in or external).

Here is a summary of the four global name spaces:

Renaming Objects
You can use Misc→Rename Objects or Data→Rename to rename waves, variables, strings, symbolic paths,
and pictures. Both of these invoke the Rename Objects dialog.

Name Space Requirements

Data folders Names must be distinct from other data folders at the same level of the
hierarchy.

Waves, variables, windows Names must be distinct from other waves, variables (numeric and string),
windows.

Pictures Names must be distinct from other pictures.

Symbolic paths Names must be distinct from other symbolic paths.

Chapter III-16 — Miscellany

III-419

Graphs, tables, page layouts, notebooks, control panels and XOP target windows (e.g., Gizmo 3D plots) are
renamed using the DoWindow operation (see page V-136) which you can build using the Window Control
dialog. See The Window Control Dialog on page II-64.

You can use the DataBrowser to rename data folders, waves, and variables. See Data Browser on page II-130.

The Object Status Dialog
You can examine the status and interdependencies of named Igor objects with the Object Status dialog. See
Chapter IV-9, Dependencies, for a discussion of object dependencies. You won’t need to use this dialog
unless you’ve got a fairly complex Igor experiment with lots of objects.

After entering all the
new names, click Do It.

Enter a new name for the selected wave.

Select a wave to
rename from this list.

Changes the type of
object shown in the list.

Click to transfer selected waves to edit list.

Macintosh

Chapter III-16 — Miscellany

III-420

The dialog displays the properties of one object, called the “Current Object”. The name of the current object
appears at the top center of the dialog. You can choose a new current object from the Current Object pop-
up menu.

You can also choose a new current object by selecting an object from either of the two dependency lists on the
left and right of the current object and clicking View as Current Object, or by double-clicking in either list.

Items in the lists and submenus are object names preceded by a key indicating the type of object:

The current value, dependency status, and other information about the current object is displayed in the
box below the name of the current object. Depending on the type of object, a button may also be present for
editing or examining that object.

Other current object information is displayed in a windoid near the bottom of the dialog. If the object is a
“dependent” object, the dependency formula is shown. This formula can be changed or deleted by clicking
the appropriate buttons:

Key Object Type Key Object Type

a: annotation t: task (background task)

c: control v: variable

f: function w: wave

s: string =: dependency formula

Windows
Choose an object from the Current
Object drop-down list, which displays
objects of a type chosen in this pop-
up menu.

Dependency status, if any

SP means “Single Precision Floating Point”.

DP means “Double Precision Floating Point”.

INT32 means “Integer, 32 bits” (also INT8 and INT16).

UINT32 means “Unsigned Integer, 32 bits” (also UINT8 and UINT16).

CMPLX means “Complex” (has real and imaginary values).

TEXT means text.

Chapter III-16 — Miscellany

III-421

Dependencies and dependency formulas are explained further in Chapter IV-9, Dependencies.

You can edit the current value of most nondependent objects in the windoid:

For some nondependent objects, you can also establish a new dependency formula. Click the New Formula
button, and an empty formula is created. Enter the desired formula and click Change Formula:

This example established the dependency formula:
myGlobalVar := K0+K1*sin(K2)

Whenever K0, K1, or K2 changes, myGlobalVar will be updated using this formula.

User Functions
You can edit the “current value” of a user-defined function, too. However, if you introduce an error and
click Change Function, the function compiler will display an error dialog.

Chapter III-16 — Miscellany

III-422

If you then click Quit Compile, the Object Status dialog will come back up, but it will appear as if all the
user-defined functions have vanished.

The functions have not vanished; Igor just can’t display information about functions unless all the proce-
dure windows compile successfully. When you fix the error, the user-defined functions will return.

For this reason, it really makes more sense for you to click the Edit Procedure button in the error dialog.
This brings up the procedure window in which the function is defined, but it does exit the Object Status
dialog first (which would be devoid of function information, anyway). You should fix the error, and then
reselect the Object Status dialog. You will find that the function is still the current object, and that all is well.

Broken Objects
If you don‘t fix errors in the user-defined function text, objects that reference the erroneous function will be
“broken”. Those objects are listed in the Broken Objects submenu. The Status field will show why the object
is broken.

The usual causes for “Update failed” are either a syntax error in the dependency formula, or some object
that the current object depends on (either directly or indirectly) has an error, has been renamed, or no longer
exists. In this example, it is the unresolved error in the function anotherFunction (see User Functions
on page III-421) which prevents v_sally from updating, which in turn causes the update of wave_joe
through Formula36 to fail:

User Functions are not listed
when an unresolved compile
error exists.

Chapter III-16 — Miscellany

III-423

Graphics Technology
As of version 6.1, Igor Pro uses more modern graphics code for drawing graphs, tables and page layouts.
On Macintosh this involves the radical change of using Apple's Quartz routines rather than the ancient
QuickDraw routines. On Windows just slightly more advanced code is used with a small amount of GDI+
instead of GDI.

The new graphics code supports arbitrary rotation for text and imported pictures and, on Macintosh,
support for imported PDF pictures which can be placed in graphs, page layouts and formatted notebooks.

The new code does not support the old Macintosh PICT format or the old Windows WMF format. If you
need to export PICT or WMF, you can make Igor use the old graphics code by executing this:

SetIgorOption UseOldGraphics=1

When this command is executed, all graphs and page layout windows are redrawn using the old code.

Windows users may need to revert to the old graphics when exporting EMF to certain programs that do not
support the advanced GDI mode. In particular, uses have reported Corel products as not accepting
advanced GDI.

You can also turn the old graphics code on if you have a problem with the new code. In this case, please let
us know why you needed to do that so we can address the problem.

Pictures
Igor can import pictures from other programs for display in graphs, page layouts and notebooks. It can also
export pictures from graphs, page layouts and tables for use in other programs. Exporting is discussed in
Chapter III-5, Exporting Graphics (Macintosh), and Chapter III-6, Exporting Graphics (Windows). This section
discusses how you can import pictures into Igor, what you can do with them and how Igor stores them.

For information on importing images as data rather than as graphics, see Loading Other Files on page II-167.

wave_joe is broken because v_sally is broken

v_sally is “broken because
anotherFunction has errors.

Chapter III-16 — Miscellany

III-424

Importing Pictures
There are three ways to import a picture.
• Pasting from the Clipboard into a graph, layout, or notebook
• Using the Pictures dialog (Misc menu) to import a picture from a file or from the Clipboard
• Using the LoadPICT operation (see page V-391) to import a picture from a file or from the Clipboard

Each of these methods, except for pasting into a notebook, creates a named, global picture object that you can
use in one or more graphs or layouts. Pasting into a notebook creates a picture that is local to the notebook.

This table shows the types of graphics formats from which Igor can import pictures:

EPS files usually include a screen preview. The screen preview format is PICT on Macintosh and TIFF on
Windows. The screen prevew is not used or needed on Macintosh as the OS converts and displays EPS as
PDF on the fly.

The platform-dependent formats (PDF, PICT, EMF, BMP) are drawn as gray boxes when displayed on the
nonnative format. The cross-platform formats can be displayed on either platform, except that Macintosh
EPS pictures display as boxes on Windows, because the screen preview format (PICT) is platform-depen-
dent. Also, EPS pictures which have no screen preview display as boxes on Windows.

EPS pictures provide the highest quality but on Windows should only be used if you are certain you will
be printing on a PostScript printer or exporting to a PostScript-savvy application such as Adobe Illustrator.
On Macintosh, they can be used wherever a PDF could be used.

When non-EPS pictures are used in a graphic that is exported as EPS, the picture is rendered as a bitmap
which has lower quality than an EPS picture.

See also Picture Compatibility on page III-397 for a discussion of Macintosh graphics on Windows and
vice-versa.

The Picture Collection Stores Named Pictures
When you create a named picture using one of the techniques listed above, Igor stores it in the current
experiment’s picture collection. When you save the experiment, the picture collection is stored in the exper-
iment file. You can inspect the collection using the Pictures dialog via the Misc menu.

Format How To Import Notes

PICT Paste or use Misc→Pictures or LoadPICT Macintosh only

PDF Paste or use Misc→Pictures or LoadPICT Macintosh only

EMF (Enhanced Metafile) Paste or use Misc→Pictures or LoadPICT Windows only

BMP (Windows bitmap) Use Misc→Pictures or LoadPICT Windows only

BMP is sometimes called DIB (Device
Independent Bitmap).

PNG (Portable Network
Graphics)

Use Misc→Pictures or LoadPICT Cross-platform bitmap format

JPEG Use Misc→Pictures or LoadPICT Cross-platform bitmap format

TIFF (Tagged Image File
Format)

Use Misc→Pictures or LoadPICT Cross-platform bitmap format

EPS (Encapsulated
PostScript)

Use Misc→Pictures or LoadPICT High resolution vector format. Requires
PostScript printer. On Windows, a
screen preview is displayed on screen.

Chapter III-16 — Miscellany

III-425

Igor gives names to pictures so they can be referenced from an Igor procedure. For example, if you paste a
picture into a layout, Igor assigns it a name of the form “PICT_0” and stores it in the picture collection. If you
then close the layout and ask Igor to create a recreation macro, the macro will reference the picture by name.

You can rename a named picture using the Pictures dialog in the Misc menu, the Rename Objects dialog in
the Misc menu, the Rename dialog in the Data menu, or the RenamePICT operation (see page V-590). You
can kill a named picture using the Pictures dialog or the KillPICTs operation (see page V-362).

Pictures Dialog
The Pictures dialog permits you to view the picture collection, to add pictures, to remove pictures and to
place a picture into a graph or page layout. It also can place a copy of a picture into a formatted notebook.
To invoke it, choose Pictures from the Misc menu.

The Kill This Picture button will be dimmed if the selected picture is used in a currently open graph or layout.

Note: Igor determines if a picture is in use by checking to see if it is used in an open graph or layout window.

If you kill a graph or layout that contains a picture and create a recreation macro, the recreation
macro will refer to the picture by name. However, Igor does not check for this. It will consider the
picture to be unused and will allow you to kill it. If you later run the recreation macro, an error
will occur when the macro attempts to append the picture to the graph or layout. Therefore, don’t
kill a picture unless you are sure that it is not needed.

NotebookPictures
When you paste a picture into a formatted notebook, you create a notebook picture. These work just like
pictures in a word processor document. You can copy and paste them. These pictures will not appear in the
Pictures or Rename Objects dialogs.

Igor Extensions
Igor includes a feature that allows a C or C++ programmer to extend its capabilities. An Igor extension is
called an “XOP” (short for “external operation”). The term XOP comes from that fact that, originally, adding
a command line operation was all that an extension could do. Now extensions can add operations, func-
tions, menus, dialogs and windows.

WaveMetrics XOPs
The "Igor Pro Folder/Igor Extensions" and "Igor Pro Folder/More Extensions" folders contain XOPs that we
developed at WaveMetrics. These add capabilities such as file-loading and instrument control to Igor and

A preview of the selected
picture.

Loads a new picture from
a file, usually created in a
drawing program.

Loads a new picture that you have copied to the
Clipboard, usually from a drawing program.

Click to place the picture in a
graph or page layout.

Lists the named pictures
in the picture collection.
Click to select a picture.

Creates an ASCII
representation for use in
procedures.

Removes the selected picture,
from the collection.

Converts the selected picture
into a platform-independent
PNG format bitmap. Select the
box for high resolution

Chapter III-16 — Miscellany

III-426

also serve as examples of what XOPs can do. These XOPs range from very simple to rather elaborate. Most
XOPs come with help files that describe their operation.

The WaveMetrics XOPs are described in the XOP Index help file, accessible through the Windows→Help
Windows submenu.

Third Party Extensions
A number of Igor users have written XOPs to customize Igor for their particular fields. Some of these are
freeware, some are shareware and some are commercial programs. WaveMetrics publicizes third party
XOPs through our Web page. User-developed XOPs are available from http://www.igorexchange.com.
Also, we make some third party XOPs available via FTP. See FTP Sites on page II-15 for details on FTP.

Activating Extensions
The Igor installer creates a folder called Igor Extensions inside the Igor Pro Folder. The Igor installer puts some
XOP files in this folder. XOPs in this folder are loaded when Igor starts up.

The installer puts less-frequently used XOPs in "Igor Pro Folder/More Extensions". These are not available
unless you activate them.

If you place in "Igor Pro Folder/Igor Extensions" an alias (Macintosh) or shortcut (Windows) for an XOP
file or a folder containing XOP files, Igor loads those files also. However, this is not the recommended way
to activate an XOP.

Your operating system may not allow you to make changes to the contents of your Igor Pro Folder, for
example, if you do not have permission to write to that folder. For that reason Igor Pro 6.1 or later also loads
extensions from another folder - "Igor Pro User Files/Igor Extensions" (see Igor Pro User Files on page II-46
for details). You can locate this folder by selecting Help→Show Igor Pro User Files.

If you press the shift key while clicking the Help menu, you can choose Help→Show Igor Pro Folder
andUser Files. Igor then opens the Igor Pro Folder and the Igor Pro User Files folder on the desktop, making
it easy to drag aliases/shortcuts into "Igor Pro User Files/Igor Extensions". This is the recommended way to
activate additional XOPs for a given user.

If you want to activate an extension for all users on a given machine, you can put the alias or shortcut in
"Igor Pro Folder/Igor Extensions" folder. Windows 7 does not permit you to manually create a shortcut in
the Igor Pro Folder but you can create the shortcut on the desktop and drag it into the Igor Pro Folder.

Changes that you make to either Igor Extensions folder take effect the next time Igor is launched.

See Creating Igor Extensions on page IV-185 if you are a programmer interested in writing your own XOPs.

XOPs on Intel Macintosh
To run an XOP on Intel Macintosh it must be ported to the Intel architecture. WaveMetrics has ported most
of its XOPs and distributes them as universal executables, which means that they run on both PowerPC and
Intel Macintosh. The Igor Pro 6 application is also universal.

If you use a third-party XOP that has not yet been ported to Intel, you can not run it with the Intel version
of Igor.

If you run the Intel Macintosh version of Igor Pro with a PowerPC-only XOP installed, it will not display
an error message and will ignore the PowerPC-only XOP. Similarly, if you run the PowerPC version of Igor
with an Intel-only XOP installed, it will not display an error message and will ignore the Intel-only XOP.

Running PowerPC XOPs on Intel Macintosh
If you need to run an XOP that has not been ported to Intel Macintosh, you must run the PowerPC version
of Igor Pro. You can do this on an Intel Macintosh by checking the Open Using Rosetta checkbox in the
Finder Info window for the Igor Pro application located in the Igor Pro folder. This requires OS X 10.6 or
earlier because Apple dropped Rosetta in OS X 10.7.

http://www.igorexchange.com
http://www.igorexchange.com

Chapter III-16 — Miscellany

III-427

With the Open Using Rosetta checkbox checked, the PowerPC code in the Igor Pro 6 application package
will run any PowerPC XOPs that you invoke.

Memory Management
On Mac OS X, each 32-bit application (such as Igor Pro) is allocated 4 GB of virtual address space. On Win-
dows, 32-bit applications are allocated 2 GB of virtual address space by default but there is a technique
(explained below) for increasing this to 3 GB or 4 GB.

Theoretically, applications can allocate memory up the limit of the virtual address space. The operating
system allocates physical memory as necessary. If the total amount of allocated virtual memory exceeds the
total amount of physical memory, the operating system will temporarily write some data to disk and load
other data into physical memory — a process called “swapping”. This can make the computer very slow.

When a program is launched, the operating system maps the program’s code into its virtual address space,
thereby diminishing the space available for data. During the program’s initialization, it allocates many
blocks of data, thousands in Igor’s case, for things like windows, controls and internally-used structures.
This further reduces the amount of virtual memory space available for data.

As you work, creating windows, procedures, variables, waves and other objects, Igor allocates more blocks
of virtual memory. When you kill a window, wave or other object, Igor deallocates blocks of virtual
memory. This leaves free blocks in the virtual memory space.

Blocks of virtual memory space that are free because of deallocation are generally discontiguous. The
largest contiguous block is smaller than the total amount of free virtual memory. The free virtual memory
space is split into fragments that can not be joined because they are separated by allocated blocks. As you
allocate and deallocate memory, the virtual memory space becomes more and more fragmented.

Another cause of fragmentation is the loading of dynamic link libraries.

When you create an object, for example, a wave, Igor needs a contiguous block of virtual memory. If the
space needed for the wave is larger than the largest contiguous block of virtual memory, the allocation will
fail and Igor will return an out-of-memory error.

Fragmentation sets the limit for the largest wave you can create. This is an issue if you are creating very
large waves that require, typically, 250 MB or more. If you are creating a large number of smaller waves,
for example, 100 waves of 10 MB each, fragmentation is generally not an issue.

Increasing Virtual Memory Space in Windows VISTA and Windows 7
If you are running Windows VISTA x64 (64-bit) or Windows 7 x64 (64-bit), the operating system allows 32-
bit applications like Igor to use 4 GB of virtual address space. You can not increase this.

On Windows 7 x64 with 4 GB of physical memory the largest wave we were able to create was 2000 MB.

If you are running Windows VISTA (32-bit) or Windows 7 (32-bit), by default applications get a 2 GB virtual
address space. You can increase this to 3 GB using the BCDEdit program to change your boot settings. To
do this, click the Windows Start button, choose Programs→Accessories and then right-click Command
Prompt. Choose Run As Administrator. In the Command Prompt window, enter this command:

BCDEdit /Set IncreaseUserVa 3072

Now reboot. Igor should now have a 3 GB virtual address space.

Increasing Virtual Memory Space in Windows XP
If you are running Windows XP Professional x64 (64-bit), the operating system allows 32-bit applications
like Igor to use 4 GB of virtual address space. You can not increase this.

Chapter III-16 — Miscellany

III-428

If you are running Windows XP Professional (32-bit), by default applications get a 2 GB virtual address
space. You can increase this to 3 GB by changing a setting on your computer, specifically by adding the /3GB
flag to your C:\boot.ini file.

Note: Be careful! If you mess up your boot.ini file, your computer will not boot. This procedure should
be attempted only by advanced Windows computer users.

The boot.ini is invisible by default. To see it you must use Explorer’s Tools→Folder Options to enable
viewing hidden files and disable hiding protected system files. Alternatively you can use the System control
panel, Advanced Tab, Startup and Recovery section to edit it.

Back up the boot.ini file before making any changes to it.

Open boot.ini in Notepad and add the /3GB flag to the appropriate partition. For example, after adding the
flag, the relevant line in boot.ini may look like this:
multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Microsoft Windows XP Professional"
/fastdetect /3GB

When you next boot, the operating system will allow Igor to use 3 GB of virtual address space instead of 2 GB.

The /3GB flag has no effect on programs that do not have the special flag set.

On Windows XP SP3 with 2 GB of physical memory and a 3 GB virtual address space, the largest wave we
were able to create was about 600 MB. We were able to increase this to 880 MB by applying a Microsoft
hotfix that reduces memory fragmentation. The hotfix is available from http://support.micro-
soft.com/kb/894472.

Macintosh System Requirements
Igor Pro 6.1 requires Mac OS X 10.4.0 or later. It runs native on PowerPC and Intel processors.

Igor Pro 6 does not run on Mac OS 9.

Windows System Requirements
Igor Pro requires Windows XP, Windows Vista or Windows 7.

Igor Pro 6.1 does not run on Windows 95, Windows 98, Windows ME, Windows NT or Windows 2000.

Crashes
A crash results from a software bug and prevents a program from continuing to run. Crashes are highly
annoying at best and, at worst, can cause you to lose valuable work.

WaveMetrics uses careful programming practices and extensive testing to make Igor as reliable and bug-
free as we can. However in Igor as in any complex piece of software it is impossible to exterminate all bugs.
Also, crashes can sometimes occur in Igor because of bugs in other software, such as printer drivers, video
drivers or system extensions.

We are committed to keeping Igor a solid and reliable program. If you experience a crash, we would like to
know about it.

When reporting a crash to WaveMetrics, please include the following information:

• The exact version of Igor Pro (e.g., 6.10) that you are running.
• The exact operating system (e.g., Mac OS X 10.4.7, Windows XP) that you are running.
• A description of what actions preceded the crash and whether it is reproducible.
• A recipe for reproducing the crash, if possible.
• A crash log (described below), if possible.

http://support.microsoft.com/kb/894472

Chapter III-16 — Miscellany

III-429

We have three methods for determining the cause of a crash.

The first method is to reproduce it on our computers. For this we need a recipe from you, if possible.

If we can not reproduce the crash, our second method is to examine the source code looking for possible
bugs. For this, we need a detailed description from you of what you were doing when the crash occurred
so that we know what part of the source code to examine.

Our last resort is to examine the crash log for a clue as to where the crash occurred. This sometimes provides
useful information, sometimes not.

Crash Logs on Mac OS X
When a crash occurs on Mac OS X, most of the time the system is able to generate a crash log. You can
usually find it at:

/Users/<user>/Library/Logs/DiagnosticReports/Igor Pro_<date>_<machinename>.crash

or

/Users/<user>/Library/Logs/CrashReporter/Igor Pro.crash.log

where <user> is your user name.

As of OS X 10.7, the /Users/<user>/Library folder is hidden. To reveal the DiagnosticReports folder:

1. Choose Finder->Go to Folder
2. Enter ~/Library/Logs/DiagnosticReports
3. Click Go
For irreproducible crashes, send this log as an attachment to support@wavemetrics.com. Include the other
information listed above.

Crashes On Windows
When a crash occurs on Windows XP, but not Windows VISTA or Windows 7, most of the time the system
is able to generate a crash log. You can usually find it at:

C:\Documents and Settings\All Users\Application Data\Microsoft\Dr Watson\drwtsn32.log

The Application Data folder is normally hidden. To make it visible, go into the All Users folder and choose
Tools→Folder Options. Click the View tab, then the Show Hidden Files and Folders radio button, and the
OK button.

You can also search for the drwtsn32.log file. In this case, make sure to include hidden files and folders in
the search.

For irreproducible crashes, send this log as an attachment to support@wavemetrics.com. Include the other
information listed above.

If you install a software development system such as Microsoft Visual C++, the development system will
set itself up as the default debugger and Dr. Watson will not run when a crash occurs. In this case you will
have no drwtsn32.log file.

On Windows VISTA and Windows 7, the operating system does not produce a user-accessible crash log.
Your best bet is to try to determine a recipe to reproduce the crash or a pattern that leads to the crash and
send a report to support@wavemetrics.com.

Chapter III-16 — Miscellany

III-430

Chapter

III-17
III-17Preferences

Overview.. 432
Igor Preferences Directory ... 432
How to Use Preferences ... 432
Captured Preferences ... 433

Current Captured Preference Values.. 433
Capturing Other Settings.. 434

When Preferences Are Applied .. 434

Chapter III-17 — Preferences

III-432

Overview
Preferences affect the creation of new graphs, panels, tables, layouts, notebooks, and procedure windows,
and the appending of traces to graphs and columns to tables. In addition, preferences affect the command
window, default font, and font size menus in new experiments.

You can turn preferences off or on using the Misc menu. Normally you will run with preferences on.

Preferences are automatically off while a procedure is running so that the effects of the procedure will be
the same for all users. See the Preferences operation (see page V-564) for further information.

When preferences are off, factory default values are used for settings such as graph size, position, line style,
size and color. When preferences are on, Igor applies your preferred values for these settings.

Preferences differ from settings (the Miscellaneous Settings dialog) in that settings generally take effect imme-
diately, while preferences are used when something is created. See Miscellaneous Settings on page III-413.

Igor Preferences Directory
Preferences are stored in a per-user directory. The location of this directory depends on your operating
system and configuration, but here are some typical locations:

where <user> is the name of the current user. The preferences directory may be hidden by some operating
systems.

You can find the operating-system-defined location for preferences by executing this command:
Print SpecialDirPath("Preferences", 0, 0, 0)

Deleting the preferences directory effectively reverts all preferences to factory defaults. You should use the
Capture Prefs dialogs, described in Captured Preferences operation on page III-433, to revert preferences
more selectively.

Other information is stored in this directory, such as the screen position of dialogs, a few dialog settings,
colors recently selected in the color palette, window stacking and tiling information, page setups, font sub-
stitution settings, and dashed line settings.

How to Use Preferences
Preferences are always on when Igor starts up. You can turn preferences off by
choosing Preferences Off in the Misc menu.

You can also turn preferences on and off with the Preferences operation (see page
V-564).

Preferences are set by Capture Preferences dialogs, the Tile or Stack Windows
dialog, and some dialogs such as the Dashed Lines dialog.

There is just one set of preferences for all experiments. This means that preferences
set while running one experiment will be in effect when you run the next experi-
ment. This is handy because you only need to specify your preferences once.

In general, preferences are applied only when something new is created such as a new graph, a new trace in a
graph, a new notebook, a new column in a table, and then only if preferences are on.

Mac OS X hd:Users:<user>:Library:Preferences:WaveMetrics:Igor Pro 6 PowerPC:
or
hd:Users:<user>:Library:Preferences:WaveMetrics:Igor Pro 6 Intel:

Windows C:Documents and Settings:<user>:Application Data:WaveMetrics:Igor Pro 6:

Chapter III-17 — Preferences

III-433

Preferences are normally in effect only for manual (“point-and-click”) operation, not for user-programmed
operations in Igor procedures. See When Preferences Are Applied on page III-434.

Captured Preferences
You set most Preference values by capturing the current settings of the active window with the Capture
Prefs item in the menu for that window. (The dialog to capture the Command Window preferences is found
in the Command/History Settings submenu of the Misc menu.) The dialogs are described in more detail in
the chapter that discusses each type of window. For instance, see Graph Preferences on page II-305.

As an example, suppose you want your graphs to always draw appended waves with a one-half point blue
line, rather than the factory default one point red line. You can set your preference by creating a graph with
one wave displayed using a one-half point blue line, and then “capturing” that preferred setting with the
Capture Graph Preferences dialog.

Choose Capture Graph Prefs from the Graph menu:

Save the wave style preference by selecting the XY Plots: Wave Styles category and clicking Capture Prefs.
From now on, when you append a wave to an existing graph, or create a new graph containing a trace, the
trace will be displayed with your preferred one-half point blue line.

Most capture preferences dialogs are like this Capture Graph Preferences dialog; they have various catego-
ries with checkboxes. Selecting a category means that you wish to change the preferences for that category.
You may either capture the current settings for that category by clicking the Capture Prefs button, or you
may revert the preferences for that category by clicking the Revert to Defaults button. If a category has been
reverted to its default setting, “default” is indicated to the left of the checkbox. If “default” is not present,
this means that the category settings have previously been captured.

Current Captured Preference Values
The Capture Preferences dialogs do not show the current values for the settings in the categories. The only
way to discover what captured values are is to create a new window of that type and examine the settings
with dialogs or readback functions. Any value not set to the factory default value must have been set by the
preferences. (To check the factory default values, create a new window with Preferences off.)

For example, to determine what the values captured by the Capture Graph Preferences dialog are:
• Turn Preferences on (in the Misc menu).
• Create a new graph.
• Append some waves.

Resets preferences for the selected
categories to the factory defaults.

Captures preferences for the selected
categories from the active graph window.

Indicates that the current
page setup is the factory
default page setup.

Selecting this category
captures or reverts the
preferred Modify Trace
Appearance settings.

Chapter III-17 — Preferences

III-434

• Create a graph recreation macro using the Window Control dialog, and examine the values assigned
by the resulting macro (this works well because graph recreation macros generate commands only
to change values from their factory defaults).

• Or, use the Modify Waves Appearance dialog to observe the settings for the displayed waves. These
are the captured user-preferred values.

Capturing Other Settings
In addition to the preferences captured by the various Capture Prefs dialogs, Igor remembers a number of
other settings. Many of these can be set using the Miscellaneous Settings dialog, described in Miscellaneous
Settings on page III-413.

Some settings are captured in dialogs whose main purpose is to change the current value of some settings.
Such a dialog is the Default Font dialog:

It can capture the preferred Default Font with or without changing the current value. The Dashed Lines and
Tile or Stack Windows dialogs also work this way.

The positions of dialogs on your desktop are always remembered in the preferences file. On Macintosh
only, Recent Colors are remembered if the appropriate checkbox in the Misc Settings dialog is selected.

On both Macintosh and Windows, the font sizes you add to the Text Size menu are automatically remem-
bered, as well as fonts substitution settings and various other dialog settings.

When Preferences Are Applied
In general, preferences are applied only when something new is created such as a new graph, a new wave in a
graph, a new notebook, a new column in a table, and then only if preferences are on. In some cases, prefer-
ences affect what happens when you create a new experiment.

Igor has, in effect, two independent settings for whether preferences are on or off. The Preferences On and
Preferences Off items in the Misc menu control the setting for manual (“point-and-click”) operations, and is
initially (and normally) set to “on”. Another setting is used when a procedure (macro or function) is exe-
cuting, and is normally set to “off”.

We usually don’t want preferences to affect the behavior of procedures. If we allowed preferences to take
effect during procedure execution, a change in preferences could change the effect of a procedure, making
it unpredictable. For more information, see Procedures and Preferences on page IV-183.

Sets the current value of the
experiment’s default font.

If selected, new experiments will
use Helvetica as the default font.

Volume IV Programming

Table of Contents
IV-1 Working with Commands .. IV-1
IV-2 Programming Overview ... IV-19
IV-3 User-Defined Functions .. IV-25
IV-4 Macros .. IV-99
IV-5 User-Defined Menus .. IV-109
IV-6 Interacting with the User IV-125
IV-7 Programming Techniques IV-147
IV-8 Debugging ... IV-187
IV-9 Dependencies .. IV-203
IV-10 Advanced Programming IV-213

Chapter

IV-1
IV-1Working with Commands

Overview.. 2
Multiple Commands ... 2
Comments ... 2
Maximum Length of a Command... 2
Parameters .. 2
Liberal Object Names .. 2
Data Folders.. 3

Types of Commands... 3
Assignment Statements... 4

Assignment Operators ... 5
Operators ... 5
Obsolete Operators... 7
Operands.. 7
Numeric Type ... 8
Constant Type ... 8
Dependency Assignment Statements .. 9

Operation Commands... 9
User-Defined Procedure Commands.. 9

Macro and Function Parameters .. 10
Function Commands.. 10

Parameter Lists .. 11
Expressions as Parameters ... 11
Parentheses Required for /N=(<expression>)... 11
String Expressions ... 11
Setting Bit Parameters ... 12

Strings ... 12
String Expressions ... 12
Strings in Text Waves.. 13
String Properties .. 13
Escape Characters in Strings .. 13
String Indexing... 13
String Assignment ... 14
String Substitution Using $.. 15
$ Precedence Issues In Commands ... 15
String Utility Functions... 16

Special Cases.. 16
Instance Notation... 16

Instance Notation and $... 17
Object Indexing .. 17
/Z Flag.. 17

Chapter IV-1 — Working with Commands

IV-2

Overview
Igor’s user interface is unique in providing both a graphical user interface and a parallel path using
command line operations. Although you can get by ignoring the command line, if you do so you will miss
out on much of Igor’s power and flexibility.

Even if you are a casual user you should learn at least the basics of assignment statements. Most users
should read this entire chapter — especially those who expect to program Igor.

You can execute commands by typing them into the command line and pressing Return or Enter. You can also
incorporate commands into procedures (functions and macros) that you write in the Procedure window. You
can execute a procedure by typing its name in the command line or by choosing its item from the Macros
menu. You can also use a notebook for entering commands. See Notebooks as Worksheets on page III-5.

You can type commands from scratch but often you will let Igor dialogs formulate and execute commands. You
can view a record of what you have done in the history area of the command window and you can easily reenter,
edit and reexecute commands stored there. See Command Window Shortcuts on page II-25 for details.

Multiple Commands
You can place multiple commands on one line if you separate them with semicolons. For example:
wave1= x; wave1= wave2/(wave1+1); Display wave1

You don’t need a semicolon after the last command but it doesn’t hurt.

Comments
Comments start with //, which end the executable part of a command line. The comment continues to the
end of the line. There is no way to insert a comment in the middle of a command line.

Maximum Length of a Command
The total length of the command line can not exceed 400 characters.

There is no line continuation character in Igor. However, it is nearly always possible to break a single
command up into multiple lines using intermediate variables. For example:

Variable a = sin(x-x0)/b + cos(y-y0)/c

can be rewritten as:

Variable t1 = sin(x-x0)/b
Variable t2 = cos(y-y0)/c
Variable a = t1 + t2

Parameters
Every place in a command where Igor expects a numeric parameter you can use a numeric expression. Sim-
ilarly for a string parameter you can use a string expression. In an operation flag (e.g., /N=<number>), you
must parenthesize expressions. See Expressions as Parameters on page IV-11 for details.

Liberal Object Names
In general, object names in Igor are limited to a restricted set of characters. Only letters, digits and the
underscore character are allowed. Such names are called “standard names”. This restriction is necessary to
identify where the name ends when you use it in a command.

For waves and data folders only, you can also use “liberal” names. Liberal names can include almost any
character, including spaces and dots (see Liberal Object Names on page III-417 for details). However, to
define where a liberal name ends, you must quote them using single quotes.

Chapter IV-1 — Working with Commands

IV-3

In the following example, the wave names are liberal because they include spaces and therefore they must
be quoted:
'wave 1' = 'wave 2' // Right
wave 1 = wave 2 // Wrong - liberal names must be quoted

Note: Providing for liberal names requires extra effort and testing by Igor programmers (see
Programming with Liberal Names on page IV-151) so you may occasionally experience
problems using liberal names with user-defined procedures.

Data Folders
Data folders provide a way to keep separate sets of data from interfering with each other. You can examine
and create data folders using the Data Browser (Data menu). There is always a root data folder and this is
the only data folder that many users will ever need. Advanced users may want to create additional data
folders to organize their data.

You can refer to waves and variables either in the current data folder, in a specific data folder or in a data
folder whose location is relative to the current data folder:
// wave1 is in the current data folder
wave1 = <expression>

// wave1 is in a specific data folder
root:'Background Curves':wave1 = <expression>

// wave1 is in a data folder inside the current data folder
:'Background Curves':wave1 = <expression>

In the first example, we use an object name by itself (wave1) and Igor looks for the object in the current data
folder.

In the second example, we use a full data folder path (root:'Background Curves':) plus an object name. Igor
looks for the object in the specified data folder.

In the third example, we use a relative data folder path (:'Background Curves':) plus an object name. Igor
looks in the current data folder for a subdata folder named Background Curves and looks for the object
within that data folder.

Important: The right-hand side of an assignment statement (described under Assignment Statements on
page IV-4) is evaluated in the context of the data folder containing the destination object. For example:
root:'Background Curves':wave1 = wave2 + var1

For this to work, wave2 and var1 must be in the Background Curves data folder.

Examples in the rest of this chapter use object names alone and thus reference data in the current data
folder. For more on data folders, see Chapter II-8, Data Folders.

Types of Commands
There are three fundamentally different types of commands that you can execute from the command line:
• assignment statements
• operation commands
• user-defined procedure commands

Here are examples of each:
wave1= sin(2*pi*freq*x) // assignment statement

Display wave1,wave2 vs xwave // operation command

MyFunction(1.2,"hello") // user-defined procedure command

Chapter IV-1 — Working with Commands

IV-4

As Igor executes commands you have entered, it must determine which of the three basic types of com-
mands you have typed. If a command starts with a wave or variable name then Igor assumes it is an assign-
ment statement. If a command starts with the name of a built-in or external operation then the command is
treated as an operation. If a command begins with the name of a user-defined macro, user-defined function
or external function then the command is treated accordingly. Each of these types is discussed in greater
detail under Assignment Statements on page IV-4, Operation Commands on page IV-9, and User-Defined
Procedure Commands on page IV-9.

Note that built-in functions can only appear in the right-hand side of an assignment statement, or as a
parameter to an operation or function. Thus, the command:
sin(x)

is not allowed and you will see the error, “Expected wave name, variable name, or operation.” On the other
hand, these commands are allowed:
print sin(1.567) // sin is parameter of print command
wave1 = 5*sin(x) // sin in right side of assigment

If, perhaps due to a misspelling, Igor can not determine what you want to do, it will put up an error dialog
and the error will be highlighted in the command line.

Assignment Statements
Assignment statement commands start with a wave or variable name. The command assigns a value to all
or part of the named object. An assignment statement consists of three parts: a destination, an assignment
operator, and an expression. For example:

This assigns 19 to every point in wave1.

The spaces in the above example are not required. You could write:
wave1=1+2*3^2

See Waveform Arithmetic and Assignments on page II-94 for details on wave assignment statements.

In the following examples, str1 is a string variable, created by the String operation, var1 is a numeric vari-
able, created by the Variable operation, and wave1 is a wave, created by the Make operation.
str1 = "Today is " + date() // string assignment

str1 += ", and the time is " + time() // string concatenation

var1 = strlen(str1) // variable assignment

var1 = pnt2x(wave1,numpnts(wave1)/2) // variable assignment

wave1 = 1.2*exp(-0.2*(x-var1)^2) // wave assignment

wave1[3] = 5 // wave assignment

wave1[0,;3]= wave2[p/3] *exp(-0.2*x) // wave assignment

These all operate on objects in the current data folder. To operate on an object in another data folder, you
need to use a data folder path:
root:'run 1':wave1[3] = 5 // wave assignment

See Chapter II-8, Data Folders, for further details.

Assignment operator

Destination Expression

wave1 = 1 + 2 * 3^2

Chapter IV-1 — Working with Commands

IV-5

If you use liberal wave names (see Object Names on page III-417), you must use quotes:
'wave 1' = 'wave 2' // Right

wave 1 = wave 2 // Wrong

Assignment Operators
The assignment operator determines the way in which the expression is combined with the destination.
Igor supports the following assignment operators:

For example:
wave1 = 10

sets each Y value of the wave1 equal to 10, whereas:
wave1 += 10

adds 10 to each Y value of wave1. This is equivalent to:
wave1 = wave1 + 10

The assignment operators =, := and += work with string assignment statements but -=, *= and /= do not. For
example:
String str1; str1 = "Today is "; str1 += date(); Print str1

prints something like “Today is Fri, Mar 31, 2000”.

For more information on the := operator, see Chapter IV-9, Dependencies.

Operators
Here is a complete list of the operators that Igor supports in the expression part of an assignment statement
in order of precedence:

Comparison operators do not work with NaN parameters because, by definition, NaN compared to any-
thing, even another NaN, is false. Use numtype to test if a value is NaN.

Operator Assignment Action
= Destination contents are set to the value of the expression.
+= Expression is added to the destination.
-= Expression is subtracted from the destination.
*= Destination is multiplied by the expression.
/= Destination is divided by the expression.
:= Destination is dynamically updated to the value of the expression whenever the value of

any part of the expression changes. The := operator is said to establish a “dependency” of
the destination on the expression.

Operator Effect
^ Exponentiation
- ! ~ Negation, logical complement, bitwise complement
* / Multiplication, division
+ - Addition or string concatenation, subtraction
== != > < >= <= Comparison operators

& | %^ Bitwise AND, bitwise OR, bitwise XOR

&& || ? : Logical AND, logical OR, conditional operator
$ Substitute following string expression as name

Chapter IV-1 — Working with Commands

IV-6

Unary negation changes the sign of its operand. Logical complementation changes nonzero operands to
zero and zero operands to 1. Bitwise complementation converts its operand to an unsigned integer by trun-
cation and then changes it to its binary complement.

Exponentiation raises its left-hand operand to a power specified by its right-hand operand. That is, 32 is
written as 3^2. In an expression a^b, if the result is assigned to a real variable or wave, then a must not be
negative if b is not an integer. If the result is used in a complex expression, any combination of negative a,
fractional b or complex a or b is allowed.

If the exponent is an integer Igor evaluates the expression using only multiplication. There is no need to
write a^2 as a*a to get efficient evaluation — Igor does the equivalent automatically. If, on the other hand,
the exponent is not an integer then the evaluation is performed using logarithms, hence the restriction on
negative a in a real expression.

Logical OR (||) and logical AND (&&) determine the truth or falseness of pairs of expressions. The AND
operation returns true only when both expressions are true; OR will return true if either is true. As in C, true
is any nonzero value, and false is zero. The operations are undefined for NaNs. These operators are not
available in complex expressions.

The logical operators are evaluated from left to right, and an operand will not be evaluated if it is not nec-
essary. For the example:
if(MyFunc1() && MyFunc2())

when MyFunc1() returns false (zero), then MyFunc2() will not be evaluated because the entire expression
is already false. This can produce unexpected consequences when the right-hand expression has side
effects, such as creating waves or setting global values.

Bitwise AND (&), OR (|), and XOR (%^) convert their operands to an unsigned integer by truncation and
then return their binary AND, OR or exclusive OR.

The conditional operator (? :) is a shorthand form of an if-else-endif expression. In the statement:
<expression> ? <TRUE> : <FALSE>

the first operand, <expression>, is the test condition; if it is nonzero then Igor evaluates the <TRUE> oper-
and; otherwise <FALSE> is evaluated. Only one operand is evaluated according to the test condition. This
is the same as if you had written:
if(<expression>)

<TRUE>
else

<FALSE>
endif

The “:” character in the conditional operator must always be separated from the two adjacent operands
with a space. If you omit either space, you will get an error (“No such data folder”) because the expression
can also be interpreted as part of a data folder path. To be safe, always separate the operands from the oper-
ator symbols with a space.

The operands must be numeric; for strings, use the SelectString function. When using complex expressions
with the conditional operator, only the real portion is used when the operator evaluates the expression.

The conditional operator can easily cause confusion, so you should exercise caution when using it. For
example, it is unclear from simple inspection what Igor may return for
1 ? 2 : 3 ? 4 : 5

(4 in this case), whereas
1 ? 2 : (3 ? 4 : 5)

will return 2. Always use parentheses to remove any ambiguity.

Chapter IV-1 — Working with Commands

IV-7

The comparison operators return 1 if the result of the comparison is true or 0 if it is false. For example, the ==
operator returns 1 if its operands are equal or 0 if they are not equal. The != operator returns the opposite.
Because comparison operators return the values 1 or 0 they can be used in interesting ways. The assignment:
wave1 = sin(x)*(x<=50) + cos(x)*(x>50)

sets wave1 so that it is a sine wave below x=50 and a cosine wave above x=50. See also Example: Compari-
son Operators and Wave Synthesis on page II-99.

Note that the double equal sign, ==, is used to mean equality while the single equal sign, =, is used to indicate assignment.

Because of roundoff error, using == to test two numbers for equality may give incorrect results. It is safer to
use <= and >= to see if a number falls in a narrow range. For example, imagine that you want to compare a
variable to see if it is equal to one-third. The expression:
(v1 == 1/3)

is subject to failure because of roundoff. It is safer to use something like
((v1 > .33332) && (v1 < .33334))

If the numbers are integers then the use of == is safe because integers smaller than 253 (approximately 1016)
are represented precisely in double-precision floating point numbers.

The previous discussion on operators has assumed numeric operands. The + operator is the only one that works
with both numeric and string operands. For example, if str1 is a string variable then the assignment statement
str1 = "Today is " + "a nice day"

assigns the value “Today is a nice day” to str1. The other string operator, $ is discussed in String Substitu-
tion Using $ on page IV-15.

Unless specified otherwise by parentheses, unary negation or complementation are carried out first fol-
lowed by exponentiation then by multiplication or division followed by addition or subtraction then by
comparison operators. The wave assignment:
wave1 = ((1 + 2) * 3) ^ 2

assigns the value 81 to every point in wave1, but
wave1 = 1 + 2 * 3 ^ 2

assigns the value 19.

Note: -a^b is an exception to this rule and is evaluated as -(a^b).

The precedence of string substitution, substrings, and wave indexing is somewhat complex. When in doubt,
use parenthesis to enforce the precedence you want.

Obsolete Operators
As of Igor Pro 4.0, the old bitwise complement (%~), bitwise AND (%&), and bitwise OR (%|) operators
have been replaced by new versions that omit the % character from the operator. These old bitwise opera-
tors can still be used interchangeably with the new versions.

Operands
In addition to literal numbers like 3.141 or 27, operators can operate on variables and function values. In the
assignment statement:
var1 = log(3.7) + var2

the operator + operates on the function value returned by log and on the variable var2. Functions and func-
tion values are discussed later in this chapter.

Chapter IV-1 — Working with Commands

IV-8

Numeric Type
In Igor, each numeric destination object (wave or variable) has its own numeric type. The numeric type con-
sists of the numeric precision (e.g., double precision floating point) and the number type (real or complex).
Waves can be single or double precision floating point or various sizes of integer but variables are always
double precision floating point.

The numeric precision of the destination does not affect the calculations. With the exception of a few oper-
ations that are done in place such as the FFT, all calculations are done in double precision.

Although waves can have integer numeric types, wave expressions are always evaluated in double preci-
sion floating point. The floating point values are converted to integers by rounding as the final step before
storing the value in the wave. If the value to be stored exceeds the range of values that the given integer
type can represent, the results are undefined.

The number type of the destination determines the initial number type (real or complex) of the assignment
expression. This is important because Igor can not deal with “surprise” or “runtime” changes in number
type. An example would be taking the square root of a negative number requiring that all following arith-
metic be done using complex numbers.

Here are some examples:
Variable a, b, c, var1
Variable/C cvar1
Make wave1

var1= a*b
cvar1= c*cmplx(a+1,b-1)
wave1= var1 + real(cvar1)

The first expression is evaluated using the real number type. The second expression contains a mixture of
two types. The multiplication of c with the result of the cmplx function is evaluated as complex while the
arguments to the cmplx function are evaluated as real. The third example is evaluated as real except for the
argument to the real function which is evaluated as complex.

Constant Type
You can define named numeric and string constants in Igor procedure files and use them in the body of
user-defined functions.

Constants are defined in procedure files using following syntax:
Constant <name1> = <literal number> [, <name2> = <literal number>]

StrConstant <name1> = <literal string> [, <name2> = <literal string>]

You can use the static prefix to limit the scope to the given source file. For debugging, you can use the Over-
ride keyword as with functions.

These declarations can be used in the following ways:
constant kFoo=1,kBar=2
strconstant ksFoo="hello",ksBar="there"

static constant kFoo=1,kBar=2
static strconstant ksFoo="hello",ksBar="there"

override constant kFoo=1,kBar=2
override strconstant ksFoo="hello",ksBar="there"

Programmers may find that using the “k” and “ks” prefixes will make their code easier to read.

Names for numeric and string constants can conflict with all other names. Duplicate constants of a given
type are not allowed (except static in different files and when used with Override). The only true conflict is

Chapter IV-1 — Working with Commands

IV-9

with variable names and with certain built-in functions that do not take parameters such as pi. Variable
names override constants, but constants override functions such as pi.

Dependency Assignment Statements
You can set up global variables and waves so that they automatically recalculate their contents when other
global objects change. See Chapter IV-9, Dependencies, for details.

Operation Commands
An operation is a built-in or external routine that performs an action but, unlike a function, does not directly
return a value. Here are some examples:
Make/N=512 wave1
Display wave1
Smooth 5, wave1

Operation commands perform the majority of the work in Igor and are automatically generated and exe-
cuted as you work with Igor using dialogs.

You can use these dialogs to experiment with operations of interest to you. As you click in a dialog, Igor
composes a command. This provides a handy way for you to check the syntax of the operation or to gener-
ate a command for use in a user-defined procedure. See Chapter V-1, Igor Reference, for a complete list of
all built-in operations. Another way to learn their syntax is to use the Igor Help Browser’s Command Help
tab. See Command Help Tab on page II-6.

The syntax of operation commands is highly variable but in general consists of the operation name, fol-
lowed by a list of options (e.g., /N=512), followed by a parameter list. The operation name specifies the
main action of the operation and determines the syntax of the rest of the command. The list of options spec-
ifies variations on the default behavior of the operation. If the default behavior of the operation is satisfac-
tory then no options are required. The parameter list identifies the objects on which the operation is to
operate. Some commands take no parameters. For example, in the command:

Make/D/N=512 wave1, wave2, wave3

the operation name is “Make”. The list of options is “/D/N=512”. The parameter list is “wave1, wave2,
wave3”. An option such as “/D” or “/N=512” is sometimes termed a “flag”.

You can use numeric expressions in the parameter list of an operation where Igor expects a numeric param-
eter, but in an operation option you need to parenthesize the expression. For example:
Variable val = 1.0
Make/N=(val) wave0, wave1
Make/N=(numpnts(wave0)) wave2

The most common types of parameters are literal numbers or numeric expressions, literal strings or string
expressions, names, and waves. In the example above, wave1 is a name parameter when passed to the Make
operation. It is a wave parameter when passed to the Display and Smooth operations. A name parameter can
refer to a wave that may or may not already exist whereas a wave parameter must refer to an existing wave.

See Parameter Lists on page IV-11 for general information that applies to all commands.

User-Defined Procedure Commands
For details on creating your own procedures, refer to chapters starting with IV-2.

User-defined procedure commands start with a macro, user function, or external function name followed
by a list of parameters in parentheses. Here are a few examples:
MyFunction1(5.6, wave0, "igneous")
MyMacro1(1.2, 1/sqrt(ln(2)), "wave0")
MyMacro1(1.2 , ,)
MyMacro1()

Chapter IV-1 — Working with Commands

IV-10

Macro and Function Parameters
As illustrated by the last two examples, you can invoke macros (but not functions) with one or more of the
input parameters missing. When you do this, Igor puts up a dialog to allow you to enter the missing param-
eters. When you run a macro by choosing it from the Macros menu, Igor simply executes the macro with
all of the parameters missing as in the last example. After you enter values in the dialog, the macro is exe-
cuted with those parameters and the now-complete macro command is placed in the history. You can then
fetch the command from the history, modify a parameter and then reexecute the command without having
to go through the dialog.

You can add similar capabilities to user-defined functions using the Prompt (see page V-577) and
DoPrompt (see page V-135) keywords. You can also use the PauseForUser (see page V-542) operation in
a function to provide a more sophisticated way to get user input. WaveMetrics encourages programmers
to use user-defined functions instead of macros.

There is an additional difference between functions and macros that you should be aware of. Functions can
accept numeric, string and wave reference parameters. Macros can accept numeric and string parameters but
can not accept literal wave names. For this reason, macros are written to accept waves in the form of strings
containing the wave names. It’s the difference between wave0 and “wave0” in the first two examples above.

When you are using a package of procedures written by someone else you may need to determine what
parameters a particular macro or function requires. If this is not documented you can easily inspect the
source code by opening the procedure window and choosing the desired procedure from the pop-up menu
at the bottom of the window.

Function Commands
A function is a routine that directly returns a numeric or string value. There are three classes of functions
available to Igor users:
• Built-in
• External (XFUNCs)
• User-defined

Built-in numeric functions enjoy one advantage over external or user-defined functions: a few come in real
and complex number types and Igor automatically picks the appropriate version depending on the current
number type in an expression. External and user-defined functions must have different names when differ-
ent types are needed. Generally, only real user and external functions need be provided.

For example, in the wave assignment:
wave1 = enoise(1)

if wave1 is real then the function enoise returns a real value. If wave1 is complex then enoise returns a
complex value.

You can use a function as a parameter to another function, to an operation, to a macro or in an arithmetic or string
expression so long as the data type returned by the function makes sense in the context in which you use it.

User-defined and external functions can also be used as commands by themselves. Use this to write a user
function that has some purpose other than calculating a numeric value, such as displaying a graph or
making new waves. Built-in functions cannot be used this way. For instance:
MyDisplayFunction(wave0)

External and user-defined functions can be used just like built-in functions. In addition, numeric functions
can be used in curve fitting. See Chapter IV-3, User-Defined Functions and Fitting to a User-Defined
Function on page III-173.

Most functions consist of a function name followed by a left parenthesis followed by a parameter list and
followed by a right parenthesis. In the wave assignment shown at the beginning of this section, the function

Chapter IV-1 — Working with Commands

IV-11

name is enoise. The parameter is 1. The parameter is enclosed by parentheses. In this example, the result
from the function is assigned to a wave. It can also be assigned to a variable or printed:
K0 = enoise(1)
Print enoise(1)

User and external functions (but not built-in functions) can be executed on the command line or in other
functions or macros without having to assign or print the result. This is useful when the point of the func-
tion is not its explicit result but rather its side effects.

Nearly all functions require parentheses even if the parameter list is empty. For example the function date()
has no parameters but requires parentheses anyway. There are a few exceptions. For example the function
Pi returns π and is used with no parentheses or parameters.

Igor’s built-in functions are described in detail in Chapter V-1, Igor Reference.

Parameter Lists
Parameter lists are used for operations, functions, and macros and consist of one or more numbers, strings,
keywords or names of Igor objects. The parameters in a parameter list must be separated with commas.

Expressions as Parameters
In an operation, function, or macro parameter list which has a numeric parameter you can always use a
numeric expression instead of a literal number. A numeric expression is a legal combination of literal num-
bers, numeric variables, numeric functions, and numeric operators. For example, consider the command
SetScale x, 0, 6.283185, "v", wave1

which sets the X scaling for wave1. You could also write this as
SetScale x, 0, 2*PI, "v", wave1

Parentheses Required for /N=(<expression>)
Many operations accept flags of the form “/A=n” where A is some letter and n is some number. You can use
a numeric expression for n but you must parenthesize the expression.

For example, both:
Make/N=512 wave1
Make/N=(2^9) wave1

are legal but this isn’t:
Make/N=2^9 wave1

A variable name is a form of numeric expression. Thus, assuming v1 is the name of a variable:
Make/N=(v1)

is legal, but
Make/N=v1

is not. This parenthesization is required only when you use a numeric expression in an operation flag.

String Expressions
A string expression can be used where Igor expects a string parameter. A string expression is a legal combi-
nation of literal strings, string variables, string functions and the string operator + which concatenates strings.

Chapter IV-1 — Working with Commands

IV-12

Setting Bit Parameters
A number of commands require that you specify a bit value to set certain parameters. In these instances you
set a certain bit number by using a specific bit value in the command. The bit value is 2n, where n is the bit
number. So, to set bit 0 use a bit value of 1, to set bit 1 use a bit value of 2, etc.

For the example of the TraceNameList function the last parameter is a bit setting. To select normal traces
you must set bit 0:
TraceNameList("",";",1)

and to select contour traces set bit 1:
TraceNameList("",";",2)

Most importantly, you can set multiple bits at one time by adding the bit values together. Thus, for Trace-
NameList you can select both normal (bit 0) and contour (bit 1) traces by using:
TraceNameList("",";",3)

See also Using Bitwise Operators on page IV-33.

Strings
Igor has a rich repertoire of string handling capabilities. See Strings on page V-10 for a complete list of Igor
string functions. Many of the techniques described in this section will be of interest only to programmers.

Many Igor operations require string parameters. For example, to label a graph axis, you can use the Label
operation:
Label left, "Volts"

Other Igor operations, such as Make, require names as parameters:
Make wave1

Using the string substitution technique, described in String Substitution Using $ on page IV-15, you can
generate a name parameter by making a string containing the name and using the $ operator:
String stringContainingName = "wave1"
Make $stringContainingName

String Expressions
Wherever Igor requires a string parameter, you can use a string expression. A string expression can be:
• A literal string ("Today is")
• The output of a string function (date())
• An element of a text wave (textWave0[3])
• Some combination of string expressions ("Today is" + date())

In addition, you can derive a string expression by indexing into another string expression. For example,
Print ("Today is" + date())[0,4]

prints “Today”.

A string variable can store the result of a string expression. For example:
String str1 = "Today is" + date()

A string variable can also be part of a string expression, as in:
Print "Hello. " + str1

Chapter IV-1 — Working with Commands

IV-13

Strings in Text Waves
A text wave contains an array of text strings. Each element of the wave can be treated using all of the avail-
able string manipulation techniques. In addition, text waves are commonly used to create category axes in
bar charts. See Text Waves on page II-103 for further information.

There is a potential ambiguity with string indexing when the string is stored in a text wave. See String
Indexing on page IV-13.

String Properties
Strings in Igor can be of unlimited length. There are no restrictions on the characters that can be stored in a
string except for the null character (ASCII code 0). Storing a null in a string causes problems because the C
functions that Igor uses internally to handle strings take null as an end-of-string flag.

Some Igor functions can take an empty string ("", no space between the quotation marks) as a parameter.

Escape Characters in Strings
Igor treats the backslash character in a special way when reading literal (quoted) strings in a command line.
The backslash is used to define something called an “escape sequence”. This just means that the backslash
plus the next character or next few characters are treated like a different character — one you could not oth-
erwise include in a quoted string. The escape sequences are:

For example, if you have a string variable called “fileName”, you could print it in the history area using:
fileName = "Test"
Printf "The file name is \"%s\"\r", fileName

which prints
The file name is "Test"

In the Printf command line, \" embeds a double-quote character in the format string. If you omitted the back-
slash, the " would end the format string. The \r specifies that you want a carriage return in the format string.

String Indexing
Indexing can extract a part of a string. This is done using a string expression followed by one or two
numbers in brackets. The numbers are character positions. Zero is the character position of the first charac-
ter; n-1 is the character position of the last character of an n character expression. For example, assume we
create a string variable called s1 and assign a value to it as follows:
String s1="hello there"

Then,
Print s1[0,4] prints hello

\t Tab character
\r Return character
\n Linefeed character
\' The ' character
\" The " character
\\ The \ character
\ddd An arbitrary ASCII code (ddd is a 3 digit octal number)

h e l l o t h e r e

0 1 2 3 4 5 6 7 8 9 10

Chapter IV-1 — Working with Commands

IV-14

Print s1[0,0] prints h
Print s1[0] prints h
Print s1[1]+s1[2]+s1[3] prints ell
Print (s1+" jack")[6,15] prints there jack

A string indexed with one number, such as s1[p], is a string with one character in it if p is in range (i.e. 0 ≤
p ≤ n-1). s1[p] is a string with no characters in it if p is not in range. For example:
Print s1[0] prints h
Print s1[-1] prints (nothing)
Print s1[10] prints e
Print s1[11] prints (nothing)

A string indexed with two numbers, such as s1[p1,p2], contains all of the characters from s1[p1] to s1[p2].
For example:
Print s1[0,10] prints hello there
Print s1[-1,11] prints hello there
Print s1[-2,-1] prints (nothing)
Print s1[11,12] prints (nothing)
Print s1[10,0] prints (nothing)

Because the syntax for string indexing is identical to the syntax for wave indexing, you have to be careful
when using text waves. For example:
Make/T textWave0 = {"Red", "Green", "Blue"}

Print textWave0[1] prints Green
Print textWave0[1][1] prints Green
Print textWave0[1][1][1] prints Green
Print textWave0[1][1][1][1] prints Green
Print textWave0[1][1][1][1][1]prints r

The first four examples print row 1 of column 0. Since waves may have up to four dimensions, the first four
[1]’s act as dimension indices. The column, layer, and chunk indices were out of range and were clipped to
a value of 0. Finally in the last example, we ran out of dimensions and got string indexing. Warning: Do not
count on this behavior because future versions of Igor may support more than four dimensions.

The way to avoid the ambiguity between wave and string indexing is to use parentheses like so:
Print (textWave0[1])[1] prints r

String Assignment
You can assign values to string variables using string assignment. We have already seen the simplest case
of this, assigning a literal string value to a string variable. You can also assign values to a subrange of a
string variable, using string indexing. Once again, assume we create a string variable called s1 and assign
a value to it as follows:
String s1="hello there"

Then,
s1[0,4]="hi";print s1 prints hi there
s1[0,4]="greetings";print s1 prints greetings there
s1[0,0]="j";print s1 prints jello there
s1[0]="well ";print s1 prints well hello there
s1[100000]=" jack";print s1 prints hello there jack
s1[-100]="well ";print s1 prints well hello there

When the s1[p1,p2]= syntax is used, the right-hand side of the string assignment replaces the subrange of the
string variable identified by the left-hand side, after p1 and p2 are clipped to 0 to n.

When the s1[p]= syntax is used, the right-hand side of the string assignment is inserted before the character
identified by p after p is limited to 0 to n.

Chapter IV-1 — Working with Commands

IV-15

The subrange assignment just described for string variables is not supported when a text wave is the desti-
nation. To assign a value to a range of a text wave element, you will need to create a temporary string vari-
able. For example:
Make/O/T tw = {"Red", "Green", "Blue"}
String stmp= tw[1]
stmp[1,2]="XX"
tw[1]= stmp;

print tw[0],tw[1],tw[2] prints Red GXXen Blue

String Substitution Using $
Wherever Igor expects the literal name of an operand, such as the name of a wave, you can instead provide
a string expression preceded by the $ character. The $ operator evaluates the string expression and returns
the value as a name.

For example, the Make operation expects the name of the wave to be created. Assume we want to create a
wave named wave0:

Make wave0 // OK: wave0 is a literal name.

Make $"wave0" // OK: $"wave0" evaluates to wave0.

String str = "wave0"
Make str // WRONG: This makes a wave named str.
Make $str // OK: $str evaluates to wave0.

$ is often used when you write a function which receives the name of a wave to be created as a parameter.
Here is a trivial example:
Function MakeWave(w)

String wName // name of the wave

Make $wName
End

We would invoke this function as follows:
MakeWave("wave0")

We use $ because we need a wave name but we have a string containing a wave name. If we omitted the $
and wrote:

Make wName

Igor would make a wave whose name is wName, not on a wave whose name is wave0.

String substitution is capable of converting a string expression to a single name. It can not handle multiple
names. For example, the following will not work:
String list = “wave0;wave1;wave2”
Display $list

See Processing Lists of Waves on page IV-178 for ways to accomplish this.

$ Precedence Issues In Commands
This section discusses issues that arise when using string substitution in assignment statements in the
command line or in a macro. This is somewhat academic because modern Igor programming is done with
user-defined functions. In user-defined functions, the ambiguity is removed through the use of “wave ref-
erences” (described in Accessing Waves in Functions on page IV-66).

Chapter IV-1 — Working with Commands

IV-16

There is one case in which string substitution does not work as you might expect. Consider this example:
String str1 = “wave1”
wave2 = $str1 + 3

You might expect that this would cause Igor to set wave2 equal to the sum of wave1 and 3. Instead, it gen-
erates an “expected string expression” error. The reason is that Igor tries to concatenate str1 and 3 before
doing the substitution implied by $. The + operator is also used to concatenate two string expressions, and
it has higher precedence than the $ operator. Since str1 is a string but 3 is not, Igor cannot do the concate-
nation.

You can get around this problem by changing this wave assignment to one of the following:
wave2 = 3 + $str1
wave2 = ($str1) + 3

Both of these accomplish the desired effect of setting wave2 equal to the sum of wave1 and 3. Similarly,
wave2 = $str1 + $str2 // Igor sees "$(str1 + $str2)"

generates the same “expected string expression” error. The reason is that Igor is trying to concatenate str1
and $str2. $str2 is a name, not a string. The solution is:
wave2 = ($str1) + ($str2) // sets wave2 to sum of two named waves

Another situation arises when using the $ operator and [. The [symbol can be used for either point indexing
into a wave, or character indexing into a string. The commands
String wvName = "wave0"
$wvName[1,2] = wave1[p] // sets two values in wave named "wave0"

are interpreted to mean that points 1 and 2 of wave0 are set values from wave1.

If you intended “$wvName[1,2] = wave1” to mean that a wave whose name comes from characters 1 and 2
of the wvName string (“av”) has all of its values set from wave1, you must use parenthesis:
$(wvName[1,2]) = wave1 // sets all values of wave named "av"

String Utility Functions
WaveMetrics provides a number of handy utility functions for dealing with strings. To see a list of the built-
in string functions, open the Igor Help Browser Command Help tab and then choose String from the pop-
up menu of function categories. See also the string utility procedure files provided by WaveMetrics in the
WaveMetrics Procedures:Utilities:String Utilities folder.

Special Cases
This section documents some techniques that were devised to handle certain specialized situations that
arise with respect to Igor’s command language.

Instance Notation
There is a problem that occurs when you have multiple instances of the same wave in a graph or multiple
instances of the same object in a layout. For example, assume you want to graph yWave versus xWave0,
xWave1, and xWave2. To do this, you need to execute:
Display yWave vs xWave0
AppendToGraph yWave vs xWave1
AppendToGraph yWave vs xWave2

The result is a graph in which yWave occurs three times. Now, if you try to remove or modify yWave using:
RemoveFromGraph yWave

or
ModifyGraph lsize(yWave)=2

Chapter IV-1 — Working with Commands

IV-17

Igor will always remove or modify the first instance of yWave.

Instance notation provides a way for you to specify a particular instance of a particular wave. In our exam-
ple, the command
RemoveFromGraph yWave#2

will remove instance number 2 of yWave and
ModifyGraph lsize(yWave#2)=2

will modify instance number 2 of yWave. Instance numbers start from zero so “yWave” is equivalent to
“yWave#0”. Instance number 2 is the instance of yWave plotted versus xWave2 in our example.

Where necessary to avoid ambiguity, Igor operation dialogs (e.g., Modify Trace Appearance) automatically
use instance notation. Operations that accept trace names (e.g., ModifyGraph) or layout object names (e.g.,
ModifyObject) accept instance notation.

A graph can also display multiple waves with the same name if the waves reside in different datafolders.
Instance notation applies to the this case also.

Instance Notation and $
The $ operator can be used with instance notation. The # symbol may be either inside the string operand or
may be outside. For example $"wave0#1" or $"wave0"#1. However, because the # symbol may be inside
the string, the string must be parsed by Igor. Consequently, unlike other uses of $, the wave name portion
must be surrounded by single quotes if liberal names are used. For example, suppose you have a wave with
the liberal name of 'ww#1' plotted twice. The first instance would be $"'ww#1'" and the second
$"'ww#1'#1" whereas $"ww#1" would reference the second instance of the wave ww.

Object Indexing
The ModifyGraph, ModifyTable and ModifyLayout operations, used to modify graphs, tables and page layouts,
each support another method of identifying the object to modify. This method, object indexing, is used to gen-
erate style macros (see Graph Style Macros on page II-307). You may also find it handy in other situations.

Normally, you need to know the name of the object that you want to modify. For example, assume that we
have a graph with three traces in it and we want to set the traces’ markers from a procedure. We can write:
ModifyGraph marker(wave0)=1, marker(wave1)=2, marker(wave2)=3

Because it uses the names of particular traces, this command is specific to a particular graph. What do we
do if we want to write a command that will set the markers of three traces in any graph, regardless of the
names of the traces? This is where object indexing comes in.

Using object indexing, we can write:
ModifyGraph marker[0]=1, marker[1]=2, marker[2]=3

This command sets the markers for the first three traces in a graph, no matter what their names are.

Indexes start from zero. For graphs, the object index refers to traces starting from the first trace placed in
the graph. For tables the index refers to columns from left to right. For page layouts, the index refers to
objects starting from the first object placed in the layout.

/Z Flag
The ModifyGraph marker command above works fine if you know that there are three waves in the graph.
It will, however, generate an error if you use it on a graph with fewer than 3 waves. The ModifyGraph oper-
ation supports a flag that can be used to handle this:
ModifyGraph/Z marker[0]=1, marker[1]=2, marker[2]=3

The /Z flag ignores errors if the command tries to modify an object that doesn’t exist. The /Z flag works with
the SetAxis and Label operations as well as with the ModifyGraph, ModifyTable and ModifyLayout oper-

Chapter IV-1 — Working with Commands

IV-18

ations. Like object indexing, the /Z flag is primarily of use in creating style macros, which is done automat-
ically, but it may come in handy for other uses.

Chapter

IV-2
IV-2Programming Overview

Overview.. 20
Organizing Procedures .. 20
WaveMetrics Procedure Files.. 21
Macros and Functions .. 21
Scanning and Compiling Procedures... 22
Indentation Conventions ... 22
What’s Next ... 23

Chapter IV-2 — Programming Overview

IV-20

Overview
You can perform powerful data manipulation and analysis interactively using Igor’s dialogs and the
command line. However, if you want to automate common tasks or create custom numerical operations then
you need to use procedures. You can write them yourself, use procedures supplied by WaveMetrics, or find
someone else who has written procedures you can use. Even if you don’t write procedures from scratch, it is
useful to know enough about Igor programming to be able to understand code written by others.

Programming in Igor entails creating procedures by entering text in a procedure window. After entering a
procedure, you can execute it via the command line, by choosing an item from a menu, or using a button in
a control panel.

The bulk of the text in a procedure window falls into one of the following categories:
• Pragmas, which send instructions from the programmer to the Igor compiler
• Include statements, which open other procedure files
• Constants, which define symbols used in functions
• Structure definitions, which can be used in functions
• Proc Pictures, which define images used in control panels, graphs, and layouts
• Menu definitions, which add menu items or entire menus to Igor
• Functions — compiled code which is used for nearly all Igor programming
• Macros — interpreted code which, for the most part, is obsolete

Functions are written in Igor’s programming language. Like conventional procedural languages such as C
or Pascal, Igor’s language includes:
• Data storage elements (variables, strings, waves)
• Assignment statements
• Flow control (conditionals and loops)
• Calls to built-in and external operations and functions
• Ability to define and call subroutines

Igor programming is easier than conventional programming because it is much more interactive — you can
write a routine and test it right away. It is designed for interactive use within Igor rather than for creating
stand-alone programs.

Organizing Procedures
Procedures can be stored in the built-in Procedure window or in separate auxiliary procedure files. Chapter
III-13, Procedure Windows, explains how to edit the Procedure window and how to create auxiliary pro-
cedure files.

At first you will find it convenient to do all of your Igor programming in the built-in Procedure window. In
the long run, however, it will be useful to organize your procedures into categories so that you can easily
find and access general-purpose procedures and keep them separate from special-case procedures.

Chapter IV-2 — Programming Overview

IV-21

This table shows how we categorize procedures and how we store and access the different categories.

Following this scheme, you will know where to put procedure files that you get from colleagues and where
to look for them when you need them.

Utility and global procedures should be general-purpose so that they can be used from any experiment. Thus,
they should not rely on specific waves, global variables, global strings, specific windows or any other objects spe-
cific to a particular experiment. See Writing General-Purpose Procedures on page IV-150 for further guidelines.

After they are debugged and thoroughly tested, you may want to share your procedures with other Igor
users. If so, contact WaveMetrics for help in publicizing and distributing them.

WaveMetrics Procedure Files
WaveMetrics has created a large number of utility procedure files that you can use as building blocks. These
files are stored in the WaveMetrics Procedures folder. They are described in the WM Procedures Index help
file, which you can access through the Windows→Help Windows menu.

You access WaveMetrics procedure files using include statements. Include statements are explained under
The Include Statement on page IV-149.

Using the Igor Help Browser, you can search the WaveMetrics Procedures folder to find examples of par-
ticular programming techniques.

Macros and Functions
There are two kinds of Igor procedures: macros and functions. They use similar syntax. The main differ-
ence between them is that Igor compiles user functions but interprets macros.

Category What Where How
Experiment
Procedures

These are specific to a single Igor
experiment.
They include procedures you
write as well as window recreation
macros created automatically
when you close a graph, table,
layout, control panel, or XOP
target window (e.g., surface plot).

Usually experiment procedures
are stored in the built-in
Procedure window.
You can optionally create
additional procedure windows
in a particular experiment but
this is usually not needed.

You create an experiment
procedure by typing in the
built-in Procedure window.

Utility
Procedures

These are general-purpose and
potentially useful for any Igor
experiment.
WaveMetrics supplies utility
procedures in the WaveMetrics
Procedures folder. You can also
write your own procedures or get
them from colleagues.

WaveMetrics-supplied utility
procedure files are stored in the
WaveMetrics Procedures folder.
Utility procedure files that you or
other Igor users create should be
stored in your own folder, in the
Igor Pro User Files folder (see Igor
Pro User Files on page II-46 for
details) or at another location of
your choosing. Place an alias or
shortcut for your folder in "Igor
Pro User Files/User Procedures".

Use an include statement to use
a WaveMetrics or user utility
procedure file.
Include statements are
described in The Include
Statement on page IV-149.

Global
Procedures

These are procedures that you
want to be available from all
experiments.

Store your global procedure files
in "Igor Pro User Files/Igor
Procedures" (see Igor Pro User
Files on page II-46 for details).
You can also store them in
another folder of your choice and
place an alias or shortcut for your
folder in "Igor Pro User Files/Igor
Procedures".

Igor automatically opens any
procedure file in "Igor Pro
Folder/Igor Procedures" and
"Igor Pro User Files/Igor
Procedures" and subfolders or
referenced by an alias or shortcut
in those folders, and leaves it
open in all experiments.

Chapter IV-2 — Programming Overview

IV-22

Because functions are compiled, they are dramatically faster than macros. Compilation also allows Igor to
detect errors in functions when you write the function, whereas errors in macros are detected only when
they are executed.

Macros are a legacy of Igor’s early days. With rare exceptions, all new programming should use functions,
not macros. To simplify the presentation of Igor programming, most discussion of macros is segregated into
Chapter IV-4, Macros.

Scanning and Compiling Procedures
When you modify text in a procedure window, Igor must process it before you can execute any procedures.
There are two parts to the processing: scanning and function compilation. In the scanning step, Igor finds
out what procedures exist in the window. In the compilation step, Igor’s function compiler converts the
function text into low-level instructions for later execution.

For the sake of brevity, we use the term “compile” to mean “scan and compile” except when we are specif-
ically pointing out the distinction between these two steps.

You can explicitly compile the procedures using the Compile button in the Procedure window or the
Compile item in the Macros menu.

By default, Igor automatically compiles the procedure text at appropriate times. For example, if you type in
the Procedure window and then hide it by clicking in the close button, Igor will automatically compile.

If you have many procedures that take long to compile, you may want to turn auto-compiling off using the
Macros menu.

When Auto-compile is deselected, Igor compiles only when you explicitly request it. Igor will still scan the
procedures when it needs to know what macros and functions exist.

Indentation Conventions
We use indentation to indicate the structure of a procedure.

During scanning, Igor makes the cursor
look like scrolling text.

During compilation, Igor makes the cursor
look like a meat grinder (text in, bits out).

When the procedures need to be compiled, a
Compile button appears in the Procedure window
and a Compile item appears in the Macros menu.

If you deselect Auto-compile, Igor will compile
only when you choose Compile or click in the
Compile button in the Procedure window.

Chapter IV-2 — Programming Overview

IV-23

The structural keywords, shown in bold here, control the flow of the procedure. The purpose of the inden-
tation is to make the structure of the procedure apparent by showing which lines are within which struc-
tural keywords. Matching keywords are at the same level of indentation and all lines within those
keywords are indented by one tab.

The Edit menu contains aids for maintaining or adjusting indentation. You can select multiple lines and
choose Indent Left or Indent Right. You can have Igor automatically adjust the indentation of a procedure
by selecting the whole procedure or a subset and then choosing Adjust Indentation.

Igor does not require that you use indentation but we recommend it for readability.

What’s Next
The next chapter covers the core of Igor programming — writing user-defined functions.

Chapter IV-4, Macros, explains macros. Because new programming does not use macros, that chapter is
mostly of use for understanding old Igor code.

Chapter IV-5, User-Defined Menus, explains user-defined menus. It explains how you can add menu items
to existing Igor menus and create entire new menus of your own.

Chapter IV-6, Interacting with the User, explains other methods of interacting with the user, including the
use of dialogs, control panels, and cursors.

Chapter IV-7, Programming Techniques, covers an assortment of programming topics. An especially
important one is the use of the include statement, which you use to build procedures on top of existing pro-
cedures.

Chapter IV-8, Debugging, covers debugging using Igor’s symbolic debugger.

Chapter IV-9, Dependencies, covers dependencies — a way to tie a variable or wave to a formula.

Chapter IV-10, Advanced Programming, covers advanced topics, such as communicating with other pro-
grams, doing FTP transfers, doing data acquisition, and creating a background task.

The body of the function
is indented by one tab.

Function Example()
<Input parameter declarations>

<Local variable declarations>

if (condition)
<true part>

else
<false part>

endif

do
<loop body>

while (condition)
End

The body of the loop is
indented by one tab.

Indentation clearly shows what is
executed if the condition is true and
what is executed if it is false.

Chapter IV-2 — Programming Overview

IV-24

Chapter

IV-3
IV-3User-Defined Functions

Overview.. 28
Function Syntax... 29

The Function Name ... 29
The Procedure Subtype... 29
The Parameter List and Parameter Declarations... 30
Optional Parameters.. 30
Local Variable Declarations.. 30
Body Code... 31
The Return Statement.. 31

Conditional Statements in Functions ... 31
If-Else-Endif .. 31
If-Elseif-Endif.. 32
Comparisons... 32
Bitwise and Logical Operators... 33

Using Bitwise Operators.. 33
Switch Statements ... 34
Loops... 36

Do-While Loop... 36
Nested Do-While Loops.. 36
While Loop ... 36
For Loop .. 37
Break Statement ... 37
Continue Statement ... 38

Flow Control for Aborts... 38
AbortOnRTE Keyword ... 38
AbortOnValue Keyword .. 38
try-catch-endtry Flow Control ... 38

try-catch-endtry Example.. 39
Constants.. 40
Pragmas .. 40

The rtGlobals Pragma ... 41
The version Pragma... 42
The IgorVersion Pragma... 42
The hide Pragma .. 43
The ModuleName Pragma ... 43
The IndependentModule Pragma ... 43
Unknown Pragmas .. 43

Proc Pictures .. 44
How Parameters Work... 44

Example of Pass-By-Value.. 45
Pass-By-Reference.. 45
How Waves Are Passed.. 46
Using Optional Parameters .. 46

Local Versus Global Variables .. 47

Chapter IV-3 — User-Defined Functions

IV-26

Local Variables Used by Igor Operations.. 47
Converting a String into a Reference Using $... 48

Using $ to Refer to a Window.. 49
Using $ In a Data Folder Path .. 49

Compile Time Versus Runtime... 49
Accessing Global Variables and Waves... 50

Runtime Lookup of Globals ... 51
Put WAVE Declaration After Wave Is Created... 52
Runtime Lookup Failure... 53
Runtime Lookup Failure and the Debugger.. 53
Accessing Complex Global Variables and Waves .. 53
Accessing Text Waves ... 53
Accessing Global Variables and Waves Using Liberal Names ... 53
Runtime Lookup Example.. 55
Automatic Creation of NVAR and SVAR References .. 56

Wave References ... 56
Automatic Creation of WAVE References ... 57
Standalone WAVE Reference Statements ... 57
Inline WAVE Reference Statements ... 58
WAVE Reference Types.. 58
WAVE Reference Type Flags ... 59
Problems with Automatic Creation of WAVE References .. 59
WAVE Reference Is Not Needed to Pass a Wave Parameter .. 60
Wave Reference Function Results ... 60
Wave Reference Waves... 61

Data Folder References... 62
Using Data Folder References.. 63
The /SDFR Flag... 64
The DFREF Type.. 64
Built-in DFREF Functions... 65
Checking Data Folder Reference Validity.. 65
Data Folder Reference Function Results .. 65
Data Folder Reference Waves .. 66

Accessing Waves in Functions .. 66
Wave Reference Passed as Parameter... 67
Wave Accessed Via String Passed as Parameter ... 67
Wave Accessed Via String Calculated in Function... 68
Wave Accessed Via Literal Wave Name .. 68
Wave Accessed Via Wave Reference Function ... 69

Destination Wave Parameters... 69
Wave Reference as Destination Wave .. 70
Exceptions To Destination Wave Rules.. 70
Updating of Destination Wave References .. 70
Inline Wave References With Destination Waves... 70
Destination Wave Reference Issues... 71
Changes in Destination Wave Behavior ... 72

Programming With Trace Names... 72
Trace Name Parameters.. 72
User-defined Trace Names... 73
Trace Name Programming Example .. 73

Free Waves ... 75
Free Wave Created When Free Data Folder Is Deleted.. 75
Free Wave Created For User Function Input Parameter ... 76
Free Wave Lifetime.. 76
Free Wave Leaks .. 78
Converting a Free Wave to a Global Wave.. 78

Chapter IV-3 — User-Defined Functions

IV-27

Free Data Folders .. 79
Free Data Folder Lifetime... 79
Free Data Folder Objects Lifetime... 80
Converting a Free Data Folder to a Global Data Folder .. 81

Structures in Functions .. 82
Defining Structures.. 82
Using Structures... 82

Example.. 83
Built-In Structures.. 85
Applications of Structures .. 85
Using Structures with Windows and Controls ... 85

Example.. 86
Limitations of Structures .. 86

Static Functions ... 86
ThreadSafe Functions ... 87
Function Overrides ... 88
Function References.. 88
Conditional Compilation ... 90

Predefined Global Symbols .. 91
Conditional Compilation Examples.. 91

Function Errors.. 91
Coercion in Functions... 92
Operations in Functions... 92
Updates During Function Execution ... 93
Aborting Functions ... 93
Legacy Code Issues... 94

Old-Style Comments and Compatibility Mode .. 94
Text After Flow Control.. 95
Global Variables Used by Igor Operations .. 95
Direct Reference to Globals .. 95

Chapter IV-3 — User-Defined Functions

IV-28

Overview
Most of Igor programming consists of writing user-defined functions.

A function has zero or more numeric, string and wave parameters. You can use local variables to store inter-
mediate results. The function body consists of Igor operations, assignment statements, flow control state-
ments, and calls to other functions.

A function can return a numeric or string result. It can also have a side-effect, such as creating a wave or
creating a graph.

Before we dive into the technical details, here is an informal look at some simple examples.
Function Hypotenuse(side1, side2)

Variable side1, side2

Variable hyp
hyp = sqrt(side1^2 + side2^2)

return hyp
End

The Hypotenuse function takes two numeric parameters and returns a numeric result. “hyp” is a local vari-
able and sqrt is a built-in function. You could test Hypotenuse by executing the following statement in the
command line:
Print Hypotenuse(3, 4)

Now let’s look at a function that deals with text strings.
Function/S FirstStr(str1, str2)

String str1, str2

String result

if (CmpStr(str1,str2) < 0)
result = str1

else
result = str2

endif

return result
End

The FirstStr function takes two string parameters and returns the string that is first in alphabetical order. CmpStr
is a built-in function. You could test FirstStr by executing the following statement in the command line:
Print FirstStr("ABC", "BCD")

Now a function that deals with waves.
Function CreateRatioOfWaves(w1, w2, nameOfOutputWave)

WAVE w1, w2
String nameOfOutputWave

Duplicate/O w1, $nameOfOutputWave
WAVE wOut = $nameOfOutputWave
wOut = w1 / w2

End

The CreateRatioOfWaves function takes two wave parameters and a string parameter. The string is the
name to use for a new wave, created by duplicating one of the input waves. The “WAVE wOut” statement
creates a wave reference for use in the following assignment statement. This function has no direct result
(no return statement) but has the side-effect of creating a new wave.

Chapter IV-3 — User-Defined Functions

IV-29

Here are some commands to test CreateRatioOfWaves:
Make test1 = {1, 2, 3}, test2 = {2, 3, 4}
CreateRatioOfWaves(test1, test2, "ratio")
Edit test1, test2, ratio

Function Syntax
The basic syntax of a function is:
Function <Name> (<Parameter list> [<Optional Parameters>]) [:<Subtype>]

<Parameter declarations>

<Local variable declarations>

<Body code>

<Return statement>
End

Here is an example:
Function Hypotenuse(side1, side2)

Variable side1, side2 // Parameter declaration

Variable hyp // Local variable declaration

hyp = sqrt(side1^2 + side2^2) // Body code

return hyp // Return statement
End

You could test this function from the command line using one of these commands:
Print Hypotenuse(3,4)
Variable/G result = Hypotenuse(3,4); Print result

As shown above, the function returns a real, numeric result. The Function keyword can be followed by a
flag that specifies a different result type.

The /D flag is obsolete because all calculations are now performed in double precision. However, it is still
permitted.

The Function Name
The names of functions must follow the standard Igor naming conventions. Names can consist of up to 31
characters. The first character must be alphabetic while the remaining characters can include alphabetic and
numeric characters and the underscore character. Names must not conflict with the names of other Igor
objects, functions or operations. Names in Igor are case insensitive.

The Procedure Subtype
You can identify procedures designed for specific purposes by using a subtype. Here is an example:
Function ButtonProc(ctrlName) : ButtonControl

String ctrlName

Flag Return Value Type

/C Complex number

/S String

/D Double precision number (obsolete)

Chapter IV-3 — User-Defined Functions

IV-30

Beep
End

Here, “ : ButtonControl” identifies a function intended to be called when a user-defined button control
is clicked. Because of the subtype, this function is added to the menu of procedures that appears in the
Button Control dialog. When Igor automatically generates a procedure it generates the appropriate sub-
type. See Procedure Subtypes on page IV-183 for details.

The Parameter List and Parameter Declarations
The parameter list specifies the name for each input parameter. There is no limit on the number of parameters.

All parameters must be declared immediately after the function declaration.

The parameter declaration must declare the type of each parameter using the keywords Variable,
String, WAVE or DFREF.

If a parameter is a complex number, it must be declared Variable/C.

If it is a complex wave, it must be declared WAVE/C.

If it is a text wave, it must be declared WAVE/T.

Variable and string parameters are usually passed to a subroutine by value but can also be passed by refer-
ence. For an explanation of these terms, see How Parameters Work on page IV-44.

Optional Parameters
Following the list of required function input parameters, you can also specify a list of optional input param-
eters by enclosing the parameter names in brackets. You can supply any number of optional parameter
values when calling the function by using the ParamName=Value syntax. Optional parameters may be of
any valid data type. There is no limit on the number of parameters.

All optional parameters must be declared immediately after the function declaration. As with all other vari-
ables, optional parameters are initialized to zero. You must use the ParamIsDefault function to determine
if a particular optional parameter was supplied in the function call.

See Using Optional Parameters on page IV-46 for an example.

Local Variable Declarations
The parameter declarations are followed by the local variable declarations if the procedure uses local vari-
ables. Local variables exist only during the execution of the procedure. They can be numeric or string and are
declared using the Variable or String keywords. They can optionally be initialized. Here is an example:
Function Example(p1)

Variable p1

// Here are the local variables
Variable v1, v2
Variable v3=0
Variable/C cv1=cmplx(0,0)
String s1="test", s2="test2"

<Body code>
End

If you do not supply explicit initialization, Igor automatically initializes local numeric variables with the
value zero. Local string variables are initialized with a null value such that, if you try to use the string before
you store a value in it, Igor will report an error.

Chapter IV-3 — User-Defined Functions

IV-31

The name of a local variable is allowed to conflict with other names in Igor although they must be unique
within the function. Clearly if you create a local variable named “sin” then you will be unable to use Igor’s
built-in sin function within the function.

You can declare local variables in the body code section of a function as well as in the local variable section.

As of Igor Pro 5, you can define structures and use them as local variables in functions. Structures are
defined outside of function definitions and are instantiated as local variables using the STRUCT keyword
as described in Structures in Functions on page IV-82.

Body Code
This table shows what can appear in body code of a function.

As of Igor Pro 5, external operations can be designed to be directly callable from user-defined functions.
External operations implemented by old XOPs can not be called directly.

The Execute operation provides a way to work around the limitation on what can be called from user func-
tions. See The Execute Operation on page IV-180.

The Return Statement
A return statement often appears at the end of a function, but it can appear anywhere in the function body.
You can also have more than one return statement.

The return statement immediately stops executing the function and returns a value to the calling function.
If the function is declared as a string function (Function/S), then the return statement must return a string.
Otherwise it must return a number.

If there is no return statement or if a function ends without hitting a return statement then the function
returns the value NaN (Not a Number) for numeric functions and null for string functions. If the calling
function attempts to use the null value, Igor will report an error.

Conditional Statements in Functions
Igor Pro supports two basic forms of conditional statements: if-else-endif and if-elseif-endif statements. Igor
also supports multiway branching with switch and strswitch statements.

If-Else-Endif
The form of the if-else-endif structure is
if (<expression>)

<TRUE part>
else

<FALSE part>
endif

What Allowed in Functions? Comment

Assignment statements Yes Includes wave, variable and string assignments.

Built-in operations Yes, with a few exceptions. See Operations in Functions on page IV-92 for
exceptions.

Calls to user functions Yes

Calls to macros No

External functions Yes

External operations Yes, with exceptions.

Chapter IV-3 — User-Defined Functions

IV-32

<expression> is a numeric expression that is considered TRUE if it evaluates to any nonzero number and
FALSE if it evaluates to zero. The TRUE part and the FALSE part may consist of any number of lines. If the
expression evaluates to TRUE, only the TRUE part is executed and the FALSE part is skipped. If the expression
evaluates to FALSE, only the FALSE part is executed and the true part is skipped. After the TRUE part or FALSE
part code is executed, execution will continue with any code immediately following the if-else-endif statement.

The keyword “else” and the FALSE part may be omitted to give a simple conditional:
if (<expression>)

<TRUE part>
endif

Because Igor is line-oriented, you may not put the if, else and endif keywords all on the same line. They
must each be in separate lines with no other code.

If-Elseif-Endif
The if-elseif-endif statement provides a means for creating nested if structures. It has the form:
if (<expression1>)

<TRUE part 1>
elseif (<expression2>)

<TRUE part 2>
[else

<FALSE part>]
endif

These statements follow similar rules as for if-else-endif statements. When any expression evaluates as
TRUE (nonzero) the code immediately following the expression will be executed. If all expressions evaluate
as FALSE (zero) and there is an else clause, then the statements following the else keyword will be executed.
Once any code in a TRUE part or the FALSE part is executed, execution will continue with any code imme-
diately following the if-elseif-endif statement.

Comparisons
The relational comparison operators are used in numeric conditional expressions.

These operators return 1 for TRUE and 0 for FALSE.

The comparison operators work with numeric operands only. To do comparisons with string operands, use
the cmpstr function.

Comparison operators are usually used in conditional structures but can also be used in arithmetic expres-
sions. For example:
wave0 = wave0 * (wave0 < 0)

This clips all positive values in wave0 to zero.

See also Example: Comparison Operators and Wave Synthesis on page II-99.

Symbol Meaning Symbol Meaning

== equal <= less than or equal

!= not-equal > greater than

< less than >= greater than or equal

Chapter IV-3 — User-Defined Functions

IV-33

Bitwise and Logical Operators
The bitwise and logical operators are also used in conditional expressions.

The precedence of operators is shown in the table under Operators on page IV-5. In the absence of parentheses,
an operator with higher precedence (higher in the table) is executed before an operator with lower precedence.

Because the precedence of the arithmetic operators is higher than the precedence of the comparison opera-
tors, you can write the following without parentheses:
if (a+b != c+d)

Print "a+b is not equal to c+d"
endif

Because the precedence of the comparison operators is higher than the precedence of the logical OR opera-
tor, you can write the following without parentheses:
if (a==b || c==d)

Print "Either a equals b or c equals d"
endif

For operators with the same precedence, there is no guaranteed order of execution and you must use paren-
theses to be sure of what will be executed. For example:
if ((a&b) != (c&d))

Print "a ANDED with b is not equal to c ANDED with d"
endif

See Operators on page IV-5 for more discussion of operators.

Using Bitwise Operators
The bitwise operators are used to test, set, and clear bits. This makes sense only when you are dealing with
integer operands.

This function illustrates various bit manipulation techniques.

Function DemoBitManipulation(vIn)
Variable vIn

vIn = trunc(vIn) // Makes sense with integers only
Printf "Original value: %d\r", vIn

Variable vOut

Symbol Meaning Symbol Meaning

~ Bitwise complement ! Logical NOT

& Bitwise AND && Logical AND

| Bitwise OR || Logical OR

Bit Action Operation

Test AND operator (&)

Set OR operator (|)

Clear Bitwise complement operator (~) followed by the bitwise AND operator (&)

Shift left Multiply by powers of 2

Shift right Divide by powers of 2

Chapter IV-3 — User-Defined Functions

IV-34

if ((vIn & 2^3) != 0) // Test if bit 3 is set
Print "Bit 3 is set"

else
Print "Bit 3 is cleared"

endif

vOut = vIn | (2^3) // Set bit 3
Printf "Set bit 3: %d\r", vOut

vOut = vIn & ~(2^3) // Clear bit 3
Printf "Clear bit 3: %d\r", vOut

vOut = vIn * (2^3) // Shift three bits left
Printf "Shift three bits left: %d\r", vOut

vOut = vIn / (2^3) // Shift three bits right
Printf "Shift three bits right: %d\r", vOut

End

For a simple demonstration, try this function passing 1 as the parameter.

In this example, 2^3 evaluates to 8 which is a value with only bit 3 set. In a real application, it is a good idea
to define a constant that indicates the significance of the bit. These two statements are equivalent:

Constant kSystemReadyMask 8 // 8 specified in decimal notation

Constant kSystemReadyMask 0x08 // 8 specified in hexadecimal notation

Switch Statements
The switch construct can sometimes be used to simplify complicated flow control. It chooses one of several
execution paths depending on a particular value.

Instead of a single form of switch statement, as is the case in C, Igor has two types: switch for numeric
expressions and strswitch for string expressions. The basic syntax of these switch statements is as fol-
lows:
switch(<numeric expression>) // numeric switch

case <literal number or numeric constant>:
<code>
[break]

case <literal number or numeric constant>:
<code>
[break]

. . .
[default:

<code>]
endswitch

strswitch(<string expression>) // string switch
case <literal string or string constant>:

<code>
[break]

case <literal string or string constant>:
<code>
[break]

. . .
[default:

<code>]
endswitch

Chapter IV-3 — User-Defined Functions

IV-35

The switch numeric or string expression is evaluated and execution proceeds with the code following the
matching case label. When none of the case labels match, execution will continue at the default label, if it is
present, or otherwise the switch will exit with no action taken.

All of the case labels must be numeric or string constant expressions and they must all have unique values
within the switch statement. The constant expressions can either be literal values or they must be declared
using the constant and strconstant keywords for numeric and string switches, respectively. For more about
constants, see Constants on page IV-40.

Execution proceeds within each case until a break statement is encountered or the endswitch is reached. The
break statement explicitly exits the switch construct. Usually, you will put a break statement at the end of
each case. If you omit the break statement, execution continues with the next case label. Do this when you
want to execute a single action for more than one switch value.

The following examples illustrate how switch constructs can be used in Igor:
Constant kThree=3
StrConstant ksHow="how"

Function NumericSwitch(a)
Variable a

switch(a) // numeric switch
case 1:

print "a is 1"
break

case 2:
print "a is 2"
break

case kThree:
case 4:

print "a is 3 or 4"
break

default:
print "a is none of those"
break

endswitch
End

Function StringSwitch(a)
String a

strswitch(a) // string switch
case "hello":

print "a is hello"
break

case ksHow:
print "a is how"
break

case "are":
case "you":

print "a is are or you"
break

default:
print "a is none of those"
break

endswitch
End

Chapter IV-3 — User-Defined Functions

IV-36

Loops
Igor implements two basic types of looping structures: do-while and for loops. The do-while loop iterates
through the loop code and tests an exit condition at the end of each iteration. The for loop is more complex;
the beginning of a for loop includes expressions for initializing and updating variables as well as testing the
loop’s exit condition at the start of each iteration.

Do-While Loop
The form of the do-while loop structure is:
do

<loop body>
while(<expression>)

This loop runs until the expression evaluates to zero or until a break statement is executed.

This example will always execute the body of the loop at least once, like the do-while loop in C.
Function Test(lim)

Variable lim // We use this parameter as the loop limit.

Variable sum=0
Variable i=0 // We use i as the loop variable.
do

sum += i // This is the body; equivalent to sum=sum+i.
i += 1 // Increment the loop variable.

while(i < lim)
return sum

End

Nested Do-While Loops
A nested loop is a loop within a loop. Here is an example:
Function NestedLoopTest(numOuterLoops, numInnerLoops)

Variable numOuterLoops, numInnerLoops

Variable i, j

i = 0
do

j = 0
do

<inner loop body>
j += 1

while (j < numInnerLoops)
i += 1

while (i < numOuterLoops)
End

While Loop
This fragment will execute the body of the loop zero or more times, like the while loop in C.
do

if (i > lim)
break // This breaks out of the loop.

endif
<loop body>
i += 1

while(1) // This would loop forever without the break.
... // Execution continues here after the break.

In this example, the loop increment is 1 but it can be any value.

Chapter IV-3 — User-Defined Functions

IV-37

For Loop
The basic syntax of a for loop is:
for(<initialize>;<continue test>;<update>)

<loop body>
endfor

Here is a simple example:
Function Example1()

Variable i

for(i=0;i<5;i+=1)
print i

endfor
End

The beginning of a for loop consists of three semicolon-separated expressions. The first is usually an assign-
ment statement that initializes one or more variables. The second is a conditional expression used to deter-
mine if the loop should be terminated — if true, nonzero, the loop is executed; if false, zero, the loop
terminates. The third expression usually updates one or more loop variables.

When a for loop executes, the initialization expression is evaluated only once at the beginning. Then, for each
iteration of the loop, the continuation test is evaluated at the start of every iteration, terminating the loop if
needed. The third expression is evaluated at the end of the iteration and usually increments the loop variable.

All three expressions in a for statement are optional and can be omitted independent of the others; only the
two semicolons are required. The expressions can consist of multiple assignments, which must be separated
by commas.

In addition to the test expression, for loops may also be terminated by break or return statements within the
body of the loop. A continue statement executed within the loop skips the remaining body code and execu-
tion continues with the loop’s update expression.

Here is a more complex example:
Function Example2()

Variable i,j

for(i=0,j=10; ;i+=1,j*=2)
if(i==2)

continue
endif
Print i,j
if(i==5)

break
endif

endfor
End

Break Statement
A break statement terminates execution of do-while loops, for loops, and switch statements. The break
statement continues execution with the statement after the enclosing loop’s while, endfor, or endswitch
statement. A nested do-while loop example demonstrates this:

…
Variable i=0, j

do // Starts outer loop.
if (i > numOuterLoops)

break // Break #1, exits from outer loop.
endif

Chapter IV-3 — User-Defined Functions

IV-38

j = 0
do // Start inner loop.

if (j > numInnerLoops)
break // Break #2, exits from inner loop only.

endif
j += 1

while (1) // Ends inner loop.
… // Execution continues here from break #2.
i += 1

while (1) // Ends outer loop.
… // Execution continues here from break #1.

Continue Statement
The continue statement can be used in do-while and for loops to short-circuit the loop and return execution
back to the top of the loop. When Igor encounters a continue statement during execution, none of the code
following the continue statement is executed during that iteration.

Flow Control for Aborts
Igor Pro includes a specialized flow control construct and keywords that you can use to test for and respond
to abort conditions. The AbortOnRTE and AbortOnValue keywords can be used to trigger aborts, and the
try-catch-endtry construct can be used to control program execution when aborts occur. These are
advanced techniques. If you are just starting with Igor programming, you may want to skip this section and
come back to it later.

AbortOnRTE Keyword
The AbortOnRTE keyword can be used to raise an abort whenever a runtime error occurs. Use AbortOn-
RTE immediately after (on the same line preceded by a semicolon) a command or on a line following a
sequence of commands for which you wish to catch a runtime error.

See AbortOnRTE on page V-17 for further details. For a usage example see try-catch-endtry Example on
page IV-39.

AbortOnValue Keyword
The AbortOnValue keyword can be used to abort function execution when a specified abort condition is
satisfied. When AbortOnValue triggers an abort, it can also return a numeric abort code that you can use to
characterize the cause.

AbortOnValue is a low overhead, short-hand replacement for an
if(abortTest)

Abort
endif

code block that you would normally use in a procedure to test for an abort condition.

See AbortOnValue on page V-18 for further details. For a usage example see try-catch-endtry Example on
page IV-39.

try-catch-endtry Flow Control
The try-catch-entry flow control construct has the following syntax:
try

<possible abort code>
catch

<code to handle abort>
endtry

Chapter IV-3 — User-Defined Functions

IV-39

The try-catch-entry flow control construct can be used to catch and respond to abort conditions in user func-
tions. Code within the try-catch area tests for abort conditions and when the first abort condition is satisfied,
execution will immediately jump to code within the catch-endtry area where execution proceeds with code
to handle the abort condition. Normal flow (no aborts) will skip past all code within the catch-endtry area.

When an abort occurs within the try-catch area, the construct returns a numeric code in the V_AbortCode
variable, which provides information about the cause of the abort.

See try-catch-endtry on page V-801 for further details.

try-catch-endtry Example
The following example demonstrates how abort flow control may be used. Copy the code to your Proce-
dure window and execute the foo function with 0 to 6 as input parameters.
Function foo(a)

Variable a

print "A"
try

print "B1"
AbortOnValue a==1 || a==2,33
print "B2"
bar(a)
print "B3"
try

print "C1"
if(a==4 || a==5)

Make $""; AbortOnRTE
endif
Print "C2"

catch
Print "D1"
// will be runtime error so pass along to outer catch
AbortOnValue a==5, V_AbortCode
Print "D2"

endtry
Print "B4"
if(a==6)

do
while(1)

endif
Print "B5"

catch
print "Abort code= ", V_AbortCode
if(V_AbortCode == -4)

Print "Runtime error= ", GetRTError(1)
endif
if(a==1)

abort "Aborting again"
endif
Print "E"

endtry
print "F"

End

Function bar(b)
Variable b

Print "Bar A"
AbortOnValue b==3,99

Chapter IV-3 — User-Defined Functions

IV-40

Print "Bar B"
End

Constants
You can define named numeric and string constants in Igor procedure files and use them in the body of
user-defined functions.

Constants are defined in procedure files using following syntax:
Constant <name1> = <literal number> [, <name2> = <literal number>]
StrConstant <name1> = <literal string> [, <name2> = <literal string>]

For example:
Constant kIgorStartYear=1989,kIgorEndYear=2020
StrConstant ksPlatformMac="Macintosh",ksPlatformWin="Windows"

Function Test1()
Variable v1 = kIgorStartYear
String s1 = ksPlatformMac
Print v1, s1

End

Constants declared like this are public and can be used in any function in any procedure file. A typical use
would be to define constants in a utility procedure file that could be used from other procedure files as
parameters to the utility routines. Be sure to use precise names to avoid conflicts with public constants
declared in other procedure files.
If you are defining constants for use in a single procedure file, for example to improve readability or make
the procedures more maintainable, you should use the static keyword (see Static on page V-673 for
details) to limit the scope to the given procedure file.
static Constant kStart=1989,kEnd=2020
static StrConstant ksMac="Macintosh",ksWin="Windows"

We suggest that you use the “k” prefix for numeric constants and the “ks” prefix for string constants. This
makes it immediately clear that a particular keyword is a constant.

Names for numeric and string constants are allowed to conflict with all other names. Duplicate constants
of a given type are not allowed (except static in different files and when used with the override keyword).
The only true conflict is with variable names and with certain built-in functions that do not take parameters
such as pi. Variable names (including local variable names, waves, NVARs, and SVARs) override constants,
but constants override functions such as pi.

Pragmas
A pragma is a statement in a procedure file that sets a compiler mode or passes other information from the
programmer to Igor. The form of a pragma statement is:
#pragma keyword [= parameter]

The pragma statement must be flush against the left margin of the procedure window, with no indentation.

Igor ignores unknown pragmas such as pragmas introduced in later versions of the program.
Currently, Igor supports the following pragmas:
#pragma rtGlobals = value
#pragma version = versionNumber
#pragma IgorVersion = versionNumber
#pragma hide = value
#pragma ModuleName = name
#pragma IndependentModule = name

Chapter IV-3 — User-Defined Functions

IV-41

The effect of a pragma statement lasts until the end of the procedure file that contains it.

The rtGlobals Pragma
The rtGlobals pragma controls aspects of the Igor compiler and runtime error checking in user-defined
functions.

Prior to Igor Pro 3, to access a global (wave or variable) from a user-defined function, the global had to
already exist. Igor Pro 3 introduced "runtime lookup of globals" under which the Igor compiler did not
require globals to exist at compile time but rather connected references, declared with WAVE, NVAR and
SVAR statements, to globals at runtime. Igor Pro 6.20 introduced stricter compilation of wave references
and runtime checking of wave index bounds.

You enable and disable these behaviors using an rtGlobals pragma. For example:

#pragma rtGlobals = 3 // Strict wave reference mode, runtime bounds checking

A given rtGlobals pragma governs just the procedure file in which it appears. The pragma must be flush
left in the procedure file and is typically put at the top of the file.

The rtGlobals pragma is defined as follows:

If your procedures will run only with Igor Pro 6.20 or later, rtGlobals=3 is recommended. Otherwise
rtGlobals=1 is recommended.

If your procedures must run with old Igor versions but you want to use rtGlobals=3 when possible, you can
do this:

#if IgorVersion() >= 6.20
#pragma rtGlobals = 3 // Strict wave reference mode, runtime bounds checking
#endif

Since rtGlobals=1 is the default, this will use rtGlobals=1 for Igor Pro 6.02A through 6.12 and will use
rtGlobals=3 for Igor Pro 6.20 or later. It will not work for versions prior to 6.02A because they don't support
conditional compilation (#if).

Under strict wave references (rtGlobals=3), you must create a wave reference for any use of a wave. Without
strict wave references (rtGlobals=1), you do not need to create a wave reference unless the wave is used in
an assignment statement. For example:

Function Test()
jack = 0 // Error under rtGlobals=1 and under rtGlobals=3
Display jack // OK under rtGlobals=1, error under rtGlobals=3

Wave jack // jack is now a wave reference rather than a bare name
Display jack // OK under rtGlobals=1 and under rtGlobals=3

End

Even with rtGlobals=3, this compiles without error:

#pragma rtGlobals=0 Specifies the old, pre-Igor Pro 3 behavior. This is obsolete and should not be
used.

#pragma rtGlobals=1 Turns on runtime lookup of globals. In Igor Pro 5 or later, this is the default
setting if there is no rtGlobals pragma in a given procedure file.

#pragma rtGlobals=2 Forces old experiments out of compatibility mode. This is superceded by
rtGlobals=3. It is described under Legacy Code Issues on page IV-94.

#pragma rtGlobals=3 Turns on runtime lookup of globals, strict wave references and runtime checking
of wave index bounds. Requires Igor Pro 6.2 or later.

Chapter IV-3 — User-Defined Functions

IV-42

Function Test()
// Make creates an automatic wave reference when used with a simple name
Make jack
Display jack // OK under rtGlobals=1 and rtGlobals=3

End

See Automatic Creation of WAVE References on page IV-57 for details.

Under runtime wave index checking (rtGlobals=3), Igor reports an error if a wave index is out-of-bounds:

Function Test()
Make/O/N=5 jack = 0 // Creates automatic wave reference

jack[4] = 123 // OK
jack[5] = 234 // Runtime error under rtGlobals=3.

// Clipped under rtGlobals=1.

Variable index = 5
jack[index] = 234 // Runtime error under rtGlobals=3.

// Clipped under rtGlobals=1.

// Create and use a dimension label for point 4 of jack
SetDimLabel 0,4,four,jack
jack[%four] = 234 // OK

// Use a non-existent dimension label.
jack[%three] = 345 // Runtime error under rtGlobals=3.

// Clipped under rtGlobals=1.
// Under rtGlobals=1, this statement writes to point 0 of jack.

End

NOTE: All Igor documentation assumes that rtGlobals=1 is in effect unless otherwise stated.

See also: Runtime Lookup of Globals on page IV-51
Automatic Creation of WAVE References on page IV-57
Automatic Creation of NVAR and SVAR References on page IV-56
Legacy Code Issues on page IV-94

The version Pragma
The version pragma sets the version of the procedure file. It is optional and is of interest mostly if you are
the developer of a package used by a widespread group of users.

For details on the version pragma, see Procedure File Version Information on page IV-149.

The IgorVersion Pragma
The IgorVersion pragma is also optional and of interest to developers of packages. It gives you a way to
prevent procedures from running, or at least generating compilation errors that cannot be fixed, under ver-
sions of Igor Pro older than the specified version number.

For example, the statement:
#pragma IgorVersion = 4.0

requires Igor Pro 4.0 or later for the procedure file. This will be helpful if you share your code with others
because you can ensure that your procedures will only run with versions of Igor Pro that fully support all
of the new or updated features you may have used. This Igor version check was added with Igor Pro 4.0,
and it will not work with previous versions.

Chapter IV-3 — User-Defined Functions

IV-43

The hide Pragma
The hide pragma allows you to make a procedure file invisible.

For details on the hide pragma, see Invisible Procedure Files on page III-349.

The ModuleName Pragma
The ModuleName pragma gives you the ability to use static functions and Proc Pictures in a global context, such
as in the action procedure of a control or on the Command Line. Using this pragma entails a two step process:
define a name for the procedure file, and then use a special syntax to access objects in the named procedure file.

To define a module name for a procedure file use the format:
#pragma ModuleName= name

This statement associates the specified module name with the procedure file in which the statement
appears.

You can then use objects from the named procedure file by preceding the object name with the name of the
module and the # character. For example:

#pragma ModuleName= myGreatProcedure

Static Function foo(a)
Variable a

return a+100
End

Then on the command line you can execute:
Print myGreatProcedure#foo(3)

You should make sure the name is unlikely to clash with other names you or others might use. WaveMetrics
will use names with a WM_ prefix, so you should avoid such names. The ModuleName pragma will not
work with versions previous to Igor Pro 5.0.

For further discussion see Regular Modules on page IV-216.

The IndependentModule Pragma
The IndependentModule pragma is a way for you to designate groups of one or more procedure files that
are compiled and linked separately. Once compiled and linked, the code remains in place and is usable even
though other procedures may fail to compile. This allows functioning control panels and menus to continue
to work regardless of user programming errors.

A file is designated as an independent module using
#pragma IndependentModule=imName

This is similar to #pragma ModuleName=modName (see The ModuleName Pragma on page IV-43) and, just
as in the case of calling static functions in a procedure with #pragma ModuleName, calling nonstatic function
in an IndependentModule from outside the module requires the use of imName#functionName() syntax.

For further discussion see Independent Modules on page IV-218.

Unknown Pragmas
Starting with Igor Pro version 3.04, Igor ignores pragmas that it does not know about. This allows newer
versions of Igor to use new pragmas while older versions ignore them. The downside of this change is that,
if you misspell a pragma keyword, Igor will not warn you about it.

Chapter IV-3 — User-Defined Functions

IV-44

Proc Pictures
Proc Pictures are binary PNG or JPEG images encoded as printable ASCII procedures in procedure files.
They are intended for programmers who need images as part of the user interface for a procedure package.
They can be used with the DrawPICT operation (see page V-143) and with the Picture keyword (see page
V-546) in certain controls.

The syntax for defining and using a Proc Picture is illustrated in the following example:
// PNG: width= 56, height= 44
Picture myPictName

ASCII85Begin
M,6r;%14!\!!!!.8Ou6I!!!!Y!!!!M#Qau+!5G;q_uKc;&TgHDFAm*iFE_/6AH5;7DfQssEc39jTBQ
=U!7FG,5u`*!m?g0PK.mR"U!k63rtBW)]$T)Q*!=Sa1TCDV*V+l:Lh^NW!fu1>;(.<VU1bs4L8&@Q_
<4e(%"^F50:Jg6);j!CQdUA[dh6]%[OkHSC,ht+Q7ZO#.6U,IgfSZ!R1g':oO_iLF.GQ@RF[/*G98D
bjE.g?NCte(pX-($m^_FhhfL`D9uO6Qi5c[r4849Fc7+*)*O[tY(6<rkm^)/KLIc]VdDEbF-n5&Am
2^hbTu:U#8ies_W<LGkp_LEU1bs4L8&?fqRJ[h#sVSSz8OZBBY!QNJ
ASCII85End

End

Function test()
NewPanel
DrawPict 0,0,1,1,ProcGlobal#myPictName

End

The ASCII text in the myPictName procedure between the ASCII85Begin and ASCII85End is similar to
output from the Unix btoa command or, on Macintosh, StuffIt’s binary to ASCII operation. (You must
remove any extra header and trailer information if you use either of these utilities to create a Proc Picture.)

You can create Proc Pictures in Igor Pro from normal, global pictures using the Picture dialog (see Pictures on
page III-423). Select a picture in the dialog and click the Copy Proc Picture button to place the text on the Clip-
board and then paste it in your procedure file. If the existing picture is not a JPEG or PNG, it is converted to PNG.

Proc Pictures can be either global or local in scope. Global pictures can be used in all experiment procedure
files; local pictures can be used only within the procedure file where they are defined. Proc Pictures are
global by default and the picture name must be unique for all procedure files in an experiment. Proc Pic-
tures can be made local in scope by declaring them Static (see Static on page V-673).

When accessing a Proc Picture from DrawPict, the picture name must be preceded by either the ProcGlobal
keyword or the procedure module name, and the two names joined together with #. This naming convention
is necessary to avoid potential conflicts with any existing experiment global pictures defined via the Pictures
dialog.

For a global Proc Picture, you must use the ProcGlobal keyword as the prefix:
ProcGlobal#gProcPictName

For a static Proc Picture, you must use the module name defined in the procedure file by the #pragma
ModuleName = modName statement (see ModuleName on page V-482) as the prefix:
modName#ProcPictName

How Parameters Work
There are two ways of passing parameters from a routine to a subroutine: pass-by-value and pass-by-ref-
erence. “Pass-by-value” means that the routine passes the value of an expression to the subroutine. “Pass-
by-reference” means that the routine passes access to a variable to the subroutine. The important difference
is that, in pass-by-reference, the subroutine can change the original variable in the calling routine.

The C and Pascal languages allow programmers to use either of these techniques, at their option while
FORTRAN uses pass-by-reference only. Like C, Igor also allows either method for numeric and string variables.

Chapter IV-3 — User-Defined Functions

IV-45

Example of Pass-By-Value
Function Routine()

Variable v = 4321
String s = "Hello"

Subroutine(v, s)
End

Function Subroutine(v, s)
Variable v
String s

Print v, s

// These lines have NO EFFECT on the calling routine.
v = 1234
s = "Goodbye"

End

Note that v and s are local variables in Routine. In Subroutine, they are parameters which act very much like
local variables. The names “v” and “s” are local to the respective functions. The v in Subroutine is not the
same variable as the v in Routine although it initially has the same value.

The last two lines of Subroutine set the value of the local variables v and s. They have no effect on the value
of the variables v and s in the calling Routine. What is passed to Subroutine is the numeric value 4321 and
the string value “Hello”.

Pass-By-Reference
You can specify that a parameter to a function is to be passed by reference rather than by value. In this way,
the function called can change the value of the parameter and update it in the calling function. This is much
like using pointers to arguments in C. This technique is needed and appropriate only when you need to
return more than one value from a function.

Functions with pass-by-reference parameters can only be called from other functions — not from the
command line.

Only numeric and string variables can be passed by reference.

The variable or string being passed must be a local variable and can not be a global variable. To designate
a variable or string parameter for pass-by-reference, simply prepend an ampersand symbol (&) before the
name in the parameter declaration:
Function Subroutine(num1,num2,str1)

Variable &num1, num2
String &str1

num1= 12+num2
str1= "The number is"

End

and then call the function with the name of a local variable in the reference slot:
Function Routine()

Variable num= 1000
String str= "hello"
Subroutine(num,2,str)
print str, num

End

When executed, Routine prints “The number is 14” rather than “hello 1000”, which would be the case if
pass-by-reference were not used.

Chapter IV-3 — User-Defined Functions

IV-46

A pass-by-reference parameter can be passed to another function that expects a reference:
Function SubSubroutine(b)

Variable &b
b= 123

End

Function Subroutine(a)
Variable &a
SubSubroutine(a)

End

Function Routine()
Variable num
Subroutine(num)
print num

End

You can not pass wave references, NVARs, SVARS, DFREFs or FUNCREFs by reference to a function. You
can use a structure containing fields of these types to achieve the same end.

How Waves Are Passed
Here is an example of a function “passing a wave” to a subroutine.
Function Routine()

Make/O wave0 = x
Subroutine(wave0)

End

Function Subroutine(w)
WAVE w

w = 1234 // This line DOES AFFECT the wave referred to by w.
End

We are really not passing a wave to Subroutine, but rather we are passing a reference to a wave. The param-
eter w is the wave reference.

Waves are global objects that exist independent of functions. The subroutine can use the wave reference to
modify the contents of the wave. Using the terminology of “pass-by-value” and “pass-by-reference”, the
wave reference is passed by value, but this has the effect of “passing the wave” by reference.

Using Optional Parameters
Following is an example of a function with two optional input parameters:
Function opParamTest(a,b, [c,d])

Variable a,b,c,d // c and d are optional parameters

// Determine if the optional parameters were supplied
if(ParamIsDefault(c) && ParamIsDefault(d))

Print "Missing optional parameters c and d."
endif

Print a,b,c,d
End

Executing on the Command Line with none of the optional inputs:
•opParamTest(8,6)
 Missing optional parameters c and d.
 8 6 0 0

Executing with an optional parameter as an input:

Chapter IV-3 — User-Defined Functions

IV-47

•opParamTest(8,6, c=66)
 8 6 66 0

Note that the optional parameter is explicitly defined in the function call using the ParamName=Value
syntax. All optional parameters must come after any required function parameters.

Local Versus Global Variables
Numeric and string variables can be local or global. “Local” means that the variable can be accessed only
from within the procedure in which it was created. “Global” means that the variable can be accessed from
the command line or from within any procedure. The following table shows the characteristics of local and
global variables:

Local variables are private to the function in which they are declared and vanish when the function exits.
Global variables are public and persistent — they exist until you explicitly delete them.

If you write a function whose main purpose is to display a dialog to solicit input from the user, you may
want to store the user’s choices in global variables and use them to initialize the dialog the next time the
user invokes it. This is an example of saving values from one invocation of a function to the next.

If you write a set of functions that loads, displays and analyzes experimentally acquired data, you may
want to use global variables to store values that describe the conditions under which the data was acquired
and to store the results from the analyses. These are examples of data accessed by many procedures.

Local Variables Used by Igor Operations
When invoked from a function, a number of Igor’s operations return results via local variables. For exam-
ple, the WaveStats operation creates a number of local variables with names such as V_avg, V_sigma, etc.
The following function illustrates this point.
Function PrintWaveAverage(w)

WAVE w

WaveStats/Q w
Print V_avg

End

When the Igor compiler compiles the WaveStats operation, it creates various local variables, V_avg among
them. When the WaveStats operation runs, it stores results in these local variables.

In addition to creating local variables, a few operations, such as CurveFit and FuncFit, check for the exis-
tence of specific local variables to provide optional behavior. For example:
Function ExpFitWithMaxIterations(w, maxIterations)

WAVE w
Variable maxIterations

Local Variables Global Variables

Are part of a procedure. Are part of an Igor experiment.

Created using Variable or String
within a procedure.

Created using Variable or String or Variable/G or String/G from
the command line or within a procedure.

Used to store temporary results while
the procedure is executing.

Used to store values that are saved from one procedure invocation
to the next or to store data that is accessed by many procedures.

Cease to exist when the procedure ends. Exist until you use KillVariables, KillStrings, or KillDataFolder.

Can be accessed only from within the
procedure in which they were created.

Can be accessed from the command line or from within any
procedure.

Chapter IV-3 — User-Defined Functions

IV-48

Variable V_FitMaxIters = maxIterations

CurveFit exp w
End

The CurveFit operation looks for a local variable named V_FitMaxIters, which sets the maximum number
of iterations before the operation gives up.

The documentation for each operation lists the special variables that it creates or looks for.

Converting a String into a Reference Using $
The $ operator converts a string expression into an object reference. The referenced object is usually a wave
but can also be a global numeric or global string variable, a window, a symbolic path or a function. This is
a common and important technique.

We often use a string to pass the name of a wave to a procedure or to algorithmically generate the name of a wave.
Then we use the $ operator to convert the string into a wave reference so that we can operate on the wave.

The following trivial example shows why we need to use the $ operator:
Function DisplayXY(xWaveNameStr, yWaveNameStr)

String xWaveNameStr, yWaveNameStr

Display $yWaveNameStr vs $xWaveNameStr
End

Here we use $ to convert the string parameters into wave references. The function will display the wave
whose name is stored in the yWaveNameStr string versus the wave whose name is stored in the xWave-
NameStr string.

If we omitted the $ operators, we would have
Display yWaveNameStr vs xWaveNameStr

This would result in an error because the Display operation would look for a wave named yWaveName
and would not find it.

As shown in the following example, $ can create references to global numeric and string variables as well
as to waves.
Function Test(vStr, sStr, wStr)

String vStr, sStr, wStr

NVAR v = $vStr // v is local name for global numeric var
v += 1
SVAR s = $sStr // s is local name for global string var
s += "Hello"
WAVE w = $wStr // w is local name for global wave
w += 1

End

Variable/G gVar = 0; String/G gStr = ""; Make/O/N=5 gWave = p
Test("gVar", "gStr", "gWave")

The NVAR, SVAR and WAVE references are necessary in functions so that the compiler can identify the
kind of object. This is explained under Accessing Global Variables and Waves on page IV-50.

Chapter IV-3 — User-Defined Functions

IV-49

Using $ to Refer to a Window
A number of Igor operations modify or create windows, and optionally take the name of a window. You
need to use a string variable if the window name is not determined until run time but must convert the
string into a name using $.

For instance, this function creates a graph using a name specified by the calling function:

Function DisplayXY(xWaveNameStr, yWaveNameStr, graphNameStr)
String xWaveNameStr, yWaveNameStr
String graphNameStr // Contains name to use for the new graph

Display /N=$graphNameStr $yWaveNameStr vs $xWaveNameStr
Cursor /W=$graphNameStr A, $yWaveNameStr, 0

End

The $ operator in /N=$graphNameStr converts the contents of the string graphNameStr into a graph name
as required by the Display operation /N flag. If you forget $, the command would be:

Display /N=graphNameStr $yWaveNameStr vs $xWaveNameStr

This would create a graph literally named graphNameStr.

After creating the graph, this example uses $graphNameStr again to specify the target of the Cursor oper-
ation.

Using $ In a Data Folder Path
$ can also be used to convert a string to a name in a data folder path. This is used when one of many data
folders must be selected algorithmically.

Assume you have a string variable named dfName that tells you in which data folder a wave should be cre-
ated. You can write:

Make/O root:$(dfName):wave0

The parentheses are necessary because the $ operator has low precedence, so Igor would interpret this:

Make/O root:$dfName:wave0 // ERROR

to mean:

Make/O root:$(dfName:wave0) // ERROR

To avoid this, you must use parentheses like this:

Make/O root:$(dfName):wave0 // OK

Compile Time Versus Runtime
Because Igor user-defined functions are compiled, you need to be aware of the difference between “compile
time” and “runtime”.

Compile time is when Igor analyzes the text of all functions and produces low-level instructions that can be
executed quickly later. This happens when you modify a procedure window and then:
• Choose Compile from the Macros menu.
• Click the Compile button at the bottom of a procedure window.
• Activate a nonprocedure window.

Runtime is when Igor actually executes a function’s low-level instructions. This happens when:
• You invoke the function from the command line.

Chapter IV-3 — User-Defined Functions

IV-50

• The function is invoked from another procedure.
• Igor updates a dependency which calls the function.
• You use a button or other control that calls the function.

Conditions that exist at compile time are different from those at runtime. For example, a function can ref-
erence a global variable. The global does not need to exist at compile time, but it does need to exist at run-
time. This issue is discussed in detail in the following sections.

Here is another example of the distinction between compile time and runtime:
Function Example(w)

WAVE w

w= sin(x)
FFT w
w= r2polar(w)

End

The declaration “WAVE w” specifies that w is expected to be a real wave. This is correct until the FFT exe-
cutes and thus the first wave assignment produces the correct result. After the FFT is executed at runtime,
however, the wave becomes complex. The Igor compiler does not know this and so it will compile the
second wave assignment on the assumption that w is real. A compile-time error will be generated com-
plaining that r2polar is not available for this number type — i.e., real. To provide Igor with the information
that the wave is complex after the FFT you need to rewrite the function like this:
Function Example(w)

WAVE w

w= sin(x)
FFT w
WAVE/C wc= w
wc= r2polar(wc)

End

A statement like “WAVE/C wc= w” has the compile-time behavior of creating a symbol, wc, and specifying
that it refers to a complex wave. It has the runtime behavior of making wc refer to a specific wave. The
runtime behavior can not occur at compile time because the wave may not exist at compile time.

Accessing Global Variables and Waves
Global numeric variables, global string variables and waves can be referenced from any function. A func-
tion can refer to a global that does not exist at compile-time. For the Igor compiler to know what type of
global you are trying to reference, you need to declare references to globals.

Consider the following function:
Function BadExample()

gStr1 = "The answer is:"
gNum1 = 1.234
wave0 = 0

End

The compiler can not compile this because it doesn’t know what gStr1, gNum1 and wave0 are. We need to
specify that they are a global string variable, a global numeric variable and a wave, respectively:
Function GoodExample1()

SVAR gStr1 = root:gStr1
NVAR gNum1 = root:gNum1
WAVE wave0 = root:wave0

gStr1 = "The answer is:"
gNum1 = 1.234

Chapter IV-3 — User-Defined Functions

IV-51

wave0 = 0
End

The SVAR statement specifies two important things for the compiler: first, that gStr1 is a global string vari-
able; second, that gStr1 refers to a global string variable named gStr1 in the root data folder. Similarly, the
NVAR statement identifies gNum1 and the WAVE statement identifies wave0. With this knowledge, the
compiler can compile the function.

The technique illustrated here is called “runtime lookup of globals” because the compiler compiles code
that associates the symbols gStr1, gNum1 and wave0 with specific global variables at runtime.

Runtime Lookup of Globals
The syntax for runtime lookup of globals is:

NVAR <local name1>[= <path to var1>][, <loc name2>[= <path to var2>]]…
SVAR <local name1>[= <path to str1>][, <loc name2>[= <path to str2>]]…
WAVE <local name1>[= <path to wave1>][, <loc name2>[= <path to wave2>]]…

NVAR and SVAR create a reference to a global numeric or string variable and WAVE creates a reference to
a wave. At compile time, these statements identify the referenced objects. At runtime, the connection is
made between the local name and the actual object. Consequently, the object must exist when these state-
ments are executed.

<local name> is the name by which the global variable, string or wave is to be known within the user func-
tion. It does not need to be the same as the name of the global variable. The example function could be
rewritten as follows:
Function GoodExample2()

SVAR str1 = root:gStr1 // str1 is the local name.
NVAR num1 = root:gNum1 // num1 is the local name.
WAVE w = root:wave0 // w is the local name.

str1 = "The answer is:"
num1 = 1.234
w = 0

End

If you use a local name that is the same as the global name, and if you want to refer to a global in the current
data folder, you can omit the <path to …> part of the declaration:
Function GoodExample3()

SVAR gStr1 // Refers to gStr1 in current data folder.
NVAR gNum1 // Refers to gNum1 in current data folder.
WAVE wave0 // Refers to wave0 in current data folder.

gStr1 = "The answer is:"
gNum1 = 1.234
wave0 = 0

End

GoodExample3 accesses globals in the current data folder while GoodExample2 accesses globals in a spe-
cific data folder.

If you use <path to …>, it may be a simple name (gStr1) or it may include a full or partial path to the name.

The following are valid examples, referencing a global numeric variable named gAvg:
NVAR gAvg= gAvg
NVAR avg= gAvg
NVAR gAvg
NVAR avg= root:Packages:MyPackage:gAvg
NVAR avg= :SubDataFolder:gAvg
NVAR avg= $"gAvg"

Chapter IV-3 — User-Defined Functions

IV-52

NVAR avg= $("g"+ "Avg")
NVAR avg= ::$"gAvg"

As illustrated above, the local name can be the same as the name of the global object and the lookup expres-
sion can be either a literal name or can be computed at runtime using $<string expression>.

In some cases, it may be convenient to create global variables in a temporary data folder as a way of passing
results back to the calling routine. For example:
Function MyWaveStats(inputWave)

WAVE inputWave

NewDataFolder/O/S tmpMyWaveStatsDF

WaveStats/Q inputWave

Variable/G gNumPoints = V_npnts
Variable/G gAvg = V_avg
Variable/G gSdev = V_sdev

End

Function Test()
Make/O testwave= gnoise(1)

MyWaveStats(testwave) // Create temp output data folder.

NVAR gNumPoints,gAvg,gSdev // Create references to globals.

Printf "Points: %g; Avg: %g; SDev: %g\r", gNumPoints,gAvg,gSdev

KillDataFolder : // Kill temp output data folder.
End

Note that the NVAR statement must appear after the MyWaveStats call because NVAR associates the local
names with existing global variables at runtime.

Put WAVE Declaration After Wave Is Created
A wave declaration serves two purposes. At compile time, it tells Igor the local name and type of the wave.
At runtime, it connects the local name to the wave. In order for the runtime purpose to work, you must put
wave declaration after the wave is created.

Function BadExample()
String path = "root:Packages:MyPackage:wave0"
Wave w = $path // WRONG: Wave does not yet exist.
Make $path
w = p // w is not connected to any wave.

End

Function GoodExample()
String path = "root:Packages:MyPackage:wave0"
Make $path
Wave w = $path // RIGHT
w = p

End

Both of these functions will successfully compile. BadExample will fail at runtime because w is not associ-
ated with a wave, because the wave does not exist when the "Wave w = $path" statement executes.

This rule also applies to NVAR and SVAR declarations.

Chapter IV-3 — User-Defined Functions

IV-53

Runtime Lookup Failure
At runtime, it is possible that a NVAR, SVAR or WAVE statement may fail. For example, NVAR v1= var1
will fail if var1 does not exist in the current data folder when the statement is executed. You can use the
NVAR_Exists, SVAR_Exists, and WaveExists functions to test if a given global reference is valid.

One cause for failure is putting a WAVE statement in the wrong place. For example:
Function BadExample()

WAVE w = resultWave
<Call a function that creates a wave named resultWave>
Display w

End

This function will compile successfully but will fail at runtime. The reason is that the “WAVE w = resultWave”
statement has the runtime behavior of associating the local name w with a particular wave. But that wave does
not exist until the following statement is executed. The function should be rewritten as:
Function GoodExample()

<Call a function that creates a wave named resultWave>
WAVE w = resultWave
Display w

End

Runtime Lookup Failure and the Debugger
You can break whenever a runtime lookup fails using the symbolic debugger (described in Chapter IV-8,
Debugging). It is a good idea to do this, because it lets you know about runtime lookup failures at the
moment they occur.

Sometimes you may create a WAVE, NVAR or SVAR reference knowing that the referenced global may not
exist at runtime. Here is a trivial example:

Function Test()
WAVE w = testWave
if (WaveExists(testWave))

Printf "testWave had %d points.\r", numpnts(testWave)
endif

End

If you enable the debugger’s WAVE checking and if you execute the function when testWave does not exist,
the debugger will break and flag that the WAVE reference failed. But you wrote the function to handle this
situation, so the debugger break is not helpful in this case.

The solution is to rewrite the function using WAVE/Z instead of just WAVE. The /Z flag specifies that you
know that the runtime lookup may fail and that you don’t want to break if it does. You can use NVAR/Z
and SVAR/Z in a similar fashion.

Accessing Complex Global Variables and Waves
You must specify if a global numeric variable or a wave is complex using the /C flag:

NVAR/C gc1= gc1
WAVE/C gcw1= gcw1

Accessing Text Waves
Text waves must be accessed using the /T flag:

WAVE/T tw= MyTextWave

Accessing Global Variables and Waves Using Liberal Names
There are two ways to reference an Igor object: using a literal name or path or using a string variable. For
example:

Chapter IV-3 — User-Defined Functions

IV-54

Wave w = root:MyDataFolder:MyWave // Using literal path
String path = "root:MyDataFolder:MyWave"
Wave w = $path // Using string variable

Things get more complicated when you use a liberal name rather than a standard name. A standard name
starts with a letter and includes letters, digits and the underscore character. A liberal name includes other
characters such as spaces or punctuation.

In general, you must quote liberal names using a single quote so that Igor can determine where the name
starts and where it ends. For example:

Wave w = root:'My Data Folder':'My Wave' // Using literal path
String path = "root:'My Data Folder':'My Wave'"
Wave w = $path // Using string variable

However, there is an exception to the quoting requirement. The rule is:

You must quote a literal liberal name and you must quote a liberal path stored in a
string variable but you must not quote a simple literal liberal name stored in a string
variable.

The following functions illustrate this rule:

// Literal liberal name must be quoted
Function DemoLiteralLiberalNames()

NewDataFolder/O root:'My Data Folder'

Make/O root:'My Data Folder':'My Wave' // Literal name must be quoted

SetDataFolder root:'My Data Folder' // Literal name must be quoted

Wave w = 'My Wave' // Literal name must be quoted
w = 123

SetDataFolder root:
End

// String liberal PATH must be quoted
Function DemoStringLiberalPaths()

String path = "root:'My Data Folder'"
NewDataFolder/O $path

path = "root:'My Data Folder':'My Wave'" // String path must be quoted
Make/O $path

Wave w = $path
w = 123

SetDataFolder root:
End

// String liberal NAME must NOT be quoted
Function DemoStringLiberalNames()

SetDataFolder root:

String dfName = "My Data Folder" // String name must NOT be quoted
NewDataFolder/O $dfName

String wName = "My Wave" // String name must NOT be quoted
Make/O root:$(dfName):$wName

Wave w = root:$(dfName):$wName // String name must NOT be quoted

Chapter IV-3 — User-Defined Functions

IV-55

w = 123

SetDataFolder root:
End

The last example illustrates another subtlety. This command would generate an error at compile time:

Make/O root:$dfName:$wName // ERROR

because Igor would intepret it as:

Make/O root:$(dfName:$wName) // ERROR

To avoid this, you must use parentheses like this:

Make/O root:$(dfName):$wName // OK

Runtime Lookup Example
In this example, a function named Routine calls another function named Subroutine and needs to access a
number of result values created by Subroutine. To make it easy to clean up the temporary result globals,
Subroutine creates them in a new data folder. Routine uses the results created by Subroutine and then
deletes the temporary data folder.
Function Subroutine(w)

WAVE w

NewDataFolder/O/S SubroutineResults // Results go here

WaveStats/Q w // WaveStats creates local variables
Variable/G gAvg= V_avg // Return the V_avg result in global gAvg
Variable/G gMin= V_min
String/G gWName= NameOfWave(w)

SetDataFolder :: // Back to original data folder
End

Function Routine()
Make aWave= {1,2,3,4}
Subroutine(aWave)
NVAR theAvg= :SubroutineResults:gAvg // theAvg is local name
NVAR theMin= :SubroutineResults:gMin
SVAR theName= :SubroutineResults:gWName
Print theAvg,theMin,theName
KillDataFolder SubroutineResults // We are done with results

End

Note that the NVAR statement must appear after the procedure (Subroutine in this case) that creates the
global variable. This is because NVAR has both a compile-time and a runtime behavior. At compile time, it
creates a name that Igor can compile (theAvg in this case). At runtime, it actually looks up and creates a link
to the global (variable gAvg stored in data folder SubroutineResults in this case).

Often a Function will need to access quite a large number of global variables stored in a data folder. In such
cases, you can write more compact code using the ability of NVAR, SVAR or WAVE to access multiple
objects in the current data folder as illustrated here:
Function Routine2()

Make/O aWave= {1,2,3,4}
Subroutine(aWave)

String dfSav=GetDataFolder(1)
SetDataFolder :SubroutineResults
NVAR gAvg,gMin // Access two variables via one NVAR
SVAR gWName

Chapter IV-3 — User-Defined Functions

IV-56

SetDataFolder dfSav

Print gAvg,gMin,gWName
KillDataFolder SubroutineResults // We are done with results

End

Automatic Creation of NVAR and SVAR References
The Igor compiler sometimes automatically creates NVAR and SVAR references. For example:
Function Example1()

Variable/G gVar1
gVar1= 1

String/G gStr1
gStr1= "hello"

End

In this example we did not use NVAR or SVAR references and yet we were still able to compile assignment
statements referring to global variables which will not exist until runtime. This is a feature of Variable/G
and String/G that automatically create local references for simple object names.

Simple object names are names which are known at compile time for objects which will be created in the
current data folder at runtime. Variable/G and String/G do not create references if you use $<name>, a
partial data folder path or a full data folder path to specify the object.

Wave References
A wave reference is a lightweight object used in user-defined functions to specify the wave of interest in
assignment statements and other commands. You can think of a wave reference as an identification number
that Igor uses to identify a particular wave.

Wave reference variables hold wave references. They can be created as local variables, passed as parameters
and returned as function results.

Here is a simple example:

Function Test(wIn)
Wave wIn // Reference to the input wave received as parameter

String newName = NameOfWave(wIn) + "_out" // Compute output wave name

Duplicate/O wIn, $newName // Create output wave

Wave wOut = $newName // Create wave reference for output wave
wOut += 1 // Use wave reference in assignment statement

End

This function might be called from the command line or from another function like this:

Make/O/N=5 wave0 = p
Test(wave0) // Pass wave reference to Test function

A Wave statement has both a compile-time and a runtime effect.

At compile time, it tells Igor what type of object the declared name references. In the example above, it tells
Igor that wOut references a wave as opposed to a numeric variable, a string variable, a window or some
other type of object. The Igor compiler allows wOut to be used in a waveform assignment statement (wOut
+= 1) because it knows that wOut references a wave.

The compiler also needs to know if the wave is real, complex or text. Use Wave/C to create a complex wave
reference and Wave/T to create a text wave reference. Wave by itself creates a real wave reference.

Chapter IV-3 — User-Defined Functions

IV-57

At runtime the Wave statement stores a reference to a specific wave in the wave reference variable (wOut
in this example). The referenced wave must already exist when the wave statement executes. Otherwise
Igor will store a NULL reference in the wave reference variable and you will get an error when you attempt
to use it. We put the "Wave wOut = $newName" statement after the Duplicate operation to insure that the
wave exists when the Wave statement is executed. Putting the Wave statement before the command that
creates the wave is a common error.

Automatic Creation of WAVE References
The Igor compiler sometimes automatically creates WAVE references. For example:
Function Example1()

Make wave1
wave1= x^2

End

In this example we did not use a WAVE reference and yet we were still able to compile an assignment state-
ment referring to a wave which will not exist until runtime. This is a feature of the Make operation (see page
V-411) which automatically creates local references for simple object names. The Duplicate operation (see
page V-149) and many other operations that create output waves also automatically create local wave ref-
erences for simple object names.

Simple object names are names which are known at compile time for objects which will be created in the
current data folder at runtime. Make and Duplicate do not create references if you use $<name>, a partial
data folder path or a full data folder path to specify the object. However, as of Igor Pro 6.1, you can append
/WAVE=<name> after a $ or path specification to explicitly create a WAVE reference.

In the case of Make and Duplicate with simple object names, the type of the automatically created wave ref-
erence (real, complex or text) is determined by flags. Make/C and Duplicate/C create complex wave refer-
ences. Make/T and Duplicate/T create text wave references. Make and Duplicate without type flags create
real wave references. See WAVE Reference Types on page IV-58 and WAVE Reference Type Flags on page
IV-59 for a complete list of type flags and further details.

Most built-in operations that create output waves (often called "destination" waves) also automatically
create wave references. For example, if you write:

DWT srcWave, destWave

it is as if you wrote:
DWT srcWave, destWave
WAVE destWave

After the discrete wavelet transform executes, you can reference destWave without an explicit wave reference.

Standalone WAVE Reference Statements
In cases where Igor does not automatically create a wave reference, because the output wave is not specified
using a simple object name, you need to explicitly create a wave reference if you want to access the wave in
an assignment statement.

You can create an explicit standalone wave reference using a statement following the command that created
the output wave. In this example, the name of the output wave is specified as a parameter and therefore we
can not use a simple object name when calling Make:

Function Example2(nameForOutputWave)
String nameForOutputWave // String contains the name of the wave to make

Make $nameForOutputWave // Make a wave
Wave w = $nameForOutputWave // Make a wave reference
w= x^2

End

Chapter IV-3 — User-Defined Functions

IV-58

If you make a text wave or a complex wave, you need to tell the Igor compiler about that by using Wave/T
or Wave/C. The compiler needs to know the type of the wave in order to properly compile the assignment
statement.

Inline WAVE Reference Statements
In Igor Pro 6.1 or later, you can create a wave reference variable using /WAVE=<name> in the command
that creates the output wave. For example:

Function Example3(nameForOutputWave)
String nameForOutputWave

Make $nameForOutputWave/Wave=w // Make a wave and a wave reference
w= x^2

End

Here /Wave=w is an inline wave reference statement. It does the same thing as the standalone wave refer-
ence in the preceding section.

Here are some more examples of inline wave declarations:

Function Example4()
String name = "wave1"
Duplicate/O wave0, $name/WAVE=wave1
Differentiate wave0 /D=$name/WAVE=wave1

End

When using an inline wave reference statement, you do not need to, and in fact can not, specify the type of
the wave using Wave/T or Wave/C. Just use Wave by itself regardless of the type of the output wave. The
Igor compiler automatically creates the right kind of wave reference. For example:

Function Example5()
Make real1, $"real2"/WAVE=r2 // real1, real2 and r2 are real
Make/C cplx1, $"cplx2"/WAVE=c2 // cplx1, cplx2 and c2 are complex
Make/T text1, $"text2"/WAVE=t2 // text1, text2 and t2 are text

End

Inline wave reference statements are accepted by those operations which automatically create a wave ref-
erence for a simple object name.

Inline wave references are not allowed after a simple object name.

Inline wave references are allowed on the command line but do nothing.

WAVE Reference Types
When WAVE references are created at compile time, they are created with a specific numeric type or are
defined as text. The compiler then uses this type when creating expressions based on the WAVE reference
or when trying to match two instances of the same name. For example:
Make rWave

Make/C cWave

Make/T tWave

creates single precision real, single precision complex, and text WAVE reference variables. These types then
define what kind of right-hand side expression to compile:
rWave= expression // will be real

cWave= expression // will be complex

tWave= expression // will be text

Chapter IV-3 — User-Defined Functions

IV-59

At the present time, these are the only three types of expressions that the compiler creates and numeric
expressions are always evaluated in double precision. However, in the future, the compiler might be
extended to create integer or single precision code. As a result of these considerations, the compiler is some-
times quite picky about the exact congruence between two declarations of WAVE reference variables of the
same name (which create just a single instance). For example:
WAVE aWave
if(!WaveExists(aWave))

Make/D aWave
endif

will give a compile error complaining about inconsistent type for a WAVE reference. This is because the default
type for the WAVE reference is single precision real. In this case, you will need to use the /D flag like so:
WAVE/D aWave

WAVE Reference Type Flags
The WAVE reference (see page V-811) along with certain operations such as Duplicate can accept the fol-
lowing flags identifying the type of WAVE reference:

These are the same flags used by the Make operation (see page V-411) except in this case they do not affect
the actual wave and are used only specify what kind of wave is expected at runtime. This information is used
if, later in the function, you create a wave assignment statement using a duplicated wave as the destination:
Function DupIt(wv)

WAVE/C wv // complex wave

Duplicate/O/C wv,dupWv // dupWv is complex
dupWv[0]=cmplx(5.0,1.0) // no error, because dupWv known complex
. . .

End

If Duplicate did not have the /C flag, you would get a “function not available for this number type” message
when compiling the assignment of dupWv to the result of the cmplx function.

Problems with Automatic Creation of WAVE References
Operations that change a wave's type or which can create output waves of more than one type, such as FFT,
IFFT and WignerTransform present special issues.

/B 8-bit signed integer destination waves, unsigned with /U.

/C complex destination waves.

/D double precision destination waves.

/I 32-bit signed integer destination waves, unsigned with /U.

/S single precision destination waves.

/T text destination waves.

/U unsigned destination waves.

/W 16-bit signed integer destination waves, unsigned with /U.

/DF Wave holds data folder references. For advanced programmers only
running Igor Pro 6.1 or later.

/WAVE Wave holds wave references. For advanced programmers only running
Igor Pro 6.1 or later.

Chapter IV-3 — User-Defined Functions

IV-60

In some cases, the wave reference automatically created by an operation might be of the wrong type. For
example, the FFT operation automatically creates a complex wave reference for the destination wave, so if
you write:
FFT/DEST=destWave srcWave

it is as if you wrote:
FFT/DEST=destWave srcWave
WAVE/C destWave

However, if a real wave reference for the same name already exists, FFT/DEST will not create a new wave
reference. For example:
Wave destWave // Real wave reference
. . .
FFT /DEST=destWave srcWave // FFT does not create wave reference

// because it already exists.

In this case, you would need to create a complex wave reference using a different name, like this:
Wave/C cDestWave = destWave

The output of the FFT operation can sometimes be real, not complex. For example:
FFT/DEST=destWave/OUT=2 srcWave

The /OUT=2 flag creates a real destination wave. Thus the complex wave reference automatically created
by the FFT operation is wrong and can not be used to subsequently access the destination wave. In this case,
you must explicitly create a real wave reference, like this:
FFT/DEST=destWave/OUT=2 srcWave
WAVE realDestWave = destWave

Note that you can not write:
FFT/DEST=destWave/OUT=2 srcWave
WAVE destWave

because the FFT operation has already created a complex wave reference named destWave, so the com-
piler will generate an error. You must use a different name for the real wave reference.

The IFFT has a similar problem but in reverse. IFFT automatically creates a real wave reference for the des-
tination wave. In some cases, the actual destination wave will be complex and you will need to create an
explicit wave reference in order to access it.

WAVE Reference Is Not Needed to Pass a Wave Parameter
You don’t need to use a WAVE reference when passing a literal wave name as a parameter to an operation
or function. For example:
Function Test()

Display jack
Display root:jack
Variable tmp = mean(jack,0,100)

End

In these examples, Igor knows that the parameters of the Display operation and the first parameter of the mean
function are waves and therefore does not need the additional information provided by the WAVE reference.

Wave Reference Function Results
In Igor Pro 6.1 or later, advanced programmers can create functions that return wave references using Func-
tion/WAVE:

Function/WAVE Test(wIn) // /WAVE flag says function returns wave reference
Wave wIn // Reference to the input wave received as parameter

Chapter IV-3 — User-Defined Functions

IV-61

String newName = NameOfWave(wIn) + "_out" // Compute output wave name

Duplicate/O wIn, $newName // Create output wave

Wave wOut = $newName // Create wave reference for output wave
wOut += 1 // Use wave reference in assignment statement

return wOut // Return wave reference
End

This function might be called from another function like this:

Make/O/N=5 wave0 = p
Wave wOut = Test(wave0)
Display wave0, wOut

Wave Reference Waves
In Igor Pro 6.1 or later, you can create waves that contain wave references using the Make /WAVE flag. You
can use a wave reference wave as a list of waves for further processing and in multithreaded wave assign-
ment using the MultiThread keyword.

Wave reference waves are recommended for advanced programmers only.

Note: Wave reference waves are saved only in packed experiment files. They are not saved in unpacked
experiments and are not saved by the SaveData operation or the Data Browser's Save Copy
button. In general, they are intended for temporary computation purposes only.

Here is an example:

Make/O wave0, wave1, wave2 // Make some waves
Make/O/WAVE wr // Make a wave reference wave
wr[0]=wave0; wr[1]=wave1; wr[2]=wave2 // Assign values

The wave reference wave wr could now be used, for example, to pass a list of waves to a function that per-
forms display or analysis operations.

Make/WAVE without any assignment creates a wave containing null wave references. Similarly, inserting
points or redimensioning to a larger size initializes the new points to null. Deleting points or redimension-
ing to a smaller size deletes any free waves if the deleted points contained the only reference to them.

To determine if a given wave is a type that stores wave references, use the WaveType function with the
optional selector = 1.

In the next example, a subroutine supplies a list of references to waves to be graphed by the main routine.
A wave reference wave is used to store the list of wave references.

Function MainRoutine()
Make/O/WAVE/N=5 wr // Will contain references to other waves
wr= Subroutine(p) // Fill w with references

WAVE w= wr[0] // Get reference to first wave
Display w // and display in a graph

Variable i
for(i=1;i<5;i+=1)

WAVE w= wr[i] // Get reference to next wave
AppendToGraph w // and append to graph

endfor
End

Chapter IV-3 — User-Defined Functions

IV-62

Function/WAVE Subroutine(i)
Variable i

String name = "wave"+num2str(i)

// Create a wave with a computed name and also a wave reference to it
Make/O $name/WAVE=w = sin(x/(8+i))

return w // Return the wave reference to the calling routine
End

As another example, here is a function that returns a wave reference wave containing references to all of the
Y waves in a graph:

Function/WAVE GetListOfYWavesInGraph(graphName)
String graphName // Must contain the name of a graph

// If graphName is not valid, return NULL wave
if (strlen(graphName)==0 || WinType(graphName)!=1)

return $""
endif

// Make a wave to contain wave references
Make /FREE /WAVE /N=0 listWave

Variable index = 0
do

// Get wave reference for next Y wave in graph
WAVE/Z w = WaveRefIndexed(graphName,index,1)
if (WaveExists(w) == 0)

break // No more waves
endif

// Add wave reference to list
InsertPoints index, 1, listWave
listWave[index] = w

index += 1
while(1) // Loop till break above

return listWave
End

The returned wave reference wave is a free wave. See Free Waves on page IV-75 for details.

For an example using a wave reference wave for multiprocessing, see Wave Reference MultiThread
Example on page IV-292.

Data Folder References
The data folder reference is a lightweight object that refers to a data folder, analogous to the wave reference
which refers to a wave. You can think of a data folder reference as an identification number that Igor uses
to identify a particular data folder.

Data folder references require Igor Pro 6.1 or later.

Data folder reference variables (DFREFs) hold data folder references. They can be created as local variables,
passed as parameters and returned as function results.

The most common use for a data folder reference is to save and restore the current data folder during the
execution of a function:

Chapter IV-3 — User-Defined Functions

IV-63

Function Test()
DFREF saveDFR = GetDataFolderDFR() // Get reference to current data folder

NewDataFolder/O/S MyNewDataFolder // Create a new data folder
. . . // Do some work in it

SetDataFolder saveDFR // Restore current data folder
End

Data folder references can be used in commands where Igor accepts a data folder path. For example, this
function shows three equivalent methods of accessing waves in a specific data folder:

Function Test()
// Method 1: Using paths
Display root:Packages:'My Package':yWave vs root:Packages:'My Package':xWave

// Method 2: Using the current data folder
String dfSave = GetDataFolder(1) // Save the current data folder
SetDataFolder root:Packages:'My Package'
Display yWave vs xWave
SetDataFolder dfSave // Restore current data folder

// Method 3: Using data folder references
DFREF dfr = root:Packages:'My Package'
Display dfr:yWave vs dfr:xWave

End

Using data folder references instead of data folder paths can streamline programs that make heavy use of
data folders.

Using Data Folder References
In an advanced application, the programmer often defines a set of named data objects (waves, numeric vari-
ables and string variables) that the application acts on. These objects exist in a data folder. If there is just one
instance of the set, it is possible to hard-code data folder paths to the objects. Often, however, there will be
a multiplicity of such sets, for example, one set per graph or one set per channel in a data acquisition appli-
cation. In such applications, procedures must be written to act on the set of data objects in a data folder spec-
ified at runtime.

One way to specify a data folder at runtime is to create a path to the data folder in a string variable. While
this works, you wind up with code that does a lot of concatenation of data folder paths and data object
names. Using data folder references, such code can be streamlined.

You create a data folder reference variable with a DFREF statement. For example, assume your application
defines a set of data with a wave named wave0, a numeric variable named num0 and a string named str0
and that we have one data folder containing such a set for each graph. You can access your objects like this:

Function DoSomething(graphName)
String graphName
DFREF dfr = root:Packages:MyApplication:$graphName
WAVE w0 = dfr:wave0
NVAR n0 = dfr:num0
SVAR s0 = dfr:str0
. . .

End

Igor accepts a data folder reference in any command in which a data folder path would be accepted. For
example:

Function Test()
Display root:MyDataFolder:wave0 // OK

Chapter IV-3 — User-Defined Functions

IV-64

DFREF dfr = root:MyDataFolder
Display dfr:wave0 // OK

String path = "root:MyDataFolder:wave0"
Display $path // OK. $ converts string to path.

path = "root:MyDataFolder"
DFREF dfr = $path // OK. $ converts string to path.
Display dfr:wave0 // OK

String currentDFPath
currentDFPath = GetDataFolder(1) // OK
DFREF dfr = GetDataFolder(1) // ERROR: GetDataFolder returns a string

// not a path.
End

The /SDFR Flag
In Igor Pro 6.20 or later you can also use the /SDFR (source data folder reference) flag in a WAVE, NVAR
or SVAR statement. The utility of /SDFR is illustrated by this example which shows three different ways to
reference multiple waves in the same data folder:

Function Test()
// Assume a data folder exists at root:Run1

// Use explicit paths
Wave wave0=root:Run1:wave0, wave1=root:Run1:wave1, wave2=root:Run1:wave2

// Use a data folder reference
DFREF dfr = root:Run1
Wave wave0=dfr:wave0, wave1=dfr:wave1, wave2=dfr:wave2

// Use the /SDFR flag
DFREF dfr = root:Run1
Wave/SDFR=dfr wave0, wave1, wave2

End

The DFREF Type
In Functions, you can define data folder reference variables using the DFREF declaration:

DFREF localname [= <DataFolderRef or path>] [<more defs]

You can then use the data folder reference in those places where you can use a data folder path. For exam-
ple:

DFREF dfr= root:df1
Display dfr:wave1 // Equivalent to Display root:df1:wave1

The syntax is limited to a single name after the data folder reference, so this is not legal:

Display dfr:subfolder:wave1 // Illegal

You can use DFREF to define input parameters for user-defined functions. For example:

Function Test(df)
DFREF df
Display df:wave1

End

You can also use DFREF to define fields in structures. However, you can not directly use a DFREF structure
field in those places where Igor is expecting a path and object name. So, instead of:

Chapter IV-3 — User-Defined Functions

IV-65

Display s.dfr:wave1 // Illegal

you would need to write:

DFREF dftmp= s.dfr
Display dftmp:wave1 // OK

You can use a DFREF structure field where just a path is expected. For example:

SetDataFolder s.dfr // OK

Built-in DFREF Functions
Some built-in functions take string data folder paths as parameters or return them as results. Those func-
tions can not take or return data folder references. Here are equivalent DFREF versions that take or return
data folder references:

GetDataFolderDFR()

GetIndexedObjNameDFR(dfr, type, index)

GetWavesDataFolderDFR(wave)

CountObjectsDFR(dfr, type)

These additional data folder reference functions are available:

DataFolderRefStatus(dfr)

NewFreeDataFolder()

DataFolderRefsEqual(dfr1, dfr2)

Just as operations that take a data folder path accept a data folder reference, these DFREF functions can also
accept a data folder path:

Function Test()
DFREF dfr = root:MyDataFolder
Print CountObjectsDFR(dfr,1) // OK
Print CountObjectsDFR(root:MyDataFolder,1) // OK

End

Checking Data Folder Reference Validity
The DataFolderRefStatus function returns zero if the data folder reference is invalid. You should use it to
test any DFREF variables that might not be valid, for example, when you assign a value to a data folder ref-
erence and you are not sure that the referenced data folder exists:

Function Test()
DFREF dfr = root:MyDataFolder // MyDataFolder may or may not exist
if (DataFolderRefStatus(dfr) != 0)

. . .
endif

End

For historical reasons, an invalid DFREF variable will often act like root.

Data Folder Reference Function Results
A user-defined function can return a data folder reference. This might be used for a subroutine that returns
a set of new objects to the calling routine. The set can be returned in a new data folder and the subroutine
can return a reference it.

For example:

Chapter IV-3 — User-Defined Functions

IV-66

Function/DF Subroutine(newDFName)
String newDFName
NewDataFolder/O $newDFName
DFREF dfr = $newDFName
Make/O dfr:wave0, dfr:wave1
return dfr

End

Function/DF MainRoutine()
DFREF dfr = Subroutine("MyDataFolder")
Display dfr:wave0, dfr:wave1

End

Data Folder Reference Waves
In Igor Pro 6.1 or later, you can create waves that contain data folder references using the Make /DF flag.
You can use a data folder reference wave as a list of data folders for further processing and in multithreaded
wave assignment using the MultiThread keyword.

Data folder reference waves are recommended for advanced programmers only.

Note: Data folder reference waves are saved only in packed experiment files. They are not saved in
unpacked experiments and are not saved by the SaveData operation or the Data Browser's Save
Copy button. In general, they are intended for temporary computation purposes only.

Make/DF without any assignment creates a wave containing null data folder references. Similarly, inserting
points or redimensioning to a larger size initializes the new points to null. Deleting points or redimension-
ing to a smaller size deletes any free data folders if the wave contained the only reference to them.

To determine if a given wave is a type that stores data folder references, use the WaveType function with
the optional selector = 1.

Although programmers may find multiple uses of data folder reference waves, the main impetus for their
development was to make it easier to improve calculation performance by multithreading on multi-core
machines.

For an example using a data folder reference wave for multiprocessing, see Data Folder Reference Multi-
Thread Example on page IV-291.

Accessing Waves in Functions
To access a wave, we need to create, one way or another, a wave reference. The section Accessing Global
Variables and Waves on page IV-50 explained how to access a wave using a WAVE reference. This section
introduces several additional techniques. Other useful details may be found in Returning Created Waves
from User Functions on page III-144.

We can create the wave reference by:
• Declaring a wave parameter
• Using $<string expression>
• Using a literal wave name
• Using a wave reference function

Each of these techniques is illustrated in the following sections.

Each example shows a function and commands that call the function. The function itself illustrates how to
deal with the wave within the function. The commands show how to pass enough information to the func-
tion so that it can access the wave. Other examples can be found in Writing Functions that Process Waves
on page III-145.

Chapter IV-3 — User-Defined Functions

IV-67

Wave Reference Passed as Parameter
This is the simplest method. The function might be called from the command line or from another function.
Function Test(w)

WAVE w // Wave reference passed as a parameter

w += 1 // Use in assignment statement
Print mean(w,-INF,INF) // Pass as function parameter
WaveStats w // Pass as operation parameter
AnotherFunction(w) // Pass as user function parameter

End

Make/O/N=5 wave0 = p
Test(wave0)
Test($"wave0")
String wName = "wave0"; Test($wName)

In the first call to Test, the wave reference is a literal wave name. In the second call, we create the wave refer-
ence using $<literal string>. In the third call, we create the wave reference using $<string variable>. $<literal
string> and $<string variable> are specific cases of the general case $<string expression>.

If the function expected to receive a reference to a text wave, we would declare the parameter using:
WAVE/T w

If the function expected to be receive a reference to a complex wave, we would declare the parameter using:
WAVE/C w

If you need to return a large number of values to the calling routine, it is sometimes convenient to use a
parameter wave as an output mechanism. The following example illustrates this technique:
Function MyWaveStats(inputWave, outputWave)

WAVE inputWave
WAVE outputWave

WaveStats/Q inputWave

outputWave[0] = V_npnts
outputWave[1] = V_avg
outputWave[2] = V_sdev

End

Function Test()
Make/O testwave= gnoise(1)

Make/O/N=20 tempResultWave
MyWaveStats(testwave, tempResultWave)
Variable npnts = tempResultWave[0]
Variable avg = tempResultWave[1]
Variable sdev = tempResultWave[2]
KillWaves tempResultWave

Printf "Points: %g; Avg: %g; SDev: %g\r", npnts, avg, sdev
End

Wave Accessed Via String Passed as Parameter
This technique is of most use when the wave might not exist when the function is called. It is appropriate
for functions that create waves.
Function Test(wName)

String wName // String containing a name for wave

Make/O/N=5 $wName
WAVE w = $wName // Create a wave reference
Print NameOfWave(w)

Chapter IV-3 — User-Defined Functions

IV-68

End

Test("wave0")

This example will create wave0 if it does not yet exist or overwrite it if it does exist. If we knew that the
wave had to already exist, we could and should use the wave parameter technique shown in the preceding
section. In this case, since the wave may not yet exist, we can not use a wave parameter.

Notice that we create a wave reference immediately after making the wave. Once we do this, we can use
the wave reference in all of the ways shown in the preceding section. We can not create the wave reference
before making the wave because a wave reference must refer to an existing wave.

The following command demonstrates that $wName and the wave reference w can refer to a wave that is
not in the current data folder.
NewDataFolder root:Folder1; Test("root:Folder1:wave0")

Wave Accessed Via String Calculated in Function
This technique is used when creating multiple waves in a function or when algorithmically selecting a wave
or a set of waves to be processed.
Function Test(baseName, startIndex, endIndex)

String baseName
Variable startIndex, endIndex

Variable index = startIndex
do

WAVE w = $(baseName + num2istr(index))
Variable avg = mean(w)
Printf "Wave: %s; average: %g\r", NameOfWave(w), avg
index += 1

while (index <= endIndex)
End

Make/O/N=5 wave0=gnoise(1), wave1=gnoise(1), wave2=gnoise(1)
Test("wave", 0, 2)

We need to use this method because we want the function to operate on any number of waves. If the func-
tion were to operate on a small, fixed number of waves, we could use the wave parameter method.

As in the preceding section, we create a wave reference using $<string expression>.

Wave Accessed Via Literal Wave Name
In data acquisition or analysis projects, you often need to write procedures that deal with runs of identically-
structured data. Each run is stored in its own data folder and contains waves with the same names. In this
kind of situation, you can write a set of functions that use literal wave names specific for your data structure.
Function CreateRatio()

WAVE dataA, dataB
Duplicate dataA, ratioAB
WAVE ratioAB
ratioAB = dataA / dataB

End

Make/O/N=5 dataA = 1 + p, dataB = 2 + p
CreateRatio()

The CreateRatio function assumes the structure and naming of the data. The function is hard-wired to this
naming scheme and assumes that the current data folder contains the appropriate data.

Chapter IV-3 — User-Defined Functions

IV-69

Wave Accessed Via Wave Reference Function
A wave reference function is a built-in Igor function that returns a reference to a wave. Wave reference func-
tions are typically used on the right-hand side of a WAVE statement. For example:
WAVE w = WaveRefIndexedDFR(:,i) // ith wave in current data folder

A common use for a wave reference function is to get access to waves displayed in a graph, using the Trace-
NameToWaveRef function. Here is an example.
Function PrintAverageOfDisplayedWaves()

String list, traceName

list = TraceNameList("",";",1) // List of traces in top graph
Variable index = 0
do

traceName = StringFromList(index, list) // Next trace name
if (strlen(traceName) == 0)

break // No more traces
endif
WAVE w = TraceNameToWaveRef("", traceName)// Get wave ref
Variable avg = mean(w)
Printf "Wave: %s; average: %g\r", NameOfWave(w), avg
index += 1

while (1) // loop till break above
End

Make/O/N=5 wave0=gnoise(1), wave1=gnoise(1), wave2=gnoise(1)
Display wave0, wave1, wave2
PrintAverageOfDisplayedWaves()

See Wave Reference Waves on page IV-61 for an example using WaveRefIndexed to return a list of all of
the Y waves in a graph.

There are other wave reference functions (see Wave Reference Functions on page IV-177), but WaveRefIn-
dexed, WaveRefIndexedDFR and TraceNameToWaveRef are the most used.

Destination Wave Parameters
Many operations create waves. Examples are Make, Duplicate and Differentiate. Such operations take "des-
tination wave" parameters. A destination wave parameter can be:

A simple name Differentiate fred /D=jack

A path Differentiate fred /D=root:FolderA:jack

$ followed by a string expression String str = "root:FolderA:jack"
Differentiate fred /D=$str

A simple wave reference Wave/Z jack
Differentiate fred /D=jack

Other wave references Wave/Z w = jack
Differentiate fred /D=w

Wave/Z w = root:FolderA:jack
Differentiate fred /D=w

Wave/Z jack = root:FolderA:jack
Differentiate fred /D=jack

STRUCT MyStruct s// Contains wave ref field w
Differentiate fred /D=s.w

Chapter IV-3 — User-Defined Functions

IV-70

The wave reference works only in a user-defined function. The other techniques work in functions, in
macros and from the command line.

The first and fourth cases are actually the same because, if you use a simple name, the Igor compiler auto-
matically creates a wave reference as if you had used a simple wave reference as explained under Auto-
matic Creation of WAVE References on page IV-57.

Using the first four techniques, the destination wave may or may not already exist. It will be created if it
does not exist and overwritten if it does exist.

In the last technique, the name of the wave reference is different from the name of the destination wave or
the wave reference points to a data folder other than the current data folder or both. This technique works
properly only if the referenced wave already exists. Otherwise the destination wave is a wave with the
name of the wave reference itself (w in the first two examples, jack in the last) in the current data folder.
This situation is further explained below under Destination Wave Reference Issues on page IV-71.

Wave Reference as Destination Wave
Here are the rules for wave references when used as destination waves:

1. If a simple name (not a wave reference) is passed as the destination wave parameter, the destination
wave is a wave of that name in the current data folder whether it exists or not.

2. If a path or $ followed by a string containing a path is passed as the destination wave parameter, the
destination wave is specified by the path whether the specified wave exists or not.

3. If a wave reference is passed as the destination wave parameter, the destination wave is the refer-
enced wave if it exists. See Destination Wave Reference Issues on page IV-71 for what happens if
it does not exist.

Exceptions To Destination Wave Rules
The Make operation is an exception in regard to wave references. The following statements make a wave
named w in the current data folder whether root:FolderA:jack exists or not:

Wave/Z w = root:FolderA:jack
Make/O w

Prior to Igor Pro 6.20, many operations behaved like Make in this regard. In Igor Pro 6.20 and later, most
operations behave like Differentiate.

Updating of Destination Wave References
When a simple name is provided in a user-defined function, Igor automatically creates a wave reference
variable of that name at compile time if one does not already exist. This is an "implicit" wave reference.

When a wave reference variable exists, whether implicit or explicit, during the execution of the command,
the operation stores a reference to the destination wave in that wave reference variable. You can use the
wave reference to access the destination wave in subsequent commands.

Similarly, when the destination is specified using a wave reference field in a structure, the operation
updates the field to refer to the destination wave.

Inline Wave References With Destination Waves
When the destination wave is specified using a path or a string containing a path, you can use an inline
wave reference to create a reference to the destination wave. For example:

String str = "root:FolderA:jack"
Differentiate $str /D=$dest/WAVE=wDest
Display wDest

Chapter IV-3 — User-Defined Functions

IV-71

Here the Igor compiler creates a wave reference named wDest. The Differentiate operation stores a refer-
ence to the destination wave (root:FolderA:jack in this case) in wDest which can then be used to access the
destination wave in subsequent commands.

Inline wave references do not determine which wave is the destination wave but merely provide a wave
reference pointing to the destination wave when the command finishes.

Destination Wave Reference Issues
You will get unexpected behavior when a wave reference variable refers to a wave with a different name or
in a different data folder and the referenced wave does not exist. For example, if the referenced wave does
not exist:

Wave/Z w = jack
Differentiate fred /D=w // Creates a wave named w in current data folder

Wave/Z w = root:FolderA:jack
Differentiate fred /D=w // Creates a wave named w in current data folder

Wave/Z jack = root:FolderA:jack
Differentiate fred /D=jack // Creates a wave named jack in current data folder

STRUCT MyStruct s // Contains wave ref field w
Differentiate fred /D=s.w // Creates a wave named w in current data folder

In a situation like this, you should add a test using WaveExists to verify that the destination wave is valid
and throw an error if not or otherwise handle the situation. For example:

Wave/Z w = root:FolderA:jack
if (!WaveExists(w))

Abort "Destination wave does not exist"
endif
Differentiate fred /D=w

As noted above, when you use a simple name as a destination wave, the Igor compiler automatically creates
a wave reference. If the automatically-created wave reference conflicts with a pre-existing wave reference,
the compiler will generate an error. For example, this function generates an "inconsistent type for wave ref-
erence error":

Function InconsistentTypeError()
Wave/C w // Explicit complex wave reference
Differentiate fred /D=w // Implicit real wave reference

End

Another consideration involves loops. Suppose in a loop you have code like this:

SetDataFolder <something depending on loop index>
Duplicate/O srcWave, jack

You may think you are creating a wave named jack in each data folder but, because the contents of the auto-
matically-created wave refrence variable jack is non-null after the first iteration, you will simply be over-
writing the same wave over and over. To fix this, use

Duplicate/O srcWave,$"jack"/WAVE=jack

This will create a wave named jack in the current data folder and store a reference to it in a wave reference
variable also named jack.

Chapter IV-3 — User-Defined Functions

IV-72

Changes in Destination Wave Behavior
Igor's handling of destination wave references was improved for Igor Pro 6.20. Previously some operations
treated wave references as simple names, did not set the wave reference to refer to the destination wave on
output, and exhibited other non-standard behavior.

Programming With Trace Names
Trace names are used when changing traces in graphs, when accessing waves associated with traces in
graphs and when getting information about traces in graphs. See Trace Names on page II-243 for a general
discussion.

These operations take trace name parameters:

ModifyGraph (traces), ErrorBars, RemoveFromGraph, ReplaceWave, ReorderTraces, GraphWaveEdit

Tag, TextBox, Label, Legend

These operations return trace names:

GetLastUserMenuInfo

These functions take trace name parameters:

TraceInfo, TraceNameToWaveRef, XWaveRefFromTrace

These functions return trace names:

TraceNameList, CsrInfo, CsrWave, TraceFromPixel

Trace Name Parameters
A trace name is not the same as a wave. An example may clarify this subtle point:
Function Test()

Wave w = root:FolderA:wave0
Display w
ModifyGraph rgb(w) = (65535,0,0) // WRONG

End

This is wrong because ModifyGraph is looking for the name of a trace in a graph and w is not the name of
a trace in a graph. The name of the trace in this case is wave0. The function should be written like this:
Function Test()

Wave w = root:FolderA:wave0
Display w
ModifyGraph rgb(wave0) = (65535,0,0) // CORRECT

End

In the next example, the wave is passed to the function as a parameter so the name of the trace is not so obvious:
Function Test(w)

Wave w
Display w
ModifyGraph rgb(w) = (65535,0,0) // WRONG

End

This is wrong for the same reason as the first example: w is not the name of the trace. The function should
be written like this:
Function Test(w)

Wave w
Display w

Chapter IV-3 — User-Defined Functions

IV-73

String name = NameOfWave(w)
ModifyGraph rgb($name) = (65535,0,0) // CORRECT

End

User-defined Trace Names
As of Igor Pro 6.20, you can provide user-defined names for traces using /TN=<name> with Display and
AppendToGraph. For example:

Make/O jack=sin(x/8)
NewDataFolder/O foo; Make/O :foo:jack=sin(x/9)
NewDataFolder/O bar; Make/O :bar:jack=sin(x/10)
Display jack/TN='jack in root', :foo:jack/TN='jack in foo'
AppendToGraph :bar:jack/TN='jack in bar'
ModifyGraph mode('jack in bar')=7,hbFill('jack in bar')=6
ModifyGraph rgb('jack in bar')=(0,0,65535)

Warning: Using this feature will make your experiment hard to load into versions prior to 6.20.
Also, any code that assumes the trace name contains the wave name will fail.

Trace Name Programming Example
This example illustrates applying some kind of process to each trace in a graph. It appends a smoothed
version of each trace to the graph. To try it, copy the code below into the procedure window of a new exper-
iment and execute these commands one-at-a-time:

SetupForSmoothWavesDemo()
AppendSmoothedWavesToGraph("", 5) // Less smoothing
AppendSmoothedWavesToGraph("", 15) // More smoothing

Function SetupForSmoothWavesDemo()
Variable numTraces = 3

Display /W=(35,44,775,522) // Create graph

Variable i
for(i=0; i<numTraces; i+=1)

String xName, yName
sprintf xName, "xWave%d", i
sprintf yName, "yWave%d", i
Make /O /N=100 $xName = p + 20*i
Wave xW = $xName
Make /O /N=100 $yName = p + gnoise(5)
Wave yW = $yName
AppendToGraph yW vs xW

endfor
End

Function CopyTraceOffsets(graphName, sourceTraceName, destTraceName)
String graphName // Name of graph or "" for top graph
String sourceTraceName // Name of source trace
String destTraceName // Name of dest trace

// info will be "" if no offsets or something like "offset(x)={10,20}"
String info = TraceInfo(graphName, sourceTraceName, 0)

String offsetStr = StringByKey("offset(x)", info, "=") // e.g., "{10,20}"
Variable xOffset=0, yOffset=0
if (strlen(offsetStr) > 0)

sscanf offsetStr, "{%g,%g}", xOffset, yOffset
endif
ModifyGraph offset($destTraceName) = {xOffset, yOffset}

Chapter IV-3 — User-Defined Functions

IV-74

End

Function AppendSmoothedWavesToGraph(graphName, numSmoothingPasses)
String graphName // Name of graph or "" for top graph
Variable numSmoothingPasses // Parameter to Smooth operation, e.g., 15

// Get list of all traces in graph
String traceList = TraceNameList(graphName, ";", 3)
Variable numTraces = ItemsInList(traceList)
Variable traceIndex

// Remove traces representing smoothed waves previously added
for(traceIndex=0; traceIndex<numTraces; traceIndex+=1)

String traceName = StringFromList(traceIndex, traceList)
if (StringMatch(traceName, "*_sm"))

traceList = RemoveFromList(traceName, traceList)
numTraces -= 1
traceIndex -= 1

endif
endfor

// Create smoothed versions of the traces
for(traceIndex=0; traceIndex<numTraces; traceIndex+=1)

traceName = StringFromList(traceIndex, traceList)

Variable isXYTrace = 0

Wave yW = TraceNameToWaveRef(graphName, traceName)
DFREF dfr = $GetWavesDataFolder(yW, 1)
String ySmoothedName = NameOfWave(yW) + "_sm"
// Create smoothed wave in data folder containing Y wave
Duplicate /O yW, dfr:$ySmoothedName
Wave yWSmoothed = dfr:$ySmoothedName
Smooth numSmoothingPasses, yWSmoothed

Wave/Z xW = XWaveRefFromTrace(graphName, traceName)
if (WaveExists(xW)) // It is an XY pair?

isXYTrace = 1
endif

// Append smoothed wave to graph if it is not already in it
CheckDisplayed /W=$graphName yWSmoothed
if (V_flag == 0) // Not yet already in graph?

if (isXYTrace)
AppendToGraph yWSmoothed vs xW

else
AppendToGraph yWSmoothed

endif
ModifyGraph /W=$graphName rgb($ySmoothedName) = (0, 0, 65535)

endif

// Copy trace offsets from input trace to smoothed trace
CopyTraceOffsets(graphName, traceName, ySmoothedName)

endfor
End

Chapter IV-3 — User-Defined Functions

IV-75

Free Waves
Free waves are waves that are not part of any data folder hierarchy. Their principal use is in multithreaded
wave assignment using the MultiThread keyword in a function. They can also be used for temporary
storage within functions.

Free waves are recommended for advanced programmers only.

Free waves require Igor Pro 6.1 or later.

Note: Free waves are saved only in packed experiment files. They are not saved in unpacked
experiments and are not saved by the SaveData operation or the Data Browser's Save Copy
button. In general, they are intended for temporary computation purposes only.

You create free waves using the NewFreeWave function and the Make/FREE and Duplicate/FREE opera-
tions.

Here is an example:

Function ReverseWave(w)
Wave w

Variable lastPoint = numpnts(w) - 1
if (lastPoint > 0)

// This creates a free wave named wTemp.
// It also creates an automatic wave reference named wTemp
// which refers to the free wave.
Duplicate /FREE w, wTemp

w = wTemp[lastPoint-p]
endif

End

In this example, wTemp is a free wave. As such, it is not contained in any data folder and therefore can not
conflict with any other wave.

As explained below under Free Wave Lifetime on page IV-76, a free wave is automatically deleted when
there are no more references to it. In this example that happens when the function ends.

You can access a free wave only using the wave reference returned by NewFreeWave, Make/FREE or Dupli-
cate/FREE.

Free waves can not be used in situations where global persistence is required such as in graphs, tables and
controls. In other words, you should use free waves for computation purposes only.

For a discussion of multithreaded assignment statements, see Automatic Parallel Processing with Multi-
Thread on page IV-289. For an example using free waves, see Wave Reference MultiThread Example on
page IV-292.

Free Wave Created When Free Data Folder Is Deleted
In addition to the explicit creation of free waves, a wave that is created in a free data folder becomes free if
the host data folder is deleted but a reference to the wave still exists. For example:

Function/WAVE Test()
DFREF dfSav= GetDataFolderDFR()

SetDataFolder NewFreeDataFolder()
Make jack={1,2,3}// jack is not a free wave at this point.
// This also creates an automatic wave reference named jack.

SetDataFolder dfSav
// The free data folder is now gone but jack persists

Chapter IV-3 — User-Defined Functions

IV-76

// because of the wave reference to it and is now a free wave.

return jack
End

Free Wave Created For User Function Input Parameter
If a user function takes a wave reference as in input parameter, you can create and pass a short free wave
using a list of values as illustrated here:

Function Test(w)
WAVE/D w
Print w

End

You can invoke this function like this:

Test({1,2,3})

Igor automatically creates a free wave and passes it to Test. The free wave is automatically deleted when
Test returns.

The data type of the free wave is determined by the type of the function's wave parameter. In this case the
free wave is created as double-precision floating point because the wave parameter is defined using the /D
flag. If /D were omitted, the free wave would be single-precision floating point. Wave/C/D would give a
double-precision complex free wave. Wave/T would give a text free wave.

This list of values syntax is allowed only for user-defined functions because only they have code to test for
and delete free waves upon exit.

Free Wave Lifetime
A free wave is automatically deleted when the last reference to it disappears.

Wave references can be stored in:

1. Wave reference variables in user-defined functions
2. Wave reference fields in structures
3. Elements of a wave reference wave (created by Make/WAVE)

The first case is the most common.

A wave reference disappears when:

1. The wave reference variable containing it is explicitly cleared using WaveClear.
2. The wave reference variable containing it is reassigned to refer to another wave.
3. The wave reference variable containing it goes out-of-scope and ceases to exist when the function

in which it was created returns.
4. The wave reference wave element containing it is deleted or the wave reference wave is killed.

When there are no more references to a free wave, Igor automatically deletes it. This example illustrates the
first three of these scenarios:

Function TestFreeWaveDeletion1()
Wave w = NewFreeWave(2,3) // Create a free wave with 3 points
WaveClear w // w no longer refers to the free wave
// There are no more references to the free wave so it is deleted

Wave w = NewFreeWave(2,3) // Create a free wave with 3 points
Wave w = root:wave0 // w no longer refers to the free wave
// There are no more references to the free wave so it is deleted

Chapter IV-3 — User-Defined Functions

IV-77

Wave w = NewFreeWave(2,3) // Create a free wave with 3 points
End // Wave reference w ceases to exist so the free wave is deleted

In the preceding example we used NewFreeWave which creates a free wave named 'f' that is not part of any
data folder. Next we will use Make/FREE instead of NewFreeWave. Using Make allows us to give the free
wave a name of our choice but it is still free and not part of any data folder. When reading this example,
keep in mind that "Make jack" creates an automatic wave reference variable named jack:

Function TestFreeWaveDeletion2()
Make /D /N=3 /FREE jack // Create a free DP wave with 3 points
// Make created an automatic wave reference named jack

Make /D /N=5 /FREE jack // Create a free DP wave with 5 points
// Make created an automatic wave reference named jack
// which refers to the 5-point jack.
// There are now no references to 3-point jack so it is automatically deleted.

End // Wave reference jack ceases to exist so free wave jack is deleted

In the next example, a subroutine returns a reference to a free wave to the calling routine:

Function/WAVE Subroutine1()
Make /D /N=3 /FREE jack=p // Create a free DP wave with 3 points
return jack // Return reference to calling routine

End

Function MainRoutine1()
WAVE w= Subroutine1() // Wave reference w references the free wave jack
Print w

End // Wave reference w ceases to exist so free wave jack is deleted

In the final example, the wave jack starts as an object in a free data folder (see Free Data Folders on page
IV-79). It is not free because it is part of a data folder hierarchy even though the data folder is free. When
the free data folder is deleted, jack becomes a free wave.

When reading this example, keep in mind that the free data folder is automatically deleted when there are
no more references to it. Originally, it survives because it is the current data folder and therefore is refer-
enced by Igor internally. When it is no longer the current data folder, there are no more references to it and
it is automatically deleted:

Function/WAVE Subroutine2()
DFREF dfSav= GetDataFolderDFR()

// Create free data folder and set as current data folder
SetDataFolder NewFreeDataFolder()

// Create wave jack and an automatic wave reference to it
Make jack={1,2,3} // jack is not free - it is an object in a data folder

SetDataFolder dfSav // Change the current data folder
// There are now no references to the free data folder so it is deleted
// but wave jack remains because there is a reference to it.
// jack is now a free wave.

return jack // Return reference to free wave to calling routine
End

Function MainRoutine2()
WAVE w= Subroutine2() // Wave reference w references free wave jack
Print w

End // Wave reference w ceases to exist so free wave jack is deleted

Chapter IV-3 — User-Defined Functions

IV-78

Not shown in this section is the case of a free wave that persists because a reference to it is stored in a wave
reference wave. That situation is illustrated by the Automatic Parallel Processing with MultiThread on
page IV-289 example.

Free Wave Leaks
A leak occurs when an object is created and is never released. Leaks waste memory. Igor users wave refer-
ence counting to prevent leaks but in the case of free waves there are special considerations.

A free wave must be stored in a wave reference variable in order to be automatically released because Igor
does the releasing when a wave reference variable goes out of scope.

The following example results in two memory leaks:

Function/WAVE GenerateFree()
return NewFreeWave(2,3)

End

Function Leaks()
Duplicate GenerateFree(),dummy // This leaks
Variable maxVal = WaveMax(generateFree()) // So does this

End

Both lines leak because the free wave returned by GenerateFree is not stored in any wave reference variable.
By contrast, this function does not leak:

Function NoLeaks()
Wave w = GenerateFree() // w references the free wave
Duplicate w,dummy
Variable maxVal = WaveMax(w) // WaveMax is a built-in function
// The free wave is released when w goes out of scope

End

In the Leaks function, there would be no leak if you replaced the call to WaveMax with a call to a user-
defined function. This is because Igor automatically creates a wave reference variable when you pass a
wave to a user-defined function. Because this distinction is subtle, it is best to always store a free wave in
your own explicit wave reference variable.

Converting a Free Wave to a Global Wave
You can use MoveWave to move a free wave into a global data folder, in which case it ceases to be free. If
the wave was created by NewFreeWave its name will be 'f'. You can use MoveWave to provide it with a
more descriptive name.

Here is an example illustrating Make/FREE:

Function Test()
Make/FREE/N=(50,50) w
SetScale x,-5,8,w
SetScale y,-7,12,w
w= exp(-(x^2+y^2))
NewImage w
if(GetRTError(1) != 0)

Print "Can't use a free wave here"
endif
MoveWave w,root:wasFree
NewImage w

End

Note that MoveWave requires that the new wave name, wasFree in this case, be unique within the destina-
tion data folder.

To determine if a given wave is free or global, use the WaveType function with the optional selector = 2.

Chapter IV-3 — User-Defined Functions

IV-79

Free Data Folders
Free data folders are data folders that are not part of any data folder hierarchy. Their principal use is in mul-
tithreaded wave assignment using the MultiThread keyword in a function. They can also be used for tem-
porary storage within functions.

Free data folders are recommended for advanced programmers only.

Free data folders require Igor Pro 6.1 or later.

Note: Free data folders are saved only in packed experiment files. They are not saved in unpacked
experiments and are not saved by the SaveData operation or the Data Browser's Save Copy
button. In general, they are intended for temporary computation purposes only.

You create a free data folder using the NewFreeDataFolder function. You access it using the data folder ref-
erence returned by that function.

After using SetDataFolder with a free data folder, be sure to restore it to the previous value, like this:

Function Test()
DFREF dfrSave = GetDataFolderDFR()

SetDataFolder NewFreeDataFolder() // Create new free data folder.

. . .

SetDataFolder dfrSave
End

This is good programming practice in general but is especially important when using free data folders.

Free data folders can not be used in situations where global persistence is required such as in graphs, tables
and controls. In other words, you should use objects in free data folders for short-term computation pur-
poses only.

For a discussion of multithreaded assignment statements, see Automatic Parallel Processing with Multi-
Thread on page IV-289. For an example using free data folders, see Data Folder Reference MultiThread
Example on page IV-291.

Free Data Folder Lifetime
A free data folder is automatically deleted when the last reference to it disappears.

Data folder references can be stored in:

1. Data folder reference variables in user-defined functions
2. Data folder reference fields in structures
3. Elements of a data folder reference wave (created with Make/DF)
4. Igor's internal current data folder reference variable

A data folder reference disappears when:

1. The data folder reference variable containing it is explicitly cleared using KillDataFolder.
2. The data folder reference variable containing it is reassigned to refer to another data folder.
3. The data folder reference variable containing it goes out-of-scope and ceases to exist when the func-

tion in which it was created returns.
4. The data folder reference wave element containing it is deleted or the data folder reference wave is

killed.
5. The current data folder is changed which causes Igor's internal current data folder reference vari-

able to refer to another data folder.

When there are no more references to a free data folder, Igor automatically deletes it.

Chapter IV-3 — User-Defined Functions

IV-80

In this example, a free data folder reference variable is cleared by KillDataFolder:

Function Test1()
DFREF dfr= NewFreeDataFolder() // Create new free data folder.
// The free data folder exists because dfr references it.
. . .
KillDataFolder dfr // dfr no longer refers to the free data folder

End

KillDataFolder kills the free data folder only if the given DFREF variable contains the last reference to it.

In the next example, the free data folder is automatically deleted when the DFREF that references it is
changed to reference another data folder:

Function Test2()
DFREF dfr= NewFreeDataFolder() // Create new free data folder.
// The free data folder exists because dfr references it.
. . .
DFREF dfr= root:
// The free data folder is deleted since there are no references to it.

End

In the next example, a free data folder is created and a reference is stored in a local data folder reference
variable. When the function ends, the DFREF ceases to exist and the free data folder is automatically
deleted:

Function Test3()
DFREF dfr= NewFreeDataFolder() // Create new free data folder.
// The free data folder exists because dfr references it.
. . .

End // The free data folder is deleted because dfr no longer exists.

The fourth case, where a data folder reference is stored in a data folder reference wave, is discussed under
Data Folder Reference Waves on page IV-66.

In the next example, the free data folder is referenced by Igor's internal current data folder reference vari-
able because it is the current data folder. When the current data folder is changed, there are no more refer-
ences to the free data folder and it is automatically deleted:

Function Test4()
SetDataFolder NewFreeDataFolder() // Create new free data folder.
// The free data folder persists because it is the current data folder
// and therefore is referenced by Igor's internal
// current data folder reference variable.
. . .

// Change Igor's internal current data folder reference
SetDataFolder root:
// The free data folder is since there are no references to it.

End

Free Data Folder Objects Lifetime
Next we consider what happens to objects in a free data folder when the free data folder is deleted. In this
event, numeric and string variables in the free data folder are unconditionally automatically deleted. A
wave is automatically deleted if there are no wave references to it. If there is a wave reference to it, the wave
survives and becomes a free wave. Free waves are waves that exists outside of any data folder as explained
under Free Waves on page IV-75.

For example:

Chapter IV-3 — User-Defined Functions

IV-81

Function Test()
SetDataFolder NewFreeDataFolder() // Create new free data folder.
// The free data folder exists because it is the current data folder.

Make jack // Make a wave and an automatic wave reference

. . .

SetDataFolder root:
// The free data folder is deleted since there are no references to it.
// Because there is a reference to the wave jack, it persists
// and becomes a free wave.

. . .

End // The wave reference to jack ceases to exist so jack is deleted

When this function ends, the reference to the wave jack ceases to exist, there are no references to jack, and
it is automatically deleted.

Next we look at a slight variation. In the following example, Make does not create an automatic wave ref-
erence because of the use of $, and we do not create an explicit wave reference:

Function Test()
SetDataFolder NewFreeDataFolder() // Create new free data folder.
// The free data folder exists because it is the current data folder.

Make $"jack" // Make a wave but no wave reference
// jack persists because the current data folder references it.

. . .

SetDataFolder root:
// The free data folder is since there are no references to it.
// jack is also deleted because there are no more references to it.

. . .

End

Converting a Free Data Folder to a Global Data Folder
You can use MoveDataFolder to move a free data folder into the global hierarchy. The data folder and all
of its contents then become global. The name of a free data folder created by NewFreeDataFolder is 'free-
root'. You should rename it after moving to a global context. For example:

Function Test()
DFREF saveDF = GetDataFolderDFR()
DFREF dfr = NewFreeDataFolder() // Create free data folder
SetDataFolder dfr // Set as current data folder
Make jack=sin(x/8) // Create some data in it
SetDataFolder saveDF // Restore original current data folder
MoveDataFolder dfr, root: // Free DF becomes root:freeroot
RenameDataFolder root:freeroot,TestDF // Rename with a proper name
Display root:TestDF:jack

End

Note that MoveDataFolder requires that the data folder name, freeroot in this case, be unique within the
destination data folder.

Chapter IV-3 — User-Defined Functions

IV-82

Structures in Functions
You can define structures in procedure files and use them in functions. Structures can be used only in user-
defined functions as local variables and their behavior is defined almost entirely at compile time. Runtime
or interactive definition and use of structures is not currently supported (for this purpose, use Data Folders
(see Chapter II-8, Data Folders), the StringByKey function (see page V-759), or the NumberByKey function
(see page V-521)).

Use of structures is an advanced technique. If you are just starting with Igor programming, you may want
to skip this section and come back to it later.

Defining Structures
Structures are defined in a procedure file with the following syntax:
Structure structureName

memType memName [arraySize] [, memName [arraySize]]
…

EndStructure

Structure member types (memType) can be any of the following Igor objects: Variable, String, WAVE,
NVAR, SVAR, DFREF, FUNCREF, or STRUCT. The DFREF object type requires Igor Pro 6.1 or later.

Igor structures also support additional member types, as given in the next table, for compatibility with C
programming structures and disk files.

The Variable and double types are identical although Variable can be also specified as complex (using the
/C flag).

The optional arraySize must be specified using an expression involving literal numbers or locally-defined
constants enclosed in brackets. The value must be between 1 and 400 for all but STRUCT where the upper
limit is 100. The upper limit is a consequence of how memory is allocated on the stack frame.

Structures are two-byte aligned. This means that if an odd number of bytes has been allocated and then a
nonchar field is defined, an extra byte of padding will be inserted in front of the new field. This is mainly
of concern only when reading and writing structures from and to disk files.

The Structure keyword can be preceded with the Static keyword (see page V-673) to make the definition
apply only to the current procedure window. Without the Static designation, structures defined in one pro-
cedure window may be used in any other.

Using Structures
To use (“instantiate”) a structure in a function, you must allocate a STRUCT variable using:
STRUCT sName name

Igor Member Type C Equivalent Byte Size

char signed char 1

uchar unsigned char 1

int16 short int 2

uint16 unsigned short int 2

int32 long int 4

uint32 unsigned long int 4

float float 4

double double 8

Chapter IV-3 — User-Defined Functions

IV-83

where sName is the name (or “tag” if you’re a C programmer) of an existing structure and name is the local
variable name (sometimes called the “instance name”). (See STRUCT on page V-763 for details.)

To access a member of a structure, specify the STRUCT variable name followed by a “.” and the member name:
STRUCT Point pt
pt.v= 100

When a member is defined as an array:
Structure mystruct

Variable var1
Variable var2[10]
…

EndStructure

you must specify [index] to use a given element in the array:
STRUCT mystruct ms
ms.var2[n]= 22

Structure and field names must be literal and can not use $str notation. The index value can be calculated
at runtime (it doesn’t have to be a literal number). If the field is itself a STRUCT, continue to append “.” and
field names as needed. See the Example on page IV-83.

You can define an array of structures as a field in a structure:

Structure mystruct
STRUCT Point pt[100] // Allowed as a sub-structure

EndStructure

However, you can not define an array of structures as a local variable in a function:

STRUCT Point pt[100] // Not allowed as a function local variable

WAVE, NVAR, SVAR, and FUNCREF members can be initialized using the same syntax as used for the cor-
responding nonstructure variables. See Runtime Lookup of Globals on page IV-51 and Function Refer-
ences on page IV-88.

Structures may be passed to functions only by reference (as with Fortran), which allows them to be both
input and output parameters (see Pass-By-Reference on page IV-45). The syntax is:
STRUCT sName &varName

In a user function you define the input parameter:
Function myFunc(s)

STRUCT mystruct &s
…

End

Char and uchar arrays can be treated as zero-terminated strings by leaving off the brackets. Because the Igor
compiler knows the size, the entire array can be used with no zero termination. Like normal string variables,
concatenation using += is allowed but substring assignment using [p1,p2]= subStr is not supported.

Structures, including substructures, may be copied using simple assignment from one structure to the
other. The source and destination structures must defined using the same structure name (tag).

The Print operation (see page V-565) can print individual elements of a structure or can print a summary
of the entire STRUCT variable.

Example
Here is a (somewhat contrived) example using structures. Try executing foo(2):
Constant kCaSize= 5

Chapter IV-3 — User-Defined Functions

IV-84

Structure substruct
Variable v1
Variable v2

EndStructure

Structure mystruct
Variable var1
Variable var2[10]
String s1
WAVE fred
NVAR globVar1
SVAR globStr1
FUNCREF myDefaultFunc afunc
STRUCT substruct ss1[3]
char ca[kCaSize+1]

EndStructure

Function foo(n)
Variable n

Make/O/N=20 fred
Variable/G globVar1= 111
String/G aGlobStr="a global string var"

STRUCT mystruct ms
ms.var1= 11
ms.var2[n]= 22
ms.s1= "string s1"
WAVE ms.fred // could have =name if want other than waves named fred
NVAR ms.globVar1
SVAR ms.globStr1= aGlobStr
FUNCREF myDefaultFunc ms.afunc= anotherfunc
ms.ss1[n].v1= ms.var1/2
ms.ss1[0]= ms.ss1[n]
ms.ca= "0123456789"
bar(ms,n)
print ms.var1,ms.var2[n],ms.s1,ms.globVar1,ms.globStr1,ms.ss1[n].v1
print ms.ss 1[n].v2,ms.ca,ms.afunc()
print "a whole wave",ms.fred
print "the whole ms struct:",ms

STRUCT substruct ss
ss= ms.ss1[n]
print "copy of substruct",ss

End

Function bar(s,n)
STRUCT mystruct &s
Variable n

s.ss1[n].v2= 99
s.fred= sin(x)
Display s.fred

End

Function myDefaultFunc()
return 1

End

Function anotherfunc()
return 2

End

Note the use of WAVE, NVAR, SVAR and FUNCREF in the function foo. These keywords are required both
in the structure definition and again in the function, when the structure members are initialized.

Chapter IV-3 — User-Defined Functions

IV-85

Built-In Structures
Igor includes a few special purpose, predefined structures for use with certain operations. Some of those
structures use these predefined general purpose structures:
Structure Rect

Int16 top,left,bottom,right
EndStructure

Structure Point
Int16 v,h

EndStructure

Structure RGBColor
UInt16 red, green, blue

EndStructure

A number of operations use built-in structures that the Igor programmer can use. See the command refer-
ence information for details about these structures and their members.

Applications of Structures
Structures are useful for reading and writing disk files. The FBinRead operation (see page V-170) and the
FBinWrite operation (see page V-171) understand structure variables and will read or write the entire struc-
ture from or to a disk file. The individual fields of the structure will be byte-swapped if you use the /B flag.

Structures can be used in complex programming projects to reduce the dependency on global objects and
to simplify passing data to and getting data from functions. For example, a base function might allocate a
local structure variable and then pass that variable on to a large set of lower level routines. Because struc-
ture variables are passed by reference, data written into the structure by lower level routines is available to
the higher level. Without structures, you would have to pass a large number of individual parameters or
use global variables and data folders.

Using Structures with Windows and Controls
Predefined structures are available for “new-style” (new as of Igor Pro 5) action procedures for controls and
hook functions for windows. See the documentation for each of the individual control listed in Chapter
III-14, Controls and Control Panels and in Chapter V-1, Igor Reference, and the SetWindow operation (see
page V-646).

Advanced programmers should also be aware of userdata that can be associated with windows using the
SetWindow operation (see page V-646). Userdata is binary data that persists with individual windows; it
is suitable for storing structures. Storing structures in a window’s userdata is very handy in eliminating the

Operation Structure Name

Button WMButtonAction

CheckBox WMCheckboxAction

CustomControl WMCustomControlAction

ListBox WMListboxAction

ModifyFreeAxis WMAxisHookStruct

PopupMenu WMPopupAction

SetVariable WMSetVariableAction

SetWindow WMWinHookStruct

Slider WMSliderAction

TabControl WMTabControlAction

Chapter IV-3 — User-Defined Functions

IV-86

need for global variables and reduces the bookkeeping needed to synchronize those globals with the win-
dow’s life cycle. Userdata is also available for use with controls. See the ControlInfo operation (see page
V-71), GetWindow operation (see page V-251), GetUserData operation (see page V-250), and SetWindow
operation (see page V-646) operations.

Example
Here is an example illustrating Igor- and user-defined structures along with userdata in a control. Put the fol-
lowing in the procedure window of a new experiment and run the Panel0 macro. Then click on the buttons.
Note that the buttons will remember their state even if the experiment is saved and reloaded. To fully under-
stand this example, examine the definition of WMButtonAction in the Button operation (see page V-43).
#pragma rtGlobals=1 // Use modern global access method.

Structure mystruct
Int32 nclicks
double lastTime

EndStructure

Function ButtonProc(bStruct) : ButtonControl
STRUCT WMButtonAction &bStruct

if(bStruct.eventCode != 1)
return 0 // we only handle mouse down

endif

STRUCT mystruct s1
if(strlen(bStruct.userdata) == 0)

print "first click"
else

StructGet/S s1,bStruct.userdata
String ctime= Secs2Date(s1.lastTime, 1)+" "+Secs2Time(s1.lastTime,1)

// Warning: Next command is wrapped to fit on the page.
printf "button %s clicked %d time(s), last click =

%s\r",bStruct.ctrlName,s1.nclicks,ctime
endif
s1.nclicks += 1
s1.lastTime= datetime
StructPut/S s1,bStruct.userdata
return 0

End

Window Panel0() : Panel
PauseUpdate; Silent 1 // building window…
NewPanel /W=(150,50,493,133)
SetDrawLayer UserBack
Button b0,pos={12,8},size={50,20},proc=ButtonProc,title="Click"
Button b1,pos={65,8},size={50,20},proc=ButtonProc,title="Click"
Button b2,pos={119,8},size={50,20},proc=ButtonProc,title="Click"
Button b3,pos={172,8},size={50,20},proc=ButtonProc,title="Click"
Button b4,pos={226,8},size={50,20},proc=ButtonProc,title="Click"

EndMacro

Limitations of Structures
Although structures can reduce the need for global variables, they do not eliminate them altogether. A structure
variable, like all local variables in functions, disappears when its host function returns. In order to maintain state
information, you will need to store and retrieve structure information using global variables. You can do this
using a global variable for each field or, with certain restrictions, you can store entire structure variables in a
single global using the StructPut operation (see page V-764) and the StructGet operation (see page V-763).

As of Igor Pro 5.03, a structure can be passed to an external operation or function. See the Igor XOP Toolkit
manual for details.

Static Functions
You can create functions that are local to the procedure file in which they appear by inserting the keyword
Static in front of Function (see Static on page V-673 for usage details). The main reason for using this tech-

Chapter IV-3 — User-Defined Functions

IV-87

nique is to minimize the possibility of your function names conflicting with other names. You can use
common intuitive names instead of devising a special and sometimes ugly naming strategy.

Functions normally have global scope and are available in any part of an Igor experiment, but the static
keyword limits the scope of the function to its procedure file and hides it from all other procedure files.
Static functions can only be used in the file in which they are defined. They can not be called from the
command line and they cannot be accessed from macros.

Because static functions cannot be executed from the command line, you will have write a public test func-
tion to test them.

You can break this rule and access a static function using a module name (see Regular Modules on page
IV-216). This technique can test the function from the command line.

Non-static functions (functions without the static keyword) are sometimes called “public” functions.

ThreadSafe Functions
ThreadSafe user functions provide support for computers with multiple processors and can be used for pre-
emptive multitasking background tasks. A ThreadSafe function is one that can operate correctly during
simultaneous execution by multiple threads.

Note: Writing a multitasking program is for expert programmers only. Intermediate programmers can
write thread-safe curve-fitting functions and multithreaded assignment statements (see
Automatic Parallel Processing with MultiThread on page IV-289). Beginning programmers
should gain experience with regular programming before using multitasking.

You can create thread safe functions by inserting the keyword ThreadSafe in front of Function. For example:
ThreadSafe Function myadd(a,b)

Variable a,b

return a+b
End

Only a subset of functions and operations can be used in a ThreadSafe function. Generally, all numeric or
utility functions can be used but those that access windows can not. To determine if a routine is ThreadSafe,
use the Command Help tab of the Help Browser.

Although file operations are listed as ThreadSafe, they have certain limitations when running in a Thread-
Safe function. If a file load hits a condition that normally would need user assistance, the load is aborted.
No printing to history is done and there is no support for symbolic paths (use PathInfo and pass the path
as a string input parameter).

ThreadSafe functions can call other ThreadSafe functions but may not call non-ThreadSafe functions. Non-
ThreadSafe functions can call ThreadSafe functions.

When ThreadSafe functions execute in the main thread, they have normal access to data folders, waves, and
variables. But when running in a preemptive thread, ThreadSafe functions use their own private data fold-
ers, waves, and variables. When a thread is started, waves can be passed to the function as input parame-
ters. Such waves are then flagged as being in use by the thread, which prevents any changes to the size of
the wave. When all threads under a given main thread are finished, the waves return to normal. You can
pass data folders between the main thread and preemptive threads but such data folders are never shared.

See ThreadSafe Functions and Multitasking on page IV-295 for a discussion of programming with pre-
emptive multitasking threads.

Chapter IV-3 — User-Defined Functions

IV-88

Function Overrides
In some rare cases, you may need to temporarily change an existing function. When that function is part of a
package provided by someone else (or by WaveMetrics) it may be undesirable or difficult to edit the original
function. By using the keyword “Override” in front of “Function” you can define a new function that will be
used in place of another function of the same name that is defined in a different and later procedure file.

Although it is difficult to determine the order in which procedure files are compiled, the main procedure
window is always first. Therefore, always define override functions in the main procedure file.

Although you can override static functions, you may run into a few difficulties. If there are multiple files
with the same static function name, your override will affect all of them, and if the different functions have
different parameters then you will get a link error.

Here is an example of the Override keyword. In this example, start with a new experiment and create a new
procedure window. Insert the following in the new window (not the main procedure window).
Function foo()

print "this is foo"
End

Function Test()
foo()

End

Now, on the command line, execute Test(). You will see “this is foo” in the history.

Open the main procedure window and insert the following:
Override Function foo()

print "this is an override version of foo"
End

Now execute Test() again. You will see the “this is an override version of foo” in the history.

Function References
Function references provide a way to pass a function to a function. This is a technique for advanced pro-
grammers. If you are just starting with Igor programming, you may want to skip this section and come back
to it later.

To specify that an input parameter to a function is a function reference, use the following syntax:
Function Example(f)

FUNCREF myprotofunc f
. . .

End

This specifies that the input parameter f is a function reference and that a function named myprotofunc
specifies the kind of function that is legal to pass. The calling function passes the name of a function as the
f parameter. The called function can use f just as it would use the prototype function.

If a valid function is not passed then the prototype function will be called instead. The prototype function
can either be a default function or it can contain error handling code that makes it obvious that a proper
function was not passed.

A similar syntax can be used to create function reference variables in the body of a function:
FUNCREF protoFunc f = funcName
FUNCREF protoFunc f = $"str"
FUNCREF protoFunc f = funcRef

Chapter IV-3 — User-Defined Functions

IV-89

As shown, the right hand side can take either a literal function name, a $ expression that evaluates to a func-
tion name at runtime, or it can take another FUNCREF variable.

FUNCREF variables can refer to external functions as well as user functions. However, the prototype func-
tion must be a user function and it must not be static.

Although you can store a reference to a static function in a FUNCREF variable, you can not then use that
variable with Igor operations that take a function as an input. FuncFit is an example of such an operation.

Following are some example functions and FUNCREFs that illustrate several concepts:
Function myprotofunc(a)

Variable a

print "in myprotofunc with a= ",a
End

Function foo1(var1)
Variable var1

print "in foo1 with a= ",var1
End

Function foo2(a)
Variable a

print "in foo2 with a= ",a
End

Function foo3(a)
Variable a

print "in foo3 with a= ",a
End

Function badfoo(a,b)
Variable a,b

print "in badfoo with a= ",a
End

Function bar(a,b,fin)
Variable a,b
FUNCREF myprotofunc fin

if(a==1)
FUNCREF myprotofunc f= foo1

elseif(a==2)
FUNCREF myprotofunc f= $"foo2"

elseif(a==3)
FUNCREF myprotofunc f= fin

endif
f(b)

End

For the above functions, the following table shows the results for various invocations of the bar function
executed on the command line:

Executing bar(3,55,badfoo) will generate a syntax error dialog that will highlight “badfoo” in the com-
mand. This error results because the format of the badfoo function does not match the format of the proto-
type function, myprotofunc.

Chapter IV-3 — User-Defined Functions

IV-90

Conditional Compilation
Compiler directives can be used to conditionally include or exclude blocks of code. This is especially useful
when an XOP may or may not be available. It is also convenient for testing and debugging code. For exam-
ple, to enable a block of procedure code depending on the presence or absence of an XOP use
#if Exists("nameOfAnXopRoutine")

<proceedure code using XOP routines>
#endif

The conditional compiler directives are modeled after the C/C++ language. Unlike other #keyword direc-
tives, these may be indented. For defining symbols, the directives are:
#define symbol

#undef symbol

For conditional compilation, the directives are:
#ifdef symbol

#ifndef symbol

#if expression

#elif expression

#else

#endif

Expressions are ordinary Igor expressions, but cannot involve any user-defined objects. They evaluate to
TRUE if the absolute value is > 0.5.

Conditionals must be either completely outside or completely inside function definitions; they cannot
straddle a function definition. Conditionals cannot be used within macros but the defined function can.

Nesting depth is limited to 16 levels. Trailing text other than a comment is illegal.

Note that #define is used purely for defining symbols (there is nothing like C’s preprocessor) and the only
use of a symbol is with #if, #ifdef, #ifndef and the defined function.

The defined function was added in Igor Pro 6.20 allowing the use of:

#if defined(symbol)

Unlike C, you cannot use #if defined(symbol).

Symbols exist only in the file where they are defined; the only exception is for symbols defined in the main pro-
cedure window, which are available to all other procedures except independent modules. In addition, you can
define global symbols that are available in all procedure windows (including independent modules) using:
SetIgorOption poundDefine=symb

This adds one symbol to a global list. You can query the global list using:
SetIgorOption poundDefine=symb?

Command Result
bar(1,33,foo3) in foo1 with a= 33

bar(2,44,foo3) in foo2 with a= 44

bar(3,55,foo3) in foo3 with a= 55

bar(4,55,foo3) in myprotofunc with a= 55

Chapter IV-3 — User-Defined Functions

IV-91

This sets V_flag to TRUE if symb exists. To remove a symbol from the global list use:
SetIgorOption poundUndefine=symb

For non-independent module procedure windows, a symbol is defined if it exists in the global list or in the
main procedure window’s list or in the given procedure window.

For independent module procedure windows, a symbol is defined if it exists in the global list or in the given
procedure window; it does not use the main procedure window list.

A symbol defined in a global list is not undefined by a #undef in a procedure window.

Predefined Global Symbols
As of Igor Pro 6.20, the following global symbols are automatically predefined as appropriate, and available
in all procedure windows:

Conditional Compilation Examples
#define MYSYMBOL

#ifdef MYSYMBOL

Function foo()
print "This is foo when MYSYMBOL is defined"

End

#else

Function foo()
print "This is foo when MYSYMBOL is NOT defined"

End

#endif // MYSYMBOL

// This works in Igor Pro 6.20 or later
#if defined(MACINTOSH)

<conditionally compiled code here>
#endif

// This works in Igor Pro 6.00 or later
#if CmpStr("Macintosh",IgorInfo(2)) == 0

<conditionally compiled code here>
#endif

Function Errors
During function compilation, Igor checks and reports syntactic errors and errors in parameter declarations.
The normal course of action is to edit the offending function and try to compile again.

Symbol Automatically Predefined If

MACINTOSH The Igor application is a Macintosh application.

WINDOWS The Igor application is a Windows application.

IGOR64 The Igor application is a 64-bit application.

Chapter IV-3 — User-Defined Functions

IV-92

Runtime errors in functions are not reported on the spot. Instead, Igor saves information about the error
and function execution continues. Igor presents an error dialog only after the last function ceases execution
and Igor returns to the idle state. If multiple runtime errors occur, only the first is reported.

When a runtime error occurs, after function execution ends, Igor will present a dialog:

In this example, we tried to pass to the AppendToGraph function a reference to a wave that did not exist.
To find the source of the error, you should use Igor’s debugger and set it to break on error (see Debugging
on Error on page IV-189 for details).

Sophisticated programmers may want to detect and deal with runtime errors on their own. The GetRTError
function (see page V-246) can be used to check if an error occurred, and optionally to clear the error so that
Igor doesn’t report it.

Coercion in Functions
The term “coercion” means the conversion of a value from one numeric precision or numeric type to
another. Consider this example:
Function foo(awave)

WAVE/C awave

Variable/C var1

var1= awave[2]*cmplx(2,3)
return real(var1)

End

The parameter declaration specifies that awave is complex. You can pass any kind of wave you like but it
will be coerced into complex before use. For example, if you pass a real valued integer wave the value at
point index 2 will be converted to double precision and zero will be used for the imaginary part.

Operations in Functions
You can call most operations from user-defined functions. To provide this capability, WaveMetrics had to
create special code for each operation. Some operations weren’t worth the trouble or could cause problems.

Click to stop the scan and bring up the
procedure window containing the error.

Retry is available for macro errors
but not for function errors.

Click to stop
compilation.

Button appears if the
Igor Help file has
additional information
on this error.

Chapter IV-3 — User-Defined Functions

IV-93

If an operation can’t be invoked from a function, an error message is displayed when the function is com-
piled. The operations that can’t be called from a function are:

If you need to invoke one of these operations from a user-defined function, use the Execute operation. See
The Execute Operation on page IV-180.

Note that the ModifyGraph, ModifyTable and ModifyLayout operations can be called from a function.

Also, you can use the NewLayout operation (see page V-496) instead of Layout, the AppendLayoutObject
operation (see page V-27) instead of AppendToLayout, and the RemoveLayoutObjects operation (see page
V-588) instead of RemoveFromLayout.

External operations implemented by old XOPs also can not be called directly from user-defined functions.
Again, the solution is to use the Execute operation.

Updates During Function Execution
An update is an action that Igor performs which consists of:
• Reexecuting formulas for dependent objects whose antecedents have changed (see Chapter IV-9,

Dependencies);
• Redrawing graphs and tables which display waves that have changed;
• Redrawing page layouts containing graphs, tables, or annotations that have changed;
• Redrawing windows that have been uncovered.

When no procedure is executing, Igor continually checks whether an update is needed and does an update
if necessary.

When a function is executing, Igor does no automatic updates at all. However, you can force an update by
calling the DoUpdate operation (see page V-136). Call DoUpdate if you don’t want to wait for the next auto-
matic update which will occur when function execution finishes.

Aborting Functions
There are two ways to prematurely stop procedure execution: a user abort or a programmed abort. Both
stop execution of all procedures, no matter how deeply nested.

On Macintosh, you can abort procedure execution by pressing Command-period. On Windows, press
Ctrl+Break or click the Abort button in the status bar. You may need to hold the keys down for a while because
Igor looks at the keyboard periodically and if you don’t press the keys long enough, Igor will not see them.

A user abort does not directly return. Instead it sets a flag that stops loops from looping and then returns
using the normal calling chain. For this reason some code will still be executed after an abort but execution
should stop quickly. This behavior releases any temporary memory allocations made during execution.

A programmed abort occurs during procedure execution according to conditions set by the programmer.

The simplest programmed abort occurs when the Abort operation (see page V-17) is executed. Here is an
example:
if(numCells > 10)

Abort "Too many cells! Quitting."
endif
// code here doesn't execute if numCells > 10

AppendToLayout Layout Modify OpenProc

PrintGraphs Quit See Also Stack

StackWindows Tile TileWindows

Chapter IV-3 — User-Defined Functions

IV-94

Other programmed aborts can be triggered using the AbortOnRTE and AbortOnValue flow control key-
words. The try-catch-endtry flow control construct can be used for catching and testing for aborts. See Flow
Control for Aborts on page IV-38 for more details.

Legacy Code Issues
This section discusses changes that have occurred in Igor programming over the years. If you are writing
new code, you don’t need to be concerned with these issues. If you are working with existing code, you may
run into some of them.

If you are just starting to learn Igor programming, you have enough to think about already, so it is a good
idea to skip this section. Once you are comfortable with the modern techniques described above, come back
and learn about these antiquated techniques.

Old-Style Comments and Compatibility Mode
As of Igor Pro 4.0, the old comment character, a vertical bar (|), has been replaced and should no longer be
used when writing new procedures. In Igor Pro 4.0 and later, the | character is used as the bitwise OR oper-
ator (see Operators on page IV-5).

In order to run old procedures which use | as the comment symbol, Igor supports a compatibility mode.
This mode is a property of an experiment. When the current experiment is in compatibility mode, Igor inter-
prets | as a comment symbol. Normally, when the current experiment is not in compatibility mode, Igor
interprets | as bitwise OR.

You put the current experiment in compatibility mode by executing the following on the command line:

Silent 100

You take the current experiment out of compatibility mode by executing:
Silent 101

When you execute these commands, Igor automatically recompiles all procedure files in the current exper-
iment using the new mode.

All experiments created pre-Igor 4 are automatically in compatibility mode until you update them and their
procedures.

We strongly recommend that you update old experiments and procedures so that you don’t need to use
compatibility mode. Until you do so, your old experiments will not work with new procedure files that use
| as bitwise OR. Here are the steps to update an experiment and its procedures:

1. In each old procedure file, replace each | symbol that is used to introduce a comment with //.
Use Edit→Find and Edit→Find Same to find each occurrence of |. Do not do a mass replace because
you may inadvertently change a | symbol used in the old bitwise OR operator (%|, which is still
supported) or in a string.

2. On the command line, take the experiment out of compatibility mode by executing:
Silent 101
Igor will recompile procedures.

3. If there are any remaining obsolete uses of |, Igor will display a compile error dialog. Fix the error
and recompile the procedures until you get no more errors.

If you create procedure files that are used by other people (either in your group or for public use) and you
want to use the new logic operations, such as | (bitwise OR) or || (logical OR), which require compatibility
mode to be off (Silent 101), then you can specify
#pragma rtGlobals=2

in place of the normal rtGlobals=1.

Chapter IV-3 — User-Defined Functions

IV-95

If your procedure file is included in an experiment running in compatibility mode (Silent 100) then an
alert dialog will be presented that will allow the user to turn compatibility mode off. However, keep in
mind that when the procedures are recompiled in the new mode, the user’s other procedures will generate
errors if they use the obsolete comment symbol.

Text After Flow Control
Prior to Igor Pro 4, Igor ignored any extraneous text after a flow control statement. Such text was an error,
but Igor did not detect it.

Igor now checks for extra text after flow control statements. When found, a dialog is presented asking the
user if such text should be considered an error or not. The answer lasts for the life of the Igor session.

Because previous versions of Igor ignored this extra text, it may be common for existing procedure files to have
this problem. The text may in many cases simply be a typographic error such as an extra closing parenthesis:

if(a==1))

In other cases, the programmer may have thought they were creating an elseif construct:
else if(a==2)

even though the “if(a==2)” part was simply ignored. In some cases this may represent a bug in the program-
mer’s code but most of the time it is asymptomatic.

Global Variables Used by Igor Operations
The section Local Variables Used by Igor Operations on page IV-47 explains that certain Igor operations
create and set certain special local variables. That is true if the procedure file uses runtime lookup of globals
(rtGlobals=1 is in effect). In very old procedure files that use the obsolete direct reference method of access-
ing variables, the operations create and set global variables.

Also explained in Local Variables Used by Igor Operations on page IV-47 is the fact that some operations,
such as CurveFit, look for certain special local variables which modify the behavior of the operations. For his-
toric reasons, operations that look for special variables will look for global variables in the current data folder
if the local variable is not found. This is true whether rtGlobals=1 is in effect or not. This behavior is unfortu-
nate and may be removed from Igor some day. New programming should use local variables for this purpose.

Direct Reference to Globals
The section Accessing Global Variables and Waves on page IV-50 explains how to access globals from a
procedure file that uses runtime lookup of globals (rtGlobals=1 is in effect). This section explains accessing
globals in very old procedure files that use the obsolete direct reference method of accessing variables.

Prior to Igor Pro 3, Igor required that globals referenced from functions had to exist when the function was
compiled. This was called the “direct reference” method of accessing globals. In Igor Pro 3, a new method,
called the “runtime lookup” method, was added.

In a particular procedure file, the presence of the statement:
#pragma rtGlobals = 1

specifies that the file uses the runtime lookup method. If this statement is absent, or if the number used is
0 instead of the usual 1, the file uses the old direct reference method.

All new programming should use the runtime lookup method and consequently all new procedure files
should contain the rtGlobals pragma as shown above.

Future versions of Igor may remove the old method. Therefore Igor programmers should modify old pro-
cedure files to use it.

This section explains the old method. It is of interest only if you need to work with old files.

Chapter IV-3 — User-Defined Functions

IV-96

To compile a direct reference to a global, the global must exist at compile time. There are three ways to meet
this requirement:
1. Create the global from the command line before compiling the procedures.
2. Declare the global in a function before the first use of the global.
3. Let Igor automatically create the global.

Method 1 works for waves, numeric variables and string variables. However, methods 2 and 3 work for
numeric and string variables only, not for waves.

To use method 1, execute a Make, Variable, or String command from the command line before compiling
procedures that refer to the global. This technique is not good for use with a separate utility procedure file
because you would need to remember to create the globals each time you opened the file.

To use method 2, create a function at the top of the procedure file that declares all of the global variables
used in the procedure file. For example:
#pragma rtGlobals=0 // Use old direct reference method

Function InitFilterProcGlobals()
Variable/G gCutoffFrequency, gFilterType
String/G gFilterErrorMessage

gCutoffFrequency = 1.0
gFilterType = 0
gFilterErrorMessage = ""

End

This method works because, with rtGlobals=0, Igor creates the declared global variables and strings at
compile time. When Igor compiles the Variable/G and String/G declarations, it creates the globals right then
and there. Thus, the globals are guaranteed to exist when referenced later in this function or in any other
function compiled after this function.

Although the globals are created at compile time, they will have default values (0 for numeric globals, "" for
string globals) until the function actually runs. Compile-time declaration creates the globals but does not
set their initial values.

Method number 3 occurs automatically when you compile, with rtGlobals=0, an operation (e.g., WaveStats)
that returns results via global variables. Therefore the following will compile without error:
#pragma rtGlobals=0 // Use old direct reference method

Function WaveStdDev(w)
WAVE w

WaveStats/Q w
return V_sdev

End

V_sdev is one of many global variable created by the WaveStats operation at compile time (if rtGlobals=0
is in effect) but set to a value at runtime. Thus, when you compile WaveStats in a function, Igor creates these
global variables.

By default (if a given procedure file contains no rtGlobals statement), rtGlobals=0 is in effect. The “#pragma
rtGlobals=1” statement affects only the procedure file in which it appears. If you enter it in your main pro-
cedure window, it will not affect any other included or explicitly opened procedure files. Use this to mod-
ernize one procedure file at a time.

The rtGlobals pragma can appear anywhere in the procedure file, even inside a function, and it can appear
more than once. However, it should be sufficient in nearly all cases to have just one rtGlobals pragma near
the beginning of the file.

Chapter IV-3 — User-Defined Functions

IV-97

Here are the steps for converting a procedure file to use the runtime lookup method for accessing globals:
1. Insert the #pragma rtGlobals=1 statement, with no indentation, at or near the top of the procedure

in the file.
2. Click the Compile button to compile the procedures.
3. If you use direct reference to access a global, Igor will display an error dialog indicating the line on

which the error occurred. Add an NVAR, SVAR or WAVE reference.
4. If you encountered an error in step 3, return to step 2.

Chapter IV-3 — User-Defined Functions

IV-98

Chapter

IV-4
IV-4Macros

Overview.. 100
Comparing Macros and Functions ... 100
Macro Syntax ... 102

The Defining Keyword ... 102
The Procedure Name... 102
The Procedure Subtype... 102
The Parameter List and Parameter Declarations... 102
Local Variable Declarations.. 103
Body Code... 103

Conditional Statements in Macros ... 104
Loops in Macros .. 104
Return Statement in Macros .. 104
Invoking Macros ... 104
Using $ in Macros ... 105
Waves as Parameters in Macros ... 105
The Missing Parameter Dialog.. 105
Macro Errors .. 106
The Silent Option .. 106
The Slow Option ... 106
Accessing Variables Used by Igor Operations.. 107
Updates During Macro Execution.. 107
Aborting Macros ... 107
Converting Macros to Functions .. 108

Chapter IV-4 — Macros

IV-100

Overview
When we first created Igor, some time in the last millennium, it supported automation through macros. The
idea of the macro was to allow users to collect commands into conveniently callable routines. Igor inter-
preted and executed each command in a macro as if it were entered in the command line.

WaveMetrics soon realized the need for a faster, more robust technology that would support full-blown
programming. This led to the addition of user-defined functions. Because functions are compiled, they
execute much more quickly. Also, compilation allows Igor to catch syntactic errors sooner. Functions have
a richer set of flow control capabilities and support many other programming refinements. Over time, the
role of macros has diminished in favor of functions.

Macros are still supported and there are still a few uses in which they are preferred. When you close a graph,
table, page layout, or control panel, Igor offers to automatically create a window recreation macro which you can
later run to resurrect the window. You can also ask Igor to automatically create a window style macro using the
Window Control dialog. The vast majority of programming, however, should be done using functions.

The syntax and behavior of macros are similar to the syntax and behavior of functions, but the differences can
be a source of confusion for someone first learning Igor programming. If you are just starting, you can safely
defer reading the rest of this chapter until you need to know more about macros, if that time ever comes.

Comparing Macros and Functions
Like functions, macros are created by entering text in procedure windows. Each macro has a name, a
parameter list, parameter declarations, and a body. Unlike functions, a macro has no return value.

Macros and functions use similar syntax. Here is an example of each. To follow along, open the Procedure
window (Windows menu) and type in the macro and function definitions.
Macro MacSayHello(name)

String name

Print "Hello "+name
End

Function FuncSayHello(name)
String name

Print "Hello "+name
End

Now click in the Command window to bring it to the front. Use this to type commands into the command
line and to compile the Procedure window.

If you execute the following on the command line
MacSayHello("John"); FuncSayHello("Sue")

you will see the following output printed in the history area:
Hello John
Hello Sue

This example may lead you to believe that macros and functions are nearly identical. In fact, there are a lot
of differences. The most important differences are:
• Macros automatically appear in the Macros menu. Functions must be explicitly added to a menu, if

desired, using a menu definition.
• Most errors in functions are detected when procedures are compiled. Most errors in macros are

detected when the macro is executed.
• Functions run a lot faster than macros.
• Functions support wave parameters, for loops and switches while macros do not.

Chapter IV-4 — Macros

IV-101

• Functions have a richer syntax.

If you look in the Macros menu, you will see MacSayHello but not FuncSayHello.

If you execute “FuncSayHello()” on the command line you will see an error dialog. This is because you
must supply a parameter. You can execute, for example:
FuncSayHello("Sam")

On the other hand, if you run MacSayHello from the Macros menu or if you execute “MacSayHello()”
on the command line, you will see a dialog that you use to enter the name before continuing:

This is called the “missing parameter dialog”. It is described under The Missing Parameter Dialog on page
IV-105. Functions can display a similar dialog, called a simple input dialog, with a bit of additional
programming.

Now try this: In both procedures, change “Print” to “xPrint”. Then click in the command window. You will
see a dialog like this:

Click the Edit Procedure button and change “xPrint” back to “Print” in the function but not in the macro.
Then click in the command window.

Notice that no error was reported once you fixed the error in the function. This is because only functions
are compiled and thus only functions have their syntax completely checked at compile time. Macros are
interpreted and most errors are found only when the line in the procedure window in which they occur is
executed. To see this, run the macro by executing “MacSayHello("Sam")” on the command line.

You will then see this dialog:

Notice the box around the line containing the error. This box means you can edit its contents. If you change
“xPrint” to “Print” in this dialog you will see that the Retry button becomes enabled. If you click this button,

Chapter IV-4 — Macros

IV-102

you can continue execution of the macro. When the macro finishes, take a look at the Procedure window.
You will notice that the correction you made in the dialog was put in the Procedure window and your “bro-
ken” macro is now fixed.

Macro Syntax
Here is the basic syntax for macros.
<Defining keyword> <Name> (<Input parameter list>) [:<Subtype>]

<Input parameter declarations>

<Local variable declarations>

<Body code>
End

The Defining Keyword
<Defining keyword> is one of the following:

The Window keyword is used by Igor when it automatically creates a window recreation macro. Except in
rare cases, you will not write window recreation macros but instead will let Igor create them automatically.

The Procedure Name
The names of macros must follow the standard Igor naming conventions. Names can consist of up to 31
characters. The first character must be alphabetic while the remaining characters can include alphabetic and
numeric characters and the underscore character. Names must not conflict with the names of other Igor
objects, functions or operations. Names in Igor are case insensitive.

The Procedure Subtype
You can identify procedures designed for specific purposes by using a subtype. Here is an example:
Proc ButtonProc(ctrlName) : ButtonControl

String ctrlName

Beep
End

Here, “ : ButtonControl” identifies a macro intended to be called when a user-defined button control
is clicked. Because of the subtype, this macro is added to the menu of procedures that appears in the Button
Control dialog. When Igor automatically generates a procedure it generates the appropriate subtype. See
Procedure Subtypes on page IV-183 for details.

The Parameter List and Parameter Declarations
The parameter list specifies the name for each input parameter. Macros have a limit of 10 parameters.

The parameter declaration must declare the type of each parameter using the keywords Variable or
String. If a parameter is a complex number, it must be declared Variable/C.

Note: There should be no blank lines or other commands until after all the input parameters are
defined. There should be one blank line after the parameter declarations, before the rest of the
procedure. Igor will report errors if these conditions are not met.

Defining Keyword Creates Macro In
Window Windows menu.
Macro Macros menu.
Proc —

Chapter IV-4 — Macros

IV-103

Variable and string parameters in macros are always passed to a subroutine by value.

When macros are invoked with some or all of their input parameters missing, Igor displays a missing
parameter dialog to allow the user to enter those parameters. In the past this has been a reason to use
macros. However, as of Igor Pro 4, functions can present a similar dialog to fetch input from the user, as
explained under The Simple Input Dialog on page IV-126.

Local Variable Declarations
The input parameter declarations are followed by the local variable declarations if the macro uses local vari-
ables. Local variables exist only during the execution of the macro. They can be numeric or string and are
declared using the Variable or String keywords. They can optionally be initialized. Here is an example:
Macro Example(p1)

Variable p1

// Here are the local variables
Variable v1, v2
Variable v3=0
Variable/C cv1=cmplx(0,0)
String s1="test", s2="test2"

<Body code>
End

If you do not supply explicit initialization, Igor automatically initializes local numeric variables with the
value zero and local string variables with the value "".

The name of a local variable is allowed to conflict with other names in Igor although they must be unique
within the macro. Clearly if you create a local variable named “sin” then you will be unable to use Igor’s
built-in sin function within the macro.

You can declare a local variable in any part of a macro with one exception. If you place a variable declaration
inside a loop in a macro then the declaration will be executed multiple times and Igor will generate an error
since local variable names must be unique.

Body Code
The local variable declarations are followed by the body code. This table shows what can appear in body
code of a macro.

What Allowed in Macros? Comments

Assignment statements Yes Includes wave, variable and string assignments.
Built-in operations Yes
External operations Yes
External functions Yes
Calls to user functions Yes
Calls to macros Yes
if-else-endif Yes
if-elseif-endif No
switch-case-endswitch No
strswitch-case-endswitch No
try-catch-endtry No
structures No
do-while Yes
for-endfor No

Chapter IV-4 — Macros

IV-104

Conditional Statements in Macros
The conditional if-else-endif statement is allowed in macros. It works the same as in functions. See If-Else-
Endif on page IV-31.

Loops in Macros
The do-while loop is supported in macros. It works the same as in functions. See Do-While Loop on page IV-36.

Return Statement in Macros
The return keyword immediately stops executing the current macro. If it was called by another macro,
control returns to the calling macro.

A macro has no return value so return is used just to prematurely quit the macro. Most macros will have
no return statement.

Invoking Macros
There are several ways to invoke a macro:
• From the command line
• From the Macros, Windows or user-defined menus
• From another macro
• From a button or other user control

The menu in which a macro appears, if any, is determined by the macro’s type and subtype.

This table shows how a macro’s type determines the menu that Igor puts it in.

If a macro has a subtype, it may appear in a different menu. This is described under Procedure Subtypes
on page IV-183. You can put macros in other menus as described in Chapter IV-5, User-Defined Menus.

You can not directly invoke a macro from a user function. You can invoke it indirectly, using the Execute
operation (see page V-161).

Comments Yes Comments start with //.
break Yes Used in loop statements.
continue No
default No
return Yes, but with no

return value.

Macro Type Defining Keyword Menu
Macro Macro Macros menu
Window Macro Window Windows menu
Proc Proc —

What Allowed in Macros? Comments

Chapter IV-4 — Macros

IV-105

Using $ in Macros
As shown in the following example, the $ operator can create references to global numeric and string vari-
ables as well as to waves.

Macro MacroTest(vStr, sStr, wStr)
String vStr, sStr, wStr

$vStr += 1
$sStr += "Hello"
$wStr += 1

End

Variable/G gVar = 0; String/G gStr = ""; Make/O/N=5 gWave = p
MacroTest("gVar", "gStr", "gWave")

See String Substitution Using $ on page IV-15 for additional examples using $.

Waves as Parameters in Macros
The only way to pass a wave to a macro is to pass the name of the wave in a string parameter. You then use
the $ operator to convert the string into a wave reference. For example:
Macro PrintWaveStdDev(w)

String w

WaveStats/Q $w
Print V_sdev

End

Make/O/N=100 test=gnoise(1)
Print NamedWaveStdDev("test")

The Missing Parameter Dialog
When a macro that is declared to take a set of input parameters is executed with some or all of the param-
eters missing, it displays a dialog in which the user can enter the missing values. For example:
Macro MacCalcDiag(x,y)

Variable x=10
Prompt x, "Enter X component: " // Set prompt for y param
Variable y=20
Prompt y, "Enter Y component: " // Set prompt for x param

Print "diagonal=",sqrt(x^2+y^2)
End

If invoked from the command line or from another macro with parameters missing, like this:

MacCalcDiag()

Igor displays the Missing Parameter dialog in which the parameter values can be specified.

The Prompt statements are optional. If they are omitted, the variable name is used as the prompt text.

There must be a blank line after the set of input parameter and prompt declarations and there must not be
any blank lines within the set.

Chapter IV-4 — Macros

IV-106

The missing parameter dialog supports the creation of pop-up menus as described under Pop-Up Menus
in Simple Dialogs on page IV-127. One difference is that in a missing parameter dialog, the menu item list
can be continued using as many lines as you need. For example:
Prompt color, "Select Color", popup "red;green;blue;"
"yellow;purple"

Macro Errors
Igor can find errors in macros at two times:
• When it scans the macros
• When it executes the macros

After you modify procedure text, scanning occurs when you activate a nonprocedure window, click the
Compile button or choose Compile from the Macros menu. At this point, Igor is just looking for the names
of procedures. The only errors that it detects are name conflicts and ill-formed names. If it finds such an
error, it displays a dialog that you use to fix it.

Igor detects other errors when the macro executes. Execution errors may be recoverable or nonrecoverable.
If a recoverable error occurs, Igor puts up a dialog in which you can edit the erroneous line.

You can fix the error and retry or quit macro execution.

If the error is nonrecoverable, you get a similar dialog except that you can’t fix the error and retry. This
happens with errors in the parameter declarations and errors related to if-else-endif and do-while structures.

The Silent Option
Normally Igor displays each line of a macro in the command line as it executes the line. This gives you some
idea of what is going on. However it also slows macro execution down considerably. You can prevent Igor
from showing macro lines as they are executed by using the Silent 1 command.

You can use Silent 1 from the command line. It is more common to use it from within a macro. The effect of
the Silent command ends at the end of the macro in which it occurs. Many macros contain the following line:
Silent 1; PauseUpdate

The Slow Option
You can observe the lines in a macro as they execute in the command line. However, for debugging pur-
poses, they often whiz by too quickly. The Slow operation slows the lines down. It takes a parameter which
controls how much the lines are slowed down. Typically, you would execute something like “Slow 10”
from the command line and then “Slow 0” when you are finished debugging.

You can also use the Slow operation from within a macro. You must explicitly invoke “Slow 0” to revert
to normal behavior. It does not automatically revert at the end of the macro from which it was invoked.

Chapter IV-4 — Macros

IV-107

We never use this feature. Instead, we generally use print statements for debugging or we use the Igor sym-
bolic debugger, described in Chapter IV-8, Debugging.

Accessing Variables Used by Igor Operations
A number of Igor’s operations return results via variables. For example, the WaveStats operation creates a
number of variables with names such as V_avg, V_sigma, etc.

When you invoke these operations from the command line, they create global variables in the current data
folder.

When you invoke them from a user-defined function, they create local variables.

When you invoke them from a macro, they create local variables unless a global variable already exists. If
both a global variable and a local variable exist, Igor uses the local variable.

In addition to creating variables, a few operations, such as CurveFit and FuncFit, check for the existence of
specific variables to provide optional behavior. The operations look first for a local variable with a specific
name. If the local variable is not found, they then look for a global variable.

Updates During Macro Execution
An update is an action that Igor performs. It consists of:
• Reexecuting assignments for dependent objects whose antecedents have changed (see Chapter IV-9,

Dependencies);
• Redrawing graphs and tables which display waves that have changed;
• Redrawing page layouts containing graphs, tables, or annotations that have changed;
• Redrawing windows that have been uncovered.

When no procedure is executing, Igor continually checks whether an update is needed and does an update
if necessary.

During macro execution, Igor checks if an update is needed after executing each line. You can suspend
checking using the PauseUpdate operation. This is useful when you want an update to occur when a macro
finishes but not during the course of the macro’s execution.

PauseUpdate has effect only inside a macro. Here is how it is used.
Window Graph0() : Graph

PauseUpdate; Silent 1
Display /W=(5,42,400,250) w0,w1,w2
ModifyGraph gFont="Helvetica"
ModifyGraph rgb(w0)=(0,0,0),rgb(w1)=(0,65535,0),rgb(w2)=(0,0,0)
<more modifies here...>

End

Without the PauseUpdate, Igor would do an update after each modify operation. This would take a long time.

At the end of the macro, Igor automatically reverts the state of update-checking to what it was when this
macro was invoked. You can use the ResumeUpdate operation if you want to resume updates before the
macro ends or you can call DoUpdate to force an update to occur at a particular point in the program flow.
Such explicit updating is rarely needed.

Aborting Macros
There are two ways to prematurely stop macro execution: a user abort or a programmed abort. Both stop
execution of all macros, no matter how deeply nested.

Chapter IV-4 — Macros

IV-108

On Macintosh, you can abort macro execution by pressing Command-period. On Windows, press Ctrl+Break
or click the Abort button in the status bar. You may need to hold the keys down for a while because Igor looks
at the keyboard periodically and if you don’t press the keys long enough, Igor will not see them.

On either platform, you can abort macro execution by choosing Abort Procedure Execution from the
Macros menu.

A user abort does not directly return. What it does is set a flag that stops loops from looping and then returns
using the normal calling chain. For this reason some code will still be executed after an abort but execution
should stop quickly. This behavior releases any temporary memory allocations made during execution.

A programmed abort occurs when the Abort operation is executed. Here is an example:
if(numCells > 10)

Abort "Too many cells! Quitting."
endif
// code here doesn't execute if numCells > 10

Converting Macros to Functions
If you have old Igor procedures written as macros, as you have occasion to revisit them, you can consider
converting them to functions. In most cases, this is a good idea. An exception is if the macros are so complex
that there would be a substantial risk of introducing bugs. In this case, it is better to leave things as they are.

If you decide to do the conversion, here is a checklist that you can use in the process.
1. Back up the old version of the procedures.
2. Change the defining keyword from Macro or Proc to Function.
3. If the macro contained Prompt statements, then it was used to generate a missing parameter dialog.

Change it to generate a simple input dialog as follows:
a. Remove the parameters from the parameter list. The old parameter declarations now become

local variable declarations.
b. Make sure that the local variable for each prompt statement is initialized to some value.
c. Add a DoPrompt statement after all of the Prompt statements.
d. Add a test on V_Flag after the DoPrompt statement to see if the user canceled.

4. Look for statements that access global variables or strings and create NVAR and SVAR references
for them.

5. Look for any waves used in assignment statements and create WAVE references for them.
6. Compile procedures. If you get an error, fix it and repeat step 6.

Chapter

IV-5
IV-5User-Defined Menus

Overview.. 110
Menu Definition Syntax ... 111
Built-in Menus That Can Be Extended... 112
Adding a New Main Menu ... 112
Help for User Menus .. 112
Dynamic Menu Items ... 113

Optional Menu Items .. 114
Multiple Menu Items.. 115
Consolidating Menu Items Into a Submenu ... 115
Specialized Menu Item Definitions .. 116

Menu Limits.. 117
Special Characters in Menu Item Strings... 118

Special Menu Characters on Windows... 120
Enabling and Disabling Special Character Interpretation ... 120
Keyboard Shortcuts ... 122
Function Keys... 122

Marquee Menus .. 123
Trace Menus... 123
Popup Contextual Menus .. 123

Chapter IV-5 — User-Defined Menus

IV-110

Overview
You can add your own menu items to many Igor menus by writing a menu definition in a procedure
window. A simple menu definition looks like this:
Menu "Macros"

"Load Data File/1"
"Do Analysis/2"
"Print Report"

End

This adds three items to the Macros menu. If you choose Load Data File or press Command-1 (Macintosh)
or Ctrl+1 (Windows), Igor will execute the procedure LoadDataFile which, presumably, you have written in
a procedure window. The command executed when you select a particular item is derived from the text of
the item. This is an implicit specification of the item’s execution text.

You can also explicitly specify the execution text:
Menu "Macros"

"Load Data File/1", Beep; LoadWave/G
"Do Analysis/2"
"Print Report"

End

Now if you choose Load Data File, Igor will execute “Beep; LoadWave/G”.

When you choose a user menu item, Igor checks to see if there is execution text for that item. If there is, Igor
executes it. If not, Igor makes a procedure name from the menu item string. It does this by removing any
characters that are not legal characters in a procedure name. Then it executes the procedure. For example,
choosing an item that says
"Set Sampling Rate..."

executes the SetSamplingRate procedure.

If a procedure window is the top window and if Option (Macintosh) or Alt (Windows) is pressed when you
choose a menu item, Igor tries to find the procedure in the window, rather than executing it.

A menu definition can add submenus as well as regular menu items.
Menu "Macros"

Submenu "Load Data File"
"Text File"
"Binary File"

End

Submenu "Do Analysis"
"Method A"
"Method B"

End

"Print Report"
End

This adds three items to the Macros menu, two submenus and one regular item. You can nest submenus to
any depth.

There are some limits to the number of menu items that you can add. Igor can handle no more than 100
user-defined main menus and not more than 300 user-defined submenus.

The user-defined menus added by procedure files opened in the current experiment (such as the Example
Experiments menu item in the File menu added by the WMMenus.ipf procedure file in "Igor Pro
Folder/Igor Procedures") count against those limits.

Chapter IV-5 — User-Defined Menus

IV-111

In the Windows version of Igor, there is also a limit of 31 items in a menu, and each special user-defined
menu counts as several user-defined menus or submenus. For example, a "*COLORPOP*" submenu counts
as 6 submenus against the allowed 200. See Specialized Menu Item Definitions on page IV-116.

Menu Definition Syntax
The syntax for a menu definition is:
Menu <Menu title string> [,<menu options>]

[<Menu help strings>]
<Menu item string> [,<menu item flags>] [,<execution text>]
[<Item help strings>]
…
Submenu <Submenu title string>

[<Submenu help strings>]
<Submenu item string> [,<execution text>]
[<Item help strings>]
…

End
End

<Menu title string> is the title of the menu to which you want to add items. Often this will be Macros
but you can also add items to Analysis, Misc and many other built-in Igor menus, including some sub-
menus and the graph marquee and layout marquee menus. If <Menu title string> is not the title of a
built-in menu then Igor creates a new main menu on the menu bar.

<Menu options> are optional comma-separated keywords that change the behavior of the menu. The
allowed keywords are dynamic, hideable, and contextualmenu. For usage, see Dynamic Menu Items
(see page IV-113), HideIgorMenus (see page V-270), and PopupContextualMenu (see page V-554) respec-
tively.

<Menu help strings> specifies the help for the menu title. This is optional. See Help for User Menus
on page IV-112 for details.

<Menu item string> is the text to appear for a single menu item, a semicolon-separated string list to
define Multiple Menu Items (see page IV-115), or Specialized Menu Item Definitions (see page IV-116)
such as a color, line style, or font menu.

<Menu item flags> are optional flags that modify the behavior of the menu item. The only flag currently
supported is /Q, which prevents Igor from storing the executed command in the history area. This is useful
for menu commands that are executed over and over through a keyboard shortcut. This feature was intro-
duced in Igor Pro 5. Using it will cause errors in earlier versions of Igor. Menus defined with the
contextualmenu keyword implicitly set all the menu item flags in the entire menu to /Q; it doesn't matter
whether /Q is explicitly set or not, the executed command is not stored in the history area.

<Execution text> is an Igor command to execute for the menu item. If omitted, Igor makes a procedure
name from the menu item string and executes that procedure. Use "" to prevent command execution (useful
only with PopupContextualMenu/N).

<Item help strings> specifies the help for the menu item. This is optional. It can appear after a main
menu item or after a submenu item. See Help for User Menus on page IV-112 for details.

The Submenu keyword introduces a submenu with <Submenu title string> as its title. The submenu
continues until the next End keyword.

<Submenu item string> acts just like <Menu item string>.

Chapter IV-5 — User-Defined Menus

IV-112

Built-in Menus That Can Be Extended
Here are the titles of built-in Igor menus to which you can add items.

These menu titles must appear in double quotes when used in a menu definition.

Use these menu titles to identify the menu to which you want to append items even if you are working with
a version of Igor translated into a language other than English.

The GraphMarquee, LayoutMarquee, TracePopup, and AllTracesPopup menus are contextual menus. See
Marquee Menus on page IV-123 and Trace Menus on page IV-123.

All other Igor menus, including menus added by XOPs, can not accept user-defined items.

The HideIgorMenus operation (see page V-270) and the ShowIgorMenus operation (see page V-648) hide
or show most of the built-in main menus (not the Marquee and Popup menus). User-defined menus that
add items to built-in menus are normally not hidden or shown by these operations. When a built-in menu
is hidden, the user-defined menu items create a user-defined menu with only user-defined items. For exam-
ple, this user-defined menu:
Menu "Table"

"Append Columns to Table...", DoIgorMenu "Table", "Append Columns to Table"
End

will create a Table menu with only one item in it after the HideIgorMenus "Table" command is executed.

To have your user-defined menu items hidden along with the built-in menu items, add the hideable
keyword after the Menu definition:
Menu "Table", hideable

"Append Columns to Table...", DoIgorMenu "Table", "Append Columns to Table"
End

Adding a New Main Menu
You can add an entirely new menu to the main menu bar by using a menu title that is not used by Igor. For
example:
Menu "Test"

"Load Data File"
"Do Analysis"
"Print Report"

End

Help for User Menus
You can specify help for the menus and menu items that you define. On Mac OS X, the help text appears if
you enable Igor Tips through the Help menu. On Windows, Igor uses the help text to provide status line help.

Menu "Test"
help = {"This is the help for the Test menu."}

"Load Data File"
help = {"This is the help for the Load Data File item."}

"Do Analysis"
help = {"This is the help for the Do Analysis item."}

Add Controls AllTracesPopup Analysis Append to Graph Control
Data Edit File Graph GraphMarquee
Help Layout LayoutMarquee Load Waves Macros
Misc Statistics New Notebook Open File
Panel Procedure Save Waves Table TracePopup

Chapter IV-5 — User-Defined Menus

IV-113

"Print Report"
help = {"This is the help for the Print Report item."}

End

The first help line specifies the help text for the menu title. The subsequent lines specify the help text to
appear for the respective menu items.

On Macintosh, help does not appear for menu and submenu titles. It does appear over menu and submenu
items.

Because of technical difficulties, help for user-defined items in the Edit menu will not appear. Also, on Mac-
intosh, help for user-defined items in the Help menu will not appear.

The full form of the menu help specification is:
help = {"String 1", "String 2", "String 3", "String 4"}

String 1 supplies the text to appear when the menu or menu item is enabled. String 2 supplies the text to
appear when the menu or menu item is disabled. String 3 supplies the text to appear when the menu or
menu item is checked. String 4 supplies the text to appear when the menu or menu item is marked with a
marker other than check.

If you omit one or more of these strings, Igor uses the text for string 1 for the corresponding state. Thus, the
following are equivalent:
help = {"Test 1", "Test 2", "Test 1", "Test 1"}
help = {"Test 1", "Test 2"}

In most cases, it will be sufficient to provide just the text for the enabled state since you will most likely not
go to the trouble of enabling, disabling or checking your menu items.

Dynamic Menu Items
In the examples shown so far all of the user-defined menu items are static. Once defined, they never change.
This is sufficient for the vast majority of cases and is by far the easiest way to define menu items.

Igor also provides support for dynamic user-defined menu items. A dynamic menu item changes depending
on circumstances. The item might be enabled under some circumstances and disabled under others. It might
be checked or deselected. Its text may toggle between two states (e.g. “Show Tools” and “Hide Tools”).

Because dynamic menus are much more difficult to program than static menus and also slow down Igor’s
response to a menu-click, we recommend that you keep your use of dynamic menus to a minimum. The
effort you expend to make your menu items dynamic may not be worth the time you spend to do it.

For a menu item to be dynamic, you must define it using a string expression instead of the literal strings
used so far. Here is an example.
Function DoAnalysis()

Print "Analysis Done"
End

Function ToggleTurboMode()
Variable prevMode = NumVarOrDefault("root:gTurboMode", 0)
Variable/G root:gTurboMode = !prevMode

End

Function/S MacrosMenuItem(itemNumber)
Variable itemNumber

Variable turbo = NumVarOrDefault("root:gTurboMode", 0)

if (itemNumber == 1)
if (strlen(WaveList("*", ";", ""))==0) // any waves exist?

Chapter IV-5 — User-Defined Menus

IV-114

return "(Do Analysis" // disabled state
else

return "Do Analysis" // enabled state
endif

endif

if (itemNumber == 2)
if (turbo)

return "!"+num2char(18)+"Turbo" // Turbo with a check
else

return "Turbo"
endif

endif
End

Menu "Macros", dynamic
MacrosMenuItem(1)
help= {"Do analysis", "Not available because there are no waves."}

MacrosMenuItem(2), /Q, ToggleTurboMode()
help= {"When checked, turbo mode is on."}

End

In this example, the text for the menu item is computed by the MacrosMenuItem function. It computes text
for item 1 and for item 2 of the menu. Item 1 can be enabled or disabled. Item 2 can be checked or unchecked.

The dynamic keyword specifies that the menu definition contains a string expression that needs to be
reevaluated each time the menu item is drawn. This rebuilds the user-defined menu each time the user
clicks in the menu bar. Under the current implementation, all user menus are rebuilt each time the user
clicks in the menu bar if any user-defined menu is declared dynamic. If you use a large number of user-
defined items, the time to rebuild the menu items may be noticeable.

There is another technique for making menu items change. You define a menu item using a string expres-
sion rather than a literal string but you do not declare the menu dynamic. Instead, you call the BuildMenu
operation whenever you need the menu item to be rebuilt. Here is an example:
Function ToggleItem1()

String item1Str = StrVarOrDefault("root:MacrosItem1Str","On")
if (CmpStr(item1Str,"On") == 0) // Item is now "On"?

String/G root:MacrosItem1Str = "Off"
else

String/G root:MacrosItem1Str = "On"
endif
BuildMenu "Macros"

End

Menu "Macros"
StrVarOrDefault("root:MacrosItem1Str","On"), /Q, ToggleItem1()

End

Here, the menu item is controlled by the global string variable MacrosItem1Str. When the user chooses the menu
item, the ToggleItem1 function runs. This function changes the MacrosItem1Str string and then calls BuildMenu,
which rebuilds the user-defined menu the next time the user clicks in the menu bar. Under the current imple-
mentation, Igor will rebuild all user-defined menus if BuildMenu is called for any user-defined menu.

Optional Menu Items
A dynamic user-defined menu item disappears from the menu if the menu item string expression evaluates to
""; the remainder of the menu definition line is then ignored. This makes possible a variable number of items
in a user-defined menu list. This example adds a menu listing the names of up to 8 waves in the current data
folder. If the current data folder contains less than 8 waves, then only those that exist are shown in the menu:

Chapter IV-5 — User-Defined Menus

IV-115

Menu "Waves", dynamic
WaveName("",0,4), DoSomething($WaveName("",0,4))
WaveName("",1,4), DoSomething($WaveName("",1,4))
WaveName("",2,4), DoSomething($WaveName("",2,4))
WaveName("",3,4), DoSomething($WaveName("",3,4))
WaveName("",4,4), DoSomething($WaveName("",4,4))
WaveName("",5,4), DoSomething($WaveName("",5,4))
WaveName("",6,4), DoSomething($WaveName("",6,4))
WaveName("",7,4), DoSomething($WaveName("",7,4))

End

Function DoSomething(w)
Wave/Z w

if(WaveExists(w))
Print "DoSomething: wave's name is "+NameOfWave(w)

endif
End

This works because WaveName returns "" if the indexed wave doesn’t exist.

Note that each potential item must have a menu definition line that either appears or disappears.

Multiple Menu Items
A menu item string that contains a semicolon-separated “string list” (see StringFromList on page V-760)
generates a menu item for each item in the list. For example:

Menu "Multi-Menu"
"first item;second item;", DoItem()

End

Multi-Menu will be a two-item menu. When either item is selected the DoItem procedure is called.

This begs the question: How does the DoItem procedure know which item was selected? The answer is that
DoItem must call the GetLastUserMenuInfo operation (see page V-240) and examine the appropriate
returned variables, usually V_value (the selected item’s number, 1 for the first item, 2 for the second, etc.)
or S_Value (the selected item’s text).

The string list can be dynamic, too. The above "Waves" example can be rewritten to handle an arbitrary
number of waves (maximum 31 on Windows) using this definition:

Menu "Waves", dynamic
WaveList("*",";",""), DoItem()

End

Function DoItem()
GetLastUserMenuInfo // sets S_value, V_value, etc.
WAVE/Z w= $S_value
if(WaveExists(w))

Print "The wave's name is "+NameOfWave(w)
endif

End

Consolidating Menu Items Into a Submenu
It is common to have many utility procedure files open at the same time. Each procedure file could add menu
items which would clutter Igor’s menus. When you create a utility procedure file that adds multiple menu
items, it is usually a good idea to consolidate all of the menu items into one submenu. Here is an example.

Chapter IV-5 — User-Defined Menus

IV-116

Let’s say we have a procedure file full of utilities for doing frequency-domain data analysis and that it con-
tains the following:
Function ParzenDialog()

…
End

Function WelchDialog()
…

End

Function KaiserDialog()
…

End

We can consolidate all of the menu items into a single submenu in the Analysis menu:
Menu "Analysis"

Submenu "Windows"
"Parzen…", ParzenDialog()
"Welch…", WelchDialog()
"Kaiser…", KaiserDialog()

End
End

Specialized Menu Item Definitions
A menu item string that contains certain special values adds a specialized menu such as a color menu.

Only one specialized menu item string is allowed in each menu or submenu, it must be the first item, and
it must be the only item.

Menu Item String Result

"*CHARACTER* "Character menu, no character is initially selected, font is Geneva, font
size is 12. See Menu Limits on page IV-117 for *CHARACTER* menu
limitations.

"*CHARACTER*(Symbol) "Character menu of Symbol font.

"*CHARACTER*(Symbol,36) "Character menu of Symbol font in 36 point size.

"*CHARACTER*(,36) "Character menu of Geneva font in 36 point size.

"*CHARACTER*(Symbol,36,p) "Character menu of Symbol font in 36 point size, initial character is p (π).

"*COLORTABLEPOP* "Color table menu, initial table is Grays.

"*COLORTABLEPOP*(YellowHot) "Color table menu, initial table is YellowHot. See CTabList on page
V-90 for a list of color tables.

"*COLORTABLEPOP*(YellowHot,1) "Color table menu with the colors drawn reversed.

"*COLORPOP* "Color menu, initial color is black.

"*COLORPOP*(0,65535,0) "Color menu, initial color is green.

"*FONT* "Font menu, no font is initially selected, does not include “default” as a font
choice. See Menu Limits on page IV-117 for *FONT* menu limitations.

"*FONT*(Arial) "Font menu, Arial is initially selected.

"*FONT*(Arial,default) "Font menu with Arial initially selected and including “default” as a
font choice.

"*LINESTYLEPOP* "Line style menu, no line style is initially selected.

Chapter IV-5 — User-Defined Menus

IV-117

To retrieve the selected color, line style, etc., the execution text must be a procedure that calls the GetLas-
tUserMenuInfo operation (see page V-240). Here’s an example of a color submenu implementation:
Menu "Main", dynamic

"First Item", /Q, HandleFirstItem()
Submenu "Color"

CurrentColor(), /Q, SetSelectedColor() // must be first item
// can't add items here

End
"Third Item", /Q, HandleThirdItem()

End

Function/S CurrentColor()
Variable/G root:red, root:green, root:blue
NVAR red= root:red
NVAR green= root:green
NVAR blue= root:blue
String menuText
sprintf menuText, "*COLORPOP*(%d,%d,%d)", red, green, blue
return menuText

End

Function SetSelectedColor()
GetLastUserMenuInfo // sets V_red, V_green, V_blue, S_value, V_value
Variable/G root:red= V_red
Variable/G root:green= V_green
Variable/G root:blue= V_blue

Make/O/N=(2,2,3) root:colorSpot
Wave colorSpot= root:colorSpot
colorSpot[][][0]= V_red
colorSpot[][][1]= V_green
colorSpot[][][2]= V_blue

CheckDisplayed/A colorSpot
if(V_Flag == 0)

NewImage colorSpot
endif

End

Menu Limits
Although the maximum font size allowed is 99, the *CHARACTER* menus are limited to about 800 pixels wide
by 600 pixels high and most font sizes above 48 or so don’t increase the font size of the displayed characters.

The *FONT* menus are quite different on Macintosh and Windows.

The Macintosh menu is just a long menu of all the fonts, optionally with “default” at the bottom.

On Windows, menus are limited to 31 items. If you specify just "*FONT*", the resulting menu item has just
a "Font…" item. You can list up to 28 font names including the initially-selected font (the first one listed)
and optionally a divider represented by “-”. “default” can be one of the listed font names. A "Font…" item

"*LINESTYLEPOP*(3) "Line style menu, initial line style is style=3 (coarse dashed line).

"*MARKERPOP* "Marker menu, no marker is initially selected.

"*MARKERPOP*(8) "Marker menu, initial marker is 8 (empty circle).

"*PATTERNPOP* "Pattern menu, no pattern is initially selected.

"*PATTERNPOP*(1) "Pattern menu, initial pattern is 1 (SW-NE light diagonal).

Menu Item String Result

Chapter IV-5 — User-Defined Menus

IV-118

always appears in the menu to select any installed font. Fonts that you list but which are not installed are
ignored and won’t appear in the menu. Those that do appear are sorted alphabetically. For example:
Menu " Font" // (The "Font" menu is restricted, but " Font" isn't)

"*FONT*(Times New Roman,default,Arial,Webdings,Symbol)", DoFont()
End

Function DoFont()
GetLastUserMenuInfo
Print S_value

End

produces a Font menu with “Orange LET” initially selected and all the listed fonts as (sorted) font choices:

On Windows, most specialized menu items count as more than one menu against the limits of 100 user-
defined main menus or 200 user-defined submenus:

Special Characters in Menu Item Strings
You can control some aspects of a menu item by using special characters. These special characters are based
on the behavior of the Macintosh menu manager and are only partially supported on Windows (see Special
Menu Characters on Windows on page IV-120). They affect user-defined menus in the main menu bar. On
Macintosh, but not on Windows, they also affect user-defined pop-up menus in control panels, graphs and
simple input dialogs.

By default, special character interpretation is enabled in user-defined menu bar menus and is disabled in
user-defined control panel, graph and simple input dialog pop-up menus. This is almost always what you
would want. In some cases, you might want to override the default behavior. This is discussed under
Enabling and Disabling Special Character Interpretation on page IV-120.

Menu Kind Effective Number of Menus (Windows only)

"*FONT*" 1

"*LINESTYLEPOP"* 1

"*PATTERNPOP*" 3

"*MARKERPOP*" 2

"*CHARACTER*" 8

"*COLORPOP*" 6

"*COLORTABLEPOP*" 2

Chapter IV-5 — User-Defined Menus

IV-119

This table shows the special characters and their effect if special character interpretation is enabled. See
Special Menu Characters on Windows on page IV-120 for Windows-specific considerations.

Whereas it is standard practice to use a semicolon to separate items in a pop-up menu in a control panel,
graph or simple input dialog, you should avoid using the semicolon in user-defined main-menu-bar
menus. It is clearer if you use one item per line. It is also necessary in some cases (see Menu Definition
Syntax on page IV-111).

If a left angle bracket appears in the item, then the style of type for the item is controlled by the character
following the angle bracket as follows:

For example, “Low Pass<U” makes the item “Low Pass” with an underline.

Character Behavior
/ Creates a keyboard shortcut for the menu item.

The character after the slash defines the item’s keyboard shortcut. For example, "Low
Pass/1" makes the item “Low Pass” with a keyboard shortcut for Command-1
(Macintosh) or Ctrl-1 (Windows). You can also use function keys. To avoid conflicts with
Igor, use the numeric keys and the function keys only. See Keyboard Shortcuts on page
IV-122 and Function Keys on page IV-122 for further details.

Keyboard shortcuts are not supported in the graph marquee and layout marquee menus.
- Creates a divider between menu items.

If a hyphen (minus sign) is the first character in the item then the item will be a disabled
divider. This can be a problem when trying to put negative numbers in a menu. Use a leading
space character to prevent this. The string “(-” also disables the corresponding divider.

(Disables the menu item.

If a left parenthesis appears anywhere in the item then the item will be disabled.
! Adds a mark to the menu item.

If an exclamation point appears in the item, the character after the exclamation point will
appear to the left of the menu item. For example, “Low Pass!*” makes an item “Low
Pass” with an asterisk to the left. To mark an item with a check, use

"Low Pass!" + num2char(18)

This is necessary because the character code (18) for a check mark is a nonprinting control
character that is not displayed correctly in most fonts.

< Controls the typographic style of the item.

This is rarely used since it tends to make the menu too garish.
^ Draws an icon as the menu item.

This is not supported in Igor. Do not use it.
; Separates one menu item from the next.

Example: "Item 1;Item 2"

Character Sequence Makes Item
<B bold
<I italic
<U underlined
<O outlined
<S shadowed

Chapter IV-5 — User-Defined Menus

IV-120

If special character interpretation is disabled, these characters will appear in the menu item instead of
having their special effect. The semicolon character is treated as a separator of menu items even if special
character interpretation is disabled.

Special Menu Characters on Windows
On Windows, these characters are treated as special in menu bar menus but not in pop-up menus in graphs,
control panels, and simple input dialogs. The following table shows which special characters are supported.

Windows does not directly support marking a menu item with anything other than a checkmark. Therefore, on
Windows, when Igor sees the “!” special character, it checks the menu item regardless of which character follows
the “!”. The following user-defined menu item definition will produce a checked item on both platforms:

"Test!" + num2char(18)

“num2char(18)” returns the character code for a check mark on the Macintosh.

In general, Windows does not allow using Ctrl+<punctuation> as an accelerator. Therefore, in the following
example, the accelerator will not do anything:
Menu "Macros"

"Test/[" // "/[" will not work on Windows.
End

On Windows, you can designate a character in a menu item as a mnemonic keystroke by preceding the
character with an ampersand:
Menu "Macros"

"&Test", Print "This is a test"
End

This designates “T” as the mnemonic keystroke for Test. To invoke this menu item, press Alt and release it,
press the “M” key to highlight the Macros menu, and press the “T” key to invoke the Test item. If you hold
the Alt key pressed while pressing the “M” and “T” keys and if the active window is a procedure window,
Igor will not execute the item’s command but rather will bring up the procedure window and display the
menu definition. This is a programmer’s shortcut.

Note: The mnemonic keystroke is not supported on Macintosh. If you use an ampersand in a menu
item, it will appear in the menu item on the Macintosh. For this reason, if you care about cross-
platform compatibility, you should not use ampersands in your menu items.

Enabling and Disabling Special Character Interpretation
The interpretation of special characters in menu items can sometimes get in the way. For example, you may
want a menu item to say “m/s” or “A<B”. With special character interpretation enabled, the first of these
would become “m” with “s” as the keyboard shortcut and the second would become “A” in a bold typeface.

Character Meaning Status
/ Defines accelerator Supported
- Divider Supported
(Disables item Supported
! Adds mark to item Partially supported — see discussion below
< Controls typography Not supported — ignored
^ Specifies icon Not supported — ignored
; Separates items Supported

Chapter IV-5 — User-Defined Menus

IV-121

Igor provides WaveMetrics-defined escape sequences that allow you to override the default state of special char-
acter interpretation. These escape sequences are case sensitive and must appear at the very start of the menu item:

The most common use for this will be in a user-defined menu bar menu in which the default state is on and
you want to display a special character in the menu item text itself. That is what you can do with the “\\M0”
escape sequence.

Another possible use on Macintosh is to create a disabled menu item in a control panel, graph or simple input
dialog pop-up menu. The default state of special character interpretation in pop-up menus is off. To disable
the item, you either need to turn it on, using “\\M1” or to use the technique described in the next paragraph.

What if we want to include a special character in the menu item itself and have a keyboard shortcut for that
item? The first desire requires that we turn special character interpretation off and the second requires that
we turn it on. The WaveMetrics-defined escape sequence can be extended to handle this. For example:
"\\M0:/1:m/s"

The initial “\\M0” turns normal special character interpretation off. The first colon
specifies that one or more special characters are coming. The /1 makes Command-1
(Macintosh) or Ctrl+1 (Windows) the keyboard shortcut for this item. The second
colon marks the end of the menu commands and starts the regular menu text which
is displayed in the menu without special character interpretation. The final result is as shown above.

Any of the special characters can appear between the first colon and the second. For example:

The \\M escape code affects just the menu item currently being defined. In the following example, special
character interpretation is enabled for the first item but not for the second:
"\\M1(First item;(Second item"

To enable special character interpretation for both items, we need to write:
"\\M1(First item;\\M1(Second item"

Escape Code Effect Example
"\\M0" Turns special character

interpretation off.
"\\M0m/s"

"\\M1" Turns special character
interpretation on.

"\\M1m/s"

Menu "Macros"
"\\M0:/1:(Cmd key)"
"\\M0:(:(Disabled item)"
"\\M0:!*:(Marked with *)"
"\\M0:/2!*:(Cmd key plus *)"

End

Menu "Macros"
"\\M0:/1:(Ctrl key)"
"\\M0:(:(Disabled item)"
"\\M0:!"+num2char(18)+":(Marked with a check)"
"\\M0:/2!"+num2char(18)+":(Ctrl key plus check)"

End

Chapter IV-5 — User-Defined Menus

IV-122

Keyboard Shortcuts
A keyboard shortcut is a set of one or more keys which invoke a menu item. In a menu item string, a key-
board shortcut is introduced by the / special character. For example:
Menu "Macros"

"Test/1" // The keyboard shortcut is Cmd-1 (Macintosh)
End // or Ctrl-1 (Windows).

All of the alphabetic keyboard shortcuts (/A…/Z) are used by Igor. Numeric keyboard shortcuts (/0…/9) are
available for use in user menu definitions as are Function Keys, described below.

You can define a numeric keyboard shortcut that includes one or more modifier keys. The modifier keys
are Shift and Option (Macintosh) or Alt (Windows). For example:
Menu "Macros"

"Test/1" // Cmd-1, Ctrl-1
"Test/S1" // Shift-Cmd-1, Ctrl-Shift-1.
"Test/O1" // Option-Cmd-1, Ctrl-Alt-1
"Test/OS1" // Option-Shift-Cmd-1, Ctrl-Shift-Alt-1

End

On Macintosh, “L” can be used to indicated that the Control key must be pressed. This is not supported on
Windows.

Function Keys
Most keyboards have function keys labeled F1 through F12. In Igor, you can treat a function key as a key-
board shortcut that invokes a menu item.
Note: Mac OS X reserves nearly all function keys for itself. In order to use function keys for an

application, you must check a checkbox in the Keyboard control panel. Even then the OS will
intercept some function keys.

Note: On Windows, Igor uses F1 for help-related operations. F1 will not work as a keyboard shortcut on
Windows. Also, the Windows OS reserves Ctrl-F4 and Ctrl-F6 for closing and reordering windows.

Here is a simple function key example:
Menu "Macros"

"Test/F5" // The keyboard shortcut is F5.
End

As with other keyboard shortcuts, you can specify that one or more modifier keys must be pressed along
with the function key. The modifier keys are Shift and Option (Macintosh) or Alt (Windows).
Menu "Macros"

// Function keys with and without modifiers
"Test/F5" // F5
"Test/SF5" // Shift-F5
"Test/OF5" // Option-F5, Alt-F5
"Test/SOF5" // Shift-Option-F5, Shift-Alt-F5

End

By including the “C” modifier character, you specify that the Command (Macintosh) or Ctrl (Windows) key
must also be pressed:
Menu "Macros"

// Cmd-Function or Ctrl-Function keys with and without modifiers
"Test/CF5" // Cmd-F5, Ctrl-F5
"Test/SCF5" // Shift-Cmd-F5, Ctrl-Shift-F5
"Test/OCF5" // Option-Cmd-F5, Ctrl-Alt-F5
"Test/OSCF5" // Option-Shift-Cmd-F5, Ctrl-Shift-Alt-F5

End

On Macintosh only, you can also use Control as a modifier by adding an “L” between the slash and the “F5”.

Chapter IV-5 — User-Defined Menus

IV-123

Although some keyboards have function keys labeled F13 and higher, they do not behave consistently and
are not supported.

Marquee Menus
Igor has two menus called “marquee menus”. In graphs and page layouts you create a marquee when you
drag diagonally. Igor displays a dashed-line box indicating the area of the graph or layout that you have
selected. If you click inside the marquee, you get a marquee menu.

You can add your own menu items to a marquee menu by creating a GraphMarquee or LayoutMarquee
menu definition. For example:
Menu "GraphMarquee"

"Print Marquee Coordinates", GetMarquee bottom; Print V_left, V_right
End

The use of keyboard shortcuts is not supported in marquee menus.

See Marquee Menu as Input Device on page IV-144 for details.

Trace Menus
Igor has two “trace” menus named “TracePopup” and “AllTracesPopup”. When you control-click or right-
click in a graph on a trace you get the TracesPopupMenu. If you hold down Shift while clicking, you get the
AllTracesPopup (standard menu items in that menu operated on all the traces in the graph). You can
append menu items to these menus with Menu “TracePopup” and Menu “AllTracesPopup” definitions.

For example:
Menu "TracePopup"

"IdentifyTrace", /Q, IdentifyTrace()
End

Function IdentifyTrace()
GetLastUserMenuInfo
Print S_graphName, S_traceName

End

Popup Contextual Menus
You can create a custom pop-up contextual menu to respond to a control-click or right-click. For an exam-
ple, see Creating a Contextual Menu on page IV-143.

Chapter IV-5 — User-Defined Menus

IV-124

Chapter

IV-6
IV-6Interacting with the User

Overview.. 126
Modal and Modeless User Interface Techniques .. 126

The Simple Input Dialog.. 126
Pop-Up Menus in Simple Dialogs ... 127
Saving Parameters for Reuse.. 129
Multiple Simple Input Dialogs .. 129

Displaying an Open File Dialog.. 130
Displaying a Multi-Selection Open File Dialog... 130
Open File Dialog File Filters... 131

Displaying a Save File Dialog ... 132
Save File Dialog File Filters .. 132

Using Open in a Utility Routine ... 133
Pause For User... 134

PauseForUser Simple Cursor Example .. 134
PauseForUser Advanced Cursor Example .. 136
PauseForUser Control Panel Example.. 137

Progress Windows .. 138
Control Panels and Event-Driven Programming... 140
Detecting a User Abort... 141
Creating a Contextual Menu ... 143
Cursors as Input Device... 144
Marquee Menu as Input Device.. 144
Polygon as Input Device .. 145

Chapter IV-6 — Interacting with the User

IV-126

Overview
The following sections describe the various programming techniques available for getting input from and
for interacting with a user during the execution of your procedures. These techniques include:
• The simple input dialog
• Control panels
• Cursors
• Marquee menus

The simple input dialog provides a bare bones but functional user interfaces with just a little programming.
In situations where more elegance is required, control panels provide a better solution.

Modal and Modeless User Interface Techniques
Before the rise of the graphical user interface, computer programs worked something like this: The user
would start the program which would then ask the user for input. The program would then do some pro-
cessing, after which it would ask the user for more input. In this model, the program is in charge and the
user must respond with specific input at specific points of program execution. This is called a “modal” user
interface because the program has one mode in which it will only accept specific input and another mode
in which it will only do processing.

The Macintosh changed all this with the idea of event-driven programming. In this model, the computer
waits for an event such as a mouse click or a key press and then acts on that event. The user is in charge and
the program responds. This is called a “modeless” user interface because the program will accept any user
action at any time.

You can use both techniques in Igor. Your program can put up a modal dialog asking for input and then do
its processing or you can use control panels to build a sophisticated modeless event-driven system.

Event-driven programming is quite a bit more work than dialog-driven programming. You have to be able
to handle user actions in any order rather than progressing through a predefined sequence of steps. In real
life, a combination of these two methods is often used.

The Simple Input Dialog
The simple input dialog is a way by which a function can get input from the user in a modal fashion. It is
very simple to program and is also somewhat simple in appearance.

A simple input dialog is presented to the user when a DoPrompt statement is executed in a function. Param-
eters to DoPrompt specify the title for the dialog and a list of local variables. For each variable, you must
include a Prompt statement that provides the text label for the variable.

Generally, the simple input dialog is used in conjunction with routines that run when the user chooses an
item from a menu. This is illustrated in the following example which you can type into the procedure
window of a new experiment:
Menu "Macros"

"Calculate Diagonal...", CalcDiagDialog()
End

Function CalcDiagDialog()
Variable x=10,y=20
Prompt x, "Enter X component: " // Set prompt for x param
Prompt y, "Enter Y component: " // Set prompt for y param
DoPrompt "Enter X and Y", x, y
if (V_Flag)

return -1 // User canceled
endif

Chapter IV-6 — Interacting with the User

IV-127

Print "Diagonal=",sqrt(x^2+y^2)
End

If you run the CalcDiagDialog function, you will see the following dialog:

If the user presses Continue without changing the default values, “Diagonal= 22.3607” will be printed in
the history. If the user presses Cancel, nothing will be printed because DoPrompt sets the V_Flag variable
to 1 in this case.

The simple input dialog allows for up to 10 numeric or string variables. When more than 5 items are used,
the dialog uses two columns and you may have to limit the length of your Prompt text.

The simple input dialog is unique in that you can enter not only literal numbers or strings but also numeric
expressions or string expressions. Any literal strings that you enter must be quoted.

If the user presses the Help button, Igor will search for a help topic with a name derived from the dialog
title. If such a help topic is not found, then generic help about the simple input dialog will be presented. In
both cases, the input dialog will remain until the user presses either Continue or Cancel.

Pop-Up Menus in Simple Dialogs
The simple input dialog supports pop-up menus as well as text items. The pop-up menus can contain an
arbitrary list of items such as a list of wave names. To use a pop-up menu in place of the normal text entry
item in the dialog, you use the following syntax in the prompt declaration:
Prompt <variable name>, <title string>, popup <menu item list>

The popup keyword indicates that you want a pop-up menu instead of the normal text entry item. The
menu list specifies the items in the pop-up menu separated by semicolons. For example:
Prompt color, "Select Color", popup "red;green;blue;"

If the menu item list is too long to fit on one line, you can compose the list in a string variable like so:
String stmp= "red;green;blue;"
stmp += "yellow;purple"
Prompt color, "Select Color", popup stmp

The pop-up menu items support the same special characters as the user-defined menu definition (see
Special Characters in Menu Item Strings on page IV-118) except that items in pop-up menus are limited
to 50 characters, keyboard shortcuts are not supported, and special characters are disabled by default.
You can use pop-up menus with both numeric and string parameters. When used with numeric parameters
the number of the item chosen is placed in the variable. Numbering starts from one. When used with string
parameters the text of the chosen item is placed in the string variable.

There are a number of functions, such as the WaveList function (see page V-814) and the TraceNameList
function (see page V-798), that are useful in creating pop-up menus.

To obtain a menu item list of all waves in the current data folder, use:
WaveList("*", ";", "")

To obtain a menu item list of all waves in the current data folder whose names end in “_X”, use:
WaveList("*_X", ";", "")

Chapter IV-6 — Interacting with the User

IV-128

To obtain a menu item list of all traces in the top graph, use:
TraceNameList("", ";", 1)

For a list of all contours in the top graph, use ContourNameList. For a list of all images, use ImageNameList.
For a list of waves in a table, use WaveList.

This next example creates two pop-up menus in the simple input dialog.
Menu "Macros"

"Color Trace...", ColorTraceDialog()
End

Function ColorTraceDialog()
String traceName
Variable color=3
Prompt traceName,"Trace",popup,TraceNameList("",";",1)
Prompt color,"Color",popup,"red;green;blue"
DoPrompt "Color Trace",traceName,color
if(V_Flag)

return 0 // user canceled
endif

if (color == 1)
ModifyGraph rgb($traceName)=(65000, 0, 0)

elseif(color == 2)
ModifyGraph rgb($traceName)=(0, 65000, 0)

elseif(color == 3)
ModifyGraph rgb($traceName)=(0, 0, 65000)

endif
End

If you choose Color Trace from the Macros menu, Igor brings up the simple input dialog with two pop-up
menus. The first menu contains a list of all traces in the target window which is assumed to be a graph. The
second menu contains the items red, green and blue with blue (item number 3) initially chosen.

After you choose the desired trace and color from the pop-up menus and click the Continue button, the
function continues execution. The string parameter traceName will contain the name of the trace chosen
from the first pop-up menu. The numeric parameter color will have a value of 1, 2 or 3, corresponding to
red, green and blue.

In the preceding example, we needed a trace name to pass to the ModifyGraph operation. In another
common situation, we need a wave reference to operate on. For example:
Menu "Macros"

"Smooth Wave In Graph...",SmoothWaveInGraphDialog()
End

Function SmoothWaveInGraphDialog()
String traceName
Prompt traceName,"Wave",popup,TraceNameList("",";",1)
DoPrompt "Smooth Wave In Graph",traceName

Chapter IV-6 — Interacting with the User

IV-129

WAVE w = TraceNameToWaveRef("", traceName)
Smooth 5, w

End

The traceName parameter alone is not sufficient to specify which wave we want to smooth because it does
not identify in which data folder the wave resides. The TraceNameToWaveRef function returns a wave ref-
erence which solves this problem. See Wave Reference Functions on page IV-177 for details.

Saving Parameters for Reuse
It is possible to write a procedure that presents a simple input dialog with default values for the parameters
saved from the last time it was invoked. To accomplish this, we use global variables to store the values
between calls to the procedure. Here is an example that saves one numeric and one string variable.
Function TestDialog()

String savDF = GetDataFolder(1)
NewDataFolder/O/S root:Packages
NewDataFolder/O/S :TestDialog

Variable num = NumVarOrDefault("gNum", 42)
Prompt num, "Enter a number"
String str = StrVarOrDefault("gStr", "Hello")
Prompt str, "Enter a string"
DoPrompt "test",num,str

Variable/G gNum = num // Save for next time
String/G gStr = str

// Put function body here
Print num,str

SetDataFolder savDF
End

This example illustrates the NumVarOrDefault and StrVarOrDefault functions. These functions return the
value of a global variable or a default value if the global variable does not exist. 42 is the default value for
gNum. NumVarOrDefault will return 42 if gNum does not exist. If gNum does exist, it will return the value
of gNum. Similarly, “Hello” is the default value for gStr. StrVarOrDefault will return “Hello” if gStr does
not exist. If gStr does exist, it will return the value of gStr.

Multiple Simple Input Dialogs
Prompt statements can be located anywhere within the body of a function and they do not need to be grouped
together, although it will aid code readability if associated Prompt and DoPrompt code is kept together. Func-
tions may contain multiple DoPrompt statements, and Prompt statements can be reused or redefined.

The following example illustrates multiple simple input dialogs and prompt reuse:
Function Example()

Variable a= 123
Variable/C ca= cmplx(3,4)
String s

Prompt a,"Enter a value"
Prompt ca,"Enter complex value"
Prompt s,"Enter a string", popup "red;green;blue"
DoPrompt "Enter Values",a,s,ca
if(V_Flag)

Abort "The user pressed Cancel"
endif

Print "a= ",a,"s= ",s,"ca=",ca

Chapter IV-6 — Interacting with the User

IV-130

Prompt a,"Enter a again please"
Prompt s,"Type a string"
DoPrompt "Enter Values Again", a,s

if(V_Flag)
Abort "The user pressed Cancel"

endif

Print "Now a=",a," and s=",s
End

When this function is executed, it will produce two simple input dialogs, one after the other after the user
clicks Continue; following is the first dialog:

Displaying an Open File Dialog
You can display an Open File dialog to allow the user to choose a file to be used with a subsequent com-
mand. For example, the user can choose a file which you will then use in a LoadWave command. The Open
File dialog is displayed using an Open/D/R command. Here is an example:

Function/S DoOpenFileDialog()
Variable refNum
String message = "Select a file"
String outputPath
String fileFilters = "Data Files (*.txt,*.dat,*.csv):.txt,.dat,.csv;"
fileFilters += "All Files:.*;"

Open /D /R /F=fileFilters /M=message refNum
outputPath = S_fileName

return outputPath // Will be empty if user canceled
End

Here the Open operation does not actually open a file but instead displays an Open File dialog. If the user
chooses a file and clicks the Open button, the Open operation returns the full path to the file in the
S_fileName output string variable. If the user cancels, Open sets S_fileName to "".

The /M flag is used to set the prompt message.

The /F flag is used to control the file filter which determines what kinds of files the user can select. This is
explained further under Open File Dialog File Filters.

Displaying a Multi-Selection Open File Dialog
In Igor Pro 6.1 or later, you can display an Open File dialog to allow the user to choose multiple files to be
used with subsequent commands. The multi-selection Open File dialog is displayed using an
Open/D/R/MULT=1 command. The list of files selected is returned via S_fileName in the form of a carriage-
return-delimited list of full paths.

Here is an example:

Chapter IV-6 — Interacting with the User

IV-131

Function/S DoOpenMultiFileDialog()
Variable refNum
String message = "Select one or more files"
String outputPaths
String fileFilters = "Data Files (*.txt,*.dat,*.csv):.txt,.dat,.csv;"
fileFilters += "All Files:.*;"

Open /D /R /MULT=1 /F=fileFilters /M=message refNum
outputPaths = S_fileName

if (strlen(outputPaths) == 0)
Print "Cancelled"

else
Variable numFilesSelected = ItemsInList(outputPaths, "\r")
Variable i
for(i=0; i<numFilesSelected; i+=1)

String path = StringFromList(i, outputPaths, "\r")
Printf "%d: %s\r", i, path

endfor
endif

return outputPaths // Will be empty if user canceled
End

Here the Open operation does not actually open a file but instead displays an Open File dialog. Because
/MULT=1 was used, if the user chooses one or more files and clicks the Open button, the Open operation
returns the list of full paths to files in the S_fileName output string variable. If the user cancels, Open sets
S_fileName to "".

The list of full paths is delimited with a carriage return character, represented by "\r" in the example above.
We use carriage return as the delimiter because the customary delimiter, semicolon, is a legal character in
a Macintosh file name.

The /M flag is used to set the prompt message.

The /F flag is used to control the file filter which determines what kinds of files the user can select. This is
explained further under Open File Dialog File Filters.

Open File Dialog File Filters
The Open operation displays the open file dialog if you use the /D/R flags or if the file to be opened is not
fully specified using the pathName and fileNameStr parameters. The Open File dialog includes a file filter
menu that allows the user to choose the type of file to be opened. By default this menus contain "Plain Text
Files" and "All Files". You can use the /T and /F flags to override the default filter behavior.

The /T flag uses obsolescent Macintosh file types or file name extensions consisting of a dot plus three char-
acters. The /F flag, added in Igor Pro 6.10, supports file name extensions only (not Macintosh file types) and
extensions can be from one to 31 characters. Procedures written for Igor Pro 6.10 or later should use the /F
flag in most cases but can use /T or both /T and /F. Procedures that must run with Igor Pro 6.0x and earlier
must use the /T flag.

Using the /T=typeStr flag, you specify acceptable Macintosh-style file types represented by four-character
codes (e.g., "TEXT") or acceptable three-character file name extensions (e.g., ".txt"). The pattern "????" means
"any type of file" and is represented by "All Files" in the filter menu.

typeStr may contain multiple file types or extensions (e.g., "TEXTEPSF????" or ".txt.eps????"). Each file type
or extension must be exactly four characters in length. Consequently the /T flag can accommodate only
three-character file name extensions. Each file type or extension creates one entry in the Open File dialog
filter menu.

Chapter IV-6 — Interacting with the User

IV-132

If you use the /T flag, the Open operation automatically adds a filter for All Files ("????") if you do not add
one explicitly.

Igor maps Macintosh file types to extensions. For example, if you specify /T="TEXT", you can open files with
the extension ".txt" as well as any file whose Macintosh file type property is 'TEXT'. Igor does similar map-
pings for other extensions. See File Types and Extensions on page III-406 for details.

Using the /F=fileFilterStr flag, you specify a filter menu string plus acceptable file name extensions for each
filter. fileFilterStr specifies one or more filters in a semicolon-separated list. For example, this specifies three
filters:

String fileFilters = "Data Files (*.txt,*.dat,*.csv):.txt,.dat,.csv;"
fileFilters += "HTML Files (*.htm,*.html):.htm,.html;"
fileFilters += "All Files:.*;"
Open /F=fileFilters . . .

Each file filter consists of a filter menu string (e.g., "Data Files") followed by a colon, followed by one or
more file name extensions (e.g., ".txt,.dat,.csv") followed by a semicolon. The syntax is rigid - no extra char-
acters are allowed and the semicolons shown above are required. In this example the filter menu would
contain "Data Files" and would accept any file with a ".txt", ".dat", or ".csv" extension. ".*" creates a filter that
accepts any file.

If you use the /F flag, it is up to you to add a filter for All Files as shown above. It is recommended that you
do this.

On the Macintosh, selecting All Files allows you to navigate into packages (folders that appear in the Finder
to be files).

Displaying a Save File Dialog
You can display a Save File dialog to allow the user to choose a file to be created or overwritten by a subse-
quent command. For example, the user can choose a file which you will then create or overwrite via a Save
command. The Save File dialog is displayed using an Open/D command. Here is an example:

Function/S DoSaveFileDialog()
Variable refNum
String message = "Save a file"
String outputPath
String fileFilters = "Data Files (*.txt):.txt;"
fileFilters += "All Files:.*;"

Open /D /F=fileFilters /M=message refNum
outputPath = S_fileName

return outputPath // Will be empty if user canceled
End

Here the Open operation does not actually open a file but instead displays a Save File dialog. If the user
chooses a file and clicks the Save button, the Open operation returns the full path to the file in the
S_fileName output string variable. If the user cancels, Open sets S_fileName to "".

The /M flag is used to set the prompt message.

The /F flag is used to control the file filter which determines what kinds of files the user can create. This is
explained further under Save File Dialog File Filters.

Save File Dialog File Filters
The Save File dialog includes a file filter menu that allows the user to choose the type of file to be saved. By
default this menus contain "Plain Text File" and, on Windows only, "All Files". You can use the /T and /F
flags to override the default filter behavior.

Chapter IV-6 — Interacting with the User

IV-133

The /T and /F flags work as explained under Open File Dialog File Filters. Using the /F flag for a Save File
dialog, you would typically specify just one filter plus All Files, like this:

String fileFilters = "Data File (*.dat):.dat;"

fileFilters += "All Files:.*;"

Open /F=fileFilters . . .

On Windows, the file filter chosen in the Save File dialog determines the extension for the file being saved.
For example, if the "Plain Text Files" filter is selected, the ".txt" extension is added if you don't explicitly
enter it in the File Name edit box. However if you select the "All Files" filter then no extension is automati-
cally added and the final file name is whatever you enter in the File Name edit box. You should include the
"All Files" filter if you want the user to be able to specify a file name with any extension. If you want to force
the file name extension to an extension of your choice rather than the user's, omit the "All Files" filter.

On Macintosh, the final file name is whatever you enter in the Save As edit box. The only significance of the
selected file filter is that it controls the extension used if you click the Add/Fix Extension button. "All Files"
has no significance in the Macintosh Save File dialog and therefore is ignored if it is the last file type speci-
fied using /T.

On the Macintosh, in the rare event that you want to save a file inside a package (a folder that appears as a
file in the Finder), press Command-Option as the dialog is presented. This will allow you to navigate inside
packages.

Using Open in a Utility Routine
To be as general and useful as possible, a utility routine that acts on a file should have a pathName param-
eter and a fileName parameter, like this:

Function ShowFileInfo(pathName, fileName)
String pathName // Name of symbolic path or "" for dialog.
String fileName // File name or "" for dialog.

<Show file info here>
End

This provides flexibility to the calling function. The caller can supply a valid symbolic path name and a
simple leaf name in fileName, a valid symbolic path name and a partial path in fileName, or a full path in
fileName in which case pathName is irrelevant.

If pathName and fileName fully specify the file of interest, you want to just open the file and perform the
requested action. However, if pathName and fileName do not fully specify the file of interest, you want to
display an Open File dialog so the user can choose the file. This is accomplished by using the Open opera-
tion's /D=2 flag (added in Igor Pro 6.1).

With /D=2, if pathName and fileName fully specify the file, the Open operation merely sets the S_fileName
output string variable to the full path to the file. If pathName and fileName do not fully specify the file,
Open displays an Open File dialog and then sets the S_fileName output string variable to the full path to
the file. If the user cancels the Open File dialog, Open sets S_fileName to "". In all cases, Open/D=2 just sets
S_fileName and does not actually open the file.

If pathName and fileName specify an alias (Macintosh) or shortcut (Windows), Open/D=2 returns the file ref-
erenced by the alias or shortcut.

Here is how you would use Open /D=2.

Function ShowFileInfo(pathName, fileName)
String pathName // Name of symbolic path or "" for dialog.
String fileName // File name or "" for dialog.

Chapter IV-6 — Interacting with the User

IV-134

Variable refNum

Open /D=2 /R /P=$pathName refNum as fileName // Sets S_fileName

if (strlen(S_fileName) == 0)
Print "ShowFileInfo was canceled"

else
String fullPath = S_fileName
Print fullPath
Open /R refNum as fullPath
FStatus refNum // Sets S_info
Print S_info
Close refNum

endif
End

In this case, we wanted to open the file for reading. To create a file and open it for writing, omit /R from
both calls to Open.

Pause For User
The PauseForUser operation (see page V-542) allows an advanced programmer to create a more sophisti-
cated semimodal user interface. When you invoke it from a procedure, Igor suspends procedure execution
and the user can interact with graph, table or control panel windows using the mouse or keyboard. Execu-
tion continues when the user kills the main window specified in the PauseForUser command.

Pausing execution can serve two purposes. First, the programmer can pause function execution so that the
user can, for example, adjust cursors in a graph window before continuing with a curve fit. In this applica-
tion, the programmer creates a control panel with a continue button that the user presses after adjusting the
cursors in the target graph. Pressing the continue button kills the host control panel (see example below).

In the second application, the programmer may wish to obtain input from the user in a more sophisticated
manner than can be done using DoPrompt commands. This method uses a control panel as the main window
with no optional target window. It is similar to the control panel technique shown above, except that it is modal.

Following are some examples of how you can use the PauseForUser operation (see page V-542) in your own
user functions.

PauseForUser Simple Cursor Example
This example shows how to allow the user to adjust cursors on a graph while a procedure is executing. Most
of the work is done by the UserCursorAdjust function. UserCursorAdjust is called by the Demo function
which first creates a graph and shows the cursor info panel.
This example illustrates two modes of PauseForUser. When called with autoAbortSecs=0, UserCursorAd-
just calls PauseForUser without the /C flag in which case PauseForUser retains control until the user clicks
the Continue button.
When called with autoAbortSecs>0, UserCursorAdjust calls PauseForUser/C. This causes PauseForUser to
handle any pending events and then return to the calling procedure. The procedure checks the V_flag vari-
able, set by PauseForUser, to determine when the user has finished interacting with the graph. PauseFo-
rUser/C, which requires Igor Pro 6.1 or later, is for situations where you want to do something while the
user interacts with the graph.
To try this yourself, copy and paste all three routines below into the procedure window of a new experi-
ment and then run the Demo function with a value of 0 and again with a value such as 30.
Function UserCursorAdjust(graphName,autoAbortSecs)

String graphName
Variable autoAbortSecs

DoWindow/F $graphName // Bring graph to front

Chapter IV-6 — Interacting with the User

IV-135

if (V_Flag == 0) // Verify that graph exists
Abort "UserCursorAdjust: No such graph."
return -1

endif

NewPanel /K=2 /W=(187,368,437,531) as "Pause for Cursor"
DoWindow/C tmp_PauseforCursor // Set to an unlikely name
AutoPositionWindow/E/M=1/R=$graphName // Put panel near the graph

DrawText 21,20,"Adjust the cursors and then"
DrawText 21,40,"Click Continue."
Button button0,pos={80,58},size={92,20},title="Continue"
Button button0,proc=UserCursorAdjust_ContButtonProc
Variable didAbort= 0
if(autoAbortSecs == 0)

PauseForUser tmp_PauseforCursor,$graphName
else

SetDrawEnv textyjust= 1
DrawText 162,103,"sec"
SetVariable sv0,pos={48,97},size={107,15},title="Aborting in "
SetVariable sv0,limits={-inf,inf,0},value= _NUM:10
Variable td= 10,newTd
Variable t0= ticks
Do

newTd= autoAbortSecs - round((ticks-t0)/60)
if(td != newTd)

td= newTd
SetVariable sv0,value= _NUM:newTd,win=tmp_PauseforCursor
if(td <= 10)

SetVariable sv0,valueColor= (65535,0,0),win=tmp_PauseforCursor
endif

endif
if(td <= 0)

DoWindow/K tmp_PauseforCursor
didAbort= 1
break

endif

PauseForUser/C tmp_PauseforCursor,$graphName
while(V_flag)

endif
return didAbort

End

Function UserCursorAdjust_ContButtonProc(ctrlName) : ButtonControl
String ctrlName

DoWindow/K tmp_PauseforCursor // Kill panel
End

Function Demo(autoAbortSecs)
Variable autoAbortSecs

Make/O jack;SetScale x,-5,5,jack
jack= exp(-x^2)+gnoise(0.1)
DoWindow Graph0
if(V_Flag==0)

Display jack
ShowInfo

endif

Chapter IV-6 — Interacting with the User

IV-136

if (UserCursorAdjust("Graph0",autoAbortSecs) != 0)
return -1

endif

if (strlen(CsrWave(A))>0 && strlen(CsrWave(B))>0)// Cursors are on trace?
CurveFit gauss,jack[pcsr(A),pcsr(B)] /D

endif
End

PauseForUser Advanced Cursor Example
Now for something a bit more complex. Here we modify the preceding example to include a Cancel button.
For this, we need to return information about which button was pressed. Although we could do this by cre-
ating a single global variable in the root data folder, we use a slightly more complex technique using a tem-
porary data folder. This technique is especially useful for more complex panels with multiple output
variables because it limits any worry about name conflicts to the data folder itself. It also allows much easier
clean up because we can kill the entire data folder and everything in it with just one operation.
Function UserCursorAdjust(graphName)

String graphName

DoWindow/F $graphName // Bring graph to front
if (V_Flag == 0) // Verify that graph exists

Abort "UserCursorAdjust: No such graph."
return -1

endif

NewDataFolder/O root:tmp_PauseforCursorDF
Variable/G root:tmp_PauseforCursorDF:canceled= 0

NewPanel/K=2 /W=(139,341,382,450) as "Pause for Cursor"
DoWindow/C tmp_PauseforCursor // Set to an unlikely name
AutoPositionWindow/E/M=1/R=$graphName // Put panel near the graph

DrawText 21,20,"Adjust the cursors and then"
DrawText 21,40,"Click Continue."
Button button0,pos={80,58},size={92,20},title="Continue"
Button button0,proc=UserCursorAdjust_ContButtonProc
Button button1,pos={80,80},size={92,20}
Button button1,proc=UserCursorAdjust_CancelBProc,title="Cancel"

PauseForUser tmp_PauseforCursor,$graphName

NVAR gCaneled= root:tmp_PauseforCursorDF:canceled
Variable canceled= gCaneled // Copy from global to local

// before global is killed
KillDataFolder root:tmp_PauseforCursorDF

return canceled
End

Function UserCursorAdjust_ContButtonProc(ctrlName) : ButtonControl
String ctrlName

DoWindow/K tmp_PauseforCursor // Kill self
End

Function UserCursorAdjust_CancelBProc(ctrlName) : ButtonControl
String ctrlName

Variable/G root:tmp_PauseforCursorDF:canceled= 1
DoWindow/K tmp_PauseforCursor // Kill self

End

Chapter IV-6 — Interacting with the User

IV-137

And now a demo that uses the new version:
Function Demo()

Make/O jack;SetScale x,-5,5,jack
jack= exp(-x^2)+gnoise(0.1)
DoWindow Graph0
if (V_Flag==0)

Display jack
ShowInfo

endif
Variable rval= UserCursorAdjust("Graph0")
if (rval == -1) // Graph name error?

return -1;
endif
if (rval == 1) // User canceled?

DoAlert 0,"Canceled"
return -1;

endif
CurveFit gauss,jack[pcsr(A),pcsr(B)] /D

End

PauseForUser Control Panel Example
The following is a very simple example of using a control panel as modal dialog. The panel was designed
by first manually creating a data folder with a few variables and then creating a panel. When the panel was
designed properly, it was closed to create a recreation macro. Lines from the macro were then used in the
body of the function.
Function UserGetInputPanel_ContButton(ctrlName) : ButtonControl

String ctrlName

DoWindow/K tmp_GetInputPanel // kill self
End

// Call with these variables already created and initialized:
// root:tmp_PauseForUserDemo:numvar
// root:tmp_PauseForUserDemo:strvar
Function DoMyInputPanel()

NewPanel /W=(150,50,358,239)
DoWindow/C tmp_GetInputPanel // set to an unlikely name
DrawText 33,23,"Enter some data"
SetVariable setvar0,pos={27,49},size={126,17},limits={-Inf,Inf,1}
SetVariable setvar0,value= root:tmp_PauseForUserDemo:numvar
SetVariable setvar1,pos={24,77},size={131,17},limits={-Inf,Inf,1}
SetVariable setvar1,value= root:tmp_PauseForUserDemo:strvar
Button button0,pos={52,120},size={92,20}
Button button0,proc=UserGetInputPanel_ContButton,title="Continue"

PauseForUser tmp_GetInputPanel
End

Function Demo1()
NewDataFolder/O root:tmp_PauseForUserDemo
Variable/G root:tmp_PauseForUserDemo:numvar= 12
String/G root:tmp_PauseForUserDemo:strvar= "hello"

DoMyInputPanel()

NVAR numvar= root:tmp_PauseForUserDemo:numvar
SVAR strvar= root:tmp_PauseForUserDemo:strvar

printf "You entered %g and %s\r",numvar,strvar

KillDataFolder root:tmp_PauseForUserDemo
End

For comparison, here is the equivalent using the simple input dialog technique:

Chapter IV-6 — Interacting with the User

IV-138

Function Demo2()
Variable numvar= 12
String strvar= "hello"
Prompt numvar,"numvar:"
Prompt strvar,"strvar:"
DoPrompt "Enter some data",numvar,strvar
printf "You entered %g and %s\r",numvar,strvar

End

Progress Windows
Sometimes when performing a long calculation, you may want to put up an indicator that the calculation
is in progress, perhaps showing how far along it is, and perhaps providing an abort button. As of Igor Pro
6.1, you can use a control panel window for this task using the DoUpdate /E and /W flags and the mode=4
setting for ValDisplay.

DoUpdate /W=win /E=1 marks the specified window as a progress window that can accept mouse events
while user code is executing. The /E flag need be used only once to mark the panel but it does not hurt to
use it in every call. This special state of the control panel is automatically cleared when procedure execution
finishes and Igor's outer loop again runs.

For a window marked as a progress window, DoUpdate sets V_Flag to 2 if a mouse up happened in a
button since the last call. When this occurs, the full path to the subwindow containing the button is stored
in S_path and the name of the control is stored in S_name.

Here is a simple example that puts up a progress window with a progress bar and a quit button. Try each
of the four input flag combinations.

// Try simpletest(0,0) and simpletest(1,0), simpletest(0,1) and simpletest(1,1)
Function simpletest(indefinite, useIgorDraw)

Variable indefinite
Variable useIgorDraw// True to use Igor's own draw method rather than native

NewPanel /N=ProgressPanel /W=(285,111,739,193)
ValDisplay valdisp0,pos={18,32},size={342,18}
ValDisplay valdisp0,limits={0,100,0},barmisc={0,0}
ValDisplay valdisp0,value= _NUM:0
if(indefinite)

ValDisplay valdisp0,mode= 4// candy stripe
else

ValDisplay valdisp0,mode= 3// bar with no fractional part
endif
if(useIgorDraw)

ValDisplay valdisp0,highColor=(0,65535,0)
endif
Button bStop,pos={375,32},size={50,20},title="Stop"
DoUpdate /W=ProgressPanel /E=1// mark this as our progress window

Variable i,imax= indefinite ? 10000 : 100
for(i=0;i<imax;i+=1)

Variable t0= ticks
do
while(ticks < (t0+3))
if(indefinite)

ValDisplay valdisp0,value= _NUM:1,win=ProgressPanel
else

ValDisplay valdisp0,value= _NUM:i+1,win=ProgressPanel
endif
DoUpdate /W=ProgressPanel
if(V_Flag == 2)// we only have one button and that means stop

break

Chapter IV-6 — Interacting with the User

IV-139

endif
endfor
KillWindow ProgressPanel

End

When performing complex calculations, it is often difficult to insert DoUpdate calls in the code. In this case,
you can use a window hook that responds to event #23, spinUpdate. This is called at the same time that the
beachball cursor spins. The hook can then update the window's control state and then call DoUpdate/W on
the window. If the window hook returns non-zero, then an abort is performed. If you desire a more con-
trolled quit, you might set a global variable that your calculation code can test. The following example pro-
vides an indefinite indicator and an abort button. Note that if the abort button is pressed, the window hook
kills the progress window since otherwise the abort would cause the window to remain.

// Example: spinnertest(100)
Function spinnertest(nloops)

Variable nloops

Variable useIgorDraw=0 // set true for Igor draw method rather than native

NewPanel/FLT /N=myProgress/W=(285,111,739,193)
ValDisplay valdisp0,pos={18,32},size={342,18}
ValDisplay valdisp0,limits={0,100,0},barmisc={0,0}
ValDisplay valdisp0,value= _NUM:0
ValDisplay valdisp0,mode=4 // candy stripe
if(useIgorDraw)

ValDisplay valdisp0,highColor=(0,65535,0)
endif
Button bStop,pos={375,32},size={50,20},title="Abort"
SetActiveSubwindow _endfloat_
DoUpdate/W=myProgress/E=1 // mark this as our progress window

SetWindow myProgress,hook(spinner)= MySpinner

Variable t0= ticks,i
for(i=0;i<nloops;i+=1)

PerformLongCalc(1e6)
endfor
Variable timeperloop= (ticks-t0)/(60*nloops)

KillWindow myProgress

print "time per loop=",timeperloop
End

Function MySpinner(s)
STRUCT WMWinHookStruct &s

if(s.eventCode == 23)
ValDisplay valdisp0,value= _NUM:1,win=$s.winName
DoUpdate/W=$s.winName
if(V_Flag == 2) // we only have one button and that means abort

KillWindow $s.winName
return 1

endif
endif
return 0

End

Function PerformLongCalc(nmax)
Variable nmax

Chapter IV-6 — Interacting with the User

IV-140

Variable i,s
for(i=0;i<nmax;i+=1)

s+= sin(i/nmax)
endfor

End

Control Panels and Event-Driven Programming
The CalcDiagDialog function shown above creates a modal dialog. “Modal” means that the function retains
complete control until the user clicks Cancel or Continue. The user can not activate another window or
choose a menu item until the dialog is dismissed.

This section shows how to implement the same functionality using a control panel as a modeless dialog.
“Modeless” means that the user can activate another window or choose a menu item at any time. The mod-
eless window accepts input whenever the user wants to enter it but does not block the user from accessing
other windows.

The control panel looks like this:

The code implementing this control panel is given below. Before we look at the code, here is some explana-
tion of the thinking behind it.

The X Component and Y Component controls are SetVariable controls. Each SetVariable control must be
attached to a global variable. To keep the global variables from cluttering the user’s space, we buried them
in a data folder named root:Packages:DiagonalControlPanel.

We want the globals to be automatically created so the user does not need to worry about them, so we wrote
a routine (DisplayDiagonalControlPanel) that makes sure that the variables and their containing data
folders exist. The routine then creates the control panel or, if it already exists, just brings it to the front. We
added a menu item to the Macros menu so the user can easily invoke DisplayDiagonalControlPanel.

We built the control panel manually using techniques explained in Chapter III-14, Controls and Control
Panels. Then we closed it so Igor would create a display recreation macro which we named DiagonalCon-
trolPanel. We then manually tweaked the macro to attach the SetVariable controls to the desired globals and
to set the panel’s behavior when the user clicks the close button.

Here are the procedures.
// Add a menu item to display the control panel.
Menu "Macros"

"Display Diagonal Control Panel", DisplayDiagonalControlPanel()
End

// This is the display recreation macro, created by Igor
// and then manually tweaked. The parts that were tweaked
// are shown in bold. NOTE: Some lines are wrapped to fit on the page.
Window DiagonalControlPanel() : Panel

PauseUpdate; Silent 1 // building window...

NewPanel/W=(162,95,375,198)/K=1 as "Compute Diagonal"

SetVariable XSetVar,pos={22,11},size={150,15},title="X Component:"
SetVariable XSetVar,limits={-Inf,Inf,1},value=

root:Packages:DiagonalControlPanel:gXComponent

Chapter IV-6 — Interacting with the User

IV-141

SetVariable YSetVar,pos={22,36},size={150,15},title="Y Component:"
SetVariable YSetVar,limits={-Inf,Inf,1},value=

root:Packages:DiagonalControlPanel:gYComponent

Button ComputeButton,pos={59,69},size={90,20},
proc=ComputeDiagonalProc,title="Compute"

EndMacro

// This is the action procedure for the Compute button.
// We created it using the Button dialog.
Function ComputeDiagonalProc(ctrlName) : ButtonControl

String ctrlName

String dfSave = GetDataFolder(1)
SetDataFolder root:Packages:DiagonalControlPanel

NVAR gXComponent, gYComponent // Access current data folder.
Variable diagonal
diagonal = sqrt(gXComponent^2 + gYComponent^2)
Printf "Diagonal=%g\r", diagonal

SetDataFolder dfSave
End

// This is the top level routine which makes sure that the globals
// and their enclosing data folders exist and then makes sure that
// the control panel is displayed.
Function DisplayDiagonalControlPanel()

// If the panel is already created, just bring it to the front.
DoWindow/F DiagonalControlPanel
if (V_Flag != 0)

return 0
endif

String dfSave = GetDataFolder(1)

// Create a data folder in Packages to store globals.
NewDataFolder/O/S root:Packages
NewDataFolder/O/S root:Packages:DiagonalControlPanel

// Create global variables used by the control panel.
Variable xComponent = NumVarOrDefault(":gXComponent", 10)
Variable/G gXComponent = xComponent
Variable yComponent = NumVarOrDefault(":gYComponent", 20)
Variable/G gYComponent = yComponent

// Create the control panel.
Execute "DiagonalControlPanel()"

SetDataFolder dfSave
End

Although this example is very simple, it illustrates the process of creating a control panel that functions as
a modeless dialog. There are many more examples of this in the Examples folder. See Chapter III-14, Con-
trols and Control Panels, for more information on building control panels.

Detecting a User Abort
If you have written a user-function that takes a long time to execute, you may want to provide a way for the
user to abort it. Your first instinct might be to create a control panel with a Stop button. This won’t work

Chapter IV-6 — Interacting with the User

IV-142

because Igor does not look at controls while your user function is running. Instead, you must detect that the
user is pressing Escape, as this example illustrates:
Function PressEscapeToAbort(phase, title, message)

Variable phase // 0: Display control panel with message.
// 1: Test if Escape key is pressed.
// 2: Close control panel.

String title // Title for control panel.
String message // Tells user what you are doing.

if (phase == 0) // Create panel
DoWindow/F PressEscapePanel
if (V_flag == 0)

NewPanel/K=1 /W=(100,100,350,200)
DoWindow/C PressEscapePanel
DoWindow/T PressEscapePanel, title

endif
TitleBox Message,pos={7,8},size={69,20},title=message
String abortStr = "Press escape to abort"
TitleBox Press,pos={6,59},size={106,20},title=abortStr
DoUpdate

endif

if (phase == 1) // Test for Escape key
Variable doAbort = 0
if (GetKeyState(0) & 32) // Is Escape key pressed now?

doAbort = 1
else

if (strlen(message) != 0) // Want to change message?
TitleBox Message,title=message
DoUpdate

endif
endif
return doAbort

endif

if (phase == 2) // Kill panel
DoWindow/K PressEscapePanel

endif

return 0
End

Function Demo()
// Create panel
PressEscapeToAbort(0, "Demonstration", "This is a demo")

Variable startTicks = ticks
Variable endTicks = startTicks + 10*60
Variable lastMessageUpdate = startTicks

do
String message
message = ""
if (ticks>=lastMessageUpdate+60) // Time to update message?

Variable remaining = (endTicks - ticks) / 60
sprintf message, "Time remaining: %.1f seconds", remaining
lastMessageUpdate = ticks

endif

if (PressEscapeToAbort(1, "", message))
Print "Test aborted by Escape key."
break

Chapter IV-6 — Interacting with the User

IV-143

endif
while(ticks < endTicks)

PressEscapeToAbort(2, "", "") // Kill panel.
End

Creating a Contextual Menu
You can use the PopupContextualMenu operation to create a pop-up menu in response to a control-click
(Macintosh) or right-click. You would do this from a window hook function or from the action procedure
for a control in a control panel.

In this example, we create a control panel with a list. When the user right-clicks on the list, Igor sends a
mouse-down event to the listbox procedure, TickerListProc in this case. The listbox procedure uses the
eventMod field of the WMListboxAction structure to determine if the click is a right-click. If so, it calls Han-
dleTickerListRightClick which calls PopupContextualMenu to display the contextual menu.

Menu "Macros"

"Show Demo Panel", ShowDemoPanel()
End

static Function HandleTickerListRightClick()
String popupItems = ""
popupItems += "Refresh;"

PopupContextualMenu popupItems
strswitch (S_selection)

case "Refresh":
DoAlert 0, "Here is where you would refresh the ticker list."
break

endswitch
End

Function TickerListProc(lba) : ListBoxControl
STRUCT WMListboxAction &lba

switch (lba.eventCode)
case 1: // Mouse down

if (lba.eventMod & 0x10)// Right-click?
HandleTickerListRightClick()

endif
break

endswitch

return 0
End

Function ShowDemoPanel()
DoWindow/F DemoPanel
if (V_flag != 0)

return 0 // Panel already exists.
endif

// Create panel data.
Make/O/T ticketListWave = {{"AAPL","IBM","MSFT"}, {"90.25","86.40","17.17"}}

// Create panel.
NewPanel /N=DemoPanel /W=(321,121,621,321) /K=1
ListBox TickerList,pos={48,16},size={200,100},fSize=12
ListBox TickerList,listWave=root:ticketListWave

Chapter IV-6 — Interacting with the User

IV-144

ListBox TickerList,mode= 1,selRow= 0, proc=TickerListProc
End

Cursors as Input Device
You can use the cursors on a trace in a graph to identify the data to be processed.

The examples shown above using PauseForUser are modal - the user adjusts the cursors in the middle of
procedure execution and can do nothing else. This technique is nonmodal — the user is expected to adjust
the cursors before invoking the procedure.

This function does a straight-line curve fit through the data between cursor A (the round cursor) and cursor
B (the square cursor). This example is written to handle both waveform and XY data.
Function FitLineBetweenCursors()

Variable isXY

// Make sure both cursors are on the same wave.
WAVE wA = CsrWaveRef(A)
WAVE wB = CsrWaveRef(B)
String dfA = GetWavesDataFolder(wA, 2)
String dfB = GetWavesDataFolder(wB, 2)
if (CmpStr(dfA, dfB) != 0)

Abort "Both cursors must be on the same wave."
return -1

endif

// Find the wave that the cursors are on.
WAVE yWave = CsrWaveRef(A)

// Decide if this is an XY pair.
WAVE xWave = CsrXWaveRef(A)
isXY = WaveExists(xWave)

if (isXY)
CurveFit line yWave(xcsr(A),xcsr(B)) /X=xWave /D

else
CurveFit line yWave(xcsr(A),xcsr(B)) /D

endif
End

This technique is demonstrated in the Fit Line Between Cursors example experiment in the “Exam-
ples:Curve Fitting” folder.

Advanced programmers can set things up so that a hook function is called whenever the user adjusts the
position of a cursor. For details, see Cursors — Moving Cursor Calls Function on page IV-302.

Marquee Menu as Input Device
A marquee is the dashed-line rectangle that you get when you click and drag diagonally in a graph or page
layout. It is used for expanding and shrinking the range of axes and for specifying an area of a layout. You
can use the marquee as an input device for your procedures. This is a relatively advanced technique.

This menu definition adds a user-defined item to the graph marquee menu:
Menu "GraphMarquee"

"Print Marquee Coordinates", PrintMarqueeCoords()
End

To add an item to the layout marquee menu, use LayoutMarquee instead of GraphMarquee.

Chapter IV-6 — Interacting with the User

IV-145

When the user chooses Print Marquee Coordinates, the following function runs. It prints the coordinates of
the marquee in the history area. It assumes that the graph has left and bottom axes.
Function PrintMarqueeCoords()

String format
GetMarquee/K left, bottom
format = "flag: %g; left: %g; top: %g; right: %g; bottom: %g\r"
printf format, V_flag, V_left, V_top, V_right, V_bottom

End

The ability to add items to the marquee menus through GraphMarquee and LayoutMarquee menu defini-
tions was added in Igor Pro 5. Before that, the GraphMarquee and LayoutMarquee procedure subtype key-
words were used. This technique is no longer recommended but is still supported.

The use of the marquee menu as in input device is demonstrated in the Marquee Demo and Delete Points
from Wave example experiments.

Polygon as Input Device
This technique is similar to the marquee technique except that you can identify a nonrectangular area. It is
implemented using FindPointsInPoly operation (see page V-194).

Chapter IV-6 — Interacting with the User

IV-146

Chapter

IV-7
IV-7Programming Techniques

Overview ... 149
The Include Statement.. 149

Procedure File Version Information.. 149
Turning the Included File’s Menus Off .. 150
Optionally Including Files.. 150

Writing General-Purpose Procedures .. 150
Programming with Liberal Names... 151
Programming with Data Folders .. 152

Storing Procedure Globals.. 153
Storing Runs of Data ... 153
Setting and Restoring the Current Data Folder... 154
Determining a Function’s Target Data Folder... 154
Clearing a Data Folder .. 155

Using Strings.. 155
Using Strings as Lists .. 155
Using Keyword-Value Packed Strings ... 155
Using Strings with Extractable Commands... 156

Regular Expressions ... 156
Regular Expression Operations and Functions... 156

Grep .. 156
GrepList.. 157
GrepString ... 157
SplitString .. 157

Basic Regular Expressions .. 158
Regular Expression Metacharacters.. 158
Character Classes in Regular Expressions ... 159
Backslash in Regular Expressions ... 159
Backslash and Nonprinting Characters.. 160
Backslash and Nonprinting Characters Arcania... 160
Backslash and Generic Character Types .. 161
Backslash and Simple Assertions .. 162
Circumflex and Dollar... 162
Dot, Period, or Full Stop ... 162
Character Classes and Brackets ... 163
POSIX Character Classes .. 163
Alternation.. 164
Match Option Settings... 164
Matching Newlines.. 165
Subpatterns ... 166
Named Subpatterns... 166
Repetition.. 167
Quantifier Greediness ... 168
Quantifiers With Subpatterns .. 168
Atomic Grouping and Possessive Quantifiers .. 169

Chapter IV-7 — Programming Techniques

IV-148

Back References.. 170
Assertions.. 170

Lookahead Assertions.. 171
Lookbehind Assertions .. 171
Using Multiple Assertions... 172

Conditional Subpatterns... 172
Regular Expression Comments.. 173
Recursive Patterns ... 173
Subpatterns as Subroutines .. 174
Regular Expressions References .. 174

Working with Files ... 175
Finding Files ... 175
Other File– and Folder–Related Operations and Functions.. 175

Writing to a Text File .. 176
Open and Close Operations ... 176

Wave Reference Functions... 177
Processing Lists of Waves.. 178

Graphing a List of Waves ... 178
Operating on the Traces in a Graph.. 179
Using a Fixed-Length List .. 179
Operating on Qualified Waves .. 180
The ExecuteCmdOnList Function ... 180

The Execute Operation... 180
Using a Macro From a User-Defined Function ... 181
Calling an External Operation From a User-Defined Function .. 181
Other Uses of Execute ... 182
Deferred Execution Using the Operation Queue .. 182

Procedures and Preferences .. 183
Experiment Initialization Procedures .. 183
Procedure Subtypes .. 183
Memory Considerations .. 184

Wave Reference Counting .. 185
Creating Igor Extensions.. 185

Chapter IV-7 — Programming Techniques

IV-149

Overview
This chapter discusses programming techniques and issues that go beyond the basics of the Igor program-
ming language and which all Igor programmers should understand. Techniques for advanced program-
mers are discussed in Chapter IV-10, Advanced Programming.

The Include Statement
The include statement is a “compiler directive” that you can put in your procedure file to automatically
open another procedure file. A typical include statement looks like this:
#include <Split Axis>

This statement automatically opens the file "Split Axis.ipf" in the WaveMetrics Procedures folder. Once this
statement has been compiled, you can call routines from that file. This is the recommended way to access
procedure files that contain utility routines.

The # character at the beginning specifies that a compiler directive follows. Compiler directives must start
at the far left edge of the procedure window with no leading tabs or spaces. Include statements can appear
anywhere in the file but it is conventional to put them near the top.

It is possible to include a file which in turn includes other files that will automatically open.

Included files are opened when procedures are compiled. If you remove an include statement from a pro-
cedure file, the file will automatically close when you next compile.

There are four forms of the include statement specifying where files are located:
1. Igor searches for the named file in "Igor Pro Folder/WaveMetrics Procedures" and in any subfold-

ers:
#include <fileName>

Example: #include <Split Axis>
2. Igor searches for the named file in "Igor Pro Folder/User Procedures" and "Igor Pro User Files/User

Procedures" and in any subfolders:
#include "fileName"

Example: #include "Test Utility Procs"
3. Igor looks for the file only in the exact location specified:

#include "full file path"

Example: #include "Hard Disk:Desktop Folder:Test Utility Procs"
4. Igor looks for the file relative to the Igor Pro folder or the Igor Pro User Files folder or the folder

containing the procedure file that contains the #include statement:
#include ":partial file path"

Example: #include ":Spectroscopy Procedures:Voigt Procs"

Igor looks first relative to the Igor Pro Folder. If that fails, it looks relative to the Igor Pro User Files
folder (requires Igor Pro 6.20 or later). If that fails it looks relative to the procedure file containing
the #include statement (requires Igor Pro 6.00 or later) or, if the #include statement is in the built-in
procedure window, relative to the experiment file (requires Igor Pro 6.02 or later).
The name of the file being included must end with the standard “.ipf” extension but the extension
is not used in the include statement.

Procedure File Version Information
If you create a procedure file to be used by other Igor users, it’s a good idea to add version information to
the file. You do this by putting a #pragma version statement in the procedure file. For example:
#pragma version = 1.10

This statement must appear with no indentation and must appear in the first 50 lines of the file. If Igor does
not find the #pragma version statement and if Igor is running on Macintosh, it then looks for a 'vers',1

Chapter IV-7 — Programming Techniques

IV-150

resource. If Igor finds neither the #pragma statement nor the resource, it treats the file as version 1.00. 'vers'
resources are obsolete but are still recognized by Igor.

Igor looks for the version information when the user invokes the File Information dialog from the Proce-
dure menu. If the file has version information, Igor displays the version next to the file name in the dialog.

Igor also looks for version information when it opens an included file. An include statement can require a
certain version of the included file using the following syntax:
#include <Bivariate Histogram> version>=1.03

If the required version of the procedure file is not available, Igor displays a warning to inform the user that
the procedure file needs to be updated.

Turning the Included File’s Menus Off
Normally an included procedure file’s menus and menu items are displayed. However, if you are including
a file merely to call one of its procedures, you may not want that file’s menu items to appear. To suppress
the file’s menus and menu items, use:
#include <Decimation> menus=0

To use both the menus and version options, you must separate them with a comma:
#include <Decimation> menus=0, version>=1.1

Optionally Including Files
Compilation usually ceases if the included file isn't found. On occasion it is advantageous to allow compi-
lation to proceed if an included file isn't present or is the wrong version. Optionally including a procedure
file is appropriate only if the file truly isn't needed to make procedures compile or operate.

Use the "optional" keyword to optionally include a procedure file:
#include <Decimation> version>=1.1, optional

The "optional" keyword requires Igor 6.13 or later.

Writing General-Purpose Procedures
Procedures can be placed on a scale ranging from general to specific. Usually, the high-level procedures of
a program are specific to the task at hand and call on more general, lower-level procedures. The most
general procedures are often called “utility” procedures.

You can achieve a high degree of productivity by building a library of utility procedures that you reuse in
different programs. In Igor, you can think of the routines in an experiment’s built-in Procedure window as
a program. It can call utility routines which should be stored in a separate procedure file so that they are
available to multiple experiments.

The files stored in the WaveMetrics Procedures folder contain general-purpose procedures on which your
high-level procedures can build. Use the include statement (see The Include Statement on page IV-149) to
access these and other utility files.

When you write utility routines, you should keep them as general as possible so that they can be reused as
much as possible. Here are some guidelines.
• Avoid the use of global variables as inputs or outputs. Using globals hard-wires the routine to spe-

cific names which makes it difficult to use and limits its generality.
• If you use globals to store state information between invocations of a routine, package the globals

in data folders.
WaveMetrics packages usually create data folders inside “root:Packages”. We use the prefix “WM” for
data folder names to avoid conflict with other packages. Follow this lead and should pick your own
data folder names so as to minimize the chance of conflict with WaveMetrics packages or with others.

Chapter IV-7 — Programming Techniques

IV-151

• Choose a clear and specific name for your utility routine.
By choosing a name that says precisely what your utility routine does, you minimize the likelihood
of collision with the name of another procedure. You also increase the readability of your program.

• Make functions which are used only internally by your procedures static.
By making internal functions static (i.e., private), you minimize the likelihood of collision with the
name of another procedure.

Programming with Liberal Names
Standard names in Igor may contain letters, numbers and the underscore character only. Starting with Igor
Pro 3.0, it became possible to use wave names and data folder names that contain almost any character (see
Liberal Object Names on page III-417). However, if you do use liberal names, some existing Igor proce-
dures and extensions may break. Programmers will need to make changes to their procedures to ensure
they will work with liberal names.

Whenever a liberal name is used in a command or expression, the name must be enclosed in single quotes.
For example:
Make 'Wave 1', wave2, 'miles/hour'
'Wave 1' = wave2 + 'miles/hour'

Without the single quotes, Igor has no way to know where a particular name ends. This is a problem when-
ever Igor parses a command or statement. Igor parses commands at the following times:
• When it compiles a user-defined function.
• When it compiles the right-hand side of an assignment statement, including a formula (:= depen-

dency expression).
• When it interprets a macro.
• When it interprets a command that you enter in the command line or via an Igor Text file.
• When it interprets a command you submit for execution via the Execute operation.
• When it interprets a command that an XOP submits for execution via the XOPCommand or

XOPSilentCommand callback routines.

When you use an Igor dialog to generate a command, Igor automatically uses quotes where necessary.

Programmers need to be concerned about liberal names whenever they create a command and then execute
it (via an Igor Text file, the Execute operation or the XOPCommand and XOPSilentCommand callback rou-
tines) or when creating a formula. In short, when you create something that Igor has to parse, names must
be quoted if they are liberal. Names that are not liberal can be quoted or unquoted.

If you have a procedure that builds up a command in a string variable and then executes it via the Execute
operation, you must use the PossiblyQuoteName function to provide the quotes if needed.

Here is a trivial example showing the old way of doing this along with the new, liberal-name aware way.
Function AddOneToWave(w)

WAVE w

String cmd
String name = NameOfWave(w)

// Here is the old way
sprintf cmd, "%s += 1", name
Execute cmd

// Here is the new, liberal-name aware way
sprintf cmd, "%s += 1", PossiblyQuoteName(name)
Execute cmd

End

Chapter IV-7 — Programming Techniques

IV-152

Imagine that you pass a wave named wave 1 to this function. Using the old method, the Execute operation
would see the following text:

wave 1 += 1

Igor will generate an error because it will try to find an operation, macro, function, wave or variable named wave.

Using the new method, the Execute operation would see the following text:
'wave 1' += 1

This works correctly because Igor sees 'wave 1' as a single name.

Depending on exactly what they do with their parameters, Igor procedures and extensions written before
Igor Pro 3.0 or which have not been tested with liberal names may cause errors like this to occur. The safe
route is to test all of the procedures and extensions that you rely on before routinely using liberal names.

When you pass a string expression containing a simple name to the $ operator, the name must not be quoted
because Igor does no parsing:
String w = "wave 1"; Display $w // Right
String w = "'wave 1'"; Display $w // Wrong

However, when you pass a path in a string to $, any liberal names in the path must be quoted:
String path = "root:'My Data':'wave 1'"; Display $w // Right
String path = "root:My Data:wave 1"; Display $w // Wrong

For further explanation of liberal name quoting rules, see Accessing Global Variables and Waves Using
Liberal Names on page IV-53.
Some built-in string functions return a list of waves. WaveList is the most common example. If liberal wave
names are used, you will have to be extra careful when using the list of names. For example, you can’t just
append the list to the name of an operation that takes a list of names and then execute the resulting string.
Rather, you will have to extract each name in turn, possibly quote it and then append it to the operation.

For example, the following will work if all wave names are standard but not if any wave names are liberal:
Execute "Display " + WaveList("*", ",", "")

Now you will need a string function that extracts out each name, possibly quotes it, and creates a new string
using the new names separated by commas. The PossiblyQuoteList function in the WaveMetrics procedure
file Strings as Lists does this. The preceding command becomes:
Execute "Display " + PossiblyQuoteList(WaveList("*", ",", ""), ",")

To include the Strings as Lists file in your procedures, see The Include Statement on page IV-149.

For details on using liberal names in user-defined functions, see Accessing Global Variables and Waves
Using Liberal Names on page IV-53.

Programming with Data Folders
For general information on data folders, including syntax for using data folders in command line opera-
tions, see Chapter II-8, Data Folders.

Data folders provide a powerful way for intermediate and advanced programmers to organize their data
and to reduce clutter. However, using data folders introduces some complexity in Igor programming. The
name of a variable or wave is no longer sufficient to uniquely identify it because the name alone does not
indicate in which data folder it resides.

There are two main uses for data folders:
• To store globals used by procedures to keep track of their state.
• To store runs of data with identical structures.

Chapter IV-7 — Programming Techniques

IV-153

Storing Procedure Globals
If you create packages of procedures, for example data acquisition, data analysis, or a specialized plot type,
you typically need to store global variables, strings and waves to maintain the state of your package. You
should keep all such items in a data folder that you create with a unique name to reduce clutter and avoid
conflicts with other packages.

If your package is inherently global in nature, data acquisition for example, create your data folder within
a data folder named Packages that you create (if necessary) in the root data folder. For example:
Function MyDAQInit()

String savDF= GetDataFolder(1) // Save current DF for restore.

NewDataFolder/O/S root:Packages // Make sure this exists.

if(DataFolderExists("WMDataAcq")) // Already created WMDataAcq?
SetDataFolder WMDataAcq // Our stuff is in here.
< do reinitialization if necessary >

else
NewDataFolder/S WMDataAcq // Our stuff goes in here.
Variable/G avar // Create at runtime.
< do other initialization if necessary >

endif

SetDataFolder savDF // Restore current DF.
End

On the other hand, if your package needs to create a group of variables and waves as a result of an operation
on a single input wave, it makes sense to create your data folder in the one that holds the input wave (see
the GetWavesDataFolder function on page V-250). Similarly, if you create a package that takes an entire
data folder as input (via a string parameter containing the path to the data folder), does operations on what
it finds inside and then needs to create a folder of output, it should create the output data folder in the one,
or possibly at the same level as the one containing the input.

If your package creates and maintains windows, it should create a master data folder in root:Packages and
then create individual folders within the master that correspond to each instance of a window. For example,
a Smith Chart package would create a master data folder as root:Packages:SmithCharts: and then create
individual folders inside the master with names that correspond to the individual graphs.

A package designed to operate on traces within graphs would go one step further and create a data folder for
each trace that it has worked on, inside the data folder for the graph. This technique is illustrated by the Smooth
Control Panel procedure file. For a demonstration, see Examples:Feature Demos:Smoothing Control Panel.pxp.

Storing Runs of Data
If you acquire data using a well-established experimental protocol, your data will have a well-defined struc-
ture. Each time you run your protocol, you produce a new data set with the same structure. Storing each
data set in its own data folder avoids name conflicts between corresponding items of different data sets. It
also simplifies the writing of procedures to analyze and compare data set.

To use a trivial example, your data might have a structure like this:
<Run of data>

String: conditions
Variable: temperature
Wave: appliedVoltage
Wave: luminosity

Having defined this structure, you could then write procedures to:
1. Load your data into a data folder
2. Create a graph showing the data from one run
3. Create a graph comparing the data from many runs

Chapter IV-7 — Programming Techniques

IV-154

Writing these procedures is greatly simplified by the fact that the names of the items in a run are fixed. For
example, step 2 could be written as:
Function GraphOneRun() // Graphs data run in the current data folder.

SVAR conditions
NVAR temperature
WAVE appliedVoltage, luminosity

Display luminosity vs appliedVoltage

String text
sprintf text, "Temperature: %g.\rExperimental conditions: %s.",

temperature, conditions
Textbox text

End

To create a graph, you would first set the current data folder to point to a run of data and then you would
invoke the GraphOneRun function.

The Data Folder Tutorial experiment, in the Learning Aids:Tutorials folder, shows in detail how to accom-
plish the three steps listed above.

Setting and Restoring the Current Data Folder
There are many reasons why you might want to save and restore the current data folder. In this example,
we have a function that does a curve fit to a wave passed in as a parameter. The CurveFit operation creates
two waves, W_coef and W_sigma, in the current data folder. If you use the /D option, it also creates a des-
tination wave in the current data folder. In this function, we make sure that the W_coef, W_sigma and des-
tination waves are all created in the same data folder as the source wave.
Function DoLineFit(w)

WAVE w

String dfSav = GetDataFolder(1)
SetDataFolder GetWavesDataFolder(w,1)
CurveFit line w /D
SetDataFolder dfSav

End

Many other operations create output waves in the current data folder. Depending on what your goal is, you
may want to use the technique shown here to control where the output waves are created.

A function should always save and restore the current data folder unless it is designed explicitly to change
the current data folder.

Determining a Function’s Target Data Folder
There are three common methods for determining the data folder that a function works on or in:
1. Passing a wave in the target data folder as a parameter
2. Having the function work on the current data folder
3. Passing a string parameter that points to the target data folder

For functions that operate on a specific wave, method 1 is appropriate.

For functions that operation on a large number of variables within a single data folder, methods 2 or 3 are
appropriate. In method 2, the calling routine sets the data folder of interest as the current data folder. In
method 3, the called function does this, and restores the original current data folder before it returns.

Chapter IV-7 — Programming Techniques

IV-155

Clearing a Data Folder
There are times when you might want to clear a data folder before running a procedure, to remove things
left over from a preceding run. If the data folder contains no child data folders, you can achieve this with:
KillWaves/A/Z; KillVariables/A/Z

If the data folder does contain child data folders, you could use the KillDataFolder operation. This opera-
tion kills a data folder and its contents, including any child data folders. You could kill the main data folder
and then recreate it. A problem with this is that, if the data folder or its children contain a wave that is in
use, you will generate an error which will cause your function to abort.

Here is a handy function that kills the contents of a data folder and the contents of its children without
killing any data folders and without attempting to kill any waves that may be in use.
Function ZapDataInFolderTree(path)

String path

String savDF= GetDataFolder(1)
SetDataFolder path

KillWaves/A/Z
KillVariables/A/Z
KillStrings/A/Z

Variable i
Variable numDataFolders = CountObjects(":", 4)
for(i=0; i<numDataFolders; i+=1)

String nextPath = GetIndexedObjName(":", 4, i)
ZapDataInFolderTree(nextPath)

endfor

SetDataFolder savDF
End

Using Strings
This section explains some common ways in which Igor procedures use strings. The most common techniques
use built-in functions such as StringFromList and FindListItem. In addition to the built-in functions, there are
a number of handy Igor procedure files in the WaveMetrics Procedures:Utilities:String Utilities folder.

Using Strings as Lists
Procedures often need to deal with lists of items. Such lists are usually represented as semicolon-separated
text strings. The StringFromList function is used to extract each item, often in a loop. For example:
Function Test()

Make jack,sam,fred,sue
String list = WaveList("*",";","")
Print list

Variable numItems=ItemsInList(list), i
for(i=0; i<numItems; i+=1)

Print StringFromList(i,list) // Print ith item
endfor

End

Using Keyword-Value Packed Strings
A collection of disparate values is often stored in a list of keyword-value pairs. For example, the TraceInfo
and AxisInfo functions return such a list. The information in these strings follows this form
KEYWORD:value;KEYWORD:value; ...

Chapter IV-7 — Programming Techniques

IV-156

The keyword is always upper case and followed by a colon. Then comes the value and a semicolon. When
parsing such a string, you should avoid reliance on the specific ordering of keywords — the order is likely
to change in future releases of Igor.

Two functions will extract information from keyword-value strings. NumberByKey is used when the data
is numeric, and StringByKey is used when the information is in the form of text.

Using Strings with Extractable Commands
The AxisInfo and TraceInfo readback functions provide much of their information in a form that resembles
the commands that you use to make the settings in the first place. For example, to set an axis to log mode,
you would execute something like this:
ModifyGraph log(left)=1

If we now look at the characters of the string returned by AxisInfo we see:
AXTYPE:left;CWAVE:jack; ... RECREATION:grid(x)=0;log(x)=1 ...

To use this information, we need to extract the value following “log(x)=” and then use it in a ModifyGraph
command with the extracted value with the desired graph as the target. Here is a user function that sets the
log mode of the bottom axis to the same value as the left axis:
Function CopyLogMode()

String info,text
Variable pos
info=AxisInfo("","left")
pos= StrSearch(info,"RECREATION:",0) // skip to start of "RECREATION:"
pos += strlen("RECREATION:") // skip "RECREATION:", too

// get text after "log(x)="
text= StringByKey("log(x)",info[pos,inf],"=",";")

String cmd = "ModifyGraph log(bottom)=" + text
Execute cmd

End

Regular Expressions
A regular expression is a pattern that is matched against a subject string from left to right. Regular expres-
sions are used to identify lines of text containing a particular pattern and to extracts substrings matching a
particular pattern.

A regular expression can contain regular characters that match the same character in the subject and special
characters, called "metacharacters", that match any character, a list of specific characters, or otherwise iden-
tify patterns.

The regular expression syntax is based on PCRE — the Perl-Compatible Regular Expression Library.

Igor syntax is similar to regular expressions supported by various UNIX and POSIX egrep(1) commands.
Igor’s implementation does not support the Unicode (UTF-8) section of PCRE.

See Regular Expressions References on page IV-174 for details on PCRE.

Regular Expression Operations and Functions
Here are the Igor operations and functions that work with regular expressions:

Grep
The Grep operation identifies lines of text that match a pattern.

The subject is each line of a file or each row of a text wave or each line of the text in the clipboard.

Output is stored in a file or in a text wave or in the clipboard.

Grep Example

Chapter IV-7 — Programming Techniques

IV-157

Function DemoGrep()
Make/T source={"Monday","Tuesday","Wednesday","Thursday","Friday"}
Make/T/N=0 dest
Grep/E="sday" source as dest // Find rows containing "sday"
Print dest

End

The output from Print is:

dest[0]= {"Tuesday","Wednesday","Thursday"}

GrepList
The GrepList function identifies items that match a pattern in a string containing a delimited list.

The subject is each item in the input list.

The output is a delimited list returned as the function result.

GrepList Example

Function DemoGrepList()
String source = "Monday;Tuesday;Wednesday;Thursday;Friday"
String dest = GrepList(source, "sday") // Find items containing "sday"
Print dest

End

The output from Print is:

Tuesday;Wednesday;Thursday;

GrepString
The GrepString function determines if a particular pattern exists in the input string.

The subject is the input string.

The output is 1 if the input string contains the pattern or 0 if not.

GrepString Example

Function DemoGrepString()
String subject = "123.45"
String regExp = "[0-9]+" // Match one or more digits
Print GrepString(subject,regExp) // True if subject contains digit(s)

End

The output from Print is: 1

SplitString
The SplitString operation identifies subpatterns in the input string.

The subject is the input string.

Output is stored in one or more string output variables.

SplitString Example

Function DemoSplitString()
String subject = "Thursday, May 7, 2009"
String regExp = "([[:alpha:]]+), ([[:alpha:]]+) ([[:digit:]]+), ([[:digit:]]+)"
String dayOfWeek, month, dayOfMonth, year
SplitString /E=(regExp) subject, dayOfWeek, month, dayOfMonth, year
Print dayOfWeek, month, dayOfMonth, year

End

Chapter IV-7 — Programming Techniques

IV-158

The output from Print is:

Thursday May 7 2009

Basic Regular Expressions
Here is a Grep command that uses "Fred" as the regular expression. "Fred" contains no metacharacters so
this command identifies lines of text containing the literal string "Fred". It examines each line from the input
file, afile.txt. All lines containing the pattern "Fred" are written to the output file, "FredFile.txt":
Grep/P=myPath/E="Fred" "afile.txt" as "FredFile.txt"

Character matching is case-sensitive by default. Prepending the Perl 5 modifier (?i) gives a case-insensitive
pattern that matches upper and lower-case versions of “Fred”:
// Copy lines that contain "Fred", "fred", "FRED", "fREd", etc
Grep/P=myPath/E="(?i)fred" "afile.txt" as "AnyFredFile.txt"

To copy lines that do not match the regular expression, use the Grep /E flag with the optional reverse param-
eter set to 1 to reverse the sense of the match:
// Copy lines that do NOT contain "Fred", "fred", "fREd", etc
Grep/P=myPath/E={"(?i)fred",1} "afile.txt" as "NotFredFile.txt"

Note: Igor doesn't use the Perl opening and closing regular expression delimiter character which is the
forward slash. In Perl you would use "/Fred/" and "/(?i)fred/".

Regular Expression Metacharacters
The power of regular expressions comes from the ability to include alternatives and repetitions in the pat-
tern. These are encoded in the pattern by the use of “metacharacters”, which do not stand for themselves
but instead are interpreted in some special way.

Chapter IV-7 — Programming Techniques

IV-159

There are two different sets of metacharacters: those that are recognized anywhere in the pattern except within
brackets, and those that are recognized in brackets. Outside brackets, the metacharacters are as follows:

Character Classes in Regular Expressions
A character class is a set of characters and is used to specify that one character of the set should be matched.
Character classes are introduced by a left-bracket and terminated by a right-bracket. For example:
[abc] Matches a or b or c

[A-Z] Matches any character from A to Z

[A-Za-z] Matches any character from A to Z or a to z.

POSIX character classes specify the characters to be matched symbolically. For example:
[[:alpha:]] Matches any alphabetic character (A to Z or a to z).

[[:digit:]] Matches 0 to 9.

In a character class the only metacharacters are:

Backslash in Regular Expressions
The backslash character has several uses. First, if it is followed by a nonalphanumeric character, it takes
away any special meaning that character may have. This use of backslash as an escape character applies
both inside and outside character classes.

\ General escape character with several uses

^ Match start of string

$ Match end of string

. Match any character except newline (by default)

(To match newline, see Matching Newlines on page IV-165)

[Start character class definition (for matching one of a set of characters)

| Start of alternative branch (for matching one or the other of two patterns)

(Start subpattern

) End subpattern

? 0 or 1 quantifier (for matching 0 or 1 occurrence of a pattern)

Also extends the meaning of (

Also quantifier minimizer

* 0 or more quantifier (for matching 0 or more occurrence of a pattern)

+ 1 or more quantifier (for matching 1 or more occurrence of a pattern)

Also possessive quantifier

{ Start min/max quantifier (for matching a number or range of occurrences)

\ General escape character

^ Negate the class, but only if ^ is the first character

- Indicates character range

[POSIX character class (only if followed by POSIX syntax)

] Terminates the character class

Chapter IV-7 — Programming Techniques

IV-160

For example, the * character normally means "match zero or more of the preceding subpattern". If you want
to match a * character, you write * in the pattern. This escaping action applies whether or not the follow-
ing character would otherwise be interpreted as a metacharacter, so it is always safe to precede a nonalpha-
numeric with backslash to specify that it stands for itself. In particular, if you want to match a backslash,
you write \\.

Note: Because Igor also has special uses for backslash (see Escape Characters in Strings on page IV-13),
you must double the number of backslashes you would normally use for a Perl or grep pattern.
Each pair of backslashes sends one backslash to, say, the Grep command.

For example, to copy lines that contain a backslash followed by a z character, the Perl pattern
would be "\\z", but the equivalent Igor Grep expression would be /E="\\\\z".

Igor's input string parser converts "\\" to "\" so, when you write /E="\\\\z", the regular
expression engine sees /E="\\z".

This difference is important enough that the PCRE and Igor Patterns (using Grep /E syntax) are
both shown below when they differ.

If you want to remove the special meaning from a sequence of characters, you can do so by putting them
between \Q and \E. This is different from Perl in that $ and @ are handled as literals in \Q…\E sequences in
PCRE, whereas in Perl, $ and @ cause variable interpolation. Note the following examples:

The \Q…\E sequence is recognized both inside and outside character classes.

Backslash and Nonprinting Characters
A second use of backslash provides a way of encoding nonprinting characters in patterns in a visible
manner. There is no restriction on where nonprinting characters can occur, apart from the binary zero that
terminates a pattern, but when a pattern is being prepared by text editing, it is usually easier to use one of
the following escape sequences than the binary character it represents:

Backslash and Nonprinting Characters Arcania
The material in this section is arcane and rarely needed. We recommend that you skip it.

The precise effect of \cx is if x is a lower case letter, it is converted to upper case. Then bit 6 of the character
(hex 40) is inverted. Thus \cz becomes hex 1A, but \c{ becomes hex 3B, while \c; becomes hex 7B.

Igor Pattern PCRE Pattern PCRE Matches Perl Matches

\\Qabc$xyz\\E \Qabc$xyz\E abc$xyz abc followed by the contents of $xyz

\\Qabc\\$xyz\\E \Qabc\$xyz\E abc\$xyz abc\$xyz

\\Qabc\\E\\$\\Qxyz\\E \Qabc\E\$\Qxyz\E abc$xyz abc$xyz

Igor Pattern PCRE Pattern Character Matched

\\a \a Alarm, that is, the BEL character (hex 07)

\\cx \cx “Control-x”, where x is any character

\\e \e Escape (hex 1B)

\\f \f Formfeed (hex 0C)

\\n \n Newline (hex 0A)

\\r \r Carriage return (hex 0D)

\\t \t Tab (hex 09)

\\ddd \ddd Character with octal code ddd, or backreference

\\xhh \xhh Character with hex code hh

Chapter IV-7 — Programming Techniques

IV-161

After \x, from zero to two hexadecimal digits are read (letters can be in upper or lower case). If characters
other than hexadecimal digits appear between \x{ and }, or if there is no terminating }, this form of escape
is not recognized. Instead, the initial \x will be interpreted as a basic hexadecimal escape, with no following
digits, giving a character whose value is zero.

After \0 up to two further octal digits are read. In both cases, if there are fewer than two digits, just those
that are present are used. Thus the sequence \0\x\07 specifies two binary zeros followed by a BEL char-
acter (code value 7). Make sure you supply two digits after the initial zero if the pattern character that
follows is itself an octal digit.

The handling of a backslash followed by a digit other than 0 is complicated. Outside a character class, PCRE
reads it and any following digits as a decimal number. If the number is less than 10, or if there have been at least
that many previous capturing left parentheses in the expression, the entire sequence is taken as a back reference.
A description of how this works is given later, following the discussion of parenthesized subpatterns.

Inside a character class, or if the decimal number is greater than 9 and there have not been that many cap-
turing subpatterns, PCRE rereads up to three octal digits following the backslash, and generates a single
byte from the least significant 8 bits of the value. Any subsequent digits stand for themselves. For example:

Note that octal values of 100 or greater must not be introduced by a leading zero, because no more than
three octal digits are ever read.

All the sequences that define a single byte value can be used both inside and outside character classes. In
addition, inside a character class, the sequence \b is interpreted as the backspace character (hex 08), and the
sequence \X is interpreted as the character X. Outside a character class, these sequences have different
meanings (see Backslash and Nonprinting Characters on page IV-160).

Backslash and Generic Character Types
The third use of backslash is for specifying generic character types. The following are always recognized:

Igor Pattern PCRE Pattern Character(s) Matched

\\040 \040 Another way of writing a space

\\40 \40 A space, provided there are fewer than 40 previous capturing subpatterns

\\7 \7 Always a back reference

\\11 \11 Might be a back reference, or another way of writing a tab

\\011 \011 Always a tab

\\0113 \0113 A tab followed by the character “3”

\\113 \113 Might be a back reference, otherwise the character with octal code 113

\\377 \377 Might be a back reference, otherwise the byte consisting entirely of 1 bits

\\81 \81 Either a back reference or a binary zero followed by the two
characters “8” and “1”

Igor Pattern PCRE Pattern Character(s) Matched

\\d \d Any decimal digit

\\D \D Any character that is not a decimal digit

\\s \s Any whitespace character

\\S \S Any character that is not a whitespace character

\\w \w Any “word” character

\\W \W Any “nonword” character

Chapter IV-7 — Programming Techniques

IV-162

Each pair of escape sequences, such as \d and \D, partitions the complete set of characters into two disjoint
sets. Any given character matches one, and only one, of each pair.

These character type sequences can appear both inside and outside character classes. They each match one
character of the appropriate type. If the current matching point is at the end of the subject string, all of them
fail, since there is no character to match.

For compatibility with Perl, \s does not match the vertical tab character (VT-ASCII code 11). This makes it
different from the POSIX "space" class. The \s whitespace characters are horizontal tab (HT-9), linefeed
(LF-10), formfeed (FF-12), carriage-return (CR-13), and space (32).

A “word” character is an underscore or any character that is a letter or digit.

Backslash and Simple Assertions
The fourth use of backslash is for certain simple assertions. An assertion specifies a condition that has to be met
at a particular point in a match without consuming any characters from the subject string. The use of subpatterns
for more complicated assertions is described in Assertions on page IV-170. The backslashed assertions are:

These assertions may not appear in character classes (but note that \b has a different meaning, namely the
backspace character, inside a character class).

A word boundary is a position in the subject string where the current character and the previous character
do not both match \w or \W (i.e. one matches \w and the other matches \W), or the start or end of the string
if the first or last character matches \w, respectively.

While PCRE defines additional simple assertions (\A, \Z, \z and \G), they are not any more useful to Igor’s
regular expression commands than the ^ and $ characters.

Circumflex and Dollar
Outside a character class, in the default matching mode, the circumflex character ^ is an assertion that is
true only if the current matching point is at the start of the subject string. Inside a character class, circumflex
has an entirely different meaning (see Character Classes and Brackets on page IV-163).

Circumflex need not be the first character of the pattern if a number of alternatives are involved, but it should
be the first thing in each alternative in which it appears if the pattern is ever to match that branch. If all possible
alternatives start with a circumflex, that is, if the pattern is constrained to match only at the start of the subject,
it is said to be an “anchored” pattern. (There are also other constructs that can cause a pattern to be anchored.)

A dollar character $ is an assertion that is true only if the current matching point is at the end of the subject
string, or immediately before a newline character that is the last character in the string (by default). Dollar
need not be the last character of the pattern if a number of alternatives are involved, but it should be the last
item in any branch in which it appears. Dollar has no special meaning in a character class.

Dot, Period, or Full Stop
Outside a character class, a dot in the pattern matches any one character in the subject, including a nonprint-
ing character, but not (by default) newline. Dot has no special meaning in a character class.

Igor Pattern PCRE Pattern Character(s) Matched

\\b \b At a word boundary

\\B \B Not at a word boundary

\\A \A At start of subject

\\Z \Z At end of subject or before newline at end

\\z \z At end of subject

\\G \G At first matching position in subject

Chapter IV-7 — Programming Techniques

IV-163

The match option setting (?s) changes the default behavior of dot so that it matches any character including
newline. The setting can appear anywhere before the dot in the pattern. See Matching Newlines on page
IV-165 for details.

Character Classes and Brackets
An opening bracket introduces a character class which is terminated by a closing bracket. A closing bracket
on its own is not special. If a closing bracket is required as a member of the class, it must be the first data
character in the class (after an initial circumflex, if present) or escaped with a backslash.

A character class matches a single character in the subject. A matched character must be in the set of char-
acters defined by the class, unless the first character in the class definition is a circumflex, in which case the
subject character must not be in the set defined by the class. If a circumflex is actually required as a member
of the class, ensure it is not the first character, or escape it with a backslash.

For example, the character class [aeiou] matches any English lower case vowel, whereas [^aeiou]
matches any character that is not an English lower case vowel. Note that a circumflex is just a convenient
notation for specifying the characters that are in the class by enumerating those that are not.

When caseless matching is set, using the(?i) match option setting, any letters in a class represent both their
upper case and lower case versions, so for example, the caseless pattern (?i)[aeiou] matches A as well
as a, and the caseless pattern (?i)[^aeiou] does not match A.

The minus (hyphen) character can be used to specify a range of characters in a character class. For example,
[d-m] matches any letter between d and m, inclusive. If a minus character is required in a class, it must be
escaped with a backslash or appear in a position where it cannot be interpreted as indicating a range, typi-
cally as the first or last character in the class.

To include a right-bracket in a range you must use \]. As usual, this would be represented in a literal Igor
string as \\].

Though it is rarely needed, you can specify a range using octal numbers, for example [\000-\037].

The character types \d, \D, \p, \P, \s, \S, \w, and \W may also appear in a character class, and add the
characters that they match to the class. For example, [\dABCDEF] matches any hexadecimal digit. A cir-
cumflex can conveniently be used with the upper case character types to specify a more restricted set of
characters than the matching lower case type. For example, the class [^\W_] matches any letter or digit,
but not underscore. The corresponding Grep command would begin with
Grep/E="[^\\W_]"…

The only metacharacters that are recognized in character classes are backslash, hyphen (only where it can
be interpreted as specifying a range), circumflex (only at the start), opening bracket (only when it can be
interpreted as introducing a POSIX class name — see POSIX Character Classes on page IV-163), and the
terminating closing bracket. However, escaping other nonalphanumeric characters does no harm.

POSIX Character Classes
Perl supports the POSIX notation for character classes. This uses names enclosed by [: and :] within the
enclosing brackets. PCRE also supports this notation. For example,
[01[:alpha:]%]

matches “0”, “1”, any alphabetic character, or “%”.
The supported class names, all of which must appear between [: and :] inside a character class specifica-
tion, are

alnum Letters and digits
alpha Letters
ascii Character codes 0 - 127

Chapter IV-7 — Programming Techniques

IV-164

The “space” characters are horizontal tab (HT-9), linefeed (LF-10), vertical tab (VT-11), formfeed (FF-12),
carriage-return (CR-13), and space (32). Notice that this list includes the VT character (code 11). This makes
“space” different from \s, which does not include VT (for Perl compatibility).

The class name word is a Perl extension, and blank is a GNU extension from Perl 5.8. Another Perl exten-
sion is negation that is indicated by a ^ character after the colon. For example,
[12[:^digit:]]

matches “1”, “2”, or any nondigit. PCRE (and Perl) also recognize the POSIX syntax [.ch.] and [=ch=]
where “ch” is a “collating element”, but these are not supported, and an error is given if they are encountered.

Alternation
Vertical bar characters are used to separate alternative patterns. For example, the pattern
gilbert|sullivan

matches either “gilbert” or “sullivan”. Any number of alternative patterns may be specified, and an empty
alternative is permitted (matching the empty string). The matching process tries each alternative in turn,
from left to right, and the first one that succeeds is used. If the alternatives are within a subpattern (defined
in Subpatterns on page IV-166), “succeeds” means matching the rest of the main pattern as well as the alter-
native in the subpattern.

Match Option Settings
Character matching options can be changed from within the pattern by a sequence of Perl option letters
enclosed between (? and). The option letters are:

For example, (?i) sets caseless matching.

You can unset these options by preceding the letter with a hyphen: (?-i) turns off caseless matching.

blank Space or tab only
cntrl Control characters
digit Decimal digits (same as \d)
graph Printing characters, excluding space
lower Lower case letters
print Printing characters, including space
punct Printing characters, excluding letters and digits
space White space (not quite the same as \s)
upper Upper case letters
word “Word” characters (same as \w)
xdigit Hexadecimal digits

Option PCRE Name Characters Matched

i PCRE_CASELESS Upper and lower case.

m PCRE_MULTILINE ^ matches start of string and just after a new line (\n). $ matches end
of string and just before a new line. Without (?m), ̂ and $ match only
the start and end of the entire string.

s PCRE_DOTALL . matches all characters including newline. Without (?s), . does not
match newlines. See Matching Newlines on page IV-165.

U PCRE_UNGREEDY Reverses the "greediness" of the quantifiers so that they are not
greedy by default, but become greedy if followed by ?.

Chapter IV-7 — Programming Techniques

IV-165

You can combine a setting and unsetting such as (?i-U), which sets PCRE_CASELESS while unsetting
PCRE_UNGREEDY.

When an option change occurs at top level (that is, not inside subpattern parentheses), the change applies
to the remainder of the pattern that follows. If the change is placed right at the start of a pattern, PCRE
extracts it into the global options.

An option change within a subpattern affects only that part of the current pattern that follows it, so
(a(?i)b)c

matches abc and aBc and no other strings.

Any changes made in one alternative do carry on into subsequent branches within the same subpattern. For
example,
(a(?i)b|c)

matches “ab”, “aB”, “c”, and “C”, even though when matching “C” the first branch is abandoned before the
option setting. This is because the effects of option settings happen at compile time.

The other PCRE 5-specific options, such as (?e), (?A), (?D), (?S), (?x) and (?X), are implemented but are not
very useful with Igor's regular expression commands.

Matching Newlines
Igor generally uses carriage-return (ASCII code 13) return to indicate a new line in text. This is represented
in a literal string by "\r". For example:

Print "Hello\rGoodbye"

prints two lines of text to the history area.

However, in regular expressions, the newline character is linefeed (ASCII code 10). This is represented in a
literal string by "\n". Carriage-return has no special status in regular expressions.

The match option setting (?s) changes the default behavior of dot so that it matches any character includ-
ing newline. The setting can appear anywhere before the dot in the pattern. For example:

Function DemoNewline(includeNewline)
Variable includeNewline

String subject = "Hello\nGoodbye" // \n represents newline

String regExp
if (includeNewline)

regExp = "(?s)(.+)" // One or more of any character
else

regExp = "(.+)" // One or more of any character except newline
endif

String result
SplitString /E=(regExp) subject, result
Print result

End

The output from DemoNewline(0) is:

Hello

The output from DemoNewline(1) is:

Hello\nGoodbye

Here is a more realistic example:

Chapter IV-7 — Programming Techniques

IV-166

Function DemoDotAll()
String theString = ExampleHTMLString()

// This regular expression attempts to extract items from
// HTML code for an ordered list. It fails because the HTML
// code contains newlines and, by default, . does not match newlines.
String regExpFails="(.*?).*(.*?)"
String str1, str2
SplitString/E=regExpFails theString, str1, str2
Print V_flag, " subpatterns were matched using regExpFails"
Printf "\"%s\", \"%s\"\r", str1, str2

// This regular expression works because the "(?s)" match
// option setting causes . to match newlines.
String regExpWorks="(?s)(.*?).*(.*?)"
SplitString/E=regExpWorks theString, str1, str2
Print V_flag, " subpatterns were matched using regExpWorks"
Printf "\"%s\", \"%s\"\r", str1, str2

End
Function/S ExampleHTMLString() // Returns HTML code containing newlines

String theString = ""
theString += "\n"
theString += "\titem 1\n"
theString += "\titem 2\n"
theString += "<\ol>\n"
return theString

End

•DemoDotAll()
 0 subpatterns were matched using regExpFails
 "", ""
 2 subpatterns were matched using regExpWorks
 "item 1", "item 2"

Subpatterns
Subpatterns are used to group alternatives, to match a previously-matched pattern again, and to extract
match text using SplitString.
Subpatterns are delimited by parentheses, which can be nested. Turning part of a pattern into a subpattern
localizes a set of alternatives. For example, this pattern (which includes two vertical bars signifying alter-
nation):

cat(aract|erpillar|)

matches one of the words "cat", "cataract", or "caterpillar". Without the parentheses, it would match "cata-
ract", "erpillar" or the empty string.

Named Subpatterns
Specifying subpatterns by number is simple, but it can be very hard to keep track of the numbers in com-
plicated regular expressions. Furthermore, if an expression is modified, the numbers may change. To help
with this difficulty, PCRE supports the naming of subpatterns, something that Perl does not provide. The
Python syntax (?P<name>…) is used. For example:

My (?P<catdog>cat|dog) is cooler than your (?P=catdog)

Here catdog is the name of the first and only subpattern. ?P<catdog> names the subpattern and
(?P=catdog) matches the previous match for that subpattern.

Names consist of alphanumeric characters and underscores, and must be unique within a pattern.

Chapter IV-7 — Programming Techniques

IV-167

Named capturing parentheses are still allocated numbers as well as names. This has the same effect as the
previous example:

My (?P<catdog>cat|dog) is cooler than your \\1

Repetition
Repetition is specified by quantifiers:

Quantifiers can follow any of the following items:
• A literal data character
• The . metacharacter
• The \C escape sequence
• An escape such as \d that matches a single character
• A character class
• A back reference (see Back References on page IV-170)
• A parenthesized subpattern (unless it is an assertion)

The general repetition quantifier specifies a minimum and maximum number of permitted matches, by
giving the two numbers in braces, separated by a comma. The numbers must be less than 65536, and the
first must be less than or equal to the second. For example:
z{2,4}

matches “zz”, “zzz”, or “zzzz”.

If the second number is omitted, but the comma is present, there is no upper limit; if the second number
and the comma are both omitted, the quantifier specifies an exact number of required matches. Thus
[aeiou]{3,}

matches at least 3 successive vowels, but may match many more, while
\d{8}

matches exactly 8 digits. A left brace that appears in a position where a quantifier is not allowed, or one that
does not match the syntax of a quantifier, is taken as a literal character. For example, {,6} is not a quanti-
fier, but a literal string of four characters.

The quantifier {0} is permitted, causing the expression to behave as if the previous item and the quantifier
were not present.

? 0 or 1 quantifier

Example: [abc]? - Matches 0 or 1 occurrences of a or b or c

* 0 or more quantifier

Example: [abc]* - Matches 0 or more occurrences of a or b or c

+ 1 or more quantifier

Example: [abc]+ - Matches 1 or more occurrences of a or b or c

{n} n times quantifier

Example: [abc]{3} - Matches 3 occurrences of a or b or c

{n,m} n to m times quantifier

Example: [abc]{3,5} - Matches 3 to 5 occurrences of a or b or c

Chapter IV-7 — Programming Techniques

IV-168

For convenience (and historical compatibility) the three most common quantifiers have single-character
abbreviations:

It is possible to construct infinite loops by following a subpattern that can match no characters with a quan-
tifier that has no upper limit, for example:
(a?)*

Earlier versions of Perl and PCRE used to give an error at compile time for such patterns. However, because
there are cases where this can be useful, such patterns are now accepted, but if any repetition of the subpat-
tern does in fact match no characters, the loop is forcibly broken.

Quantifier Greediness
By default, the quantifiers are “greedy”, that is, they match as much as possible (up to the maximum number of
permitted times), without causing the rest of the pattern to fail. The classic example of where this gives problems
is in trying to match comments in C programs. These appear between /* and */ and within the comment, indi-
vidual * and / characters may appear. An attempt to match C comments by applying the pattern
/*.**/ or Grep/E="/*.**/"

to the string
/* first comment */ not comment /* second comment */

fails because it matches the entire string owing to the greediness of the .* item.

However, if a quantifier is followed by a question mark, it ceases to be greedy, and instead matches the
minimum number of times possible, so the pattern
/*.*?*/ or Grep/E="/*.*?*/"

does the right thing with the C comments. The meaning of the various quantifiers is not otherwise changed,
just the preferred number of matches.
Do not confuse this use of question mark with its use as a quantifier in its own right. Because it has two uses,
it can sometimes appear doubled, as in
\d??\d or Grep/E="\\d??\\d"

which matches one digit by preference, but can match two if that is the only way the rest of the pattern matches.

If the PCRE_UNGREEDY option (?U) is set, the quantifiers are not greedy by default, but individual ones
can be made greedy by following them with a question mark. In other words, it inverts the default behavior.

Quantifiers With Subpatterns
When a parenthesized subpattern is quantified with a minimum repeat count that is greater than 1 or with
a limited maximum, more memory is required for the compiled pattern, in proportion to the size of the
minimum or maximum.

When a capturing subpattern is repeated, the value captured is the substring that matched the final itera-
tion. For example, after
(tweedle[dume]{3}\s*)+ or Grep/E="(tweedle[dume]{3}\\s*)+"

has matched “tweedledum tweedledee” the value of the captured substring is “tweedledee”. However, if
there are nested capturing subpatterns, the corresponding captured values may have been set in previous
iterations. For example, after
/(a|(b))+/

* Equivalent to {0,}
+ Equivalent to {1,}
? Equivalent to {0,1}

Chapter IV-7 — Programming Techniques

IV-169

matches “aba” the value of the second captured substring is “b”.

Atomic Grouping and Possessive Quantifiers
With both maximizing and minimizing repetition, failure of what follows normally reevaluates the
repeated item to see if a different number of repeats allows the rest of the pattern to match. Sometimes it is
useful to prevent this, either to change the nature of the match, or to cause it fail earlier than it otherwise
might, when the author of the pattern knows there is no point in carrying on.

Consider, for example, the pattern \d+foo when applied to the subject line
123456bar

After matching all 6 digits and then failing to match “foo”, the normal action of the matcher is to try again with
only 5 digits matching the \d+ item, and then with 4, and so on, before ultimately failing. “Atomic grouping”
provides the means for specifying that once a subpattern has matched, it is not to be reevaluated in this way.

If we use atomic grouping for the previous example, the matcher would give up immediately on failing to
match “foo” the first time. The notation is a kind of special parenthesis, starting with (?> as in this example:
(?>\d+)foo or Grep/E="(?>\\d+)foo"

This kind of parenthesis “locks up” the part of the pattern it contains once it has matched, and a failure
further into the pattern is prevented from backtracking into it. Backtracking past it to previous items, how-
ever, works as normal.

An alternative description is that a subpattern of this type matches the string of characters that an identical
standalone pattern would match, if anchored at the current point in the subject string.

Atomic grouping subpatterns are not capturing subpatterns. Simple cases such as the above example can
be thought of as a maximizing repeat that must swallow everything it can. So, while both \d+ and \d+?
are prepared to adjust the number of digits they match in order to make the rest of the pattern match,
(?>\d+) can only match an entire sequence of digits.

Atomic groups in general can of course contain arbitrarily complicated subpatterns, and can be nested.
However, when the subpattern for an atomic group is just a single repeated item, as in the example above,
a simpler notation, called a “possessive quantifier” can be used. This consists of an additional + character
following a quantifier. Using this notation, the previous example can be rewritten as
\d++foo or Grep/E="\\d++foo"

Possessive quantifiers are always greedy; the setting of the PCRE_UNGREEDY option is ignored. They are
a convenient notation for the simpler forms of atomic group. However, there is no difference in the meaning
or processing of a possessive quantifier and the equivalent atomic group.

The possessive quantifier syntax is an extension to the Perl syntax. It originates in Sun’s Java package.

When a pattern contains an unlimited repeat inside a subpattern that can itself be repeated an unlimited
number of times, the use of an atomic group is the only way to avoid some failing matches taking a very
long time indeed. The pattern
(\D+|<\d+>)*[!?] or Grep/E="(\\D+|<\\d+>)*[!?]"

matches an unlimited number of substrings that either consist of nondigits, or digits enclosed in <>, fol-
lowed by either ! or ?. When it matches, it runs quickly. However, if it is applied to
aa

it takes a long time before reporting failure. This is because the string can be divided between the internal \D+
repeat and the external * repeat in a large number of ways, and all have to be tried. (The example uses [!?]
rather than a single character at the end, because both PCRE and Perl have an optimization that allows for fast
failure when a single character is used. They remember the last single character that is required for a match,
and fail early if it is not present in the string.) If the pattern is changed so that it uses an atomic group, like this:
((?>\D+)|<\d+>)*[!?] or Grep/E="((?>\\D+)|<\\d+>)*[!?]"

Chapter IV-7 — Programming Techniques

IV-170

sequences of nondigits cannot be broken, and failure happens quickly.

Back References
Outside a character class, a backslash followed by a digit greater than 0 (and possibly further digits) is a
back reference to a capturing subpattern earlier (that is, to its left) in the pattern, provided there have been
that many previous capturing left parentheses.

However, if the decimal number following the backslash is less than 10, it is always taken as a back refer-
ence, and causes an error only if there are not that many capturing left parentheses in the entire pattern. In
other words, the parentheses that are referenced need not be to the left of the reference for numbers less
than 10. See Backslash and Nonprinting Characters on page IV-160 for further details of the handling of
digits following a backslash.

A back reference matches whatever actually matched the capturing subpattern in the current subject string,
rather than anything matching the subpattern itself (see Subpatterns as Subroutines on page IV-174 for a
way of doing that). So the pattern
(sens|respons)e and \1ibility or /E="(sens|respons)e and \\1ibility"

matches “sense and sensibility” and “response and responsibility”, but not “sense and responsibility”. If
caseful matching is in force at the time of the back reference, the case of letters is relevant. For example,
((?i)rah)\s+\1 or Grep/E="((?i)rah)\\s+\\1"

matches “rah rah” and “RAH RAH”, but not “RAH rah”, even though the original capturing subpattern is
matched caselessly.

Back references to named subpatterns use the Python syntax (?P<name>). We could rewrite the above
example as follows:
(?P<p1>(?i)rah)\s+(?P=p1) or Grep/E="(?P<p1>(?i)rah)\\s+(?P=p1)"

There may be more than one back reference to the same subpattern. If a subpattern has not actually been
used in a particular match, any back references to it always fail. For example, the pattern
(a|(bc))\2

always fails if it starts to match “a” rather than “bc”. Because there may be many capturing parentheses in
a pattern, all digits following the backslash are taken as part of a potential back reference number. If the
pattern continues with a digit character, some delimiter must be used to terminate the back reference. An
empty comment (see Regular Expression Comments on page IV-173) can be used.

A back reference that occurs inside the parentheses to which it refers fails when the subpattern is first used,
so, for example, (a\1) never matches. However, such references can be useful inside repeated subpatterns.
For example, the pattern
(a|b\1)+ or Grep/E="(a|b\\1)+"

matches any number of a’s and also “aba”, “ababbaa” etc. At each iteration of the subpattern, the back ref-
erence matches the character string corresponding to the previous iteration. In order for this to work, the
pattern must be such that the first iteration does not need to match the back reference. This can be done
using alternation, as in the example above, or by a quantifier with a minimum of zero.

Assertions
An assertion is a test on the characters following or preceding the current matching point that does not actu-
ally consume any characters. The simple assertions coded as \b, \B, ^ and $ are described in Backslash
and Simple Assertions on page IV-162.

More complicated assertions are coded as subpatterns. There are two kinds: those that look ahead of the
current position in the subject string, and those that look behind it. An assertion subpattern is matched in
the normal way, except that it does not cause the current matching position to be changed.

Chapter IV-7 — Programming Techniques

IV-171

Assertion subpatterns are not capturing subpatterns, and may not be repeated, because it makes no sense to
assert the same thing several times. If any kind of assertion contains capturing subpatterns within it, these are
counted for the purposes of numbering the capturing subpatterns in the whole pattern. However, substring
capturing is carried out only for positive assertions, because it does not make sense for negative assertions.

Lookahead Assertions
Lookahead assertions start with (?= for positive assertions and (?! for negative assertions. For example,
\w+(?=;) or Grep/E="\\w+(?=;)"

matches a word followed by a semicolon, but does not include the semicolon in the match, and
foo(?!bar)

matches any occurrence of “foo” that is not followed by “bar”. Note that the apparently similar pattern
(?!foo)bar

does not find an occurrence of “bar” that is preceded by something other than “foo”; it finds any occurrence
of “bar” whatsoever, because the assertion (?!foo) is always true when the next three characters are
“bar”. A lookbehind assertion is needed to achieve the other effect.

If you want to force a matching failure at some point in a pattern, the most convenient way to do it is with
(?!) because an empty string always matches, so an assertion that requires there not to be an empty string
must always fail.

Lookbehind Assertions
Lookbehind assertions start with (?<= for positive assertions and (?<! for negative assertions. For exam-
ple,
(?<!foo)bar

does find an occurrence of “bar” that is not preceded by “foo”. The contents of a lookbehind assertion are
restricted such that all the strings it matches must have a fixed length. However, if there are several alter-
natives, they do not all have to have the same fixed length. Thus
(?<=bullock|donkey)

is permitted, but
(?<!dogs?|cats?)

causes an error at compile time. Branches that match different length strings are permitted only at the top
level of a lookbehind assertion. This is an extension compared with Perl (at least for 5.8), which requires all
branches to match the same length of string. An assertion such as
(?<=ab(c|de))

is not permitted, because its single top-level branch can match two different lengths, but it is acceptable if
rewritten to use two top-level branches:
(?<=abc|abde)

The implementation of lookbehind assertions is, for each alternative, to temporarily move the current posi-
tion back by the fixed width and then try to match. If there are insufficient characters before the current
position, the match is deemed to fail.

Atomic groups can be used in conjunction with lookbehind assertions to specify efficient matching at the
end of the subject string. Consider a simple pattern such as
abcd$

when applied to a long string that does not match. Because matching proceeds from left to right, PCRE will look
for each a in the subject and then see if what follows matches the rest of the pattern. If the pattern is specified as
^.*abcd$

Chapter IV-7 — Programming Techniques

IV-172

the initial .* matches the entire string at first, but when this fails (because there is no following a), it backtracks
to match all but the last character, then all but the last two characters, and so on. Once again the search for a
covers the entire string, from right to left, so we are no better off. However, if the pattern is written as
^(?>.*)(?<=abcd)

or, equivalently, using the possessive quantifier syntax,
^.*+(?<=abcd)

there can be no backtracking for the .* item; it can match only the entire string. The subsequent lookbehind
assertion does a single test on the last four characters. If it fails, the match fails immediately. For long
strings, this approach makes a significant difference to the processing time.

Using Multiple Assertions
Several assertions (of any sort) may occur in succession. For example,
(?<=\d{3})(?<!999)foo or Grep/E="(?<=\\d{3})(?<!999)foo"

matches “foo” preceded by three digits that are not “999”. Notice that each of the assertions is applied inde-
pendently at the same point in the subject string. First there is a check that the previous three characters are
all digits, and then there is a check that the same three characters are not “999”. This pattern does not match
“foo” preceded by six characters, the first of which are digits and the last three of which are not “999”. For
example, it doesn’t match “123abcfoo”. A pattern to do that is
(?<=\d{3}...)(?<!999)fooor Grep/E="(?<=\\d{3}...)(?<!999)foo"

This time the first assertion looks at the preceding six characters, checking that the first three are digits, and
then the second assertion checks that the preceding three characters are not “999”.

 Assertions can be nested in any combination. For example,
(?<=(?<!foo)bar)baz

matches an occurrence of “baz” that is preceded by “bar” which in turn is not preceded by “foo”, while
(?<=\d{3}(?!999)...)foo or Grep/E=" (?<=\\d{3}(?!999)...)foo"

is another pattern that matches “foo” preceded by three digits and any three characters that are not “999”.

Conditional Subpatterns
It is possible to cause the matching process to obey a subpattern conditionally or to choose between two
alternative subpatterns, depending on the result of an assertion, or whether a previous capturing subpat-
tern matched or not. The two possible forms of conditional subpattern are
(?(condition)yes-pattern)
(?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the no-pattern (if present) is used. If there are
more than two alternatives in the subpattern, a compile-time error occurs.

There are three kinds of condition. If the text between the parentheses consists of a sequence of digits, the
condition is satisfied if the capturing subpattern of that number has previously matched. The number must
be greater than zero. Consider the following pattern, which contains nonsignificant white space to make it
more readable and to divide it into three parts for ease of discussion:
(\()? [^()]+ (?(1) \))

The first part matches an optional opening parenthesis, and if that character is present, sets it as the first
captured substring. The second part matches one or more characters that are not parentheses. The third part
is a conditional subpattern that tests whether the first set of parentheses matched or not. If they did, that is,
if subject started with an opening parenthesis, the condition is true, and so the yes-pattern is executed and
a closing parenthesis is required. Otherwise, since no-pattern is not present, the subpattern matches noth-
ing. In other words, this pattern matches a sequence of nonparentheses, optionally enclosed in parentheses.

Chapter IV-7 — Programming Techniques

IV-173

If the condition is the string (R), it is satisfied if a recursive call to the pattern or subpattern has been made. At
“top level”, the condition is false. This is a PCRE extension. Recursive patterns are described in the next section.

If the condition is not a sequence of digits or (R), it must be an assertion. This may be a positive or negative
lookahead or lookbehind assertion. Consider this pattern, again containing nonsignificant white space, and
with the two alternatives on the second line:
(?(?=[^a-z]*[a-z])
\d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2})

The condition is a positive lookahead assertion that matches an optional sequence of nonletters followed by
a letter. In other words, it tests for the presence of at least one letter in the subject. If a letter is found, the
subject is matched against the first alternative; otherwise it is matched against the second. This pattern
matches strings in one of the two forms dd-aaa-dd or dd-dd-dd, where aaa are letters and dd are digits.

Regular Expression Comments
The sequence (?# marks the start of a comment that continues up to the next closing parenthesis. Nested paren-
theses are not permitted. The characters that make up a comment play no part in the pattern matching at all.

Recursive Patterns
Consider the problem of matching a string in parentheses, allowing for unlimited nested parentheses.
Without the use of recursion, the best that can be done is to use a pattern that matches up to some fixed
depth of nesting. It is not possible to handle an arbitrary nesting depth. Perl provides a facility that allows
regular expressions to recurse (amongst other things). It does this by interpolating Perl code in the expres-
sion at runtime, and the code can refer to the expression itself. A Perl pattern to solve the parentheses
problem can be created like this:
$re = qr{\((?: (?>[^()]+) | (?p{$re}))* \)}x;

The (?p{…}) item interpolates Perl code at runtime, and in this case refers recursively to the pattern in
which it appears. Obviously, PCRE cannot support the interpolation of Perl code. Instead, it supports some
special syntax for recursion of the entire pattern, and also for individual subpattern recursion.

The special item that consists of (? followed by a number greater than zero and a closing parenthesis is a
recursive call of the subpattern of the given number, provided that it occurs inside that subpattern. (If not,
it is a “subroutine” call, which is described in Subpatterns as Subroutines on page IV-174.) The special item
(?R) is a recursive call of the entire regular expression.

For example, this PCRE pattern solves the nested parentheses problem (additional nonfunction whitespace
has been added to separate the expression into parts):
\(((?>[^()]+) | (?R))* \)

First it matches an opening parenthesis. Then it matches any number of substrings which can either be a
sequence of nonparentheses, or a recursive match of the pattern itself (that is a correctly parenthesized sub-
string). Finally there is a closing parenthesis.

If this were part of a larger pattern, you would not want to recurse the entire pattern, so instead you could
use this:
(\(((?>[^()]+) | (?1))* \))

We have put the pattern into parentheses, and caused the recursion to refer to them instead of the whole
pattern. In a larger pattern, keeping track of parenthesis numbers can be tricky. It may be more convenient
to use named parentheses instead. For this, PCRE uses (?P>name), which is an extension to the Python
syntax that PCRE uses for named parentheses (Perl does not provide named parentheses). We could rewrite
the above example as follows:
(?P<pn> \(((?>[^()]+) | (?P>pn))* \))

Chapter IV-7 — Programming Techniques

IV-174

This particular example pattern contains nested unlimited repeats, and so the use of atomic grouping for
matching strings of nonparentheses is important when applying the pattern to strings that do not match.
For example, when this pattern is applied to
(aaa()

it yields “no match” quickly. However, if atomic grouping is not used, the match runs for a very long time
indeed because there are so many different ways the + and * repeats can carve up the subject, and all have
to be tested before failure can be reported.

At the end of a match, the values set for any capturing subpatterns are those from the outermost level of the
recursion at which the subpattern value is set. If you want to obtain intermediate values, a callout function
can be used (see Subpatterns as Subroutines on page IV-174). If the pattern above is matched against
(ab(cd)ef)

the value for the capturing parentheses is “ef”, which is the last value taken on at the top level. If additional
parentheses are added, giving
\((((?>[^()]+) | (?R))*) \)

↑ ↑

the string they capture is “ab(cd)ef”, the contents of the top level parentheses. If there are more than 15 cap-
turing parentheses in a pattern, PCRE has to obtain extra memory to store data during a recursion, which
it does by using pcre_malloc, freeing it via pcre_free afterward. If no memory can be obtained, the match
fails with the PCRE_ERROR_NOMEMORY error.

Do not confuse the (?R) item with the condition (R), which tests for recursion. Consider this pattern,
which matches text in angle brackets, allowing for arbitrary nesting. Only digits are allowed in nested
brackets (that is, when recursing), whereas any characters are permitted at the outer level.
< (?: (?(R) \d++ | [^<>]*+) | (?R)) * >

In this pattern, (?(R) is the start of a conditional subpattern, with two different alternatives for the recur-
sive and nonrecursive cases. The (?R) item is the actual recursive call.

Subpatterns as Subroutines
If the syntax for a recursive subpattern reference (either by number or by name) is used outside the paren-
theses to which it refers, it operates like a subroutine in a programming language. An earlier example
pointed out that the pattern
(sens|respons)e and \1ibility

matches “sense and sensibility” and “response and responsibility”, but not “sense and responsibility”. If
instead the pattern
(sens|respons)e and (?1)ibility

is used, it does match “sense and responsibility” as well as the other two strings. Such references must,
however, follow the subpattern to which they refer.

Regular Expressions References
The regular expression syntax supported by Grep, GrepString, GrepList, and SplitString is based on the
PCRE — Perl-Compatible Regular Expression Library by Philip Hazel, University of Cambridge, Cambridge,
England. The PCRE library is a set of functions that implement regular expression pattern matching using
the same syntax and semantics as Perl 5.

Visit <http://pcre.org/> for more information about the PCRE library, and
<http://www.perldoc.com/> for more about Perl regular expressions. This description, Regular
Expressions In Igor, is taken from the PCRE documentation.

A good introductory book on regular expressions is: Forta, Ben, Regular Expressions in 10 Minutes, Sams
Publishing, 2004.

http://pcre.org/
http://www.perldoc.com/

Chapter IV-7 — Programming Techniques

IV-175

A good comprehensive book on regular expressions is: Friedl, Jeffrey E. F., Mastering Regular Expressions,
2nd ed., 492 pp., O’Reilly Media, 2002.

Working with Files
Here are the built-in operations that you can use to read from or write to files:

Before working with a file, you must use the Open operation to obtain a file reference number that you use
with all the remaining commands. The Open operation creates new files, appends data to an existing file,
or reads data from an existing file. There is no facility to deal with the resource fork of a Macintosh file.

Sometimes you may write a procedure that uses the Open operation and the Close operation but, because
of an error, the Close operation never gets to execute. You then correct the procedure and want to rerun it.
The file will still be open because the Close operation never got a chance to run. In this case, execute:
Close/A

from the command line to close all open files.

Finding Files
The TextFile and IndexedFile functions help you to determine what files exist in a particular folder.
IndexedFile is just a more general version of TextFile.
You can also use the Open operation with the /D flag to present an open dialog.

Other File– and Folder–Related Operations and Functions
Igor Pro also supports a number of operations and functions for file or folder manipulation:

Operation What It Does
Open Opens an existing file for reading or writing. Can also create a new file. Can also append to

an existing file. Returns a file reference number that you must pass to the other file operations.
Use Open/D to present a dialog that allows the user to choose a file without actually
opening the file.

fprintf Writes formatted text to an open file.
wfprintf Writes wave data as formatted text to an open file.
FSetPos Sets the position at which the next file read or write will be done.
FStatus Given a file reference number, returns miscellaneous information about the file.
FBinRead Reads binary data from a file into an Igor string, variable or wave. This is used mostly

to read nonstandard file formats.
FBinWrite Writes binary data from an Igor string, variable or wave. This is used mostly to write

nonstandard file formats.
FReadLine Reads a line of text from a text file into an Igor string variable. This can be used to parse

an arbitrary format text file.
Close Closes a file opened by the Open operation.

CopyFile CopyFolder
DeleteFile DeleteFolder
GetFileFolderInfo SetFileFolderInfo
MoveFile MoveFolder
CreateAliasShortcut
NewPath PathInfo
ParseFilePath

Chapter IV-7 — Programming Techniques

IV-176

Warning: Use caution when writing code that deletes or moves files or folders. These actions are not undoable.

Because the DeleteFolder, CopyFolder and MoveFolder operations have the potential to do a lot of damage
if used incorrectly, they require user permission before overwriting or deleting a folder. The user controls
the permission process using the Miscellaneous Settings dialog (Misc menu).

Writing to a Text File
You can generate output text files from Igor procedures or from the command line in formats acceptable to
other programs. To do this, you need to use the Open and Close operations and the fprintf operation (page
V-204) and the wfprintf operation (page V-826).

The following commands illustrate how you could use these operations to create an output text file. Each
operation is described in detail in following sections:
Variable f1 //make refNum variable
Open f1 as "A New File" //create and open file
fprintf f1, "wave1\twave2\twave3\r" //write column headers
wfprintf f1, "" wave1, wave2, wave3 //write wave data
Close f1 //close file

Open and Close Operations
You use the Open operation (page V-523) to open a file. For our purposes, the syntax of the Open operation is:
Open [/R/A/P=pathName/M=messageStr] variableName [as "filename"]

variableName is the name of a numeric variable. The Open operation puts a file reference number in that
variable. You will need the reference number to access the file after you’ve opened it.

A file specifications consists of a path (directions for finding a folder) and a file name. In the Open opera-
tion, you can specify the path in three ways:
Using a full path as the filename parameter:
Open refNum as “hd:Data:Run123.dat”

Or using a symbolic path name and a file name:
Open/P=DataPath refNum as “Run123.dat”

Or using a symbolic path name and a partial path including the file name:
Open/P=HDPath refNum as “:Data:Run123.dat”

A symbolic path is a short name that refers to a folder on disk. See Symbolic Paths on page II-34.

If you do not provide enough information to find the folder and file of interest, Igor puts up a dialog which
lets you select the file to open. If you supply sufficient information, Igor will just open the file without
putting up the dialog.

To open a file for reading, use the /R flag. To add new data to a file, use the /A flag. If you omit both of these
flags, you will overwrite any data that is already in the file.

If you open a file for writing (you don’t use /R) then, if there exists a file with the specified name, Igor opens
the file and overwrites the existing data in the file. If there is no file with the specified name, Igor creates a
new file.

Warning: If you’re not careful you can inadvertently lose data using the Open operation by opening for
writing without using the /A flag. To avoid this, use the /R (open for read) or /A (append) flags.

Chapter IV-7 — Programming Techniques

IV-177

Wave Reference Functions
It is common to write a user-defined function that operates on all of the waves in a data folder, on the waves
displayed in a graph or table, or on a wave identified by a cursor in a graph. For these purposes, you need
to use wave reference functions.

Wave reference functions are built-in Igor functions that return a reference that can be used in a user-
defined function. Here is an example that works on the top graph. Cursors are assumed to be placed on a
region of a trace in the graph.
Function WaveAverageBetweenCursors()

WAVE/Z w = CsrWaveRef(A)
if (!WaveExists(w)) // Cursor is not on any wave.

return NaN
endif

Variable xA = xcsr(A)
Variable xB = xcsr(B)
Variable avg = mean(w, xA, xB)

return avg
End

CsrWaveRef returns a wave reference that identifies the wave a cursor is on.

An older function, CsrWave, returns the name of the wave the cursor is on. It would be tempting to use this
to determine the wave the cursor is on, but it would be incorrect. The name of a wave by itself does not
uniquely identify a wave because it does not specify the data folder in which the wave resides. For this
reason, we usually need to use the wave reference function CsrWaveRef instead of CsrWave.

This example uses a wave reference function to operate on the waves displayed in a graph:
Function SmoothWavesInGraph()

String list = TraceNameList("", ";", 1)
String traceName
Variable index = 0
do

traceName = StringFromList(index, list)
if (strlen(traceName) == 0)

break // No more traces.
endif
WAVE w = TraceNameToWaveRef("", traceName)
Smooth 5, w
index += 1

while(1)
End

Use WaveRefIndexedDFR to iterate over the waves in a given data folder.

Here are the wave reference functions. See Chapter V-1, Igor Reference, for details on each of them.

Function Comment
CsrWaveRef Returns a reference to the Y wave to which a cursor is attached.
CsrXWaveRef Returns a reference to the X wave when a cursor is attached to an XY pair.
WaveRefIndexedDFR Returns a reference to a wave in the specified data folder.
WaveRefIndexed Returns a reference to a wave in a graph or table or to a wave in the current

data folder.
XWaveRefFromTrace Returns a reference to an X wave in a graph. Used with the output of

TraceNameList.

Chapter IV-7 — Programming Techniques

IV-178

It is possible to create a user-defined function that returns a wave reference via a structure parameter. For
simple applications, it may be easier to create a string function that returns a full path to the wave. Here is
an example:
Function/S CursorAWave()

WAVE/Z w= CsrWaveRef(A)
if (WaveExists(w)==0)

return ""
endif
return GetWavesDataFolder(w,2)

End

Function DemoCursorAWave()
WAVE/Z w= $CursorAWave()
if (WaveExists(w)==0)

Print "oops: no wave"
else

Print "Cursor A is on the wave", WaveName(w)
endif

End

DemoCursorAWave uses the $ operator to convert the full path to the wave returned by CursorAWave into
a wave reference stored in w.

Processing Lists of Waves
Igor users often want to use a string list of waves in places where Igor is looking for just the name of a single
wave. For example, they would like to do this:
Display "wave0;wave1;wave2"

or, more generally:
Function DisplayListOfWaves(list)

String list // e.g., "wave0;wave1;wave2"

Display $list
End

Unfortunately, Igor can’t handle this. However, there are techniques for achieving the same result.

Graphing a List of Waves
This example illustrates the basic technique for processing a list of waves.
Function DisplayWaveList(list)

String list // A semicolon-separated list.

String theWave
Variable index=0

ContourNameToWaveRef Returns a reference to a wave displayed as a contour plot. Used with the
output of ContourNameList.

ImageNameToWaveRef Returns a reference to a wave displayed as an image. Used with the output
of ImageNameList.

TraceNameToWaveRef Returns a reference to a wave displayed as a waveform or as the Y wave of
an XY pair in a graph. Used with the output of TraceNameList.

TagWaveRef Returns a reference to a wave to which a tag is attached in a graph. Used in
creating a smart tag.

WaveRefsEqual Returns the truth two wave references are the same.

Function Comment

Chapter IV-7 — Programming Techniques

IV-179

do
// Get the next wave name
theWave = StringFromList(index, list)
if (strlen(theWave) == 0)

break // Ran out of waves
endif
if (index == 0) // Is this the first wave?

Display $theWave
else

AppendToGraph $theWave
endif
index += 1

while (1) // Loop until break above
End

To make a graph of all of the waves in the current data folder, you would execute
DisplayWaveList(WaveList("*", ";", ""))

Operating on the Traces in a Graph
In a previous section, we showed an example that operates on the waves displayed in a graph. It used a
wave reference function, TraceNameToWaveRef. If you want to write a function that operates on traces in
a graph, you would not use wave reference functions. That’s because Igor operations that operate on traces
expect trace names, not wave references. For example:
Function GrayOutTracesInGraph()

String list = TraceNameList("", ";", 1)
String traceName
Variable index = 0
do

traceName = StringFromList(index, list)
if (strlen(traceName) == 0)

break // No more traces.
endif

// WRONG: ModifyGraph expects a trace name and w is not a trace name
WAVE w = TraceNameToWaveRef("", traceName)
ModifyGraph rgb(w)=(50000,50000,50000)

// RIGHT
ModifyGraph rgb($traceName)=(50000,50000,50000)

index += 1
while(1)

End

Using a Fixed-Length List
In the previous examples, the number of waves in the list was unimportant and all of the waves in the list served
the same purpose. In this example, the list has a fixed number of waves and each wave has a different purpose.
Function DoLineFit(list)

String list // List of waves names: source, dest, weight
String source, dest, weight

// Pick out the expected wave names
source = StringFromList(0, list)
dest = StringFromList(1, list)
weight = StringFromList(2, list)

CurveFit line $source /D=$dest /W=$weight
End

Chapter IV-7 — Programming Techniques

IV-180

You would invoke this function as follows:
DoLineFit("wave0;wave1;wave2")

Operating on Qualified Waves
This example illustrates how to operate on waves that match a certain criterion. It is broken into two func-
tions - one that creates the list of qualified waves and a second that operates on them. This organization
gives us a general purpose routine (ListOfMatrices) that we would not have if we wrote the whole thing as
one function.
Function/S ListOfMatrices()

String list = ""
Variable index=0
do

WAVE/Z w=WaveRefIndexedDFR(:,index) // Get next wave.
if (WaveExists(w) == 0)

break // No more waves.
endif
if (DimSize(w,1)>0 && DimSize(w,2)==0)

// Found matrix. Add to list with separator.
list += NameOfWave(w) + ";"

endif
index += 1

while(1) // Loop till break above.
return list

End

Function ChooseAndDisplayMatrix()
String theList = ListOfMatrices()

String theMatrix
Prompt theMatrix, "Matrix to display:", popup theList
DoPrompt "Display Matrix", theMatrix
if (V_Flag != 0)

return -1
endif

WAVE m = $theMatrix
NewImage m

End

The ExecuteCmdOnList Function
The ExecuteCmdOnList function is implemented by a WaveMetrics procedure file and executes any command
for each wave in the list. For example, the following commands do a WaveStats operation on each wave.
Make wave0=gnoise(1), wave1=gnoise(10), wave2=gnoise(100)
ExecuteCmdOnList("WaveStats %s", "wave0;wave1;wave2;")

The ExecuteCmdOnList function is supplied in the Execute Cmd On List procedure file. See The Include
Statement on page IV-149 for instructions on including a procedure file.

This technique is on the kludgy side. If you can achieve your goal in a more straightforward fashion without
heroic efforts, you should use regular programming techniques.

The Execute Operation
Execute is a built-in operation that executes a string expression as if you had typed it into the command line.
The main purpose of Execute is to get around the restrictions on calling macros and external operations
from user functions.

Chapter IV-7 — Programming Techniques

IV-181

We try to avoid using Execute because it makes code obscure and difficult to debug. If you can write a pro-
cedure without Execute, do it. However, there are some cases where using Execute can save pages of code
or achieve something that would otherwise be impossible.

It is a good idea to compose the command to be executed in a local string variable and then pass that string
to the Execute operation. Use this to print the string to the history for debugging. For example:
String cmd
sprintf cmd, "GBLoadWave/P=%s/S=%d \"%s\"", pathName, skipCount, fileName
Print cmd // For debugging
Execute cmd

It is not necessary to use Execute to call the GBLoadWave external operation because it can be called directly
from a user function. Prior to Igor Pro 5, this was not possible.

When you use Execute, you must be especially careful in the handling of wave names. See Programming
with Liberal Names on page IV-151 for details.

When Execute runs, it is as if you typed a command in the command line. Local variables in macros and
functions are not accessible. The example in Calling an External Operation From a User-Defined Function
on page IV-181 shows how to use the sprintf operation to solve this problem.

Using a Macro From a User-Defined Function
A macro can not be called directly from a user function. To do so, we must use Execute. This is a trivial
example for which we would normally not resort to Execute but which clearly illustrates the technique.
Function Example()

Make wave0=enoise(1)
Variable/G V_avg // Create a global
Execute "MyMacro(\"wave0\")" // Invokes MyMacro("wave0")
return V_avg

End

Macro MyMacro(wv)
String wv
WaveStats $wv // Sets global V_avg and 9 other local vars

End

Execute does not supply good error messages. If the macro generates an error, you may get a cryptic mes-
sage. Therefore, debug the macro before you call it with the Execute operation.

Calling an External Operation From a User-Defined Function
Prior to Igor Pro 5, external operations could not be called directly from user-defined functions and had to be
called via Execute. Now it is possible to write an external operation so that it can be called directly. However,
old XOPs that have not been updated still need to be called through Execute. This example shows how to do it.

If you attempt to directly use an external operation which does not support it, you will see an error dialog
telling you to use Execute for that operation.

The external operation in this case is VDTWrite which sends text to the serial port. It is implemented by the
VDT XOP.
Function SetupVoltmeter(range)

Variable range // .1, .2, .5, 1, 2, 5 or 10 volts

String voltmeterCmd
sprintf voltmeterCmd, "DVM volts=%g", range
String vdtCmd
sprintf vdtCmd "VDTWrite \"%s\"\r\n", voltmeterCmd
Execute vdtCmd

End

Chapter IV-7 — Programming Techniques

IV-182

In this case, we are sending the command to a voltmeter that expects something like:
DVM volts=.2<CR><LF>

to set the voltmeter to the 0.2 volt range.

The parameter that we send to the Execute operation is:
VDTWrite "DVM volts=.2\r\n"

The backslashes used in the second sprintf call insert two quotation marks, a carriage return, and a linefeed
in the command about to be executed.

A newer VDT2 XOP exists which includes external operations that can be directly called from user-func-
tions. Thus, new programming should use the VDT2 XOP and will not need to use Execute.

Other Uses of Execute
Execute can also accept as an argument a string variable containing commands that are algorithmically con-
structed. Here is a simple example:
Function Fit(w, fitType)

WAVE w // Source wave
String fitType // One of the built-in Igor fit types

String name = NameOfWave(w)
name = PossiblyQuoteName(name) // Liberal names need quotes

String cmd
sprintf cmd, "CurveFit %s %s", fitType, name
Execute cmd

End

Use this function to do any of the built-in fits on the specified wave. Without using the Execute operation,
we would have to write it as follows:

Function Fit(w, fitType)
WAVE w // Source wave
String fitType // One of the built-in Igor fit types

strswitch(fitType)
case "line":

CurveFit line w
break

case "exp":
CurveFit exp w
break

<and so on for each fit type>
endswitch

End

Note the use of sprintf to prepare the string containing the command to be executed. The following would
not work because when Execute runs, local variables and parameters are not accessible:
Execute "CurveFit fitType name"

Deferred Execution Using the Operation Queue
It is sometimes necessary to execute a command after the current function has finished. This is done using
the Execute/P operation. For details, see Operation Queue on page IV-256.

Chapter IV-7 — Programming Techniques

IV-183

Procedures and Preferences
You can set many preferences. Most of the preferences control the style of new objects, including new
graphs, traces and axes added to graphs, new tables, columns added to tables and so on.

Preferences are usually used only for manual “point-and-click” operation. We usually don’t want prefer-
ences to affect the behavior of procedures. The reason for this is that we want a procedure to do the same
thing no matter who runs it. Also, we want it to do the same thing tomorrow as it does today. If we allowed
preferences to take effect during procedure execution, a change in preferences could change the effect of a
procedure, making it unpredictable.

By default, preferences do not take effect during procedure execution. If you want to override the default
behavior, you can use the Preferences operation. From within a procedure, you can execute “Preferences
1” to turn preferences on. This affects the procedure and any subroutines that it calls. It stays in effect until
you execute “Preferences 0”.

When a macro ends, the state of preferences reverts to what it was when that macro started. If you change
the preference setting within a function, the preferences state does not revert when that function ends. You
must turn preferences on, save the old preferences state, execute Igor operations, and then restore the pref-
erences state. For example:
Function AppendWithCapturedAxis()

Variable oldPrefState
Preferences 1; // Turn preferences on and
oldPrefState = V_Flag // save the old state.

Make wave0=x
Display/L=myCapturedAxis wave0 // myCapturedAxis is pref axis.

Preferences oldPrefState // Restore old prefs state.
End

Experiment Initialization Procedures
When Igor loads an experiment, it checks to see if there are any commands in the procedure window before
the first macro, function or menu declaration. If there are such commands Igor executes them. This provides
a way for you to initialize things. These initialization commands can invoke procedures that are declared
later in the procedure window.

Also see BeforeFileOpenHook on page IV-265 and IgorStartOrNewHook on page IV-269 for other initial-
ization methods.

Procedure Subtypes
A procedure subtype identifies the purpose for which a particular procedure is intended and the appropri-
ate menu from which it can be chosen. For example, the Graph subtype puts a procedure in the Graph
Macros submenu of the Windows menu.
Window Graph0() : Graph

PauseUpdate; Silent 1 // building window...
Display/W=(5,42,400,250) wave0,wave1,wave2
<more commands>

End

When Igor automatically creates a procedure, for example when you close and save a graph, it uses the appro-
priate subtype. When you create a curve fitting function using the Curve Fitting dialog, the dialog automati-
cally uses the FitFunc subtype. You usually don’t need to use subtypes for procedures that you write.

Chapter IV-7 — Programming Techniques

IV-184

This table shows the available subtypes and how they are used.

Memory Considerations
The maximum amount of memory available to Igor Pro (or any application) is 4 GB on Macintosh and 2, 3,
or 4 GB on Windows regardless of the amount of installed RAM. Virtual memory on disk is always used,
being constrained only by available disk space and access speed. See Memory Management on page III-427
for more information.

These memory limits are adequate for most applications although you may be surprised by out of memory
errors with much less apparent memory usage. Oftentimes such errors are caused by fragmentation of
RAM and the inability of either operating system to combine adjacent blocks of deallocated memory to
create a contiguous memory block.

Most often such memory fragmentation occurs when you create and destroy many large waves during function
execution. The best way to avoid these memory problems is to create these large waves once at the start of your
function and then reuse them rather than killing and remaking them. The reason is that if you use Redimension
to shrink a large wave, then a following Redimension that increases the wave size should succeed as it will be
expanding back into the same memory block. You can also use Make/O can in place of Redimension.

Subtype Effect Available for
Graph Displayed in Graph Macros submenu. Macros
GraphStyle Displayed in Graph Macros submenu and in Style pop-up

menu in New Graph dialog.
Macros

GraphMarquee Displayed in graph marquee. This keyword is no longer
recommended. See Marquee Menu as Input Device on page
IV-144 for details.

Macros and
functions

Table Displayed in Table Macros submenu. Macros
TableStyle Displayed in Table Macros submenu and in Style pop-up

menu in New Table dialog.
Macros

Layout Displayed in Layout Macros submenu. Macros
LayoutStyle Displayed in Layout Macros submenu and in Style pop-up

menu in New Layout dialog.
Macros

LayoutMarquee Displayed in layout marquee. This keyword is no longer
recommended. See Marquee Menu as Input Device on page
IV-144 for details.

Macros and
functions

ListBoxControl Displayed in Procedure pop-up menu in ListBox Control
dialog.

Macros and
functions

Panel Displayed in Panel Macros submenu. Macros
FitFunc Displayed in Function pop-up menu in Curve Fitting dialog. Functions
ButtonControl Displayed in Procedure pop-up menu in Button Control dialog. Macros and

functions
CheckBoxControl Displayed in Procedure pop-up menu in Checkbox Control

dialog.
Macros and
functions

PopupMenuControl Displayed in Procedure pop-up menu in PopupMenu
Control dialog.

Macros and
functions

SetVariableControl Displayed in Procedure pop-up menu in SetVariable Control
dialog.

Macros and
functions

Chapter IV-7 — Programming Techniques

IV-185

Wave Reference Counting
The method Igor Pro uses to deallocate memory when waves are killed was improved in Igor Pro 6. The new
method uses reference counting to determine when a wave is no longer referenced anywhere and memory can
be safely deallocated, which should reduce the likelihood of out of memory errors, especially on Macintosh.

Because memory is not deallocated until all references to a given wave are gone, memory may not be freed
when you think. Consider the function:
Function myfunc()

Make/N=10E6 bigwave
// do stuff
FunctionThatKillsBigwave()
// do more stuff

End

The memory allocated for bigwave is not deallocated until the function returns because an automatic
WAVE reference variable of the same name still references the wave. To free memory for the second part,
use the WAVEClear operation (page V-812):
Function myfunc()

Make/N=10E6 bigwave
// do stuff
FunctionThatKillsBigwave()
WAVEClear bigwave
// do more stuff

End

The WAVEClear command takes a list of WAVE reference variables and stores NULL into them. It is the
same as:
WAVE/Z wavref= $""

If you see the message “BUG: DecrementWaveRefCount” printed in the history area, please notify
support@wavemetrics.com. If possible, please provide the steps necessary to reproduce the message.

If you suspect the new method is causing problems (a crash could occur if a reference was missed and a
killed wave was accessed,) you can revert to the old method by executing
SetIgorOption doWAVERefCount= 0

You should do this in a blank experiment because it affects function compiling. You can revert to the new
method by restarting Igor Pro or by executing
SetIgorOption doWAVERefCount= 2.

Creating Igor Extensions
Igor includes a feature that allows a C or C++ programmer to extend its capabilities. Using Apple’s Xcode
or Microsoft Visual C++, a programmer can add command line operations and functions to Igor. These are
called external operations and external functions. Experienced programmers can also add menu items,
dialogs and windows.

A file containing external operations or external functions is called an “XOP file” or “XOP” (pronounced
“ex-op”) for short.

Here are some things for which you might want to write an XOP:
• To do number-crunching on waves.
• To import data from a file format that Igor does not support.
• To acquire data directly into Igor waves.
• To communicate with a remote computer, instrument or database.

The main reasons for writing something as an XOP instead of writing it as an Igor procedure are:

mailto:support@wavemetrics.com

Chapter IV-7 — Programming Techniques

IV-186

• It needs to be blazing fast.
• You already have a lot of C code that you want to reuse.
• You need to call drivers for data acquisition.
• It requires programming techniques that Igor doesn’t support.
• You want to add your own dialogs or windows.

Writing an XOP that does number-crunching is considerably easier than writing a stand-alone program. You
don’t need to know anything about the Macintosh Toolbox or the Windows API. Writing an XOP that adds
dialogs or windows to Igor requires more knowledge but is still easier than writing a stand-alone program.

If you are a C or C++ programmer and would like to extend Igor with your own XOP, you will need to pur-
chase the Igor External Operations Toolkit from WaveMetrics. This toolkit contains documentation on
writing XOPs as well as the source code for many of the WaveMetrics sample XOPs. It supplies a large
library of routines that enable communication between Igor and the external code. You will also need the a
recent version of Xcode, or Microsoft Visual C++.

Chapter

IV-8
IV-8Debugging

Debugging Procedures .. 188
Debugging With Print Statements.. 188
The Debugger .. 188

Setting Breakpoints.. 189
Debugging on Error... 189
Macro Execute Error: The Debug Button ... 190
Stepping Through Your Code.. 190
The Stack and Variables Lists .. 191
The Variables List Columns ... 192
Variables Pop-Up Menu ... 192
Function Variables ... 192
Macro Variables ... 193
Wave, Structures, and Expressions Pane ... 195

Expressions.. 196
Waves in Current or Root Data Folder.. 196
WAVEs and STRUCTs... 198

The Procedure Pane... 199
After You Find a Bug... 200

Debugger Shortcuts .. 200

Chapter IV-8 — Debugging

IV-188

Debugging Procedures
There are two techniques for debugging procedures in Igor:
• Using print statements
• Using the symbolic debugger

For most situations, the symbolic debugger is the most effective tool. In some cases, a strategically placed
print statement is sufficient.

Debugging With Print Statements
This technique involves putting print statements at a certain point in a procedure to display debugging
messages in Igor’s history area. In this example, we use Printf to display the value of parameters to a func-
tion and then Print to display the function result.
Function Test(w, num, str)

Wave w
Variable num
String str

Printf "Wave=%s, num=%g, str=%s\r", NameOfWave(w), num, str

<body of function>

Print result
return result

End

See Creating Formatted Text on page IV-235 for details on the Printf operation.

The Debugger
When a procedure doesn’t produce the results you want, you can use Igor’s built-in debugger to observe
the execution of user-defined macros and functions while single-stepping through the lines of code.

The debugger is normally disabled. Enable it using either the Procedure menu or by Control-clicking (Mac-
intosh) or right-clicking (Windows) in any procedure window to get the pop-up menu:

Chapter IV-8 — Debugging

IV-189

The debugger window will automatically appear when one of the following events occurs:
1. A breakpoint that you previously set is encountered.
2. An error occurs, and you have enabled debugging on that kind of error.
3. An error dialog is presented, and you click the Debug button.

Setting Breakpoints
When you want to observe a particular routine in action, set a breakpoint on the line where you want the
debugger to appear. To do this, open the procedure window which contains the routine, and click in the left
“breakpoint margin”. The breakpoint margin appears only if the debugger has been enabled:

When a line of code marked with the red dot (denoting a set breakpoint) is about to execute, the debugger
window will appear.

Click the red dot again to clear the breakpoint. Control-click (Macintosh) or right-click (Windows) and use the pop-
up menu to clear all breakpoints or disable a breakpoint on the currently selected line of the procedure window.

Debugging on Error
You can automatically open the debugger window when an error occurs. There are two categories of errors
to choose from:

You can use the /Z flag to hide failures from SVAR, NVAR and WAVE checking. This is appropriate where
the reference is subsequently checked with WaveExists, NVAR_Exists, or SVAR_Exists:
WAVE/Z wv=<pathToPossiblyMissingWave>

if(WaveExists(wv))
<do something with wv>

endif

See Runtime Lookup of Globals on page IV-51 for details.

Debug On Error Any runtime error except failed NVAR, SVAR, or WAVE references.

NVAR SVAR WAVE Checking Failed NVAR, SVAR, or WAVE references.

Procedure Menu Contextual menu

Debugger Disabled Debugger Enabled

Chapter IV-8 — Debugging

IV-190

Use the Procedure or pop-up menus to choose either or both error categories. If the selected error occurs,
the debugger will open and an error message will appear in the debugger window’s status area. The error
message was generated by the command above the yellow arrow:

Macro Execute Error: The Debug Button
When the debugger is enabled and an error occurs in a Macro, an error dialog is presented that will (usu-
ally) have a Debug button in it. Click the button to open the debugger window.

Errors in macros (or procs) are reported immediately after they occur.

When an error is reported by a function, a different dialog appears long after the error was actually com-
mitted. The Debug On Error option catches errors in functions immediately after they are committed.

Stepping Through Your Code
Begin by enabling the debugger and setting a breakpoint on the line of code you are interested in, or begin
when the debugger automatically opens because of an error. Use the buttons at the top of the debugger
window to step through your code:

The Stop button ceases execution of the running function or macro before it completes. This is
equivalent to clicking Igor’s Abort button (Windows) or pressing Command-period (Macintosh)
while the procedure is running.

Keyboard shortcuts: (none)

Note: Pressing Command-period on a Macintosh while the debugger window is showing is
equivalent to clicking the Go button, not the Stop button.

The Step Over button executes the next line. If the line contains a call to one or more subroutines,
execution continues until the subroutines return or until an error or breakpoint is encountered.
Upon return, execution halts until you click a different button.

Keyboard shortcuts: Enter, keypad Enter, or Return

Chapter IV-8 — Debugging

IV-191

The Stack and Variables Lists
The Stack List shows the routine that is currently executing and the chain of routines that called it. The top item
in the list is the routine that began execution and the bottom item is the routine which is currently executing.

In this example, the routine that started execution is PeakHookProc, which most recently called Update-
PeakFromXY, which then called the currently executing mygauss user function.

The Variables List (to the right of the Stack List) shows that the function parameters w and x have the values
coef (a wave) and 0 (a number). The pop-up menu controls which variables are displayed in the list; the
example shows only user-defined local variables.

You can examine the variables associated with any routine in the Stack List by simply selecting the routine:

Here we’ve selected UpdatePeakFromXY, the routine that called mygauss (see the light blue arrow). Notice
that the Variables List is showing the variables that are local to UpdatePeakFromXY.

The Step Into button executes the next line. If that line contains a call to one or more subroutines,
execution halts when the first subroutine is entered. The Stack list of currently executing routines
shows the most recently entered routine as the last item in the list.

Keyboard shortcuts: +, =, or keyPad +

The Step Out button executes until the current subroutine is exited, or an error or breakpoint is
encountered.

Keyboard shortcuts: -, _ (underscore) or keypad -

The Go button resumes program execution. The debugger window remains open until execution
completes or an error or breakpoint is encountered.

Keyboard shortcuts: Esc

Chapter IV-8 — Debugging

IV-192

For illustration purposes, the Variables List has been resized by dragging the dividing line, and the pop-up
menu has been set to show local and global variables and type information.

The Variables List Columns
The Variables List shows either two or three columns, depending on whether the “show variable types”
item in the Variable pop-up menu is checked.

The first column is the name of the local variable. Note that the name of an NVAR, SVAR, or WAVE refer-
ence is a local name referring to a global object.

The second column is the value of the local variable. Double-click the second column to edit strings or variables.

In the case of a wave, the size and precision of the wave are shown here. The “->” characters mean “refers
to”. In our example wcoef is a local name that refers to a (global) wave named coef, which is one-dimen-
sional, has 4 points, and is single precision.

To determine the value of a particular wave element, use the Wave, Structures, and Expressions Pane on
page IV-195.

The third (optional) column shows what the type of the variable is, whether Variable, String, NVAR, SVAR,
or WAVE. For global references, the full path (including the data folder) to the global is shown.

Note: The currentDF item is separated by a dashed line because currentDF is not really a global
variable; it is a convenient name to identify the current data folder. See Chapter II-8, Data
Folders, for more information about data folders.

Variables Pop-Up Menu
The Variables pop-up menu controls which information is displayed in the Variables List. The menu items
differ when the routine chosen from the Stack List is a function or a macro/proc:

Function Variables
The SlowSumWaveFunction example below illustrates how different kinds of variables in functions are
classified:

User-defined variables in functions include all items passed as parameters (numerator in this example) and
any local strings and variables.

Pop-up Menu for Functions
Pop-up Menu for Macros,
Procs, and Windows

Chapter IV-8 — Debugging

IV-193

Local variables exist while a procedure is running, and cease to exist when the procedure returns; they
never exist in a data folder like globals do.

NVAR, SVAR, WAVE, Variable/G and String/G references point to global variables, and therefore, aren’t
listed as user-defined (local) variables.

Use “Igor-created variables” to show local variables that Igor creates for functions when they call an oper-
ation or function that returns results in specially-named variables. The WaveStats operation (see page
V-820), for example, defines V_adev, V_avg, and other variables to contain the statistics results:

Note: Some global references are created automatically for commands such as the Make operation; they
have names that start with “**”. These are shown only when Igor-created variables is selected.

The “user- and Igor-created” menu item shows both kinds of local variables.

The “local and global variables” item shows user-created local variables, most Igor-created local variables,
and references to global variables and waves through NVAR, SVAR, and WAVE references:

Choosing “local and global variables” also displays the current data folder at the end of the list as the myth-
ical currentDF variable (see The Variables List Columns on page IV-192).

Macro Variables
The ExampleMacro below illustrates how variables in Macros, Procs or Window procedures are classified
as locals or globals:

Chapter IV-8 — Debugging

IV-194

Local variables in macros include all items passed as parameters (numerator in this example) and local vari-
ables and local strings (localStr), and Igor-created local variables created by operations such as WaveStats.

Global variables in macros include all items in the current data folder, whether they are used in the macro
or not. If the data folder changes because of a SetDataFolder operation, the list of global variables also
changes. Note that there are no NVAR, SVAR, WAVE, or STRUCT references in a macro.

Chapter IV-8 — Debugging

IV-195

Wave, Structures, and Expressions Pane
The waves, structures, and expressions pane is on the right side of the variables list:

This pane is hidden when there isn’t enough room or when the divider between the pane and the variables
list is dragged all the way to the right. Drag the divider to the left to show the pane. You may need to widen
the window to make room.

The pop-up menu controls what is shown in the pane:

Pop-up Menu Selection Pane Contents

Expressions Numeric or string expressions which are evaluated in the context of the
selected function or macro.

Waves in current data folder A list of waves in the current data folder and the contents of one
selected wave.

Waves in root data folder The same, but for the root: data folder.

WAVEs and STRUCTs A list of WAVE and STRUCT references in the selected function.
Disabled when a macro or proc is selected in the Stack list.

Show wave scaling When unchecked, wave indexes are shown using rows, columns,
layers, and chunks. The values are enclosed in square brackets.

When checked, wave indexes are shown using the scaled values (see
Waveform Model of Data on page II-77) and the value are enclosed in
parentheses

Drag this divider to
show or hide the
waves, structures, and
expressions pane.

Chapter IV-8 — Debugging

IV-196

Expressions
Replace the “(enter expression here)” prompt:

 by clicking it, typing a numeric or string expression, and pressing Return.

Adding an expression adds a blank row at the end of the list that can be double-clicked to enter another
expression. You can edit any of the expressions by double-clicking and typing.

The expression can be removed by selecting it and pressing Delete or Backspace.

The result of the expression will be recomputed when stepping through procedures. The expressions are
evaluated in the context of the currently selected procedure.

Global expressions are evaluated in the context of the current data folder, though you can specify the data
folder explicitly as in the example below.

If an expression is invalid the result is shown as “?”:

The expressions are discarded when a new Igor experiment is opened or when Igor quits.

Waves in Current or Root Data Folder
The debugger shows the waves in the specified data folder. You can select one of the waves to inspect a one-
dimensional portion.

You can edit the value of a wave element by double-clicking the value column and editing the value there.
Press return to enter the value.

For a one-dimensional wave, you can specify the first row of the wave to display in the “Start Row:” control,
or leave it blank to display starting with row 0. To look beyond the start of very long waves, you can enter
a number or numeric expression into “Start Row:”

Chapter IV-8 — Debugging

IV-197

The wave value list will display only a limited number of rows, 1024 by default, in order to keep the debugger
from being sluggish. When the list cannot display all of the rows, the last row in the list will say “(too many
items)”. You can change the maximum number of rows displayed here with the SetIgorOption command:
SetIgorOption DebuggerWaveRows=numRows

Use the Start Row to bring the row you wish to inspect within view.

Multidimensional waves can also be viewed, but only a one-dimensional subset. To view a particular range
of values use the “Range...” button (which appears only when a multidimensional wave is chosen in the
pop-up menu) and the resulting Show Wave Range dialog:

rows 5 … of column 10, layer 1Default: rows 0 … n of column 0, layer 0

Chapter IV-8 — Debugging

IV-198

Choose "Show wave scaling" to display wave indexes using the scaled values (see Waveform Model of
Data on page II-77). Scaled values are displayed in parentheses:

WAVEs and STRUCTs
WAVE and STRUCT references are allowed only in functions, so this pop-up menu choice is disabled when
the routine selected in the Stack list is a macro or proc.

A WAVE reference points to a global wave, which can be in any data folder.

A STRUCT reference points to a structure which exists on the runtime stack and does not exist as a global
object in any data folder.

Each is composed of individual elements, and these can be inspected in the list in this pane.

Here’s the code of an example contrived to demonstrate inspecting a structure’s elements using the WAVEs
and STRUCTs pane:
Structure stuff

String traces
Variable nTraces
STRUCT traceStuff trace[2]

EndStructure

Structure traceStuff
Variable ndx
String trace
WAVE w

EndStructure

Function top(graph)
String graph

STRUCT stuff s

s.traces=TraceNameList(graph, ";", 1)
s.nTraces= ItemsInList(s.traces)

STRUCT traceStuff ts

initTrace(ts, 0, graph, s.traces)
s.trace[0]= ts

initTrace(ts,1, graph, s.traces) // breakpoint set here
s.trace[1]= ts

End

Function initTrace(ts, index, graph, traces)
STRUCT traceStuff &ts
Variable index
String graph, traces

Chapter IV-8 — Debugging

IV-199

ts.ndx= index
ts.trace= StringFromList(index,traces)
WAVE ts.w=TraceNameToWaveRef(graph, ts.trace)

End

Running top(“Graph0”) with the breakpoint at the second initTrace call

results in the Variables list shown below. You can see in the Variables list that “s” is the name of structure
of type “stuff”:

Double-clicking the structure s row in the Variables list (or selecting s from the pop-up menu of WAVEs
and STRUCTs) displays the content of the structure.

You can see that the listing of the contents of a structure on a single line is of limited use!

To see the contents of STRUCT traceStuff trace[0], double-click the trace[0] row in the WAVEs and
STRUCTs list:

You can edit the value of ndx and trace by double-clicking the second column.

To see the contents of s.trace[0].w, double-click w’s row:

You can edit the values of myWave by double-clicking the second column.

Use the pop-up menu to view previous levels of the s structure. When you choose the top-level (“s”), the
menu will again be filled with all the WAVEs and STRUCTs in the currently selected function.

The Procedure Pane
The procedure pane contains a copy of the procedure window of the routine selected in the Stack List. You
can set and clear breakpoints in this pane just as you do in a procedure window, using the breakpoint
margin and the Control-click (Macintosh) or right-click (Windows) menu.

Chapter IV-8 — Debugging

IV-200

A very useful feature of the debugger is the automatic text expression evaluator that shows the value of a
variable or expression under the cursor. On the Macintosh, the value is displayed in the top-right corner of
the debugger. On Windows, a tooltip is displayed near the cursor.

This is often faster than scrolling through the Variables List or entering an expression in the Expressions
List to determine the value of a variable, wave, or structure member reference.

The value of a variable can be displayed whether or not the variable name is selected. To evaluate an expres-
sion such as “wave[ii]+3”, the expression must be selected and the cursor must be over the selection.

The debugger won’t evaluate expressions that include calls to user-defined functions; this prevents unin-
tended side effects (a function could overwrite a wave’s contents, for example). You can remove this limi-
tation by creating the global variable root:V_debugDangerously and setting it to 1.

After You Find a Bug
Editing in the debugger window is disabled because the code is currently executing. Tracking down the
routine after you’ve exited the debugger is easy if you follow these steps:
1) Scroll the debugger text pane back to the name of the routine you want to modify, and select it.
2) Control-click (Macintosh) or right-click (Windows) the name, and choose “Go to <routineName>”

from the pop-up menu.
3) Exit the debugger by clicking the “Go” button or by pressing Escape.

Now the selected routine will be visible in the top procedure window, where you can edit it.

Debugger Shortcuts
Action Shortcut

To enable debugger Choose Enable Debugger from the Procedure menu or choose Enable
Debugger from the procedure window’s pop-up menu after Control-
clicking (Macintosh) or right-clicking (Windows).

To automatically enter the
debugger when an error occurs

Choose Debug on Error from the Procedure menu or choose Enable
Debugger from a procedure window’s pop-up menu after Control-
clicking (Macintosh) or right-clicking (Windows).

To set or clear a breakpoint Click in the left margin of the procedure window or click anywhere on the
procedure window line where you want to set or clear the breakpoint and
choose Set Breakpoint or Clear Breakpoint from a procedure window’s pop-
up menu after Control-clicking (Macintosh) or right-clicking (Windows).

To enable or disable a breakpoint Shift-click a breakpoint in the left margin of the procedure window.

Click anywhere on the procedure window line where you want to enable
or disable the breakpoint and choose Enable Breakpoint or Disable
Breakpoint procedure window’s pop-up menu after Control-clicking
(Macintosh) or right-clicking (Windows).

To execute the next command On Macintosh press Enter, keypad Enter, or Return. For Windows, if no
button has the focus, press Enter or Return. Otherwise, click the yellow
arrow button.

To step into a subroutine Press the +, =, or keypad + keys, or click the blue descending arrow button.

To step out of a subroutine to the
calling routine

Press the -, _ (underscore) or keypad - keys, or click the blue ascending
arrow button.

To resume executing normally Press Escape (Esc), or click the green arrow button.

Chapter IV-8 — Debugging

IV-201

To cancel execution Click the red stop sign button.

To edit the value of a macro or
function variable

Double-click the second column of the variables list, edit the value, and
press Return or Enter.

To set the value of a function’s
string to null

Double-click the second column of the variables list, type “<null>”
(without the quotes), and press Return or Enter.

To view the current value of a
macro or function variable

Move the cursor to the procedure text of the variable name and wait. On
Macintosh, the value appears to the right of the debugger buttons. On
Windows, the value appears in a tooltip window.

To view the current value of an
expression

Select the expression text with the cursor, position the cursor over the
selection, and wait.

(Expressions involving user-defined functions will not be evaluated
unless V_debugDangerously is set to 1.)

To view global values in the
current data folder

Choose “local and global variables” from the debugger pop-up menu.

To view type information about
variables

Choose “show variable types” from the debugger pop-up menu.

To resize the columns in the
variables list

Drag a divider in the list to the left or right.

To show or hide the Waves,
Structs, and Expressions pane

Drag the divider on the right side of the Variables list left or right.

Action Shortcut

Chapter IV-8 — Debugging

IV-202

Chapter

IV-9
IV-9Dependencies

Dependency Formulas .. 204
Dependencies and the Object Status Dialog ... 205
Numeric and String Variable Dependencies .. 206
Wave Dependencies ... 207
Cascading Dependencies ... 207
Deleting a Dependency .. 209
Broken Dependent Objects .. 210
When Dependencies are Updated.. 210
Programming with Dependencies.. 210
Using Operations in Dependency Formulas... 211
Dependency Caveats .. 211

Chapter IV-9 — Dependencies

IV-204

Dependency Formulas
Igor Pro supports “dependent objects”. A dependent object can be a wave, a global numeric variable or a
global string variable that has been linked to an expression. The expression to which an object is linked is
called the object’s “dependency formula” or “formula” for short.

The value of a dependent object is updated whenever any other global object involved in the formula is
modified (even if its value stays the same). We say that the dependent object depends on these other global
objects through the formula.

You might expect that an assignment such as:
wave1 = sin(K0*x/16)

meant that wave1 would be updated whenever K0 changed. It doesn’t; values are computed for wave1 only
once, and the relationship between wave1 and K0 is forgotten.

However, if the = in the above assignment is replaced with :=
wave1 := sin(K0*x/16)

then Igor does create just such a dependency. Now whenever K0 changes, the contents of wave1 will be
updated. In this example, wave1 is a dependent object. It depends on K0, and sin(K0*x/16) is wave1’s
dependency formula.

You can also establish a dependency using the SetFormula operation, like this:
SetFormula wave1, "sin(K0*x/16)"

Wave1 depends on K0 because K0 is a changeable variable. Wave1 also depends on the function x (x is not
a variable) that returns the X scaling of the destination wave (wave1). When the X scaling of wave1 changes,
the values that the x function returns change, so this dependency assignment is reevaluated. The remaining
terms (sin and 16) are not changeable, so wave1 does not depend on them.

Like other assignment statements, the data folder context for the right-hand side is that of the destination
object. Therefore, in the following example, wave2 and var1 must be in the data folder named foo, var2
must be in root and var3 must be in root:bar.
root:foo:wave1 := wave2*var1 + ::var2 + root:bar:var3

Data Folders are described inChapter II-8, Data Folders.

A dependency assignment is often used in conjunction with SetVariable controls (see page III-364) and
Value Display controls (see page III-365).

Here’s a simple example. Execute these commands on the command line:
K0=1
Make/O wave1:=sin(K0*x/16)
Display /W=(4,53,399,261) wave1
ControlBar 23
SetVariable setvar0,size={60,15},value=K0

This results in the following graph:

Chapter IV-9 — Dependencies

IV-205

Click the SetVariable control’s up and down arrows to adjust K0 and observe that wave1 is automatically
updated.

Dependencies and the Object Status Dialog
You can use the Object Status dialog in the Misc menu to check dependencies. On the Macintosh, all depen-
dent objects are listed in the Current Object pop-up menu under Dependent Objects:

The Windows version of the Object Status dialog is essentially the same but for a slightly different arrange-
ment of the pop-up menus:

Click here to
change the
value of K0.

This period changes when
K0 changes, because
wave1 := sin(K0/16).

The “Current Object” is the wave named “wave1”.

wave1:= sin(K0*x/16)

No objects depend on wave1.

wave1 depends on
the variable (v:)
named “K0”.

The “Current Object”
pop-up menu.

Chapter IV-9 — Dependencies

IV-206

The Status field in the box below the current object name indicates any dependency status:
• “No dependency” means that the current object does not depend on anything.
• “Dependency is OK” means that the dependency formula successfully updated the current object.
• “Update failed” means that the dependency formula used to compute the current object’s value

failed, probably because there is a syntax error in the formula or one of the objects referenced in the
formula does not exist or has been renamed. If an update fails, then the objects that depend on that
update are broken and they appear in the Broken Objects submenu. See Broken Dependent Objects
on page IV-210.

You can create a new dependency formula with the New Formula button, delete one with the Delete
Formula button, change an existing one by typing in the Dependency Formula window and clicking the
Change Formula button, and undo that change by clicking the Restore Formula button.

This is discussed further in The Object Status Dialog on page III-419.

You can also read the text of a dependency formula with the string function GetFormula, and set it with the
operation SetFormula.

Numeric and String Variable Dependencies
Dependencies can also be created for global (but not local) user-defined numeric and string variables. Here
is a user-defined function that creates a dependency (the global variable recalculateThis will depend
on another global variable dependsOnThis):
Function TestRecalculation()

Variable/G recalculateThis
Variable/G dependsOnThis= 1

// Create dependency on global variable
SetFormula recalculateThis, "dependsOnThis"

Print recalculateThis // Prints original value

dependsOnThis = 2 // Changes something recalculateThis

DoUpdate // Make Igor recalculate formulae

Print recalculateThis // Prints updated value
End

Running this function prints the following to the history area:

Windows dialog pop-up menus
for individually selecting the
object and type of object.

Chapter IV-9 — Dependencies

IV-207

•TestRecalculation()
1
2

The call to DoUpdate is needed because Igor recalculates dependency formulas only when no user-defined
functions are running or when DoUpdate is called.

This function uses SetFormula to create the dependency because the := operator is not allowed in user-
defined functions.

Note: You can not create a dependency for system numeric variables K0...K19 or veclen. You can create
a dependency for something else on those variables, as in the first example of this chapter. In
general, it is actually best if you do not use system variables in dependencies, since they are
involved in Curve Fitting. You should define your own global variables for use in dependencies.

Wave Dependencies
The assignment statement:
dependentWaveName := formula

creates a dependency and links the dependency formula to the dependent wave. Whenever any change is
made to any object in the formula, the contents of the dependent wave are updated.

The command
SetFormula dependentWaveName, "formula"

establishes the same dependency.

Cascading Dependencies
“Cascading dependencies” refers to the situation that arises when an object depends on a second object,
which in turn depends on a third object, etc. When an object changes, all objects that directly depend on that
object are updated, and objects that depend directly on those updated objects are updated until no more
updates are needed.
The Object Status dialog shows three levels of dependency anchored on the Current Object:

Chapter IV-9 — Dependencies

IV-208

In this example, the current object is the global numeric variable v_sally. The only object directly dependent
on v_sally is the wave wave_joe. V_sally directly depends on waves wave_fred and wave_sue, global
numeric variable K2, and user-defined function anotherFunction. These dependencies exist because of the
dependency assignment:
v_sally := anotherFunction(wave_fred[1]) + wave_sue[0] + K2

which can be changed or deleted with the dialog.

Wave_joe depends on v_sally for reasons that will become apparent only when wave_joe is made the
current object:

3.
Objects that the Current
Object directly depends on

(the direct “antecedents” of
the Current Object)

2.
The Current Object is the
Global Numeric Variable
named “v_sally”

1.
Objects that directly depend on
the Current Object

(the direct “dependents” of the
Current Object)

v_sally := anotherFunction(wave_fred[1]) + wave_sue[0]+K2

Chapter IV-9 — Dependencies

IV-209

The dependency was created by the dependency assignment:
wave_joe := v_sally + wave_fred[0]+myFunction(x)

Combining the dependency of wave_joe on v_sally with what v_sally depends on, you can see that
wave_joe also indirectly depends on wave_sue, wave_fred, K2, and anotherFunction:

If you change K2, the dependencies will cascade so that v_sally and then wave_joe are updated. We call
objects that wave_joe depends on directly or indirectly its “antecedents” (literally, “those that go before”).

Deleting a Dependency
A dependency is deleted when the dependent object is assigned a value using the = operator:
recalculateThis := dependsOnThis // creates dependency
recalculateThis = 0 // deletes the dependency

This method of deleting a dependency does not work in user-defined functions. You must use the SetFor-
mula operation.

For example:
Execute "recalculateThis = 0"

will delete the dependency even in a user-defined function.

You can also delete this dependency using the SetFormula operation.
SetFormula recalculateThis, ""

Wave dependencies are also deleted by operations that overwrite the values of their wave parameters.
Some of these operations are:

wave_joe depends on v_sally depends on

wave_fred
wave_sue

K2
anotherFunction

updates cascade this way

Chapter IV-9 — Dependencies

IV-210

FFT Convolve Correlate Smooth GraphWaveEdit

Hanning Differentiate Integrate UnWrap

Dependencies can also be deleted via the Object Status dialog in the Misc menu.

Broken Dependent Objects
Igor compiles the text of a dependency formula to low-level code and stores both the original text and the
low-level code with the dependent object. At various times, Igor may need to recompile the dependency
formula text. At that time it is possible to get a compilation error if one of the objects in the formula has been
renamed or deleted, or if the formula contains a syntax error.

When this happens, the dependent object will no longer update but will retain its last value. We call such
an object “broken”. If you suspect this kind of problem has happened, invoke the Object Status dialog using
the Misc menu.

Any such broken objects will show up in the Broken Objects submenu of the Current Object pop-up menu:

When Dependencies are Updated
Dependency updates take place at the same time that graphs are updated. This happens after each line in a
macro is executed, or when DoUpdate is called from a macro or user function, or continuously if a macro
or function is not running.

Dependency formulas used as input to the SetBackground and ValDisplay operations, and in some other
contexts, can alternately be specified as a literal string of characters using the following syntax:
#"text_of_the_dependency_expression"

Note that what follows the # char must be a literal string — not a string expression.

This will set the dependency formula without compiling it or checking it for validity. It is mainly for use
internally but if you find yourself in a situation where you need to set the dependency formula of an object
to something that is not currently valid but will be in the future then feel free to use this alternate method.

Programming with Dependencies
You cannot use := to create dependencies in user-defined functions. Instead you must use the SetFormula
operation (see page V-634).
Function TestFunc()

Variable/G varNum=-666
Make wave1
SetFormula wave1, "varNum" // Equivalent to wave1 := varNum

End

Chapter IV-9 — Dependencies

IV-211

Using Operations in Dependency Formulas
The dependency formula must be a single expression — and you can not use operations, such as FFT’s, or other
command type operations. However, you can invoke user-defined functions which in turn invoke operations:
Function MakeDependencyUsingOperation()

Make/O/N=128 data = p // A ramp from 0 to 127
Variable/G power

SetFormula power, "RMS(data)" // Dependency on function and wave
Print power

data = p * 2 // Changes something power depends
DoUpdate // Make Igor recalc formulae
Print power

EndMacro

Function RMS(w)
Wave w

WaveStats/Q w // An operation! One output is V_rms
return V_rms

End

When MakeDependencyUsingOperation is executed, it prints the following in the history area:
•MakeDependencyUsingOperation()

73.4677
146.935

Dependency Caveats
The extensive use of dependencies can create a confusing tangle that can be difficult to manage. Although
you can use the Object Status dialog to explore the dependency hierarchy, you can still become very con-
fused very quickly, especially when the dependencies are highly cascaded. You should use dependencies
only where they are needed. Use conventional assignments for the majority of your calculations.

There is no built-in limit to the depth of dependency cascading except that speed considerations will limit
the depth to about 20. Similarly there will be a practical limit to the total number of objects with dependen-
cies. The actual limit can not be specified in advance.

Dependency formulas are generally not recalculated when a user-defined function is running unless you explic-
itly call the DoUpdate operation. However, they can run at other hard to predict times (especially on Windows)
and you should not make any assumptions as to the timing or the current data folder when they run.

The text of the dependency formula that is saved for a dependent object is the original literal text. The
dependency formula needs to be recompiled from time to time, for example when procedures are compiled.
Therefore, any objects used in the formula must persist until the formula is deleted.

We recommend that you never use $ expressions in a dependency formula.

Chapter IV-9 — Dependencies

IV-212

Chapter

IV-10
IV-10Advanced Programming

Regular Modules ... 216
Regular Modules in Action Procedures and Hook Functions .. 217
Regular Modules and User-Defined Menus .. 218

Independent Modules .. 218
Independent Modules - A Simple Example... 218
SetIgorOption IndependentModuleDev=1 .. 219
Independent Module Development Tips ... 220
Independent Modules and #include ... 220
Limitations of Independent Modules ... 220
Independent Modules in Action Procedures and Hook Functions.. 220
Independent Modules and User-Defined Menus ... 221
Independent Modules and Popup Menus ... 222
Regular Modules Within Independent Modules .. 222
Calling Routines From Other Modules .. 223
Using Execute Within an Independent Module.. 223
Independent Modules and Dependencies ... 224
Independent Modules and Pictures .. 224
Making Regular Procedures Independent-Module-Compatible.. 224

Sound .. 224
Movies .. 225

Playing Movies... 225
Creating Movies ... 225
Extracting Movie Frames.. 226
Movie Programming Examples ... 226

Timing... 226
Ticks Counter ... 226
Microsecond Timer.. 226

Packages ... 226
Creating a Package .. 227
Lightweight Packages ... 229

Managing Package Data .. 229
Creating and Accessing the Package Data Folder .. 229
Creating and Accessing the Package Per-Instance Data Folders.. 230

Saving Package Preferences .. 231
Saving Package Preferences in a Special-Format Binary File .. 232
Saving Package Preferences in an Experiment File .. 234

Creating Formatted Text .. 235
Printf Operation ... 236
sprintf Operation ... 237
fprintf Operation.. 237
wfprintf Operation .. 237
Example Using fprintf and wfprintf ... 237

Client/Server Overview.. 237

Chapter IV-10 — Advanced Programming

IV-214

Apple Events .. 238
Apple Event Capabilities... 238
Apple Events — Basic Scenario .. 238
Apple Events — Obtaining Results from Igor ... 238
Apple Event Details ... 239

AppleScript ... 240
Executing Unix Commands on Mac OS X ... 241
ActiveX Automation.. 241

Igor Command Line ... 242
Igor.exe .. 242

Igor as a WWW CGI-Bin Server.. 243
Network Communications .. 244
URLs.. 244

Usernames and Passwords... 244
Supported Network Schemes .. 245
Percent Encoding ... 245

Safe Handling of Passwords.. 246
Network Timeouts and Aborts ... 247
Network Connections From Multiple Threads .. 247
File Transfer Protocol (FTP)... 249

FTP Limitations.. 249
Downloading a File ... 250
Downloading a Directory ... 250
Uploading a File... 251
Uploading a Directory .. 251
Creating a Directory .. 252
Deleting a Directory .. 252
FTP Transfer Types.. 252
FTP Troubleshooting... 253

Hypertext Transfer Protocol (HTTP) ... 253
HTTP Limitations .. 253
Downloading a Web Page Via HTTP ... 253
Downloading a File Via HTTP... 254
Making a Query Via HTTP... 255
HTTP Troubleshooting ... 255

Operation Queue... 256
User-Defined Hook Functions .. 257

AfterCompiledHook ... 259
AfterFileOpenHook... 259
BeforeDebuggerOpensHook.. 262
AfterMDIFrameSizedHook .. 263
AfterWindowCreatedHook.. 264
BeforeExperimentSaveHook .. 264
BeforeFileOpenHook... 265
IgorBeforeNewHook ... 266
IgorBeforeQuitHook.. 267
IgorMenuHook... 267
IgorQuitHook ... 269
IgorStartOrNewHook ... 269

Static Hook Functions .. 269
Window Hook Functions... 270

Window Hooks and Subwindows .. 271
Named Window Hook Functions .. 271

Named Window Hook Events... 272
WMWinHookStruct... 273
Setting the Mouse Cursor ... 274

Chapter IV-10 — Advanced Programming

IV-215

Panel Done Button Example .. 274
Window Hook Deactivate, Kill, Show and Hide Events ... 275

Unnamed Window Hook Functions .. 276
Custom Marker Hook Functions .. 279

WMMarkerHookStruct ... 280
Marker Hook Example.. 280

Data Acquisition.. 281
FIFOs and Charts .. 282

Summary... 282
Programming with FIFOs... 282
FIFO File Format .. 283
Charts... 284

Chart Basics ... 284
Additional Notes .. 284

Background Tasks... 285
Background Task Example #1.. 285
Background Task Exit Code... 285
Background Task Period... 286
Background Task Limitations .. 286
Background Tasks and Errors.. 287
Background Tasks and Dialogs ... 287
Background Task Tips... 287
Background Task Example #2.. 287
Background Task Example #3.. 289
Old Background Task Techniques .. 289

Automatic Parallel Processing with MultiThread.. 289
Data Folder Reference MultiThread Example ... 291
Wave Reference MultiThread Example.. 292
Structure Array MultiThread Example .. 294

ThreadSafe Functions and Multitasking ... 295
Thread Data Environment.. 295
Parallel Processing - Group-at-a-Time Method... 296
Parallel Processing - Thread-at-a-Time Method.. 298
Input/Output Queues.. 298
Parallel Processing With Large Datasets .. 300
Preemptive Background Task.. 300
More Multitasking Examples... 302

Cursors — Moving Cursor Calls Function.. 302
The Old Easy Way ... 302
The Hard Way .. 303
Cursor Globals.. 303
Creating the Cursor Globals... 303
Establishing a Dependency Between Cursor Globals and a User Function 304
Example Cursor Global User Function... 304
The Result ... 305

Profiling Igor Procedures... 305

Chapter IV-10 — Advanced Programming

IV-216

This chapter contains usage notes on a number of advanced programming topics.

Regular Modules
Regular modules, or "modules" for short, provide a way to avoid name conflicts between procedure files.
Regular modules are distinct from "independent modules" which are discussed in the next section.

By default, a procedure file is in the built-in ProcGlobal module. A procedure file that does not contain a
#pragma ModuleName statement (or a #pragma IndependentModule statement - discussed below) is in
ProcGlobal. Neither #pragma ModuleName nor #pragma IndependentModule are allowed in the built-in
procedure window which is always in ProcGlobal.

When you execute a function from the command line or use the Execute operation, you are operating in the
ProcGlobal context.

Functions in ProcGlobal are either public, or, if they are declared using the static keyword, private. For
example:

// In a procedure file with no #pragma ModuleName or #pragma IndependentModule

static Function Test() // Private to its procedure file
Print "Test in ProcGlobal"

End

Function TestInProcGlobal() // Public
Print "TestInProcGlobal in ProcGlobal"

End

Because it is declared static, the Test function is private to the procedure file containing it. Each procedure
file can have its own static Test function without causing a name conflict. The TestInProcGlobal function is
public so there can be only one public function with this name.

In this example the static Test function is accessible only from the procedure file in which it is defined.
Sometimes you have a need to avoid name conflicts but still want to be able to call functions from other
procedure files, from control action procedures or from the command line. This is where a regular module
is useful.

You specify that a procedure file is in a different module (other than ProcGlobal) using the ModuleName
pragma. For example:

#pragma ModuleName = ModuleA // The following procedures are in ModuleA

static Function Test() // Semi-private
Print "Test in ModuleA"

End

Function TestModuleA() // Public
Print "Test in ModuleA"

End

Because it is declared static, this Test function will not cause name conflicts with other modules, including
the ProcGlobal module. In this sense, it is private. But because it is in a named regular module (ModuleA),
it can be called from other procedure files using a qualified name:

ModuleA#Test() // Call Test from ModuleA

This qualified name syntax overrides the static nature of Test and tells Igor that you want to execute the
Test function defined in ModuleA. The only way to access a static function from another procedure file is
to put it in a regular module and use a qualified name.

Chapter IV-10 — Advanced Programming

IV-217

If you are writing a non-trivial set of procedures, it is a good idea to use a module and to declare your func-
tions static, especially if other people will be using your code. This prevents name conflicts with other pro-
cedures that you or other programmers write. Make sure to choose a distinctive module name.

Regular Modules in Action Procedures and Hook Functions
Control action procedures and hook functions are called by Igor at certain times. They are executed in the
ProcGlobal context. This means that a static function can not be used as an action procedure or a hook func-
tion without using a qualified name. For example:

// In a procedure file with no #pragma ModuleName or #pragma IndependentModule

static Function ButtonProc(ba) : ButtonControl
STRUCT WMButtonAction &ba

switch (ba.eventCode)
case 2: // mouse up

Print "Running ProcGlobal#ButtonProc"
break

endswitch

return 0
End

Function CreatePanel()
NewPanel /W=(375,148,677,228)
// This will not work because ButtonProc is private to the procedure file
Button button0,pos={106,23},size={98,20},title="Click Me"
Button button0,proc=ButtonProc

End

When you click the Click Me button, Igor tries to run the ButtonProc action procedure. However, because
it is static, it is not accessible from outside the procedure file so Igor displays an error.

There are two possible solutions for this problem:

1. Make ButtonProc global by removing the static keyword

2. Use a regular module

If you make ButtonProc global, you run the risk of a name conflict with some other programmer's Button-
Proc function. You can prevent this by changing ButtonProc to a very distinctive name, like AcmeDataAc-
qButtonProc, but this becomes tedious.

Here is the solution using a module:

#pragma ModuleName = RegularModuleA

static Function ButtonProc(ba) : ButtonControl
STRUCT WMButtonAction &ba

switch (ba.eventCode)
case 2: // mouse up

Print "Running RegularModuleA#ButtonProc"
break

endswitch

return 0
End

static Function CreatePanel()
NewPanel /W=(375,148,677,228)

Chapter IV-10 — Advanced Programming

IV-218

Button button0,pos={106,23},size={98,20},title="Click Me"
Button button0,proc=RegularModuleA#ButtonProc

End

RegularModuleA is the name we have chosen for the regular module for demonstration purposes. You
should choose a more descriptive module name.

The use of a qualified name, RegularModuleA#ButtonProc, allows Igor to find and execute the static But-
tonProc function in the RegularModuleA module even though ButtonProc is running in the ProcGlobal
context.

To protect the CreatePanel function from name conflicts we also made it static. To create the panel, execute:

RegularModuleA#CreatePanel()

Regular Modules and User-Defined Menus
Menu item execution text also runs in the ProcGlobal context. If you want to call a routine in a regular
module you must use a qualified name.

Continuing the example from the preceding section, here is how you would write a menu definition:

#pragma ModuleName = RegularModuleA

Menu "Macros"
"Create Panel", RegularModuleA#CreatePanel()

End

See also Independent Modules below, Controls and Control Panels on page III-359, User-Defined Hook
Functions on page IV-257 and User-Defined Menus on page IV-109.

Independent Modules
An independent module is a set of procedure files that are compiled separately from all other procedures.
Because it is compiled separately, an independent module can run when other procedures are in an uncom-
piled state because the user is editing them or because an error occurred in the last compile. This allows the
independent module's control panels and menus to continue to work regardless of user programming
errors.

Creating an independent module adds complications and requires a solid understanding of Igor program-
ming. You should use an independent module if it is important that your procedures be runnable at all
times. For example, if you have created a data acquisition package that must run regardless of what the user
is doing, that would be a good candidate for an independent module.

A file is designated as being part of an independent module using the IndependentModule pragma:

#pragma IndependentModule = imName

Make sure to use a distinctive name for your independent module.

The IndependentModule pragma is not allowed in the built-in procedure window which is always in the
ProcGlobal module.

An independent module creates an independent namespace. Function names in an independent module do
not conflict with the same names used in other modules. To call an independent module function from
another module, including the default ProcGlobal module, the function must be public (non-static) and you
must use a qualified name as illustrated in the next section.

Independent Modules - A Simple Example
Here is a simple example using an independent module. This code must be in its own procedure file and
not in the built-in procedure file:

Chapter IV-10 — Advanced Programming

IV-219

#pragma IndependentModule = IndependentModuleA

static Function Test() // static means private to file
Print "Test in IndependentModuleA"

End

// This must be non-static to call from command line (ProcGlobal context)
Function CallTestInIndependentModuleA()

Test()
End

From the command line (the ProcGlobal context):

CallTestInIndependentModuleA() // Error

IndependentModuleA#CallTestInIndependentModuleA() // OK

IndependentModuleA#Test() // Error

The first command does not work because the functions in the independent module are accessible only
using a qualified name. The second command does work because it uses a qualified name and because the
function is public (non-static). The third command does not work because the function is private (static) and
therefore is accessible only from the file in which it is defined. A static function in an independent module
is not accessible from outside the procedure file in which it is defined unless it is in an enclosed regular
module as described under Regular Modules Within Independent Modules on page IV-222.

SetIgorOption IndependentModuleDev=1
By default, the debugger is disabled for independent modules. It can be enabled using:

SetIgorOption IndependentModuleDev=1

Also by default, independent module procedure windows that are read-only or write-protected are not
listed in the Windows→Procedure Windows submenu unless you use SetIgorOption
IndependentModuleDev=1.

Procedures loaded from "Igor Pro Folder/Igor Procedures" and "Igor Pro User Files/Igor Procedures" or
those loaded via the #include mechanism are write-protected and therefore are not visible until you execute
SetIgorOption IndependentModuleDev=1.

When SetIgorOption IndependentModuleDev=1 is in effect, the Windows→Procedure Windows
submenu shows all procedure windows, and those that belong to an independent module are listed with
the independent module name in brackets:

This syntax is used in the WinList, FunctionList, DisplayProcedure, and ProcedureText functions and
operations.

To get the user experience, as opposed to the programmer experience, return to normal operation by exe-
cuting:

Chapter IV-10 — Advanced Programming

IV-220

SetIgorOption IndependentModuleDev=0

Independent Module Development Tips
Development of an independent module may be easier if it is first done as for normal code. Add the module
declaration

#pragma IndependentModule = moduleName

only after the code has been fully debugged and is working properly.

A procedure file that is designed to be #included should ideally work inside or outside of an independent
module. Read the sections on independent modules below to learn what the issues are.

When programming an independent module, you will usually want to execute:

SetIgorOption IndependentModuleDev=1

Independent Modules and #include
If you #include a procedure file from an independent module, Igor copies the #included file into memory
and makes it part of the independent module by inserting a #pragma IndependentModule statement at the
start of the copy. If the same file is included several times, there will be several copies, each with a different
independent module name.

Warning: Do not edit the procedure windows created by #including into an independent module because
they are temporary and your changes will not be saved. You would not want to save them
anyway because Igor has modified them.

Warning: Do not #include files that already contain a #pragma IndependentModule statement unless the
independent module name is the same.

Limitations of Independent Modules
Independent modules are not for every-day programming and are somewhat more difficult to create than
normal modules because of the following limitations:

1. Macros and Procs are not supported.

2. Button and control dialogs do not list functions in an independent module.

3. Functions in an independent module can not call functions in other modules except through the Ex-
ecute operation.

4. The IndependentModule pragma requires Igor Pro 6 or later.

Independent Modules in Action Procedures and Hook Functions
Normally you must use a qualified name to invoke a function defined in an independent module from the
ProcGlobal context. Control action procedures and hook functions execute in the ProcGlobal context. But,
as a convenience and to make #include files more useful, Igor eliminates this requirement when you create
controls and specify hook functions from a user-defined function.

When you execute an operation that creates a control or specifies a hook function while running in an inde-
pendent module, Igor examines the specified control action function name or hook function name. If the
named function is defined in the same independent module, Igor automatically inserts the independent
module name. This means you can write something like:

#pragma IndependentModule = IndependentModuleA
Button b0, proc=ButtonProc
SetWindow hook(Hook1)=HookFunc

You don't have to write:

Chapter IV-10 — Advanced Programming

IV-221

#pragma IndependentModule = IndependentModuleA
Button b0, proc=IndependentModuleA#ButtonProc
SetWindow hook(Hook1)=IndependentModuleA#HookFunc

Such independent module name insertion is only done when an operation called from a function defined
in an independent module. It is not done if the operation is executed from the command line or via Execute.

The control action function or hook function must be public (non-static) (except as describe under Regular
Modules Within Independent Modules on page IV-222).

Here is a working example:

#pragma IndependentModule = IndependentModuleA

Function ButtonProc(ba) : ButtonControl // Must not be static
STRUCT WMButtonAction &ba

switch (ba.eventCode)
case 2: // mouse up

Print "Running IndependentModuleA#ButtonProc"
break

endswitch

return 0
End

Function CreatePanel()
NewPanel /W=(375,148,677,228)
Button button0,pos={106,23},size={98,20},title="Click Me"
Button button0,proc=ButtonProc

End

Independent Modules and User-Defined Menus
Independent modules can contain user-defined menus. When you choose a user-defined menu item, Igor
determines if the menu item was defined in an independent module. If so, and if the menu item's execution
text starts with a call to a function defined in the independent module, then Igor prepends the independent
module name before executing the text. This means that the second and third menu items in the following
example both call IndependentModuleA#DoAnalysis:

#pragma IndependentModule = IndependentModuleA

Menu "Macros"
"Load Data File/1", Beep; LoadWave/G
"Do Analysis/2", DoAnalysis() // Igor automatically prepends IndependentModuleA#
"Do Analysis/3", IndependentModuleA#DoAnalysis()

End

Function DoAnalysis()
Print "DoAnalysis in IndependentModuleA"

End

This behavior on Igor's part makes it possible to #include a procedure file that creates menu items into an
independent module and have the menu items work. However, in many cases you will not want a
#included file's menu items to appear. You can suppress them using menus=0 option in the #include state-
ment. See Turning the Included File’s Menus Off on page IV-150.

Note: If a procedure file with menu definitions is included into multiple independent modules, the
menus are repeatedly defined (see Independent Modules and #include on page IV-220).
Judicious use of the menus=0 option in the #include statements helps prevent this. See Turning
the Included File’s Menus Off on page IV-150.

Chapter IV-10 — Advanced Programming

IV-222

When the execution text doesn't start with a user-defined function name, as for the first menu item in this
example, Igor executes the text without altering it.

Independent Modules and Popup Menus
In an independent module, implementing a popup menu whose items are determined by a function call at
click time requires special care. For example, outside of an independent module, this works:

Function/S myPopMenuList()
return "item 1;item2;"

End
...
PopupMenu pop0 value=#"myPopMenuList()" // Note the quotation marks

But inside an independent module you need this:

#pragma IndependentModule=myIM
Function/S myPopMenuList()

return "item 1;item2;"
End
...
String cmd= GetIndependentModuleName()+"#myPopMenuList()"
PopupMenu pop0 value=#cmd // No enclosing quotation marks

GetIndependentModuleName returns the name of the independent module to which the currently-
running function belongs or "ProcGlobal" if the currently-running function is not part of an independent
module.

You could change the command string to:

PopupMenu pop0 value=#"myIM##myPopMenuList()"

but using GetIndependentModuleName allows you to disable the IndependentModule pragma by com-
menting it out and have the code still work which can be useful during development. With the pragma com-
mented out you are running in ProcGlobal context and GetIndependentModuleName returns "ProcGlobal".

When the user clicks the popup menu, Igor generates the menu items by evaluating the text specified by
the PopupMenu value keyword as an Igor expression. The expression ("myIM#myPopMenuList()" in
this case) is evaluated in the ProcGlobal context. In order for Igor to find the function in the independent
module, it must be public (non-static) (except as describe under Regular Modules Within Independent
Modules on page IV-222) and you must use a qualified name.

Note that #cmd is not the same as #"cmd". The #cmd form was introduced with Igor Pro 6. The string vari-
able cmd is evaluated when PopupMenu runs which occurs in the context of the independent module. The
contents of cmd ("myIM#myPopMenuList()" in this case) are stored in the popup menu's internal data
structure. When the popup menu is clicked, Igor evaluates the stored text as an Igor expression. This causes
the function myIM#myPopMenuList to run.

With the older #"cmd" syntax, the stored text is evaluated only when the popup menu is clicked, not when
the PopupMenu operation runs, and this evaluation occurs in the ProcGlobal context. It is too late to capture
the independent module in which the text should be evaluated.

Regular Modules Within Independent Modules
It is usually not necessary but you can create a regular module within an independent module. For example:

#pragma IndependentModule = IndependentModuleA
#pragma ModuleName = RegularModuleA
Function Test()

Print "Test in RegularModuleA within IndependentModuleA"
End

Chapter IV-10 — Advanced Programming

IV-223

Here RegularModuleA is a regular module within IndependentModuleA.

To call the function Test from outside of the independent module you must qualify the call like this:

IndependentModuleA#RegularModuleA#Test()

This illustrates that the independent module establishes its own namespace (IndependentModuleA) which
can host one level of sub-namespace (RegularModuleA). By contrast, a regular module creates a namespace
within the global namespace (called ProcGlobal) and can not host additional sub-namespaces.

This nesting of modules is useful to prevent name conflicts in a large independent module project compris-
ing multiple procedure files. Otherwise it is not necessary.

Because all procedure files in a given independent module are compiled separately from all other files,
function names never conflict with those outside the group and there is little or no need to use the static
designation on functions in an independent module. However, if need be, you can call static functions in a
regular module inside an independent module from outside the independent module using a triple-quali-
fied name:

IndependentModuleName#RegularModuleName#FunctionName()

Calling Routines From Other Modules
Code in an independent module can not directly call routines in other modules and usually should not need
to. If you must call a routine from another module, you can do it using the Execute operation. You must use
a qualified name. For example:

Execute "ProcGlobal#foo()"

To call a function in a regular module, you must prepend ProcGlobal and the regular module name to the
function name:

Execute "ProcGlobal#MyRegularModule#foo()"

Calling a nonstatic function in a different independent modules requires prepending just the other inde-
pendent module name:

Execute "OtherIndependentModule#bar()"

Calling static functions in other independent modules requires prepending the independent module name
and a regular module name:

Execute "OtherIndependentModule#RegularModuleName#staticbar()"

Using Execute Within an Independent Module
If you need to call a function in the current independent module using Execute, you can compose the name
using the GetIndependentModuleName function. For example, outside of an independent module the
commands would be:

String cmd = "WS_UpdateWaveSelectorWidget(\"Panel0\", \"selectorWidgetName\")"
Execute cmd

But inside an independent module the commands are:

#pragma IndependentModule=myIM
String cmd="WS_UpdateWaveSelectorWidget(\"Panel0\", \"selectorWidgetName\")"
cmd = GetIndependentModuleName() + "#" + cmd // Make qualified name
Execute cmd

You could change the command string to:

cmd = "myIM#" + cmd

Chapter IV-10 — Advanced Programming

IV-224

but using GetIndependentModuleName allows you to disable the IndependentModule pragma by com-
menting it out and have the code still work which can be useful during development. With the pragma com-
mented out you are running in ProcGlobal context and GetIndependentModuleName returns "ProcGlobal".

Independent Modules and Dependencies
GetIndependentModuleName is also useful for defining dependencies using functions in the current inde-
pendent module. Dependencies are evaluated in the global procedure context (ProcGlobal). In order for
dependencies to evaluate correctly, the dependency must use GetIndependentModuleName to create a
formula to pass to the SetFormula operation. For example, outside of an independent module, this works:

String formula = "foo(root:wave0)"
SetFormula root:aVariable $formula

But inside an independent module you need this:
#pragma IndependentModule=myIM
String formula = GetIndependentModuleName() + "#foo(root:wave0)"
SetFormula root:aVariable $formula

Independent Modules and Pictures
To allow DrawPICT to use a picture in the picture gallery, you must prepend GalleryGlobal# to the picture
name:

DrawPICT 0,0,1,1,GalleryGlobal#PICT_0

Without GalleryGlobal, only Proc Pictures can be used defined in an independent module. GalleryGlobal
is available in Igor Pro 6.1 or later.

Making Regular Procedures Independent-Module-Compatible
You may want to make an existing set of procedures into an independent module. Alternatively, you may
want to make an existing procedure independent-module-compatible so that it can be #included into an
independent module. This section outlines the necessary steps.

1. If you are creating an independent module, add the IndependentModule pragma:

#pragma IndependentModule=<NameOfIndependentModule>

2. Change any Macro or Proc procedures to functions.

3. Make Execute commands suitable for running in the ProcGlobal context or in an independent mod-
ule using GetIndependentModuleName. See Using Execute Within an Independent Module on
page IV-223.

4. Make PopupMenu controls that call a string function to populate the menu work in the ProcGlobal
context or in an independent module using GetIndependentModuleName. See Independent Mod-
ules and Popup Menus on page IV-222.

5. Make any dependencies work in the ProcGlobal context or in an independent module using Get-
IndependentModuleName. See Independent Modules and Dependencies on page IV-224.

See also Regular Modules on page IV-216, Controls and Control Panels on page III-359, User-Defined
Hook Functions on page IV-257, User-Defined Menus on page IV-109, and GetIndependentModule-
Name on page V-238.

Sound
Two operations are provided for playing of sound through the computer speakers:
• PlaySound
• PlaySnd (Macintosh)

The PlaySound operation takes the sound data from a wave.

Chapter IV-10 — Advanced Programming

IV-225

The obsolete PlaySnd operation gets its data from a Macintosh 'snd ' resource stored in a file.

A number of sound input operations are provided: SoundInStatus (page V-662) , SoundInSet (page V-661) ,
SoundInRecord (page V-660) , SoundInStartChart (page V-661) and SoundInStopChart (page V-662) .
Several example experiments that use these routines can be found in your Igor Pro Folder in the Examples folder.

The SndLoadSaveWave XOP loads and saves various sound file formats into and from waves. It also adds
a Load Sound File menu item to the Load Waves submenu and a Save Sound File menu item to the Save
Waves submenu as well as several command line operations including SndLoadWave, SndSaveAIFF and
SndSaveWAV. See the SndLoadSaveWave help file in the More Extensions:File Loaders folder for details.

Movies
You can play movies in Igor. You can also create movies, optionally with a soundtrack. And you can extract
frames from movies for analysis.

On Macintosh Igor can play QuickTime and AVI movies. It can create QuickTime movies only.

On Windows Igor can play QuickTime and AVI movies. It can create AVI movies. It can also create Quick-
Time movies if you have QuickTime installed on your machine.

Playing Movies
Use the PlayMovie operation to play a movie whether the movie was created in Igor or not.
Playing a movie requires that you have the codecs required by the movie installed on your machine.
On Macintosh, both QuickTime and AVI movies open in the Igor application.
On Windows, if you have QuickTime installed, both QuickTime and AVI movies open in the Igor applica-
tion. If you do not have QuickTime installed both QuickTime and AVI movies open in your default movie
view program - typically Windows Media Player.

Creating Movies
The process of creating a movie is very simple. You use the following operations to create a new movie file,
add video frames and audio, close the file and then play the movie. Refer to Chapter V-1, Igor Reference,
for details on the operations.
• NewMovie
• AddMovieFrame
• AddMovieAudio
• CloseMovie
• PlayMovie
• PlayMovieAction

The NewMovie operation creates a movie file and also defines the movie frame rate and optional audio
track specifications.

On Macintosh NewMovie always creates a QuickTime movie and the /A (AVI) flag is ignored.

On Windows NewMovie creates a QuickTime movie if you have QuickTime installed and you omit the /A
flag. It creates an AVI movie if you do not have QuickTime installed or include the /A flag.

Before calling NewMovie, you need to prepare the first frame of your movie as the target graph. If you will
be using audio you also need to prepare a sound wave. The sound wave can be of any time duration but
usually will either be the entire length of the movie or will be the length of one video frame. If you will be
placing your movie on a Web page or transferring it across platforms, be sure to use the /L flag with New-
Movie to create a “flattened” movie.

Chapter IV-10 — Advanced Programming

IV-226

After creating the file and the first video frame and optional audio, you use AddMovieFrame to add as
many video frames as you wish. You may also add more audio using the AddMovieAudio operation.
Finally you use the CloseMovie and PlayMovie operations.

When you write a procedure to generate a movie, you need to call the DoUpdate operation after all modi-
fications to the graph and before calling AddMovieFrame. This allows Igor to process any changes you have
made to the graph.

In addition to creating a movie from a graph, you can also create movies from pictures in the picture gallery
(see Pictures on page III-423) using the /PICT flag with NewMovie and AddMovieFrame. You can put pic-
tures of Igor graphs, tables and page layouts in the gallery using SavePICT.

Extracting Movie Frames
You can extract individual frames from a movie and can control movie playback using PlayMovieAction.

Movie Programming Examples
For examples of programming with movies, see the Examples:Movies & Audio folder.

Timing
There are two methods you can use when you want to measure elapsed time:
• The ticks counter using the ticks function
• The microsecond timer using StartMSTimer() and StopMSTimer()

Ticks Counter
You can easily measure elapsed time with a precision of 1/60th of a second using the ticks function. It
returns the tick count which starts at zero when you first start your computer and is incremented at a rate
of approximately 60 Hz rate from then on.

Here is an example of typical use:
…
Variable t0
…
t0= ticks
<operations you wish to time>
printf "Elapsed time was %g seconds\r",(ticks-t0)/60
…

Microsecond Timer
You can measure elapsed time to microsecond accuracy for durations up to 35 minutes using the microsec-
ond timer. See the startMSTimer function (page V-673) for details and an example.

Packages
A package is a set of files that adds a significant set of functionality to Igor. Packages consist of procedure
files and may also include XOPs, help files and other supporting files.

A package usually adds one or more items to Igor's menus that allow the user to interactively load the pack-
age, access its functionality, and unload the package.

A package typically provides some level of user-interface, such as a menu item and a control panel, for
accessing the added functionality. It may store settings in experiments or in global preferences.

A package is typically loaded into memory and unloaded at the user's request.

Chapter IV-10 — Advanced Programming

IV-227

Igor comes pre-configured with numerous WaveMetrics packages accessed through the Data→Packages,
Analysis→Packages, Misc→Packages, Windows→New→Packages and Graph→Packages submenus as
well as others. Take a peek at these submenus to see what packages are supplied with Igor.

Menu items for WaveMetrics packages are added to Igor's menus by the WMMenus.ipf procedure file
which is shipped in the Igor Procedures folder. (WMMenus.ipf is hidden unless you enable independent
module development. See Independent Modules on page IV-218.)

A large package of 3D-plotting support routines is accessible through the Gizmo menu that appears in the
main menu bar when a Gizmo 3D window is active.

The following section explains how to add a package to Igor.

Creating a Package
This section shows how to create a package through a simple example. The package is called "Sample Pack-
age". It adds a Load Sample Package item to the Macros menu. When the user chooses Load Sample Pack-
age, the package's procedure file is loaded. This adds two additional items to the Macros menu: Hello From
Sample Package and Unload Sample Package.

The package consists of two procedure files stored in a folder in the Igor Pro User Files folder. If you are not
familiar with Igor Pro User Files, take a short detour and read Special Folders on page II-44 and Igor Pro
User Files on page II-46.

The sample package is installed as follows:

Igor Pro 6 User Files
Sample Package

Sample Package Loader.ipf
Sample Package.ipf

Igor Procedures
Alias or shortcut pointing to the "Sample Package Loader.ipf" file

User Procedures
Alias or shortcut pointing to the "Sample Package" folder

Putting the alias/shortcut for the "Sample Package Loader.ipf" in Igor Procedures causes Igor to load that
file at launch time. The file adds the "Load Sample Package" item to the Macros menu. (See Global Proce-
dure Files on page III-347 for details.)

Putting the alias/shortcut for the "Sample Package" folder in User Procedures causes Igor to search that
folder when a #include is invoked. (See Shared Procedure Files on page III-347 for details.)

A real package might include other procedure files and a help file in the "Sample Package" folder.

To try this out yourself, follow these steps:

1. Create the "Sample Package" folder in your Igor Pro User Files folder.

You can locate your Igor Pro User Files folder using the Help menu.

2. Create a new procedure file named "Sample Package Loader.ipf" in the "Sample Package" folder
and enter the following contents in the file:

Menu "Macros"
"Load Sample Package", /Q, LoadSamplePackage()

End

Function LoadSamplePackage()
Execute/P/Q/Z "INSERTINCLUDE \"Sample Package\""
Execute/P/Q/Z "COMPILEPROCEDURES "// Note the space before final quote

End

Save the procedure file.

Chapter IV-10 — Advanced Programming

IV-228

3. Create a new procedure file named "Sample Package.ipf" in the "Sample Package" folder and enter
the following contents in the file:

Menu "Macros"
"Hello From Sample Package", HelloFromSamplePackage()
"Unload Sample Package", UnloadSamplePackage()

End

Function HelloFromSamplePackage()
DoAlert /T="Sample Package Wants to Say" 0, "Hello!"

End

Function UnloadSamplePackage()
Execute /P /Q /Z "DELETEINCLUDE \"Sample Package\""
Execute /P /Q /Z "COMPILEPROCEDURES "// Note the space before final quote

End

Save the procedure file.

4. In the desktop, make an alias or shortcut for "Sample Package Loader.ipf" file and put it in the Igor
Procedures folder in the Igor Pro User Files folder.

This causes Igor to load the "Sample Package Loader.ipf" file at launch time. This is how the Load
Sample Package menu item gets into the Macros menu.

5. In the desktop, make an alias or shortcut for the "Sample Package" folder and put it in the User Pro-
cedures folder in the Igor Pro User Files folder.

This causes Igor to search the "Sample Package" folder when a #include is invoked. This allows Igor
to find the "Sample Package.ipf" file when it is #included.

6. Quit and restart Igor so that Igor will load the "Sample Package Loader.ipf" file.

If you prefer you can just manually make sure that "Sample Package Loader.ipf" is open and "Sam-
ple Package.ipf" is closed. This simulates the state of affairs after restarting Igor.

7. Choose Windows→Procedure Windows and verify that Igor has loaded the "Sample Package
Loader.ipf" file.

8. Click the Macros menu and verify that the "Load Sample Package" item is present.

9. Choose Macros→Load Sample Package.

The LoadSamplePackage function runs, adds a #include statement to the built-in procedure win-
dow, and forces procedures to be recompiled. This cause Igor to load the "Sample Package.ipf" pro-
cedure file which contains the bulk of the package's procedures and adds items to the Macros
menu.

10. Click the Macros menu and notice that the "Hello From Sample Package" and "Unload Sample
Package" items have been added.

11. Choose Macros→Hello From Sample Package.

The package displays an alert. A real package would do something more exciting.

12. Choose Macros→Unload Sample Package.

The UnloadSamplePackage function runs, removes the #include statement from the built-in proce-
dure window, and forces procedures to be recompiled. This cause Igor to unload the "Sample Pack-
age.ipf" procedure.

13. Click the Macros menu and notice that the "Hello From Sample Package" and "Unload Sample
Package" items have been removed.

Most real packages do not create Unload menu items. Instead they provide an Unload Package button in a
control panel or automatically unload when a control panel is closed. Or they might not support unloading.

A real package typically does not include "Package" in its name or in its menu items.

Chapter IV-10 — Advanced Programming

IV-229

Lightweight Packages
A lightweight package is one that consists of at most a few procedure files and does not create clutter in the
current experiment unless it is actually used.

If your package is lightweight you might prefer to dispense with loading and unload it and just keep it
loaded all the time. To do this you would organize your files like this:

Igor Pro 6 User Files
Your Package

Your Package Part 1.ipf
Your Package Part 2.ipf

Igor Procedures
Alias or shortcut pointing to the "Your Package" folder

Here both of your package procedure files are global, meaning that Igor loads them at launch time and
never unloads them. You do not need procedures for loading and unloading your package.

If you have an ultra-light package, consisting of just a single procedure file, you can dispense with the "Your
Package" folder and put the procedure file directly in the Igor Procedures folder.

Managing Package Data
When you create a package of procedures, you need some place to store private data used by the package
to keep track of its state. It's important to keep this data separate from the user's data to avoid clutter and
to protect your data from inadvertent changes.

Private data should be stored in a data folder named after the package inside a generic data folder named
Packages. For example, if your package is named My Package you would store your private data in
root:Packages:My Package.

There are two general types of private data that you might need to store: overall package data and per-
instance data. For example, for a data acquisition package, you may need to store data describing the state
of the acquisition as a whole and other data on a per-channel basis.

Creating and Accessing the Package Data Folder
This section demonstrates the recommended way to create and access a package data folder. We use a bot-
tleneck function that returns a DFREF for the package data folder. If the package data folder does not yet
exist, the bottleneck function creates and initializes it. This way calling functions don't need to worry about
whether the package data folder has been created.
First we write a function to create and initialize the package data folder:
Function/DF CreatePackageData() // Called only from GetPackageDFREF

// Create the package data folder
NewDataFolder/O root:Packages
NewDataFolder/O root:Packages:'My Package'

// Create a data folder reference variable
DFREF dfr = root:Packages:'My Package'

// Create and initialize package data
Variable/G dfr:gVar1 = 1.0
String/G dfr:gStr1 = “hello”
Make/O dfr:wave1
WAVE wave1 = dfr:wave1
wave1= x^2

return dfr
End

Chapter IV-10 — Advanced Programming

IV-230

Now we can write the bottleneck function:
Function/DF GetPackageDFREF()

DFREF dfr = root:Packages:'My Package'
if (DataFolderRefStatus(dfr) != 1) // Data folder does not exist?

DFREF dfr = CreatePackageData() // Create package data folder
endif
return dfr

End

GetPackageDFREF would be used like this:
Function/DF DemoPackageDFREF()

DFREF dfr = GetPackageDFREF()

// Read a package variable
NVAR gVar1 = dfr:gVar1
Printf "On entry gVar1=%g\r", gVar1

// Write to a package variable
gVar1 += 1
Printf "Now gVar1=%g\r", gVar1

End

All functions that access the package data folder should do so through GetPackageDFREF. The calling func-
tions do not need to worry about whether the data folder has been created and initialized because GetPack-
ageDFREF does this for them.

Creating and Accessing the Package Per-Instance Data Folders
Here we extend the technique of the preceding section to handle per-instance data. This example shows
how you might handle per-channel data in a data acquisition package. If your package does not use per-
instance data then you can skip this section.

First we write a function to create and initialize the per-instance package data folder:

Function/DF CreatePackageChannelData(channel) // Called only from
Variable channel // 0 to 3 // GetPackageChannelDFREF

DFREF dfr = GetPackageDFREF() // Access main package data folder

String dfName = "Channel" + num2istr(channel) // Channel0, Channel1, ...

// Create the package channel data folder
NewDataFolder/O dfr:$dfName

// Create a data folder reference variable
DFREF channelDFR = dfr:$dfName

// Initialize per-instance data
Variable/G channelDFR:gGain = 5.0
Variable/G channelDFR:gOffset = 0.0

return channelDFR
End

Now we can write the bottleneck function:

Function/DF GetPackageChannelDFREF(channel)
Variable channel // 0 to 3

DFREF dfr = GetPackageDFREF() // Access main package data folder

Chapter IV-10 — Advanced Programming

IV-231

String dfName = "Channel" + num2istr(channel) // Channel0, Channel1, ...
DFREF channelDFR = dfr:$dfName
if (DataFolderRefStatus(channelDFR) != 1) // Data folder does not exist?

DFREF channelDFR = CreatePackageChannelData(channel) // Create it
endif
return channelDFR

End

GetPackageChannelDFREF would be used like this:

Function/DF DemoPackageChannelDFREF(channel)
Variable channel // 0 to 3

DFREF channelDFR = GetPackageChannelDFREF(channel)

// Read a package variables
NVAR gGain = channelDFR:gGain
NVAR gOffset = channelDFR:gOffset
Printf "Channel %d: Gain=%g, offset=%g\r", channel, gGain, gOffset

End

All functions that access a package channel data folder should do so through GetPackageChannelDFREF.
The calling functions do not need to worry about whether the data folder has been created and initialized
because GetPackageChannelDFREF does this for them.

Saving Package Preferences
If you are writing a sophisticated package of Igor procedures you may want to save preferences for your
package. For example, if your package creates a control panel that can be opened in any experiment, you
may want it to remember its position on screen between invocations. Or you may want to remember
various settings in the panel from one invocation to the next.

Such “state” information can be stored either separately in each experiment or it can be stored just once for
all experiments in preferences. These two approaches both have their place, depending on circumstances.
But if your package creates a control panel that is intended to be present at all times and used in any exper-
iment then the preferences approach is usually the best fit.

If you choose the preferences approach, you will store your package preference file in a directory created for
your package. Your package directory will be in the Packages directory, inside Igor’s own preferences directory.

The location of Igor’s Packages directory depends on the operating system and the particular user’s config-
uration. You can find where it is on a particular system by executing:
Print SpecialDirPath("Packages", 0, 0, 0)

Important:You must choose a very distinctive name for your package because that is the only thing that
prevents some other package from overwriting yours. All package names starting with “WM”
are reserved for WaveMetrics.

A package name is limited to 31 characters and must be a legal name for a directory on disk.

There are two ways to store package preference data:
In a special-format binary file stored in your package directory.
As Igor waves and variables in an Igor experiment file stored in your package directory.

The special-format binary file approach is relatively simple to implement but is not suitable for storing very large
amounts of data. In most cases it is not necessary to store very large amounts of data so this is the way to go.

The use of the Igor experiment file supports storing a large amount of preference data but creates a problem
of synchronizing your preference data stored in memory and your preference data stored on disk. It also

Chapter IV-10 — Advanced Programming

IV-232

leads to a proliferation of preference data stored in various experiments. You should avoid using this tech-
nique if possible.

Saving Package Preferences in a Special-Format Binary File
This approach supports preference data consisting of a collection of numeric and string data. You define a struc-
ture encapsulating your package preference data. You use the LoadPackagePreferences operation (page V-390)
to load your data from disk and the SavePackagePreferences operation (page V-615) to save it to disk.

The LoadPackagePreferences and SavePackagePreferences were added in Igor Pro 5.04B07 so if you use
this technique, your package will require that version or later.

SavePackagePreferences stores data from your package’s preferences data structure in memory. LoadPack-
agePreferences returns that data to you via the same structure.

SavePackagePreferences also creates a directory for your package preferences and stores your data in a file
in that directory. Your package directory is located in the Packages directory in Igor’s preferences directory.
The job of storing the preferences data in the file is handled transparently which, by default, automatically
flushes your data to the file when the current experiment is saved or closed and when Igor quits.

You would call LoadPackagePreferences every time you need to access your package preference data and
SavePackagePreferences every time you want to change your package preference data. You pass to these
operations an instance of a structure that you define.

Here are example functions from the Package Preferences Demo experiment that use the LoadPackagePref-
erences and SavePackagePreferences operations to implement preferences for a particular package:
// NOTE: The package name you choose must be distinctive!
static StrConstant kPackageName = "Acme Data Acquisition"
static StrConstant kPrefsFileName = "PanelPreferences.bin"
static Constant kPrefsVersion = 100
static Constant kPrefsRecordID = 0

Structure AcmeDataAcqPrefs
uint32version // Preferences structure version number. 100 means 1.00.
double panelCoords[4] // left, top, right, bottom
uchar phaseLock
uchar triggerMode
double ampGain
uint32 reserved[100] // Reserved for future use

EndStructure

// DefaultPackagePrefsStruct(prefs)
// Sets prefs structure to default values.
static Function DefaultPackagePrefsStruct(prefs)

STRUCT AcmeDataAcqPrefs &prefs

prefs.version = kPrefsVersion

prefs.panelCoords[0] = 5 // Left
prefs.panelCoords[1] = 40 // Top
prefs.panelCoords[2] = 5+190 // Right
prefs.panelCoords[3] = 40+125 // Bottom
prefs.phaseLock = 1
prefs.triggerMode = 1
prefs.ampGain = 1.0

Variable i
for(i=0; i<100; i+=1)

prefs.reserved[i] = 0
endfor

End

// SyncPackagePrefsStruct(prefs)
// Syncs package prefs structures to match state of panel.
// Call this only if the panel exists.
static Function SyncPackagePrefsStruct(prefs)

STRUCT AcmeDataAcqPrefs &prefs

// Panel does exists. Set prefs to match panel settings.

Chapter IV-10 — Advanced Programming

IV-233

prefs.version = kPrefsVersion

GetWindow AcmeDataAcqPanel wsize
// NewPanel uses device coordinates. We therefore need to scale from
// points (returned by GetWindow) to device units for windows created
// by NewPanel.
Variable scale = ScreenResolution / 72
prefs.panelCoords[0] = V_left * scale
prefs.panelCoords[1] = V_top * scale
prefs.panelCoords[2] = V_right * scale
prefs.panelCoords[3] = V_bottom * scale

ControlInfo /W=AcmeDataAcqPanel PhaseLock
prefs.phaseLock = V_Value // 0=unchecked; 1=checked

ControlInfo /W=AcmeDataAcqPanel TriggerMode
prefs.triggerMode = V_Value // Menu item number starting from on

ControlInfo /W=AcmeDataAcqPanel AmpGain
prefs.ampGain = str2num(S_value) // 1, 2, 5 or 10

End

// InitPackagePrefsStruct(prefs)
// Sets prefs structures to match state of panel or
// to default values if panel does not exist.
static Function InitPackagePrefsStruct(prefs)

STRUCT AcmeDataAcqPrefs &prefs

DoWindow AcmeDataAcqPanel
if (V_flag == 0)

// Panel does not exist. Set prefs struct to default.
DefaultPackagePrefsStruct(prefs)

else
// Panel does exists. Sync prefs struct to match panel state.
SyncPackagePrefsStruct(prefs)

endif
End

static Function LoadPackagePrefs(prefs)
STRUCT AcmeDataAcqPrefs &prefs

// This loads preferences from disk if they exist on disk.
LoadPackagePreferences kPackageName, kPrefsFileName, kPrefsRecordID, prefs

// If error or prefs not found or not valid, initialize them.
if (V_flag!=0 || V_bytesRead==0 || prefs.version!=kPrefsVersion)

InitPackagePrefsStruct(prefs) // Set from panel if it exists or to default values.
SavePackagePrefs(prefs) // Create initial prefs record.

endif
End

static Function SavePackagePrefs(prefs)
STRUCT AcmeDataAcqPrefs &prefs

SavePackagePreferences kPackageName, kPrefsFileName, kPrefsRecordID, prefs
End

NOTE: The package preferences structure, AcmeDataAcqPrefs in this case, must not use fields of type
Variable, String, WAVE, NVAR, SVAR or FUNCREF because these fields refer to data that may
not exist when LoadPackagePreferences is called.

The structure can use fields of type char, uchar, int16, uint16, int32, uint32, float and double as well as fixed-
size arrays of these types and substructures with fields of these types.

Use the reserved field to add fields to the structure in a backward-compatible fashion. For example, a sub-
sequent version of the structure might look like this:
Structure AcmeDataAcqPrefs

uint32 // Preferences structure version number. 100 means 1.00.
double panelCoords[4] // left, top, right, bottom
uchar phaseLock
uchar triggerMode

Chapter IV-10 — Advanced Programming

IV-234

double ampGain
uint32 triggerDelay
uint32 reserved[99] // Reserved for future use

EndStructure

Here the triggerDelay field was added and size of the reserved field was reduced to keep the overall size of
the structure the same. The AcmeDataAcqLoadPackagePrefs function would also need to be changed to set
the default value of the triggerDelay field.

If you need to change the structure such that its size changes or its fields are changed in an incompatible manner
then you must change your structure version, which will overwrite old preferences with new preferences.

A functioning example using this technique can be found in:
“Igor Pro Folder:Examples:Programming:Package Preferences Demo.pxp”

In the example above we store just one structure in the preference file. However LoadPackagePreferences
and SavePackagePreferences allow storing any number of structures of the same or different types in the
preference file. You can store either multiple instances of the same structure or multiple different structures.
You must assign a unique nonnegative integer as a record ID for each structure stored and pass this record
ID to LoadPackagePreferences and SavePackagePreferences. You could use this feature, for example, to
store a different structure for each type of control panel that your package presents. Since all data is cached
in memory you should not attempt to store hundreds or thousands of structures.

In almost all cases a particular package will need just one preference file. For the rare cases where this is
inconvenient, LoadPackagePreferences and SavePackagePreferences allow each package to create any
number of preference files, each with a distinct file name. All of the preference files for a particular package
are stored in the same directory, the package’s preferences directory. Each file can store a different set of
structure. However, the code that implements this feature is not tuned to handle large numbers of files so
you should not use this feature indiscriminately.

Saving Package Preferences in an Experiment File
This approach supports package preference data consisting of waves, numeric variables and string vari-
ables. It is more difficult to implement than the special-format binary file approach and is not recommended
except for expert programmers and then only if the previously described approach is not suitable.

You use the SaveData operation to store your waves and variables in a packed experiment file in your
package directory on disk. You can later use the LoadData operation to load the waves and variables into
a new experiment.

You must create your package directory as illustrated by the SavePackagePrefs function below.

The following example functions save and load package preferences. These functions assume that the
package preferences consist of all waves and variables at the top level of the package’s data folder. You may
need to customize these functions for your situation.
// SavePackagePrefs(packageName)
// Saves the top-level waves, numeric variables and string variables
// from the data folder for the named package into a file in the Igor
// preferences hierarchy on disk.
Function SavePackagePrefs(packageName)

String packageName // NOTE: Use a distinctive package name.

// Get path to Packages preferences directory on disk.
String fullPath = SpecialDirPath("Packages", 0, 0, 0)
fullPath += packageName

// Create a directory in the Packages directory for this package
NewPath/O/C/Q tempPackagePrefsPath, fullPath

fullPath += ":Preferences.pxp"

String saveDF = GetDataFolder(1)
SetDataFolder root:Packages:$packageName

Chapter IV-10 — Advanced Programming

IV-235

SaveData/O/Q fullPath // Save the preference file
SetDataFolder saveDF

// Kill symbolic path but leave directory on disk.
KillPath/Z tempPackagePrefsPath

End

// LoadPackagePrefs(packageName)
// Loads the data from the previously-saved package preference file,
// if it exist, into the package's data folder.
// Returns 0 if the preference file existed, -1 if it did not exist.
// In either case, this function creates the package's data folder if it
// does not already exist.
// LoadPackagePrefs does not affect any other data already in the
// package's data folder.
Function LoadPackagePrefs(packageName)

String packageName // NOTE: Use a distinctive package name.

Variable result = -1
String saveDF = GetDataFolder(1)

NewDataFolder/O/S root:Packages // Ensure root:Packages exists
NewDataFolder/O/S $packageName // Ensure package data folder exists

// Find the disk directory in the Packages directory for this package
String fullPath = SpecialDirPath("Packages", 0, 0, 0)
fullPath += packageName
GetFileFolderInfo/Q/Z fullPath
if (V_Flag == 0) // Disk directory exists?

fullPath += ":Preferences.pxp"
GetFileFolderInfo/Q/Z fullPath
if (V_Flag == 0) // Preference file exist?

LoadData/O/R/Q fullPath // Load the preference file.
result = 0

endif
endif

SetDataFolder saveDF
return result

End

The hard part of using the experiment file for saving package preferences is not in saving or loading the
package preference data but in choosing when to save and load it so that the latest preferences are always
used. There is no ideal solution to this problem but here is one strategy:
1. When package preference data is needed (e.g., you are about to create your control panel and need

to know the preferred coordinates), check if it exists in memory. If not load it from disk.

2. When the user does a New Experiment or quits Igor, if package preference data exists in memory,
save it to disk. This requires that you create an IgorNewExperimentHook function and an IgorQuit-
Hook function.

3. When the user opens an experiment file, if it contains package preference data, delete it and reload
from disk. This requires that you create an AfterFileOpenHook function. This is necessary because
the package preference data in the just opened experiment is likely to be older than the data in the
package preference file.

Creating Formatted Text
The printf, sprintf, and fprintf operations print formatted text to Igor’s history area, to a string variable or
to a file respectively. The wfprintf operation prints formatted text based on data in waves to a file.

All of these operations are based on the C printf function which prints the contents of a variable number of
string and numeric variables based on the contents of a format string. The format string can contain literal
text and conversion specifications. Conversion specifications define how a variable is to be printed.

Here is a simple example:
printf "The minimum is %g and the maximum is %g\r", V_min, V_max

Chapter IV-10 — Advanced Programming

IV-236

In this example, the format string is "The minimum is %g and the maximum is %g\r" which con-
tains some literal text along with two conversion specifications — both of which are “%g”— and an escape
code (“\r”) indicating “carriage-return”. If we assume that the Igor variable V_min = .123 and V_max =
.567, this would print the following to Igor’s history area:
The minimum is .123 and the maximum is .567

We could print this output to an Igor string variable or to a file instead of to the history using the sprintf
(see page V-669) or fprintf (see page V-204) operations.

Printf Operation
The syntax of the printf operation is:
printf format [, parameter [, parameter]. . .]

where format is the format string containing literal text or format specifications. The number and type of param-
eters depends on the number and type of format specifications in the format string. The parameters, if any, can
be literal numbers, numeric variables, numeric expressions, literal strings, string variables or string expressions.

The conversion specifications are very flexible and make printf a powerful tool. They can also be quite
involved. The simplest specifications are:

Here are some examples:
printf "%g, %g, %g\r", PI, 6.022e23, 1.602e-19

prints:
3.14159, 6.022e+23, 1.602e-19

printf "%e, %e, %e\r", PI, 6.022e23, 1.602e-19

prints:
3.141593e+00, 6.022000e+23, 1.602000e-19

printf "%f, %f, %f\r", PI, 6.022e23, 1.602e-19

prints:
3.141593, 602200000000000027200000.000000, 0.000000

printf "%d, %d, %d\r", PI, 6.022e23, 1.602e-19

prints:
3, 2147483647, 0

printf "%s, %s\r", "Hello, world", "The time is " + Time()

prints:
Hello, world, The time is 11:43:40 AM

Note that the output for 6.022e23 when printed using the %d conversion specification is wrong. This is
because 6.022e23 is too big a number to represent as an 32 bit integer.

Specification What It Does
%g Converts a number to text using integer, floating point or exponential notation

depending on the number’s magnitude.
%e Converts a number to text using exponential notation.
%f Converts a number to text using floating point notation.
%d Converts a number to text using integer notation.
%s Converts a string to text.

Chapter IV-10 — Advanced Programming

IV-237

If you want better control of the output format, you need to know more about conversion specifications. It
gets quite involved. See the printf operation on page V-566.

sprintf Operation
The sprintf operation is very similar to printf except that it prints to a string variable instead of to Igor’s
history. The syntax of the sprintf operation is:
sprintf stringVariable, format [, parameter [, parameter]. . .]

where stringVariable is the name of the string variable to print to and the remaining parameters are as for
printf. sprintf is useful for generating text to use as prompts in macros, in axis labels and in annotations.

fprintf Operation
The fprintf operation is very similar to printf except that it prints to a file instead of to Igor’s history. The
syntax of the fprintf operation is:
fprintf variable, format [, parameter [, parameter]. . .]

where variable is the name of a numeric variable containing the file reference number for the file to print to
and the remaining parameters are as for printf. You get the file reference number using the Open operation,
described under Open and Close Operations on page IV-176.

For debugging purposes, if you specify 1 for the file reference number, Igor prints to the history area instead
of to a file, as if you used printf instead of fprintf.

wfprintf Operation
The wfprintf operation is very similar to printf except that it prints the contents of one to 100 waves to a file.
The syntax of the wfprintf operation is:
wfprintf variable, format [/R=(start,end)] wavelist

variable is the name of a numeric variable containing the file reference number for the file to print to.

Example Using fprintf and wfprintf
Here is an example of a command sequence that creates some waves and put values into them and then
writes them to an output file with column headers.
Make/N=25 wave1, wave2, wave3
wave1 = 100+x; wave2 = 200+x; wave3 = 300+x
Variable f1
Open f1
fprintf f1, "wave1, wave2, wave3\r"
wfprintf f1, "%g, %g, %g\r" wave1, wave2, wave3
Close f1

This generates a comma delimited file. To generate a tab delimited file, use:
fprintf f1, "wave1\twave2\twave3\r"
wfprintf f1, "%g\t%g\t%g\r" wave1, wave2, wave3

Since tab-delimited is the default format for wfprintf, this last command is equivalent to:
wfprintf f1, "" wave1, wave2, wave3

Client/Server Overview
Igor Pro can act as a server — accepting commands and data from a client program and returning results,
as a client — sending commands and data to a server program, or as both at the same time.

Chapter IV-10 — Advanced Programming

IV-238

For the Macintosh, see Apple Events on page IV-238 for server information and AppleScript on page IV-240
for client capabilities. Previous versions of Igor supported an Apple technology called Program-to-Program
Communication (PPC). Apple’s operating systems no longer support PPC so it is no longer supported in Igor.

For Windows, see ActiveX Automation on page IV-241. Igor can play the role of an Automation server but
not an Automation client. However it is possible to generate script files that allow Igor to indirectly play the
role of client.

On Windows, Igor also supports Dynamic Data Exchange (DDE) and can be a DDE server or DDE client.
Because DDE is obsolescent and being phased out by Microsoft, new programming should use ActiveX
automation. Igor’s support for DDE is described in the Obsolete Topics help file.

Apple Events
This topic is of interest to Macintosh programmers. Windows users should see the section for ActiveX Auto-
mation on page IV-241.

This topic contains information for Igor users who wish to control Igor from other programs (e.g., Apple-
Script). It also contains information useful to people who are writing their own programs and wish to use
Igor Pro as a compute/graphing engine.

There is also a mechanism that allows Igor to act like a controller and initiate Apple event communication
with other programs. See AppleScript on page IV-240.

It is assumed that the reader of this material is an experienced Igor user.

Apple Event Capabilities
Igor Pro supports the following Apple events:

Apple Events — Basic Scenario
You use the Open Document event to cause Igor to load an experiment with whatever goodies you find
useful (macros, useful waves and variables or whatever). You then use the Do Script or Eval Expression
events to send commands to Igor for execution and to retrieve results. To get data into Igor you write files
and then send commands to Igor to load the data. To get data waves from Igor you do the reverse. To get
PICT data you send commands to Igor that cause it to write a PICT file that you can read. You may then
close the experiment and start over with a new one. You will not likely use the Save event.

Apple Events — Obtaining Results from Igor
To return information from Igor, you will need to embed special commands in the script you send to Igor
for execution. When Igor encounters these commands, it appends results to a packet that is returned to your
application after script execution ends. The special commands are variations on the standard Igor com-
mands FBinWrite and fprintf. Both of these commands take a file reference number as a parameter. If the

Event Suite Action

Open Application Required Basically a nop; don’t use.

Open Document Required Loads an experiment.

Print Document Required NA; don’t use.

Quit Application Required Quits.

Close Core Acts on experiment, window or PPC port.

Save Core Acts on experiment only.

Open Core NA; don’t use.

Do Script Misc Executes commands; can return ASCII results.

Eval Expression Misc Same as Do Script; obsolete but included for compatibility.

Chapter IV-10 — Advanced Programming

IV-239

magic value zero is used rather than a real file reference number, then the data that would normally be
written to a file is appended to the result packet.

As far as Igor is concerned, there is no difference between the Do Script and Eval Expression events. How-
ever, old applications may expect results from Eval Expression and not from Do Script.

To use waves and PICTs with Apple events, you will need to write or read the data via standard Igor files.
For example, you might include
SavePICT/P=myPath as "a PICT file"

in a script that you send to Igor for execution. You could then read the file in your application.

Apple Event Details
This information is intended for programmers familiar with Apple events terminology.

Some of the following events can act on experiments or windows.

To specify an experiment, use object class cDocument ('docu') and specify either formAbsolutePosition
with index=1 or formName with name=name of experiment.

To specify a window, use object class cWindow ('cwin') and either formAbsolutePosition or formName
with name=title of window.

Event Class Code Action

Open
Application

'aevt' 'oapp' Basically a nop; don’t use.

Open
Document

'aevt' 'odoc' Loads an experiment. Direct object is assumed to be
coercible to a File System Spec record.

Print
Document

'aevt' 'pdoc' NA; don’t use.

Quit
Application

'aevt' 'quit' Quits the program. If the experiment was modified, then
Igor attempts to interact with the user to get save/no save
directions. If interaction is not allowed, then an error is
returned and nothing is done.
To prevent errors, send the close event with appropriate
save options prior to sending quit.

Close 'core' 'clos' Acts on an experiment or window.

For a window, the save/no save/ask optional parameter
(keyAESaveOptions) is allowed and refers to
making/replacing a recreation macro.
For a document (experiment), keyAESaveOptions is
allowed and an additional optional parameter
keyAEDestination my be used to specify where to save
(must be coercible to a FSS). If this is not given and the
experiment is untitled and if an attempt to interact with the
user fails then the experiment is not saved and an error
(such as errAENoUserInteraction) is returned.
Note that if the optional destination is given then the save
options are ignored (why give a destination and then say no
save?).

Save 'core' 'save' Acts on experiment only.

Takes same optional destination parameters as Close. A
save with a destination is the same as a Save as.

Chapter IV-10 — Advanced Programming

IV-240

AppleScript
This topic is of interest to Macintosh programmers. Windows users should see the section for ActiveX Auto-
mation on page IV-241.

Igor supports the creation and execution of simple AppleScripts in order to send commands to other programs.

To execute an AppleScript program, you first compose it in a string and then pass it to the ExecuteScriptText
operation, which in turn passes the text to Apple’s scripting module for compilation and execution. The
result (which might be an error message) is placed in a string variable named S_value. Igor does not save
the compiled script so every time you call ExecuteScriptText your script will have to be recompiled. See the
ExecuteScriptText operation on page V-162 for additional details.

The documentation for the ExecuteScriptText operation (page V-162) includes an example that shows how
to execute a Unix command.

Because there is no easy way to edit a script or to see where errors occur, you should first test your script
using Apple’s Script Editor application.

You can use “Silent 2” to prevent commands your script sends to Igor from being placed in the history area.

You can send commands to Igor without using the tell keyword.

You should check your quoting carefully. Your text must be quoted both for Igor and for Apple’s scripting
system. For example,
ExecuteScriptText "Do Script \"Print \\\"hello\\\"\""

You should compose scripts in string variables one line at a time to improve readability.

If an error occurs that you can’t figure out, print the string, copy from the history and paste into a Script
Editor for debugging.

If the script returns a text return value, it will be quoted within the S_value string.

Don’t forget to include the carriage return escape code, \r, at the end of each line of a multiline script.

The first time you call this routine, it may take an extra long time while the Mac OS loads the scripting modules.

Do Script 'misc' 'dosc' Same as Eval Expression.

Eval
Expression

'aevt' 'eval' Executes commands. Acts just as if commands had been
typed into the command line except the individual
command lines are preceded by a “¶” symbol rather than
the usual “•” symbol. Also, errors are returned in the error
reply parameter of the event rather than putting up a dialog.

Note: You can suppress history logging by executing the
command, “Silent 2”, and you can turn it back on by
executing “Silent 3”.

Direct parameter must be text and not a file. Text can be of
any length.

You can return a string containing results by using the
fprintf command with a file reference number of zero.

Event Class Code Action

Chapter IV-10 — Advanced Programming

IV-241

Executing Unix Commands on Mac OS X
On Mac OS X, you can use AppleScript to send a command to the Unix shell. Here is a function that illus-
trates this:
Function/S ExecuteUnixShellCommand(uCommand, printCommandInHistory,
printResultInHistory)

String uCommand // Unix command to execute
Variable printCommandInHistory
Variable printResultInHistory

if (printCommandInHistory)
printf "Unix command: %s\r", uCommand

endif

String cmd
sprintf cmd, "do shell script \"%s\"", uCommand
ExecuteScriptText cmd

if (printResultInHistory)
Print S_value

endif

return S_value
End

You can test the function with this command:

ExecuteUnixShellCommand("ls", 1, 1)

Life is a bit more complicated if the command that you want to execute contains spaces or other nonstan-
dard Unix command characters. For example, imagine that you want to execute this:
ls /System/Library/Image Capture

These commands will not work because of the space in the command:
String unixCmd = "ls /System/Library/Image Capture"
ExecuteUnixShellCommand(unixCmd, 1, 1)

You need to quote the entire Unix command. In order to do this such that the quotes will make it through
Igor’s parser and AppleScript’s parser, you must do this:
String unixCmd = "ls \\\"/System/Library/Image Capture\\\""
ExecuteUnixShellCommand(unixCmd, 1, 1)

Igor’s parser converts \\ to \ and \" to ", so AppleScript sees this:
"ls \"/System/Library/Image Capture\""

AppleScript’s parser converts \" to " so Unix sees this:
ls "/System/Library/Image Capture"

On Macintosh, if your system is set to use Japanese as the preferred language, this technique of embedding
backslashes will not work. This is because, in the Japanese script, the code for backslash is used for the yen
symbol. AppleScript receives yen symbols where backslash is intended and returns an error. A possible
workaround is to put your commands in a Unicode file, created in TextEdit for example, and then use Exe-
cuteUnixShellCommand to execute the commands in Unicode file.

ActiveX Automation
ActiveX Automation, often called just Automation, is Microsoft’s technology for allowing one program to
control another. The program that does the controlling is called the Automation client. The program that is
controlled is called the Automation Server. The client initiates things by making calls to the server which
carries out the requested actions and returns results.

Automation client programs are most often written in Visual Basic or C++. They can also be written in other pro-
gramming languages and in various scripting languages such as VBScript, JavaScript, Perl, Python and so on.

Chapter IV-10 — Advanced Programming

IV-242

As of Igor Pro 5, Igor can play the role of Automation Server. If you want to write an client program to drive
Igor, see “Automation Server Overview” in the “Automation Server” help file in “\Igor Pro Folder\Mis-
cellaneous\Windows Automation”.

Igor Pro does not directly support playing the role of Automation client. However, it is possible to write an
Igor program which generates a script file which can act like an Automation client. See the CallMicrosoft-
Word experiment in the Igor Pro Folder:Examples:Programming folder.

An intermediate-level C++ programmer can also write an Igor XOP which plays the role of Automation client.

Igor Command Line
This information is for Windows programmers only. You can call Igor Pro from a Windows batch file or
even from Igor itself using ExecuteScriptText using this operation-like syntax:

Igor.exe
Igor.exe [/I /N /Automation][pathToFileOrCommands][pathToFile]…
Igor.exe [/I /Q /X /Automation] "commands"
Igor.exe /SN=num /KEY="key" /NAME="name" [/ORG="org" /QUIT]

Parameters
The usual parameter to Igor.exe is a file which Igor opens. It is recommended that both the path to Igor.exe
and the path to the file parameter be enclosed in quotes:
"C:\Program Files\WaveMetrics\Igor Pro Folder\Igor.exe" "C:\Igor Files\exp.pxp"

Multiple files can be opened by appending the path to the file(s) with an intervening space:
"C:\Program Files\WaveMetrics\Igor Pro Folder\Igor.exe" "C:\Dir\exp.pxp"
"C:\Dir\exp.dat"

With the /X flag, only one parameter is allowed and is interpreted as Igor commands:
"C:\Program Files\WaveMetrics\Igor Pro Folder\Igor.exe" /X "Make/O data=x;Display data"

The /SN, /KEY, and/NAME flags must all be used to successfully register Igor Pro. The optional /ORG
parameter defaults to "".

Flags
Note: The / symbol can be replaced with a - symbol (ActiveX Automation uses a -Automation

parameter when calling Igor Pro).

/Automation Used automatically (along with /I) by the operating system when launching Igor Pro
as an Automation Server. The command parameter that the OS sends is defined in the
Registry, put there by the Igor installer or by the user, by merging an IgorProCOM.reg
file. This flag isn’t intended for use in batch files or ExecuteScriptText. For more details
on ActiveX Automation Server, see “Automation Server Overview” in the
“Automation Server” help file.
It can, however be used from the command line or a batch file to communicate with
other programs in combination with /X. The /Automation flag keeps Igor windows
hidden, which may be useful when calling Igor Pro from a web server CGI program.

/I Launches a new “instance” of Igor that will open the file or execute the commands.
Pressing Ctrl while launching Igor is the same as using the /I flag.
Without /I, files are opened and commands are executed by any Igor.exe that is
currently running. If a parameter is an experiment file, the currently open experiment
is closed before opening the new one (see the /Y and /N flags).

/KEY="key" Specifies the license activation key. Use a value of the form:
/KEY="ABCD-EFGH-IJKL-MNOP-QR"

Do not omit the quotes, or it will fail.
/N Forces the current experiment to be closed without saving if any of the file parameters

are an experiment file.

Chapter IV-10 — Advanced Programming

IV-243

To save a currently open experiment, use:
Igor.exe /X "SaveExperiment"

/NAME="name" Defines the name of the licensed user(s). Cannot be "".
/ORG="org" Specifies the optional name of the licensed organization. Default is "". Because

Windows interprets the & symbol to mean “underline the next character when
displayed in a dialog window,” use && to display one & character in the About Igor
dialog.

/Q Doesn’t show
Command line: /X "Make/O data=s;Display data"

in Igor’s history window when using /X or /SN, etc.
/QUIT Quits Igor Pro after entering license information when used with /SN, /KEY, and

/NAME. Otherwise /QUIT is ignored.
To quit Igor Pro, use:
Igor.exe /X "Quit/N"

/SN=num Specifies the license serial number.
/X Executes the commands in the first (and only allowed) parameter. Use semicolons to

separate commands.

Details
As of Igor 6.2, if a copy of Igor.exe is already running and if Igor.exe is launched again without /X, /SN or
any path to a file, a new instance of Igor.exe is started.

Previous to Igor 6.2, launching Igor under those conditions would only activate the already-running
instance of Igor.exe.

This means that double-clicking the Igor.exe icon will start another instance of Igor.exe, but double-clicking
an experiment file will still open that file in the frontmost instance of Igor (or start up Igor if it isn't running),
as it always has.

Example
This function launches another instance of Igor to open an experiment file:
Function LaunchAnotherIgor(expPath)

String expPath // Full Windows path to experiment file
// e.g., "C:\\Igor Files\\Experiment.pxp"

String quote = "\"" // String containing a double-quote

// Get path to Igor Pro folder in Macintosh file format.
PathInfo Igor // Stores output in S_path.

// Get path to Igor in Windows format.
String igorPath= ParseFilePath(5, S_path, "\\", 0, 0) + "Igor.exe"

String scriptText = quote + igorPath + quote + " /I " + quote + expPath + quote
ExecuteScriptText scriptText

End

These batch file commands register Igor Pro with the given (fictional) serial number and license activation key:
Igor.exe /SN=1234567/KEY="ABCD-EFGH-IJKL-MNOP-QR"/NAME="Me" /ORG="You && Me, Inc." /QUIT

Igor as a WWW CGI-Bin Server
You can use Igor Pro as part of a Web server on both Macintosh and Windows. For example, you might create
a form that allows users to enter parameters and then see an Igor created graph based on the user’s inputs.

On the Macintosh your Web server executes a compiled AppleScript (that you write based on our example)
that communicates with Igor using the DoScript Apple event.

Chapter IV-10 — Advanced Programming

IV-244

On Windows, we supply an IgorCGI.exe executable program than communicates with Igor using DDE.

On Windows, we supply an IgorCGI.exe executable program that communicates with Igor Pro using DDE.
Another option is to communicate directly using ActiveX Automation Server (see “Automation Server
Overview” in the “Automation Server” help file) or on the Igor command line.

On both platforms, we provide example procedures that you keep in the Igor Procedures folder to help you
decode the values users enter in the form with their Web browser.

For more information and sample code, see Technical Note PTN004 — “Igor CGI on Macintosh” and Tech-
nical Note PTN005 — “Igor CGI on Windows”.

Network Communications
The following sections contain material related to the network communication and Internet-related capa-
bilities of Igor Pro:

URLs on page IV-244
Safe Handling of Passwords on page IV-246
Network Timeouts and Aborts on page IV-247
Network Connections From Multiple Threads on page IV-247
File Transfer Protocol (FTP) on page IV-249
Hypertext Transfer Protocol (HTTP) on page IV-253

URLs
URLs, or Uniform Resource Locators, are compact strings that represent a resource available via the Inter-
net. The description of the URL standard is described in RFC1738 (http://www.rfc-edi-
tor.org/rfc/rfc1738.txt) and updated in RFC3986 (http://www.rfc-editor.org/rfc/rfc3986.txt).

Each URL is composed of several different parts, most of which are optional:

<scheme>://<username>:<password>@<host>:<port>/<path>?<query>

Some examples of valid URLs are:

http://www.example.com
http://www.example.com/afolder?key1=45&key2=66
http://myusername:Passw0rD@www.example.com:8010/index.html
ftp://ftp.wavemetrics.com
file://C:\Data:Trial1:control.ibw
file://hd:Test:TestFile1.txt

For most operations and functions that take a urlStr parameter, only the scheme and host parts of the URL
are required. See the Supported Network Schemes section for information on which schemes are sup-
ported by which operations and functions, and which port is used by default if it is not provided as part of
the URL.

Usernames and Passwords
You can provide a username and password as part of the URL. However authentication credentials may
not be supported by all schemes (such as file://). Some operations allow you to provide a username and
password by using a flag, such as the /U and /W flags with FTPDownload.

If a URL contains a username and password in the URL and the authentication flags are also used, the
values specified in the flags override values provided in the URL.

http://www.rfc-editor.org/rfc/rfc1738.txt
http://www.rfc-editor.org/rfc/rfc1738.txt
http://www.rfc-editor.org/rfc/rfc3986.txt

Chapter IV-10 — Advanced Programming

IV-245

If you do not provide a username and password as part of the URL, and you do not use the authentication
flags, then no authentication is attempted. An exception to this rule is that the FTP operations will login to
the FTP server using "anonymous" as the username and a generic email address as the password.

If either the username or password contains special or reserved characters, those characters must be
percent-encoded.

Supported Network Schemes
Different operations and functions support different schemes:

* Includes FTPUpload, FTPDownload, FTPDelete, and FTPCreateDirectory.

Percent Encoding
Percent encoding is a way to encode characters in URLs that would otherwise have a special meaning or
could be misinterpreted by servers. For example, a space character in a URL is encoded as "%20" using a
percent character followed by the hex code for a space in the ASCII character set.

Most URLs contain only the letters A-Z and a-z, the digits 0-9, and a few other characters such as the under-
score (_), hyphen (-), period (.), and tilde (~).

A URL may also contain "reserved characters" that may have special meaning depending on the way that
they are used. Every URL contains the reserved characters ":" and "/" and may also contain one or more of
the following reserved characters: !*'();@&=+$,?#[].

All operations and functions provided by Igor Pro that accept a URL string parameter expect that the URL
has already been percent-encoded as necessary.

In most cases you don't need to worry about percent encoding because most URLs don't use reserved char-
acters except for their special meaning. If you need to use a reserved character in a way that differs from the
character's special meaning, you must percent-encode the character. You can use the URLEncode function
for this purpose.

It is important that you not pass your entire URL to URLEncode to be encoded because that URL will not
be understood by a server. URLEncode percent-encodes all reserved characters in the string you pass to it,
because it cannot distinguish between reserved characters used for their special meaning and reserved
characters used outside of their special meaning. Instead, you must pass each piece of the URL through
URLEncode so that the final URL uses the correct syntax.

As an example, we'll use URLEncode to properly encode a URL that contains the following parts:

Operation Supported Schemes Default Port

FetchURL http

ftp

file

80

21

Not applicable

FTP operations* ftp 21

Part Name Example

Scheme http

Username A. MacGyver

Password yj@!2M

Host www.example.com

Chapter IV-10 — Advanced Programming

IV-246

Without any percent-encoding, the URL is:

http://A. MacGyver:yj@!2M@www.example.com/tape/duct?discount=10%&color=red

If this URL were passed to FetchURL, the result would be an error because the URL contains several
reserved characters that are not intended to be used in their standard way. For example, the "@" character
indicates the separation between the username:password information and the start of the host name, but in
this case the password itself also contains the "@" character. In addition, the "%" character is typically used
to indicate that the next two characters represent a percent-encoded character, but in this example it is also
part of the query. Finally, the username contains a space character. The space character is not technically a
reserved character, but should be percent-encoded to ensure that it is handled correctly.

The following table shows the values of the parts of the URL that need to be percent-encoded by passing
them through the URLEncode function:

The properly percent-encoded URL is:

http://A%2E%20MacGyver:yj%40%212M@www.example.com/tape/duct?discount=10%25&color=red

For keyword-value pairs that make up the query part, each keyword and value must be percent-encoded
separately because the "=" character that separates the key from the value and the "&" character that sepa-
rates the pairs in the list must not be percent-encoded.

For more information on percent-encoding and reserved characters, see http://en.wikipedia.org/wiki/Per-
cent-encoding.

Safe Handling of Passwords
Some operations and functions support the use of a username and password when making a network con-
nection. If you use sensitive passwords you must take certain precautions to prevent them from being acci-
dentally revealed.

1. Always use the /V=0 flag when using a username or password with the /U (username) and /W
(password) flags. Otherwise, the debugging information that is, by default, printed to the com-
mand history window will contain those values and anyone who sees the experiment could see
them.

2. Do not hard code username or password values into procedures, since anyone with access to the
procedure file could read them.

3. Do not store username or password values in global variables. Since global variables are saved with
an experiment, if someone else had access to your experiment they could see this information.

Here is an example of how a username and sensitive password can be used in a secure manner:

Path /tape/duct

Query discount=10%&color=red

Part Name Encoded Value

Username A%2E%20MacGyver

Password yj%40%212M

Host www.example.com

Path /tape/duct

Query discount=10%25&color=red

Part Name Example

http://en.wikipedia.org/wiki/Percent-encoding

Chapter IV-10 — Advanced Programming

IV-247

Function SafeLogin()
String username = ""
String password = ""
Prompt username, "Username"
Prompt password, "Password"
DoPrompt "Enter username and password", username, password
if (V_flag == 1)

// User hit cancel button, so do nothing.
return 0

endif

// Percent-encode in case username and password contain reserved characters.
String encodedUser = URLEncode(username)
String encodedPass = URLEncode(password)

String theURL
sprintf theURL, "http://%s:%s@www.example.com", encodedUser, encodedPass
String response = FetchURL(theURL)
// NOTE: For FTP operations, make sure to use /V=0 so that the username
// and password are not printed to the history.

return 0
End

Note that the user is prompted to provide the username and password when the function is called and that
only local string variables are used to store the username and password. The values in those string variables
are not stored once the function is done executing.

Note also that the password is not hidden during entry in the dialog. Igor currently does not provide a way
to do this.

Network Timeouts and Aborts
Some network calls may return an error code to Igor if they timeout. Depending on the specific operation
or function, there can be a number of causes for a timeout.

If a network connection cannot be made after a period of time it will timeout. The amount of time allowed
for a connection to be established is dependent on several factors.

You can always abort a network operation or function by pressing cmd-period (Macintosh) or Ctrl-Break
(Windows). You must hold the keys down until Igor aborts the operation.

Network Connections From Multiple Threads
All network-related operations and functions are thread-safe, which means that they can be called from
multiple preemptive threads at the same time. This capability can be useful when:

• You want to retrieve information from several different URLs as quickly as possible.
• You want to do a long download or other operation in the background to avoid tieing Igor up.
The following example illustrates the first of these cases. It uses FetchURL to retrieve a list of the most fre-
quently downloaded books from the Project Gutenberg web site. It then uses FetchURL to download the
entire text of the top four books and prints the number of characters in each.

ThreadSafe Function GetThePage(url)
String url

String response = FetchURL(url)
return strlen(response)

End

Chapter IV-10 — Advanced Programming

IV-248

Function GutenbergTopCharacterCount()
String topBooksURL = "http://www.gutenberg.org/browse/scores/top"
String baseURL = "http://www.gutenberg.org/files/"

// Get the contents of the page.
String response = FetchURL(topBooksURL)
Variable error = GetRTError(1)
if (error || numtype(strlen(response)) != 0)

Print "Error getting the list of most popular books."
return 0

endif

String topBooksHTML = response

// Remove all line endings.
topBooksHTML = ReplaceString("\n", topBooksHTML, "")
topBooksHTML = ReplaceString("\r", topBooksHTML, "")

// Parse the page to get the section of the page
// with the list of the most popular books from yesterday.
// This could break if the format of the web page changes.
String regExp = "(?i)<h2 id=\"books-last1\">.*?(.*?)"
String topYesterdayHTML = ""
SplitString/E=regExp topBooksHTML, topYesterdayHTML
if (V_flag != 1)

Print "Error parsing the top 100 books section."
return 0

endif

// Replace the line endings.
topYesterdayHTML = ReplaceString("", topYesterdayHTML, "\r")

// Create a wave to store text info about the top four books.
Variable numBooksToUse = 4
Make/O/T/N=(numBooksToUse, 2) topBooksInfo

Make/O/N=(numBooksToUse) characterCounts

Variable n
String bookNumStr
Variable bookNum
String titleAuthor
String thisLine
Variable pos
String bookURL = ""
regExp = "(?i)a href=\".*?(\d+)\">(.+?)"
for (n=0; n<numBooksToUse; n+=1)

// For each book we're going to look at, get the
// partial URL and the title/author text.
thisLine = StringFromList(n, topYesterdayHTML, "\r")
SplitString/E=regExp thisLine, bookNumStr, titleAuthor
if (V_flag != 2)

Print "Error parsing the URL and title/author information."
return 0

endif

// Remove the (###) stuff at the end of titleAuthor if it's there.
pos = strsearch(titleAuthor, "(", 0)
if (pos > 0)

titleAuthor = titleAuthor[0, pos - 1]

Chapter IV-10 — Advanced Programming

IV-249

endif

bookNum = str2num(bookNumStr)

// Store the information about the book in the text wave.
sprintf bookURL, "%s%d/%d.txt", baseURL, bookNum, bookNum
topBooksInfo[n][0] = bookURL
topBooksInfo[n][1] = titleAuthor

endfor

// Download each book (using multiple threads if possible)
// and count the number of characters in each.
MultiThread characterCounts = GetThePage(topBooksInfo[p][0])

// Print the results.
Print "The top four books by download from yesterday are:"
for (n=0; n<numBooksToUse; n+=1)

Printf "%s (%d characters)\r", topBooksInfo[n][1], characterCounts[n]
endfor

End

Here is an example of what the output was when this help file was written:

The top four books by download from yesterday are:

 Ulysses by James Joyce (1573044 characters)
 Alice's Adventures in Wonderland by Lewis Carroll (167529 characters)
 Piper in the Woods by Philip K. Dick (62214 characters)
 Pride and Prejudice by Jane Austen (704160 characters)

File Transfer Protocol (FTP)
The FTPDownload, FTPUpload, FTPDelete, and FTPCreateDirectory operations support simple transfers of
files and directories over the Internet.

Since Igor’s SaveNotebook operation can generate HTML files from notebooks, it is possible to write an Igor
procedure that downloads data, analyzes it, graphs it, and uploads an HTML file to a directory used by a
Web server. You can then use the BrowseURL operation to verify that everything worked as expected. For
a demo of some of these features, see “Igor Pro Folder:Examples:Feature Demos:Web Page Demo.pxp”.

FTP Limitations
All FTP operations run “synchronously”. This means that, if the operation executes in the main thread, Igor
can not do anything else. However, it is possible to perform these operations using an Igor preemptive
thread so that they execute in the background and you can continue to use Igor for other purposes. For more
information, see Network Connections From Multiple Threads on page IV-247.

Igor does not currently provide any way for the user to browse the remote server from within Igor itself.

Igor does not provide any secure way to store passwords. Consequently, you should not use Igor for FTP
in situations where tight security is required. See Safe Handling of Passwords on page IV-246 for an
example of how to securely prompt the user for a password.

Igor does not provide any support for using proxy servers. Proxy servers are security devices that stand between
the user and the Internet and permit some traffic while prohibiting other traffic. If your site uses a proxy server,
FTP operations may fail. Your network administrator may be able to provide a solution.

Igor does not include operations for listing a server directory or changing its current directory.

Chapter IV-10 — Advanced Programming

IV-250

Downloading a File
The following commands transfer a file from an FTP server to a local hard disk:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestFile1.txt"
String localPath = "hd:Test:TestFile1.txt" // Macintosh
FTPDownload/U="ftpTestAccount"/W="dropbox" url, localPath

These commands transfer the file TestFile1.txt from the WaveMetrics FTP server into the Test directory on the
local hard disk “hd”. The Test directory must already exist on the local hard disk. The TestFile1.txt file may or
may not exist on the local hard disk. If it does not exist, the FTPDownload command will create it. If it does
exist, FTPDownload will ask if you want to overwrite it. To overwrite it without being asked, use the /O flag.

Warning: If you elect to overwrite it, all previous contents of the local TestFile1.txt file will be obliterated.

As of this writing, “ftpTestAccount” is the user name and “dropbox” is the password for the “test” direc-
tory on the WaveMetrics FTP server.

Now consider these commands:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestFile1.txt"
String localPath = "hd:Test:FileA.txt"
FTPDownload/U="ftpTestAccount"/W="dropbox" url, localPath

This does the same thing as the previous example except that the resulting file on the local hard disk will
be named FileA.txt instead of TestFile1.txt.

FTPDownload presents a dialog asking you to specify the local file name and location in the following cases:
1. You use the /I (interactive) flag.

2. The parent directory specified by the local path does not exist. In the examples above, the parent
directory is Test.

3. The specified local file exists and you have not used the /O (overwrite) flag.

Downloading a Directory
The following commands transfer a directory from an FTP server to a local hard disk:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestDir1"
String localPath = "hd:Test:TestDir1"
FTPDownload/D/U="ftpTestAccount"/W="dropbox" url, localPath

Note the use of the /D flag to specify that you are transferring a directory.

This command transfers the TestDir1 directory from the WaveMetrics FTP server into the Test directory on
the local hard disk “hd”. The Test directory must already exist on the local hard disk. The TestDir1 directory
may or may not exist. If it does not exist, the FTPDownload command will create it. If it does exist, FTP-
Download will ask if you want to overwrite it. To overwrite it without being asked, use the /O flag.

Warning: If you elect to overwrite it, all previous contents of the local TestDir1 will be obliterated.

Now consider these commands:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestDir1"
String localPath = "hd:Test:TestDir2"
FTPDownload/D/U="ftpTestAccount"/W="dropbox" url, localPath

This does the same thing as the previous example except that the resulting directory on the local hard disk
will be named TestDir2 instead of TestDir1.

Warning: If you elect to overwrite it, all previous contents of the local TestDir2 will be obliterated.

The local path that you specify must not end with a colon or backslash. For example, if you execute:
FTPDownload/D "ftp://ftp.wavemetrics.com/pub/test/TestDir1", "hd:Test:TestDir1:"

Chapter IV-10 — Advanced Programming

IV-251

FTPDownload will present a dialog asking you to specify the local directory because the local path ends
with a colon and FTPDownload is looking for the name of the directory to be created on the local hard disk.

FTPDownload presents a dialog asking you to specify the local directory in the following cases:
1. You use the /I (interactive) flag.

2. The parent directory specified by the local path does not exist. In the examples above, the parent
directory is Test.

3. The specified directory (TestDir1 in the example above) exists and you have not used the /O (over-
write) flag.

4. FTPDownload gets an error when it tries to create the specified directory. This could happen, for
example, if the directory name that you specify is not a legal directory name. For example, the name
might be too long or use characters that are forbidden in the local file system.

Uploading a File
The following commands upload a file to an FTP server:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestFile1.txt"
String localPath = "hd:Test:TestFile1.txt"
FTPUpload/U="ftpTestAccount"/W="dropbox" url, localPath

These commands transfer the file TestFile1.txt from the local hard disk into the test directory on the Wave-
Metrics FTP server. The test directory is created if it does not already exist.

Note: The /O flag has no effect on the FTPUpload operation when uploading a file. FTPUpload always
overwrites an existing server file, whether /O is used or not.

Warning: If you overwrite a server file, all previous contents of the file are obliterated.

To overwrite an existing file on the server, you must have permission to delete files on that server. The
server administrator determines what permission a particular user has.

Now consider these commands:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestFile2.txt"
String localPath = "hd:Test:TestFile1.txt"
FTPUpload/U="ftpTestAccount"/W="dropbox" url, localPath

This does the same thing as the previous example except that the resulting file on the FTP server will be
named TestFile2.txt instead of TestFile1.txt.

FTPUpload presents a dialog asking you to specify the local file in the following cases:
1. You use the /I (interactive) flag.

2. The local parent directory (e.g., Test) or the local file (e.g., TestFile1.txt) does not exist.

Uploading a Directory
The following commands upload a directory to an FTP server:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestDir1"
String localPath = "hd:Test:TestDir1"
FTPUpload/D/U="ftpTestAccount"/W="dropbox" url, localPath

These commands transfer the TestDir1 directory from the local hard disk into the test directory on the
WaveMetrics FTP server. The test and TestDir1 directories are created on the server if they do not already
exist. If the TestDir1 directory does exist, FTPUpload overwrites it.

Note: FTPUpload always overwrites an existing server directory, whether /O is used or not.

Warning: If you overwrite a server directory using /O or /O=1, all previous contents of the directory will be
obliterated.

Chapter IV-10 — Advanced Programming

IV-252

If /O=2 is used, FTPUpload performs a merge of the directory contents. This means that files and
directories in the source overwrite files and directories on the server that have the same name,
but files and directories on the server whose names do not conflict with those in the source
directory are not modified.

To overwrite an existing directory on the server, you must have permission to delete directories on that
server. The server administrator determines what permission a particular user has.

Now consider these commands:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestDir2"
String localPath = "hd:Test:TestDir1"
FTPUpload/D/U="ftpTestAccount"/W="dropbox" url, localPath

This does the same thing as the previous example except that the resulting directory on the FTP server will
be named TestDir2 instead of TestDir1.

The local path that you specify must not end with a colon or backslash. For example, if you execute:
FTPUpload/D "ftp://ftp.wavemetrics.com/pub/test/TestDir1", "hd:Test:TestDir1:"

FTPUpload will present a dialog asking you to specify the local directory because the local path ends with
a colon and FTPUpload is looking for the name of the directory to be uploaded.

FTPUpload presents a dialog asking you to specify the local directory in the following cases:
1. You use the /I (interactive) flag.

2. The specified directory (TestDir1 in the example above) or any of its parents do not exist.

If you don’t have permission to remove and to create directories on the server, FTPUpload will fail and
return an error.

Creating a Directory
The following commands create a new directory on an FTP server:

String url = "ftp://ftp.wavemetrics.com/pub/test/newDirectory1"
FTPCreateDirectory/U="ftpTestAccount"/W="dropbox" url

If the /pub/test/newDirectory1 directory already exists on the server, this command does nothing. This is
not treated as an error, though the V_Flag output variable is set to -1 to indicate that the directory already
existed.

If you don't have permission to create directories on the server, FTPCreateDirectory fails and returns an
error.

Deleting a Directory
The following commands delete a directory on an FTP server:

String url = "ftp://ftp.wavemetrics.com/pub/test/oldDirectory1"
FTPDelete/D/U="ftpTestAccount"/W="dropbox" url

If you don't have permission to delete directories on the server, or if the specified directory does not exist
on the server, FTPDelete fails and returns an error.

FTP Transfer Types
The FTP protocol supports two types of transfers: image and ASCII. Image transfer is appropriate for binary
files. ASCII transfer is appropriate for text files.

In an image transfer, also called a binary transfer, the data on the receiving end will be a replica of the data
on the sending end. In an ASCII transfer, the receiving FTP agent changes line terminators to match the local
convention. On Macintosh and Unix, the conventional line terminator is linefeed (LF, ASCII code 0x0A). On
Windows, it is carriage-return plus linefeed (CR+LF, ASCII code 0x0D + ASCII code 0x0A).

Chapter IV-10 — Advanced Programming

IV-253

If you transfer a text file using an image transfer, the file may not use the local conventional line terminator,
but the data remains intact. Igor Pro can display text files that use any of the three conventional line termi-
nators, but some other programs, especially older programs, may display the text incorrectly.

On the other hand, if you transfer a binary file, such as an Igor experiment file, using an ASCII transfer, the
file will almost certainly be corrupted. The receiving FTP agent will convert any byte that happens to have
the value 0x0D to 0x0A or vice versa. If the local convention calls for CRLF, then a single byte 0x0D will be
changed to two bytes, 0x0D0A. In either case, the file will become unusable.

FTP Troubleshooting
FTP involves a lot of hardware and software on both ends and a network in between. This provides ample
opportunity for errors.

Here are some tips if you experience errors using the FTP operations.
1. Use an FTP client or web browser to connect to the FTP site. This confirms that your network is op-

erating, the FTP server is operating, and that you are using the correct URL.

2. Use an FTP client or web browser to verify that the user name and password that you are using is
correct or that the server allows anonymous FTP access.

Many web browser accept URLs of the form:

ftp://username:password@ftp.example.com

However the password is not transferred securely.

3. Use an FTP client or web browser to verify that the directory structure of the FTP server is what
you think it is.

4. Using an FTP client or web browser, do the operation that you are attempting to do with Igor. This
verifies that you have sufficient permissions on the server.

5. Use /V=7 to tell the Igor operation to display status information in the history area.

6. Try the simplest transfer you can. For example, try to download a single file that you know exists
on the server.

7. If you have access to the FTP server, examine the FTP server log for clues.

Hypertext Transfer Protocol (HTTP)
The FetchURL function supports simple URL requests over the Internet from web or FTP servers and to
local files. For example, you can use FetchURL to get the source code of a web page in text form, and then
process the text to extract specific information from the response.

HTTP Limitations
At this time, FetchURL and BrowseURL routines work with the HTTP protocol.

Currently not supported are features such as using network proxy servers, using the HTTP POST method
to submit forms and upload files to a web server, and making secure network connections using the Secure
Socket Layer (SSL) protocol.

Downloading a Web Page Via HTTP
This example uses FetchURL to download the contents of the WaveMetrics home page into a string, and
then counts the number of times that the string "Igor" occurs in the text of the page.

Function DownloadWebPageExample()
String webPageText = FetchURL("http://www.wavemetrics.com")
if (numtype(strlen(webPageText)) == 2)

Print "There was an error while downloading the web page."
endif

Chapter IV-10 — Advanced Programming

IV-254

Variable count, pos
do

pos = strsearch(webPageText, "Igor", pos, 2)
if (pos == -1)

break // No more occurrences of "Igor"
else

pos += 1
count += 1

endif
while (1)
Printf "The text \"Igor\" was found %d times on the web page.\r", count

End

Downloading a File Via HTTP
This example uses FetchURL to download a file from a web server. Because FetchURL does not support
storing the downloaded data into a file directly, we store the data in memory and then use Igor to write that
data to a file on disk.

Though the example uses a URL that begins with http://, FetchURL also supports ftp:// and file://. You could
use the code below with a different URL to download a file from an FTP server or even to access a local on-
disk file.

Function DownloadWebFileExample()
String url = "http://www.wavemetrics.net/IgorManual.zip"

// Based on the URL, determine what the destination
// file name should be. This will be the default in the
// Save As... dialog.
String urlStrParam = RemoveEnding(url, "/")
Variable parts = ItemsInList(urlStrParam, "/")
String destFileNameStr = StringFromList(parts - 1, urlStrParam, "/")
if (strlen(destFileNameStr) < 1)

Print "Error: Could not determine the name of the destination file."
return 0

endif

Variable refNum
Open/D/M="Save File As..."/T="????" refNum as destFileNameStr
String fullFilePath = S_fileName

if (strlen(fullFilePath) > 0) // No error and user didn't cancel in dialog.
// Open the selected file so that it can later be written to.
Open/Z/T="????" refNum as fullFilePath
if (V_flag != 0)

Print "There was an error opening the local destination file."
else

String response = FetchURL(url)
Variable error = GetRTError(1)
if (error == 0 && numtype(strlen(response)) == 0)

FBinWrite refNum, response
Close refNum
Print "The file was successfully downloaded as " + fullFilePath

else
Close refNum
DeleteFile/Z fullFilePath // Clean up the empty file.
Print "There was an error downloading the file."

endif
endif

endif
End

Chapter IV-10 — Advanced Programming

IV-255

Making a Query Via HTTP
Another use for HTTP requests is to get the server's response to a query. While it's not possible to upload
files to a web server or simulate the submission of complicated web forms (these would require the HTTP
POST method, which is not supported), many simple web forms use the HTTP GET method, which
FetchURL supports. For example, you can simulate the submission of the basic Google search form using
the following code.

Function WebQueryExample()
String keywords
String baseURL = "http://www.google.com/search"

// Prompt the user to enter search keywords.
Prompt keywords, "Search for"
DoPrompt "", keywords
if (V_flag == 1) // User clicked cancel button.

return 0
endif

// Pass the search terms through URLEncode to
// properly percent-encode them.
keywords = URLEncode(keywords)

// Build the full URL.
String url = ""
sprintf url, "%s?q=%s", baseURL, keywords

// Fetch the results.
String response
response = FetchURL(url)
Variable error = GetRTError(1)
if (error != 0 || numtype(strlen(response)) != 0)

Print "Error fetching search results."
return -1

endif

// Try to extract the URL of the first result.
String regExp = "<h3 class=\"r\">.+?href=\"(.+?)\".*"
String firstURL
SplitString/E=regExp response, firstURL
if (V_flag == 1)

BrowseURL firstURL
else

Print "Could not extract the first result from the"
Print "results page. Your search terms might not"
Print "have given any results, or the format of"
Print "the results may have changed so that the"
Print "first result cannot be extracted."

endif
End

HTTP Troubleshooting
Here are some tips if you experience errors using FetchURL:

1. Use a web browser to connect to the site. This confirms that your network is operating, the server
is operating, and that you are using the correct URL.

2. FetchURL generates an error if it cannot connect to the destination server, which could happen if
your computer is not connected to the network or if the target URL contains an invalid host name
or port number.

However if the URL contains an invalid path or if the destination URL requires you to provide a

Chapter IV-10 — Advanced Programming

IV-256

username and password, FetchURL will likely not generate an error. The reason is these errors typ-
ically result in a web page being returned, though not the one you expected. If you need to check
that a call to FetchURL returned a valid web page and not an error web page, you must do that in
your own code. One possibility would be to try searching the page for key phrases, such as "File
Not Found" or "Page Not Found".

Operation Queue
Igor supports an operation queue that allows for the execution of what were previously illegal operations.
Items in the operation queue execute only when nothing else is happening. Macros and functions must not
be running and the command line must be empty.

You may append to the operation queue using
Execute/P <command string>

The /P posts the command to operation queue. You can also specify the /Q (quiet) or /Z (ignore error) flags.
See Execute/P operation (page V-162) for details about /Q and /Z.

The command string may be either special commands that are unique to the operation queue or may be
ordinary Igor commands. The special commands are:
INSERTINCLUDE procedureSpec
DELETEINCLUDE procedureSpec
COMPILEPROCEDURES
NEWEXPERIMENT
LOADFILE filePath
MERGEEXPERIMENT filePath
Note: The special operation queue keywords must be all caps and must have exactly one space after the

keyword.

INSERTINCLUDE and DELETEINCLUDE insert or delete #include lines in the main procedure window.
procedureSpec is whatever you would use in a #include statement except for “#include” itself.

COMPILEPROCEDURES does just what it says, compiles procedures. You must call it after operations such
as INSERTINCLUDE that modify, add, or remove procedure files.

NEWEXPERIMENT closes the current experiment without saving.

LOADFILE opens the file specified by filePath. filePath is either a full path or a path relative to the Igor
Folder. The file may be any of a number of file types Igor can open. If the file is an experiment, be sure to
execute NEWEXPERIMENT first to avoid putting up a dialog. If you want to save the changes in an exper-
iment before loading another, you can use the standard SaveExperiment operation.

MERGEEXPERIMENT merges the experiment file specified by filePath into the current experiment. Before
using this, make sure you understand the caveats regarding merging experiments. See Merging Experi-
ments on page II-32 for details.

Here is an example:
Function DemoQueue()

Execute/P "INSERTINCLUDE <Multi-peak fitting 1.3>"
Execute/P "INSERTINCLUDE <Peak Functions>"
Execute/P "COMPILEPROCEDURES "
Execute/P "CreateFitSetupPanel()"
Execute/P "Sleep 00:00:04"
Execute/P "NEWEXPERIMENT "
Execute/P "LOADFILE :Examples:Feature Demos:Live mode.pxp"
Execute/P "DoWindow/F Graph0"

Chapter IV-10 — Advanced Programming

IV-257

Execute/P "StartButton(\"StartButton\")"
End

In the above example, the example experiment Live mode.pxp was chosen because it happened to have a
.pxp extension which allows the example to work on both Macintosh and Windows — the file name and
path must be exact.

One important use of the operation queue is providing easy access to useful procedure packages. The "Igor
Pro Folder/Igor Procedures" folder contains a procedure file that has Menu definitions similar to the follow-
ing (Caution! The three commands under the example submenu are very long and are wrapped to fit on
the page):
Menu "Analysis"

Submenu "Packages"
"Multipeak Fitting",Execute/P "INSERTINCLUDE <Multi-peak fitting 1.3>";Execute/P

"INSERTINCLUDE <Peak Functions>";Execute/P "COMPILEPROCEDURES ";Execute/P "CreateFitSetupPanel()"
"Wave Arithmetic",Execute/P "INSERTINCLUDE <Wave Arithmetic Panel>";Execute/P

"COMPILEPROCEDURES ";Execute/P "InitWaveArith()"
"Probability Graph",Execute/P "INSERTINCLUDE <Probability Graph>";Execute/P

"COMPILEPROCEDURES ";Execute/P " Probability_Axis()"
End

End

To try this out, start Igor and choose one of the items from the Analysis→Packages menu.

User-Defined Hook Functions
Igor Pro will call specific user-defined functions, called “hook” functions, if they exist, when Igor Pro per-
forms certain actions. Hook functions allow savvy programmers to customize Igor’s behavior. In some
cases the hook function may inform Igor that the action has been completely handled, and that Igor
shouldn’t perform the action. For example, you could write a hook function to load data from a certain kind
of text file that Igor can not handle directly.

This section discusses general hook functions that do not apply to a particular window. For information on
window-specific events, see Window Hook Functions.

There are two ways to get Igor to call your general hook function. The first is by using a predefined function
name. For example, if you create a function named AfterFileOpenHook, Igor will automatically call it after
opening a file. The second way is to explicitly tell Igor that you want it to call your hook using the SetIgor-
Hook operation.

If you use a predefined hook function name, you should make the function static (private to the file con-
taining it) so that other procedure files can use the same predefined name. This is discussed under Static
Hook Functions (see page IV-269).

Here are the predefined hook functions.

Action Hook Function Called
Procedures have been successfully compiled AfterCompiledHook
A file or experiment has just been opened AfterFileOpenHook
The Windows-only "MDI frame" (main application window) has
been resized

AfterMDIFrameSizedHook

A target window has been created AfterWindowCreatedHook
The Debugger window is about to open BeforeDebuggerOpensHook
An experiment is about to be saved BeforeExperimentSaveHook
A file or XOP is about to be opened BeforeFileOpenHook
Igor about to open a new experiment IgorBeforeNewHook
Igor about to quit IgorBeforeQuitHook
Igor building and enabling menus or about to handle a menu selection IgorMenuHook

Chapter IV-10 — Advanced Programming

IV-258

To create hook functions, you must write functions with the specified names and store them in any proce-
dure file. If you store the procedure file in "Igor Pro User Files/Igor Procedures" (see Igor Pro User Files on
page II-46 for details), Igor will automatically open the file and compile the functions when it starts up and
will execute the IgorStartOrNewHook function if it exists.

You can use BeforeFileOpenHook to load your own custom data files via drag-and-drop. Your BeforeFileO-
penHook function must detect your type of file by examining the file’s type and creator codes or by exam-
ining its contents. If the file is of the right type, you then call your XOP or use the FBinRead or FReadLine
operation to load data from the file. You then avoid opening the file by returning a value of 1. If the file is
not your file, you return 0, which loads the file. See the examples in the BeforeFileOpenHook operation
(page IV-265) description.

Windows system files with .bin, .com, .dll, .exe, and .sys extensions aren’t passed to the hook functions.

This example checks the type of file being opened. If it is an Excel file, it loads the file using the XLLoadWave
XOP. It is intended to allow you to load an Excel file by dragging its icon onto the Igor Pro application icon.
static Function BeforeFileOpenHook(refNum,fileName,path,type,creator,kind)

Variable refNum,kind
String fileName,path,type,creator

String xop="XLLoadWave" // name of XOP command to load data
Variable isExcel,handledOpen=0

// This tests the file name extension.
String extension = ParseFilePath(4, fileName, ":", 0, 0)
isExcel = CmpStr(extension, "xls")==0

// This tests the Macintosh file type.
// "XLS ", XLS3, XLS4, XLS5, XLW4, XLW5 are Excel file types
isExcel += CmpStr(type[0,2],"XLS")==0
isExcel += CmpStr(type[0,2],"XLW")==0

if (isExcel)
if (exists(xop)==4) // Load only if XOP installed

Close refNum
String cmd
cmd = xop + "/A/T/P="+path+" \""+fileName+"\""
Execute cmd
handledOpen=1 // we handled the open event

endif
endif

return handledOpen // 1 tells Igor not to open the file itself
End

A return value of 1 indicates that you handled the open file event and that Igor should not open it. A return
value of 0 specifies that you did not handle the event and that Igor should deal with it.

For more examples, see BeforeFileOpenHook on page IV-265.

Another possible use of a hook function is to predefine global variables, strings, waves, symbolic paths, or
data folders when a new experiment is started up:
static Function IgorStartOrNewHook(igorApplicationNameStr)

String igorApplicationNameStr

Igor quitting IgorQuitHook
Igor starting or new experiment IgorStartOrNewHook

Action Hook Function Called

Chapter IV-10 — Advanced Programming

IV-259

NewPath/O pathToMyData "HD:My Data:"
Variable/G root:V_no_MIME_TSV_Load = 1 // See AfterFileOpenHook
Make/O/T root:TestNames={"RDC #1","KLZ #2","ARB #3","MOR #4"}

End

The following sections describe the individual hook functions in detail.

AfterCompiledHook
AfterCompiledHook()
AfterCompiledHook is a user-defined function that Igor calls after the procedure windows have all been
compiled successfully.
You can use AfterCompiledHook to initialize global variables or data folders, among other things.
The function result from AfterCompiledHook must be 0. All other values are reserved for future use.

See Also
SetIgorHook, User-Defined Hook Functions on page IV-257.

AfterFileOpenHook
AfterFileOpenHook(refNum, fileNameStr, pathNameStr, fileTypeStr,
fileCreatorStr, fileKind)
AfterFileOpenHook is a user-defined function that Igor calls after it has opened a file or experiment that the
user has double-clicked or dragged onto the Igor icon, or a file opened as a result of an “open” Apple event
from another program (such as a Web browser).
Note: AfterFileOpenHook is not called when the Open File or Load Waves menus are selected.

The parameters contain information about the file, which has already been opened for read-only access.
AfterFileOpenHook’s return value is ignored unless fileKind is 9. If the returned value is zero, the default
action is performed.

Parameters
Variable refNum is the file reference number. You use this number with the FReadLine, FStatus, FSetPos,
FBinWrite, FBinRead, fprintf, and wfprintf operations to read from or write to the file. Normally, the file
is opened for read-only operations, but for experiment files and XOP files, refNum will be -1, meaning the
file has not been opened for you. You can close the file and reopen it for write access, if you wish.
Igor always closes the file when the user-defined function returns, and refNum becomes invalid (don’t store
the value of refNum in a global for use by other routines, since the file it refers to has been closed).
String fileNameStr contains the name of the file (including any extension).
String pathNameStr contains the name of the symbolic path. pathNameStr is not the value of the path. Use
the PathInfo operation to determine the path’s value.
String fileTypeStr contains the file type. This was conceived with the Macintosh in mind. Under Windows,
this is usually the file extension, such as “.txt”. However, if the file is an Igor-registered file, then fileTypeStr
is set to one of the Macintosh file type codes (for cross-platform compatibility). Some Igor-registered files
types are listed in the following table:

Type of File fileTypeStr Contents Extension
Igor Experiment, packed IGsU .pxp

Igor Experiment, packed,
stationery/template

IGsS .pxt

Igor Experiment, unpacked IGSU .uxp

Igor Experiment, unpacked,
stationery/template

IGSS .uxt

Igor XOP IXOP .xop

Igor Procedure TEXT .ipf

Chapter IV-10 — Advanced Programming

IV-260

In addition, some other nonregistered extensions are converted to Mac-like file types:

Regardless of the value of fileTypeStr, the fileNameStr parameter has the file name and the extension.
String fileCreatorStr contains the creator code. Also conceived with the Macintosh in mind, this is usually
“IGR0” for Igor-registered files, the full file path to the application registered to open the file, or the full file
path to the file itself if unregistered by any application.
Some Windows examples are:

String fileCreatorStr contains the creator code. Some Macintosh examples are:

Igor Notebook (formatted) WMT0 (zero, not oh) .ifn

Igor Notebook (unformatted) TEXT .txt

Igor Notebook stationery/template
(formatted)

WMTS .ift

Igor Text (data and commands) TEXT .itx or .awav
Igor Binary IGBW .ibw or .bwav
Igor Published Edition edtp

Igor Help WMT0 (zero, not oh) .ihf

Type of File fileTypeStr Extension

Encapsulated PostScript EPS (trailing space) .eps or .epsf

Rich Text RTF (trailing space) .rtf

Internet Shortcut LINK .url*

* The .url extension isn’t shown in Windows Explorer windows.

Text (also unformatted Igor Notebook) TEXT .txt

Batch file TEXT .bat

ASCII or data TEXT .csv, .dat, or .tsv

File fileCreatorStr

My Experiment.pxp IGR0 (zero, not oh)

My Igor Data.ibw IGR0 (zero, not oh)

Better.bmp C:\Program Files\MS\MSPAINT.EXE

AFile.bat C:\Mine\AFile.bat

Application fileCreatorStr Contents
Igor or Igor Pro IGR0 (zero, not oh)
TeachText or SimpleText ttxt

Type of File fileTypeStr Contents Extension

Chapter IV-10 — Advanced Programming

IV-261

Variable fileKind is a number that identifies what kind of file Igor thinks it is. If the user’s
AfterFileOpenHook routine returns 0, Igor performs the Default Action listed in the table:

Details
AfterFileOpenHook’s return value is ignored, except when fileKind is 9 (Numeric text, Tab-Separated-
Values, MIME). If you return a value of 0, Igor executes the default action, which displays the loaded data
in a table and a graph. If you return a value of 1, Igor does nothing.

Note: Another way to disable the MIME-TSV default action is define a global variable named
V_no_MIME_TSV_Load (in the root data folder) and set its value to 1. In this case any file of
fileKind = 9 is reassigned a fileKind of 8.

The default action for fileKind = 9 makes Igor a MIME-TSV document Helper Application for Web browsers
such as Netscape or Internet Explorer.
The exact criteria for Igor to consider a file to be of kind 9 are:
• fileTypeStr must be “TEXT” or “WMT0” (that’s a zero, not an oh).
• Either the first line of the file must begin with a # character, or the name of the file must end with

“.tsv” in either lower or upper case.
• The first line must contain one or more column titles. If the line starts with a # character, the first

column title must not start with “include”, “pragma” or the ! character. Spaces are allowed in the
titles, but if two or more title columns are present, they must be separated by one tab character.

• The second line must contain one or more numbers. If two or more numbers, they must be separated
by one tab character, and the first line’s words must also be separated by tabs.

When the MIME-TSV file contains one column of data, it is graphed as a series of Y values.
Short columns (less than 50 values) are graphed with lines and markers, longer columns with lines only.
Preferences are turned on when the graph is made.
Two columns are assumed to be X followed by Y, and are graphed as Y versus X. More columns do not
affect the graph, though they are shown in the table.

Kind of File fileKind Default Action, if Any
Unknown 0

Igor Experiment, packed
(stationery, too)

1

Igor Experiment, unpacked
(stationery, too)

2

Igor XOP 3

Igor Binary File 4

Igor Text (data and commands) 5

Text, no numbers detected in first
two lines

6

General Numeric text (no tabs) 7

Numeric text
Tab-Separated-Values

8

Numeric text
Tab-Separated-Values, MIME

9 Display loaded data in a new table
and a new graph.

Text, with tabs 10

Igor Notebook
(unformatted or formatted)

11

Igor Procedure 12

Igor Help 13

Chapter IV-10 — Advanced Programming

IV-262

Example
// This hook function prints the first line of opened TEXT files
// into the history area
Function AfterFileOpenHook(refNum,file,pathName,type,creator,kind)

Variable refNum,kind
String file,pathName,type,creator
// Check that the file is open (read only), and of correct type
if((refNum >= 0) && (CmpStr(type,"TEXT")==0)) // also "text", etc.

String line1
FReadLine refNum, line1 // Read the line (and carriage return)
Print line1 // Print line in the history window.

endif
return 0 // don't prevent MIME-TSV from displaying

End

See Also
BeforeFileOpenHook and SetIgorHook.

BeforeDebuggerOpensHook
BeforeDebuggerOpensHook(errorInRoutineStr, stoppedByBreakpoint)
BeforeDebuggerOpensHook is a user-defined function that Igor calls when the debugger window is about
to be opened, whether by hitting a breakpoint or when Debug on Error is enabled.
BeforeDebuggerOpensHook can be used to prevent the debugger window opening for certain error codes
or in selected user-defined functions when Debug on Error is enabled. This is a feature for advanced
programmers only. Most programmers will not need it.
This hook does not work well for macros or procs, because their runtime errors don't automatically open
the debugger, but instead present an error dialog from which the user manually enters the debugger by
clicking the Debug button.

Parameters
String errorInRoutineStr contains the name of the routine (function or macro) the debugger will be stopping
in as a fully-qualified name, comprised of at least "ModuleName#RoutineName", suitable for use with
FunctionInfo.
If the routine is in a regular module procedure window (see Regular Modules on page IV-216),
errorInRoutineStr will be a triple name such as "MyIM#MyModule#MyFunction".
Variable stoppedByBreakpoint is 0 if the debugger is about to be shown because of Debug on Error, or non-
zero if the debugger encountered a user-set breakpoint (see Setting Breakpoints on page IV-189).
If a breakpoint exists at the line where an error caused the debugger to appear, stoppedByBreakpoint will be
non-zero, even though the cause was Debug on Error.

Details
If BeforeDebuggerOpensHook returns 0 or NaN (or doesn't return a value), the debugger window is
opened normally.
If it returns 1, the debugger window is not shown and program execution continues.
All other return values are reserved for future use.

Example
The following hypothetical example:
1. Prevents breakpoints from bringing up the debugger, unless DEBUGGING is defined.

2. Prints the name of the routine with the error, and the error message.

3. Beeps before the debugger appears.

Function ProvokeDebuggerInFunction()
DebuggerOptions enable=1, debugOnError=1 // Enable debug on error

ProvokeDebugger()
End

Chapter IV-10 — Advanced Programming

IV-263

Function ProvokeDebugger()
Variable var=0 // Put a breakpoint here.

// Without a #define DEBUGGING, the breakpoint is skipped.
Make/O $"" // Cause an error
Print "Back from bad Make command in function"

End

static Function BeforeDebuggerOpensHook(pathToErrorFunction,isUserBreakpoint)
String pathToErrorFunction
Variable isUserBreakpoint

#ifndef DEBUGGING
if(isUserBreakpoint)

return 1 // Ignore user breakpoints we forgot to clear.
// Don't use this during development!

endif
#endif

Print "stackCrawl = ", GetRTStackInfo(0)
Print "FunctionInfo = ", FunctionInfo(pathToErrorFunction)

// Don't clear errors unless you're preventing the debugger from appearing
Variable clearErrors= 0
Variable rtErr= GetRTError(clearErrors) // Get the error #

Variable substitutionOption= exists(pathToErrorFunction)== 3 ? 3 : 2
String errorMessage= GetErrMessage(rtErr,substitutionOption)

Beep // Audible cue that the debugger is showing up!

Print "Error \""+errorMessage+"\" in "+pathToErrorFunction+"

return 0 // Return 0 to show the debugger; an unexpected error occurred.
End

•ProvokeDebuggerInFunction() // Execute this in the command line
 stackCrawl =

ProvokeDebuggerInFunction;ProvokeDebugger;BeforeDebuggerOpensHook;
 FunctionInfo =

NAME:ProvokeDebugger;PROCWIN:Procedure;MODULE:;INDEPENDENTMODULE:;...
 Error "Expected name" in ProcGlobal#ProvokeDebugger
 Back from bad Make command in function

See Also
SetWindow, SetIgorHook, and User-Defined Hook Functions on page IV-257
Static Functions on page IV-86, Regular Modules on page IV-216, Independent Modules on page IV-218
FunctionInfo, GetRTStackInfo, GetRTError, GetRTErrMessage
Conditional Compilation on page IV-90

AfterMDIFrameSizedHook
AfterMDIFrameSizedHook(param)
AfterMDIFrameSizedHook is a user-defined function that Igor calls when the Windows-only "MDI frame"
(main application window) has been resized.
AfterMDIFrameSizedHook can be used to resize windows to fit the new frame size. See GetWindow
kwFrame and MoveWindow.

Chapter IV-10 — Advanced Programming

IV-264

Parameters
Variable param is one of the following values:

Details
This function is not called on Macintosh.
Resizing the MDI frame by the top left corner calls AfterMDIFrameSizedHook twice: first for the move
(param = 3) and then for the normal resize (param = 0).
Igor currently ignores the value returned by AfterMDIFrameSizedHook. Return 0 in case Igor uses this
value in the future.

See Also
SetWindow, GetWindow, SetIgorHook, and User-Defined Hook Functions on page IV-257.

AfterWindowCreatedHook
AfterWindowCreatedHook(windowNameStr, winType)
AfterWindowCreatedHook is a user-defined function that Igor calls when a target window is first created.
AfterWindowCreatedHook can be used to set a window hook on target windows created by the user or by
other procedures.

Parameters
String windowNameStr contains the name of the created window.
Variable winType is the type of the window, the same value as returned by WinType.

Details
“Target windows” are graphs, tables, layout, panels, and notebook windows.
AfterWindowCreatedHook is not called when an Igor experiment is being opened.
Igor ignores the value returned by AfterWindowCreatedHook.

See Also
SetWindow, SetIgorHook, and User-Defined Hook Functions on page IV-257.

BeforeExperimentSaveHook
BeforeExperimentSaveHook(refNum, fileNameStr, pathNameStr, fileTypeStr,
fileCreatorStr, fileKind)
BeforeExperimentSaveHook is a user-defined function that Igor calls when an experiment is about to be
saved by Igor.
Igor ignores the value returned by BeforeExperimentSaveHook.
Parameters
For a full explanation of the parameters, see AfterFileOpenHook on page IV-259.
Variable refNum is -1. The experiment file is not open.
String fileNameStr contains the name of the experiment file (including any extension).
String pathNameStr contains the name of the symbolic path.
String fileTypeStr contains the file type code.
String fileCreatorStr contains the file creator code.

Size Event param
Normal resize 0

Minimized 1

Maximized 2

Moved 3

Chapter IV-10 — Advanced Programming

IV-265

Variable fileKind is a number that identifies what kind of file Igor will be saving:

Details
You can determine the full directory and file path of the experiment by calling the PathInfo operation with
$pathNameStr.

Example
This (somewhat frivolous) example prints the full file path of the about-to-be-saved experiment to the
history area, and deletes all unused symbolic paths.
#pragma rtGlobals=1 // treat S_path as local string variable

Function BeforeExperimentSaveHook(rN,fileName,path,type,creator,kind)
Variable rN,kind
String fileName,path,type,creator

PathInfo $path // puts path value into (local) S_path
Printf "Saved \"%s\" experiment\r",S_path+fileName

KillPath/A/Z // Delete all unneeded symbolic paths
End

See Also
The SetIgorHook operation.

BeforeFileOpenHook
BeforeFileOpenHook(refNum, fileNameStr, pathNameStr, fileTypeStr,
fileCreatorStr, fileKind)
BeforeFileOpenHook is a user-defined function that Igor calls when a file is about to be opened by Igor
because the user dragged it onto the Igor icon, double-clicked it, or because Igor received an “open” Apple
event from another program (such a Web browser).

Note: BeforeFileOpenHook is not called when the Open File or Load Waves menu is selected.

The parameters contain information about the file, which has already been opened for read-only access.
The value returned by BeforeFileOpenHook informs Igor whether the user-defined function handled the
open and therefore Igor should not perform its default action. In some cases, this return value is ignored,
and Igor performs the default action anyway.

Parameters
(For a full explanation of the parameters, see AfterFileOpenHook on page IV-259.)
Variable refNum is the file reference number.
String fileNameStr contains the name of the file (including any extension).
String pathNameStr contains the name of the symbolic path.
String fileTypeStr contains the file type code.
String fileCreatorStr contains the file creator code.
Variable fileKind is a number that identifies what kind of file Igor thinks it is:

Kind of File fileKind
Igor Experiment, packed*

* Including stationery experiment files.

1

Igor Experiment, unpacked* 2

Kind of File fileKind Default Action, if Any
Unknown 0

Igor Experiment, packed * 1 (Hook not called)

Igor Experiment, unpacked* 2 (Hook not called)

Igor XOP 3

Chapter IV-10 — Advanced Programming

IV-266

Details
BeforeFileOpenHook must return 1 if Igor is not to take action on the file (it won’t be opened), or 0 if Igor
is permitted to take action on the file. Igor ignores the return value for fileKind values of 3, 12, and 13. The
hook function is not called for Igor experiments (fileKind values of 1 and 2).
Igor always closes the file when the user-defined function returns, and refNum becomes invalid (don’t store
the value of refNum in a global for use by other routines, since the file it refers to has been closed).

Example
This example checks the first line of the file about to be opened to determine whether it has a special,
presumably user-specific, format. If it does, then LoadMyFile (another user-defined function) is called to
load it. LoadMyFile presumably loads this custom data file, and returns 1 if it succeeded. If it returns 0 then
Igor will open it using the Default Action from the above table.
Another example can be found in the discussion in User-Defined Hook Functions on page IV-257.
Function BeforeFileOpenHook(refNum,fileName,path,type,creator,kind)

Variable refNum,kind
String fileName,path,type,creator

Variable handledOpen=0
if(CmpStr(type,"TEXT")==0) // text files only

String line1
FReadLine refNum, line1 // First line (and carriage return)
if(CmpStr(line1[0,4],"XYZZY") == 0) // My special file

FSetPos refNum, 0 // rewind to start of file
handledOpen= LoadMyFile(refNum) // returns 1 if loaded OK

endif
endif
return handledOpen // 1 tells Igor not to open the file

End

See Also
AfterFileOpenHook and SetIgorHook.

IgorBeforeNewHook
IgorBeforeNewHook(igorApplicationNameStr)
IgorBeforeNewHook is a user-defined function that Igor calls before a new experiment is opened in
response to the New Experiment, Revert Experiment, or Open Experiment menu items in the File menu.

Igor Binary file 4 Data loaded
Igor Text (data and commands) 5 Data loaded, commands executed
Text, no numbers detected in first
two lines

6 Opened as unformatted notebook

General Numeric text (no tabs) 7 Data loaded as general text
Numeric text
Tab-Separated-Values

8 Data loaded as delimited text

Numeric text
Tab-Separated-Values, MIME

9 Display loaded data in a new table and
a new graph.

Text, with tabs 10 Opened as unformatted notebook
Igor Notebook
(unformatted or formatted)

11 Opened as notebook

Igor Procedure 12 Always opened as procedure file
Igor Help 13 Always opened as help file

* Including stationery experiment files.

Kind of File fileKind Default Action, if Any

Chapter IV-10 — Advanced Programming

IV-267

You can use IgorBeforeNewHook to clean up the current experiment, or to avoid losing unsaved data even
if the user chooses to not save the current experiment.
Igor ignores the value returned by IgorBeforeNewHook.

Parameters
igorApplicationNameStr contains the name of the currently running Igor Pro application.

See Also
IgorStartOrNewHook and SetIgorHook.

IgorBeforeQuitHook
IgorBeforeQuitHook(unsavedExp,unsavedNotebooks,unsavedProcedures)
IgorBeforeQuitHook is a user-defined function that Igor calls just before Igor is about to quit (before any
save-related dialogs have been presented).

Parameters
Variable unsavedExp is 0 if the experiment is saved, 1 if unsaved.
Variable unsavedNotebooks is the count of unsaved notebooks.
Variable unsavedProcedures is the count of unsaved procedures.

Note: The save state of packed procedure and notebook files is part of unsavedExp, not unsavedNotebooks
or unsavedProcedures. This applies to adopted procedure and notebook files and new procedure
and notebook windows that have never been saved.

Details
IgorBeforeQuitHook will normally return 0. In these cases it will present the “Do you want to save” dialogs,
and if the user approves, it will call IgorQuitHook.
If IgorBeforeQuitHook returns 1, then the current experiment, notebooks, or procedures will not be saved;
no dialogs will be presented to the user, and it will not call IgorQuitHook.

See Also
IgorQuitHook and SetIgorHook.

IgorMenuHook
IgorMenuHook(isSelection, menuStr, itemStr, itemNo, topWindowNameStr, wType)
IgorMenuHook is a user-defined function that Igor calls just before and just after menu selection (whether
by mouse or keyboard).

Parameters
Variable isSelection is 0 before a menu item has been selected, 1 when a menu item has been selected.
String menuStr is the name of the selected menu (in English and as used by SetIgorMenuMode). menuStr is
"" when isSelection is 0.
String itemStr is the name of the selected menu item or "" when isSelection is 0.
Variable itemNo is the item number of the selected menu item; 1 is the first item in the selected menu. itemNo
is 0 when isSelection is 0.
String topWindowNameStr is the name of the top window (the window to which window-specific menu
commands like Copy and Paste apply).
Not all windows have names, so topWindowNameStr is set specially in those cases:

Window topWindowNameStr
graph, panel, notebook, layout,
table

Window name. See the Window Control Dialog and DoWindow
operation (page V-136) about window names.

command/history window “kwCmdHist” (as used for GetWindow).
procedure window The window title as shown in the window’s title bar. The standard

procedure window is “Procedure”.
Igor Extensions (“XOP”) window The window title as shown in the window’s title bar.

Chapter IV-10 — Advanced Programming

IV-268

Variable wType identifies the kind of window that topWindowNameStr names. It returns the same values as
the WinType function (see page V-835). For procedure windows wType is 8, for the command/history
window it is -1, and for XOP windows or unknown windows wType is 0.

Details
IgorMenuHook is called with isSelection set to 0 after all the menus have been enabled and before a mouse
click or Command-key (Macintosh) or Ctrl+key (Windows) is handled.
The return value should normally be 0. If the return value is nonzero (1 is usual) then the top window’s
hook function (see SetWindow operation on page V-646) is not called for the enablemenu event.
IgorMenuHook is called with isSelection set to 1 after the menu has been selected and before Igor has acted
on the selection.
If the hook function returns 0, Igor proceeds to call the top window’s hook function for the menu event. (If
the window hook function is present and returns nonzero Igor ignores the menu selection, otherwise Igor
handles the menu selection normally.)
If the hook function returns nonzero (1 is again usual), Igor does not call the remaining hook functions and
Igor ignores the menu selection.

Menu Event Details
Menu building, enabling, and selection by Igor, user menus, window hooks and IgorMenuHook are
sequenced this way:
Menu building and enabling are performed in this order:
1. Igor updates built-in menus according to the frontmost and the target window.

2. Dynamic user-defined menus are updated.

3. IgorMenuHook(0, …) is called. If IgorMenuHook returns nonzero (which is not recommended),
step 4 is skipped.

4. The top window’s window hook functions (see SetWindow operation on page V-646) are called
with the enablemenu event. The return value is ignored.

5. Igor extensions update their menus and their items in built-in menus.

Menu selections are handled in this order:
1. Igor extensions may handle the menu selection. If the selection was handled, the following steps

are skipped.

2. If the selected menu item is not one of Igor’s built-in menus, the steps 3 and 4 are skipped.

3. The top window’s window hook(s) is (are) called with the menu event. If a hook returns nonzero
the remaining window hooks and the following steps are skipped.

4. IgorMenuHook(1, …) is called. If IgorMenuHook returns nonzero, the following steps are skipped.

5. If a user-defined menu was chosen, Igor executes the associated command, and the remaining step
is skipped.

6. Igor handles the selection of a built-in menu item.

Example
This user hook function invokes the Export Graphics menu item when Command-C (Macintosh) or Ctrl+C
(Windows) is selected for all graphs, preventing Igor from performing the usual Copy.
Function IgorMenuHook(isSel, menuStr, itemStr, itemNo, topWindowName, wt)

Variable isSel
String menuStr, itemStr
Variable itemNo
String topWindowName
Variable wt

Variable handled= 0
if(Cmpstr(menuStr,"Edit") == 0 && CmpStr(itemStr,"Copy") == 0)

if(wt == 1) // graph
// DoIgorMenu would cause recursion, so we defer execution
Execute/P/Q/Z "DoIgorMenu \"Edit\", \"Export Graphics\""
handled= 1

Chapter IV-10 — Advanced Programming

IV-269

endif
endif

return handled
End

See Also
SetWindow, Execute, and SetIgorHook.

IgorQuitHook
IgorQuitHook(igorApplicationNameStr)
IgorQuitHook is a user-defined function that Igor calls when Igor is about to quit.
The value returned by IgorQuitHook is ignored.

Parameters
String igorApplicationNameStr contains the name of the currently running Igor Pro application (including
the .exe extension under Windows).

Details
You can determine the full directory and file path of the Igor application by calling the PathInfo operation
with the Igor path name. See the example in IgorStartOrNewHook on page IV-269.

See Also
IgorBeforeQuitHook and SetIgorHook.

IgorStartOrNewHook
IgorStartOrNewHook(igorApplicationNameStr)
IgorStartOrNewHook is a user-defined function that Igor calls when starting up and when creating a new
experiment. It is also called if Igor is launched as a result of double-clicking a saved Igor experiment.
Igor ignores the value returned by IgorStartOrNewHook.

Parameters
String igorApplicationNameStr contains the name of the currently running Igor Pro application (including
the .exe extension under Windows).

Details
You can determine the full directory and file path of the Igor application by calling the PathInfo operation
with the Igor path name.

Example
This example prints the full path of Igor application and sets the annotation halo size to zero whenever Igor
starts up or creates a new experiment:
#pragma rtGlobals=1 // treat S_path as local string variable

Function IgorStartOrNewHook(igorApplicationNameStr)
String igorApplicationNameStr

Variable/G root:V_TBBufZone= 0 // See General Annotation Properties
// on page III-50

PathInfo Igor // puts path value into (local) S_path
printf "\"%s\" (re)starting\r", S_path + igorApplicationNameStr

End

See Also
IgorBeforeNewHook and SetIgorHook.

Static Hook Functions
To allow for multiple procedure files to define the same predefined hook function, you should declare your
hook function static. For example:

Chapter IV-10 — Advanced Programming

IV-270

static Function IgorStartOrNewHook(igorApplicationNameStr)
String igorApplicationNameStr

The use of the static keyword makes the function private to the procedure file containing it and allows other
procedure files to have their own static function with the same name.

Igor calls static hook functions after the SetIgorHook (see page V-635) functions are called. The static hook
functions themselves are called in the order in which their procedure file was opened. You should not rely
on any execution order among the static hook functions. However, any hook function which returns a
nonzero result prevents remaining hook functions from being called and prevents Igor from performing its
usual processing of the hook event. In most cases hook functions should exercise caution in returning any
value other than 0. For hook functions only, returning a NaN or failing to return a value (which returns a
NaN) is considered the same as returning 0.

The IgorStartOrNewHook (see page IV-269) hook function is especially useful to initialize a related set of
procedures packaged together in an auxiliary procedure file.

Window Hook Functions
A window hook function is a user-defined function that receives notifications of events that occur in a spe-
cific window. Your window hook function can detect and respond to events of interest. You can then allow
Igor to also process the event or inform Igor that you have handled it.

This section discusses window hook functions that apply to a specific window. For information on general
events hooks, see User-Defined Hook Functions on page IV-257.

To handle window events, you first write a window hook function and then use the SetWindow operation
to install the hook on a particular window. This example shows how you would detect arrow key events in
a particular window. To try it, paste the code below into the procedure window and then execute DemoW-
indowHook():

Function MyWindowHook(s)
STRUCT WMWinHookStruct &s

Variable hookResult = 0 // 0 if we do not handle event, 1 if we handle it.

switch(s.eventCode)
case 11: // Keyboard event

switch (s.keycode)
case 28:

Print "Left arrow key pressed."
hookResult = 1
break

case 29:
Print "Right arrow key pressed."
hookResult = 1
break

case 30:
Print "Up arrow key pressed."
hookResult = 1
break

case 31:
Print "Down arrow key pressed."
hookResult = 1
break

endswitch
break

endswitch

return hookResult // If non-zero, we handled event and Igor will ignore it.

Chapter IV-10 — Advanced Programming

IV-271

End

Function DemoWindowHook()
DoWindow/F DemoGraph // Does graph exist?
if (V_flag == 0)

Display /N=DemoGraph // Create graph
SetWindow DemoGraph, hook(MyHook)=MyWindowHook // Install window hook

endif
End

The window hook function receives a WMWinHookStruct structure as a parameter. WMWinHookStruct is
a built-in structure that contains all of the information you might need to respond to an event. One of its
fields, the eventCode field, specifies what kind of event occurred.

If your hook function returns 1, this tells Igor that you handled the event and Igor does not handle it. If your
hook function returns 0, this tells Igor that you did not handle the event, so Igor does handle it.

This example uses a named window hook. In this case the name is MyHook. More than one procedure file
can install a hook on a given window. The purpose of the name is to allow a package to install and remove
its own hook function without disturbing the hook functions of other packages. Choose a hook name that
is unlikely to conflict with other hook names.

Earlier versions of Igor supported only one unnamed hook function. This meant that only one package
could hook any particular window. Unnamed hook functions are still supported for backward compatibil-
ity but new code should always use named hook functions.

Window Hooks and Subwindows
Igor calls window hook functions for top-level windows only, not for subwindows. If you want to hook a
subwindow, you must set the hook on the top-level window. In the hook function, test to see if the subwin-
dow is active. For example, this code, at the start of a window hook function, insures that the hook runs
only if a subwindow named G0 is active.

GetWindow $s.winName activeSW
String activeSubwindow = S_value
if (CmpStr(activeSubwindow,"G0") != 0)

return 0
endif

Named Window Hook Functions
A named window hook function takes one parameter - a WMWinHookStruct structure. This built-in struc-
ture provides your function with information about the status of various window events.

The named window hook function has this format:
Function MyWindowHook(s)

STRUCT WMWinHookStruct &s

Variable hookResult = 0

switch(s.eventCode)
case 0: // Activate

// Handle activate
break

case 1: // Deactivate
// Handle deactivate
break

// And so on . . .

Chapter IV-10 — Advanced Programming

IV-272

endswitch

return hookResult // 0 if nothing done, else 1
End

If you handle a particular event and you want Igor to ignore it, return 1 from the hook function.

Named Window Hook Events
Here are the events passed to a named window hook function:

eventCode eventName Notes

0 “Activate”

1 “Deactivate”

2 “Kill”

3 “Mousedown”

4 “Mousemoved”

5 “Mouseup”

6 “Resize”

7 “Cursormoved” See Cursors — Moving Cursor Calls Function on page IV-302.

8 “Modified” A modification to the window has been made. This is sent to graph and
notebook windows only. It is an error to try to kill a notebook window
from the window hook during the modified event.

9 “Enablemenu”

10 “Menu”

11 “Keyboard”

12 “moved”

13 “renamed”

14 “subwindowKill” One of the window’s subwindows is about to be killed.

15 “hide” The window or one of its subwindows is about to be hidden.

16 “show” The window or one of its subwindows is about to be unhidden.

17 “killVote” Window is about to be killed. Return 2 to prevent the window from
being killed, otherwise return 0.
Note: Don’t delete data structures during this event, use killVote only
to decide whether the window kill should actually happen. Delete data
structures in the kill event. See Window Hook Deactivate, Kill, Show
and Hide Events on page IV-275.

18 “showTools”

19 “hideTools”

20 “showInfo”

21 “hideInfo”

22 “mouseWheel”

23 “spinUpdate” This event is sent only to windows marked via DoUpdate/E=1 as
progress windows. It is sent when Igor spins the beachball cursor. See
Progress Windows on page IV-138 for details.

Chapter IV-10 — Advanced Programming

IV-273

WMWinHookStruct
The WMWinHookStruct structure has members as described in the following tables:

Base WMWinHookStruct Structure Members

Member Description

char winName[MAX_PATH_LENGTH+1] hcSpec of the affected (sub)window.

STRUCT Rect winRect Local coordinates of the affected (sub)window.

STRUCT Point mouseLoc Mouse location.

double ticks Tick count when event happened.

Int32 eventCode See see eventCode table on page IV-272.

char eventName[31+1] Name-equivalent of eventCode, see eventCode table on page
IV-272. Added in Igor 5.03.

Int32 eventMod Bitfield of modifiers. See description for MODIFIERS:flags.

Members of WMWinHookStruct Structure Used with menu Code

Member Description

char menuName[255+1] Name of menu (in English) as used by SetIgorMenuMode.

char menuItem[255+1] Text of the menu item as used by SetIgorMenuMode

Members of WMWinHookStruct Structure Used with keyboard Code

Member Description

Int32 keycode ASCII value of key struck. Function keys are not available but
navigation keys are translated to specific values and will be the
same on Macintosh and Windows.

Members of WMWinHookStruct Structure Used with cursormoved Code

Member Description

char traceName[MAX_OBJ_NAME+1] The name of the trace or image to which the moved cursor is
attached or which supplies the X (and Y) values. Can be "" if the
cursor is free.

char cursorName[2] Cursor name A through J.

double pointNumber Point number of the trace or the X (row) point number of the
image where the cursor is attached.

If the cursor is “free”, pointNumber is actually the fractional
relative xValue as used in the Cursor/F/P command.

double yPointNumber Valid only when the cursor is attached to a two-dimensional
item such as an image, contour, or waterfall plot, or when the
cursor is free.

Chapter IV-10 — Advanced Programming

IV-274

Setting the Mouse Cursor
An advanced programmer can use a named window hook function to change the mouse cursor.

You might want to do this, for example, if your window hook function intercepts mouse events on certain
items (e.g., waves) and performs custom actions. By setting a custom mouse cursor you indicate to the user
that clicking the items results in different-from-normal actions.

See the Mouse Cursor Control example experiment - in Igor choose File→Example Experi-
ments→Programming→Mouse Cursor Control.

Panel Done Button Example
This example uses a window hook and button action procedure to implement a panel dialog with a Done
button such that the panel can't be closed by clicking the panel's close widget, but can be closed by the Done
button's action procedure:
Proc ShowDialog()

PauseUpdate; Silent 1 // building window...
NewPanel/N=Dialog/W=(225,105,525,305) as "Dialog"

If attached to an image, contour, or waterfall plot, yPointNumber
is the Y (column) point number of the image where the cursor is
attached.

If the cursor is “free”, yPointNumber is actually the fractional
relative yValue as used in the Cursor/F/P command.

Int32 isFree Has value of 1 if the cursor is not attached to anything, or value
of 0 if it is attached to a trace, image, contour, or waterfall.

Members of WMWinHookStruct Structure Used with mouseWheel Code

Member Description

double wheelDy Vertical lines to scroll. Typically +1 or -1.

double wheelDx Horizontal lines to scroll. Typically +1 or -1.
On Windows, horizontal mouse wheel requires Vista.

Members of WMWinHookStruct Used with renamed Code

Member Description

char oldWinName[MAX_OBJ_NAME+1] Old name of the window or subwindow. Not the absolute path
hcSpec, just the name.

User-Modifiable Members of WMWinHookStruct Structure

Member Description

Int32 doSetCursor Set to 1 to change cursor to that specified by cursorCode.

Int32 cursorCode See Setting the Mouse Cursor.

Members of WMWinHookStruct Structure Used with cursormoved Code

Member Description

Chapter IV-10 — Advanced Programming

IV-275

Button done,pos={119,150},size={50,20},title="Done"
Button done,proc=DialogDoneButtonProc
TitleBox warning,pos={131,83},size={20,20},title=""
TitleBox warning,anchor=MC,fColor=(65535,16385,16385)
SetWindow Dialog hook(dlog)=DialogHook, hookevents=2

EndMacro

Function DialogHook(s)
STRUCT WMWinHookStruct &s
Variable statusCode= 0

strswitch(s.eventName)
case "killVote":

TitleBox warning win=$s.winName, title="Press the Done button!"
Beep
statusCode=2 // prevent panel from being killed.
break

case "mousemoved": // to reset the warning
TitleBox warning win=$s.winName, title=""
break

endswitch
return statusCode

End

Function DialogDoneButtonProc(ba) : ButtonControl
STRUCT WMButtonAction &ba
switch(ba.eventCode)

case 2: // mouse up
// turn off the named window hook
SetWindow $ba.win hook(dlog)=$""
// kill the window AFTER this routine returns
Execute/P/Q/Z "DoWindow/K "+ba.win
break

endswitch
return 0

End

Window Hook Deactivate, Kill, Show and Hide Events
The actions caused by these events (eventCode 2, 14, 15, 16 and 17) potentially affect multiple subwindows.

If you kill a subwindow, the root window’s hook function(s) receives a subwindowKill event for that sub-
window and any child subwindows.

If you kill a root window, the root window’s hook function(s) receives a subwindowKill event for each child
subwindow, and then the root window’s hook function(s) receive a kill event.

Likewise, hiding and showing windows can result in subwindows being hidden or shown. In each case, the
window hook function receives a hide or show event for each affected window or subwindow.

The winName member of WMWinHookStruct will be set to the full subwindow path of the subwindow
that is affected.

Exterior subwindows are a special case because they are subwindows, but you can attach a hook function
to an exterior subwindow. The hook function attached to the root window does not receive events affecting
exterior subwindows. To handle subwindowKill, hide, or show events when an exterior subwindow is
killed, hidden, or shown as a result of killing, hiding, or showing its parent window, you must have a hook
function attached to the exterior subwindow.

As a further subtlety, the hook function(s) attached to an exterior subwindow will receive a subwindowKill
event if the exterior subwindow is killed as a result of killing the parent window. But it will receive a regular
kill event if it is killed directly. Normal subwindows always receive only subwindowKill events.

Chapter IV-10 — Advanced Programming

IV-276

The kill-related events are sent in this order when a window or subwindow is killed:

1. A killVote event is sent to the root window’s hook function(s). If any hook function returns 2, no
further events are generated and the window is not killed.

2. If the window is not a subwindow and wasn't created with /K=k the standard window close dialog
appears. If the close is cancelled, the window is not killed, the window will receive an activate event
when the dialog is dismissed, and no further events are generated. Otherwise, proceed to step 3.

3. If the window being killed has subwindows, starting from the bottom-most subwindow and work-
ing back toward the window being killed:

3a. If the subwindow is a graph or panel, action procedures for controls contained in the subwindow
are called with event -1, “control being killed”.

3b. The root window's hook function(s) receive a subwindowKill event for the subwindow. If any hook
function returns 1, no further subwindow hook events or control being killed events are sent, but
the window killing process continues.

Steps 3a and 3b are repeated for each subwindow until the window or subwindow being killed is
reached.

4. If the killed window is a root window, a kill event is sent to the root window’s hook function(s). If
any hook function returns 2, no further events are generated and the window is not killed. This
method of preventing a window from closing is to be avoided: use the killVote event or the win-
dow-equivalent of NewPanel/K=2.

There are several ways to prevent a window being killed. You might want to do this in order to enforce use
of a Done or Do It button, or to prevent killing a control panel while some hardware action is taking place.

The best method is to use /K=2 when creating the window (see Display or NewPanel). Then the only way
to kill the window is via the DoWindow/K command, or KillWindow command. In general, you would
provide a button that kills the window after checking for any conditions that would prevent it.

The KillVote event is more flexible but harder to use. It gives your code a chance to decide whether or not
killing is allowed. This means the user can close and kill the window with the window close box when it is
allowed.

Returning 2 for the window kill event is not recommended. If you have old code that uses this method, we
strongly recommend changing it to return 2 for the killVote event. New code should never return 2 for the
kill event.

Events 14-17 were added to Igor Pro version 6.02.

Unnamed Window Hook Functions
Unnamed window hook functions are supported for backward compatibility only. New code should use
named window hook functions. See Named Window Hook Functions on page IV-271.

Each window can have one unnamed hook function. You designate a function as the unnamed window
hook function using the SetWindow operation with the hook keyword.

The unnamed hook function is called when various window events take place. The reason for the hook
function call is stored as an event code in the hook function’s infoStr parameter.

The hook function is not called during experiment creation or load time so as to prevent the hook function
from failing because the experiment is not fully recreated.

The hook function has the following syntax:
Function procName(infoStr)

String infoStr
String event= StringByKey("EVENT",infoStr)
…

Chapter IV-10 — Advanced Programming

IV-277

return statusCode // 0 if nothing done, else 1
End

infoStr is a string containing a semicolon-separated list of key:value pairs:

The value accompanying the EVENT keyword is one of the following:

Key Value

EVENT eventKey
See list of eventKey values below.

HCSPEC Absolute path of the window or subwindow.
See Subwindow Command Concepts on page III-97.

MODIFIERS Bit flags as follows:

Bit 0: Set if mouse button is down.

Bit 1: Set if Shift is down.

Bit 2: Set if Option (Macintosh) or Alt (Windows) is down.

Bit 3: Set if Command (Macintosh) or Ctrl (Windows) is down.

Bit 4: Contextual menu click: right-click or Control-click (Macintosh), or
right-click (Windows).

See Setting Bit Parameters on page IV-12 for details about bit settings.

OLDWINDOW Previous name of the window or subwindow (for renamed event). Not the
old absolute path hcSpec, just the name. WINDOW and HCSPEC contain
the new name and new hcSpec.

WINDOW Name of the window.

eventKey Meaning

activate Window has just been activated.

copy Copy menu item has been selected.

cursormoved A graph cursor was moved.
This event is sent only if bit 2 of the SetWindow operation hookevents flag is set.

deactivate Window has just been deactivated.

enablemenu Menus are being built and enabled.

hide Window or subwindows about to be hidden.

hideInfo The window info box or window has just been hidden by HideInfo.

hideTools The window tool palette or window has just been hidden by HideTools.

kill Window is being killed.
Returning a value of 2 as the hook function result prevents Igor from killing the window.

killVote Window is about to be killed. Return 2 to prevent that, otherwise return 0.
See Window Hook Deactivate, Kill, Show and Hide Events on page IV-275.

menu A built-in menu item has been selected.

modified A modification to the window has been made. This is sent to graph and notebook
windows only. It is an error to try to kill a notebook window from the window hook
during the modified event.

Chapter IV-10 — Advanced Programming

IV-278

The modified event is issued only when a graph updates (See DoUpdate, PauseUpdate, and ResumeUp-
date). Most changes to the graph are reported by the modified event, but not all: changing an annotation
will not trigger the event, nor will adding, removing, or modifying a control or showing or hiding the
drawing tools while using the /A flag. The modified event is not sent while a trace is being dragged or when
the values of a trace’s wave change (unless one the trace’s axes is autoscaled). However, changing an axis
range or indeed changing almost anything about axes or showing or hiding the info pane will send the
modified event (only one event per graph update). When in doubt, use a print statement to determine when
the event is sent.

If mouse events are enabled then the following key:value pairs will also be present in infoStr:

Note that a mouseup event may or may not correspond to a previous mousedown. If the user clicks in the
window, drags out and releases the button then the mouseup event will be missing. If the user clicks in
another window, drags into this one and then releases then a mouseup will be sent that had no previous
mousedown.

In the case of mousedown or mousemoved messages, a nonzero return value will skip normal processing
of the message. This is most useful with mousedown.

The cursormoved event is not reported if Option (Macintosh) or Alt (Windows) is held down.

If the cursormoved event is enabled then the following key:value pairs will also be present in infoStr:

mousedown Mouse button was clicked.
This event is sent only if bit 0 of the SetWindow operation hookevents flag is set.

mousemoved The mouse moved.
This event is sent only if bit 1 of the SetWindow operation hookevents flag is set.

mouseup Mouse button was released.
This event is sent only if bit 0 of the SetWindow operation hookevents flag is set.

moved Window has just been moved.

renamed Window has just been renamed. The previous name is available under the
OLDWINDOW key.

resize Window has just been resized.

show Window or subwindow is about to be unhidden.

showInfo The window info box or window has just been shown by ShowInfo.

showTools The window tool palette or window has just been shown by ShowTools.

subwindowKill One of the window’s subwindows is about to be killed.

Key Value

MOUSEX X coordinate in pixels of the mouse.

MOUSEY Y coordinate in pixels of the mouse.

TICKS Time event happened.

Key Value

CURSOR Name of the cursor that moved (A through J).

TNAME Name of the trace the cursor is attached to (invalid if ISFREE=1).

eventKey Meaning

Chapter IV-10 — Advanced Programming

IV-279

When the a menu event is reported then the following key:value pairs will also be present in infoStr:

The enablemenu event does not pass MENUNAME or MENUITEM.

The menu and enablemenu messages are not sent when drawing tools are in use in a graph or layout or
when waves are being edited in a graph.

Returning a value of 0 for the enablemenu message is recommended, though the return value is (currently)
ignored.

You can use the SetIgorMenuMode operation to alter the enable state of Igor’s built-in menus in a way you
find appropriate for the window. If you do this, usually you will also handle the menu message and
perform your idea of an appropriate action.

Note: Dynamic user-defined menus (see Dynamic Menu Items on page IV-113) are built and enabled
by using string functions in the menu definitions.

Returning a value of 0 for any menu message allows Igor to perform the normal action. Returning any other
value (1 is commonly used) tells Igor to skip performing the normal action.

See the user function description with IgorMenuHook on page IV-267 for details on the sequence of menu
building, enabling, and handling.

Custom Marker Hook Functions
A custom marker hook function takes one parameter - a WMMarkerHookStruct structure. This structure
will provide your function with information you need to draw a marker. See Structures in Functions on
page IV-82 for background information on structures.

The function prototype used with a custom marker hook has the format:
Function MyMarkerHook(s)

STRUCT WMMarkerHookStruct &s
<code to draw marker>
...
return statusCode // 0 if nothing done, else 1

End

Your function can use the DrawXXX operations to create the marker. The function is called each time the
marker is drawn and should not do anything other than drawing the marker. The function should return 1

ISFREE 1 if the cursor is “free” (not attached to a trace), 0 if it is attached to a trace
or image.

POINT Point number of the trace if not a free cursor.
If the cursor is attached to an image, value is the row number of the image.
If a free cursor, value is the fraction of the plot width, 0 being the left edge
of the plot area, and 1 being the right edge.

YPOINT Column number if the cursor is attached to an image, NaN if attached to
a trace.

If a free cursor, value is the fraction of the plot height, 0 being the top edge,
and 1 being the bottom edge.

Key Value

MENUNAME Name of menu (in English) as used by SetIgorMenuMode.

MENUITEM Text of menu item as used by SetIgorMenuMode.

Key Value

Chapter IV-10 — Advanced Programming

IV-280

if it handled the marker or 0 if not. The marker range can be any positive integers less than 1000 and can
overlap built-in marker numbers.

WMMarkerHookStruct
The WMMarkerHookStruct structure has the following members:

When your marker function is called, the pen thickness and colors of the drawing environment of the target
window are already set consistent with the penThick, mrkRGB, eraseRGB and penRGB members.

Marker Hook Example
Here is an example that draws audiology symbols:

Function AudiologyMarkerProc(s)
STRUCT WMMarkerHookStruct &s

if(s.marker > 3)
return 0

endif

Variable size= s.size - s.penThick/2

if(s.opaque)
SetDrawEnv linethick=0,fillpat=-1
DrawRect s.x-size,s.y-size,s.x+size,s.y+size
SetDrawEnv linethick=s.penThick

endif
SetDrawEnv fillpat= 0 // polys are not filled

if(s.marker == 0) // 90 deg U open to the right
DrawPoly s.x+size,s.y-size,1,1,{size,-size,-size,-size,-size,size,size,size}

elseif(s.marker == 1) // 90 deg U open to the left
DrawPoly s.x-size,s.y-size,1,1,{-size,-size,size,-size,size,size,-size,size}

elseif(s.marker == 2) // Cap Gamma
DrawPoly s.x+size,s.y-size,1,1,{size,-size,-size,-size,-size,size}

elseif(s.marker == 3) // Cap Gamma reversed
DrawPoly s.x-size,s.y-size,1,1,{-size,-size,size,-size,size,size}

endif
return 1

End

Window Graph1() : Graph
PauseUpdate; Silent 1 // building window...

WMMarkerHookStruct Structure Members

Member Description

Int32 usage 0= normal draw, 1= legend draw (others reserved).

Int32 marker Marker number minus start (i.e., starts from zero).

float x,y Location of desired center of marker

float size Half width/height of marker

Int32 opaque 1 if marker should be opaque

float penThick Stroke width

STRUCT RGBColor mrkRGB Fill color

STRUCT RGBColor eraseRGB Background color

STRUCT RGBColor penRG Stroke color

WAVE ywave Trace's y wave

double ywIndex Point number; ywave[wyIndex] is the y value where the
marker is being drawn.

Chapter IV-10 — Advanced Programming

IV-281

Make/O/N=10 testw=sin(x)
Display /W=(35,44,430,252) testw,testw,testw,testw
ModifyGraph offset(testw#1)={0,-0.2},offset(testw#2)={0,-0.4},

offset(testw#3)={0,-0.6}
ModifyGraph mode=3,marker(testw)=100,marker(testw#1)=101,marker(testw#2)=102,

marker(testw#3)=103
SetWindow kwTopWin,markerHook={AudiologyMarkerProc,100,103}

EndMacro

See also the Custom Markers Demo experiment - in Igor choose File→Example Experiments→Feature
Demos 2→Custom Markers Demo.

Data Acquisition
Igor Pro provides a number of facilities to allow working with live data:
• Live mode traces in graphs
• FIFOs and Charts
• Background task
• External operations and external functions
• Controls and control panels
• User-defined functions

Live mode traces in graphs are useful when you acquiring complete waveforms in a single short operation
and you want to update a graph many times per second to create an oscilloscope type display. See Live
Graphs and Oscilloscope Displays on page II-304 for details.

First-In-First-Out buffers (FIFOs) and Charts are used when you have a continuous stream of data that you
want to capture and, perhaps, monitor. See FIFOs and Charts on page IV-282 details.

You can set up a background task that will periodically perform data acquisition while allowing you to con-
tinue to work with Igor in the foreground. The background operations are not done using interrupts and
therefore are easily disrupted by foreground operations (that would be you). Background tasks are useful
only for relatively infrequent tasks that can be quickly accomplished and do not cause a cascade of graph
updates or other things that take a long time. See Background Tasks on page IV-285 for details.

You can create an instrument-like front panel for your data acquisition setup using user-defined controls in
a panel window. Refer to Chapter III-14, Controls and Control Panels, for details. There are many example
experiments that can be found in the Examples folder.

Igor Pro comes with an XOP called VDT2 for communicating with instruments via serial port (RS232) and
another XOP called NIGPIB2 for communicating via General Purpose Interface Bus (GPIB). See the Igor Pro
Folder:More Extensions:Data Acquisition folder.

Sound I/O can be done using the built-in SoundInRecord and PlaySound operations.

WaveMetrics produces the NIDAQ Tools software package for doing data acquisition using National
Instruments cards. NIDAQ Tools is built on top of Igor using all of the techniques mentioned in this section.
Information about NIDAQ Tools is available via the WaveMetrics Web site <http://www.wavemet-
rics.com/Products/NIDAQTools/nidaqtools.htm>.

Third parties have created data acquisition packages that use other hardware. Information about these is
also available at <http://www.wavemetrics.com/Products/thirdparty.htm>.

If an XOP package is not available for your hardware you can write your own. For this, you will need to pur-
chase the XOP Toolkit product from WaveMetrics. See Creating Igor Extensions on page IV-185 for details.

http://www.wavemetrics.com/Products/NIDAQTools/nidaqtools.htm
http://www.wavemetrics.com/Products/NIDAQTools/nidaqtools.htm
http://www.wavemetrics.com/Products/thirdparty.htm

Chapter IV-10 — Advanced Programming

IV-282

FIFOs and Charts
The following information will be of interest principally to people engaged in data acquisition activities. It
is possible that there are other uses for these capabilities and you may want to read the following summary
to see if you can think of any alternate applications. Most people who use FIFOs and Chart controls will do
so via canned packages provided by expert Igor programmers (such as yourself) and will not need to know
the details that follow.

Summary
FIFOs are invisible data objects that can act as a First-In-First-Out buffer between a data source and a disk
file. Data is placed in a FIFO either via the AddFIFOData operation or via an XOP package designed to
interface to a particular piece of hardware. Chart controls provide a graphical view of a portion of the data
in a FIFO. When data acquisition is complete a FIFO can operate as a bidirectional buffer to a disk file. This
allows the user to review the contents of a file by scrolling the chart “paper” back and forth. FIFOs can be
used without a chart but charts have no use without a FIFO to monitor.

FIFOs can have an arbitrary number of channels each with its own number type, scaling info and units. All
channels of a given FIFO share a common “timebase”. A given chart control can monitor an arbitrary selec-
tion of channels from a single FIFO. Each trace can have its own display gain, color and line style and can
either have its own area on the “paper” or can share an area with one or more other traces. There can be
multiple chart controls active an one time in one or more panel or graph windows.

Here is a typical chart control:

Programming with FIFOs
You can create a FIFO by using the NewFIFO operation. When you are done using a FIFO you use the Kill-
FIFO operation. A freshly created FIFO is not useful until either channels are created with the NewFIFO-
Chan operation or until the FIFO is attached to a disk file for review using a variant of the CtrlFIFO
operation. You can obtain information about a FIFO using the FIFOStatus operation and you can extract
data from a FIFO using the FIFO2Wave operation. Once a FIFO is set up and ready to accept data, you can
insert data using the AddFIFOData operation. Alternately, you can insert data using an XOP package. Once
data is stored in a file you can review the data using a FIFO or extract data using user-defined functions.
See the example experiment, “FIFO File Parse”, for sample utility routines.

As with background tasks, FIFOs are considered transient objects — they are not saved and restored as part
of an experiment.

A FIFO does not need to be attached to a file to be useful. Note, however, that the oldest data will be lost
when a FIFO overflows.

A FIFO set up to acquire data does not become valid until the start command is issued. Chart controls will
report invalid FIFOs on their status line. FIFO2Wave will give an error if it is invoked on an invalid FIFO. A
stopped FIFO remains valid until the first command is issued that could potentially change the FIFO’s setup.

Data in a running FIFO is written to disk when Igor notices that the FIFO is half full or when the AddFIFOData
command is issued and the FIFO is full. The amount of time it takes to write data to disk can be quite consid-
erable and at the same time unpredictable. If the computer disk cache size is large then writes to disk will be

Chapter IV-10 — Advanced Programming

IV-283

less frequent but when they do occur they will take a long time. This will matter to you most if you are
attempting to take data rapidly using software (perhaps using an Igor background task). If you are taking data
via interrupt transfer to an intermediate buffer of adequate size or if your hardware has an adequate internal
buffer then the disk write latency may not be a concern. If dead time due to disk writes is a concern then you
may want to decrease the size of the disk cache and you may want to run with a relatively small FIFO. Note
that if you change the size of the disk cache you may have to reboot for the change to take effect.

When the stop command is given to a running FIFO then it goes into review mode and remains valid. If the
FIFO is attached to a file then the entire contents of the file can be reviewed or be transferred to a wave using
the FIFO2Wave command.

The act of attaching a FIFO to an existing file for review using the rfile keyword of the CtrlFIFO command
reads in the file contents and sets itself up for review. You should not use the NewFIFOChan command or
any of the other CtrlFIFO keywords except size. Here is all that is required to review a preexisting file:
Variable refnum
Open/R/P=mypath refnum as "my file"
NewFIFO dave
CtrlFIFO dave,rfile=refnum

If any chart controls have been set up to monitor FIFO dave then they will automatically configure them-
selves to display all the channels of dave using default parameters.

The connection between FIFOs and chart controls relies on Igor’s dependency manager. The dependency
manager does not automatically run during function execution — you have to explicitly call it by executing
the DoUpdate command.

The dependency manager sends messages to a chart control when:
• a FIFO is created
• a FIFO is killed
• a FIFO becomes valid (start command)
• data is added to a FIFO

In particular, if inside a user function, you kill a FIFO and then create it again you should call DoUpdate
after the kill so that the chart control notices the kill and can get ready for the creation.

FIFO File Format
This information is for users who may wish to create FIFO files with their own programs or for those who
need to analyze data stored in a FIFO file. You will need to have a reading familiarity with the C program-
ming language to understand the following. Note, the following information may be out of date. For the
most up to date information, refer to the most recent version of the auxiliary file named NamedFIFO.h
located in the “Miscellaneous:More Documentation:” folder.

Consider the following data structures….
#define CUR_FIFOFILE_VERSION 0

typedef struct FIFOFIleHeader{
long typeP1,typeP2; // 'IGOR','fifo'
long version; // CUR_FIFOFILE_VERSION
long datasize; // bytes of data following ChartChunkInfo field if known
long hsize; // size of following ChartChunkInfo field; data follows

}FIFOFIleHeader;

#define MAX_NOTESIZE 255
#define FIFO_CHAN_VERSION_NUM 0x01

typedef struct ChartChanInfo{
long ntype; // number type -- NT_FP32 or NT_I16 or ...
double offset,gain; // result= (measval-offset)*gain

Chapter IV-10 — Advanced Programming

IV-284

double fsPlus,fsMinus; // value of + & - full scale
char name[MAX_OBJ_NAME+1]; // name of this channel
char units[4]; // SU abbrev of units
long chanRefcon; // for use by data acquisition sw

}ChartChanInfo;

typedef struct ChartChunkInfo{
long type; // 'chrt'
short version; // version number of this data structure
short pad1; // maintain 32 bit allignment
unsigned long startDate; // datetime of start command
char note[MAX_NOTESIZE+1]; // room for a short note from user
double deltaT; // data acquisition speed (if known,in seconds)
long xopRefcon; // for use by data acquisition sw
long nchan; // number of channels
ChartChanInfo info[]; // info for each channel

}ChartChunkInfo;

The FIFO file consists of the FIFOFileHeader followed by the ChartChunkInfo and finally by chunks of data
until the end of the file. It is expected that the format of this file will undergo evolutionary changes. You
should be prepared to keep up with such changes. In particular you should always check for the proper
version numbers when trying to interpret such a file.

Charts
An Igor Chart works in conjunction with a FIFO to display data as it is acquired or to review data that has
previously been acquired.

The information provided here pertains to using rather than programming a chart. If you are interested in
programming a chart application, you should examine the examples provided by WaveMetrics in the
Examples folder.

Chart Basics

An Igor Chart is neither an analytical tool nor a presentation quality graphic. It is meant only for real time
monitoring of incoming data or to review data from a FIFO file. When you want an analytical or presenta-
tion quality graph you must transfer the data to a wave and then use a conventional Igor graph.
An Igor Chart emulates a mechanical chart recorder that writes on paper with moving pens as the paper
scrolls by under the pens. It differs from a real chart recorder in that the paper of the latter moves at a con-
stant velocity whereas the “paper” of an Igor chart moves only when data becomes available in the FIFO it
is monitoring. If data is placed in the FIFO at a constant rate then the “paper” will scroll by at a constant
rate. However, since there can be no guarantee that the data is coming in at a constant rate, we refer to the
horizontal axis not in terms of time but rather in terms of data sample number.

A given chart can monitor an arbitrary selection of channels from a single FIFO. Each chart trace can have
its own display gain, color and line style and can either have its own area on the “paper” or can share an
area with one or more other traces. There can be multiple charts active an one time in one or more control
panel or graph windows.

You create a chart using the Chart operation (page V-48). You can obtain information about a given chart
using the ControlInfo operation (page V-71).

Additional Notes
Charts sometimes try to auto-configure themselves to match their FIFO. Generally this action is exactly
what you want and is unobtrusive. Here are the rules that charts use:

When the FIFO becomes invalid or if it ceases to exist then the chart marks itself as being in auto-configure
mode. If the FIFO then becomes valid the chart will read the FIFO information and configure itself to
monitor all channels. It tries to set the ppStrip parameter to a value appropriate for the deltaT value of the
FIFO. It does so by assuming a desirable update rate of around 10 strips per second. Thus, for example, if

Chapter IV-10 — Advanced Programming

IV-285

deltaT was 1 millisecond then ppStrip would be set to 100. The moral is: deltaT had better be valid or weird
values of ppStrip may be created.

Any chart channel configuration commands executed after the FIFO becomes invalid but before the FIFO
becomes valid again will prevent auto-configuration from taking place.

Background Tasks
Background tasks allow procedures to run periodically "in the background" while you continue to interact
normally with Igor. This is useful for data acquisition, simulations and other processes that run indefinitely,
over long periods of time, or need to run at regular intervals. Using a background task allows you to con-
tinue to interact with Igor while your data acquisition or simulation runs.

Originally Igor supported just one unnamed background task controlled using the CtrlBackground oper-
ation (page V-90). New code should use the CtrlNamedBackground operation (page V-91) to create named
background tasks instead, as shown in the following sections. You can run any number of named back-
grounds tasks.

In addition to the documentation provided here, the Background Task Demo experiment provides sample
code that is designed to be redeployed for other projects. We recommend reading this documentation first
and then opening the demo by choosing File→Example Experiments→Programming→Background Task
Demo.

Background Task Example #1
You create and control background tasks using the CtrlNamedBackground operation. The main parame-
ters of CtrlNamedBackground are the background task name, the name of a procedure to be called period-
ically, and the period. Here is a simple example:

Function TestTask(s) // This is the function that will be called periodically
STRUCT WMBackgroundStruct &s

Printf "Task %s called, ticks=%d\r", s.name, s.curRunTicks
return 0 // Continue background task

End

Function StartTestTask()
Variable numTicks = 2 * 60 // Run every two seconds (120 ticks)
CtrlNamedBackground Test, period=numTicks, proc=TestTask
CtrlNamedBackground Test, start

End

Function StopTestTask()
CtrlNamedBackground Test, stop

End

You start this background task by calling StartTestTask from the command line or from another procedure.
StartTestTask creates a background task named Test, sets the period which is specified in units of ticks (1
tick = 1/60th of a second), and specifies the user-defined function to be called periodically (TestTask in this
example).

You stop the Test background task by calling StopTestTask.

As shown above, the background procedure takes a WMBackgroundStruct parameter. In most cases you
won’t need to access it.

Background Task Exit Code
The background procedure (TestTask in the example above) returns an exit code to Igor. The code is one of
the following values:

Chapter IV-10 — Advanced Programming

IV-286

0: The background procedure executed normally.

1: The background procedure wants to stop the background task.

2: The background procedure encountered an error and wants to stop the background task.

Normally the background procedure should return 0 and the background task will continue to run. If you
return a non-zero value, Igor stops the background task. You can tell Igor to terminate the background task
by returning the value 1 from the background function.

If you forget to add a return statement to your background procedure, this acts like a non-zero return value
and stops the background task.

Background Task Period
The CtrlNamedBackground operation's period keyword takes an integer parameter expressed in ticks. A
tick is approximately 1/60th of a second. Thus the timing of Igor background tasks has a nominal resolution
of 1/60th of a second.

You can override the specified period in the background task procedure by writing to the nextRunTicks
field of the WMBackgroundStruct structure. This is needed only if you want your procedure to run at irreg-
ular intervals.

The actual time between calls to the background procedure is not guaranteed. Igor runs the background
task from its outer loop, when Igor is doing nothing else. If you do something in Igor that takes a long time,
for example performing a lengthy curve fit, running a user-defined function that takes a long time, or
saving a large experiment, Igor's outer loop does not run so the background task will not run. If you do
something that causes a compilation of Igor procedures to fail, the background task is not called. On Mac-
intosh, the background task is not called while a menu is displayed or while the mouse button is pressed.

If you need your background task to continue running even if you edit other procedures in Igor, you need
to make your project an independent module. See Independent Modules on page IV-218 for details.

If you need precise timing that can not be interrupted, things get much more complicated. You need to do
your data acquisition in an Igor thread running in an independent module or in a thread created by an XOP
that you write. See ThreadSafe Functions and Multitasking on page IV-295 for details.

The shortest supported period is one tick. The minimum actual period for the background task depends on
your hardware and what your background task is doing. If you set the period too low for your background
task, interacting with Igor becomes sluggish.

It is very easy to bog your computer down using background tasks. If the background task takes a long time
to execute or if it triggers something that takes a long time (like a wave dependency formula or updating a
complex graph) then it may appear that the system is hung. It is not, but it may take longer to respond to
user actions than you are willing to wait.

Background Task Limitations
The principal limitation of Igor background tasks is that they are stopped while other operations are taking
place. Thus, although you can type commands into the command line without disrupting the background
task, when you press Return the task is stopped until execution of the command line is finished.

Background tasks do not run if procedures are in an uncompiled state. If you need your background task
to continue running even if you edit other procedures in Igor, you need to make your project an indepen-
dent module. See Independent Modules on page IV-218 for details.

On Macintosh, the background task does not run when the mouse button is pressed or when a menu is dis-
played.

Chapter IV-10 — Advanced Programming

IV-287

Background Tasks and Errors
If a background task procedure contains a bug, it will typically generate an error each time the procedure
runs. Normally an error generates an error dialog. If this happened over and over again, it would prevent
you from fixing the bug.

Igor handles such repeated errors as follows: The first time an error occurs during the execution of the back-
ground task procedure, Igor displays an error dialog. On subsequent errors, Igor prints an error message
in the history. After printing 10 such error messages, Igor stops printing messages. When you click a con-
trol, execute a command from the command line or execute a command through a menu item, the process
starts over.

If the Igor debugger is enabled and Debug on Error is turned on, Igor will break into the debugger each time
an error occurs in the background task procedure. You may have to turn Debug on Error off to give you
time to stop the background task. You can do this from within the debugger by right-clicking.

Background Tasks and Dialogs
By default, a background task created by CtrlNamedBackground continues to run while a dialog is dis-
played. You can change this behavior using the CtrlNamedBackground dialogsOK keyword.

If you allow background tasks to run while an Igor dialog is present, you should ensure that your back-
ground task does not kill anything that a dialog might depend on. It should not kill waves or variables. It
should never directly modify a window (except for a status panel) and especially should never remove
something from a window (such as a trace from a graph). Otherwise your background task may kill some-
thing that the dialog depends on which will cause a crash.

Background Task Tips
Background tasks should be designed to execute quickly. They do not run in separate threads threads and
they hang Igor’s event processing as long as they run. For maximum responsiveness, your task procedure
should take no more than a fraction of a second to run even when the period is long. If you have to perform a
lengthy computation, let the user know what is going on, perhaps via a message in a status control panel.

Background tasks should never attempt to put up dialogs or directly wait for user input. If you need to get the
attention of the user, you should design your system to include a status control panel with an area for messages
or some other change in appearance. If you need to wait for the user, you should do so by monitoring global
variables set by nonbackground code such as a button procedure in a panel.

Your task procedure should always leave the current data folder unchanged on exit.

Background Task Example #2
Here is an example that uses many of the concepts discussed above. The task prints a message in the history
area at one second intervals five times, performs a “lengthy calculation”, and then waits for the user to give
the go-ahead for another run.
The task does its own timing and consequently is set to run at the maximum rate (60 times per second). The
task procedure, MyBGTask, tests to see if one second has elapsed since the last time it printed a message. In a
real application, you might test to see if some external event has occurred.

To try the example, copy the code below to the Procedure window and execute:
BGDemo()

Function BGDemo()
DoWindow/F BGDemoPanel // bring panel to front if it exists
if(V_Flag != 0)

return 0 // panel already exists
endif

String dfSav= GetDataFolder(1)// so we can leave current DF as we found it
NewDataFolder/O/S root:Packages
NewDataFolder/O/S root:Packages:MyDemo // our variables go here

Chapter IV-10 — Advanced Programming

IV-288

// still here if no panel, create globals if needed
if(NumVarOrDefault("inited",0) == 0)

Variable/G inited= 1

Variable/G lastRunTicks= 0 // value of ticks function last time we ran
Variable/G runNumber= 0 // incremented each time we run
// message displayed in panel using SetVariable...
String/G message="Task paused. Click Start to resume."

Variable/G running=0 // when set, we do our thing
endif

SetDataFolder dfSav
NewPanel /W=(150,50,449,163)
DoWindow/C BGDemoPanel // set panel name
Button StartButton,pos={21,12},size={50,20},proc=BGStartStopProc,title="Start"
SetVariable msg,pos={21,43},size={300,17},title=" ",frame=0
SetVariable msg,limits={-Inf,Inf,1},value= root:Packages:MyDemo:message

End

Function MyBGTask(s)
STRUCT WMBackgroundStruct &s

NVAR running= root:Packages:MyDemo:running

if(running == 0)
return 0 // not running -- wait for user

endif

NVAR lastRunTicks= root:Packages:MyDemo:lastRunTicks

if((lastRunTicks+60) >= ticks)
return 0 // not time yet, wait

endif

NVAR runNumber= root:Packages:MyDemo:runNumber

runNumber += 1

printf "Hello from the background, #%d\r",runNumber

if(runNumber >= 5)
runNumber= 0
running= 0 // turn ourself off after five runs

// run again when user says to
Button StopButton,win=BGDemoPanel,rename=StartButton,title="Start"

// Simulate a long calculation after a run
String/G root:Packages:MyDemo:message="Performing long calculation. Please wait."
ControlUpdate /W=BGDemoPanel msg
DoUpdate /W=BGDemoPanel // Required on Macintosh for control to be redrawn

Variable t0= ticks
do

if (GetKeyState(0) & 32)
Print "Lengthy process aborted by Escape key"
break

endif
while(ticks < (t0+60*3)) // delay for 3 seconds

String/G root:Packages:MyDemo:message="Task paused. Click Start to resume."
endif

lastRunTicks= ticks

return 0
End

Function BGStartStopProc(ctrlName) : ButtonControl
String ctrlName

NVAR running= root:Packages:MyDemo:running
if(CmpStr(ctrlName,"StartButton") == 0)

running= 1
Button $ctrlName,rename=StopButton,title="Stop"
String/G root:Packages:MyDemo:message=""
CtrlNamedBackground MyBGTask, proc=MyBGTask, period=1, start

endif

Chapter IV-10 — Advanced Programming

IV-289

if(CmpStr(ctrlName,"StopButton") == 0)
running= 0
Button $ctrlName,rename=StartButton,title="Start"
CtrlNamedBackground MyBGTask, stop
String/G root:Packages:MyDemo:message="Task paused. Press Start to resume."

endif
End

Background Task Example #3
For another example including code that you can easily redeploy for your own project, see the Background
Task Demo experiment (choose File→Example Experiments→Programming→Background Task Demo).

Old Background Task Techniques
Originally Igor supported just one unnamed background task. This is still supported for backward compat-
ibility but new code should use CtrlNamedBackground to create and control named background tasks
instead.

The unnamed background task is designated using SetBackground, controlled using CtrlBackground and
killed using KillBackground. The BackgroundInfo operation returns information about the unnamed
background task.

The SetBackground, CtrlBackground, KillBackground and BackgroundInfo operations work only with the
unnamed background task. For named background tasks, the CtrlNamedBackground operation provides
all necessary functionality.

By default, a background task created by CtrlBackground does not run while a dialog is displayed. You can
change this behavior using the CtrlBackground dialogsOK keyword.

Automatic Parallel Processing with MultiThread
In Igor Pro 6.1 or later, intermediate level Igor programmers can make use of multiple processors to speed
up wave assignment statements in user-defined functions. To do this, simply insert the keyword Multi-
Thread in front of a normal wave assignment. For example, in a function:

Make wave1
Variable a=4
MultiThread wave1= sin(x/a)

The expression, on the righthand side of the assignment statement, is compiled as ThreadSafe even if the
host function is not.

Note: Because of the overhead of spawning threads, you should use MultiThread only when the
destination has a large number of points or the expression takes a significant amount of time to
evaluate. Otherwise, you may see a performance penalty rather than an improvement.

The assignment is automatically parceled into as many threads as there are processors, each evaluating the
righthand expression for a different output point.

The MultiThread keyword causes Igor to evaluate the expression for multiple output points simultane-
ously. Do not make any assumptions as to the order of processing and certainly do not try to use a point
from the destination wave other than the current point in the expression. For example, do not do something
like this:

wave1= wave1[p+1] - wave1[p-1] // Result will be indeterminate

Expressions like that can give indeterminate results even in the absence of threading.

Here is a simple example to try on your own machine:

Function TestMultiThread(n)
Variable n // Number of wave points

Chapter IV-10 — Advanced Programming

IV-290

Make/O/N=(n) testWave

// To prime processor data cache so comparison will be valid
testWave= 0

Variable t1,t2
Variable timerRefNum

// First, non-threaded
timerRefNum = StartMSTimer
testWave= sin(x/8)
t1= StopMSTimer(timerRefNum)

// Now, automatically threaded
timerRefNum = StartMSTimer
MultiThread testWave= sin(x/8)
t2= StopMSTimer(timerRefNum)

Variable processors = ThreadProcessorCount
Print "On a machine with",processors,"cores,MultiThread is", t1/t2,"faster"

End

Here is the output on a Mac Pro:

•TestMultiThread(100)
 On a machine with 8 cores, MultiThread is 0.059746 faster

•TestMultiThread(10000)
 On a machine with 8 cores, MultiThread is 3.4779 faster

•TestMultiThread(1000000)
 On a machine with 8 cores, MultiThread is 6.72999 faster

•TestMultiThread(10000000)
 On a machine with 8 cores, MultiThread is 8.11069 faster

The first result shows that the MultiThread keyword slowed the assignment down. This is because the
assignment involved a small number of points and MultiThread has some overhead.

The remaining results illustrate that MultiThread can provide increased speed for assignments involving
large waves.

In the last result, the speed improvement factor was greater than the number of processors. This is
explained by the fact that, once running, a ThreadSafe expression has slightly less overhead than a normal
expression.

If the right hand side involves calling user-defined functions, those functions must be ThreadSafe (see
ThreadSafe Functions on page IV-87) and must also follow these rules:

1. Do not do anything to waves that are passed as parameters that might disturb memory. For exam-
ple, do not change the number of points in the wave or change its data type or kill it or write to a
text wave.

2. Do not write to a variable that is passed by reference.

3. Note that any waves or global variables created by the function will disappear when then wave as-
signment is finished.

4. Each thread has its own private data folder tree. You can not use WAVE, NVAR or SVAR to access
objects in the main thread.

Failure to heed rule #1 will likely result in a crash.

Chapter IV-10 — Advanced Programming

IV-291

Although it is legal to use the MultiThread mechanism in a ThreadSafe function that is already running in
a preemptive thread via ThreadStart, it is not recommended and will likely result in a substantial loss of
speed.

For an example using MultiThread, open the Mandelbrot demo experiment file by choosing
“File→Example Experiments→Programming→MultiThreadMandelbrot”.

Data Folder Reference MultiThread Example
Advanced programmers can use waves containing data folder references and wave references along with
MultiThread to perform multithreaded calculations more involved than evaluating an arithmetic expres-
sion. Here we use Free Data Folders (see page IV-79) to facilitate multithreading.

In this example, we extract each of the planes of a 3D wave, perform a filtering operation on the planes, and
then finally assemble the planes into an output 3D wave. The main function, Test, executes a multithreaded
assignment statement where the expression includes a call to a subroutine named Worker.

Because MultiThread is used, multiple instances of Worker execute simultaneously on different cores. Each
instance runs in its own thread, working on a different plane. Each instance returns one filtered plane in a
wave named M_ImagePlane in a thread-specific free data folder. The use of free data folders allows each
instance of Worker to work on its own M_ImagePlane wave without creating a name conflict.

When the multithreaded assignment is finished, the main function assembles an output 3D wave by con-
catenating the filtered planes.

// Extracts a plane from the 3D input wave, filters it, and returns the
// filtered output as M_ImagePlane in a new free data folder
ThreadSafe Function/DF Worker(w3DIn, plane)

WAVE w3DIn
Variable plane

DFREF dfSav= GetDataFolderDFR()

// Create a free data folder to hold the extracted and filtered plane
DFREF dfFree= NewFreeDataFolder()
SetDataFolder dfFree

// Extract the plane from the input wave into M_ImagePlane.
// M_ImagePlane is created in the current data folder
// which is a free data folder.
ImageTransform/P=(plane) getPlane, w3DIn

// Filter the plane
WAVE wOut= M_ImagePlane
MatrixFilter/N=21 gauss,wOut

SetDataFolder dfSav

// Return a reference to the free data folder containing M_ImagePlane
return dfFree

End

Function Test()
Variable numPlanes = 50

// Create a 3D wave and fill it with data
Make/O/N=(200,200,numPlanes) src3D= (p==(2*r))*(q==(2*r))

// Create a wave to hold data folder references returned by Worker.
// /DF specifies the data type of the wave as "data folder reference".
Make/DF/N=(numPlanes) dfw

Chapter IV-10 — Advanced Programming

IV-292

Variable timerRefNum = StartMSTimer

MultiThread dfw= Worker(src3D,p)

Variable elapsedTime = StopMSTimer(timerRefNum) / 1E6

Print "Assignment statement took ", elapsedTime, " seconds"

// At this point, dfw holds data folder references to 50 free
// data folders created by Worker. Each free data folder holds the
// extracted and filtered data for one plane of the source 3D wave.

// Create an output wave named out3D by cloning the first filtered plane
DFREF df= dfw[0]
Duplicate/O df:M_ImagePlane, out3D

// Concatenate the remaining filtered planes onto out3D
Variable i
for(i=1; i<numPlanes; i+=1)

df= dfw[i] // Get a reference to the next free data folder
Concatenate {df:M_ImagePlane}, out3D

endfor

// dfw holds references to the free data folders. By killing dfw,
// we kill the last reference to the free data folders which causes
// them to be automatically deleted. Because there are no remaining
// references to the various M_ImagePlane waves, they too are
// automatically deleted.
KillWaves dfw

End

On an eight-core Mac Pro, without the MultiThread keyword above, Test printed:

 Assignment statement took 4.16909 seconds

and with MultiThread:

 Assignment statement took 0.614999 seconds

for a speed up of about 6.8 times.

Wave Reference MultiThread Example
In the preceding example, free data folders were used to hold data processed by threads. Since each free
data folder held just a single wave, the example can be simplified by using free waves instead of free data
folders. So here we perform the same threaded filtering of planes using free waves.

Because MultiThread is used, multiple instances of Worker execute simultaneously on different cores. Each
instance runs in its own thread, working on a different plane. Each instance returns one filtered plane in a
free wave named M_ImagePlane. The use of free waves allows each instance of Worker to work on its own
M_ImagePlane wave without creating a name conflict.

This version of the example relies on the fact that a wave in a free data folder becomes a free wave when
the free data folder is automatically deleted. See Free Wave Lifetime on page IV-76 for details.

ThreadSafe Function/WAVE Worker(w3DIn, plane)
WAVE w3DIn
Variable plane

DFREF dfSav= GetDataFolderDFR()

Chapter IV-10 — Advanced Programming

IV-293

// Create a free data folder and set it as the current data folder
SetDataFolder NewFreeDataFolder()

// Extract the plane from the input wave into M_ImagePlane.
// M_ImagePlane is created in the current data folder
// which is a free data folder.
ImageTransform/P=(plane) getPlane, w3DIn

// Filter the plane
WAVE wOut= M_ImagePlane
MatrixFilter/N=21 gauss,wOut

// Restore the current data folder
SetDataFolder dfSav

// Since the only reference to the free data folder created above
// was the current data folder, there are now no references it.
// Therefore, Igor has automatically deleted it.
// Since there IS a reference to the M_ImagePlane wave in the free
// data folder, M_ImagePlane is not deleted but becomes a free wave.

return wOut // Return a reference to the free M_ImagePlane wave
End

Function Test()
Variable numPlanes = 50

// Create a 3D wave and fill it with data
Make/O/N=(200,200,numPlanes) srcData= (p==(2*r))*(q==(2*r))

// Create a wave to hold data folder references returned by Worker.
// /WAVE specifies the data type of the wave as "wave reference".
Make/WAVE/N=(numPlanes) ww

Variable timerRefNum = StartMSTimer

MultiThread ww= Worker(srcData,p)

Variable elapsedTime = StopMSTimer(timerRefNum) / 1E6

Print "Assignment statement took ", elapsedTime, " seconds"

// At this point, ww holds wave references to 50 M_ImagePlane free waves
// created by Worker. Each M_ImagePlane holds the extracted and filtered
// data for one plane of the source 3D wave.

// Create an output wave named out3D by cloning the first filtered plane
WAVE w= ww[0]
Duplicate/O w, out3D

// Concatenate the remaining filtered planes onto out3D
Variable i
for(i=1;i<numPlanes;i+=1)

WAVE w= ww[i]
Concatenate {w}, out3D

endfor

// ww holds references to the free waves. By killing ww, we kill
// the last reference to the free waves which causes them to be
// automatically deleted.

Chapter IV-10 — Advanced Programming

IV-294

KillWaves ww
End

Structure Array MultiThread Example
In a preceding example, free data folders were used to hold data processed by threads. A somewhat simpler
approach is to use one or more structures to pass input data and to receive output data. The following
example uses a single structure for both input and output. An array of these structures stored in a wave
ensures that each thread works on its own data. After the calculation, the results are extracted. The net
result for this simple example is nothing more than: dataOutput = sin(p).

Structure ThreadIOData
// Input to thread
double x

// Output from thread
double out

EndStructure

Function Demo()
if (IgorVersion() < 6.36)

// This example crashes in Igor Pro 6.35 or before
// because of a bug in StructGet/StructPut
Abort "Function requires Igor Pro 6.36 or later."

endif

STRUCT ThreadIOData ioData

// Prepare input
Make/O ioDataArray // This wave will be redimensioned by StructPut
Variable i, imax=100
for(i=0; i<imax; i+=1)

ioData.x = i // Set input data
StructPut ioData, ioDataArray[i] // Pack structure into wave column

endfor

// Generate output
Make/O/N=(imax) threadOutput
MultiThread threadOutput = Worker(ioDataArray, p)

// Extract output
Make/O/N=(imax) outputData
for(i=0; i<imax; i+=1)

StructGet ioData, ioDataArray[i]
outputData[i] = ioData.out

endfor

KillWaves ioDataArray, threadOutput
End

ThreadSafe Function Worker(w, point)
WAVE w
Variable point

STRUCT ThreadIOData ioData
StructGet ioData, w[point] // Extract structure from wave column

ioData.out = sin(ioData.x) // Calculate of output data

StructPut ioData, w[point] // Pack structure into wave column

Chapter IV-10 — Advanced Programming

IV-295

// The return value from the thread worker function is accessible
// via ThreadReturnValue. It is not used in this example.
return point

End

ThreadSafe Functions and Multitasking
Experienced programmers can use ThreadSafe Functions (see page IV-87) to improve execution speed on
computers with multiple processors and to create preemptive multitasking background tasks.

In Igor Pro 6.10 or later, a much simpler method that can be used by intermediate level programmers is
available - see Automatic Parallel Processing with MultiThread on page IV-289. But to write a complex
multitasking application, you need to use the techniques described in this section.

Preemptive multitasking uses the following functions and operations:

To run a ThreadSafe function preemptively, you first create a thread group using ThreadGroupCreate and
then call ThreadStart to start your worker function. Usually you will use the same function for each thread
of a group although they can be different.

The worker function must be defined as ThreadSafe and must return a real or complex numeric result. The
return value can be obtained after the function finishes by calling ThreadReturnValue.

The worker function can take variable and wave parameters. It can not take pass-by-reference parameters
or data folder reference parameters.

Any waves you pass to the worker are accessible to both the main thread and to your preemptive thread.
Such waves are marked as being in use by a thread and Igor will refuse to perform any manipulations that
could change the size of the wave.

You can determine if any threads of a group are still running by calling ThreadGroupWait. Use zero for
milliseconds to wait to just test or provide a large value to cause the main thread to sleep until the threads
are finished. If you know the maximum time the threads should take, you can use that value so you can
print an error message or take other action if the threads don’t return in time.

When ThreadGroupWait is called, Igor updates certain internal variables including variables that track
whether a thread has finished and what result it returned. Therefore you must call ThreadGroupWait
before calling ThreadReturnValue.

Once you are finished with a given thread group, call ThreadGroupRelease.

The Igor Debugger can not be used with preemptive threads. You will need to use print statements for
debugging.

The hard part of using multithreading is devising a scheme for partitioning your data processing algo-
rithms into threads.

Thread Data Environment
When a thread is started, Igor creates a root data folder for that thread. This root data folder and any data
objects that the thread creates in it are private to the thread. This constitutes a separate data hierarchy for
each thread.

ThreadProcessorCount ThreadGroupCreate

ThreadStart ThreadGroupPutDF

ThreadGroupGetDF (deprecated) ThreadGroupGetDFR

ThreadGroupWait ThreadReturnValue

ThreadGroupRelease

Chapter IV-10 — Advanced Programming

IV-296

Data is transferred, when you request it, from the main thread to a preemptive thread and vice-versa using
input and output queues. The “currency” of these queues is the data folder, which provides considerable
flexibility for passing data to threads and for retrieving results. Each thread group has an input queue to
which the main thread may post data and an output queue from which the main thread may retrieve
results.

The terms “input“ and “output“ are relative to the preemptive thread. The main thread posts a data folder
to the input queue to send input to the preemptive thread. The preemptive thread retrieves the data folder
from the input queue. After processing, the preemptive thread may post a data folder to the output queue.
The main thread reads output from the preemptive thread by retrieving the data folder from the output
queue.

Use ThreadGroupPutDF to post data folders and ThreadGroupGetDFR to retrieve them. These are called
from both the main thread and from preemptive threads.

ThreadGroupPutDF clips the specified data folder (and everything it contains) out of the source thread's
data hierarchy and puts it in the queue. From the standpoint of the source thread, it is as if KillDataFolder
had been called. While a data folder resides in a queue, it is not accessible by any thread. See the documen-
tation for ThreadGroupPutDF for some warnings about its use.

ThreadGroupGetDFR removes the data folder from the queue and returns it, as a free data folder, to the
calling thread. Because it is a free data folder, Igor will automatically delete it when there are no more ref-
erences to it, for example, when the thread returns.

Except for waves passed to the thread worker function as parameters and the thread worker's return value,
the input and output queues are the only way for a thread to share data with the main thread. Examples
below illustrate the use of these queues.

Parallel Processing - Group-at-a-Time Method
In this example, we attempt to improve the speed of filling columns of a 2D wave with a sin function. The
traditional method is compared with parallel processing. Notice how much more complicated the multi-
threaded version, MTFillWave, is compared to the single threaded STFillWave.
ThreadSafe Function MyWorkerFunc(w,col)

WAVE w
Variable col

w[][col]= sin(x/(col+1))

return stopMSTimer(-2) // Time when we finished
End

Function MTFillWave(dest)
WAVE dest

Variable ncol= DimSize(dest,1)
Variable i,col,nthreads= ThreadProcessorCount
Variable threadGroupID= ThreadGroupCreate(nthreads)

for(col=0; col<ncol;)
for(i=0; i<nthreads; i+=1)

ThreadStart threadGroupID,i,MyWorkerFunc(dest,col)
col+=1
if(col>=ncol)

break
endif

endfor

do
Variable threadGroupStatus= ThreadGroupWait(threadGroupID,100)

while(threadGroupStatus != 0)
endfor
Variable dummy= ThreadGroupRelease(threadGroupID)

End

Function STFillWave(dest)
WAVE dest

Chapter IV-10 — Advanced Programming

IV-297

Variable ncol= DimSize(dest,1)
Variable col

for(col= 0;col<ncol;col+=1)
MyWorkerFunc(dest,col)

endfor
End

Function ThreadTest(rows)
Variable rows

Variable cols=10

make/o/n=(rows,cols) jack

Variable i

for(i=0;i<10;i+=1) // get any pending pause events out of the way
endfor

Variable ttime= stopMSTimer(-2)

Variable t0= stopMSTimer(-2)
MTFillWave(jack)
Variable t1= stopMSTimer(-2)
STFillWave(jack)
Variable t2= stopMSTimer(-2)

ttime= (stopMSTimer(-2) - ttime)*1e-6

// Times are in microseconds
printf "ST: %d, MT: %d; ",t2-t1,t1-t0
printf "speed up factor: %.3g; total time= %.3gs\r",(t2-t1)/(t1-t0),ttime

End

The empty loop above is necessary because of periodic pauses in execution when Igor checks for user
aborts. If a pause was pending, we want to get it out of the way beforehand to avoid it affecting the first
timing test.

After starting Igor Pro, there is initially some extra overhead associated with creating new threads. Conse-
quently, in the test results to follow, the first test is run twice.
Results for Mac Mini 1.66 GHz Core Duo, OS X 10.4.6:
•ThreadTest(100)
 ST: 223, MT: 1192; speed up factor: 0.187; total time= 0.00146s
•ThreadTest(100)
 ST: 211, MT: 884; speed up factor: 0.239; total time= 0.0011s
•ThreadTest(1000)
 ST: 1991, MT: 1821; speed up factor: 1.09; total time= 0.00381s
•ThreadTest(10000)
 ST: 19857, MT: 11921; speed up factor: 1.67; total time= 0.0318s
•ThreadTest(100000)
 ST: 199174, MT: 113701; speed up factor: 1.75; total time= 0.313s
•ThreadTest(1000000)
 ST: 2009948, MT: 1146113; speed up factor: 1.75; total time= 3.16s

As you can see, when there is sufficient work to be done, the speed up factor approaches the theoretical
maximum of 2 for dual processors.

Now on the same computer but booting into Windows XP Pro:
•ThreadTest(100)
 ST: 245, MT: 523; speed up factor: 0.468; total time= 0.000776s
•ThreadTest(100)
 ST: 399, MT: 247; speed up factor: 1.61; total time= 0.000655s
•ThreadTest(1000)
 ST: 3526, MT: 1148; speed up factor: 3.07; total time= 0.00468s
•ThreadTest(10000)
 ST: 34830, MT: 10467; speed up factor: 3.33; total time= 0.0453s
•ThreadTest(100000)
 ST: 350253, MT: 99298; speed up factor: 3.53; total time= 0.45s
•ThreadTest(1000000)
 ST: 2837645, MT: 1057275; speed up factor: 2.68; total time= 3.89s

Chapter IV-10 — Advanced Programming

IV-298

So, what is happening here? The speed-up factors for Windows XP are greater than for Mac OS X, but
mostly because the ST version is much slower. We do not known why the ST version runs more slowly —
the Benchmark 2.01 example experiment shows similar values for OS X vs. XP on this same computer.

Parallel Processing - Thread-at-a-Time Method
In the previous section, we dispatched a group of threads, waited for them to all finish, and then dispatched
another group of threads. Using that technique, a slow thread in the group would cause all of the group's
threads to wait.

In this section, we dispatch a thread anytime there is a free thread in the group. This technique requires Igor
Pro 6.23 or later.

The only thing that changes from the preceding example is that the MTFillWave function is replaced with
this MTFillWaveThreadAtATime function:

Function MTFillWaveThreadAtATime(dest)
WAVE dest

Variable ncol= DimSize(dest,1)
Variable col,nthreads= ThreadProcessorCount
Variable threadGroupID= ThreadGroupCreate(nthreads)

for(col=0; col<ncol; col+=1)
// Get index of a free thread - Requires Igor Pro 6.23 or later
Variable threadIndex = ThreadGroupWait(threadGroupID,-2) - 1
if (threadIndex < 0)

ThreadGroupWait(mt, 50) // Give threads a chance to run for a while
col -= 1 // Try again for the same column
continue // No free threads yet

endif
ThreadStart threadGroupID, threadIndex, MyWorkerFunc(dest,col)

endfor

// Wait for all threads to finish
do

Variable threadGroupStatus = ThreadGroupWait(threadGroupID,100)
while(threadGroupStatus != 0)

Variable dummy= ThreadGroupRelease(threadGroupID)
End

The ThreadGroupWait statement suspends the main thread for a while so that the preemptive threads get
more processor time. The parameter 50 is the number of milliseconds to wait. You should tune this for your
application.

Input/Output Queues
In this example, data folders containing a data wave and a string variable that specifies the task to be per-
formed are created and posted to the thread group's input queue. The thread worker function waits for an
input data folder to become available. It then processes the input and posts an output data folder to the
thread group's output queue from which it is retrieved by the main thread.
ThreadSafe Function MyWorkerFunc()

do
do

DFREF dfr = ThreadGroupGetDFR(0,1000)// Get free data folder from input queue
if (DataFolderRefStatus(dfr) == 0)

if(GetRTError(2)) // New in 6.20 to allow this distinction:
Print "worker closing down due to group release"

else
Print "worker thread still waiting for input queue"

endif
else

Chapter IV-10 — Advanced Programming

IV-299

break
endif

while(1)

SVAR todo = dfr:todo
WAVE jack = dfr:jack

NewDataFolder/S outDF

Duplicate jack,outw // WARNING: outw must be cleared. See WAVEClear below
String/G did= todo
if(CmpStr(todo,"sin"))

outw= sin(outw)
else

outw= cos(outw)
endif

// Clear outw so Duplicate above does not try to use it and to allow
// ThreadGroupPutDF to succeed.
WAVEClear outw

ThreadGroupPutDF 0,: // Put current data folder in output queue

KillDataFolder dfr // We are done with the input data folder
while(1)

return 0
End

Function DemoThreadQueue()
Variable i,ntries= 5,nthreads= 2

Variable/G threadGroupID = ThreadGroupCreate(nthreads)

for(i=0;i<nthreads;i+=1)
ThreadStart threadGroupID,i,MyWorkerFunc()

endfor

for(i=0;i<ntries;i+=1)
NewDataFolder/S forThread
String/G todo
if(mod(i,3) == 0)

todo= "sin"
else

todo= "cos"
endif
Make/N= 5 jack= x + gnoise(0.1)

WAVEClear jack

ThreadGroupPutDF threadGroupID,: // Send current data folder to input queue
endfor

for(i=0;i<ntries;i+=1)
do

// Get results in free data folder
DFREF dfr= ThreadGroupGetDFR(threadGroupID,1000)
if (DatafolderRefStatus(dfr) == 0)

Print "Main still waiting for worker thread results."
else

break
endif

while(1)

SVAR did = dfr:did
WAVE outw = dfr:outw

Print "task= ",did,"results= ",outw

// The next two statements are not really needed as the same action
// will happen the next time through the loop or, for the last iteration,
// when this function returns.
WAVEClear outw // Redundant because of the WAVE statement above
KillDataFolder dfr // Redundant because dfr refers to a free data folder

endfor

Chapter IV-10 — Advanced Programming

IV-300

// This terminates the MyWorkerFunc by setting an abort flag
Variable tstatus= ThreadGroupRelease(threadGroupID)
if(tstatus == -2)

Print "Thread would not quit normally, had to force kill it. Restart Igor."
endif

End

Typical output:
•DemoThreadQueue()

task= sin results=
outw[0]= {0.994567,0.660904,-0.516692,-0.996884,-0.63106}

task= cos results=
outw[0]= {0.0786631,0.709576,0.873524,0.0586175,-0.718122}

task= cos results=
outw[0]= {-0.23686,0.848603,0.871922,0.0992451,-0.856209}

task= sin results=
outw[0]= {0.999734,0.531563,-0.172071,-0.931296,-0.750942}

task= cos results=
outw[0]= {-0.166893,0.767707,0.925874,0.114511,-0.662994}

worker closing down due to group release
worker closing down due to group release

Parallel Processing With Large Datasets
In the preceding section we synthesized the input data. In the real-world, your input data would most-
likely be in an existing wave and you would have to copy it to a data folder to put into the input queue.

If your input data is very large, for example, a 3D stack of images, copying would require too much
memory. In that case, a good choice is to pass the input directly to the thread using parameters to the thread
worker function and use the output queue to return output to the main thread.

To do this you can use the Parallel Processing - Thread-at-a-Time Method and the output queue to return
results.

Preemptive Background Task
In this example, we create a single worker thread that runs while the user can do other things. A normal
cooperative named background task will retrieve results. Although the background task will sometimes be
blocked (as described in Background Tasks on page IV-285) the preemptive worker thread will always be
running or waiting for data.

Another example of this kind of multitasking can be found in the “Slow Data Acq” demo experiment ref-
erenced under More Multitasking Examples on page IV-302.

We put the code for the background tasks in an independent module (see The IndependentModule
Pragma on page IV-43) so that the user can recompile procedures, which is done automatically when a rec-
reation macro is created, without stopping the background task.

One use for a preemptive background task is when you have lengthy computations but want to continue
to do other things, such as creating graphics for publication. Although you can do anything you want while
the task runs in the experiment, if you load a different experiment, the thread will be killed.

Our “lengthy computation” is simply creating a wave of sin values but which is prolonged by code delays
of a few seconds before posting the results. The named background task checks the output queue every 10
ticks (when it is not blocked) and updates a graph with data retrieved from the queue.

Independent modules can not be defined in the built-in procedure window so paste the following code in
a new procedure window:
#pragma IndependentModule= PreemptiveExample

ThreadSafe Function MyWorkerFunc()
do

DFREF dfr = ThreadGroupGetDFR(0,inf)
if(DataFolderRefStatus(dfr) == 0)

Chapter IV-10 — Advanced Programming

IV-301

return -1 // Thread is being killed
endif

WAVE frequencies = dfr:frequencies // Array of frequencies to calculate
Variable i, n= numpnts(frequencies)

for(i=0;i<n;i+=1)
NewDataFolder/S resultsDF
Make jack= sin(frequencies[i]*x)

Variable t0= ticks
do

// waste cpu for a few seconds
while(ticks < (t0+120))

// ThreadGroupPutDF requires that no waves in the data folder be referenced
WAVEClear jack

ThreadGroupPutDF 0,: // Send current data folder to input queue
endfor

KillDataFolder dfr // We are done with the input data folder
while(1)

return 0
End

Function DisplayResults(s) // Called from cooperative background task
STRUCT WMBackgroundStruct &s

String dfSav= GetDataFolder(1)

SetDataFolder root:testdf
NVAR threadGroupID
DFREF dfr = ThreadGroupGetDFR(threadGroupID,0) // Get free data folder from queue
if(DataFolderRefStatus(dfr) != 0)

// Make free data folder a regular data folder in root:testdf
MoveDataFolder dfr, :

// Give data folder a unique name
String dfName = UniqueName("Results", 11, 0)
RenameDataFolder dfr, $dfName

WAVE jack = dfr:jack // This is the output from the thread
AppendToGraph/W=ThreadResultsGraph jack

endif

SetDataFolder dfSav
return 0

End

And put this in the main procedure window:
Function DemoPreemptiveBackgroundTask()

String dfSav= GetDataFolder(1)

NewDataFolder/O/S root:testdf // thread group ID and result datafolders go here

variable/G threadGroupID= ThreadGroupCreate(1)

ThreadStart threadGroupID,0,PreemptiveExample#MyWorkerFunc()

// MyWorkerFunc is now running and waiting for input data
// now, let's give it something to do
NewDataFolder/S tasks
Make/N=10 frequencies= 1/(10+p/2+enoise(0.2))// array of frequencies to calculate
WAVEClear frequencies

ThreadGroupPutDF threadGroupID,: // thread is now crunching away

// Results will be appended to this graph
Display /N=ThreadResultsGraph as "Thread Results"

// ...by this named task
CtrlNamedBackground ThreadResultsTask,period=10,proc=PreemptiveExample#DisplayResults,start

SetDataFolder dfSav // restore current df
End

Chapter IV-10 — Advanced Programming

IV-302

Function PostMoreFreqs()
NVAR threadGroupID = root:testdf:threadGroupID

NewDataFolder/S moretasks
Make/N=50 frequencies= 1/(15+p/2+enoise(0.2)) // array of frequencies to calculate
WAVEClear frequencies

ThreadGroupPutDF threadGroupID,: // thread continues crunching
End

Open the Data Browser and then, on the command line, execute:
DemoPreemptiveBackgroundTask()

After the action stops, send more tasks to the background thread by executing
PostMoreFreqs()

While this is running, experiment with creating graphs, using dialogs, creating functions, etc. Note that
both tasks run indefinitely.

To start over you need to stop the preemptive background task, stop the named background task, kill the
graph, and delete the data. This function, which you can paste into the main procedure window, will do it.

Function StopDemo()
NVAR threadGroupID = root:testdf:threadGroupID

// Stop preemptive thread
Variable status = ThreadGroupRelease(threadGroupID)

// Stop named background task
CtrlNamedBackground ThreadResultsTask, stop

// Kill graph
DoWindow /K ThreadResultsGraph

// Kill data
KillDataFolder root:testdf

End

More Multitasking Examples
More multitasking examples can be found in the following example experiments:

The Multithreaded LoadWave demo experiment in “Igor Pro Folder/Examples/Programming”.

The Multithreaded Mandelbrot demo experiment in “Igor Pro Folder/Examples/Programming”.

The Multiple Fits in Threads demo experiment in Igor “Pro Folder/Examples/Curve Fitting”.

The Slow Data Acq demo experiment in “Igor Pro Folder/Examples/Programming”.

The Thread-at-a-Time demo experiment in “Igor Pro Folder/Examples/Programming”.

Cursors — Moving Cursor Calls Function
Note: The following section “The Old Easy Way” is now outdated as of Igor Pro 5 (though it still

works). Use the SetWindow operation (page V-646) hook and the cursormoved event instead.
The window hook isolates handling the cursor to the graph window in which the cursor is
moving, and is no more difficult to program than the old global CursorMovedHook which is
called for cursors moving in any graph window.

The Old Easy Way
You can write a “hook function” — which must be named “CursorMovedHook” — and Igor will automat-
ically call it with one string argument containing information about the graph, trace or image, and cursor
in the following format:
GRAPH:graphName;CURSOR:<A - J>;TNAME:traceName; MODIFIERS:modifierNum;

Chapter IV-10 — Advanced Programming

IV-303

ISFREE:freeNum;POINT:xPointNumber; [YPOINT:yPointNumber;]

The CursorMovedHook function is called whenever any cursor is moved in any graph, unless Option (Mac-
intosh) or Alt (Windows) is held down.

The traceName value is the name of the graph trace or image to which it is attached or which supplies the x
(and y) values.

The modifierNum value represents the state of some of the keyboard keys summed together:
1 If Command (Macintosh) or Ctrl (Windows) is pressed.

2 If Control (Macintosh only) is pressed.

4 If Shift is pressed.

8 If Caps Lock is pressed.

The Option key (Macintosh) or Alt key (Windows) is not represented because it prevents the hook from being
called.

The YPOINT keyword and value are present only when the cursor is attached to a two-dimensional item
such as an image, contour, or waterfall plot or when the cursor is free.

If cursor is free, POINT and YPOINT values are fractional relative positions (see description in Cursor oper-
ation on page V-93). If TNAME is empty, fields POINT, ISFREE and YPOINT are not present.

This example hook function simply prints the information in the history window:
Function CursorMovedHook(info)

String info
Print info

End

Whenever any cursor on any graph is moved, this CursorMovedHook function will print something like
the following in the history area:
GRAPH:Graph0;CURSOR:A;TNAME:jack;MODIFIERS:0;ISFREE:0;POINT:6;

See Example Cursor Global User Function on page IV-304 for a more sophisticated use of this info string.

The Hard Way
It is also possible to use Igor’s dependency mechanism to cause functions to execute automatically when
the user moves cursors on a given graph. The advantage of this method is that the function(s) are specific
to the given graph.

To do this, create a data folder named WinGlobals and within that create a
data folder of the same name as the desired graph. Within that data folder
create a string variable named S_CursorAInfo or S_CursorBInfo.

Cursor Globals
If these variables exist (and if Option (Macintosh) or Alt (Windows) is not held down), then when the user
moves a cursor, Igor will set them to an informational string in the following format (all one line):
GRAPH:graphName;CURSOR:<A - J>;TNAME:traceName;MODIFIERS:modifierNum;
ISFREE:freeNum;POINT:xPointNumber;[YPOINT:yPointNumber;]

Moving cursor A, for example, will update S_CursorAInfo. If the cursor is being removed, traceName will
be zero length.

Creating the Cursor Globals
Here is code that creates the necessary global variables for the top graph:
Function CursorGlobalsForGraph()

String graphName= WinName(0,1)

Chapter IV-10 — Advanced Programming

IV-304

if(strlen(graphName))
String df= GetDataFolder(1);
NewDataFolder/O root:WinGlobals
NewDataFolder/O/S root:WinGlobals:$graphName
String/G S_CursorAInfo, S_CursorBInfo
SetDataFolder df

endif
End

And code that deletes the globals:
Function RemoveCursorGlobals()

String graphName= WinName(0,1)
if(strlen(graphName))

KillDataFolder root:WinGlobals:$graphName
endif

End

(You can arrange for RemoveCursorGlobals() to be called automatically when Graph0 is closed by setting
the “window hook function” of Graph0. See the SetWindow operation.)

Establishing a Dependency Between Cursor Globals and a User Function
For a user-defined function to be automatically called when, for example, you move the A cursor for
Graph0, you must establish a dependency involving the global WinGlobals:Graph0:S_CursorAInfo and the
user-defined function.

This example establishes a dependency between additional variables and each of the cursor info globals
involving the example user function shown in the next section (CursorMoved). This dependency updates
WinGlobals:Graph0:dependentA by CursorMoved whenever S_CursorAInfo is changed due to cursor A
being moved (and likewise for dependentB and S_CursorBInfo):
Function CursorDependencyForGraph()

String graphName= WinName(0,1)
if(strlen(graphName))

String df= GetDataFolder(1);
NewDataFolder/O root:WinGlobals
NewDataFolder/O/S root:WinGlobals:$graphName
String/G S_CursorAInfo, S_CursorBInfo
Variable/G dependentA
SetFormula dependentA, "CursorMoved(S_CursorAInfo, 0)"
Variable/G dependentB
SetFormula dependentB,"CursorMoved(S_CursorBInfo, 1)"
SetDataFolder df

endif
End

Example Cursor Global User Function
The example user function takes two arguments. Yours must have at least one: the cursor info string that
Igor automatically updates when the cursor is moved.

Inside the user function, you can parse the cursor info parameter with the StringByKey (page V-759) and
NumberByKey (page V-521) functions. You can obtain additional information about the cursor using the
usual routines such as hcsr and vcsr.

In almost all cases, the top graph will be the one referenced by the info string. However, it is possible to
write a user function that moves the cursors and then brings a different graph to the top before your depen-
dency fires. Therefore it is possible (though unlikely) that calling a routine like hcsr could generate an error
if you don’t first check that the top graph is the one referenced in the info string. (You can use DoWindow/F
graphName to ensure that the graph is top-most.)

Chapter IV-10 — Advanced Programming

IV-305

This simple example prints to the history area the value of a five-point average around the new cursor posi-
tion whenever the cursor moves:
Function CursorMoved(info, isB)

String info
Variable isB // 0 if A cursor, nonzero if B cursor

Variable result= NaN // error result
// Check that the top graph is the one in the info string.
String topGraph= WinName(0,1)
String graphName= StringByKey("GRAPH", info)
if(CmpStr(graphName, topGraph) == 0)

// If the cursor is being turned off
// the trace name will be zero length.
String tName= StringByKey("TNAME", info)
if(strlen(tName)) // cursor still on

String cn
Variable xVal
if(isB)

xVal= hcsr(B)
cn= "Cursor B"

else
xVal= hcsr(A)
cn= "Cursor A"

endif
// compute the local 5-point mean
WAVE w= TraceNameToWaveRef(graphName, tName)
Variable pointNum= NumberByKey("POINT",info)
Variable x1= pnt2x(w,pointNum-2)
Variable x2= pnt2x(w,pointNum+2)
result= mean(w,x1,x2)
Print cn+" on "+tName+" moved to x= ",xVal,"mean= ",result

endif
endif
return result

End

The Result
Whenever either cursor on Graph0 is moved, the CursorMoved function will print something like the fol-
lowing in the history area:
 Cursor A on wave0#1 moved to x= 33 mean= 0.0239056

Profiling Igor Procedures
You can find bottlenecks in your procedures using profiling.

Profiling is supported by the FunctionProfiling.ipf file. To use it, add this to your procedures:

#include <FunctionProfiling> // Requires Igor Pro 6.23 or later

Then choose Windows->Procedures->FunctionProfiling.ipf and read the instructions in the file.

Chapter IV-10 — Advanced Programming

IV-306

Volume V Reference

Table of Contents
Built-In Operations by Category..1

Graphs.. 1
Contour and Image Plots .. 1
Tables ... 1
Layouts ... 1
Subwindows ... 2
Other Windows .. 2
All Windows ... 2
Wave Operations.. 2
Analysis ... 2
Matrix Operations .. 3
Analysis of Functions .. 3
Signal Processing.. 3
Image Analysis ... 3
Statistics ... 3
Geometry ... 4
Drawing... 4
Programming & Utilities... 4
Files & Paths.. 4
Data Folders .. 5
Movies & Sound ... 5
Controls & Cursors .. 5
FIFOs .. 5
Printing .. 5

Built-In Functions by Category ..6
Numbers .. 6
Trig ... 6
Exponential ... 6
Complex... 6
Rounding... 6
Conversion .. 6
Time and Date... 6
Matrix Analysis .. 6
Wave Analysis .. 7
About Waves... 7
Special .. 7
Statistics ... 9
Windows.. 9
Strings .. 10
Names .. 10
Lists .. 10
Programming.. 10
Data Folders .. 11
I/O (files, paths, and PICTs).. 11

Built-In Keywords ..12
Procedure Declarations ... 12
Procedure Subtypes ... 12
Object References ... 12

Flow Control ... 12
Other Programming Keywords ... 12

Built-in Structures ..13
Hook Functions...13
Alphabetic Listing of Functions, Operations and Keywords14

Igor Reference

V-1

Igor Reference
This volume contains detailed information about Igor Pro’s built-in operations, functions, and keywords.
They are listed alphabetically after the category sections that follow.
External operations (XOPs) and external functions (XFUNCs) are not covered here. For information about
them, use the Command Help tab of the Igor Help Browser.

Built-In Operations by Category
Note: Some operations may appear in more than one category.

Graphs

Contour and Image Plots

Tables

Layouts

AppendText AppendToGraph AppendToLayout CheckDisplayed
ColorScale ColorTab2Wave ControlBar Cursor
DefaultFont DefineGuide DelayUpdate Display
DoUpdate DoWindow ErrorBars GetAxis
GetMarquee GetSelection GetWindow GraphNormal
GraphWaveDraw GraphWaveEdit HideInfo HideTools
KillFreeAxis KillWindow Label Legend
ModifyFreeAxis ModifyGraph ModifyWaterfall MoveSubwindow
MoveWindow NewFreeAxis NewWaterfall PauseUpdate
PrintGraphs RemoveFromGraph RenameWindow ReorderImages
ReorderTraces ReplaceText ReplaceWave ResumeUpdate
SaveGraphCopy SetActiveSubwindow SetAxis SetMarquee
SetWindow ShowInfo ShowTools StackWindows
Tag TextBox TileWindows

AppendImage AppendMatrixContour AppendToLayout AppendXYZContour
CheckDisplayed ColorScale ColorTab2Wave DefineGuide
DoUpdate DoWindow HideTools ImageLoad
ImageSave KillWindow ModifyContour ModifyImage
MoveSubwindow NewImage PauseUpdate RemoveContour
RemoveImage ReplaceWave SetActiveSubwindow SetWindow
ShowTools Tag TileWindows

AppendToLayout AppendToTable CheckDisplayed DelayUpdate
DoUpdate DoWindow Edit GetSelection
GetWindow KillWindow ModifyTable MoveWindow
PauseUpdate PrintTable RemoveFromTable RenameWindow
ResumeUpdate SaveTableCopy SetWindow StackWindows
TileWindows

AppendLayoutObject AppendText AppendToLayout DefaultFont
DelayUpdate DoUpdate DoWindow GetMarquee
GetSelection GetWindow HideTools KillWindow

Igor Reference

V-2

Subwindows

Other Windows

All Windows

Wave Operations

Analysis

Layout Legend ModifyLayout MoveWindow
NewLayout PauseUpdate PrintLayout See Also
RemoveLayoutObjects RenameWindow ReplaceText ResumeUpdate
SetMarquee SetWindow ShowTools Stack
StackWindows TextBox Tile TileWindows

DefineGuide GetMarquee KillWindow MoveSubwindow
RenameWindow SetActiveSubwindow SetMarquee

CloseProc DisplayProcedure DoWindow GetSelection
GetWindow HideProcedures HideTools KillWindow
ModifyPanel MoveWindow NewNotebook NewPanel
Notebook NotebookAction OpenNotebook PrintNotebook
RenameWindow SaveNotebook SetWindow ShowTools
StackWindows TileWindows

Append AutoPositionWindow DoWindow GetSelection
GetUserData GetWindow KillWindow Modify
MoveWindow Remove RenameWindow SetWindow
StackWindows TileWindows

AddMovieAudio Append AppendToGraph AppendToTable
CheckDisplayed ColorTab2Wave Concatenate CopyScales
DeletePoints Display Duplicate Edit
Extract FIFO2Wave FindSequence FindValue
GraphWaveDraw GraphWaveEdit InsertPoints KillWaves
LoadData LoadWave Make MoveWave
Note PlaySound Redimension Remove
RemoveFromGraph RemoveFromTable Rename ReplaceWave
Reverse Rotate Save SetDimLabel
SetScale SetWaveLock WAVEClear WaveStats
wfprintf

APMath BoundingBall Convolve Correlate
ConvexHull Cross CurveFit CWT
Differentiate DSPDetrend DSPPeriodogram DWT
EdgeStats FastOp FFT FilterFIR
FilterIIR FindLevel FindLevels FindPeak
FindPointsInPoly FindRoots FindValue FuncFit
FuncFitMD FastGaussTransform Hanning HilbertTransform
Histogram IFFT IndexSort Integrate

Igor Reference

V-3

Matrix Operations

Analysis of Functions

Signal Processing

Image Analysis

Statistics

Integrate1D IntegrateODE Interp3DPath Interpolate3D
Loess LombPeriodogram MakeIndex NeuralNetworkRun
NeuralNetworkTrain Optimize PCA PrimeFactors
Project PulseStats RatioFromNumber Resample
Smooth SmoothCustom Sort SphericalInterpolate
SphericalTriangulate Triangulate3D Unwrap WaveMeanStdv
WaveStats WaveTransform WignerTransform WindowFunction

Concatenate Extract FFT IFFT
ImageFilter ImageFromXYZ Loess MatrixConvolve
MatrixCorr MatrixEigenV MatrixFilter MatrixGaussJ
MatrixInverse MatrixLinearSolve MatrixLinearSolveTD MatrixLLS
MatrixLUBkSub MatrixLUD MatrixMultiply MatrixOp
MatrixSchur MatrixSolve MatrixSVBkSub MatrixSVD
MatrixTranspose Reverse WaveTransform

FindRoots Integrate1D IntegrateODE Optimize

Convolve Correlate CWT DSPDetrend
DSPPeriodogram DWT EdgeStats FFT
FilterFIR FilterIIR FindLevel FindLevels
FindPeak Hanning HilbertTransform IFFT
ImageWindow LinearFeedbackShiftRegister LombPeriodogram PulseStats
Resample Rotate SmoothCustom Unwrap
WignerTransform WindowFunction

ColorScale ColorTab2Wave DWT ImageAnalyzeParticles
ImageBlend ImageBoundaryToMask ImageEdgeDetection ImageFileInfo
ImageFilter ImageFocus ImageFromXYZ ImageGenerateROIMask
ImageHistModification ImageHistogram ImageInfo ImageInterpolate
ImageLineProfile ImageLoad ImageMorphology ImageNameList
ImageNameToWaveRef ImageRegistration ImageRemoveBackground ImageRestore
ImageRotate ImageSave ImageSeedFill ImageSnake
ImageStats ImageThreshold ImageTransform ImageUnwrapPhase
ImageWindow Loess MatrixFilter

EdgeStats FPClustering Histogram ImageHistModification
ImageHistogram ImageStats KMeans PCA
PulseStats SetRandomSeed StatsAngularDistanceTest StatsANOVA1Test
StatsANOVA2NRTest StatsANOVA2RMTest StatsANOVA2Test StatsChiTest
StatsCircularCorrelationTest StatsCircularMeans StatsCircularMoments StatsCircularTwoSampleTest

Igor Reference

V-4

Geometry

Drawing

Programming & Utilities

Files & Paths

StatsCochranTest StatsContingencyTable StatsDIPTest StatsDunnettTest
StatsFriedmanTest StatsFTest StatsHodgesAjneTest StatsJBTest
StatsKendallTauTest StatsKSTest StatsKWTest StatsLinearCorrelationTest
StatsLinearRegression StatsMultiCorrelationTest StatsNPMCTest StatsNPNominalSRTest
StatsQuantiles StatsRankCorrelationTest StatsResample StatsSample
StatsScheffeTest StatsSignTest StatsSRTest StatsTTest
StatsTukeyTest StatsVariancesTest StatsWatsonUSquaredTest StatsWatsonWilliamsTest
StatsWheelerWatsonTest StatsWilcoxonRankTest StatsWRCorrelationTest WaveMeanStdv
WaveStats

BoundingBall ConvexHull FindPointsInPoly Interp3DPath
Interpolate3D Project SphericalInterpolate SphericalTriangulate
Triangulate3D

DrawAction DrawArc DrawBezier DrawLine
DrawOval DrawPICT DrawPoly DrawRect
DrawRRect DrawText GraphNormal GraphWaveDraw
GraphWaveEdit HideTools SetDashPattern SetDrawEnv
SetDrawLayer ShowTools ToolsGrid

Abort BackgroundInfo Beep BuildMenu
ChooseColor CloseProc CtrlBackground CtrlNamedBackground
DefaultGUIFont DefaultGUIControls Debugger DebuggerOptions
DelayUpdate DisplayHelpTopic DisplayProcedure DoAlert
DoIgorMenu DoUpdate DoXOPIdle Execute
Execute/P ExecuteScriptText ExperimentModified GetLastUserMenuInfo
GetMouse Grep HideIgorMenus HideProcedures
IgorVersion KillBackground KillStrings KillVariables
LoadPackagePreferences MarkPerfTestTime MeasureStyledText MoveString
MoveVariable MoveWave ParseOperationTemplate PauseForUser
PauseUpdate Preferences PrintSettings PutScrapText
Quit Rename ResumeUpdate SavePackagePreferences
SetBackground SetFormula SetIgorHook SetIgorMenuMode
SetIgorOption SetProcessSleep SetRandomSeed SetWaveLock
ShowIgorMenus Silent Sleep Slow
SplitString sprintf sscanf String
StructGet StructPut ThreadGroupPutDF ThreadStart
ToCommandLine Variable WAVEClear

BrowseURL Close CopyFile CopyFolder
CreateAliasShortcut DeleteFile DeleteFolder FBinRead
FBinWrite fprintf FReadLine FSetPos

Igor Reference

V-5

Data Folders

Movies & Sound

Controls & Cursors

FIFOs

Printing

AdoptFiles FStatus FTPCreateDirectory FTPDelete
FTPDownload FTPUpload GetFileFolderInfo Grep
ImageFileInfo ImageLoad ImageSave KillPath
KillPICTs KillWaves LoadData LoadPICT
LoadWave MoveFile MoveFolder NewNotebook
NewPath Open OpenNotebook OpenProc
PathInfo ReadVariables RemovePath RenamePath
RenamePICT Save SaveData SaveExperiment
SaveGraphCopy SaveNotebook SavePICT SaveTableCopy
SetFileFolderInfo wfprintf

cd Dir DuplicateDataFolder KillDataFolder
MoveDataFolder MoveVariable MoveWave NewDataFolder
pwd RenameDataFolder ReplaceWave root
SetDataFolder

AddMovieAudio AddMovieFrame Beep CloseMovie
ImageFileInfo NewMovie PlayMovie PlayMovieAction
PlaySnd PlaySound SoundInRecord SoundInSet
SoundInStartChart SoundInStatus SoundInStopChart

Button Chart CheckBox ControlBar
ControlInfo ControlUpdate Cursor CustomControl
DefaultGUIFont DefaultGUIControls GetUserData GroupBox
HideInfo HideTools KillControl ListBox
ListBoxControl ModifyControl ModifyControlList NewPanel
popup PopupContextualMenu PopupMenu PopupMenuControl
SetVariable ShowInfo ShowTools Slider
TabControl TitleBox ValDisplay

AddFIFOData AddFIFOVectData Chart ControlInfo
CtrlFIFO FIFO2Wave FIFOStatus KillFIFO
NewFIFO NewFIFOChan SoundInStartChart

Print printf PrintGraphs PrintLayout
PrintNotebook PrintSettings PrintTable sprintf
wfprintf

Igor Reference

V-6

Built-In Functions by Category
Note: some functions may appear in more than one category.

Numbers

Trig

Exponential

Complex

Rounding

Conversion

Time and Date

Matrix Analysis

e Inf NaN numtype
Pi VariableList

acos asin atan atan2
cos cot csc sawtooth
sec sin sinc sqrt
tan

acosh alog asinh atanh
cosh coth cpowi exp
ln log sinh tanh

cabs cequal cmplx conj
cpowi imag magsqr p2rect
r2polar real

abs cabs ceil floor
limit max min mod
round sign trunc

char2num cmplx date2secs imag
LowerStr magsqr num2char num2istr
num2str p2rect pnt2x r2polar
real Secs2Date Secs2Time str2num
UpperStr x2pnt

CreationDate date dateToJulian date2secs
DateTime JulianToDate modDate Secs2Date
Secs2Time startMSTimer stopMSTimer ticks
time

MatrixDet MatrixDot MatrixRank MatrixTrace

Igor Reference

V-7

Wave Analysis

About Waves

Special

area areaXY BinarySearch BinarySearchInterp
ContourZ FakeData faverage faverageXY
interp Interp2D Interp3D mean
p poly poly2D PolygonArea
q r s sum
t Variance x y
z

BinarySearch BinarySearchInterp ContourInfo ContourNameToWaveRef
ContourZ CreationDate CsrInfo CsrWave
CsrWaveRef CsrXWave CsrXWaveRef deltax
DimDelta DimOffset DimSize EqualWaves
exists FindDimLabel GetDimLabel GetWavesDataFolder
GetWavesDataFolderDFR hcsr ImageInfo ImageNameToWaveRef
leftx modDate NameOfWave NewFreeWave
note numpnts p pcsr
pnt2x q qcsr r
rightx s t TagVal
TagWaveRef TraceInfo TraceNameToWaveRef WaveCRC
WaveDims WaveExists WaveInfo WaveList
WaveName WaveRefIndexed WaveRefsEqual WaveType
WaveUnits x x2pnt xcsr
XWaveName XWaveRefFromTrace y z
zcsr

airyA airyAD airyB airyBD
Besseli Besselj Besselk Bessely
bessI bessJ bessK bessY
beta betai binomial binomialln
binomialNoise chebyshev chebyshevU dawson
digamma ei enoise erf
erfc erfcw expInt expnoise
factorial fresnelCos fresnelCS fresnelSin
gamma gammaInc gammaNoise gammln
gammp gammq Gauss Gauss1D
Gauss2D gcd gnoise hermite
hermiteGauss hyperG0F1 hyperG1F1 hyperG2F1
hyperGNoise hyperGPFQ inverseErf inverseErfc
laguerre laguerreA laguerreGauss legendreA
logNormalNoise lorentzianNoise MandelbrotPoint MarcumQ

Igor Reference

V-8

poissonNoise poly poly2D sphericalBessJ
sphericalBessJD sphericalBessY sphericalBessYD sphericalHarmonics
sqrt ZernikeR

Igor Reference

V-9

Statistics

Windows

binomialln binomialNoise enoise erf
erfc expnoise faverage faverageXY
gamma gammaInc gammaNoise gammln
gammp gammq gnoise inverseErf
inverseErfc lorentzianNoise logNormalNoise mean
max min norm poissonNoise
StatsCorrelation StatsBetaCDF StatsBetaPDF StatsBinomialCDF
StatsBinomialPDF StatsCauchyCDF StatsCauchyPDF StatsChiCDF
StatsChiPDF StatsCMSSDCDF StatsCorrelation StatsDExpCDF
StatsDExpPDF StatsErlangCDF StatsErlangPDF StatsErrorPDF
StatsEValueCDF StatsEValuePDF StatsExpCDF StatsExpPDF
StatsFCDF StatsFPDF StatsFriedmanCDF StatsGammaCDF
StatsGammaPDF StatsGeometricCDF StatsGeometricPDF StatsHyperGCDF
StatsHyperGPDF StatsInvBetaCDF StatsInvBinomialCDF StatsInvCauchyCDF
StatsInvChiCDF StatsInvCMSSDCDF StatsInvDExpCDF StatsInvEValueCDF
StatsInvExpCDF StatsInvFCDF StatsInvFriedmanCDF StatsInvGammaCDF
StatsInvGeometricCDF StatsInvKuiperCDF StatsInvLogisticCDF StatsInvLogNormalCDF
StatsInvMaxwellCDF StatsInvMooreCDF StatsInvNBinomialCDF StatsInvNCChiCDF
StatsInvNCFCDF StatsInvNormalCDF StatsInvParetoCDF StatsInvPoissonCDF
StatsInvPowerCDF StatsInvQCDF StatsInvQpCDF StatsInvRayleighCDF
StatsInvRectangularCDF StatsInvSpearmanCDF StatsInvStudentCDF StatsInvTopDownCDF
StatsInvTriangularCDF StatsInvUSquaredCDF StatsInvVonMisesCDF StatsInvWeibullCDF
StatsKuiperCDF StatsLogisticCDF StatsLogisticPDF StatsLogNormalCDF
StatsLogNormalPDF StatsMaxwellCDF StatsMaxwellPDF StatsMedian
StatsMooreCDF StatsNBinomialCDF StatsNBinomialPDF StatsNCChiCDF
StatsNCChiPDF StatsNCFCDF StatsNCFPDF StatsNCTCDF
StatsNCTPDF StatsNormalCDF StatsNormalPDF StatsParetoCDF
StatsParetoPDF StatsPermute StatsPoissonCDF StatsPoissonPDF
StatsPowerCDF StatsPowerNoise StatsPowerPDF StatsQCDF
StatsQpCDF StatsRayleighCDF StatsRayleighPDF StatsRectangularCDF
StatsRectangularPDF StatsRunsCDF StatsSpearmanRhoCDF StatsStudentCDF
StatsStudentPDF StatsTopDownCDF StatsTriangularCDF StatsTriangularPDF
StatsTrimmedMean StatsUSquaredCDF StatsVonMisesCDF StatsVonMisesPDF
StatsWaldCDF StatsWaldPDF StatsWeibullCDF StatsWeibullPDF
StudentA StudentT sum Variance
WaveMax WaveMin wnoise

AnnotationInfo AnnotationList AxisInfo AxisList
AxisValFromPixel ChildWindowList ContourInfo CsrInfo
CsrWave CsrXWave GuideInfo GuideNameList
hcsr ImageInfo LayoutInfo pcsr
PixelFromAxisVal ProcedureText qcsr SpecialCharacterInfo

V-10

Strings

Names

Lists

Programming

SpecialCharacterList TagVal TraceInfo vcsr
WinList WinName WinRecreation WinType
xcsr XWaveName zcsr

AddListItem char2num cmpstr FontSizeHeight
FontSizeStringWidth GrepList GrepString IndexedDir
IndexedFile LowerStr num2char num2istr
num2str PadString PossiblyQuoteName RemoveEnding
RemoveFromList RemoveListItem ReplaceStringByKey SelectString
str2num StringByKey StringCRC StringFromList
StringList StringMatch strlen strsearch
TextFile UnPadString UpperStr URLDecode
URLEncode WhichListItem

CheckName CleanupName ContourNameList ContourNameToWaveRef
ControlNameList CTabList FontList FunctionList
GetDefaultFont GetIndependentModuleName GetIndexedObjName GetWavesDataFolder
GetWavesDataFolderDFR ImageNameList ImageNameToWaveRef IndependentModuleList
IndexedDir IndexedFile MacroList NameOfWave
StringList TraceFromPixel TraceNameList TraceNameToWaveRef
UniqueName VariableList WaveList WaveName
WinList WinName XWaveName

AnnotationList AxisList ChildWindowList ContourNameList
ControlNameList CountObjects CountObjectsDFR DataFolderDir
FindListItem FontList FunctionInfo FunctionList
GetIndexedObjName GetWindow GuideNameList ImageNameList
IndependentModuleList ItemsInList ListMatch MacroList
NumberByKey OperationList PathList PICTList
RemoveByKey RemoveFromList RemoveListItem ReplaceNumberByKey
ReplaceStringByKey SortList StringByKey StringFromList
StringList TableInfo TraceNameList VariableList
WaveList WaveRefIndexed WhichListItem WinList

CaptureHistory CaptureHistoryStart ControlNameList DDEExecute
DDEInitiate DDEPokeString DDEPokeWave DDERequestString
DDERequestWave DDEStatus DDETerminate exists
FakeData FuncRefInfo FunctionInfo GetDefaultFont
GetDefaultFontSize GetDefaultFontStyle GetErrMessage GetFormula
GetKeyState GetRTError GetRTErrMessage GetRTLocation
GetRTLocInfo GetRTStackInfo GetScrapText GuideInfo
GuideNameList Hash i IgorInfo

V-11

Data Folders

I/O (files, paths, and PICTs)

ilim j jlim NameOfWave
numtype NumVarOrDefault NVAR_Exists ParamIsDefault
PICTInfo PixelFromAxisVal ProcedureText ScreenResolution
SelectNumber SelectString SpecialDirPath startMSTimer
stopMSTimer StringCRC StrVarOrDefault SVAR_Exists
TableInfo TagVal ThreadGroupCreate ThreadGroupGetDF
ThreadGroupGetDFR ThreadGroupRelease ThreadGroupWait ThreadProcessorCount
ThreadReturnValue WaveCRC WinType

CountObjects DataFolderDir DataFolderExists DataFolderRefsEqual
DataFolderRefStatus GetDataFolder GetDataFolderDFR GetIndexedObjName
GetWavesDataFolder GetWavesDataFolderDFR NewFreeDataFolder

FetchURL FunctionPath IndexedDir IndexedFile
ParseFilePath PathList PICTInfo PICTList
SpecialDirPath TextFile URLDecode URLEncode

V-12

Built-In Keywords
Procedure Declarations

Procedure Subtypes

Object References

Flow Control

Other Programming Keywords

End EndMacro EndStructure Function
Macro Picture Proc Structure
Window

ButtonControl CheckBoxControl CursorStyle FitFunc
Graph GraphMarquee GraphStyle GridStyle
Layout LayoutMarquee LayoutStyle ListBoxControl
Panel PopupMenuControl SetVariableControl Table
TableStyle

DFREF FUNCREF NVAR STRUCT
SVAR WAVE

AbortOnRTE AbortOnValue break catch
continue default do-while endtry
for-endfor if-elseif-endif if-endif return
strswitch-case-endswitch switch-case-endswitch try-catch-endtry

#define #if-#elif-#endif #if-#endif #ifdef-#endif
#ifndef-#endif #include #pragma #undef
Constant DoPrompt GalleryGlobal hide
IgorVersion IndependentModule Menu ModuleName
MultiThread Override popup ProcGlobal
Prompt root rtGlobals Static
Strconstant String Submenu ThreadSafe
Variable version

V-13

Built-in Structures

Hook Functions
See Chapter IV-10, Advanced Programming, User-Defined Hook Functions on page IV-257.

Point Rect RGBColor WMAxisHookStruct
WMBackgroundStruct WMButtonAction WMCheckboxAction WMCustomControlAction
WMFitInfoStruct WMGizmoHookStruct WMListboxAction WMMarkerHookStruct
WMPopupAction WMSetVariableAction WMSliderAction WMTabControlAction
WMWinHookStruct

AfterCompiledHook AfterFileOpenHook AfterMDIFrameSizedHook AfterWindowCreatedHook
BeforeDebuggerOpensHook BeforeExperimentSaveHook BeforeFileOpenHook IgorBeforeNewHook
IgorBeforeQuitHook IgorMenuHook IgorQuitHook IgorStartOrNewHook

V-14

Alphabetic Listing of Functions, Operations and Keywords
This section alphabetically lists all built-in functions, operations and keywords. Much of this information is also
accessible online in the Command Help tab of the Igor Help Browser.

External operations (XOPs) and external functions (XFUNCs) are not covered here. For information about them, use
the Command Help tab of the Igor Help Browser and the XOP help file in the same folder as the XOP file.

Reference Syntax Guide
In the descriptions of functions and operations that follow, italics indicate parameters for which you can supply
numeric or string expressions. Nonitalic parameters are to be entered literally as they appear. Commas, slashes,
braces and parentheses in these descriptions are always literals. Bold brackets may also be literals; they are used to
specify point ranges or indices (the description will make this clear).

Nonbold brackets surround optional flags or parameters.

Ellipses (…) indicate that the preceding element may be repeated a number of times. The exact number of
repetitions varies, and should be found in the description.

Italicized parameters represent values you supply. Italic words ending with “Name” are names (wave names, for
example), and those ending with “Str” (and the words “string” or “str”) are strings. Some Igor functions can take an
empty string ("", no space between the quotation marks) as a parameter. Italic words ending with “Spec” (meaning
“specification”) are usually further defined in the description. If none of these endings are employed, the italic word
is a numeric expression, such as a literal number, the name of a variable or function, or some valid combination.

Strings and names are different, but you can use a string where a name is expected using “string substitution”:
precede a string expression with the $ operator. See String Substitution Using $ on page IV-15.

A syntax description may span several lines, but the actual command you create must occupy a single line. Igor has
no line continuation character like FORTRAN programs or Unix command shells.

Many operations have optional “flags”. Flags that accept a value (such as the Make operation’s /N=n flag)
sometimes require additional parentheses. For example:
Make/N=1 aNewWave

is acceptable because here n is the literal “1”. To use a numeric expression for n, parentheses are needed:
Make/N=(numberOfPoints) aNewWave // error if no parentheses!

And, yes, the use of just one variable constitutes an “expression”!

Some operations have multiple forms. The syntax for each is shown on a separate line.

For more about using functions, operations and keywords, see Chapter IV-1, Working with Commands, Chapter
IV-2, Programming Overview, and Chapter IV-10, Advanced Programming.

#define

V-15

#define
#define symbol
The #define statement is a conditional compilation directive that defines a symbol for use only with #ifdef
or #ifndef expressions. #undef removes the definition.

Details
The defined symbol exists only in the file where it is defined; the only exception is in the main procedure
window where the scope covers all other procedures except independent modules. See Conditional
Compilation on page IV-90 for information on defining a global symbol.
#define cannot be combined inline with other conditional compilation directives.

See Also
The #undef, #ifdef-#endif, and #ifndef-#endif statements.
Conditional Compilation on page IV-90.

#if-#elif-#endif
#if expression1

<TRUE part 1>
#elif expression2

<TRUE part 2>
[…]
[#else

<FALSE part>]
#endif
In a #if-#elif-#endif conditional compilation statement, when an expression evaluates as TRUE (absolute value >
0.5), then only code corresponding to the TRUE part of that expression is compiled, and then the conditional
statement is exited. If all expressions evaluate as FALSE (zero) then FALSE part is compiled when present.

Details
Conditional compiler directives must be either entirely outside or inside function definitions; they cannot
straddle a function fragment. Conditionals cannot be used within Macros.

See Also
Conditional Compilation on page IV-90 for more usage details.

#if-#endif
#if expression

<TRUE part>
[#else

<FALSE part>]
#endif
A #if-#endif conditional compilation statement evaluates expression. If expression is TRUE (absolute value >
0.5) then the code in TRUE part is compiled, or if FALSE (zero) then the optional FALSE part is compiled.

Details
Conditional compiler directives must be either entirely outside or inside function definitions; they cannot
straddle a function fragment. Conditionals cannot be used within Macros.

See Also
Conditional Compilation on page IV-90 for more usage details.

#ifdef-#endif

V-16

#ifdef-#endif
#ifdef symbol

<TRUE part>
[#else

<FALSE part>]
#endif
A #ifdef-#endif conditional compilation statement evaluates symbol. When symbol is defined the code in
TRUE part is compiled, or if undefined then the optional FALSE part is compiled.

Details
Conditional compiler directives must be either entirely outside or inside function definitions; they cannot
straddle a function fragment. Conditionals cannot be used within Macros.
symbol must be defined before the conditional with #define.

See Also
The #define statement and Conditional Compilation on page IV-90 for more usage details.

#ifndef-#endif
#ifndef symbol

<TRUE part>
[#else

<FALSE part>]
#endif
An #ifndef-#endif conditional compilation statement evaluates symbol. When symbol is undefined the code
in TRUE part is compiled, or if defined then the optional FALSE part is compiled.

Details
Conditional compiler directives must be either entirely outside or inside function definitions; they cannot
straddle a function fragment. Conditionals cannot be used within Macros.
symbol must be defined before the conditional with #define.

See Also
The #define statement and Conditional Compilation on page IV-90 for more usage details.

#include
#include "file spec" or <file spec>
A #include statement in a procedure file automatically opens another procedure file. You should use
#include in any procedure file that you write if it requires that another procedure file be open. A #include
statement must always appear flush against the left margin in a procedure window.

Parameters
file spec is the procedure file name, which can incorporate a full or partial path. The form used depends of
the procedure file location: <file spec> is in "Igor Pro Folder/WaveMetrics Procedures” and “file spec” is in
"Igor Pro Folder/User Procedures" or "Igor Pro User Files/User Procedures".

See Also
The Include Statement on page IV-149 for usage details.
Igor Pro User Files on page II-46.

#pragma
#pragma [rtGlobals = 0, 1, or 2][IgorVersion = versNum]

 [version = versNum][ModuleName = name]
 [IndependentModule = name]

#pragma introduces a compiler directive, which is a message to the Igor procedure compiler. A #pragma
statement must always appear flush against the left margin in a procedure window.
Igor ignores unknown pragmas such as pragmas introduced in later versions of the program.

#undef

V-17

Currently Igor supports the following pragmas:
#pragma rtGlobals = value
#pragma version = versionNumber
#pragma IgorVersion = versionNumber
#pragma hide = value
#pragma ModuleName = name
#pragma IndependentModule = name

See Also
Pragmas on page IV-40
The rtGlobals Pragma on page IV-41
The version Pragma on page IV-42
The IgorVersion Pragma on page IV-42
The hide Pragma on page IV-43
The ModuleName Pragma on page IV-43
The IndependentModule Pragma on page IV-43

#undef
#undef symbol
A #undef statement removes a nonglobal symbol created previously by #define. See Conditional
Compilation on page IV-90 for information on undefining a global symbol.

See Also
The #define statement and Conditional Compilation on page IV-90 for more usage details.

Abort
Abort [errorMessageStr]
The Abort operation aborts procedure execution.

Parameters
The optional errorMessageStr is a string expression, which, if present, specifies the message to be displayed
in the error alert.

Details
Abort provides a way for a procedure to abort execution when it runs into an error condition.

See Also
Aborting Functions on page IV-93 and Aborting Macros on page IV-107. The DoAlert operation.

AbortOnRTE
AbortOnRTE
The AbortOnRTE flow control keyword raises an abort with a runtime error. AbortOnRTE should be used
after an operation that might give rise to a runtime error. It has very low overhead and should not
significantly slow program execution.

Details
In terms of programming style, you should consider using AbortOnRTE (preceded by a semicolon) on the
same line as the command that may give rise to an abort condition.
When using AbortOnRTE after a related sequence of commands, then it should be placed on its own line.

Example
Abort if the wave does not exist:
WAVE someWave; AbortOnRTE

See Also
Flow Control for Aborts on page IV-38 and AbortOnRTE Keyword on page IV-38 for further details.

AbortOnValue

V-18

The try-catch-endtry flow control statement.

AbortOnValue
AbortOnValue abortCondition, abortCode
The AbortOnValue flow control keyword will abort function execution when the abortCondition is nonzero
and it will then return the numeric abortCode. No dialog will be displayed when such an abort occurs.

Parameters
abortCondition can be any valid numeric expression using comparison or logical operators.
abortCode is a nonzero numeric value returned to any abort or error handling code by AbortOnValue
whenever it causes an abort.

See Also
Flow Control for Aborts on page IV-38 and AbortOnValue Keyword on page IV-38 for further details.
The AbortOnRTE keyword and the try-catch-endtry flow control statement.

abs
abs(num)
The abs function returns the absolute value of the real number num. To calculate the absolute value of a
complex number, use the cabs function.

See Also
The cabs function.

acos
acos(num)
The acos function returns the inverse cosine of num in radians in the range [0,π].
In complex expressions, num is complex and acos returns a complex value.

See Also
cos

acosh
acosh(num)
The acosh function returns the inverse hyperbolic cosine of num. In complex expressions, num is complex
and acosh returns a complex value.

AddFIFOData
AddFIFOData FIFOName, FIFO_channelExpr [, FIFO_channelExpr]…
The AddFIFOData operation evaluates FIFO_channelExpr expressions as double precision floating point
and places the resulting values into the named FIFO.

Details
There must be one FIFO_channelExpr for each channel in the FIFO.

See Also
FIFOs are used for data acquisition. See FIFOs and Charts on page IV-282.
Other operations used with FIFOs: NewFIFO, NewFIFOChan, CtrlFIFO, and FIFOStatus.

AddFIFOVectData

V-19

AddFIFOVectData
AddFIFOVectData FIFOName, FIFO_channelKeyExpr [, FIFO_channelKeyExpr]…
The AddFIFOVectData operation is similar to AddFIFOData except the expressions use a keyword to allow
either a single numeric value for a normal channel or a wave containing the data for a special image vector
channel.

Details
There must be one FIFO_channelKeyExpr for each channel in the FIFO.
A FIFO_channelKeyExpr may be one of:

num = numericExpression
vect = wave

For best results, the wave should have the same number of points as used to define the FIFO channel and
the same number type. See the NewFIFOChan operation.

See Also
FIFOs and Charts on page IV-282.

AddListItem
AddListItem(itemStr, listStr [, listSepStr [, itemNum]])
The AddListItem function returns listStr after adding itemStr to it. listStr should contain items separated by
the listSepStr character, such as “abc;def;”.
Use AddListItem to add an item to a string containing a list of items separated by a single character, such
as those returned by functions like TraceNameList or AnnotationList, or to a line from a delimited text file.
listSepStr and itemNum are optional; their defaults are “;” and 0, respectively.

Details
By default itemStr is added to the start of the list. Use the optional list index itemNum to add itemStr at a
different location. The returned list will have itemStr at the index itemNum or at ItemsInList(returnedListStr)-1
when itemNum equals or exceeds ItemsInList(listStr).
itemNum can be any value from -infinity (-Inf) to infinity (Inf). Values from -infinity to 0 prepend itemStr
to the list, and values from ItemsInList(listStr) to infinity append itemStr to the list.
itemStr may be "", in which case an empty item (consisting of only a separator) is added.
If listSepStr is "", then listStr is returned unchanged (unless listStr contains only list separators, in which
case an empty string ("") is returned).
listStr is treated as if it ends with a listSepStr even if it doesn’t.
Only the first character of listSepStr is used.

Examples
Print AddListItem("hello","kitty;cat;") // prints "hello;kitty;cat;"
Print AddListItem("z", "b,c,", ",", 1) // prints "b,z,c,"
Print AddListItem("z", "b,c,", ",", 999) // prints "b,c,z,"
Print AddListItem("z", "b,c,", ",", Inf) // prints "b,c,z,"
Print AddListItem("", "b-c-", "-") // prints "-b-c-"

See Also
The FindListItem, FunctionList, ItemsInList, RemoveByKey, RemoveFromList, RemoveListItem,
StringFromList, StringList, TraceNameList, VariableList, and WaveList functions.

AddMovieAudio
AddMovieAudio soundWave
The AddMovieAudio operation adds audio samples to the audio track of the currently open movie.

Parameters
soundWave contains audio samples with an amplitude from -128 to +127 and with the same time scale as the
prototype soundWave used to open the movie.

AddMovieFrame

V-20

Details
You can create movies with 16-bit and stereo sound by providing a sound wave in the appropriate format.
To specify 16-bit sound, the wave type must be signed 16-bit integer (/W flag in Make or Redimension). To
specify stereo, use a wave with two columns (or any other number of channels as desired).

See Also
Movies on page IV-225.
The NewMovie operation.

AddMovieFrame
AddMovieFrame [/PICT=pictName]
The AddMovieFrame operation adds the top graph or the specified picture to the currently open movie.
When you write a procedure to generate a movie, you need to call the DoUpdate operation after all
modifications to the graph and before calling AddMovieFrame. This allows Igor to process any changes you
have made to the graph.
If the /PICT flag is provided, then the specified picture from the picture collection (see Pictures on page
III-423) is used in place of the top graph. This requires Igor Pro 6.12 or later.

See Also
Movies on page IV-225.
The NewMovie operation.

AdoptFiles
AdoptFiles [flags]
The AdoptFiles operation adopts external files and waves into the current experiment.
When the experiment is next saved, the files and waves are saved in the experiment file for a packed
experiment or in the experiment folder for an unpacked experiment. References to the external files are
eliminated.
AdoptFiles cannot be called from a function except via Execute/P.

Flags

Details
Only files and waves saved external to the current experiment are adopted. See References to Files and
Folders on page II-37 for a discussion of such standalone files.
The number of objects actually adopted is returned in V_Flag.
To adopt just one wave, use:
AdoptFiles/W=wave

To adopt just one notebook or procedure window use DoWindow/F followed by:

/A Adopts all external notebooks and user procedure files and all waves in the
experiment. WaveMetrics Procedure files are not adopted. /A is equivalent to
/NB/UP/DF.

/DF Adopts all waves saved external to the experiment.

/DF=dataFolderPathStr Adopts all waves saved external to the experiment that are in the specified data
folder.

/I Shows the Adopt All dialog and adopts what the user selects there.

/NB Adopts all external notebook files.

/UP Adopts all external user procedure files.

/WP Adopts all WaveMetrics Procedure procedure files.

/WV=wave Adopts only the specified wave.

airyA

V-21

DoIgorMenu "File", "Adopt Window"

Command Line and Macro Examples
// Using AdoptFiles from the command line or from a macro
AdoptFiles/I // Show the Adopt All dialog.
AdoptFiles/A/WP // Adopt everything that can be adopted.
AdoptFiles/DF/NB/UP/WP // Adopt everything that can be adopted.
AdoptFiles/DF=root:subfolder // Adopt any externally saved waves in root:subfolder.
AdoptFiles/WV=GetWavesDataFolder(wave0,2) // Adopt wave0 if it is saved externally.

Function Examples
// Using AdoptFiles from a user-defined function - you must use Execute/P
Execute/P "AdoptFiles/A" // Schedule adoption of all user files and waves
Execute/P "AdoptFiles/WV="+GetWavesDataFolder(w,2) // Schedule adoption of wave w

See Also
Adopt All on page II-38, Adopting Notebook and Procedure Files on page II-38, Avoiding Shared Igor
Binary Files on page II-38, Operation Queue on page IV-256.

airyA
airyA(x [, accuracy])
The airyA function returns the value of the Airy Ai(x) function:

 where K is the modified Bessel function.

Details
See the bessI function for details on accuracy and speed of execution.

See Also
The airyAD and airyB functions.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

airyAD
airyAD(x [, accuracy])
The airyAD function returns the value of the derivative of the Airy function.

Details
See the bessI function for details on accuracy and speed of execution.

See Also
The airyA function.

airyB
airyB(x [, accuracy])
The airyB function returns the value of the Airy Bi(x) function:

 where I is the modified Bessel function.

Details
See the bessI function for details on accuracy and speed of execution.

See Also
The airyBD and airyA functions.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

Ai x() 1
π
--- x

3
---K1 3⁄

2
3
---x3 2⁄

 =

Bi x() x
3
--- I 1– 3⁄

2
3
---x3 2⁄

 I1 3⁄

2
3
---x3 2⁄

 +=

airyBD

V-22

airyBD
airyBD(x [, accuracy])
The airyBD function returns the value of the derivative Bi'(x) of the Airy function.

Details
See the bessI function for details on accuracy and speed of execution.

See Also
The airyB function.

alog
alog(num)
The alog function returns 10num.

AnnotationInfo
AnnotationInfo(winNameStr, annotationNameStr [, options])
The AnnotationInfo function returns a string containing a semicolon-separated list of information about the
named annotation in the named graph or page layout window or subwindow.
The main purpose of AnnotationInfo is to use a tag or textbox as an input mechanism to a procedure. This
is illustrated in the “Tags as Markers Demo” sample experiment, which includes handy utility functions
(supplied by AnnotationInfo Procs.ipf).

Parameters
winNameStr can be "" to refer to the top graph or layout window or subwindow.
When identifying a subwindow with winNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
options is an optional parameter that controls the text formatting in the annotation output. The default value is 0.
Omit options or use 0 for options to escape the returned annotation text, which is appropriate for printing the
output to the history or for using the text in an Execute operation.
Use 1 for options to not escape the returned annotation text because you intend to extract the text for use in
a subsequent command such as Textbox or Tag.

Details
The string contains thirteen pieces of information. The first twelve pieces are prefaced by a keyword and
colon and terminated with a semicolon. The last piece is the annotation text, which is prefaced with a
keyword and a colon but is not terminated with a semicolon.

Keyword Information Following Keyword

ABSX X location, in points, of the anchor point of the annotation. For graphs, this is relative to the
top-left corner of the graph window. For layouts, it is relative to the top-left corner of the page.

ABSY Y location, in points, of the anchor point of the annotation. For graphs, this is relative to the
top-left corner of the graph window. For layouts, it is relative to the top-left corner of the page.

ATTACHX For tags, it is the X value of the wave at the point where the tag is attached, as specified
with the Tag operation. For textboxes, color scales, and legends, this will be zero and has
no meaning.

AXISX X location of the anchor point of the annotation. For tags or color scales in graphs, it is in
terms of the X axis against which the tagged wave is plotted. For textboxes and legends in
graphs, it is in terms of the first X axis. For layouts, this has no meaning and is always zero.

AXISY Y location of the anchor point of the annotation. For layouts, this has no meaning and is
always zero. For tags or color scales in graphs, it is in terms of the Y axis against which the
tagged wave is plotted. For textboxes and legends in graphs, it is in terms of the first Y axis.

AXISZ Z value of the image or contour level trace to which the tag is attached or NaN if the trace
is not a contour level trace or the annotation is not a tag.

AnnotationList

V-23

AnnotationList
AnnotationList(winNameStr)
The AnnotationList function returns a semicolon-separated list of annotation names from the named graph
or page layout window or subwindow.

Parameters
winNameStr can be "" to refer to the top graph or layout window.
When identifying a subwindow with winNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.

APMath
APMath [flags] destStr = Expression
The APMath operation provides arbitrary precision calculation of basic mathematical expressions. It
converts the final result into the assigned string destStr, which can then be printed or used to represent a
value (at the given precision) in another APMath operation.

COLORSCALE Parameters used in a ColorScale operation to create the annotation.

FLAGS Flags used in a Tag, Textbox, ColorScale, or Legend operation to create the annotation.

RECT The outermost corners of the annotation (values are in points):
RECT:left, top, right, bottom

TEXT Text that defines the contents of the annotation or the main axis label of a color scale.

TYPE Annotation type: “Tag”, “TextBox”, “ColorScale”, or “Legend”.

XWAVE For tags, it is the name of the X wave in the XY pair to which the tag is attached. If the tag
is attached to a single wave rather than an XY pair, this will be empty. For textboxes, color
scales, and legends, this will be empty and has no meaning.

XWAVEDF For tags, the full path to the data folder containing the X wave associated with the trace
to which the tag is attached. For textboxes, color scales, and legends, this will be empty
and has no meaning.

YWAVE For tags, it is the name of the trace or image to which the tag is attached. See
ModifyGraph (traces) and Instance Notation on page IV-16 for discussions of trace
names and instance notation. For color scales, it is the name of the wave displayed in
associated the contour plot, image plot, f(z) trace, or the name of the color scale’s cindex
wave. For textboxes and legends, this will be empty and has no meaning.

YWAVEDF Full path to the data folder containing the Y wave or blank if the annotation is not a tag
or color scale.

Keyword Information Following Keyword

APMath

V-24

Parameters

APMath Operators

APMath Functions

destStr Specifies a destination string for the assignment expression. If destStr is not an existing
variable, it is created by the operation. When executing in a function, destStr will be a
local variable if it does not already exist.

Expression Algebraic expression containing constants, local, global, and reference variables or
strings, as well as wave elements together with the operators shown below.

+ Scalar addition Lowest precedence

- Scalar subtraction Lowest precedence

* Scalar multiplication Medium precedence

/ Scalar division Medium precedence

^ Exponentiation Highest precedence

sqrt(x) Square root of x.

cbrt(x) Cube root of x.

pi Value of π (without parentheses).

sin(x) Sine of x.

cos(x) Cosine of x.

tan(x) Tangent of x.

asin(x) Inverse sine of x.

acos(x) Inverse cosine of x.

atan(x) Inverse tangent of x.

atan2(y,x) Inverse tangent of y/x.

log(x) Logarithm of x.

log10(x) Logarithm based 10 of x.

exp(x) Exponential function e^x.

pow(x,n) x to the power n (n not necessarily integer).

sinh(x) Hyperbolic sine of x.

cosh(x) Hyperbolic cosine of x.

tanh(x) Hyperbolic tangent of x.

asinh(x) Inverse hyperbolic sine of x.

acosh(x) Inverse hyperbolic cosine of x.

atanh(x) Inverse hyperbolic tangent of x.

ceil(x) Smallest integer larger than x.

comp(x,y) Returns 0 for x == y, 1 if x > y and -1 if y > x.

factorial(n) Factorial of integer n.

floor(x) Greatest integer smaller than x.

gcd(x,y) Greatest common divisor of x and y.

APMath

V-25

Flags

Details
By default, all arbitrary precision math calculations are performed with numDigits=50 and exDigits=6, which
yields a final result using at least 56 decimal places. Because none of the built-in variable types can express
numbers with such high accuracy, the arbitrary precision numbers must be stored as strings. The operation
automatically converts between strings and constants. It evaluates all of the numerical functions listed
above using the specified accuracy. If you need functions that are not supported by this operation, you may
have to precompute them and store the results in a local variable.
The operation stores the result in destStr, which may or may not exist prior to execution. When you execute
the operation from the command line, destStr becomes a global string in the current data folder if it does not
already exist. If it exists, then the result of the operation overwrites its value (as with any normal string
assignment). In a user function, destStr can be a local string, an SVAR, or a string passed by reference. If
destStr is not one of these then the operation creates a local string by that name.
Arbitrary precision math calculations are much slower (by a factor of about 300) than equivalent floating
point calculations. Execution time is a function of the number of digits, so you should use the /N flag to limit
the evaluation to the minimum number of required digits.

Examples
Evaluate pi to 50 digits:
APMath/V aa=pi

Evaluate ratios of large factorials:
APMath/v aa=factorial(500)/factorial(499)

Evaluate ratios of large exponentials:
APMath/v aa=exp(-1000)/exp(-1001)

Division of mixed size values:
APMath/v aa=1-sgn(1-(1-0.00000000000000000001234)/(1-0.000000000000000000012345)))

you’ll get a different result trying to evaluate this using double precision.
Difference between built-in pi and the arbitrary precision pi:
Variable/G biPi=pi
APMath/v aa=biPi-pi

Precision control:
Function test()

APMath aa=pi // Assign 50 digit pi to the string aa.
APMath/v bb=aa // Create local string bb equal to aa.
APMath/v bb=aa-pi // Subtract arb. prec. pi from aa.

// note the default exDigits=6.
APMath/v/n=50/ex=0 bb=aa-pi // setting exDigits=0.

End

Numerical recreation:
APMath/v/n=16 aa=111111111^2

lcd(x,y) Lowest common denominator of x and y (given by x*y/gcd(x,y).

sgn(x) Sign of x or zero if x == 0.

/EX=exDigits Specifies the number of extra digits added to the precision digits (/N) for
intermediate steps in the calculation.

/N=numDigits Specifies the precision of the final result. To add digits to the intermediate
computation steps, use /EX.

/V Verbose mode; prints the result in the history in addition to performing the
assignment.

/Z No error reporting.

Append

V-26

Append
Append
The Append operation is interpreted as AppendToGraph, AppendToTable, or AppendToLayout,
depending on the target window. This does not work when executing a user-defined function. Therefore
we now recommend that you use AppendToGraph, AppendToTable, or AppendLayoutObject rather
than Append.

AppendImage
AppendImage [/G=g/W=winName][axisFlags] matrix [vs {xWaveName, yWaveName}]
The AppendImage operation appends the matrix as an image to the target or named graph. By default the
image is plotted versus the left and bottom axes.

Parameters
matrix is either an NxM matrix for false color or indexed color images or can be a 3D NxMx3 wave
containing a layer of data for red, a layer for green and a layer for blue. If matrix contains multiple planes
other than three or if it contains 3 planes and multiple chunks, the ModifyImage plane keyword can be
used to specify the desired subset to display.
If you provide xWaveName and yWaveName, xWaveName provides X coordinate values, and yWaveName
provides Y coordinate values. This makes an image with uneven pixel sizes. In both cases, you can use * to
specify calculated values based on the dimension scaling of matrix. See Details if you use xWaveName or
yWaveName.

Flags

Details
When appending an image to a graph each image data point is displayed as a rectangle. You can supply
optional X and Y waves to define the coordinates of the rectangle edges. These waves need to contain one more
data point than the X (row) or Y (column) dimension of the matrix. The waves must also be either strictly
increasing or strictly decreasing. See Image X and Y Coordinates on page II-353 for details.
For false color, the values in the matrix are linearly mapped into a color table. See the ModifyImage ctab
keyword. For indexed color, the values in the matrix are interpreted as Z values to be looked up in a user-
supplied 3 column matrix of colors. See the ModifyImage cindex keyword. Direct color NxMx3 waves
contain the actual red, green, and blue values for each pixel. If the number type is unsigned bytes, then the
range of intensity ranges from 0 to 255. For all other number types, the intensity ranges from 0 to 65535.
By default, nondirect color matrices are initially displayed as false color using the Grays color table and
autoscale mode.
If the matrix is complex, the image is displayed in terms of the magnitude of the Z value, that is,
sqrt(real2 + imag2).

See Also
Image X and Y Coordinates on page II-353.
The NewImage, ModifyImage, and RemoveImage operations. For general information on image plots see
Chapter II-15, Image Plots.

axisFlags Flags /L, /R, /B, and /T are the same as used by AppendToGraph.

/G=g

/W=winName Appends to the named graph window or subwindow. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

Controls the interpretation of three-plane images as direct RGB.
g=1 Suppresses the autodetection of three plane images as direct (RGB) color.
g=0 Same as no /G flag (default).

AppendLayoutObject

V-27

AppendLayoutObject
AppendLayoutObject [flags] objectType objectName
The AppendLayoutObject operation appends a single object to the top layout or to the layout specified via
the /W flag.
Unlike the AppendToLayout operation, AppendLayoutObject can be used in user-defined functions.
Therefore, AppendLayoutObject should be used in new programming instead of AppendToLayout.

Parameters
objectType identifies the type of object to be appended. It is one of the following keywords: graph, table,
picture.
objectName is the name of the graph, table or picture to be appended.
Use a space between objectType and objectName. A comma is not allowed.

Flags

See Also
NewLayout, ModifyLayout, RemoveLayoutObjects, TextBox, and Legend.

AppendMatrixContour
AppendMatrixContour [axisFlags][/F=formatStr /W=winName] zWave

[vs {xWave, yWave}]
The AppendMatrixContour operation appends to the target or named graph a contour plot of a matrix of z
values with autoscaled contour levels, using the Rainbow color table.
Note: There is no DisplayContour operation. Use Display; AppendMatrixContour.

Parameters
zWave must be a matrix (2D wave).
To contour a set of XYZ triplets, use AppendXYZContour.
If you provide the xWave and yWave specification, xWave provides X values for the rows, and yWave
provides Y values for the columns. This results in an “uneven grid” of Z values.

/D=fidelity Draws layout objects in low fidelity (fidelity=0) or high fidelity (fidelity=1; default).
This affects drawing on the screen only, not exporting or printing. Low fidelity is
somewhat faster but less accurate and should be used only for graphs that take a very
long time to draw.

/F=frame

/T=trans Sets the transparency of the object background to opaque (trans =0; default) or
transparent (trans =1).

For transparency to be effective, the object itself must also be transparent.
Annotations have their own transparent/opaque settings. Graphs are transparent
only if their backgrounds are white. PICTs may have been created transparent or
opaque. Opaque PICTs cannot be made transparent.

/R=(l, t, r, b) Sets the size and position of the object. If omitted, the object is placed with a default
size and position. l, t, r, and b are the left, top, right, and bottom coordinates of the
object, respectively. Coordinates are expressed in units of points, relative to the
top/left corner of the paper.

/W=winName Appends the object to the named page layout window. If /W is omitted or if winName
is $"", the top page layout is used.

Specifies the type of frame enclosing the object.
frame =1 Single frame (default).
frame =2 Double frame.
frame =3 Triple frame.
frame =4 Shadow frame.

AppendMatrixContour

V-28

If you omit the xWave and yWave specification, Igor uses the zWave’s X and Y scaled indices as the X and Y
values. Igor also uses the zWave’s scaled indices if you use * (asterisk symbol) in place of xWave or yWave.
In a macro, to modify the appearance of contour levels before the contour is calculated and displayed with
the default values, append ";DelayUpdate" and immediately follow the AppendMatrixContour
command with the appropriate ModifyContour commands. All but the last ModifyContour command
should also have;DelayUpdate appended. DelayUpdate is not needed in a function, but DoUpdate is
useful in a function to force the contour traces to be built immediately rather than the default behavior of
waiting until all functions have completed.
On the command line, the Display command and subsequent AppendMatrixContour commands and any
ModifyContour commands can be typed all on one line with semicolons between:
Display; AppendMatrixContour MyMatrix; ModifyContour ...

Flags

Details
AppendMatrixContour creates and displays contour level traces. You can modify these all together using
the Modify Contour Appearance dialog or individually using the Modify Trace Appearance dialog. In most
cases, you will not need to modify the individual traces.
By default, Contour level traces are automatically named with names that show the zWave and the contour
level, for example, “zWave=1.5”. You will see these trace names in the Modify Trace Appearance dialog and
in Legends. In most cases, the default trace names will be just fine.
If you want to control the names of the contour level traces (which you might want to do for names in a
Legend), use the /F=formatStr flag. This flag uses a format string as described for the printf operation. The
default format string is "%.17s=%g", resulting in trace names such as “zWave=1.5”. formatStr must contain
at least %f or %g (used to insert the contour level) or %d (used to insert the zero-based index of the contour
level). Include %s, to insert the zWave name.
Here are some examples of format strings.

Examples
Make/O/N=(25,25) w2D // Make a matrix
SetScale x -1, 1, w2D // Set row scaling
SetScale y -1, 1, w2D // Set column scaling
w2D = sin(x) * cos(y) // Store values in the matrix
Display; AppendMatrixContour w2D; DelayUpdate
ModifyContour w2D autoLevels={*,*,9} // roughly 9 automatic levels

See also
The Display operation. AppendToGraph for details about other axis flags. The AppendXYZContour,
ModifyContour, and RemoveContour operations. For general information on contour plots, see Chapter
II-14, Contour Plots.

axisFlags Flags /L, /R, /B, /T are the same as used by AppendToGraph.

/F=formatStr Determines the names assigned to the contour level traces. See Details.

/W=winName Appends to the named graph window or subwindow. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

formatStr Examples of Resulting Name Format

"%g" “100”, “1e6”, “-2.05e-2” (<level>)

"z=%g" “z=100”, “z=1e6”, “z=-2.05e-2” (z=<level>)

"%s %f" “zWave 100.000000” (<wave>, space, <level>)

"[%d]=%g" “[0]=100”, “[1]=1e6” ([<index>]=<level>)

AppendText

V-29

AppendText
AppendText [/W=winName/N/NOCR [=n]] textStr
The AppendText operation appends a carriage return and textStr to the most recently created or changed
annotation, or to the named annotation in the target or graph or layout window. Annotations include tags,
textboxes, color scales, and legends.

Parameters
textStr can contain escape codes to control font, font size and other stylistic variations.

Flags

Details
A textbox, tag, or legend can contain at most 100 lines. A color scale can have at most one line, and this line
is the color scale’s main axis label.

See Also
The Tag, TextBox, ColorScale, ReplaceText, and Legend operations.

AppendToGraph
AppendToGraph [flags] waveName [, waveName]…[vs xwaveName]
The AppendToGraph operation appends the named waves to the target or named graph. By default the
waves are plotted versus the left and bottom axes.

Parameters
The waveNames parameters are the names of existing waves.
vs xwaveName plots the data values of waveNames against the data values of xwaveName.
Subsets of data, including individual rows or columns from a matrix, may be specified using Subrange
Display Syntax on page II-293.
You can provide a custom name for a trace by appending /TN=traceName to the waveName specification.
This may be useful when displaying waves with the same name but from different data folders. See User-
defined Trace Names on page IV-73 for more information. This feature was added in Igor Pro 6.20.

Flags

/N=name Appends textStr to the named tag or textbox.

/NOCR[=n] Omits the initial appending of a carriage return (allows a long line to be created with
multiple AppendText commands). /NOCR=0 is the same as no /NOCR, and /NOCR=1
is the same as just /NOCR.

/W=winName Appends to an annotation in the named graph, layout window, or subwindow.
Without /W, AppendText appends to an annotation in the topmost graph or layout
window or subwindow. This must be the first flag specified when AppendText is
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/B [=axisName] Plots X coordinates versus the standard or named bottom axis.

/C=(r,g,b) r, g, and b specify the amount of red, green, and blue in the color of the appended
waves as an integer from 0 to 65535.

/L [=axisName] Plots Y coordinates versus the standard or named left axis.

/NCAT Causes trace to be plotted normally on what otherwise is a category plot. X values are
just category numbers but can be fractional. Category numbers start from zero. This
can be used to overlay the original data points for a box plot.
See Combining Numeric and Category Traces on page II-322 for details.

AppendToLayout

V-30

See Also
The Display operation.

AppendToLayout
AppendToLayout [flags] objectSpec [, objectSpec]…
The AppendToLayout operation appends the specified objects to the top layout.
The AppendToLayout operation can not be used in user-defined functions. Use the AppendLayoutObject
operation instead.

Parameters
The optional objectSpec parameters identify a graph, table, textbox or PICT to be added to the layout. An
object specification can also specify the location and size of the object, whether the object should have a
frame or not, whether it should be transparent or opaque, and whether it should be displayed in high
fidelity or not. See the Layout operation for details.

Flags

See Also
The Layout and AppendLayoutObject operations for use with user-defined functions.

/Q Uses a special, quick update mode when appending to a pair of existing axes. A side
effect of this mode is that waves that are appended are marked as not modified. This
will prevent other graphs containing these waves, if any, from being updated
properly.

/R [=axisName] Plots Y coordinates versus the standard or named right axis.

/T [=axisName] Plots X coordinates versus the standard or named top axis.

/VERT Plots data vertically. Similar to SwapXY (ModifyGraph (axes)) but on a trace-by-
trace basis.

/W=winName Appends to the named graph window or subwindow. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/G=g Specifies grout, the spacing between tiled objects. Units are points unless /I, /M, or /R are
specified.

/I objectSpec coordinates are in inches.

/M objectSpec coordinates are in centimeters.

/R objectSpec coordinates are in percent of printing part of the page.

/S Stacks objects.

/T Tiles objects.

AppendToTable

V-31

AppendToTable
AppendToTable [/W=winName] columnSpec [, columnSpec]…
The AppendToTable operation appends the specified columns to the top table. columnSpecs are the same as
for the Edit operation; usually they are just the names of waves.

Flags

See Also
Edit for details about columnSpecs, and RemoveFromTable.

AppendXYZContour
AppendXYZContour [/W=winName /F=formatStr][axisFlags] zWave [vs {xWave, yWave}]
The AppendXYZContour operation appends to the target or named graph a contour of a 2D wave
consisting of XYZ triples with autoscaled contour levels and using the Rainbow color table.
To contour a matrix of Z values, use AppendMatrixContour.
Note: There is no DisplayContour operation. Use Display; AppendXYZContour.

Parameters
If you provide the xWave and yWave specification, xWave provides X values for the rows, and yWave
provides Y values for the columns, zWave provides Z values and all three waves must be 1D. All must have
at least four rows and must have the same number of rows.
If you omit the xWave and yWave specification, zWave must be a 2D wave with 4 or more rows and 3 or more
columns. The first column is X, the second is Y, and the third is Z. Any additional columns are ignored.
If any of X, Y, or Z in a row is blank, (NaN), that row is ignored.
In a macro, to modify the appearance of contour levels before the contour is calculated and displayed with
the default values, append ";DelayUpdate" and immediately follow the AppendXYZContour command
with the appropriate ModifyContour commands. All but the last ModifyContour command should also
have ;DelayUpdate appended. DelayUpdate is not needed in a function, but DoUpdate is useful in a
function to force the contour traces to be built immediately rather than the default behavior of waiting until
all functions have completed.
On the command line, the Display command and subsequent AppendXYZContour commands and any
ModifyContour commands can be typed all on one line with semicolons between:
Display; AppendXYZContour zWave; ModifyContour ...

Flags

Details
AppendXYZContour creates and displays contour level traces. You can modify these as a group using the
Modify Contour Appearance dialog or individually using the Modify Trace Appearance dialog. In most
cases, you will have no need to modify the traces individually.

/W=winName Appends columns to the named table window or subwindow. When omitted, action
will affect the active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

axisFlags Flags /L, /R, /B, and /T are the same as used by AppendToGraph.

/F=formatStr Determines names assigned to the contour level traces. This is the same as for
AppendMatrixContour.

/W=winName Appends to the named graph window or subwindow. When omitted, action affects
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

area

V-32

See AppendMatrixContour for a discussion of how the contour level traces are named.

Examples
Make/O/N=(100) xW, yW, zW // Make X, Y, and Z waves
xW = sawtooth(2*PI*p/10) // Generate X values
yW = trunc(p/10)/10 // Generate Y values
zW = sin(2*PI*xW)*cos(2*PI*yW) // Generate Z values
Display; AppendXYZContour zW vs {xW, yW}; DelayUpdate
ModifyContour zW autoLevels={*,*,9} // roughly 9 automatic levels

See Also
The Display operation. AppendToGraph for details about other axis flags. The AppendMatrixContour,
ModifyContour, and RemoveContour operations. For general information on contour plots, see Chapter
II-14, Contour Plots.

area
area(waveName [, x1, x2])
The area function returns the signed area between the named wave and the line y=0 from x=x1 to x=x2 using
trapezoidal integration, accounting for the wave’s X scaling. If your data are in the form of an XY pair of
waves, see areaXY.

Details
If x1 and x2 are not specified, they default to -∞ and +∞, respectively.
If x1 or x2 are not within the X range of waveName, area limits them to the nearest X range limit of waveName.
If any values in the X range are NaN, area returns NaN.
The function returns NaN if the input wave has zero points.
Reversing the order of x1 and x2 changes the sign of the returned area.
The area function is intended to work on 1D real or complex waves only.
The area function returns a complex result for a complex input wave. The real part of the result is the area
of the real components in the input wave, and the imaginary part of the result is the area of the imaginary
components.

Examples
Make/O/N=100 data;SetScale/I x 0,Pi,data
data=sin(x)
Print area(data,0,Pi) // the entire X range, and no more
Print area(data) // same as -infinity to +infinity
Print area(data,Inf,-Inf) // +infinity to -infinity

The following is printed to the history area:
•Print area(data,0,Pi) // the entire X range, and no more

1.99983
•Print Print area(data) // same as -infinity to +infinity

1.99983
•Print area(data,Inf,-Inf) // +infinity to -infinity

-1.99983

The -Inf value was limited to 0 and Inf was limited to Pi to keep them within the X range of data.

See Also
The figure “Comparison of area, faverage and mean functions over interval (12.75,13.32)”, in the Details
section of the faverage function.
Integrate, areaXY, faverage, faverageXY, PolygonArea

areaXY
areaXY(XWaveName, YWaveName [, x1, x2])
The areaXY function returns the signed area between the named YWaveName and the line y=0 from x=x1 to
x=x2 using trapezoidal integration with X values supplied by XWaveName.
This function is identical to the area function except that it works on an XY wave pair and does not work
with complex waves.

asin

V-33

Details
If x1 and x2 are not specified, they default to -∞ and +∞, respectively.
If x1 or x2 are outside the X range of XWaveName, areaXY limits them to the nearest X range limit of XWaveName.
If any values in the Y range are NaN, areaXY returns NaN.
If any values in the entire X wave are NaN, areaXY returns NaN.
The function returns NaN if the input wave has zero points.
Reversing the order of x1 and x2 changes the sign of the returned area.
If x1 or x2 are not found in XWaveName, a Y value is found by linear interpolation based on the two
bracketing X values and the corresponding values from YWaveName.
The values in XWaveName may be increasing or decreasing. AreaXY assumes that the values in XWaveName
are monotonic. If they are not monotonic, Igor does not complain, but the result is not meaningful. If any X
values are NaN, the result is NaN.
See the figure “Comparison of area, faverage and mean functions over interval (12.75,13.32)”, in the Details
section of the faverage function.
The areaXY operation is intended to work on 1D waves only.

Examples
Make/O/N=101 Xdata, Ydata
Xdata = x*pi/100
Ydata = sin(Xdata[p])
Print areaXY(Xdata, Ydata,0,Pi) // the entire X range, and no more
Print areaXY(Xdata, Ydata) // same as -infinity to +infinity
Print areaXY(Xdata, Ydata,Inf,-Inf) // +infinity to -infinity

The following is printed to the history area:
•Print areaXY(Xdata, Ydata,0,Pi) // the entire X range, and no more

1.99984
•Print areaXY(Xdata, Ydata) // same as -infinity to +infinity

1.99984
•Print areaXY(Xdata, Ydata,Inf,-Inf) // +infinity to -infinity

-1.99984

The -Inf value was limited to 0, and Inf was limited to Pi to stay within the X range of data.

See Also
Integrate, area, faverage, faverageXY, PolygonArea

asin
asin(num)
The asin function returns the inverse sine of num in radians in the range [-π/2,π/2].
In complex expressions, num is complex, and asin returns a complex value.

See Also
sin

asinh
asinh(num)
The asinh function returns the inverse hyperbolic sine of num. In complex expressions, num is complex, and
asinh returns a complex value.

atan
atan(num)
The atan function returns the inverse tangent of num in radians. In complex expressions, num is complex,
and atan returns a complex value. Results are in the range -π/2 to π/2.

See Also
tan, atan2

atan2

V-34

atan2
atan2(y1, x1)
The atan2 function returns the angle in radians whose tangent is y1/x1. Results are in the range -π to π.

See Also
tan, atan

atanh
atanh(num)
The atanh function returns the inverse hyperbolic tangent of num. In complex expressions, num is complex,
and atanh returns a complex value.

AutoPositionWindow
AutoPositionWindow [/E/M=m/R=relWindow][windowName]
The AutoPositionWindow operation positions the window specified by windowName relative to the next
lower window of the same kind or relative to the window given by the /R flag. If windowName is not
specified, AutoPositionWindow acts on the target window.

Flags

AxisInfo
AxisInfo(graphNameStr, axisNameStr)
The AxisInfo function returns a string containing a semicolon-separated list of information about the
named axis in the named graph window or subwindow.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
axisNameStr is the name of the graph axis.

Details
The string contains several groups of information. Each group is prefaced by a keyword and colon, and
terminated with a semicolon. The keywords are:

/E Uses entire area of the monitor. Otherwise, it takes into account the command
window.

/M=m

/R=relWindow Positions windowName relative to relWindow.

Keyword Information Following Keyword

AXFLAG Flag used to select the axis in any of the operations that display waves (Display,
AppendMatrixContour, AppendImage, etc.).

AXTYPE Axis type, such as “left”, “right”, “top”, or “bottom”.

Specifies the window positioning method.
m=0: Positions windowName to the right of the other window, if possible. If

there is no room, then it positions windowName just below the other
window but at the left edge of the display area. If that is not possible,
then the position is not affected.

m=1: Positions windowName just under the other window lined up on the
left edge, if possible. If there is no room, then it positions windowName
just to the right of the other window lined up on the bottom edges. If
neither are possible then it positions windowName as far to the bottom
and right as it will go.

AxisList

V-35

The format of the RECREATION information is designed so that you can extract a keyword command from
the keyword up to the “;”, prepend “ModifyGraph”, replace the “x” with the name of an actual axis and
then Execute the resultant string as a command.

Examples
Make/O data=x;Display data
Print StringByKey("CWAVE", AxisInfo("","left")) // prints data

See Also
The StringByKey and NumberByKey functions.
The GetAxis and SetAxis operations.
The #include <Readback ModifyStr> procedures are useful for parsing strings returned by AxisInfo.

AxisList
AxisList(graphNameStr)
The AxisList function returns a semicolon-separated list of axis names from the named graph window or
subwindow.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.

Examples
Make/O data=x;Display/L/T data
Print AxisList("") // prints left;top;

AxisValFromPixel
AxisValFromPixel(graphNameStr, axNameStr, pixel)
The AxisValFromPixel function returns an axis value corresponding to the local graph pixel coordinate in
the graph window or subwindow.

CATWAVE Wave supplying the categories for the axis if this is a category plot.

CATWAVEDF Full path to data folder containing category wave.

CWAVE Name of wave controlling named axis.

CWAVEDF Full path to data folder containing controlling wave.

HOOK Name set by ModifyFreeAxis with hook keyword.

ISCAT Truth that this is a category axis (used in a category plot).

ISTFREE Truth that this is truly free axis (created via NewFreeAxis).

MASTERAXIS Name set by ModifyFreeAxis with master keyword.

RECREATION List of keyword commands as used by ModifyGraph command. The format of these
keyword commands is:
keyword(x)=modifyParameters;

SETAXISCMD Full SetAxis command.

SETAXISFLAGS Flags that would be used with the SetAxis function to set the particular auto-scaling
behavior that the axis uses. If the axis uses a manual axis range, SETAXISFLAGS is blank.

UNITS Axis units, if any.

Keyword Information Following Keyword

BackgroundInfo

V-36

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
If the specified axis is not found and if the name is “left” or “bottom” then the first vertical or horizontal
axis will be used. Sources for pixel value may be the GetWindow operation or a user window hook with the
mousemoved and mousedown event messages (see the SetWindow operation).
If graphNameStr references a subwindow, pixel is relative to top left corner of base window, not the
subwindow.

See Also
The PixelFromAxisVal and TraceFromPixel functions; the GetWindow and SetWindow operations.

BackgroundInfo
BackgroundInfo
The BackgroundInfo operation returns information about the current unnamed background task.
BackgroundInfo works only with the unnamed background task. New code should used named background
tasks instead. See Background Tasks on page IV-285 for details.

Details
Information is returned via the following variables:

See Also
The SetBackground, CtrlBackground, CtrlNamedBackground, KillBackground, and SetProcessSleep
operations, and the ticks function. See Background Tasks on page IV-285 for usage details.

Beep
Beep
The Beep operation plays the current alert sound (Macintosh) or the system beep sound (Windows).

Besseli
Besseli(n,z)
The Besseli function returns the modified Bessel function of the first kind, In(z), of order n and argument z.
Replaces the bessI function, which is supported for backwards compatibility only.
If z is real, Besseli returns a real value, which means that if z is also negative, it returns NaN unless n is an integer.
For complex z a complex value is returned, and there are no restrictions on z except for possible overflow.

Details
The calculation is performed using the SLATEC library. The function supports fractional and negative
orders n, as well as real or complex arguments z.

See Also
The Besselj, Besselk, and Bessely functions.

V_flag 0: No background task is defined.

1: Background task is defined, but not running (is idle).

2: Background task is defined and is running.

V_period DeltaTicks value set by CtrlBackground. This is how often the background task runs.

V_nextRun Ticks value when the task will run again. 0 if the task is not scheduled to run again.

S_value Text of the numeric expression that the background task executes, as set by
SetBackground.

Besselj

V-37

Besselj
Besselj(n,z)
The Besselj function returns the Bessel function of the first kind, Jn (z), of order n and argument z. Replaces
the bessJ function, which is supported for backwards compatibility only.
If z is real, Besselj returns a real value, which means that if z is also negative, it returns NaN unless n is an integer.
For complex z a complex value is returned, and there are no restrictions on z except for possible overflow.

Details
The calculation is performed using the SLATEC library. The function supports fractional and negative
orders n, as well as real or complex arguments z.

See Also
The Besseli, Besselk, and Bessely functions.

Besselk
Besselk(n,z)
The Besselk function returns the modified Bessel function of the second kind, Kn(z), of order n and
argument z. Replaces the bessK function, which is supported for backwards compatibility only.
If z is real, Besselk returns a real value, which means that if z is also negative, it returns NaN unless n is an integer.
For complex z a complex value is returned, and there are no restrictions on z except for possible overflow.

Details
The calculation is performed using the SLATEC library. The function supports fractional orders n, as well
as real or complex arguments z.

See Also
The Besseli, Besselj, and Bessely functions.

Bessely
Bessely(n,z)
The Bessely function returns the Bessel function of the second kind, Yn(z), of order n and argument z.
Replaces the bessY function, which is supported for backwards compatibility only.
If z is real, Bessely returns a real value, which means that if z is also negative, it returns NaN unless n is an integer.
For complex z a complex value is returned, and there are no restrictions on z except for possible overflow.

Details
The calculation is performed using the SLATEC library. The function supports fractional and negative
orders n, as well as real or complex arguments z.

See Also
The Besseli, Besselj, and Besselk functions.

bessI
bessI(n, x [, algorithm [, accuracy]])
Obsolete — use Besseli.
The bessI function returns the modified Bessel function of the first kind, In(x) of order n and argument x.
For real x, the optional parameter algorithm selects between a faster, less accurate calculation method and slower,
more accurate methods. In addition, when algorithm is zero or absent, the order n is truncated to an integer.
When algorithm is included and is 1, accuracy can be used to specify the desired fractional accuracy. See
Details about algorithms.
If x is complex, a complex result is returned. In this case, algorithm and accuracy are ignored. The order n can
be fractional, and must be real.

bessJ

V-38

Details
The algorithm parameter has three options, each selecting a different calculation method:

The achievable accuracy of algorithms 1 and 2 is a complicated function n and x. To see a summary of
achievable accuracies choose File→Example Experiments→Testing and Misc→Bessel Accuracy menu item.

bessJ
bessJ(n, x [, algorithm [, accuracy]])
Obsolete — use Besselj.
The bessJ function returns the Bessel function of the first kind, Jn(x) of order n and argument x.
For real x, the optional parameter algorithm selects between a faster, less accurate calculation method and slower,
more accurate methods. In addition, when algorithm is zero or absent, the order n is truncated to an integer.
When algorithm is included and is 1, accuracy can be used to specify the desired fractional accuracy. See
Details about algorithms.
If x is complex, a complex result is returned. In this case, algorithm and accuracy are ignored. The order n can
be fractional, and must be real.

Details
See the bessI function for details on algorithms, accuracy and speed of execution.
When algorithm is 1, pairs of values for bessJ and bessY are calculated simultaneously. The values are stored, and
a subsequent call to bessY after a call to bessJ (or vice versa) with the same n, x, and accuracy will be very fast.

bessK
bessK(n, x [, algorithm [, accuracy]])
Obsolete — use Besselk.
The bessK function returns the modified Bessel function of the second kind, Kn(x) of order n and argument x.
For real x, the optional parameter algorithm selects between a faster, less accurate calculation method and slower,
more accurate methods. In addition, when algorithm is zero or absent, the order n is truncated to an integer.

Algorithm What You Get

0 (default) Uses a calculation method that has fractional accuracy better than 10-6 everywhere and is
generally better than 10-8. This method does not handle fractional order n; the order is
truncated to an integer before the calculation is performed.

Algorithm 0 is fastest by a large margin.

1 Allows fractional order. The calculation is performed using methods described in
Numerical Recipes in C, 2nd edition, pp. 240-245.

Using algorithm 1, accuracy specifies the fractional accuracy that you desire. That is, if you
set accuracy to 1e-7 (that is, 10-7), that means that you wish that the absolute value of (factual
- freturned)/factual be better than 10-7. Asking for less accuracy gives some increase in speed.

You pay a heavy price for higher accuracy or fractional order. When algorithm is nonzero,
calculation time is increased by an order of magnitude for small x; at larger x the penalty
is even greater.

If accuracy is greater than 10-8 and n is an integer, algorithm 0 is used.

The algorithm calculates bessI and bessK simultaneously. Both values are stored, and if a
call to bessI is followed by a call to bessK (or bessK is followed by bessI) with the same n,
x, and accuracy the previously-stored value is returned, making the second call very fast.

2 Fractional order is allowed. The calculation is performed using code from the SLATEC
library. The accuracy achievable is often better than algorithm 1, but not always. Algorithm
2 is 1.5 to 3 times faster than algorithm 1, but still slower than algorithm 0. The accuracy
parameter is ignored.

bessY

V-39

When algorithm is included and is 1, accuracy can be used to specify the desired fractional accuracy. See
Details about algorithms.
If x is complex, a complex result is returned. In this case, algorithm and accuracy are ignored. The order n can
be fractional, and must be real.

Details
See the bessI function for details on algorithms, accuracy and speed of execution.
When algorithm is 1, pairs of values for bessJ and bessY are calculated simultaneously. The values are stored, and
a subsequent call to bessY after a call to bessJ (or vice versa) with the same n, x, and accuracy will be very fast.

bessY
bessY(n, x [, algorithm [, accuracy]])
Obsolete — use Bessely.
The bessY function returns the Bessel function of the second kind, Yn(x) of order n and argument x.
For real x, the optional parameter algorithm selects between a faster, less accurate calculation method and slower,
more accurate methods. In addition, when algorithm is zero or absent, the order n is truncated to an integer.
When algorithm is included and is 1, accuracy can be used to specify the desired fractional accuracy. See
Details about algorithms.
If x is complex, a complex result is returned. In this case, algorithm and accuracy are ignored. The order n can
be fractional, and must be real.

Details
See the bessI function for details on algorithms, accuracy and speed of execution.
When algorithm is 1, pairs of values for bessJ and bessY are calculated simultaneously. The values are stored, and
a subsequent call to bessY after a call to bessJ (or vice versa) with the same n, x, and accuracy will be very fast.

beta
beta(a, b)
The beta function returns for real or complex arguments as

with Re(a), Re(b)>0. Γ is the gamma function.

See Also
The gamma function.

betai
betai(a, b, x [, accuracy])
The betai function returns the regularized incomplete beta function Ix(a,b),

Here

where a,b > 0, and 0 ≤ x ≤ 1.
Optionally, accuracy can be used to specify the desired fractional accuracy.

B(a,b) =
Γ(a)Γ(b)

Γ(a + b)
,

Ix (a,b) =
B(x;a,b)

B(a,b)
.

B(x;a,b) = t a−1(1− t)b−1dt.
0

x

∫

BinarySearch

V-40

Details
The accuracy parameter specifies the fractional accuracy that you desire. That is, if you set accuracy to 10-7,
that means that you wish that the absolute value of (factual - freturned)/factual be less than 10-7.
Larger values of accuracy (poorer accuracy) result in evaluation of fewer terms of a series, which means the
function executes somewhat faster.
A single-precision level of accuracy is about 3x10-7, double-precision is about 2x10-16. The betai function
will return full double-precision accuracy for small values of a and b. Achievable accuracy declines as a and
b increase:

BinarySearch
BinarySearch(waveName, val)
The BinarySearch function performs a binary search of the one-dimensional waveName for the value val.
BinarySearch returns an integer point number p such that waveName[p] and waveName[p+1] bracket val. If
val is in waveName, then waveName[p]==val.

Details
BinarySearch is useful for finding the point in an XY pair that corresponds to a particular X coordinate.
WaveName must contain monotonically increasing or decreasing values.
BinarySearch returns -1 if val is not within the range of values in the wave, but would numerically be placed
before the first value in the wave.
BinarySearch returns -2 if val is not within the range of values in the wave, but would fall after the last value
in the wave.
BinarySearch returns -3 if the wave has zero points.

Examples
Make/O data = {1, 2, 3.3, 4.9} // Monotonic increasing
Print BinarySearch(data,3) // Prints 1
// BinarySearch returns 1 because data[1] <= 3 < data[2].

Make/O data = {9, 4, 3, -6} // Monotonic decreasing
Print BinarySearch(data,2.5) // Prints 2
// BinarySearch returns 2 because data[2] >= 2.5 > data[3].
Print BinarySearch(data,10) // Prints -1, precedes first value
Print BinarySearch(data,-99) // Prints -2, beyond last value

See Also
The BinarySearchInterp and FindLevel operations. See Indexing and Subranges on page II-95.

BinarySearchInterp
BinarySearchInterp(waveName, val)
The BinarySearchInterp function performs a binary interpolated search of the named wave for the value val.
The returned value, pt, is a floating-point point index into the named wave such that waveName[pt] == val.

Details
BinarySearchInterp is useful for finding the point in an XY pair that corresponds to a particular X
coordinate.
WaveName must contain monotonically increasing or decreasing values.

a b x betai Accuracy Achievable

1 1.5 0.5 0.646447 2x10-16 (full double precision)

8 10 0.5 0.685470 6x10-16

20 21 0.5 0.562685 2x10-15

20 21 0.1 1.87186x10-10 5x10-15

binomial

V-41

When the named wave does not actually contain the value val, BinarySearchInterp locates a value below val
and a value above val and uses reverse linear interpolation to figure out where val would fall if a straight
line were drawn between them. It includes that fractional amount in the resulting point index.
BinarySearchInterp returns NaN if val is not within the range of values in the wave.

Examples
Make/O data = {1, 2, 3.3, 4.9} // Monotonic increasing
Print BinarySearchInterp(data,3) // Prints 1.76923
Print data[1.76923] // Prints 3

Make/O data = {9, 4, 3, 1} // Monotonic decreasing
Print BinarySearchInterp(data,2.5) // Prints 2.25
Print data[2.25] // Prints 2.5

See Also
The BinarySearch and FindLevel operations. See Indexing and Subranges on page II-95.

binomial
binomial(n, k)
The binomial function returns the ratio:

.

It is assumed that n and k are integers and 0 ≤ k ≤ n and ! denotes the factorial function.
Note that although the binomial function is an integer-valued function, a double-precision number has 53
bits for the mantissa. This means that numbers over 252 (about 4.5x1015) will be accurate to about one part
in 2x1016.

binomialln
binomialln(a, b)
The binomialln function returns the natural log of the binomial coefficient for a and b.

See Also
Chapter III-12, Statistics for an overview of the various functions and operations; binomial,
StatsBinomialPDF, StatsBinomialCDF, and StatsInvBinomialCDF.

binomialNoise
binomialNoise(n, p)
The binomialNoise function returns a pseudo-random value from the binomial distribution

whose mean is np and variance is np(1-p).
When n is large such that pn is zero to machine accuracy the function returns NaN. When n is large such
that np(1-p)>5 and 0.1<p<0.9 you can replace the binomial variate with a normal variate with mean np and
standard deviation sqrt(n*p*(1-p)).
The random number generator initializes using the system clock when Igor Pro starts. This almost
guarantees that you will never repeat the same sequence. For repeatable “random” numbers, use
SetRandomSeed. The algorithm uses the Mersenne Twister random number generator.

See Also
The SetRandomSeed operation.
Noise Functions on page III-334.
Chapter III-12, Statistics for an overview of the various functions and operations.

n!
k! n k–()!

binomialln a b(,) a!()ln b!()ln– a b–()!()ln–=

f (x) =
n

x

�

��
�

�	
px (1� p)n� x ,

0 � p � 1

x = 1,2,...n

BoundingBall

V-42

BoundingBall
BoundingBall [/F/Z] scatterWave
The BoundingBall operation calculates a bounding circle or the bounding sphere for a set of scatter points.
The operation accepts 2D waves that have two, three or more columns; data in the additional columns are
ignored.
When scatterWave consists of two columns the operation computes the bounding circle. Otherwise it
computes the bounding 3D sphere.

Parameters
scatterWave is a two-dimensional wave with X coordinates in column 0, Y in column 1, and optional Z
coordinates in column 2.

Flags

Details
The center and radius of the bounding sphere are stored in the variables: V_CenterX, V_CenterY,
V_CenterZ, and V_Radius.
If you are not using the /F flag, the operation also accepts a 2 column wave consisting of X, Y pairs for
calculating the center and radius of a bounding circle in the plane.

Example
Make/N=(33,2) ddd=enoise(4) // Create random data
BoundingBall ddd
Display ddd[][1] vs ddd[][0]
ModifyGraph mode=3
Make/n=360 xxx,yyy
yyy=v_centerY+V_radius*cos(p*2*pi/360)
xxx=v_centerX+V_radius*sin(p*2*pi/360)
AppendToGraph yyy vs xxx

References
Glassner, Andrew S., (Ed.), Graphics Gems, 833 pp., Academic Press, San Diego, 1990.

break
break
The break flow control keyword immediately terminates execution of a loop, switch, or strswitch.
Execution then continues with code following the loop, switch, or strswitch.

See Also
Break Statement on page IV-37, Switch Statements on page IV-34, and Loops on page IV-36 for usage
details.

BrowseURL
BrowseURL [/Z] urlStr
The BrowseURL operation opens the Web browser or FTP browser on your computer and asks it to display
a particular Web page or to connect to an FTP server.
BrowseURL sets a variable named V_flag to zero if the operation succeeds and to nonzero if it fails. This, in
conjunction with the /Z flag, can be used to allow procedures to continue to execute if an error occurs.

Parameters
urlStr specifies a Web page or FTP server directory to be browsed. It is constructed of a naming scheme (e.g.,
“http://” or “ftp://”), a computer name (e.g., “www.wavemetrics.com” or “ftp.wavemetrics.com” or
“38.170.234.2”), and a path (e.g., “/Test/TestFile1.txt”). See Examples for sample usage.

/F This flag applies to 3D scatter only. It uses an algorithm from “An Efficient Bounding
Sphere” by Jack Ritter originally from Graphics Gems. Unfortunately it does not give
an accurate bounding ball but something that is sufficiently large. This algorithm is
less accurate but it produces a ball which is sufficiently large to contain all the points.

/Z No error reporting.

BuildMenu

V-43

Flags

Examples
// Browse a Web page.

String url = "http://www.wavemetrics.com/News/index.html"
BrowseURL url

// Browse an FTP server.
String url = "ftp://ftp.wavemetrics.com/pub/test"
BrowseURL url

BuildMenu
BuildMenu menuNameStr
The BuildMenu operation rebuilds the user-defined menu items in the specified menu the next time the
user clicks in the menu bar.

Parameters
menuNameStr is a string expression containing a menu name or "All".

Details
Call BuildMenu when you’ve defined a custom menu using string variables for the menu items. After you
change the string variables, call BuildMenu to update the menu.
In Igor 6.22 or later, BuildMenu "All" rebuilds all the menu items and titles and updates the menu bar. In
earlier versions of Igor it just rebuilds all user-defined menu items.
Under the current implementation, if menuNameStr is not "All", Igor will rebuild all user-defined menu
items if BuildMenu is called for any user-defined menu.

See Also
Dynamic Menu Items on page IV-113.

Button

Button [/Z] ctrlName [keyword = value [, keyword = value …]]
The Button operation creates or modifies the named button control.
For information about the state or status of the control, use the ControlInfo operation.

Parameters

/Z Errors are not fatal. Will not abort procedure execution if the URL is bad or if the
server is down. Your procedure can inspect the V_flag variable to see if the transfer
succeeded. V_flag will be zero if it succeeded or nonzero if it failed.
Syntactic errors, such as omitting the URL altogether or omitting quotes, are still fatal.

name is the name of the Button control to be created or changed.

appearance=
{kind [, platform]}

Sets the appearance of the control. platform is optional. Both parameters are
names, not strings.
kind=default: Appearance determined by DefaultGUIControls.
kind=native: Creates standard-looking controls for the current computer

platform.
kind=os9: Igor Pro 5 appearance (quasi-Macintosh OS 9 controls that

look the same on Macintosh and Windows).
platform=Mac: Changes the appearance of controls only on Macintosh;

affects the experiment whenever it is used on Macintosh.
platform=Win: Changes the appearance of controls only on Windows;

affects the experiment whenever it is used on Windows.
platform=All: Changes the appearance on both Macintosh and Windows

computers.

Button

V-44

disable=d

See the ModifyControl example for setting the bits individually.

fColor=(r,g,b) Sets color of the button. r, g, and b are integers from 0 to 65535. To set the color of the
title text, use escape sequences as described below for title. fColor defaults to black
(0,0,0). To set the color of the title text, see valueColor.

font="fontName" Sets button font, e.g., font="Helvetica".

fsize=s Sets font size.

fstyle=fs

help={helpStr} Specifies the help for the control. Help text is limited to a total of 255 characters. On
Macintosh, help appears if you turn Igor Tips on. On Windows, help for the first 127
characters or up to the first line break appears in the status line. If you press F1 while
the cursor is over the control, you will see the entire help text. You can insert a line
break by putting “\r” in a quoted string.

noproc No procedure is executed when clicking the button.

picture= pict Draws the button using the named picture. The picture is taken to be three side-by-
side frames that show the control appearance in the normal state, when the mouse is
down, and in the disabled state. The picture may be either a global (imported) picture
or a Proc Picture (see Proc Pictures on page IV-44). The size keyword is ignored when
a picture is used.

pos={left,top} Sets the position of the button in pixels.

pos+={dx,dy} Offsets the position of the button in pixels.

proc=procName Names the procedure to execute when clicking the button.

rename=newName Gives the button a new name.

size={width,height} Sets width and height of button in pixels.

title=titleStr Sets title of button (text that appears in the button) to the specified string expression. If not
given then title will be “New”. If you use "" the button will contain no text.
titleStr can contain formatting escape codes in order to create fancy, styled results. The
escape codes are the same as used by the TextBox operation. The easiest way to
generate fancy text is to create a dummy TextBox, set up the text as desired, click the To
Cmd Line button, and then edit the TextBox command for use with the control.

userdata(UDName)
=UDStr

Sets the unnamed user data to UDStr. Use the optional (UDName) to specify a named
user data to create.

Sets the state of the control. d is a bit field: bit 0 (the least significant bit) is set when
the control is hidden. Bit 1 is set when the control is disabled:
d=0: Normal (visible), enabled.
d=1: Hidden.
d=2: Visible and disabled. Drawn in grayed state, also disables

action procedure.
d=3: Hidden and disabled.

Specifies the font style. fs is a bitwise parameter with each bit controlling one
aspect of the font style:

See Setting Bit Parameters on page IV-12 for details about bit settings.

bit 0: Bold.
bit 1: Italic.
bit 2: Underline.
bit 3: Outline (Macintosh only).
bit 4: Shadow (Macintosh only).

Button

V-45

Details
The target window must be a graph or panel.
The action procedure, which may be a function or a macro, has the format:
Function procName(ctrlName) : ButtonControl

String ctrlName
…

End

The “: ButtonControl” designation tells Igor to include this procedure in the Procedure pop-up menu
in the Button Control dialog.
The action procedure for a Button control can also use a predefined structure WMButtonAction as a
parameter to the function. The control will use this more efficient method when the function properly
matches the structure prototype for a Button control, otherwise it will use the old-style method.
A Button action procedure using a structure has the format:
Function newActionProcName(B_Struct) : ButtonControl

STRUCT WMButtonAction &B_Struct
…

End

For a Button control, the WMButtonAction structure has members as follows:

userdata(UDName)
+=UDStr

Appends UDStr to the current unnamed user data. Use the optional (UDName) to
append to the named UDStr.

valueColor=(r,g,b) Sets initial color of the button's text (title). r, g, and b range from 0 to 65535. valueColor
defaults to black (0,0,0). To further change the color of the title text, use escape
sequences as described for title=titleStr.

win=winName Specifies which window or subwindow contains the named button control. If not
given, then the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

WMButtonAction Structure Members
Member Description
char ctrlName[MAX_OBJ_NAME+1] Control name.
char win[MAX_WIN_PATH+1] Host (sub)window.
STRUCT Rect winRect Local coordinates of host window.
STRUCT Rect ctrlRect Enclosing rectangle of the control.
STRUCT Point mouseLoc Mouse location.
Int32 eventCode Event that executed the procedure.

Events 2 and 3 only happen after event 1. Events 4, 5, and 6
happen only when mouse is over the control but happen
regardless of the mouse button state.

Int32 eventMod Bitfield of modifiers. See Control Structure eventMod Field on
page III-387.

eventCode Event
-1 Control being killed
1 Mouse down
2 Mouse up
3 Mouse up outside control
4 Mouse moved
5 Mouse enter
6 Mouse leave

ButtonControl

V-46

Action functions should respond only to documented eventCode values. Other event codes may be added
along with more fields. Although the return value is not currently used, action functions should always
return zero.
The constants used to specify the size of structure char arrays are internal to Igor Pro and may change.

See Also
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls. The GetUserData operation for retrieving named user data.

ButtonControl
ButtonControl
ButtonControl is a procedure subtype keyword that identifies a macro or function as being an action
procedure for a user-defined button control. See Procedure Subtypes on page IV-183 for details. See Button
for details on creating a button control.

cabs
cabs(z)
The cabs function returns the real-valued absolute value of complex number z.

See Also
The magsqr function.

CaptureHistory
CaptureHistory(refnum, stopCapturing)
The CaptureHistory function returns a string containing text from the History window since a matching
call to the CaptureHistoryStart function.

Parameters
refnum is a number returned from a call to CaptureHistoryStart. It identifies the starting point in the history
for the returned string.
Set stopCapturing to nonzero to indicate that no more history should be captured for the given refnum.
Subsequent calls to CaptureHistory with the same refnum will result in an error.
Set stopCapturing to zero to retrieve history text captured so far. Further calls to CaptureHistory with the
same reference number will return this text, plus any additional history text added subsequently.

Details
You can have multiple captures active at one time. Each call to CaptureHistoryStart will return a unique
reference number identifying a start point in the history. The capture corresponding to each reference
number can be terminated at any time, regardless of the order of the CaptureHistoryStart calls.

CaptureHistoryStart
CaptureHistoryStart()
The CaptureHistoryStart function returns a reference number to identify a starting point in the History
window text. Subsequently, the CaptureHistory function can be used to retrieve captured history text. See
CaptureHistory for details.

String userData Primary (unnamed) user data. If this changes, it is written back
automatically.

Int32 blockReentry Prevents reentry of control action procedure. See Control
Structure blockReentry Field on page III-388.

WMButtonAction Structure Members
Member Description

catch

V-47

catch
catch
The catch flow control keyword defines the beginning of code in a try-catch-entry flow control construct for
handling any abort conditions.

See Also
The try-catch-endtry flow control statement for details.

cd
cd dataFolderSpec
The cd operation sets the current data folder to the specified data folder. It is identical to the longer-named
SetDataFolder operation.
cd is named after the UNIX "change directory" command.

See Also
SetDataFolder, pwd, Dir, Data Folders on page II-121

ceil
ceil(num)
The ceil function returns the closest integer greater than or equal to num.

See Also
The round, floor, and trunc functions.

cequal
cequal(z1, z2)
The cequal function determines the equality of two complex numbers z1 and z2. It returns 1 if they are
equal, or 0 if not.
This is in contrast to the == operator, which compares only the real components of z1 and z2, ignoring the
imaginary components.

Examples
Function TestComplexEqualities()

Variable/C z1= cmplx(1,2), z2= cmplx(1,-2)
// This test compares only the real parts of z1 and z2:
if(z1 == z2)

Print "== match"
else

Print "no == match"
endif
// This test compares both real and imaginary parts of z1 and z2:
if(cequal(z1,z2))

Print "cequal match"
else

Print "no cequal match"
endif

End

•TestComplexEqualities()
 == match
 no cequal match

See Also
The imag, real, and cmplx functions.

char2num

V-48

char2num
char2num(str)
The char2num function returns a number which is the numeric representation of the first byte in the string
expression str.
The char2num function treats str as a string of signed bytes. Consequently it returns a negative number for
bytes that have bit 7 set. You can obtain the byte value as a positive number by ANDing with 0xFF.

Examples
Print char2num("A") // Prints 65
Print char2num("ABC") // Prints 65
Print char2num("•") // Prints character code as negative number
Print char2num("•") & 0xFF // Prints character code as positive number
Printf "%02X\r", char2num("•") & 0xFF // Prints as hexadecimal

See Also
The num2char, str2num and num2str functions.

Chart
Chart [/Z] ctrlName [keyword = value [, keyword = value …]]
The Chart operation creates or modifies a chart control. Charts are generally used in conjunction with data
acquisition. Charts do not have to be connected to a FIFO, but they are not useful until they are.
For information about the state or status of the control, use the ControlInfo operation.

Parameters

ctrlName is the name of the Chart control to be created or changed.
The following keyword=value parameters are supported:

chans={ch#, ch#,…} List of FIFO channel numbers that Chart is to monitor.

color(ch#)=(r,g,b) Sets the color of the specified trace. r, g, and b specify the amount of red, green,
and blue in the color as an integer from 0 to 65535.

ctab=colortableName When a channel is connected to an image strip FIFO channel, the data is displayed
as an image using this built-in color table. Valid names are the same as used in
images. Invalid name will result in the default Grays color table being used.

disable=d

fbkRGB=(r,g,b) Sets frame background color. r, g and b are integers from 0 to 65535.

fgRGB=(r,g,b) Sets foreground color (text, etc.). r, g and b are integers from 0 to 65535

fifo=FIFOName Sets which named FIFO the chart will monitor. See the NewFIFO operation.

font="fontName" Sets the font used in the chart, e.g., font="Helvetica".

fsize=s Sets font size for chart.

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Disable user input.

Charts do not change appearance because they are read-
only. When disabled, the hand cursor is not shown.

Chart

V-49

fstyle=fs

See Setting Bit Parameters on page IV-12 for details about bit settings.

gain(ch#)=g Sets the display gain g of the specified channel relative to nominal. Values greater
than unity expand the display.

gridRGB=(r,g,b) Sets grid color. r, g, and b are integers from 0 to 65535.

help={helpStr} Specifies help for the control. Help text is limited to a total of 255 characters. On
Macintosh, help appears if you turn Igor Tips on. On Windows, help for the first
127 characters or up to the first line break appears in the status line. If you press
F1 while the cursor is over the control, you will see the entire help text. You can
insert a line break by putting “\r” in a quoted string.

jumpTo=p Jumps to point number p. This works in review mode only.

lineMode(ch#)=lm

mass=m Sets the “feel” of the chart paper when you move it with the mouse. The larger
the mass m, the slower the chart responds. Odd values cause the movement of the
paper to stop the instant the mouse is clicked while even values continue with the
illusion of mass.

maxDots=md Controls whether points in a given vertical strip of the chart are displayed as dots
or as a solid line. See lineMode above. Default is 20.

offset(ch#)=o Sets the display offset of the specified channel. The offset value o is subtracted
from the data before the gain is applied.

oMode=om

pbkRGB=(r,g,b) Sets plot area background color. r, g, and b are integers from 0 to 65535.

ppStrip=pps Number of data points packed into each vertical strip of the chart.

rSize(ch#)=rs Sets the relative vertical size allocated to the given channel. Nominal is unity. If
the value of rs is zero then this channel shares space with the previous channel.

Specifies the font style. fs is a bitwise parameter with each bit controlling one
aspect of the font style as follows:
bit 0: Bold.
bit 1: Italic.
bit 2: Underline.
bit 3: Outline (Macintosh only).
bit 4: Shadow (Macintosh only).

Sets the display line mode for the given channel.
lm=0: Dots mode. Draws values as dots. However, if the number of

dots in a strip exceeds maxDots then Igor draws a vertical line
from the min to the max of the values packed into the strip.

lm=1: Lines mode. Draws a vertical line encompassing the min and
the max of the points in a given strip along with the last point
of the preceding strip. Since which strip is the preceding strip
depends on the direction of motion then the appearance may
slightly shift depending on which direction the chart is
moving.

lm=2: Dots mode. Draws values as dots. However, if the number of
dots in a strip exceeds maxDots then Igor draws a vertical line
from the min to the max of the values packed into the strip.

Chart operation mode.
om=0: Live mode.
om=1: Review mode.

chebyshev

V-50

Flags

Details
The target window must be a graph or panel.
The action of some of the Chart keywords depends on whether or not data acquisition is taking place. If the
chart is in review mode then all keywords cause the chart to be redrawn. If data acquisition is taking place
and the chart is in live mode then some keywords affect new data but do not attempt to update the part of
the “paper” that has already been drawn. The following keywords affect only new data during live mode:
ppStrip maxDots gain offset color lineMode

See Also
Charts on page III-362 and FIFOs and Charts on page IV-282.
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls. The GetUserData operation for retrieving named user data.

chebyshev
chebyshev(n, x)
The chebyshev function returns the Chebyshev polynomial of the first kind and of degree n.
The Chebyshev polynomials satisfy the recurrence relation:

 with: .

The orthogonality of the polynomial is expressed by the integral:

.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

sMode=sm

sRate=sr Sets the scroll rate (vertical strips/second). If the chart control is in review mode
negative numbers scroll in reverse.

title=titleStr Specifies the chart title. Use "" for no title.

uMode=um

win=winName Specifies which window or subwindow contains the named control. If not given,
then the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page
III-97 for details on forming the window hierarchy.

/Z No error reporting.

Status line mode.
sm=0: Turns off fancy status line and positioning bar.
sm=1: Normal mode.
sm=2: Uses alternate style for bar.

Status line mode.
um=1: Fast update with no bells and whistles.
um=2: Status line and positioning bar.
um=3: Status line, positioning bar, and animated pens.

Tn 1+ x() 2xTn x() Tn 1– x()–= T0 x() 1=

T1 x() x=

T2 x() 2x2 1–=

Tn x()Tm x()

1 x2–
---------------------------- xd

1–

1

0 m n≠
π 2⁄ m n 0≠=

π m n 0= =

=

chebyshevU

V-51

See Also
chebyshevU.

chebyshevU
chebyshevU(n, x)
The chebyshevU function returns the Chebyshev polynomial of the second kind, degree n and argument x.
The Chebyshev polynomial of the second kind satisfies the recurrence relation
U(n+1,x)=2xU(n,x)-U(n-1,x)

which is also the recurrence relation of the Chebyshev polynomials of the first kind.
The first 10 polynomials of the second kind are:
U(0,x)=1
U(1,x)=2x
U(2,x)=4x2-1
U(3,x)=8x3-4x
U(4,x)=16x4-12x2+1
U(5,x)=32x5-32x3+6x
U(6,x)=64x6-80x4+24x-1
U(7,x)=128x7-192x5+80x3-8x
U(8,x)=256x8-448x6+240x4-40x2+1
U(9,x)512x9-1024x^7+672x5-160x3+10x

See Also
The chebyshev function.

CheckBox
CheckBox [/Z] ctrlName [keyword = value [, keyword = value …]]
The CheckBox operation creates or modifies a checkbox, radio button or disclosure triangle in the target or
named window, which must be a graph or control panel.
ctrlName is the name of the checkbox.
For information about the state or status of the control, use the ControlInfo operation.

Parameters

ctrlName is the name of the CheckBox control to be created or changed.
The following keyword=value parameters are supported:

appearance=
{kind [, platform]}

Sets the appearance of the control. platform is optional. Both parameters are
names, not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
See Button and DefaultGUIControls for more appearance details.

disable=d

fsize=s Sets font size for checkbox.

fColor=(r,g,b) Sets the initial color of the title. r, g, and b range from 0 to 65535. fColor defaults
to black (0,0,0). To further change the color of the title text, use escape sequences
as described for title=titleStr.

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Disable user input.

CheckBox

V-52

help={helpStr} Sets the help for the control. The help text is limited to a total of 255 characters.
On Macintosh, the help appears if you turn Igor Tips on. On Windows, the help
for the first 127 characters or up to the first line break appears in the status line. If
you press F1 while the cursor is over the control, you will see the entire help text.
You can insert a line break by putting “\r” in a quoted string.

mode=m

noproc Specifies that no procedure is to execute when clicking the checkbox.

picture= pict Draws the checkbox using the named picture. The picture is taken to be six side-by-
side frames which show the control appearance in the normal state, when the
mouse is down, and in the disabled state. The first three frames are used when the
checked state is false and the next three show the true state. The picture may be
either a global (imported) picture or a Proc Picture (see Proc Pictures on page
IV-44).

pos={left,top} Sets the position of the checkbox in pixels.

pos+={dx,dy} Offsets the position of the checkbox in pixels.

proc=procName Specifies the procedure to execute when the checkbox is clicked.

rename=newName Renames the checkbox to newName.

side=s

size={width,height} Sets checkbox size in pixels.

title=titleStr Sets title of checkbox to the specified string expression. The title is the text that
appears in the checkbox. If not given or if "" then the title will be “New”.
titleStr can contain formatting escape codes in order to create fancy, styled results.
The escape codes are the same as used by the TextBox operation. The easiest way
to generate fancy text is to make selections from the Insert popup in the Checkbox
Control dialog.

userdata(UDName)=
UDStr

Sets the unnamed user data to UDStr. Use the optional (UDName) to specify a
named user data to create.

userdata(UDName)+=
UDStr

Appends UDStr to the current unnamed user data. Use the optional (UDName) to
append to the named UDStr.

value=v Specifies whether the checkbox is selected (v=1) or not (v=0).

variable= varName Specifies a global numeric variable to be set to the current state of a checkbox
whenever it is clicked or when it is set by the value parameter. The variable is
two-way: setting the variable also changes the state of the checkbox.

win=winName Specifies which window or subwindow contains the named control. If not given,
then the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page
III-97 for details on forming the window hierarchy.

Specifies checkbox appearance.
m=0: Default checkbox appearance.
m=1: Display as a radio button control.
m=2: Display as a disclosure triangle (Macintosh) or treeview

expansion node (Windows).

Sets the location of the title relative to the box:
s =0: Checkbox is on the left, title is on the right (default).
s =1: Checkbox is on the right, title is on the left.

CheckBox

V-53

Flags

Details
The target window must be a graph or panel.
The action procedure, which may be a function or a macro, has the format:
Function procName(ctrlName,checked) : CheckBoxControl

String ctrlName
Variable checked // 1 if selected, 0 if not
…

End

The “: CheckboxControl” designation tells Igor to include this procedure in the Procedure pop-up
menu in the Checkbox Control dialog.
The action procedure for a CheckBox control can also use a predefined structure WMCheckboxAction as a
parameter to the function. The control will use this more efficient method when the function properly
matches the structure prototype for a CheckBox control, otherwise it will use the old-style method.
A CheckBox action procedure using a structure has the format:
Function newActionProcName(CB_Struct) : CheckBoxControl

STRUCT WMCheckboxAction &CB_Struct
…

End

For a CheckBox control, the WMCheckboxAction structure has members as described in the following table:

Action functions should respond only to documented eventCode values. Other event codes may be added
along with more fields. Although the return value is not currently used, action functions should always
return zero.
The constants used to specify the size of structure char arrays are internal to Igor Pro and may change.
When using radio button controls, it is the responsibility of the Igor programmer to turn off other radio
buttons when one of a group of radio buttons is pressed.

/Z No error reporting.

WMCheckboxAction Structure Members

Member Description

char ctrlName[MAX_OBJ_NAME+1] Control name.

char win[MAX_WIN_PATH+1] Host (sub)window.

STRUCT Rect winRect Local coordinates of host window.

STRUCT Rect ctrlRect Enclosing rectangle of the control.

STRUCT Point mouseLoc Mouse location.

Int32 eventCode Event that executed the procedure.

Int32 eventMod Bitfield of modifiers. See Control Structure eventMod Field on
page III-387.

String userData Primary (unnamed) user data. If this changes, it is written back
automatically.

Int32 blockReentry Prevents reentry of control action procedure. See Control
Structure blockReentry Field on page III-388.

Int32 checked Checkbox state.

eventCode Event
-1 Control being killed
2 Mouse up

CheckBoxControl

V-54

Examples
The following code is an example of how to program such a group. (Copy the following code into the procedure
window of a new experiment and then bring up the panel.)
Window Panel0() : Panel

PauseUpdate; Silent 1 // building window …
NewPanel /W=(150,50,353,212)
Variable/G gRadioVal= 1
CheckBox check0,pos={52,25},size={78,15},title="Radio 1"
CheckBox check0,value=1,mode=1,proc=MyCheckProc
CheckBox check1,pos={52,45},size={78,15},title="Radio 2"
CheckBox check1,value=0,mode=1,proc=MyCheckProc
CheckBox check2,pos={52,65},size={78,15},title="Radio 3"
CheckBox check2,value= 0,mode=1,proc=MyCheckProc

EndMacro

Function MyCheckProc(name,value)
String name
Variable value

NVAR gRadioVal= root:gRadioVal

strswitch (name)
case "check0":

gRadioVal= 1
break

case "check1":
gRadioVal= 2
break

case "check2":
gRadioVal= 3
break

endswitch
CheckBox check0,value= gRadioVal==1
CheckBox check1,value= gRadioVal==2
CheckBox check2,value= gRadioVal==3

End

See Also
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls. The GetUserData operation for retrieving named user data.

CheckBoxControl
CheckBoxControl
CheckBoxControl is a procedure subtype keyword that identifies a macro or function as being an action
procedure for a user-defined checkbox control. See Procedure Subtypes on page IV-183 for details. See
CheckBox for details on creating a checkbox control.

CheckDisplayed
CheckDisplayed [/A/W] waveName [, waveName]…
The CheckDisplayed operation determines if named waves are displayed in a host window or subwindow.

Flags

Details
If neither /A nor /W are used, CheckDisplayed checks only the top graph or table.
CheckDisplayed sets a bit in the variable V_flag for each wave that is displayed.

Examples
CheckDisplayed/W=Graph0 aWave,bWave,cWave

/A Checks all graph and table windows

/W=winName Checks only the named graph or table window
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

CheckName

V-55

Checks Graph0 to see if aWave, bWave, and cWave are displayed in it. If aWave is displayed, CheckDisplayed
sets bit 0 of V_flag (V_flag=1). If bWave is displayed, sets bit 1 (V_flag=2). If cWave is displayed, sets bit 2
(V_flag=4). If all three waves are displayed, V_flag=7.

See Also
Setting Bit Parameters on page IV-12 for information about bit settings.

CheckName
CheckName(nameStr, objectType [, windowNameStr])
The CheckName function returns a number which indicates if the specified name is legal and unique
among objects in the namespace of the specified object type.
Waves, global numeric variables, and global string variables are all in the same namespace and need to be
unique only within the data folder containing them. However, they also need to be distinct from names of
Igor operations and functions and from names of user-defined procedures.
Data folders are in their own namespace and need to be unique only among other data folders at the same
level of the data folder hierarchy.
windowNameStr is optional. If missing, it is taken to be the top graph, panel, layout, or notebook according
to the value of objectType.

Details
A result of zero indicates that the name is legal and unique within its namespace. Any nonzero result
indicates that the name is illegal or not unique. You can use the CleanupName and UniqueName functions
to guarantee legality and uniqueness.
nameStr should contain an unquoted name (i.e., no single quotes for liberal names), such as you might
receive from the user through a dialog or control panel.
objectType is one of the following:

The windowNameStr argument is used only with objectTypes 14, 15, and 16. The nameStr is checked for
uniqueness only within the named window (other windows might have objects with the given name). If a
named window is given but does not exist, any valid nameStr is permitted

Examples
Variable waveNameIsOK = CheckName(proposedWaveName, 1) == 0
Variable annotationNameIsOK = CheckName("text0", 14, "Graph0") == 0

// Create a valid and unique wave name
Function/S CreateValidAndUniqueWaveName(proposedName)

String proposedName

String result = proposedName

if (CheckName(result,1) != 0) // 1 for waves
result = CleanupName(result, 1) // Make sure it's valid
result = UniqueName(result, 1, 0) // Make sure it's unique

endif

return result
End

1: Wave. 9: Control panel window.
2: Reserved. 10: Notebook window.
3: Global numeric variable. 11: Data folder.
4: Global string variable. 12: Symbolic path.
5: XOP target window. 13: Picture.
6: Graph window. 14: Annotation in the named or topmost graph or layout.
7: Table window. 15: Control in the named topmost graph or panel.
8: Layout window. 16: Notebook action character in the named or

topmost notebook.

ChildWindowList

V-56

See Also
CleanupName and UniqueName functions.

ChildWindowList
ChildWindowList(hostNameStr)
The ChildWindowList function returns a string containing a semicolon-separated list of immediate
subwindow window names of the specified host window or subwindow.

Parameters
hostNameStr is a string or string expression containing the name of an existing host window or subwindow.
When identifying a subwindow with hostNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.

Details
Error if the host does not exist or if it is not an allowed host type.

See Also
WinList and WinType functions.

ChooseColor
ChooseColor [/C=(r,g,b)]
The ChooseColor operation displays a dialog for choosing a color.
The color initially shown is black unless you specify a different color with /C.

Flags

Details
ChooseColor sets the variable V_flag to 1 if the user clicks OK in the dialog or to 0 otherwise.
If V_flag is 1 then V_Red, V_Green, and V_Blue are set to the selected color as integers from 0 to 65535.

See Also
ImageTransform rgb2hsl and hsl2rgb.

CleanupName
CleanupName(nameStr, beLiberal)
The CleanupName function returns the input name string, possibly altered to make it a legal object name.

Details
nameStr should contain an unquoted (i.e., no single quotes for liberal names) name, such as you might
receive from the user through a dialog or control panel.
beLiberal is 0 to use strict name rules or 1 to use liberal name rules. Strict rules allow only letters, digits and
the underscore character. Liberal rules allow other characters such as spaces and dots. Liberal rules were
introduced with Igor Pro 3.0 and are allowed for names of waves and data folders only.
Note that a cleaned up name is not necessarily unique. Call CheckName to check for uniqueness or
UniqueName to ensure uniqueness.

Examples
String cleanStrVarName = CleanupName(proposedStrVarName, 0)

See Also
CheckName and UniqueName functions.

/C=(r,g,b) r, g, and b specify the amount of red, green, and blue in the color initially displayed in
the dialog as an integer from 0 to 65535.

Close

V-57

Close
Close [/A] fileRefNum
The Close operation closes a file previously opened by the Open operation or closes all such files if /A is used.

Parameters
fileRefNum is the file reference number of the file to close. This number comes from the Open operation. If
/A is used, fileRefNum should be omitted.

Flags

CloseMovie
CloseMovie
The CloseMovie operation closes the currently open movie. You must close a movie before you can play it.

See Also
Movies on page IV-225.
The NewMovie operation.

CloseProc
CloseProc /NAME=procNameStr [flags]
CloseProc /FILE=fileNameStr [flags]
The CloseProc operation closes a procedure window. You cannot call CloseProc on the main Procedure
window.
CloseProc provides a way to programmatically create and alter procedure files. You might do this in order
to make a user-defined menu-bar menu with contents that change.
Note: CloseProc alters procedure windows so it cannot be called while functions or macros are

running. If you want to call it from a function or macro, use Execute/P.
Warning: If you close a procedure window that has no source file or without specifying a destination file,

the window contents will be permanently lost.

Flags

/A Closes all files. Mainly useful for cleaning up after an error during procedure
execution occurs so that the normal Close operation is never executed.

/COMP[=compile]

/D[=delete]

/FILE=fileNameStr Identifies the procedure window to close using the file name and path to the file
given by fileNameStr. The string can be just the file name if /P is used to specify a
symbolic path name of the enclosing folder. It can be a partial path if /P points to
a folder enclosing the start of the partial path. It can also be a full path the file.

Specifies whether procedures should be compiled after closing the procedure
window.
compile=1: Compiles procedures (same as /COMP only).
compile=0: Leaves procedures in an uncompiled state.

Specifies whether the procedure file should be deleted after closing the procedure
window.
delete=1: Deletes procedure file (same as /D only).

Warning: You cannot recover any file deleted this way.
delete=0: Leaves any associated file unaffected.

cmplx

V-58

Details
Specify which window to close using either the /NAME or /FILE flag. You must use one or the other.
Usually you would use /NAME, as it is usually more convenient. If by some chance two procedures have
the same name, /FILE can be used to distinguish between them.
You cannot call CloseProc on a nonmain procedure window that someone has had the bad taste to call
“Procedure”.

See Also
Chapter III-13, Procedure Windows.
The Execute/P operation.

cmplx
cmplx(realPart, imagPart)
The cmplx function returns a complex number whose real component is realPart and whose imaginary
component is imagPart.
Use this to assign a value to a complex variable or complex wave.

Examples
Assume wave1 is complex. Then:
wave1(0) = cmplx(1,2)

sets the Y value of wave1 at x=0 such that its real component is 1 and its imaginary component is 2.
Assuming wave2 and wave3 are real, then:
wave1 = cmplx(wave2,wave3)

sets the real component of wave1 equal to the contents of wave2 and the imaginary component of wave1
equal to the contents of wave3.
You may get unexpected results if the number of points in wave2 or wave3 differs from the number of
points in wave1. If wave2 or wave3 are shorter than wave1, the last element of the short wave is copied
repeatedly to fill wave1.

See Also
conj, imag, magsqr, p2rect, r2polar, and real functions.

/NAME=procNameStr Identifies the procedure window to close with the string expression procNameStr.
This is the same text that appears in the window title. If the procedure window is
associated with a file, it will be the file name and extension.
To close a procedure file that is part of an independent module, you must include
the independent module name in procNameStr. For example:
CloseProc /NAME="GraphBrowser.ipf [WM_GrfBrowser]"

Note that there is a space after the file name followed by the independent module
name in brackets.

/P=pathName Specifies the folder to look in for the file specified by /FILE. pathName is the name
of an existing symbolic path.

/SAVE[=savePathStr] Saves the procedure before closing the window. If the flag is used with no
argument, it saves any changes to the procedure window to its source file before
closing it. If savePathStr is present, it must be a full path naming a file in which to
save the procedure window contents. The /P flag is not used with savePathStr so it
must be a full path.

cmpstr

V-59

cmpstr
cmpstr(str1, str2 [, flags])
The cmpstr function returns -1, 0 or 1 depending on how string str1 compares alphabetically to string str2.

Details
cmpstr returns the following values:

If flags is not present, or if flags is zero, case (upper or lower) is not significant. Set flags to 1 for a case-
sensitive comparison.

See Also
The ReplaceString function.

ColorScale
ColorScale [flags] [, keyword = value, …] [axisLabelStr]
The ColorScale operation puts a color scale (or “color legend”) annotation on the
top graph or page layout.
The ColorScale operation can be executed with no flags and no parameters.
When a graph is the top window the color scale represents the colors and values
associated with the first image plot that was added to the graph.
If there is no image plot in the graph, the color scale represents the first contour plot or first f(z) trace added to the
graph, one of which must exist for the command to execute without error when executed without parameters.
Executing ColorScale (with no parameters) when a layout is the top window displays a color bar as if the
ctab={0,100,Rainbow} parameters had been specified.

Flags
Use the /W=winName flag to specify a specific graph or layout window. When used on the command line
or in a Macro or Proc, /W must precede all other flags.
To change a color scale, use the /C/N=name flags. Annotations are automatically named “text0”, “text1”, etc.
if no name is specified when it is created, and you must use that name to modify an existing annotation or
else a new one will be created.
For explanations of all flags see the TextBox operation.

Parameters
The following keyword-value pairs are the important parameters to the ColorScale operation, because they
specify what object the color scale is representing.
For use with page layouts, the keyword ={graphName,…} form is required.
For graphs it is simpler to use the image=imageInstanceName form (omitting graphName), though you can
use $"" to mean the top graph, or specify the name of another graph with the long form. See the Examples.

-1: str1 is alphabetically before str2.

0: str1 and str2 are equal.

1: str1 is alphabetically after str2.

axisLabelStr Contains the text printed beside the color scale’s main axis. This text is interpreted the
same way as for the Label operation. It may contain escape codes to alter the text color
or display subscripts, for example. You can use AppendText or ReplaceText to
modify this axis label string. The default value for axisLabelStr is "".

cindex=cindexMatrixWave

The colors shown are those in the named color index wave with axis values derived
from the wave’s X (row) scaling and units.
The image colors are determined by doing a lookup in the specified matrix wave. See
the ModifyImage cindex keyword.

ColorScale

V-60

Size Parameters
The following keyword-value parameters modify the size of the color scale annotation. These keywords are
similar to those used by the Slider control. The size of the annotation is indirectly controlled by setting the
size of the “color bar” and the various axis parameters. The annotation sizes itself to accommodate the color
bar, tick labels, and axis labels.

contour=contourInstanceName
contour={graphName,contourInstanceName}

The colors show the named contour plot’s colors and associated contour (Z) values
and contour data units. All of the image plot’s characteristics are represented,
including color table, cindex, and fixed colors.

ctab={zMin,zMax,ctName, mode}

The color table specified by ctName is drawn in the color legend. ctName can be any of
those returned by the CTabList function, such as Grays or Rainbow. Also see Color
Tables on page II-359.
The color table name can be omitted if you want to leave it unchanged. zMin and zMax
set the range of Z values to map. Set parameter mode to 1 to reverse the color table;
zero or missing value does not reverse the color table.

image=imageInstanceName
image={graphName,imageInstanceName}

The colors show the named image plot’s colors and associated image (Z) values and
image data units. All of the image plot’s characteristics are represented, including
color table, cindex, lookup wave, eval colors, and NaN transparency. Note: only false-
color image plots can be used with ColorScale (see Indexed Color Details on page
II-366).

lookup=waveName Specifies an optional 1D wave used to modify the mapping of scaled Z values into the
color table specified with the ctab keyword. Values should range from 0.0 to 1.0. A
linear ramp from 0 to 1 would have no effect while a ramp from 1 to 0 would reverse
the image. Used to apply gamma correction to grayscale images or for special effects.
Use lookup=$"" to remove option.
This keyword is not needed with the image keyword, even if the image plot uses a lookup
wave. The image plot’s lookup wave is used instead of the ColorScale lookup wave.

trace=traceInstanceName
trace={graphName,traceInstanceName}

The colors show the color(s) of the named trace. This is useful when the trace has its
color set by a “Z wave” using the ModifyGraph zColor(traceName)=… feature.
In the Modify Trace Appearance dialog this is selected in the “Set as f(z)” subdialog.
The color scale’s main axis shows the range of values in the Z wave, and displays any
data units the wave may have.

height=h Sets the height of the color bar in points, overriding any heightPct setting. The default
height is 75% of the plot area height if the color scale is vertical, or a constant of 15
points if the color scale is horizontal. The default is restored by specifying height=0.
Specifying a heightPct value resets height to this default.

heightPct=hpct Sets height as a percentage of the graph’s plot area, overriding any height setting. The
default height is 75% of the plot area height if the color scale is vertical, or a constant
of 15 points if the color scale is horizontal. The default height is restored by setting
heightPct=0. Specifying a height value resets heightPct to this default.

side=s Selects on which axis to draw main axis ticks.
s=1: Right of the color bar if vert=1, or below if vert=0.
s=2: Left of the color bar if vert=1, or above if vert=0.

ColorScale

V-61

Color Bar Parameters
The following keyword-value parameters modify the appearance of the color scale color bar.

Axis Parameters
The following keyword-value parameters modify the appearance of the color scale axes. These keywords
are based on the ModifyGraph Axis keywords because they modify the main or secondary color scale axes.

vert=v

width=w Sets the width of the color bar in points, overriding any widthPct setting. The default
width is a constant 15 points if the color scale is vertical, or 75% of the plot area width
if the color scale is horizontal. The default is restored by specifying width=0.
Specifying a widthPct value resets width to this default.

widthPct=wpct Sets width as a percentage of the graph’s plot area, overriding any width setting. The
default width is a constant 15 points if the color scale is vertical, or 75% of the plot area
width if the color scale is horizontal. The default is restored by setting widthPct=0.
Specifying a width value resets widthPct to this default.

colorBoxesFrame=on Draws frames surrounding up to 99 swatches of colors in the color bar (on=1).
When specifying more than 99 colors in the color bar (such as the Rainbow color
table, which has 100 colors), the boxes aren’t framed. Framing color boxes is
effective only for small numbers of colors. Set the width of the frame with the
frame keyword.
Use on=0 to turn off color box frames.

frame=f Specifies the thickness of the frame drawn around the color bar in points (f can
range from 0 to 5 points). The default is 1 point. Fractional values are permitted.
Turn frames off with f=0. Values less that 0.5 do not display on screen, but the thin
frame will print.

frameRGB=(r, g, b) or 0 Sets the color of the frame around the color bar. r, g, and b specify the amount of
red, green, and blue as an integer from 0 to 65535. The frame includes the
individual color bar colors when colorBoxesFrame=1.
The frame will use the colorscale foreground color, as set by the /G flag, when
frameRGB=0.

axisRange={zMin, zMax}

Sets the color bar axis range to values specified by zMin and zMax. Use * to use
the default axis range for either or both values.
Omit zMin or zMax to leave that end of the range unchanged. For example, use
{zMin, } to change zMin and leave zMax alone, or use { ,*} to set only the axis
maximum value to the default value.

dateInfo={sd,tm,dt}

Specifies color scale orientation.
v=0: Horizontal.
v=1: Vertical (default).

Controls formatting of date/time axes.
sd=0: Show date in the date&time format.
sd=1: Suppress date.
tm=0: 12 hour (AM/PM) time.
tm=1: 24 hour (military) time.
tm=2: Elapsed time.
dt=0: Short dates (2/22/90).
dt=1: Long dates (Thursday, February 22, 1990).
dt=2: Abbreviated dates (Thurs, Feb 22, 1990).

ColorScale

V-62

These have no effect unless the axis is controlled by a wave with 'dat' data units.
For an f(z) color scale:
SetScale d, 0,0, "dat", fOfZWave

For a contour plot or image plot color scale:
SetScale d, 0,0, "dat", ZorXYZorImageWave

See Date/Time Axes on page II-280 and Date, Time, and Date&Time Units on
page II-85 for details on how date/time axes work.

font=fontNameStr Name of font as string expression. If the font does not exist, the default font is
used. Specifying “default” has the same effect. Unlike ModifyGraph, the
fontNameStr is evaluated at runtime, and its absence from the system is not an
error.

fsize=s

fstyle=fs

See Setting Bit Parameters on page IV-12 for details about bit settings.

highTrip=h If the extrema of an axis are between its lowTrip and its highTrip then tick mark
labels use fixed point notation. Otherwise they use exponential (scientific or
engineering) notation. The default highTrip is 100,000.

lblLatPos=p Sets a lateral offset for the main axis label. This is an offset parallel to the axis. p is in
points. Positive is down for vertical axes and to the right for horizontal axes. The
default is 0.

lblMargin=m Moves the main axis label by m points (default is 0) from the normal position. The
default value is -5, which brings the axis label closer to the axis. Use more positive
values to move the axis label away from the axis.

lblRot=r Rotates the axis label by r degrees. r is a value from -360 to 360. Rotation is
counterclockwise and starts from the label's normal orientation.

log=l

logHTrip=h Same as highTrip but for log axes. The default is 10,000.

logLTrip=l Same as lowTrip but for log axes. The default is 0.0001.

logTicks=t Specifies the maximum number of decades in log axis before minor ticks are
suppressed.

lowTrip=l If the axis extrema are between its lowTrip and its highTrip, then tick mark labels
use fixed point notation. Otherwise, they use exponential (scientific or
engineering) notation. The default lowTrip is 0.1.

Sets the font size in points.
s=0: Use the graph font size for tick labels and axis labels (default).

Sets the font style. fs is a bitwise parameter with each bit controlling one
aspect of the font style for the tick mark labels:
bit 0: Bold.
bit 1: Italic.
bit 2: Underline.
bit 3: Outline (Macintosh only).
bit 4: Shadow (Macintosh only).
bit 5: Condensed (Macintosh only).
bit 6: Extended (Macintosh only).

Specifies the axis type:
l=0: Linear (default).
l=1: Log base 10.
l=2: Log base 2.

ColorScale

V-63

minor=m

notation=n

nticks=n Specifies the approximate number of ticks to be distributed along the main axis.
Ticks are labelled using the same automatic algorithm used for graph axes. The
default is 5.
Set n=0 for no ticks.

prescaleExp=exp Multiplies axis range by 10exp for tick labeling and exp is subtracted from the axis
label exponent. In other words, the exponent is moved from the tick labels to the
axis label. The default is 0 (no modification). See the discussion in the
ModifyGraph (axes) Details section.

tickExp=te

tickLen=t

tickThick=t

tickUnit=tu Turns on (tu=0) or off (tu=1) units labels attached to tick marks.

userTicks={tvWave,tlblWave}

Supplies user defined tick positions and labels for the main axis. tvWave contains
the numeric tick positions while text wave tlblWave contains the corresponding
labels.
Overrides normal ticking specified by nticks.
See User Ticks from Waves on page II-278 for details.
The tick mark labels can be multiline and use styled text. For more details, see
Fancy Tick Mark Labels on page II-318.

ZisZ=z z =1 labels the zero tick mark (if any) with the single digit “0” regardless of the
number of digits used for other labels. Default is z=0.

Controls minor tick marks:
m=0: Disables minor ticks (default).
m=1: Enables minor ticks.

Controls tick label notation:
n=0: Engineering notation (default).
n=1: Scientific notation.

Controls tick label exponential notation:
te=1: Forces tick labels to exponential notation when labels have units

with a prefix.
te=0: Turns off exponential notation.

Sets the length of the ticks. t is the major tick mark length in points. This value
must be between -100 and 50.
t= 0 to 50: Draws tick marks between the tick labels and the colors

box.
t= -1: Default; auto tick length, equal to 70% of the tick label

font size. Draws tick marks between the tick labels and
the colors box.

t= -2 to -50: Draws tick marks crossing the edge of the colors box
nearest the tick labels. The actual total tick mark length
is -t.

t= -100 to -51: Draws tick marks inside the edge of the colors box
nearest the tick labels. Actual tick mark length is -(t+50).
For example, -58 makes in an inside tick mark that is 8
points long.

Sets the tick mark thickness in points (from 0 to 5 points). The default is 1 point.
Fractional values are permitted.
t=0: Turns tick marks off, but not the tick labels.

ColorTab2Wave

V-64

Secondary Axis Parameters

Examples
Make/O/N=(20,20) img=p*q; NewImage img // Make and display an image
ColorScale // Create default color scale
// First annotation is text0
ColorScale/C/N=text0 nticks=3,minor=1,"Altitude"

ModifyImage img ctab= {*,*,Relief19,0} // 19-color color table
ColorScale/C/N=text0 axisRange={100,300} // Detail for 100-300 range
ColorScale/C/N=text0 colorBoxesFrame=1 // Frame the color boxes
ColorScale/C/N=text0 frameRGB=(65535,0,0) // Red frame

See Also
For all other flags see the TextBox and AppendText operations.
AnnotationInfo, AnnotationList

ColorTab2Wave
ColorTab2Wave colorTableName
The ColorTab2Wave operation extracts colors from the built-in color table and places them in an Nx3 matrix of
red, green, and blue columns named M_colors. Values are unsigned 16-bit integers and range from 0 to 65535.

axisLabel2=axisLabelString2

Axis label for the secondary axis. This axis label is drawn only if userTicks2 is in effect.
Text after any \r character is ignored, as is the \r character. The default is "".

lblLatPos2=p Sets lateral offset for secondary axis labels. This is an offset parallel to the axis. p is in
points. Positive is down for vertical axes and to the right for horizontal axes. The default
is 0.

lblMargin2=m Specifies the distance in points (default 0) to move the secondary axis label from the
position that would be normal for a graph. The default is value is -5, which brings the axis
label closer to the axis. Use more positive values to move the axis label away from the axis.

lblRot2=r Rotates the secondary axis label by r degrees counterclockwise starting from the
normal label orientation. r is a value from -360 to 360.

userTicks2={tvWave,tlblWave}

Supplies user defined tick positions and labels for a second axis which is always on
the opposite side of the color bar from the main axis. The tick mark labels can be
multiline and use styled text. For more details, see Fancy Tick Mark Labels on page
II-318. This is the only way to draw a second axis.

15
10

5
0

151050

300

250

200

150

100

A
ltitude

Concatenate

V-65

N will typically be 100 but may be as little as 9 and as large as 476. Use
Variable N= DimSize(M_colors,0)

to determine the actual number of colors.
The wave M_colors is created in the current data folder. Red is in column 0, green is in column 1, and blue
in column 2.

Parameters
colorTableName can be any of those returned by CTabList, such as Grays or Rainbow.
colorTableName can also be Igor or IgorRecent, to return either the 128 standard or 0-32 user-selected
colors from Igor's color menu.

Details
See Color Tables on page II-359.

Concatenate
Concatenate [type flags][flags] waveListStr, destWave
Concatenate [type flags][flags] {wave1, wave2, wave3,…}, destWave
The Concatenate operation combines data from the source waves into destWave, which is created if it does not
already exist. If destWave does exists and overwrite is not specified, the source waves' data is concatenated
with the existing data in the destination wave.
By default the concatenation increases the dimensionality of the destination wave if possible. For example, if
you concatenate two 1D waves of the same length you get a 2D wave with two columns. The destination wave
is said to be "promoted" to a higher dimensionality.
If you use the /NP (no promotion) flag, the dimensionality of the destination wave is not changed. For
example, if you concatenate two 1D waves of the same length using /NP you get a 1D wave whose length is
the sum of the lengths of the source waves.
If the source waves are of different lengths, no promotion is done whether /NP is used or not.

Parameters
waveListStr is a string expression containing a list of wave names separated by semicolons. The list must be
terminated with a semicolon. The alternate syntax using {wave1, wave2, …} is limited to 100 waves or less,
but there is no limit when using waveListStr.
destWave is the name of a new or existing wave that will contain the concatenation result.

Flags

Type Flags (used only in functions)
Concatenate also can use various type flags in user functions to specify the type of destination wave
reference variables. These type flags do not need to be used except when needed to match another wave
reference variable of the same name or to identify what kind of expression to compile for a wave
assignment. See WAVE Reference Types on page IV-58 and WAVE Reference Type Flags on page IV-59
for a complete list of type flags and further details.

/DL Sets dimension labels. For promotion, it uses source wave names as new dimension
labels otherwise it uses existing labels.

/KILL Kills source waves.

/NP Prevents promotion to higher dimension.

/NP=dim Prevents promotion and appends data along the specified dimension (0= rows, 1=
columns, 2=layers, 3=chunks). All dimensions other than the one specified by dim
must be the same in all waves. Requires Igor Pro 6.12 or later.

/O Overwrites destWave.

conj

V-66

Details
If destWave does not already exist or, if the /O flag is used, destWave is created by duplication of the first
source wave. Waves are concatenated in order through the list of source waves. If destWave exists and the
/O flag is not used, then the concatenation starts with destWave.
destWave cannot be used in the source wave list.
Source waves must be either all numeric or all text.
If promotion is allowed, the number of low-order dimensions that all waves share in common determines
the dimensionality of destWave so that the dimensionality of destWave will then be one greater. The default
behaviors will vary according to the source wave sizes. Concatenating 1D waves that are all the same length
will produce a 2D wave, whereas concatenating 1D waves of differing lengths will produce a 1D wave.
Similarly, concatenating 2D waves of the same size will produce a 3D wave; but if the 2D source waves have
differing numbers of columns then destWave will be a 2D wave, or if the 2D waves have differing numbers
of rows then destWave will be a 1D wave. Concatenating 1D and 2D waves that have the same number of
rows will produce a 2D wave, but when the number of rows differs, destWave will be a 1D wave. See the
examples.
Use the /NP flag to suppress dimension promotion and keep the dimensionality of destWave the same as the
input waves.

Examples
// Given the following waves:
Make/N=10 w1,w2,w3
Make/N=11 w4
Make/N=(10,7) m1,m2,m3
Make/N=(10,8) m4
Make/N=(9,8) m5

// Concatenate 1D waves
Concatenate/O {w1,w2,w3},wdest // wdest is a 10x3 matrix
Concatenate {w1,w2,w3},wdest // wdest is a 10x6 matrix
Concatenate/NP/O {w1,w2,w3},wdest // wdest is a 30-point 1D wave
Concatenate/O {w1,w2,w3,w4},wdest // wdest is a 41-point 1D wave

// Concatenate 2D waves
Concatenate/O {m1,m2,m3},wdest // wdest is a 10x7x3 volume
Concatenate/NP/O {m1,m2,m3},wdest // wdest is a 10x21 matrix
Concatenate/O {m1,m2,m3,m4},wdest // wdest is a 10x29 matrix
Concatenate/O {m4,m5},wdest // wdest is a 152-point 1D wave
Concatenate/O/NP=0 {m4,m5},wdest // wdest is a 19x8 matrix

// Concatenate 1D and 2D waves
Concatenate/O {w1,m1},wdest // wdest is a 10x8 matrix
Concatenate/O {w4,m1},wdest // wdest is a 81-point 1D wave

// Append rows to 2D wave
Make/O/N=(3,2) m6, m7
Concatenate/NP=0 {m6}, m7 // m7 is a 6x2 matrix

// Append columns to 2D wave
Make/O/N=(3,2) m6, m7
Concatenate/NP=1 {m6}, m7 // m7 is a 3x4 matrix

// Append layer to 2D wave
Make/O/N=(3,2) m6, m7
Concatenate/NP=2 {m6}, m7 // m7 is a 3x2x2 volume
// The last command has the same effect as:
// Concatenate {m6}, m7
// Both versions extend add a third dimension to m7

See Also
The Duplicate and Redimension operations.

conj
conj(z)
The conj function returns the complex conjugate of the complex value z.

See Also
cmplx, imag, magsqr, p2rect, r2polar, and real functions.

Constant

V-67

Constant
Constant kName = literalNumber
The Constant declaration defines the number literalNumber under the name kName for use by other code,
such as in a switch construct.

See Also
The Strconstant keyword for string types, Constants on page IV-40 and Switch Statements on page IV-34.

continue
continue
The continue flow control keyword returns execution to the beginning of a loop, bypassing the remainder
of the loop’s code.

See Also
Continue Statement on page IV-38 and Loops on page IV-36 for usage details.

ContourInfo
ContourInfo(graphNameStr, contourWaveNameStr, instanceNumber)
The ContourInfo function returns a string containing a semicolon-separated list of information about the
specified contour plot in the named graph.

Parameters
graphNameStr can be "" to refer to the top graph.
contourWaveNameStr is a string containing either the name of a wave displayed as a contour plot in the
named graph, or a contour instance name (wave name with “#n” appended to distinguish the nth contour
plot of the wave in the graph). You might get a contour instance name from the ContourNameList function.
If contourWaveNameStr contains a wave name, instanceNumber identifies which instance you want
information about. instanceNumber is usually 0 because there is normally only one instance of a wave
displayed as a contour plot in a graph. Set instanceNumber to 1 for information about the second contour
plot of the wave, etc. If contourWaveNameStr is "", then information is returned on the instanceNumberth
contour plot in the graph.
If contourWaveNameStr contains an instance name, and instanceNumber is zero, the instance is taken from
contourWaveNameStr. If instanceNumber is greater than zero, the wave name is extracted from
contourWaveNameStr, and information is returned concerning the instanceNumberth instance of the wave.

Details
The string contains several groups of information. Each group is prefaced by a keyword and colon, and
terminated with the semicolon. The keywords are as follows:

Keyword Information Following Keyword

AXISFLAGS Flags used to specify the axes. Usually blank because /L and /B (left and bottom
axes) are the defaults.

DATAFORMAT Either XYZ or Matrix.

LEVELS A comma-separated list of the contour levels, including the final automatic levels,
(or manual or from-wave levels), and the “more levels”, all sorted into ascending Z
order.

RECREATION List of keyword commands as used by ModifyContour command. The format of
these keyword commands is:
keyword (x)=modifyParameters;

TRACESFORMAT The format string used to name the contour traces (see AppendMatrixContour or
AppendXYZContour).

XAXIS X axis name.

XWAVE X wave name if any, else blank.

ContourNameList

V-68

The format of the RECREATION information is designed so that you can extract a keyword command from
the keyword and colon up to the “;”, prepend “ModifyContour”, replace the “x” with the name of a
contour plot (“data#1” for instance) and then Execute the resultant string as a command.

Examples
The following command lines create a very unlikely contour display. If you did this, you would most likely
want to put each contour plot on different axes, and arrange the axes such that they don’t overlap. That
would greatly complicate the example.
Make/O/N=(20,20) jack
Display;AppendMatrixContour jack
AppendMatrixContour/T/R jack // Second instance of jack

This example accesses the contour information for the second contour plot of the wave “jack” (which has
an instance number of 1) displayed in the top graph:
Print StringByKey("ZWAVE", ContourInfo("","jack",1)) // prints jack

See Also
The Execute and ModifyContour operations.

ContourNameList
ContourNameList(graphNameStr, separatorStr)
The ContourNameList function returns a string containing a list of contours in the graph window or
subwindow identified by graphNameStr.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
The parameter separatorStr should contain a single character such as “,” or “;” to separate the names.
A contour name is defined as the name of the wave containing the data from which a contour plot is
calculated, with an optional #n suffix that distinguishes between two or more contour plots in the same graph
window that have the same wave name. Since the contour name has to be parsed, it is quoted if necessary.

Examples
The following command lines create a very unlikely contour display. If you did this, you would most likely
want to put each contour plot on different axes, and arrange the axes such that they don’t overlap. That
would greatly complicate the example.
Make/O/N=(20,20) jack,'jack # 2';
Display;AppendMatrixContour jack
AppendMatrixContour/T/R jack
AppendMatrixContour 'jack # 2'
AppendMatrixContour/T/R 'jack # 2'
Print ContourNameList("",";")

prints jack;jack#1;'jack # 2';'jack # 2'#1;

See Also
Another command related to contour plots and waves: ContourNameToWaveRef.

XWAVEDF Full path to the data folder containing the X wave or blank if there is no X wave.

YAXIS Y axis name.

YWAVE Y wave name if any, else blank.

YWAVEDF Full path to the data folder containing the Y wave or blank if there is no Y wave.

ZWAVE Name of wave containing Z data from which the contour plot was calculated.

ZWAVEDF Full path to the data folder containing the Z data wave.

Keyword Information Following Keyword

ContourNameToWaveRef

V-69

For commands referencing other waves in a graph: TraceNameList, WaveRefIndexed,
XWaveRefFromTrace, TraceNameToWaveRef, CsrWaveRef, CsrXWaveRef, ImageNameList, and
ImageNameToWaveRef.

ContourNameToWaveRef
ContourNameToWaveRef(graphNameStr, contourNameStr)
Returns a wave reference to the wave corresponding to the given contour name in the graph window or
subwindow named by graphNameStr.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
The contour name is identified by the string in contourNameStr, which could be a string determined using
ContourNameList. Note that the same contour name can refer to different waves in different graphs, if the
waves are in different data folders.

See Also
The ContourNameList function.
For a discussion of wave reference functions, see Wave Reference Functions on page IV-177.

ContourZ
ContourZ(graphNameStr, contourInstanceNameStr, x, y [,pointFindingTolerance])
The ContourZ function returns the interpolated Z value of the named contour plot data displayed in the
named graph.
For gridded contour data, ContourZ returns the bilinear interpolation of the four surrounding XYZ values.
For XYZ triplet contour data, ContourZ returns the value interpolated from the three surrounding XYZ
values identified by the Delaunay triangulation.

Parameters
graphNameStr can be "" to specify the topmost graph.
contourNameStr is a string containing either the name of the wave displayed as a contour plot in the named
graph, or a contour instance name (wave name with “#n” appended to distinguish the nth contour plot of
the wave in the graph). You might get a contour instance name from the ContourNameList function.
If contourNameStr contains a wave name, instance identifies which contour plot of contourNameStr you want
information about. instance is usually 0 because there is normally only one instance of a wave displayed as
a contour plot in a graph. Set instance to 1 for information about the second contour plot of contourNameStr,
etc. If contourNameStr is "", then information is returned on the instanceth contour plot in the graph.
If contourNameStr contains an instance name, and instance is zero, the instance is taken from contourNameStr.
If instance is greater than zero, the wave name is extracted from contourNameStr, and information is returned
concerning the instanceth instance of the wave.
x and y specify the X and Y coordinates of the value to be returned. This may or may not be the location of
a data point in the wave selected by contourNameStr and instance.
Set pointFindingTolerance =1e-5 to overcome the effects of perturbation (see the perturbation keyword of the
ModifyContour operation).
The default value is 1e-15 to account for rounding errors created by the triangulation scaling (see
ModifyContour's equalVoronoiDistances keyword), which works well ModifyContour perturbation=0.
A value of 0 would require an exact match between the scaled x/y coordinate and the scaled and possibly
perturbed coordinates to return the original z value; that is an unlikely outcome.

Details
For gridded contour data, ContourZ returns NaN if x or y falls outside the XY domain of the contour data.
If x and y fall on the contour data grid, the corresponding Z value is returned.

ControlBar

V-70

For XYZ triplet contour data, ContourZ returns the null value if x or y falls outside the XY domain of the
contour data. You can set the null value to v with this command:
ModifyContour contourName nullValue=v

If x and y match one of the XYZ triplet values, the corresponding Z value from the triplet usually won't be
returned because Igor uses the Watson contouring algorithm which perturbs the x and y values by a small
random amount. This also means that normally x and y coordinates on the boundary will return a null
value about half the time if perturbation is on and pointFindingTolerance is greater than 1e-5.

Examples
Because ContourZ can interpolate the Z value of the contour data at any X and Y coordinates, you can use
ContourZ to convert XYZ triplet data into gridded data:
// Make example XYZ triplet contour data
Make/O/N=50 wx,wy,wz
wx= enoise(2) // x = -2 to 2
wy= enoise(2) // y = -2 to 2
wz= exp(-(wx[p]*wx[p] + wy[p]*wy[p])) // XY gaussian, z= 0 to 1

// ContourZ requires a displayed contour data set
Display; AppendXYZContour wz vs {wx,wy};DelayUpdate
ModifyContour wz autolevels={*,*,0} // no contour levels are needed
ModifyContour wz xymarkers=1 // show the X and Y locations

// Set the null (out-of-XY domain) value
ModifyContour wz nullValue=NaN // default is min(wz) - 1

// Convert to grid: Make matrix that spans X and Y
Make/O/N=(30,30) matrix
SetScale/I x, -2, 2, "", matrix
SetScale/I y, -2, 2, "", matrix
matrix= ContourZ("","wz",0,x,y) // or = ContourZ("","",0,x,y)
AppendImage matrix

See Also
The AppendMatrixContour, AppendXYZContour, and ModifyContour operations. The zcsr and
ContourInfo functions.

References
Watson, David F., Contouring: A Guide To The Analysis and Display of Spatial Data, Pergamon, 1992.

ControlBar
ControlBar [flags] barHeight
The ControlBar operation sets the height and location of the control bar in a graph.

Parameters
barHeight is in pixels. Setting barHeight to zero removes the control bar.

Flags

Details
The control bar is an area at the top of graphs reserved for controls such as buttons, checkboxes and pop-
up menus. A line is drawn between this area and the graph area. The control bar may be assigned a separate
background color by pressing Control (Macintosh) or Ctrl (Windows) and clicking in the area, by right-
clicking it (Windows), or with the ModifyGraph operation. You can not use draw tools in this area.
For graphs with no controls you do not need to use this operation.

Examples
Display myData
ControlBar 35 // 35 pixels high
Button button0,pos={56,8},size={90,20},title="My Button"

/L/R/B/T Designates whether to use the Left, Right, Bottom, or Top (default) window edge,
respectively, for the control bar location.

/W=graphName Specifies the name of a particular graph containing a control bar.

ControlInfo

V-71

See Also
Chapter III-14, Controls and Control Panels, for details about control panels and controls.

ControlInfo
ControlInfo [/W=winName] controlName
The ControlInfo operation returns information about the state or status of the named control in a graph or
control panel window or subwindow.

Flags

Parameters
controlName is the name of the control in winName or in the top graph or panel window. controlName may
also be the keyword kwBackgroundColor to set V_Red, V_Green, and V_Blue, the keyword kwControlBar
to set V_Height, or the keyword kwSelectedControl to set S_value and V_flag.

Details
Information for all controls is returned via the following string and numeric variables:

The kind of control is returned in V_flag as a positive or negative integer. A negative value indicates the
control is incomplete or not active. If V_flag is zero, then the named control does not exist. Information
returned for specific control types is as follows:

Buttons

Chart

/G [=doGlobal] If doGlobal is non-zero or absent, the position returned via V_top and V_left is in
global screen coordinates rather relative to the window containing the control.

/W=winName Looks for the control in the named graph or panel window or subwindow. If /W is
omitted, ControlInfo looks in the top graph or panel window or subwindow.

When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

S_recreation Commands to recreate the named control.

V_disable

V_Height, V_Width,
V_top, V_left

Dimensions and position of the named control in pixels.

V_flag 1

V_value Tick count of last mouse up.

S_UserData Primary (unnamed) user data text. For retrieving any named user data, you must use
the GetUserData operation.
See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 6 or -6

V_value Current point number.

S_UserData Keyword-packed information string. See S_value for Chart Details for more
keyword information.

Disable state of control:
0: Normal (enabled, visible).
1: Hidden.
2: Disabled, visible.

ControlInfo

V-72

Checkbox

CustomControl

GroupBox

ListBox

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 2

V_value 0 if it is deselected or 1 if it is selected.

S_UserData Primary (unnamed) user data text. For retrieving any named user data, you must use
the GetUserData operation.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 12

V_value Tick count of last mouse up.

S_UserData Primary (unnamed) user data text. For retrieving any named user data, you must use
the GetUserData operation.

S_value Name of the picture used to define the control appearance.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 9

S_value Title text.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 11

V_value Currently selected row (valid for mode 1 or 2 or modes 5 and 6 when no selWave is
used). If no list row is selected, then it is set to -1.

V_selCol Currently selected column (valid for modes 5 and 6 when no selWave is used).

V_horizScroll Number of pixels the list has been scrolled horizontally to the right.

V_vertScroll Number of pixels the list has been scrolled vertically downwards.

V_rowHeight Height of a row in pixels.

V_startRow The current top visible row.

S_columnWidths A comma-separated list of column widths in pixels.

S_dataFolder Full path to listWave (if any).

S_UserData Primary (unnamed) user data text. For retrieving any named user data, you must use
the GetUserData operation.

S_value Name of listWave (if any).

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

ControlInfo

V-73

PopupMenu

SetVariable

Slider

TabControl

TitleBox

V_flag 3 or -3

V_Red, V_Green,
V_Blue

For color array pop-up menus, these are the encoded color values.

V_value Current item number (counting from one).

S_UserData Primary (unnamed) user data text. For retrieving any named user data, you must use
the GetUserData operation.

S_value Text of the current item. If PopupMenu is a color array then it contains color values
encoded as (r,g,b) where r, g, and b are integers from 0 to 65535.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 5 or -5

V_value Value of the variable. If the SetVariable is used with a string variable, then it is the
interpretation of the string as a number, which will be NaN if conversion fails.

S_dataFolder Full path to the variable.

S_UserData Primary (unnamed) user data text. For retrieving any named user data, you must use
the GetUserData operation.

S_value Name of the variable or, if the value was set using _STR: syntax, the string value itself.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 7

V_value Numeric value of the variable.

S_dataFolder Full path to the variable.

S_UserData Primary (unnamed) user data text. For retrieving any named user data, you must use
the GetUserData operation.

S_value Name of the variable.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 8

V_value Number of the current tab.

S_UserData Primary (unnamed) user data text. For retrieving any named user data, you must use
the GetUserData operation.

S_value Tab text.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 10

ControlInfo

V-74

ValDisplay

kwBackgroundColor

kwControlBar

kwSelectedControl

S_value for Chart Details
The following applies only to the keyword-packed information string returned in S_value for a chart.
S_value will consist of a sequence of sections with the format: “keyword:value;” You can pick a value out of
a keyword-packed string using the NumberByKey and StringByKey functions. Here are the S_value
keywords:

In addition, ControlInfo writes fields to S_value for each channel in the chart. The keyword for the field is
a combination of a name and a number that identify the field and the channel to which it refers. For
example, if channel 4 is named “Pressure” then the following would appear in the S_value string:
“CHNAME4:Pressure”. In the following table, the channel’s number is represented by #:

Examples
ControlInfo myChart; Print S_value

Prints the following to the history area:
FNAME:myFIFO;NCHANS:1;PPSTRIP:1100;RHSAMP:271;LHSAMP:-126229;

S_dataFolder Full path if text is from a string variable.

S_value Name if text is from a string variable.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 4 or -4

V_value Displayed value.

S_value Text of expression that ValDisplay evaluates.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_Red, V_Green,
V_Blue

If controlName is kwBackgroundColor then this is the color of the control panel
background. This color is usually the default user interface background color, as set
by the Appearance control panel on the Macintosh or by the Appearance tab of the
Display Properties on Windows, until changed by ModifyPanel cbRGB.

V_Height If controlName is kwControlBar then this is the height (in pixels) of the control bar area
in a graph or of an entire panel.

V_flag If controlName is kwSelectedControl then V_flag is 1 if a control is selected or 0 if not.
(SetVariable and ListBox controls can be selected, most other controls cannot.)

S_value Name of selected control (if any) or "".

Keyword Type Meaning

FNAME string Name of the FIFO chart is monitoring.

LHSAMP number Left hand sample number.

NCHANS number Number of channels displayed in chart.

PPSTRIP number The chart’s points per strip value.

RHSAMP number Right hand sample number (same as V_value).

ControlNameList

V-75

See Also
Chapter III-14, Controls and Control Panels, for details about control panels and controls. The
GetUserData operation for retrieving named user data.

ControlNameList
ControlNameList(winNameStr [, listSepStr [, matchStr]])
The ControlNameList function returns a string containing a list of control names in the graph or panel
window or subwindow identified by winNameStr.

Parameters
winNameStr can be "" to refer to the top graph or panel window.
When identifying a subwindow with winNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
The optional parameter listSepStr should contain a single character such as "," or ";" to separate the names;
the default value is ";".
The optional parameter matchStr is some combination of normal characters and the asterisk wildcard character
that matches anything. To use matchStr, listSepStr must also be used. See StringMatch for wildcard details.
Only control names that satisfy the match expression are returned. For example, "*_tab0" matches all control
names that end with "_tab0". The default is "*", which matches all control names.

Examples
NewPanel
Button myButton
Checkbox myCheck
Print ControlNameList("") // prints "myButton;myCheck;"
Print ControlNameList("", ";", "*Check") // prints "myCheck;"

See Also
The ListMatch, StringFromList and StringMatch functions, and the ControlInfo and ModifyControlList
operations. Chapter III-14, Controls and Control Panels, for details about control panels and controls.

ControlUpdate
ControlUpdate [/A/W=winName][controlName]
The ControlUpdate operation updates the named control or all controls in a window, which can be the top
graph or control panel or the named graph or control panel if you use /W.

Flags

Details
ControlUpdate is useful for forcing a pop-up menu to rebuild, to update a ValDisplay control, or to forcibly
accept a SetVariable’s currently-being-edited value.

Keyword Type Meaning

CHCTAB# number Channel’s color table value as set by Chart ctab keyword.

CHGAIN# number Channel’s gain value as set by Chart gain keyword.

CHNAME# string Name of channel defined by FIFO.

CHOFFSET# number Channel’s offset value as set by Chart offset keyword.

/A Updates all controls in the window. You must omit controlName.

/W=winName Specifies the window or subwindow containing the control. If you omit winName it
will use the top graph or control panel window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

ConvexHull

V-76

Normally, a pop-up menu rebuilds only when the user clicks on it. If you set up a pop-up menu so that its
contents depend on a global string variable, on a user-defined string function or on an Igor function (e.g.,
WaveList), you may want to force the pop-up menu to be updated at your command.
Usually, a ValDisplay control displays the value of a global variable or of an expression involving a global
variable. If the global variable changes, the ValDisplay will automatically update. However, you can create
a ValDisplay that displays a value that does not depend on a global variable. For example, it might display
the result of an external function. In a case like this, the ValDisplay will not automatically update. You can
update it by calling ControlUpdate.
When a SetVariable control is being edited, the text the user types isn’t “accepted” (or processed) until the
user presses Return or Enter. ControlUpdate effectively causes the named control to act as though the user
has pressed one of those keys. If /A is specified, the currently active SetVariable control (if any) is affected
this way. The motivation here is that the user may have typed a new value without having yet pressed
return, and then may click a button in a different panel which runs a routine that uses the SetVariable value
as input. The user expected the typed value to have been accepted but the variable has not yet been set.
Calling ControlUpdate/A on the first panel will read the typed value in the variable, avoiding a discrepancy
between the visible value of the SetVariable control and the actual value of the variable.

Examples
NewPanel;DoWindow/C PanelX
String/G popupList="First;Second;Third"
PopupMenu oneOfThree value=popupList // popup shows “First”
popupList="1;2;3" // popup is unchanged
ControlUpdate/W=PanelX oneOfThree // popup shows “1”

See Also
Chapter III-14, Controls and Control Panels, for details about control panels and controls. The ValDisplay
and WaveList operations.

ConvexHull
convexHull [flags]xwave, ywave
convexHull [flags] tripletWave
The ConvexHull operation calculates the convex hull in either 2 or 3 dimensions. The dimensionality is
deduced from the input wave(s). If the input consists of two 1D waves of the same length, the number of
dimensions is assumed to be 2. If the input consists of a single triplet wave (a wave of 3 columns), then the
number of dimensions is 3.
In 2D cases the operation calculates the convex hull and produces the result in a pair of x and y waves,
W_XHull and W_YHull.
In 3D cases the operation calculates the convex hull and stores it in a triplet wave M_Hull that describes
ordered facets of the convex hull.
ConvexHull returns an error if the input waves have fewer than 3 data points.

Flags

/C (2D convex hull only) adds the first point to the end of the W_XHull and W_YHull
waves so that the first and the last points are the same.

/E (3D case only) if you use this flag the operation also creates a wave that lists the
indices of the vertices which are not part of the convex hull, i.e., vertices which are
interior to the hull. The output is in the wave W_HullExcluded.

/I (3D convex hull only) use this flag to get the corresponding index of the vertex as the
fourth column in the M_Hull wave.

/S (3D convex hull only) use this flag if you want the resulting M_Hull to have NaN lines
separating each triangle.

/T=tolerance (3D case only) default tolerance for measuring if a point is inside or outside the convex
hull is 1.0x10-20. You can use any other positive value.

Convolve

V-77

Examples
Make/O/N=33 xxx=gnoise(5),yyy=gnoise(7)
Convexhull/c xxx,yyy
Display W_Yhull vs W_Xhull
Appendtograph yyy vs xxx
ModifyGraph mode(yyy)=3,marker(yyy)=8,rgb(W_YHull)=(0,15872,65280)

See Also
Triangulate3D

Convolve
Convolve [/A/C] srcWaveName, destWaveName [, destWaveName]…
The Convolve operation convolves srcWaveName with each destination wave, putting the result of each
convolution in the corresponding destination wave.
Convolve is not multidimensional aware. Some multidimensional convolutions are covered by the
MatrixConvolve, MatrixFilter, and MatrixOp operations

Flags

Details
Convolve performs linear convolution unless the /C or /A flag is used. See the diagrams in the examples below.
Depending on the type of convolution, the destination waves’ lengths may increase. srcWaveName is not
altered unless it also appears as a destination wave.
If srcWaveName is real-valued, each destination wave must be real-valued, and if srcWaveName is complex,
each destination wave must be complex, too. Double and single precision waves may be freely intermixed;
calculations are performed in the higher precision.
The linear convolution equation is:

where N is the number of points in the longer of destWaveIn and srcWave. For circular convolution, the index
[p -m] is wrapped around when it exceeds the range of [0,numpnts(srcWave)-1]. For acausal convolution,
when [p -m] exceeds the range a zero value is substituted for srcWave [p -m]. Similar operations are applied
to destWaveIn [m].
Another way of looking at this equation is that, for all p, destWaveOut[p] equals the sum of the point-by-
point products from 0 to p of the destination wave and an end-to-end reversed copy of the source wave that
has been shifted to the right by p.
The following diagram shows the reversed/shifted srcWave that would be combined with destWaveIn. The
points numbered 0 through 4 of the reversed srcWave would be multiplied with destWaveIn[0…4] and
summed to produce destWaveOut[4]:

/V (3D case only) if you use this flag the operation also creates a wave containing the
output in a list of vertex indices. The wave M_HullVertices contains a row per triangle
where each entry on a row corresponds to the index of the input vertex.

/Z No error reporting.

/A Acausal linear convolution.

/C Circular convolution.

destWaveOut[p]= destWaveIn[m] � srcWave[p � m]
m=0

N�1

�

CopyFile

V-78

For linear and acausal convolution, the destination wave is first zero-padded by one less than the length of
the source wave. This prevents the “wrap-around” effect that occurs in circular convolution. The zero-
padded points are removed after acausal convolution, and retained after linear convolution. The X scaling
of the waves is ignored.
The convolutions are performed by transforming the source and destination waves with the Fast Fourier
Transform, multiplying them in the frequency domain, and then inverse-transforming them into the
destination wave(s).
The convolution is performed in segments if the resulting wave has more than 256 points and the destination
wave has twice as many points as the source wave. For acausal convolution, the length of the resulting wave
is considered to be (numpnts(srcWaveName) +numpnts(destWaveName)-1) for this calculation.

Applications
The usual application of convolution is to compute the response of a linear system defined by its impulse
response to an input signal. srcWaveName would contain the impulse response, and the destination wave
would initially contain the input signal. After the Convolve operation has completed, the destination wave
contains the output signal.
Use linear convolution when the source wave contains an impulse response (or filter coefficients) where the
first point of srcWave corresponds to no delay (t = 0).
Use circular convolution for the case where the data in srcWaveName and destWaveName are considered to
endlessly repeat (or “wrap around” from the end back to the start), which means no zero padding is needed.
Use acausal convolution when the source wave contains an impulse response where the middle point of
srcWave corresponds to no delay (t = 0).

See Also
Convolution on page III-251 for illustrated examples. MatrixOp.

References
A very complete explanation of circular and linear convolution can be found in sections 2.23 and 2.24 of
Rabiner and Gold, Theory and Application of Digital Signal Processing, Prentice Hall, 1975.

CopyFile
CopyFile [flags][srcFileStr] [as destFileOrFolderStr]
The CopyFile operation copies a file on disk.

Parameters
srcFileStr can be a full path to the file to be copied (in which case /P is not needed), a partial path relative to
the folder associated with pathName, or the name of a file in the folder associated with pathName.
If Igor can not determine the location of the source file from srcFileStr and pathName, it displays a dialog
allowing you to specify the source file.
destFileOrFolderStr is interpreted as the name of (or path to) an existing folder when /D is specified,
otherwise it is interpreted as the name of (or path to) a possibly existing file.
If destFileOrFolderStr is a partial path, it is relative to the folder associated with pathName.
If /D is specified, the source file is copied inside the folder using the source file’s name.
If Igor can not determine the location of the destination file from pathName, srcFileStr, and
destFileOrFolderStr, it displays a Save File dialog allowing you to specify the destination file (and folder).

0

76543210

0

43210-1-2-3

Original srcWave Reversed srcWave
shifted to p = 4

CopyFile

V-79

If you use a full or partial path for either srcFileStr or destFileOrFolderStr, see Path Separators on page III-400
for details on forming the path.
Folder paths should not end with single Path Separators. See the Details section for MoveFolder.

Flags

Variables
The CopyFile operation returns information in the following variables:

Examples
Copy a file within the same folder using a new name:
CopyFile/P=myPath "afile.txt" as "destFile.txt"

Copy a file into subfolder using the original name (using /P):
CopyFile/D/P=myPath "afile.txt" as ":subfolder"
Print S_Path // prints "Macintosh HD:folder:subfolder:afile.txt"

/D Interprets destFileOrFolderStr as the name of (or path to) an existing folder (or
“directory”). Without /D, destFileOrFolderStr is interpreted as the name of (or path to)
a file.
If destFileOrFolderStr is not a full path to a folder, it is relative to the folder associated
with pathName.

/I [=i]

/M=messageStr Specifies the prompt message in the Open File dialog. If /S is not used, then messageStr
will be used for both Open File and for Save File dialogs.

/O Overwrites any existing destination file.

/P=pathName Specifies the folder to look in for the source file, and the folder into which the file is
copied. pathName is the name of an existing symbolic path.
Using /P means that both srcFileStr and destFileOrFolderStr must be either simple file
or folder names, or paths relative to the folder specified by pathName.

/S=saveMessageStr Specifies the prompt message in the Save File dialog.

/Z [=z]

V_flag Set to zero if the file was copied, to -1 if the user cancelled either the Open File or Save File
dialogs, and to some nonzero value if an error occurred, such as the specified file does not
exist.

S_fileName Stores the full path to the file that was copied. If an error occurred or if the user cancelled,
it is set to an empty string.

S_path Stores the full path to the file copy. If an error occurred or if the user cancelled, it is set to
an empty string.

Specifies the level of user interactivity.
/I=0: Interactive only if one or srcFileStr or destFileOrFolderStr is not

specified or if the source file is missing. (Same as if /I was not
specified.)

/I=1: Interactive even if srcFileStr is specified and the source file exists.
/I=2: Interactive even if destFileOrFolderStr is specified.
/I=3: Interactive even if srcFileStr is specified, the source file exists, and

destFileOrFolderStr is specified. Same as /I only.

Prevents procedure execution from aborting if it attempts to copy a file that does not
exist. Use /Z if you want to handle this case in your procedures rather than aborting
execution.
/Z=0: Same as no /Z.
/Z=1: Copies a file only if it exists. /Z alone has the same effect as /Z=1.
/Z=2: Copies a file if it exists or displays a dialog if it does not exist.

CopyFolder

V-80

Copy file into subfolder using the original name (using full paths):
CopyFile/D "Macintosh HD:folder:afile.txt" as "Server:archive"

Copy a file from one folder to another, assigning the copy a new name:
CopyFile "Macintosh HD:folder:afile.txt" as "Server:archive:destFile.txt"

Copy user-selected file in any folder as destFile.txt in myPath folder (prompt to save even if destFile.txt
doesn’t exist):
CopyFile/I=2/P=myPath as "destFile.txt"

Copy user-selected file in any folder as destFile.txt in any folder:
CopyFile as "destFile.txt"

See Also
The Open, MoveFile, DeleteFile, and CopyFolder operations. The IndexedFile function. Symbolic Paths
on page II-34.

CopyFolder
CopyFolder [flags][srcFolderStr] [as destFolderStr]
The CopyFolder operation copies a folder (and its contents) on disk.

Parameters
srcFolderStr can be a full path to the folder to be copied (in which case /P is not needed), a partial path relative
to the folder associated with pathName, or the name of a folder inside the folder associated with pathName.
If Igor can not determine the location of the folder from srcFolderStr and pathName, it displays a dialog
allowing you to specify the source folder.
If /P=pathName is given, but srcFolderStr is not, then the folder associated with pathName is copied.
destFolderStr can be a full path to the output (destination) folder (in which case /P is not needed), or a partial
path relative to the folder associated with pathName.
An error is returned if the destination folder would be inside the source folder.
If Igor can not determine the location of the destination folder from destFolderStr and pathName, it displays
a dialog allowing you to specify or create the destination folder.
If you use a full or partial path for either folder, see Path Separators on page III-400 for details on forming
the path.

Flags

Warning: The CopyFolder command can destroy data by overwriting another folder and contents!

When overwriting an existing folder on disk, CopyFolder will do so only if permission is
granted by the user. The default behavior is to display a dialog asking for permission. The user
can alter this behavior via the Miscellaneous Settings dialog’s Misc category. For further
details see Misc Settings on page III-416.

If permission is denied, the folder will not be copied and V_Flag will return 1088 (Command
is disabled) or 1275 (You denied permission to overwrite a folder). Command execution will
cease unless the /Z flag is specified.

/D Interprets destFolderStr as the name of (or path to) an existing folder (or directory) to
copy the source folder into. Without /D, destFolderStr is interpreted as the name of (or
path to) the copied folder.
If destFolderStr is not a full path to a folder, it is relative to the folder associated with
pathName.

CopyFolder

V-81

Variables
The CopyFolder operation returns information in the following variables:

Details
You can use only /P=pathName (without srcFolderStr) to specify the source folder to be copied.
Folder paths should not end with single Path Separators. See the Details section for MoveFolder.

Examples
Copy the folder that the current experiment is stored in:
CopyFile/P=home as "HD:Copy Of Folder Experiment Is In"

Copy the Igor Extensions Folder to the Windows desktop:
CopyFile/D/P=Igor ":Igor Extensions" as "C:WINDOWS:Desktop"

Ask the user to select a folder, starting with the Igor folder, and then make a copy of that folder in the Igor
Pro folder:

/I [=i]

/M=messageStr Specifies the prompt message in the Select (source) Folder dialog. If /S is not used, then
messageStr will be used for the Select Folder dialog and for the Create Folder dialog.

/O Overwrite existing destination folder, if any.
On Macintosh, a Macintosh-style overwrite-move is performed in which the source
folder completely replaces the destination folder.
On Windows, a Windows-style mix-in move is performed in which the contents of the
source folder are moved into the destination folder, replacing any same-named files
but leaving other files in place.

/P=pathName Specifies the folder to look in for the source folder. pathName is the name of an existing
symbolic path.
If srcFolderStr is not specified, the folder associated with pathName is copied.
Using /P means that srcFolderStr (if specified) and destFolderStr must be either simple
folder names or paths relative to the folder specified by pathName.

/S=saveMessageStr Specifies the prompt message in the Create Folder dialog.

/Z [=z]

V_flag Set to zero if the folder was copied, to -1 if the user cancelled either the Select Folder or
Create Folder dialogs, and to some nonzero value if an error occurred, such as the
specified file does not exist.

S_fileName Stores the full path to the folder that was copied, with a trailing colon. If an error occurred
or if the user cancelled, it is set to an empty string.

S_path Stores the full path to the folder copy, with a trailing colon. If an error occurred or if the
user cancelled, it is set to an empty string.

Specifies the level of user interactivity.
/I=0: Interactive only if the source or destination folder is not specified or

if the source folder is missing. (Same as if /I was not specified.)
/I=1: Interactive even if the source folder is specified and it exists.
/I=2: Interactive even if destFolderStr is specified.
/I=3: Interactive even if the source folder is specified, the source folder

exists, and destFolderStr is specified. Same as /I only.

Prevents procedure execution from aborting if it attempts to copy a file that does
not exist. Use /Z if you want to handle this case in your procedures rather than
aborting execution.
/Z=0: Same as no /Z.
/Z=1: Copies a folder only if it exists. /Z alone has the same effect as /Z=1.
/Z=2: Copies a folder if it exists or displays a dialog if it does not exist.

CopyScales

V-82

CopyFile/I=2/P=Igor as "::Folder Copy"

Copy an entire disk inside a folder:
CopyFolder/O/D "Floppy" as "HD:Desktop Folder:Copy Into Here"

See Also
Open, MoveFile, DeleteFile, MoveFolder, NewPath, and IndexedDir operations, and Symbolic Paths on
page II-34.

CopyScales
CopyScales [/I/P] srcWaveName, waveName [, waveName]…
The CopyScales operation copies the x, y, z, and t scaling, x, y, z, and t units, the data Full Scale and data
units from srcWaveName to the other waves.

Flags

Details
Normally the x, y, z, and t (dimension) scaling is copied in min/max format. However, if you use /P, the
dimension scaling is copied in slope/intercept format so that if srcWaveName and the other waves have
differing dimension size (number of points if the wave is a 1D wave), then their dimension values will still
match for the points they have in common. Similarly, /I uses the inclusive variant of the min/max format.
See SetScale for a discussion of these dimension scaling formats.
If a wave has only one point, /I mode reverts to /P mode.
CopyScales copies scales only for those dimensions that srcWaveName and waveName have in common.

See Also
x, y, z, and t scaling functions.

Correlate
Correlate [/AUTO/C/NODC] srcWaveName, destWaveName [, destWaveName]…
The Correlate operation correlates srcWaveName with each destination wave, putting the result of each
correlation in the corresponding destination wave.

Flags

Details
Note: To compute a single-value correlation number use the StatsCorrelation function which returns

the Pearson's correlation coefficient of two same-length waves.
Correlate performs linear correlation unless the /C flag is used.

/I Copies the x, y, z, and t scaling in inclusive format.

/P Copies the x, y, z, and t scaling in slope/intercept format (x0, dx format).

/AUTO Auto-correlation scaling. This forces the X scaling of the destination wave's center point to be
x=0, and divides the destination wave by the center point's value so that the center value is
exactly 1.0.

If srcWaveName and destWaveName do not have the same number of points, this flag is
ignored.

/AUTO is not compatible with /C.

/C Circular correlation. (See Compatibility Note.)

/NODC Removes the mean from the source and destination waves before computing the correlations.
Removing the mean results in the un-normalized auto- or cross-covariance.
"DC" is an abbrevation of "direct current", an electronics term for the non-varying average
value component of a signal.

Correlate

V-83

Depending on the type of correlation, the length of the destination may increase. srcWaveName is not altered
unless it also appears as a destination wave.
If the source wave is real-valued, each destination wave must be real-valued and if the source wave is
complex, each destination wave must be complex, too. Double and single precision waves may be freely
intermixed; calculations are performed in the higher precision.
The linear correlation equation is:

where N is the number of points in the longer of destWaveIn and srcWave.
For circular correlation, the index [p +m] is wrapped around when it exceeds the range of
[0,numpnts(destWaveIn)-1]. For linear correlation, when [p +m] exceeds the range a zero value is
substituted for destWaveIn[p +m]. When m exceeds numpnts(srcWave)-1, 0 is used instead of srcWave[m].
Comparing this with the Convolve operation, which is the linear convolution:

you can see that the only difference is that for correlation the source wave is not reversed before shifting and
combining with the destination wave.
The Correlate operation is not multidimensional aware. For details, see Analysis on Multidimensional
Waves on page II-110 and in particular Analysis on Multidimensional Waves on page II-110.

Compatibility Note
Prior to Igor Pro 5, Correlate/C scaled and rotated the results improperly (the result was often rotated left
by one and the X scaling was entirely negative).
Now the destination wave’s X scaling is unaltered and it does not rotate the result. You can force the old
behavior for compatibility with old procedures that depend on the old behavior by setting
root:V_oldCorrelationScaling=1.
A better way to get identical Correlate/C results with all versions of Igor Pro is to use this code, which
rotates the result so that x=0 is always the first point in destWave, no matter which Igor Pro version runs this
code (currently, it doesn’t change anything and runs extremely quickly because it does no rotation):
Correlate/C srcWave, destWave
Variable pointAtXEqualZero= x2pnt(destWave,0) // 0 for Igor Pro 5
Rotate -pointAtXEqualZero,destWave
SetScale/P x, 0, DimDelta(destWave,0), "", destWave

Applications
A common application of correlation is to measure the similarity of two input signals as they are shifted by
one another.
Often it is desirable to normalize the correlation result to 1.0 at the maximum value where the two inputs
are most similar. To normalize destWaveOut, compute the RMS values of the input waves and the number
of points in each wave:
WaveStats/Q srcWave
Variable srcRMS = V_rms
Variable srcLen = numpnts(srcWave)

WaveStats/Q destWave
Variable destRMS = V_rms
Variable destLen = numpnts(destWave)

Correlate srcWave, destWave // overwrites destWave

// now normalize to max of 1.0
destWave /= (srcRMS * sqrt(srcLen) * destRMS * sqrt(destLen))

destWaveOut[p]= srcWave[m] �destWaveIn[p + m]
m=0

N�1

�

destWaveOut[p]= destWaveIn[m] � srcWave[p � m]
m=0

N�1

�

cos

V-84

Another common application is using autocorrelation (where srcWaveName and destWaveName are the
same) to determine Power Spectral Density. In this case it better to use the DSPPeriodogram operation
which provides more options.

See Also
Convolution on page III-251 and Correlation on page III-253 for illustrated examples. See the Convolve
operation for algorithm implementation details, which are identical except for the lack of source wave
reversal, and the lack of the /A (acausal) flag.
The MatrixOp, StatsCorrelation, StatsCircularCorrelationTest, StatsLinearCorrelationTest, and
DSPPeriodogram operations.

References
An explanation of autocorrelation and Power Spectral Density (PSD) can be found in Chapter 12 of Press,
William H., et al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New York, 1992.
WaveMetrics provides Igor Technical Note 006, “DSP Support Macros” that computes the PSD with options
such as windowing and segmenting. See the Technical Notes folder. Some of the techniques discussed there
are available as Igor procedure files in the “WaveMetrics Procedures:Analysis:” folder.
Wikipedia: http://en.wikipedia.org/wiki/Correlation
Wikipedia: http://en.wikipedia.org/wiki/Cross_covariance
Wikipedia: http://en.wikipedia.org/wiki/Autocorrelation_function

cos
cos(angle)
The cos function returns the cosine of angle which is in radians.
In complex expressions, angle is complex, and cos(angle) returns a complex value:

See Also
acos, sin, tan, sec, csc, cot

cosh
cosh(num)
The cosh function returns the hyperbolic cosine of num:

In complex expressions, num is complex, and cosh(num) returns a complex value.

See Also
sinh, tanh, coth

cot
cot(angle)
The cot function returns the cotangent of angle which is in radians.
In complex expressions, angle is complex, and cot(angle) returns a complex value.

See Also
sin, cos, tan, sec, csc

coth
coth(num)
The coth function returns the hyperbolic cotangent of num:

cos(x + iy) = cos(x)cosh(y)� isin(x)sinh(y).

cosh(x) =
ex + e� x

2
.

http://en.wikipedia.org/wiki/Correlation
http://en.wikipedia.org/wiki/Cross_covariance
http://en.wikipedia.org/wiki/Autocorrelation_function

CountObjects

V-85

 In complex expressions, num is complex, and coth(num) returns a complex value.

See Also
sinh, cosh, tanh

CountObjects
CountObjects(sourceFolderStr, objectType)
The CountObjects function returns the number of objects of the specified type in the data folder specified
by the string expression.
For Igor Pro 6.1 or later, CountObjectsDFR is preferred.

Parameters
sourceFolderStr can be either ":" or "" to specify the current data folder. You can also use a full or partial
data folder path. objectType should be one of the following values:

See Also
Chapter II-8, Data Folders, and the GetIndexedObjName function.

CountObjectsDFR
CountObjectsDFR(dfr,objectType)
The CountObjectsDFR function returns the number of objects of the specified type in the data folder
specified by the data folder reference dfr.
Requires Igor Pro 6.1 or later.
CountObjectsDFR is the same as CountObjects except the first parameter, dfr, is a data folder reference
instead of a string containing a path.

Parameters
objectType is one of the following values:

See Also
Chapter II-8, Data Folders and Data Folder References on page IV-62.
GetIndexedObjNameDFR

cpowi
cpowi(num, ipow)
This function is obsolete as the exponentiation operator ^ handles complex expressions with any
combination of real, integer and complex arguments. See Operators on page IV-5. The cpowi function

1 Waves

2 Numeric variables

3 String variables

4 Data folders

1 Waves

2 Numeric variables

3 String variables

4 Data folders

coth(x) =
ex + e� x

ex � e� x
.

CreateAliasShortcut

V-86

returns a complex number resulting from raising complex num to integer-valued power ipow. ipow can be
positive or negative, but if it is not an integer cpowi returns (NaN, NaN).

CreateAliasShortcut
CreateAliasShortcut [flags][targetFileDirStr] [as aliasFileStr]
The CreateAliasShortcut operation creates an alias (Macintosh) or shortcut (Windows) file on disk. The alias
can point to either a file or a folder. The file or folder pointed to is called the “target” of the alias or shortcut.

Parameters
targetFileDirStr can be a full path to the file or folder to make an alias or shortcut for, a partial path relative to
the folder associated with /P=pathName, or the name of a file or folder in the folder associated with pathName.
If Igor can not determine the location of the file or folder from targetFileDirStr and pathName, it displays a
dialog allowing you to specify a target file. Use /D to select a folder as the alias target, instead.
aliasFileStr can be a full path to the created alias file, a partial path relative to the folder associated with
pathName if specified, or the name of a file in the folder associated with pathName.
If Igor can not determine the location of the alias or shortcut file from aliasFileStr and pathName, it displays
a File Save dialog allowing you to create the file.
If you use a full or partial path for either targetFileDirStr or aliasFileStr, see Path Separators on page III-400
for details on forming the path.
Folder paths should not end with single path separators. See the MoveFolder Details section.

Flags

Variables
The CreateAliasShortcut operation returns information in the following variables:

/D Uses the Select Folder dialog rather than Open File dialog when targetFileDirStr is not
fully specified.

/I [=i]

/M=messageStr Specifies the prompt message in the Open File or Select Folder dialog. If /S is not specified,
then messageStr will be used for Open File (or Select Folder) and for Save File dialogs.

/O Overwrites any existing file with the alias or shortcut file.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/S=saveMessageStr Specifies the prompt message in the Save File dialog when creating the alias or shortcut
file.

/Z[=z]

Specifies the level of user interactivity.
/I=0: Interactive only if one or targetFileDirStr or aliasFileStr is not specified

or if the target file is missing. (Same as if /I was not specified.)
/I=1: Interactive even if targetFileDirStr is fully specified and the target file

exists.
/I=2: Interactive even if targetFileDirStr is specified.
/I=3: Interactive even if targetFileDirStr is specified and the target file

exists. Same as /I only.

Prevents procedure execution from aborting the procedure tries to create an alias or
shortuct for a file or folder that does not exist. Use /Z if you want to handle this case
in your procedures rather than aborting execution.
/Z=0: Same as no /Z.
/Z=1: Creates an alias to a file or folder only if it exists. /Z alone has the same

effect as /Z=1.
/Z=2: Creates an alias to a file or folder only if it exists and displays a dialog

if it does not exist.

CreationDate

V-87

Examples
Create a shortcut (Windows) to the current experiment, on the desktop:
String target= Igorinfo(1)+".pxp" // experiments are usually .pxp on Windows
CreateAliasShortcut/O/P=home target as "C:WINDOWS:Desktop:"+target

Create an alias (Macintosh) to the VDT XOP in the Igor Extensions folder:
String target= ":More Extensions:Data Acquisition:VDT"
CreateAliasShortcut/O/P=Igor target as ":Igor Extensions:VDT alias"

Create an alias to the “HD 2” disk. Put the alias on the desktop:
CreateAliasShortcut/D/O "HD 2" as "HD:Desktop Folder:Alias to HD 2"

See Also
Symbolic Paths on page II-34.
The Open, MoveFile, DeleteFile, and GetFileFolderInfo operations. The IgorInfo and ParseFilePath
functions.

CreationDate
CreationDate(waveName)
Returns creation date of wave as an Igor date/time value, which is the number of seconds from 1/1/1904.
The returned value is valid for waves created with Igor Pro 3.0 or later. For waves created in earlier
versions, it returns 0.

See Also
modDate.

Cross
Cross [/T/Z] vectorA, vectorB [, vectorC]
The Cross operation computes the cross products vectorA x vectorB and vectorA x (vectorB x vectorC). Each
vector is a 1D real wave containing 3 rows. Stores the result in the wave W_Cross in the current data folder.

Flags

csc
csc(angle)
The csc function returns the cosecant of angle which is in radians.

In complex expressions, angle is complex, and csc(angle) returns a complex value.

V_flag

S_fileName Full path to the target file or folder. If an error occurred or if the user cancelled, it is an
empty string.

S_path Full path to the created alias or shortcut file. If an error occurred or if the user cancelled,
it is an empty string.

/T Stores output in a row instead of a column in W_Cross.

/Z Generates no errors for any unsuitable inputs.

Status output:
0 Created an alias or shortcut file.
1 User cancelled any of the Open File, Select Folder, or Save File dialogs.
Other: An error occurred, such as the target file does not exist.

csc(x) =
1

sin(x)
.

CsrInfo

V-88

See Also
sin, cos, tan, sec, cot

CsrInfo
CsrInfo(cursorName [, graphNameStr])
The CsrInfo function returns a keyword-value pair list of information about the specified cursor
(cursorName is A through J) in the top graph or graph specified by graphNameStr. It returns "" if the cursor
is not in the graph.

Details
The returned string contains information about the cursor in the following format:
TNAME:traceName; ISFREE:freeNum;POINT:xPointNumber;[YPOINT:yPointNumber;]
RECREATION:command;

The traceName value is the name of the graph trace or image to which it is attached or which supplies the x
(and y) values even if the cursor isn’t attached to it.
If TNAME is empty, fields POINT, ISFREE, and YPOINT are not present.
The freeNum value is 1 if the cursor is not attached to anything, 0 if attached to a trace or image.
The POINT value is the same value pcsr returns.
The YPOINT keyword and value are present only when the cursor is attached to a two-dimensional item such
as an image, contour, or waterfall plot or when the cursor is free. Its value is the same as returned by qcsr.
If cursor is free, POINT and YPOINT values are fractional relative positions (see description in the Cursor
command).
The RECREATION keyword contains the Cursor commands (including /W) necessary to regenerate the
current settings.

Examples
Variable aExists= strlen(CsrInfo(A)) > 0 // A is a name, not a string
Variable bIsFree= NumberByKey("ISFREE",CsrInfo(B,"Graph0"))

See Also
Programming With Cursors on page II-292.
Cursors — Moving Cursor Calls Function on page IV-302.
Trace Names on page II-243, Programming With Trace Names on page IV-72.

CsrWave
CsrWave(cursorName [, graphNameStr [, wantTraceName]])
The CsrWave function returns a string containing the name of the wave the specified cursor (A through J)
is on in the top (or named) graph. If the optional wantTraceName is nonzero, the trace name is returned. A
trace name is the wave name with optional instance notation (see ModifyGraph (traces)).

Details
The name of a wave by itself is not sufficient to identify the wave because it does not specify what data
folder contains the wave. Thus, if you are calling CsrWave for the purpose of passing the wave name to
other procedures, you should use the CsrWaveRef function instead. Use CsrWave if you want the name of
the wave to use in an annotation or a notebook.

Examples
String waveCursorAIsOn = CsrWave(A) // not CsrWave("A")
String waveCursorBIsOn = CsrWave(B,"Graph0") // in specified graph
String traceCursorBIsOn = CsrWave(B,"",1) // trace name in top graph

See Also
Programming With Cursors on page II-292.
Trace Names on page II-243, Programming With Trace Names on page IV-72.

CsrWaveRef

V-89

CsrWaveRef
CsrWaveRef(cursorName [, graphNameStr])
The CsrWaveRef function returns a wave reference to the wave the specified cursor (A through J) is on in
the top (or named) graph.

Details
The wave reference can be used anywhere Igor is expecting the name of a wave (not a string containing the
name of a wave).
CsrWaveRef should be used in place of the CsrWave() string function to work properly with data folders.

Examples
Print CsrWaveRef(A)[50] // not CsrWaveRef("A")
Print CsrWaveRef(B,"Graph0")[50] // in specified graph

See Also
Programming With Cursors on page II-292.
Wave Reference Functions on page IV-177.

CsrXWave
CsrXWave(cursorName [, graphNameStr])
The CsrXWave function returns a string containing the name of the wave supplying the X coordinates for
an XY plot of the Y wave the specified cursor (A through J) is attached to in the top (or named) graph.

Details
CsrXWave returns an empty string ("") if the wave the cursor is on is not plotted versus another wave
providing the X coordinates (that is, if the wave was not plotted with a command such as Display
theWave vs anotherWave).
The name of a wave by itself is not sufficient to identify the wave because it does not specify what data
folder contains the wave. Thus, if you are calling CsrXWave for the purpose of passing the wave name to
other Igor procedures, you should use the CsrXWaveRef function instead. Use CsrXWave if you want the
name of the wave to use in an annotation or a notebook.

Examples
Display ywave vs xwave

ywave supplies the Y coordinates and xwave supplies the X coordinates for this XY plot.
Cursor A ywave,0
Print CsrXWave(A) // prints xwave

See Also
Programming With Cursors on page II-292.

CsrXWaveRef
CsrXWaveRef(cursorName [, graphNameStr])
The CsrXWaveRef function returns a wave reference to the wave supplying the X coordinates for an XY plot
of the Y wave the specified cursor (A through J) is attached to in the top (or named) graph.

Details
The wave reference can be used anywhere Igor is expecting the name of a wave (not a string containing the
name of a wave).
CsrXWaveRef returns a null reference (see WaveExists) if the wave the cursor is on is not plotted versus
another wave providing the X coordinates (that is, if the wave was not plotted with a command such as
Display theWave vs anotherWave). CsrXWaveRef should be used in place of the CsrXWave string
function to work properly with data folders.

Examples
Display ywave vs xwave

ywave supplies the Y coordinates and xwave supplies the X coordinates for this XY plot.

CTabList

V-90

Cursor A ywave,0
Print CsrXWaveRef(A)[50] // prints value of xwave at point #50

See Also
Programming With Cursors on page II-292.
Wave Reference Functions on page IV-177.

CTabList
CTabList()
The CTabList string function returns a semicolon-separated list of the names of built-in color tables. This
can be useful when creating pop-up menus in control panels.

Color tables available through version 4:

Additional color tables added for version 5:

Additional color tables added for version 6:

Additional color tables added for version 6.2:

See Also
See Color Tables on page II-359 and ColorTab2Wave.

CtrlBackground
CtrlBackground [key [= value]]…
The CtrlBackground operation controls the unnamed background task.
CtrlBackground works only with the unnamed background task. New code should used named background
tasks instead. See Background Tasks on page IV-285 for details.

Parameters

Grays Rainbow YellowHot BlueHot BlueRedGreen
RedWhiteBlue PlanetEarth Terrain

Grays256 Rainbow256 YellowHot256 BlueHot256 BlueRedGreen256
RedWhiteBlue256 PlanetEarth256 Terrain256 Grays16 Rainbow16
Red Green Blue Cyan Magenta
Yellow Copper Gold CyanMagenta RedWhiteGreen
BlueBlackRed Geo Geo32 LandAndSea LandAndSea8
Relief Relief19 PastelsMap PastelsMap20 Bathymetry9
BlackBody Spectrum SpectrumBlack Cycles Fiddle
Pastels

RainbowCycle Rainbow4Cycles GreenMagenta16 dBZ14 dBZ21
Web216 BlueGreenOrange BrownViolet ColdWarm Mocha
VioletOrangeYellow SeaLandAndFire

Mud Classification

dialogsOK=1 or 0 If 1, your task will be allowed to run while an Igor dialog is present. This can
potentially cause crashes unless your task is well-behaved.

noBurst=1 or 0 Normally (or noBurst=0), your task will be called at maximum rate if a delay causes
normal run times to be missed. Using noBurst=1, will suppress this burst catch up
mode.

period=deltaTicks Sets the minimum number of ticks that must pass between invocations of the
background task.

CtrlNamedBackground

V-91

See Also
The BackgroundInfo, SetBackground, CtrlNamedBackground, KillBackground, and SetProcessSleep
operations, and Background Tasks on page IV-285.

CtrlNamedBackground
CtrlNamedBackground taskName, keyword = value [, keyword = value …]
The CtrlNamedBackground operation creates and controls named background tasks.
We recommend that you see Background Tasks on page IV-285 for an orientation before working with
background tasks.
Important: Unlike the unnamed background task, by default named tasks run when a dialog window is
active. This can cause a crash if the background task does things the dialog does not expect. See
Background Tasks and Dialogs on page IV-287 for details.

Parameters

Details
The user function you specify via the proc keyword must have the following format:
Function myFunc(s)

STRUCT WMBackgroundStruct &s
…

The members of the WMBackgroundStruct are:

start[=startTicks] Starts the background task (designated by SetBackground) when the tick count
reaches startTicks. If you omit startTicks the task starts immediately.

stop Stops the background task.

taskName taskName is the name of the background task or _all_ to control all named background
tasks. You can use any valid standard Igor object name as the background task name.

burst [= b] Enable burst catch up mode (off by default, b=0). When on (b=1), the task is called at
the maximum rate if a delay misses normal run times.

dialogsOK [= d] Use dialogsOK=0 to prevent the background task from running when a dialog
window is active. By default, dialogsOK=1 is in effect. See Background Tasks and
Dialogs on page IV-287 for details.

kill [= k] Stops and releases task memory for reuse (k=1; default) or continues (k=0).

period=deltaTicks Sets the minimum number of ticks (deltaTicks) that must pass between background
task invocations. deltaTicks is truncated to an integer and clipped to a value greater
than zero. See Background Task Period on page IV-286 for details.

proc=funcName Specifies name of a background user function (see Details).

start [=startTicks] Starts when the tick count reaches startTicks. A task starts immediately without
startTicks.

status Returns background task information in the S_info string variable.

stop [= s] Stops the background task (s=1; default) or continues (s=0).

Base WMBackgroundStruct Structure Members

Member Description

char name[MAX_OBJ_NAME+1] Background task name.

uint32 curRunTicks Tick count when task was called.

int32 started TRUE when CtrlNamedBackground start is issued. You may clear
or set to desired value.

uint32 nextRunTicks Precomputed value for next run but user functions may change this.

CtrlFIFO

V-92

You may also specify a user function that takes a user-defined STRUCT as long as the first elements of the
structure match the WMBackgroundStruct or, preferably, if the first element is an instance of
WMBackgroundStruct. Use the started field to determine when to initialize the additional fields. Your
structure may not include any String, WAVE, NVAR, DFREF or other fields that reference memory that is
not part of the structure itself.
If you specify a user-defined structure that matches the first fields rather than containing an instance of
WMBackgroundStruct, then your function will fail if, in the future, the size of the built-in structure
changes. The value of MAX_OBJ_NAME is 31 but this may also change.
Your function should return zero unless it wants to stop in which case it should return 1.
You can call CtrlNamedBackground within your background function. You can even switch to a different
function if desired.
Use the status keyword to obtain background task information via the S_info variable, which has the format:
NAME:name;PROC:fname;RUN:r;PERIOD:p;NEXT:n;QUIT:q;FUNCERR:e;

When parsing S_info, do not rely on the number of key-value pairs or their order. RUN, QUIT, and FUNCERR
values are 1 or 0, NEXT is the tick count for the next firing of the task. QUIT is set to 1 when your function
returns a nonzero value and FUNCERR is set to 1 if your function could not be used for some reason.

See Also
See Background Tasks on page IV-285 for examples.

Also see the Background Task Demo experiment (choose File→Example Experiments→Programming→
Background Task Demo).

CtrlFIFO
CtrlFIFO FIFOName [, key = value]…
The CtrlFIFO operation controls various aspects of the named FIFO.

Parameters

close Closes the FIFO’s output or review file (if any).

deltaT=dt Documents the data acquisition rate.

doffset=dataOffset Used only with rdfile. Offset to data. If not provided offset is zero.

dsize=dataSize Used only with rdfile. Size of data in bytes. If not provided, then data size is
assumed to be the remainder of file. If this assumption is not valid then
unexpected results may be observed.

flush New data in FIFO is flushed to disk immediately.

file=oRefNum File reference number for the FIFO’s output file. You obtain this reference number
from the Open operation used to create the file.

note=noteStr Stores the note string in the file header. It is limited to 255 characters.

rdfile=rRefNum Like rfile but for review of raw data (use Open/R command). Channel data must
match raw data in file. Offset from start of file to start of data can be provided
using doffset given in same command. If data does not extend all the way to the
end of the file, then the number of bytes of data can be provided using dsize in
the same command.

rfile=rRefNum File reference number for the FIFO’s review file. Use a review file when you are
using a FIFO to review existing data. Obtain the reference number from the
Open/R operation used to open the file. File may be either unified header/data or
a split format where the header contains the name of a file containing the raw
data.

size=s Sets number of chunks in the FIFO. The default is 10000. A chunk of data consists
of a single data point from each of the FIFO’s channels.

Cursor

V-93

Details
Once start has been issued, the FIFO can accept no further commands except stop.
The FIFO must be in the valid state for you to access its data (using a chart control or using the FIFO2Wave
operation). When you create a FIFO, using NewFIFO, it is initially invalid. It becomes valid when you issue the
start command via the CtrlFIFO operation. It remains valid until you change a FIFO parameter using CtrlFIFO.
FIFOs are used for data acquisition.

See Also
The NewFIFO and FIFO2Wave operations, and FIFOs and Charts on page IV-282.

Cursor
Cursor [flags] cursorName traceName x_value
Cursor /F[flags] cursorName traceName x_value, y_value
Cursor /K[/W=graphName] cursorName
Cursor /I[/F][flags] cursorName imageName x_value, y_value
Cursor /M[flags] cursorName
The Cursor operation moves the cursor specified by cursorName onto the named trace at the point whose X
value is x_value. or the coordinates of an image pixel or free cursor position at x_value and y_value.

Parameters
cursorName is one of ten cursors A through J.

Flags

start Starts the FIFO running by setting the time/date in the FIFO header, writing the
header to the output file and marking the FIFO active.

stop Stops the FIFO by flushing data to disk and marking the FIFO as inactive.

swap Used only with rdfile. Indicates that the raw data file requires byte-swapping
when it is read. This would be the case if you are running on a Macintosh, reading
a binary file from a PC, or vice versa.

/A=a Activates (a=1) or deactivates (a=0) the cursor. Active cursors move with arrow keys
or the cursor panel.

/C=(r,g,b) Sets the cursor color (default is black). r, g, and b specify the amount of red, green, and
blue in the color of the waves as an integer from 0 to 65535.

/F Cursor roams free. The trace or image provides the axis pair that defines x and y
coordinates for the setting and readout. Use /P to set in relative coordinates, where 0,0 is
the top left corner of the rectangle defined by the axes and 1,1 is the right bottom corner.

/H=h

/I Places cursor on specified image.

/K Removes the named cursor from the top graph.

/L=lStyle

/M Modifies properties without having to specify trace or image coordinates. Does not
work with the /F or /I flags.

Specifies crosshairs on cursors.
h =0: Full crosshairs off.
h =1: Full crosshairs on.
h =2: Vertical hairline.
h =3: Horizontal hairline.

Line style for crosshairs (full or small).
lStyle=0: Solid lines.
lStyle=1: Alternating color dash.

CursorStyle

V-94

Details
Usually traceName is the same as the name of the wave displayed by that trace, but it could be a name in
instance notation. See ModifyGraph (traces) and Instance Notation on page IV-16 for discussions of trace
names and instance notation.
A string containing traceName can be used with the $ operator to specify the trace name.
x_value is an X value in terms of the X scaling of the wave displayed by traceName. If traceName is graphed
as an XY pair, then x_value is not the same as the X axis coordinate. Since the X scaling is ignored when
displaying an XY pair in a graph, we recommend you use the /P flag and use a point number for x_value.
cursorName is a name, not a string.
To get a cursor readout, choose ShowInfo from the Graph menu.
Moving a cursor in a macro or function does not immediately erase the old cursor. DoUpdate has to be
explicitly called.

Examples
Display myWave // X coordinates from X scaling of myWave
Cursor A, myWave, leftx(myWave) //cursor A on first point of myWave

AppendToGraph yWave vs xWave //X coordinates from xWave, not X scaling
Cursor/P B,yWave,numpnts(yWave)-1 //cursor B on last point of yWave
DoUpdate // erase any old A or B cursors

See Also
Programming With Cursors on page II-292 and the DoUpdate operation.

CursorStyle
CursorStyle
CursorStyle is a procedure subtype keyword that puts the name of the procedure in the “Style function”
submenu of the Cursor Info pop-up menu. It is automatically used when Igor creates a cursor style function.
To create a cursor style function, choose “Save style function” in the “Style function” submenu of the Cursor
Info pop-up menu.
See also Programming With Cursors on page II-292.

CurveFit
CurveFit [flags] fitType, [kwCWave=coefWaveName,] waveName [flag parameters]
The CurveFit operation fits one of several built-in functions to your data (for user-defined fits, see the
FuncFit operation). When with CurveFit and built-in fit functions, automatic initial guesses will provide a
good starting point in most cases.
The results of the fit are returned in a wave, by default W_coef. In addition, the results are put into the
system variables K0, K1 … Kn but the use of the system variables is limited and considered obsolete

/N=noKill

/P Interpret xNum as a point number rather than an X value.

/S=s

/W=graphName Specifies a particular named graph window or subwindow. When omitted, action
will affect the active window or subwindow.
When identifying a subwindow with graphName, see Subwindow Syntax on page
III-97 for details on forming the window hierarchy.

Determines if the cursor is removed ("killed") if the user drags it outside of the
plot area:
noKill=0: Remove the cursor (default).
noKill=1: Do not remove the cursor.

Sets cursor style.
s=0: Original square or circle.
s=1: Small crosshair with letter.
s=2: Small crosshair without letter.

CurveFit

V-95

You can specify your own wave for the coefficient wave instead of W_coef using the kwCWave keyword.
Virtually all waves specified to the CurveFit operation can be a sub-range of a larger wave using the same
sub-range syntax as the Display operation uses for graphing. See Wave Subrange Details on page V-101.
See Chapter III-8, Curve Fitting for detailed information including the use of the Curve Fit dialog.
CurveFit operation parameters are grouped in the following categories: flags, fit type, parameters
(kwCWave=coefWaveName and waveName), and flag parameters. The sections below correspond to these
categories. Note that flags must precede the fit type and flag parameters must follow waveName.

Flags

/B=pointsPerCycle Used when type is sin; pointsPerCycle is the estimated number of data points per sine
wave cycle. This helps provide initial guesses for the fit. You may need to try a few
different values on either side of your estimated points/cycle.

/C Makes constraint matrix and vector. This only applies if you use the /C=constraintSpec
parameter to specify constraints (see below). Creates the M_FitConstraint matrix and
the W_FitConstraint vector. For more information, see Fitting with Constraints on
page III-199.

/G Use values in variables K0, K1 … Kn as starting guesses for a fit. If you specify a
coefficient wave with the kwCWave keyword, the starting guesses will be read from
the coefficient wave.

/H="hhh…" Specifies coefficients to hold constant.
h is 1 for coefficients to hold, 0 for coefficients vary.
For example, /H="100" holds K0 constant, varies K1 and K2.

/K={constants} Sets values of constants (not fit coefficients) in certain fitting functions. For instance, the
exp_XOffset function contains an X offset constant. Built-in functions will set the constant
automatically, but the automatic value can be overridden using this flag.
constants is a list of constant values, e.g., /K={1,2,3}. The length of the list must match
the number of constants used by the chosen fit function.
This flag is not currently supported by the Curve Fit dialog. Use the To Cmd button
and add the flag on the command line.

/L=destLen Sets the length of the wave created by the AutoTrace feature, that is, /D without
destination wave (see the /D parameter above). The length of the wave fit_waveName
will be set to destLen. This keyword also sets the lengths of waves created for
confidence and prediction bands.

/M Generates the covariance matrix, the waves CM_Kn, where n is from 0 (for K0) to the
number of coefficients minus one.

/M=doMat Generates the covariance matrix. If doMat =2, the covariance matrix is put into a 2D
matrix wave called M_Covar. If doMat =1 or is missing, the covariance matrix is
generated as the 1D waves CM_Kn, where n is from 0 (for K0) to the number of
coefficients minus one. If doMat =0, the covariance matrix is not generated. doMat =1
is included for compatibility with previous versions; it is better to use doMat =2.

/N[=dontUpdate] If dontUpdate = 1, suppresses updates during the fit. This can make the curve fit go
much faster; all graphs, tables, etc. will be updated when the fit finishes. /N is the
same as /N=1.

CurveFit

V-96

/NTHR = nthreads

/O Generates only initial guesses; doesn’t actually do the fit.

/ODR=fitMethod

Note that fitting with non-zero fitMethod is not threadsafe. Since the basic curve fitting
operations are threadsafe, using /ODR=<nonzero> in a threadsafe user function will
compile, but will result in a run-time error.

/Q[=quiet] If quiet = 1, prevents results from being printed in history. /Q is the same as /Q=1.

/TBOX =
textboxSpec

Request inclusion of various parts by adding up the values for each part you want.
Setting textboxSpec to zero will remove the textbox. Default is textboxSpec = 0.

Uses multithreaded code in nthreads threads for built-in and standard user-
defined fitting functions. Values for nthreads are:
0: Selects Auto mode, which uses a number of threads equal to the

number of processors in your computer (see
ThreadProcessorCount).

1: Uses one thread, that is, it is not multithreaded. Overhead for
multithreaded code makes it pretty much useless for built-in
functions. For user-defined functions you can get almost double the
speed on a two-processor computer; the benefit will depend on how
fast your fit function is, and how many data points you are fitting.

Selects a fitting method. Values for fitMethod are:
0: Default Levenberg-Marquardt least-squares method using old code.
1: Trust-region Levenberg-Marquardt ordinary least-squares method

implemented using ODRPACK95 code. See Curve Fitting
References on page III-234.

2: Trust-region Levenberg-Marquardt least orthogonal distance method
implemented using ODRPACK95 code. This method is appropriate
for fitting when there are measurement errors in the independent
variables, sometimes called “errors in variables fitting”, “random
regressor models,” or “measurement error models”.

3: Implicit fit. No dependent variable is specified; instead fitting
attempts to adjust the fit coefficients such that the fit function returns
zero for all dependent variables.
Implicit fitting will be of almost no use with the built-in fitting functions.
Instead, use FuncFit and a user-defined fit function designed for an
implicit fit.

Adds an annotation to the graph containing the fit data (see the TextBox operation,
or Chapter III-2, Annotations). The textbox contains a customizable set of
information about the fit. The argument textboxSpec is a bitfield to select various
elements to be included in the textbox:
1 Title “Curve Fit Results”
2 Date
4 Time
8 Fit Type (Least Squares, ODR, etc.)
16 Fit function name
32 Model Wave, the autodestination wave (includes a symbol

for the trace if appropriate)
64 Y Wave, with trace symbol
128 X Wave
256 Coefficient value report
512 Include errors in the coefficient value report

CurveFit

V-97

Fit Types
fitType is one of the built-in curve fit function types:

/X Sets the X scaling of the auto-trace destination wave to match the appropriate X axis
on the graph when the Y data wave is on the top graph. This is useful when you want
to extrapolate the curve outside the range of X data being fit.

/W=wait

gauss Gaussian peak: .

lor Lorentzian peak: .

exp Exponential: .

dblexp Double exponential: .

sin Sinusoid: .

line Line: .

poly n Polynomial: .

n is from 3 to 20. n is the number of terms or the degree plus one.

poly_XOffset n Polynomial: y = K0+K1*(x-x0)+K2*(x-x0)^2+...

n is from 3 to 20. n is the number of terms or the degree plus one.
x0 is a constant; by default it is set to the minimum X value involved in the fit.
Inclusion of x0 prevents problems with floating-point roundoff errors when you have
large values of X in your data set.

hillequation Hill’s Equation: .

This is a sigmoidal function. Note that X values must be greater than 0.

sigmoid .

power Power law: . Note that X values must be greater than 0.

lognormal Log normal: . X values must be greater than 0.

Specifies behavior for the curve fit results window.
wait=1: Wait till user clicks OK button before dismissing curve fit results

window. This is the default behavior from the command line or
dialog.

wait=0: Do not wait. This is the default behavior from a procedure.
wait=2: Do not display the curve fit results window at all. Use this when

you are doing many curve fits in a loop. Requires Igor Pro 6.21 or
later.

y K= 0 K1
x K2–

K3

2
–exp+

y K= 0
K1

x K2–()2 K3+
-----------------------------------+

y K0 K1 K2x–()exp+=

y K0 K1 K2x–()exp K3 K4x–()exp+ +=

y K0 K1 K2x K3+()sin+=

y K0 K1x+=

y k0 K1x K2x2 …+ + +=

y K= 0
K1 K0–()

1 K3 x⁄()+
K2

--------------------------------+

y K0
K1

1 K2 x K3⁄–()exp+
---+=

y K0 K1x
K2+=

y K0 K1
x K2⁄()ln
K3

 2

–exp+=

CurveFit

V-98

Parameters
kwCWave=coefWaveName specifies an optional coefficient wave. If present, the specified coefficient wave is
set to the final coefficients determined by the curve fit. If absent, a wave named W_coef is created and is set
to the final coefficients determined by the curve fit.
If you use kwCWave=coefWaveName and you include the /G flag, initial guesses are taken from the specified
coefficient wave.
waveName is the wave containing the Y data to be fit to the selected function type. You can fit to a subrange
of the wave by supplying (startX,endX) after the wave name. Though not shown in the syntax description,
you can also specify the subrange in points by supplying [startP,endP] after the wave name. See Wave
Subrange Details on page V-101 for more information on subranges of waves in curve fitting.
If you are using one of the two-dimensional fit functions (gauss2D or poly2D) either waveName must name
a matrix wave or you must supply a list of X waves via the /X flag.

Flag Parameters
These flag parameters must follow waveName.

gauss2D 2D Gaussian: .

The cross-correlation coefficient (K6) must be between -1 and 1. This coefficient is
automatically constrained to lie in that range. If you are confident that the correlation
is zero, it may greatly speed the fit to hold it at zero.

poly2D n Two-dimensional polynomial: .

where n is the degree of the polynomial. All terms up to degree n are included,
including cross terms. For instance, degree 3 terms are x3, x2y, xy2, and y3.

exp_XOffset Exponential: .

x0 is a constant; by default it is set to the minimum x value involved in the fit.
Inclusion of x0 prevents problems with floating-point roundoff errors that can afflict
the exp function.

dblexp_XOffset Double exponential: .

x0 is a constant; by default it is set to the minimum x value involved in the fit. Inclusion of
x0 prevents problems with floating-point roundoff errors that can afflict the exp function.

/A=appendResid appendResid =1 (default) appends the automatically-generated residual to the
graph and appendResid =0 prevents appending (see /R[=residwaveName]). With
appendResid =0, the wave is generated and filled with residual values, but not
appended to the graph.

/AD[=doAutoDest] If doAutoDest is 1, it is the same as /D alone. /AD is the same as /AD=1.

/C=constraintSpec Applies linear constraints during curve fitting. Constraints can be in the form of
a text wave containing constraint expressions (/C=textWaveName) or a suitable
matrix and vector (/C={constraintMatrix, constraintVector}). See Fitting with
Constraints on page III-199. Note: Constraints are not available for the built-in
line, poly and poly2D fit functions. To apply constraints to these fit functions you
must create a user-defined fit function.

z K= 0 K1
1–

2 1 K6
2–()

x K2–

K3

 2 y K4–

K5

 2 2K6 x K2–() y K4–()

K3K5
--–+

exp+

z K0 K1x K2y K3x2 K4xy K5y2 …+ + + + + +=

y K0 K1 x x0–() K2⁄–()exp+=

y K0 K1 x x0–() K2⁄–()exp K3 x x0–() K4 2()⁄–()exp+ +=

CurveFit

V-99

/D [=destwaveName] destwaveName is evaluated based on the equation resulting from the fit.
destwaveName must have the same length as waveName.
If only /D is specified, an automatically named wave is created. The name is
based on the waveName with “fit_” as a prefix. This automatically named wave
will be appended (if necessary) to the top graph if waveName is graphed there.
The X scaling of the fit_ wave is set from the range of x data used during the fit.
By default the length of the automatically-created wave is 200 points (or 2 points
for a straight line fit). This can be changed with the /L flag.
If waveName is a 1D wave displayed on a logarithmic X axis, Igor also creates an
X wave with values exponentially spaced. The name is based on waveName with
“fitX_” as a prefix.

/F={confLevel, confType [, confStyleKey [, waveName…]]}

Calculates confidence intervals for a confidence level of confLevel. The value of
confLevel must be between 0 and 1 corresponding to confidence levels of 0 to 100 per
cent.

These values can be added together to select multiple options. That is, to select
both a confidence band and fit coefficient confidence intervals, set confType to 5.
Confidence and prediction bands can be shown as waves contouring a given
confidence level (use “Contour” for confStyleKey) or as error bars (use “ErrorBar”
for confStyleKey). The default is Contour.
If no waves are specified, waves to contain the results are automatically
generated and appended to the top graph (if the top graph contains the fitted
data). See Confidence Band Details for details on the waves for confidence
bands.
Note: Confidence bands and prediction bands are not available for multivariate
curve fits.

/I [=weightType] If weightType is 1, the weighting wave (see /W parameter) contains standard
deviations. If weightType is 0, the weighting wave contains reciprocal of the
standard deviation. If the /I parameter is not present, the default is /I=0.

/M=maskWaveName Specifies that you want to use the wave named maskWaveName to select points to
be fit. The mask wave must match the dependent variable wave in number of
points and dimensions. Setting a point in the mask wave to zero or NaN (blank
in a table) eliminates that point from the fit.

/R [=residwaveName] Calculates elements of residwaveName by subtracting model values from the data
values. residwaveName must have the same length as waveName.
If only /R is specified, an automatically named wave is created with the same number
of points as waveName. The name is based on waveName with “Res_” as a prefix.
The automatically created residual wave will be appended (if necessary) to the
top graph if waveName is graphed there. The residual wave is appended to a new
free axis named by prepending “Res_” to the name of the vertical axis used for
plotting waveName. To the extent possible, the new free axis is formatted nicely.
If the graph containing the data to be fit has very complex formatting, you may
not wish to automatically append the residual to the graph. In this case, use /A=0.

/AR=doAutoResid If doAutoResid is 1, it is the same as /R alone. /AR is the same as /AR=1.

confType selects what to calculate:
1: Confidence bands for the model.
2: Prediction bands for the model.
4: Confidence intervals for the fit coefficients.

CurveFit

V-100

Flag Parameters for Nonzero /ODR

/W=wghtwaveName wghtwaveName contains weighting values applied during the fit, and must have the
same length as waveName. These weighting values can be either the reciprocal of
the standard errors, or the standard errors. See the /I parameter above for details.

/X=xwaveName The X values for the data to fit come from xwaveName, which must have the same
length and type as waveName.
If you are fitting to one of the two-dimensional fit functions and waveName is a matrix
wave, xwaveName supplies independent variable data for the X dimension. In this
case, xwaveName must name a 1D wave with the same number of rows as waveName.

/X={xwave1, xwave2} For fitting to one of the two-dimensional fit functions when waveName is a 1D
wave. xwave1 and xwave2 must have the same length as waveName.

/Y=ywaveName For fitting using one of the 2D fit functions if waveName is a matrix wave.
ywaveName must be a 1D wave with length equal to the number of columns in
waveName.

/NWOK Allowed in user-defined functions only. When present, certain waves may be set
to null wave references. Passing a null wave reference to CurveFit is normally
treated as an error. By using /NWOK, you are telling CurveFit that a null wave
reference is not an error but rather signifies that the corresponding flag should be
ignored. This makes it easier to write function code that calls CurveFit with
optional waves.
The waves affected are the X wave or waves (/X), weight wave (/W), mask wave
(/M) and constraint text wave (/C). The destination wave (/D=wave) and residual
wave (/R=wave) are also affected, but the situation is more complicated because
of the dual use of /D and /R to mean "do autodestination" and "do autoresidual".
See /AR and /AD.
If you don't need the choice, it is better not to include this flag, as it disables useful
error messages when a mistake or run-time situation causes a wave to be missing
unexpectedly.
Note: To work properly this flag must be the last one in the command.

/XW=xWeightWave
/XW={xWeight1, xWeight2}

/ODR=2 or 3 only.
Specifies weighting values for the independent variables using xWeightWave,
which must have the same length as waveName. When fitting to one of the
multivariate fit functions such as poly2D or Gauss2D, you must supply a weight
wave for each independent variable using the second form.
Weighting values can be either the reciprocal of the standard errors, or the
standard errors. The choice of standard error or reciprocal standard error must be
the same for both /W and /XW. See /I for details.

/XHLD=holdWave
/XHLD={holdWave1, holdWave2}

/ODR=2 or 3 only.
Specifies a wave or waves to hold the values of the independent variables fixed
during orthogonal distance regression. The waves must match the input X data;
a one in a wave element fixes the value of the corresponding X value.

/CMAG=scaleWave Specifies a wave that indicates the expected scale of the fit coefficients at the
solution. If different coefficients have very different orders of magnitude of
expected values, this can improve the efficiency and accuracy of the fit.

/XD=xDestWave

CurveFit

V-101

Details
CurveFit gets initial guesses from the Kn system variables when user guesses (/G) are specified, unless a
coefficient wave is specified using the kwCWave keyword. Final curve fit parameters are written into a
wave name W_coef, unless you specify a coefficient wave with the kwCWave keyword.
Other output waves are M_Covar (see the /M flag), M_FitConstraint and W_FitConstraint (see /C parameter
and Fitting with Constraints on page III-199) and W_sigma.
For compatibility with earlier versions of Igor, the parameters are also stored in the system variables Kn.
This can be a source of confusion. We suggest you think of W_coef as the output coefficients and Kn as
input coefficients that get overwritten.
Other output waves are M_Covar (see the /M flag), M_FitConstraint and W_FitConstraint (see /C parameter
and Fitting with Constraints on page III-199), W_sigma. If you have selected coefficient confidence limits
using the /F parameter, a wave called W_ParamConfidenceInterval is created with the confidence intervals
for the fit coefficients.
CurveFit stores other curve fitting statistics in variables whose names begin with “V_”. CurveFit also looks
for certain V_ variables which you can use to modify its behavior. These are discussed in Special Variables
for Curve Fitting on page III-204.
When fitting with /ODR=nonzero, fitting with constraints is limited to simple “bound constraints.” That is,
you can constrain a fit coefficient to be greater than or less than some value. Constraints involving
combinations of fit coefficients are supported only with /ODR=0. The constraints are entered in the same
way, using an expression like K0>1.

Wave Subrange Details
Almost any wave you specify to CurveFit can be a subrange of a wave. The syntax for wave subranges is
the same as for the Display command (see Subrange Display Syntax on page II-293 for details). However,
the Display command allows only one dimension to have a range (multiple elements from the dimension);
if a multidimensional wave is appropriate for CurveFit, you may use a range for more than one dimension.
Some waves must have the same number of points as other waves. For instance, a one-dimensional Y wave
must have the same number of points as any X waves. Thus, if you use a subrange for an X wave, the
number of points in the subrange must match the number of points being used in the Y wave (but see
Subrange Backward Compatibility on page V-102 for a complication to this rule).
A common use of wave subranges might be to package all your data into a single multicolumn wave, along
with the residuals and model values. For a univariate fit, you might need X and Y waves, plus a destination
(model) wave and a residual wave. You can achieve all of that using a four-column wave. For example:
Make/D/N=(100, 4) Data
... fill column zero with X data and column one with Y data ...
CurveFit poly 3, Data[][1] /X=Data[][0]/D=Data[][2]/R=Data[][3]

Note that because all the waves are full columns from a single multicolumn wave, the number of points is
guaranteed to be the same.
The number of points used for X waves (xwaveName or {xwave1, xwave2, …}), weighting wave
(wghtwaveName), mask wave (maskWaveName), destination wave (destwaveName) and residual wave
(residwaveName) must be the same as the number of points used for the Y wave (waveName). If you specify
your own confidence band waves (/F flag) they must match the Y wave; you cannot use subranges with

/XD={xDestWave1, xDestWave2}

/ODR=2 or 3 only.
Specifies a wave or waves to receive the fitted values of the independent variables
during a least orthogonal distance regression.

/XR=xResidWave
/XR={xResidWave1, xResidWave2}

/ODR=2 or 3 only.
Specifies a wave or waves to receive the differences between fitted values of the
independent variables and the starting values during a least orthogonal distance
regression. That is, they will be filled with the X residuals.

CurveFit

V-102

confidence band waves. If you set /ODR = nonzero, the X weight, hold, destination and residuals waves
must match the Y wave.
The total number of points in each wave does not need to match other waves, just the number of points in
the specified subrange.
When fitting to a univariate fit function (that includes almost all the fit types) the Y wave must have
effectively one dimension. That means the Y wave must either be a 1D wave, or it must have a subrange
that makes the data being used one dimensional. For instance:
Make/N=(100,100) Ydata // 2D wave
CurveFit gauss Ydata[][0] // OK- a single column is one-dimensional
CurveFit gauss Ydata[2][] // OK- s single row is one-dimensional
CurveFit gauss Ydata // not OK- Ydata is two-dimensional
CurveFit gauss Ydata[][0,1] // not OK- two columns makes 2D subrange

When fitting a multivariate function (poly2D or Gauss2D) you have the choice of making the Y data either
one-dimensional or two-dimensional. If it is one-dimensional, then you must be fitting XYZ (or Y,X1,X2)
triplets. In that case, you must provide a one-dimensional Y wave and two one-dimensional X waves, or 2
columns from a multicolumn wave. For instance:
These are OK:
Make/N=(100,3) myData
CurveFit Gauss2D myData[][0] /X={myData[][1],myData[][2]}
CurveFit Gauss2D myData[][0] /X=myData[][1,2]

These are not OK:
CurveFit Gauss2D myData /X={myData[][1],myData[][2]}// 2D Y wave with 1D X waves
CurveFit Gauss2D myData[][0] /X=myData // too many X columns

If you use a 2D Y wave, the X1 and X2 data can come from the grid positions and the Y wave’s X and Y index
scaling, or you can use one-dimensional waves or wave subranges to specify the X1 and X2 positions of the
grid:
Make/N=(20,30) yData
CurveFit Gauss2D yData //OK- 2D Y data, X1 and X2 from scaling
Make/N=20 x1Data
Make/N=30 x2Data
// OK: 2D effective Y data, matching 1D X and Y flags
CurveFit Gauss2D yData[0,9][0,19] /X=x1Data[0,9]/Y=x2data[10,29]
// OK: effective 2D Y data
Make/N=(10,20,3) Y data
CurveFit Gauss2D yData[][][0]

There are, of course, lots of possible combinations, too numerous to enumerate.

Subrange Backward Compatibility
Historically, a Y wave could have a subrange. The same subrange applied to all other waves. For backward
compatibility, if you use a subrange with the Y wave only, and other waves lack a subrange, these other waves
must have either: 1) The same total number of points as the total number of points in the Y wave in which case
the Y wave subrange will be applied; or 2) The same total number of points as the Y wave’s subrange.
In addition, the Y wave can take a subrange in parentheses to indicate that the subrange refers to the Y
wave’s scaled indices (X scaling). If you use parentheses to specify an X range, you must satisfy the old
subrange rules: All waves must have the same number of points. Subrange is allowed for the Y wave only.
The Y wave subrange is applied to all other waves.

Confidence Band Details
Automatic generation of confidence and prediction bands occurs if the /F={…} parameter is used with no
wave names. One to four waves are generated, or you can specify one to four wave names yourself
depending on the confKind and confStyle settings.
Waves auto-generated by /F={confLevel, confKind, confStyle}:

confKind confStyle What You Get Auto Wave Names

1 "Contour" upper and lower confidence contours UC_dataName, LC_dataName

2 "Contour" upper and lower prediction contours UP_dataName, LP_dataName

3 "Contour" upper and lower confidence contours
and prediction contours

UC_dataName, LC_dataName,
UP_dataName, LP_dataName

CustomControl

V-103

Note that confKind may have 4 added to it if you want coefficient confidence limits calculated as well.
The contour waves are appended to the top graph as traces if the data wave is displayed in the top graph.
The wave names have dataName replaced with the name of the wave containing the Y data for the fit.
Waves you must supply for /F={confLevel, confKind, confStyle, wave, wave…}:

The waves you supply must have the same number of points as the dependent variable data wave. The
band intervals will be calculated at the X values of the input data. These waves are not automatically
appended to a graph; it is expected that you will display the contour waves as traces or use the error bar
waves to make error bars on the model fit wave.

Residual Details
Residuals are calculated only for elements corresponding to elements of waveName that are included in the
fit. Thus, you can calculate residuals automatically for a piecewise fit done in several steps.
The automatic residual wave will be appended to the top graph if the graph displays the Y data. It is
appended to a new free axis positioned directly above the axis used to display the Y data, making a stacked
graph. Other axes are shortened as necessary to make room for the new axis. You can alter the axis
formatting later. See Creating Stacked Plots on page II-297 for details.
While Igor will go to some lengths to make a nicely formatted stacked graph, the changes made to the graph
formatting may be undesirable in certain cases. Use /A=0 to suppress the automatic append to the graph.
The automatic residual wave will be created and filled with residual values, but not appended to the graph.

See Also
Inputs and Outputs for Built-In Fits on page III-188 and Special Variables for Curve Fitting on page
III-204 as well as Accessing Variables Used by Igor Operations on page IV-107.
When fitting to a user-specified function, see FuncFit. For multivariate user-specified fitting functions, see
FuncFit and FuncFitMD. See Confidence Bands and Coefficient Confidence Intervals on page III-196 for
a detailed description of confidence and prediction bands.

References
An explanation of the Levenberg-Marquardt nonlinear least squares optimization can be found in Chapter
14.4 of Press, William H., et al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New
York, 1992.

CustomControl
CustomControl [/Z] ctrlName [keyword = value [, keyword = value …]]
The CustomControl operation creates or modifies a custom control in the target window. A CustomControl
starts out as a generic button, but you can customize both its appearance and its action.

1 "ErrorBar" confidence interval wave CI_dataName

2 "ErrorBar" prediction interval wave PI_dataName

3 "ErrorBar" confidence and prediction interval waves CI_dataName, PI_dataName

confKind confStyle You Supply

1 "Contour" 2 waves to receive upper and lower confidence contours.

2 "Contour" 2 waves to receive upper and lower prediction contours.

3 "Contour" 4 waves to receive upper and lower confidence and upper and lower
prediction contours.

1 "ErrorBar" 1 wave to receive values of confidence band width.

2 "ErrorBar" 1 wave to receive values of prediction band width.

3 "ErrorBar" 2 waves to receive values of confidence and prediction band widths.

confKind confStyle What You Get Auto Wave Names

CustomControl

V-104

For information about the state or status of the control, use the ControlInfo operation.

Parameters

ctrlName is the name of the CustomControl to be created or changed. See Button for standard default
parameters.
The following keyword=value parameters are supported:

fColor=(r,g,b) Sets color of the button only when picture is not used and frame=1.
r, g, and b can range from 0 to 65535.

frame=f

labelBack=(r,g,b) or 0

Sets background color for the control only when a picture is not used and frame is not
1 and is not 3 on Macintosh.
r, g and b specify the amount of red, green and blue in the color as an integer from 0
to 65535. If not set (or labelBack=0), then background is transparent (not erased).

mode=m Notifies the control that something has happened. Can be used for any purpose. See
Details discussion of the kCCE_mode event.

noproc Specifies that no procedure will execute when clicking the custom control.

picture= pict Uses the named Proc Pictures to draw the control. The picture is taken to be three side-
by-side frames, which show the control appearance in the normal state, when the
mouse is down, and in the disabled state.
The control action function can overwrite the picture number using the
picture={pict,n} syntax.
The picture size overrides the size keyword.

picture={pict,n} Uses the specified Proc Picture to draw the control. The picture is n side-by-side
frames instead of the default three frames.

pos={left,top} Sets the postion of the control in pixels.

pos+={dx,dy} Offsets the position of the control in pixels.

proc=procName Specifies the name of the action function for the control. The function must not kill the
control or the window.

size={width,height} Sets size of the control in pixels but only when not using a Proc Picture.

title=titleStr Specifies text that appears in the control.
titleStr can contain formatting escape codes in order to create fancy, styled results. The
escape codes are the same as used by the TextBox operation. The easiest way to
generate fancy text is to create a dummy TextBox, set up the text as desired, click the
To Cmd Line button, and then edit the TextBox command for use with the control.

userdata(UDName)=UDStr

Sets frame style used only when picture is not used:
f=0: No frame (only the title is drawn).
f=1: Default, a button is drawn with a centered title. Set fColor to

something other than black to colorize the button.
f=2: Simple box.
f=3: 3D sunken frame. On Macintosh, when "native GUI appearance" is

enabled for the control, the frame is filled with the proper operating
system color.

f=4: 3D raised frame.
f=5: Text well.

CustomControl

V-105

Flags

Details
When you create a custom control, your action procedure will need to get information about the state of the
control using the WMCustomControlAction structure, which is a predefined structure passed to your
function. All of the various members of the WMCustomControlAction structure are as described in the
following tables:

Sets the unnamed user data to UDStr. Use the optional (UDName) to specify a named
user data to create.

userdata(UDName)+=UDStr

Appends UDStr to the current unnamed user data. Use the optional (UDName) to
append to the named UDStr.

value=varName Sets the numeric variable, string variable, or wave that is associated with the control.
With a wave, specify a point using the standard bracket notation with either a point
number (value=awave[4]) or a row label (value=awave[%alabel]).

valueColor=(r,g,b) Sets initial color of the title for the button drawn only when picture is not used and
frame=1.
r, g, and b range from 0 to 65535. valueColor defaults to black (0,0,0). To further change
the color of the title text, use escape sequences as described for title=titleStr.

/Z No error reporting.

Base WMCustomControlAction Structure Members

Member Description

char ctrlName[MAX_OBJ_NAME+1] Control name.

char win[MAX_WIN_PATH+1] Host (sub)window.

STRUCT Rect winRect Local coordinates of host window.

STRUCT Rect ctrlRect Enclosing rectangle of the control.

STRUCT Point mouseLoc Mouse location.

Int32 eventCode Event that caused the procedure to execute.

Int32 eventMod Bitfield of modifiers. See Control Structure eventMod Field on
page III-387.

String userData Primary (unnamed) user data. When this is changed, it is
automatically written back.

Int32 blockReentry Prevents reentry of control action procedure. See Control
Structure blockReentry Field on page III-388.

Int32 missedEvents TRUE when events occurred but the user function was not
available for action.

Int32 mode General purpose.

Int32 curFrame Input and output, used with kCCE_frame event.

Int32 needAction Action meaning depends on the event:

CustomControl

V-106

When determining the state of the eventCode member in the WMCustomControlAction structure, the
various code values you use are defined in this section.
When determining the state of the eventCode member in the WMCustomControlAction structure, the
various values you use are specified below. You can define them as static constants in your procedure file
or, in Igor Pro 6.20 or later, define them by adding this include statement to your procedure file:
#include <CustomControl Definitions>

Events kCCE_mousemoved, kCCE_enter, and kCCE_leave
set to TRUE to force redraw, which is normally not done for
these events.

Event kCCE_tab and kCCE_mousedown set to TRUE to
request keyboard focus (and get kCCE_char events).

Event kCCE_idle set to TRUE to request redraw.

Members of WMCustomControlAction Structure with value=varName

Member Description

Int32 isVariable TRUE if varName is a numeric variable or a string variable.

Int32 isWave TRUE if varName referenced a wave.

Int32 isString TRUE if varName is a String type.

NVAR nVal If isVariable and not isString.

SVAR sVal If isVariable and isString.

WAVE nWave If isWave and not isString.

WAVE/T sWave If isWave and not isString.

Int32 rowIndex If isWave, this is the row index if rowLabel is empty.

char rowLabel[MAX_OBJ_NAME+1] Wave row label.

Members of WMCustomControlAction Structure with kCCE_char

Member Description

Int32 kbChar Keyboard key character code.

Int32 kbMods Keyboard key modifiers bit field:
bit 0: Command (Macintosh).
bit 1: Shift.
bit 2: Alpha Lock.
bit 3: Option (Macintosh) or Alt (Windows).
bit 4: Control.

Event Code Description

kCCE_mousedown = 1 Mouse down in control.

kCCE_mouseup = 2 Mouse up in control.

kCCE_mouseup_out = 3 Mouse up outside control.

kCCE_mousemoved = 4 Mouse moved (happens only when mouse is over the control).

kCCE_enter = 5 Mouse entered control.

Base WMCustomControlAction Structure Members

Member Description

CustomControl

V-107

When you call a function with the kCCE_draw event, the basic button picture (custom or default) will
already have been drawn. You can use standard draw commands such as DrawLine to draw on top of the
basic picture. Unlike the normal situation when draw commands merely add to a draw list, which only later
is drawn, kCCE_draw event draw commands are executed directly. The coordinate system, which you can
not change, is pixels with (0,0) being the top left corner of the control. Most drawing commands are legal
but because of the immediate nature of drawing, the /A (append) flag of DrawPoly is not allowed.
The kCCE_mode event can be used for any purpose, but it mainly serves as a notification to the control that
something has happened. For example, to send information to a control, you can set a named (or the unnamed)
userdata and then set the mode to indicate that the control should examine the userdata. For this signaling
purpose, you should use a mode value of 0 because this value will not become part of the recreation macro.
The kCCE_frame event is sent just before drawing one of the pict frames, as set by the picture parameter. On
input, the curFrame field is set to 0 (normal or mouse down outside button), to 1 (mouse down in button), or
to 2 (disable). You may modify curFrame as desired but your value will be clipped to a valid value.
When you specify a pict with the picture parameter, you will get a kCCE_drawOSBM event when that pict
is drawn into an offscreen bitmap. Once it is created, all updates use the offscreen bitmap until you specify
a new picture parameter. Thus the custom drawing done at this event is static, unlike drawing done during
the kCCE_draw event, which can be different each time the control is drawn. Because the pict can be contain
multiple side-by-side frames, the width of the offscreen bitmap is the width derived from the ctrlRect
field multiplied by the number of frames.
Because the action function is called in the middle of various control events, it must not kill the control or
the window. Doing so will almost certainly cause a crash.

Examples
See CustomControl on page III-373 for some examples of custom controls.
For a demonstration of custom controls, see the Custom Control Demo.pxp example experiment, which is
located in your Igor Pro Folder in the Examples:Testing & Misc: folder.

See Also
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls.
Proc Pictures on page IV-44.
The TextBox, DrawPoly and DefaultGUIControls operations.

kCCE_leave = 6 Mouse left control.

kCCE_draw = 10 Time to draw custom content.

kCCE_mode = 11 Sent when executing CustomControl name, mode=m.

kCCE_frame = 12 Sent before drawing a subframe of a custom picture.

kCCE_dispose = 13 Sent as the control is killed.

kCCE_modernize = 14 Sent when dependency (variable or wave set by value=varName parameter)
fires. It will also get draw events, which probably don’t need a response.

kCCE_tab = 15 Sent when user tabs into the control. If you want keystrokes (kCCE_char),
then set needAction.

kCCE_char = 16 Sent on keyboard events. Stores the keyboard character in kbChar and
modifiers bit field is stored in kbMods. Sets needAction if key event was
used and requires a redraw.

kCCE_drawOSBM = 17 Called after drawing pict from picture parameter into an offscreen bitmap.
You can draw custom content here.

kCCE_idle = 18 Idle event typically used to blink insertion points etc. Set needAction to
force the control to redraw. Sent only when the host window is topmost.

Event Code Description

CWT

V-108

CWT
CWT [flags] srcWave
The CWT operation computes the continuous wavelet transform (CWT) of a 1D real-valued input wave
(srcWave). The input can be of any numeric type. The computed CWT is stored in the wave M_CWT in the
current data folder. M_CWT is a double precision 2D wave which, depending on your choice of mother
wavelet and output format, may also be complex. The dimensionality of M_CWT is determined by the
specifications of offsets and scales. The operation sets the variable V_flag to zero if successful or to a
nonzero number if it fails for any reason.

Flags

/ENDM=method

/FSCL Use correction factor to the wave scaling of the second dimension of the output wave
so that the numbers are more closely related to Fourier wavelength. See References
for more information on the calculation of these correction factors. This flag does not
affect the output from the Haar wavelet.

/M=method

You should mostly use the more efficient FFT method. The direct method should be
reserved to situations where the FFT is not producing optimal results. Theoretically,
when the FFT method fails, the direct method should also be fairly inaccurate, e.g., in
the case of undersampled signal. The main advantage in the direct method is that you
can use it to investigate edge effects.

/OUT=format

Depending on the method of calculation and the choice of mother wavelet, the
“native” output of the transform may be real or complex. You can force the output to
have a desired format using this flag.

/Q Quiet mode; no results printed to the history.

/R1={startOffset, delta1, numOffsets

Specifies offsets for the CWT. Offsets are the first dimension in a CWT. Normally you
will calculate the CWT for the full range of offsets implied by srcWave so you will not
need to use this flag. However, when using the slow method, this flag restricts the
output range of offsets and save some computation time. startOffset (integer) is the point
number of the first offset in srcWave. delta1 is the interval between two consecutive CWT
offsets. It is expressed in terms of the number srcWave points. numOffsets is the number
of offsets for which the CWT is computed.
By default startOffset=0, delta1=1, and numOffsets is the number of points in srcWave. If
you want to specify just the startOffset and delta1, you can set numOffsets=0 to use the
same number of points as the source wave.

Selects the method used to handle the two ends of the data array with direct
integration (/M=1).
method=0: Padded on both sides by zeros.
method=1: Reflected at both the start and end.
method=2: Entered with cyclical repetition.

Specifies the CWT computation method.
method=0: Fast method uses FFT (default).
method=1: Slower method using direct integration.

Sets the format of the output wave M_CWT:
format=1: Complex.
format=2: Real valued.
format=4: Real and contains the magnitude.

CWT

V-109

/R2={startScale, scaleStepSize, numScales}

Specifies the range of scales for the CWT is computation. Scales are the second
dimension in the output wave. Note however that there are limitations on the minimum
and maximum scales having to do with the sampling of your data. Because there is a
rough correspondence between a Fourier spatial frequency and CWT scale it should be
understood that there is also a maximum theoretical scale. This is obvious if you
compute the CWT using an FFT but it also applies to the slow method. If you specify a
range outside the allowed limits, the corresponding CWT values are set to NaN.
Use NaN if you want to use the default value for any parameter.
The default value for startScale is determined by sampling of the source wave and the
wavelet parameter or order.
At a minimum you must specify either scaleStepSize or numScales.

/SMP1=offsetMode Determines computation of consecutive offsets. Currently supporting only
offsetMode=1 for linear, user-provided partial offset limits (see /R1 flag):
val1=startOffset+numOffsets*delta1.

/SMP2=scaleMode

When using scaleMode=4 the operation saves the consecutive scale values in the wave
W_CWTScaling. Note also that if you use scaleMode=4 without specifying a
corresponding /R2 flag, the default scaleStepSize of 1 and 64 scale values gives rise to
scale values that quickly exceed the allowed limits.
(See /R2 flag for details about the different parameters used in the equations above.)

/SW2=sWave Provides specific scale values at which the transform is evaluated. Use instead of /R2
flag. It is your responsibility to make sure that the entries in the wave are appropriate
for the sampling density of srcWave.

Determines computation of consecutive scales. scaleMode is 1 by default if you
specify the /R2 flag.
format=1: Linear:

theScale=startScale+index*scaleStepSize

format=2: User-provided scaling wave.
format=4: Power of 2 scaling interval:

theScale=startScale*2.^(index*scaleStepSize)

CWT

V-110

Details
The CWT can be computed directly from its defining integral or by taking advantage of the fact that the integral
represents a convolution which in turn can be calculated efficiently using the fast Fourier transform (FFT).
When using the FFT method one encounters the typical sampling problems and edge effects. Edge effects
are also evident when using the slow method but they only significant in high scales.
From sampling considerations it can be shown that the maximum frequency of a discrete input signal is
1/2dt where dt is the time interval between two samples. It follows that the smallest CWT scale is 2dt and
the largest scale is Ndt where N is the total number of samples in the input wave.
The transform in M_CWT is saved with the wave scaling. startOffset and delta1 are used for the X-scaling. Both
startOffset and delta1 are either specified by the /R1 flag or copied from srcWave. The Y-scaling of M_CWT
depends on your choice of /SMP2. If the CWT scaling is linear then the wave scaling is based on startScale and
scaleStepSize. If you are using power of 2 scaling interval then the Y wave scaling of M_CWT has a start=0 and
delta=1 and the wave W_CWTScaling contains the actual scale values for each column of M_CWT. Note that
W_CWTScaling has one extra data point to make it suitable for display using an operation like:
AppendImage M_CWT vs {*, W_CWTScaling}

We have encountered two different definitions for the Morlet wavelet in the literature. The first is a complex
function (MorletC) and the second is real (Morlet). Instead of choosing one of these definitions we
implemented both so you may choose the appropriate wavelet.

See Also
For discrete wavelet transforms use the DWT operation. The WignerTransform and FFT operations.

/WBI1={Wavelet [, order]}

order applies to DOG and Paul wavelets only and specifies m, the particular member
of the wavelet family.
The default wavelet is the Morlet.

/WPR1={param1} param1 is a wavelet-specific parameter for the wavelet function selected by /WBI1. For
example, use /WPR1={6} to change the Morlet frequency from the default (5).

/Z No error reporting. If an error occurs, sets V_flag to -1 but does not halt function
execution.

Specifies the built-in wavelet (mother) function. Wavelet is the name of a wavelet
function: Morlet (default), MorletC (complex), Haar, MexHat, DOG, and Paul.

Morlet:
.

By default, ω=5. Use the /WPR1 flag to specify other values for ω.

MorletC:
.

By default, ω=5. Use the /WPR1 flag to specify other values for ω.

Haar: .

DOG:

MexHat: Special case of DOG with m=2.

Paul: .

Ψ0 x() 1
Π1 4⁄
------------ ωx()cos e x– 2 2⁄=

Ψ0 x() 1
Π1 4⁄
------------eiωxe x– 2 2⁄=

Ψ0 x()
1 0 x 0.5<≤
1– 0.5 x 1<≤

=

Ψ0 m x,() 1–()m 1+

Γ m 1
2
---+

xm

m

d

d e x– 2 2⁄()=

Ψ0 m x,() 2mimm!

π 2m()!
---------------------- 1 ix–() m 1+()–=

DataFolderDir

V-111

For further discussion and examples see Continuous Wavelet Transform on page III-248.

References
Torrence, C., and G.P. Compo, A Practical Guide to Wavelet Analysis, Bulletin of the American Meteorological

Society, 79, 61-78, 1998.
The Torrence and Compo paper is also online at:
<http://paos.colorado.edu/research/wavelets/>.

DataFolderDir
DataFolderDir(mode [, dfr])
The DataFolderDir function returns a string containing a listing of some or all of the objects contained in
the current data folder or in the data folder referenced by dfr. The dfr parameter was added in Igor Pro 6.20.

Parameters
mode is a bitwise flag for each type of object. Use -1 for all types. Use a sum of the bit values for multiple
types.

dfr is a data folder reference.

Details
The returned string has the following format:
1. FOLDERS:name,name,…;<CR>
2. WAVES:name,name,…;<CR>
3. VARIABLES:name,name,…;<CR>
4. STRINGS:name,name,…;<CR>
Where <CR> represents the carriage return character.

Tip
This function is mostly useful during debugging, used in a Print command. For finding the contents of a data
folder programmatically, it will be easier to use the functions CountObjects and GetIndexedObjName.

Examples
Print DataFolderDir(8+4) // prints variables and strings
Print DataFolderDir(-1) // prints all objects

See Also
Chapter II-8, Data Folders.
Setting Bit Parameters on page IV-12 for information about bit settings.

Desired Type Bit Number Bit Value

All -1

Data folders 0 1

Waves 1 2

Numeric variables 2 4

String variables 3 8

http://paos.colorado.edu/research/wavelets/

DataFolderExists

V-112

DataFolderExists
DataFolderExists(dataFolderNameStr)
The DataFolderExists function returns the truth that the specified data folder exists.
dataFolderNameStr can bea a full path or partial path relative to the current data folder.
If dataFolderNameStr is null DataFolderExists returns 1 because, for historical reasons, a null data folder path
is taken to refer to the current data folder.

See Also
Chapter II-8, Data Folders.

DataFolderRefsEqual
DataFolderRefsEqual(dfr1, dfr2)
The DataFolderRefsEqual function returns the truth the two data folder references are the same.
Requires Igor Pro 6.20 or later.

See Also
Chapter II-8, Data Folders and Data Folder References on page IV-62.
The DataFolderRefStatus function.

DataFolderRefStatus
DataFolderRefStatus(dfr)
The DataFolderRefStatus function returns the status of a data folder reference.
Requires Igor Pro 6.1 or later.

Details
DataFolderRefStatus returns zero if the data folder reference is invalid or non-zero if it is valid.
DataFolderRefStatus returns a bitwise result with bit 0 indicating if the reference is valid and bit 1
indicating if the reference data folder is free. Therefore the returned values are:

A data folder reference is invalid if it was never assigned a value or if it is assigned an invalid value. For
example:
DFREF dfr // dfr is invalid
DFREF dfr = root: // dfr is valid
DFREF dfr = root:NonExistentDataFolder // dfr is invalid

A data folder reference can be valid and yet point to a non-existent data folder:
NewDataFolder/O root:MyDataFolder
DFREF dfr = root:MyDataFolder // dfr is valid
KillDataFolder root:MyDataFolder // dfr is still valid

After the KillDataFolder, dfr is still a valid data folder reference but points to a non-existent data folder.
You should use DataFolderRefStatus to test any DFREF variables that might not be valid, such as after
assigning a reference when you are not sure that the referenced data folder exists. For historical reasons, an
invalid DFREF variable will often act like root.

See Also
Chapter II-8, Data Folders and Data Folder References on page IV-62.

0: The data folder reference is invalid.

1: The data folder reference refers to a regular global data folder.

3: The data folder reference refers to a free data folder.

dateToJulian

V-113

dateToJulian
dateToJulian(year, month, day)
The dateToJulian function returns the Julian day number for the specified date. The Julian day starts at noon.
Use negative number for BC years and positive numbers for AD years. To exclude any ambiguity, there is no
year zero in this calendar. For general orientation, Julian day 2450000 corresponds to October 9, 1995.

See Also
The JulianToDate function.
For more information about the Julian calendar see:
<http://www.tondering.dk/claus/calendar.html>.

date
date()
The date function returns a string containing the current date.
Formatting of dates depends on your operating system and on your preferences entered in the Date & Time
control panel (Macintosh) or the Regional Settings control panel (Windows).

Examples
Print date() // Prints Mon, Mar 15, 1993

See Also
The Secs2Date, Secs2Time, and time functions.

date2secs
date2secs(year, month, day)
The date2secs function returns the number of seconds from midnight on 1/1/1904 to the specified date.
Note that the month and day parameters are one-based, so these series start at one.
If year, month, and day are all -1 then date2secs returns the offset in seconds from the local time to the UTC
(Universal Time Coordinate) time.

Examples
Print Secs2Date(date2secs(1993,3,15),1) // Ides of March, 1993

Prints the following, depending on your system’s date settings, in the history area:
Monday, March 15, 1993

This next example sets the X scaling of a wave to 1 day per point, starting January 1, 1993:
Make/N=125 myData = 100 + gnoise(50)
SetScale/P x,date2secs(1993,1,1),24*60*60,"dat",myData
Display myData;ModifyGraph mode=5

See Also
For further discussion of how Igor represents dates, see Date/Time Waves on page II-102.
The Secs2Date, Secs2Time, and time functions.

200
150

100
50
0

1/1/93 1/21/93 2/10/93 3/2/93 3/22/93 4/11/93 5/1/93

dat

http://www.tondering.dk/claus/calendar.html

DateTime

V-114

DateTime
DateTime
The DateTime function returns number of seconds from 1/1/1904 to current date and time.
Unlike most Igor functions, DateTime is used without parentheses.

Examples
Variable now = DateTime

See Also
The Secs2Date, Secs2Time and time functions.

dawson
dawson(x)
The dawson function returns the value of the Dawson integral:

.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 298 pp., Dover, New York, 1972.

DDEExecute
DDEExecute(refNum, cmdStr [, timeout])
This is a Windows-only function; it will return an error on the Macintosh.
The DDEExecute function sends a string of commands, cmdStr, to the server for execution. The format of
the commands depends on the server application.
refNum is a DDE session reference number returned by DDEInitiate to start a particular session.
It returns an error code from the server or zero if there was no error.
DDEExecute returns -1 if the server gave an error but the error code was zero. Returns -2 if the server did
not reply before the timeout period. Returns -3 if the refNum is invalid and -4 for other errors.
The optional timeout value is in seconds. The default timeout is 60 sec.
In some situations, you may want to use a zero timeout and then use DDEStatus to monitor when the server
is finished. You would do this if the server might take a long time to accomplish the commands and you
want Igor to continue working at the same time.

See Also
For further information refer to the other DDE functions and to the DDE Server and DDE Client sections in
the Obsolete Topics help file.

DDEInitiate
DDEInitiate(serverName, topicName)
This is a Windows-only function; it will return an error on the Macintosh.
The DDEInitiate function opens a DDE session and returns a reference number for use by the rest of the
DDE routines. Returns zero if failure.
If the desired application is not running, DDEInitiate will return zero. If this occurs, you can use the
ExecuteScriptText operation to start the server application.
Refer to your application’s documentation for the serverName and topicName. See the following example for
usage with Excel.

Examples
Variable ch= DDEInitiate("excel","book1")

F x() x2–() t2()exp td
0

x

exp=

DDEPokeString

V-115

See Also
The ExecuteScriptText operation. For further information refer to the other DDE functions and to the DDE
Server and DDE Client sections in the Obsolete Topics help file.

DDEPokeString
DDEPokeString(refNum, itemString, string [, timeout])
This is a Windows-only function; it will return an error on the Macintosh.
The DDEPokeString function sends string to the server.
itemString is a string specifying the server application’s DDE item name for the location into which to store
the string. For example, "R1C1" specifies the first cell in an Excel spreadsheet.
refNum is the DDE session reference number returned by DDEInitiate to start a particular session.
It returns an error code from the server or zero if there was no error.
DDEPokeString returns -1 if the server gave an error but the error code was zero. Returns -2 if the server
did not reply before the timeout period. Returns -3 if the refNum is invalid and -4 for other errors.
The optional timeout value is in seconds. The default timeout is 60 sec.

See Also
For further information refer to the other DDE functions and to the DDE Server and DDE Client sections in
the Obsolete Topics help file.

DDEPokeWave
DDEPokeWave(refNum, itemString, wave [, timeout [, format]])
This is a Windows-only function; it will return an error on the Macintosh.
The DDEPokeWave function sends data from a wave to the server.
itemString is a string specifying the server application’s DDE item name for the location into which to store
the string. For example, "R1C1:R10C10" specifies a 10x10 block of cells in an Excel spreadsheet.
refNum is a DDE session reference number returned by DDEInitiate to start a particular session.
It returns an error code from the server or zero if there was no error.
DDEPokeWave returns -1 if the server gave an error but the error code was zero. Returns -2 if the server
did not reply before the timeout period. Returns -3 if the refNum is invalid and -4 for other errors.
The optional format parameter can be 0 to send the data as tab-delimited text (default) or can be 1 to specify
Microsoft’s XLTable (excel) format. To specify format without specifying timeout, the latter may be
completely missing (,,) or a * symbol may be used:
err= DDEPokeWave(ch,"R1C1:R10C10",*,1)

The optional timeout value is in seconds. The default timeout is 60 sec.

Examples
A session using Microsoft Excel:
Variable ch,err1,err2
ch= DDEInitiate("excel","book1")
Make/O/N=(5,5) jack= P+10*Q
err1= DDEPokeWave(ch,"R1C1:R5C5",jack)
err2= DDETerminate(ch)

See Also
For further information refer to the other DDE functions and to the DDE Server and DDE Client sections in
the Obsolete Topics help file.

DDERequestString
DDERequestString(refNum, itemString [, timeout])
This is a Windows-only function; it will return an error on the Macintosh.
The DDERequestString string function returns a string of requested data or null handle in case of failure.

DDERequestWave

V-116

itemString is a string specifying the server application’s DDE item name for the data being requested. For
example, "R1C1" specifies the first cell in an Excel spreadsheet.
refNum is a DDE session reference number returned by DDEInitiate to start a particular session.
The optional timeout value is in seconds. The default timeout is 60 sec.

See Also
For further information refer to the other DDE functions and to the DDE Server and DDE Client sections in
the Obsolete Topics help file.

DDERequestWave
DDERequestWave(refNum, itemString, destWave [, timeout])
This is a Windows-only function; it will return an error on the Macintosh.
The DDERequestWave function loads a preexisting wave with data from the server. The provided destination
wave, destWave, can be either text or numeric. Data from the server must be a tab delimited array. It is analyzed
to determine the dimensions of the wave but the numeric type (or string type) of the wave is not changed.
itemString is a string specifying the server application’s DDE item name for the requested data. For example,
"R1C1:R10C10" specifies a 10x10 block of cells in an Excel spreadsheet.
refNum is a DDE session reference number returned by DDEInitiate to start a particular session.
It returns an error code from the server or zero if there was no error.
DDERequestWave returns -1 if the server gave an error but the error code was zero. Returns -2 if the server
did not reply before the timeout period. Returns -3 if the refNum is invalid and -4 for other errors.
The optional timeout value is in seconds. The default timeout is 60 sec.

See Also
For further information refer to the other DDE functions and to the DDE Server and DDE Client sections in
the Obsolete Topics help file.

DDEStatus
DDEStatus(refNum)
This is a Windows-only function; it will return an error on the Macintosh.
The DDEStatus function returns the status of the DDE session defined by refNum from a previous
DDEInitiate.
Returns zero if refNum is not valid or if the session has been closed.
Returns nonzero if session is valid where the individual bits have the following meanings:

See Also
For further information refer to the other DDE functions and to the DDE Server and DDE Client sections in
the Obsolete Topics help file.

DDETerminate
DDETerminate(refNum)
This is a Windows-only function; it will return an error on the Macintosh.
The DDETerminate function closes the DDE session defined by refNum from a previous DDEInitiate.
Returns truth session was valid.
Pass zero to terminate all client sessions.

Bit 0: Set if the session is valid and not busy.

Bit 1: Set if waiting for an ack from the server for a previous DDEPoke or DDEExecute that
timed out. (bit 0 and 1 are exclusive).

Bit 2: Set if the ack from the server for a previous poke or execute command was negative. Only
applies to timed out commands.

Debugger

V-117

See Also
For further information refer to the other DDE functions and to the DDE Server and DDE Client sections in
the Obsolete Topics help file.

Debugger
Debugger
The Debugger operation breaks into the debugger if it is enabled.

See Also
The Debugger on page IV-188 and the DebuggerOptions operation.

DebuggerOptions
DebuggerOptions [enable=en, debugOnError=doe, NVAR_SVAR_WAVE_Checking=nvwc]
The DebuggerOptions operation programmatically changes the user-level debugger settings. These are the
same three settings that are available in the Procedure menu (and the debugger source pane contextual menu)

Parameters
All parameters are optional. If none are specified, no action is taken, but the output variables are still set.

Details
DebuggerOptions sets the following variables to indicate the Debugger settings that are in effect after the
command is executed. A value of zero means the setting is off, nonzero means the setting is on.

See Also
The Debugger on page IV-188 and the Debugger operation.

default
default:
The default flow control keyword is used in switch and strswitch statements. When none of the case labels
in the switch or strswitch match the evaluation expression, execution will continue with code following the
default label, if it is present.

See Also
Switch Statements on page IV-34.

enable=en Turns the debugger on (en=1) or off (en=0).
If the debugger is disabled then the other settings are cleared even if other settings are
on.

debugOnError=doe

NVAR_SVAR_WAVE_Checking=nvwc

V_enable V_debugOnError V_NVAR_SVAR_WAVE_Checking

Turns Debugging On Error on or off.
doe=0: Disables Debugging On Error (see Debugging on Error on page

IV-189).
doe=1: Enables Debugging On Error and also enables the debugger

(implies enable=1).

Turns NVAR, SVAR, and WAVE checking on or off.
nvwc=0: Disables “NVAR SVAR WAVE Checking”. See Accessing

Global Variables and Waves on page IV-50 for more details.
nvwc=1: Enables this checking and also enables the debugger (implies

enable=1).

DefaultFont

V-118

DefaultFont
DefaultFont [/U] "fontName"
The DefaultFont operation sets the default font to be used in graphs for axis labels, tick mark labels and
annotations, and in page layouts for annotations.

Parameters
“fontName” should be a font name, optionally in quotes. The quotes are not required if the font name is one word.

Flags

DefaultGUIControls
DefaultGUIControls [/Mac/W=winName/Win] [appearance]
The DefaultGUIControls operation changes the appearance of user-defined controls.

Use DefaultGUIControls/W=winName to override that setting for individual windows.

Parameters

Flags

Details
If appearance is not specified, nothing is changed. The current value for appearance is returned in S_value.
If appearance is specified the previous appearance value for the window- or experiment-wide default is
returned in S_value.
With /W, the control appearance applies only to the specified window (Graph or Panel). If it is not used,
then the settings are global to experiments on the current computer. Tip: Use /W=# to refer to the current
active subwindow.
The /Mac and /Win flags specify the affected computer platform. If the current platform other than
specified, then the settings are not used, but (if native or OS9) are remembered for use in window recreation
macros or experiment recreation. This means you can create an experiment that with different appearances
depending on the current platform.

/U Updates existing graphs and page layouts immediately to use the new default font.

Note: The recommended way to change the appearance of user-defined controls is to use the
Miscellaneous Settings dialog’s Native GUI Appearance for Controls checkbox in the
Compatibility tab, which is equivalent to DefaultGUIControls native when
checked, and to DefaultGUIControls os9 when unchecked.

appearance may be one of the following:

native Creates standard-looking controls for the current computer platform. This is the default in
Igor Pro 6.02 or later.

os9 Igor Pro 5 appearance (quasi-Macintosh OS 9 controls that look the same on Macintosh and
Windows).

default Inherits the window appearance from either a parent window or the experiment-wide
default (only valid with /W).

/Mac Changes the appearance of controls only on Macintosh, and it affects the
experiment whenever it is used on Macintosh.

/W=winName Affects the named window or subwindow. When omitted, sets an experiment-wide
default.

When identifying a subwindow with winName, see Subwindow Syntax on page
III-97 for details on forming the window hierarchy.

/Win Changes the appearance of controls only on Windows, and it affects the
experiment whenever it is used on Windows.

DefaultGUIControls

V-119

If neither /Mac nor /Win are used, it is implied by the current platform. To set native appearance on both
platforms, use two commands:
DefaultGUIControls/W=Panel0/Mac native

DefaultGUIControls/W=Panel0/Win native

In addition to the experiment-wide appearance setting and the window-specific appearance setting, an
individual control’s appearance can be set with the appropriate control command’s appearance keyword
(or a ModifyControl appearance keyword). A control-specific appearance setting overrides a window-
specific appearance, which in turn overrides the experiment-wide appearance setting.
Although meant to be used before controls are created, calling DefaultGUIControls will update all open
windows.
DefaultGUIControls does not change control fonts or font sizes, which means you can create controls that
look "native-ish" without having to readjust their positions to avoid avoid shifting or overlap. However, the
smooth font rendering that the Native GUI uses on Macintosh does change the length of text slightly, so
some shifting will occur that affects mostly controls that were aligned on their right sides.
The native appearance affects the way that controls are drawn in TabControl and GroupBox controls.

TabControl Background Details
Unlike the os9 appearance which draws only an outline to define the tab region (leaving the center alone)
the native tab appearance fills the tab region. Fortunately, TabControls are drawn before all other kinds of
controls which allows enclosed controls to be drawn on top of a tab control regardless of the order in which
the buttons are defined in the window recreation macro.
However the drawing order of native TabControls does matter: the top-most TabControls draws over other
TabControls. (The top-most TabControl is listed last in the window recreation macro.) The os9 appearance
allows a smaller (nested) TabControl to be underneath the later (enclosing) TabControl because tabs
normally aren’t filled. Converting these tabs to native appearance will cause nested tab to be hidden.
To fix the drawing order problem in an existing panel, turn on the drawing tools, select the arrow tool,
right-click the enclosing TabControl, and choose Send to Back to correct this situation. If the TabControl
itself is inside another TabControl, select that enclosing TabControl and also choose Send to Back, etc.
To fix the window recreation macro or function that created the panel, arrange the enclosing TabControl
commands to execute before the commands that create the enclosed TabControls.
A natively-drawn TabControl draws any drawing objects that are entirely enclosed by the tab region so that
it behaves the same as an os9 unfilled TabControl with drawing objects inside.

Groupbox Control Background Details
GroupBox controls, unlike TabControls, are not drawn before all other controls, so the drawing order
always matters if the GroupBox specifies a background (fill) color and it contains other controls.
You may find that enabling native appearance hides some controls inside the GroupBox. They are probably
underneath (before) the GroupBox in the drawing order.
To fix this in an existing panel, turn on the drawing tools, right-click on the GroupBox and choose Send to
Back. To fix the window recreation macro or function that created the panel, arrange the GroupBox
commands to execute before the commands that create the enclosed controls.
A natively-drawn GroupBox draws any drawing objects that are entirely enclosed by the box; an os9 filled
GroupBox does not.

See Also
The DefaultGUIFont, ModifyControl, Button, GroupBox, and TabControl operations.
Chapter III-14, Controls and Control Panels, for details about control panels and controls.

Note: The setting for DefaultGUIControls without /W is not stored in the experiment file; it is a
user preference set by the Miscellaneous Settings dialog’s Native GUI Appearance for
Controls checkbox in the Compatibility tab. If you use DefaultGUIControls native or
DefaultGUIControls os9 commands, the checkbox will not show the current state of the
experiment-wide setting. Clicking Save Settings in the Miscellaneous Settings dialog will
overwrite the DefaultGUIControls setting (but not the per-window settings).

DefaultGUIFont

V-120

DefaultGUIFont
DefaultGUIFont [/W=winName /Mac/Win] group = {fNameStr,fSize,fStyle} [,…]
The DefaultGUIFont operation changes the default font for user-defined controls and other Graphical User
Interface elements.

Parameters
fNameStr is the name of a font, fSize is the font size, and fStyle is a bitwise parameter with each bit controlling
one aspect of the font style. See Button for details about these parameters.
group may be one of the following:

Flags

Details
Although designed to be used before controls are created, calling DefaultGUIFont will update all affected
windows with controls. This makes it easy to experiment with fonts. Keep in mind that fonts can cause
compatibility problems when moving between machines or platforms.
The /Mac and /Win flags indicate the platform on which the fonts are to be used. If the current platform is
not the one specified then the settings are not used but are remembered for use in window recreation
macros or experiment recreation. This allows a user to create an experiment that will use different fonts
depending on the current platform.
If the /W flag is used then the font settings apply only to the specified window (Graph or Panel.) If the /W flag is
not used, then the settings are global to the experiment. Tip: Use /W=# to refer to the current active subwindow.
fNameStr may be an empty string ("") to clear a group. Setting the font name to "_IgorSmall",
"_IgorMedium", or "_IgorLarge" will use Igor’s own defaults. The standard defaults for controls are the
equivalent to setting all to "_IgorSmall", tabcontrol to "_IgorMedium", and button to "_IgorLarge". Use
a fSize of zero to also get the standard default for size. On Windows, the three default fonts and sizes are all the
same.
Although designed to be used before controls are created, calling DefaultGUIFont will update all affected
windows with controls. This makes it easy to experiment with fonts. Keep in mind that fonts can cause
compatibility problems when moving between machines or platforms.

all All controls

button Button and default CustomControl

checkbox CheckBox controls

tabcontrol TabControl controls

popup Affects the icon (not the title) of a PopupMenu control. The text in the popped state is
set by the system and can not be changed. The title of a PopupMenu is affected by the
all group but the icon text is not.

panel Draw text in a panel.

graph Overlay graphs. Size is used only if ModifyGraph gfSize= -1; style is not used.

table Overlay tables.

/Mac Changes control fonts only on Macintosh, and it affects the experiment whenever it is
used on Macintosh.

/W=winName Affects the named window or subwindow. When omitted, sets an experiment-wide
default.

When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/Win Changes control fonts only on Windows, and it affects the experiment whenever it is
used on Windows.

defined

V-121

To read back settings, use DefaultGUIFont [/W=winName/Mac/Win/OVR] group to return the
current font name in S_name, the size in V_value, and the style in V_flag. With /OVR or if /Mac or /Win is
not current, it returns only override values. Otherwise, values include Igor built-in defaults. If S_name is
zero length, values are not defined.

Default Fonts and Sizes
The standard defaults for controls is the equivalent to setting all to "_IgorSmall", tabcontrol to
"_IgorMedium", and button to "_IgorLarge". Use a fSize of zero to also get the standard default for size.
On Windows, the three default fonts and sizes are all the same.

Examples
DefaultGUIFont/Mac all={"Zapf Chancery",12,0},panel={"geneva",12,3}
DefaultGUIFont/Win all={"Century Gothic",12,0},panel={"arial",12,3}
NewPanel
Button b0
DrawText 40,43,"Some text"

See Also
The DefaultGUIControls operation. Chapter III-14, Controls and Control Panels, for details about control
panels and controls.
The example experiment: All Controls Demo.pxp.

defined
defined(symbol)
The defined function returns 1 if the symbol is defined 0 if the symbol is not defined.
symbol is a symbol possibly created by a #define statement or by SetIgorOption poundDefine=symbol.
symbol is a name, not a string. However you can use $ to convert a string expression to a name.

Details
The defined function can be used in three ways:

Outside of a procedure using a #if statement
Inside a procedure using a #if statement
Inside a procedure using an if statement

For example:

Macintosh Windows

Control Font Font Size Font Font Size

Button Lucida Grande 13 MS Shell Dlg*

* MS Shell Dlg is a “virtual font name”, which usually maps to Tahoma on Windows.

12

Checkbox Geneva 9 MS Shell Dlg 12

GroupBox Geneva 9 MS Shell Dlg 12

ListBox Geneva 9 MS Shell Dlg 12

PopupMenu†

† PopupMenu font for the title is Geneva 9 on Macintosh, for the popup menu itself
the font is Lucida Grande 12. On Windows, both fonts are MS Shell Dlg 12.

Geneva 9 MS Shell Dlg 12

SetVariable Geneva 9 MS Shell Dlg 12

Slider Geneva 9 MS Shell Dlg 12

TabControl Geneva 12 MS Shell Dlg 12

TitleBox Geneva 9 MS Shell Dlg 12

ValDisplay Geneva 9 MS Shell Dlg 12

DefineGuide

V-122

#define DEBUG

#if defined(DEBUG) // Outside of a function with #if
Constant kSomeConstant = 100

#else
Constant kSomeConstant = 50

#endif

Function Test1() // Inside a function with #if
#if defined(DEBUG)

Print "Debugging"
#else

Print "Not debugging"
#endif

End

Function Test1() // Inside a function with if
if (defined(DEBUG))

Print "Debugging"
else

Print "Not debugging"
endif

End

In these examples, we could have just as well used #ifdef instead of the defined function. For logical
combinations of conditions however, only defined will do:
#if (defined(SYMBOL1) && defined(SYMBOL2)

. . .
#endif

When used in a procedure window, defined(symbol) returns 1 if symbol is defined at the time the line is
compiled. In a given procedure file, only the following symbols are visible:

Symbols defined earlier in that procedure file *
Symbols defined in the built-in procedure window †
Predefined symbols (see Predefined Global Symbols on page IV-91)
Symbols defined by SetIgorOption poundDefine=symbol

* When used in the body of a procedure, as opposed to outside of a procedure, a symbol defined anywhere
in a given procedure window is visible. However, to avoid depending on this confusing exception, you
should define all symbols before they are referenced in a procedure file.
† Symbols defined in the built-in procedure window are not available to independent modules.
When the defined function is used from the command line, only symbols defined in the built-in procedure
window, predefined symbols, and symbols defined using SetIgorOption are visible.
The defined function was added for Igor 6.20.

See Also
#define, Conditional Compilation on page IV-90, Predefined Global Symbols on page IV-91

DefineGuide
DefineGuide [/W= winName] newGuideName = {[guideName1, val [, guideName2]]} [,…]
The DefineGuide operation creates or overwrites a user-defined guide line in the target or named window
or subwindow. Guide lines help with the positioning of subwindows in a host window.

Parameters
newGuideName is the name for the newly created guide. When it is the name of an existing guide, the guide
will be moved to the new position.
guideName1, guideName2, etc., must be the names of existing guides.
The meaning of val depends on the form of the command syntax. When using only one guide name, val is
an absolute distance offset from to the guide. The directionality of val is to the right or below the guide for
positive values. The units of measure are points except in panels where they are in pixels. When using two
guide names, val is the fractional distance between the two guides.

DelayUpdate

V-123

Flags

Details
The names for the built-in guides are as defined in the following table:

The frame guides apply to all window and subwindow types. The graph rectangle and plot rectangle guide
types apply only to graph windows and subwindows.
To delete a guide use guideName={}.

See Also
The Display, Edit, NewPanel, NewImage, and NewWaterfall operations.
The GuideInfo function.

DelayUpdate
DelayUpdate
The DelayUpdate operation delays the updating of graphs and tables while executing a macro.

Details
Use DelayUpdate at the end of a line in a macro if you want the next line in the macro to run before graphs
or tables are updated.
This has no effect in user-defined functions. During execution of a user-defined function, windows update
only when you explicitly call the DoUpdate operation.

See Also
The DoUpdate, PauseUpdate, and ResumeUpdate operations.

DeleteFile
DeleteFile [flags] [fileNameStr]
The DeleteFile operation deletes a file on disk.

Parameters
fileNameStr can be a full path to the file to be deleted (in which case /P is not needed), a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName.
If Igor can not locate the file from fileNameStr and pathName, it displays a dialog allowing you to specify the
file to be deleted.
If you use a full or partial path for either file, see Path Separators on page III-400 for details on forming the path.

Flags

/W=winName Defines guides in the named window or subwindow. When omitted, action will affect
the active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

Left Right Top Bottom

Host Window Frame FL FR FT FB

Host Graph Rectangle GL GR GT GB

Inner Graph Plot Rectangle PL PR PT PB

/I Interactive mode displays the Open File dialog even if fileNameStr is specified and the
file exists.

/M=messageStr Specifies the prompt message for the Open File dialog.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

DeleteFolder

V-124

Variables
The DeleteFile operation returns information in the following variables:

See Also
DeleteFolder, MoveFile, CopyFile, NewPath, and Symbolic Paths on page II-34.

DeleteFolder
DeleteFolder [flags] [folderNameStr]
The DeleteFolder operation deletes a disk folder and all of its contents.

Parameters
folderNameStr can be a full path to the folder to be deleted, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a folder within the folder associated with pathName.
If Igor can not determine the location of the folder from folderNameStr and pathName, it displays a Select
Folder dialog allowing you to specify the folder to be deleted.
If /P=pathName is given, but folderNameStr is not, then the folder associated with pathName is deleted.
If you use a full or partial path for either folder, see Path Separators on page III-400 for details on forming
the path.
Folder paths should not end with single Path Separators. See the MoveFolder Details section.

Flags

/Z[=z]

V_flag Set to zero if the file was deleted, to -1 if the user cancelled the Open File dialog, and
to some nonzero value if an error occurred, such as the specified file does not exist.

S_path Stores the full path to the file that was deleted. If an error occurred or if the user
cancelled, it is set to an empty string.

Warning: The DeleteFolder command destroys data! The deleted folder and the contents are not moved
to the Trash or Recycle Bin.

DeleteFolder will delete a folder only if permission is granted by the user. The default
behavior is to display a dialog asking for permission. The user can alter this behavior via
the Miscellaneous Settings dialog’s Misc category. For further details see Misc Settings on
page III-416.

If permission is denied, the folder will not be deleted and V_Flag will return 1088
(Command is disabled) or 1276 (You denied permission to delete a folder). Command
execution will cease unless the /Z flag is specified.

/I Interactive mode displays a Select Folder dialog even if folderNameStr is specified and
the folder exists.

/M=messageStr Specifies the prompt message for the Select Folder dialog.

/P=pathName Specifies the folder to look in for the folder. pathName is the name of an existing
symbolic path.

Prevents procedure execution from aborting if it attempts to delete a file that does
not exist. Use /Z if you want to handle this case in your procedures rather than
having execution abort.
/Z=0: Same as no /Z.
/Z=1: Deletes a file only if it exists. /Z alone has the same effect as /Z=1.
/Z=2: Deletes a file if it exists or displays a dialog if it does not exist.

DeletePoints

V-125

Variables
The DeleteFolder operation returns information in the following variables:

Details
You can use only /P=pathName (without folderNameStr) to specify the source folder to be deleted.
Folder paths should not end with single Path Separators. See the Details section for MoveFolder.

See Also
The DeleteFile, MoveFolder, CopyFolder, NewPath, and IndexedDir operations. Symbolic Paths on page
II-34.

DeletePoints
DeletePoints [/M=dim] startElement, numElements, waveName

[, waveName]…
The DeletePoints operation deletes numElements elements from the named waves starting from element
startElement.

Flags

Details
Removing all but one element from the highest dimension of a wave reduces the dimensionality of the wave
by one.
A wave may have any number of points, including zero. Removing all elements from any dimension
removes all points from the wave, leaving a 1D wave with zero points.

See Also
The Redimension operation.

deltax
deltax(waveName)
The deltax function returns the named wave’s dx value. deltax works with 1D waves only.

Details
This is equal to the difference of the X value of point 1 minus the X value of point 0.

/Z[=z]

V_flag Set to zero if the folder was deleted, to -1 if the user cancelled the Select Folder dialog,
and to some nonzero value if an error occurred, such as the specified folder does not
exist.

S_path Stores the full path to the folder that was deleted, with a trailing colon. If an error
occurred or if the user cancelled, it is set to an empty string.

/M=dim

If /M is omitted, DeletePoints deletes from the rows dimension.

Prevents procedure execution from aborting if it attempts to delete a folder that does
not exist. Use /Z if you want to handle this case in your procedures rather than
having execution abort.
/Z=0: Same as no /Z.
/Z=1: Deletes a folder only if it exists. /Z alone has the same effect as /Z=1.
/Z=2: Deletes a folder if it exists or displays a dialog if it does not exist.

dim specifies the dimension from which elements are to be deleted. Values are:
0: Rows.
1: Columns.
2: Layers.
3: Chunks.

DFREF

V-126

See Also
The leftx and rightx functions.
When working with multidimensional waves, use the DimDelta function.
For an explanation of waves and wave scaling, see Changing Dimension and Data Scaling on page II-83.

DFREF
DFREF localName [= path or dfr], [localName1 [= path or dfr]]
DFREF is used to define a local data folder reference variable or input parameter in a user-defined function.
Requires Igor Pro 6.1 or later.
The syntax of the DFREF is:
DFREF localName [= path or dfr][, localName1 [= path or dfr]]...

where dfr stands for "data folder reference". The optional assignment part is used only in the body of a
function, not in a parameter declaration.
Unlike the WAVE reference, a DFREF in the body without the assignment part does not do any lookup. It
simply creates a variable whose value is null.

Examples
Function Test(dfr)

DFREF dfr

Variable dfrStatus = DataFolderRefStatus(dfr)

if (dfrStatus == 0)
Print "Invalid data folder reference"
return -1

endif

if (dfrStatus & 2) // Bit 1 set means free data folder
Print "Data folder reference refers to a free data folder"

endif

if (dfrStatus == 1)
Print "Data folder reference refers a global data folder"
DFREF dfSav = GetDataFolderDFR()
Print GetDataFolder(1) // Print data folder path
SetDataFolder dfSav

endif

Make/O dfr:jack=sin(x/8) // Make a wave in the referenced data folder

return 0
End

See Also
For information on programming with data folder references, see Data Folder References on page IV-62.

Differentiate

V-127

Differentiate
Differentiate [type flags][flags] yWaveA [/X = xWaveA]

[/D = destWaveA][, yWaveB [/X = xWaveB][/D = destWaveB][, …]]
The Differentiate operation calculates the 1D numerical derivative of a wave.
Differentiate is multi-dimension-aware in the sense that it computes a 1D differentiation along the
dimension specified by the /DIM flag or along the rows dimension if you omit /DIM.
Complex waves have their real and imaginary components differentiated individually.

Flags

Type Flags (used only in functions)
Differentiate also can use various type flags in user functions to specify the type of destination wave
reference variables. These type flags do not need to be used except when needed to match another wave
reference variable of the same name or to identify what kind of expression to compile for a wave
assignment. See WAVE Reference Types on page IV-58 and WAVE Reference Type Flags on page IV-59
for a complete list of type flags and further details.
For example, when the input (and output) waves are complex, the output wave will be complex. To get the
Igor compiler to create a complex output wave reference, use the /C type flag with /D=destwave:
Make/O/C cInput=cmplx(sin(p/8), cos(p/8))
Make/O/C/N=0 cOutput
Differentiate/C cInput /D=cOutput

Wave Parameters

Details
If the optional /D = destWave flag is omitted, then the wave is differentiated in place overwriting the original
data.

/DIM=d

For example, for a 2D wave, /DIM=0 differentiates each row and /DIM=1 differentiates
each column.

/EP=e

/METH=m

/P Forces point scaling.

Note: All wave parameters must follow yWave in the command. All wave parameter flags
and type flags must appear immediately after the operation name.

/D=destWave Specifies the name of the wave to hold the differentiated data. It creates destWave if it
does not already exist or overwrites it if it exists.

/X=xWave Specifies the name of the corresponding X wave.

Specifies the wave dimension along which to differentiate when yWave is
multi-dimensional.
d=-1: Treats entire wave as 1D (default).
d=0: Differentiates along rows.
d=1: Differentiates along columns.
d=2: Differentiates along layers.
d=3: Differentiates along rows.

Controls end point handling.
e=0: Replaces undefined points with an approximation (default).
e=1: Deletes the point(s).

Sets the differentiation method.
m=0: Central difference (default).
m=1: Forward difference.
m=2: Backward difference.

digamma

V-128

When using a method that deletes points (/EP=1) with a multidimensional wave, deletion is not done if no
dimension is specified.
When using an X wave, the X wave must match the Y wave data type (excluding the complex type flag) and
it must be 1D with the number points matching the size of the dimension being differentiated. X waves are
not used with integer source waves.
Differentiate/METH=1/EP=1 is the inverse of Integrate/METH=2, but Integrate/METH=2 is the
inverse of Differentiate/METH=1/EP=1 only if the original first data point is added to the output wave.
Differentiate applied to an XY pair of waves does not check the ordering of the X values and doesn’t care about
it. However, it is usually the case that your X values should be monotonic. If your X values are not monotonic,
you should be aware that the X values will be taken from your X wave in the order they are found, which will
result in random X intervals for the X differences. It is usually best to sort the X and Y waves using Sort.

See Also
The Integrate operation.

digamma
digamma(x)
The digamma function returns the digamma, or psi function of x. This is the logarithmic derivative of the
gamma function:

.

In complex expressions, x is complex, and digamma(x) returns a complex value.
Limited testing indicates that the accuracy is approximately 1 part in 1016, at least for moderately-sized
values of x.

DimDelta
DimDelta(waveName, dimNumber)
The DimDelta function returns the scale factor delta of the given dimension.
Use dimNumber=0 for rows, 1 for columns, 2 for layers and 3 for chunks. If dimNumber=0 this is identical to
deltax(waveName).

See Also
DimOffset, DimSize, SetScale, WaveUnits
For an explanation of waves and wave scaling, see Changing Dimension and Data Scaling on page II-83.

DimOffset
DimOffset(waveName, dimNumber)
The DimOffset function returns the scaling offset of the given dimension.
Use dimNumber=0 for rows, 1 for columns, 2 for layers, and 3 for chunks. If dimNumber=0 this is identical to
leftx(waveName).

See Also
DimDelta, DimSize, SetScale, WaveUnits
For an explanation of waves and wave scaling, see Changing Dimension and Data Scaling on page II-83.

DimSize
DimSize(waveName, dimNumber)
The DimSize function returns the size of the given dimension.
Use dimNumber=0 for rows, 1 for columns, 2 for layers, and 3 for chunks. For a 1D wave,
DimSize(waveName,0) is identical to numpnts(waveName).

See Also
DimDelta, DimOffset, SetScale, WaveUnits

ψ z()
zd

d Γln z()≡ Γ′ z()
Γ z()
-------------=

Dir

V-129

Dir
Dir [dataFolderSpec]
The Dir operation returns a listing of all the objects in the specified data folder.

Parameters
If you omit dataFolderSpec then the current data folder is used.
If present, dataFolderSpec can be just the name of a child data folder in the current data folder, a partial path
(relative to the current data folder) and name or an absolute path (starting from root) and name.

Details
The format of the printed information is the same as the format used by the string function DataFolderDir.
Igor programmers may find it more convenient to use CountObjects and GetIndexedObjName.
Usually it is easier to use the Data Browser (Data menu). However, Dir is useful when you want to copy a
name into the command line or when you want to document the current state of the folder in the history.

See Also
Chapter II-8, Data Folders.

Display
Display [flags] [waveName [, waveName]…[vs xwaveName]]

[as titleStr]
The Display operation creates a new graph window or subwindow, and appends the named waves, if any.
Waves are displayed as 1D traces.
By default, waves are plotted versus the left and bottom axes. Use the /L, /B, /R, and /T flags to plot the
waves against other axes.

Parameters
Up to 100 waveNames may be specified, subject to the 400 character command limit. If no wave names are
specified, a blank graph is created and the axis flags are ignored.
If you specify “vs xwaveName”, the Y values of the named waves are plotted versus the Y values of xwaveName.
If you don’t specify “vs xwaveName”, the Y values of each waveName are plotted versus its own X values.
If xwaveName is a text wave, the resulting plot is a category plot. Each element of waveName is plotted by
default in bars mode (ModifyGraph mode=5) against a category labeled with the text of the corresponding
element of xwaveName.
The Y waves for a category plot should have point scaling (see Changing Dimension and Data Scaling on
page II-83); this is how category plots were intended to work. However, if all the Y waves have the same
scaling, it will work correctly.
titleStr is a string expression containing the graph’s title. If not specified, Igor will provide one which
identifies the waves displayed in the graph.
Subsets of data, including individual rows or columns from a matrix, may be specified using Subrange
Display Syntax on page II-293.
You can provide a custom name for a trace by appending /TN=traceName to the waveName specification.
This may be useful when displaying waves with the same name but from different data folders. See User-
defined Trace Names on page IV-73 for more information. This feature was added in Igor Pro 6.20.

Flags

/B[=axisName] Plots X coordinates versus the standard or named bottom axis.

/FG=(gLeft, gTop, gRight, gBottom)

Display

V-130

Specifies the frame guide to which the outer frame of the subwindow is attached
inside the host window.
The standard frame guide names are FL, FR, FT, and FB, for the left, right, top, and
bottom frame guides, respectively, or user-defined guide names as defined by the
host. Use * to specify a default guide name.
Guides may override the numeric positioning set by /W.

/HIDE=h Hides (h = 1) or shows (h = 0, default) the window.

/HOST=hcSpec Embeds the new graph in the specified host window or subwindow hcSpec.
When identifying a subwindow with hcSpec, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

 /I Specifies that /W coordinates are in inches.

/K=k

/L[=axisName] Plots Y coordinates versus the standard or named left axis.

/M Specifies that /W coordinates are in centimeters.

/N=name Requests that the created graph have this name, if it is not in use. If it is in use, then
name0, name1, etc. are tried until an unused window name is found. In a function or
macro, S_name is set to the chosen graph name. Use DoWindow/K name to ensure
that name is available.

/NCAT In Igor Pro 6.37 or later, allows subsequent appending of a category trace to a numeric
plot. See Combining Numeric and Category Traces on page II-322 for details.

/PG=(gLeft, gTop, gRight, gBottom)

Specifies the inner plot rectangle of the graph subwindow inside its host window.
The standard plot rectangle guide names are PL, PR, PT, and PB, for the left, right, top,
and bottom plot rectangle guides, respectively, or user-defined guide names as
defined by the host. Use * to specify a default guide name.
Guides may override the numeric positioning set by /W.

/R[=axisName] Plots Y coordinates versus the standard or named right axis.

/T[=axisName] Plots Y coordinates versus the standard or named top axis.

/W=(left,top,right,bottom)

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

DisplayHelpTopic

V-131

Details
If /N is not used, Display automatically assigns to the graph a name of the form “Graphn”, where n is some
integer. In a function or macro, the assigned name is stored in the S_name string. This is the name you can
use to refer to the graph from a procedure. Use the RenameWindow operation to rename the graph.

Examples
To make a contour plot, use:
Display; AppendMatrixContour waveName

or
Display; AppendXYZContour waveName

To display an image, use:
Display; AppendImage waveName

or
NewImage waveName

See Also
The AppendToGraph operation.
The operations AppendImage, AppendMatrixContour, AppendXYZContour, and NewImage. For more
information on Category Plots, see Chapter II-13, Category Plots.
The operations ModifyGraph, ModifyContour, and ModifyImage for changing the characteristics of graphs.
The DoWindow operation for changing aspects of the graph window.

DisplayHelpTopic
DisplayHelpTopic [/K=k /Z] TopicString
The DisplayHelpTopic operation displays a help topic as if a help link had been clicked in an Igor help file.

Parameters
TopicString is string expression containing the topic. It may be in one of three forms: <topic name>,
<subtopic name>, <topic name>[<subtopic name>]. These forms are illustrated by the examples.
Make sure that your topic string is specific to minimize the likelihood that Igor will find the topic in a help
file other than the one you intended. To avoid this problem, it is best to use the <topic name>[<subtopic
name>] form if possible.

Flags

/K=k

Gives the graph a specific location and size on the screen. Coordinates for /W are
in points unless /I or /M are specified before /W.
When used with the /HOST flag, the specified location coordinates of the sides can
have one of two possible meanings:

When the subwindow position is fully specified using guides (using the /HOST,
/FG, or /PG flags), the /W flag may still be used although it is not needed.

1: When all values are less than 1, coordinates are assumed to be
fractional relative to the host frame size.

2: When any value is greater than 1, coordinates are taken to be fixed
locations measured in points relative to the top left corner of the
host frame.

Determines when the help file is closed.
k=0: Leaves the help file open indefinitely (default). Use this if the help topic may

be of interest in any experiment.
k=1: If the found topic is in a closed help file, the help file closes with the current

experiment. Use this if the help topic is tightly associated with the current
experiment.

DisplayProcedure

V-132

Details
DisplayHelpTopic first searches for the specified topic in the open help files. If the topic is not found, it then
searches all help files in the Igor Pro folder and subfolders.
If the topic is still not found, it then searches all help files in the current experiment’s home folder, but not
in subfolders. This puts a help file that is specific to a particular experiment in the experiment’s home folder.
If the topic is still not found and if DisplayHelpTopic was called from a procedure and if the procedure
resides in a stand-alone file on disk (i.e., it is not in the built-in procedure window or in a packed procedure
file), Igor then searches all help files in the procedure file’s folder, but not in subfolders. This puts a help file
that is specific to a particular set of procedures in the same folder as the procedure file.
If Igor finds the topic, it displays it. If Igor can not find the topic, it displays an error message, unless /Z is used.

Examples
// This example uses the topic only.
DisplayHelpTopic "Waves"

// This example uses the subtopic only.
DisplayHelpTopic "Waveform Arithmetic and Assignment"

// This example uses the topic[subtopic] form.
DisplayHelpTopic "Waves[Waveform Arithmetic and Assignment]"

See Also
Chapter II-1, Getting Help for information about Igor help files and formats.

DisplayProcedure
DisplayProcedure [flags] [functionOrMacroNameStr]
The DisplayProcedure operation displays the named function or macro by bringing the procedure window
it is defined in to the front with the function or macro highlighted.

Parameters
functionOrMacroNameStr is string expression containing the name of the function or macro to display.
functionOrMacroNameStr may be a simple name or may include independent module and/or module name
prefixes to display static functions.
You can omit functionOrMacroNameStr to display a procedure window without changing its scrolling or
selection. In this case you must specify the targeted procedure window using /W.
If you use /L to display a particular line then you must omit functionOrMacroNameStr.

Flags

/Z Ignore errors. If /Z is used, DisplayHelpTopic sets V_flag to 0 if the help topic was found or to
a nonzero error code if it was not found. V_flag is set only when /Z is used.

/B=winTitleOrName Brings up the procedure window just behind the window with this name or title.

/L=lineNum If you use /W then lineNum refers to the specified procedure window.
If you omit /W then lineNum refers to the main procedure window.
lineNum specifies the zero-based line to display. lineNum = 0 is the first line in the
targeted procedure window.
If you use /L then you must omit functionOrMacroNameStr.

/W=procWinTitle Searches in the procedure window with this title.
procWinTitle is a name, not a string, so you construct /W like this:
/W=$"New Polar Graph.ipf"

If you omit /W, DisplayProcedure searches all open (nonindependent module)
procedure windows.

DisplayProcedure

V-133

Details
If a procedure window has syntax errors that prevent Igor from determining where functions and macros
start and end, then DisplayProcedure may not be able to locate the procedure.
winTitleOrName is not a string; it is a name. To position the found procedure window behind a window
whose title has a space in the name, use the $ operator as in the second example, below.
If winTitleOrName does not match any window, then the found procedure window is placed behind the top
target window.
lineNum is a zero-based line number: 0 is the first line of the window. Because each line of a procedure
window is a paragraph, line numbers and paragraph numbers are the same. You can use the
Procedure→Info menu item to show a selection's starting and ending paragraph/line number.
procWinTitle is also a name. Use /W=$"New Polar Graph.ipf" to search for the function or macro in
only that procedure file.

Advanced Details
If SetIgorOption IndependentModuleDev=1, procWinTitle can also be a title followed by a space and,
in brackets, an independent module name. In such cases searches for the function or macro are in the
specified procedure window and independent module. (See Independent Modules on page IV-218 for
independent module details.)
For example, if any procedure file contains these statements:
#pragma IndependentModule=myIM
#include <Axis Utilities>

The command
DisplayProcedure/W=$"Axis Utilities.ipf [myIM]" "HVAxisList"

opens the procedure window that contains the HVAxisList function, which is in the Axis Utilities.ipf file
and the independent module myIM. The command uses the $"" syntax because space and bracket
characters interfere with command parsing.
Similarly, if SetIgorOption IndependentModuleDev=1 then functionOrMacroNameStr may also
contain an independent module prefix followed by the # character. The preceding command can be
rewritten as:
DisplayProcedure/W=$"Axis Utilities.ipf" "myIM#HVAxisList"

or more simply
DisplayProcedure "myIM#HVAxisList"

You can use the same syntax to display a static function in a non-independent module procedure file using
a module name instead of (or in addition to) the independent module name.s
procWinTitle can also be just an independent module name in brackets to retrieve the text from any
procedure window that belongs to named independent module:
DisplayProcedure/W=$"[myIM]" "HVAxisList"

Examples
DisplayProcedure "Graph0"

DisplayProcedure/B=Panel0 "MyOwnUserFunction"

DisplayProcedure/W=Procedure // Shows the main Procedure window

DisplayProcedure/L=2 // Shows the second line in main Procedure window

DisplayProcedure/W=$"Wave Lists.ipf"

DisplayProcedure "moduleName#myStaticFunctionName"

SetIgorOption IndependentModuleDev=1
DisplayProcedure "WMGP#GizmoBoxAxes#DrawAxis"

See Also
Independent Modules on page IV-218.
MacroList, FunctionList, and ProcedureText, HideProcedures, DoWindow.

do-while

V-134

do-while
do

<loop body>
while(<expression>)
A do-while loop executes loop body until expression evaluates as FALSE (zero) or until a break statement is
executed.

See Also
Do-While Loop on page IV-36 and break for more usage details.

DoAlert
DoAlert [/T=titleStr] alertType, promptStr
The DoAlert operation displays an alert dialog and waits for user to click button.

Parameters

Flags

Details
DoAlert sets the variable V_flag as follows:

See Also
The Abort operation.

DoIgorMenu
DoIgorMenu [/C] MenuNameStr, MenuItemStr
The DoIgorMenu operation allows an Igor programmer to invoke Igor’s built-in menu items. This is useful
for bringing up Igor’s built-in dialogs under program control.

Parameters

Flags

Details
All menu names and menu item text are in English to ensure that code developed for a localized version of
Igor Pro will run on all versions. Note that no trailing “…” is used in MenuItemStr.

alertType=t

promptStr Specifies the text that is displayed in the alert dialog.

/T=titleStr Changes the title of the dialog window from the default title.

1: Yes clicked.

2: No clicked.

3: Cancel clicked.

MenuNameStr The name of an Igor menu, like “File”, “Graph”, or “Load Waves”.

MenuItemStr The text of an Igor menu item, like “Copy” (in the Edit menu) or “New Graph” (in the
Windows menu).

/C Just Checking. The menu item is not invoked, but V_flag is set to 1 if the item was
enabled or to 0 if it was not enabled.

Controls the type of alert dialog:
t=0: Dialog with an OK button.
t=1: Dialog with Yes button and No buttons.
t=2: Dialog with Yes, No, and Cancel buttons.

DoPrompt

V-135

V_flag is set to 1 if the corresponding menu item was enabled, which usually means the menu item was
successfully selected. Otherwise V_flag is 0. V_flag does not reflect the success or failure of the resulting
dialog, if any.
If the menu item selection displays a dialog that generates a command, clicking the Do It button executes the
command immediately without using the command line as if Execute/Z operation had been used. Clicking the
To Cmd Line button appends the command to the command line rather than inserting the command at the front.
The DoIgorMenu operation will not attempt to select a menu during curve fitting. Doubtless there are other
times during which using DoIgorMenu would be unwise.
The text of some items in the File menu changes depending on the type of the active window. In these cases
you must pass generic text as the MenuItemStr parameter. Use “Save Window”, “Save Window As”, “Save
Window Copy”, “Adopt Window”, and “Revert Window” instead of “Save Notebook” or “Save Procedure”,
etc. Use “Page Setup” instead of “Page Setup For All Graphs”, etc. Use “Print” instead of “Print Graph”, etc.

See Also
The SetIgorMenuMode and Execute operations.

DoPrompt
DoPrompt [/HELP=helpStr] dialogTitleStr, variable [, variable]…
The DoPrompt command in a function invokes the simple input dialog. A DoPrompt specifies the title for
the simple input dialog and which input variables are to be included in the dialog.

Flags

Parameters
variable is the name of a dialog input variable, which can be real or complex numeric local variable or local
string variable, defined by a Prompt statement. You can specify as many as 10 variables.
dialogTitleStr is a string or string expression containing the text for the title of the simple input dialog.

Details
Prompt statements are required to define what variables are to be used and the text for any string
expression to accompany or describe the input variable in the dialog. When a DoPrompt variable is missing
a Prompt statement, you will get a compilation error. Pop-up string data can not be continued across
multiple lines as can be done using Prompt in macros. See Prompt for further usage details.
Prompt statements for the input variables used by DoPrompt must come before the DoPrompt statement
itself, otherwise, they may be used anywhere within the body of a function. The variables are not required
to be input parameters for the function (as is the case for Prompt in macros) and they may be declared
within the function body. DoPrompt can accept as many as 10 variables.
Functions can use multiple DoPrompt statements, and Prompt statements can be reused or redefined.
When the user clicks the Cancel button, any new input parameter values are not stored in the variables.
DoPrompt sets the variable V_flag as follows:

See Also
The Simple Input Dialog on page IV-126, the Prompt keyword, and DisplayHelpTopic.

/HELP=helpStr Sets the help topic or help text that appears when the dialog’s Help button is pressed.
helpStr can be a help topic and subtopic such as is used by DisplayHelpTopic/K=1
helpStr, or it can be text (255 characters max) that is displayed in a subdialog just as
if DoAlert 0, helpStr had been called, or helpStr can be "" to remove the Help
button.

0: Continue button clicked.

1: Cancel button clicked.

DoUpdate

V-136

DoUpdate
DoUpdate [/E=e /W=targWin /SPIN=ticks]
The DoUpdate operation updates windows and dependent objects.

Flags

Details
Call DoUpdate from an Igor procedure to force Igor to update any objects that need updating. Igor updates
any graphs, tables or page layouts that need to be updated and also any objects (string variables, numeric
variables, waves, controls) that depend on other objects that have changed since the last update.
Igor performs updates automatically when:
• No user-procedure is running.
• An interpreted procedure (Macro, Proc, Window type procedures) is running and PauseUpdate or

DelayUpdate is not in effect.
An automatic DoUpdate is not done while a user-defined function is running. You can call DoUpdate from
a user-defined function to force an update.

See Also
The DelayUpdate, PauseUpdate, and ResumeUpdate operations, Progress Windows on page IV-138.

DoWindow
DoWindow [flags] [windowName]
The DoWindow operation controls various window parameters and aspects. There are additional forms for
DoWindow when the /S or /T flags are used; see the following DoWindow entries.

Parameters
windowName is the name of a graph, table, page layout, notebook, panel or XOP target window.
A window’s name is not the same as its title. The title is shown in the window’s title bar. The name is used
to manipulate the window from Igor commands. You can check both the name and the title using the
Window Control dialog (in the Arrange submenu of the Window menu).

Flags

/E=e Used with /W, /E=1 marks window as a progress window that can accept mouse
events while user code is executing. Currently, only control panel windows can be
used as a progress window.

/W=targWin Updates only the specified window. Does not update dependencies or do any other
updating.
Currently, only graph and panel windows honor the /W flag.
V_Flag is set to the truth the window exists. See Progress Windows on page IV-138
for other values for V_Flag.

/SPIN=ticks Sets the delay between the start of a control procedure and the spinning beachball.
ticks is the delay in ticks (60th of a second.) Unless used with the /W flag, /SPIN just
sets the delay and an update is not done.

/B[=bname] Moves the specified window to the back (to the bottom of desktop) or behind window
bname.

/C Changes the name of the target window to the specified name. The specified name must
not be used for any other object except that it can be the name of an existing window
macro.

/C/N Changes the target window name and creates a new window macro for it. However,
/N does nothing if a macro or function is running. /N is not applicable to notebooks.

/D Deletes the file associated with window, if any (for notebooks only).

/F Brings the window with the given name to the front (top of desktop).

DoWindow

V-137

Details
DoWindow sets the variable V_flag to 1 if there was a window with the specified name after DoWindow
executed, to 0 if there was no such window, or to 2 if the window is hidden.
Call DoWindow with no flags to check if a window exists.
When used with the /N flag, windowName must not conflict with the name of any other object. When used
with the /C flag, windowName must not conflict with the name of any other object except that it can be the
name of an existing window macro.
As of Igor Pro 3.13, the /R and /N flags do nothing when executed while a macro or function is running.
This is necessary because changing procedures while they are executing causes unpredictable and
undesirable results. However you can use the Execute/P operation to cause the DoWindow command to be
executed after procedures are finished running. For example:
Function SaveWindowMacro(windowName)

String windowName // "" for top graph or table

if (strlen(windowName) == 0)
windowName = WinName(0, 3) // Name of top graph or table

endif

String cmd
sprintf cmd, "DoWindow/R %s", windowName
Execute/P cmd

End

You can use the /D flag in conjunction with the /K flag to kill a notebook window and delete its associated
file, if any. /D has no effect on any other type of window and has no effect if the /K flag is not present.

/H Specifies the command/history window as the target of the operation. When using /H,
windowName must not be specified and only the /B and /HIDE flags are honored.
Use /H to bring the command window to the front (top of desktop).
Use /H/B to send the history/command window to the bottom of the desktop.
Use /H/HIDE to hide or show the command window.

/HIDE=h

/K Kills the window with the given name. KillWindow is preferred.

/N Creates a new window macro for the window with the given name. However, /N does
nothing if a macro or function is running. /N is not applicable to notebooks.

/R Replaces (updates) the window macro for the named window or creates it if it does
not yet exist. However, /R does nothing if a macro or function is running. /R is not
applicable to notebooks.

/R/K Replaces (updates) the window macro for the named window or creates it if it does
not yet exist and then kills the window. However, /R does nothing if a macro or
function is running. /R is not applicable to notebooks.

/W=targWin Designates targWin as the target window; it also requires that you specify windowName.
Use this mainly with floating panels, which are always on top. You can use a
subwindow specification of an external subwindow only with the /T flag or without any
flags.

Sets hidden state of a window.

You can also read the hidden state using GetWindow and set it using SetWindow.

h=0: Visible.
h=1: Hidden.
h=?: Sets the variable V_flag as follows:

0: The window does not exist.
1: The window is visible.
2: The window is hidden.

DoWindow/T

V-138

Examples
DoWindow Graph0 // Set V_flag to 1 if Graph0 window exists.
DoWindow/F Graph0 // Make Graph0 the top/target window.
DoWindow/C MyGraph // Target window (Graph0) renamed MyGraph.
DoWindow/K Panel0 // Kill the Panel0 window.
DoWindow/H/B // Put the history/command window in back.
DoWindow/D/K Notebook2 // Kill Notebook2, delete its file.

See Also
RenameWindow, MoveWindow, MoveSubwindow, SetActiveSubwindow, KillWindow
HideProcedures, IgorInfo

DoWindow/T
DoWindow /T windowName, windowTitleStr
The DoWindow/T operation sets the window title for the named window to the specified title.

Details
The title is shown in the window’s title bar, and listed in the appropriate Windows submenu. The window
name is still used to manipulate the window, so, for example, the window name (if windowName is a graph
or table) is listed in the New Layout dialog; not the title.
You can check both the name and the title using the Window Control dialog (in the Control submenu of the
Windows menu).
windowName is the name of the window or a special keyword, kwTopWin or kwFrame.
If windowName is kwTopWin, DoWindow retitles the top target window.
If windowName is kwFrame, DoWindow retitles the “frame” or “application” window that Igor has only
under Windows. This is the window that contains Igor’s menus and status bar. On Macintosh, kwFrame is
allowed, but the command does nothing.
The Window Control dialog does not support kwFrame. The frame title persists until Igor quits or until it
is restored as shown in the example. Setting windowTitleStr to "" will restore the normal frame title.

Examples
DoWindow/T MyGraph, "My Really Neat Graph"
DoWindow/T kwFrame, "My Igor-based Application"
DoWindow/T kwFrame, "" // restore normal frame title

DoWindow/S
DoWindow /N/S=styleMacroName windowName
DoWindow /R/S=styleMacroName windowName
The DoWindow/S operation creates a new “style macro” for the named window, using the specified style
macro name. Does not create or replace the window macro for the specified window.

Flags

Details
The /R or /N flag must appear before the /S flag.
If the /S flag is present, the DoWindow operations does not create or replace the window macro for the
specified window.
As of Igor Pro 3.13, the /R and /N flags do nothing when executed while a macro or function is running. This is
necessary because changing procedures while they are executing causes unpredictable and undesirable results.

/N/S=styleMacroName Creates a new style macro with the given name based on the named window.

/R/S=styleMacroName Creates or replaces the style macro with the given name based on the named
window.

DoXOPIdle

V-139

DoXOPIdle
DoXOPIdle
The DoXOPIdle operation sends an IDLE event to all open XOPs. This operation is very specialized.
Generally, only the author of an XOP will need to use this operation.

Details
Some XOPs (External OPeration code modules) require IDLE events to perform certain tasks.
Igor does not automatically send IDLE events to XOPs while an Igor program is running. You can call
DoXOPIdle from a user-defined program to force Igor to send the event.

DrawAction
DrawAction [/L=layerName/W=winName] keyword = value [, keyword = value …]
The DrawAction operation deletes, inserts, and reads back a named drawing object group or the entire
draw layer.

Parameters
DrawAction accepts multiple keyword = value parameters on one line.

Flags

Details
Commands stored in S_recreation are the same as those that would be generated for the range of objects in
the recreation macro for the window but also have comment lines preceding each object of the form:
// ;ITEMNO:n;

where n is the item number of the draw object.

Examples
Create a drawing with a named group:
NewPanel /W=(455,124,936,413)
SetDrawEnv fillfgc= (65535,0,0)
DrawRect 58,45,132,103
SetDrawEnv gstart,gname= fred
SetDrawEnv fillfgc= (65535,43690,0)

beginInsert [=index] Inserts draw commands before or at index position or at position specified by
getgroup or delete parameters; position otherwise is zero.

commands [=start,stop] Stores commands in S_recreation for draw objects between start and stop index
values, range defined by getgroup, or entire layer otherwise.

delete [=start,stop] Deletes draw objects between start and stop index values, range defined by
getgroup, or entire layer otherwise.

extractOutline
[=start,stop]

Stores polygon outline between start and stop index values, range defined by
getgroup, or entire layer otherwise. Waves W_PolyX and W_PolyY contain
coordinates with NaN separators. V_npnts contains the number of objects.
Coordinates are for the first object encountered.

endInsert Terminates insert mode.

getgroup=name Stores first and last index of named group in V_startPos and V_endPos. Use
all to specify the entire layer. Sets V_flag to truth group exists.

/L=layerName Specifies the drawing layer on which to act. layerName is one of the drawing layers
as specified in SetDrawLayer.

/W=winName Sets the named window or subwindow for drawing. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page
III-97 for details on forming the window hierarchy.

DrawArc

V-140

DrawRect 79,62,154,120
SetDrawEnv arrow= 1
DrawLine 139,70,219,70
SetDrawEnv gstop
SetDrawEnv fillfgc= (0,65535,65535)
DrawRect 95,77,175,138
SetDrawEnv fillfgc= (0,0,65535)
DrawRect 111,91,191,156

Get and print commands for the “fred” group:
DrawAction getgroup=fred,commands
Print S_recreation

prints:
// ;ITEMNO:3;
SetDrawEnv gstart,gname= fred
// ;ITEMNO:4;
SetDrawEnv fillfgc= (65535,43690,0)
// ;ITEMNO:5;
DrawRect 79,62,154,120
// ;ITEMNO:6;
SetDrawEnv arrow= 1
// ;ITEMNO:7;
DrawLine 139,70,219,70
// ;ITEMNO:8;
SetDrawEnv gstop

Replace group fred (the orange rectangle and the arrow) with a different object. First delete the group and
enter insert mode:
DrawAction getgroup=fred, delete, begininsert

Next draw the replacement:
SetDrawEnv gstart,gname= fred
SetDrawEnv fillfgc= (65535,65535,0)
DrawOval 82,62,161,123
SetDrawEnv gstop

Lastly exit insert mode:
DrawAction endinsert

See Also
The SetDrawEnv operation and Chapter III-3, Drawing.

DrawArc
DrawArc [/W=winName/X/Y] xOrg, yOrg, arcRadius, startAngle, stopAngle
The DrawArc operation draws a circular counterclockwise arc with center at xOrg and yOrg.

Parameters
(xOrg, yOrg) defines the center point for the arc in the currently active coordinate system.
Angles are measured in degrees increasing in a counterclockwise direction. The startAngle specifies the
starting angle for the arc and stopAngle specifies the end. If stopAngle is equal to startAngle, 360° is added to
stopAngle. Thus, a circle can be drawn using startAngle = stopAngle.
The arcRadius is the radial distance measured in points from (xOrg, yOrg).

Flags

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/X Measures arcRadius using the current X-coordinate system. If /Y is also used, the arc
may be elliptical.

/Y Measures arcRadius using the current Y-coordinate system. If /X is also used, the arc
may be elliptical.

DrawBezier

V-141

Details
Arcs honor the current dash pattern and arrowhead setting in the same way as polygons and Beziers. In
fact, arcs are implemented using Bezier curves.
Normally, you would create arcs programmatically. If you need to sketch an arc-like object, you should
probably use a Bezier curve because it is more flexible and easier to adjust. However, there is one handy
feature of arcs that make them useful for manual drawing: the origin can be in any of the supported
coordinate systems and the radius is in points.
To draw an arc interactively, see Arcs and Circles on page III-74 for instructions.

See Also
Chapter III-3, Drawing.
The SetDrawEnv and SetDrawLayer operations.
The DrawBezier, DrawOval and DrawAction operations.

DrawBezier
DrawBezier [/W=winName /ABS] xOrg, yOrg, hScaling, vScaling, {x0,y0,x1,y1 …}
DrawBezier [/W=winName /ABS] xOrg, yOrg, hScaling, vScaling, xWaveName,

yWaveName
DrawBezier/A [/W=winName] {xn, yn, xn+1, yn+1 …}
The DrawBezier operation draws a Bezier curve with first point of the curve positioned at xOrg and yOrg.

Parameters
(xOrg, yOrg) defines the starting point for the Bezier curve in the currently active coordinate system.
hScaling and vScaling set the horizontal and vertical scale factors about the origin, with 1 meaning 100%.
The xWaveName, yWaveName version of DrawBezier gets data from the named X and Y waves. This
connection is maintained so that any changes to either wave will result in updates to the Bezier curve.
To use the version of DrawBezier that takes a literal list of vertices, you place as many vertices as you like
on the first line and then use as many /A versions as necessary to define all the vertices.

Flags

Details
Data waves defining Bezier curves must have 1+3*n data points. Every third data point is an anchor point
and lies on the curve; intervening points are control points that define the direction of the curve relative to
the adjacent anchor point.
Normally, you should create and edit a Bezier curve using drawing tools, and not calculate values. See
Polygon Tool on page III-75 for instructions.
As of Igor Pro 5.02, you can specify the /ABS flag to suppress the default subtraction of the first point. Also,
you can now insert NaN values to break a bezier into pieces.
To change just the origin and scale without respecifying the data use:
DrawBezier xOrg, yOrg, hScaling, vScaling,{}

To delete an anchor point, press Option (Macintosh) or Alt (Windows) and then click on the anchor. To insert
a new anchor, click on the curve between anchor points.

/A Appends the given vertices to the currently open Bezier (freshly drawn or current
selection).

/ABS Suppresses the default subtraction of the first point from the rest of the data.

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

DrawLine

V-142

Example
Create a half circle approximation from three anchor points starting at the 12 o’clock position, with an
anchor at the 3 o’clock position, and the last at the 6 o’clock position using explicit values:
// Set plot relative coords, 0-1, no fill
SetDrawEnv xcoord=prel, ycoord=prel, fillpat= 0, save

Variable len= 0.275 // control point length = 0.55 * radius for a circle
// Starting anchor point has only a trailing control point
Variable anchor0x= 0.5, anchor0y=1 // starting point at 6 o'clock
Variable t0x= 0.5+len, t0y= 1 // trailing control point

// second anchor point has both leading and trailing control points
Variable l1x=1, l1y = 0.5+len // leading control point
Variable anchor1x= 1, anchor1y= 0.5 // 3 o'clock anchor
Variable t1x=1, t1y = 0.5-len // trailing control point

// Last (3rd) anchor point has only a leading control point
Variable l2x=0.5+len, l2y = 0 // leading control point
Variable anchor2x= 0.5, anchor2y= 0 // 6 o'clock

// One command per anchor for clarity
DrawBezier anchor0x, anchor0y, 1,1, {anchor0x, anchor0y, t0x, t0y}
DrawBezier/A {l1x, l1y, anchor1x, anchor1y, t1x, t1y}
DrawBezier/A {l2x, l2y, anchor2x, anchor2y}

To draw using waves:
Make/O bezierX= {anchor0x, t0x, l1x, anchor1x, t1x, l2x, anchor2x }
Make/O bezierY= {anchor0y, t0y, l1y, anchor1y, t1y, l2y, anchor2y }
DrawBezier anchor0x, anchor0y, 1,1, bezierX, bezierY

See Also
Chapter III-3, Drawing.
Polygon Tool on page III-75 for discussion on creating Beziers. DrawPoly and DrawBezier on page III-83
and the SetDrawEnv and SetDrawLayer operations.
The DrawArc, DrawPoly and DrawAction operations.

DrawLine
DrawLine [/W=winName] x0, y0, x1, y1
The DrawLine operation draws a line in the target graph, layout or control panel from (x0,y0) to (x1,y1).

Flags

Details
The coordinate system as well as the line’s thickness, color, dash pattern and other properties are
determined by the current drawing environment. The line is drawn in the current draw layer for the
window, as determined by SetDrawLayer.

See Also
Chapter III-3, Drawing.
The SetDrawEnv, SetDrawLayer and DrawAction operations.

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

DrawOval

V-143

DrawOval
DrawOval [/W=winName] left, top, right, bottom
The DrawOval operation draws an oval in the target graph, layout or control panel within the rectangle
defined by left, top, right, and bottom.

Flags

Details
The coordinate system as well as the oval’s thickness, color, dash pattern and other properties are
determined by the current drawing environment (note that you cannot draw dashed ovals). The oval is
drawn in the current draw layer for the window, as determined by SetDrawLayer.

See Also
Chapter III-3, Drawing.
The SetDrawEnv, SetDrawLayer and DrawAction operations.

DrawPICT
DrawPICT [/W=winName][/RABS] left, top, hScaling, vScaling, pictName
The DrawPICT operation draws the named picture in the target graph, layout or control panel. The left and
top parameters set the position of the top/left corner of the picture. hScaling and vScaling set the horizontal
and vertical scale factors with 1 meaning 100%.

Flags

Details
The coordinate system for the left and top parameters is determined by the current drawing environment.
The PICT is drawn in the current draw layer for the window, as determined by SetDrawLayer.

See Also
Chapter III-3, Drawing.
The SetDrawEnv, SetDrawLayer and DrawAction operations.

DrawPoly
DrawPoly [/W=winName /ABS] xorg, yorg, hScaling, vScaling, xWaveName, yWaveName
DrawPoly [/W=winName /ABS] xorg, yorg, hScaling, vScaling, {x0,y0,x1,y1 …}
DrawPoly/A [/W=winName] {xn, yn, xn+1, yn+1 …}
The DrawPoly operation draws a polygon in the target graph, layout or control panel.

Parameters
(xorg, yorg) defines the starting point for the polygon in the currently active coordinate system.
hScaling and vScaling set the horizontal and vertical scale factors, with 1 meaning 100%.

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/RABS Draws the named picture using absolute scaling. In this mode, it draws the picture in
the rectangle defined by left and top for point (x0,y0), and by hScaling and vScaling for
point (x1,y1), respectively.

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

DrawPoly

V-144

The xWaveName, yWaveName version of DrawPoly gets data from those X and Y waves. This connection is
maintained so that changes to either wave will update the polygon.
The DrawPoly operation is not multidimensional aware. See Analysis on Multidimensional Waves on
page II-110 for details.
To use the version of DrawPoly that takes a literal list of vertices, you place as many vertices as you like on
the first line and then use as many /A versions as necessary to define all the vertices.

Flags

Details
Because xorg and yorg define the location of the starting vertex of the poly, adding or subtracting a constant
from the vertices will have no effect. The first XY pair in the {x0, y0, x1, y1,…} vertex list will appear at
(xorg,yorg) regardless of the value of x0 and y0. x0 and y0 merely serve to set a reference point for the list of
vertices. Subsequent vertices are relative to (x0,y0).
To keep your mental health intact, we recommend that you specify (x0,y0) as (0,0) so that all the following
vertices are offsets from that origin. Then (xorg,yorg) sets the position of the polygon and all of the vertices
in the list are relative to that origin.
An alternate method is to use the same values for (x0,y0) as for (xorg,yorg) if you consider the vertices to be
“absolute” coordinates.
As of Igor Pro 5.02, you can specify the /ABS flag to suppress the subtraction of the first point. Also, you
can now insert NaN values to break a polygon into pieces.
To change just the origin and scale of the currently open polygon — without having to respecify the data — use:
DrawPoly xorg, yorg, hScaling, vScaling,{}

The coordinate system as well as the polygon’s thickness, color, dash pattern and other properties are
determined by the current drawing environment. The polygon is drawn in the current draw layer for the
window, as determined by SetDrawLayer.

Examples
Here are some commands to draw some small triangles using absolute drawing coordinates (see SetDrawEnv).
Display // make a new empty graph
//Draw one triangle, starting at 50,50 at 100% scaling
SetDrawEnv xcoord= abs,ycoord= abs
DrawPoly 50,50,1,1, {0,0,10,10,-10,10,0,0}
//Draw second triangle below and to the right, same size and shape
SetDrawEnv xcoord= abs,ycoord= abs
DrawPoly 100,100,1,1, {0,0,10,10,-10,10,0,0}

See Also
Chapter III-3, Drawing.
The SetDrawEnv and SetDrawLayer operations, DrawPoly and DrawBezier on page III-83, and Chapter
III-3, Drawing and DrawAction.

/A Appends the given vertices to the currently open polygon (freshly drawn or current
selection).

/ABS Suppresses the default subtraction of the first point from the rest of the data.

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

DrawRect

V-145

DrawRect
DrawRect [/W=winName] left, top, right, bottom
The DrawRect operation draws a rectangle in the target graph, layout or control panel within the rectangle
defined by left, top, right, and bottom.

Flags

Details
The coordinate system as well as the rectangle’s thickness, color, dash pattern and other properties are
determined by the current drawing environment. The rectangle is drawn in the current draw layer for the
window, as determined by SetDrawLayer.

See Also
Chapter III-3, Drawing.
The SetDrawEnv, SetDrawLayer and DrawAction operations.

DrawRRect
DrawRRect [/W=winName] left, top, right, bottom
The DrawRRect operation draws a rounded rectangle in the target graph, layout or control panel within the
rectangle defined by left, top, right, and bottom.

Flags

Details
The coordinate system as well as the rectangle’s rounding, thickness, color, dash pattern and other
properties are determined by the current drawing environment. The rounded rectangle is drawn in the
current draw layer for the window, as determined by SetDrawLayer.

See Also
Chapter III-3, Drawing.
The SetDrawEnv, SetDrawLayer and DrawAction operations.

DrawText
DrawText [/W=winName] x0, y0, textStr
The DrawText operation draws the specified text in the target graph, layout or control panel. The position
of the text is determined by (x0, y0) along with the current textxjust, textyjust and textrot settings as set by
SetDrawEnv.

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

DSPDetrend

V-146

Flags

Details
The coordinate system as well as the text’s font, size, style and other properties are determined by the
current drawing environment. The text is drawn in the current draw layer for the window, as determined
by SetDrawLayer.

See Also
Chapter III-3, Drawing.
The SetDrawEnv, SetDrawLayer and DrawAction operations.

DSPDetrend
DSPDetrend [flags] srcWave
The DSPDetrend operation removes from srcWave a trend defined by the best fit of the specified function
to the data in srcWave.

Flags

Details
DSPDetrend sets V_flag to zero when the operation succeeds, otherwise it will be set to -1 or will contain
an error code from the curve fitting routines. Results are saved in the wave W_Detrend (for 1D input) or
M_Detrend (for 2D input) in the current data folder. If a wave by that name already exists in the current
data folder it will be overwritten.

See Also
CurveFit for more information about V_FitQuitReason and the built-in fitting functions.

DSPPeriodogram
DSPPeriodogram [flags] srcWave [srcWave2]
The DSPPeriodogram operation calculates the periodogram, cross-spectral density or the degree of
coherence of the input waves. The result of the operation is stored in the wave W_Periodogram in the
current data folder.
To compute the cross-spectral density or the degree of coherence, you need to specify the second wave
using the optional srcWave2 parameter. In this case, W_Periodogram will be complex and the /dB and /dBR
flags do not apply.

Flags

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/F= function function is the name of a built-in curve fitting function:
gauss, lor, exp, dblexp, sin, line, poly (requires /P flag), hillEquation, sigmoid, power,
lognormal, poly2d (requires /P flag), gauss2d.
If function is unspecified, the defaults are line if srcWave is 1D or poly2d if srcWave is
2D.

/M=maskWave Detrending will only affect points that are nonzero in maskWave. Note that maskWave
must have the same dimensionality as srcWave.

/P=polyOrder Specifies polynomial order for poly or poly2d functions (see CurveFit for details). By
default polyOrder =3 for the 1D case and polyOrder =1 for the 2D case.

/Q Quiet mode; no error reporting.

/dB Expresses results in dB using the maximum value as reference.

DSPPeriodogram

V-147

Details
The default periodogram is defined as

where F (s) is the Fourier transform of the signal s and N is the number of points.
In most practical situations you need to account for using a window function (when computing the Fourier
transform) which takes the form

/dBR=ref Express the results in dB using the specified ref value.

/COHR Computes the degree of coherence. This flag applies when the input consists of two
waves.

/DLSG When computing the periodogram, cross-spectral density or the degree of coherence
using multiple segments the operation by default pads the last segment with zeros as
necessary. If you specify this flag, an incomplete last segment is dropped and not
included in the calculation.

/NODC=val

/NOR=N

/Q Quiet mode; suppresses printing in the history area.

/SEGN={ptsPerSegment, overlapPts}

Use this flag to compute the periodogram, cross-spectral density or degree of
coherence by averaging over multiple segments taken from the input waves. The size
of each interval is ptsPerSegment. overlapPts determines the number of points at the
end of each interval that are included in the next segment.

/R=[startPt, endPt] Calculates the periodogram for a limited range of the wave. startPt and endPt are
expressed in terms of point numbers in srcWave.

/R=(startX, endX) Calculates the periodogram for a limited range of the wave. startX and endX are
expressed in terms of x-values. Note that this option will convert your x-specifications
to point numbers and some roundoff may occur.

/WIN=windowKind Specifies the window type. If you omit the /W flag, DSPPeriodogram uses a
rectangular window for the full wave or the range of data selected by the /R flag.
Choices for windowKind are:
Bartlett, Blackman367, Blackman361, Blackman492, Blackman474, Cos1, Cos2, Cos3,
Cos4, Hamming, Hanning, KaiserBessel20, KaiserBessel25, KaiserBessel30, Parzen,
Poisson2, Poisson3, Poisson4, and Riemann.
See FFT for window equations and details.

/Z Do not report errors. When an error occurs, V_flag is set to -1.

Suppresses the DC term:
val=1: Removes the DC by subtracting the average value of the signal before

processing and before applying any window function (see /Win
below).

val=2: Suppresses the DC term by setting it equal to the second term in the
FFT array.

val=0: Computes the DC term using the FFT (default).

Sets the normalization, N, in the periodogram equation. By default, it is the number
of data points times the square norm of the window function (if any).

Any other value of N is used as the only normalization.

N=0 or 1: Skips default normalization.

Periodogram =
F(s)

2

N
,

DSPPeriodogram

V-148

where w is the window function, Np is the number of points and Nw is the normalization of the window
function.
If you compute the periodogram by subdividing the signal into multiple segments (with any overlap) and
averaging the results over all segments, the expression for the periodogram is

where si is the ith segment s, Ns is the number of points per segment and M is the number of segments.
When calculating the cross-spectral density (csd) of two waves s1 and s2, the operation results in a complex
valued wave

which contains the normalized product of the Fourier transform of the first wave SA with the complex
conjugate of the Fourier transform of the second wave SB. The extension of the csd calculation to segment
averaging has the form

where SAi is the ith segment of the first wave, M is the number of segments and Ns is the number of points
in a segment.
The degree of coherence is a normalized version of the cross-spectral density. It is given by

The bias in the degree of coherence is calculated using the approximation

The bias is stored in the wave W_Bias.
If you use the /SEGN flag the actual number of segments is reported in the variable V_numSegments.
Note that DSPPeriodogram does not test the dimensionality of the wave; it treats the wave as 1D. When you
compute the cross-spectral density or the degree of coherence the number-type, dimensionality and the
scaling of the two waves must agree.

Periodogram =
F(s �w)

2

NpNw

,

Periodogram =

F(si �w)
2

i=1

M

�

MNsNw

,

csd =
F(sA)[F(sB)]*

N
,

csd =
F(sAi)[F(sBi)]

*

i=0

M

�

MNsNw

,

� =

F(sAi)[F(sBi)]
*

i=0

M

�

F(sAi)[F(sAi)]
*

i=0

M

� F(sBi)[F(sBi)]
*

i=0

M

�

.

B =
1

M
1� �

2�
�

�
�

2

.

Duplicate

V-149

See Also
The ImageWindow operation for 2D windowing applications. FFT for window equations and details.
The Hanning, LombPeriodogram and MatrixOp operations.

References
For more information about the use of window functions see:
Harris, F.J., On the use of windows for harmonic analysis with the discrete Fourier Transform, Proc, IEEE,

66, 51-83, 1978.
G.C. Carter, C.H. Knapp and A.H. Nuttall, The Estimation of the Magnitude-squared Coherence Function

Via Overlapped Fast Fourier Transform Processing, IEEE Trans. Audio and Electroacoustics, V. AU-
21, (4) 1973.

Duplicate
Duplicate [flags][type flags] srcWaveName, destWaveName [, destWaveName]…
The Duplicate operation creates new waves, the names of which are specified by destWaveNames and the
contents, data type and scaling of which are identical to srcWaveName.

Parameters
srcWaveName must be the name of an existing wave.
The destWaveNames should be wave names not currently in use unless the /O flag is used to overwrite
existing waves.

Flags

Type Flags (used only in functions)
When used in user-defined functions, Duplicate can also take the /B, /C, /D, /I, /S, /U, /W, /T, /DF and
/WAVE flags. This does not affect the result of the Duplicate operation - these flags are used only to identify
what kind of wave is expected at runtime.
This information is used if, later in the function, you create a wave assignment statement using a duplicated
wave as the destination:
Function DupIt(wv)

Wave/C wv //complex wave

Duplicate/O/C wv,dupWv //tell Igor that dupWv is complex
dupWv[0]=cmplx(5.0,1.0) //no error, because dupWv known complex
…

If Duplicate did not have the /C flag, Igor would complain with a “function not available for this number
type” message when it tried to compile the assignment of dupWv to the result of the cmplx function.

/FREE Creates a free wave (see Free Waves on page IV-75).

/FREE is allowed only in functions and only if a simple name or structure field is
specified as the destination wave name.

Requires Igor Pro 6.1 or later. For advanced programmers only.

/O Overwrites existing waves with the same name as destWaveName.

/R=(startX,endX) Specifies an X range in the source wave from which the destination wave is created.
See Details for further discussion of /R.

/R=(startX,endX)(startY,endY)

Specifies both X and Y range. Further dimensions are constructed analogously.
See Details for further discussion of /R.

/R=[startP,endP] Specifies a row range in the source wave from which the destination wave is created.
Further dimensions are constructed just like the scaled dimension ranges.
See Details for further discussion of /R.

DuplicateDataFolder

V-150

These type flags do not need to be used except when it needed to match another wave reference variable of
the same name or to identify what kind of expression to compile for a wave assignment. See WAVE
Reference Types on page IV-58 and WAVE Reference Type Flags on page IV-59 for a complete list of type
flags and further details.

Details
If /R is omitted, the entire wave is duplicated.
In the range specifications used with /R, a * for the end means duplicate to the end. You can also simply
leave out the end specification. To include all of a given dimension, use /R=[]. If you leave off higher
dimensions, all those dimensions are duplicated. That is, /R=[1,5] for a 2D wave is equivalent to
/R=[1,5][].
The destination wave will always be unlocked, even if the source wave was locked.

Warning:
Under some circumstances, such as in loops in user-defined functions, Duplicate may exhibit undesired
behavior. When you use
Duplicate/O srcWave, DestWaveName

in a user-defined function, it creates a local WAVE variable named DestWaveName at compile time. At
runtime, if the WAVE variable is NULL, it creates a wave of the same name in the current data folder. If,
however, the WAVE variable is not NULL, as it would be in a loop, then the referenced wave will be
overwritten no matter where it is located. If the desired behavior is to create (or overwrite) a wave in the
current data folder, you should use one of the following two methods:
Duplicate/O srcWave, $"DestWaveName"
WAVE DestWaveName // only if you need to reference dest wave

or
Duplicate/O srcWave, DestWaveName
// then after you are finished using DestWaveName…
WAVE DestWaveName=$""

See Also
The Rename operation.

DuplicateDataFolder
DuplicateDataFolder sourceDataFolderSpec, destDataFolderSpec
The DuplicateDataFolder operation makes a copy of the source data folder and everything in it and places
the copy at the specified location with the specified name.

Parameters
sourceDataFolderSpec can be just the name of a child data folder in the current data folder, a partial path
(relative to the current data folder) and name or an absolute path (starting from root) and name.
destDataFolderSpec can be just a data folder name, a partial path (relative to the current data folder) and
name or an absolute path (starting from root) and name. If just a data folder name is used then the new data
folder is created in the current data folder.

Details
An error is issued if the destination is contained within the source data folder.

Examples
Create a copy of foo named foo2 in bar:
DuplicateDataFolder foo,:bar:foo2

See Also
See the MoveDataFolder operation. Chapter II-8, Data Folders.

DWT

V-151

DWT
DWT [flags] srcWaveName, destWaveName
The DWT operation performs discrete wavelet transform on the input wave srcWaveName. The operation
works on one or more dimensions only as long as the number of elements in each dimension is a power of
2 or when the /P flag is specified

Flags

Details
If destWaveName exists, DWT overwrites it; if it does not exist, DWT creates it.
When used in a function, the DWT operation automatically creates a wave reference for the destination
wave. See Automatic Creation of WAVE References on page IV-57 for details.
If destWaveName is not specified, the DWT operation stores the results in W_DWT for 1D waves and
M_DWT for higher dimensions.
When working with 1D waves, the transform results are packed such that the higher half of each array
contains the detail components and the lower half contains the smooth components and each successive
scale is packed in the lower elements. For example, if the source wave contains 128 points then the lowest

/D Denoises the source wave. Performs the specified wavelet transform in the forward direction. It
then zeros all transform coefficients whose magnitude fall below a given percentage (specified
by the /V flag) of the maximum magnitude of the transform. It then performs the inverse
transform placing the result in destWaveName. The /I flag is incompatible with the /D flag.

/I Perform the inverse wavelet transform. The /S and /D flags are incompatible with the /I flag.

/N=num Specifies the number of wavelet coefficients. See /T flag for supported combinations.

/P=num

/S Smooths the source wave. This performs the specified wavelet transform in the forward
direction. It then zeros all transform coefficients except those between 0 and the cut-off value
(specified in % by /V flag). It then performs the inverse transform placing the result in
destWaveName. The /I flag is incompatible with the /S flag.

/T=type

/V=value Specifies the degree of smoothing with the /S and /D flags only.
For /S, value gives the cutoff as a percentage of data points above which coefficients are set to
zero. For /D, value specifies the percentage of the maximum magnitude of the transform such
that coefficients smaller than this value are set to zero.

Controls padding:
num=1: Adds zero padding to the end of the dimension up to nearest power of 2

when the number of data elements in a given dimension of srcWaveName is
not a power of 2.

num=2: Uses zero padding to compute the transform, but the resulting wave is
truncated to the length of the input wave.

Performs the wavelet transform specified by type. The following table gives the transform
name with the type code for the transform and the allowed values of the num parameter
used with the /N flag. “NA” means that the /N flag is not applicable to the corresponding
transform.
Wavelet Transform type num
Daubechies 1 (default) 4, 6, 8, 10, 12, 20
Haar 2 NA
Battle-Lemarie 4 NA
Burt-Adelson 8 NA
Coifman 16 2, 4, 6
Pseudo-Coifman 32 NA
splines 64 1 (2-2), 2 (2-4), 3 (3-3), 4 (3-7)

e

V-152

scale results are stored in elements 64-127, the next scale (power of 2) are stored from 32-63, the following
scale from 16-31 etc.

Example
Make/O/N=1024 testData=sin(x/100)+gnoise(0.05)
DWT /S/N=20/V=25 testData, smoothedData

See Also
For continuous wavelet transforms use the CWT operation. See the FFT operation.
For further discussion and examples see Discrete Wavelet Transform on page III-250.

e
e
The e function returns the base of the natural logarithm system (2.7182818…).

EdgeStats
EdgeStats [flags] waveName
The EdgeStats operation produces simple statistics on a region of a wave that is expected to contain a single
edge. If more than one edge exists, EdgeStats works on the first one found.

Flags

Details
The /B=box, /T=dx, /P, and /Q flags behave the same as for the FindLevel operation.

/A=avgPts Determines startLevel and endLevel automatically by averaging avgPts points at
centered at startX and endX. Default is /A=1.

/B=box Sets box size for sliding average. This should be an odd number. If /B=box is omitted
or box equals 1, no averaging is done.

/F=frac Specifies levels 1, 2 and 3 as a fraction of (endLevel-startLevel):
level1 = frac* (endLevel-startLevel) + startLevel
level2 = 0.5 * (endLevel-startLevel) + startLevel
level3 = (1-frac) * (endLevel-startLevel) + startLevel
The default value for frac is 0.1 which makes level1 the 10% level, level2 the 50% level
and level3 the 90% level.
frac must be between 0 and 0.5.

/L=(startLevel, endLevel)

Sets startLevel and endLevel explicitly. If omitted, they are determined automatically.
See /A.

/P Output edge locations (see Details) are returned as point numbers. If /P is omitted,
edge locations are returned as X values.

/Q Prevents results from being printed in history and prevents error if edge is not found.

/R=(startX,endX) Specifies an X range of the wave to search. You may exchange startX and endX to
reverse the search direction.

/R=[startP,endP] Specifies a point range of the wave to search. You may exchange startP and endP to
reverse the search direction. If /R is omitted, the entire wave is searched.

/T=dx Forces search in two directions for a possibly more accurate result. dx controls where
the second search starts.

EdgeStats

V-153

EdgeStats considers a region of the input wave between two X locations, called startX and endX. startX and
endX are set by the /R=(startX,endX) flag. If this flag is missing, startX and endX default to the start and end
of the entire wave. startX can be greater than endX so that the search for an edge can proceed from the
“right” to the “left”.
The diagram above shows the default search direction, from the “left” (lower point numbers) of the wave
toward the “right” (higher point numbers).
The startLevel and endLevel values define the base levels of the edge. You can explicitly set these levels with
the /L=(startLevel, endLevel) flag or you can let EdgeStats find the base levels for you by using the /A=avgPts
flag which averages points around startX and endX.
Given startLevel and endLevel and a frac value (see the /F=frac flag) EdgeStats defines level1, level2 and level3
as shown in the diagram above. With the default frac value of 0.1, level1 is the 10% point, level2 is the 50%
point and level3 is the 90% point.
With these levels defined, EdgeStats searches the wave from startX to endX looking for level2. Having found
it, it then searches for level1 and level3. It returns results via variables described below.
EdgeStats sets the following variables:

These X locations and distances are in terms of the X scaling of the named wave unless you use the /P flag,
in which case they are in terms of point number.
The EdgeStats operation is not multidimensional aware. See Analysis on Multidimensional Waves on
page II-110 for details.

See Also
The FindLevel operation for use of the /B=box, /T=dx, /P and /Q flags, and PulseStats.

V_flag 0: All three level crossings were found.
1: One or two level crossings were found.
2: No level crossings were found.

V_EdgeLoc1 X location of level1.

V_EdgeLoc2 X location of level2.

V_EdgeLoc3 X location of level3.

V_EdgeLvl0 startLevel value.

V_EdgeLvl1 level1 value.

V_EdgeLvl2 level2 value.

V_EdgeLvl3 level3 value.

V_EdgeLvl4 endLevel value.

V_EdgeAmp4_0 Edge amplitude (endLevel - startLevel).

V_EdgeDLoc3_1 Edge width (x distance between point 1 and point 3).

V_EdgeSlope3_1 Edge slope (straight line slope from point 1 and point 3).

point 1

point 2

level 3 point 3

x1 x2 x3 endX

point 4

point 0

level 1

level 2

startLevel

endLevel

startX

Edit

V-154

Edit
Edit [flags] [columnSpec [, columnSpec]…][as titleStr]
The Edit operation creates a table window or subwindow containing the specified columns.

Parameters
columnSpec is usually just the name of a wave. If no columnSpecs are given, Edit creates an empty table.
Column specifications are wave names optionally followed by one of the suffixes:

If the wave is complex, the wave names may be followed by .real or .imag suffixes. However, as of Igor Pro
3.0, both the real and imaginary columns are added to the table together — you can not add one without
the other — so using these suffixes is discouraged.

titleStr is a string expression containing the table’s title. If not specified, Igor will provide one which
identifies the columns displayed in the table.

Flags

Suffix Meaning

.i Index values.

.l Dimension labels.

.d Data values.

.id Index and data values.

.ld Dimension labels and data values.

Historical
Note:

Prior to Igor Pro 3.0, only 1D waves were supported. We called index values “X values”
and used the suffix “.x” instead of “.i”. We called data values “Y values” and used the
suffix “.y” instead of “.d”. For backward compatibility, Igor accepts “.x” in place of “.i”
and “.y” in place of “.d”.

/HIDE=h Hides (h = 1) or shows (h = 0, default) the window.

/HOST=hcSpec Embeds the new table in the specified host window or subwindow hcSpec.
When identifying a subwindow with hcSpec, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/I Specifies that /W coordinates are in inches.

/K=k

/M Specifies that /W coordinates are in centimeters.

/N=name Requests that the created table have this name, if it is not in use. If it is in use, then name0,
name1, etc. are tried until an unused window name is found. In a function or macro,
S_name is set to the chosen table name. Use DoWindow/K name to ensure that name is
available.

/W=(left,top,right,bottom)

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

ei

V-155

Details
You can not change dimension index values shown in a table. Use the Change Wave Scaling dialog or the
SetScale operation.
If /N is not used, Edit automatically assigns to the table window a name of the form “Tablen”, where n is
some integer. In a function or macro, the assigned name is stored in the S_name string. This is the name you
can use to refer to the table from a procedure. Use the RenameWindow operation to rename the graph.

Examples
These examples assume that the waves are 1D.
Edit myWave,otherWave // 2 columns: data values from each wave
Edit myWave.id // 2 columns: x and data values
Edit cmplxWave // 2 columns: real and imaginary data values
Edit cmplxWave.i // One column: x values

The following examples illustrates the use of column name suffixes in procedures when the name of the
wave is in a string variable.
Macro TestEdit()

String w = "wave0"
Edit $w // edit data values
Edit $w.i // show index values
Edit $w.id // index and data values

End

Note that the suffix, if any, must not be stored in the string. In a user-defined function, the syntax would be
slightly different:
Function TestEditFunction()

Wave w = $"wave0"
Edit w // no $, because w is name, not string
Edit w.i // show index values
Edit w.id // index and data values

End

See Also
The DoWindow operation. For a description of how tables are used, see Chapter II-11, Tables.

ei
ei(x)
The ei function returns the value of the exponential integral Ei(x):

 where P denotes the principal value of the integral.

See Also
The expInt function.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 228 pp., Dover, New York, 1972.

End
End
The End keyword marks the end of a macro, user function, or user menu definition.

Gives the table a specific location and size on the screen. Coordinates for /W are in
points unless /I or /M are specified before /W.
When used with the /HOST flag, the specified location coordinates of the sides can
have one of two possible meanings:
When all values are less than 1, coordinates are assumed to be fractional relative to
the host frame size.
When any value is greater than 1, coordinates are taken to be fixed locations measured
in points relative to the top left corner of the host frame.

E i() P et

t
---- td

∞–

x

= x 0>

EndMacro

V-156

See Also
The Function and Macro keywords.

EndMacro
EndMacro
The EndMacro keyword marks the end of a macro. You can also use End to end a macro.

See Also
The Macro and Window keywords.

EndStructure
EndStructure
The EndStructure keyword marks the end of a Structure definition.

See Also
The Structure keyword.

endtry
endtry
The endtry flow control keyword defines the end of a try-catch-entry flow control construct.

See Also
The try-catch-endtry flow control statement for details.

enoise
enoise(num [, RNG])
The enoise function returns a random value drawn from a uniform distribution having a range of [-num,
num).
The random number generator is initialized using the system clock when you start Igor, virtually guaranteeing
that you will never repeat the same sequence. If you want repeatable “random” numbers, use SetRandomSeed.
The optional parameter RNG selects one of two different pseudo-random number generators. If omitted,
the default is 1. The RNG’s are:

See Also
The SetRandomSeed operation and the gnoise function.
Noise Functions on page III-334.

References
Press, William H., et al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New York,

1992.
Details about the Mersene Twister are in:
Matsumoto, M., and T. Nishimura, Mersenne Twister: A 623-dimensionally equidistributed uniform

pseudorandom number generator, ACM Trans. on Modeling and Computer Simulation, 8, 3-30, 1998.
More information is available online at: <http://en.wikipedia.org/wiki/Mersenne_twister>

RNG Description

1 Linear Congruential generator by L’Ecuyer with added Bayes-Durham shuffle. The algorithm is
described in Numerical Recipes as the function ran2(). This option has nearly 232 distinct values
and the sequence of random numbers has a period in excess of 1018.

2 Mersenne Twister by Matsumoto and Nishimura. It is claimed to have better distribution
properties and period of 219937-1.

http://en.wikipedia.org/wiki/Mersenne_twister

EqualWaves

V-157

EqualWaves
EqualWaves(waveA, waveB, selector [, tolerance])
TheEqualWaves function compares waveA to waveB. Each wave can be of any data type. It returns 1 for
equality and zero otherwise.
Use the selector parameter to determine which aspects of the wave are compared. You can add selector
values to test more than one field at a time or pass -1 to compare all aspects.

If you use the selectors for wave data, wave scaling, dimension units, dimension labels or dimension sizes,
EqualWaves will return zero if the waves have unequal dimension sizes. The other selectors do not require
equal dimension sizes.

Details
If you are testing for equality of wave data and if the tolerance is specified, it must be a positive number. The
function returns 1 for equality if the data satisfies:

If tolerance is not specified, it defaults to 10-8.
If tolerance is set to zero and selector is set to 1 then the data in the two waves undergo a binary comparison
(byte-by-byte).
If tolerance is non-zero then the presence of NaNs at a given point in both waves does not contribute to the
sum shown in the equation above when both waves contain NaNs at the same point. A NaN entry that is
present in only one of the waves is sufficient to flag inequality. Similarly, INF entries are excluded from the
tolerance calculation when they appear in both waves at the same position and have the same signs.
If you are comparing wave data (selector =1) and both waves contain zero points the function returns 1.

See Also
The MatrixOp operation equal keyword.

erf
erf(num [, accuracy])
The erf function returns the error function of num.

.

selector Field Compared

1 Wave data

2 Wave data type

4 Wave scaling

8 Data units

16 Dimension units

32 Dimension labels

64 Wave note

128 Wave lock state

256 Data full scale

512 Dimension sizes

waveA[i]− waveB[i]()
2

i
∑ < tolerance.

erf x() 2
π

------- e t– 2

td
0

x

=

erfc

V-158

Optionally, accuracy can be used to specify the desired fractional accuracy.
In complex expressions the error function is

 where

is the confluent hypergeometric function of the first kind HyperG1F1. In this case the accuracy parameter
is ignored.

Details
The accuracy parameter specifies the fractional accuracy that you desire. That is, if you set accuracy to 10-7,
that means that you wish that the absolute value of (factual - freturned)/factual be less than 10-7.
For backwards compatibility, in the absence of accuracy an alternate calculation method is used that
achieves fractional accuracy better than about 2x10-7.
If accuracy is present, erf can achieve fractional accuracy better than 8x10-16 for num as small as 10-3. For
smaller num fractional accuracy is better than 5x10-15.
Higher accuracy takes somewhat longer to calculate. With accuracy set to 10-16 erfc takes about 50% more
time than with accuracy set to 10-7.

See Also
The erfc, erfcw, dawson, inverseErf, and inverseErfc functions.

erfc
erfc(num [, accuracy])
The erfc function returns the complementary error function of num (erfc(x) = 1 - erf(x)). Optionally, accuracy
can be used to specify the desired fractional accuracy.
In complex expressions the complementary error function is

 where

is the confluent hypergeometric function of the first kind HyperG1F1. In this case the accuracy parameter
is ignored.

Details
The accuracy parameter specifies the fractional accuracy that you desire. That is, if you set accuracy to 10-7,
that means that you wish that the absolute value of (factual - freturned)/factual be less than 10-7.
For backwards compatibility, in the absence of accuracy an alternate calculation method is used that
achieves fractional accuracy better than 2x10-7.
If accuracy is present, erfc can achieve fractional accuracy better than 2x10-16 for num up to 1. From num = 1
to 10 fractional accuracy is better than 2x10-15.
Higher accuracy takes somewhat longer to calculate. With accuracy set to 10-16 erfc takes about 50% more
time than with accuracy set to 10-7.

See Also
The erf, erfcw, inverseErfc, and dawson functions.

erfcw
erfcw(z)
The erfcw is a complex form of the error function defined by

where

erf z() 2z
π

------- F1 1
1
2
--- 3

2
--- z2–,(,)= F1 1

1
2
--- 3

2
--- z2–,(,)

erfc z() 1 erfc z()– 1 2z
π

------- F1 1
1
2
--- 3

2
--- z2–,(,)–= = F1 1

1
2
--- 3

2
--- z2–,(,)

erfcw(z) = exp[−z2]erfc(−iz),

ErrorBars

V-159

The function is computed with accuracy of 0.5e-10. It is particularly useful for large |z| where the
computation of erfc(z) starts encountering numerical instability.

References
1. http://en.wikipedia.org/wiki/Error_function
2. W. Gautschi, "Efficient Computation of the Complex Error Function", SIAM J. Numer. Anal. Vol. 7, No. 1,
March 1970.

See Also
The erf, erfc, inverseErfc, and dawson functions.

ErrorBars
ErrorBars [flags] traceName, mode [errorSpecification]
The ErrorBars operation adds or removes error bars to or from the named trace in the specified graph.
The “error bars” are lines that extend from each data point to “caps”. The length of the line (or “bar”) is
usually used to bracket a measured value by the amount of uncertainty, or “error” in the measurement.

Parameters
traceName is usually the name of a wave. If a wave is displayed more than once in a graph, the instance
number can be appended to identify which instance to apply error bars to. For instance, wave0#2 refers to
the third instance of wave0 displayed in the top graph (wave0, or wave0#0, is the first instance).
A string containing traceName can be used with the $ operator to specify traceName.
mode is one of the following keywords:

For any mode other than OFF, there is an errorSpecification whose format is keyword [= value]. The
errorSpecification keywords are:

See the examples for the values that correspond to these mode and errorSpecification keywords. See the
diagram below. mode and errorSpecification control only the lengths of the horizontal and vertical lines (the
“bars”) to the “caps”. All other sizes and thicknesses are controlled by the flags.

OFF No error bars.

X Horizontal error bars only.

Y Vertical error bars only.

XY Horizontal and vertical error bars.

BOX Box error bars.

pct Percent.

sqrt Square root.

const Constant.

wave Arbitrary error values. You can use subranges; see Subrange Display
Syntax on page II-293.

erfc(z) =
2

π
exp[−t 2]dt.

z

∞

∫

http://en.wikipedia.org/wiki/Error_function

ErrorBars

V-160

XY mode Error Bars

Flags

The thicknesses and widths are in units of points. The thickness parameters need not be integers. Although
only integral thicknesses can be displayed exactly on the screen, nonintegral thicknesses are produced
properly on high resolution hard copy devices. Use /T=0 to completely suppress the caps and /L=0 to
completely suppress the lines to the caps.

Details
If a point in traceName is not within the graph’s axes (because the graph has been expanded) then that
point’s error bars are not shown. If a wave specifying error values for traceName is shorter than the wave
displayed by traceName then the last value of the error wave is used for the unavailable points. If a point in
an error wave contains NaN (Not a Number) then the half-bar associated with that point is not shown.

/L=lineThick Specifies the thickness of both the X and Y error bars drawn from the point on the
wave to the caps.

/T=thick Specifies the thickness of both the X and Y error bar “caps”.

/W=winName Changes error bars in the named graph window or subwindow. When omitted, action
will affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/X=xWidth Specifies the width (height, actually) of the caps to the left or right of the point.

/Y=yWidth Specifies the width of the caps above or below the point.

Y Cap

/Y=yWidth

/T=thick/L=lineThick

X
 C

ap

/X
=

xW
id

th

Y+ Error Bar

Y- Error BarX- Error Bar

X+ Error Bar

Sizes controlled by mode and errorSpecification Sizes controlled by flag values

Execute

V-161

Examples

See Also
Trace Names on page II-243, Programming With Trace Names on page IV-72.

Execute
Execute [/Q/Z] cmdStr
The Execute operation executes the contents of cmdStr as if it had been typed in the command line.
The most common use of Execute is to call a macro or an external operation from a user-defined function.
This is necessary because Igor does not allow you to make such calls directly.
When the /Z flag is used, an error code is placed in V_flag.The error code will be -1 if a missing parameter
style macro is called and the user clicks Quit Macro, or zero if there was no error.

Flags

Details
Because the command line and command buffer are limited to 400 characters on a single line, cmdStr is
likewise limited to a maximum of 400 executable characters.
Do not reference local variables in cmdStr. The command is not executed in the local environment provided
by a macro or user-defined function.
Execute can accept a string expression containing a macro. The string must start with Macro, Proc, or
Window, and must follow the normal rules for macros. All lines must be terminated with carriage returns
including the last line. The name of the macro is not important but must exist. Errors will be reported except
when using the /Z flag, which will assign V_Flag a nonzero number in an error condition.

Examples
It is a good idea to compose the command to be executed in a local string variable and then pass that string
to the Execute operation. This prints the string to the history for debugging:
String cmd
sprintf cmd, "GBLoadWave/P=%s/S=%d \"%s\"", pathName, skipCount, fileName
Print cmd // For debugging
Execute cmd

Execute with a macro:
Execute "Macro junk(a,b)\rvariable a=1,b=2\r\rprint \"hello from macro\",a,b\rEnd\r"

See Also
The Execute Operation on page IV-180 for other uses.

ErrorBars wave1,XY pct=10,pct=5 X and Y error bars, X is 10% of wave1, Y is 5%
ErrorBars wave1,X sqrt X error bars only, square root of wave1
ErrorBars wave1,Y const=4.3 Y error bars only, constant error value = 4.3
ErrorBars wave1,BOX pct=10,pct=5 error box, 10% in horizontal direction

5% in vertical direction
ErrorBars wave1,Y wave=(w1,w2) Y error bars only, arbitrary error values

wave w1 = errors for upper (Y+) bars
wave w2 = errors for lower (Y-) bars

ErrorBars wave1,Y wave=(,w2) Y error bars only, no upper (Y+) error bars
wave w2 = errors for lower bars

ErrorBars wave1,OFF turns error bars for wave1 off

/Q Command is not printed in the command line or history area.

/Z Errors are not fatal and error dialogs are suppressed.

Execute/P

V-162

Execute/P
Execute/P [/Q/Z] cmdStr
Execute/P is similar to Execute except the command string, cmdStr, is not immediately executed but rather
is posted to an operation queue. Items in the operation queue execute only when nothing else is happening.
Macros and functions must not be running and the command line must be empty.

Flags

See Also
Operation Queue on page IV-256 for more details on using Execute/P with the operation queue.

ExecuteScriptText
ExecuteScriptText [flags] textStr
The ExecuteScriptText operation passes your text to Apple’s scripting subsystem for compilation and
execution or to the Windows command line.
If the /Z flag is used then a variable named V_flag is created and is set to a nonzero value if an error was
generated by the script or zero if no error. The error is not reported to Igor if the /Z flag is used.

Parameters
textStr must contain a valid AppleScript program or Windows command line.

/Q Command is not printed in the command line or history area.

/Z No error reporting.

On Macintosh: Any results, including error messages, are placed in a string variable named S_value.
The /B flag is ignored. The /W flag is ignored and ExecuteScriptText does not return
until the script is finished.

On Windows: textStr contains the name of the executable file with optional Windows-style path and
optional arguments:
[path]executableName [.exe] [arg1]…
If path is not given and executableName ends with ".exe" or with no extension, Igor
locates the executable by searching first the registry and then along the PATH
environment variable. If not found, then the Igor Pro Folder directory is assumed.
ExecuteScriptText "calc" // calc.exe, calculator

When calling a batch file or other non-*.exe file, supply the full path. If the path (or
file name) contains spaces put quotes in the string:
ExecuteScriptText "\"C:\\Program Files\\my.bat\""

If you use the /W=waitTime flag with a positive value for waitTime, ExecuteScriptText
waits up to that many seconds after submitting the command for the process started
by the command to terminate. If the process fails to terminate within that period of
time, ExecuteScriptText returns an error.
If you omit the /W flag or if you pass zero for waitTime, for GUI programs,
ExecuteScriptText returns when the program begins processing messages. For non-
GUI programs, ExecuteScriptText returns as soon as the OS returns control to Igor
after Igor submits the script text to the OS.
Igor currently can not write to a console application’s standard input nor read from
its standard output.
Use the /B flag to run the command in the background, keeping Igor as the active
application.
S_value is always set to "".

exists

V-163

Flags

Examples
// Macintosh: Convert file.PICT to file.GIF:
String ae = "tell application \"clip2gif\" "
ae += "to save file \"HD:file.PICT\"\r"
ExecuteScriptText/Z ae

// Macintosh: Execute a Unix shell command:
Function/S DemoUnixShellCommand()

// Paths must be POSIX paths (using /).
// Paths containing spaces or other nonstandard characters must be single-quoted.
// See Apple Techical Note TN2065 for more on shell scripting via AppleScript.
String unixCmd
unixCmd = "ls '/Applications/Igor Pro Folder'"

String igorCmd

sprintf igorCmd, "do shell script \"%s\"", unixCmd
Print igorCmd // For debugging only.

ExecuteScriptText igorCmd
Print S_value // For debugging only.
return S_value

End

// Windows: Open MatLab in the background:
ExecuteScriptText/B "C:\\Matlab\\bin\\matlab.exe myFile.m"

// Windows: Pass a script to Windows Script Host:
ExecuteScriptText/W=5 "WScript.exe \"C:\\Test Script.vbs\""

// Windows: Execute a batch file and leave the command window open
ExecuteScriptText "cmd.exe /K \"C:\\mybatch.bat\""

See Also
See AppleScript on page IV-240.

exists
exists(objNameStr)
The exists function returns a number which indicates if objNameStr contains the name of an Igor object,
function or operation.

Details
 objNameStr can optionally include a full or partial path to the object. If the name does not include a path,
exists checks for waves, strings and variables in the current data folder.
objNameStr can optionally include a module name or independent module name prefix such as
"ProcGlobal#" to check for the existence of functions. As of Igor 6.20 this works for macros as well.
The return values are:

/B Execute Windows command line as a background task.

/W=waitTime This flag is accepted on any platform but has an effect only on Windows. See the
description above.

/Z Script errors are not fatal.

0: Name not in use, or does not conflict with a wave, numeric variable or string variable
in the specified data folder.

1: Name of a wave in the specified data folder.

2: Name of a numeric or string variable in the specified data folder.

3: Function name.

4: Operation name.

5: Macro name.

6: User-defined function name.

exp

V-164

exists is not aware of local variables or parameters in user-defined functions, however it is aware of local
variables and parameters in macros.
objNameStr is a string or string expression, not a name.

Examples
// Prints 2 if V_flag exists as a global variable in the current data folder:
Print exists("V_Flag")

// Prints 5 if a macro named Graph0 exists. Requires Igor Pro 6.20 or later.
Print exists("ProcGlobal#Graph0")

See Also
The DataFolderExists and WaveExists functions and the WinType operation.

exp
exp(num)
The exp function returns enum. In complex expressions, num is complex, and exp(num) returns a complex value.

ExperimentModified
ExperimentModified [newModifiedState]
The ExperimentModified operation gets and optionally sets the modified (save) state of the current
experiment.
Use this command to prevent Igor from asking you to save the current experiment after you have made
changes you do not need to save or, conversely, to force Igor to ask about saving the experiment even
though Igor would not normally do so.
The variable V_flag is always set to the experiment-modified state that was in effect before the
ExperimentModified command executed: 1 for modified, 0 for not modified.

Parameters
If newModifiedState is present, it sets the experiment-modified state as follows:

If newModifiedState is omitted, the state of experiment-modified state is not changed.

Details
Executing ExperimentModified 0 on the command line will not work because the command will be echoed
to the history area, marking the experiment as modifed. Use the command in a function or macro that does
not echo text to the history area.

Examples
The /Q flag is vital: it suppresses printing into the history area which would mark the experiment as
modified again.
Menu "File"

"Mark Experiment Modified",/Q,ExperimentModified 1 // Enables "Save Experiment"
"Mark Experiment Saved",/Q,ExperimentModified 0 // Disables "Save Experiment"

End

See Also
The SaveExperiment operation, Menu Definition Syntax on page IV-111.

expInt
expInt(n, x)
The expInt function returns the value of the exponential integral En(x):

newModifiedState = 0: Igor will not ask to save the experiment before quitting or opening another
experiment, and the Save Experiment menu item will be disabled.

newModifiedState = 1: Igor will ask to save the experiment before quitting or opening another
experiment, and the Save Experiment menu item will be enabled.

expnoise

V-165

See Also
The ei function.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

expnoise
expnoise(b)
The expnoise function returns a pseudo-random value from an exponential distribution whose average and
standard deviation are b and the probability distribution function is

.

The random number generator initializes using the system clock when Igor Pro starts. This almost
guarantees that you will never repeat a sequence. For repeatable “random” numbers, use SetRandomSeed.
The algorithm uses the Mersenne Twister random number generator.

See Also
The SetRandomSeed operation.
Noise Functions on page III-334.
Chapter III-12, Statistics for a function and operation overview.

Extract
Extract [type flags][/INDX/O] srcWave, destWave, LogicalExpression
The Extract operation finds data in srcWave wherever LogicalExpression evaluates to TRUE and stores the
matching data sequentially in destWave, which will be created if it does not already exist.

Parameters
srcWave is the name of a wave.
destWave is the name of a new or existing wave that will contain the result.
LogicalExpression can use any comparison or logical operator in the expression.

Flags

Type Flags (used only in functions)
Extract also can use various type flags in user functions to specify the type of destination wave reference
variables. These type flags do not need to be used except when it needed to match another wave reference
variable of the same name or to identify what kind of expression to compile for a wave assignment. See
WAVE Reference Types on page IV-58 and WAVE Reference Type Flags on page IV-59 for a complete list
of type flags and further details.

Details
srcWave may be of any type including text.

/FREE Creates a free destWave (see Free Waves on page IV-75).
/FREE is allowed only in functions and only if a simple name or structure field is
specified for destWave.
Requires Igor Pro 6.1 or later. For advanced programmers only.

/INDX Stores the index in destWave instead of data from srcWave.

/O Allows destWave to be the same as srcWave (overwrite source).

En x() P e xt–

tn
--------- td

1

∞

= x 0> ; n 0 1 2 …, , ,=

f x() 1
b
--- x

b
---–

 exp=

factorial

V-166

destWave has the same type as srcWave, but it is always one dimensional. With /INDX, the destWave type is set
to unsigned 32-bit integer and the values represent a linear index into srcWave regardless of its dimensionality.

Example
Make/O source= x
Extract/O source,dest,source>10 && source<20
print dest

Prints the following to the history area:
 dest[0]= {11,12,13,14,15,16,17,18,19}

See Also
The Duplicate operation.

factorial
factorial(n)
The factorial function returns n!, where n is assumed to be a positive integer.
Note that while factorial is an integer-valued function, a double-precision number has 53 bits for the
mantissa. This means that numbers over 252 will be accurate to about one part in about 2x1016. Values of n
greater than 170 result in overflow and return Inf.

FakeData
FakeData(waveName)
The FakeData function puts fake data in the named wave, which must be single-precision float. This is
useful for testing things that require changing data before you have the source for the eventual real data.
FakeData can be useful in a background task expression.
The FakeData function is not multidimensional aware. See Analysis on Multidimensional Waves on page
II-110 for details.

Examples
Make/N=200 wave0; Display wave0
SetBackground FakeData(wave0) // define background task
CtrlBackground period=60, start // start background task
// observe the graph for a while
CtrlBackground stop // stop the background task

FastGaussTransform
FastGaussTransform [flags] srcLocationsWave, srcWeightsWave
The FastGaussTransform operation implements an efficient algorithm for evaluating the discrete Gauss
transform, which is given by

where G is an M-dimensional vector, y is an N-dimensional vector representing the observation position,
{qi} are the M-dimensional weights, {xi} are N-dimensional vectors representing source locations, and h is
the Gaussian width. The wave M_FGT contains the output in the current data folder.

Flags

/AERR=aprxErr Sets the approximate error, which determines how many terms of the Taylor
expansion of the Gaussian are used by the calculation. Default value is 1e-5.

/WDTH=h Sets the Gaussian width. Default value is 1.

/OUTW=locWave Specifies the locations at which the output is computed. locWave must have the same
number of columns as srcLocationsWave. The other /OUT flags are mutually exclusive;
you should use only one at any time.

G y() qi
y xi– 2

h
--------------------–exp

i 1=

n

=

FastOp

V-167

Details
The discrete Gauss transform can be computed as a direct sum. An exact calculation is practical only for
moderate number of sources and observation points and for low spatial dimensionality. With increasing
dimensionality and increasing number of sources it is more efficient to take advantage of some properties
of the Gaussian function. The FastGaussianTransform operation does so in two ways: It first arranges the
sources in N-dimensional spatial clusters so that it is not necessary to compute the contributions of all
source points that belong to remote clusters (see FPClustering). The second component of the algorithm is
an approximation that factorizes the sum into a factor that depends only on source points and a factor that
depends only on observation points. The factor that depends only on source points is computed only once
while the factor that depends on observation points is evaluated once for each observation point.
The trade-off between computation efficiency and accuracy can be adjusted using multiple parameters. By
default, the operation calculates the number of terms it needs to use in the Taylor expansion of the
Gaussian. You can modify the default approximate error value using /AERR or you can directly set the
number of terms in the expansion using /TET.
FastGaussianTransform supports calculations in dimensions that may exceed the maximum allowed wave
dimensionality. srcLocationsWave must be a 2D, real-valued single- or double-precision wave in which each row
corresponds to a single source position and columns represent the components in each dimension (e.g., a triplet
wave would represent 3D source locations). srcWeightsWave must have the same number of rows as
srcLocationsWave and it must be a real-valued single- or double-precision wave. In most applications
srcWeightsWave will have a single column so that the output G will be scalar. However, if srcWeightsWave has
multiple columns than G is a vector. This can be handy if you need to test multiple sets of coefficients at one time.
If you specify observation points using /OUTW then locWave must have the same number of columns as
srcLocationsWave (the number of rows in the output is arbitrary). The operation does not support wave scaling.

See Also
The CWT, FFT, ImageInterpolate, Loess, and FPClustering operations.

References
Yang, C., R. Duraiswami, and L. Davis, Efficient Kernel Machines Using the Improved Fast Gauss

Transform, Advances in Neural Information Processing Systems 16, 2004.

FastOp
FastOp [/C] destwave = prod1 [± prod2 [± prod3]]
The FastOp operation can be used to get improved speed out of certain wave assignment statements. The
syntax was designed so that you can simply insert FastOp in front of any wave assignment statement that
meets the syntax requirements.

/OUT1={x1,nx,x2}
/OUT2={x1,nx,x2,y1,ny,y2}
/OUT3={x1,nx,x2,y1,ny,y2,z1,nz,z2}

Specifies gridded output of the required dimension. In each case you set the starting
and ending values together with the number of intervals in that dimension. You
cannot specify an output that does not match the dimensions of the input source.

/Q No results printed in the history area.

/RX=rx Sets the maximum radius of any cluster. The clustering algorithm terminates when
the maximum radius is less than rx. Without /RX, the maximum radius is the same as
the maximum radius encountered.

/RY=ry Sets the upper bound for the distance between an observation point and a cluster
center for which the cluster contributes to the transform value. Default is 5h.

/TET=nTerms Sets the number of terms in the Taylor expansion. Use /TET to set the number of terms
and bypass the default error estimate, which is estimated from the approximate error
value (/AERR).

/Z No error reporting.

FastOp

V-168

Parameters

Flags

Details
Certain combinations are evaluated using faster specific code rather than more general but slower generic
code. The following specific formats are given special consideration:

In the above, pluses may be minuses and the trailing constant (C0, C1, C2) may be omitted.

Typically, FastOp will improve performance by 10 to 40 times. The speed increase will be dependent on the
computer and on the length of the waves, with the greatest improvement for waves having 1000 to 100,000
points.
This operation replaces the obsolete FastWaveOps XOP. It has all the capabilities of the XOP and then some
and has an easier to read syntax.

Examples
Valid expressions:
FastOp waved= 3
FastOp waved= waveA + waveB
FastOp waved= 0.5*waveA + 0.5*waveB
FastOp waved= waveA*waveB
FastOp waved= (2*3)*waveA + 6
FastOp waved= (locvar)*waveA

Expressions that are not valid:
FastOp waved= 3*4
FastOp waved= (waveA + waveB)
FastOp waved= waveA*0.5 + 0.5*waveB
FastOp waved= waveA*waveB/2
FastOp waved= 2*3*waveA + 6
FastOp waved= locvar*waveA

See Also
The MatrixOp operation for more efficient matrix operations.

destWave An existing destination wave for the assignment expression. An error will be reported
at runtime if the waves are not all the same length or number type.

prod1, prod2, prod3 Products with the following formats:

constexpr*wave1*wave2
or
constexpr*/wave2
constexpr may be a literal numeric constant or a constant expression in parentheses.
Such expressions are evaluated only once.
Any component in a prod expression may be omitted.

/C Specifies a complex expression. Only applicable to floating point waves.

Single or Double Precision Real Integer
waved = C0 waved = C0
waved = C0 *waveA +C1 waved = waveA +C1
waved = waveA +C1 waved = waveA +waveB +C2

Note: Integer waves are evaluated using double precision intermediate values except for the
aforementioned special cases which are evaluated using the native format.

faverage

V-169

faverage
faverage(waveName [, x1, x2])
The faverage function returns the trapezoidal average value of the named wave from x=x1 to x=x2.
If your data are in the form of an XY pair of waves, see faverageXY.

Details
If x1 and x2 are not specified, they default to -∞ and +∞, respectively.
If x1 or x2 are not within the X range of waveName, faverage limits them to the nearest X range limit of waveName.
faverage returns the area divided by (x2-x1). In other words, the X scaling of waveName is eliminated when
computing the average.
If any Y values in the specified X range are NaN, faverage returns NaN.
Unlike the area function, reversing the order of x1 and x2 does not change the sign of the returned value.
The faverage function is not multidimensional aware. See Analysis on Multidimensional Waves on page
II-110 for details.
The faverage function returns a complex result for a complex inpt wave. The real part of the result is the
average of the real components in the input wave and the imaginary part of the result is the average of the
imaginary components.

Examples
Comparison of area, faverage and mean functions over interval (12.75,13.32)

See Also
Integrate, area, areaXY, faverageXY and PolygonArea

faverageXY
faverageXY(XWaveName, YWaveName [, x1, x2])
The faverageXY function returns the trapezoidal average value of YWaveName from x=x1 to x=x2, using X
values from XWaveName.
This function operates identically to faverage, except that it uses an XY pair of waves for X and Y values
and it does not work with complex waves.

Details
If x1 and x2 are not specified, they default to -∞ and +∞, respectively.
If x1 or x2 are not within the X range of XWaveName, faverageXY limits them to the nearest X range limit of
XWaveName.
faverageXY returns the area divided by (x2 -x1).
If any values in the X range are NaN, faverageXY returns NaN.

area(wave,12.75,13.32) = 0.05 · (43+55) / 2
+ 0.20 · (55+88) / 2
+ 0.20 · (88+100) / 2
+ 0.12 · (100+92.2) / 2

= 47.082

// first trapezoid
// second trapezoid
// third trapezoid
// fourth trapezoid

faverage(wave,12.75,13.32) = area(wave,12.75,13.32) / (13.32-12.75)
= 47.082/0.57 = 82.6

mean(wave,12.75,13.32) = (55+88+100+87)/4 = 82.5

120

80

40

0

13.613.413.213.012.812.6

0.05 0.2 0.2 0.12

43

92.255
88 100

7

87

FBinRead

V-170

Reversing the order of x1 and x2 does not change the sign of the returned value.
The values in XWaveName may be increasing or decreasing. faverageXY assumes that the values in XWaveName
are monotonic. If they are not monotonic, Igor does not complain, but the result is not meaningful. If any X
values are NaN, the result is NaN.
The faverageXY function is not multidimensional aware. See Chapter II-6, Multidimensional Waves for
details on multidimensional waves, particularly Analysis on Multidimensional Waves on page II-110.

See Also
Integrate, area, areaXY, faverage and PolygonArea

FBinRead
FBinRead [flags] refNum, objectName
The FBinRead operation reads binary data from the file specified by refNum into the named object.
For simple applications of loading binary data into numeric waves you may find the GBLoadWave
operation simpler to implement.

Parameters
refNum is a file reference number from the Open operation used to open the file.
objectName is the name of a wave, numeric variable, string variable, or structure.

Flags

Details
If objectName is the name of a string variable then /F doesn’t apply. The number of bytes read is the number
of bytes in the string before the FBinRead operation is called. You can use the PadString function to set the
size of a string.
The binary format that FBinRead uses for numeric variables or waves depends on the /F flag. If no /F flag
is present, the native binary format of the named object is used.
Byte ordering refers to the order in which a multibyte datum is read from a file. For example, a 16-bit word
(sometimes called a “short”) consists of a high-order byte and a low-order byte. Under big-endian byte
ordering, which is commonly used on Macintosh, the high-order byte is read from the file first. Under little-
endian byte ordering, which is commonly used on Windows, the low-order byte is read from the file first.
FBinRead will read an entire structure from a disk file. The individual fields of the structure will be byte-
swapped if the /B flag is designated.
The FBinRead operation is not multidimensional aware. See Analysis on Multidimensional Waves on
page II-110 for details.

/B[=b]

/F=f

/U Integer formats (/F=1, 2, or 3) are unsigned. If /U is omitted, integers are signed.

Specifies file byte ordering.
b=0: Native (same as no /B).
b=1: Reversed (same as /B).
b=2: Big-endian (Motorola).
b=3: Little-endian (Intel).

Controls the number of bytes read and how the bytes are interpreted.
f=0: Native binary format of the object (default).
f=1: Signed byte; one byte.
f=2: Signed 16-bit word; two bytes.
f=3: Signed 32-bit word; four bytes.
f=4: 32-bit IEEE floating point; four bytes.
f=5: 64-bit IEEE floating point; eight bytes.

FBinWrite

V-171

See Also
The Open operation. See FSetPos to set positions within files and FStatus for file information.
The GBLoadWave operation for loading general binary data into waves.

FBinWrite
FBinWrite [flags] refNum, objectName
The FBinWrite operation writes the named object in binary to a file.

Parameters
refNum is a file reference number from the Open operation used to open the file.
objectName is the name of a wave, numeric variable, string variable, or structure.

Flags

Details
A zero value of refNum is used in conjunction with Program-to-Program Communication (PPC) or Apple
events (Macintosh) or DDE (Windows). The data that would normally be written to a file is appended to the
PPC or Apple event or DDE result packet.
If the object is a string variable then /F doesn’t apply. The number of bytes written is the number of bytes
in the string.
The binary format that FBinWrite uses for numeric variables or waves depends on the /F flag. If no /F flag
is present, FBinWrite uses the native binary format of the named object.
Byte ordering refers to the order in which a multibyte datum is written to a file. For example, a 16-bit word
(sometimes called a “short”) consists of a high-order byte and a low-order byte. Under big-endian byte
ordering, which is commonly used on Macintosh, the high-order byte is written to the file first. Under little-
endian byte ordering, which is commonly used on Windows, the low-order byte is written to the file first.
FBinWrite will write an entire structure to a disk file. The individual fields of the structure will be byte-
swapped if the /B flag is designated.
The FBinWrite operation is not multidimensional aware. See Analysis on Multidimensional Waves on
page II-110 for details.

See Also
The Open operation and Chapter IV-10, Advanced Programming. See FSetPos to set positions within files
and FStatus for file information.

/B[=b]

/F=f

/P Adds an IgorBinPacket to the data. This is used for PPC or Apple event result packets (refNum = 0) and
is not normally of use when writing to a file.

/U Integer formats (/F=1, 2, or 3) are unsigned. If /U is omitted, integers are signed.

Specifies file byte ordering.
b=0: Native (same as no /B).
b=1: Reversed (same as /B).
b=2: Big-endian (Motorola).
b=3: Little-endian (Intel).

Controls the number of bytes written and how the bytes are formatted.
f=0: Native binary format of the object (default).
f=1: Signed byte; one byte.
f=2: Signed 16-bit word; two bytes.
f=3: Signed 32-bit word; four bytes.
f=4: 32-bit IEEE floating point; four bytes.
f=5: 64-bit IEEE floating point; eight bytes.

FetchURL

V-172

FetchURL
FetchURL(urlStr)
The FetchURL function returns a string containing the server's response to a request to get the contents of
the URL specified by urlStr. If urlStr contains a URL that uses the file:// scheme, the contents of the local file
is returned.

Parameters
urlStr is a string containing the URL to retrieve. You can include a username, password, and server port
number as part of the URL.
FetchURL expects that urlStr has been percent-encoded if it contains reserved characters. See Percent
Encoding on page IV-245 for additional information on when percent-encoding is necessary and how to do
it.
See URLs on page IV-244 for details about how to correctly specify the URL.
FetchURL supports only the http://, ftp://, and file:// schemes. See Supported Network Schemes on page
IV-245 for details.
There are two special values of urlStr that can be used to get information about the network library that Igor
uses. The keyword=value pairs returned when urlStr is "curl_version_info" may be useful to programmers
in that the features and protocols available in the library are specified.
FetchURL("curl_version")
FetchURL("curl_version_info")

Details
If FetchURL encounters an error, the string it returns a NULL string. You should check for errors before
using the returned string. In a user-defined function, use the GetRTError function.
String urlStr = "http://www.badserver"
String response = FetchURL(urlStr)
Variable error = GetRTError(1) // Check for error before using response
if (error != 0)

// FetchURL produced an error
// so don't try to use the response.

endif

Limitations
It is possible for FetchURL to return a valid server response even though the URL you requested does not
exist on the server or requires a username and password that you did not provide. In this situation, the
response returned by the server will usually be a web page stating that the page was not found or another
error message. You can check for this kind of error in your own code by examining the response.
FetchURL does not support advanced features such as network proxies, file or data uploads, or saving the
server's response directly to a file. When using the http:// scheme, only the GET method is supported. This
means that you cannot use FetchURL to submit form data to a web server that requires using the http POST
method.
Encrypted connections using Secure Sockets Layer (SSL) using the https:// scheme are not supported.
Igor Pro is not capable of displaying the contents of a URL in a rendered form like a web browser.

Examples
// Retrieve the contents of the WaveMetrics home page.
String response
response = FetchURL("http://www.wavemetrics.com")

// Get a binary image file from a web server and then
// save the image to a file on the desktop.
String url = "http://www.wavemetrics.net/images/tbg.gif"
String imageBytes = FetchURL(url)
Variable error = GetRTError(1)
if (error != 0)

Print "Error downloading image."
else

Variable refNum
String localPath = SpecialDirPath("Desktop", 0, 0, 0) + "tbg.gif"
Open/T=".gif" refNum as localPath
FBinWrite refNum, imageBytes

FFT

V-173

Close refNum
endif

See Also
FTPDownload, URLEncode
Network Communications on page IV-244, Network Connections From Multiple Threads on page
IV-247.

FFT
FFT [flags] srcWave
The FFT operation computes the Discrete Fourier Transform of srcWave using a multidimensional prime
factor decomposition algorithm. By default, srcWave is overwritten by the FFT.

Output Wave Name
For compatibility with earlier versions of Igor, if you use FFT with no flags or with just the /Z flag, the
operation overwrites srcWave.
As of Igor Pro 5, if you use any flag other than /Z, FFT uses default output wave names: W_FFT for a 1D
FFT and M_FFT for a multidimensional FFT.
We recommend that you use the /DEST flag to make the output wave explicit and to prevent overwriting
srcWave.

Flags

/COLS Computes the 1D FFT of 2D srcWave one column at a time, storing the results in the
destination wave.

You must specify a destination wave using the /DEST flag. No other flags are allowed
with this flag. The number of rows must be even. If srcWave is a real (NxM) wave, the
output matrix will be (1+N/2,M) in analogy with 1D FFT. To avoid changes in the
number of points you can convert srcWave to complex data type. This flag applies only
to 2D source waves. See also the /ROWS flag.

/DEST=destWave Specifies the output wave created by the FFT operation.
It is an error to attempt specify the same wave as both srcWave and destWave.
The default output wave name is W_FFT for a 1D FFT and M_FFT for a
multidimensional FFT.
When used in a function, the FFT operation by default creates a complex wave
reference for the destination wave. See Automatic Creation of WAVE References on
page IV-57 for details.

/HCC Hypercomplex transform (cosine). Computes the integral

using the 2D FFT (see Details).

I[t1][n] = f [t1][k]exp i2�kn / N()
k=0

N�1

� .

Ic (�1,�2) = f (t1, t2)cos(t1�1)exp(it2�2)dt1dt2
��

�

��

FFT

V-174

/HCS Hypercomplex transform (sine). Computes the integral

using the 2D FFT (see Details).

/MAG Saves just the magnitude of the FFT in the output wave. See comments under /OUT.

/MAGS Saves the squared magnitude of the FFT in the output wave. See comments under
/OUT.

/OUT=mode

/PAD={dim1 [, dim2, dim3, dim4]}

Converts srcWave into a padded wave of dimensions dim1, dim2…. The padded wave
contains the original data at the start of the dimension and adds zero entries to each
dimension up to the specified dimension size. The dim1… values must be greater than
or equal to the corresponding dimension size of srcWave. If you need to pad just the
lowest dimension(s) you can omit the remaining dimensions; for example, /Pad=dim1
will set dim2 and above to match the dimensions in srcWave.

/REAL Saves just the real part of the transform in the output wave. See comments under /OUT.

/ROWS Calculates the FFT of only the first dimension of a 2D srcWave. It thus computes the
1D FFT of one row at a time, storing the results in the destination wave.

You must specify a destination wave using the /DEST flag. No other flags are allowed
with this flag. The number of columns must be even. If srcWave is a real (NxM) wave,
the output matrix will be (N,1+M/2) in analogy with 1D FFT. To avoid changes in the
number of points you can convert srcWave to complex data type. See also /COLS flag.

/RP=[startPoint, endPoint]

/RX=(startX, endX) Defines a segment of a 1D srcWave that will be transformed. By default the operation
transforms the whole wave. It is sometimes useful to take advantage of this feature in
order to transform just the defined interval, which includes both end points. You can
define the interval using wave point indexing with the /RP flag or using the X-values
with the /RX flag. The interval must include at least four data points and the total
number of points must be an even number.

Is (�1,�2) = f (t1, t2)sin(t1�1)exp(it2�2)dt1dt2
��

�

��

Sets the output wave format.

You can also identify modes 2-4 using the convenience flags /REAL, /MAG, and
/MAGS. The convenience flags are mutually exclusive and are overridden by the
/OUT flag.
The scaled quantities apply to transforms of real valued inputs where the output is
normally folded in the first dimension (because of symmetry). The scaling applies
a factor of 2 to the squared magnitude of all components except the DC. The scaled
transforms should be used whenever Parseval's relation is expected to hold.

mode=1: Default for complex output.
mode=2: Real output.
mode=3: Magnitude.
mode=4: Magnitude square.
mode=5: Phase.
mode=6: Scaled magnitude.
mode=7: Scaled magnitude squared.

Sets the output wave format.

You can also identify modes 2-4 using the convenience flags /REAL, /MAG, and
/MAGS. The convenience flags are mutually exclusive and are overridden by the
/OUT flag.
The scaled quantities apply to transforms of real valued inputs where the output is
normally folded in the first dimension (because of symmetry). The scaling applies
a factor of 2 to the squared magnitude of all components except the DC. The scaled
transforms should be used whenever Parseval's relation is expected to hold.

mode=1: Default for complex output.
mode=2: Real output.
mode=3: Magnitude.
mode=4: Magnitude square.
mode=5: Phase.
mode=6: Scaled magnitude.
mode=7: Scaled magnitude squared.

N[n][t2] = f [k][t2]
k=0

M �1

� exp(i2�kn / M)

FFT

V-175

Details
The data type of srcWave is arbitrary. The first dimension of srcWave must be an even number and the
minimum length of srcWave is four points. When srcWave is a double precision wave, the FFT is computed
in double precision. All other data types are transformed using single precision calculations. The result of
the FFT operation is always a floating point number (single or double precision).
Depending on your choice of outputs, you may not be able to invert the transform in order to obtain the
original srcWave.
srcWave or any of its intervals must have at least four data points and must not contain NaNs or INFs.
The FFT algorithm is based on prime number decomposition, which decomposes the number of points in
each dimension of the wave into a product of prime numbers. The FFT is optimized for primes < 5. In time
consuming applications it is frequently worthwhile to pad the data so that the total number of points factors
into small prime numbers.
The hypercomplex transforms are computed by writing the sine and cosine as a sum of two exponentials.
Let the 2D Fourier transform of the input signal be

then the two hypercomplex transforms are given by

and

Window Functions
The /F=windowKind flag premultiplies a 1D srcWave with the selected window function.
In the following window definitions, w(n) is the value of the window function that multiplies the signal, N
is the number of points in the signal wave (or range if /R is specified), and n is the wave point index. With
/R, n=0 for the first datum in the range.
Choices for windowKind are in bold.

Bartlet:
A synonym for Bartlett.

/WINF=windowKind

Premultiplies a 1D srcWave with the selected window function.
See Window Functions below for details.

/Z Disables rotation of the FFT of a complex wave. Igor normally rotates the FFT result
(which is also complex) by N/2 so that x=0 is at the center point (N/2). When /Z is
specified, Igor does not perform this rotation and leaves x=0 at the first point (0).

F n1[] n2[]= f
k2=0

N2�1

�
k1=0

N1�1

� k1[] k2[]exp i2�k1

n1

N1

�

��
�

	

exp i2�k2

n2

N2

�

��
�

	

Ic n1[] n2[]=
1

2
F[n1][n2]+ F[�n1][n2]()

Is n1[] n2[]=
1

2i
F[n1][n2]� F[�n1][n2]()

FFT

V-176

Bartlett:

Blackman367, Blackman361, Blackman492, Blackman474:

.

Cos1, Cos2, Cos3, Cos4:

Hamming:

windowKind a0 a1 a2 a3

Blackman367 0.42323 0.49755 0.07922

Blackman361 0.44959 0.49364 0.05677

Blackman492 0.35875 0.48829 0.14128 0.01168

Blackman474 0.40217 0.49703 0.09392 0.00183

windowKind α

Cos1: α = 1

Cos2: α = 2

Cos3: α = 3

Cos4: α = 4

w(n) =

2n

N
n = 0,1,...

N

2

2 �
2n

N
n =

N

2
,...N �1

�

�
��

�
�
�

w(n) = a0 � a1 cos
2�

N
n

�

��
�

�	
+ a2 cos

2�

N
2n�

��
�

�	
� a3 cos

2�

N
3n�

��
�

�	

n = 0,1,2...N �1.

w(n) = cos
n

N
�

�

��
�

�

,

n = �
N

2
,...,�1,0,1,...,

N

2
.

w(n) =

0.54 + 0.46cos
2�n

N
�

��
�

��
n = �

N

2
,...,�1,0,1,...,

N

2

0.54 � 0.46cos
2�n

N
�

��
�

��
n = 0,1,2,...,N �1

	

�
�

�

�
�

FFT

V-177

Hanning:

KaiserBessel20, KaiserBessel25, KaiserBessel30:

where I0 is the zero-order modified Bessel function of the first kind.

Parzen:

Poisson2, Poisson3, Poisson4:

Riemann:

See Also
See Fourier Transforms on page III-237 for discussion. The inverse operation is IFFT.

windowKind α

KaiserBessel20: α = 2.

KaiserBessel25: α = 2.5.

KaiserBessel30: α = 3.

windowKind α

Poisson2: α = 2.

Poisson3: α = 3.

Poisson4: α = 4.

w n()

1
2
--- 1 2n

N
------π
 cos+ n N

2
---- … 1 0 1 … N

2
----, , , ,–, ,–=

1
2
--- 1 2n

N
------π
 cos– n 0 1 2 … N 1–, , , ,=

=w(n) =

1

2
1+ cos

2�n

N
�

��
�

��
�

�
	

�

�
� n = �

N

2
,...,�1,0,1,...,

N

2

1

2
1� cos

2�n

N
�

��
�

��
�

�
	

�

�
� n = 0,1,2,...,N �1

�

�

w(n) =

I0 �� 1�
2n
N

�

��
	

�

2�

�
�
�

	

�

I0 ��()
0 � n �

N

2
.

w(n) = 1�
2n

N

2

0 � n �
N

2
.

w(n) = exp ��
2 n

N

�

��
�

0 � n �

N

2
.

w(n) =
sin

2�n
N

�

��
�

��

2�n
N

�

��
�

��

0 	 n 	
N

2
.

FIFO2Wave

V-178

Spectral Windowing on page III-242. For 2D windowing see ImageWindow. Also the Hanning window
operation.
Also see the DWT operation for the discrete wavelet transform and the CWT operation for the continuous
wavelet transform. The HilbertTransform and WignerTransform operations.
The Unwrap, MatrixOp, DSPPeriodogram and LombPeriodogram operations.

References
For more information about the use of window functions see:
Harris, F.J., On the use of windows for harmonic analysis with the discrete Fourier Transform, Proc, IEEE,

66, 51-83, 1978.

FIFO2Wave
FIFO2Wave [/R/S] FIFOName, channelName, waveName
The FIFO2Wave operation copies FIFO data from the specified channel of the named FIFO into the named
wave. FIFOs are used for data acquisition.

Flags

Details
The FIFO must be in the valid state for FIFO2Wave to work. When you create a FIFO, using NewFIFO, it is
initially invalid. It becomes valid when you issue the start command via the CtrlFIFO operation. It remains
valid until you change a FIFO parameter using CtrlFIFO.
If you specify a range of FIFO data points, using /R=[startPoint,endPoint] then FIFO2Wave dumps the
specified FIFO points into the wave after clipping startPoint and endPoint to valid point numbers.
The valid point numbers depend on whether the FIFO is running and on whether or not it is attached to a
file. If the FIFO is running then startPoint and endPoint are truncated to number of points in the FIFO. If the
FIFO is buffering a file then the range can include the full extent of the file.
If you specify no range then FIFO2Wave transfers the most recently acquired FIFO data to the wave. The number
of points transferred is the smaller of the number of points in the FIFO and number of points in the wave.
FIFO2Wave may or may not change the wave’s X scaling and number type, depending on the current X
scaling and on the /S flag.
Think of the wave’s X scaling as being controlled by two values, x0 and dx, where the X value of point p is
x0 + p*dx. FIFO2Wave always sets the wave’s dx value equal to the FIFO’s deltaT value (as set by the
CtrlFIFO operation). If you use no /S flag, FIFO2Wave does not set the wave’s x0 value nor does it set the
wave’s number type.
If you are using FIFO2Wave to update a wave in a graph as quickly as possible, the /S=0 flag gives the
highest update rate. The other /S values trigger more recalculation and slow down the updating.
If the wave’s number type (possibly changed to match the FIFO channel) is a floating point type,
FIFO2Wave scales the FIFO data before transferring it to the wave as follows:
scaled_value = (FIFO_value - offset) * gain

If the FIFO channel’s gain is one and its offset is zero, the scaling would have no effect so FIFO2Wave skips it.
If the specified FIFO channel is an image strip channel (one defined using the optional vectPnts parameter
to NewFIFOChan), then the resultant wave will be a matrix with the number of rows set by vectPnts and
the number of columns set by the number of points described above for one-dimensional waves. To create

/R=[startPoint,endPoint] Dumps the specified FIFO points into the wave.

/S=s Controls the wave’s X scaling and number type:
s=0: Same as no /S.
s=1: Sets the wave’s X scaling x0 value to the number of the first

sample in the FIFO.
s=2: Changes the wave’s number type to match the FIFO channel’s

type.
s=3: Combination of s=1 and s=2.

FIFOStatus

V-179

an image plot that looks the same as the corresponding channel in a Chart, you will need to transpose the
wave using MatrixTranspose.

See Also
The NewFIFO and CtrlFIFO operations, and FIFOs and Charts on page IV-282 for more information on
FIFOs and data acquisition. For an explanation of waves and wave scaling, see Changing Dimension and
Data Scaling on page II-83.

FIFOStatus
FIFOStatus [/Q] FIFOName
The FIFOStatus operation returns miscellaneous information about a FIFO and its channels. FIFOs are used
for data acquisition.

Flags

Details
FIFOStatus sets the variable V_flag to nonzero if a FIFO of the given name exists. If the named FIFO does
exist then FIFOStatus stores information about the FIFO in the following variables:

The keyword-packed information string consists of a sequence of sections with the following form: keyword:value;
You can pick a value out of a keyword-packed string using the NumberByKey and StringByKey functions.
Here are the keywords for S_Info:

In addition, FIFOStatus writes fields to S_Info for each channel in the FIFO. The keyword for the field is a
combination of a name and a number that identify the field and the channel to which it refers. For example,
if channel 4 is named “Pressure” then the following would appear in the S_Info string: NAME4:Pressure.
In the following table, the channel’s number is represented by “#”.

/Q Doesn’t print in the history area.

V_FIFORunning Nonzero if FIFO is running.

V_FIFOChunks Number of chunks of data placed in FIFO so far.

V_FIFOnchans Number of channels in the FIFO.

S_Info Keyword-packed information string.

Keyword Type Meaning

DATE Number The date/time when start was issued via CtrlFIFO.

DELTAT Number The FIFO’s deltaT value as set by CtrlFIFO.

DISKTOT Number Current number of chunks written to the FIFO’s file.

FILENUM Number The output file refNum or review file refNum as set by CtrlFIFO. This will be
zero if the FIFO is connected to no file.

NOTE String The FIFO’s note string as set by CtrlFIFO.

VALID Number Zero if FIFO is not valid.

Keyword Type Meaning

FSMINUS# Number Channel’s minus full scale value as set by NewFIFOChan.

FSPLUS# Number Channel’s plus full scale value as set by NewFIFOChan.

GAIN# Number Channel’s gain value as set by NewFIFOChan.

NAME# String Name of channel.

OFFSET# Number Channel’s offset value as set by NewFIFOChan.

UNITS# String Channel’s units as set by NewFIFOChan.

FilterFIR

V-180

See Also
The NewFIFO, CtrlFIFO, and NewFIFOChan operations, FIFOs and Charts on page IV-282 for more
information on FIFOs and data acquisition.
The NumberByKey and StringByKey functions for parsing keyword-value strings.

FilterFIR
FilterFIR [flags] waveName [, waveName]…
The FilterFIR operation convolves each waveName with automatically-designed filter coefficients or with
coefsWaveName using time-domain methods.
The automatically-designed filter coefficients are simple lowpass and highpass window-based filters or a
maximally-flat notch filter. Multiple filter designs are combined into a composite filter. The filter can be
optionally placed into the first waveName or just used to filter the data in waveName.
FilterFIR filters data faster than Convolve when there are many fewer filter coefficient values than data
points in waveName.

Parameters
waveName is a destination wave that is overwritten by the convolution of itself and the filter.
waveName may be multidimensional, but only one dimension selected by /DIM is filtered (for two-dimensional
filtering, see MatrixFilter).
If waveName is complex, the real and imaginary parts are filtered independently.

Flags

Note: FilterFIR replaces the obsolete SmoothCustom operation.

/COEF [=coefsWaveName]

Replaces the first output waveName by the filter coefficients instead of the filtered
results or, when coefsWaveName is specified, replaces the output wave(s) by the result
of convolving waveName with coefficients in coefsWaveName.
coefsWaveName must not be one of the destination waveNames. It must be single- or
double-precision numeric and one-dimensional.
To avoid shifting the output with respect to the input, coefsWaveName must have an
odd length with the “center” coefficient in the middle of the wave.
The coefficients are usually symmetrical about the middle point, but FilterFIR does
not enforce this.

/DIM=d Specifies the wave dimension to filter.

Use /DIM=0 to apply the filter to each individual column (each one a channel, say
left and right) in a multidimensional waveName where each row comprises all of
the sound samples at a particular time.

d=-1: Treats entire wave as 1D (default).
d=0: Operates along rows.
d=1: Operates along columns.
d=2: Operates along layers.
d=3: Operates along chunks.

FilterFIR

V-181

/E=endEffect

/HI={f1, f2, n} Creates a high-pass filter based on the windowing method, using the Hanning
window unless another window is specified by /WINF.
f1 and f2 are filter design frequencies measured in fractions of the sampling frequency,
and may not exceed 0.5 (the normalized Nyquist frequency).
f1 is the end of the reject band, and f2 is the start of the pass band:
0 < f1 < f2 < 0.5
n is the number of FIR filter coefficients to generate. A larger number gives better
stop-band rejection. A good number to start with is 101.
Use both /HI and /LO to create a bandpass filter.

/LO={f1, f2, n} Creates a low-pass filter. f1 is the end of the pass band, f2 is the start of the reject band,
and n is the number of FIR filter coefficients. See /HI for more details.

/NMF={fc, fw [, eps, nMult]}

Creates a maximally-flat notch filter centered at fc with a -3dB width of fw. fc and fw
are filter design frequencies measured in fractions of the sampling frequency, and
may not exceed 0.5 (the normalized Nyquist frequency).
The longest filter length allowed is 4001 points, which requires fw >= 0.0079 (1.58% of
the sampling frequency).
The longest filter length allowed is 2,147,483,647 points, which requires
fw >= 1.07644e-05 (0.00107644 % of the sampling frequency). Prior to Igor 6.3, the
limits were filter length <= 4001 points and fw >= 0.0079.
Coefficients at the ends that are smaller than the optional eps parameter are removed,
making the filter shorter (and faster), though less accurate. The default is 2-40. Use 0
to retain all coefficients, no matter how small, even zero coefficients.
nMult specifies how much longer the filter may be to obtain the most accurate notch
frequency. The default is 2 (potentially twice as many coefficients). Set nMult <= 1 to
generate the shortest possible filter.
The maximally flat notch filter design is based on Zahradník and Vlcek, and uses
arbitrary precision math (see APMath) to compute the coefficients.

 /WINF=windowKind

Applies the named “window” to the filter coefficients. Windows alter the frequency
response of the filter in obvious and subtle ways, enhancing the stop-band rejection
or steepening the transition region between passed and rejected frequencies. They
matter less when many filter coefficients are used.
If /WINF is not specified, the Hanning window is used. For no coefficient filtering, use
/WINF=None.
Choices for windowKind are:
Bartlett, Blackman367, Blackman361, Blackman492, Blackman474, Cos1, Cos2, Cos3,
Cos4, Hamming, Hanning, KaiserBessel20, KaiserBessel25, KaiserBessel30, Parzen,
Poisson2, Poisson3, Poisson4, and Riemann.
See FFT for window equations and details.

Determines how the ends of the wave (w) are handled when fabricating missing
neighbor values. endEffect has values:
0: Bounce method (default). Uses w[i] in place of the missing w[-i] and w[n-

i] in place of the missing w[n+i].
1: Wrap method. Uses w[n-i] in place of the missing w[-i] and vice versa.
2: Zero method. Uses 0 for any missing value.
3: Fill method. Uses w[0] in place of the missing w[-i] and w[n] in place of

the missing w[n+i].

FilterFIR

V-182

Details
If coefsWaveName is specified, then /HI, /LO, and /NMF are ignored.
If more than one of /HI, /LO, and /NMF are specified, the filters are combined using linear convolution. The
length of the combined filter is slightly less than the sum of the individual filter lengths.
The filtering convolution is performed in the time-domain. That is, the FFT is not employed to filter the
data. For this reason the coefficients length should be small in comparison to the destination waves.
FilterFIR assumes that the middle point of coefsWaveName corresponds to the delay = 0 point. The “middle”
point number = trunc(numpnts(coefsWaveName -1)/2). coefsWaveName usually contains the two-sided
impulse response of a filter, and usually contains an odd number of points. This is the kind of coefficients
data generated by /HI, /LO, and /NMF.
FilterFIR ignores the X scaling of all waves, except when /COEF creates a coefficients wave, which preserves
the X scale deltax and alters the leftx value so that the zero-phase (center) coefficient is located at x=0.

Examples
// Make test sound from three sine waves
Variable/G fs= 44100 // Sampling frequency
Variable/G seconds= 0.5 // Duration
Variable/G n= 2*round(seconds*fs/2)
Make/O/W/N=(n) sound // 16-bit integer sound wave
SetScale/p x, 0, 1/fs, "s", sound
Variable/G f1= 200, f2= 1000, f3= 7000
Variable/G a1=100, a2=3000,a3=1500
sound= a1*sin(2*pi*f1*x)
sound += a2*sin(2*pi*f2*x)
sound += a3*sin(2*pi*f3*x)+gnoise(10) // Add a noise floor

// Compute the sound's spectrum in dB
FFT/MAG/WINF=Hanning/DEST=soundMag sound
soundMag= 20*log(soundMag)
SetScale d, 0, 0, "dB", soundMag

// Apply a 5 kHz low-pass filter to the sound wave
Duplicate/O sound, soundFiltered
FilterFIR/E=3/LO={4000/fs, 6000/fs, 101} soundFiltered

// Compute the filtered sound's spectrum in dB
FFT/MAG/WINF=Hanning/DEST=soundFilteredMag soundFiltered
soundFilteredMag= 20*log(soundFilteredMag)
SetScale d, 0, 0, "dB", soundFilteredMag

// Compute the filter's frequency response in dB
Make/O/D/N=0 coefs // Double precision is recommended
SetScale/p x, 0, 1/fs, "s", coefs
FilterFIR/COEF/LO={4000/fs, 6000/fs, 101} coefs
FFT/MAG/WINF=Hanning/PAD={(2*numpnts(coefs))}/DEST=coefsMag coefs
coefsMag= 20*log(coefsMag)
SetScale d, 0, 0, "dB", coefsMag

// Graph the frequency responses
Display/R/T coefsMag as "FIR Lowpass Example";DelayUpdate
AppendToGraph soundMag, soundFilteredMag;DelayUpdate
ModifyGraph axisEnab(left)={0,0.6}, axisEnab(right)={0.65,1}
ModifyGraph rgb(soundFilteredMag)=(0,0,65535), rgb(coefsMag)=(0,0,0)
Legend

FilterIIR

V-183

// Graph the unfiltered and filtered sound time responses
Display/L=leftSound sound as "FIR Filtered Sound";DelayUpdate
AppendToGraph/L=leftFiltered soundFiltered;DelayUpdate
ModifyGraph axisEnab(leftSound)={0,0.45}, axisEnab(leftFiltered)={0.55,1}
ModifyGraph rgb(soundFiltered)=(0,0,65535)

// Listen to the sounds
PlaySound sound // This has a very high frequency tone
PlaySound soundFiltered // This doesn't

References
Zahradník, P., and M. Vlcek, Fast Analytical Design Algorithms for FIR Notch Filters, IEEE Trans. on

Circuits and Systems, 51, 608 - 623, 2004.
<http://euler.fd.cvut.cz/publikace/files/vlcek/notch.pdf>

See Also
Smoothing on page III-258; the Smooth, Convolve, MatrixConvolve, and MatrixFilter operations.

FilterIIR
FilterIIR [flags] [waveName,…]
The FilterIIR operation applies to each waveName either the automatically-designed IIR filter coefficients or
the IIR filter coefficients in coefsWaveName. Multiple filter designs are combined into a composite filter. The
filter can be optionally placed into the first waveName or just used to filter the data in waveName.
The automatically-designed filter coefficients are bilinear transforms of the Butterworth analog prototype
with an optional variable-width notch filter.
To design more advanced IIR filters, see Designing the IIR Coefficients.

Parameters
waveName may be multidimensional, but only the one dimension selected by /DIM is filtered (for two-
dimensional filtering, see MatrixFilter).
waveName may be omitted for the purpose of checking the format of coefsWaveName. If the format is detectably
incorrect an error code will be returned in V_flag. Use /Z to prevent command execution from stopping.

Flags

/CASC Specifies that coefsWaveName contains cascaded bi-quad filter coefficients. The
cascade implementation is more stable and numerically accurate for high-order IIR
filtering than Direct Form 1 filtering. See Cascade Details.

/COEF [=coefsWaveName]

-150

-100

-50

0

dB

20151050
kHz

120

80

40

0

dB

20151050
kHz

 coefsMag
 soundMag
 soundFilteredMag

http://euler.fd.cvut.cz/publikace/files/vlcek/notch.pdf

FilterIIR

V-184

Details
FilterIIR sets V_flag to 0 on success or to an error code if an error occurred. Command execution stops if an
error occurs unless the /Z flag is set. Omit /Z and call GetRTError and GetRTErrMessage under similar
circumstances to see what the error code means.

Replaces the first output waveName by the filter coefficients instead of the filtered
results or, when coefsWaveName is specified, replaces the output wave(s) by the result
of filtering waveName with the IIR coefficients in coefsWaveName.
coefsWaveName must not be one of the destination waveNames. It must be single- or
double-precision numeric and two-dimensional.
When used with /CASC, coefsWaveName must have 6 columns, containing real-valued
coefficients for a product of ratios of second-order polynomials (cascaded bi-quad
sections).
If /ZP is specified, it must be complex, otherwise it must be real.
See Details for the format of the coefficients in coefsWaveName.

/DIM=d

/HI=fHigh Creates a high-pass Butterworth filter with the -3dB corner at fHigh. The order of the
filter is controlled by the /ORD flag.
fHigh is a filter design frequency measured in fractions of the sampling frequency, and
may not exceed 0.5 (the normalized Nyquist frequency).

/LO=fLow Creates a low-pass Butterworth filter with the -3dB corner at fLow. The /ORD flag
controls the order of the filter.
fLow is a filter design frequency measured in fractions of the sampling frequency, and
may not exceed 0.5 (the normalized Nyquist frequency).
Create bandpass and bandreject filters by specifying both /HI and /LO. For a
bandpass filter, set fLow > fHigh, and for a band reject filter, set fLow < fHigh.

/N={fNotch,
notchQ}

Creates a notch filter with the center frequency at fNotch and a -3dB width of
fNotch/notchQ.
fNotch is a filter design frequency measured in fractions of the sampling frequency,
and may not exceed 0.5 (the normalized Nyquist frequency).
notchQ is a number greater than 1, typically 10 to 100. Large values produce a filter
that “rings” a lot.

/ORD=order Sets the order of the Butterworth filter(s) created by /HI and /LO. The default is 2
(second order), and the maximum is 100.

/Z=z Prevents procedure execution from aborting when an error occurs. Use /Z=1 to handle
this case in your procedures using GetRTError(1) rather than having execution abort.
/Z=0 is the same as no /Z at all.

/ZP Specifies that coefsWaveName contains complex z-domain zeros (in column 0) and
poles (in column 1) or, if coefsWaveName is not specified, that the first output
waveName is to be replaced by filter coefficients in the zero-pole format. See Zeros and
Poles Details.

Specifies the wave dimension to filter.

Use /DIM=0 to apply the filter to each individual column (each one a channel, say
left and right) in a multidimensional waveName where each row comprises all of
the sound samples at a particular time.

d=-1: Treats entire wave as 1D (default).
d=0: Operates along rows.
d=1: Operates along columns.
d=2: Operates along layers.
d=3: Operates along chunks.

FilterIIR

V-185

Direct Form 1 Details
Unless /CASC or /ZP are specified, the coefficients in coefsWaveName describe a ratio of two polynomials of
the Z transform:

where x is the input wave waveName and y is the output wave (either waveName again or destWaveName).
FilterIIR computes the filtered result using the Direct Form I implementation of H(z).
The rational polynomial numerator (ai) coefficients in are column 0 and denominator (bi) coefficients in
column 1 of coefsWaveName.
The coefficients in row 0 are the nondelayed coefficients a0 (in column 0) and b0 (in column 1).
The coefficients in row 1 are the z-1 coefficients, a1 and b1.
The coefficients in row n are the z-n coefficients, an and bn.
The number of coefficients for the numerator can differ from the number of coefficients for the
denominator. In this case, specify 0 for unused coefficients.

Alternate Direct Form 1 Notation
The designation of ai, etc. as the numerator is at odds with many textbooks such as Digital Signal Processing,
which uses b for the numerator coefficients of the rational function, a for the denominator coefficients with
an implicit a0 = 1, in addition to reversing the signs of the remaining denominator coefficients so that they
can write H(z) as:

.

Coefficients derived using this notation need their denominator coefficients sign-reversed before putting
them into rows 1 through n of column 1 (the second column), and the “missing” nondelayed denominator
coefficient of 1.0 placed in row 0, column 1.

Note: If all the coefficients of the denominator are 0 (bi= 0 except b0 = 1), then the filter is actually
a causal FIR filter (Finite Impulse Response filter with delay of n-1). In this sense, FilterIIR
implements a superset of the FilterFIR operation.

H z() Y z()
X z()

a0 a1z 1– a2z 2– …+ + +

b0 b1z 1– b2z 2– …+ + +
---= =

xi yiao

-b1

-b2a2

a1

z-1

z-1

z-1

z-1

∑∑
1
bo

Direct Form I Implementation

yi
a0xi a1xi 1– a2xi 2– … b1yi 1– b2yi 2– …+––+ + +

b0
--=

H z() Y z()
X z()

biz
i–

i 0=

n

1 aiz
i–

i 1=

n

–

------------------------------= =

FilterIIR

V-186

Cascade Details
When using /CASC, coefficients in coefsWaveName describe the product of one or more ratios of two
quadratic polynomials of the Z transform:

.

Each product term implements a “cascaded bi-quad section”, and H(z) can be realized by feeding the output
of one section to the next one.
The cascade coefficients filter the data using a Direct Form II cascade implementation:

The cascade implementation is more stable and numerically accurate for high-order IIR filtering than Direct
Form I filtering. Cascade IIR filtering is recommended when the filter order exceeds 16 (a 16th-order Direct
Form I filter has 17 numerator coefficients and 17 denominator coefficients).
coefsWaveName must be a six-column real-valued numeric wave. Each row describes one bi-quad section.
The coefficients for the second term (or “section”) of the product (k=2) are in the following row, etc.:

The number of coefficients for the numerator (a’s) is allowed to differ from the number of coefficients for
the denominator (b’s). In this case, specify 0 for unused coefficients.
For example, a third order filter (three poles and three zeros) cascade implementation is a single-order
section combined with a second order section. The values for , for that section (k) would be 0. Here
the second section is specified as the first-order section:

Alternate Cascade Notation
In the DSP literature, the gain values are typically one and the H(z) expression contains an overall gain
value, usually K. Here each product term (or “section”) has a user-settable gain value. Computing the correct

k Row Col 0 Col 1 Col 2 Col 3 Col 4 Col 5

1 0

2 1

…

k Row Col 0 Col 1 Col 2 Col 3 Col 4 Col 5

1 0

2 1 0 0

H z() Y z()
X z()

a0k
a1k

z 1– a2k
z 2–+ +

b0k
b1k

z 1– b2k
z 2–+ +

k 1=

k

∏= =

xi

wi

wi-2

wi-1

yiao

-b1

-b2 a2

a1

z-1

z-1

∑ ∑
1
bo

Cascaded Bi-Quad Direct Form II Implementation

wi
xi b1wi 1–– b2wi 2––

b0
---=

yi a0wi a1wi 1– a2wi 2–+ +=

a01
a11

a21
b01

b11
b21

a02
a12

a22
b02

b12
b22

a2k
b2k

a01
a11

a21
b01

b11
b21

a02
a12

b02
b12

b0k

FilterIIR

V-187

gain values to control overflow in integer implementations is the responsibility of the user. For floating
implementations, you might as well set all values to one except, say, , to control the overall gain.

Zeros and Poles Details
When using /ZP, coefficients in coefsWaveName contains complex zeros and poles in the (also complex) Z
transform domain:

.

coefsWaveName must be a two-column complex wave with zero0, zero1,… zeroN in the first column of N+1
rows, and pole0, pole1,… poleN in the second column of those same rows:

If a zero or pole has a nonzero imaginary component, the conjugate zero or pole must be included in
coefsWaveName. For example, if a zero is placed at (0.7, 0.5), the conjugate is (0.7, -0.5), and that value must
also appear in column 0. These two zeros form what is known as a “conjugate pair”. The conjugate values
must match within the greater of 1.0e-6 or 1.0e-6 * |zeroOrPole|.
Use (0,0) for unused poles or zeros, as a zero or pole at z= (0,0) has no effect on the filter frequency response.
The /ZP format for the coefficients is internally converted into the Direct Form 1 implementation, or into
the Cascade Direct Form 2 implementation if /CASC is specified. There is no option for returning these
implementation-dependent coefficients in a wave.

Designing the IIR Coefficients
Simple IIR filters can be used or created by specifying the /LO, /HI, /ORD, /N, /CASC, and /ZP flags. Use
/COEF without coefsWaveName to put these simple IIR filter coefficients into the first waveName.
More advanced IIR filters (Bessel, Chebyshev) can be designed using the separate IFDL package. IFDL is a
suite of extensions and macros that you use to design FIR (Finite Impulse Response) and IIR (Infinite
Impulse Response) filters and to apply them to your data. The IIR design software creates IIR coefficients
based on bilinear transforms of analog prototype filters such as Bessel, Butterworth, and Chebyshev. See
the WaveMetrics web site for more about IFDL.
Even without IFDL, you can create custom IIR filters by manually placing poles and zeros in the Z plane
using the Pole and Zero Filter Design procedures. Copy the following line to your Procedure window and
click the Compile button at the bottom of the procedure window:
#include <Pole And Zero Filter Design>

Then choose Pole and Zero Filter Design from the Analysis menu.

Examples
// Make test sound from three sine waves
Variable/G fs= 44100 // Sampling frequency
Variable/G seconds= 0.5 // Duration
Variable/G n= 2*round(seconds*fs/2)
Make/O/W/N=(n) sound // 16-bit integer sound wave
SetScale/p x, 0, 1/fs, "s", sound
Variable/G f1= 200, f2= 1000, f3= 7000
Variable/G a1=100, a2=3000,a3=1500
sound= a1*sin(2*pi*f1*x)
sound += a2*sin(2*pi*f2*x)
sound += a3*sin(2*pi*f3*x)+gnoise(10) // Add a noise floor

// Compute the sound's spectrum in dB
FFT/MAG/WINF=Hanning/DEST=soundMag sound
soundMag= 20*log(soundMag)
SetScale d, 0, 0, "dB", soundMag

k Row Col 0 Col 1

1 0 (zero0Real, zero0Imag) (pole0Real, pole0Imag)

2 1 (zero1Real, zero1Imag) (pole1Real, pole1Imag)

3 2 (zero2Real, zero2Imag) (pole2Real, pole2Imag)

…

b0k
b01

H z() Y z()
X z()

z z0–() z z1–()• z z2–()• …•
z p0–() z p1–()• z p2–()• …•

---= =

FilterIIR

V-188

// Apply a 5 kHz, 6th order low-pass filter to the sound wave
Duplicate/O sound, soundFiltered
FilterIIR/LO=(5000/fs)/ORD=6 soundFiltered // Second order by default

// Compute the filtered sound's spectrum in dB
FFT/MAG/WINF=Hanning/DEST=soundFilteredMag soundFiltered
soundFilteredMag= 20*log(soundFilteredMag)
SetScale d, 0, 0, "dB", soundFilteredMag

// Compute the filter's frequency and phase by filtering an impulse
Make/O/D/N=2048 impulse= p==0 // Impulse at t==0
SetScale/P x, 0, 1/fs, "s", impulse
Duplicate/O impulse, impulseFiltered
FilterIIR/LO=(5000/fs)/ORD=6 impulseFiltered
FFT/MAG/DEST=impulseMag impulseFiltered
impulseMag= 20*log(impulseMag)
SetScale d, 0, 0, "dB", impulseMag
FFT/OUT=5/DEST=impulsePhase impulseFiltered
impulsePhase *= 180/pi // Convert to degrees
SetScale d, 0, 0, "deg", impulsePhase
Unwrap 360, impulsePhase // Continuous phase

// Graph the frequency responses
Display/R/T impulseMag as "IIR Lowpass Example"
AppendToGraph/L=phase/T impulsePhase
AppendToGraph soundMag, soundFilteredMag
ModifyGraph axisEnab(left)={0,0.6}
ModifyGraph axisEnab(right)={0.65,1}
ModifyGraph axisEnab(phase)={0.65,1}
ModifyGraph freePos=0, lblPos=60, rgb(soundFilteredMag)=(0,0,65535)
ModifyGraph rgb(impulseMag)=(0,0,0), rgb(impulsePhase)=(0,65535,0)
ModifyGraph axRGB(phase)=(3,52428,1), tlblRGB(phase)=(3,52428,1)
Legend

// Graph the unfiltered and filtered impulse time responses
Display/L=leftImpulse impulse as "IIR Filtered Impulse"
AppendToGraph/L=leftFiltered impulseFiltered
ModifyGraph axisEnab(leftImpulse)={0,0.45}, axisEnab(leftFiltered)={0.55,1}
ModifyGraph freePos=0, margin(left)=50
ModifyGraph mode(impulse)=1, rgb(impulseFiltered)=(0,0,65535)
SetAxis bottom -0.00005,0.001
Legend

-300

-200

-100

0

dB

20151050
kHz

500
400
300
200
100

0

de
g

120

80

40

0

dB

20151050
kHz

 impulseMag
 impulsePhase
 soundMag
 soundFilteredMag

1.0
0.8
0.6
0.4
0.2
0.0

1.00.80.60.40.20.0
ms

0.20

0.10

0.00

 impulse
 impulseFiltered

FindDimLabel

V-189

// Listen to the sounds
PlaySound sound // This has a very high frequency tone
PlaySound soundFiltered // This doesn't

References
Embree, P.M., and B. Kimble, C Language Algorithms for Signal Processing, 456 pp., Prentice Hall, Englewood

Cliffs, New Jersey, 1991.
Lynn, P.A., and W. Fuerst, Introductory Digital Signal Processing with Computer Applications, 479 pp., Prentice

Hall, Englewood Cliffs, New Jersey, 1998.
Oppenheim, A.V., and R.W. Schafer, Digital Signal Processing, 585 pp., Prentice Hall, Englewood Cliffs, New

Jersey, 1975.
Terrell, T.J., Introduction to Digital Filters, 2nd ed., 261 pp., John Wiley & Sons, New York, 1988.

See Also
Smoothing on page III-258; the FFT and FilterFIR operations.

FindDimLabel
FindDimLabel(waveName, dimNumber, labelString)
Returns the index value corresponding to the label for the given dimension. Returns -1 if the label is for the
entire dimension. Returns -2 if the label is not found.
Use dimNumber =0 for rows, 1 for columns, 2 for layers, or 3 for chunks.

See Also
GetDimLabel, SetDimLabel

FindLevel
FindLevel [flags] waveName, level
The FindLevel operation searches the named wave to find the X value at which the specified Y level is
crossed.

Flags

/B=box Sets box size for sliding average. If /B=box is omitted or box equals 1, no averaging is
done. If you specify an even box size then the next higher (odd) integer is used. If you
use a box size greater than 1, FindLevel will be unable to find a level crossing that
occurs in the first or last box/2 -1 points of the wave since these points don’t have
enough neighbors for computing the derived average wave values.

/EDGE=e

/P Computes the X crossing location in terms of point number. If /P is omitted, the level
crossing location is computed in terms of X values.

/Q Don’t print results in history and don’t report error if level is not found.

/R=(startX,endX) Specifies an X range of the wave to search. You may exchange startX and endX to
reverse the search direction.

/R=[startP,endP] Specifies a point range of the wave to search. You may exchange startP and endP to
reverse the search direction. If you specify the range as /R=[startP] then the end of the
range is taken as the end of the wave. If /R is omitted, the entire wave is searched.

Specifies searches for either increasing or decreasing level crossing.
e=1: Searches only for crossing where Y values are increasing as level is

crossed from wave start towards wave end.
e=2: Searches only for crossing where the Y values are decreasing as level

is crossed from wave start towards wave end.
e=0: Same as no /EDGE flag (searches for either increasing and decreasing

level crossing).

FindLevels

V-190

Details
FindLevel scans through the wave comparing level to values derived from the Y values of the wave. Each
derived value is a sliding average of the Y values.
FindLevel searches for two derived wave values that straddle level. If it finds these values it computes the
X value at which level is located by linearly interpolating between the straddling Y values.

FindLevel reports its results by setting these variables:

If you omit the /Q flag then FindLevel also reports its results by printing them in the history area.
If level is not found FindLevel generates an error which puts up an error alert and halts execution of any
command line or macro that is in progress.
V_LevelX is returned in terms of the X scaling of the named wave unless you use the /P flag, in which case
it is in terms of point number.
The FindLevel operation is not multidimensional aware. See Analysis on Multidimensional Waves on
page II-110 for details.

See Also
The EdgeStats, FindLevels, FindValue, and PulseStats operations and the BinarySearch and
BinarySearchInterp functions.

FindLevels
FindLevels [flags] waveName, level
The FindLevels operation searches the named wave to find one or more X values at which the specified Y
level is crossed.
To find where the wave is equal to a given value, use FindValue instead.

Flags

/T=dx Search for two level crossings. dx must be less than minWidthX, so you must also
specify /M if you use /T. (FindLevel limits dx so that second search start isn’t beyond
where the first search for next edge will be.)

/T=dx Performs a second search after finding the initial level crossing. The second search
starts dx units beyond the initial level crossing and looks back in the direction of the
initial crossing. If FindLevel finds a second level crossing, it sets V_LevelX to the
average of the initial and second crossings. Otherwise, it sets V_LevelX to the initial
crossing.

Note: FindLevel does not locate values exactly equal to level; it locates transitions through level.
See BinarySearch for one method of locating exact values.

V_flag 0: level was found.
1: level was not found.

V_LevelX Interpolated X value at which level was found, or the corresponding point number if
/P is specified.

V_rising 0: Y values at the crossing are decreasing from wave start towards wave end.
1: Y values at the crossing are increasing.

/B=box Sets box size for sliding average. See the FindLevel operation.

/D=destWaveName Specifies wave into which FindLevels is to store the level crossing values. If /D and /DEST
are omitted, FindLevels creates a wave named W_FindLevels to store the level crossing
values in.

/DEST=destWaveName

FindLevels

V-191

Details
The algorithm for finding a level crossing is the same one used by the FindLevel operation.
If FindLevels finds maxLevels crossings or can not find another level crossing, it stops searching.
FindLevels sets the following variables:

Examples
// Prior to Igor 6.13, any /D wave had to exist:
Make/O/D/N=0 destWave
FindLevels/Q/D=destWave data, 5
if(V_LevelsFound)

Print destWave[0] // First crossing X location

// As of Igor 6.13, /D and /DEST create the destination wave if it does not exist:
FindLevels/Q/D=destWave data, 5
if(V_LevelsFound)

Print destWave[0] // First crossing X location

See Also
The FindLevel operation for details about the level crossing detection algorithm and the /B, /P, /Q, /R, and
/T flag values.
The FindLevels operation is not multidimensional aware. See Analysis on Multidimensional Waves on
page II-110 for details.

Same as /D. Added /DEST for Igor 6.13; now the named wave need not pre-exist. Both
/D and /DEST create a real wave reference for the destination wave in a user function.
See Automatic Creation of WAVE References on page IV-57 for details.

/EDGE=e

/M=minWidthX Sets the minimum X distance between level crossings. This determines where
FindLevels searches for the next crossing after it has found a level crossing. The search
starts minWidthX X units beyond the crossing. The default value for minWidthX is 0.

/N=maxLevels Sets a maximum number of crossings that FindLevels is to find. The default value for
maxLevels is the number of points in the specified range of waveName.

/P Compute crossings in terms of points. See the FindLevel operation.

/Q Doesn’t print to history and doesn’t abort if no levels are found.

/R=(startX,endX) Specifies X range. See the FindLevel operation.

/R=[startP,endP] Specifies point range. See the FindLevel operation.

/T=dx Search for two level crossings. dx must be less than minWidthX, so you must also
specify /M if you use /T. (FindLevels limits dx so that second search start isn’t beyond
where the first search for next edge will be.) See FindLevel for more about /T.

V_flag 0: maxLevels level crossings were found.
1: At least one but less than maxLevels level crossings were found.
2: No level crossings were found.

V_LevelsFound Number of level crossings found.

Specifies searches for either increasing or decreasing level crossing.
e=1: Searches only for crossings where the Y values are increasing as level

is crossed from wave start towards wave end.
e=2: Searches only for crossings where the Y values are decreasing as level

is crossed from wave start towards wave end.
e=0: Same as no /EDGE flag (searches for both increasing and decreasing

level crossings).

FindListItem

V-192

FindListItem
FindListItem(itemStr, listStr [, listSepStr [, start [, matchCase]]])
The FindListItem function returns a numeric offset into listStr where itemStr begins. listStr should contain
items separated by the listSepStr character, such as "abc;def;".
Use FindListItem to locate the start of an item in a string containing a "wave0;wave1;" style list such as those
returned by functions like TraceNameList or AnnotationList, or a line from a delimited text file.
Use WhichListItem to determine the index of an item in the list.
If itemStr is not found, if listStr is "", or if start is not within the range of 0 to strlen(listStr)-1, then -1 is returned.
listSepStr, startIndex, and matchCase are optional; their defaults are ";", 0, and 1 respectively.

Details
ItemStr may have any length.
listStr is searched for the first instance of the item string bound by a listSepStr on the left and a listSepStr on the
right. The returned number is the character index where the first character of itemStr was found in listSepStr.
The search starts from the character position in listStr specified by start. A value of 0 starts with the first
character in listStr, which is the default if start is not specified.
listString is treated as if it ends with a listSepStr even if it doesn’t.
Searches for listSepStr are always case-sensitive. The comparison of itemStr to the contents of listStr is
usually case-sensitive. Setting the optional matchCase parameter to 0 makes the comparison case insensitive.
Only the first character of listSepStr is used.
If startIndex is specified, then listSepStr must also be specified. If matchCase is specified, startIndex and
listSepStr must be specified.

Examples
Print FindListItem("w1", "w0;w1;w2,") // prints 3
Print FindListItem("v2", "v1,v2,v3,", ",") // prints 3
Print FindListItem("v2", "v0,v2,v2,", ",", 4) // prints 6
Print FindListItem("C", "a;c;C;") // prints 4
Print FindListItem("C", "a;c;C;", ";", 0, 0) // prints 2

See Also
The AddListItem, strsearch, StringFromList, RemoveFromList, ItemsInList, WhichListItem, WaveList,
TraceNameList, StringList, VariableList, and FunctionList functions.

FindPeak
FindPeak [flags] waveName
The FindPeak operation searches for a minimum or maximum by analyzing the smoothed first and second
derivatives of the named wave. Information about the peak position, amplitude, and width are returned in
the output variables.

Flags
Some of the flags have the same meaning as for the FindLevel operation.

/B=box Sets box size for sliding average.

/I Modify the search criteria to accommodate impulses (peaks of one sample) by
requiring only one value to exceed minLevel.
The default criteria requires that two successive values exceed minLevel for a peak to
be found (or two successive values be less than the /M level when searching for
negative peaks).
Impulses can also be found by omitting minLevel, in which case /I is superfluous.

/M=minLevel Defines minimum level of a peak. /N changes this to maximum level (see Details).

/N Searches for a negative peak (minimum) rather then a positive peak (maximum).

FindPeak

V-193

Details
FindPeak sets the following variables:

FindPeak computes the sliding average of the input wave using the BoxSmooth algorithm with the box
parameter. The peak center is found where the derivative of this smoothed result crosses zero. The peak
edges are found where the second derivative of the smoothed result crosses zero. Linear interpolation of
the derivatives is used to more precisely locate the center and edges. The peak value is simply the greater
of the two unsmoothed values surrounding the peak center (if /N, then the lesser value).
FindPeak is not a high-accuracy measurement routine; it is intended as a simple peak-finder. Use the
PulseStats operation for more precise statistics.
Without /M, a peak is found where the derivative crosses zero, regardless of the peak height.
If you use the /M=minLevel flag, FindPeak ignores peaks that are lower than minLevel (i.e., the Y value of a
found peak will exceed minLevel) in the box-smoothed input wave. If /N is also specified (search for
minimum), FindPeak ignores peaks whose amplitude is greater than minLevel (i.e., the Y value of a found
peak will be less than minLevel).
Without /I, a peak must have two successive values that exceed minLevel. Use /I when you are searching for
peaks that may have only one value exceeding minLevel.
The search for the peak begins at startX (or the first point of the wave if /R is not specified), and ends at endX
(or the last point of the wave if no /R). Searching backwards is permitted, and exchanges the values of
V_LeadingEdgeLoc and V_TrailingEdgeLoc.
A simple automatic peak-finder is implemented in the procedure file:
#include <Peak AutoFind>

one of the #include <Multi-peak fitting 1.3> procedures that provides support for Gaussian,
Lorentzian, and Voigt fitting functions. See the “Multi-peak fit” example experiment for details
(:Examples:Curve Fitting: folder).
The FindPeak operation is not multidimensional aware. See Analysis on Multidimensional Waves on page
II-110 for details.

/P Location output variables (see Details) are reported in terms of (floating point) point
numbers. If /P is omitted, they are reported as X values.

/Q Doesn’t print to history and doesn’t abort if no peak is found.

/R=(startX,endX) Specifies X range and direction for search.

/R=[startP,endP] Specifies point range and direction for search.

V_flag Set only when using the /Q flag.
0: Peak was found.
Any nonzero value means the peak was not found.

V_LeadingEdgeLoc Interpolated location of the peak edge closest to startX or startP. If you use the /P
flag, V_LeadingEdgeLoc is a point number rather than to an X value. If the edge
was not found, this value is NaN.

V_PeakLoc Interpolated X value at which the peak was found. If you use the /P flag, FindPeak
sets V_PeakLoc to a point number rather than to an X value. Set to NaN if peak
wasn’t found.

V_PeakVal The approximate Y value of the found peak. If the peak was not found, this value
is NaN (Not a Number).

V_PeakWidth Interpolated peak width. If you use the /P flag, V_PeakWidth is expressed in
point numbers rather than as an X value. V_PeakWidth is never negative. If either
peak edge was not found, this value is NaN.

V_TrailingEdgeLoc Interpolated location of the peak edge closest to endX or endP. If you use the /P
flag, V_TrailingEdgeLoc is a point number rather than to an X value. If the edge
was not found, this value is NaN.

FindPointsInPoly

V-194

See Also
The PulseStats operation, the FindLevel operation for details about the /B, /P, /Q, and /R flag values.

FindPointsInPoly
FindPointsInPoly xWaveName, yWaveName, xPolyWaveName, yPolyWaveName
The FindPointsInPoly operation determines if points fall within a certain polygon. It can be used to write
procedures that operate on a subset of data identified graphically in a graph.

Details
FindPointsInPoly determines which points in yWaveName vs xWaveName fall within the polygon defined
by yPolyWaveName vs xPolyWaveName.
xWaveName must have the same number of points as yWaveName and xPolyWaveName must have the same
number of points as yPolyWaveName.
FindPointsInPoly creates an output wave named W_inPoly with the same number of points as xWaveName.
FindPointsInPoly indicates whether the point yWaveName[p] vs xWaveName[p] falls within the polygon by
setting W_inPoly[p]=1 if it is within the polygon, or W_inPoly[p]=0 if it is not.
FindPointsInPoly uses integer arithmetic with a precision of about 1 part in 1000. This should be good
enough for visually determined (hand-drawn) polygons but might not be sufficient for mathematically
generated polygons.
The FindPointsInPoly operation is not multidimensional aware. See Analysis on Multidimensional Waves
on page II-110 for details.

See Also
The GraphWaveDraw operation.

FindRoots
FindRoots [flags] funcspec, pWave [, funcspec, pwave [, …]]
FindRoots /P=PolyCoefsWave
The FindRoots operation determines roots or zeros of a specified nonlinear function or system of functions.
The function or system of functions must be defined in the form of Igor user procedures.
Using the second form of the command, FindRoots finds all the complex roots of a polynomial with real
coefficients. The polynomial coefficients are specified by PolyCoefsWave.

Flags for roots of nonlinear functions

/B [= doBracket]

/F=trustRegion Sets the expansion factor of the trust region for the search algorithm when finding
roots of systems of functions. Smaller numbers will result in a more stable search,
although for some functions larger values will allow the search to zero in on a root
more rapidly. Default is 1.0; useful values are usually between 0.1 and 100.

/I=maxIters Sets the maximum number of iterations in searching for a root to maxIters. Default is 100.

Specifies bracketing for roots of a single nonlinear function only.
doBracket=0: Skips an initial check of the root bracketing values and the

possible search for bracketing values. This means that you must
provide good bracketing values via the /L and /H flags. See /L
and /H flags for details on bracketing of roots. /B alone is the
same as /B=0.

doBracket=1: Uses default root bracketing.

FindRoots

V-195

Flag for roots of polynomials

Parameters
func specifies the name of a user-defined function.
pwave gives the name of a parameter wave that will be passed to your function as the first parameter. It is
not modified. It is intended for your private use to pass adjustable constants to your function.
These parameters occur in pairs. For a one-dimensional problem, use a single func, pwave pair. An N-
dimensional problem requires N pairs unless you use the combined function form (see Combined Format
for Systems of Functions).

Function Format for 1D Nonlinear Functions
Finding roots of a nonlinear function or system of functions requires that you realize the function in the
form of an Igor user function of a certain form. In the FindRoots command you then specify the functions
with one or more function names paired with parameter wave names. See Finding Function Roots on page
III-285 for detailed examples.
The functions must have a particular form. If you are finding the roots of a single 1D function, it should look
like this:
Function myFunc(w,x)

Wave w
Variable x

return f(x) // an expression …
End

Replace “f(x)” with an appropriate expression. The FindRoots command might then look like this:

/L=lowBracket
/H=highBracket

/L and /H are used only when finding roots of a single nonlinear function. lowBracket
and highBracket are X values that bracket a zero crossing of the function. A root is
found between the bracketing values.
If lowBracket and highBracket are on the same side of zero, it will try to find a minimum
or maximum between lowBracket and highBracket. If it is found, and it is on the other
side of zero, Igor will find two roots.
If lowBracket and highBracket are on the same side of zero, but no suitable extreme
point is found between, it will search outward from these values looking for a zero
crossing. If it is found, Igor determines one root.
If lowBracket and highBracket are equal, it adds 1.0 to highBracket before looking for a
zero crossing.
The default values for lowBracket and highBracket are zero. Thus, not using either
lowBracket or highBracket is the same as /L=0/H=1.

/Q Suppresses printout of results in the history area. Ordinarily, the results of root
searches are printed in the history.

/T=tol Sets the acceptable accuracy to tol. That is, the reported root should be within ±tol of
the real root.

/X=xWave
/X={x1, x2, …}

Sets the starting point for searching for a root of a system of functions. There must be
as many X values as functions. The starting point can be specified with a wave having
as many points as there are functions, or you can write out a list of X values in braces.
If you are finding roots of a single function, use /L and /H instead.
If you specify a wave, this wave is also used to receive the result of the root search.

/Z=yValue Finds other solutions, that is, places where f(x) = yValue. FindRoots usually finds
zeroes — places where f(x) = 0.

/P=PolyCoefsWave Specifies a wave containing real polynomial coefficients. With this flag, it finds
polynomial roots and does not expect to find user function names on the command line.
The /P flag causes all other flags to be ignored.
Use of this flag is not permitted in a thread-safe function.

FindRoots

V-196

FindRoots /L=0 /H=1 myFunc, cw // cw is a parameter wave for myFunc

Function Format for Systems of Multivariate Functions
If you need to find the roots of a system of multidimensional functions, you can use either of two forms. In
one form, you provide N functions with N independent variables. You must have a function for each
independent variable. For instance, to find the roots of two 2D functions, the functions must have this form:
Function myFunc1(w, x1, x2)

Wave w
Variable x1, x2

return f1(x1, x2) // an expression …
End

Function myFunc2(w, x1, x2)
Wave w
Variable x1, x2

return f2(x1, x2) // an expression …
End

In this case, the FindRoots command might look like this (where cw1 and cw2 are parameter waves that
must be made before executing FindRoots):
FindRoots /X={0,1} myFunc1, cw1, myFunc2, cw2

You can also use a wave to pass in the X values. Make sure you have the right number of points in the X
wave — it must have N points for a system of N functions.
Function myFunc1(w, xW)

Wave w, xW

return f1(xW[0], xW[1]) // an expression …
End

Function myFunc2(w, xW)
Wave w, xW

return f2(xW[0], xW[1]) // an expression …
End

Combined Format for Systems of Functions
For large systems of equations it may get tedious to write a separate function for each equation, and the
FindRoots command line will get very long. Instead, you can write it all in one function that returns N Y
values through a Y wave. The X values are passed to the function through a wave with N elements. The
parameter wave for such a function must have N columns, one column for each equation. The parameters for
equation N are stored in column N-1. FindRoots will complain if any of these waves has other than N rows.
Here is an template for such a function:
Function myCombinedFunc(w, xW, yW)

Wave w, xW, yW

yW[0] = f1(w[0][...], xW[0], xW[1],..., xW[N-1])
yW[1] = f2(w[1][...], xW[0], xW[1],..., xW[N-1])
…
yW[N-1] = fN(w[N-1][...], xW[0], xW[1],..., xW[N-1])

End

When you use this form, you only have one function and parameter wave specification in the FindRoots
command:
Make/N=(nrows, nequations) paramWave

fill in paramWave with values

Make/N=(number of equations) guessWave
guessWave = {x0, x1, …, xN}
FindRoots /X=guessWave myCombinedFunc, paramWave

FindRoots has no idea how many actual equations you have in the function. If it doesn’t match the number
of rows in your waves, your results will not be what you expect!

Coefficients for Polynomials
To find the roots of a polynomial, you first create a wave with the correct number of points. For a
polynomial of degree N, create a wave with N+1 points. For instance, to find roots of a cubic equation you
need a four-point wave.
The first point (row zero) of the wave contains the constant coefficient, the second point contains the
coefficient for X, the third for X2, etc.

FindRoots

V-197

There is no hard limit on the maximum degree, but note that there are significant numerical problems
associated with computations involving high-degree polynomials. Round-off error most likely limits
reasonably accurate results to polynomials with degree limited to 20 to 30.
Ultimately, if you are willing to accept very limited accuracy, the numerical problems will result in a failure
to converge. In limited testing, we found no failures to converge with polynomials up to at least degree 100.
At degree 150, we found occasional failures. At degree 200 the failures were frequent, and at degree 500 we
found no successes.
Note that you really can't evaluate a polynomial with such high degree, and we have no idea if the
computed roots for a degree-100 polynomial have any practical relationship to the actual roots.
While FindRoots is a thread-safe operation, finding polynomial roots is not. Using FindRoots/P=polyWave
in a ThreadSafe function results in a compile error.

Results for Nonlinear Functions and Systems of Functions
The FindRoots operation reports success or failure via the V_flag variable. A nonzero value of V_flag
indicates the reason for failure:

The results of finding roots of a single 1D function are put into several variables:

Results for roots of a system of nonlinear functions are reported in waves:

V_flag=0: Successful search for a root. Otherwise, the value indicates what went wrong:

V_flag=1: User abort.

V_flag=3: Exceeded maximum allowed iterations

V_flag=4: /T=tol was too small. Reported by the root finder for systems of nonlinear functions.

V_flag=5: The search algorithm wasn’t making sufficient progress. It may mean that /T=tol was
set to too low a value, or that the search algorithm has gotten trapped at a false root.
Try restarting from a different starting point.

V_flag=6: Unable to bracket a root. Reported when finding roots of single nonlinear functions.

V_flag=7: Fewer roots than expected. Reported by the polynomial root finder. This may indicate
that roots were successfully found, but some are doubled. Happens only rarely.

V_flag=8: Decreased degree. Reported by the polynomial root finder. This indicates that one or
more of the highest-order coefficients was zero, and a lower degree polynomial was
solved.

V_flag=9: Convergence failure or other numerical problem. Reported by the polynomial root
finder. This indicates that a numerical problem was detected during the computation.
The results are not valid.

V_numRoots The number of roots found. Either 1 or 2.

V_Root The root.

V_YatRoot The Y value of the function at the root. Always check this; some discontinuous
functions may give an indication of success, but the Y value at the found root isn’t
even close to zero.

V_Root2 Second root if FindRoots found two roots.

V_YatRoot2 The Y value at the second root.

W_Root X values of the root of a system of nonlinear functions. If you used /X=xWave, the root
is reported in your wave instead.

W_YatRoot The Y values of the functions at the root of a system of nonlinear functions.
Only one root is found during a single call to FindRoots.

FindSequence

V-198

Roots of a polynomial are reported in a wave:

See Also
Finding Function Roots on page III-285.
The FindRoots operation uses the Jenkins-Traub algorithm for finding roots of polynomials:
Jenkins, M.A., Algorithm 493, Zeros of a Real Polynomial, ACM Transactions on Mathematical Software, 1,

178-189, 1975. Used by permission of ACM (1998).

FindSequence
FindSequence [flags] srcWave
The FindSequence operation finds the location of the specified sequence starting the search from the
specified start point. The result of the search stored in V_value is the index of the entry in the wave where
the first value is found or -1 if the sequence was not found.

Flags

Details
If the match sequence is specified via the /V flag, it is considered to be a floating point wave (i.e., single or
double precision) in which case it is compared to data in the wave using a tolerance value. If the tolerance
is not specified by the /T flag, the default value 1.0-7.
If the match sequence is specified via the /I flag, the sequence is assumed to be an integer wave (this includes
both signed and unsigned char, signed and unsigned short as well as long). In this case srcWave must also
be of integer type and the operation searches for the sequence based on exact equality between the match
sequence and entries in the wave as signed long integers.
If the match sequence is unsigned long wave use the /U flag to specify the value for an integer comparison.
You can also use this operation on waves of two or more dimensions. In this case you can calculate the rows,
columns, etc. For example, in the case of a 2D wave:
col=floor(V_value/rowsInWave)
row=V_value-col*rowsInWave

See Also
The FindValue operation.

W_polyRoots A complex wave containing the roots of a polynomial. The number of roots should be
equal to the degree of the polynomial, unless a root is doubled.

/I=wave Specifies an integer sequence wave for integer search.

/M=val If there are repeating entries in the match sequence, val is a tolerance value that specifies
the maximum difference between the number of repeats. So, for example, if the match
sequence is aaabbccc and the srcWave contains a sequence aabbcc then the sequence will
not be considered a match if val=0 but will be considered a match if val=1.

/S=start Sets starting point of the search. If /S is not specified, start is 0.

/T=tolerance Defines the tolerance (value ± tolerance will be accepted) when comparing floating
point numbers.

/U=uValue Specifies the match sequence wave in case of unsigned long range.

/V=rValue Specifies the match sequence wave in the case of single/double precision numbers.

/Z No error reporting.

FindValue

V-199

FindValue
FindValue [flags] srcWave
FindValue [flags] txtWave
This operation finds the location of the specified value starting the search from the specified start point. The
result of the search stored in V_value is the index of the entry in the wave where the value is found or -1 if
not found.

Flags

Details
If the match value is specified via the /V flag, it is considered to be a floating point value in which case it is
compared to data in the wave using a tolerance value. If the tolerance is not specified by the /T flag, the
value 10-7 is used.
If the match value is specified via the /I flag, the value is assumed to be an integer. In this case srcWave must
be of integer type and the operation searches for the value based on exact equality between the match value
and entries in the wave as signed long integers.
If the match value is unsigned long use the /U flag to specify the value for an integer comparison.
You can also use this operation on waves of two or more dimensions. In this case you can calculate the rows,
columns, etc. For example, in the case of a 2D wave:
col=floor(V_value/rowsInWave)
row=V_value-col*rowsInWave

When searching for text in a text wave the operation creates the variable V_value as above but it also creates
the variable V_startPos to specify the position of templateString from the start of the particular wave element.

Example
Make jack = sin(x/8) // Single-precision floating point
Display jack

// This prints -1 because 0.5 +/- 1.0E-7 does not occur in wave jack
FindValue /V=.5 jack; Print V_value

// This prints 21 because 0.5 +/- 0.01 does occur in wave jack
FindValue /V=.5 /T=.01 jack; Print V_value

// The value of jack(21), to 6 decimal digits of precision, is 0.493920
Print jack(21)

See Also
The FindSequence, FindLevel and FindLevels operations.

/I=ivalue Specifies an integer value for integer search.

/S=start Sets start of search in the wave. If /S is not specified, start is set to 0.

/T=tolerance Use this flag when comparing floating point numbers to define a non-negative
tolerance such that the specified value ± tolerance will be accepted.

/TEXT=templateString

Specifies a template string that will be searched for in txtWave.

/TXOP=txOptions

/U=uValue Specifies the match value in case of unsigned long range.

/V=rValue Specifies the match value in the case of single/double precision numbers. For most
purposes you should also use /T to specify the tolerance.

/Z No error reporting.

Specifies the search options using a combination of binary values.
1: Case sensitive
2: Whole word
4: Whole wave element

FitFunc

V-200

FitFunc
FitFunc
Marks a user function as a user-defined curve fit function. By default, only functions marked with this
keyword are displayed in the Function menu in the Curve Fit dialog.
If you wish other functions to be displayed in the Function menu, you can select the checkbox labelled
“Show old-style functions (missing FitFunc keyword)”.

See Also
User-Defined Fitting Function: Detailed Description on page III-219.

floor
floor(num)
The floor function returns the closest integer less than or equal to num.

See Also
The round, ceil, and trunc functions.

FontList
FontList(separatorStr [, options])
The FontList function returns a list of the installed fonts, separated by the characters in separatorStr.

Parameters
A maximum of 10 characters from separatorStr are appended to each font name as the output string is
generated. separatorStr is usually ";".
Use options to limit the returned font list according to font type. It is restricted to returning only scalable
fonts (TrueType, PostScript, or OpenType), which you can do with options = 1.
To get a list of nonscalable fonts (bitmap or raster), use:
String bitmapFontList = RemoveFromList(FontList(";",1), FontList(";"))

(Most Mac OS X fonts are scalable, so bitmapFontList may be empty.)

Examples
Function SetFont(fontName)

String fontName
Prompt fontName,"font name:",popup,FontList(";")+"default;"
DoPrompt "Pick a Font", fontName

Print fontName

Variable type= WinType("") // target window type
String windowName= WinName(0,127)
if((type==1) || (type==3) || (type==7)) // graph, panel, layout

Print "Setting drawing font for "+windowName
Execute "SetDrawEnv fname=\""+fontName+"\""

else
if(type == 5) // notebook

Print "Setting font for selection in "+windowName
Notebook $windowName font=fontName

endif
endif

End

Execute on the command line:
SetFont("")

See Also
The FontSizeStringWidth, FontSizeHeight, and WinType functions, and the Execute, SetDrawEnv, and
Notebook Operations.

FontSizeHeight

V-201

FontSizeHeight
FontSizeHeight(fontNameStr, fontSize, fontstyle [,appearanceStr])
The FontSizeHeight function returns the line height in pixels of any string when rendered with the named
font and the given font style and size.

Parameters
fontNameStr is the name of the font, such as "Helvetica".
fontSize is the size (height) of the font in pixels.
fontStyle is text style (bold, italic, etc.). Use 0 for plain text.

Details
The returned height is the sum of the font’s ascent and descent heights. Variations in fontStyle and typeface
design cause the actual font height to be different than fontSize would indicate. (Typically a font “height”
refers to only the ascent height, so the total height will be slightly larger to accommodate letters that
descend below the baseline, such as g, p, q, and y).
FontSize is in pixels. To obtain the height of a font specified in points, use the ScreenResolution function
and the conversion factor of 72 points per inch (see Examples).
If the named font is not installed, FontSizeHeight returns NaN.
FontSizeHeight understands “default” to mean the current experiment’s default font.
fontStyle is a binary coded integer with each bit controlling one aspect of the text style as follows:

To set bit 0 and bit 2 (bold, underline), use 20+22 = 1+4 = 5 for fontStyle. See Setting Bit Parameters on page
IV-12 for details about bit settings.
The optional appearanceStr parameter has no effect on Windows.
On Macintosh, the appearanceStr parameter is used for determining the height of a string drawn by a control.
Set appearanceStr to "native" if you are measuring the height of a string drawn by a "native GUI" control or
to "os9" if not.
Set appearanceStr to "default" to use the appearance set by the user in the Miscellaneous Settings dialog. "os9"
is the default value.
Usually you will want to set appearanceStr to the S_Value output of DefaultGUIControls/W=winName
when determining the height of a string drawn by a control.

Examples
Variable pixels= 12 * ScreenResolution/72 // convert 12 points to pixels
Variable pixelHeight= FontSizeHeight("Helvetica",pixels,0)
Print "Height in points= ", pixelHeight * 72/ScreenResolution

Function FontIsInstalled(fontName)
String fontName
if(numtype(FontSizeHeight(fontName,10,0)) == 2)

return 0 // NaN returned, font not installed
else

return 1
endif

End

See Also
The FontList, FontSizeStringWidth, numtype, ScreenResolution, and DefaultGUIControls functions.

bit 0: Bold.

bit 1: Italic.

bit 2: Underline.

bit 3: Outline (Macintosh only).

bit 4: Shadow (Macintosh only).

FontSizeStringWidth

V-202

FontSizeStringWidth
FontSizeStringWidth(fontNameStr, fontSize, fontstyle, theStr [,appearanceStr])
The FontSizeStringWidth function returns the width of theStr in pixels, when rendered with the named font
and the given font style and size.

Parameters
fontNameStr is the name of the font, such as "Helvetica".
fontSize is the size (height) of the font in pixels.
fontStyle is text style (bold, italic, etc.). Use 0 for plain text.
theStr is the string whose width is being measured.
The optional appearanceStr parameter has no effect on Windows.
On Macintosh, the appearanceStr parameter is used for determining the width of a string drawn by a control.
Set appearanceStr to "native" if you are measuring the width of a string drawn by a "native GUI" control or
to "os9" if not.
Set appearanceStr to "default" to use the appearance set by the user in the Miscellaneous Settings dialog. "os9"
is the default value.
Usually you will want to set appearanceStr to the S_Value output of DefaultGUIControls/W=winName
when determining the width of a string drawn by a control.

Details
If the named font is not installed, FontSizeStringWidth returns NaN.
FontSizeStringWidth understands “default” to mean the current experiment’s default font.
FontSize is in pixels. To obtain the width of a font specified in points, use the ScreenResolution function
and the conversion factor of 72 points per inch (see Examples).
fontStyle is a binary coded integer with each bit controlling one aspect of the text style as follows:

To set bit 0 and bit 2 (bold, underline), use 20+22 = 1+4 = 5 for fontStyle. See Setting Bit Parameters on page
IV-12 for details about bit settings.

Examples

Example 1
Variable fsPix= 10 * ScreenResolution/72 // 10 point text in pixels
String text= "How long is this text?"
Variable WidthPix= FontSizeStringWidth("Helvetica",fsPix,0,text)
Print "width in inches= ", WidthPix / ScreenResolution

Example 2
Variable fsPix= 13 * ScreenResolution/72 // 13 point text in pixels
String text= "text for a control"
DefaultGUIControls/W=Panel0 // Sets S_Value
Variable WidthPix= FontSizeStringWidth("Helvetica",fsPix,0,text,S_Value)
Print "width in points= ", WidthPix / ScreenResolution * 72

See Also
The FontList, FontSizeHeight, ScreenResolution and DefaultGUIControls functions.

bit 0: Bold.

bit 1: Italic.

bit 2: Underline.

bit 3: Outline (Macintosh only).

bit 4: Shadow (Macintosh only).

for-endfor

V-203

for-endfor
for(<initialize>;<exit test>;<update>)

<loop body>
endfor
A for-endfor loop executes loop body code until exit test evaluates as FALSE, zero, or until a break statement
is executed within the body code. When the loop starts, the initialize expressions are evaluated once. For
each iteration, the exit test is evaluated at the beginning, and the update expressions are evaluated at the end.

See Also
For Loop on page IV-37 and break for more usage details.

FPClustering
FPClustering [flags] srcWave
The FPClustering operation performs cluster analysis using the farthest-point clustering algorithm. The
input for the operation srcWave defines M points in N-dimensional space. Outputs are the waves
W_FPCenterIndex and W_FPClusterIndex.

Flags

Details
The input for FPClustering is a 2D wave srcWave which consists of M rows by N columns where each row
represents a point in N-dimensional space. srcWave can contain only finite real numbers and must be of type
SP or DP. The operation computes the clustering and produces the wave W_FPCenterIndex which contains
the centers or “hubs” of the clusters. The hubs are specified by the zero-based row number in srcWave which
contains the cluster center. In addition, the operation creates the wave W_FPClusterIndex where each entry
maps the corresponding input point to a cluster index. By default, the operation continues to add clusters
as long as the largest possible distance is greater than the average intercluster distance. You can also stop
the processing when the operation has formed a specified number of clusters (see /MAXC).
The variable V_max contains the maximum distance between any element and its cluster hub.
It is possible that in some circumstances you can get slightly different clustering depending on your starting
point. The default starting hub is row zero of srcWave but you can use the /SHUB flag to specify a different
starting point.

/CAC Computes all the clusters specified by /MAXC.

/CM Computes the center of mass for each cluster. The results are stored in the wave
M_clustersCM in the current data folder. Each row corresponds to a single cluster
with columns providing the respective dimensional components.

/INCD Computes the inter-cluster distances. The result is stored in the current data folder in
the wave M_InterClusterDistance, a 2D wave in which the [i][j] element contains the
distance between cluster i and cluster j.

/MAXC=nClusters Terminates the calculation when the number of clusters reaches the specified value.
Note that this termination condition is sufficient but not necessary, i.e., the operation
can terminate earlier if the farthest distance of an element from a hub is less than the
average distance.

/MAXR=maxRad Terminates the calculation when the maximum distance is less than or equal to maxRad.

/NOR Normalizes the data on a column by column basis. The normalization makes each
columns of the input span the range [0,1] so that even when srcWave contains columns
that may be different by several orders of magnitude, the algorithm is not biased by a
larger implied cartesian distance.

/Q Don’t print information to the history window.

/SHUB=sHub Specifies the row which is used as a starting hub number. By default the operation
uses the first row in srcWave.

/Z No error reporting.

fprintf

V-204

FPClustering computes the Cartesian distance between points. As a result, if the scale of any dimension is
significantly larger than other dimensions it might bias the clustering towards that dimension. To avoid this
situation you can use the /NOR flag which normalizes each column to the range [0,1] and hence equalizes
the weight of each dimension in the clustering process.

See Also
The KMeans operation.

References
Gonzalez, T., Clustering to minimize the maximum intercluster distance, Theoretical Computer Science, 38,

293-306, 1985.

fprintf
fprintf refNum, formatStr [, parameter]…
The fprintf operation prints formatted output to a text file.

Parameters
refNum is a file reference number from the Open operation used to open the file.
formatStr is the format string, as used by the printf operation.
parameter varies depending on formatStr.

Details
If refNum is 1, fprintf will print to the history area instead of to a file, as if you used printf instead of fprintf.
This useful for debugging purposes.
A zero value of refNum is used in conjunction with Program-to-Program Communication (PPC), Apple
events (Macintosh) or DDE (Windows). Data that would normally be written to a file is appended to the PPC,
Apple event or DDE result packet.
The fprintf operation supports numeric (real only) and string fields from structures. All other field types
will cause a compile error.

See Also
The printf operation for complete format and parameter descriptions. The Open operation and Creating
Formatted Text on page IV-235.

FReadLine
FReadLine [/N/T] refNum, stringVarName
The FReadLine operation reads bytes from a file into the named string variable. The read starts at the
current file position and continues until a terminator character is read, the end of the file is reached, or the
maximum number of characters is read.

Parameters
refNum is a file reference number from the Open operation used to create the file.

fresnelCos

V-205

Flags

Details
If /N is omitted, there is no maximum number of characters to read. When reading lines of text from a
normal text file, you will not need to use /N. It may be of use in specialized cases, such as reading text
embedded in a binary file.
If /T is omitted, FReadLine will terminate on any of the following: CR, LF, CRLF, LFCR. (Most Macintosh files
use CR. Most Windows files use CRLF. Most UNIX files use LF. LFCR is an invalid terminator but some buggy
programs generate files that use it.) FReadLine reads whichever of these appears in the file, terminates the
read, and returns just a CR in the output string. This default behavior transparently handles files that use CR,
LF, CRLF, or LFCR as the terminator and will be suitable for most cases.
If you use the /T flag, then FReadLine will terminate on the specified character only and will return the
specified character in the output string.
Once you have read all of the characters in the file, FReadLine will return zero characters via stringVarName.
The example below illustrates testing for this.

Example
Function PrintAllLinesInFile()

Variable refNum
Open/R refNum as "" // Display dialog
if (refNum == 0)

return -1 // User canceled
endif

Variable lineNumber, len
String buffer
lineNumber = 0
do

FReadLine refNum, buffer
len = strlen(buffer)
if (len == 0)

break // No more lines to be read
endif
Printf "Line number %d: %s", lineNumber, buffer
if (CmpStr(buffer[len-1],"\r") != 0) // Last line has no CR ?

Printf "\r"
endif

lineNumber += 1
while (1)

Close refNum
return 0

End

See Also
The Open and FBinRead operations.

fresnelCos
fresnelCos(x)
The fresnelCos function returns the Fresnel cosine function C(x).

.

/N=n Specifies the maximum number of characters to read.

/T=termcharStr Specifies the terminator character.
/T=(num2char(13)) specifies carriage return (CR, ASCII code 13).
/T=(num2char(10)) specifies linefeed (LF, ASCII code 10).
/T=";" specifies the terminator as a semicolon.
/T="" specifies the terminator as null (ASCII code 0).
See Details for default behavior regarding the terminator.

C x() π
2
---ν2

 cos νd

0

x

=

fresnelCS

V-206

See Also
The fresnelSin and fresnelCS functions.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

fresnelCS
fresnelCS(x)
The fresnelCS function returns both the Fresnel cosine in the real part of the result and the Fresnel sine in
the imaginary part of the result.

See Also
The fresnelSin and fresnelCos functions.

fresnelSin
fresnelSin(x)
The fresnelSin function returns the Fresnel sine function S(x).

.

See Also
The fresnelCos and fresnelCS functions.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

FSetPos
FSetPos refNum, filePos
The FSetPos operation attempts to set the current file position to the given position.

Parameters
refNum is a file reference number obtained from the Open operation when the file was opened.
filePos is the desired position of the file in bytes from the start of the file.

Details
FSetPos generates an error if filePos is greater than the number of bytes in the file. You can ascertain this
limit with the FStatus operation.
When a file that is open for writing is closed, any bytes past the end of the current file position are deleted
by the operating system. Therefore, if you use FSetPos, make sure to set the current file position properly
before closing the file.
As of Igor Pro 6.1, FSetPos supports very big files theoretically up to about 4.5E15 bytes in length.

See Also
The Open and FStatus operations.

FStatus
FStatus refNum
The FStatus operation provides file status information for a file.

Parameters
refNum is a file reference number obtained from the Open operation.

Details
As of Igor Pro 6.1, FStatus supports very big files theoretically up to about 4.5E15 bytes in length.

S x() π
2
---ν2

 sin νd

0

x

=

FTPCreateDirectory

V-207

FStatus sets the following variables:

The keyword-packed information string for S_info consists of a sequence of sections with the following
form: keyword:value; You can pick a value out of a keyword-packed string using the NumberByKey and
StringByKey functions.
Here are the keywords for S_info:

See Also
The Open operation.

FTPCreateDirectory
FTPCreateDirectory [flags] urlStr
The FTPCreateDirectory operation creates a directory on an FTP server on the Internet.
For background information on Igor's FTP capabilities and other important details, see File Transfer
Protocol (FTP) on page IV-249.
FTPCreateDirectory sets V_flag to zero if the operation succeeds or to a non-zero error code if it fails.
If the directory specified by urlStr already exists on the server, the server contents are not touched and
V_flag is set to -1. This is not treated as an error.

Parameters
urlStr specifies the directory to create. It consists of a naming scheme (always "ftp://"), a computer name
(e.g., "ftp.wavemetrics.com" or "38.170.234.2"), and a path (e.g., "/test/newDirectory"). For example:

"ftp://ftp.wavemetrics.com/test/newDirectory"

urlStr must always end with a directory name, and must not end with a slash.
To indicate that urlStr contains an absolute path, insert an extra '/' character between the computer name
and the path. For example:

ftp://ftp.wavemetrics.com//pub/test/newDirectory

If you do not specify that the path in urlStr is absolute, it is interpreted as relative to the FTP user's base
directory. Since pub is the base directory for an anonymous user at wavemetrics.com, these URLs reference
the same directory for an anonymous user:

ftp://ftp.wavemetrics.com//pub/test/newDirectory // Absolute path
ftp://ftp.wavemetrics.com/test/newDirectory // Relative to base directory

Special characters, such as punctuation, that are used in urlStr may be incorrectly interpreted by the
operation. If you get unexpected results and urlStr contains such characters, you can try percent-encoding
the special characters. See Percent Encoding on page IV-245 for additional information.

V_flag Nonzero (true) if refNum is valid, in which case FStatus sets the other variables as well.

V_filePos Current file position for the file in bytes from the start.

V_logEOF Total number of bytes in the file.

S_fileName Name of the file.

S_path Path from the volume to the folder containing the file. For example, "hd:Folder1:Folder2:".
This is suitable for use as an input to the NewPath operation. Note that on the Windows
operating system Igor uses a colon between folders instead of the Windows-standard
backslash to avoid confusion with Igor’s use of backslash to start an escape sequence (see
Escape Characters in Strings on page IV-13).

S_info Keyword-packed information string.

Keyword Type Meaning

PATH string Name of the symbolic path in which the file is located. This will be empty if
there is no such symbolic path.

WRITEABLE number 1 if file can be written to, 0 if not.

FTPDelete

V-208

Flags

Examples
// Create a directory.
String url = "ftp://ftp.wavemetrics.com/pub/test/newDirectory"
FTPCreateDirectory url

See Also
File Transfer Protocol (FTP) on page IV-249.
FTPDelete, FTPDownload, FTPUpload, URLEncode

FTPDelete
FTPDelete [flags] urlStr
The FTPDelete operation deletes a file or a directory from an FTP server on the Internet.
Warning: If you delete a directory on an FTP server, all contents of that directory and any subdirectories

are also deleted.
For background information on Igor's FTP capabilities and other important details, see File Transfer
Protocol (FTP) on page IV-249.
FTPDelete sets V_flag to zero if the operation succeeds and to nonzero if it fails. This, in conjunction with
the /Z flag, can be used to allow procedures to continue to execute if an FTP error occurs.

Parameters
urlStr specifies the file or directory to delete. It consists of a naming scheme (always "ftp://"), a computer
name (e.g., "ftp.wavemetrics.com" or "38.170.234.2"), and a path (e.g., "/test/TestFile1.txt"). For example:
"ftp://ftp.wavemetrics.com/test/TestFile1.txt"

/N=portNumber Specifies the server's TCP/IP port number to use (default is 21). In almost all cases, the
default will be correct so you won't need to use the /N flag.

/U=userNameStr Specifies the user name to be used when logging in to the FTP server. If /U is omitted
or if userNameStr is "", the login is done as an anonymous user. Use /U if you have an
account on the FTP server.

/V=diagnosticMode

/W=passwordStr Specifies the password to be used when logging in to the FTP server. Use /W if you
have an account on the FTP server.
If /W is omitted, the login is done using a default password that will work with most
anonymous FTP servers.
See Safe Handling of Passwords on page IV-246 for information on handling
sensitive passwords.

/Z Errors are not fatal. Will not abort procedure execution if an error occurs.
Your procedure can inspect the V_flag variable to see if the transfer succeeded. V_flag
will be zero if it succeeded, -1 if the specified directory already exists, or another
nonzero value if an error occurred.

Determines what kind of diagnostic messages FTPCreateDirectory will display in
the history area. diagnosticMode is a bitwise parameter, with the bits defined as
follows:

The default value for diagnosticMode is 3 (show basic and error diagnostics). If you
are having difficulties, you can try using 7 to show the commands sent to the server
and the server's response.
See FTP Troubleshooting on page IV-253 for other troubleshooting tips.

Bit 0: Show basic diagnostics. Currently this just displays the URL in the
history.

Bit 1: Show errors. This displays additional information when errors occur.
Bit 2: Show status. This displays commands sent to the server and the server's

response.

FTPDelete

V-209

urlStr must always end with a file name if you are deleting a file or with a directory name if you are deleting
a directory. In the case of a directory, urlStr must not end with a slash.
To indicate that urlStr contains an absolute path, insert an extra '/' character between the computer name
and the path. For example:

ftp://ftp.wavemetrics.com//pub/test

If you do not specify that the path in urlStr is absolute, it is interpreted as relative to the FTP user's base
directory. Since pub is the base directory for an anonymous user at wavemetrics.com, these URLs reference
the same directory for an anonymous user:

ftp://ftp.wavemetrics.com//pub/test

ftp://ftp.wavemetrics.com/test

Special characters such as punctuation that are used in urlStr may be incorrectly interpreted by the
operation. If you get unexpected results and urlStr contains such characters, you can try percent-encoding
the special characters. See Percent Encoding on page IV-245 for additional information

Flags

Examples
// Delete a file.
String url = "ftp://ftp.wavemetrics.com/test/TestFile1.txt"
FTPDelete url

// Delete a directory.
String url = "ftp://ftp.wavemetrics.com/test/TestDir1"
FTPDelete/D url

See Also
File Transfer Protocol (FTP) on page IV-249.

/D Deletes a complete directory and all its contents. Omit /D if you are deleting a file.

/N=portNumber Specifies the server's TCP/IP port number to use (default is 21). In almost all cases, the
default will be correct so you won't need to use the /N flag.

/U=userNameStr Specifies the user name to be used when logging in to the FTP server. If /U is omitted
or if userNameStr is "", the login is done as an anonymous user. Use /U if you have
an account on the FTP server.

/V=diagnosticMode

/W=passwordStr Specifies the password to be used when logging in to the FTP server. Use /W if you
have an account on the FTP server.
If /W is omitted, the login is done using a default password that will work with most
anonymous FTP servers.
See Safe Handling of Passwords on page IV-246 for information on handling
sensitive passwords.

/Z Errors are not fatal. Will not abort procedure execution if an error occurs.
Your procedure can inspect the V_flag variable to see if the transfer succeeded. V_flag
will be zero if it succeeded, or a nonzero value if an error occurred.

Determines what kind of diagnostic messages FTPDelete will display in the history
area. diagnosticMode is a bitwise parameter, with the bits defined as follows:

The default value for diagnosticMode is 3 (show basic and error diagnostics). If you
are having difficulties, you can try using 7 to show the commands sent to the server
and the server's response.
See FTP Troubleshooting on page IV-253 for other troubleshooting tips.

Bit 0: Show basic diagnostics. Currently this just displays the URL in the
history.

Bit 1: Show errors. This displays additional information when errors occur.
Bit 2: Show status. This displays commands sent to the server and the server's

response.

FTPDownload

V-210

FTPCreateDirectory, FTPDownload, FTPUpload, URLEncode

FTPDownload
FTPDownload [flags] urlStr, localPathStr
The FTPDownload operation downloads a file or a directory from an FTP server on the Internet.

For background information on Igor’s FTP capabilities and other important details, see File Transfer
Protocol (FTP) on page IV-249.
FTPDownload sets a variable named V_flag to zero if the operation succeeds and to nonzero if it fails. This, in
conjunction with the /Z flag, can be used to allow procedures to continue to execute if a FTP error occurs.
If the operation succeeds, FTPDownload sets a string named S_Filename to the full file path of the
downloaded file or, if the /D flag was used, the full path to the base directory that was downloaded. This is
useful in conjunction with the /I flag.
If the operation fails, S_Filename is set to "".

Parameters
urlStr specifies the file or directory to download. It consists of a naming scheme (always "ftp://"), a computer
name (e.g., "ftp.wavemetrics.com" or "38.170.234.2"), and a path (e.g., "/Test/TestFile1.txt").
For example: "ftp://ftp.wavemetrics.com/pub/test/TestFile1.txt".
urlStr must always end with a file name if you are downloading a file or with a directory name if you are
downloading a directory. In the case of a directory, urlStr must not end with a slash.
To indicate that urlStr contains an absolute path, insert an extra '/' character between the computer name
and the path. For example:

ftp://ftp.wavemetrics.com//pub/test

If you do not specify that the path in urlStr is an absolute path, it is interpreted as a path relative to the FTP
user's base directory. Since pub is the base directory for an anonymous user, this URL references the same
directory:

ftp://ftp.wavemetrics.com/test

Special characters such as punctuation that are used in urlStr may be incorrectly interpreted by the
operation. If you get unexpected results and urlStr contains such characters, you can try percent-encoding
the special characters. See Percent Encoding on page IV-245 for additional information.
localPathStr and pathName specify the name to use for the file or directory that will be created on your hard
disk. If you use a full or partial path for localPathStr, see Path Separators on page III-400 for details on
forming the path.
localPathStr must always end with a file name if you are downloading a file or with a directory name if you
are downloading a directory. In the case of a directory, localPathStr must not end with a colon or backslash.
FTPDownload displays a dialog through which you can identify the local file or directory in the following cases:

See Examples for examples of constructing a URL and local path.

Flags

Warning: When you download a file or directory using the path and name of a file or directory that
already exists on your local hard disk, all previous contents of the local file or directory are
obliterated.

1. You have used the /I (interactive) flag.

2. You did not completely specify the location of the local file or directory via pathName and localPathStr.

3. There is an error in localPathStr. This can be either a syntactical error or a reference to a nonexistent file
or directory.

4. The specified local file or directory exists and you have not used the /O (overwrite) flag.

/D Downloads a complete directory. Omit it if you are downloading a file.

FTPDownload

V-211

/I Interactive mode which will prompt you to specify the name and location of the file
or directory to be created on the local hard disk.

/M=messageStr Specifies the prompt message used by the dialog in which you specify the name and
location of the file or directory to be created.

/N=portNumber Specifies the server’s TCP/IP port number to use (default is 21). In almost all cases, this
will be correct so you won’t need to use the /N flag.

/O[=mode]

/P=pathName Contributes to the specification of the file or directory to be created on your hard disk.
pathName is the name of an existing symbolic path. See Examples.

/S=showProgress

/T=transferType

/U=userNameStr Specifies the user name to be used when logging in to the FTP server. If this flag is
omitted or if userNameStr is "", you will be logged in as an anonymous user. Use this
flag if you have an account on the FTP server.

/V=diagnosticMode

Controls whether a local file or directory whose name is in conflict with the file or
directory being downloaded is overwritten without prompting the user.
mode=0: Prompts the user to allow the overwrite. This is the default behavior if

/O is omitted.
mode=1: Overwrites without prompting the user. If the /D flag is also used, all

contents of the destination directory are deleted if it already exists.
/O=1 is the same as /O.

mode=2: Merges files and subdirectories downloaded with the contents of the
destination directory. Unlike /O=1, the contents of the destination
directory are not deleted, however files and directories downloaded
from the server will overwrite existing files and directories of the same
name. When downloading a file this mode is accepted but has the
same effect as /O=1.

Determines if a progress dialog is displayed.
0: No progress dialog.
1: Show a progress dialog (default).

Controls the FTP transfer type.

See FTP Transfer Types on page IV-252 for more discussion.

0: Image (binary) transfer (default).
1: ASCII transfer.

Determines what kind of diagnostic messages FTPDownload will display in the
history area. diagnosticMode is a bitwise parameter, with the bits defined as follows:

The default value for diagnosticMode is 3 (show basic and error diagnostics). If you are
having difficulties, you can try using 7 to show the commands sent to the server and
the server's response.
See FTP Troubleshooting on page IV-253 for other troubleshooting tips.

Bit 0: Show basic diagnostics. Currently this just displays the URL in the
history.

Bit 1: Show errors. This displays additional information when errors occur.
Bit 2: Show status. This displays commands sent to the server and the server's

response.

FTPUpload

V-212

Examples
Download a file using a full local path:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestFile1.txt"
String localPath = "hd:Test Folder:TestFile1.txt"
FTPDownload url, localPath

Download a file using a local symbolic path and file name:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestFile1.txt"
String pathName = "Igor" // Igor is the name of a symbolic path.
String fileName = "TestFile1.txt"
FTPDownload/P=$pathName url, fileName

Download a directory using a full local path:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestDir1"
String localPath = "hd:Test Folder:TestDir1"
FTPDownload/D url, localPath

See Also
File Transfer Protocol (FTP) on page IV-249.
FTPCreateDirectory, FTPDelete, FTPUpload, URLEncode, FetchURL.

FTPUpload
FTPUpload [flags] urlStr, localPathStr
The FTPUpload operation uploads a file or a directory to an FTP server on the Internet.

For background information on Igor’s FTP capabilities and other important details, see File Transfer
Protocol (FTP) on page IV-249.
FTPUpload sets a variable named V_flag to zero if the operation succeeds and to nonzero if it fails. This, in
conjunction with the /Z flag, can be used to allow procedures to continue to execute if a FTP error occurs.
If the operation succeeds, FTPUpload sets a string named S_Filename to the full file path of the uploaded
file or, if the /D flag was used, to the full path to the base directory that was uploaded. This is useful in
conjunction with the /I flag.
If the operation fails, S_Filename is set to "".

Parameters
urlStr specifies the file or directory to create. It consists of a naming scheme (always "ftp://"), a computer
name (e.g., "ftp.wavemetrics.com" or "38.170.234.2"), and a path (e.g., "/Test/TestFile1.txt").
For example: "ftp://ftp.wavemetrics.com/pub/test/TestFile1.txt".

/W=passwordStr Specifies the password to be used when logging in to the FTP server. Use this flag if
you have an account on the FTP server.
If this flag is omitted, “nopassword” will be used for the login password. This will
work with most anonymous FTP servers. Some anonymous FTP servers request that
you use your email address as a password. You can do this by including the
/W=“<your email address>” flag.
If /W is omitted, the login is done using a default password that will work with most
anonymous FTP servers.
See Safe Handling of Passwords on page IV-246 for information on handling
sensitive passwords.

/Z Errors are not fatal. Will not abort procedure execution if an error occurs.
Your procedure can inspect the V_flag variable to see if the transfer succeeded. V_flag
will be zero if it succeeded, -1 if the user canceled in an interactive dialog, or another
nonzero value if an error occurred.

Warning: When you upload a file or directory to an FTP server, all previous contents of the server
file or directory are obliterated.

FTPUpload

V-213

urlStr must always end with a file name if you are uploading a file or with a directory name if you are
uploading a directory, in which case urlStr must not end with a slash.
To indicate that urlStr contains an absolute path, insert an extra '/' character between the computer name
and the path. For example:

ftp://ftp.wavemetrics.com//pub/test

If you do not specify that the path in urlStr is an absolute path, it is interpreted as a path relative to the FTP
user's base directory. Since pub is the base directory for an anonymous user, this URL references the same
directory:

ftp://ftp.wavemetrics.com/test

Special characters such as punctuation that are used in urlStr may be incorrectly interpreted by the
operation. If you get unexpected results and urlStr contains such characters, you can try percent-encoding
the special characters. If you get unexpected results and urlStr contains such characters, you can try percent-
encoding the special characters. See Percent Encoding on page IV-245 for additional information.
localPathStr and pathName specify the name and location on your hard disk of the local file to be uploaded. If you
use a full or partial path for localPathStr, see Path Separators on page III-400 for details on forming the path.
localPathStr must always end with a file name if you are uploading a file or with a directory name if you are
uploading a directory. In the case of a directory, localPathStr must not end with a colon or backslash.
FTPUpload displays a dialog that you can use to identify the file or directory to be uploaded in the
following cases:

See Examples for examples of constructing a URL and local path.

Flags

1. You used the /I (interactive) flag.

2. You did not completely specify the location of the file or folder to be uploaded via pathName and
localPathStr.

3. There is an error in localPathStr. This can be either a syntactical error or a reference to a nonexistent
directory.

/D Uploads a complete directory. Omit it if you are uploading a file.

/I Interactive mode which displays a dialog for choosing the local file or directory to be
uploaded.

/M=messageStr Specifies the prompt message used by the dialog in which you choose the local file or
directory to be uploaded.

/N=portNumber Specifies the server’s TCP/IP port number to use (default is 21). In almost all cases, this
will be correct so you won’t need to use the /N flag.

/O[=mode] Overwrite. FTPUpload always overwrites the specified server file or directory,
whether /O is used or not.
If /O=2 is not used, all files and subdirectories in the destination directory on the
server are first deleted and then the local files and directories are uploaded to the
server.
If /O=2 is used, the existing contents the contents of the local source directory are
merged into the remote directory instead of completely overwriting it.

/P=pathName Contributes to the specification of the file or directory to be uploaded. pathName is the
name of an existing symbolic path. See Examples.

/S=showProgress Determines if a progress dialog is displayed.
0: No progress dialog.
1: Show a progress dialog (default).

FTPUpload

V-214

Examples
Upload a file using a full local path:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestFile1.txt"
String localPath = "hd:Test Folder:TestFile1.txt"
FTPUpload url, localPath

Upload a file using a local symbolic path and file name:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestFile1.txt"
String pathName = "Igor" // Igor is the name of a symbolic path.
String fileName = "TestFile1.txt"
FTPUpload/P=$pathName url, fileName

Upload a directory using a full local path:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestDir1"
String localPath = "hd:Test Folder:TestDir1"
FTPUpload/D url, localPath

See Also
File Transfer Protocol (FTP) on page IV-249.
FTPCreateDirectory, FTPDelete, FTPDownload, URLEncode.

/T=transferType

/U=userNameStr Specifies the user name to be used when logging in to the FTP server. If this flag is
omitted or if userNameStr is "", you will be logged in as an anonymous user. Use this
flag if you have an account on the FTP server.

/V=diagnosticMode

/W=passwordStr Specifies the password used when logging in to the FTP server. Use this flag if you
have an account on the FTP server.
 If this flag is omitted, “nopassword” will be used for the login password. This will
work with most anonymous FTP servers. Some anonymous FTP servers request that
you use your email address as a password. You can do this by including the
/W=“<your email address>” flag.
If /W is omitted, the login is done using a default password that will work with most
anonymous FTP servers.
See Safe Handling of Passwords on page IV-246 for information on handling
sensitive passwords.

/Z Errors are not fatal. Will not abort procedure execution if an error occurs.
Your procedure can inspect the V_flag variable to see if the transfer succeeded. V_flag
will be zero if it succeeded, -1 if the user canceled in an interactive dialog, or another
nonzero value if an error occurred.

Controls the FTP transfer type.

See FTP Transfer Types on page IV-252 for more discussion.

0: Image (binary) transfer (default).
1: ASCII transfer.

Determines what kind of diagnostic messages FTPUpload will display in the
history area. diagnosticMode is a bitwise parameter, with the bits defined as follows:

The default value for diagnosticMode is 3 (show basic and error diagnostics). If you
are having difficulties, you can try using 7 to show the commands sent to the server
and the server's response.
See FTP Troubleshooting on page IV-253 for other troubleshooting tips.

Bit 0: Show basic diagnostics. Currently this just displays the URL in the
history.

Bit 1: Show errors. This displays additional information when errors occur.
Bit 2: Show status. This displays commands sent to the server and the server's

response.

FuncFit

V-215

FuncFit
FuncFit [flags] fitFuncName, cwaveName, waveName [flag parameters]
FuncFit [flags] {fitFuncSpec}, waveName [flag parameters]
The FuncFit operation performs a curve fit to a user defined function, or to a sum of fit functions using the
second form (see Fitting Sums of Fit Functions on page V-216). Fitting can be done using any method that
can be selected using the /ODR flag (see CurveFit for details).
FuncFit operation parameters are grouped in the following categories: flags, parameters (fitFuncName,
cwaveName, waveName or {fitFuncSpec }, waveName), and flag parameters. The sections below correspond to
these categories. Note that flags must precede the fitFuncName or fitFuncSpec and flag parameters must
follow waveName.

Flags
See CurveFit for all available flags.

Parameters

Flag Parameters
These flag parameters must follow waveName.

fitFuncName The user-defined function to fit to, which can be a function taking multiple independent
variables (see also FuncFitMD). Multivariate fitting with FuncFit requires /X=xwaveSpec.

cwaveName Wave containing the fitting coefficients.

waveName The wave containing the dependent variable data to be fit to the specified function.
For functions of just one independent variable, the dependent variable data is often
referred to as "Y data". You can fit to a subrange of the wave by supplying
(startX,endX) or [startP,endP] after the wave name. See Wave Subrange Details below
for more information on subranges of waves in curve fitting.

fitFuncSpec List of fit functions and coefficient waves, with some optional information. Using this
format fits a model consisting of the sum of the listed fit functions. Intended for fitting
multiple peaks, but probably useful for other applications as well. See Fitting Sums
of Fit Functions on page V-216.

/E=ewaveName A wave containing the epsilon values for each parameter. Must be the same length as
the coefficient wave.

/STRC=structureInstance

Used only with Structure Fit Functions on page III-228. When using a structure fit
function, you must specify an instance of the structure to FuncFit. This will be an
instance that has been initialized by a user-defined function that you write in order to
invoke FuncFit.

/X=xwaveSpec An optional wave containing X values for each of the input data values. If the fitting
function has more than one independent variable, xwaveSpec is required and must be
either a 2D wave with a column for each independent variable, or a list of waves, one
for each independent variable. A list must be in braces: /X={xwave0, xwave1,…}. There
must be exactly one column or wave for each independent variable in the fitting
function.

FuncFit

V-216

Other parameters are used as for the CurveFit operation, with some exceptions for multivariate fits.

Details for Multivariate Fits
The dependent variable data wave, waveName, must be a 1D wave even for multivariate fits. For fits to data
in a multidimensional wave, see FuncFitMD.
For multivariate fits, the auto-residual (/R with no wave specified) is calculated and appended to the top
graph if the dependent variable data wave is graphed in the top graph as a simple 1D trace. Auto residuals
are calculated but not displayed if the data are displayed as a contour plot.
The autodest wave (/D with no wave specified) for multivariate fits has the same number of points as the
data wave, with a model value calculated at the X values contained in the wave or waves specified with
/X=xwaveSpec.
Confidence bands are not supported for multivariate fits.

Wave Subrange Details
Almost any wave you specify to FuncFit can be a subrange of a wave. The syntax for wave subranges is the
same as for the Display command (see Subrange Display Syntax on page II-293 for details). See Wave
Subrange Details on page V-101 for a discussion of the use of subranges in curve fitting.
The backwards compatibility rules for CurveFit apply to FuncFit as well.
In addition to the waves discussed in the CurveFit documentation, it is possible to use subranges when
specifying the coefficient wave and the epsilon wave. Since the coefficient wave and epsilon wave must
have the same number of points, it might make sense to make them two columns from a single multicolumn
wave. For instance, here is an example in which the first column is used as the coefficient wave, the second
is used as the epsilon wave, and the third is used to save a copy of the initial guesses for future reference:
Make/D/N=(5, 3) myCoefs
myCoefs[][0] = {1,2,3,4,5} // hypothetical initial guess
myCoefs[][1] = 1e-6 // reasonable epsilon values
myCoefs[][2] = myCoefs[p][0] // save copy of initial guess
FuncFit myFitFunc, myCoefs[][0] myData /E=myCoefs[][1] …

You might have a fit function that uses a subset of the coefficients that are used by another. It might be
useful to use a single wave for both. Here is an example in which a function that takes four coefficients is
used to fit a subset of the coefficients, and then that solution is used as the initial guess for a function that
takes six coefficients:
Make/D/N=6 Coefs6={1,2,3,4,5,6}
FuncFit Fit4Coefs, Coefs6[0,3] fitfunc4Coefs …
FuncFit Fit6Coefs, Coefs6 ...

Naturally, the two fit functions must be worked out carefully to allow this.

Fitting Sums of Fit Functions
If Igor encounters a left brace at the beginning of the fit function name, it expects a list of fit functions to be
summed during the fit. This is useful for, for instance, fitting several peaks in a data set to a sum of peak functions.

/NWOK Allowed in user-defined functions only. When present, certain waves may be set to
null wave references. Passing a null wave reference to FuncFit is normally treated as
an error. By using /NWOK, you are telling FuncFit that a null wave reference is not
an error but rather signifies that the corresponding flag should be ignored. This
makes it easier to write function code that calls FuncFit with optional waves.
The waves affected are the X wave or waves (/X), weight wave (/W), epsilon wave (/E)
and mask wave (/M). The destination wave (/D=wave) and residual wave (/R=wave)
are also affected, but the situation is more complicated because of the dual use of /D
and /R to mean "do autodestination" and "do autoresidual". See /AR and /AD.
If you don't need the choice, it is better not to include this flag, as it disables useful
error messages when a mistake or run-time situation causes a wave to be missing
unexpectedly.
Note: To work properly this flag must be the last one in the command.

FuncFit

V-217

The fit function specification includes at least the name of the fitting function and an associated coefficient
wave. A sum of fit functions requires multiple coefficient waves, one for each fit function. Any coefficient
wave-related options must be specified in the fit function specification via keyword-value pairs.
The syntax of the sum-of-fit-functions specification is as follows:
{{func1, coef1, keyword=value},{func2, coef2, keyword=value}, …}

or
{string=fitSpecStr}

Within outer braces, each fit function specification is enclosed within inner braces. You can use one or more
fit function specifications, with no intrinsic limit on the number of fit functions.
The second format is available to overcome limitations on the length of a command line in Igor. This format
is just like the first, but everything inside the outer braces is contained in a string expression (which may be
just a single string variable).
You can use any fit function that can be used for ordinary fitting, including the built-in functions that are
available using the CurveFit operation. If you should write a user-defined fitting function with the same
name as a built-in fit function, the user-defined function will be used (this is strongly discouraged).
Every function specification must include an appropriate coefficient wave, pre-loaded with initial guesses.
The comma between each function specification is optional.
The keyword-value pairs are optional, and are used to communicate further options on a function-by-
function basis. Available keywords are:

For more details, and for examples of sums of fit functions in use, Fitting Sums of Fit Functions on page III-215.

See Also
The CurveFit operation for parameter details. See also FuncFitMD for user-defined multivariate fits to data
in a multidimensional wave.
The best way to create a user-defined fitting function is using the Curve Fitting dialog. See Using the Curve
Fitting Dialog on page III-161, especially the section Fitting to a User-Defined Function on page III-173.

HOLD=holdstr Indicates that a fit coefficient should be held fixed during fitting. holdstr works
just like the hold string specified via the /H flag for normal fitting, but applies
only to the coefficient wave associated with the fit function it appears with.
If you include HOLD in a string expression (the {string=fitSpecStr}
syntax), you must escape the quotation marks around the hold string.
If you use the command-line syntax {{func1,coef1,HOLD=holdStr},
...}, holdStr may be a reference to a global variable acquired using SVAR, or it
may be a quoted literal string.
If you use {string=fitSpecStr}, fitSpecStr is parsed at run-time outside the
context of any running function. Consequently, you cannot use a general string
expression. You can use either HOLD="quotedLiteralString" or
HOLD=root:globalString.

CONST={constants} Sets the values of constants in the fitting function. So far, only two built-in
functions take constants: exp_XOffset and dblexp_XOffset. They each take just
one constant (the X offset), so you will have a “list” of one number inside the
braces.

EPSW=epsilonWave Specifies a wave holding epsilon values. Use only with a user-defined fitting
function to set the differencing interval used to calculate numerical estimates of
derivatives of the fitting function.

STRC=structureInstance Specifies an instance of the structure to FuncFit when using a structure fit
function. structureInstance is an instance that was initialized by a user-defined
function that invokes FuncFit. This keyword (and structure fitting functions) can
be used only when calling FuncFit from within a user-defined function. See
Structure Fit Functions on page III-228 for more details.

FuncFitMD

V-218

For details on the form of a user-defined function, see User-Defined Fitting Function: Detailed
Description on page III-219.

FuncFitMD
FuncFitMD [flags] fitFuncName, cwaveName, waveName [flag parameters]
The FuncFitMD operation performs a curve fit to the specified multivariate user defined fitFuncSpec.
FuncFitMD handles gridded data sets in multidimensional waves. Most parameters and flags are the same
as for the CurveFit and FuncFit operations; differences are noted below.
cwaveName is a 1D wave containing the fitting coefficients, and functionName is the user-defined fitting
function, which has 2 to 4 independent variables.
FuncFitMD operation parameters are grouped in the following categories: flags, parameters (fitFuncName,
cwaveName, waveName), and flag parameters. The sections below correspond to these categories. Note that
flags must precede the fitFuncName and flag parameters must follow waveName.

Flags

Parameters

Flag Parameters
These flag parameters must follow waveName.

/L=dimSize Sets the dimension size of the wave created by the auto-trace feature, that is, /D
without destination wave. The wave fit_waveName will be a multidimensional wave
of the same dimensionality as waveName that has dimSize elements in each dimension.
That is, if you are fitting to a matrix wave, fit_waveName will be a square matrix that
has dimensions dimSize XdimSize. Beware: dimSize =100 requires 100 million points for
a 4-dimensional wave!

fitFuncName User-defined function to fit to, which must be a function taking 2 to 4 independent
variables.

cwaveName 1D wave containing the fitting coefficients.

waveName The wave containing the dependent variable data to be fit to the specified function.
For functions of just one independent variable, the dependent variable data is often
referred to as "Y data". You can fit to a subrange of the wave by supplying
(startX,endX) or [startP,endP] for each dimension after the wave name. See Wave
Subrange Details below for more information on subranges of waves in curve fitting.

/E=ewaveName A wave containing the epsilon values for each parameter. Must be the same length as
the coefficient wave.

/T=twaveName Like /X except for the T independent variable. This is a 1D wave having as many
elements as waveName has chunks.

/X=xwaveName The X independent variable values for the data to fit come from xwaveName instead of
from the X scaling of waveName. This is a 1D wave having as many elements as
waveName has rows.

/Y=ywaveName Like /X except for the Y independent variable. This is a 1D wave having as many
elements as waveName has columns.

/Z=ywaveName Like /X except for the Z independent variable. This is a 1D wave having as many
elements as waveName has layers.

FUNCREF

V-219

Details
Auto-residual (/R with no wave specified) and auto-trace (/D with no wave specified) for functions having two
independent variables are plotted in a separate graph window if waveName is plotted as a contour or image in
the top graph. An attempt is made to plot the model values and residuals in the same way as the input data.
By default the auto-trace and auto-residual waves are 50x50 or 25x25x25 or 15x15x15x15. Use /L=dimSize for
other sizes. Make your own wave and use /D=waveName or /R=waveName if you want a wave that isn’t
square. In this case, the wave dimensions must be the same as the dependent data wave.
Confidence bands are not available for multivariate fits.

Wave Subrange Details
Almost any wave you specify to FuncFitMD can be a subrange of a wave. The syntax for wave subranges
is the same as for the Display command; see Subrange Display Syntax on page II-293 for details. Note that
the dependent variable data (waveName) must be a multidimensional wave; this requires an extension of the
subrange syntax to allow a multidimensional subrange. See Wave Subrange Details on page V-216 for a
discussion of the use of subranges in curve fitting.
The backwards compatibility rules for CurveFit apply to FuncFitMD as well.
A subrange could be used to pick a plane from a 3D wave for fitting using a fit function taking two
independent variables:
Make/N=(100,100,3) DepData
FuncFitMD fitfunc2D, myCoefs, DepData[][][0] …

See Also
The CurveFit operation for parameter details.
The best way to create a user-defined fitting function is using the Curve Fitting dialog. See Using the Curve
Fitting Dialog on page III-161, especially the section Fitting to a User-Defined Function on page III-173.
For details on the form of a user-defined function, see User-Defined Fitting Function: Detailed
Description on page III-219.

FUNCREF
FUNCREF protoFunc func [= funcSpec]
Within a user function, FUNCREF is a reference that creates a local reference to a function or a variable
containing a function reference.
When passing a function as an input parameter to a user function, the syntax is:
FUNCREF protoFunc func
In this FUNCREF reference, protoFunc is a function that specifies the format of the function that can be
passed by the FUNCREF, and func is a function reference used as an input parameter.
When you declare a function reference variable within a user function, the syntax is:
FUNCREF protoFunc func = funcSpec

/NWOK Allowed in user-defined functions only. When present, certain waves may be set to
null wave references. Passing a null wave reference to FuncFitMD is normally treated
as an error. By using /NWOK, you are telling FuncFitMD that a null wave reference
is not an error but rather signifies that the corresponding flag should be ignored. This
makes it easier to write function code that calls FuncFitMD with optional waves.
The waves affected are the X wave or waves (/X), the Y spacing wave (/Y), the Z
spacking wave (/Z) the T spacing wave (/T), weight wave (/W), epsilon wave (/E) and
mask wave (/M). The destination wave (/D=wave) and residual wave (/R=wave) are
also affected, but the situation is more complicated because of the dual use of /D and
/R to mean "do autodestination" and "do autoresidual". See /AR and /AD.
If you don't need the choice, it is better not to include this flag, as it disables useful
error messages when a mistake or run-time situation causes a wave to be missing
unexpectedly.
Note: To work properly this flag must be the last one in the command.

FuncRefInfo

V-220

Here, the local FUNCREF variable, func, is assigned a funcSpec, which can be a literal function name, a $
string expression that evaluates at runtime, or another FUNCREF variable.

See Also
Function References on page IV-88 for an example and further usage details.

FuncRefInfo
FuncRefInfo(funcRef)
The FuncRefInfo function returns information about a FUNCREF.

Parameters
funcRef is a function reference variable declared by a FUNCREF statement in a user-defined function.

Details
FuncRefInfo returns a semicolon-separated keyword/value string containing the following information:

See Also
Function References on page IV-88 and FUNCREF on page V-219.

Function
Function [[/C /D /S /DF /WAVE] functionName([parameters])
The Function keyword introduces a user-defined function in a procedure window.
The optional flags specify the return value type, if any, for the function.

Flags

Details
If you omit all flags, the result is a scalar double-precision number.
The /D flag is not needed because all numeric return values are double-precision.
The /DF and /WAVE flags require Igor Pro 6.1 or later.

See Also
 Chapter IV-3, User-Defined Functions and Function Syntax on page IV-29 for further information.

FunctionInfo
FunctionInfo(functionNameStr [, procedureWinTitleStr])
The FunctionInfo function returns a keyword-value pair list of information about the user-defined or
external function name in functionNameStr.

Keyword Information

NAME The name of the reference function or "" if the FUNCREF variable has not been
assigned to point to a function.

ISPROTO 0 if the FUNCREF variable has been assigned to point to a function.
1 if it has not been assigned and therefore still points to the prototype function.

ISXFUNC 0 if it points to a user-defined function.
1 if the FUNCREF points to an external function.

/C Returns a complex number.

/D Returns a double-precision number. Obsolete, accepted for backward compatibility.

/S Returns a string.

/DF Returns a data folder reference. See Data Folder Reference Function Results on page IV-65.

/WAVE Returns a wave reference. See Wave Reference Function Results on page IV-60.

FunctionInfo

V-221

Parameters
functionNameStr a string expression containing the name or multipart name of a user-defined or external
function. functionNameStr is usually just the name of a function.
To return information about a static function, supply both the module name and the function name in
MyModule#MyFunction format (see Regular Modules on page IV-216), or specify the function name and
procedureWinTitleStr (see below).
To return information about a function in a different independent module, supply the independent module
name in addition to any module name and function name (a double or triple name):

(See Independent Modules on page IV-218 for details on independent modules.)
The optional procedureWinTitleStr can be the title of a procedure window (such as "Procedure" or "File Name
Utilities.ipf") in which to search for the named user-defined function. The information about the named
function in the specified procedure window is returned.
The procedureWinTitleStr parameter makes it possible to select one of several static functions with identical
names among different procedure windows, even if they do not contain a #pragma
moduleName=myModule statement.
If you execute this command:
SetIgorOption IndependentModuleDev=1

then procedureWinTitleStr can also be a title followed by an independent module name in brackets to return
information about the named function in the procedure window of the given title that belongs to named
independent module.
procedureWinTitleStr can also be just an independent module name in brackets to return information about
the named nonstatic function in any procedure window that belongs to named independent module.

Details
The returned string contains several groups of information. Each group is prefaced by a keyword and colon,
and terminated with the semicolon. The keywords are as follows:

Name What It Refers To

MyIndependentModule#MyFunction Refers to a non-static function in an independent
module.

MyIndependentModule#MyModule#MyFunction Refers to a static function in a procedure file with
#pragma moduleName=MyModule in an
independent module.

User-Defined and External Functions

Keyword Information Following Keyword

NAME The name of the function. Same as contents of functionNameStr in most cases. Just
the function name if you use the module#function format.

TYPE Value is "UserDefined" or "XFunc".

THREADSAFE Either "yes" or "no". See ThreadSafe Functions on page IV-87.

RETURNTYPE Number giving the return type of the function. See the table Return Type and
Parameter Type Codes on page V-222.

N_PARAMS Number of parameters for this function.

PARAM_n_TYPE Number encoding the type of each parameter. There will be N of these keywords,
one for each parameter. The part shown as n will be a number from 0 to N.

FunctionInfo

V-222

See Examples for a method for decoding these keywords.

User-Defined Functions Only

Keyword Information Following Keyword

PROCWIN Title of procedure window containing the function definition.

MODULE Module containing function definition (see Regular Modules on page IV-216).

INDEPENDENTMODULE Independent module containing function definition (see See Independent
Modules on page IV-218).

SPECIAL The value part has one of three values:

no: Not a “special” function.

static: Is a static function. Use the module#function format to get info
about static functions.

override: Function is an override function. See Function Overrides on
page IV-88.

SUBTYPE The function subtype, for instance FitFunc. See Procedure Subtypes on page
V-12 for others.

PROCLINE Line number within the procedure window of the function definition.

VISIBLE Either "yes" or "no". Set to "no" in the unlikely event that the function is defined
in an invisible file.

N_OPT_PARAMS Number of optional parameters. Usually zero.

External Functions Only

Keyword Information Following Keyword

XOP Name of the XOP module containing the function.

Return Type and Parameter Type Codes

Type Code Code in Hex

Complex 1 0x1

Single Precision 2 0x2

Variable 4 0x4

Double Precision 4 0x4

Byte 8 0x8

16-bit Integer 16 0x10

32-bit Integer 32 0x20

Single Precision 2 0x2

/WAVE 128 0x80

Data folder reference 256 0x100

Structure 512 0x200

Function reference 1024 0x400

Pass by reference parameter 4096 0x1000

FunctionInfo

V-223

Igor functions can return a numeric value, a string value, a wave reference, or a data folder reference.
A returned numeric value is always double precision and may be complex. The return type for a normal
numeric function is 4, for a complex function (Function/C) is 5 (4 for number +1 for complex).
A string function (Function/S) is 8192 (string). A Function/WAVE has a return type of 16384.
The return and parameter codes may be combined to indicate combinations of attributes. For instance, the
code for a variable is 4 and the code for complex is 1. Consequently, the code for a complex variable
parameter is 5. The code for a complex variable parameter passed by reference is (4+1+4096) = 4101.
Variables are always double-precision, hence the code of 4.
Waves may have a variety of codes. Numeric waves will combine with one of the number type codes such
as 2 or 16. This does not reflect the numeric type of any actual wave, but rather any flag you may have used
in the Wave reference. Thus, if the beginning of your function looks like
Function myFunc(w)

Wave w

the code for the parameter w will be 16386 (16384 + 2) indicating a single-precision wave. You can use a
numeric type flag with the Wave reference:
Function myFunc(w)

Wave/I w

In this case, the code will be 16416 (16384 + 32).
Such codes are not very useful, as it is very rare to use a numeric type flag because the numeric type will be
resolved correctly at runtime regardless of the flag.
A text wave has no numeric type, so its code is exactly 16384 (or -16384 if /Z is also specified.) Thus, the
numeric type part of the code for a numeric wave serves to distinguish a numeric wave from a text wave.
And a Wave/WAVE (a wave that contains references to other waves) has a code of 16512 (16384 + 128),
unless /Z is also specified, which subtracts 32768, resulting in a code of -16256.

Examples
This function formats function information nicely and prints it in the history window in an organized fashion.
You can copy it into the Procedure window to try it out. It uses the function InterpretType() below to
print a human-readable version of the parameter and return types. To try PrintFuncInfo(), you will need
to copy the code for InterpretType() as well.
Function PrintFuncInfo(functionName)

String functionName

String infostr = FunctionInfo(functionName)
if (strlen(infostr) == 0)

print "The function \""+functionName+"\" does not exist."
return -1

endif

print "Name: ", StringByKey("NAME", infostr)

String typeStr = StringByKey("TYPE", infostr)
print "Function type: ", typeStr
Variable IsUserDefined = CmpStr(typeStr, "UserDefined")==0

// It's not really necessary to use an IF statement here;
// it simply prevents lines with blank information being
// printed for an XFUNC.

if (IsUserDefined)
print "Module: ", StringByKey("MODULE", infostr)
print "Procedure window: ", StringByKey("PROCWIN", infostr)

String 8192 0x2000

Wave 16384 0x4000

/Z -32768 0xFFFF8000

Return Type and Parameter Type Codes

Type Code Code in Hex

FunctionInfo

V-224

print "Subtype: ", StringByKey("SUBTYPE", infostr)
print "Special? ", StringByKey("SPECIAL", infostr)

// Note use of NumberByKey to get a numeric key value
print "Line number: ", NumberByKey("PROCLINE", infostr)

endif

// See function InterpretType() below for example of
// interpreting type information.

Variable returnType = NumberByKey("RETURNTYPE", infostr)

String returnTypeStr = InterpretType(returnType, 1)
printf "Return type: %d (0x%X) %s\r", returnType, returnType, returnTypeStr

Variable nparams = NumberByKey("N_PARAMS", infostr)
print "Number of Parameters: ", nparams

Variable nOptParams = 0
if (IsUserDefined)

nOptParams = NumberByKey("N_OPT_PARAMS", infostr)
print "Optional Parameters: ", nOptParams

endif

Variable i
for (i = 0; i < nparams; i += 1)

// Note how the PARAM_n_TYPE keyword string is constructed here:
String paramKeyStr = "PARAM_"+num2istr(i)+"_TYPE"
Variable ptype = NumberByKey(paramKeyStr, infostr)

String ptypeStr = InterpretType(ptype,0)
String format = "Parameter %d; type as number: %g (0x%X); type as string: %s"
String output
sprintf output, format, i, ptype, ptype, pTypeStr
print output

endfor

return 0
End

Function that creates a human-readable string with information about parameter and return types. Note that
various attributes of the type info is tested using the bitwise AND operator (&) to test for individual bits. The
constants are expressed as hexadecimal values (prefixed with “0x”) to make them more readable (at least to a
programmer). Otherwise, 0x4000 would be 16384; at least, 0x4000 is clearly a single-bit constant.
Function/S InterpretType(type, isReturnType)

Variable type
Variable isReturnType // 0: type is parameter type; 1: type is return type.

String typeStr = ""

// limit type to unsigned 16-bit values (remove sign extensions caused by 0x8000)
type = type & 0xFFFF

// isNumeric is flag to tell whether to print out "complex" and "real";
// we don't want that information on strings, text waves or wave of wave references.
Variable isNumeric = 1

if (type & 0x4000) // test for WAVE bit set
typeStr += "Wave"

if(!isReturnType)
if (type & 0x80) // test for WAVE/WAVE bit set

typeStr += "/WAVE"
// don't print "real" or "complex" for wave waves
isNumeric = 0

endif
if (type & 0x8000) // test for WAVE/Z bit set

typeStr += "/Z"
endif

endif
typeStr += " "

if((type == 0x4000) || (type == (0x4000 | 0x8000))) // WAVE/T or WAVE/Z/T
if(!isReturnType)

FunctionList

V-225

// For parameter types, if no numeric bits are set, it is a text wave.
// A numeric wave has some other bits set causing the value
// to be different from 0x4000 or 0xC000.
typeStr += "text "

endif
// Function/WAVE doesn't (cannot) specify whether the returned wave
// is text or numeric.
// Don't print "real" or "complex" for text or unknown wave types.
isNumeric = 0

endif
elseif (type & 0x2000) // test for STRING bit set

typeStr += "String "
isNumeric = 0

elseif (type & 4) // test for VARIABLE bit
typeStr += "Variable "

elseif (type & 0x100) // test for DFREF bit
typeStr += "Data folder reference "
isNumeric = 0

elseif (type & 0x200) // test for STRUCTURE bit
typeStr += "Struct "
isNumeric = 0

elseif (type & 0x400) // test for FUNCREF bit
typeStr += "FuncRef "
isNumeric = 0

endif

// print "real" or "complex" for numeric objects only
if (isNumeric)

if (type & 1) // test for COMPLEX bit
typeStr += "cmplx "

else
typeStr += "real "

endif
endif

if(!isReturnType && (type & 0x1000)) // test for PASS BY REFERENCE bit
typeStr += "reference "

endif

return typeStr
End

See Also
The StringByKey and NumberByKey functions.
StringByKey, NumberByKey, and FunctionList functions.
Regular Modules on page IV-216 and Independent Modules on page IV-218.

FunctionList
FunctionList(matchStr, separatorStr, optionsStr)
The FunctionList function returns a string containing a list of built-in or user-defined function names
satisfying certain criteria. This is useful for making a string to list functions in a pop-up menu control. Note
that if the procedures need to be compiled, then FunctionList will not list user-defined functions.

Parameters
Only functions having names that match matchStr string are listed. Use "*" to match all names. See
WaveList for examples.
The first character of separatorStr is appended to each function name as the output string is generated. separatorStr
is usually ";" for list processing (See Processing Lists of Waves on page IV-178 for details on list processing).

FunctionList

V-226

Use optionsStr to further qualify the list of functions. optionsStr is a string containing keyword-value pairs
separated by commas. Available options are:

KIND:nk

SUBTYPE:typeName

Lists functions that have the type typeName. That is, you could use ButtonControl as
typeName to list only functions that are action procedures for buttons.

VALTYPE:nv

NPARAMS:np Restricts the list to functions having exactly np parameters. Omitting this option lists
functions having any number of parameters.

NINDVARS:ni Restricts the list to fitting functions for exactly ni independent variables. NINDVARS
is ignored if you have not elected to list curve fitting functions using the KIND option.
Functions for any number of independent variables are listed if the NINDVARS
option is omitted.

WIN:windowTitle Lists functions that are defined in the procedure window with the given title.
“Procedure” is the title of the built-in procedure window.
Note: Because the optionsStr keyword-value pairs are comma separated and
procedure window names can have commas in them, the WIN:keyword must be the
last one specified.

WIN:windowTitle [independentModuleName]

Lists functions that are defined in the named procedure window that belongs to the
independent module independentModuleName. See Independent Modules on page
IV-218 for details. Requires SetIgorOption IndependentModuleDev=1,
otherwise no functions are listed.
Requires independentModuleName=ProcGlobal or SetIgorOption
independentModuleDev=1, otherwise no functions are listed.
Note: The syntax is literal and strict: the window title must be followed by one space
and a left bracket, followed directly by the independent module name and a closing
right bracket.

WIN:[independentModuleName]

Controls the kinds of functions returned.
nk=1: List built-in functions.
nk=2: List normal and override user-defined functions.
nk=4: List external functions (defined by an XOP).
nk=8: List only curve fitting functions; must be summed with 1, 2, 4, or 16.

For example, use 10 to list user-defined fitting functions.
nk=16: Include static user-defined functions; requires WIN: option, must be

summed with 1, 2, or 8. To list only static functions, subtract the non-
static functions using RemoveFromList.

Restricts list to functions whose return type is a certain kind.

Use a sum of these values to include more than one type. The return type is not
restricted if this option is omitted.

nv=1: Real-valued functions.
nv=2: Complex-valued functions.
nv=4: String functions.
nv=8: WAVE functions
nv=16: DFREF functions.

FunctionPath

V-227

Examples
To list user-defined fitting functions for two independent variables:
Print FunctionList("*",";","KIND:10,NINDVARS:2")

To list button-control functions that start with the letter b (note that button-control functions are user-
defined):
Print FunctionList("b*",";","KIND:2,SUBTYPE:ButtonControl")

See Also
Independent Modules on page IV-218.
For details on procedure subtypes, see Procedure Subtypes on page IV-183, as well as Button, CheckBox,
SetVariable, and PopupMenu.
The DisplayProcedure operation and the MacroList, OperationList, StringFromList, and WinList
functions.

FunctionPath
FunctionPath(functionNameStr)
The FunctionPath function returns a path to the file containing the named function. This is useful in certain
specialized cases, such as if a function needs access to a lookup table of a large number of values.
The most likely use for this is to find the path to the file containing the currently running function. This is
done by passing "" for functionNameStr, as illustrated in the example below.
The returned path uses Macintosh syntax regardless of the current platform. See Path Separators on page
III-400 for details.
If the procedure file is a normal standalone procedure file, the returned path will be a full path to the file
such as "hd:Igor Pro Folder:WaveMetrics Procedures:Waves:Wave Lists.ipf".
If the function resides in the built-in procedure window the returned path will be ":Procedure". If the
function resides in a packed procedure file, the returned path will be ":<packed procedure window
title>".
If FunctionPath is called when procedures are in an uncompiled state, it returns “:”.

Parameters
If functionNameStr is "", FunctionPath returns the path to the currently executing function or "" if no
function is executing.
Otherwise FunctionPath returns the path to the named function or "" if no function by that name exists.

Examples
This example loads a lookup table into memory. The lookup table is stored as a wave in an Igor binary file.
Function LoadMyLookupTable()

String path

path = FunctionPath("") // Path to file containing this function.
if (CmpStr(path[0],":") == 0)

// This is the built-in procedure window or a packed procedure
// file, not a standalone file. Or procedures are not compiled.
return -1

endif

// Create path to the lookup table file.
path = ParseFilePath(1, path, ":", 0, 0) + "MyTable.ibw"

Lists functions that are defined in any procedure file that belongs to the named
independent module.
Requires independentModuleName=ProcGlobal or SetIgorOption
independentModuleDev=1, otherwise no functions are listed.
Note: The syntax is literal and strict: 'WIN:' must be followed by a left bracket,
followed directly by the independent module name and a closing right bracket, like
this:
FunctionList(...,"WIN:[myIndependentModuleName]")

GalleryGlobal

V-228

String dfSave = GetDataFolder(1)

// A previously-created place to store my private data.
SetDataFolder root:Packages:MyData

// Load the lookup table.
LoadWave/O path

SetDataFolder dfSave

return 0
End

See Also
The FunctionList function.

GalleryGlobal
GalleryGlobal#pictureName
The GalleryGlobal keyword is used in an independent module to reference a picture in the global picture
gallery which you can view by choosing Misc→Pictures.

See Also
See Independent Modules and Pictures on page IV-224.

gamma
gamma(num)
The gamma function returns the value of the gamma function of num. If num is complex, it returns a
complex result. Note that the return value for num close to negative integers is NaN, not ±Inf.

See Also
The gammln function.

gammaInc
gammaInc(a, x [, upperTail])
The gammaInc function returns the value of the incomplete gamma function, defined by the integral

If upperTail is zero, the limits of integration are 0 to x. If upperTail is absent, it defaults to 1, and the limits of
integration are x to infinity, as shown. Note that gammaInc(a, x) = gamma(a) - gammaInc(a, x, 0).
Defined for x > 0, a ≥ 0 (upperTail = zero or absent) or a > 0 (upperTail = 0).

See Also
The gamma, gammp, and gammq functions.

gammaNoise
gammaNoise(a [, b])
The gammaNoise function returns a pseudo-random value from the gamma distribution

whose mean is ab and variance is ab2. For backward compatibility you can omit the parameter b in which
case its value is set to 1. When a→1 gammaNoise reduces to expnoise.
The random number generator initializes using the system clock when Igor Pro starts. This almost guarantees
that you will never repeat a sequence. For repeatable “random” numbers, use SetRandomSeed. The
algorithm uses the Mersenne Twister random number generator.

Γ a x(,) e t– te 1– td
x

∞

=

gammln

V-229

References
Marsaglia, G., and W. W. Tsang, ACM, 26, 363-372, 2000.

See Also
The SetRandomSeed operation.
Noise Functions on page III-334.
Chapter III-12, Statistics for a function and operation overview.

gammln
gammln(num [, accuracy])
The gammln function returns the natural log of the gamma function of num, where num > 0. If num is
complex, it returns a complex result. Optionally, accuracy can be used to specify the desired fractional
accuracy. If num is complex, it returns a complex result. In this case, accuracy is ignored.

Details
The accuracy parameter specifies the fractional accuracy that you desire. That is, if you set accuracy to 10-7,
that means that you wish that the absolute value of (factual - freturned)/factual be less than 10-7.
For backward compatibility, if you don’t include accuracy, gammln uses older code that achieves an
accuracy of about 2x10-10.
With accuracy, newer code is used that is both faster and more accurate. The output has fractional accuracy better
than 1x10-15 except for values near zero, where the absolute accuracy (factual - freturned) is better than 2x10-16.
The speed of calculation depends only weakly on accuracy. Higher accuracy is significantly slower than
lower accuracy only for num between 6 and about 10.

See Also
The gamma function.

gammp
gammp(a, x [, accuracy])
The gammp function returns the regularized incomplete gamma function P(a,x), where a > 0, x ≥ 0. Optionally,
accuracy can be used to specify the desired fractional accuracy. Same as gammaInc(a, x, 0)/gamma(a).

Details
The accuracy parameter specifies the fractional accuracy that you desire. That is, if you set accuracy to 10-7,
that means that you wish that the absolute value of (factual - freturned)/factual be less than 10-7.
For backward compatibility, if you don’t include accuracy, gammp uses older code that is slower for an
equivalent accuracy, and cannot achieve as high accuracy.
The ability of gammp to return a value having full fractional accuracy is limited by double-precision
calculations. This means that it will mostly have fractional accuracy better than about 10-15, but this is not
guaranteed, especially for extreme values of a and x.

See Also
The gammaInc and gammq functions.

gammq
gammq(a, x [, accuracy])
The gammq function returns the regularized incomplete gamma function 1-P(a,x), where a > 0, x ≥ 0. Optionally,
accuracy can be used to specify the desired fractional accuracy. Same as gammaInc(a, x)/gamma(a).

Details
The accuracy parameter specifies the fractional accuracy that you desire. That is, if you set accuracy to 10-7,
that means that you wish that the absolute value of (factual - freturned)/factual be less than 10-7.
For backward compatibility, if you don’t include accuracy, gammq uses older code that is slower for an
equivalent accuracy, and cannot achieve as high accuracy.

Gauss

V-230

The ability of gammq to return a value having full fractional accuracy is limited by double-precision
calculations. This means that it will mostly have fractional accuracy better than about 10-15, but this is not
guaranteed, especially for extreme values of a and x.

See Also
The gammaInc and gammp functions.

Gauss
Gauss(x,xc,wx [,y,yc,wy [,z,zc,wz [,t,tc,wt]]])
The Gauss function returns a normalized Gaussian for the specified dimension.

, where n is the number of dimensions.

Parameters
xc, yc, zc, and tc are the centers of the Gaussian in the X, Y, Z, and T directions, respectively.
wx, wy, wz, and wt are the widths of the Gaussian in the X, Y, Z, and T directions, respectively.
Note that wi here is the standard deviation of the Gaussian. This is different from the width parameter in
the gauss curve fitting function, which is sqrt(2) times the standard deviation.
Note also that the Gauss function lacks the cross-correlation parameter that is included in the Gauss2D
curve fitting function.

Examples
Make/n=100 eee=gauss(x,50,10)
Print area(eee,-inf,inf)
 0.999999

Make/n=(100,100) ddd=gauss(x,50,10,y,50,15)
Print area(ddd,-inf,inf)
 0.999137

Gauss1D
Gauss1D(w, x)
The Gauss1D function returns the value of a Gaussian peak defined by the coefficients in the wave w. The
equation is the same as the Gauss curve fit:

.

Examples
Do a fit to a Gaussian peak in a portion of a wave, then extend the model trace to the rest of the X range:
Make/O/N=100 junkg // fake data wave
Setscale/I x -1,1,junkg
Display junkg
junkg = 1+2.5*exp(-((x-.5)/.3)^2)+gnoise(.1)
Duplicate/O junkg, junkgfit
junkgfit = NaN
AppendToGraph junkgfit
CurveFit gauss junkg[50,99] /D=junkgfit
// now extend the model trace
junkgfit = Gauss1D(w_coef, x)

See Also
The CurveFit operation.

Gauss2D
Gauss2D(w, x, y)
The Gauss2D function returns the value of a two-dimensional Gaussian peak defined by the coefficients in
the wave w. The equation is the same as the Gauss2D curve fit:

Gauss r c w, ,() 1
wi 2π⋅
-------------------- 1

2
---–

ri ci–

wi

2

exp
i 1=

n

∏=

w 0[] w 0[]= w 1[] x w 2[]–
w 3[]

 2

–exp+

gcd

V-231

.

Examples
Do a fit to a Gaussian peak in a portion of a wave, then extend the model trace to the rest of the X range
(watch out for the very long wave assignment to junkg2D):
Make/O/N=(100,100) junkg2D // fake data wave
Setscale/I x -1,1,junkg2D
Setscale/I y -1,1,junkg2D
Display; AppendImage junkg2D
//Caution! Next command wrapped to fit page:
junkg2D = -1 + 2.5*exp((-1/(2*(1-.4^2)))*(((x-.1)/.2)^2+((y+.2)/.35)^2+2*.4*

((x-.1)/.2)*((y+.2)/.35)))
junkg2D += gnoise(.01)
Duplicate/O junkg2D, junkg2Dfit
junkg2Dfit = NaN
AppendMatrixContour junkg2Dfit
CurveFit gauss2D junkg2D[20,80][10,70] /D=junkg2Dfit[20,80][10,70]
// now extend the model trace
junkg2Dfit = Gauss2D(w_coef, x, y)

See Also
The CurveFit operation.

gcd
gcd(A, B)
The gcd function calculates the greatest common divisor of A and B, which are both assumed to be integers.

Examples
Compute least common multiple (LCM) of two integers:
Function LCM(a,b)

Variable a, b

return((a*b)/gcd(a,b))
End

GetAxis
GetAxis [/W=winName /Q] axisName
The GetAxis operation determines the axis range and sets the variables V_min and V_max to the minimum
and maximum values of the named axis.

Parameters
axisName is usually "left", "right", "top" or "bottom", though it may also be the name of a free axis
such as "VertCrossing".

Flags

Details
GetAxis sets V_min according to the bottom of vertical axes or left of horizontal axes and V_max according
to the top of vertical axes or right of horizontal axes. It also sets the variable V_flag to 0 if the specified axis
is actually used in the graph, or to 1 if it is not.

/Q Prevents values of V_flag, V_min, and V_max from being printed in the history area.
The results are still stored in the variables.

/W=winName Retrieves axis info from the named graph window or subwindow. When omitted,
action will affect the active window or subwindow. This must be the first flag
specified when used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

w 0[] w 1[] 1–

2 1 w 6[]2–()
------------------------------- x w 2[]–

w 3[]

 2 y w 4[]–

w 5[]

 2 2w 6[] x w 2[]–() y w 4[]–()

w 3[]w 5[]
---–+

 exp+

GetDataFolder

V-232

See Also
The AxisInfo function.

GetDataFolder
GetDataFolder(mode [, dfr])
The GetDataFolder function returns a string containing the name of or full path to the current data folder
or, if dfr is present, the specified data folder.
For Igor Pro 6.1 or later, GetDataFolderDFR is preferred.

Parameters
If mode=0, it returns just the name of the data folder.
If mode=1, GetDataFolder returns a string containing the full path to the data folder.
dfr, if present, specifies the data folder of interest. This parameter was added in Igor Pro 6.1.

Details
GetDataFolder can be used to save and restore the current data folder in a procedure. However, as of Igor
Pro 6.1, GetDataFolderDFR is preferred for that purpose.

Examples
String savedDataFolder = GetDataFolder(1) // Save
SetDataFolder root:
Variable/G gGlobalRootVar
SetDataFolder savedDataFolder // and restore

See Also
Chapter II-8, Data Folders.
The SetDataFolder operation and GetDataFolderDFR function.

GetDataFolderDFR
GetDataFolderDFR()
The GetDataFolderDFR function returns the data folder reference for the current data folder.
Requires Igor Pro 6.1 or later.

Details
GetDataFolderDFR can be used to save and restore the current data folder in a procedure. It is like
GetDataFolder but returns a data folder reference rather than a string.

Example
DFREF saveDFR = GetDataFolderDFR() // Save
SetDataFolder root:
Variable/G gGlobalRootVar
SetDataFolder saveDFR // and restore

See Also
Chapter II-8, Data Folders and Data Folder References on page IV-62.
The SetDataFolder operation.

GetDefaultFont
GetDefaultFont(winName)
The GetDefaultFont function returns a string containing the name of the default font for the named window
or subwindow.

Parameters
If winName is null (that is, "") returns the default font for the experiment.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.

GetDefaultFontSize

V-233

Details
Only graph windows and the experiment as a whole have default fonts. If winName is the name of a window
other than a graph (e.g., a layout), or if winName is not the name of any window, GetDefaultFont returns
the experiment default font.
In user-defined functions, font names are usually evaluated at compile time. To use the output of
GetDefaultFont in a user-defined function, you will usually need to build a command as a string expression
and execute it with the Execute operation.

Examples
String fontName = GetDefaultFont("Graph0")
String command= "SetDrawEnv fname=\"" + fontName + "\", save"
Execute command

See Also
The GetDefaultFontSize, GetDefaultFontStyle, FontSizeHeight, and FontSizeStringWidth functions.

GetDefaultFontSize
GetDefaultFontSize(graphNameStr, axisNameStr)
The GetDefaultFontSize function returns the default font size of the graph or of the graph’s axis (in points)
in the specified window or subwindow.

Details
If graphNameStr is "" the top graph is examined.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
If axisNameStr is "", the font size of the default font for the graph is returned.
If named axis exists, the default font size for the named axis in the graph is returned.
If named axis does not exist, NaN is returned.

See Also
The GetDefaultFont, GetDefaultFontStyle, FontSizeHeight, and FontSizeStringWidth functions.

GetDefaultFontStyle
GetDefaultFontStyle(graphNameStr, axisNameStr)
The GetDefaultFontStyle function returns the default font style of the graph or of the graph’s axis in the
specified window or subwindow.

Details
If graphNameStr is "" the top graph is examined.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
If axisNameStr is "", the font style of the default font for the graph is returned.
If named axis exists, the default font style for the named axis in the graph is returned.
If named axis does not exist, NaN is returned.
The function result is a bitwise value with each bit identifying one aspect of the font style as follows:

bit 0: Bold.

bit 1: Italic.

bit 2: Underline.

bit 3: Outline (Macintosh only).

GetDimLabel

V-234

See Setting Bit Parameters on page IV-12 for details about bit settings.

See Also
The GetDefaultFont, GetDefaultFontSize, FontSizeHeight, and FontSizeStringWidth functions.

GetDimLabel
GetDimLabel(waveName, dimNumber, dimIndex)
The GetDimLabel function returns a string containing the label for the given dimension or dimension
element.
Use dimNumber=0 for rows, 1 for columns, 2 for layers and 3 for chunks.
If dimIndex is -1, it returns the label for the entire dimension. If dimIndex is ≥ 0, it returns the dimension label
for that element of the dimension.

See Also
SetDimLabel, FindDimLabel
Dimension Labels on page II-109 for further usage details and examples.

GetFileFolderInfo
GetFileFolderInfo [flags][fileOrFolderNameStr]
The GetFileFolderInfo operation returns information about a file or folder.

Parameters
fileOrFolderNameStr specifies the file (or folder) for which information is returned. It is optional if /P=pathName
and /D are specified, in which case information about the directory associated with pathName is returned.
If you use a full or partial path for fileOrFolderNameStr, see Path Separators on page III-400 for details on
forming the path.
Folder paths should not end with single Path Separators. See the MoveFolder Details section.
If Igor can not determine the location of the file from fileOrFolderNameStr and pathName, it displays a dialog
allowing you to specify the file to be examined. Use /D to select a folder.

Flags

bit 4: Shadow (Macintosh only).

bit 5: Condensed (Macintosh only).

bit 6: Extended (Macintosh only).

/D Uses the Select Folder dialog rather than Open File dialog when pathName and
fileOrFolderNameStr do not specify an existing file or folder.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/Q No information printed to the history window.

/Z[=z] Prevents procedure execution from aborting if GetFileFolderInfo tries to get
information about a file or folder that does not exist. Use /Z if you want to handle
this case in your procedures rather than having execution abort.
/Z=0: Same as no /Z.
/Z=1: Used for getting information for a file or folder only if it exists. /Z

alone has the same effect as /Z=1.
/Z=2: Used for getting information for a file or folder if it exists and

displaying a dialog if it does not exist.

GetFileFolderInfo

V-235

Variables
GetFileFolderInfo returns information in the following variables:

If fileOrFolderNameStr refers to a file (not a folder), GetFileFolderInfo returns additional information in the
following variables:

V_flag 0: File or folder was found.
-1: User cancelled the Open File dialog.
Other: An error occurred, such as the specified file or folder does not exist.

S_path File system path of the selected file.

V_isFile 1: fileOrFolderNameStr is a file.

V_isFolder 1: fileOrFolderNameStr is a folder.

V_isInvisible 1: File is invisible (Macintosh) or Hidden (Windows).

V_isReadOnly Set if the file is locked (Macintosh) or is read-only (Windows).

On Windows, V_isReadonly is either 0 (unlocked) or 1 (locked). To set this
manually, right-click the file and choose “Properties”, then select or deselect the
“read-only” checkbox.

On Macintosh, V_isReadonly is a bitmap of two settings:

0: Unlocked.

1: “Locked” with the Finder. Only files can be locked this way.

You set this kind of locking with the Finder’s Get Info window by selecting the
“Locked” checkbox.

2: “File Locked” as with ResEdit. You can’t set this kind of locking with the
Finder, but applications can. See SetFileFolderInfo.

3: Both kinds of locking are set.

V_creationDate Number of seconds since midnight on January 1, 1904 when the file or folder was
first created. Use Secs2Date to get a text format date.

V_modificationDat
e

Number of seconds since midnight on January 1, 1904 when the file or folder was
last modified. Use Secs2Date to get a text format date.

V_isAliasShortcut

1: File is an alias (Macintosh) or a shortcut (Windows) and S_aliasPath is also set.

S_aliasPath Full path to the file or folder that is the source for an alias (Macintosh) or a shortcut
(Windows).
When the source is a folder, S_aliasPath ends with a “:” character.

V_isStationery 1: The stationery bit is set (Macintosh) or (Windows) the file type is one of the
stationery file types (.pxt, .uxt, .ift).

S_fileType Four-character file type code, such as 'TEXT' or 'IGsU' (packed experiment). On
Windows, these codes are fabricated by translating from the equivalent file name
extensions, such as .txt and .pxp.

S_creator Four-character creator code, such as 'IGR0' (Igor Pro creator code).
On Windows, S_creator is set to 'IGR0' if the file name extensions is one of those
registered to Igor Pro, such as .pxp or .bwav (but not .txt). For other registered
extensions, S_creator is set to the full file path of the registered application.
Otherwise it is set to "".

V_logEOF Number of bytes in the file data fork. For other forks, use Open/F and FStatus.

GetErrMessage

V-236

Details
You can change some of the file information by using SetFileFolderInfo.

Examples
Print the modification date of a file:
GetFileFolderInfo/Z "Macintosh HD:folder:afile.txt"
if(V_Flag == 0 && V_isFile) // file exists

Print Secs2Date(V_modificationDate,0), Secs2Time(V_modificationDate,0)
endif

Determine if a folder exists (easier than creating a path with NewPath and then using PathInfo):
GetFileFolderInfo/Z "Macintosh HD:folder:subfolder"
if(V_Flag && V_isFolder)

Print "Folder Exists!"
endif

Find the source for a shortcut or alias:
GetFileFolderInfo/Z "Macintosh HD:fileThatIsAlias"
if(V_Flag && V_isAliasShortcut)

Print S_aliasPath
endif

See Also
The SetFileFolderInfo, PathInfo, ImageFileInfo, and FStatus operations. The IndexedFile, Secs2Date,
and ParseFilePath functions.

GetErrMessage
GetErrMessage(errorCode [, substitutionOption])
GetErrMessage returns a string containing an explanation of the error associated with errorCode.

Details
errorCode is a value sometimes returned in V_Flag, as per the documentation of the an Igor function or
operation; the Execute operation is an example.
For a few error codes, the corresponding error message is designed to be combined with "substituted"
information available only immediately after the error occurs. An example is the "parameter out of range"
error which produces an error message such as "expected number between x and y". To get the correct error
message, you must call GetErrMessage immediately after calling the function or operation that generated
the error and you must pass the appropriate value for substitutionOption as explained below.

Substitution
Igor maintains two environments which store the substitution information: one for macros created using
the Macro, Proc and Window keywords and another for user-defined functions created with the Function
keyword. The optional substitutionOption parameter gives you the ability to choose between those
environments or to not substitute at all. Set substitutionOption to one of:
For most purposes you should pass 3 for substitutionOption when the error was generated in a user-defined
function other than through the Execute operation and pass 2 otherwise.

V_version Version number of the file. On Macintosh, this is the value in the vers(1) resource.
On Windows, a file version such as 3.10.2.1 is returned as 4.021: use S_fileVersion
to avoid the problem of the second digit overflowing into the first digit.
“0”: File version can’t be determined, or the file can’t be examined because it is
already open.

S_fileVersion The file version as a string, added in Igor 5.02.
On Macintosh, this is just a string representation of V_Version. On Windows, a
file version such as 3.10.2.1 is returned as “3.10.2.1”.
“0”: (Macintosh) file version can’t be determined.
“0.0.0.0”: (Windows) file version can’t be determined.

GetFormula

V-237

Examples
// Macro, Execute or command line
Execute/Q/Z "Duplicate/O nonexistentWave, dup"
Print GetErrMessage(V_Flag,2)

Prints:
expected wave name

// Function example
Function Test()

Make/O/N=(2,2) data= 0
FilterIIR/COEF=data/LO=999/Z data // purposely wrong /LO value
Print GetErrMessage(V_Flag)
Print GetErrMessage(V_Flag,1)
Print GetErrMessage(V_Flag,2)
Print GetErrMessage(V_Flag,3)

End

Test()

Prints:
 expected (not avail) between (not avail) and (not avail)
 expected between and
 expected between and
 expected /LO frequency between 0 and 0.5

See Also
 The GetRTErrMessage and GetRTError functions.

GetFormula
GetFormula(objName)
The GetFormula function returns a string containing the named object’s dependency formula. The named
object must be a wave, numeric variable or string variable.

Details
Normally an object will have an empty dependency formula and GetFormula will return an empty string
(""). If you assign a expression to an object using the := operator or the SetFormula operation, the text on
the right side of the := or the parameter to SetFormula is the object’s dependency formula and this is what
GetFormula will return.

Examples
Variable/G dependsOnIt
Make/O wave0 := dependsOnIt*2 //wave0 changes when dependsOnItdoes
Print GetFormula(wave0)

Prints the following in the history area:
dependsOnIt*2

See Also
See Dependency Formulas on page IV-204, and the SetFormula operation.

substitutionOption GetErrMessage Action

0 Substitution values are filled in with "(not avail)". This is the default when
substitutionOption is not specified.

1 Substitution values are blank.

2 Substitution is performed based on the presumption that the error was received
while executing a macro or a command using Igor's command line. This includes
a command executed via the Execute operation even from a user-defined function
because such commands are executed as if entered in the command line.

3 Substitution is performed based on the presumption that the error was received
while executing a user-defined function.

GetIndependentModuleName

V-238

GetIndependentModuleName
GetIndependentModuleName()
The GetIndependentModuleName function returns the name of the currently running Independent
Module. If no independent module is running, it returns “ProcGlobal”.

See Also
 Independent Modules on page IV-218.
IndependentModuleList.

GetIndexedObjName
GetIndexedObjName(sourceFolderStr, objectType, index)
The GetIndexedObjName function returns a string containing the name of the indexth object of the
specified type in the data folder specified by the string expression.
For Igor Pro 6.1 or later, GetIndexedObjNameDFR is preferred.

Parameters
sourceFolderStr can be either ":" or "" to specify the current data folder. You can also use a full or partial
data folder path. index starts from zero. If no such object exists a zero length string ("") is returned.
objectType is one of the following values:

Examples
Function PrintAllWaveNames()

String objName
Variable index = 0
do

objName = GetIndexedObjName(":", 1, index)
if (strlen(objName) == 0)

break
endif
Print objName
index += 1

while(1)
End

See Also
The CountObjects function, and Chapter II-8, Data Folders.

GetIndexedObjNameDFR
GetIndexedObjNameDFR(dfr, objectType, index)
The GetIndexedObjNameDFR function returns a string containing the name of the indexth object of the
specified type in the data folder referenced by dfr.
Requires Igor Pro 6.1 or later.
GetIndexedObjNameDFR is the same as GetIndexedObjName except the first parameter, dfr, is a data
folder reference instead of a string containing a path.

Parameters
index starts from zero. If no such object exists a zero length string ("") is returned.
objectType is one of the following values:

objectType What You Get

1 Waves

2 Numeric variables

3 String variables

4 Data folders

GetKeyState

V-239

Examples
Function PrintAllWaveNames()

String objName
Variable index = 0
DFREF dfr = GetDataFolderDFR() // Reference to current data folder
do

objName = GetIndexedObjNameDFR(dfr, 1, index)
if (strlen(objName) == 0)

break
endif
Print objName
index += 1

while(1)
End

See Also
Chapter II-8, Data Folders and Data Folder References on page IV-62.
The CountObjectsDFR function.

GetKeyState
GetKeyState(flags)
The GetKeyState function returns a bitwise numeric value that indicates the state of certain keyboard keys.
GetKeyState is normally called from a procedure that is invoked directly through a user-defined button or
user-defined menu item. The procedure tests the state of one or more modifier keys and adjusts its behavior
accordingly.
Another use for GetKeyState is to determine if Escape is pressed. This can be used to detect that the user
wants to stop a procedure.
GetKeyState tests the keyboard at the time it is called. It does not tell you if keys were pressed between calls
to the function. Consequently, when a procedure uses the escape key to break a loop, the user must press
Escape until the running procedure gets around to calling the function.

Parameters
flags is a bitwise parameter interpreted as follows:

All other bits are reserved and must be zero.

Details
When set, the return value is interpreted bitwise as follows:

objectType What You Get

1 Waves

2 Numeric variables

3 String variables

4 Data folders

Bit 0: If set, GetKeyState reports keys keys even if Igor is not
the active application. If cleared, GetKeyState reports
keys only if Igor is the active application.

Bit 0: Command (Macintosh) or Ctrl (Windows) pressed.
Bit 1: Option (Macintosh) or Alt (Windows) pressed.
Bit 2: Shift pressed.
Bit 3: Caps Lock pressed.
Bit 4: Control pressed (Macintosh only).
Bit 5: Escape pressed.

GetLastUserMenuInfo

V-240

To test if a particular key is pressed, do a bitwise AND of the return value with the mask value 1, 2, 4, 8, 16,
and 32 for bits 0 through 5 respectively. To test if a particular key and only that key is pressed compare the
return value with the mask value.
On Macintosh, it is currently possible to define a keyboard shortcut for a user-defined menu item and then,
in the procedure invoked by the keyboard shortcut, to use GetKeyState to test for modifier keys. This is not
possible on Windows because the keyboard shortcut will not be activated if a modifier key not specified in
the keyboard shortcut is pressed. It is also possible that this ability on Macintosh will be compromised by
future operating system changes. On both operating systems, however, you can test for a modifier key
when the user chooses a user-defined menu item or clicks a user-defined button using the mouse.

Examples
Function ShiftKeyExample()

Variable keys = GetKeyState(0)

if (keys == 0)
Print "No modifier keys are pressed."

endif

if (keys & 4)
if (keys == 4)

Print "The Shift key and only the Shift key is pressed."
else

Print "The Shift key is pressed."
endif

endif
End

Function EscapeKeyExample()
Variable keys

do
keys = GetKeyState(0)
if ((keys & 32) != 0) // User is pressing escape?

break
endif

while(1)
End

See Also
Keyboard Shortcuts on page IV-122. Setting Bit Parameters on page IV-12 for details about bit settings.

GetLastUserMenuInfo
GetLastUserMenuInfo
The GetLastUserMenuInfo operation sets variables in the local scope to indicate the value of the last
selected user-defined menu item.

GetLastUserMenuInfo

V-241

Details
GetLastUserMenuInfo creates and sets these special variables:

V_flag

V_value

S_value

V_red, V_green, V_blue

The kind of menu that was selected:

 See Specialized Menu Item Definitions on page IV-116 for details about these special user-
defined menus.

V_flag Menu Kind

0 Normal text menu item, including Optional Menu Items (see page
IV-114) and Multiple Menu Items (see page IV-115).

3 "*FONT*"

6 "*LINESTYLEPOP*"

7 "*PATTERNPOP*"

8 "*MARKERPOP*"

9 "*CHARACTER*"

10 "*COLORPOP*"

13 "*COLORTABLEPOP*"

Which menu item was selected. The value also depends on the kind of menu the item was
selected from:

V_flag V_value meaning

0 Text menu item number (the first menu item is number 1).

3 Font menu item number (use S_Value, instead).

6 Line style number (0 is solid line)

7 Pattern number (1 is the first selection, a SW-NE light diagonal).

8 Marker number (1 is the first selection, the X marker).

9 Character as an integer, = char2num(S_Value). Use S_Value instead.

10 Color menu item (use V_red, V_green, and V_blue instead).

13 Color table list menu item (use S_Value instead).

The menu item text, depending on the kind of menu it was selected from:

In the case of Specialized Menu Item Definitions (see page IV-116), S_value will be the title
of the menu or submenu, etc.

V_flag S_value meaning

0 Text menu item text.

3 Font name or “default”.

6 Name of the line style menu or submenu.

7 Name of the pattern menu or submenu.

8 Name of the marker menu or submenu.

9 Character as string.

10 Name of the color menu or submenu.

13 Color table name.

GetLastUserMenuInfo

V-242

Examples

A Multiple Menu Items menu definition:
Menu "Wave List", dynamic

"Menu Item 1", <some command>
"Menu Item 2", <some command>
WaveList("*",";",""), DoSomethingWithWave()

End

If the user selects one of the (many) menu items created by the “Wave List” menu item definition, the
DoSomethingWithWave user function can call GetLastUserMenuInfo to determine which wave was selected:
Function DoSomethingWithWave()

GetLastUserMenuInfo
WAVE/Z selectedWave = $S_value
…use selectedWave for something…

End

A trivial user-defined color menu definition:
Menu "Color"

"*COLORPOP*", DoSomethingWithColor()
End

Function DoSomethingWithColor()
GetLastUserMenuInfo
…do something with V_red, V_green, V_blue…

End

See Specialized Menu Item Definitions on page IV-116 for another color menu example.
A Trace contextual menu Items menu definition:
Menu "TracePopup", dynamic // menu when a trace is right-clicked

"-" // separator divides this from built-in menu items
ExportTraceName(), ExportSelectedTrace()

End

Function/S ExportTraceName()
GetLastUserMenuInfo // only S_graphName, S_traceName are set.
Return "Export "+S_traceName

End

Function ExportSelectedTrace()
GetLastUserMenuInfo
…do something with S_graphName, S_traceName…

End

See Also
Chapter IV-5, User-Defined Menus and especially the sections Optional Menu Items on page IV-114,
Multiple Menu Items on page IV-115, and Specialized Menu Item Definitions on page IV-116.
Trace Names on page II-243, Programming With Trace Names on page IV-72.

If a user-defined color menu ("*COLORPOP*" menu item) was chosen then these values hold
the red, green, and blue values of the selected color. The values range from 0 to 65535.
Will be 0 if the last user-defined menu selection was not a color menu selection.

S_graphName, S_traceName

These are set only when any user-defined menu is chosen from a graph’s trace contextual
menu. (Menu “TracePopup” or Menu “AllTracesPopup” definitions).
Initially "" until a user-defined menu selection was made from one of these contextual menus,
these are not reset for each user-defined menu selection.
S_graphName is the full host-child specification for the graph. If the graph is embedded into
a host window, S_graphName might be something like “Panel0#G0”. See Subwindow
Syntax on page III-97.
S_traceName is name of the trace that was selected by the trace contextual menu, or "" if the
AllTracesPopup menu was chosen. See Subwindow Syntax on page III-97.

GetMarquee

V-243

GetMarquee
GetMarquee [/K/W=winName/Z] [axisName [, axisName]]
The GetMarquee operation provides a way for you to use the marquee as an input mechanism in graphs
and page layout windows. It puts information about the marquee into variables.

Parameters
If you specify axisName (allowed only for graphs) the coordinates are in axis units. If you specify an axis that
does not exist, Igor generates an error.
If you specify only one axis then Igor sets only the variables appropriate to that axis. For example, if you execute
“GetMarquee left” then Igor sets the V_bottom and V_top variables but does not set V_left and V_right.

Flags

Details
GetMarquee is intended to be used in procedures invoked through user menu items added to the graph
Marquee menu and the layout Marquee menu.
GetMarquee sets the following variables and strings:

When called from the command line, GetMarquee sets global variables and strings in the current data
folder. When called from a procedure, it sets local variables and strings.
In addition, creating, adjusting, or removing a marquee may set additional marquee global variables (see
the Marquee Globals section, below).
The target window must be a layout or a graph. Use /Z to avoid generating a runtime-error (V_flag will be
0 if the target window was not a layout or graph).
If the target is a layout then Igor sets the variables in units of points relative to the top/left corner of the paper.
If the target is a graph then Igor sets V_left and V_right based on the specified horizontal axis. If no
horizontal axis was specified, V_left and V_right are set relative to the left edge of the base window in
points.
If the target is a graph then Igor sets V_bottom and V_top based on the specified vertical axis. If no vertical
axis was specified, V_top and V_bottom are set relative to the top edge of the base window in points.

/K Kills the marquee. Usually you will want to kill the marquee when you call
GetMarquee, so you should use the /K flag. This is modeled after what happens when
you create a marquee in a graph and then choose Expand from the Marquee menu.
There may be some situations in which you want the marquee to persist. Igor also
automatically kills the marquee anytime the window containing the marquee is
deactivated, including when a dialog is summoned.

/W=winName Specifies the named window or subwindow. When omitted, action will affect the
active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/Z No runtime error generated if the target window isn’t a graph or layout, but V_flag
will be zero. /Z does not prevent other kinds of problems from generating a runtime
error.

V_flag 0: There was no marquee when GetMarquee was invoked.
1: There was a marquee when GetMarquee was invoked.

V_left Marquee left coordinate.

V_right Marquee right coordinate.

V_top Marquee top coordinate.

V_bottom Marquee bottom coordinate.

S_marqueeWin Name of window containing the marquee, or "" if no marquee. If subwindow,
subwindow syntax will be used.

GetMarquee

V-244

If there is no marquee when you invoke GetMarquee then Igor sets V_left, V_top, V_right, V_bottom based
on the last time the marquee was active.

GetMarquee Example
Menu "GraphMarquee"

"Print Marquee Coordinates", PrintMarqueeCoords()
End

Function PrintMarqueeCoords()
GetMarquee left, bottom
if (V_flag == 0)

Print "There is no marquee"
else

printf "marquee left in bottom axis terms: %g\r", V_left
printf "marquee right in bottom axis terms: %g\r", V_right
printf "marquee top in left axis terms: %g\r", V_top
printf "marquee bottom in left axis terms: %g\r", V_bottom

endif
End

You can run this procedure by putting it into the procedure window, making a marquee in a graph, clicking
in the marquee and choosing Print Marquee Coordinates:

The procedure calls GetMarquee to set the local marquee variables and then prints their values in the
history area:
•PrintMarqueeCoords()

marquee left in bottom axis terms: 32.1149
marquee right in bottom axis terms: 64.7165
marquee top in left axis terms: 0.724075
marquee bottom in left axis terms: -0.131061

Marquee Globals
You can cause Igor to update global marquee variables whenever the user adjusts the marquee (without the
need for you to invoke GetMarquee) by creating a global variable named V_marquee in the root data folder:
Variable/G root:V_marquee = 1 //Creates V_marquee and sets bit 0 only

When the user adjusts the marquee Igor checks to see if root:V_marquee exists and which bits are set, and
updates (and creates if necessary) these globals:

Unlike the local variables, for graphs these global variables are never in points. Root:V_left and V_right will
be axis coordinates based on the first bottom axis created for the graph (if none, then for the first top axis).
The axis creation order is the same as is returned by AxisList. Similarly, root:V_top and root:V_bottom will
be axis coordinates based on the first left axis or the first right axis.
Igor examines the global root:V_marquee for bitwise flags to decide which globals to update, and when:

Variable/G root:V_left Marquee left coordinate.

Variable/G root:V_right Marquee right coordinate.

Variable/G root:V_top Marquee top coordinate.

Variable/G root:V_bottom Marquee bottom coordinate.

String/G root:S_marqueeWin Name of window that contains marquee, or "" if no marquee.
Set only if root:V_Marquee has bit 15 (0x8000) set.

GetMouse

V-245

Marquee Globals Example
By creating the global variable root:V_marquee this way:
Variable/G root:V_marquee = 1 + 4 + 0x8000

whenever the user creates, adjusts, or removes a marquee in any graph or layout Igor will create and update
the global root:V_left, etc. coordinate variables and set the global string root:S_marqueeWin to the name of
the window which has the marquee in it. When the marquee is removed, root:S_marqueeWin will be set to "".
This mechanism does neat things by making a ValDisplay or SetVariable control depend on any of the
globals. See the Marquee Demo experiment in the Examples:Feature Demos folder for an example.
You can also cause a function to run whenever the user creates, adjusts, or removes a marquee by setting
up a dependency formula using SetFormula to bind one of the marquee globals to one of the function’s
input arguments:
Variable/G root:dependencyTarget

SetFormula root:dependencyTarget, "MyMarqueeFunction(root:S_marqueeWin)"

Function MyMarqueeFunction(marqueeWindow)
String marqueeWindow // this will be root:S_marqueeWin

if(strlen(marqueeWindow))
NVAR V_left= root:V_left, V_right= root:V_right
NVAR V_top= root:V_top, V_bottom= root:V_bottom
Printf marqueeWindow + " has a marquee at: "
Printf "%d, %d, %d, %d\r", V_left, V_right, V_top, V_bottom

else
Print "The marquee has disappeared."

endif

return 0 // return value doesn't really matter
End

See Also
The SetMarquee and SetFormula operations. Setting Bit Parameters on page IV-12 for information about
bit settings.

GetMouse
GetMouse [/W=winName]
The GetMouse operation returns information about the position of the input mouse, and the state of the
mouse buttons.
GetMouse is useful in situations such as background tasks where the mouse position and state aren't
available as they are in control procedures and window hook functions.
GetMouse was added in Igor 6.30.

Flags

Details
GetMouse returns the mouse position in local coordinates relative to the specified window unless /W is
omitted in which case the returned coordinates are global.

root:V_marquee Bit Meaning Bit Number Bit Value

Update global variables for graph marquees 0 1

Update global variables for layout marquees 2 4

Update S_marqueeWin when updating global variables 15 0x8000

/W=winName Returns the mouse position relative to the named window or subwindow. When
identifying a subwindow with winName, see Subwindow Syntax on page III-97.

/W=kwTopWin Returns the mouse position relative to the currently frontmost non-floating window.

/W=kwCmdHist Returns the mouse position relative to the command window.

/W=Procedure Returns the mouse position relative to the main Procedure window.

GetRTError

V-246

On Windows, global coordinates are actually relative to the frame window. See GetWindow wsizeDC
kwFrameInner.
Information is returned via the following string and numeric variables:

See Also
GetWindow, GetKeyState, SetWindow, WMWinHookStruct, WMButtonAction
Background Tasks on page IV-285, Subwindow Syntax on page III-97

GetRTError
GetRTError(flag)
The GetRTError function returns information about the error state of Igor's user-defined function runtime
execution environment.
If flag is 0, GetRTError returns an error code if an error has occurred or 0 if no error has occurred.
If flag is 1, GetRTError returns an error code if an error has occurred or 0 if no error has occurred and it clears
the error state of Igor’s runtime execution environment. Use this if you want to detect and handle runtime
errors yourself.
If flag is 2, GetRTError returns the state of Igor's internal abort flag but does not clear it.
For flag=0 and flag=1, you can call GetErrMessage to obtain the error message associated with the returned
error code, if any.

Example
// This illustrates how to detect and handle a runtime error
// rather than allowing it to cause Igor to abort execution.
Function Demo()

<Call an Igor operation or a user-defined function>
Variable err = GetRTError(0)
if (err != 0)

String message = GetErrMessage(err)
Printf "Error in Demo: %s\r", message
err = GetRTError(1) // Clear error state
Print "Continuing execution"

endif
<Call an Igor operation or a user-defined function>

End

See also
 The GetErrMessage and GetRTErrMessage functions.

V_left Horizontal mouse position, in pixels.

V_top Vertical mouse position, in pixels.

V_flag Mouse button state. V_flag is a bitwise value with each bit reporting the mouse
button states:
Bit 0: 1 if the primary mouse button (usually the left) is down, 0 if it is up.
Bit 1: 1 if the secondary mouse button (usually the right) is down, 0 if it is up.
On Macintosh, the secondary mouse button can be invoked by pressing the control
key while clicking the primary (often the only) mouse button, but GetMouse does not
report this with bit 1 set. Use GetKeyState's bit 4 to test if the control key is pressed.
See Setting Bit Parameters on page IV-12 for details about bit settings.

S_name Name of the window or subwindow which the position is relative to, or "" if not a
nameable window or if /W was omitted. Most useful with /W=kwTopWin. The result
can be kwCmdHist or Procedure, or the name of a target window.

GetRTErrMessage

V-247

GetRTErrMessage
GetRTErrMessage()
In a user function, GetRTErrMessage returns a string containing the name of the operation that caused the error,
a semicolon, and an error message explaining the cause of the error. This is the same information that appears
in the alert dialog displayed. If no error has occurred, the string will be of zero length. GetRTErrMessage must
be called before the error is cleared by calling GetRTError with a nonzero argument.

See also
 The GetRTError and GetErrMessage functions.

GetRTLocation
GetRTLocation(sleepMS)
GetRTLocation is used for profiling Igor procedures. It was added in Igor Pro 6.23.
You will typically not call GetRTLocation directly but instead will use it through FunctionProfiling.ipf
which you can access using this include statement:
#include <FunctionProfiling> // Requires Igor Pro 6.23 or later

GetRTLocation is called from an Igor preemptive thread to monitor the main thread. It returns a code that
identifies the current location in the procedure files corresponding to the procedure line that is executing in
the main thread.

Parameters
sleepMs is the number of milliseconds to sleep the preemptive thread after fetching a value.

Details
The result from GetRTLocation is passed to GetRTLocInfo to determine the location in the procedures. This
samples the main thread only and the location becomes meaningless after any procedure editing.

See Also
GetRTLocInfo

GetRTLocInfo
GetRTLocInfo(code)
GetRTLocInfo is used for profiling Igor procedures. It was added in Igor Pro 6.23.
You will typically not call GetRTLocInfo directly but instead will use it through FunctionProfiling.ipf which
you can access using this include statement:
#include <FunctionProfiling> // Requires Igor Pro 6.23 or later

GetRTLocation is called from an Igor preemptive thread to monitor the main thread. It returns a key/value
string containing information about the procedure location associated with code or "" if the location could
not be found.

Parameters
code is the result from a very recent call to GetRTLocation.

Details
The format of the result string is:
"PROCNAME:name;LINE:line;FUNCNAME:name;"

The line number is padded with zeros to facilitate sorting.

See Also
GetRTLocation

GetRTStackInfo
GetRTStackInfo(selector)
The GetRTStackInfo function returns information about “runtime stack” (the chain of macros and functions
that are executing).

GetScrapText

V-248

Details
If selector is 0, GetRTStackInfo returns a semicolon-separated list of the macros and procedures that are
executing. This list is the same you would see in the debugger’s stack list.
The currently executing macro or function is the last item in the list, the macro or function that started
execution is the first item in the list.
If selector is 1, it returns the name of the currently executing function or macro.
If selector is 2, it returns the name of the calling function or macro.
If selector is 3, GetRTStackInfo returns a semicolon-separated list of routine names, procedure file names
and line numbers. This is intended for advanced debugging by advanced programmers only.
For example, if RoutineA in procedure file ProcA.ipf calls RoutineB in procedure file ProcB.ipf, and
RoutineB calls GetRTStackInfo(3), it will return:
RoutineA,ProcA.ipf,7;RoutineB,ProcB.ipf,12;

The numbers 7 and 12 would be the actual numbers of the lines that were executing in each routine. Line
numbers are zero-based.
GetRTStackInfo does not work correctly with string macros executed via the Execute operation.
In future versions of Igor, selector may request other kinds of information.

Examples
Function Called()

Print "Called by " + GetRTStackInfo(2) + "()"
Print "Routines in calling chain: " + GetRTStackInfo(0)

End

Function Calling()
Called()

End

Macro StartItUp()
Calling()

End

Executing on the Command line:
•StartItUp()
 Called by Calling()
 Routines in calling chain: StartItUp;Calling;Called;

See Also
StringFromList, ItemsInList, and GetRTError functions. The Stack and Variables Lists on page IV-191.

GetScrapText
GetScrapText()
The GetScrapText function returns a string containing any plain text on the Clipboard (aka “scrap”). This
is the text that would be pasted into a text document if you used Paste in the Edit menu.

See Also
The PutScrapText and LoadPICT operations.

GetSelection
GetSelection winType, winName, bitflags
The GetSelection operation returns information about the current selection in the specified window.

Parameters
winType is one of the following keywords:
graph, panel, table, layout, notebook, procedure

winName is the name of a window of the specified type.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.

GetSelection

V-249

If winType is procedure then winName is actually a procedure window title inside a $"" wrapper, such as:
GetSelection procedure $"DemoLoader.ipf", 3

bitflags is a bitwise parameter that is used in different ways for different window types, as described in Details.
You should use 0 for undefined bits. Setting Bit Parameters on page IV-12 for further details about bit settings.

Details
For all window types, GetSelection sets V_flag:

Here is a description of what GetSelection does for each window type:

Examples
Make a table named “Table0” with some columns, and select some combination of rows and columns:

and execute these commands in a procedure or in the command line:
GetSelection table, Table0, 3
Print V_flag, V_startRow, V_startCol, V_endRow, V_endCol
Print S_selection

This will print the following in the history area:
1 3 0 8 1
Velocity.d;Pressure.d;

V_flag 0: No selection when GetSelection was invoked.

1: There was a selection when GetSelection was invoked.

winType bitFlags Action

graph Does nothing.

panel Does nothing.

table 1 Sets V_startRow, V_startCol, V_endRow, and V_endCol based on the selected
cells in the table. The top/left cell, not including the Point column, is (0, 0).

2 Sets S_selection to a semicolon-separated list of column names.

4 Sets S_dataFolder to a semicolon-separated list of data folders, one for each column.

layout 2 Sets S_selection to a semicolon separated list of selected objects in the layout
layer (not any drawing layers). S_selection will be "" if no objects are selected.

notebook 1 Sets V_startParagraph, V_startPos, V_endParagraph, and V_endPos based on
the selected text in the notebook.

2 Sets S_selection to the selected text.

procedure 1 Sets V_startParagraph, V_startPos, V_endParagraph, V_endPos based on the
selected text in the procedure window.

2 Sets S_selection to the selected text.

GetUserData

V-250

GetUserData
GetUserData(winName, objID, userdataName)
The GetUserData function returns a string containing the user data for a window or subwindow. The return
string will be empty if no user data exists.

Parameters
winName may specify a window or subwindow name. Use "" for the top window.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
objID is a string specifying the name of a control or graph trace. Use "" for a window or subwindow.
userdataName is the name of the user data or "" for the default unnamed user data.

See Also
The ControlInfo, GetWindow, and SetWindow operations.

GetWavesDataFolder
GetWavesDataFolder(waveName, kind)
The GetWavesDataFolder function returns a string containing the name of a data folder containing the
wave named by waveName. Variations on the theme are selected by kind.
The most common use for this is in a procedure, when you want to create a wave or a global variable in the
data folder containing a wave passed as a parameter.
For Igor Pro 6.1 or later, GetWavesDataFolderDFR is preferred.

Details

Kinds 2 and 4 are especially useful in creating command strings to be passed to Execute.

Examples
Function DuplicateWaveInDataFolder(w)

Wave w
String dfSav = GetDataFolder(1)
SetDataFolder GetWavesDataFolder(w,1)
Duplicate/O w, $(NameOfWave(w) + "_2")
SetDataFolder dfSav

End

See Also
Chapter II-8, Data Folders.

GetWavesDataFolderDFR
GetWavesDataFolderDFR(waveName)
The GetWavesDataFolderDFR function returns a data folder reference for the data folder containing the
specified wave.
Requires Igor Pro 6.1 or later.
GetWavesDataFolderDFR is the same as GetWavesDataFolder except that it returns a data folder reference
instead of a string containing a path.

kind GetWavesDataFolder Returns

0 Only the name of the data folder containing waveName.

1 Full path of data folder containing waveName, without wave name.

2 Full path of data folder containing waveName, including possibly quoted wave name.

3 Partial path from current data folder to the data folder containing waveName.

4 Partial path including possibly quoted wave name.

GetWindow

V-251

See Also
Chapter II-8, Data Folders and Data Folder References on page IV-62.

GetWindow
GetWindow [/Z] winName, keyword
The GetWindow operation provides information about the named window or subwindow. Information is
returned in variables, strings, and waves.

Parameters
winName can be the name of graph, table, panel, page layout, notebook, or any subwindow. It can also be
the title of a procedure window or one of these four special keywords:

When identifying a subwindow with winName, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
Only one of the following keywords may follow winName. The keyword chosen determines the information
stored in the output variables:

kwTopWin Specifies the topmost graph, table, panel, page layout, or notebook window.

kwCmdHist Specifies the command history window.

kwFrameOuter Specifies the “frame” or “application” window that Igor Pro has only under
Windows. This is the window that contains Igor’s menus and status bar.

kwFrameInner Specifies the inside of the same “frame” window under Windows. This is the window
that all other Igor windows are inside.

active Sets V_Value to 1 if the window is active or to 0 otherwise. Active usually means
the window is the frontmost window.

activeSW Stores the window “path” of currently active subwindow in S_Value. See
Subwindow Syntax on page III-97 for details on the window hierarchy.

exterior Sets V_value to 1 if the window is an exterior panel window or to 0 otherwise.
Useful for window hook functions that must work for both regular windows and
exterior panel windows, since exterior panels use their own hook function.

file Works for notebook and procedure windows only.
Returns via S_value a semicolon-separated list containing:
- the file name
- the Mac path to the folder containing the file with a colon at the end
- the name of a symbolic path pointing to that folder, if any
If the window was never saved to a standalone file then "" is returned in S_value.
If the specified window is not a notebook or procedure window then "" is
returned in S_value.

gsize Reads graph outer dimensions into V_left, V_right, V_top, and V_bottom in local
coordinates. This includes axes but not the tool bar, control bar, or info panel.
Dimensions are in points.

gsizeDC Same as gsize but dimensions are in device coordinates (pixels).

hide Sets V_Value bit 0 if window or subwindow is hidden. Sets bit 1 if the host
window is minimized.

hook Copies name of window hook function to S_value. See Unnamed Window Hook
Functions on page IV-276.

hook(hName) For the given named hook hName, copies name of window hook function to
S_value. See Named Window Hook Functions on page IV-271.

GetWindow

V-252

logicalpapersize Returns logical paper size of the page setup associated with the named window
into V_left, V_right, V_top, and V_bottom. Dimensions are in points.
If the Page Setup dialog uses 100% scaling, these are also the physical dimensions
of the page. V_left and V_top are 0 and correspond to the left top corner of the
physical page.
On the Macintosh, using a Scale of 50% multiplies all of these dimensions by 2.

logicalprintablesize Returns logical printable size of the page setup associated with the named
window into V_left, V_right, V_top, and V_bottom. Dimensions are in points.
If the Page Setup dialog uses 100% scaling, these are also the physical dimensions
of the page minus the margins. V_left and V_top are the number of points from
the left top corner of the physical page to the left top corner of the printable area
of page.
On the Macintosh, using a page setup scale of 50% multiplies all of these
dimensions by 2.

maximize Sets V_Value to 1 if the window is maximized, 0 otherwise. On Macintosh,
V_Value is always 0.

needUpdate Sets V_Value to 1 if window or subwindow is marked as needing an update.

note Copies window note to S_value.

psize Reads graph plot area dimensions (where the traces are) into V_left, V_right,
V_top, and V_bottom in local coordinates. Dimensions are in points.

psizeDC Same as psize but dimensions are in device coordinates (pixels).

title Gets the title (set by as titleStr with NewPanel, Display, etc., or by the Window
Control dialog) and puts it into S_value. S_value is set to "" if winName specifies a
subwindow. See also the wtitle keyword, below.

userdata Returns the primary (unnamed) user data for a window in S_value. Use
GetUserData to obtain any named user data.

wavelist Creates a three-column text wave called W_WaveList containing a list of waves
used in the graph in winName. Each wave occupies one row in W_WaveList. This
list includes all waves that can be in a graph, including the data waves for contour
plots and images.

wsize Reads window dimensions into V_left, V_right, V_top, and V_bottom in points
from the top left of the screen. For subwindows, values are local coordinates in the
host.

wsizeDC Same as wsize but dimensions are in local device coordinates (pixels). The origin
is the top left corner of the host window’s active rectangle.

wsizeOuter Reads window dimensions into V_left, V_right, V_top, and V_bottom in points
from the top left of the screen. Dimensions are for the entire window including
any frame and title bar. For subwindows, values are for the host window.

wsizeOuterDC Same as wsizeOuter but dimensions are in local device coordinates (pixels). The
origin is the top left corner of the host window’s active rectangle, so V_top will be
negative for a window with a title bar. V_left will be negative for windows with
a frame; windows on Macintosh OS X have no frame, so V_left will be zero.

wsizeRM Generally the same as wsize, but these are the coordinates that would actually be
used by a recreation macro except that the coordinates are in points even if the
window is a panel. Also, if the window is minimized or maximized, the
coordinates represent the window’s restored location.
On Windows, GetWindow kwFrameOuter wsizeRM returns the pixel
coordinates of the MDI frame even when the frame is maximized. wsizeDC
returns 2,2,2,2 in this case.

GetWindow

V-253

Flags

Details
The wsize parameter is appropriate for all windows.
The gsize, psize, and wavelist parameters are appropriate only for graph windows.
The logicalpapersize and logicalprintablesize parameters are appropriate for all printable windows (not panels).
kwCmdHist, kwFrameInner, and kwFrameOuter may be used with only the wsize keyword.
On Windows computers, kwFrameInner and kwFrameOuter return coordinates into V_left, V_right, V_top,
and V_bottom. On the Macintosh, they always return 0 (because Igor has no frame on the Macintosh).

kwFrameOuter coordinates are the location of the outer edges of Igor’s application window, expressed in
screen (pixel) coordinates suitable for use with MoveWindow/F to restore, minimize, or maximize the Igor
application window.
If Igor is currently minimized, kwFrameOuter returns 0 for all values. If maximized, it returns 2 for all
values. Otherwise, the screen (pixel) coordinates of the frame are returned in V_left, V_right, V_top, and
V_bottom. This is consistent with MoveWindow/F.
kwFrameInner coordinates, however, are the location of the inner edges of the application window, expressed
in Igor window coordinates (points) suitable for positioning graphs and other windows with MoveWindow.
If Igor is currently minimized, kwFrameInner returns the inner frame coordinates Igor would have if Igor
were “restored” with MoveWindow/F 1,1,1,1.
V_left and V_top will always both be 0, and V_Bottom and V_Right will be the maximum visible (or
potentially visible) window (not screen) coordinates in points.
winName can be the title of a procedure window. If the title contains spaces, use:

wtitle Gets the actual window title displayed in the window's title bar, regardless of
whether it was set by the user (see the title keyword above) or is the default title
created by Igor, and puts it into S_value.
S_value is set to "" if winName specifies a subwindow.
If winName is kwFrameOuter or kwFrameInner, on Macintosh S_Value is set to
the name of the Igor application. On Windows it is set to the full title of the
application as seen on the frame's window, which can be altered using
DoWindow/T kwFrame.

/Z Suppresses error if, for instance, winName doesn't name an existing window.
V_flag is set to zero if no error occurred or to a non-zero error code.

kwFrameOuter top, left (pixels)

kwFrameInner
top, left = 0, 0

kwFrameOuter bottom, right (pixels)

kwFrameInner
bottom, right
(points)

GetWindow

V-254

GetWindow $"Title With Spaces" wsize

However, if another window has a name which matches the given procedure window title, that window’s
properties are returned instead of the procedure window.
“Local coordinates” are relative to the top left of the graph area, regardless of where that is on the screen or
within the graph window. All dimensions are reported in units of points (1/72 inch) regardless of screen
resolution. On the Macintosh, this is the same as screen pixels.

The format of W_WaveList, created with the wavelist keyword, is as follows:

The wave name in column 1 is simply the name of the wave with no path. It may be the same as other waves
in the list, if there are waves from different data folders.
The partial path in column 2 includes the wave name and can be used with the $ operator to get access to
the wave.
The special ID number in column 3 has the format ##<number>##. A version of the recreation macro for the
graph can be generated that uses these ID numbers instead of wave names (see the WinRecreation function).
This makes it relatively easy to find every occurrence of a particular wave using a function like strsearch.
For instance, executing these commands:
NewDataFolder/S Folder1
Make/N=10 Wave1=x
SetDataFolder ::
NewDataFolder/S Folder2
Make/N=10 Wave1=sqrt(x)
SetDataFolder ::
Display :Folder1:wave1 vs :Folder2:wave1

Makes a graph similar to this:

Executing these commands:
GetWindow kwTopWin, wavelist
Edit W_WaveList

makes a table similar to this:

Column 1 Column 2 Column 3
Wave name partial path to the wave special ID number

wsize top,left
gsize top,left

psize top,left

psize bottom,right

gsize bottom,right

wsize bottom,right

wsizeOuter top,left

wsizeOuter bottom,right

gnoise

V-255

Examples
// These commands draw a red foreground rectangle framing
// the printable area of a page layout window.
GetWindow Layout0 logicalpapersize
DoWindow/F Layout0
SetDrawLayer/K userFront
SetDrawEnv linefgc=(65535,0,0), fillpat=0 // Transparent fill
DrawRect V_left+1, V_top+1, V_right-1, V_bottom-1

// These commands demonstrate the difference between title and wtitle.
Make/O data=x
Display/N=MyGraph data
GetWindow MyGraph title;Print S_Value // Prints nothing (S_Value = "")
GetWindow MyGraph wtitle;Print S_Value // Prints "MyGraph:data"
DoWindow/T MyGraph, "My Title for My Graph"
GetWindow MyGraph title;Print S_Value // Prints "My Title for My Graph"
GetWindow MyGraph wtitle;Print S_Value // Prints "My Title for My Graph"

See Also
The SetWindow, GetUserData, MoveWindow and DoWindow operations.
The IgorInfo function.

gnoise
gnoise(num [, RNG])
The gnoise function returns a random value from a Gaussian distribution such that the standard deviation
of an infinite number of such values would be num.
The random number generator is initialized using the system clock when you start Igor, virtually
guaranteeing that you will never get the same sequence twice. If you want repeatable “random” numbers,
use SetRandomSeed.
The Gaussian distribution is achieved using a Box-Muller transformation of uniform random numbers.
The optional parameter RNG selects one of two different pseudo-random number generators used to create
the uniformly-distributed random numbers used as the input to the Box-Muller transformation. If omitted,
the default is 1. The RNG’s are:

See Also
The SetRandomSeed operation and the enoise function.
Noise Functions on page III-334.

References
Press, William H., et al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New York,

1992.
Details about the Mersene Twister are in:
Matsumoto, M., and T. Nishimura, Mersenne Twister: A 623-dimensionally equidistributed uniform

pseudorandom number generator, ACM Trans. on Modeling and Computer Simulation, 8, 3-30, 1998.

RNG Description

1 Linear Congruential generator by L’Ecuyer with added Bayes-Durham shuffle. The algorithm is
described in Numerical Recipes (2nd edition) as the function ran2(). This RNG has nearly 232
distinct values and the sequence of random numbers has a period in excess of 1018.

2 Mersenne Twister by Matsumoto and Nishimura. It is claimed to have better distribution
properties and period of 219937-1.

Graph

V-256

More information is available online at: <http://en.wikipedia.org/wiki/Mersenne_twister>

Graph
Graph
Graph is a procedure subtype keyword that identifies a macro as being a graph recreation macro. It is
automatically used when Igor creates a window recreation macro for a graph. See Procedure Subtypes on
page IV-183 and Saving and Recreating Graphs on page II-306 for details.

GraphMarquee
GraphMarquee
GraphMarquee is a procedure subtype keyword that puts the name of the procedure in the graph Marquee
menu. See Marquee Menu as Input Device on page IV-144 for details.

GraphNormal
GraphNormal [/W=winName]
The GraphNormal operation returns the target or named graph to the normal mode, exiting any drawing
mode that it may be in.
You would usually enter normal mode by choosing ShowTools from the Graph menu and clicking the
crosshair tool.

Flags

See Also
The GraphWaveDraw and GraphWaveEdit operations.

GraphStyle
GraphStyle
GraphStyle is a procedure subtype keyword that puts the name of the procedure in the Style pop-up menu
of the New Graph dialog and in the Graph Macros menu. See Graph Style Macros on page II-307 for details.

GraphWaveDraw
GraphWaveDraw [flags] [yWaveName, xWaveName]
The GraphWaveDraw operation initiates drawing a curve composed of yWaveName vs xWaveName in the
target or named graph. The user draws the curve using the mouse, and the values are stored in a pair of
waves as XY data.
Normally, you would initiate drawing by choosing ShowTools from the Graph menu and clicking in the
appropriate tool rather than using GraphWaveDraw.

Parameters
yWaveName and xWaveName will contain the y and x values of the curve drawn by the user with the mouse.
If yWaveName and xWaveName do not already exist, they are created with two points which are initially set
to NaN (Not a Number) and appended to the target.
If yWaveName and xWaveName already exist, an error is generated unless the /O (overwrite) flag is present.
If /O is present, the waves are re-created — with two points which are initially set to NaN — and appended
to the target if they are not already in it.
If yWaveName and xWaveName are omitted then waves called W_YPolyn and W_XPolyn are created with
two points set to NaN and appended to the target (n is some digit, so Igor might create a wave named
W_YPoly0, for example).

/W=winName Reverts the named graph window. This must be the first flag specified when used in
a Proc or Macro or on the command line.

http://en.wikipedia.org/wiki/Mersenne_twister

GraphWaveEdit

V-257

Flags

Details
Once drawing starts no other user actions are allowed.
In normal mode, drawing stops when you double-click or when you click the first point (in which case the
last point is set equal to the first point). When drawing finishes, the edit mode is entered.
In freehand mode, drawing stops when the mouse is released or when 10000 points have been drawn.
If /O is used and the waves are already on the graph then the first instance on the graph will be used even
if they use a different pair of axes than specified.

See Also
The GraphNormal, GraphWaveEdit and DrawAction operations.

GraphWaveEdit
GraphWaveEdit [flags] traceName
The GraphWaveEdit operation initiates editing a wave trace in a graph. The wave trace must already be in
the graph.
Normally, you would initiate editing by choosing ShowTools from the Graph menu and clicking in the
appropriate tool rather than using GraphWaveEdit.

Parameters
traceName is a wave name, optionally followed by the # character and an instance number: “myWave#1” is
the second instance of myWave appended to the graph (“myWave” is the first).
If traceName is omitted then you get to pick the wave trace to edit by clicking it.

Flags

/F[=f] Initiates freehand drawing. In normal drawing, you click where you want a data point.
In freehand drawing, you click once and then draw with the mouse button held down.
If present, f specifies the smoothing factor. Max value is 8 (which is really slow), min
value is 0 (default). The drawing tools use a value of 3 which is the recommended value.

/L/R/B/T Specifies which axes to use (Left, Right, Bottom, Top). Bottom and Left axes are used
by default. Can specify free axes using /L=axis name type notation. See
AppendToGraph for details. If necessary, the specified axes will be created. If an axis
is created its range is set to -1 to 1.

/M Specifies that the curve being edited must be monotonic in the X dimension. The user
is not allowed drag points so that they cross horizontally.

/O Overwrites yWaveName and xWaveName if they already exist.

/W=winName Draws in the named graph window or subwindow. When omitted, action will affect
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/M Specifies that the edited trace must be monotonic in the X dimension. You cannot drag
points so that they cross horizontally.

/NI Suppresses automatic new point insertion when clicking between points.

/T=t Sets the trace mode.
t=0: Lines and small square markers (default).
t=1: User settings unchanged.

Grep

V-258

Details
The GraphWaveEdit operation is not multidimensional aware. See Analysis on Multidimensional Waves
on page II-110 for details.

See Also
The GraphNormal, GraphWaveDraw and DrawAction operations.
Trace Names on page II-243, Programming With Trace Names on page IV-72.

Grep
Grep [flags][srcFileStr][srcTextWaveName][as [destFileOrFolderStr]

[destTextWaveName]]
The Grep operation copies lines matching a search expression from a file on disk, the Clipboard, or rows
from a text wave to a new or existing file, an existing text wave, the History area, the Clipboard, or to
S_value as a string list.

Source Parameters
The optional srcFileStr can be
• The full path to the file to copy lines from (in which case /P is not needed).
• The partial path relative to the folder associated with pathName.
• The name of a file in the folder associated with pathName.
• “Clipboard” to read lines of text from the Clipboard (in which case /P is ignored).
If Igor can not determine the location of the source file from srcFileStr and pathName, it displays a dialog
allowing you to specify the source file.
The optional srcTextWaveName is the name or path to a text wave.
Only one of srcFileStr or srcTextWaveName may be specified. If neither is specified then an Open File dialog
is presented allowing you to specify a source file.

Destination Parameters
The optional destFileOrFolderStr can be
• The name of (or path to) an existing folder when /D is specified.
• The name of (or path to) a possibly existing file.
• “Clipboard”, in which case the matching lines are copied to the Clipboard (and /P and /D are ignored).

The text can be retrieved with the GetScrapText function.
If destFileOrFolderStr is a partial path, it is relative to the folder associated with pathName.
If /D is specified, the source file is created inside the folder using the source file name.
If Igor can not determine the location of the destination file from pathName, srcFileStr, and destFileOrFolderStr,
it displays a Save File dialog allowing you to specify the destination file (and folder).
The optional destTextWaveName is the name or path to an existing text wave. It may be the same wave as
srcTextWaveName.
Only one of destFileOrFolderStr or destTextWaveName may be specified.
If no destination file or text wave is specified then matching lines are printed in the history area, unless the
/Q flag is specified, in which case the matching lines aren’t printed or copied anywhere (though the output
variables are still set).
Use /LIST to set S_value to a string list containing the matching lines or rows.
Use /INDX to create a wave W_index containing the zero-based row or line number where matches were found.

/W=winName Edits traces in the named graph window or subwindow. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

Grep

V-259

Parameter Details
If you use a full or partial path for either srcFileStr or destFileOrFolderStr, see Path Separators on page III-400
for details on forming the path.
Folder paths should not end with single path separators. See MoveFolder’s Details section.

Flags

/A Appends matching lines to the destination file, creating it if necessary, appends text
to the Clipboard if the destFileOrFolderStr is “Clipboard”, or appends rows to the
destination text wave. Has no effect on output to the History area.

/D Interprets destFileOrFolderStr as the name of (or path to) an existing folder (or directory).
Without /D, destFileOrFolderStr is the name of (or path to) a file. It is ignored if the
destination is a text wave, the Clipboard, or the History area.
If destFileOrFolderStr is not a full path to a folder, it is relative to the folder associated
with pathName.

/DCOL={colNum} Useful only when the destination is destTextWaveName.
Copies matching lines of text from the source file, Clipboard, or srcTextWaveName to
column colNum of destTextWaveName, with any terminator characters removed.
The default when the source is a file or the Clipboard is /DCOL={0}, which copies
matching lines into the first column of destTextWaveName.
The default when the source is srcTextWaveName is to copy each column of a matched
row to the corresponding column in destTextWaveName.
/DCOL must be used with the /A flag, otherwise the destination wave will have only
1 column.

/DCOL={[colNum] [, delimStr], …}

Useful only when the source is srcTextWaveName and the destination is a file, the
Clipboard, History area, or S_value.
Copies multiple columns in any order from matching rows of srcTextWaveName to the
destination file, Clipboard, History area, or S_value.
Construct the line by appending the contents of the numbered column and the
delimStr parameters in the order specified. The output line is terminated as described
in Line Termination.

/E=regExprStr Specifies the Perl-compatible regular expression string. A line must match the regular
expression to be copied to the output file. See Regular Expressions.
Multiple /E flags may be specified, in which case a line is copied only if it matches every
regular expression.

/E={regExprStr, reverse}

/GCOL=grepCol Greps the specified column of srcTextWaveName, which is a two-dimensional text
wave. The default search is on the first column (grepCol=0). Use grepCol=-1 to
match against any column of srcTextWaveName.
Does not apply if the source is a file or Clipboard.

/I Requires interactive searching even if srcFileStr and destFileOrFolderStr are specified
and if the source file exists. Same as /I=3.

Specifies the Perl-compatible regular expression string, regExprStr, for which the
sense of the match can be changed by reverse.
reverse=1: Matching expressions are taken to not match, and vice versa. For

example, use /E={"CheckBox",1} to list all lines that do not
contain “CheckBox”.

reverse=0: Same as /E=regExptrStr.

Grep

V-260

Line Termination
Line termination applies mostly to source and destination files. (The Clipboard and history area delimit
lines with CR, and text waves have no line terminators.)
If /T is omitted, Grep will break file lines on any of the following: CR, LF, CRLF, LFCR. (Most Macintosh
files use CR. Most Windows files use CRLF. Most UNIX files use LF. LFCR is an invalid terminator but some
buggy programs generate files that use it.)

/I=i

/INDX Creates in the current data folder an output wave W_Index containing the line
numbers (or row numbers) where matching lines were found. If this is the only output
you need, also use the /Q flag.

/LIST[=listSepStr] Creates an output string variable S_value containing a semicolon-separated list of the
matching lines. If listSepStr is specified, then it is used to separate the list items. See
StringFromList for details on string lists. If this is the only output you need, also use
the /Q flag.

/M=messageStr Specifies the prompt message in any Open File dialog. If /S is not specified, then
messageStr will be used for both the Open File and Save File dialogs.

/O Overwrites any existing destination file.

/P=pathName Specifies the folder containing the source file or the folder into which the file is copied.
pathName is the name of an existing symbolic path.
Both srcFileStr and destFileOrFolderStr must be either simple file or folder names, or
paths relative to the folder specified by pathName.

/Q Prevents printing results to an output file, text wave, History, or Clipboard. Use /Q to
check for a match to regExprStr by testing the value of V_flag, V_value, S_value
(/LIST), or W_Index (/INDX) without generating any other matching line output.
Note: When using /Q neither destFileOrFolderStr nor destTextWaveName may be
specified.

/S=saveMessageStr Specifies the prompt message in any Save File dialog.

/T=termCharStr

/Z[=z]

Specifies the degree of file search interactivity with the user.
i=0: Default; interactive only if srcFileStr is not specified or if the source file

is missing. Same as if /I were not specified.
Note: This is different behavior than other commands such as CopyFile.

i=1: Interactive even if srcFileStr is specified and the source file exists.
i=2: Interactive even if destFileOrFolderStr is specified.
i=3: Interactive even if srcFileStr is specified, the source file exists, and

destFileOrFolderStr is specified.

Specifies the terminator character.

See Line Termination for the default behavior of the terminator character.

/T=(num2char(13)) Carriage return (CR, ASCII code 13).
/T=(num2char(10)) Linefeed (LF, ASCII code 10).
/T=";" Semicolon.
/T="" Null (ASCII code 0).

Prevents aborting of procedure execution when attempting to open a nonexistent
file for searching. Use /Z if you want to handle this case in your procedures rather
than having execution abort.
z=0: Same as no /Z at all.
z=1: Open file only if it exists. /Z alone is the same as /Z=1.
z=2: Open file if it exists and display a dialog if it does not exist.

Grep

V-261

Grep reads whichever of these terminator(s) appear in the source file and use them to write lines to any
output file.
The terminator(s) are removed before the line is matched against the regular expression.
For lines that match regExprStr, terminator(s) in the input file are transferred to the output file unless the
output is the Clipboard or history area, in which case the output terminator is always only CR (like
LoadWave). This means you can transparently handle files that use CR, LF, CRLF, or LFCR as the
terminator, and omitting /T will be suitable for most cases.
If you use the /T flag, then Grep will terminate line-from-file reads on the specified character only and will
output the specified character into any output file.

“Lines” in One-dimensional Text Waves
Grep considers each row of srcTextWaveName or destTextWaveName to be a “line” of input or output.
When the destination is a file, the Clipboard, or the History area, Grep copies all of the text in a matching row
of srcTextWaveName to the file and terminates the line. See Line Termination for the rules on line terminators.
When the destination is a destTextWaveName, Grep simply copies all the text in a matching row to a row in
destTextWaveName, without adding or omitting any terminators.

“Lines” and Columns in Two-Dimensional Text Waves
Grep by default matches against only the first column (column 0) of each row of srcTextWaveName. You can
use the /GCOL=grepCol flag to specify a different column to match against. Use /GCOL=-1 to match
against any column of srcTextWaveName.
When the source is a text wave and the destination is a file, the Clipboard, or the History area, Grep by
default copies only the first column (column 0) to the destination.
Use the /DCOL={colNum1, delimStr1, colNum2, delimStr2,...colNumN} to print multiple
columns (in any order) with delimiters after each column (the last column number need not be followed by
a delimiter string). The output line is terminated with CR or termcharStr as described in Line Termination.
When both the source and destination are text waves and append (/A) is not specified, the destination text
wave is redimensioned to have the same number of columns as the source text wave, and all columns of
matching rows of srcTextWaveName are copied to destTextWaveName.
When both the source and destination are text waves and append /A is specified, then the number of
columns in destTextWaveName is left unchanged, and each column of srcTextWaveName is copied to the
corresponding column of destTextWaveName.
If the destination is a text wave and the source is a file or the Clipboard, each line (without the terminator)
is copied to the first column of the destination text wave, or use /DCOL={destColNum} to put the text into
a different column.

Output Variables
The Grep operation returns information in the following variables. When running in a user-defined
function these are created as local variables. Otherwise they are created as global variables in the current
data folder.

V_flag 0: Output successfully generated.
-1: User cancelled either the Open File or Save File dialogs.
Other: An error occurred, such as the specified file does not exist.

V_value The number of input lines that matched the regular expression.

V_startParagraph Zero-based line number into the file or Clipboard (or the row number of a source
text wave) where the first regular expression was matched. Also see the /INDX flag.

S_fileName Full path to the source file, the source text wave, or “Clipboard”. If an error
occurred or if the user cancelled, it is an empty string.

Grep

V-262

Regular Expressions
A regular expression is a pattern that is matched against a subject string from left to right. Most characters
stand for themselves in a pattern, and match the corresponding characters in the “subject”.
In the case of Grep, the “subject” is each line of the source file or Clipboard, or each row in the source text wave.
The regular expression syntax supported by Grep, GrepList, and GrepString is based on the “Perl-
Compatible Regular Expression” (PCRE) library.
The syntax is similar to regular expressions supported by various UNIX and POSIX egrep(1) commands.
See Regular Expressions on page IV-156 for more details. Igor’s implementation does not support the
Unicode (UTF-8) portion of PCRE.
As a trivial example, the pattern “Fred” as specified here:
Grep/P=myPath/E="Fred" "afile.txt" as "FredFile.txt"

matches lines that contain the string “Fred” anywhere on the line.
Character matching is case-sensitive by default, similar to strsearch. Prepend the Perl 5 modifier (?i) to
match upper and lower-case versions of “Fred”:
// Copy lines that contain "Fred", "fred", "FRED", "fREd", etc
Grep/P=myPath/E="(?i)fred" "afile.txt" as "AnyFredFile.txt"

To copy lines that do not match the regular expression, set the /E flag’s reverse parameter:
// Copy lines that do NOT contain "Fred", "fred", "fREd", etc.
Grep/P=myPath/E={"(?i)fred",1} "afile.txt" as "NotFredFile.txt"

Regular expressions in Igor support the expected metacharacters and character classes that make the whole
grep paradigm so useful. For example:
// Copy lines that START with a space or tab character
Grep/P=myPath/E="^[\\t]" "afile.txt" as "LeadingTabsFile.txt"

For a complete description of regular expressions, see Regular Expressions on page IV-156, especially for
a description of the many uses of the regular expression backslash character (see Backslash in Regular
Expressions on page IV-159).

Examples
// Copy lines in afile.txt containing "Fred" (case sensitive)
// to an output file named "AnyFredFile.txt" in the same directory.
Grep/P=myPath/E="Fred" "afile.txt" as "AnyFredFile.txt"

// Copy lines in afile.txt containing "Fred" and "Wilma" (case-insensitive)
// to a text wave (which must exist andis overwritten):
Make/O/N=0/T outputTextWave
Grep/P=myPath/E="(?i)fred"/E="(?i)wilma" "afile.txt" as outputTextWave

S_path Full path to the destination file or destination text wave.
"Clipboard": If destFileOrFolderStr was the Clipboard.
"History": If the output was printed to the History window.
"": If an error occurred, if the user cancelled, or if /Q was specified.

S_value Contains matching lines as a string list only if /LIST is specified.

Note: Igor doesn’t use the opening and closing regular expression delimiters that UNIX grep or
Perl use: they would have used "/Fred/" and "/(?i)fred/".

Note: Because Igor Pro also has special uses for backslash (see Escape Characters in Strings on
page IV-13), you must double the number of backslashes you would normally use for a
Perl or grep pattern. Each pair of backslashes identifies a single backslash for the Grep
command.
For example, to copy lines that contain “\z”, the Perl pattern would be \\z, but the
equivalent Grep expression would be /E="\\\\z".
See Backslash in Regular Expressions on page IV-159 for a more complete description of
backslash behavior in Igor Pro.

Grep

V-263

// Print lines in afile.txt containing "Fred" and "Wilma" (case-insensitive)
// to the history area
Make/O/N=0/T outputTextWave
Grep/P=myPath/E="(?i)fred"/E="(?i)wilma" "afile.txt"

// Test whether afile.txt contains the word "boondoggle", and if so,
// on which line the first occurence was found, WITHOUT creating any output.
//
// Note: the \\b sequences limit matches to a word boundary before and after
// "boondoggle", so "boondoggles" and "aboondoggle" won't match.
//
Grep/P=myPath/Q/E="(?i)\\bBoondoggle\\b" "afile.txt"
if(V_value) // at least one instance was found

Print "First instance of \"boondoggle\" was found on line", V_startParagraph
endif

// Create in S_value a string list of the lines as \r - separated list items:
Grep/P=myPath/LIST="\r"/Q/E="(?i)\\bBoondoggle\\b" "afile.txt"
if(V_Value) // some were found

Print S_value
endif

// Create in W_index a list of the 0-based line numbers where "boondoggle"
// or "boondoggles", etc was found in afile.txt.
Grep/P=myPath/INDX/Q/E="(?i)boondoggle" "afile.txt"
if(V_flag == 0) // grep succeeded, perhaps none were found; let's see where

WAVE W_Index // needed if in a function
Edit W_Index // show line numbers in a table.

endif

// (Create a string list and text wave for the following examples.)
String list= CTabList() // "Grays;Rainbow;YellowHot;..."
Variable items= ItemsInList(list)
Make/O/T/N=(items) textWave= StringFromList(p,list)

// Copy rows of textWave that contain "Red" (case sensitive)
// to the Clipboard as carriage-return separated lines.
Grep/E="Red" textWave as "Clipboard"

// Copy lines of the Clipboard that do NOT contain "Blue"
// (case in-sensitve) back to the Clipboard, overwriting what was there:
Grep/E={"(?i)blue",1} "Clipboard" as "Clipboard"

// Format matching text wave row to the history area
Grep/E=("Red")/DCOL={"prefix text --- ", 0, " --- suffix text"} textWave

// Printed output:
prefix text --- BlueRedGreen --- suffix text
prefix text --- RedWhiteBlue --- suffix text
prefix text --- BlueRedGreen256 --- suffix text
prefix text --- RedWhiteBlue256 --- suffix text
prefix text --- Red --- suffix text
prefix text --- RedWhiteGreen --- suffix text
prefix text --- BlueBlackRed --- suffix text

// Re-copy rows of textWave that contain "Red" (case sensitive)
// to the Clipboard as carriage-return separated lines.
Grep/E="Red" textWave as "Clipboard"
// Create a 2-column text wave whose column 1 (the second column)
// contains the matching text from the Clipboard
Make/O/N=(0,2)/T outputTextWave
// Grep with /A to preserve 2 columns of outputTextWave
Grep/A/E="Red"/GCOL=1/DCOL={1} "Clipboard" as outputTextWave

GrepList

V-264

// Examples with two-dimensional source text waves
Make/O/T/N=(10, 3) sourceTW= StringFromList(p+10*q,list)
Edit sourceTW

// Copy rows of textWave that contain "Red" in column 2 to outputTextWave.
Make/O/N=0/T outputTextWave
Grep/E="Red"/GCOL=2 sourceTW as outputTextWave
Edit outputTextWave

// Format matching text wave columns to the history area.
// Match lines that contain "Red" in any column of sourceTW:
Grep/E=("Red")/GCOL=-1/DCOL={0,", ",1,", ",2} sourceTW

// Printed output:
YellowHot, BlueRedGreen256, Magenta
BlueHot, RedWhiteBlue256, Yellow
BlueRedGreen, PlanetEarth256, Copper
RedWhiteBlue, Terrain256, Gold
Terrain, Rainbow16, RedWhiteGreen
Grays256, Red, BlueBlackRed

References
The regular expression syntax supported by Grep, GrepString, and GrepList is based on the PCRE — Perl-
Compatible Regular Expression Library by Philip Hazel, University of Cambridge, Cambridge, England. The
PCRE library is a set of functions that implement regular expression pattern matching using the same
syntax and semantics as Perl 5.
Visit <http://pcre.org/> for more information about the PCRE library, and
<http://www.perldoc.com/> for more about Perl regular expressions. The description of regular
expressions above is taken from the PCRE documentation.
A good book on regular expressions is: Friedl, Jeffrey E. F., Mastering Regular Expressions, 2nd ed., 492 pp.,
O’Reilly Media, 2002.

See Also
Regular Expressions on page IV-156 and Symbolic Paths on page II-34.
SplitString, CopyFile, PutScrapText, LoadWave operations. The GrepString, GrepList, StringMatch, and
cmpstr functions.

GrepList
GrepList(listStr, regExprStr [,reverse [, listSepStr]])
The GrepList function returns each list item in listStr that matches the regular expression regExprStr.

http://pcre.org/
http://www.perldoc.com/

GrepString

V-265

ListStr should contain items separated by the listSepStr character, such as in “abc;def;”.
regExprStr is a regular expression such as is used by the UNIX grep(1) command. It is much more powerful
than the wildcard syntax used for ListMatch. See Regular Expressions on page IV-156 for regExprStr details.
reverse is optional. If missing, it is taken to be 0. If reverse is nonzero then the sense of the match is reversed. For
example, if regExprStr is "^abc" and reverse is 1, then all list items that do not start with “abc” are returned.
listSepStr is optional; the default is ";". In order to specify listSepStr, you must precede it with reverse.

Examples
To list ColorTables containing “Red”, “red”, or “RED” (etc.):
Print GrepList(CTabList(),"(?i)red") // case-insensitive matching

To list window recreation commands starting with “\tCursor”:
Print GrepList(WinRecreation("Graph0", 0), "^\tCursor", 0 , "\r")

See Also
Regular Expressions on page IV-156.
ListMatch, StringFromList, and WhichListItem functions and the Grep operation.

GrepString
GrepString(string, regExprStr)
The GrepString function tests string for a match to the regular expression regExprStr. Returns 1 to indicate
a match, or 0 for no match.

Details
regExprStr is a regular expression such as is used by the UNIX grep(1) command. It is much more powerful than
the wildcard syntax used for StringMatch. See Regular Expressions on page IV-156 for regExprStr details.
Character matching is case-sensitive by default, similar to strsearch. Prepend the Perl 5 modifier "(?i)" to
match upper and lower-case text

Examples
Test for truth that the string contains at least one digit:
if(GrepString(str,"[0-9]+"))

Test for truth that the string contains at least one “abc”, “Abc”, “ABC”, etc.:
if(GrepString(str,"(?i)abc")) // case-insensitive test

See Also
Regular Expressions on page IV-156.
The StringMatch, cmpstr, strsearch, ListMatch, and ReplaceString functions and the SplitString and
sscanf operations.

GridStyle
GridStyle
GridStyle is a procedure subtype keyword that puts the name of the procedure in the Grid->Style Function
submenu of the mover pop-up menu in the drawing tool palette. You can have Igor automatically create a
grid style function for you by choosing Save Style Function from that submenu.

GroupBox
GroupBox [/Z] ctrlName [keyword = value [, keyword = value …]]
The GroupBox operation creates a box to surround and group related controls.
For information about the state or status of the control, use the ControlInfo operation.

Parameters
ctrlName is the name of the GroupBox control to be created or changed.

GroupBox

V-266

The following keyword=value parameters are supported:

appearance={kind [, platform]}

Sets the appearance of the control. platform is optional. Both parameters are
names, not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
See DefaultGUIControls Default Fonts and Sizes for how enclosed controls are
affected by native groupbox appearance.
See Button for more appearance details.

disable=d

fColor=(r,g,b) Sets color of the title text. r, g, and b are integers from 0 to 65535.

font="fontName" Sets font used for the box title, e.g., font="Helvetica".

frame=f Sets frame mode. If 1 (default), the frame has a 3D look. If 0, then a simple gray
line is used. Generally, you should not use frame=0 with a title if you want to be
in accordance with human interface guidelines.

fsize=s Sets font size for box title.

fstyle=fs

labelBack=(r,g,b) or 0 Sets fill color for the interior. r, g, and b are integers from 0 to 65535. If not set, then
interior is transparent. Note that if a fill color is used, draw objects can not be used
because they will be covered up. Also, you will have to make sure the GroupBox
is drawn before any interior controls.

pos={left,top} Sets the postion of the box in pixels.

pos+={dx,dy} Offsets the position of the box in pixels.

size={width,height} Sets box size in pixels.

userdata(UDName)=UDStr

Sets the unnamed user data to UDStr. Use the optional (UDName) to specify a
named user data to create.

userdata(UDName)+=UDStr

Appends UDStr to the current unnamed user data. Use the optional (UDName) to
append to the named UDStr.

title=titleStr Sets title to titleStr. Use "" for no title.

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Draw in gray state.

Sets the font style of the title text. fs is a bitwise parameter with each bit
controlling one aspect of the font style for the tick mark labels as follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

bit 0: Bold.
bit 1: Italic.
bit 2: Underline.
bit 3: Outline (Macintosh only).
bit 4: Shadow (Macintosh only).

GuideInfo

V-267

Flags

Details
If no title is given and the width is less than 11 or height is specified as less than 6, then a vertical or
horizontal separator line will be drawn rather than a box.

See Also
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls. The GetUserData operation for retrieving named user data.

GuideInfo
GuideInfo(winNameStr, guideNameStr)
The GuideInfo function returns a string containing a semicolon-separated list of information about the
named guide line in the named host window or subwindow.

Parameters
winNameStr can be "" to refer to the top host window.
When identifying a subwindow with winNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
guideNameStr is the name of the guide line for which you want information.

Details
The returned string contains several groups of information. Each group is prefaced by a keyword and colon,
and terminated with the semicolon. The keywords are as follows:

The following keywords will be present only for user-defined guides:

win=winName Specifies which window or subwindow contains the named control. If not given,
then the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page
III-97 for details on forming the window hierarchy.

/Z No error reporting.

Note: Like TabControls, you need to click near the top of a GroupBox to select it.

Keyword Information Following Keyword

NAME Name of the guide.

WIN Name of the window or subwindow containing the guide.

TYPE The value associated with this keyword is either User or Builtin. A User type denotes
a guide created by the DefineGuide operation, equivalent to dragging a new guide
from an existing one.

HORIZONTAL Either 0 for a vertical guide, or 1 for a horizontal guide.

POSITION The position of the guide. This is the actual position relative to the left or bottom
edge of the window, not the relative position specified to DefineGuide.

Keyword Information Following Keyword

GUIDE1 The guide is positioned relative to GUIDE1.

GUIDE2 In some cases, the guide is positioned at a fractional position between GUIDE1 and
GUIDE2. If the guide does not use GUIDE2, the value will be "".

RELPOSITION The position relative to GUIDE1 (and GUIDE2 if applicable). This is the same as the
val parameter in DefineGuide. May be a number of pixels if only GUIDE1 is used,
or a fractional value if both GUIDE1 and GUIDE2 are used.

GuideNameList

V-268

See Also
The GuideNameList,s StringByKey and NumberByKey functions; the DefineGuide operation.

GuideNameList
GuideNameList(winNameStr, optionsStr)
The GuideNameList function returns a string containing a semicolon-separated list of guide names from
the named host window or subwindow.

Parameters
winNameStr can be "" to refer to the top host window.
When identifying a subwindow with winNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
optionsStr is used to further qualify the list of guides. It is a string containing keyword-value pairs separated
by commas. Use "" to list all guides. Available options are:

Example
String list = GuideNameList("Graph0", "TYPE:Builtin,HORIZONTAL:1")

See Also
The DefineGuide operation and the GuideInfo function.

Hanning
Hanning waveName [, waveName]…
Note: The WindowFunction operation has replaced the Hanning operation.
The Hanning operation multiplies the named waves by a Hanning window (which is a raised cosine
function).
You can use Hanning in preparation for performing an FFT on a wave if the wave is not an integral number
of cycles long.
The Hanning operation is not multidimensional aware. See Chapter II-6, Multidimensional Waves,
particularly Analysis on Multidimensional Waves on page II-110 for details.

See Also
The WindowFunction operation implements the Hanning window as well as other forms such as
Hamming, Parzen, and Bartlet (triangle).
The ImageWindow operation for windowing of images.

Hash
Hash(inputStr, method)
The Hash function returns a message digest string for inputStr. The length of the resulting hash string is
fixed for each algorithm.

Parameters
inputStr is a string of arbitrary length.
method is 1 to use Secure Hash Algorithm-256.

See Also
For more about the SHA-256 algorithm see: <http://en.wikipedia.org/wiki/SHA-1>.

TYPE:type type = BuiltIn: List only built-in guides.
type = User: List only user-defined guides, those created by the DefineGuide
operation or by manually dragging a new guide from an existing one.

HORIZONTAL:h h = 0: List only non-horizontal (that is, vertical) guides.
h = 1: List only horizontal guides.

http://en.wikipedia.org/wiki/SHA-1

hcsr

V-269

hcsr
hcsr(cursorName [, graphNameStr])
The hcsr function returns the horizontal coordinate of the named cursor (A through J) in the coordinate
system of the top (or named) graph’s X axis.

Parameters
cursorName identifies the cursor, which can be cursor A through J.
graphNameStr specifies the graph window or subwindow.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.

Details
The X axis used is the one that controls the trace on which the cursor is placed.

Examples
Variable xAxisValueAtCursorA = hcsr(A) // not hcsr("A")
String str="A"
Variable xA= hcsr($str,"Graph0") // $str is a name, too

See Also
The pcsr, qcsr, vcsr, xcsr, and zcsr functions.
Programming With Cursors on page II-292.

hermite
hermite(n, x)
The hermite function returns the Hermite polynomial of order n:

.

The first few polynomials are:

.

See Also
The hermiteGauss function.

hermiteGauss
hermiteGauss(n, x)
The hermiteGauss function returns the normalized Hermite polynomial of order n:

.

Here the normalization was chosen such that where δnm is the Kronecker symbol.

See Also
The hermite function.

hide
#pragma hide = value
The hide pragma allows you to make a procedure file invisible.

Hn x() 1–()n x2()
xn

n

d

d x2–()expexp=

1
2x

4x2 2–

8x3 12x–

Hn x() 1

π2nn!
---------------------- 1–()n x2()

xn

n

d

d x– 2()expexp=

Hn x()Hm x() xd
∞–

∞

 δnm=

HideIgorMenus

V-270

See Also
The The hide Pragma on page IV-43 and #pragma.

HideIgorMenus
HideIgorMenus [MenuNameStr [, MenuNameStr]…
The HideIgorMenus operation hides the named built-in menus or, if none are explicitly named, hides all
built-in menus in the menu bar.
The effect of HideIgorMenus is lost when a new experiment is opened. The state of HideIgorMenus is saved
with the experiment.
User-defined menus are not hidden by HideIgorMenus unless attached to built-in menus and the menu
definition uses the hideable keyword.

Parameters

Details
The optional menu names are in English and not abbreviated. This ensures that code developed for a
localized version of Igor will run on all versions.
The built-in menus that can be shown or hidden (the Help menu can be hidden only on Windows) are those
that appear in the menu bar:

Hiding a built-in menu to which a user-defined menu is attached results in a built-in menu with only the
user-defined items. For example, if this menu definition attaches items to the built-in Graph menu:
Menu "Graph"

"Do My Graph Thing", ThingFunction()
End

Calling HideIgorMenus "Graph" will still leave a Graph menu showing (when a Graph is the top-most
target window) with only the user-defined menu(s) in it: in this example the one “Do My Graph Thing” item.
Hiding the Macros menu hides menus created from Macro definitions like:
Macro MyMacro()

Print "Hello, world."
End

but does not hide normal user-defined “Macros” definitions like:
Menu "Macros"

"Macro 1", MyMacro(1)
End

You can set user-defined menus to hide and show along with built-in menus by adding the optional
hideable keyword to the menu definition:
Menu "Graph", hideable

"Do My Graph Thing", ThingFunction()
End

Then HideIgorMenus "Graph" will hide those items, too. If all user-defined Graph menu definitions use
the hideable keyword, then no Graph menu will appear in the menu bar.
Some WaveMetrics procedures use the hideable keyword so that only customer-defined menus remain
when HideIgorMenus is executed.

See Also
Chapter IV-5, User-Defined Menus.
The ShowIgorMenus, DoIgorMenu, and SetIgorMenuMode operations.

MenuNameStr The name of an Igor menu, like “File”, “Data”, or “Graph”.

File Edit Data Analysis Macros Windows Graph

Layout Notebook Panel Procedure Table Misc Help

HideInfo

V-271

HideInfo
HideInfo [/W=winName]
The HideInfo operation removes the info box from a graph if it was previously shown by the ShowInfo
operation.

Flags

See Also
The ShowInfo operation.
Programming With Cursors on page II-292.

HideProcedures
HideProcedures
The HideProcedures operation hides all procedure windows without closing or killing them.

See Also
The DisplayProcedure and DoWindow operations.

HideTools
HideTools [/A/W=winName]
The HideTools operation hides the tool bar in the top graph or control panel if it was previously shown by
the ShowTools operation.

Flags

See Also
The ShowTools operation.

HilbertTransform
HilbertTransform [/Z][/O][/DEST=destWave] srcWave
The HilbertTransform operation computes the Hilbert transformation of srcWave, which is a real or complex
(single or double precision) wave of 1-3 dimensions. The result of the HilbertTransform is stored in
destWave, or in the wave W_Hilbert (1D) or M_Hilbert in the current data folder.

Flags

Details
The Hilbert transform of a function f(x) is defined by:

/W=winName Hides the info box in the named window.

/A Sizes the window automatically to make extra room for the tool palette. This
preserves the proportion and size of the actual graph area.

/W=winName Hides the tool bar in the named window. This must be the first flag specified when
used in a Proc or Macro or on the command line.

/DEST=destWave Creates a real wave reference for the destination wave in a user function. See
Automatic Creation of WAVE References on page IV-57 for details.

/O Overwrites srcWave with the transform.

/Z No error reporting.

F(t) =
1

πt

f (x)dx

x − t
.

−∞

∞

∫

Histogram

V-272

Theoretically, the integral is evaluated as a Cauchy principal value. Computationally one can write the
Hilbert transform as the convolution:

which by the convolution theorem of Fourier transforms, may be evaluated as the product of the transform
of f(x) with -i*sgn(x) where:

Note that the Hilbert transform of a constant is zero. If you compute the Hilbert transform in more than one
dimension and one of the dimensions does not vary (is a constant), the transform will be zero (or at least
numerically close to zero).
There are various definitions for the extension of the Hilbert transform to more than one dimension. In two
dimensions this operation computes the transform by multiplying the 2D Fourier transform of the input by
the factor (-i)sgn(x)(-i)sgn(y) and then computing the inverse Fourier Transform. A similar procedure is
used when the input is 3D.

Examples
Extract the instantaneous amplitude and frequency of a narrow-band signal.
Make/O/N=1000 w0,amp,phase
SetScale/I x 0,50,"", w0,amp,phase
w0 = exp(-x/10)*cos(2*pi*x)
HilbertTransform /DEST=w0h w0 // w0+i*w0h is the "analytic signal", i=cmplx(0,1)
amp = sqrt(w0^2 + w0h^2) // extract the envelope
phase = atan2(-w0h,w0) // extract the phase [SIGN CONVENTION?]
Unwrap 2*pi, phase // eliminate the 2*pi phase jumps
Differentiate phase /D=freq // would have less noise if fit to a line

// over interior points
freq /= 2*pi // phase = 2*pi*freq*time
Display w0,amp // original waveform and its envelope; note boundary effects
Display freq // instantaneous frequency estimate, with boundary effects

See Also
The FFT operation.

References
Bracewell, R., The Fourier Transform and Its Applications, McGraw-Hill, 1965.

Histogram
Histogram [flags] srcWaveName, destWaveName
The Histogram operation generates a histogram of the data in srcWaveName and puts the result in
destWaveName.

Flags

/A Accumulates the histogram result with the existing values in destWaveName instead of
replacing the existing values with the result. Assumes /B=2 unless the /B flag is present.
Note: The result will be incorrect if you also use /P.

F(t) =
−1

πt
∗ f (t),

sgn(x) =
−1 x < 0
0 x = 0
1 x > 0

.

⎧

⎨
⎪

⎩
⎪

Histogram

V-273

/B=mode

/B={binStart,binWidth,numBins}

Sets the histogram bins from these parameters rather than from destWaveName.
Changes the X scaling and length of destWaveName.

/C Sets the X scaling so that X values are in the centers of the bins, which is required
when you do a curve fit to the histogram output. Ordinarily, wave scaling of the
output wave is set with X values at the left bin edges.

/CUM Requests a cumulative histogram in which each bin is the sum of bins to the left. The
last bin will contain the total number of input data points, or, with /P, 1.0.
/CUM cannot be used with a weighted histogram (/W flag).
When used with /A, the destination wave must be the result of a histogram created
with /CUM.
Note that if you use a binning mode (/B flag) that sets a bin range that does not include
the entire range of the input data, then the output will not count all of input points
and the last bin will not contain the total number of input points. Input points whose
values fall below the left edge of the first bin or above the right edge of the last bin will
not be counted.

/N Creates a wave (W_SqrtN) containing the square root of the number of counts in each
bin. This is an appropriate wave to use as a weighting wave when doing a curve fit to
the histogram results.

/P Normalizes the histogram as a probability distribution function, and shifts wave
scaling so that data correspond to the bin centers.
When using the results with Integrate, you must use /METH=0 or /METH=2 to select
rectangular integration methods.

/R=(startX,endX) Specifies the range of X values of srcWaveName over which the histogram is to be
computed.

/R=[startP,endP] Specifies the range of points of srcWaveName over which the histogram is to be computed.

/W=weightWave Creates a “weighted” histogram. In this case, instead of adding a single count to the
appropriate bin, the corresponding value from weightWave is added to the bin.
weightWave may be any number type, and it may be complex. If it is complex, then the
destination wave will be complex.
/W cannot be used with a cumulative histogram (/CUM flag).

Controls binning:
mode=1: Semiauto mode that sets the bin range based on the range of the Y

values in srcWaveName. The number of bins is determined by the
number of points in destWaveName.

mode=2: Uses the bin range and number of bins determined by the X scaling
and number of points in destWaveName.

mode=3: Uses Sturges’ method to determine optimal number of bins and to
redimension destWaveName as necessary. By this method
numBins=1+log2(N), where N is the number of data points in
srcWaveName. The bins will be distributed so that they include the
minimum and maximum values.

mode=4: Uses a method due to Scott, which determines the optimal bin width
as binWidth=3.49*s*N-1/3, where N is the number of data points
in srcWaveName and s is the standard deviation of the distribution.
The bins will be distributed so that they include the minimum and
maximum values.

Histogram

V-274

Details
You must create a destination wave before doing the histogram. If you use /B={binStart, binWidth, numBins},
then the initial number of data points in the wave is unimportant since the Histogram operation changes
the number of points.
Only one /B and only one /R flag is allowed.
If both /A and /B flags are missing, the bin range and number of bins is calculated as if /B=1 (auto-set) had
been specified.
Typically, you will want to use /B={binStart,binWidth,numBins} for the first histogram, and /A for successive
accumulations into the histogram.
The Histogram operation works on single precision floating point destination waves. If necessary,
Histogram redimensions destWaveName to be single precision floating point. However, Histogram/A
requires that destWaveName already be single precision floating point.
For a weighted histogram, the destination wave will be double-precision.
If you specify the range as /R=(start), then the end of the range is taken as the end of srcWaveName.
In an ordinary histogram, input data is examined one data point at a time. The operation determines which bin
a data value falls into and a single count is added to that bin. A weighted histogram works similarly, except that
it adds to the bin a value from another wave in which each row corresponds to the same row in the input wave.

The Histogram operation is not multidimensional aware. See Analysis on Multidimensional Waves on
page II-110 for details. In fact, the Histogram operation can be usefully applied to multidimensional waves,
such as those that represent images. The /R flag will not work as expected, however.

Examples
// Create histogram of two sets of data.
Make/N=1000 data1=gnoise(1), data2=gnoise(1)
Make/N=1 histResult

// Sets bins, does histogram.
Histogram/B={-5,1,10} data1, histResult
Display histResult; ModifyGraph mode=5

// Accumulates into existing bins.
Histogram/A data2, histResult

Input Data

1.1

3.2

2.9

-3.5

0.3

-2.7

1.8

-3 -2 -1 0 1 2

+1

Input Data

1.1

3.2

2.9

-3.5

0.3

-2.7

1.8

-3 -2 -1 0 1 2

Weight Data

1.8

1.1

0.5

0.2

1.1

2.5

0.3
+0.3

Normal Histogram

Weighted Histogram

hyperG0F1

V-275

See Also
Histograms on page III-128 and the ImageHistogram operation.

References
Sturges, H.A., The choice of a class-interval, J. Amer. Statist. Assoc., 21, 65-66, 1926.
Scott, D., On optimal and data-based histograms, Biometrika, 66, 605-610, 1979.

hyperG0F1
hyperG0F1(b, z)
The hyperG0F1 function the confluent hypergeometric function

 where is the gamma function.

See Also
The hyperG1F1, hyperG2F1, and hyperGPFQ functions.

References
The PFQ algorithm was developed by Warren F. Perger, Atul Bhalla, and Mark Nardin.

hyperG1F1
hyperG1F1(a, b, z)
The hyperG1F1 function returns the confluent hypergeometric function

 where is the Pochhammer symbol .

See Also
The hyperG0F1, hyperG2F1, and hyperGPFQ functions.

References
The PFQ algorithm was developed by Warren F. Perger, Atul Bhalla, and Mark Nardin.

hyperG2F1
hyperG2F1(a, b, c, z)
The hyperG2F1 function returns the confluent hypergeometric function

 where is the Pochhammer symbol .

See Also
The hyperG0F1, hyperG1F1, and hyperGPFQ functions.

References
The PFQ algorithm was developed by Warren F. Perger, Atul Bhalla, and Mark Nardin.

Note: The series evaluation may be computationally intensive. Exit the function by pressing
Command-period (Macintosh) or Ctrl+Break (Windows).

Note: The series evaluation may be computationally intensive. Exit the function by pressing
Command-period (Macintosh) or Ctrl+Break (Windows).

Note: The series evaluation may be computationally intensive. Exit the function by pressing
Command-period (Macintosh) or Ctrl+Break (Windows).

F0 1 b z(,) zi

Γ b i+()i!

i 0=

∞

= Γ x()

F1 1 a b z,(,)
a()nzn

b()nn!

n 0=

∞

= a()n a()n a a 1+()… a n 1–+()=

F2 1 a b c z,,(,)
a()n b()nzn

c()nn!

n 0=

∞

= a()n a()n a a 1+()… a n 1–+()=

hyperGNoise

V-276

hyperGNoise
hyperGNoise(m, n, k)
The hyperGNoise function returns a pseudo-random value from the hypergeometric distribution whose
probability distribution function is

where m is the total number of items, n is the number of marked items, and k is the number of items in a
sample.
The random number generator initializes using the system clock when Igor Pro starts. This almost
guarantees that you will never repeat a sequence. For repeatable “random” numbers, use SetRandomSeed.
The algorithm uses the Mersenne Twister random number generator.

See Also
SetRandomSeed, StatsHyperGCDF, and StatsHyperGPDF.
Chapter III-12, Statistics for a function and operation overview.
Noise Functions on page III-334.

hyperGPFQ
hyperGPFQ(waveA, waveB, z)
The hyperGPFQ function returns the generalized hypergeometric function

where is the Pochhammer symbol .

See Also
The hyperG0F1, hyperG1F1, and hyperG2F1 functions.

References
The PFQ algorithm was developed by Warren F. Perger, Atul Bhalla, and Mark Nardin.

i
i
The i function returns the loop index of the inner most iterate loop in a macro. Not to be used in a function.
iterate loops are archaic and should not be used.

Note: The series evaluation may be computationally intensive. Exit the function by pressing
Command-period (Macintosh) or Ctrl+Break (Windows).

Fp q a1 …ap{ , } b1 …bq{ , } z,(,)
a1()n a2()n… ap()nzn

b1()n b2()n… bq()nn!

n 0=

∞

=

a()n a()n a a 1+()… a n 1–+()=

if-elseif-endif

V-277

if-elseif-endif
if (<expression1>)

<TRUE part 1>
elseif (<expression2>)

<TRUE part 2>
[…]
[else

<FALSE part>]
endif
In an if-elseif-endif conditional statement, when an expression first evaluates as TRUE (nonzero), then only
code corresponding to the TRUE part of that expression is executed, and then the conditional statement is
exited. If all expressions evaluate as FALSE (zero) then FALSE part is executed when present. After
executing code in any TRUE part or the FALSE part, execution will next continue with any code following
the if-elseif-endif statement.

See Also
If-Elseif-Endif on page IV-32 for more usage details.

if-endif
if (<expression>)

<TRUE part>
[else

<FALSE part>]
endif
An if-endif conditional statement evaluates expression. If expression is TRUE (nonzero) then the code in
TRUE part is executed, or if FALSE (zero) then the optional FALSE part is executed.

See Also
If-Else-Endif on page IV-31 for more usage details.s

IFFT
IFFT [flags] srcWave
The IFFT operation calculates the Inverse Discrete Fourier Transform of srcWave using a multidimensional
fast prime factor decomposition algorithm. This operation is the inverse of the FFT operation.

Output Wave Name
For compatibility with earlier versions of Igor, if you use IFFT without /ROWS or /COLS, the operation
overwrites srcWave.
If you use the /ROWS flag, IFFT uses the default output wave name M_RowFFT and if you use the /COLS
flag, IFFT uses the default output wave name M_ColFFT.
We recommend that you use the /DEST flag to make the output wave explicit and to prevent overwriting
srcWave.

Parameters
srcWave is a complex wave. The IFFT of srcWave is a either a real or complex wave, according to the length
and flags.

Flags

/C Forces the result of the IFFT to be complex. Normally, the IFFT produces a real result
unless certain special conditions are detected as described in Details.

/COLS Computes the 1D IFFT of 2D srcWave one column at a time, storing the results in the
destination wave. You must specify a destination wave using the /DEST flag (no other
flags are allowed). See the /ROWS flag and corresponding flags of the FFT operation.

IgorInfo

V-278

Details
The data type of srcWave must be complex and must not be an integer type. You should be aware that an
IFFT on a number of points that is prime can be slow.
By default, IFFT assumes you are performing an inverse transform on data that was originally real and
therefore it produces a real result. However, for historical and compatibility reasons, IFFT detects the
special conditions of a one-dimensional wave containing an integral power of 2 data points and
automatically creates a complex result.
When the result is complex, the number of points (N) in the resulting wave will be of the same length.
Otherwise the resulting wave will be real and of length (N-1)*2.
In either the complex or real case the X units of the output wave are changed to “s”. The X scaling also is
changed appropriately, cancelling out the adjustments made by the FFT operation. When the data is
multidimensional, the same considerations apply to the additional dimensions. The scaling description and
IDFT equation below pretend that the IFFT is not performed in-place. After computing the IFFT values, the
X scaling of waveOut is changed as if Igor had executed these commands:
Variable points // time-domain points, NtimeDomain
if(waveIn was complex wave)

points= numpnts(waveIn)
else // waveIn was real wave

points= (numpnts(waveIn) - 1) * 2
endif
Variable deltaT= 1 / (points*deltaX(waveIn)) // 1/(NtimeDomaindx)
SetScale/P waveOut 0,deltaT,"s"

The IDFT equation is:

.

See Also
The FFT, DSPPeriodogram, and MatrixOp operations.

IgorInfo
IgorInfo(selector)
The IgorInfo function returns information about the Igor application and the environment in which it is
running.

Details
selector is a number from 0 to 5.

/DEST=destWave Specifies the output wave created by the IFFT operation.
It is an error to specify the same wave as both srcWave and destWave.
In a function, IFFT by default creates a real wave reference for the destination wave.
See Automatic Creation of WAVE References on page IV-57 for details.

/R Forces real output when, due to a power of 2 number of points, IFFT would otherwise
automatically produce a complex result.

/ROWS Calculates the IFFT of only the first dimension of 2D srcWave. It computes the 1D FFT
one row at a time. You must specify a destination wave using the /DEST flag (no other
flags are allowed). See the /COLS flag and corresponding flags of the FFT operation.

/Z Will not rotate srcWave when computing the IDFT of a complex wave whose length is
an integral power of 2.
This length indicates that the Inverse DFT result will also be a complex wave. When
the result is complex, and the x scaling of srcWave is such that the first point is not x=0,
it normally rotates srcWave by -N/2 points before performing the IFFT. This inverts the
process of performing an FFT on a complex wave. However when /Z is specified, it
does not perform this rotation.

waveOut n[] 1
N
---- waveIn k[] e 2– π i k n⋅ N⁄⋅ ⋅ where i,⋅

k 0=

N 1–

⋅ 1–= =

IgorInfo

V-279

Always pass 0, 1, 2, 3, 4 or 5 as the input parameter. In future versions of Igor Pro, this parameter may
request other kinds of information.
If selector is 0, IgorInfo returns a collection of assorted information. The result string contains five kinds of
information. Each group is prefaced by a keyword and colon, and terminated with a semicolon. The
keywords are IGORVERS, IGORKIND, FREEMEM, NSCREENS, and SCREENn where n varies from 1 to
the number of screens (monitors) currently attached to the computer and used for the desktop.

If selector is 1, IgorInfo returns the name of the current Igor experiment.
If selector is 2, IgorInfo returns the name of the current platform: “Macintosh” or “Windows”.
If selector is 3, IgorInfo returns a collection of more detailed information about the operating system,
localization information, and the actual file version of the Igor executable. The keywords are OS,
OSVERSION, LOCALE, and IGORFILEVERSION.

Keyword Information Following Keyword For IgorInfo(0)

FREEMEM The amount of free memory available to Igor. When running under virtual memory, such
as on Windows, this is the amount of free virtual memory.

IGORKIND The type of Igor application; “pro” means the full (nondemo) version of Igor Pro. “pro
demo” is the demo version of Igor Pro. Currently there are no other values for this keyword.

IGORVERS The version number of the Igor application. Also see IGORFILEVERSION returned by
IgorInfo(3).

NSCREENS Number of screens (monitors) currently attached to the computer and used for the
desktop. In Igor Pro 4 this was erroneously “ NSCREENS” (with a leading space).

SCREEN1 Description of the characteristics of screen 1.

On Macintosh, the screen number corresponds to the number in the Monitors Control Panel;
use the Identify button there to show the monitor (screen) numbers. SCREEN1 is not
necessarily the monitor with the menu bar.

On Windows, SCREEN1 is the main monitor (whose top left corner screen coordinate is 0, 0).

Format of the SCREEN description is:

SCREENn:DEPTH=bitsPerPixel,RECT=left,top,right,bottom;

left, top, right, and bottom are all in pixels.

SCREENn Description of the characteristics of the last screen. See NSCREENS, above.

Keyword Information Following Keyword For IgorInfo(3)

IGORFILEVERSION The actual version number of the Igor application file.

On the Macintosh, the version number is a floating point number with a possible
suffix. Igor Pro 5.00, for example, returns “5.00”. Igor Pro 5.02A returns “5.02A”.

As of Igor Pro 5.02, the Windows version format is a period-separated list of
four numbers. Igor Pro 5.02 returns “5.0.2.0”. A revision to Igor Pro 5.02 would
be indicated in the last digit, such as “5.0.2.12”.

(For versions older than 5.02, the Windows version format is a floating point
number similar to the Macintosh. For example, Igor 4.09A returns “4.091”. We
abandoned this representation because it limits each of the digits to 0-9.)

LOCALE Country for which this version of Igor Pro is localized. “US” for most versions,
“Japan” for the Japanese versions.

OS On Mac OS X, this will be “Macintosh OS X”.

On Windows, this might be “Windows XP (Build 1234)”. The actual build
number and format of the text will vary with the operating system.

IgorVersion

V-280

If selector is 4, IgorInfo returns the name of the current processor architecture: “PowerPC” or “Intel”.
If selector is 5, IgorInfo returns (as a string) the serial number of the program if it is registered or "_none_" if
it isn't registered. Use str2num to store the result in a numeric variable. str2num will return NaN if the
program isn't registered.

Examples
Print NumberByKey("NSCREENS", IgorInfo(0)) // number of active displays

Function RunningWindows() // returns 0 if Macintosh, 1 if Windows
String platform= UpperStr(igorinfo(2))
Variable pos= strsearch(platform,"WINDOWS",0)
return pos >= 0

End

IgorVersion
#pragma IgorVersion = versNum
When a procedure file contains the directive, #pragma IgorVersion=versNum, an error will be generated
if versNum is greater than the current Igor Pro version number. It prevents procedures that use new features
added in later versions from running under older versions of Igor in which these features are missing.
However, this version check is limited because it does not work with versions of Igor older than 4.0.

See Also
The The IgorVersion Pragma on page IV-42 and #pragma.

IgorVersion
The IgorVersion function returns version number of the Igor application as a floating point number. Igor
6.01 returns 6.01, as does Igor 6.01A.

Details
The IgorVersion function was introduced in Igor 6.1.
The returned value is identical to that returned by more cumbersome:

NumberByKey("IGORVERS", IgorInfo(0))

This older code is compatible with older versions of Igor.
Because floating point numbers are not precise, exact comparisons to floating point values often behave in
unexpected ways. For example:
Variable result= 6 + 0.1
if(result == 6.1)

Print "result == 6.1" // this is not printed!
else

Print "difference = ", result - 6.1 // prints "difference = -8.88178e-16"
endif

However, IgorVersion compensates for this so that the following will work as expected:
if (IgorVersion() == 6.1)

Print "result == 6.1"// this is printed to the history area
endif

You can use IgorVersion in conditionally compile code expressions, which can be used to omit calls to new
Igor features or to provide backwards compatibility code.
#if (IgorVersion() >= 6.1)

[Code that compiles only on Igor 6.1 or later]
#else

[Code that compiles only on earlier versions of Igor]
#endif

OSVERSION Operating system number.
On Macintosh, this might be “9.1.0”, “10.1.2” etc.
On Windows, this might be “5.1.2600”.

Keyword Information Following Keyword For IgorInfo(3)

ilim

V-281

However, this will fail with older versions which precede the IgorVersion function. To work with versions
older than 6.1 you must use this instead:
#if NumberByKey("IGORVERS", IgorInfo(0)) >= 6.1

[Code that compiles only on Igor 6.1 or later]
#else

[Code that compiles only on earlier versions of Igor]
#endif

If at all possible, it is better to require your users to use a later version of Igor rather than writing conditional
code. Attempting this kind of backward-compatibility multiplies your testing requirements and the
chances for bugs.

See Also
IgorInfo, Conditional Compilation on page IV-90, The IgorVersion Pragma on page IV-42

ilim
ilim
The ilim function returns the ending loop count for the inner most iterate loop Not to be used in a function.
iterate loops are archaic and should not be used.

imag
imag(z)
The imag function returns the imaginary component of the complex number z as a real (not complex)
number.

See Also
The cmplx, conj, p2rect, r2polar, and real functions.

ImageAnalyzeParticles
ImageAnalyzeParticles [flags] keyword imageMatrix
The ImageAnalyzeParticles operation performs one of two particle analysis operations on a 2D or 3D source
wave imageMatrix. The source image wave must be binary, i.e., an unsigned char format where the particles
are designated by 0 and the background by 255 (the operation will produce erroneous results if your data
uses the opposite designation). Note that all nonzero values in the source image will be considered part of
the background. Grayscale images must be thresholded before invoking this operation (you may need to
use the /I flag with the ImageThreshold operation).
Note: ImageAnalyzeParticles does not take into account wave scaling. All image metrics are in pixels

and all pixels are assumed to be square.

Parameters
keyword is one of the following names:

Flags

mark Creates a masking image for a single particle, which is specified by an internal (seed) pixel
using the /L flag. The masking image is stored in the wave M_ParticleMarker, which is an
unsigned char wave. All points in M_ParticleMarker are set to 64 (image operations on binary
waves use the value 64 to designate the equivalent of NaN) except points in the particle which
are set to the 0. This wave is designed to be used as an overlay on the original image (using
the explicit=1 mode of ModifyImage). This keyword is superseded by the ImageSeedFill
operation.

stats Measures the particles in the image. See ImageAnalyzeParticles Stats on page V-283 for
details.

/A=minArea Specifies a minimum area as a threshold that must be exceeded for a particle to be
counted (e.g., use minArea=0 to find single pixel particles). The minimum area is
measured in pixels; its default value is minArea=5.
Has no effect when used with the mark method.

ImageAnalyzeParticles

V-282

/B Erases a 1 pixel wide frame inset from the boundary. This insures that no particles will
have boundary pixels (see /EBPC below) and all boundary waves will describe close
contours.

/CIRC={minCircularity,maxCircularity}

Use this flag to filter the output so that only particles in the range of the specified
circularity are counted.

/D=dataWave Specify a wave from which the minimum, maximum, and total particle intensity are
sampled when used with the stats keyword. dataWave must be of the same
dimensions as the input binary image imageMatrix. It can be of any real numeric type.
Results are returned in the waves W_IntMax, W_IntMin, and W_IntAvg.

/E Calculates an ellipse that best fits each particle. The equivalent ellipse is calculated by
first finding the moments of the particle (i.e., average x-value, average y-value,
average x2, average y2, and average x*y), and then requiring that the area of the ellipse
be equal to that of the particle. The resulting ellipses are saved in the wave
M_Moments. When imageMatrix is a 2D wave, the results returned in M_Moments are
the columns: the X-center of the ellipse, the Y-center of the ellipse, the major axis, the
minor axis, and the angle (radians) that the major axis makes with the X-direction.
When imageMatrix is a 3D wave, the results in M_Moments include the sum of the X,
Y, and Z components as well as all second order permutations of their products. They
are arranged in the order: sumX, sumY, sumZ, sumXX, sumYY, sumZZ, sumXY,
sumXZ, and sumYZ.

/EBPC Use this flag to exclude from counting any particle that has one or more pixels on any
boundary of the image.

/F Fills 2D particles having internal holes and adjusts their area measure for the removal
of holes. Internal boundaries around the holes are also eliminated. When the
boundary of the particle consists of thin elements that cannot be traversed as a single
closed path which passes each boundary pixel only once, the particle will not be filled.
Note that filling particles may increase execution time considerably and on some
images it may require large amount of memory. It is likely that a more efficient
approach would be to preprocess the binary image and remove holes using
morphology operations. This flag is not supported when imageMatrix is a 3D wave.

/L= (row,col) Specifies a 2D particle location in connection with the mark method. (row, col) is a seed
value corresponding to any pixel inside the particle. If the seed belongs to the particle
boundary, the particle will not be filled. This flag is not supported when imageMatrix
is a 3D wave.

/M=markerVal

/MAXA=maxArea Specifies an upper limit of the area of an acceptable particle when used with the stats
keyword. The area is measured in pixels and the default value of maxArea is the number
of pixels in the image. In 3D the maximum value applies to the number of voxels.

/NSW Creates the marker wave (see /M flag) but not the particle statistics waves when used with
the stats keyword. This should reduce execution time in images containing many
particles.

/P=plane Specifies the plane when operating on a single layer of a 3D wave.

/Q Quiet flag, does not report the number of particles to the history window.

Use this flag with the stats mode for 2D images. See stats keyword for a full
description of the following waves:

This flag does not apply to 3D waves.

markerVal=0: No marker waves.
markerVal=1: M_ParticlePerimeter.
markerVal=2: M_ParticleArea.
markerVal=3: M_Particle.

ImageAnalyzeParticles

V-283

Details
Particle analysis is accomplished by first converting the data from its original format into a binary representation
where the particle is designated by zero and the background by any nonzero value. The algorithm searches for
the first pixel or voxel that belongs to a particle and then grows the particle from that seed while keeping count
of the area, perimeter and count of pixels or voxels in the particle. If you use additional flags, the algorithm must
compute additional quantities for each pixel or voxel belonging to the particle.
If your goal is to mask only the particle, a more efficient approach is to use the ImageSeedFill operation,
which similarly follows the particle but does not spend processing time on computing unrelated particle
properties. ImageSeedFill also has the additional advantage of not requiring that the input wave be binary,
which will save time on performing the initial threshold and, in fact, may produce much better results with
the adaptive/fuzzy features that are not available in ImageAnalyzeParticles.

ImageAnalyzeParticles Stats
The ImageAnalyzeParticles stats keyword measures the particles in the image. Results of the measurements
are reported for all particles whose area exceeds the minArea specified by the /A flag. The results of the
measurements are:

/R=roiWave Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/b/u) that has the same number of rows and columns as imageMatrix. The ROI
itself is defined by the entries or pixels in the roiWave with value of 0. Pixels outside
the ROI may have any nonzero value. The ROI does not have to be contiguous. When
imageMatrix is a 3D wave, roiWave can be either a 2D wave (matching the number of
rows and columns in imageMatrix) or it can be a 3D wave that must have the same
number of rows, columns and layers as imageMatrix. When using a 2D roiWave with a
3D imageMatrix the ROI is understood to be defined by roiWave for each layer in the
3D wave.
See ImageGenerateROIMask for more information on creating 2D ROI waves.

/U Saves the wave M_ParticleMarker as an 8-bit unsigned instead of the default 16-bit
when used with the mark keyword.

/W Creates boundary waves W_BoundaryX, W_BoundaryY, and W_BoundaryIndex for a
2D imageMatrix wave. W_BoundaryX and W_BoundaryY contain the pixels along the
particle boundaries. The boundary of each particle ends with a NaN entry in both waves.
Each entry in W_BoundaryIndex is the index to the start of a new particle in
W_BoundaryX and W_BoundaryY, so that you can quickly locate the boundary of each
particle.
When there are holes in particles, the entries in W_BoundaryX and W_BoundaryY
start with the external boundary followed by all the internal boundaries for that
particle. There are no index entries for internal boundaries.
This flag is not supported when imageMatrix is a 3D wave.

V_NumParticles Number of particles that exceed the minArea limit.

W_ImageObjArea Area (in pixels) for each particle.

W_ImageObjPerimeter Perimeter (in pixels) of each particle. The perimeter calculation involves
estimates for 45-degree pixel edges resulting in noninteger values.

W_circularity Ratio of the square of the perimeter to (4*π*objectArea). This value
approaches 1 for a perfect circle.

W_rectangularity Ratio of the area of the particle to the area of the inscribing (nonrotated)
rectangle. This ratio is π/4 for a perfectly circular object and unity for a
nonrotated rectangle.

W_SpotX and W_SpotY Contain a single x, y point from each object. There is one entry per particle
and the entries follow the same order as all other waves created by this
operation. Each (x,y) point from these waves can used to define the position
of a tag or annotation for a particle. Points can also be used as seed pixels for
the associated mark method or for the ImageSeedFill operation.

ImageBlend

V-284

One of the following waves can be created depending on the /M specification. The waves are designed to
be used as an overlay on the original image (using the explicit=1 mode of ModifyImage). Note: the
additional time required to create these waves is negligible compared with the time it takes to generate the
stats data.

When imageMatrix is a 3D wave, the different results are packed into a single 2D wave M_3DParticleInfo,
which consists of one row and 11 columns for each particle. Columns are arranged in the following order:
minRow, maxRow, minCol, maxCol, minLayer, maxLayer, xSeed, ySeed, zSeed, volume, and area. Use
Edit M_3DParticleInfo.ld to display the results in a table with dimension labels describing the
different columns.

Examples
Convert a grayscale image (blobs) into a proper binary input:
ImageThreshold/M=4/Q/I blobs

Get the statistics on the thresholded image of blobs and create an image mask output wave for the perimeter
of the particles:
ImageAnalyzeParticles/M=1 stats M_ImageThresh

Display an image of the blobs with a red overlay of the perimeter image:
NewImage/F blobs; AppendImage M_ParticlePerimeter
ModifyImage M_ParticlePerimeter explicit=1, eval={0,65000,0,0}

See Also
The ImageThreshold, ImageGenerateROIMask, ImageSeedFill, and ModifyImage operations. For more
usage details see Particle Analysis on page III-321.

ImageBlend
ImageBlend [/A=alpha /W=alphaWave] srcWaveA, srcWaveB [, destWave]
The ImageBlend operation takes two RGB images (3D waves) in srcWaveA and srcWaveB and computes the
alpha blending so that
destWave = srcWaveA * (1 - alpha) + srcWaveB * alpha
for each color component. If destWave is not specified or does not already exist, the result is saved in the
current data folder in the wave M_alphaBlend.
The source and destination waves must be of the same data types and the same dimensions. The alphaWave,
if used, must be a single precision (SP) float wave and it must have the same number of rows and columns
as the source waves.

W_xmin, W_xmax, W_ymin, W_ymax

Contain a single point for each particle defining an inscribing rectangular box
with axes along the X and Y directions.

M_ParticlePerimeter Masking image of particle boundaries. It is an unsigned char wave that
contains 0 values for the object boundaries and 64 for all other points.

M_ParticleArea Masking image of the area occupied by the particles. It is an unsigned char
wave containing 0 values for the object boundaries and 64 for all other points.
It is also different from the input image in that particles smaller than the
minimum size, specified by /A, are absent.

M_Particle Image of both the area and the boundary of the particles. It is an unsigned
char wave that contains the value 16 for object area, the value 18 for the object
boundaries and the value 64 for all other points.

M_rawMoments Contains five columns. The first column is the raw sum of the x values for each
particle, and the second column contains the sum of the y values. To obtain the
average or “center” of a particle divide these values by the corresponding area.
The third column contains the sum of x2, the fourth column the sum of y2, and
the fifth column the sum of x*y. The entries of this wave are used in calculating a
fit to an ellipse (using the /E flag).

ImageBoundaryToMask

V-285

Flags

ImageBoundaryToMask
ImageBoundaryToMask width=w, height=h, xwave=xwavename, ywave=ywavename [,

scalingWave=scalingWaveName, [seedX=xVal, seedY=yVal]]
The ImageBoundaryToMask operation scan-converts a pair of XY waves into an ROI mask wave.

Parameters

Details
ImageBoundaryToMask generates an unsigned char 2D wave named M_ROIMask, of dimensions specified
by width and height. The wave consists of a background pixels that are set to 0 and pixels representing the
mask that are set to 1.
The x and y waves can be of any type. However, if the waves describe disjoint regions there must be at least
one NaN entry in each wave corresponding to the discontinuity, which requires that you use either single or
double precision waves. The values stored in the waves must correspond to zero-based integer pixel values.
If the x and y waves include a vertex that lies outside the mask rectangle, the offending vertex is moved to
the boundary before the associated line segment is scan converted.
If you want to obtain a true ROI mask in which closed regions are filled, you can specify the seedX and
seedY keywords. The ROI mask is set with zero outside the boundary of the domain and 1 everywhere
inside the domain.

Examples
Make/O/N=(100,200) src=gnoise(5) // create a test image
SetScale/P x 500,1,"", src;DelayUpdate // give it some funny scaling
SetScale/P y 600,1,"", src
Display; AppendImage src
Make/O/N=201 xxx,yyy // create boundary waves
xxx=550+25*sin(p*pi/100) // representing a close ellipse
yyy=700+35*cos(p*pi/100)
AppendToGraph yyy vs xxx

Now create a mask from the ellipse and scale it so that it will be appropriate for src:
ImageBoundaryToMask ywave=yyy,xwave=xxx,width=100,height=200,scalingwave=src

To generate an ROI masked filled with 1 in a region defined by a seed value and the boundary curves:
ImageBoundaryToMask
ywave=yyy,xwave=xxx,width=100,height=200,scalingwave=src,seedx=550,seedy=700

/A=alpha Specifies a single alpha value for the whole image

/W=alphaWave Single precision wave that specifies an alpha value for each pixel.

height = h Specifies the mask height in pixels.

scalingWave = scalingWaveName

2D or 3D wave that provides scaling for the mask. If specified, the scaling of the
first two dimensions of scalingWave are copied to M_ROIMask, and both the X
and Y waves are assumed to describe pixels in the scaled domain.

seedX = xVal Specifies seed pixel location. The operation fills the region defined by the seed
and the boundary with the value 1. Background pixels are set to zero. Requires
seedY.

seedY = yVal Specifies seed pixel location. The operation fills the region defined by the seed
and the boundary with the value 1. Background pixels are set to zero. Requires
seedX.

width = w Specifies the mask width in pixels.

xwave = xwavename Name of X wave for mask region.

ywave = ywavename Name of Y wave for mask region.

ImageEdgeDetection

V-286

See Also
The ImageAnalyzeParticles and ImageSeedFill operations. For another example see Converting
Boundary to a Mask on page III-324.

ImageEdgeDetection
ImageEdgeDetection [flags] Method imageMatrix
The ImageEdgeDetection operation performs one of several standard image edge detection operations on
the source wave imageMatrix. Unless the /O flag is specified, the resulting image is saved in the wave
M_ImageEdges. The edge detection methods produce binary images on output (the background is set to 0
and the edges to 255). This is due, in most cases to a thresholding performed in the final stage. Except for
the case of marr and shen detectors, you can use the /M flag to specify a method for automatic thresholding
(see ImageThreshold /M flag).

Parameters
Method selects type of edge detection. Method is one of the following names:

Flags

canny Canny edge detector uses smoothing before edge detection and thresholding. You can
optionally specify the threshold using the /T flag and the smoothing factor using /S.

frei Calculates the Frei-Chen edge operator (see Pratt p. 503) using only the row and column
filters.

kirsch Kirsch edge detector (see Pratt p. 509). Performs convolution with 8 masks calculating
gradients.

marr Marr-Hildreth edge detector. Performs two convolutions with Laplacian of Gaussian and then
detects zero crossings. Use the /S flag to define the width of the convolution kernel.

prewitt Calculates the Prewitt compass gradient filters. Returns the result for the largest filter
response.

roberts Calculates the square root of the magnitude squared of the convolution with the Robert’s row
and column edge detectors.

shen Shen-Castan optimized edge detector. Supposed to be effective in the presence of noise. The flags
that modify this operation are: /F for the threshold ratio (0.9 by default), /S for smoothness factor
(0.9 by default), /W for window width (default is 10), /H for thinning factor which by default is 1.

sobel Sobel edge detector using convolutions with row and column edge gradient masks (see Pratt p.
501).

/F=fraction Determines the threshold value for the shen algorithm by starting from the histogram
of the image and choosing a threshold such that fraction specifies the portion of the
image pixels whose values are below the threshold. Valid values are in the interval (0
< fraction < 1).

/H=thinning Thins edges when used with shen edge detector. By default the thinning value is 1.
Higher values produce thinner edges.

/I Inverts the output, i.e., sets the edges to 255 and the background to 0.

/M=threshMethod See the ImageThreshold automatic methods for obtaining a threshold value.
Methods 1, 2, 4 and 5 are supported in this operation. If you use threshMethod = -1,
threshold is not applied.
If you want to apply your own thresholding algorithm, use /M=6 to bypass the
thresholding completely. The wave M_RawCanny contains the result regardless of
any other flags you may have used.

/N Sets the background level to 64 (i.e., NaN)

/O Overwrites the source image with the output image.

ImageFileInfo

V-287

See Also
The ImageGenerateROIMask operation for creating ROIs and the ImageThreshold operation.
Edge Detectors on page III-311 for a number of examples.

References
Pratt, William K., Digital Image Processing, John Wiley, New York, 1991.

ImageFileInfo
ImageFileInfo [/P=pathName] fileNameStr
The ImageFileInfo operation supplies information about an image file without having to open the file and
load the data into Igor.
ImageFileInfo works with the following file types: PICT, TIFF, GIF, JPEG, PNG, Targa, QuickTime, and BMP.
ImageFileInfo requires QuickTime. The operation will fail (V_flag=0) if you request information for a file
format that is not supported by QuickTime.

Parameters
fileNameStr specifies the image file for which information is needed.
The file of interest is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName.
If you use a full or partial path for fileNameStr, see Path Separators on page III-400 for details on forming
the path.
If you want to force a dialog to select the file, omit the fileNameStr parameter.

/R=roiSpec Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/b/u). The ROI wave must have the same number of rows and columns as the
image wave. The ROI itself is defined by entries/pixels whose values are 0. Pixels
outside the ROI can be any nonzero value. The ROI does not have to be contiguous
and can be any arbitrary shape. See ImageGenerateROIMask for more information
on creating ROI waves.

By default roiFlag is set to 1 and it is then possible to use the /R flag using the
abbreviated form /R=roiWave.

/S= smoothVal Specifies the standard deviation or the width of the smoothing filter. By default the
operation uses 1. Larger values require longer computation time. In the shen
operation the default value is 0.9 and the valid range is (0 < smoothVal< 1).

/T=thresh Sets a manual threshold for any method above that uses a single threshold. This is
faster than using /M.

/W=width Specifies window width when used in the shen operation. By default width is set to
10 and it is clipped to 49.

In general, the roiSpec has the form {roiWaveName, roiFlag}, where roiFlag can take
the following values:
roiFlag=0: Set pixels outside the ROI to 0.
roiFlag=1: Set pixels outside the ROI as in original image.
roiFlag=2: Set pixels outside the ROI to NaN (=64).

ImageFilter

V-288

Flags

Variables
ImageFileInfo returns information in the following variables:

ImageFilter
ImageFilter [flags] Method dataMatrix
The ImageFilter operation is identical to MatrixFilter, accepting the same parameters and flags, with the
exception of the additional features described below.

Parameters
Method selects the filter type. Method is one of the following names:

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

S_path File system path to the selected file.

V_BPP Number of bits per pixel. A value of 40 means 8-bit grayscale; all other values are bits
per pixel.

V_flag 1 if operation was successful, 0 otherwise.

V_frameCount Number of movie frames.

V_numCols Height of the image.

V_numImages Number of images in the file. Only supports TIFF files that contain multiple images.

V_numRows Width of the image.

V_quality Image compression quality in hexadecimal:
codecLosslessQuality = 0x00000400

codecMaxQuality = 0x000003FF

codecMinQuality = 0x00000000

codecLowQuality = 0x00000100

codecNormalQuality = 0x00000200

codecHighQuality = 0x00000300

avg3d nxnxn average filter for 3D waves.

gauss3d nxnxn gaussian filter for 3D waves.

hybridmedian Implements ranking pixel values between two groups of pixels in a 5x5
neighborhood. The first group includes horizontal and vertical lines through the
center, the second group includes diagonal lines through the center, and both groups
include the center pixel itself. The resulting median value is the ranked median of
both groups and the center pixel.

max3d nxnxn maximum rank filter for 3D waves.

median3d nxnxn median filter for 3D waves where n must be of the form 3r (integer r), e.g.,
3x3x3, 9x9x9 etc. The filter does not change the value of the voxel it is centered on if
any of the filter voxels lies outside the domain of the data.

min3d nxnxn minimum rank filter for 3D waves.

point3d nxnxn point finding filter using normalized (n3-1)*center-outer for 3D waves.

ImageFocus

V-289

Flags

Details
You can operate on 3D waves using the 3D filters listed above. These filters are extensions of the 2D filters
available under MatrixFilter. The avg3d, gauss3d, and point3d filters are implemented by a 3D convolution
that uses an averaging compensation at the edges.
This operation does not support complex waves.

See Also
MatrixFilter for descriptions of the other available parameters and flags.
MatrixConvolve for information about convolving your own 3D kernels.

References
Russ, J., Image Processing Handbook, CRC Press, 1998.

ImageFocus
ImageFocus [flags] stackWave
The ImageFocus operation creates in focus image(s) from a stack of images that contain in and out of focus
regions. It computes the variance in a small neighborhood around each pixel and then takes the pixel value
from the plane in which the highest variance is found.

Flags

See Also
Chapter III-11, Image Processing contains links to and descriptions of other image operations.

ImageFromXYZ
ImageFromXYZ [flags] xyzWave, dataMatrix, countMatrix
ImageFromXYZ [flags] {xWave,yWave,zWave}, dataMatrix, countMatrix
ImageFromXYZ converts XYZ data to matrix form. You might use it, for example, to convert a "sparse
matrix" to an actual matrix for easier display and processing.
You provide the input data in the XYZ triplet xyzWave or in 1D waves xwave, ywave, and zwave.
dataMatrix and countMatrix receive output data but you must create them prior to calling ImageFromXYZ.
For each XY location in the input data, ImageFromXYZ adds the corresponding Z value to an element of
dataMatrix. The element is determined based on the input XY location and the X and Y scaling of dataMatrix.

/N=n Specifies the filter size. By default n =3. In most situations it will be useful to set n to
an odd number in order to preserve the symmetry in the filters.

/O Overwrites the source image with the output image. Used only with the
hybridmedian filter, which does not automatically overwrite the source wave.

/ED=edepth Sets the effective depth in planes. For example, an effective depth of one means that
it computes the best focus for each plane using a stack of three planes, which includes
the current plane and any one adjacent plane above and below it. Does not affect the
default method (/METH=0).

/METH=method

/Q Quiet mode; no output to history window.

/Z No error reporting.

Specifies the calculation method.
method=0: Computes a single plane output for the stack (default).
method=1: Computes the best image for each plane using /ED.

ImageGenerateROIMask

V-290

For each XY location in the input data, ImageFromXYZ increments the corresponding element of
countMatrix. This permits you to obtain an average Z value if multiple input values fall into a given element
of dataMatrix.

Parameters
xyzWave is a triplet wave containing the input XYZ data.
xWave, yWave and zWave are 1D input waves containing XYZ data.
You specify either xyzWave by itself or xWave, yWave and zWave in braces.
dataMatrix is a 2D wave to which the Z values are added. It must be either single-precision or double-
precision floating point. The X and Y scaling of dataMatrix determines how input values are mapped to
output matrix elements.
countMatrix is a 2D wave the elements of which store the number of Z values added to each corresponding
element of dataMatrix. ImageFromXYZ sets it to 32-bit integer if it is not already so.

Flags

Details
For each point in the XYZ input data, ImageFromXYZ adds the Z value to the appropriate element of
dataMatrix and increments the corresponding element of countMatrix. Normally you will clear dataMatrix
and countMatrix before calling it.
You can combine multiple XYZ datasets in one matrix by calling ImageFromXYZ multiple times with
different input data and the same dataMatrix and countMatrix. In this case you would clear dataMatrix and
countMatrix before the first call to ImageFromXYZ only.
What you do with the output is up to you but one technique is to divide dataMatrix by countMatrix to get
the average and then use MatrixFilter NanZapMedian to eliminate any NaN values that result from zero
divided by zero.

Example
Make /N=1000 /O wx=enoise(2), wy= enoise(2), wz= exp(-(wx^2+wy^2))
Make /O /N=(100,100) dataMat=0
SetScale x,-2,2,dataMat
SetScale y,-2,2,dataMat
Duplicate /O dataMat,countMat
ImageFromXYZ /AS {wx,wy,wz}, dataMat, countMat

// Execute these one at a time
NewImage dataMat
dataMat /= countMat // Replace cumulative z value with average
MatrixFilter NanZapMedian, dataMat // Apply median filter, zapping NaNs

See Also
SetScale, Image X and Y Coordinates on page II-353.

ImageGenerateROIMask
ImageGenerateROIMask [/W=winName/E=e/I=i] imageInstance
The ImageGenerateROIMask operation creates a Region Of Interest (ROI) mask for use with other
ImageXXX commands. It assumes the top (or /W specified) graph contains an image and that the user has
drawn shapes using Igor’s drawing tools in a specific manner.
ImageGenerateROIMask creates an unsigned byte mask matrix with the same x and y dimensions and
scaling as the specified image. The mask is initially filled with zeros. Then the drawing layer, progFront, in
the graph is scanned for suitable fillable draw objects. The area inside each shape is filled with ones unless
the fill mode for the shape is set to erase in which case the area is filled with zeros.

/AS If /AS (autoscale) is specified, ImageFromXYZ clears both dataMatrix and countMatrix and sets
the X and Y scaling of dataMatrix based on the range of X and Y input values.

ImageHistModification

V-291

Flags

Details
To generate an ROI wave for use with most image processing operations you need to set the values of
interior pixels to zero and exterior pixels to one using /E=1/I=0.
Suitable objects are those that can be filled (rectangles, ovals, etc.) and which are plotted in axis coordinate
mode specified using the same axes by which the specified image instance is displayed. Objects plotted in
plot relative mode are also used, However, this is not recommended because it will give correct results only
if the image exactly fills the plot rectangle. If you use axis coordinate mode then you can zoom in or out as
desired and the resulting mask will still be correct.
Note that the shapes can have their fill mode set to none. This still results in a fill of ones. This is to allow
the drawn ROI to be visible on the graph without obscuring the image. However cutouts (fills with erase
mode) will obscure the image.
Note also that nonfill drawing objects are ignored. You can use this fact to create callouts and other annotations.
In a future version of Igor, we may create a new drawing layer in graphs dedicated to ROIs.
The mask generated is named M_ROIMask and is generated in the current data folder.
Variable V_flag is set to 1 if the top graph contained draw objects in the correct layer and 0 if not. If 0 then
the M_ROIMask wave was not generated.

Examples
Make/O/N=(200,400) jack=x*y; NewImage jack; ShowTools
SetDrawLayer ProgFront
SetDrawEnv linefgc=(65535,65535,0),fillpat=0,xcoord=top,ycoord=left,save
DrawRect 63.5,79.5,140.5,191.5
DrawRRect 61.5,206.5,141.5,280.5
SetDrawEnv fillpat= -1
DrawOval 80.5,169.5,126.5,226.5
ImageGenerateROIMask jack
NewImage M_ROIMask
AutoPositionWindow/E

See Also
For another example see Generating ROI Masks on page III-324.

ImageHistModification
ImageHistModification [flags] imageMatrix
The ImageHistModification operation performs a modification of the image histogram and saves the results
in the wave M_ImageHistEq. If /W is not specified, the operation is a simple histogram equalization of
imageMatrix. If /W is specified, the operation attempts to produce an image with a histogram close to
waveName. If /A is specified, the operation performs an adaptive histogram equalization. imageMatrix is a
wave of any noncomplex numeric type. Adaptive histogram equalization applies only to 2D waves and the
other parts apply to both 2D and 3D waves.

/E=e Changes value used for the exterior from the default zero values to e.

/I=i Changes value used for the interior from the default one values to i.

/W=winName Looks for the named graph window or subwindow containing appropriate image
masks drawn by the user. If /W is omitted, ImageGenerateROIMask uses the top
graph window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

ImageHistModification

V-292

Flags

See Also
The ImageGenerateROIMask and ImageTransform operations for creating ROIs. For examples see
Histograms on page III-318 and Adaptive Histogram Equalization on page III-301.

/A Performs an adaptive histogram equalization by subdividing the image into a
minimum of 4 rectangular domains and using interpolation to account for the
boundaries between adjacent domains. When the /C flag is specified with contrast
factor greater than 1, this operation amounts to contrast-limited adaptive histogram
equalization. By default the operation divides the image into 8 horizontal and 8
vertical regions. See /H and /V.

/B=bins Specifies the number of bins used with the /A flag. If not specified, this value defaults
to 256.

/C=cFactor Specifies a contrast factor (or clipping value) above which pixels are equally
distributed over the whole range. cFactor must be greater than 1, in the limit as cFactor
approaches 1 the operation is a regular adaptive histogram equalization. Note: this
flag is used only with the /A flag.

/H=hRegions Specifies the number of horizontal subdivisions to be used with the /A feature. Note,
the number of image pixels in the horizontal direction must be an integer multiple of
hRegions.

/I Extends the standard histogram equalization by using 216 bins instead of 28 when
calculating histogram equalization. This feature does not apply to the adaptive
histogram equalization (/A flag).

/O Overwrites the source image. If this flag is not specified, the resulting image is saved
in the wave M_ImageHistEq.

/R=roiSpec Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/b/u). The ROI wave must have the same number of rows and columns as
imageMatrix. The ROI itself is defined by the entries whose values are 0. Regions
outside the ROI can take any nonzero value. The ROI does not have to be contiguous
and can take any arbitrary shape.

By default roiFlag is set to 1 and it is then possible to use the /R flag with the
abbreviated form /R=roiWave. When imageMatrix is a 3D wave, roiWave can be either
a 2D wave (matching the number of rows and columns in imageMatrix) or it can be a
3D wave which must have the same number of rows, columns, and layers as
imageMatrix. When using a 2D roiWave with a 3D imageMatrix, the ROI is understood
to be defined by roiWave for each layer in the 3D wave.
See ImageGenerateROIMask for more information on creating ROI waves.

/V=vRegions Specifies the number of vertical subdivisions to be used with the /A flag. The number
of image pixels in the horizontal direction must be an integer multiple of vRegions. If
the image dimensions are not divisible by the number of regions that you want, you
can pad the image using ImageTransform padImage.

/W=waveName Specifies a 256-point wave that provides the desired histogram. The operation will
attempt to produce an image having approximately the desired histogram values.
This flag does not apply to the adaptive histogram equalization (/A flag)

In general, the roiSpec has the form {roiWaveName, roiFlag}, where roiFlag can
take the following values:
roiFlag=0: Set pixels outside the ROI to 0.
roiFlag=1: Set pixels outside the ROI as in original image (default).
roiFlag=2: Set pixels outside the ROI to NaN (=64).

ImageHistogram

V-293

ImageHistogram
ImageHistogram [flags] imageMatrix
The ImageHistogram operation calculates the histogram of imageMatrix. The results are saved in the wave
W_ImageHist. If imageMatrix is an RGB image stored as a 3D wave, the resulting histograms for each color
plane are saved in W_ImageHistR, W_ImageHistG, W_ImageHistB.
imageMatrix must be a real-valued numeric wave.

Flags

Details
The ImageHistogram operation works on images, but it handles both 2D and 3D waves of any data type.
Unless you use one of the special features of this operation (e.g., ROI or /P or /I) you could alternatively use
the Histogram operation, which computes the histogram for the full wave and includes additional options
for controlling the number of bins.
If the data type of imageMatrix is single byte, the histogram will have 256 bins from 0 to 255. Otherwise, the
256 bins will be distributed between the minimum and maximum values encountered in the data. Use the
/I flag to increase the number of bins to 65536, which may be useful for unsigned short (/W/U) data.

See Also
The ImageHistModification and ImageGenerateROIMask operations. For examples see Histograms on
page III-318.

ImageInfo
ImageInfo(graphNameStr, imageWaveNameStr, instanceNumber)
The ImageInfo function returns a string containing a semicolon-separated list of information about the
specified image in the named graph window or subwindow.

Parameters
graphNameStr can be "" to refer to the top graph.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
imageWaveNameStr contains either the name of a wave displayed as an image in the named graph, or an
image instance name (wave name with “#n” appended to distinguish the nth image of the wave in the
graph). You might get an image instance name from the ImageNameList function.
If imageWaveNameStr contains a wave name, instanceNumber identifies which instance you want information
about. instanceNumber is usually 0 because there is normally only one instance of a wave displayed as an

/I Calculates a histogram with 65536 bins evenly distributed between the minimum and
maximum data values. The operation first finds the extrema and then calculates the
bins and the resulting histogram. Data can be a 2D wave of any type including float
or double.

/P=plane Restricts the calculation of the histogram to a specific plane when imageMatrix is a non
RGB 3D wave.

/R=roiWave Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/b/u) that has the same number of rows and columns as imageMatrix. The ROI
itself is defined by the entries o pixels in the roiWave with value of 0. Pixels outside the
ROI may have any nonzero value. The ROI does not have to be contiguous. When
imageMatrix is a 3D wave, roiWave can be either a 2D wave (matching the number of
rows and columns in imageMatrix) or it can be a 3D wave that must have the same
number of rows, columns and layers as imageMatrix. When using a 2D roiWave with a
3D imageMatrix the ROI is understood to be defined by roiWave for each layer in the
3D wave.
See ImageGenerateROIMask for more information on creating 2D ROI waves.

/S Computes the histogram for a whole 3D wave possibly subject to 2D or 3D ROI
masking. The /S and /P flags are mutually exclusive.

ImageInfo

V-294

image in a graph. Set instanceNumber to 1 for information about the second image of the wave, etc. If
imageWaveNameStr is "", then information is returned on the instanceNumberth image in the graph.
If imageWaveNameStr contains an instance name, and instanceNumber is zero, the instance is taken from
imageWaveNameStr. If instanceNumber is greater than zero, the wave name is extracted from
imageWaveNameStr, and information is returned concerning the instanceNumberth instance of the wave.

Details
The string contains several groups of information. Each group is prefaced by a keyword and colon, and
terminated with the semicolon for ease of use with StringByKey. The keywords are as follows:

The format of the RECREATION information is designed so that you can extract a keyword command from
the keyword and colon up to the “;”, prepend “ModifyImage ”, replace the “x” with the name of a image
plot (“data#1” for instance) and then Execute the resultant string as a command.

Example 1
This example gets the image information for the second image plot of the wave "jack" (which has an instance
number of 1) and applies its ModifyImage settings to the first image plot.
#include <Graph Utility Procs>, version>=6.1 // For WMGetRECREATIONFromInfo

// Make two image plots of the same data on different left and right axes
Make/O/N=(20,20) jack=sin(x/5)+cos(y/4)
Display;AppendImage jack // bottom and left axes
AppendImage/R jack // bottom and right axes

// Put image plot jack#0 above jack#1
ModifyGraph axisEnab(left)={0.5,1},axisEnab(right)={0,0.5}

// Set jack#1 to use the Rainbow color table instead of the default Grays
ModifyImage jack#1 ctab={*,*,Rainbow,0}

Keyword Information Following Keyword

AXISFLAGS Flags used to specify the axes. Usually blank because /L and /B (left and bottom axes)
are the defaults.

COLORMODE

RECREATION Semicolon-separated list of keyword=modifyParameters commands for the
ModifyImage command.

XAXIS X axis name.

XWAVE X wave name if any, else blank.

XWAVEDF The full path to the data folder containing the X wave or blank if there is no X wave.

YAXIS Y axis name.

YWAVE Y wave name if any, else blank.

YWAVEDF The full path to the data folder containing the Y wave or blank if there is no Y wave.

ZWAVE Name of wave containing Z data used to calculate the image plot.

ZWAVEDF The full path to the data folder containing the Z data wave.

A number indicating how the image colors are derived:
1: Color table (see Color Tables on page II-359).
2: Scaled color index wave (see Indexed Color Details on page II-366).
3: Point-scaled color index (See Example: Point-Scaled Color Index Wave

on page II-367).
4: Direct color (see Direct Color Details on page II-368).
5: Explicit Mode (See ModifyImage explicit keyword).

ImageInterpolate

V-295

Now we peek at some of the image information for the second image plot of the wave "jack" (which has an
instance number of 1) displayed in the top graph:
Print ImageInfo("","jack",1)[69,148] // Just the interesting stuff

;ZWAVE:jack;ZWAVEDF:root:;COLORMODE:1;RECREATION:ctab= {*,*,Rainbow,0};plane= 0;

// Apply the color table, etc from jack#1 to jack:
String info= WMGetRECREATIONFromInfo(ImageInfo("","jack",1))
info= RemoveEnding(info) // Remove trailing semicolon

// Use comma instead of semicolon separators
String text = ReplaceString(";", info, ",")
Execute "ModifyImage jack " + text

Example 2
This example gets the full path to the wave containing the Z data from which the first image plot in the top
graph was calculated.
String info= ImageInfo("","",0) // 0 is index of first image plot
String pathToZ= StringByKey("ZWAVEDF",info)+StringByKey("ZWAVE",info)
Print pathToZ

root:jack

See Also
The ModifyImage, AppendImage, NewImage and Execute operations.
How Images Are Displayed on page II-353.
Image Instance Names on page II-370.

ImageInterpolate
ImageInterpolate [flags] Method srcWave
The ImageInterpolate operation interpolates the source srcWave and stores the results in the wave
M_InterpolatedImage in the current data folder unless you specify a different destination wave using the
/DEST flag.

ImageInterpolate

V-296

Parameters
Method selects type of interpolation. Method is one of the following names:

Affine2D Performs an affine transformation on srcWave using parameters specified by the /APRM flag.
The transformation applies to a general combination of rotation, scaling, and translation
represented by a 3x3 matrix

The upper 2x2 matrix is a composite of rotation and scaling, tx and ty are composite
translations and w is usually 1. It computes the dimensions of the output wave and then uses
the inverse transformation and bilinear interpolation to compute the value of each output
pixel. When an output pixel does not map back into the source domain it is set to the user-
specified background value. It supports 2D and 3D input waves. If srcWave is a 3D wave it
applies on a layer by layer basis.
The output is stored in the wave M_Affine in the current data folder.

Bilinear Performs a bilinear interpolation subject to the specified flag. You can use either the /F or /S
flag, but not both.

Kriging Uses Kriging to generate an interpolated matrix from a sparse data set. Kriging calculates
interpolated values for a rectangular domain specified by the /S flag. The Kriging parameters
are specified via the /K flag.
Kriging is computed globally for a single user-selected variogram model. If there are
significant spatial variances within the domain occupied by the data, you should consider
subdividing the domain along natural boundaries and use a single variogram model in each
subdivision.
If there are N data points, the algorithm first computes the NxN matrix containing the
distances between the data and then inverts an associated matrix of similar size to compute
the result for the selected variogram model. Because inversion of an NxN matrix can be
computationally expensive, you should consider restricting the calculation to regions that are
similar to the range implied by the variogram. Such an approach can also be justified in the
sense that the local interpolation should not be affected by a remote datum.
Note: Kriging does not support data containing NaNs or INFs. Wave scaling has no effect.

Pixelate Creates a lower resolution (pixelated image) of srcWave by averaging the pixels inside
rectangles specified by /PXSZ flag. The results are saved in the wave M_PixelatedImage in the
current data folder. The computed wave has the same numeric type as srcWave and the same
number of layers. The number of rows and the number of columns of the new image are
obtained by integer division of the original number by the respective size of the averaging
rectangle and adding one more pixel for any remainder.

Resample Computes a new image based on the selected interpolation function and transformation
parameters. Set the interpolation function with the /FUNC flag. Use the /TRNS flag to specify
transformation parameters for grayscale images, or /TRNR, /TRNG, and /TRNB for the red,
green, and blue components, respectively, of RGB images. M_InterpolatedImage contains the
output image in the current data folder.
There are currently two transformation functions: the first magnifies an image and the second
applies a radial polynomial sampling. The radial polynomial affects pixels based on their
position relative to the image center. A linear polynomial reproduces the same image. Any
nonlinear terms contribute to distortion (or correction thereof).

Spline Computes a 2D spline interpolation for 2D matrix data. The degree of the spline is specified
by the /D flag.

M
r11 r12 tx
r21 r22 ty

0 0 w

=

ImageInterpolate

V-297

Flags

Voronoi Generates an interpolated matrix from a sparse data set (srcWave must be a triplet wave) using
Voronoi polygons. It calculates interpolated values for a rectangular domain as specified by
the /S flag. It first computes the Delaunay triangulation of X, Y locations in the Z=0 plane
(assuming that X, Y positions occupy a convex domain in the plane). It then uses the Voronoi
dual to interpolate the Z values for X and Y pairs from the grid defined by the /S flag. The
computed grid may exceed the bounds of the convex domain defined by the triangulation.
Interpolated values for points outside the convex domain are set to NaN or the value specified
by the /E flag. Use the /I flag to iterate to finer triangulation by subdividing the original
triangles into smaller domains. Each iteration increases computation time by approximately a
factor of two, but improves the smoothness of the interpolation.
If you have multiple sets of data in which X,Y locations are unchanged, you can use the /STW
flag to store one triangulation and then use the /PTW flag to apply the precomputed
triangulation to a new interpolation. To use this option you should use the Voronoi keyword
first with a triplet wave for srcWave and set xn = x0 and yn = y0. The operation creates the wave
W_TriangulationData that you use in the next triangulation with a 1D wave as srcWave. For
example:
ImageInterpolate/STW/S={0,1,0,1,1,1} Voronoi myTripletWave
ImageInterpolate/PTW=W_TriangulationData/S={0,1,0,1,1,1} Voronoi my1DZWave

Voronoi interpolation is similar to what can be accomplished with the ContourZ function
except that it does not require an existing contour plot, it computes the whole output matrix
in one call, and it has the option of controlling the subdivision iterations.

XYWaves Performs bilinear interpolation on a matrix scaled using two X and Y 1D waves (specified by
/W). The interpolation range is defined by /S. The data domain is defined between the centers
of the first and last pixels (X in this example):
xmin=(xWave[0]+xWave[1])/2
xmax=(xWave[last]+xWave[last-1])/2

Values outside the domain of the data are set to NaN. The interpolation is contained in the
M_InterpolatedImage wave, which is single precision floating point or double precision if
srcWave is double precision.

Warp Performs image warping interpolation using a two step algorithm with three optional
interpolation methods. The operation warps the image based on the relative positions of
source and destination grids. The warped image has the same size as the source image. The
source and destination grids are each specified by a pair of 2D X and Y waves where the rows
and columns correspond to the relative location of the source grid. The smallest supported
dimensions of grid waves are 2x2. All grid waves must be double-precision floating point and
must have the same number of points corresponding to pixel positions within the image. Grid
waves must not contain NaNs or INFs. Wave scaling is ignored.

/APRM={r11,r12,tx,r21,r22,ty,w,background}

Sets elements of the affine transformation matrix and the background value.

/D=splineDeg Specifies the spline degree with the Spline method. The default spline degree is 2.
Supported values are 2, 3, 4, and 5.

/DEST=destWave Specifies the wave to contain the output of the operation. If the specified wave already
exists, it is overwritten.
Creates a wave reference for the destination wave in a user function. See Automatic
Creation of WAVE References on page IV-57 for details.

/E=outerValue Assigns outerValue to all points outside the convex domain of the Delaunay
triangulation. By default outerValue = NaN.

ImageInterpolate

V-298

/F={fx,fy} Calculates a bilinear interpolation of all the source data. Here fx is the sampling factor
for the X-direction and fy is the sampling factor in the Y-direction. The output number
of points in a dimension is factor*(number of data intervals) +1. The number of data
intervals is one less than the number of points in that dimension.
For example, if srcWave is a 2x2 matrix (you have a single data interval in each
direction) and you use /F={2,2}, then the output wave is a 3x3 matrix (i.e., 2x2
intervals) which is a factor of 2 of the input. Sampling factors can be noninteger
values.

/FUNC=funcName

/I=iterations Specifies the number of times the original triangulation is subdivided with the
Voronoi interpolation method. By default the Voronoi interpolation computes the
original triangulation without subdivision.

/K={model, nugget, sill, range}

/PTW=tWave Uses a previous triangulation wave with Voronoi interpolation. tWave will be the
wave saved by the /STW flag. You can’t use a triangulation wave that was computed
and saved on a different computer platform.

Specifies the interpolation function. funcName can be:
nn Nearest neighbor interpolation uses the value of the nearest neighbor

without interpolation. This is the fastest function.
bilinear Bilinear interpolation uses the immediately surrounding pixels and

computes a linear interpolation in each dimension. This is the second
fastest function.

cubic Cubic polynomial (photoshop-like) uses a 4x4 neighborhood value to
compute the sampled pixel value.

spline Spline smoothed sampled value uses a 4x4 neighborhood around the
pixel.

sinc Slowest function using a 16x16 neighborhood.

Specifies the variogram parameters for kriging using standard notation, models are
expressed in terms of the nugget value C0, sill value C0+C1, and range a.

Wave scaling has no effect on kriging calculations.

model Selects the variogram model. Values and models are:

1: Spherical.

2: Exponential.

3: Gaussian.

nugget Specifies the lowest value in the variogram.
sill Specifies the maximum (plateau) value in the variogram range the

characteristic length of the different variogram models.

1.0

0.8

0.6

0.4

0.2

0.0

γ(
h)

120100806040200
Lag(h)

nugget

sill

range (a)
C1

C0

γ h() C0 C1 3h 2a⁄ 0.5 h3 a3⁄⋅–()⋅+=

γ h() C0 C1 1 3– h a⁄⋅[]exp–()⋅+=

γ h() C0 C1 1 3– h a⁄()2⋅[]exp–()⋅+=

ImageInterpolate

V-299

Flags for Warp

/PXSZ={nx, ny} Specifies the size of the averaging rectangle in pixels. Here nx is the number of rows
and ny is the number of columns that are averaged to yield a single output pixel.

/RESL={nx, ny} Specifies resampling the full input image to an output image having nx rows by ny
columns.

/S={x0,dx,xn,y0,dy,yn}

Calculates a bilinear interpolation of a subset of the source data. Here x0 is the starting
point in the X-direction, dx is the sampling increment, xn is the end point in the X-
direction and the corresponding values for the Y-direction. If you can set x0 equal to
xn the operation will compute the triangulation but not the interpolation

/STW Saves the triangulation information in the wave W_TriangulationData in the current
data folder. W_TriangulationData can only be used on the computer platform where
it was created.

/SV Saves the Voronoi interpolation in the 2D wave M_VoronoiEdges, which contains
sequential edges of the Voronoi polygons. Edges are separated from each other by a
row of NaNs. The outer most polygons share one or more edges with a large triangle
containing the convex domain.

/TRNS={transformFunc,p1,p2,p3,p4}

/U=uniformScale Calculates a bilinear interpolation of all the source data as with the /F flag but with
two exceptions: A single uniform scale factor applies in both dimensions, and the
scale factor applies to the number of points — not the intervals of the data.

/W={xWave, yWave} Provides the scaling waves for XYWaves interpolation. Both waves must be
monotonic and must have one more point than the corresponding dimension in
srcWave. The waves contain values corresponding to the edges of data points in
srcWave, so that the X value at the first data point is equal to
(xWave[0]+xWave[1])/2.

/dgrx=wave Sets the wave containing the destination grid X data.

/dgry=wave Sets the wave containing the destination grid Y data.

/sgrx=wave Sets the wave containing the source grid X data.

/sgry=wave Sets the wave containing the source grid Y data.

Determines the mapping between a pixel in the destination image and the source
pixel. transformFunc can be:

The corresponding parameters are:

scaleShift Sets image scaling which could be anamorphic if the X and Y
scaling are different.

radialPoly Corrects both color as well as barrel and pincushion distortion. In
radialPoly the mapping from a destination pixel to a source
pixel is a polynomial in the pixel’s radius relative to the center of
the image.
A source pixel, sr, satisfies the equation:

,

where r is the radius of a destination pixel having an origin at the
center of the destination image.

transformFunc p1 p2 p3 p4

scaleShift xOffset xScale yOffset yScale

radialPoly a b c d

sr a r⋅ b r⋅ 2 c r3⋅ d r4⋅+ + +=

ImageLineProfile

V-300

Details
When computing Bilinear or Spline interpolation srcWave can be a 2D or a 3D wave. When srcWave is a 3D
wave the interpolation is computed on a layer by layer basis and the result is stored in a corresponding 3D
wave. When the interpolation method is Kriging or Voronoi, srcWave is a 2D triplet wave (3-column wave)
where each row specifies the X, Y, Z values of a datum. srcWave can be of any real data type. Results are
stored in the wave M_InterpolatedImage. If srcWave is double precision so is M_InterpolatedImage;
otherwise M_InterpolatedImage is a single precision wave.

See Also
The interp, Interp3DPath, ImageRegistration, and Loess operations. The ContourZ function. For
examples see Interpolation and Sampling on page III-305.

References
Unser, M., A. Aldroubi, and M. Eden, B-Spline Signal Processing: Part I-Theory, IEEE Transactions on Signal

Processing, 41, 821-832, 1993.
Douglas B. Smythe, “A Two-Pass Mesh Warping Algorithm for Object Transformation and Image

Interpolation” ILM Technical Memo #1030, Computer Graphics Department, Lucasfilm Ltd. 1990.

ImageLineProfile
ImageLineProfile [flags] xWave=xwave, yWave=ywave, srcWave=srcWave [,

width=value, widthWave=wWave]
The ImageLineProfile operation provides sampling of a source image along an arbitrary path specified by
the two waves: xWave and yWave. The arbitrary path is made of line segments between every two
consecutive vertices of xWave and yWave. In each segment the profile is calculated at a number of points
(profile points) equivalent to the sampling density of the original image (unless the /V flag is used). Both
xWave and yWave should have the same scaling as srcWave. If srcWave does not have the same scaling in
both dimensions you should remove the scaling to compute an accurate profile.
At each profile point, the profile value is calculated by averaging samples along the normal to the profile
line segment. The number of samples in the average is determined by the keyword width. The operation
actually averages the interpolated values at N equidistant points on the normal to profile line segment, with
N=2(width+0.5). Samples outside the domain of the source image do not contribute to the profile value.
The profile values are stored in the wave W_ImageLineProfile. The actual locations of the profile points are
stored in the waves W_LineProfileX and W_LineProfileY. When the averaging width is greater than zero,
the operation can also calculate at each profile point the standard deviation of the values sampled for that
point (see /S flag). The results are then stored in the wave W_LineProfileStdv. When using this operation
on 3D RGB images, the profile values are stored in the three-column waves M_ImageLineProfile and
M_LineProfileStdv respectively.

Parameters

/WM=im

srcWave=srcWave Specifies the image for which the line profile is evaluated. The image may be a 2D
wave of any type or a 3D wave or RGB data.

xWave=xwave Specifies the wave containing the x coordinate of the line segments along the
path.

yWave=ywave Specifies the wave containing the y coordinate of the line segments along the
path.

width=value Specifies the width (diameter) in pixels (need not be an integer value) in a
direction perpendicular to the path over which the data is interpolated and
averaged for each path point. If you do not specify width or use width=0, only the
interpolated value at the path point is used.

Sets the interpolation method for warping an image.
im=1: Fast selection of original data values.
im=2: Linear interpolation.
im=3: Smoothing interpolation (slow)

ImageLoad

V-301

Flags

Examples
Make/N=(50, 50) sampleData
sampleData = sin((x-25) / 10) * cos((y-25) / 10)
NewImage sampleData
Make/n=2 xTrace={0,50} ,yTrace={20,20}
ImageLineProfile srcWave=sampleData, xWave=xTrace, yWave=yTrace
AppendtoGraph/T yTrace vs xTrace
Display W_ImageLineProfile

See Also
For additional examples see ImageLineProfile on page III-318.

ImageLoad
ImageLoad [flags] [fileNameStr]
The ImageLoad operation loads an image file into an Igor matrix wave. See the /T flag for a list of supported
image file types.
ImageLoad requires QuickTime to load certain types of images.

Parameters
The file to be loaded is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
On Macintosh, when loading a format that requires QuickTime, the name of the file to be loaded is limited
to 31 characters because Igor calls Apple routines that have this limit.
If you use a full or partial path for fileNameStr, see Path Separators on page III-400 for details on forming
the path.
If you want to force a dialog to select the file, omit the fileNameStr parameter.

Flags

widthWave=wWave Specifies the width of the profile (see definition above) on a segment by segment
basis. wWave should be a 1D wave that has the same number of entries as xWave
and yWave. If you provide a widthWave any value assigned with the width
keyword is ignored. All values in the wave must be positive and finite.

/P=plane Specifies which plane (layer) of a 3D wave is to be profiled. By default plane =-1 and
the profiles are of either the single layer of a 2D wave or all three layers of a 3D RGB
wave. Use plane =-2 if you want to profile all layers of a 3D wave.

/S Calculates standard deviations for each profile point.

/SC Saves W_LineProfileX and W_LineProfileY using the X and Y scaling of srcWave.

/V Calculate profile points only at the vertices of xWave and yWave.

/C=count Specifies which images to load from a multi-image TIFF file. It loads and stores
images as individual waves in the current data folder. By default, it loads only a single
image (i.e., /C=1). Use /C=-1 to load all images into a single 3D wave (images must be
either 8-, 16-, or 32-bits/pixel for this option). If you specify a count that exceeds the
number of images in the file, it will load all images beginning with the starting image.
See also the /S flag and examples.

/G Displays the loaded image.

/LR3D Loads a partial range of a TIFF stack into a 3D wave (see also /C and /S).

ImageLoad

V-302

/N=baseName Stores the waves using baseName identically for the wave name. Only when baseName
conflicts with an existing wave name will a numeric suffix be appended to the new
wave names.
If you do not specify baseName, ImageLoad will use the name of the file as a base
name.

/O Overwrites an existing wave with the same name.
If /O is omitted and there is an existing wave with the same name, a numerical suffix
will be appended to the image name.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/Q Quiet mode; suppresses insertion of loading info into the history area.

/RAT

/RTIO Reads tag information only from a TIFF file. (This flag is similar to the /RAT flag but
it does not load the images.) If you are loading a stack of images you can use the /C
and /S flags to obtain tags from a specific range of images.

Read All Tags reads all of the tags in a TIFF file into one or more waves. It creates a
data folder named “Tagn” (with a numeric suffix, n, starting from zero) for each
loaded image. When reading multiple images from a stack TIFF file it will create a
corresponding number of data folders.
Each data folder contains a text wave named T_Tags, which contains 5 columns. The
first row contains the offset of the current Image File Directory (IFD) from the start
of the file. The remaining rows describe the individual TIFF Tags as they appear in
the IFD.
The first column contains the tag number, the second contains the tag description,
the third contains the tag type, the fourth contains the tag length, and the fifth
contains either the value of the tag or a statement identifying the name of the wave
in which the data was stored. For example, a simple tag that contains a single value
has the form:

A tag that contains more data, such as an array of values has the form:

Here the Length field is negative (-1*realLength) and the Value field contains the
name of the wave tifTag273 which contains the array of strip offsets.
When the Value field consists of ASCII characters it is stored in the T_Tags wave
itself. All other types are stored in a wave in the same Tag data folder.
Private tags are usually designated by negative tag numbers. If their data type is
anything other than ASCII, they are saved in separate waves.

Num Desc Type Length Value

256 IMAGEWIDTH 4 1 2560

Num Desc Type Length Value

273 STRIPOFFSETS 4 -120 tifTag273

ImageLoad

V-303

Details
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-34 for details.
ImageLoad sets the following variables:

S_path uses Macintosh path syntax (e.g., “hd:FolderA:FolderB:”), even on Windows. It includes a trailing colon.
When loading a rpng format PNG image, the wave will be either 8- or 16-bit unsigned integer format with 1 to
4 planes. PNG images with physical units will produce waves with X and Y units of meters. If a PNG image has
a color table, ImageLoad will create two waves: a main image wave with 1 plane and a color table wave of the
same name but with a “_pal” suffix (if the name is too long, it will create a wave named PNG_pal instead).

Special Notes Regarding TIFF Files
The ImageLoad operation reads data from the named TIFF file into waves. The operation supports 1-, 8-, 16- and
24-bit TIFF files. In case of 1-bit/pixel the data is converted into a 1 byte/pixel (/B/U wave). Images of 16-bits/pixel
are read into /W/U waves. We note that 16-bit format is not part of the TIFF 6.0 specification but it is used
extensively by scientific camera manufacturers. Images of 24-bits/pixel are read into 3D RGB waves.
When a TIFF file contains multiple images (stack), you can read all images into waves or you can specify a
particular image or a range of images that you would like to read. To read the complete stack specify -1 as
the image count and all images will be saved into a single 3D wave where each image is a sequential plane.

/T=type

/S=start Specifies the starting image in TIFF files that contain multiple images. By default,
/S=0, so if you want to load all images just use /C=-1.

/Z No error reporting.

V_flag Set to 1 if the image was successfully loaded or to 0 otherwise.

S_fileName Set to the name of the file that was loaded.

V_numImages Set to the number of images in the file. Use this variable only with TIFF files.

S_path Set to the file system path to the folder containing the file.

S_waveNames Set to a semicolon-separated list of the names of loaded waves.

Identifies what kind of image file to load. type is one of the following image file
formats:

If you do not specify type, Igor will make a guess based on the file type (Macintosh)
or file name extension (Windows). An error will be reported if Igor is unable to guess
the image type.

type Loads this Image Format
any Any graphic file type.
bmp PC bitmap file.
gif GIF file.
jpeg JPEG file.
photoshop PhotoShop file.
pict Macintosh picture file.
png PNG file.
rpng Raw PNG file (see Details).
sgi Silicon Graphics file.
sunraster Sun Raster file.
targa Targa file.
tiff Any TIFF file (see also Special Notes Regarding TIFF Files).

ImageMorphology

V-304

This is appropriate only for images that are 8- or 16-bits/pixel deep. If the depth of the image is other than
8- or 16-bits/pixel you should read the images into separate waves.
If you have a TIFF file that is not read correctly by this operation (e.g., 4-bits/pixel), you may be able to read
the file using QuickTime. To do so, make sure that the file name does not contain “.tif” or “.tiff” suffix (and
on the Macintosh change its file type from 'TIFF' to '????'). You can then load the file using the “Any”
file designation and the file will be read by QuickTime resulting in an RGB image wave.

Examples
Reading TIFF files containing a stack of images:
Imageload /C=8/S=10/T=Tiff // Creates 8 waves starting from image #10 (zero based)

ImageLoad/C=-1/S=10/T=TIFF // Loads all the images ignoring the /S flag.
// The images are stored in a single 3D wave.

ImageLoad/C=-1/T=TIFF/RTIO // Does not load the images but reads all tags.

NewDataFolder/O/S tmp // Gets the number of images and cleans up
ImageLoad/C=-1/T=TIFF/RTIO
Print V_numImages
KillDataFolder :

See Also
See Chapter II-9, Importing and Exporting Data, for further information on loading waves, including
loading multidimensional data from HDF files (see Loading HDF Data on page II-169).
For loading graphic objects, see Pictures on page III-423. The ImageSave operation for saving waves as
image files.

ImageMorphology
ImageMorphology [flags] Method imageMatrix
The ImageMorphology operation performs one of several standard image morphology operations on the
source imageMatrix. Unless the /O flag is specified, the resulting image is saved in the wave
M_ImageMorph. The operation applies only to waves of type unsigned byte. All ImageMorphology
methods except for watershed use a structure element. The structure element may be one of the built-in
elements (see /E flag) or a user specified element.
Erosion, Dilation, Opening, and Closing are the only methods supported for a 3D imageMatrix.

Parameters
Method is one of the following names:

BinaryErosion Erodes the source binary image using a built-in or user specified structure element
(see /E and /S flags).

BinaryDilation Dilates the source binary image using a built-in or user specified structure element
(see /E and /S flags).

Closing Performs the closing operation (dilation followed by erosion). The same structure
element is used in both erosion and dilation. Note that this operation is an
idempotent, which means that there is no point of executing it more than once.

Dilation Performs a dilation of the source grayscale image using either a built-in structure
element or a user specified structure element. The operation supports only 8-bit gray
images.

Erosion Erodes the source grayscale image using either a built-in structure element or a user
specified structure element. The operation supports only 8-bit gray images.

Opening Performs an opening operation (erosion followed by dilation). The same structure
element is used in both erosion and dilation. Note that this operation is an idempotent
which means that there is no point of executing it more than once.

TopHat Calculates the difference between the eroded image and dilated image using the same
structure element.

ImageMorphology

V-305

Flags

Watershed Calculates the watershed regions for grayscale or binary image. Use the /N flag to
mark all nonwatershed lines as NaNs. The /L flag switches from using 4 neighboring
pixels (default) to 8 neighboring pixels.

/E=id

/I= iterations Repeats the operation the specified number of iterations.

/L Uses 8-connected neighbors instead of 4.

/N Sets the background level to 64 (= NaN).

/O Overwrites the source wave with the output.

Uses a particular built in structure element. The following are the built-in structure
element. The following are the built-in structure elements; make sure to use the
appropriate id for the dimensionality of imageMatrix:

Note that this flag has no effect on watershed calculations.

id Element Origin Shape

1 2x2 (0,0) square (default)

2 1x3 (1,1) row (in 3x3 square)

3 3x1 (1,1) column (in 3x3 square)

4 3x3 (1,1) cross (in 3x3 square)

5 5x5 (2,2) circle (in 5x5 square)

6 3x3 (1,1) full 3x3 square

200 2x2x2 (1,1,1) symmetric cube

202 2x2x2 (1,1,1) 2 voxel column in Y direction

203 2x2x2 (1,1,1) 2 voxel column in X direction

204 2x2x2 (1,1,1) 2 voxel column in Z direction

205 2x2x2 (1,1,1) XY plane

206 2x2x2 (1,1,1) YZ plane

207 2x2x2 (1,1,1) XZ plane

300 3x3x3 (1,1,1) symmetric cube

301 3x3x3 (1,1,1) symmetric ball

302 3x3x3 (1,1,1) 3 voxel column in Y direction

303 3x3x3 (1,1,1) 3 voxel column in X direction

304 3x3x3 (1,1,1) 3 voxel column in Z direction

305 3x3x3 (1,1,1) XY plane

306 3x3x3 (1,1,1) YZ plane

307 3x3x3 (1,1,1) XY plane

500 5x5x5 (2,2,2) symmetric cube

501 5x5x5 (2,2,2) symmetric ball

700 7x7x7 (3,3,3) symmetric cube

701 7x7x7 (3,3,3) symmetric ball

ImageNameList

V-306

Examples
If you would like to apply a morphological operation to a wave whose data type is not an unsigned byte
and you wish to retain the wave’s dynamic range, you can use the following approach:
Function ScaledErosion(inWave)

Wave inWave

WaveStats/Q inWave
Variable nor=255/(V_max-V_min)
MatrixOp/O tmp=nor*(inWave-V_min)
Redimension/B/U tmp
ImageMorphology/E=5 Erosion tmp
Wave M_ImageMorph
MatrixOp/O inWave=(M_ImageMorph/nor)+V_min
KillWaves/Z tmp,M_ImageMorph

End

See Also
The ImageGenerateROIMask operation for creating ROIs. For details and usage examples see
Morphological Operations on page III-314 and Particle Analysis on page III-321.

ImageNameList
ImageNameList(graphNameStr, separatorStr)
The ImageNameList function returns a string containing a list of image names in the graph window or
subwindow identified by graphNameStr.

/R=roiSpec Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/b/u). The ROI wave must have the same number of rows and columns as the
image wave. The ROI itself is defined by the entries/pixels whose values are 0. Pixels
outside the ROI can take any nonzero value. The ROI does not have to be contiguous
and can take any arbitrary shape. See ImageGenerateROIMask for more information
on creating ROI waves.

By default roiFlag is set to 1 and it is then possible to use the /R flag using the
abbreviated form /R=roiWave.

/S= seWave Specifies your own structure element.
seWave must be of type unsigned byte with pixels that belong to the structure element
set to 1 and background pixels set to 0.
There are no limitations on the size of the structure element and you can use the /X
and /Y flags to specify the origin of your structure element.

/W= whiteVal Sets the white value in the binary image if it is different than 255. The black level is
assumed to be zero.

/X= xOrigin Specifies the X-origin of a user-defined structure element starting at 0. If you do not
use this flag Igor sets the origin to the center of the specified structure element.

/Y= yOrigin Specifies the Y-origin of a user defined structure element starting at 0. If you do not
use this flag Igor sets the origin to the center of the specified structure element.

/Z= zOrigin Specifies the Z-origin of the element for 3D structure elements. If you do not use this
flag Igor sets the origin to the center of the specified structure element.

In general, the roiSpec has the form {roiWaveName, roiFlag}, where roiFlag can take
the following values:
roiFlag=0: Set pixels outside the ROI to 0.
roiFlag=1: Set pixels outside the ROI as in original image.
roiFlag=2: Set pixels outside the ROI to NaN (=64).

ImageNameToWaveRef

V-307

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
separatorStr should contain a single character such as “,” or “;” to separate the names.
An image name is defined as the name of the 2D wave that defines the image with an optional #ddd suffix
that distinguishes between two or more images that have the same wave name. Since the image name has
to be parsed, it is quoted if necessary.

Examples
The following command lines create a very unlikely image display. If you did this, you would want to put
each image on different axes, and arrange the axes such that they don’t overlap. That would greatly
complicate the example.
Make/O/N=(20,20) jack,'jack # 2';
Display;AppendImage jack
AppendImage/T/R jack
AppendImage 'jack # 2'
AppendImage/T/R 'jack # 2'
Print ImageNameList("",";")

prints jack;jack#1;'jack # 2';'jack # 2'#1;

See Also
Another command related to images and waves: ImageNameToWaveRef.
For commands referencing other waves in a graph: TraceNameList, WaveRefIndexed,
XWaveRefFromTrace, TraceNameToWaveRef, CsrWaveRef, CsrXWaveRef, ContourNameList, and
ContourNameToWaveRef.

ImageNameToWaveRef
ImageNameToWaveRef(graphNameStr, imageNameStr)
The ImageNameToWaveRef function returns a wave reference to the 2D wave corresponding to the given
image name in the graph window or subwindow named by graphNameStr.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
The image is identified by the string in imageNameStr, which could be a string determined using
ImageNameList. Note that the same image name can refer to different waves in different graphs.

See Also
The ImageNameList function.
For a discussion of wave references, see Wave Reference Functions on page IV-177.

ImageRegistration
ImageRegistration [flags][testMask=testMaskWave] [refMask=refMaskWave]

testWave=imageWave1, refWave=imageWave2
The ImageRegistration operation adjusts the test image wave, testWave, to match the reference image
wave, refWave, possibly subject to auxiliary mask waves. The registration may involve offset, rotation,
scaling or skewing.
Image data may be in two or three dimensions.
ImageRegistration is designed to find accurate registration for relatively small variation on the order of a
few degrees of rotation and a few pixels offset between the reference and test images.
All the input waves are expected to be single precision float (SP) so you may have to redimension your
images before using ImageRegistration.

ImageRegistration

V-308

ImageRegistration does not tolerate NaNs or INFs; use the masks if you need to exclude pixels from the
registration process.

Parameters

testMaskWave and refMaskWave are optional ROI waves. The waves must have the same dimensions as
testWave and refWave respectively. They must be single precision floating point waves with nonzero
entries marking the “ON” state. If you need to include the whole region described by testWave or the whole
region described by refWave you can omit the respective mask wave

Flags

refMask=refMaskWave Specifies an optional ROI wave used to mask refWave. Omit refMask to use
all of the refWave.

The wave must have the same dimensions as refWave. refMask is a single
precision floating point wave with nonzero entries marking the “ON” state.
Note that the operation modifies this wave and that you should not use the
same wave for both the reference and the test masks.

refWave=imageWave2 Specifies the name of the reference image wave used to adjust testWave.

testMask=testMaskWave Specifies an optional ROI wave used to mask testWave. Omit testMask to use
all of the testWave.
The wave must have the same dimensions as refWave. testMask is a single
precision floating point wave with nonzero entries marking the “ON” state.
Note that the operation modifies this wave and that you should not use the
same wave for both the reference and the test masks.

testWave=imageWave1 Specifies the name of the image wave that will be adjusted to match refWave.

/ASTP=val Sets the adaptation step for the Levenberg-Marquardt algorithm. Default value is 4.

/BVAL=val Enables clipping and sets the background values to which masked out voxels of the
test data will be set.

/CONV=val

/CSNR=val

/FLVL=val Specifies the finest level on which the optimization is to be performed.
If this is the same as /PRDL, then only the coarsest registration calculation is done.
If /FLVL=1 (default), then the full multiresolution pyramid is processed. You can use
this flag to terminate the computation at a specified coarseness level greater than 1.

/GRYM Optimizes the gray level scaling factor.
It is sometimes dangerous to let the program adjust for gray levels because in some
situations it might result in a null image.

/GRYR Renders output using the gray scaling parameter. This is more meaningful if the
operation computes the optimal gray scaling (see /GRYM).

Sets the convergence method.
val=0: Gravity, use if the difference between the images is only in

translation. This option is frequently useful as a first step when the
test and reference data are too far apart for accurate registration. The
result of this registration is then passed to a subsequent
ImageRegistration with /CONV=1.

val=1: Marquardt.

Determines if the operation calculates the signal to noise ratio (SNR)

Skipping the SNR calculation saves time and may be particularly useful when
performing the registration on a stack of images.

val=0: The SNR is not calculated.
val=1: The SNR is calculated (default).

ImageRegistration

V-309

/GWDT={sx,sy,sz} Sets the three fields to the half-width of a Gaussian window that is used to smooth the
data when computing the default masks. Defaults are {1,1,1}. See /REFM and /TSTM
for more details.

/INTR=val

/ISOS Optimizes the isometric scaling. This option is inappropriate if voxels are not cubic.

/ISR Computes the multiresolution pyramid with isotropic size reduction.
If the flag is not specified, the size reduction is in the XY plane only.

/MING=val Sets the minimum gain at which the computations will stop. Default value is zero, but
you can use a slightly larger value to stop the iterations earlier.

/MSKC=val

/PRDL=depth Specifies the depth of the multiresolution pyramid. The finest level is depth=1. Each
level of the pyramid decreases the resolution by a factor of 2. By default, the pyramid
depth=4, which corresponds to a resolution reduction by a factor of 2(depth-1)=8.
The algorithm starts by computing the first registration on large scale features in the
image (deepest level of the pyramid). It then makes small corrections to the
registration at each consecutive pyramid level.
For best results, the coarsest representation the data should be between 30 and 60
pixels on a side. For example, for an image that is H by V pixels, you should choose
the depth such that H/2(depth-1) ≈ 30.

/PSTK When performing registration of a stack of images, use this flag to apply the
registration parameters of the previous layer as the initial guess for the registration of
each layer after the first in the 3D stack.

/Q Quiet mode; no messages printed in the history window.

/REFM=val

/ROT={rotX,rotY,rotZ}

Sets the interpolation method.
val=0: Nearest neighbor. Used when registering the center of gravity of the

test and reference images.
val=1: Trilinear.
val=2: Tricubic (default).

Sets mask combination value. During computation the masks for the test data and
the mask for the reference data are also transformed. This flag determines how the
two masks are to be combined. The registration criteria are computed for the
combination of the two masks.
val=0: or.
val=1: nor.
val=2: and (default).
val=3: nand.
val=4: xor.
val=5: nxor.

Sets the reference mask.

When computing the reference mask it is assumed that brighter features are more
important. This is done by using a low pass filter on the data (using the parameters
in /GWDT) which is then converted into a binary mask. Note that you do not need
to specify /REFM=1 if you are providing a reference mask wave. See also /TSTM.

val=0: To leave blank and then every pixel is taken into account.
val=1: Value will be set if a valid reference mask is provided.
val=2: The test mask is computed (default).

ImageRegistration

V-310

Details
ImageRegistration will register images that have sufficiently similar features. It will not work if key features
are too different. For example, ImageRegistration can handle two images that are rotated relative to each other
by a few degrees, but cannot register images if the relative rotation is as large as 45 degrees. The algorithm is
capable of subpixel resolution but it does not handle large variations between the test image and the reference
image. If the centers of the two images are too far from each other, you should first try ImageRegistration
using /CON=0 to remove the translation offset before proceeding with a finer registration of details.
The algorithm is based on an iterative processing that proceeds from coarse to fine detail. Optimization uses
a modified Levenberg-Marquardt algorithm and produces an affine transformation for the relative rotation

Determines if optimization will take into account rotation about the X, Y, or Z axes. A
value of one allows optimization and zero prevents optimization from affecting the
corresponding rotation parameter. Defaults are {0,0,1}, which are the appropriate for
rotating images.

/SKEW={skewX,skewY,skewZ}

Determines if optimization will take into account skewness about the X, Y, or Z axes.
A value of one allows optimization and zero prevents optimization from affecting the
corresponding skewness parameter. Defaults are {0,0,0}. Note that skewing and
rotation or isometric scaling are mutually exclusive operations.

/STCK Use /STCK to perform the registration between a 2D reference image and each of the
layers in a 3D image. The number of rows and columns of the refWave must match
exactly the number of rows and columns in testWave. The transformation parameters
are saved in the wave M_RegParams where each column contains the parameters for
the corresponding layer in testWave.

/STRT=val Sets the first value of the adaptation parameter in the Levenberg-Marquardt
algorithm.
The default value of this parameter is 1.

/TRNS={transX,transY,transZ}

Determines if optimization will take into account translation about the X, Y, or Z axes.
A value of one allows optimization and zero prevents optimization from affecting the
corresponding translation parameter. Defaults are {1,1,0}, which are appropriate for
finding the X and Y translations of an image.

/TSTM=val

/USER=pWave Provides a user transformation that will be applied to the input testWave in order to
create the trasnsformed image. pWave must be a double precision wave which
contains the same number of rows as W_RegParams.
Note: If you use a previously created W_RegParams make sure to change its name as
it is overwritten by the operation.
If pWave has only one column and testWave contains multiple layers, then the same
transformation applies to all layers. If pWave contains more than one column, then
each layer of testWave is processed with corresponding column. If there are more
layers than columns the first column is used in place of the missing columns.

/ZMAN Modifies the test and reference data by subtracting their mean values prior to
optimization.

Sets the test mask.

The test image mask is computed in the same way as the reference image mask (see
/REFM) using the same set of smoothing parameters. Note that you do not need to
specify /TSTM=1 if you are providing a test mask wave.

val=0: To leave blank and then every pixel is taken into account.
val=1: This value will be set if a valid reference mask is provided.
val=2: The reference mask is computed. This is the default value.

ImageRegistration

V-311

and translation as well as for isometric scaling and contrast adjustment. The algorithm is most effective with
square images where the center of rotation is not far from the center of the image.
When using gravity for convergence, skew parameters can’t be evaluated (only translation is supported).
Skew and isoscaling are mutually exclusive options. Mask waves are defined to have zero entries for pixels
outside the region of interest and nonzero entries otherwise. If a mask is not provided, every pixel is used.
ImageRegistration creates the waves M_RegOut and M_RegMaskOut, which are both single precision
waves. In addition, the operation creates the wave W_RegParams which stores 20 double precision
registration parameters. M_RegOut contains the transformed (registered) test image and M_RegMaskOut
contains the transformed mask (which is not affected by mask combination). ImageRegistration ignores
wave scaling; images are compared and registered based on pixel values only.
The results printed in the history include:

These parameters are stored in the wave W_RegParams (or M_RegParams in the case of registering a stack).
Angles are in radians. Dimension labels are used to describe the contents of each row of the output wave.
Each column of the wave consists of the following rows (also indicated by dimension labels):

You can view the output waves with dimension labels by executing:
Edit W_RegParams.ld

See Also
The ImageInterpolate Warp operation.

References
The ImageRegistration operation is based on an algorithm described by:
Thévenaz, P., and M. Unser, A Pyramid Approach to Subpixel Registration Based on Intensity, IEEE

Transactions on Image Processing, 7, 27-41, 1998.

dx, dy, dz translation offsets measured in pixels.

aij Elements in the skewing transformation matrix.

phi Rotation angle in degrees about the X-axis. Zero for 2D waves.

tht Rotation angle in degrees about the Y-axis. Zero for 2D waves.

psi Rotation angle in degrees about the Z-axis.

det Absolute value of determinant of the skewing matrix (aij).

err Mean square error defined as

,

where xi is the original pixel value, yi the computed value, and N is the number of pixels.

snr Signal to noise ratio in dB. It is given by:

.

Point Contents Point Contents Point Contents Point Content

0 dx 6 a21 12 gamma 17 origin_x

1 dy 7 a22 13 phi 18 origin_y

2 dz 8 a23 14 theta 19 origin_z

3 a11 9 a31 15 psi 21 MSE

4 a12 10 a32 16 lambda 21 SNR

5 a13 11 a33

1
N
---- xi yi–()2

10
inVal2

xi yi–()2

log⋅

ImageRemoveBackground

V-312

ImageRemoveBackground
ImageRemoveBackground /R=roiWave [flags] srcWave
The ImageRemoveBackground operation removes a general background level, described by a polynomial
of a specified order, from the image in srcWave. The result of the operation are stored in the wave
M_RemovedBackground.

Flags

Details
The identification of the background is done via the ROI wave. Set the pixels that define the background
region to 1. The remaining pixels can be any value other than 1. We recommend using 64 which Igor image
processing operations often interpret as "blank" in unsigned byte image waves.
The operation first performs a polynomial fit to the points designated by the ROI wave using the specified
polynomial order. A polynomial of order N corresponds to the function:

.

Using the polynomial fit, a surface corresponding to the polynomial is subtracted from the source wave and
the result is saved in M_RemovedBackground, unless the /O flag is used, in which case the original wave
is overwritten.
Use the /W flag if you want polynomial coefficients to be saved in the W_BackgroundCoeff wave.
Coefficients are stored in the same order as the terms in the sums above.
If you do not specify the polynomial order using the /P flag, the default order is 1, which means that the
operation subtracts a plane (fitted to the ROI data) from the source image.
Note, if the image is stored as a wave of unsigned byte, short, or long, you might consider converting it into
single precision (using Redimension/S) before removing the background. To see why this is important,
consider an image containing a region of pixels equal to zero and subtracting a background plane
corresponding to a nonconstant value. After subtraction, at least some of the pixels in the zero region should
become negative, but because they are stored as unsigned quantities, they appear incorrectly as large values.

Examples
See Background Removal on page III-325.

See Also
The ImageGenerateROIMask operation for creating ROIs.

/F Computes only the background surface fit. Will only store the resulting fit in
M_RemovedBackground. This will not subtract the fit from the image.

/O Overwrites the original wave.

/P=polynomial order Specifies the order of the polynomial fit to the background surface. If omitted, the
order is assumed to be 1.

/R=roiWave Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/B/U), which has the same number of rows and columns as the image wave.
Set the pixels that define the background region to 1. The remaining pixels can be
any value other than 1. We recommend using 64 which Igor image processing
operations often interpret as "blank" in unsigned byte image waves.
The ROI does not have to be contiguous.
See ImageGenerateROIMask for more information on creating ROI waves.

/W Specifies that polynomial coefficients are to be saved in the wave
W_BackgroundCoeff.

FN x y(,) cnmxm n– yn

n 0=

m

m 0=

N

=

ImageRestore

V-313

ImageRestore
ImageRestore [flags] srcWave=wSrc, psfWave=wPSF [, relaxationGamma=h,

startingImage=wRecon]
The ImageRestore operation performs the Richardson-Lucy iterative image restoration.

Flags

Parameters

Details
ImageRestore performs the Richardson-Lucy iteration solution to the deconvolution of an image. The input
consists of the degraded image and point spread function as well as the desired number of iterations.
The operation allows you to apply additional iterations by setting the starting image to the restored output
wave from a previous call to ImageRestore using the startingImage keyword. If startingImage is omitted,
the starting image is created by ImageRestore with each pixel set to the value 1.
In the case of stellar images it may be useful to apply a relaxation step that involves scaling the correction
evaluated at each iteration by

where v is pixel value, vmax and vmin are the maximum and minimum level pixels in the image and
gamma is the user-specified relaxationGamma.

References
W.H. Richardson, "Bayesian-Based Iterative Method of Image Restoration". JOSA 62, 1: 55-59, 1972.
L.B. Lucy, "An iterative technique for the rectification of observed distributions", Astronomical Journal 79, 6:
745-754, 1974.

ImageRotate
ImageRotate [flags] imageMatrix
The ImageRotate operation rotates the image clockwise by angle (degrees) or counter-clockwise if /W is
used.
The resulting image is saved in the wave M_RotatedImage unless the /O flag is specified. The size of the
resulting image depends on the angle of rotation.

/DEST=destWave Specifies the desired output wave.
If /DEST is omitted, the output from the operation is stored in the wave
M_Reconstructed in the current data folder.

/ITER=iterations Specifies the number of iterations. The default number of iterations is 100.

/Z Do not report errors.

psfWave=wPSF Specifies a known point spread function. wPSF must be a 2D (square NxN) wave
of the same numeric type as wSRC. N must be an odd number greater than 1.

relaxationGamma=h Specifies positive power gamma of in the relaxation mapping (see Details).

startingImage=wRecon Use this keyword to specify a starting image that could be for example the output
from a previous call to this operation. wRecon must have the same dimensions as
wSRC and the same numeric type.
You must make sure that wRecon is not the user-specified or the default
destination wave of the operation.

srcWave=wSrc Specifies the degraded image which must be a 2D single-precision or double-
precision real wave.

factor(v) = sin
�

2

v � vmin

vmax � vmin

�

��
�

�

,

ImageSave

V-314

The portions of the image corresponding to points outside the domain of the original image are set to the
default value 64 or the value specified by the /E flag.
You can apply ImageRotate to 2D and 3D waves of any data type.

Flags

See Also
The MatrixTranspose operation.

ImageSave
ImageSave [flags] waveName [[as]fileNameStr]
The ImageSave operation saves the named wave as an image file.
ImageSave requires that QuickTime be installed when saving formats other than TIFF and raw PNG.
To make your command more portable, we recommend using the /IGOR flag which tells ImageSave to use
internal Igor routines rather than QuickTime, if possible. Currently this flag affects the TIFF format only.

Parameters
The file to be written is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
On Macintosh, when saving in a format that requires QuickTime, the name of the file to be written is limited
to 31 characters because Igor calls Apple routines that have this limit.
If you use a full or partial path for fileNameStr, see Path Separators on page III-400 for details on forming
the path.
If you want to force a dialog to select the file, omit the fileNameStr parameter or specify "" for fileNameStr
or use the /I flag. The “as” keyword before fileNameStr is optional.

/A=angle Specifies the rotation angle measured in degrees in a clockwise direction. For rotations by
exactly 90 degrees use /C or /W instead.

/C Specifies clockwise rotation.
Clockwise is the default direction so the rotation will be clockwise whether you use /C or not,
so long as you do not use /W.

/E= val Specifies the value for pixels that are outside the domain of the original image. By default
pixels are set to 64. If you specify /E=(NaN) and your data is of type char, short, or long, the
operation sets the external values to 64.

/F Rotates image by 180 degrees.

/H Flip the image horizontally.

/O Overwrites the original image with the rotated image.

/Q Quiet mode. Without this flag the operation writes warnings in the history window.

/S Uses source image wave scaling to preserve scaling and relative locations of objects in the
image for rotation angles that are multiples of 90 degrees.

/V Flip the image vertically.

/W Specifies counter-clockwise rotation.

/Z Ignore errors.

ImageSave

V-315

Flags

/D=depth Specifies color depth in bits-per-pixel. Integer values of 1, 8, 16, 24, 32, and 40 are
supported. A depth of 40 specifies 8-bit grayscale; a depth of 8 saves the file as 8-
bits/pixel with a color lookup table. If /D is omitted, it acts like /D=8.
Saving with a color table may cause some loss of fidelity.
See also the discussion of saving TIFF files below.

/F Saves the wave as single precision float. The data is not normalized. Applies only to
TIFF files.

/I Interactive mode. Forces ImageSave to display a Save File dialog, even if the file and
folder location are fully specified.

/IGOR Tells ImageSave to use Igor's internal code if possible. This flag is recommended to
create a command that works if QuickTime is not available.
/IGOR currently affects saving as TIFF only.
The /S, /U and /WT flags also force the use of Igor’s internal code.

/O Overwrites the specified file if it exists. If /O is omitted and the file exists, ImageSave
displays a Save File dialog.

/P=pathName Specifies the folder in which to save the image file. pathName is the name of an existing
symbolic path.

/Q=quality Specifies the quality of the compressed image. quality is a number between 0 and 1,
with 1 being the highest quality. This is only applicable when saving in formats with
lossy compression like JPEG.

/S Saves as stack. Applies only to 3D or 4D source waves saved as TIFF files.

/T=fileTypeStr

/U Prevents normalization. This works when saving TIFF only. See Normalization
below.

/WT=tagWave Saves TIFF files with file tags as specified by tagWave, which is a text wave consisting
of a row and 5 columns for each tag (see description of the /RAT flag under
ImageLoad). It ignores any information in the second column but will write the tags
sequentially (only in the first Image File Directory (IFD) if there is more than one
image). If the fourth column contains a negative number, there must be a wave, whose
name is given in the fifth column of tagWave, in the same data folder as tagWave. You
must make sure that: (1) tag numbers are legal and do not conflict with any existing
tags; (2) the data type and data size are consistent with the amount of data saved in
external waves.

Specifies the type of file to be saved.

The default file types, used if /T is omitted, are "pict" on the Macintosh and "bmp"
on Windows.

fileTypeStr Saved Image Format

"photoshop" PhotoShop file

"bmp" PC bitmap file

"jpeg" JPEG file

"pict" Macintosh picture file

"png" PNG file

"rpng" raw PNG file (see Saving as Raw PNG)

"sgi" Silicon Graphics file

"targa" Targa file

"tiff" TIFF file

ImageSave

V-316

Saving as Raw PNG
The rpng image format requires a wave in 8- or 16-bit unsigned integer format with 1 to 4 layers. Use one
layer for grayscale, 3 layers for rgb color, and the extra layer for an alpha channel. If X or Y scaling is not
unity, they both must be valid and must be either inches per pixel or meters per pixel. If the units are not
inches they are taken to be meters.

Normalization
Depending on the data type of your wave and the depth of the image file being created, ImageSave may
save a "normalized" version of your data. The normalized version is scaled to fit in the range of the image
file data type. For example, if you save a 16-bit Igor wave containing pixel values from -1000 to +1000 in an
8-bit grayscale TIFF file, ImageSave will map the wave values -1000 and +1000 to the file values 0 and 255
respectively.
When saving as greater than 8 bits, Igor normalizes to 65535 as the full-scale value.
When saving as floating point, no normalization is done. Normalization is also not done when saving 8-bit
wave data to an 8-bit image file.
The /U flag disables normalization but works only when saving as TIFF.
If you use the /U flag, Igor will save unnormalized data. If the wave data exceeds the range supported by
the file data format, the saved file data will be invalid.

Saving as TIFF
Igor can create four different categories of TIFF files:
• Grayscale image
• Grayscale image with color table (requires QuickTime)
• RGB image (red, green and blue components for each pixel)
• Stack of grayscale images
Which ImageSave flags you need to use depends on the nature of your data and on your goal, as described
in the following sections.

Saving a Simple 2D Wave as TIFF
If your Igor data is in the form of a simple 2D wave, you can save it as a grayscale image with or without
a color table.
Use /D=8 to save as 8 bits with a color table. Normalization is done except if the wave data is 8 bits. This
requires QuickTime - do not use the /IGOR flag. The colors in the color table will all be shades of gray.
Use /D=40 to save as 8 bits without a color table. Normalization is done except if the wave data is 8 bits.
Use /D=16 to save as 16 bits with normalization.
Use /F to save as single-precision floating point without normalization. Many programs can not read this
format.
Use /U to prevent normalization.
Use /IGOR to guarantee that Igor's internal TIFF routines will be used rather than QuickTime. Igor's
internal routines do not save color tables.

Saving an Igor RGB Wave as TIFF
If your Igor data is an RGB wave (a 3D wave with exactly 3 layers), you can save it as an RGB image, a
grayscale image or a grayscale image with a color table.
When saving as RGB, ImageSave does not perform normalization. However, if the wave data type is greater
than 8 bits and you are saving to 8 bits, ImageSave divides the wave data by 256. No other normalization
or scaling is done.
Use /D=8 to save as a grayscale image with a color table. Normalization is done except if the wave data is 8
bits. This requires QuickTime - do not use the /IGOR flag.
Use /D=40 to save as grayscale image without a color table. Normalization is done except if the wave data
is 8 bits.

/Z No error reporting.

ImageSeedFill

V-317

Without /D=8 or /D=40, the data is saved as RGB (three components per pixel - one for red, one for green
and one for blue). The rest of this section applies when saving as RGB only.
Use /D=24 or /D=32 to save as 24 bits-per-pixel (8 bits-per-component) without normalization.
Use /D=16 to save as 48 bits-per-pixel (16 bits-per-component) without normalization.
Use /F to save as 96 bits-per-pixel (32 bits-per-component) without normalization. Many programs can not
read this format.
Use /U to prevent normalization.

Saving 3D or 4D Waves as a Stack of TIFF Images
If your Igor data is a 3D wave other than an RGB wave or a 4D wave, you can save it as a stack of grayscale
images without a color map.
Use /S to indicate that you want to save a stack of images rather than a single image from the first layer of
the wave.
Use /D=8 to save as 8 bits. Normalization is done except if the wave data is 8 bits.
Use /D=16 to save as 16 bits with normalization.
Use /F to save as single-precision floating point without normalization. Many programs can not read this
format.
Use /U to prevent normalization.
Stacked images are normalized on a layer by layer basis. If you want to have uniform scaling and
normalization you should convert your wave to the file data type before executing ImageSave.

See Also
The ImageLoad operation for loading image files into waves.

ImageSeedFill
ImageSeedFill [flags] [keyword], seedX=xLoc, seedY=yLoc, target=setValue,

srcWave=srcImage
The ImageSeedFill operation takes a seed pixel and fills a contiguous region with the target value, storing
the result in the wave M_SeedFill. The filled region is defined by all contiguous pixels that include the seed
pixel and whose pixel values lie between the specified minimum and maximum values (inclusive).
ImageSeedFill works on 2D and 3D waves.

Parameters
keyword is one of the following names:

adaptive=factor Invokes the adaptive algorithm where a pixel or voxel is accepted if, in addition, its
value satisfies: .

Here val is the value of the pixel or voxel in question, avg is the average value of the
pixels or voxels in the neighborhood and stdv is the standard deviation of these
values. By choosing a small factor you can constrain the acceptable values to be very
close to the neighborhood average. A large factor allows for more deviation assuming
that the stdv is greater than zero.
This requirement means that a connected pixel has to be between the specified
minimum and maximum value and satisfy the adaptive relationship. In most
situations it is best to set wide limits on the minimum and maximum values and allow
the adaptive parameter to control the local connectivity.

fillNumber=num Specifies the number, in the range 1 to 26, of voxels in each 3x3x3 cube that belong to
the set. If fillNumber is exceeded, the operation fills the remaining members of the
cube. If you do not specify this keyword, the operation does not fill the cube. Used
only in the fuzzy algorithm.

fuzzyCenter=fcVal Specifies the center value for the fuzzy probability with the fuzzy algorithm (see
Details). The default value is 0.25. Its standard range is 0 to 0.5, although interesting
results might be obtained outside this range.

val avg– factor stdv⋅<

ImageSeedFill

V-318

fuzzyProb=fpVal Specifies a probability threshold that must be met by a voxel to be accepted to the
seeded set. The value must be in the range 0 to 1. The default value is 0.75.

fuzzyScale=fsVal Determines if a voxel is to be considered in a second stage using fuzzy probability.
fsVal must be nonzero in order to invoke the fuzzy algorithm. The scale is used in
comparing the value of the voxel to the value of the seed voxel. The scale should
normally be in the range 0.5 to 2.0.

fuzzyWidth=fwVal Defines the width of the fuzzy probability distribution with the fuzzy algorithm (see
Details). In most situations you should not need to specify this parameter. The default
value is 1.

min=minval Specifies the minimum value that is accepted in the seeded set. Not needed when
using fuzzy algorithm.

max=maxval Specifies the maximum value that is accepted to the seeded set. Not needed when
using the fuzzy algorithm.

seedP=row Specifies the integer row location of the seed pixel or voxel. This avoids roundoff
issues when srcWave has wave scaling. You must provide either seedP or seedX with
all algorithms. It is sometimes convenient to use this with cursors e.g.,
seedP=pcsr(a).

seedQ=col Specifies the integer column location of the seed pixel or voxel. This avoids roundoff
difficulties when srcWave has wave scaling. You must provide either seedQ or seedY
with all algorithms.

seedR=layer Specifies the integer layer position of the seed voxel. When srcWave is a 3D wave you
must use either seedR or seedZ.

seedX=xLoc Specifies the pixel or voxel index. If srcWave has wave scaling, seedX must be
expressed in terms of the scaled coordinate. This keyword or seedP is required with
all algorithms.

seedY=yLoc Specifies the pixel or voxel index. If srcWave has wave scaling, seedY must be
expressed in terms of the scaled coordinate. This keyword or seedQ is required with
all algorithms.

seedZ=zLoc Specifies the voxel index. If srcWave has wave scaling, seedZ must be expressed in
terms of the scaled coordinate. You must use this keyword or seedR whenever
srcWave is 3D.

srcWave=srcImage Specifies the source image wave.

target=val Sets the value assigned to pixels or voxels that belonging to the seeded set.

ImageSeedFill

V-319

Flags

Details
In two dimensions, the operation takes a seed pixel, optional minimum and maximum pixel values and
optional adaptive coefficient. It then fills a contiguous region (in a copy of the source image) with the target
value. There are two algorithms for 2D seed fill. In direct seed fill (only min, max, seedX and seedY are
specified) the filled region is defined by all contiguous pixels that include the seed pixel and whose pixel
values lie between the specified minimum and maximum values (inclusive). In adaptive fill, there is an
additional condition for the pixel or voxel to be selected, which requires that the pixel value must be within
the standard deviation of the average in the 3x3 (2D) or 3x3x3 (3D) nearest neighbors. If you do not specify
the minimum and maximum values then the operation selects only values identical to that of the seed pixel.
In 3D, there are three available algorithms. The direct seed fill algorithm uses the limits specified by the user
to fill the seeded domain. In adaptive seed fill the algorithm requires the limits as well as the adaptive
parameter. It fills the domain by accepting only voxels that lie within the adaptive factor times the standard
deviation of the immediate voxel neighborhood. To invoke the third algorithm you must set fuzzyScale to
a nonzero value. The fuzzy seed fill uses two steps to determine if a voxel should be in the filled domain.
In the first step the value of the voxel is compared to the seed value using the fuzzy scale. If accepted, it
passes to the second stage where a fuzzy probability is calculated based on the number of voxels in the
3x3x3 cell which passed the first step together with the user-specified probability center (fuzzyCenter) and
width (fuzzyWidth). If the result is greater than fuzzyProb, the voxel is set to belong to the filled domain.
If the /O flag is not specified, the result is stored in the wave M_SeedFill.
If you specify a background value with the /B flag, the resulting image consists of the background value
and the target value in the area corresponding to the seed fill. Although the wave is now bi-level, it retains
the same number type as the source image.
ImageSeedFill returns a “bad seed pixel specification” if the seed pixel location derived from the various
keywords above satisfies one or more of the following conditions:
• The computed integer pixel/voxel is outside the image.
• The value stored in the computed integer pixel/voxel location does not satisfy the min/max or fuzzy

conditions. This is the most common condition when srcWave has wave scaling. To avoid this
difficulty you should use the keywords seedP, seedQ, and seedR.

Examples
Using Cursor A position and value to supply parameter inputs for a 2D seedFill (Warning: command
wrapped over two lines):
ImageSeedFill
seedP=pcsr(a),seedQ=qcsr(a),min=zcsr(a),max=zcsr(a),target=0,srcwave=image0

Using the fuzzy algorithm for a 3D wave (Warning: command wrapped over two lines):
ImageSeedFill seedX=232,seedY=175,seedZ=42,target=1,fillnumber=10,fuzzycenter=.25,
fuzzywidth=1,threshold=1,fuzzyprob=0.4,srcWave=ddd

See Also
For an additional example see Seed Fill on page III-323. To display the result of the operation for 3D waves
it is useful to convert the 3D wave M_SeedFill into an array of quads. See ImageTransform vol2surf.

/B=bValue Specifies the value assigned to pixels or voxels that do not belong to the fuzzy set.

/C Uses 8-connectivity where a pixel can be connected to any one of its neighbors and
with which it shares as little as a single boundary point. The default setting is 4-
connectivity where pixels can be connected if they are neighbors along a row or a
column. This has no effect in 3D, where 26-connectivity is the only option.

/K=killCount Terminates the fill operation after killCount elements have been accepted.

/O Overwrites the source wave with the output (2D only).

/R=roiWave Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/b/u), that has the same number of rows and columns and layers as the image
wave. The ROI itself is defined by the entries/pixels whose value are 0. Pixels outside
the ROI can take any nonzero value. The ROI does not have to be contiguous. See
ImageGenerateROIMask for more information on creating ROI waves.

ImageSnake

V-320

ImageSnake
ImageSnake [flags] srcWave
The ImageSnake operation creates or modifies an active contour/snake in the grayscale image srcWave. The
operation iterates to find the “lowest total energy” snake. The energy is defined by a range of optional flags,
each corresponding to an individual term in the total energy expression. Iterations terminate by reaching
the maximum number of iterations, when the snake does not move between iterations or when the user
aborts the operation.

Flags

/ALPH=alpha Sets the coefficient of the energy term arising from the “tightness” of the snake.

/BETA=beta Sets the coefficient of the energy term corresponding to curvature of the snake. A high
value for beta makes the snake more rounded.

/DELT=delta Sets the coefficient of the repulsion energy. A high value of delta keeps
nonconsecutive snake points far from each other.

/EPS=num Sets the maximum number of vertices which are allowed to move in one iteration. If
the number of vertices which move during an iteration is smaller than num then
iterations terminate.

/EXEF=eta Sets the coefficient of the optional external energy component. By default this value is
set to zero and there is no external energy contribution to the snakes energy. Note, this
component is referred to as “external” because it is completely up to the user to
specify both its coefficient and the value associated with each pixel. It should not be
confused with what is called external snake energy in the literature, which usually
applies to energy proportional to the gradient image (see /GAMM and /GRDI).

/EXEN=wave Specify a wave that contains energy values that will be added to the snakes energy
calculation. The wave must have the same dimensions as srcWave and must be single
precision float. Each pixel value corresponds to user defined energy which will be
multiplied by the /EXEF coefficient and added to the sum which the snake minimizes.
Note that when /EXEF is set to zero this component is ignored. An external energy
wave may be useful, for example, if you want to attract the snake to the picture
boundaries. In that case you can set:
Duplicate/O srcWave,extWave
Redimension/S extWave
Variable rows=DimSize(srcWave,0)-1
Variable cols=DimSize(srcWave,1)-1
extWave=(p==0 || q==0 || p==rows || q==cols) ? 0:1

/GAMM=gamma Sets the coefficient of the energy term corresponding to the gradient. A high value of
gamma makes the snake follow lines of high image gradient.

/GRDI=gWave Specify the gradient image. This wave must have the same dimensions as srcWave and
it must be single precision float. The wave corresponds to the quantity
abs(grad(gauss**srcWave)), where grad is the gradient operator and ** denotes
convolution of the source wave with a Gaussian kernel. It is best to run the operation
the first time without specifying this wave. When the operation executes, it creates the
wave M_GradImage which can then be used in subsequent executions of this
operation. If you want to modify the wave to express some other form of energy that
you want the operation to minimize, you should use the /EXEN and /EXEF flags.

/ITER=iterations Sets the maximum number of iterations. Convergence can be achieved if the value
specified by /EPS is met. You can also terminate the process earlier via a user abort
(Command-'.' Macintosh or Ctrl-Break Windows).

/N=snakePts Specify the number of vertices in the snake or the number of snake points. Note that
if you are providing snake waves in /SX and /SY, you do not need to specify this flag.
If you do not specify this flag the default value is 40.

ImageSnake

V-321

Details
A snake is a two-dimensional, usually closed, path drawn over an image. The snake is described by a pair
of XY waves consisting of N vertices (sometimes called “snake elements” or “snaksels”). In this
implementation it is assumed that the snake is closed so that the last point in the snake is connected to the
first. Snakes are used in image segmentation, when you want to automatically select a contiguous portion
of the plane based on some criteria. Unlike the classic contours, snakes do not have to follow a constant
level. Their structure (or path) is found by associating the concept of energy with every snake configuration
and attempting to find the configuration for which the associated energy is a minimum. The search for a
minimum energy configuration is usually time consuming and it strongly depends on the format of the
energy function and the initial conditions (as defined by the starting snake). The operation computes the
energy as a sum of the following 5 terms:
1. The coefficient alpha times a sum of absolute deviations from the average snake segment length. This

term tends to distribute the vertices of the snake at even intervals.
2. The coefficient beta times a sum of energies associated with the curvature of the snake at each vertex.
3. The coefficient gamma times a sum of energies computed from the negative magnitude of the gradient

of a Gaussian kernel convolved with the image. This term is usually referred to in the literature as the
external energy and usually drives the snake to follow the direction of high image gradients.

4. The coefficient delta times a repulsion energy. Repulsion is computed as an inverse square law by
adding contributions from all vertices except the two that are immediately connected to each vertex.
This energy term is designed to make sure that the snake does not fold itself into “valleys”.

5. The coefficient eta times the sum of values corresponding to the positions of all snake vertices in the
wave you provide in /EXEN.

The energy calculation skips all terms for which the coefficient is zero. In addition there is a built-in scan
which adds a very high penalty for configurations in which the snake crosses itself.

/SIG=sigma Sets the size of the Gaussian kernel that is used to convolve the input image when
creating the gradient image. Note that you do not need to use this flag if you provide
a gradient image. sigma is 3 by default. You can use larger odd integers for larger
Gaussian kernels which would correspond to a stronger blur.

/STRT={centerX, centerY, radius}

Sets the starting snake to be a circle with the given center and radius. If you use this
flag you should also provide the number of snake points using the /N flag.

/STEP=pixels Sets the maximum radius of search. By default the radius of the search is 6 pixels and
the search follows a clockwise pattern from radius of 1 pixel to maximum radius
specified by this flag. Note: the search radius should be smaller than the dimension of
a typical feature in the image. If the radius is larger the snake may encompass more
than one object. Larger radius is also less efficient because many of the pixels in that
range would result in a snake that crosses itself and hence get rejected in the process.

/SX=xSnake Provide an X-wave for the starting snake. You must also provide an appropriate Y-
wave using /SY.

/SY=ySnake Provide a Y-Wave for the starting snake. Must work in combination with /SX.

/UPDM=mode

/Q Quiet mode; don’t print information in the history.

/Z Don’t report any errors.

Sets the update mode using any combination of the following:

Value Update

0 Once when the operation terminates.

1 Once at the end of every iteration.

2 Once after every snake vertex moves.

4 Once for every search position.

ImageStats

V-322

ImageStats
ImageStats [/BRXY={xWave,yWave} imageWave
ImageStats [/M=val/P=planeNumber]/R=roiWave imageWave
ImageStats [/M=val/P=planeNumber]/G={startP,endP,startQ,endQ} imageWave
ImageStats [/M=val/P=planeNumber]/GS={sMinRow,sMaxRow,sMinCol,sMaxCol}

imageWave
ImageStats [/M=val/P=planeNumber] imageWave
The ImageStats operation calculates wave statistics for specified regions of interest in a real matrix wave.
The operation applies to image pixels whose corresponding pixels in the ROI wave are set to zero. It does
not print any results in the history area.

Flags

/BEAM Computes the average, minimum, and maximum pixel values in each layer of a 3D
wave and 2D ROI. Output is to waves W_ISBeamAvg, W_ISBeamMax, and
W_ISBeamMin in the current data folder. Use /RECT to improve efficiency for simple
ROI domains. V_ variable results correspond to the last evaluated layer of the 3D
wave. Do not use /G, /GS, or /P with this flag. Set /M=1 for maximum efficiency.

/BRXY={xWave, yWave}

Use this option with a 3D imageWave. It provides a more efficient method for
computing average, minimum and maximum values when the set of points of interest
is much smaller than the dimensions of an image.
Here xWave and yWave are 1D waves with the same number of points containing XY
integer pixel locations specifying arbitrary pixels for which the statistics are
calculated on a plane by plane basis as follows:

Pixel locations are zero-based; non-integer entries may produce unpredictable results.
The calculated statistics for each plane are stored in the current data folder in the
waves W_ISBeamAvg, W_ISBeamMax and W_ISBeamMin.
Note: This flag is not compatible with any other flag except /BEAM.

/G={startP, endP, startQ, endQ}

Specifies the corners of a rectangular ROI. When this flag is used an ROI wave is not
required. This flag requires that startP ≤ endP and startQ ≤ endQ. When the parameters
extend beyond the image area, the command will not execute and V_flag will be set
to -1. You should therefore verify that V_flag=0 before using the results of this
operation.

/GS={sMinRow,sMaxRow,sMinCol,sMaxCol}

Specifies a rectangular region of interest in terms of the scaled image coordinates.
Each one of the 4 values will be translated to an integer pixel using truncation.
This flag, /G, and an ROI specification are mutually exclusive.

/M=val Calculates the average and locates the minimum and the maximum in the ROI when
/M=1. This will save you the computation time associated with the higher order
statistical moments.

/P=planeNumber Restricts the calculation to a particular layer of a 3D wave. By default, planeNumber= -
1 and only the first layer of the wave is processed.

W_ISBeamAvg[k]=
1

n
Image[xWave[i]][yWave[i]].

i=1

n

�

ImageThreshold

V-323

Details
The image statistics are returned via the following variables:

Most of these statistical results are similarly defined as for the WaveStats operation. WaveStats will be more
convenient to use when calculating statistics for an entire wave.
If imageWave is 4D it is often useful to use the reversible conversion
Redimension/N=(rows,cols,layers*chunks) ImageWave

which allows you to obtain the statistics for each layer and all chunks of the wave. To convert back to 4D,
execute:
Redimension/N=(rows,cols,layers,chunks) ImageWave

See Also
The ImageGenerateROIMask and WaveStats operations. ImageStats on page III-317.

ImageThreshold
ImageThreshold [flags] imageMatrix
The ImageThreshold operation converts a grayscale imageMatrix into a binary image. The operation
supports all data types. However, the source wave must be a 2D matrix. If imageMatrix contains NaNs, the
pixels corresponding to NaN values are mapped into the value 64. The values for the On and Off pixels are
255 and 0 respectively. The resulting image is stored in the wave M_ImageThresh.

/R=roiWave Specifies a region of interest (ROI) in the image. The ROI is defined by a wave of type
unsigned byte (/b/u), which has the same number of rows and columns as the image
wave. The ROI itself is defined by the entries/pixels whose value are 0. Pixels outside
the ROI can take any nonzero value. The ROI does not have to be contiguous. See
ImageGenerateROIMask for more information on creating ROI waves.

/RECT={minRow, maxRow, minCol, maxCol}

Limits the range of the ROI to a rectangular pixel range with /BEAM.

V_adev Average deviation of pixel values.

V_avg Average of pixel values.

V_kurt Kurtosis of pixel values.

V_min Minimum pixel value.

V_minColLoc Specifies the location of the column in which the minimum pixel value was found or
the first eligible column if no single column was found.

V_minRowLoc Specifies the location of the row in which the minimum pixel value was found or the
first eligible row if no single minimum was found.

V_max Maximum pixel value.

V_maxColLoc Specifies the location of the column in which the maximum pixel value was found or
the first eligible column if no single column was found.

V_maxRowLoc Specifies the location of the row in which the maximum pixel value was found or the
first eligible row if no single maximum was found.

V_npnts Number of points in the ROI.

V_rms Root mean squared of pixel values.

V_sdev Standard deviation of pixel values.

V_skew Skewness of pixel values.

ImageThreshold

V-324

Flags

References
The automatic thresholding method (/M=1) is described in: T. W. Ridler and S. Calvard, IEEE Transactions
on Systems, Man and Cybernetics, SMC-8, 630-632, 1978.

/C Calculates the correlation coefficient between the original image and the image
generated by the threshold operation. The correlation value is printed to the history
window (unless the /Q flag is specified), it is also stored in the variable V_correlation.

/I Inverts values written to the image, i.e., sets to zero all pixels above threshold.

/M= method

/N Sets the background level to 64 (i.e., NaN).

/O Overwrites the original image with the calculated threshold image.
If you do not specify the /O flag, the threshold image is written into the wave
M_ImageThresh.

/Q Suppresses printing calculated correlation coefficients (/C) and calculated thresholds
(/M) to the history window.

/R=roiSpec Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/b/u). The ROI wave must have the same number of rows and columns as the
image wave. The ROI itself is defined by the entries/pixels whose values are 0. Pixels
outside the ROI can take any nonzero value. The ROI does not have to be contiguous
and can take any arbitrary shape. See ImageGenerateROIMask for more information
on creating ROI waves.

By default roiFlag is set to 1 and it is then possible to use the /R flag using the
abbreviated form /R=roiWave.

/T=thresh Sets the threshold value.

/W= Twave Sets the threshold intervals. Each interval is specified by a pair of values in the wave
Twave. The first element in each pair is the low value and the second element is the
high value. Pixel values that lie outside all the specified intervals are set to 0.

Specifies the thresholding method. The calculated value will be printed to the
history window (unless /Q is specified) and stored in the variable V_threshold.

By default method=0, in which case you must use the /T flag to specify a manually
selected threshold.

method= 1: Automatically calculate a threshold value using an iterative
method.

method= 2: Image histogram is a simple bimodal distribution.
method= 3: Adaptive thresholding. Evaluates threshold based on the last 8

pixels in each row, using alternating rows. Note that this
method is not supported when used as part of the operation
ImageEdgeDetection.

method= 4: Fuzzy thresholding using entropy as the measure for
“fuzziness”.

method= 5: Fuzzy thresholding using a method that minimizes a
“fuzziness” measure involving the mean gray level in the object
and background.

In general, the roiSpec has the form {roiWaveName, roiFlag}, where roiFlag can take
the following values:
roiFlag=0: Set pixels outside the ROI to 0.
roiFlag=1: Set pixels outside the ROI as in original image.
roiFlag=2: Set pixels outside the ROI to NaN (=64).

ImageTransform

V-325

See Also
For usage examples see Threshold Examples on page III-302. The ImageGenerateROIMask and
ImageEdgeDetection operations.

ImageTransform
ImageTransform [flags] Method imageMatrix
The ImageTransform operation performs one of a number of transformations on imageMatrix. The result of
using most keywords is a new wave stored in the current data folder. Most flags in this operation are
exclusive to the keywords in which they are mentioned.

Parameters
Method selects type of transform. It is one of the following names:

averageImage Computes an average image for a stack of images contained in 3D imageMatrix. The
average image is stored in the wave M_AveImage and the standard deviation for each
pixel is stored in the wave M_StdvImage in the current data folder. You can use this
keyword together with the optional /R flag where a region of interest is defined by
zero value points in a ROI wave. The operation sets to NaN the entries in
M_AveImage and M_StdvImage that correspond to pixels outside the ROI.
imageMatrix must have at least three layers.

backProjection Reconstructs the source image from a projection slice and stores the result in the wave
M_BackProjection. The projection slice should either be a wave produced by the
projectionSlice keyword of this operation or a wave that would be similarly scaled.
The input must be a single or double precision real 2D wave. Row scaling must range
symmetrically about zero. For example, if the reconstructed image is expected to have
256 rows then the row scaling of the input should be from -128 to 127. Similarly, the
column scaling of the input should range between zero and π. An equivalent
implementation as a user function is provided in the demo experiment. You can use
this implementation as a starting point if you want to develop filtered back projection.
See the projectionSlice keyword and the RadonTransformDemo experiment. For
algorithm details see the chapter “Reconstruction of cross-sections and the projection-
slice theorem of computerized tomography” in Born and Wolf, 1999.

ccsubdivision Performs a Catmull-Clark recursive generation of B-spline surfaces. There are two
valid inputs: triangular meshes or quad meshes.
Quad meshes are assumed to be in the form of a 3D wave where the first plane
contains the X-values, the second the Y-values and the third the Z-values.
Triangle meshes are much more complicated to convert into face-edge-vertex arrays
so they are less desirable. They are stored in a three column (triplet) wave where the
first column corresponds to the X coordinate, the second to the Y coordinate and the
third to the Z coordinate. Each triangle is described by three rows in the wave and
common vertices have to be repeated so that each sequential three rows in the triplet
wave correspond to a single triangle. You can also associate a scalar value with each
vertex and it will be suitably interpolated as new vertices are computed and old ones
are shifted. In this case the input source wave contains one more column in the case
of a triplet wave or one more plane in the case of a quad wave. The scalar value is
added everywhere as an additional dimension to the spatial part of any point
calculation.
You can specify the number of iterations using the /I flag. By default the operation
executes a single iteration. The output is saved in a quad wave M_CCBSplines that
consists of 4 columns. Each row corresponds to a Quad where the 3 planes contain the
X, Y, and Z components. If you are using an optional scalar in the input, the scalar
result is stored in the wave M_CCBScalar.

cmap2rgb Converts an image and its associated colormap wave (specified using the /C flag) into
an RGB image stored in a 3D wave M_RGBOut.

ImageTransform

V-326

CMYK2RGB Converts a CMYK image, stored as 4 layer unsigned byte wave, into a 3 layer,
standard RGB image wave. The output wave is M_CMYK2RGB that is stored in the
current data folder.

compress Compresses the data in the imageWave using a nonlossy algorithm and stores it in the
wave W_Compressed in the current data folder. The compressed wave includes all
data associated with imageWave including its units and wavenote. Use the
decompress keyword to recover the original wave. The operation supports all
numeric data types.
NOTE: The compression format for waves greater than 2GB in size was changed in
version 6.30B02. If you compressed a wave greater than 2 GB in IGOR64 6.30B01, you
will need to decompress it using the same version. You can not decompress it in
6.30B02 or later.

convert2gray Converts an arbitrary 2D wave into an 8-bit normalized 2D wave. The default output
wave name is M_Image2Gray.

decompress Decompresses a compressed wave. It saves a copy of the decompressed wave under
the name W_DeCompressed in the current data folder.
NOTE: The compression format for waves greater than 2GB in size was changed in
version 6.30B02. If you compressed a wave greater than 2 GB in IGOR64 6.30B01, you
will need to decompress it using the same version. You can not decompress it in
6.30B02 or later.

extractSurface Extracts values corresponding to a plane that intersects a 3D volume wave
(imageMatrix). You must specify the extraction parameters using the /X flag. The
volume is defined by the wave scaling of the 3D wave. The result, obtained by
trilinear interpolation, is stored in the wave M_ExtractedSurface and is of the type
NT_FP64. Points in the plane that lie outside the volume are set to NaN.

fht Performs a Fast Hartley Transform subject to the /T flag. The source wave must be a
2D real matrix with a power of 2 number of rows and columns. Default output is
saved in the double-precision wave M_Hartley in the current data folder. If you use
the /O flag the result overwrites imageMatrix without changing the numeric type. If
imageMatrix is single-precision float the conversion is straightforward. All other
numeric types are scaled. Single- and double-byte types are scaled to the full dynamic
range. 32 bit integers are scaled to the range of the equivalent 16 bit types (i.e.,
unsigned int is scaled to unsigned short range etc.). It does not support wave scaling
or NaN entries.

fillImage Fills a 2D target image wave with data from a 1D image wave (specified using /D).
Both waves must be the same data type, and the number of data points in the target
wave must match the number of points in the data wave. There are four fill modes
that are specified via the /M flag. The operation supports all noncomplex numeric
data types.

findLakes Originally intended to identify lakes in geographical data, this operation creates a
mask for a 2D wave for all the contiguous points whose values are close to each other.
You can determine the minimum number of pixels within a contiguous region using
the /LARA=minPixels flag (default is 100). You can determine how close values must
be in order to belong to a contiguous region using the /LTOL=tolerance flag (default is
zero). You can also limit the search region using the /LRCT flag. Use the flag
/LTAR=target to set the value of the masked regions. By default, the algorithm uses 4-
connectivity when looking at adjacent pixels. You can set it to 8-connectivity using the
/LCVT flag. The result of the operation is saved in the wave M_LakeFill. It has the
same data type as the source wave and contains all the source values outside the
masked pixels.

flipCols Rearrange pixels by exchanging columns symmetrically about a center column or the
center of the image (if the number of columns is even). The exchange is performed in
place and can be reverted by repeating the operation. When working with 3D waves,
use the /P flag to specify the plane that you want to operate on.

ImageTransform

V-327

flipRows Rearrange pixels in the image by exchanging rows symmetrically about the middle
row or the middle of the image (if the image has an even number of rows). The
exchange is performed in place and can be reverted by repeating the operation. When
working with 3D waves, use the /P flag to specify the plane that you want to operate
on.

flipPlanes Rearrange data in a 3D wave by exchanging planes symmetrically about the middle
plane. The operation is performed in place and can be reverted by repeating the
operation.

fuzzyClassify Segments grayscale and color images using fuzzy logic. Iteration stops when it
reaches convergence defined by /TOL or the maximum number of iterations specified
by /I. It is a good practice to specify the tolerance and the number of iterations. If the
number of classes is small, the operation prints the class values in the history. Use /Q
to eliminate printing and increase performance. Use /CLAS to specify the number of
classes and optionally use /CLAM to modify the fuzzy probability values. Use /SEG
to generate the segmentation image. The classes are stored in the wave
W_FuzzyClasses in the current data folder and it will be overwritten if it already
exists.
When imageMatrix is a grayscale image, each class is a single wave entry. When
imageMatrix is a RGB image, classes are stored consecutively in the wave
W_FuzzyClasses. If you request more classes than are present in imageMatrix, you will
likely find a degeneracy where the space of a data class is spanned by more than one
class. It is a good idea to compute the Euclidean distance between every possible pair
of classes and eliminate degeneracies when the distance falls below some threshold.
Any real data type is allowed but values in the range [0,255] are optimal. You can
segment 3D waves of more than 3 layers in which a class will be a vector of
dimensionality equal to the number of layers in imageMatrix.
For examples see Examples/Imaging/fuzzyClassifyDemo.pxp.

getBeam Extracts a beam from a 3D wave.
A “beam” is a 1D array in the Z-direction. If a row is a 1D array in the first dimension
and a column is a 1D array in the second dimension then a beam is a 1D array in the
third dimension.
The number of points in a beam is equal to the number of layers in imageWave. Specify
the beam with the /BEAM={row,column} flag. It stores the result in the wave W_Beam
in the current data folder. W_Beam has the same numeric type as imageWave. Use
setBeam to set beam values. (See also, MatrixOp beam.)

getChunk Extracts the chunk specified by chunk index /CHIX from imageMatrix and stores it in
the wave M_Chunk in the current data folder. For example, if imageMatrix has the
dimensions (10,20,3,10), the resulting M_Chunk has the dimensions (10,20,3). See also
setChunk and insertChunk.

getCol Extracts a 1D wave, named W_ExtractedCol, from any type of 2D or 3D wave. You
specify the column using the /G flag. For a 3D source wave, it will use the first plane
unless you specify a plane using the /P flag. imageMatrix can be real or complex. (See
also putCol keyword, MatrixOp col.)

getPlane Creates a new wave, named M_ImagePlane, that contains data in the plane specified
by the /P flag. The new wave is of the same data type as the source wave. You can
specify the type of plane using the /PTYP flag. (See also setPlane keyword,
MatrixOp.)

getRow Extracts a 1D wave, named W_ExtractedRow, from any type of 2D or 3D wave. You
specify the row using the /G flag. For a 3D source wave, it will use the first plane
unless you specify a plane using the /P flag. imageMatrix can be real or complex. (See
also setRow keyword, MatrixOp row.)

ImageTransform

V-328

Hough Performs the Hough transform of the input wave. The result is saved to a 2D wave
M_Hough in which the columns correspond to angle and the rows correspond to the
radial domain.
By default the output consists of 180 columns. Use the /F flag to modify the angular
resolution.
If the input image has N rows and M columns then the number of rows in the
M_Hough is set to 1+sqrt(N^2+M^2).
It is assumed that the input wave has square pixels of unit size and that is binary
(/B/U) where the background value is 0.
See also Hough Transform on page III-310.

hsl2rgb Transforms a 3-plane HSL wave into a 3-plane RGB wave. If the source wave for this
operation is of any type other than byte or unsigned byte, the HSL values are expected
to be between 0 and 65535. For all source wave types the resulting RGB wave is of type
unsigned short. The result of the operation is the wave M_HSL2RGB (of type
unsigned word), where the RGB values are in the range 0 to 65535.

hslSegment Creates a binary image of the same dimensions as the source image, in which all pixels
that belong to all three of the specified Hue, Saturation, and Lightness ranges are set
to 255 and the others to zero. You can specify the HSL ranges using the /H, /S, and /L
flags. Each flag takes as an argument either a pair of values or a wave containing pairs
of values. You must specify the /H flag but you can omit the /S and /L flags in which
case the default values (corresponding to full range 0 to 1) are used. imageMatrix is
assumed to be an RGB image.

imageToTexture Transforms a 2D or 3D image wave into a 1D wave of contiguous pixel components.
The transformation is useful for creating an OpenGL texture (for Gizmo) or for saving
a color image in a format requiring either RGB or RGBA sequences.
The /O flag does not apply to imageToTexture.
Use the /TEXT flag to specify the type of transformation. imageMatrix must be an
unsigned byte wave. A 1D unsigned byte wave named W_Texture is created in the
current data folder.

insertChunk Inserts a chunk (a 3D wave specified by the /D flag) into imageMatrix at chunk index
specified by the /CHIX flag. The dimensions of the inserted chunk must match the
first three dimensions of imageMatrix. The wave must also have the same numeric
type. The 4th dimension of imageMatrix is incremented by 1 to accommodate the new
data. See also getChunk and setChunk.

insertImage Inserts the image specified by the flag /INSI into imageMatrix starting at the position
specified by the flags /INSX and /INSY. If the imageMatrix is a 3D wave then it inserts
the image in the layer specified by the /P flag. The inserted image and imageMatrix
must be the same data type. The inserted data is clipped to the boundaries of
imageMatrix.

W_Texture's wave note is set to a semicolon-separated list of keyword -value pairs
that can be parsed using StringByKey and NumberByKey:

Keyword Information Following Keyword

WIDTHPIXELS DimSize(imageMatrix,0) or truncated to nearest
power of 2 if /TEXT value is odd

HEIGHTPIXELS DimSize(imageMatrix,1) or truncated to nearest
power of 2

LAYERS DimSize(imageMatrix,2)

TEXTUREMODE val parameter from /TEXT flag

SOURCEWAVE GetWavesDataFolder(imageMatrix, 2)

ImageTransform

V-329

insertXplane Inserts a 2D wave as a new plane perpendicular to the X-axis in a 3D wave. The /P flag
specifies the insertion point and the /INSW flag specifies the inserted wave. The 2D
wave must be the same numeric data type as the 3D wave and its dimensions must be
cols x layers of the 3D wave. For example, if the 3D wave has the dimensions
(10x20x30) the 2D wave must be 20x30. If you do not use the /O flag, it stores the result
in the wave M_InsertedWave in the current data folder.

insertYplane Inserts a 2D wave as a new plane perpendicular to the Y-axis in a 3D wave. The /P flag
specifies the insertion point and the /INSW flag specifies the inserted wave. The 2D
wave must be the same numeric data type as the 3D wave and its dimensions must be
rows x layers of the 3D wave. For example, if the 3D wave has the dimensions
(10x20x30) the 2D wave must be 10x30. If you do not use the /O flag, it stores the result
in the wave M_InsertedWave in the current data folder.

insertZplane Inserts a 2D wave as a new plane perpendicular to the Z-axis in a 3D wave. The /P flag
specifies the insertion point and the /INSW flag specifies the inserted wave. The 2D
wave must be the same numeric data type as the 3D wave and its dimensions must be
rows x cols of the 3D wave. For example, if the 3D wave has the dimensions
(10x20x30) the 2D wave must be 10x20. If you do not use the /O flag, it stores the result
in the wave M_InsertedWave in the current data folder. This keyword is included for
completeness. You can accomplish the same task using InsertPoints.

Invert Converts pixel values using the formula newValue=255-oldValue. Works on
waves of any dimension, but only on waves of type unsigned byte. The result is stored
in the wave M_Inverted unless specifying the /O flag.

indexWave Creates a 1D wave W_IndexedValues in the current data folder containing values
from imageMatrix that are pointed to by the index wave (see /IWAV). Each row in the
index wave corresponds to a single value of imageMatrix. If any row does not point to
a valid index (within the dimensions of imageMatrix), the corresponding value is set
to zero and the operation returns an error. Indices are zero based integers; the
operation does not support interpolation and ignores wave scaling.

JPEGQ Generates a lossy JPEG-compressed image wave when used together with the /J flag.
The compressed image wave is stored in the wave M_JPEGQ and the size of the
equivalent image file is stored in the variable V_value.

matchPlanes Finds pixels that match test conditions in all layers of a 3D wave. It creates a 2D
unsigned byte output wave, M_matchPlanes, that is set to the values 0 and 255. A
value of 255 indicates that the corresponding pixel has satisfied test conditions in all
layers of the wave for which conditions were provided. Otherwise the pixel value is 0.
Test conditions are entered as a 2D wave using the /D flag. The condition wave must
be double precision and it must contain the same number of columns as the number
of layers in the 3D source wave. A condition for layer j of the source wave is specified
by two rows in column j of the condition wave. The first row entry, say A, and the
second row entry, say B, imply a condition on pixels in layer j such that A ≤ x < B. You
can have more than one condition for a given layer by adding pairs of rows to the
condition wave. For example, if you add in consecutive rows the values C and D, this
implies the test:

If you do not have any conditions for some layer, set its corresponding condition
column to NaN. Similarly, if you have two conditions for the first layer and one
condition for the second layer, pad the bottom of column 1 in the condition wave with
NaNs. See Examples for use of this keyword to perform hue/saturation segmentation.

A � x � B() || C � x � D().

ImageTransform

V-330

offsetImage Shifts an image in the XY plane by dx, dy pixels (specified by the /IOFF flag). Pixels
outside the shifted image will be set to the specified background value. The operation
works on 2D waves or on 3D waves with the optional /P flag. When shifting a 3D
wave with no specified plane, it creates a 3D wave with all planes offset by the same
amount. The wave M_OffsetImage contains the result in the current data folder.
The /O flag is not supported with offsetImage.

padImage Resizes the source image. When enlarged, values from the last row and column fill in
the new area. The /N flag specifies the new image size in terms of the rows and
columns change. The /W flag specifies whether data should be wrapped when
padding the image. Unless you use the /O flag, the result is stored in the wave
M_PaddedImage in the current data folder.

projectionSlice Computes a projection slice for a parallel fan of rays going through the image at
various angles. For every ray in the fan the operation computes a line integral through
the image (equivalent to the sum of the line profile along the ray). The operation
computes the line integrals for multiple fans defined by the number and position of
the rays as well as the angle that they make with the positive X-direction. Use the /PSL
flag to specify the projection parameters. The projection slice itself is stored in a 2D
wave M_ProjectionSlice where the rows correspond to the rays and the columns
correspond to the selected range of angles. The operation does not support wave
scaling. If the source wave is 3D the projection slice currently supports slices that are
perpendicular to the z-axis and specified by their plane number.
See the backProjection keyword and the RadonTransformDemo experiment. For
algorithm details see the chapter “Reconstruction of cross-sections and the projection-
slice theorem of computerized tomography” in Born and Wolf, 1999.

putCol Sets a column of imageMatrix to the values in the wave specified by the /D flag. Use
the /G flag to specify column number and the /P flag to specify the plane. Note that if
there is a mismatch in the number of entries between the specified waves, the
operation uses the smaller number. See also getCol keyword.

putRow Sets a row of imageMatrix to the values in the wave specified by the /D flag. Use the
/G flag to specify column number and the /P flag to specify the plane. Note that if
there is a mismatch in the number of entries between the specified waves, the
operation uses the smaller number. See also getRow keyword.

rgb2cmap Computes a default color map of 256 colors to represent the input RGB image. The
colors are computed by clustering the input pixels in RGB space. The resulting color
map is stored in the wave M_ColorIndex in the current data folder. The operation also
saves the wave M_IndexImage which contains an index into the colormap that can be
used to display the image using the commands:
NewImage M_IndexImage
ModifyImage M_IndexImage cindex= M_ColorIndex

To change the default number of colors use the /NCLR flag. When the number of
colors are greater than 256, M_IndexImage will be a 16-bit unsigned integer or a 32 bit
integer wave depending on the number. rgb2cmap supports input images in the form
of 3D waves of type unsigned byte or single precision float. The floating point option
may be used to input images in colorspaces that use signed numeric data.

rgb2gray When the input imageMatrix is a 3D RGB wave, rgb2gray produces a 2D wave of type
unsigned byte containing the grayscale representation of the input. By default, the
operation stores the output in the wave M_RGB2Gray in the current data folder. The
RGB values are converted into the luminance Y of the YIQ standard using:
Y = 0.299R + 0.587G + 0.114B

When the input imageMatrix is a 4D wave containing multiple (3 layer) RGB chunks,
the conversion produces a 3D wave where each layer corresponds to the grayscale
conversion of the corresponding chunk in the input wave. In this case the numeric
type of the output is the same as that of the input but the conversion formula is the
same. The /O flag is not supported when transforming a 4D RGB wave.

ImageTransform

V-331

rgb2hsl Converts an RGB image stored in a 3D wave into another 3D wave in which the three
planes correspond to Hue, Saturation and Lightness in the HSL color model. Values
of all components are normalized to the range 0 to 255 unless the /U flag is used or if
the source wave is not 8-bit, in which case the range is 0 to 65535. The default output
wave name is M_RGB2HSL.

rgb2i123 Performs a colorspace conversion of an RGB image into the following quantities:

where

I1, I2, and I3 are stored in the wave M_I123 (using the same data type as the original
RGB wave) in the current data folder. I1 is stored in the first layer, I2 in the second and
I3 in the third. This color transformation is said to have useful applications in machine
vision.
For more information see: Gevers and Smeulders (1999).

removeXplane Removes one or more planes perpendicular to the X-axis from a 3D wave. The /P flag
specifies the starting position. By default, it removes a single plane but you can
remove more planes with the /NP flag. If you do not use the /O flag, it saves the result
in the wave M_ReducedWave in the current data folder.

removeYplane Removes one or more planes perpendicular to the Y-axis from a 3D wave. The /P flag
specifies the starting position. By default, it removes a single plane but you can
remove more planes with the /NP flag. If you do not use the /O flag, it saves the result
in the wave M_ReducedWave in the current data folder.

removeZplane Removes one or more planes perpendicular to the Z-axis from a 3D wave. The /P flag
specifies the starting position. By default, it removes a single plane but you can
remove more planes with the /NP flag. If you do not use the /O flag, it saves the result
in the wave M_ReducedWave in the current data folder.

rgb2xyz Converts a 3D RGB image wave into a 3D wave containing the XYZ color space
equivalent. The conversion is based on the D65 white point and uses the following
transformation:

.
The XYZ values are stored in a wave named “M_RGB2XYZ” unless the /O flag is used,
in which case the source image is overwritten and converted into single precision
wave (NT_FP32).

roiTo1D Copies all pixels in an ROI and saves them sequentially in a 1D wave. The ROI is
specified by /R. The ROI wave must have the same dimensions as imageMatrix. If
imageMatrix is a 3D wave, the ROI must have as many layers as imageMatrix. The wave
W_roi_to_1d contains the output in the current data folder, has the same numeric
type as imageMatrix, and contains the selected pixels in a column-major order.

I1 = R �G D

I2 = R � B D

I3 = G � B D,

D =
255

R �G + R � B + G � B
.

x

y

z

�

�

�
�
�

�

�

�
�
�

=

0.412453 0.357580 0.180423

0.212671 0.715160 0.072169

0.019334 0.119193 0.950227

�

�

�
�
�

�

�

�
�
�

R

G

B

�

�

�
�
�

�

�

�
�
�

ImageTransform

V-332

rotateCols Rotates rows in place. This operation is analogous to the Rotate operation except that
it works on images and rotates an integer number of rows. The number of rows is
specified by the /G flag.
When imageMatrix contains multiple layers you can use the /P flag to specify the layer
of the wave that will undergo rotation. By default, if you do not specify the /P flag and
if imageMatrix consists of three layers (RGB), then all three layers are rotated.
Otherwise the operation rotates only the first layer of the wave.

rotateRows Rotates columns in place. This operation is analogous to the Rotate operation except
that it works on images and rotates an integer number of columns. The number of
columns is specified by the /G flag.
When imageMatrix contains multiple layers you can use the /P flag to specify the layer
of the wave that will undergo rotation. By default, if you do not specify the /P flag and
if imageMatrix consists of three layers (RGB), then all three layers are rotated.
Otherwise the operation rotates only the first layer of the wave.

scalePlanes Scales each plane of the 3D wave, imageMatrix, by a constant taken from the
corresponding entry in the 1D wave specified by the /D flag. The result is stored in the
wave M_ScaledPlanes unless the /O flag is specified, in which case scaling is done in
place.
When using /O, first redimension the wave to a different data type to make sure there
are no artifacts due to type clipping.
If imageMatrix is double precision, M_ScaledPlanes is double precision. Otherwise
M_ScaledPlanes is single precision.
This operation also supports the optional flag.
Note that when you display M_ScaledPlanes, which has three planes that originated
from scaling byte data, you will have to multiply the wave by 255 to see the image
because the RGB format for single and double precision data requires values in the
range 0 to 65535.

selectColor Creates a mask for the image in which pixel values depend on the proximity of the
color of the image to a given central color. The central color, the tolerance and a
grayscale indicator must be specified using the /E flag.
For example, /E={174,187,75,10,1} specifies an RGB of (174,187,75), a tolerance
level of 10 and a requested grayscale output.
RGB values must be provided in a range appropriate for the source image. If the
source wave type is not byte or unsigned byte, then the range of the RGB components
should be 0 to 65535.
The color proximity is calculated in the nonuniform RGB space and the tolerance
applies to the maximum component difference from the corresponding component of
the central color.
The tolerance, just like the central color, should be appropriate to the type of the
source wave.
The generated mask is stored in the wave M_SelectColor in the current data folder. If
a wave by that name exists prior to the execution of this operation, it is overwritten.
You can also use the /R flag with this operation to limit the color selection to pixels in
the ROI wave whose value is zero.

setBeam Sets the data of a particular beam in imageMatrix.
A “beam” is a 1D array in the Z-direction. If a row is a 1D array in the first dimension
and a column is a 1D array in the second dimension then a beam is a 1D array in the
third dimension.
Specify the beam with the /BEAM={row,column} flag and the 1D beam data wave with
the /D flag. The beam data wave must have the same number of elements as the
number of layers and same numeric type as imageMatrix. Use getBeam to extract the
beam.

ImageTransform

V-333

setChunk Overwrites the data in the wave imageMatrix at chunk index specified by /CHIX with
the data contained in a 3D wave specified by the /D flag. The assigned data must be
contained in a wave that matches the first three dimensions of imageMatrix and must
have the same number type. See also getChunk and insertChunk.

setPlane Sets a plane (given by the /P flag) in the designated image with the data in a wave
specified by the /D flag. It is designed as a complement of the getPlane keyword to
provide an easier (faster) way to create multiplane images. Note that the operation
supports setting a plane when the source data is smaller than the destination plane in
which case the source data is placed in memory contiguously starting from the corner
pixel of the destination plane. If the source data is larger than the destination plane it
is clipped to the appropriate rows and columns. If you are setting all planes in the
destination wave using algorithmically named source waves you could use the
stackImages keyword instead. See also getPlane keyword.

shading Calculates relative reflectance of a surface for a light source position defined by the /A
flag.
The operation estimates the slope of the surface and then computes a relative
reflectance defined as the dot product of the direction of the light and the normal to
the surface at the point of interest. Reflectivity is scaled using the expression:
outPixel = shadingA * (sunDirection · surfaceNormal) + shadingB
By default shadingA=1, shadingB=0.
The result is stored in the wave M_ShadedImage, which has the same data type as the
source wave.
If the source wave is any integer type, and the value of shadingA=1 the operation sets
that value to 255.
The smallest supported wave size is 4x4 elements.
Values along the boundary (1 pixel wide) are arbitrary because there are no
derivatives calculable for those pixels, so these pixels are filled with duplicates of the
inner rows and columns.

shrinkRect Shrinks imageMatrix to include only the minimum rectangle that contains all the
pixels whose value is different from an outer value. The outer value is specified with
the /F flag. This is useful in situations where ImageSeedFill has set the pixels around
the object of interest to some outer value and it is desired to extract the smallest
rectangle that contains interesting data. The output is stored in the wave M_Shrunk.

stackImages Creates a 3D or 4D stack from individual image waves in the current data folder. The
waves should be of the form baseNameN, where N is a numeric suffix specifying the
sequence order. imageMatrix should be the name of the first wave that you want to
add to the stack. You can use the /NP flag to specify the number of waves that you
want to add to the stack.
The result is a 3D or 4D wave named M_Stack, which overwrites any existing wave
of that name in the current data folder.
With /K, it kills all waves copied into the stack.

sumAllCols Creates a wave W_sumCols in which every entry is the sum of the pixels on the
corresponding image column. For a 3D wave, unless you specify a plane using the /P
flag it will use the first plane by default.

sumAllRows Creates a wave W_sumRows in which every entry is the sum of the pixels on the
corresponding image row. For a 3D wave, unless you specify a plane using the /P flag
it will use the first plane by default.

sumCol Stores in the variable V_value the sum of the elements in the column specified by /G
flag and optionally the /P flag.

sumPlane Stores in the variable V_value the sum of the elements in the plane specified by the /P
flag.

ImageTransform

V-334

sumPlanes Creates a 2D wave M_SumPlanes which contains the same number of rows and
columns as the 3D source wave. Each entry in M_SumPlanes is the sum of the
corresponding pixels in all the planes of the source wave. M_SumPlanes is a double
precision wave if the source wave is double precision. Otherwise it is a single
precision wave.

sumRow Stores in the variable V_value the sum of the elements of a row specified by /G flag
and optionally the /P flag.

swap Swaps image data following a 2D FFT. The transform swaps diagonal quadrants of
the image in one or more planes. This keyword does not support any flags. The
swapping is done in place and it overwrites the source wave.

swap3D Swaps data following a 3D FFT. The transform swaps diagonal quadrants of the data.
This keyword does not support any flags. The swapping is done in place and the
source wave is overwritten.

transposeVol

vol2surf Creates a quad-wave output (appropriate for display in Gizmo) that wraps around 3D
“particles”. A particle is defined as a region of nonzero value voxels in a 3D wave. The
algorithm effectively computes a box at the resolution of the input wave which
completely encloses the data. The output wave M_Boxy is a 2D single precision wave
of 12 columns where each row corresponds to one disjoint quad and the columns
provide the sequential X, Y, and Z coordinates of the quad vertices.

voronoi Computes the voronoi tesselation of a convex domain defined by the X, Y positions of
the input wave. imageMatrix must be a triplet wave where the first column contains
the X-values, the second column contains the Y-values and the third column is an
arbitrary (zero is recommended) constant. The result of the operation is stored in the
two column wave M_VoronoiEdges which contains sequential edges of the Voronoi
polygons. Edges are separated from each other by a row of NaNs. The outer most
polygons share one or more edges with a large triangle which contains the convex
domain.

xProjection Computes the projection in the X-direction and stores the result in the wave
M_xProjection. See zProjection for more information.

Transposes a 3D wave. The transposed wave is stored in M_VolumeTranspose. The
/O flag does not apply. The operation supports the following 5 transpose modes
which are specified using the /G flag:

mode Equivalent Command

1 M_VolumeTranspose=imageMatrix[p][r][q]

2 M_VolumeTranspose=imageMatrix[r][p][q]

3 M_VolumeTranspose=imageMatrix[r][q][p]

4 M_VolumeTranspose=imageMatrix[q][r][p]

5 M_VolumeTranspose=imageMatrix[q][p][r]

ImageTransform

V-335

Flags

xyz2rgb Converts a 3D single precision XYZ color-space data into RGB based on the D65 white
point. The transformation used is:

If you do not specify the /O flag, the results are saved in a single precision 3D wave
(NT_FP32) “M_XYZ2RGB”.
Note that not all XYZ values map into positive RGB triplets (consider colors that
reside outside the RGB triangle in the XYZ diagram). This operation gives you the
following choices: by default, the output wave is a single precision wave that will
include possible negative RGB values. If you specify the /U flag, for unsigned short
output wave, the operation will set to zero all negative components and scale the
remaining ones in the range 0 to 65535.

yProjection Computes the projection in the Y-direction and stores the result in the wave
M_yProjection. See zProjection for more information.

zDot Computes the dot product of a beam in srcWave with a 1D zVector wave (specified
with the /D flag). This will convert stacked images of spectral scans into RGB or XYZ
depending on the scaling in zVector. The srcWave and zVector must be the same data
type (float or double). The wave M_StackDot contains the result in the current data
folder.

zProjection Computes the projection in the Z-direction and stores the result in the wave
M_zProjection. The source wave must be a 3D wave of arbitrary data type. The value
of the projection depends on the method specified via the /METH flag.

/A={azimuth, elevation [, shadingA, shadingB]}

Specifies parameters for shade. Position of the light source is given by azimuth
(measured in degrees counter-clockwise) and elevation (measured in degrees above
the horizon).
The parameters shadingA and shadingB are optional. By default their values are 1
and 0, respectively.

/Beam={row,column} Designates a beam in a 3D wave; both row and column are zero based.

/BPJ={width,height} Specifies the backProjection parameters: width and height are the width and
height of the reconstructed image and should be equal to the size of the original
wave.

/C=CMapWave Specifies the colormap wave for cmap2rgb keyword. The CMapWave is expected
to be a 2D wave consisting of three columns corresponding to the RGB entries.

/CHIX=chunkIndex Identifies the chunk index for getting, inserting or setting a chunk of data in a 4D
wave. chunkIndex ranges from 0 to the number of chunks in imageMatrix.

/CLAM=fuzzy Sets the value used to compute the fuzzy probability in fuzzyClassify. It must
satisfy fuzzy > 1 (default is 2).

/CLAS=num Sets the number of requested classes in fuzzyClassify. If you don’t know the
number of expected classes and num is too high, fuzzyClassify will likely produce
some degenerate classes.

/D=waveName Specifies a data wave. Check the appropriate keyword documentation for more
information about this wave.

R

G

B

�

�

�
�
�

�

�

�
�
�

=

3.240479 �1.537150 � 0.498535

�0.969256 1.875992 0.041556

0.055648 � 0.204043 1.057311

�

�

�
�
�

�

�

�
�
�

x

y

z

�

�

�
�
�

�

�

�
�
�

.

ImageTransform

V-336

/F=value Increases the sampling in the angle domain when used with the Hough keyword.
By default value=1 and the operation results in single degree increments in the
interval 0 to 180, and if value=1.5 there will be 180*1.5 rows in the transform.
Specifies the outer pixel value surrounding the region of interest when used with
shrinkRect keyword.

/G=colNumber Specifies either the row or column number used in connection with getRow or
getCol keywords. This flag also specifies the transpose mode with the
transposeVol keyword.

/H={minHue, maxHue}
/H=hueWave

Specifies the range of hue values for selecting pixels. The hue values are specified
in degrees in the range 0 to 360. Hue intervals that contain the zero point should
be specified with the higher value first, e.g., /H={330,10}.
Use hueWave when you have more than one pair of hue values that bracket the
pixels that you want to select.
See HSL Segmentation on page III-320 for an example.

/I=iterations Sets the number of iterations in ccsubdivision and in fuzzyClassify.

/INSI=imageWave Specifies the wave, imageWave, to be used with the insertImage keyword.
imageWave is a 2D wave of the same numeric data type as imageMatrix.

/INSW=wave Specifies the 2D wave to be inserted into a 3D wave using the keywords:
insertXplane, insertYplane, or insertZplane.

/INSX=xPos Specifies the pixel position at which the first row is inserted. Ignores wave
scaling.

/INSY=yPos Specifies the pixel position at which the first column is inserted. Ignores wave
scaling.

/IOFF={dx,dy,bgValue} Specifies the amount of positive or negative integer offset with dx and dy and the
new background value, bgValue, with the offsetImage keyword.

/IWAV=wave Specifies the wave which provides the indices when used with the keyword
indexWave. The wave should have as many columns as the dimensions of
imageMatrix (2, 3, or 4). For example, to specify indices for pixels in an image, the
wave should have two columns. The first column corresponds to the row
designation and the second to the column designation of the pixel. The wave can
be of any number type (other than complex) and entries are assumed to be integer
indices; there is no support for interpolation or for wave scaling.

/J=quality Specifies the quality of JPEG image compression. quality can have values ranging
from 0 (lowest) to 100 (highest). This flag is used with the JPEGQ keyword.

/L={minLight, maxLight}
/L=lightnessWave

Specifies the range of lightness for selecting pixels. The lightness values are in the
range 0-1. If you do not use the /L flag than the default full range is used.
Use lightnessWave when you have more than one pair of lightness values
corresponding to the pixels that you want to select. For each pair, values should
be arranged so that the smaller one is first and the larger is second. There is no
restriction on the order of pairs in the wave except that they match the other
waves used by the operation.

/LARA=minPixels Specifies the minimum number of pixels required for an area to be masked by the
findLakes keyword. If you do not specify this flag, the default value used is 100.

/LCVT Use 8-connectivity instead of 4-connectivity.

/LRCT={minX,minY,maxX,maxY}

Sets the rectangular region of interest for the findLakes keyword. The operation
will not affect the original data outside the specified rectangle. The X and Y values
are the scaled values (i.e., using wave scaling).

/L

ImageTransform

V-337

/LTAR=target Set the target value for the masked region in the findLakes keyword.

/LTOL=tol Specifies the tolerance for the findLakes keyword. By default the tolerance is
zero. The tolerance must be a positive number. The operation uses the tolerance
by requiring neighboring pixels to have a value between that of the current pixel
V and V+tol.

/M=n

/METH=method

/N={rowsToAdd, colsToAdd}

Creates an image that is larger or smaller by rowsToAdd, colsToAdd. The additional
pixels are set by duplicating the values in the last row and the last column of the
source image.

/NCLR=M Specifies the maximum number of colors to find with the rgb2cmap keyword. M
must be a positive number; the default value is 256 colors.
The result of the operation is saved in the wave M_paddedImage.

/NP=numPlanes Specifies the number of planes to remove from a 3D wave when using the
removeXplane, removeYplane, or removeZplane keywords. Specifies the
number of waves to be added to the stack with the stackImages keyword.

/O Overwrites the input wave with the result except in the cases of Hough transform
and cmap2rgb. Does not apply to the transposeVol parameter.

/P=planeNum Specifies the plane on which you want to operate with the rgb2gray or getPlane
keywords. Also used for getRow or getCol if the source wave is 3D.

/PSL={xStart,dx,Nx,aStart,da,Na}

Specifies projection slice parameters. xStart is the first offset of the parallel rays
measured from the center of the image. dx is the directed offset to the next ray in
the fan and Nx is the number of rays in the fan. aStart is the first angle for which
the projection is calculated. The angle is measured between the positive X-
direction and the direction of the ray. da is the offset to the next angle at which the
fan of rays is rotated and Na is the total number of angles for which the projection
is computed.

/PTYP=num

Specifies the method by which a 2D target image is filled with data from a 1D
wave using the fillImage keyword.
n =0: Straight column fill, which you can also accomplish by a

redimension operation.
n=1: Straight row fill.
n=2: Serpentine column fill. The points from the data wave are

sequentially loaded onto the first column and continue from the
last to the first point of the second column, and then sequentially
through the third column, etc.

n=3: Serpentine row fill.

Determines the values of the projected pixels for xProjection, yProjection, and
zProjection keywords.
method =1: Pixel (i,j) in M_zProjection is assigned the maximum value that

(i,j,*) takes among all layers of imageMatrix (default).
method=2: Pixel (i,j) in M_zProjection is assigned the average value that

(i,j,*) takes among all layers of imageMatrix.
method=3: Pixel (i,j) in M_zProjection is assigned the minimum value that

(i,j,*) takes among all layers of imageMatrix.

Specifies the plane to use with the getPlane keyword.
num=0: XY plane.
num=1: XZ plane.
num=2: YZ plane.

ImageTransform

V-338

/Q Quiet flag. When used with the Hough transform, it suppresses report to the
history of the angle corresponding to the maximum.

/R=roiWave Specifies a region of interest (ROI) defined by roiWave. For use with the keywords:
averageImage, scalePlanes and selectColor.

/S={minSat, maxSat}

/S=saturationWave Specifies the range of saturation values for selecting pixels. The saturation values
are in the range 0 to 1. If you do not use the /S flag, the default value is the full
saturation range.
Use saturationWave when you have more than one pair of saturation values. If you
use a saturation wave you must also use a lightness wave (see /L). saturationWave
should consist of pairs of values where the first point is the lower saturation value
and the second point is the higher saturation value. There is no restriction on the
order of pairs within the wave.

/SEG Computes the segmentation image for fuzzyClassify. The image is stored in the
2D wave M_FuzzySegments. The value of each pixel is 255*classIndex/number of
classes. Here classIndex is the index of the class to which the pixel belongs with the
highest probability.

/T=flag Use one or more of the following flags.
1: Swaps the data so that the DC is at the center of the image.

2: Calculates the power defined as: .

/TEXT=val

/TOL=tolerance Sets the tolerance for iteration convergence with fuzzyClassify. Convergence is
satisfied when the sum of the squared differences of all classes drops below
tolerance, which must not be negative.

/U Creates an HSL wave of type unsigned short that contains values between 0 and
65535 when used with rgb2hsl.

/W Pads the image by wrapping the data. If you are adding more rows or more
columns than are available in the source wave, the operation cycles through the
source data as many times as necessary.

/X={Nx,Ny,x1,y1,z1,x2,y2,z2,x3,y3,z3}

Nx and Ny are the rows and columns of the wave M_ExtractedSurface. The
remaining parameters specify three 3D points on the extracted plane. The three
points must be chosen at the vertices of the plane and entered in clock-wise order
without skipping a vertex.

/Z Ignores errors.

P f() 0.5 H f()2 H f–()2+()⋅=

Specifies the type of texture to create with the imageToTexture keyword. val is
a binary flag that can be a combination of the following values.

val Texture

1 Truncates each dimension to the nearest power of 2, which is
required for OpenGL textures.

2 Creates a 1D texture (all other textures are for 2D applications).

4 Creates a single channel texture suitable for alpha or luminance
channels.

8 Creates a RGB texture from a 3 (or more) layer data.

16 Creates a RGBA texture. If imageMatrix does not have a 4th
layer, alpha is set to 255.

ImageUnwrapPhase

V-339

Examples
If you want to insert a 2D (M x N) wave, plane0, into plane number 0 of an (M x N x 3) wave, rgbWave:
ImageTransform /P=0/D=plane0 setPlane rgbWave

If your source wave is 100 rows by 100 columns and you want to create a montage of this image use:
ImageTransform /W/N={200,200} padImage srcWaveName

An example of hue and saturation segmentation on an HSL wave.
Function hueSatSegment(hslW,lowH,highH,lowS,highS)

Wave hslW
Variable lowH,highH,lowS,highS

Make/D/O/N=(2,3) conditionW
conditionW={{lowH,highH},{lowS,highS},{NaN,NaN}}
ImageTransform/D=conditionW matchPlanes hslW
KillWaves/Z conditionW

End

An example of voronoi tesselation.
Make/O/N=(33,3) ddd=gnoise(4)
ImageTransform voronoi ddd
Display ddd[][1] vs ddd[][0]
ModifyGraph mode=3,marker=19,msize=1,rgb=(0,0,65535)
Appendtograph M_VoronoiEdges[][1] vs M_VoronoiEdges[][0]
SetAxis left -15,15
SetAxis bottom -5,10

See Also
Chapter III-11, Image Processing, for many examples. In particular see: Color Transforms on page III-299,
Handling Color on page III-325, and General Utilities: ImageTransform Operation on page III-327. The
MatrixOp operation.

References
Born, Max, and Emil Wolf, Principles of Optics, 7th ed., Cambridge University Press, 1999.
Details about the rgb2i123 transform:
Gevers, T., and A.W.M. Smeulders, Color Based Object Recognition, Pattern Recognition, 32, 453-464, 1999.

ImageUnwrapPhase
ImageUnwrapPhase [flags][qualityWave=qWave,] srcwave=waveName
The ImageUnwrapPhase operation unwraps the 2D phase in srcWave and stores the result in the wave
M_UnwrappedPhase in the current data folder. srcWave must be a real valued wave of single or double
precision. Phase is measured in cycles (units of 2π).

Parameters

Flags

qualityWave=qWave Specifies a wave, qWave, containing numbers that rate the quality of the phase
stored in the pixels. qWave is 2D wave of the same dimensions as srcWave that can
be any real data type and values can have an arbitrary scale. If used with /M=1 the
quality values determine the order of phase unwrapping subject to branch cuts,
with higher quality unwrapped first. If used with /M=2 the unwrapping is guided
by the quality values only. This wave must not contain any NaNs or INFs.

srcwave=waveName Specifies a real-valued SP or DP wave that may contain NaNs or INFs but is
otherwise assumed to contain the phase modulo 1.

/E Eliminate dipoles. Only applies to Goldstein’s method (/M=1). Dipoles are a pair of a
positive and negative residues that are side by side. They are eliminated from the
unwrapping process by replacing them with a branch cut. The variable
V_numResidues contains the number of residues remaining after removal of the
dipoles.

ImageUnwrapPhase

V-340

Details
Phase unwrapping in two dimensions is difficult because the result of the operation needs to be such that any
path integral over a closed contour will vanish. In many practical situations, certain points in the plane have the
property that a path integral around them is not zero. These nonzero points are residues. We use the definition
that when a counterclockwise path integral leads to a positive value the residue is called a positive residue.
ImageUnwrapPhase uses the modified Itoh’s method by default. Phase is unwrapped with an offset equal
to the first element that is allowed by the ROI starting at (0,0) and scanning by rows. If there are no residues
or if you unwrap the phase using Itoh’s algorithm, then the phase is unwrapped only subject to the optional
ROI using a seed-fill type algorithm that unwraps by growing a region outward from the seed pixel. Each
time that the region growing is terminated by boundaries (external or due to the ROI), the algorithm returns
to the row scanning to find a new starting point.
If there are residues and you choose Goldstein’s method, the residues are first mapped into a lookup table
(LUT) and branch-cuts are determined between residues and boundaries. It is also possible to remove some
residues (dipoles) using the /E flag. Phase is then unwrapped in regions bounded by branch cuts using a
seed-fill type algorithm that does not cross branch cuts. With a quality wave, the algorithm follows the same
seed-fill approach except that it gives priority to pixels with high quality level. The phase on the branch cuts
themselves is subsequently calculated.

/L

/M=method

/MAX=len Specifies the maximum length of a branch cut. Only applicable to Goldstein’s method
(/M=1). By default this is set to the largest of rows or columns.

/Q Suppresses messages to the history.

/R=roiWave Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/B/U) that has the same number of rows and columns as waveName. The ROI
itself is defined by entries or pixels in the roiWave with value of 1. Pixels outside the
ROI should be set to zero. The ROI does not have to be contiguous but it is best if you
choose a convex ROI in order to make sure that any branch cuts computed by the
algorithm lie completely inside the ROI domain.

/REST = threshold Sets the threshold value for evaluating a residue. The residue is evaluated by the
equivalent of a closed path integral. If the path integral value exceeds the threshold
value, the top-left corner of the quad is taken to be a positive residue. If the path
integral is less than -threshold, it is a negative residue.

Saves the lookup table(LUT) used in the analysis with /M=1. This information may
be useful in analyzing your results. The LUT is saved as a 2D unsigned byte wave
M_PhaseLUT in the current data folder. Each entry consists of 8-bit fields:

Other bits are reserved and subject to change. See Setting Bit Parameters on page
IV-12 for details about bit settings.

bit=0: Positive residue.
bit=1: Negative residue.
bit=2: Branch cut.
bit=3: Image boundary exclusion.

Determines the method for computing the unwrapped phase:
method =0: Modified Itoh’s algorithm, which assumes that there are no residues

in the phase. The phase is unwrapped in a contiguous way subject
only to the ROI or singularities in the data (e.g., NaNs or INFs). You
will get wrong results for the unwrapped phase if you use this
method and your data contains residues.

method=1: Modified Goldstein’s algorithm. Creates the variables
V_numResidues and V_numRegions. Optional qWave can
determine order of unwrapping around the branch cuts.

method=2: Uses a quality map to decide the unwrapping path priority. The
quality map is a 2D wave that has the same dimensions as the source
wave but could have an arbitrary data type. The phase is
unwrapped starting from the largest value in the quality map.

ImageWindow

V-341

The output wave M_UnwrappedPhase has the same wave scaling and dimension units as srcWave. The
unwrapped phase is units of cycles; you will have to multiply it by 2π if you need the results in radians.
The operation creates two variables:

Examples
To unwrap a complex wave wCmplx:
Make/O/N=(DimSize(wCmplx,0),DimSize(wCmplx,1) phaseWave
phaseWave=atan2(imag(wCmplx),real(wCmplx))/2*pi
ImageUnwrapPhase/N=1 srcWave=phaseWave

To find the locations of positive residues in the phase:
ImageUnwrapPhase/N=1/L srcWave=phaseWave
Duplicate/O M_PhaseLUT ee
ee=M_PhaseLUT&3 ? 1:0

To find the branch cuts:
Duplicate/O M_PhaseLUT bc
bc=M_PhaseLUT&4 ? 1:0

See Also
The Unwrap operation and the mod function.

References
The following reference is an excellent text containing in-depth theory and detailed explanation of many
two-dimensional phase unwrapping algorithms:
Ghiglia, Dennis C., and Mark D. Pritt, Two Dimensional Phase Unwrapping — Theory, Algorithms and Software,

Wiley, 1998.

ImageWindow
ImageWindow [/I/O/P=param] method srcWave
The ImageWindow operation multiplies the named waves by the specified windowing method.
ImageWindow is useful in preparing an image for FFT analysis by reducing FFT artifacts produced at the
image boundaries.

Parameters

Flags

Details
The 1-dimensional window for each column is multiplied by the value of the corresponding row’s window
value. In other words, each point is multiplied by the both the row-oriented and column-oriented window value.

V_numResidues Number of residues encountered(if using /M=1).

V_numRegions Number of independent phase regions. In Goldstein’s method the regions are
bounded by branch cuts, but in Itoh’s method they depend on the content of the ROI
wave.

srcWave Two-dimensional wave of any numerical type. See WindowFunction for windowing
one-dimensional data.

method Selects the type of windowing filter. See ImageWindow Methods on page V-342.

/I Creates only the output wave containing the windowing filter values that are used to
multiply each pixel in srcWave. It does not filter the source image.

/O Overwrites the source image with the output image. If /O is not used then the
operation creates the M_WindowedImage wave containing the filtered source image.

/P=param Specifies the design parameter for the Kaiser window.

ImageWindow

V-342

This means that all four edges of the image are decreased while the center remains at or near its original
value. For example, applying the Bartlett window to an image whose values are all equal results in a
trapezoidal pyramid of values:

The default output wave is created with the same data type as the source image. Therefore, if the source
image is of type unsigned byte (/b/u) the result of using /I will be identically zero (except possibly for the
middle-most pixel). If you keep in mind that you need to convert the source image to a wave type of single
or double precision in order to perform the FFT, it is best if you convert your source image (e.g.,
Redimension/S srcImage) before using the ImageWindow operation.
The windowed output is in the M_WindowedImage wave unless the source is overwritten using the /O flag.
The necessary normalization value (equals to the average squared window factor) is stored in V_value.

ImageWindow Methods
This section describes the supported keywords for the method parameter. In all equations, L is the array
width and n is the pixel number.

Examples
To see what one of the windowing filters looks like:

Hanning:
.

Hamming:
.

Bartlet: Synonym for Bartlett.

Bartlett:

.

Blackman:
.

Kaiser:

where I0{…} is the zeroth-order Bessel function of the first kind and ωa is
the design parameter specified by /P=param.

KaiserBessel20: α = 2.0
KaiserBessel25: α = 2.5
KaiserBessel30: α = 3.0

Column 99 Profile

Column 50 Profile

Column 25 Profile

1.0

0.8

0.6

0.4

0.2

0.0

200150100500

w n() 1
2
--- 1 2πn

L 1–

 cos–= 0 n L 1–≤ ≤

w n() 0.54 0.46 2πn
L 1–

 cos–= 0 n L 1–≤ ≤

w n()

2n
L 1–
------------ 0 n L 1–

2
------------≤ ≤

2 2n
L 1–
------------– L 1–

2
------------ n L 1–≤ ≤

=

w n() 0.42 0.5 2πn
L 1–

 cos 0.08 4πn

L 1–

 cos+–= 0 n L 1–≤ ≤

I0 ωa L 1–() 2⁄()2 n L 1–() 2⁄()–[]2–[]
1 2⁄

I0 ωa L 1–() 2⁄(){ }
-- 0 n L 1–≤ ≤

w n()
I0 πα 1 n

L() 2⁄

 2

–

I0 πα()
--= 0 n L

2
---≤ ≤

I0 X() x 2⁄()2

k!

2

k 0=

∞

=

IndependentModule

V-343

Make/N=(80,80) wShape // Make a matrix
ImageWindow/I/O Blackman wShape // Replace with windowing filter
Display;AppendImage wShape // Display windowing filter
Make/N=2 xTrace={0,79},yTrace={39,39} // Prepare for 1D section
AppendToGraph yTrace vs xTrace
ImageLineProfile srcWave=wShape, xWave=xTrace, yWave=yTrace
Display W_ImageLineProfile // Display 1D section of filter

See Also
The WindowFunction operation for information about 1D applications.
Spectral Windowing on page III-242. Chapter III-11, Image Processing contains links to and descriptions
of other image operations.
See FFT operation for other 1D windowing functions for use with FFTs; DSPPeriodogram uses the same
window functions. See Correlations on page III-308.

References
For further windowing information, see page 243 of:
Pratt, William K., Digital Image Processing, John Wiley, New York, 1991.

IndependentModule
#pragma IndependentModule = imName
The IndependentModule pragma designates groups of one or more procedure files that are compiled and
linked separately. Once compiled and linked, the code remains in place and is usable even though other
procedures may fail to compile. This allows functioning control panels and menus to continue to work
regardless of user programming errors.

See Also
Independent Modules on page IV-218, The IndependentModule Pragma on page IV-43 and #pragma.

IndependentModuleList
IndependentModuleList(listSepStr)
The IndependentModuleList function returns a string containing a list of independent module names
separated by listSepStr.
Use StringFromList to access individual names.

Parameters
 listSepStr contains the character, usually ";", to be used to to separate the names in the returned list.

Details
Only the first character of listSepStr is used.
ProcGlobal is not in the returned list, and the order of returned names is not defined.

See Also
Independent Modules on page IV-218.
GetIndependentModuleName, StringFromList, FunctionList.

IndexedDir
IndexedDir(pathName, index, flags)
The IndexedDir function returns a string containing the name of or the full path to the indexth folder in the
folder referenced by pathName.

Parameters
pathName is the name of an Igor symbolic path pointing to the parent directory.
index is the index number of the directory (within the parent directory) of interest starting from 0. If index
is -1, IndexedDir will return the name of all of the folders in the parent, separated by semicolons.
flags is a bitwise parameter:
All other bits are reserved and should be cleared.

IndexedDir

V-344

See Setting Bit Parameters on page IV-12 for details about bit settings.

Details
You create the symbolic path identifying the parent directory using the NewPath operation or the New
Path dialog (Misc menu).
Prior to Igor Pro 3.1, IndexedDir was an external function and took a string as the first parameter rather
than a name. The pathName parameter can now be either a name or a string containing a name. Any of the
following will work:
String str = "IGOR"
Print IndexedDir(IGOR, 0, 0) // First parameter is a name.
Print IndexedDir($str, 0, 0) // First parameter is a name.
Print IndexedDir("IGOR", 0, 0) // First parameter is a string.
Print IndexedDir(str, 0, 0) // First parameter is a string.

The acceptance of a string is for backward compatibility only. New code should be written using a name.
The returned path uses the native conventions of the OS under which Igor is running.

Examples

Example: Recursively Listing Directories and Files
Here is an example for heavy-duty Igor Pro programmers. It is an Igor Pro user-defined function that prints
the paths of all of the files and folders in a given folder with or without recursion. You can rework this to
do something with each file instead of just printing its path.
To try the function, copy and paste it into the Procedure window. Then execute the example shown in the
comments.
// PrintFoldersAndFiles(pathName, extension, recurse, level)
// Shows how to recursively find all files in a folder and subfolders.
// pathName is the name of an Igor symbolic path that you created
// using NewPath or the Misc->New Path menu item.
// extension is a file name extension like ".txt" or "????" for all files.
// recurse is 1 to recurse or 0 to list just the top-level folder.
// level is the recursion level - pass 0 when calling PrintFoldersAndFiles.
// Example: PrintFoldersAndFiles("Igor", ".ihf", 1, 0)
Function PrintFoldersAndFiles(pathName, extension, recurse, level)

String pathName // Name of symbolic path in which to look for folders and files.
String extension // File name extension (e.g., ".txt") or "????" for all files.
Variable recurse // True to recurse (do it for subfolders too).
Variable level // Recursion level. Pass 0 for the top level.

Variable folderIndex, fileIndex
String prefix

// Build a prefix (a number of tabs to indicate the folder level by indentation)
prefix = ""
folderIndex = 0
do

if (folderIndex >= level)
break

endif
prefix += "\t" // Indent one more tab
folderIndex += 1

while(1)

// Print folder
String path
PathInfo $pathName // Sets S_path
path = S_path
Printf "%s%s\r", prefix, path

// Print files
fileIndex = 0
do

String fileName
fileName = IndexedFile($pathName, fileIndex, extension)
if (strlen(fileName) == 0)

break

Bit 0: Set if you want a full path. Cleared if you want just the directory name.

IndexedFile

V-345

endif
Printf "%s\t%s%s\r", prefix, path, fileName
fileIndex += 1

while(1)

if (recurse) // Do we want to go into subfolder?
folderIndex = 0
do

path = IndexedDir($pathName, folderIndex, 1)
if (strlen(path) == 0)

break // No more folders
endif

String subFolderPathName = "tempPrintFoldersPath_" + num2istr(level+1)

// Now we get the path to the new parent folder
String subFolderPath
subFolderPath = path

NewPath/Q/O $subFolderPathName, subFolderPath
PrintFoldersAndFiles(subFolderPathName, extension, recurse, level+1)
KillPath/Z $subFolderPathName

folderIndex += 1
while(1)

endif
End

Example: Fast Scan of Directories
Calling IndexedDir for each directory is an O(N^2) problem because to get the nth directory the OS routines
underlying IndexedDir need to iterate through directories 0..n-1. This becomes an issue only if you are
dealing with hundreds or thousands of directories.
This function illustrates a technique for converting this to an O(N) problem by getting a complete list of
paths from IndexedDir in one call and storing them in a text wave. This approach could also be used with
IndexedFile.
Function ScanDirectories(pathName, printDirNames)

String pathName // Name of Igor symbolic path
Variable printDirNames // True if you want to print the directory names

Variable t0 = StopMSTimer(-2)

String dirList = IndexedDir($pathName, -1, 0)
Variable numDirs = ItemsInList(dirList)

// Store directory list in a free text wave.
// The free wave is automatically killed when the function returns.
Make/N=(numDirs)/T/FREE dirs = StringFromList(p, dirList)

String dirName
Variable i
for(i=0; i<numDirs; i+=1)

dirName = dirs[i]
Print i, dirName

endfor

Variable t1 = StopMSTimer(-2)
Variable elapsed = (t1 - t0) / 1E6
Printf "Took %g seconds\r", elapsed

End

IndexedFile
IndexedFile(pathName, index, fileTypeOrExtStr [, creatorStr])
If index is greater than or equal to zero, IndexedFile returns a string containing the name of the indexth file
in the folder specified by pathName which matches the file type or extension specified by fileTypeOrExtStr.
If index is -1, IndexedFile returns a semicolon-separated list of all matching files.
IndexedFile returns an empty string ("") if there is no such file.

IndexedFile

V-346

Parameters
pathName is the name of an Igor symbolic path. It is not a string.
index normally starts from zero. However, if index is -1, IndexedFile returns a string containing a semicolon-
separated list of the names of all files in the folder associated with the specified symbolic path which match
fileTypeOrExtStr.
fileTypeOrExtStr is either:
• A string starting with “.”, such as “.txt”, “.bwav”, or “.c”. Only files with a matching file name

extension are indexed. Set fileTypeOrExtStr to “.” to index file names that end with “.” such as
“myFileNameEndsWithThisDot.”

• A string containing exactly four characters, such as “TEXT” or “IGBW”. Only files of the specified
Macintosh file type are indexed. However, if fileTypeOrExtStr is “????”, files of any type are indexed.

• On Windows, Igor considers files with “.txt” extensions to be of type TEXT. It does similar
mappings for other extensions. See File Types and Extensions on page III-406 for details.

creatorStr is an optional string argument containing four characters such as “IGR0”. Only files with the
specified Macintosh creator code are indexed. Set creatorStr to “????” to index all files (or omit the
argument altogether). This argument is ignored on Windows systems.

Order of Files Returned By IndexedFile
The order in which files are returned by IndexedFile is determined by the operating system. Empirically,
this is alphabetical order for both Macintosh and Windows. If the order matters to you, you should
explicitly sort the file names.
For example, assume you have files named "File1.txt", "File2.txt" and "File10.txt". An alphabetic order gives
you: "File1.txt;File10.txt;File2.txt;". Often what you really want is a combination of alphabetic and numeric
sorting returning "File1.txt;File2.txt;File10.txt;". Here is a function that does that:
Function DemoIndexedFile()

String pathName = "Igor"// Refers to "Igor Pro Folder"

// Get a semicolon-separated list of all files in the folder
String list = IndexedFile($pathName, -1, ".txt")

// Sort using combined alpha and numeric sort
list = SortList(list, ";", 16)

// Process the list
Variable numItems = ItemsInList(list)
Variable i
for(i=0; i<numItems; i+=1)

String fileName = StringFromList(i, list)
Print i, fileName

endfor
End

Treatment of Macintosh Dot-Underscore Files
As of Igor Pro 6.10, IndexedFile ignores "dot-underscore" files unless fileTypeOrExtStr is "????".
A dot-underscore file is a file created by Macintosh when it writes to a non-HFS volume, for example, when
it writes to a Windows volume via SMB file sharing. The dot-underscore file stores Macintosh HFS-specific
data such as the file's type and creator codes, and the file's resource fork, if it has one.
For example, if a file named "wave0.ibw" is copied via SMB to a Windows volume, Mac OS X creates two
files on the Windows volume: "wave0.ibw" and "._wave0.ibw". Mac OS X makes these two files appear as
one to Macintosh applications. However, Windows does not do this. As a consequence, when a Windows
program sees "._wave0.ibw", it expects it to be a valid .ibw file, but it is not. This causes problems.
By ignoring dot-underscore files, IndexedFile prevents this type of problem. However, if fileTypeOrExtStr
is "????", IndexedFile will return dot-underscore files on Windows.

Examples
NewPath/O myPath "MyDisk:MyFolder:"
Print IndexedFile(myPath,-1,"TEXT") // all text-type files
Print IndexedFile(myPath,0,"TEXT") // only the first text file
Print IndexedFile(myPath,-1,".dat") // *.dat
Print IndexedFile(myPath,-1,"TEXT","IGR0") // all Igor text files
Print IndexedFile(myPath,-1,"????") // all files, all creators

IndexSort

V-347

See IndexedDir for another example using IndexedFile and for a method for speeding up scanning of very
large numbers of files.

See Also
The TextFile and IndexedDir functions.

IndexSort
IndexSort [/DIML] indexWaveName, sortedWaveName [, sortedWaveName]…
The IndexSort operation sorts the values in each sortedWaveName wave according to the Y values of
indexWaveName.

Flags

Details
indexWaveName can not be complex. indexWaveName is presumed to have been the destination of a previous
MakeIndex operation.
This has the effect of putting the sortedWaveName waves in the same order as the wave from which the index
values in indexWaveName was made.
All of the sortedWaveName waves must be of equal length.

See Also
MakeIndex and IndexSort Operations on page III-139.

Inf
Inf
The Inf function returns the “infinity” value.

InsertPoints
InsertPoints [/M=dim] beforePoint, numPoints, waveName [, waveName]…
The InsertPoints operation inserts numPoints points in front of point beforePoint in each waveName. The new
points have the value zero.

Flags

Details
Trying to insert points into any but the rows of a zero-point wave results in a zero-point wave. You must
first make the number of rows nonzero before anything else has an effect.

See Also
Lists of Values on page II-96.

/DIML Moves the dimension labels with the values (keeps any row dimension label with the
row's value).

/M=dim Specifies the dimension into which elements are to be inserted. Values are 0 for rows, 1 for
columns, 2 for layers, 3 for chunks. If /M is omitted, InsertPoints inserts in the rows dimension.

Integrate

V-348

Integrate
Integrate [type flags][flags] yWaveA [/X = xWaveA][/D = destWaveA]

[, yWaveB [/X = xWaveB][/D = destWaveB][, …]]
The Integrate operation calculates the 1D numeric integral of a wave. X values may be supplied by the X-
scaling of the source wave or by an optional X wave. Rectangular integration is used by default.
Integrate is multi-dimension-aware in the sense that it computes a 1D integration along the dimension
specified by the /DIM flag or along the rows dimension if you omit /DIM.
Complex waves have their real and imaginary components integrated individually.

Flags

Type Flags (used only in functions)
Integrate also can use various type flags in user functions to specify the type of destination wave reference
variables. These type flags do not need to be used except when it needed to match another wave reference
variable of the same name or to identify what kind of expression to compile for a wave assignment. See
WAVE Reference Types on page IV-58 and WAVE Reference Type Flags on page IV-59 for a complete list
of type flags and further details.
For example, when the input (and output) waves are complex, the output wave will be complex. To get the
Igor compiler to create a complex output wave reference, use the /C type flag with /D=destwave:
Make/O/C cInput=cmplx(sin(p/8), cos(p/8))
Make/O/C/N=0 cOutput
Integrate/C cInput /D=cOutput

/DIM= d

/METH=m

/P Forces point scaling.

/T Trapezoidal integration. Same as /METH=1.

Specifies the wave dimension along which to integrate when yWave is multi-
dimensional.

For example, for a 2D wave, /DIM=0 integrates each row and /DIM=1 integrates
each column.

d=-1: Treats entire wave as 1D (default).
d=0: Integrates along rows.
d=1: Integrates along columns.
d=2: Integrates along layers.
d=3: Integrates along rows.

Sets the integration method.
m=0: Rectangular integration (default). Results at a point are stored at the

same point (rather than at the next point as for /METH=2). This
method keeps the dimension size the same.

m=1: Trapezoidal integration.
m=2: Rectangular integration. Results at a point are stored at the next point

(rather than at the same point as for /METH=0). This method
increases the dimension size by one to provide a place for the last bin.

Integrate1D

V-349

Wave Parameters

Details
The computation equation for rectangular integration using /METH=0 is:

.

The computation equation for rectangular integration using /METH=2 is:

.

The inverse of this rectangular integration is the backwards difference.
Trapezoidal integration (/METH=1) is a more accurate method of computing the integral than rectangular
integration. The computation equation is:

.

If the optional /D = destWave flag is omitted, then the wave is integrated in place overwriting the source wave.
When using an X wave, the X wave must be a 1D wave with data type matching the Y wave (excluding the
complex type flag). Rectangular integration (/METH=0 or 2) requires an X wave having one more point than
the number of elements in the dimension of the Y wave being integrated. X waves with number points plus
one are allowed for rectangular integration with methods needing only the number of points. X waves are
not used with integer source waves.
Although it is mathematically suspect, rectangular integration using /METH=0 would be correct if the X
scaling of the output wave is offset by ΔX.
Differentiate/METH=1/EP=1 is the inverse of Integrate/METH=2, but Integrate/METH=2 is the
inverse of Differentiate/METH=1/EP=1 only if the original first data point is added to the output wave.
Integrate applied to an XY pair of waves does not check the ordering of the X values and doesn’t care about
it. However, it is usually the case that your X values should be monotonic. If your X values are not monotonic,
you should be aware that the X values will be taken from your X wave in the order they are found, which will
result in random X intervals for the X differences. It is usually best to sort the X and Y waves first (see Sort).

See Also
The Differentiate operation. The Integrate1D, area and areaXY functions.

Integrate1D
Integrate1D(UserFunctionName, min_x, max_x [, options [, count]])
The Integrate1D function performs numerical integration of a user function between the specified limits
(min_x and max_x).

Parameters
UserFunctionName must have the following format:

Note: All wave parameters must follow yWave in the command. All wave parameter flags and
type flags must appear immediately after the operation name (Integrate).

/D=destWave Specifies the name of the wave to hold the integrated data. It creates destWave if it does
not already exist or overwrites it if it exists.

/X=xWave Specifies the name of corresponding X wave. For rectangular integration, the number
of points in the X wave must be one greater than the number of elements in the Y wave
dimension being integrated.

waveOut p[] waveIn i[] xi 1+ xi–[]⋅
i 0=

p

=

waveOut 0[] 0=

waveOut p 1+[] waveIn i[] xi 1+ xi–[]⋅
i 0=

p

=

waveOut 0[] 0=

waveOut p[] waveOut p 1–[] waveIn p 1–[] waveIn p[]+
2

-- xp xp 1––[]⋅+=

Integrate1D

V-350

Function UserFunctionName(inX)
Variable inX
... do something
return result

End

options is one of the following:

By default, options is 0 and the function performs trapezoidal integration. In this case Igor evaluates the
integral iteratively. In each iteration the number of points where Igor evaluates the function increases by a
factor of 2. The iterations terminate at convergence to tolerance or when the number of evaluations is 223.
The count parameter specifies the number of subintervals in which the integral is evaluated. If you specify
0 or a negative number for count, the function performs an adaptive Gaussian Quadrature integration in
which Igor bisects the interval and performs a recursive refining of the integration only in parts of the
interval where the integral does not converge to tolerance.

Details
You can integrate complex-valued functions using a function with the format:
Function/C complexUserFunction(inX)

Variable inX
Variable/C result
//… do something
return result

End

The syntax used to invoke the function is:
Variable/C cIntegralResult=Integrate1D(complexUserFunction,min_x,max_x…)

You can also use Integrate1D to perform a higher dimensional integrals. For example, consider the function:
F(x,y) = 2x + 3y + xy.

In this case, the integral can be performed by establishing two user functions:

Function Do2dIntegration(xmin,xmax,ymin,ymax)
Variable xmin,xmax,ymin,ymax

Variable/G globalXmin=xmin
Variable/G globalXmax=xmax
Variable/G globalY

return Integrate1d(userFunction2,ymin,ymax,1) // Romberg integration
End

Function UserFunction1(inX)
Variable inX

NVAR globalY=globalY

return (3*inX+2*globalY+inX*globalY)
End

Function UserFunction2(inY)
Variable inY

NVAR globalY=globalY
globalY=inY
NVAR globalXmin=globalXmin
NVAR globalXmax=globalXmax

// Romberg integration
return Integrate1D(userFunction1,globalXmin,globalXmax,1)

End

This method can be extended to higher dimensions.
If the integration fails to converge or if the integrand diverges, Integrate1D returns NaN. When a function
fails to converge it is a good idea to try another integration method or to use a user-defined number of
intervals (as specified by the count parameter). Note that the trapezoidal method is prone to convergence
problems when the absolute value of the integral is very small.

0: Trapezoidal integration (default).

1: Romberg integration.

2: Gaussian Quadrature integration.

h y f x y(,) xdd=

IntegrateODE

V-351

See Also
The Integrate operation.

IntegrateODE
IntegrateODE [flags] derivFunc, cwaveName, ywaveSpec
The IntegrateODE operation calculates a numerical solution to a set of coupled ordinary differential
equations by integrating derivatives. The derivatives are user-specified via a user-defined function,
derivFunc. The equations must be a set of first-order equations; a single second-order equation must be
recast as two first-order equations, a third-order equation to three first order equations, etc. For more details
on how to write the function, see Solving Differential Equations on page III-270.
IntegrateODE offers two ways to specify the values of the independent variable (commonly called X or t)
at which output Y values are recorded. You can specify the X values or you can request a “free-run” mode.
The algorithms used by IntegrateODE calculate results at intervals that vary according to the characteristics of
the ODE system and the required accuracy. You can set specific X values where you need output (see the /X flag
below) and arrangements will be made to get values at those specific X values. In between those values,
IntegrateODE will calculate whatever spacing is needed, but intermediate values will not be output to you.
If you specify free-run mode, IntegrateODE will simply output all steps taken regardless of the spacing of
the X values that results.

Parameters

Flags

cwaveName Name of wave containing constant coefficients to be passed to derivFunc.

derivFunc Name of user function that calculates derivatives. For details on the form of the
function, see Solving Differential Equations on page III-270.

ywaveSpec Specifies a wave or waves to receive calculated results. The waves also contain initial
conditions. The ywaveSpec can have either of two forms:
ywaveName: ywaveName is a single, multicolumn wave having one column for each
equation in your equation set (if you have just one equation, the wave will be a simple
1D wave).
{ywave0, ywave1, …}: The ywaveSpec is a list of 1D waves, one wave for each equation.
The ordering is important — it must correspond to the elements of the y wave and
dydx wave passed to derivFunc.
Unless you use the /R flag to alter the start point, the solution to the equations is
calculated at each point in the waves, starting with row 1. You must store the initial
conditions in row 0.

/CVOP={solver, jacobian, extendedErrors [, maxStep]}

IntegrateODE

V-352

Selects options that affect how the Adams-Moulton and BDF integration schemes
operate. This flag applies only when using /M = 2 or /M = 3. These methods are based
on the CVODE package, hence the flag letters “CV”.

In both cases, the derivatives are approximated by finite differences.
In our experience, jacobian = 1 causes the integration to proceed by much smaller steps.
It might decrease overall integration time by reducing the computation required to
approximate the jacobian matrix.
If the extendedErrors parameter is nonzero, extra error information will be printed to
the history window in case of an error during integration using /M=2 or /M=3. This
extra information is mostly of the sort that will be meaningful only to WaveMetrics
software engineers, but may occasionally help you to solve problems. It is printed out
as a bug message (BUG:...) regardless of whether it is our bug or yours.
If maxStep is present and greater than zero, this option sets the maximum internal step
size that the CVODE package is allowed to take. This is particularly useful with /M=3,
as the BDF method is capable of taking extremely large steps if the derivatives don't
change much. Use of this option may be necessary to make sure that the CVODE
package doesn't step right over a brief excursion in, say, a forcing function. If you
have something in your derivative function that may be step-like and brief, set
maxStep to something smaller than the duration of the excursion.
If you want to set maxStep only, set the other three options to zero.

/E=eps Adjusts the step size used in the calculations by comparing an estimate of the
truncation error against a fraction of a scaled number. The fraction is eps. For instance,
to achieve error less than one part in a thousand, set eps to 0.001. The number itself is
set by a combination of the /F flag and possibly the wave specified with the /S flag.
See Solving Differential Equations on page III-270 for details.

If you do not use the /E flag, eps is set to 10-6.
For details, see Error Monitoring on page III-280.

The solver parameter selects a solver method for each step. The values of solver can
be:
solver=0: Select the default for the integration method. That is functional for

/M=2 or Newton for /M=3.
solver=1: Functional solver.
solver=2: Newton solver.

The jacobian parameter selects the method used to approximate the jacobian matrix
(matrix of df/dyi where f is the derivative function).

jacobian=0: Full jacobian matrix.
jacobian=1: Diagonal approximation.

IntegrateODE

V-353

/F=errMethod

Each bit that you set of bits 0, 1, or 2 adds a term to the number; setting bit 3 multiplies
the sum by the current step size to achieve a global error limit. Note that bit 3 has no
effect if you use the Adams or BDF integrators (/M=2 or /M=3). See Setting Bit
Parameters on page IV-12 for further details about bit settings.
If you don’t include the /F flag, a constant is used. Unless you use the /S flag, that
constant is set to 1.0.
For details, see Error Monitoring on page III-280.

/M=m

If you don’t specify a method, the default is the Runge-Kutta method (m=0). Bulirsch-
Stoer (m=1) should be faster than Runge-Kutta for problems with smooth solutions,
but we find that this is often not the case. Simple experiments indicate that Adams-
Moulton (m=2 may be fastest for nonstiff problems. BDF (m=3) is definitely the
preferred one for stiff problems. Runge-Kutta is a robust method that may work on
problems that fail with other methods.

/Q [= quiet] quiet = 1 or simply /Q sets quiet mode. In quiet mode, no messages are printed in the
history, and errors do not cause macro abort. The variable V_flag returns an error
code. See Details for the meanings of the V_flag error codes.

/R=(startX,endX) Specifies an X range of the waves in ywaveSpec.

/R=[startP,endP] Specifies a point range in ywaveSpec.
If you specify the range as /R=[startP] then the end of the range is taken as the end of
the wave. If /R is omitted, the entire wave is evaluated. If you specify only the end
point (/R = [,endP]) the start point is taken as point 0.
You must store initial conditions in startP. The first point is startP+1.

/S=errScaleWaveName

If you set bit 0 of errMethod using the /F flag, or if you don’t include the /F flag, a
constant is required for scaling the estimated error for each differential equation. By
default, the constants are simply set to 1.0.
You provide custom values of the constants via the /S flag and a wave. Make a wave
having one element for each derivative, set a reasonable scale factor for the
corresponding equation, and set errScaleWaveName to the name of that wave.
If you don’t use the /S flag, the constants are all set to 1.0.

/STOP = {stopWave, mode}

Adjusts the step size used in the calculations by comparing an estimate of the
truncation error against a scaled number. errMethod is a bitwise parameter that
specifies what to include in that number:
bit 0: Add a constant from the error scaling wave set by the /S flag.
bit 1: Add the current value of the results.
bit 2: Add the current value of the derivatives.
bit 3: Multiply by the current step size (/M=0 or /M=1 only).

Specifies the method to use in calculating the solution.
m=0: Fifth-order Runge-Kutta-Fehlberg (default).
m=1: Bulirsch-Stoer method using Richardson extrapolation.
m=2: Adams-Moulton method.
m=3: BDF (Backwards Differentiation Formula, or Gear method). This

method is the preferred method for stiff problems.

IntegrateODE

V-354

Details
The various waves you may use with the IntegrateODE operation must meet certain criteria. The wave to
receive the results (ywaveSpec), and which contains the initial conditions, must have exactly one column for
each equation in your system of equations, or you must supply a list of waves containing one wave for each
equation. Because IntegrateODE can’t determine how many equations there are from your function, it uses
the number of columns or the number of waves in the list to determine the number of equations.

Requests that IntegrateODE stop when certain conditions are met on either the
solution values (Y values) or the derivatives.
stopWave contains information that IntegrateODE uses to determine when to stop.

See Details, below, for more information.

/U=u Update the display every u points. By default, it will update the display every 10
points. To disable updates, set u to a very large number.

/X=xvaluespec Specifies the values of the independent variable (commonly called x or t) at which
values are to be calculated (see parameter ywaveSpec).
You can provide a wave or x0 and deltaX:
/X = xWaveName
Use this form to provide a list of values for the independent variable. They can have
arbitrary spacing and may increase or decrease, but should be monotonic.
If you use the /XRUN flag to specify free-run mode, /X = xWaveName is required. In
this case, the X wave becomes and output wave and any contents are overwritten. See
the description of /XRUN for details.
xValues = {x0, deltaX}
If you use this form, x0 is the initial value of the independent variable. This is the
value at which the initial conditions apply. It will calculate the first result at x0+deltaX,
and subsequent results with spacing of deltaX.
deltaX can be negative.
If you do not use the xValues keyword, it reads independent variable values from the
X scaling of the results wave (see ywaveSpec parameter).

/XRUN={dx0, Xmax}

If dx0 is nonzero, the output is generated in a free-running mode. That is, the output
values are generated at whatever values if the independent variable (x or t) the
integration method requires to achieve the requested accuracy. Thus, you will get
solution points at variably-spaced X values.
The parameter dx0 sets the step size for the first integration step. If this is smaller than
necessary, the step size will increase rapidly. If it is too large for the requested
accuracy, the integration method will decrease the step size as necessary.
If dx0 is set to zero, free-run mode is not used; this is the same as if the XRUN flag is
not used.
When using free-run mode, you must provide an X wave using /X = xWaveName. Set
the first value of the wave (this is usually point zero, but may not be if you use the /R
flag) to the initial value of X.
As the integration proceeds, the X value reached for each output point is written into
the X wave. The integration stops when the latest step taken goes beyond Xmax or
when the output waves are filled.

mode controls the logical operations applied to the elements of stopWave:
mode=0: OR mode. If stopWave contains more than one condition, any one

condition will stop the integration when it is satisfied.
mode=1: AND mode. If stopWave contains more than one condition, all

conditions must be satisfied to cause the integration to stop.

IntegrateODE

V-355

If you supply a list of waves for ywaveSpec, all the waves must have the same number of rows. If you supply
a wave containing values of the independent variable or to receive X values in free-run mode (using
/X=waveName) the wave must have the same number of rows as the ywaveSpec waves.
The wave you provide for error scaling via the /S flag must have one point for each equation. That is, one
point for each ywaveSpec wave, or one point for each column of a multicolumn ywaveSpec.
By default, the display will update after each tenth point is calculated. If you display one of your ywaveSpec
waves in a graph, you can watch the progress of the integration.
The display update may slow down the calculation considerably. Use the /U flag to change the interval
between updates. To disable the updates entirely, set the update interval to a number larger than the length
of the waves in ywaveSpec.
In free-run mode, it is impossible to predict how many output values you will get. IntegrateODE will stop
when either your waves are filled, or when the X value exceeds Xmax set in the /XRUN flag. The best
strategy is to make the waves quite large; unused rows in the waves will not be touched. To avoid having
“funny” traces on a graph, you can prefill your waves with NaN. Make sure that you don’t set the initial
condition row and initial X value row to Nan!

Stopping IntegrateODE
In some circumstances it is useful to be able to stop the integration early, before the full number of output
values has been computed. You can do this two ways: using the /STOP flag to put conditions on the
solution, or by returning 1 from your derivative function.
When using /STOP={stopWave, mode}, stopWave must have one column for each equation in your system or,
equivalently, a number of columns equal to the order of your system. Each column represents a condition
on either the solution value or the derivatives for a given equation in your system.
Row 0 of stopWave contains a flag telling what sort of condition to apply to the solution values. If the flag is
zero, that value is ignored. If the flag is 1, the integration is stopped if the solution value exceeds the value
you put in row 1. If the flag is -1, integration is stopped when the solution value is less than the value in row
1.
Rows 2 and 3 work just like rows 0 and 1, but the conditions are applied to the derivatives rather than to
the solution values.
If stopWave has two rows, only the solution values are checked. If stopWave has four rows, you can specify
conditions on both solution values and derivatives.
You can set more than one flag value non-zero. If you do that, then mode determines how the multiple
conditions are applied. If mode is 0, then any one condition can stop integration when it is satisfied. If mode
is 1, all conditions with a non-zero flag value must be satisfied at the same time. If row 0 and row 2 have
nothing but zeroes, then stopWave is ignored.
For further discussion, see Stopping IntegrateODE on a Condition on page III-282.

Output Variables
The IntegrateODE operation sets a variety of variables to give you information about the integration. These
variables are updated at the same time as the display so you can monitor an integration in progress. They are:

The values for V_Flag are:

V_ODEStepCompleted Point number of the last result calculated.

V_ODEStepSize Size of the last step in the calculation.

V_ODETotalSteps Total number of steps required to arrive at the current result. In free-run
mode, this is the same as V_ODEStepCompleted.

V_ODEMinStep Minimum step size used during the entire calculation.

V_ODEFunctionCalls The total number of calls made to your derivative function.

V_Flag Set in quiet mode (/Q) only to indicate why IntegrateODE stopped.

0: Finished normally.

1: User aborted the integration.

interp

V-356

See Also
Solving Differential Equations on page III-270 gives the form of the derivative function, details on the
error specifications and what they mean, along with several examples.

References
The Runge-Kutta (/M=0) and Bulirsh-Stoer (/M=1) methods are based on routines in Press, William H., et
al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New York, 1992, and are used by
permission.
The Adams-Moulton (/M=2) and BDF methods (/M=3) are based on the CVODE package developed at
Lawrence Livermore National Laboratory:
Cohen, Scott D., and Alan C. Hindmarsh, CVODE User Guide, LLNL Report UCRL-MA-118618, September 1994.
The CVODE package was derived in part from the VODE package. The parts used in Igor are described in
this paper:
Brown, P.N., G. D. Byrne, and A. C. Hindmarsh, VODE, a Variable-Coefficient ODE Solver, SIAM J. Sci. Stat.

Comput., 10, 1038-1051, 1989.

interp
interp(x1, xwaveName, ywaveName)
The interp function returns a linearly interpolated value at the location x = x1 of a curve whose X components
come from the Y values of xwaveName and whose y components come from the Y values of ywaveName.

Details
interp returns nonsense if the waves are complex or if xwaveName is not monotonic.
The interp function is not multidimensional aware. See Analysis on Multidimensional Waves on page
II-110 for details.

Examples

2: Integration stopped because the step size became too small.
That is, dX was so small that X + dX = X.

3: IntegrateODE ran out of memory.

4: In /M=2 or /M=3, the integrator received illegal inputs. Please report this to WaveMetrics (see
Technical Support on page II-15 for contact details).

5: In /M=2 or /M=3, the integrator stopped with a failure in the step solver. The method chosen may
not be suitable to the problem.

6: Indicates a bug in IntegrateODE. Please report this to WaveMetrics (see Technical Support on
page II-15 for contact details).

7: An error scaling factor was zero (see /S and /F flags).

8: IntegrateODE stopped because the conditions specified by the /STOP flag were met.

9: IntegrateODE stopped because the derivative function returned a value requesting the stop.

Examples

100

80

60

40

20

0

yData vs xData

interp(12.85,xData,yData) = 68.75

x1 = 12.85

Interp2D

V-357

See Also
The Interpolate XOP can also do linear as well as spline interpolation.
The Loess, ImageInterpolate, Interpolate3D, and Interp3DPath operations.
The Interp2D, Interp3D and ContourZ functions.

Interp2D
Interp2D(srcWaveName, xValue, yValue)
The Interp2D function returns a double precision number as the interpolated value for the xValue, yValue point
in the source wave. Returns NaN if the point is outside the source wave domain or if the source wave is complex.

Parameters
srcWaveName is the name of a 2D wave. The wave can not be complex.
xValue is the X-location of the interpolated point.
yValue is the Y-location of the interpolated point.

See Also
The ImageInterpolate operation. Interpolation on page III-123.

Interp3D
Interp3D(srcWave, x, y, z [, triangulationWave])
The Interp3D function returns an interpolated value for location P=(x, y, z) in a 3D scalar distribution srcWave.
If srcWave is a 3D wave containing a scalar distribution sampled on a regular lattice, the function returns a
linearly interpolated value for any P=(x, y, z) location within the domain of srcWave. If P is outside the
domain, the function returns NaN.
To interpolate a 3D scalar distribution that is not sampled on a regular lattice, srcWave is a four column 2D wave
where the columns correspond to x, y, z, f(z, y, z), respectively. You must also use a “triangulation” wave for
srcWave (use Triangulate3D/out=1 to obtain the triangulation wave). If P falls within the convex domain
defined by the tetrahedra in triangulationWave, the function returns the barycentric linear interpolation for P
using the tetrahedron where P is found. If P is outside the convex domain the function returns NaN.

Examples
Make/O/N=(10,20,30) ddd=gnoise(10)
Print interp3D(ddd,1,0,0)
Print interp3D(ddd,1,1,1)

Make/O/N=(10,4) ddd=gnoise(10)
Triangulate3D/OUT=1 ddd
Print interp3D(ddd,1,0,0,M_3DVertexList)
Print interp3D(ddd,1,1,1,M_3DVertexList)

See Also
The Interpolate3D operation. Interpolation on page III-123.

Interp3DPath
Interp3DPath 3dWave tripletPathWave
The Interp3DPath operation computes the trilinear interpolated values of 3dWave for each position specified
by a row of in tripletPathWave, which is a three-column wave in which the first column represents the X
coordinate, the second represents the Y coordinate and the third represents the Z coordinate. Interp3DPath
stores the resulting interpolated values in the wave W_Interpolated. Interp3DPath is equivalent to calling the
Interp3D() function for each row in tripletPathWave but it is computationally more efficient.
If the position specified by the tripletPathWave is outside the definition of the 3dWave or if it contains a NaN,
the operation stores a NaN in the corresponding output entry.
Both 3dWave and tripletPathWave can be of any numeric type. W_Interpolated is always of type NT_FP64.

See Also
The ImageInterpolate operation and the Interp3D and interp functions. Interpolation on page III-123.

Interpolate3D

V-358

Interpolate3D
Interpolate3D [/Z] /RNGX={x0,dx,nx}/RNGY={y0,dy,ny}/RNGZ={z0,dz,nz}

/DEST=dataFolderAndName, triangulationWave=tWave, srcWave=sWave
The Interpolate3D operation uses a precomputed triangulation of sWave (see Triangulate3D) to calculate
regularly spaced interpolated values from an irregularly spaced source. The interpolated values are
calculated for a lattice defined by the range flags /RNGX, /RNGY, and /RNGZ. sWave is a 4 column wave
where the first three columns contain the spatial coordinates and the fourth column contains the associated
scalar value. Interpolate3D is essentially equivalent to calling the Interp3D function for each interpolated
point in the range but it is much more efficient.

Parameters

Flags

Details
The triangulation wave defines a set of tetrahedra that spans the convex source domain. If the requested range
consists of points outside the domain, the interpolated values will be set to NaN. The interpolation process for
points inside the convex domain consists of first finding the tetrahedron in which the point resides and then
linearly interpolating the scalar value using the barycentric coordinate of the interpolated point.
In some cases the interpolation may result in NaN values for points that are clearly inside the convex domain.
This may happen when the preceding Triangulate3D results in tetrahedra that are too thin. You can try using
Triangulate3D with the flag /OUT=4 to get more specific information about the triangulation. Alternatively
you can introduce a slight random perturbation to the input source wave before the triangulation.

Example
Function Interpolate3DDemo()

Make/O/N=(50,4) ddd=gnoise(20) // First 3 columns store XYZ coordinates
ddd[][3]=ddd[p][2] // Fourth column stores a scalar which is set to z
Triangulate3D ddd // Perform the triangulation
Wave M_3dVertexList
Interpolate3D /RNGX={-30,1,80}/RNGY={-40,1,80}/RNGZ={-40,1,80}

triangulationWave=tWave

Specifies a 2D index wave, tWave, in which each row corresponds to one tetrahedron
and each column (tetrahedron vertex) is represented by an index of a row in sWave.
Use Triangulate3D with /OUT=1 to obtain tWave.

srcWave=sWave Specifies a real-valued 4 column 2D source wave, sWave, in which columns
correspond to x, y, z, f(x, y, z). Requires that the domain occupied by the set of {x, y, z}
be convex.

/DEST=dataFolderAndName

Saves the result in the specified destination wave. The destination wave will be
created or overwritten if it already exists. dataFolderAndName can include a full or
partial path with the wave name.

/RNGX={x0,dx,nx} Specifies the range along the X-axis. The interpolated values start at x0. There are nx
equally spaced interpolated values where the last value is at x0+(nx-1)dx. If you would
like to interpolate the data for a single plane you can set the appropriate number of
values to 1. For example, a YZ plane would have nx=1.

/RNGY={y0,dy,ny} Specifies the range along the Y-axis. The interpolated values start at y0. There are nx
equally spaced interpolated values where the last value is at y0+(ny-1)dy. If you would
like to interpolate the data for a single plane you can set the appropriate number of
values to 1. For example, a XZ plane would have ny=1.

/RNGZ={z0,dz,nz} Specifies the range along the Z-axis. The interpolated values start at z0. There are nz
equally spaced interpolated values where the last value is at z0+(nz-1)dz. If you would
like to interpolate the data for a single plane you can set the appropriate number of
values to 1. For example, a XY plane would have nz=1.

/Z No error reporting.

inverseErf

V-359

/DEST=W_Interp triangulationWave=M_3dVertexList,srcWave=ddd
End

See Also
The Triangulate3D operation and the Interp3D function. Interpolation on page III-123.

References
Schneider, P.J., and D. H. Eberly, Geometric Tools for Computer Graphics, Morgan Kaufmann, 2003.

inverseErf
inverseErf(x)
The inverseErf function returns the inverse of the error function.

Details
The function is calculated using rational approximations in several regions followed by one iteration of
Halley’s algorithm.

See Also
The erf, erfc, dawson, and inverseErfc functions.

inverseErfc
inverseErfc(x)
The inverseErfc function returns the inverse of the complementary error function.

Details
The function is calculated using rational approximations in several regions followed by one iteration of
Halley’s algorithm.

See Also
The erf, erfc, erfcw, dawson, and inverseErf functions.

ItemsInList
ItemsInList(listStr [, listSepStr])
The ItemsInList function returns the number of items in listStr. listStr should contain items separated by the
listSepStr character, such as "abc;def;".
Use ItemsInList to count the number of items in a string containing a list of items separated by a single
character, such as those returned by functions like TraceNameList or AnnotationList, or a line from a
delimited text file.
If listStr is "" then 0 is returned.
listSepStr is optional. If missing, listSepStr is presumed to be “;”.

Details
listStr is searched for item strings bound by listSepStr on the left and right.
An item can be empty. The lists "abc;def;;ghi" and ";abc;def;;ghi;" have four items (the third
item is "").
listStr is treated as if it ends with a listSepStr even if it doesn’t. The search is case-sensitive.
Only the first character of listSepStr is used.

Examples
Print ItemsInList("wave0;wave1;wave1#1;") // prints 3
Print ItemsInList("key1=val1,key2=val2", ",") // prints 2
Print ItemsInList("1 \t 2 \t", "\t") // prints 2
Print ItemsInList(";") // prints 1
Print ItemsInList(";;") // prints 2
Print ItemsInList(";a;") // prints 2
Print ItemsInList(";;;") // prints 3

j

V-360

See Also
The AddListItem, StringFromList, FindListItem, RemoveFromList, WaveList, TraceNameList,
StringList, VariableList, and FunctionList functions.

j
j
The j function returns the loop index of the 2nd innermost iterate loop in a macro. Not to be used in a
function. iterate loops are archaic and should not be used.

jlim
jlim
The jlim function returns the ending loop count for the 2nd inner most iterate loop. Not to be used in a
function. iterate loops are archaic and should not be used.

JulianToDate
JulianToDate(julianDay, format)
The JulianToDate function returns a date string containing the day, month, and year. The input julianDay
is truncated to an integer.

Parameters
julianDay is the Julian day to be converted.
format specifies the format of the returned date string.

See Also
The dateToJulian function.
For more information about the Julian calendar see:
<http://www.tondering.dk/claus/calendar.html>.

KillBackground
KillBackground
The KillBackground operation kills the unnamed background task.
KillBackground works only with the unnamed background task. New code should used named background
tasks instead. See Background Tasks on page IV-285 for details.

Details
You can not call KillBackground from within the background function itself. However, if you return 1 from
the background function, instead of the normal 0, Igor will terminate the background task.

See Also
The BackgroundInfo, CtrlBackground, CtrlNamedBackground, SetBackground, and SetProcessSleep
operations; and Background Tasks on page IV-285.

format Date String

0 mm/dd/year

1 dd/mm/year

2 Tuesday November 15, 2002

3 year mm dd

4 year/mm/dd

http://www.tondering.dk/claus/calendar.html

KillControl

V-361

KillControl
KillControl [/W=winName] controlName
The KillControl operation kills the named control in the top or specified graph or panel window or subwindow.
If the named control does not exist, KillControl does not complain.

Flags

See Also
Chapter III-14, Controls and Control Panels, for details about control panels and controls.

KillDataFolder
KillDataFolder [/Z] dataFolderSpec
The KillDataFolder operation kills the specified data folder and everything in it including other data folders.
However, if dataFolderSpec is the name of a data folder reference variable that refers to a free data folder, the
variable is cleared and the data folder is killed only if this is the last reference to that free data folder.

Flags

Parameters
dataFolderSpec can be just the name of a child data folder in the current data folder, a partial path (relative
to the current data folder) and name or an absolute path (starting from root) and name.

Details
If specified data folder is the current data folder or contains the current data folder then Igor makes its
parent the new current data folder.
For legacy reasons, a null data folder is taken to be the current data folder. This can happen when using a
$ expression where the string might possibly evaluate to "".
It is legal to kill the root data folder. In this case the root data folder itself is not killed but everything in it
is killed.
KillDataFolder generates an error if any of the waves involved are in use. In this case, nothing is killed.
KillDataFolder generates an error if any of the waves involved are in use. In this case, nothing is killed.
Execution ceases unless /Z is specified.
The variable V_flag is set to 0 when there is no error, otherwise it is an error code.

Examples
KillDataFolder foo // Kills foo in the current data folder.
KillDataFolder :bar:foo // Kills foo in bar in current data folder.
String str= "root:foo"
KillDataFolder $str // Kills foo in the root data folder.

See Also
Chapter II-8, Data Folders and the KillStrings, KillVariables, and KillWaves operations.

KillFIFO
KillFIFO FIFOName
The KillFIFO operation discards the named FIFO.

Details
FIFOs are used for data acquisition.

/W=winName Looks for the control in the named graph or panel window or subwindow. If /W is
omitted, KillControl looks in the top graph or panel window or subwindow.

When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/Z No error reporting (except for setting V_flag). Does not halt function execution.

KillFreeAxis

V-362

If there is an output or review file associated with the FIFO, KillFIFO closes the file. If the FIFO is used by
an XOP, you should call the XOP to release the FIFO before killing it.

See Also
See FIFOs and Charts on page IV-282 for information about FIFOs and data acquisition.

KillFreeAxis
KillFreeAxis [/W=winName] axisName
The KillFreeAxis operation removes a free axis specified by axisName from a graph window or subwindow.

Flags

Details
Only an axis created by NewFreeAxis can be killed and only if no traces or images are attached to the axis.

See Also
The NewFreeAxis operation.

KillPath
KillPath [/A/Z] pathName
The KillPath operation removes a path from the list of symbolic paths. KillPath is a newer name for the
RemovePath operation.

Flags

Details
You can’t kill the built-in paths “home” and “Igor”.

See Also
The NewPath operation.

KillPICTs
KillPICTs [/A/Z] [PICTName [, PICTName]…]
The KillPICTs operation removes one or more named pictures from the current Igor experiment.

Flags

Details
You can not kill a picture that is used in a graph or page layout.

/W=winName Kills the free axis in the named graph window or subwindow. If /W is omitted, it acts
on the top graph window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/A Kills all symbolic paths in the experiment except for the built-in paths. Omit pathName
if you use /A.

/Z Does not generate an error if a path to be killed is a built-in path or does not exist. To
kill all paths in the experiment, use KillPath/A/Z.

/A Kills all pictures in the experiment.

/Z Does not generate an error if a picture to be killed is in use or does not exist. To kill all
pictures in the experiment, use KillPICTs/A/Z.

Warning: You can kill a picture that is referenced from a graph or layout recreation macro. If you do,
the graph or layout can not be completely recreated. Use the Find dialog (Edit menu) to
locate references in the procedure window to a named picture you want to kill.

KillStrings

V-363

See Also
See Pictures on page III-423 for general information on how Igor handles pictures.

KillStrings
KillStrings [/A/Z] [stringName [, stringName]…]
The KillStrings operation discards the named global strings.

Flags

KillVariables
KillVariables [/A/Z] [variableName [, variableName]…]
The KillVariables operation discards the named global numeric variables.

Flags

KillWaves
KillWaves [flags] waveName [, waveName]…
The KillWaves operation destroys the named waves.

Flags

Details
The memory the waves occupied becomes available for other uses. You can’t kill a wave used in a graph or
table or which is reserved by an XOP.
XOPs reserve a wave by sending the OBJINUSE message.
For functions compiled with the obsolete rtGlobals=0 setting, you also can't kill a wave referenced from a
user-defined function.

Examples
KillWaves/A/Z // kill waves not in use in current data folder

KillWindow
KillWindow winName
The KillWindow operation kills or closes a specified window or subwindow without saving a recreation macro.

Parameters
winName is the name of an existing window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.

See Also
The DoWindow operation.

/A Kills all global strings in the current data folder. If you use /A, omit stringName.

/Z Does not generate an error if a global string to be killed does not exist. To kill all global
strings in the current data folder, use KillStrings/A/Z.

/A Kills all global variables in the current data folder. If you use /A, omit variableName.

/Z Does not generate an error if a global variable to be killed does not exist. To kill all global
variables in the current data folder, use KillVariables/A/Z.

/A Kills all waves in the current data folder. If you use /A, omit waveNames.

/F Deletes the Igor binary file from which waveName was loaded.

/Z Does not generate an error if a wave to be killed is in use or does not exist.

KMeans

V-364

KMeans
KMeans [flags] populationWave
The KMeans operation analyzes the clustering of data in populationWave using an iterative algorithm. The
result of KMeans is a specification of the classes which is saved in the wave M_KMClasses in the current
data folder. Optional results include the distribution of class members (W_KMMembers) and the inter-class
distances. populationWave is a 2D wave in which columns correspond to members of the population and
rows contain the dimensional information.

Flags

/CAN Analyzes the clustering by computing Euclidean distances between the means of the
resulting classes. The resulting distances are stored in an NxN square matrix where N
is the number of classes. Self distances (along the diagonal) or distances involving
classes that did not survive the iterations are filled with NaN. Also saves the wave
W_KMDispersion, which contains the sum of the distances between the center of each
class and all its members. Distances are evaluated using the method specified by /DIST.

/DEAD=method

/DIST=mode

/INIT=method

/INW=iWave Sets the initial classes. The number of rows of iWave equals the dimensionality of the
class and the number of columns of iWave is the number of classes. For example, if we
want to initialize 5 classes in a problem that involves position in two dimensions then
iWave must have 2 rows and 5 columns. The number of rows must also match the
number of rows in populationWave.

/NCLS=num Sets the number of classes in the data. If the initialization method uses specific means
(/INIT=2) then the number of columns of iWave (see /INW) must match num. The
default number of classes is 2.

Specifies how the algorithm should handle “dead” classes, which are those that
lose all members in a given iteration.
method=1: Remove the class if it looses all members.
method=2: Default; keeps the last value of the mean vector in case the class

might get new members in a subsequent iteration.
method=3: Assigns the class a random mean vector.

Specifies how the class distances are evaluated.
mode=1: Distance is evaluated as the sum of the absolute values (also

known as Manhattan distance).
mode=2: Default; distance is evaluated as Euclidean distance.

Specifies the initialization method.
method=1: Random assignment of members of the population to a class.
method=2: User-specified mean values (/INW).
method=3: Default; initialize classes using values of a random selection from

the population.

KMeans

V-365

Details
KMeans uses an iterative algorithm to analyze the clustering of data. The algorithm is not guaranteed to
find a global optimum (maximum likelihood solution) so the operation provides various flags to control
when the iterations terminate. You can determine if the operation iterates a fixed number of times or loops
until at most a specified maximum number of elements change class membership in a single iteration. If
you are computing KMeans in more than one dimension you should pay attention to the relative
magnitudes of the data in each dimension. For example, if your data is distributed on the interval [0,1] in
the first dimension and on the interval [0,1e7] in the second dimension, the operation will be biased by the
much larger magnitude of values in the second dimension.

Examples
Create data with 3 classes:
Make/O/N=(1,128) jack=4+gnoise(1)
jack[0][15,50]+=10
jack[0][60,]+=20

Perform KMeans looking for 5 classes:
KMeans/init=1/out=1/ter=1/dead=1/tern=1000/ncls=5 jack
Print M_KMClasses

 M_KMClasses[0][0]= {24.1439,68}
 M_KMClasses[0][1]= {14.1026,36}
 M_KMClasses[0][2]= {4.01537,24}

See Also
The FPClustering function.

/OUT=format

/SEED=val Sets the seed for a new sequence in the pseudo-random number generator that is used
by the operation. val must be an integer greater than zero.
By changing the sequence you may be able to find new solutions or just make the
process converge at a different rate.

/TER=method

/TERN=num Specifies the termination number. The meaning of the number is determined by /TER
above. By default, the termination method=2 and the default value of the maximum
number of elements that change classes in one iteration is 5% of the size of the population.

/Z No error reporting. If an error occurs, sets V_flag to -1 but does not halt function
execution.

Specifies the format for the results.
format=1: Output only the specification of the classes in the 2D wave

M_KMClasses (default). Each column in M_KMClasses represents a
class. The number of rows in M_KMClasses is equal to the number of
rows in populationWave+1. The last row contains the number of
class members. The remaining rows represent the center of the class.
For example, if populationWave has two rows then the dimensionality
of the problem is 2 and M_KMClasses has 3 rows with the first row
containing the first components of each class center, the second row
containing the second components of each class center and the third
row containing the number of elements in each class.

format=2: Output (in addition to M_KMClasses) the class membership in the
wave W_KMMembers. The rows in this 1D wave correspond to
sequential members of populationWave and the entries correspond
to the (zero based) column number in M_KMClasses.

Determines when the iterations stop.
method=1: User-specified number of iterations (/TERN).
method=2: Default; continue iterating until no more than a fixed number of

elements change classes in one iteration (TERN).

Label

V-366

Label
Label [/W=winName/Z] axisName, labelStr
The Label operation labels the named axis with labelStr.

Parameters
axisName is the name of an existing axis in the top graph. It is usually one of “left”, “right”, “top” or
“bottom”, though it may also be the name of a free axis such as “VertCrossing”.
labelStr contains the text that labels the axis.

Flags

Details
labelStr can contain the following escape codes which affect subsequent characters in the string:

labelStr can also contain the following special codes that insert dynamically computed substrings:

/W=winName Adds axis label in the named graph window or subwindow. When omitted, action
will affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/Z No errors generated if the named axis doesn’t exist. Used for style macros.

\B Use subscript (in smaller type).

\F'fontName' Use specified font (e.g., \F'Helvetica').

\fdd

\K(r,g,b) Use specified color for text. r, g, and b are integers from 0 to 65535.

\M Use normal script (reverts to main line and font size).

\S Use superscript (in smaller type).

\Znn Use font size nn, which must be exactly two digits.

\c Inserts the name of the wave that controls the axis. This is the first wave graphed
against that axis.

\E Inserts power of 10 scaling with leading x. This can be ambiguous; we recommend
that you use either \U or \u.

\e Like \E but inverts the sign of the exponent. Even more ambiguous than \E.

\s(traceName) Inserts a wave symbol for the named trace.

\U Inserts units with automatic prefixes.

dd is a bitwise parameter with each bit controlling one aspect of the font style as
follows:

For example, bold underline is 20 + 22 = 1 + 4 = 5. See Setting Bit Parameters on page
IV-12 for details about bit settings.

bit 0: Bold.
bit 1: Italic.
bit 2: Underline.
bit 3: Outline (Macintosh only).
bit 4: Shadow (Macintosh only).

laguerre

V-367

Note that escape codes are case sensitive; \u and \U insert different substrings.
labelStr can also contain other infrequently-used escape sequences as documented for the TextBox
operation.
Each backslash character must be preceded with another backslash in literal text. This is because backslash
is itself a special escape character for strings. Future Igor Pro versions may require this double-backslash
syntax; currently either the single or double backslash are acceptable synonyms for inserting a single
backslash into a string. For example:
String myStr = "\\"
Print myStr // Prints \ to the history area

myStr was set to a single backslash character. See Escape Characters in Strings on page IV-13 for more about
the backslash character. This behavior affects how escape sequences in labelStr should be written:
Label top, "\Z14Stuff" // no: In future, may come out as "Z14Stuff"
Label top, "\\Z14Stuff" // yes

You can see how labelStr should be constructed by using the Axis Label tab and observing the command it
creates. You will observe many double backslash sequences. Single backslash sequences are deprecated,
and are currently accepted for backward compatibility reasons.
The characters “<??>” in an axis label indicate that you specified an invalid escape code or used a font that
is not available.

See Also
See About Text Info Variables on page III-66 for labelStr escape codes that manipulate text info variables.
See Escape Characters in Strings on page IV-13 for more about the backslash character. See the Legend
operation about wave symbols.
Trace Names on page II-243, Programming With Trace Names on page IV-72.

laguerre
laguerre(n, x)
The laguerre function returns the Laguerre polynomial of degree n (positive integer) and argument x. The
polynomials satisfy the recurrence relation:

with the initial conditions and .

See Also
The chebyshev, chebyshevU, hermite, hermiteGauss, and legendreA functions.

laguerreA
laguerreA(n, k, x)
The laguerreA function returns the associated Laguerre polynomial of degree n (positive integer), index k
(non-negative integer) and argument x. The associated Laguerre polynomials are defined by

 where is the Laguerre polynomial.

\u Inserts power of 10 scaling but without the leading x as used by \E. No action if axis
is not scaled. Use in front of custom or compound unit strings. Example label: “Field
Strength (\\u Volts/Meter)” will produce something like “Field Strength (106
Volts/Meter)”.

\u#1 This is a variant of \u that inserts the inverse of \u (e.g., 10-6 instead of 106).

\u#2 Prevents automatic insertion of any units or scaling. Normally, if you set a wave’s units
and scaling, using the Change Wave Scaling dialog or SetScale operation, and if you do
not explicitly specify an axis label, Igor will automatically generate an axis label from
the units and scaling. \u#2 provides a way to suppress this behavior when it gets in the
way.

n 1+()Laguerre n 1+ x(,) 2n 1 x–+()Laguerre n x(,) nLaguerre n 1– x(,)–=

Laguerre 0 x(,) 1= Laguerre 1 x(,) 1 x–=

Ln
k x() 1–()k dk

dxk
-------- Ln k+ x()[]= Ln k+ x()

laguerreGauss

V-368

See Also
The laguerre and laguerreGauss functions.

References
Arfken, G., Mathematical Methods for Physicists, Academic Press, New York, 1985.

laguerreGauss
laguerreGauss(p, m, r)
The laguerreGauss function returns the normalized product of the associated Laguerre polynomials and a
Gaussian. This function is typically encountered in solutions to physical problems where it represents the radial
solution with an additional factor exp(i*m*φ) which is not included in this case. The LaguerreGauss is given by

See Also
The laguerre, laguerreA, and hermiteGauss functions.

Layout
Layout [flags] [objectSpec [, objectSpec]…][as titleStr]
The Layout operation creates a page layout.

Parameters
All of the parameters are optional.
Each objectSpec parameter identifies a graph, table, textbox or picture to be added to the layout. An object
specification can also specify the location and size of the object, whether the object should have a frame or
not, whether it should be transparent or opaque, and whether it should be displayed in high fidelity or not.
See Details.
titleStr is a string expression containing the layout’s title. If not specified, Igor will provide one which
identifies the objects displayed in the graph.

Flags

Note: The Layout operation is antiquated and can not be used in user-defined functions. For
new programming, use the NewLayout operation instead.

/A=(rows,cols) Specifies rows and columns for tiling or stacking.

/B=(r,g,b) Specifies the background color for the layout. r, g, and b are integers from 0 to 65535.
Defaults to white (65535,65535, 65535).

/C=colorOnScreen Obsolete. Prior to Igor Pro 5, this flag switched the screen display of the layout
between black and white and color. Now layouts are always displayed in color. This
flag has no effect but is still accepted.

/G=g Specifies grout, the spacing between tiled objects. Units are points unless /I, /M, or /R
are specified.

/HIDE=h Hides (h = 1) or shows (h = 0, default) the window.

/I Specifies that coordinates are in inches. This affects subsequent /G, /W, and objectSpec
coordinates. Coordinates are relative to the top/left corner of the paper.

Upm r() 2p!
π m p+()!

1 2⁄
2r()

m
Lm

p 2r2() r– 2()exp=

Layout

V-369

Details
The orientation of the page is controlled by the page setup record associated with the layout. When you
create a brand new layout window, the page setup record comes from your preferred page setup (which
you specify via the Capture Layout Prefs dialog) or from a default page setup that Igor creates by calling
the current printer driver. When you recreate a layout window using a Window macro, Igor reuses the page
setup originally used for the layout window.
If you use the /P flag, you should make it the first flag in the Layout operation. This is necessary because
the orientation of the page affects the behavior of other flags, such as /T and /G.
The form of an objectSpec is:
objectName [(objLeft, objTop, objRight, objBottom)][/O=objType][/F=frame]
[/T=trans][/D=fidelity]

objectName can be the name of an existing graph, table or picture. It can also be the name of an object that
does not yet exist. In this case it is called a “dummy object”.
objectSpec can be specified using a string by using the $ operator, but the entire objectSpec must be in the string.
Here are some examples of valid usage:

Layout Graph0

Layout/I Graph0(1, 1, 6, 5)/F=1

String s = "Graph0"
Layout/I $s

String s = "Graph0(1, 1, 6, 5)/F=1"
Layout/I $s // Entire object spec is in string.

The object’s coordinates are determined as follows:
• If objectName is followed by a coordinates specification in (objLeft, objTop, objRight, objBottom) form

then this sets the object’s coordinates. The units for the coordinates are points unless the /I or /M
flag was present in which case the units are inches or centimeters respectively.

/K=k

/M Specifies that coordinates are in centimeters. This affects subsequent /G, /W, and
objectSpec coordinates. Coordinates are relative to the top/left corner of the paper.

/P=orientation orientation is either Portrait or Landscape (e.g., Layout/P= Landscape). This
controls the orientation of the page in the layout. See Details.
If you use the /P flag, you should make it the first flag in the Layout operation. This is
necessary because the orientation of the page affects the behavior of other flags, such
as /T and /G.

/R Specifies that coordinates are in percent. This affects subsequent /G, /W, and objectSpec
coordinates. For /W, coordinates are as a percent of the main screen. For /G and
objectSpec, coordinates are relative to the top/left corner of the printing part of the page.

/S Stacks objects.

/T Tiles objects.

/W=(left, top, right, bottom)

Gives the layout window a specific location and size on the screen. Coordinates for
/W are in points unless /I or /M are specified.

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

Layout

V-370

• If the object coordinates are not specified explicitly but the Layout/S flag was present then the object
is stacked. If the Layout/T flag was present then the object is tiled, and if the Layout/A=(rows,cols)
flag is present, tiling is performed using that number of rows and columns.

• If the object’s coordinates are not determined by these rules then the object is set to a default size
and is stacked.

Each object has a type (graph, table, textbox or picture) determined as follows:

If there is no /O flag and objectName is the name of an existing graph, table or picture, then the object type
is graph, table or picture.
If the object’s type is not determined by the above rules and objectName contains “Table”, “PICT”, or
“TextBox”, then the object type is table, picture or textbox.
If the object’s type is not specified by any of the above rules, it is taken to be a graph type object.
The remaining flags have the following meanings:

See Also
The NewLayout and LayoutInfo operations. See Chapter II-16, Page Layouts.

Layout
Layout
Layout is a procedure subtype keyword that identifies a macro as being a page layout recreation macro. It
is automatically used when Igor creates a window recreation macro for a layout. See Procedure Subtypes
on page IV-183 and Killing and Recreating a Layout on page II-379 for details.

See Also
See Chapter II-16, Page Layouts.

O=objType

/D=fidelity

/F=frame

/T=trans

If the objectName/O=objType flag is present then it determines the object’s type:
objType=1: Graph.
objType=2: Table.
objType=8: Picture.
objType=32: Textbox.

Controls the drawing of the layout object:
fidelity=0: Low fidelity display.
fidelity=1: High fidelity display (default).

Controls the object frame:
frame=0: No frame.
frame=1: Single frame (default).
frame=2: Double frame.
frame=3: Triple frame.
frame=4: Shadow frame.

Controls the transparency of the layout object:
trans=0: Opaque (default).
trans=1: Transparent. For this to be effective, the object itself must also be

transparent. Annotations have their own transparent/opaque
settings. Graphs are transparent only if their backgrounds are white.
Pictures may have been created transparent or opaque, and Igor
cannot make an inherently opaque picture transparent.

LayoutInfo

V-371

LayoutInfo
LayoutInfo(winNameStr, itemNameStr)
The LayoutInfo function returns a string containing a semicolon-separated list of keywords and values that
describe an object in a page layout or overall properties of the page layout. The main purpose of LayoutInfo
is to allow an advanced Igor programmer to write a procedure which formats or arranges objects.
winNameStr is the name of an existing page layout window or "" to refer to the top layout.
itemNameStr is a string expression containing one of the following:
• The name (e.g., "Graph0") of a layout object to get information about that object.
• An object instance (e.g., "Graph0#0" or "Graph0#1") to get information about a particular instance

of an object. This is of use only in the unusual situation when the same object appears in the layout
multiple times. "Graph0#0" is equivalent to "Graph0". "Graph0#1" is the second occurrence of
Graph0 in the layout.

• An integer object index starting from zero to get information about an object referenced by its
position in the layout. Zero refers to the first object going from back to front in the layout.

• The word "Layout" to get overall information about the layout.

Details
In cases 1, 2 and 3 above, where itemNameStr references an object, the returned string contains the following
keywords, with a semicolon after each keyword-value pair.

In case 4 above, where itemNameStr is "Layout", the returned string contains the following keywords, with
a semicolon after each keyword-value pair.

Keyword Information Following Keyword

FIDELITY Object fidelity expressed as a code usable in a ModifyLayout fidelity command.

FRAME Object frame expressed as a code usable in a ModifyLayout frame command.

HEIGHT Object height in points.

INDEX Object position in the back-to-front order of the layout, starting from zero.

LEFT Object left position in points.

NAME The name of the object.

SELECTED Zero if the object is not selected or nonzero if it is selected. You can identify the first-
selected object by examining the SELECTED code of all objects. The one with the
smallest nonzero selected code is the object that was first selected.

TOP Object top position in points.

TRANS Object transparency expressed as a code usable in a ModifyLayout trans command.

TYPE Object type which is one of: Graph, Table, Picture, or Textbox.

WIDTH Object width in points.

Keyword Information Following Keyword

BGRGB Layout background color expressed as <red>, <green>, <blue> where each color is a
value from 0 to 65535.

MAG Layout magnification: 0.25, 0.5, 1.0, or 2.0.

NUMOJBECTS Total number of objects in the layout.

NUMSELECTED Number of selected objects.

PAGE A rectangle defining the part of the paper that is inside the margins, expressed in
points. The format is <left>, <top>, <right>, <bottom>.

LayoutMarquee

V-372

LayoutInfo returns "" in the following situations:
• winNameStr is "" and there are no layout windows.
• winNameStr is a name but there are no layout windows with that name.
• itemNameStr is not "Layout" and is not the name or index of an existing object.

Examples
This example sets the background color of all selected graphs in a particular page layout to the color
specified by red, green, and blue, which are numbers from 0 to 65535.
Function SetLayoutGraphsBackgroundColor(layoutName,red,green,blue)

String layoutName // Name of layout or "" for top layout.
Variable red, green, blue

Variable index
String info
Variable selected
String indexStr
String objectTypeStr
String graphNameStr

index = 0
do

sprintf indexStr, "%d", index
info = LayoutInfo(layoutName, indexStr)
if (strlen(info) == 0)

break // No more objects
endif

selected = NumberByKey("SELECTED", info)
if (selected)

objectTypeStr = StringByKey("TYPE", info)
if (CmpStr(objectTypeStr,"Graph") == 0)// This is a graph?

graphNameStr = StringByKey("NAME", info)
ModifyGraph/W=$graphNameStr wbRGB=(red,green,blue)
ModifyGraph/W=$graphNameStr gbRGB=(red,green,blue)

endif
endif

index += 1
while(1)

End

See Also
The Layout operation. See Chapter II-16, Page Layouts.

LayoutMarquee
LayoutMarquee
LayoutMarquee is a procedure subtype keyword that puts the name of the procedure in the layout Marquee
menu. See Marquee Menu as Input Device on page IV-144 for details.

See Also
See Chapter II-16, Page Layouts.

LayoutStyle
LayoutStyle
LayoutStyle is a procedure subtype keyword that puts the name of the procedure in the Style pop-up menu
of the New Layout dialog and in the Layout Macros menu. See Layout Style Macros on page II-399 for details.

PAPER A rectangle defining the bounds of the paper, expressed in points. The format is <left>,
<top>, <right>, <bottom>.

SELECTED A comma-separated list of the names of selected objects.

UNITS Units used to display object locations and sizes. This will be one of the following: 0 for
points, 1 for inches, 2 for centimeters.

Keyword Information Following Keyword

leftx

V-373

See Also
See Chapter II-16, Page Layouts and Layout Style Macros on page II-399.

leftx
leftx(waveName)
The leftx function returns the X value of point 0 (the first point) of the named 1D wave. The leftx function
is not multidimensional aware. The multidimensional equivalent of this function is DimOffset.

Details
Point 0 contains a wave’s first value, which is usually the leftmost point when displayed in a graph. Leftx
returns the value elsewhere called x0. The function DimOffset returns any of x0, y0, z0, or t0, for dimensions
0, 1, 2, or 3.

See Also
The deltax and rightx functions.
For multidimensional waves, see DimDelta, DimOffset, and DimSize.
For an explanation of waves and X scaling, see Changing Dimension and Data Scaling on page II-83.

Legend
Legend [flags] [legendStr]
The Legend operation puts a legend on a graph or page layout.

Parameters
legendStr contains the text that is printed in the legend.
If legendStr is missing or is an empty string (""), the text needed for a default legend is automatically
generated. Legends are automatically updated when waves are appended to or removed from the graph or
when you rename a wave in the graph.
See Legend Text on page III-54 for a discussion of what legendStr may contain.

Flags

/H=legendSymbolWidth

Sets the width in points of the area in which to draw the wave symbols. A value of 0
means “default”. This results in a width that is based on the text size in effect when the
symbol is drawn. A value of 36 gives a 0.5 inch (36 points) width which is nice in most
cases.

/H={legendSymbolWidth, minThickness, maxThickness}

A newer form (Igor Pro 4.0) of the /H flag. The legendSymbolWidth parameter works
the same as described above.
The minThickness and maxThickness parameters allow you to create a legend whose
line and marker thicknesses are different from the thicknesses of the associated traces
in the graph. This can be handy to make the legend more readable when you use very
thin lines or markers for the traces.
minThickness and maxThickness are values from 0.0 to 10.0. Also, setting minThickness
to 0.0 and maxThickness to 0.0 (default) uses the same thicknesses for the legend
symbols as for the traces.

/J Disables the default legend mechanism so that a default legend is not created even if
legendStr is an empty string ("") or omitted.
Window recreation macros use /J in case legendStr is too long to fit on the same
command line as the Legend operation itself. In this case, an AppendText command
appears after the Legend command to append legendStr to the empty legend. For
really long values of legendStr, there may be multiple AppendText commands.

legendreA

V-374

For all other flags:

see the TextBox and AppendText operations. Also see ColorScale and Tag.

Examples
The command Legend (with no parameters) creates a default legend. A default legend in a layout contains
a line for each wave in each of the graphs in the layout, starting from the bottom graph and working toward
the front.
The command:
Legend/C/N=name ""

changes the named existing legend to a default legend.
You can put a legend in a page layout with a command such as:
Legend "\s(Graph0.wave0) this is wave0"

This creates a legend in the layout that shows the symbol for wave0 in Graph0. The graph named in the
command is usually in the layout but it doesn’t have to be.

See Also
TextBox, Tag, ColorScale, AnnotationInfo, AnnotationList.
Legend Text on page III-54.
Trace Names on page II-243, Programming With Trace Names on page IV-72.
Color as f(z) Example on page II-262 for a discussion of creating a legend whose symbols match the markers
in a graph that uses color as f(z).

legendreA
legendreA(n, m, x)

The legendreA function returns the associated Legendre polynomial: where n and m are integers
such that 0 ≤ m ≤ n and |x| ≤ 1.

References
Arfken, G., Mathematical Methods for Physicists, Academic Press, New York, 1985.

limit
limit(num, low, high)
The limit function returns num, limited to the range from low to high:
num if low <= num <= high.
low if num < low.
high if num > high.

See Also
SelectNumber function.

/M[=saMeSize] /M or /M=1 specifies that legend markers should be the same size as the marker in the
graph.
/M=0 turns same-size mode off so that the size of the marker in the legend is based on
text size.

/A=anchorCode /C /E[=exterior] /F=frame /K
/N=name /R=newName /S=style /T=tabSpec /V=vis
/W=winName /X=xoffset /Y=yoffset

Pn
m x()

LinearFeedbackShiftRegister

V-375

LinearFeedbackShiftRegister
LinearFeedbackShiftRegister [flags]
The LinearFeedbackShiftRegister operation implements a, well, linear feedback shift register, or LFSR. A
LFSR is a way to produce a sequence of very bad pseudorandom numbers, or a random bit stream (that is,
a random sequence of zeroes of ones that over time are nearly equal in number).
If it produces bad random numbers, why would I want to use a LFSR? A properly-configured LFSR will create
a “maximal-length sequence”: a LFSR of N bits will produce 2N-1 numbers in a quasi-random sequence without
repeating. That is, it will produce all the N-bit numbers except zero. This gives the sequence good spectral
properties for certain applications, and, taking the least-significant bit as the output, it creates a pseudorandom
bit stream with nearly equal numbers of zeroes and ones (nearly means one more one than zeroes).
The LinearFeedbackShiftRegister operation generates either a wave full of the sequential states of the shift
register or a wave full of ones and zeroes representing the least significant bit of the shift register.

Linear Feedback Shift Registers
A LFSR is a shift register with taps. The tap bits are XOR’ed together and the result, after the register is
shifted, becomes the new most significant bit. Here is a diagram of a 7-bit LFSR:

Each successive number is generated by shifting the contents of the register (boxes 1-7) to the right, while
shifting in the output of the XOR node. The XOR node samples specified bits of the register contents,
generating its output ready to be shifted in. Thus, the inputs of the XOR are bits sampled before a shift; the
output of the XOR becomes the leading bit in the register after a shift.
In many applications the output of interest is the stream of bits that appear in the last position. This stream
of bits is a pseudorandom sequence of ones and zeroes (or ones and minus ones, or whatever other binary
sequence you need).
The bits fed into the XOR node are referred to as taps. The taps illustrated here would be specified with the
tap list 7,6,4,1. As implemented in Igor Pro, the output tap (tap 7 in the illustration) is the least significant
bit, so an alternate way to express the tap list is as the binary number 10010112 (7710).
With the right taps, a LFSR produces a maximal-length sequence. The list of sequential states in a maximal-
length sequence has length 2N-1 without repeating a state. That means that every possible N-bit nonzero
number appears exactly once in the maximal-length sequence.
Maximal-length tap lists always have an even number of taps.
If you have a tap list that gives a maximal-length sequence, you can generate another tap list from it. If your
tap list is (n, A, B, C) the new tap list is (n, n-C, n-B, n-A). This new tap list will generate a bit stream that is
the mirror image in time of the bit stream produced by the first tap list.

6 5 4 3 2 1 0

7654321IN

XOR

OUT

bit #

LinearFeedbackShiftRegister

V-376

Flags

/DEST=wavename Specifies a wave to receive the generated sequence. With /MODE=0, the number
type of the wave must have at least nbits bits for an integer wave, or at least an nbit
mantissa if it is a floating-point wave. That is, /N=25 requires a double-precision
wave or a 32-bit integer wave. /N=18 requires any floating-point wave or a 16- or
32-bit integer wave. If you use an integer wave, we recommend an unsigned
integer wave for /N=8, 16, or 32.
If /MODE=1 is used, any number type is acceptable. See the Details for what
happens if you don’t use /DEST.
If wavename doesn't exist, a suitable integer wave will be made.
If wavename already exists, LinearFeedbackShiftRegister will use it as-is. The
sequence length will be taken from the wave. If the number type of the wave is
not suitable, an error is issued. If the sequence length is less than the number of
points in your wave, it will be truncated to match.

/FREE In a user-defined function, makes a free wave. See Free Waves on page IV-75 for
details.

/INIT=initialValue Sets the initial value of the shift register to initialValue. This will also be the first
value in the output for /MODE=0, or the least-significant bit of initialValue will be
the first output for /MODE=1. You can use this initial value to restart a very long
sequence from the last state of a previous run.
Default is a single 1 bit in the first position (bit nbits-1 for /N=nbits).

/LEN=length Sets the length of sequence to generate. If the sequence repeats before length states are
generated, the sequence is terminated early. If length is larger than the number of
states in a maximal-length sequence, you will get a maximal-length sequence, or a
shorter sequence if the initial value is seen again (that is, your sequence is not a
maximal-length sequence).
You can specify length greater than the maximal-length sequence length, but it
will be truncated to the maximal length.

/MAX=index An internal table of tap lists gives maximal-length sequences. This table has up to
32 tap lists for each value of nbits. You select a tap list by setting index to a number
from 0 to 31. For values of nbits that do not have 32 maximal-length tap lists, the
table repeats. Most nbits values have many more than 32 possible maximal-length
sequences. For each tap list in the table, another tap list can be accessed using the
/MROR flag.

/MODE=doBitStream

/MROR [=doMirror] Transforms the tap list into its complementary tap list, creating a mirror-image bit
stream, when you use /MROR or doMirror=1. Specify the tap list using /TAPS,
/TAPB, or /MAX.

/N=nbits Determines the number of bits in the shift register. A maximal-length sequence
will have 2nbits-1 states. nbits must be in the range of 1-32. Note that nbits = 1 or 2
is not very interesting.

/STOP=stopValue Terminates the sequence when stopValue is the next shift register value. You can
use this flag to generate long sequences using multiple calls to
LinearFeedbackShiftRegister by storing the initial value of the first call, and
setting stopValue to that initial value in subsequent calls.

/TAPB=tapbits An alternate way to express the tap list. tapbits is a number in which each bit
represents a tap, with bit 0 representing the tap with tap number nbits.

/TAPS={t1, t2, …} Specifies the tap list. Tap numbers are in the range from 1 to nbits.

Sets the output stream format.
doBitStream=0: Succession of bit register states (default).
doBitStream=1: Stream of ones and zeroes.

LinearFeedbackShiftRegister

V-377

Details
If the /TAPS, /TAPB, or /MAX flags are absent, the maximal-length sequence corresponding to /MAX=0 is
generated.
In you omit the /DEST flag, a wave named W_LFSR will be generated for you. W_LFSR is an unsigned
integer wave with number type set to the minimum size for the shift register size and /MODE setting. Thus,
if you set /N=10/MODE=0, W_LFSR will be an unsigned 16-bit integer wave.
Because W_LFSR is an unsigned integer wave, you will need to redimension the wave to a floating-point
wave for many purposes. Use the Redimension operation or the Redimension Waves item in the Data menu.
Up to /N=18, W_LFSR will initially be created large enough to hold a maximal-length sequence, unless you
request a shorter sequence using the /LEN flag. If the initial value is seen again before a maximal-length
sequence is generated, it means that the tap list specified was not one that generates a maximal-length
sequence, and generation is terminated. The wave is shortened to the generated sequence length.
If you set a register size greater than /N=18 and you do not use /LEN, the generated sequence will stop after
218-1 (262143) states. Note that beyond some N, it will be impossible to create a wave large enough to hold
a maximal-length sequence.
Some tap lists do not generate maximal-length sequences but also do not repeat the initial value. In that
case, the generated sequence will be of maximal length but will contain repeated subsequences. The V_flag
variable will be set to 0 if the sequence was not a maximal-length sequence, or 1 if it was. If /LEN=length
values were generated, V_flag is set to 2.
If you specify your own wave using /DEST, the sequence length will be the same as the length of your wave.
Your wave will be resized if a shorter sequence is generated.

Generating Long Sequences in Smaller Segments
Very long maximal-length sequences will not fit in the largest wave you can make. It may also be more
convenient to make multiple, small fragments of a longer sequence. You can do this using the /INIT, /STOP,
and /LEN flags, along with the V_nextValue variable. Here is an example of making 1000-point
subsequences from a 16-bit maximal-length sequence:
// Start with the first 1000 states, with initial value of 1
LinearFeedbackShiftRegister/N=16/LEN=1000/INIT=1
// Restart using the V_nextValue variable to continue the sequence
// /STOP=1 sets the stopping value to the first initial value
LinearFeedbackShiftRegister/N=16/LEN=1000/INIT=(V_nextValue)/STOP=1
// Continue…
LinearFeedbackShiftRegister/N=16/LEN=1000/INIT=(V_nextValue)/STOP=1

Variables
The LinearFeedbackShiftRegister operation returns information in the following variables:

Examples
Generate a 16-bit maximal-length sequence and reprocess the output values to be centered on zero and
normalized to a maximum value of 1:
LinearFeedbackShiftRegister/N=16
Redimension/D W_LFSR

V_flag Set to zero when a nonmaximal-length sequence was detected. This occurs if the
initial value is seen again before a maximal-length sequence was generated, or if a
maximal-length sequence was generated but the final state was not the same as the
initial state.
Set to 1 when a maximal-length sequence was generated.

Set to 2 when the sequence was limited by /LEN=length or by the default limit of 218-
1 (262143) states.

V_tapValue Set to the binary representation of the tap sequence used. That is, you can generate the
same sequence using /TAPB=V_tapValue. If you use /MROR=1, V_tapValue reflects
that setting. It will also give the actual tap value used when you specify the a
maximal-length sequence using the /MAX flag.

V_nextValue Set to the next value beyond the last generated register state. This can be used to
restart a truncated sequence.

ListBox

V-378

W_LFSR -= 2^15
W_LFSR /= 2^15-1

Another way to do the same thing that avoids the Redimension operation, which could lead to
fragmentation of memory:
Make/D/N=(2^16-1) LFSR_output
LinearFeedbackShiftRegister/N=16/DEST=LFSR_output
LFSR_output -= 2^15
LFSR_output /= 2^15-1

Make a bit stream with random +1 and -1 instead of 0 and 1:
LinearFeedbackShiftRegister/N=16/MODE=1
Redimension/B W_LFSR
W_LFSR = W_LFSR*2-1

See Also
If you really need random numbers, we provide high-quality RNG’s that return random deviates from a
number of distributions. See enoise, gnoise, and others.

References
A discussion of LFSR’s can be found in “Generation of Random Bits” (Section 7.4) in Press, William H., et
al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New York, 1992. They refer to
“primitive polynomials modulo 2” and do not use the name Linear Feedback Shift Register, but it is the
same thing. We use an implementation equivalent to their Method I.

ListBox
ListBox [/Z] ctrlName [keyword = value [, keyword = value …]]
The ListBox operation creates or modifies the named control that displays, in the target window, a list from
which the user can select any number of items.
For information about the state or status of the control, use the ControlInfo operation.

Parameters
ctrlName is the name of the ListBox control to be created or changed.
The following keyword=value parameters are supported:

appearance={kind [, platform]}

Sets the appearance of the control. platform is optional. Both parameters are
names, not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
See Button and DefaultGUIControls for more appearance details.

clickEventModifiers=modifierSelector

ListBox

V-379

Selects modifier keys to ignore when processing clicks to start editing a cell or
when toggling a checkbox. That is, use this keyword if you want to prevent a
shift-click (for instance) from togging checkbox cells. Allows the action procedure
to receive mousedown events with those modifiers without interfering actions on
the part of the listbox control.

col=c Sets the left-most visible column (user scrolling will change this). The list is
scrolled horizontally as far as possible. Sometimes this won’t be far enough to
actually make column c the first column, but it will at least be visible. Use c =1 to
put the left edge of column 1 (the second column) at the left edge of the list.

colorWave=cw Specifies a 3 column numeric wave containing red, green, and blue values as short
unsigned integers. Used in conjunction with planes in selWave to define
foreground and background colors for individual cells. Values range from 65535
(full on) to 0.

disable=d

editStyle=e

font="fontName" Sets the font used for the list box items, e.g., font="Helvetica".

frame=f

fsize=s Sets list box font size.

modifierSelector is a bit pattern with a bit for each modifier key; sum these values
to get the desired combination of modifiers:

See Setting Bit Parameters on page IV-12 for details about bit settings.

modifierSelector=1: Control key (Ctrl)
modifierSelector=2: Option (Macintosh) or Alt (Windows)
modifierSelector=4: Context click

(right click on Windows, control-click on Macintosh)
modifierSelector=8: Shift key
modifierSelector=16: Cmd (Macintosh) key
modifierSelector=32: Caps lock key

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Draw in gray state; disable control action.

Sets the style for cells designated as editable (see selWave, bit 1).
e=0: Uses a light blue background (default).
e=1: Draws a frame around the cell with a white background.
e=2: Combines the frame with the blue background. The background in

all cases can be overridden using the colorWave parameter.

Specifies the list box frame style.
f=0: No frame.
f=1: Simple rectangle.
f=2: 3D well.
f=3: 3D raised.
f=4: Text well style.

ListBox

V-380

fstyle=fs

hScroll=h Scrolls the list to the right by h pixels (user scrolling will change this). h is the total
amount of horizontal scrolling, not an increment from the current scroll position:
h will be the value returned in the V_horizScroll variable by ControlInfo.
The hScroll value will not be automatically included in a ListBox recreation macro
until Igor Pro 6 or later (to keep experiments compatible with Igor 5.0 and 5.01)
unless you execute SetIgorOption recreateListboxHScroll=1. This
means that normally the scroll position will be lost when saving a ListBox
window recreation macro, and hScroll won’t be included in the ControlInfo
S_recreation string or in the WinRecreation result.

keySelectCol=col Sets scan column number col when doing keyboard selection. Default is to scan
column zero.

listWave=w A 1D or 2D text wave containing the list contents.

mode=m

proc=p Set name of user function proc to be called upon certain events. See discussion below.

pos={left,top} Sets the location of top left corner of the list box in pixels.

pos+={dx,dy} Offsets the position of the list box in pixels.

row=r r is desired top row (user scrolling will change this). Use a value of -1 to scroll to
the first selected cell (if any). Combine with selRow to select a row and to ensure
it is visible (modes 1 and 2).

selCol=c Defines the selected column when mode is 5 or 6 and no selWave is used. To read
this value, use ControlInfo and the V_selCol variable.

selRow=s Defines the selected row when mode is 1 or 2; when no selWave is used, it is
defined by modes 5 or 6. Use -1 for no selection.
To read this value, use ControlInfo and the V_value variable.

fs is a bitwise parameter with each bit controlling one aspect of the font style as
follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

bit 0: Bold.
bit 1: Italic.
bit 2: Underline.
bit 3: Outline (Macintosh only).
bit 4: Shadow (Macintosh only).

List selection mode specifying how many list selections can be made at a time.

When multiple columns are used, you can enable individual cells to be selected
using modes 5, 6, 7, and 8 in analogy to m=1-4. When using m=3 or 4 with
multiple columns, only the first column of the selWave is used to indicate
selections. Checkboxes and editing mode, however, use all cells even in modes
0-4.
Modes 9 and 10 are the same as modes 4 and 8 except they use different
selection rules and require testing bit 3 as well as bit 0 in selWave. In modes 4
and 8, a shift click toggles individual cells or rows, but in modes 9 and 10, the
Command (Macintosh) or Ctrl (Windows) key toggles individual cells or rows
whereas Shift defines a rectangular selection. T o determine if a cell is selected,
perform a bitwise AND with 0x09.

m=0: No selection allowed.
m=1: One or zero selection allowed.
m=2: One and only one selection allowed.
m=3: Multiple, but not disjoint, selections allowed.
m=4: Multiple and disjoint selections allowed.

ListBox

V-381

selWave=sw sw is a numeric wave with the same dimensions as listWave. It is optional for
modes 0-2, 5 and 6 and required in all other modes.
In modes greater than 2, sw indicates which cells are selected. In modes 1 and 2
use ControlInfo to find out which row is selected.
In all modes sw defines which cells are editable or function as checkboxes or
disclosure controls.

In modes 3 and 4 bit 0 is set only in column zero of a multicolumn listbox.
Other bits are reserved. Additional dimensions are used for color info. See the
discussion for colorWave. As of Igor Pro 6, selWave is not required for modes 5
and 6.

setEditCell={row,col,selStart,selEnd}

Initiates edit mode for the cell at row, col. An error is reported if row or col is less
than zero. Nothing happens and no error is reported if row, col is beyond the
limits of the listbox, or if the cell has not been made editable by setting bit 1 of
selWave.
selStart and selEnd set the range of characters that are selected when editing is
initiated; 0 is the start of the text. If there are N characters in the listbox cell, setting
selStart or selEnd to N or greater moves the start or end of the selection to the point
after the last character. Setting selStart and selEnd to the same value selects no
characters and the insertion point is set to selStart. Setting selStart to -1 always
causes all characters to be selected.

size={width,height} Sets list box size in pixels.

special={kind,height,style}

Numeric values are treated as integers with individual bits defined as follows:
Bit 0 (0x01): Cell is selected.
Bit 1 (0x02): Cell is editable.
Bit 2 (0x04): Cell editing requires a double click.
Bit 3 (0x08): Current shift selection.
Bit 4 (0x10): Current state of a checkbox cell.
Bit 5 (0x20): Cell is a checkbox.
Bit 6 (0x40): Cell is a disclosure cell. Drawn as a disclosure triangle

(Macintosh) or a treeview expansion node (Windows).

Specifies special cell formatting or contents.

For kind=1 or 2, height may be zero to auto-set cell height to same as width or a
specific value.

kind=0: Normal text but with specified height (if nonzero). Use a style of 1
to autocalculate widths based on the entire list contents. In this
case, user widths are taken to be minimums and the last is not
repeated.

kind=1: Text taken to be the names of graphs or tables. Images of the
graphs or tables are displayed in the cells. Use a style of 0 to
display just the presentation portion of the graph or 1 to display
it entirely. For tables, only the presentation portion is displayed.

kind=2: Text taken to be the names of pictures. Images are displayed in
the cells.

kind=3: Displays a PNG, TIFF, or JPEG image. You can obtain binary
picture data using SavePICT.

ListBox

V-382

Flags

Details
If the list wave has column dimension labels (see SetDimLabel), then those will be used as column titles.
Note that a 1D wave is subtly different from a 1 column 2D wave. The former does not have any columns
and therefore no column dimension labels.
Alternately, use a text wave with the titleWave keyword to specify column titles.
You can make a column title bold using TextBox-style escape codes. For instance, to make a title bold use
the \f01 escape sequence:
SetDimLabel 1, columnNum, $"\\f01My Label", textWave

titleWave=w Specifies a text wave containing titles for the listbox columns, instead of using the
list wave dimension labels. Each row is the title for one column; if you have N
columns you must have a wave with N rows. Allows more than 31 characters for
a title, which is particularly important if you use styled text.

userColumnResize=u

userdata=UDStr Sets the unnamed user data to UDStr.

userdata(UDName)=UDStr

Sets the named user data, UDName, to UDStr.

userdata+=UDStr Appends UDStr to the current unnamed user data.

userdata(UDName)+=UDStr

Appends UDStr to the current named user data, UDName.

widths={w1,w2,…} Optional list of minimum column widths in screen pixels. If more columns than
widths, the last is repeated. If total of widths is greater than list box width then a
horizontal scroll bar will appear. If total is less than available width then each
expands proportionally.

widths+={w1,w2,…} Additional column widths. Because only 400 characters fit on a command line,
lists with many columns may require multiple widths+= parameters to define all
the column widths. However if all the widths are the same, widths+= is not
needed; just use:
ListBox ctrlName widths={sameWidth}

win=winName Specifies which window or subwindow contains the named control. If not given,
then the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page
III-97 for details on forming the window hierarchy.

/Z No error reporting.

Enables resizing the list columns using the mouse.
u=0: Columns are not resizable (default). The widths parameter still

works, though.
u=1: User can resize columns by dragging the column dividers.

When resizing a column without Option, Alt, or Shift modifiers (a
“normal” resizing), any width added to the column is subtracted
from the following column (if any).
When resizing while pressing Option (Macintosh) or Alt
(Windows), only columns following the dragged divider will
move (the same way table columns are resized).
When pressing Shift, all columns are set to the same width as the
column being resized. If the total widths of all columns is less than
the width of the listbox, then each column expands to fill the
available width.

ListBox

V-383

If you can't fit title text within the 31 character limit (styled text can be especially long), use the titleWave
keyword with a text wave. The wave must have as many rows as the list wave has columns. When using a
title wave, there are no restrictions on the number of or what characters you can use.
This example uses a title wave to add a red up-arrow graph marker to the end of a centered title:
Make/O/T/N=(numColumns) columnTitles
columnTitles[colNum]="\\JCThis is the title\\K(65535,0,0)\\k(65535,0,0)\\W523"
ListBox list0 titleWave=columnTitles

That's a 51-character title that results in 19 characters or symbols that you actually see. \JC requests centered
text, \K sets the text color (which colors the inside of the graph marker),\k sets the marker stroke color, and
\W523 inserts a down-pointing triangular graph marker.
When using modes that allow multiple selections, use Shift to extend or add to the selection.
You can specify individual cells as being editable by setting bit 1 (counting from zero on the right) in
selWave. The user can start editing a cell by either clicking in it or, if the cell is selected, by pressing Enter
(or Return). When finished, the user can press Enter to accept the changes or can press Escape to reject
changes. The user may also press Up or Down Arrow to accept changes and begin editing the next editable
cell in a column. Likewise, Tab and Shift-Tab moves to the next or previous column in a row. If bit 2 of
selWave is set then a double click will be required rather than a single click. Note: in edit mode, Tab and
Shift-Tab are used to move left and right because the Left and Right Arrow keys are used to move the text
entry cursor left and right.
When the listbox has keyboard focus (either by tabbing to the list box or by clicking in the box), the
keyboard arrow keys move a cell selection (or row depending on mode). When not in cell edit mode, Tab
and Shift-Tab move the keyboard focus to other objects in the window. The Home, End, Page Up, and Page
Down keys affect the vertical scroll bar.
When the listbox has focus, the user may type the first few chars of an entry in the list to select that entry.
Only the first column is used. If a match is not found then nothing is done. The search is case insensitive.
You may define a user-function that will be called when certain events occur. Your action function must
have the following syntax:
Function MyListboxProc(ctrlName,row,col,event) : ListboxControl

String ctrlName // name of this control
Variable row // row if click in interior, -1 if click in title
Variable col // column number
Variable event // event code
…
return 0 // other return values reserved

End

The “: ListboxControl” designation tells Igor to include this procedure in the Procedure pop-up menu
in the List Box Control dialog.
The action procedure for a ListBox control can also use a predefined structure WMListboxAction as a
parameter to the function. The control will use this more efficient method when the function properly
matches the structure prototype for a ListBox control, otherwise it will use the old-style method.
A ListBox action procedure using a structure has the format:
Function newActionProcName(LB_Struct) : ListboxControl

STRUCT WMListboxAction &LB_Struct
…

End

For a ListBox control, the WMListboxAction structure has members as described in the following table:

WMListboxAction Structure Members

Member Description

char ctrlName[MAX_OBJ_NAME+1] Control name.

char win[MAX_WIN_PATH+1] Host (sub)window.

STRUCT Rect winRect Local coordinates of host window.

STRUCT Rect ctrlRect Enclosing rectangle of the control.

STRUCT Point mouseLoc Mouse location.

ListBox

V-384

Int32 eventCode Event that caused the procedure to execute. See table following
for eventCode values.

String userData Primary (unnamed) user data. If this changes, it is written back
automatically.

Int32 blockReentry Prevents reentry of control action procedure. See Control
Structure blockReentry Field on page III-388.

Int32 eventCode2 Used for the second event when two events happen at the same
time. In this case, the various values in the structure refer to this
second event.

As of Igor 5.02, an event queue is used to deliver events to new-
style action procedures and eventCode2 is not used. Instead your
procedure simply gets called multiple times. See Event Queue on
page V-386 for more details

Int32 eventMod Bitfield of modifiers. See Control Structure eventMod Field on
page III-387.

Int32 row, col Row number of selection in interior or -1 if in title area, and
column number of selection.

If eventCode is 11, row is the horizontal shift in pixels of the
column col that was resized, not the total horizontal shift of the list
as reported in V_horizScroll by ControlInfo. If row is negative, the
divider was moved to the left. col=0 corresponds to adjusting the
divider on the right side of the first column. Use ControlInfo to
get a list of all column widths.

WAVE/T listWave List wave specified by ListBox command.

WAVE selWave Selection wave specified by ListBox command.

WAVE colorWave Color wave specified by ListBox command.

WAVE/T titleWave Title wave specified by ListBox command

WMListboxAction Structure Members

Member Description

The meanings of row and col are different for eventCode 8-11:

Code row col

8 top visible row horiz shift in pixels.

9 top visible row horiz shift (user scroll).

9 -1 horiz shift (hScroll keyword).

10 top visible row -1 (row keyword).

10 -1 first visible col (col keyword).

11 column shift column resized by user.

ListBox

V-385

The event code passed to your action procedure has the following meanings:

Action functions should respond only to documented eventCode values. Other event codes may be added
along with more fields. Although the return value is not currently used, action functions should always
return zero.
The constants used to specify the size of structure char arrays are internal to Igor Pro and may change.
Some events cause another event immediately. For example a cell selection usually follows a mouse down.
Before Igor Pro 5.02, the second event is stored in eventCode 2. In Igor Pro 5.02 and later, each event causes
a separate call to your event handler. See Event Queue for more details.
The background and foreground (text) color of individual cells may be defined by providing colorWave in
conjunction with specific planes in selWave. The planes in selWave are taken to be integer indexes into
colorWave. The planes are defined by specific dimension labels and not by specific plane numbers. To
provide foreground colors, define a plane labeled “foreColors” that contains the desired index values.
Likewise define and fill a plane labeled “backColors” for background colors. The value 0 is special and
indicates that the default colors should be used. Note that if you have a one column list for which you want
to supply colors, the selWave needs to be three dimensional but with just one column. Here is an example:
Make/T/N=(5,1) tw= "row "+num2str(p) // 5 row, 1 col text wave (2D)
Make/B/U/N=(5,1,2) sw // 5 row, 1 col, 2 plane byte wave
Make/O/W/U myColors={{0,0,0},{65535,0,0},{0,65535,0},{0,0,65535},{0,65535,65535}}
MatrixTranspose myColors // above was easier to enter as 3 rows, 5 cols

NewPanel
ListBox lb,mode=3,listWave= tw,selWave= sw,size={200,100},colorWave=myColors
sw[][][1]= p // arbitrary index values into plane 1

Now, execute the following commands one at a time and observe the results:
SetDimLabel 2,1,backColors,sw // define plane 1 as background colors

SetDimLabel 2,1,foreColors,sw // redefine plane 1 s foreground colors

sw[][][%foreColors]= 4-p // change the color index values

In the above example, the selWave was defined as unsigned byte. If you need more than 254 colors, you
will have to use a larger number size.

eventCode Meaning

-1 Control being killed.

1 Mouse down.

2 Mouse up.

3 Double click.

4 Cell selection (mouse or arrow keys).

5 Cell selection plus Shift key.

6 Begin edit.

7 Finish edit.

8 Vertical scroll. See Scroll Event Warnings on page V-386.

9 Horizontal scroll by user or by the hScroll=h keyword.

10 Top row set by row=r or first column set by col=c keywords.

11 Column divider resized.

12 Keystroke, character code is place in row field.
See Note on Keystroke Event below.

13 Checkbox was clicked. This event is sent after selWave has
been updated by Igor Pro 6.20 or later.

ListBox

V-386

Checkboxes in Cells
You can cause a cell to contain a checkbox by setting bit 5 in selWave. The title (if any) is taken from listWave
and the results (selected/deselected) is bit 4 of selWave. If a checkbox cell is selected then the space bar will
toggle the checkbox. (Clicking a checkbox cell does not select it — use the arrow keys.)

Errors
Your listbox may be drawn with a red X and an error code. The error codes are:

Event Queue
It is possible for a single user action to produce more than one event. For instance, using the Up Arrow key
while editing to select a cell that is not visible will generate events 4, 8, and 6. As of Igor 5.02, such a cascade
of events will generate three separate calls to your new-style action procedure that uses a structure for
input. Before Igor 5.02 eventCode2 was used to deliver a second event to your action procedure (scroll
events 8, 9, and 10 were not available then).
If your code tests for a nonzero value in eventCode2, and uses it only if it is nonzero, then the event queue
method will not break your code. If you have determined empirically when you need to use eventCode2
and you do not test, your code will break.

Scroll Event Warnings
Events 8, 9, and 10 report to you that the listbox has been scrolled vertically or horizontally. These events are
envisioned as allowing you to keep two listboxes synchronized (you may find other uses for these events).
You might use an action procedure like this one to keep two listboxes (named list0 and list1) in sync:
Function ListBoxProc2(LB_Struct) : ListBoxControl

STRUCT WMListboxAction &LB_Struct

if (LB_Struct.eventCode == 8)
String listname
if (CmpStr(LB_Struct.ctrlName, "list1") == 0)

listname = "list0"
else

listname = "list1"
endif
ControlInfo $listname
if (V_startRow != LB_Struct.row)

listbox $listname,row=LB_Struct.row
ControlUpdate $listname

endif
endif

End

It is very easy to create an infinite cascade of events feeding back between the two listboxes, especially if
you use event 10. When this happens, you will see your listboxes jigging up and down endlessly. The test
using ControlInfo is intended to make this unlikely.
The slow response of the old-style, nonstructure action procedure can defeat the ControlInfo test by
delaying the action procedure execution. If you use events 8, 9, or 10, we recommended that you use the
new-style action procedure.

Note on Keystroke Event
The architecture of Igor controls is such that events are passed to an action procedure only after the control
has used them. In the case of a keystroke event, that means that other uses of the keystroke may consume
the event before the action procedure gets a chance at it. In particular, a listbox editable cell that is actively
being edited consumes keystroke events, and the action procedure is not called. The only editing-related
events your action procedure will get are event codes 6 and 7.

Error Meaning

E1 Too small.

E2 listWave is invalid (missing, not text or no rows).

E3 listWave and selWave do not match in dimensions.

E4 mode > 2 with no selWave.

ListBoxControl

V-387

If an arrow key is pressed, and this results in the selected row or cell changing, your action procedure will
not get a keystroke event. Instead, your action procedure will receive event code 4 or 5. If the arrow key
causes scrolling to occur, the action procedure will also get event code 8 or 9.

Examples
Here is a simple Listbox example:
Make/O/T/N=30 tjack="this is row "+num2str(p)
Make/O/B/N=30 sjack=0
NewPanel /W=(19,61,319,261)
ListBox lb1,pos={42,9},size={137,94},listWave=tjack,selWave=sjack,mode= 3
Edit/W=(367,61,724,306) tjack,sjack
ModifyTable width(tjack)=148

Make selections in the list and note changes in the table and vice versa. Edit one of the list text values in the
table and note update of the list.
Here is an example using a titleWave and styled text in the title cells. Note that the last title isn’t very long
when rendered, but requires a 63 character specification.
Make/O/T/N=(4,3) ListWave="row "+num2str(p)+" col "+num2str(q)
Make/O/T/N=3 titles // three rows to match 3-column ListWave
titles[0] = "\f01Bold Title"
titles[1] = "title with semicolon;"
titles[2] = "Marker in Gray: \K(40000,40000,40000)\k(40000,40000,40000)\W517"
NewPanel /W=(515,542,1011,794)
ListBox list0,pos={1,2},size={391,120},listWave=ListWave
ListBox list0,titleWave=titles

An example experiment that lets you easily experiment with ListBox settings is available in
“Examples:Testing & Misc:ListBox Demo.pxp”.

See Also
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls.
Setting Bit Parameters on page IV-12 for further details about bit settings.
The GetUserData operation for retrieving named user data.

ListBoxControl
ListBoxControl
ListBoxControl is a procedure subtype keyword that identifies a macro or function as being an action
procedure for a user-defined listbox control. See Procedure Subtypes on page IV-183 for details. See
ListBox for details on creating a listbox control.

ListMatch
ListMatch(listStr, matchStr [, listSepStr])
The ListMatch function returns each list item in listStr that matches matchStr.
ListStr should contain items separated by the listSepStr character, such as "abc;def;".
You may include asterisks in matchStr as a wildcard character. Note that matching is case-insensitive. See
StringMatch for wildcard details.
ListSepStr is optional. If missing, it is taken to be ";".

See Also
The GrepList, StringMatch, StringFromList, and WhichListItem functions.

ln
ln(num)
The ln function returns the natural logarithm of num, -INF if num is 0, or NaN if num is less than 0. In
complex expressions, num is complex, and ln(num) returns a complex value.
To compute a logarithm base n use the formula:

LoadData

V-388

See Also
The log function.

LoadData
LoadData [flags] fileOrFolderNameStr
The LoadData operation loads data from the named file or folder. “Data” means Igor waves, numeric and
string variables and data folders containing them. The specified file or folder must be an Igor packed
experiment file or a folder containing Igor binary data, such as an Igor unpacked experiment folder or a
folder in which you have stored Igor binary wave files.
LoadData loads data objects into memory and they become part of the current Igor experiment,
disassociated from the file from which they were loaded.
If loading from a file-system folder, the data (waves, variables, strings) in the folder, including any
subfolders if /R is specified, is loaded into the current Igor data folder.
If loading from a packed Igor experiment file, the data in the file, including any packed subdata folders if
/R is specified, is loaded into the current Igor data folder.
Use LoadData to load experiment data using Igor procedures. To load experiment data interactively, use
the Data Browser (Data menu).

Parameters
If you use a full or partial path for fileOrFolderNameStr, see Path Separators on page III-400 for details on
forming the path.
If fileOrFolderNameStr is omitted you get to locate the file (if /D is omitted) or the folder (if /D is present) via
a dialog.

Flags

/D If present, loads from a file-system folder (a directory). If omitted, LoadData
loads from an Igor packed experiment file.

/I Interactive. Forces LoadData to present a dialog.

/J=objectNamesStr Loads only the objects named in the semicolon-separated list of object names.

/L=loadFlags

To load multiple data types, sum the values shown in the table. For example, /L=1
loads waves only, /L=2 loads numeric variables only, and /L=3 loads both waves
and numeric variables. See Setting Bit Parameters on page IV-12 for further
details about bit settings.
If no /L is specified, all object types are loaded. This is equivalent to /L=7. All other
bits are reserved and should be set to zero.

logn (x) =
log(x)

log(n)
.

Controls what kind of data objects are loaded with a bit for each data type:

loadFlags Bit Number Loads this Object Type

1 0 Waves

2 1 Numeric Variables

4 2 String Variables

LoadData

V-389

Details
If /T is present, LoadData loads the top level data folder and its contents. If /T is omitted, it loads just the
contents of the top level data folder and not the data folder itself. This distinction has an analogy in the
desktop. You can drag the contents of disk folder A into folder B or you can drag folder A itself into folder B.
If present, /S=subDataFolderStr specifies the subdata folder within the packed experiment file from which
the load is to start. For example:
LoadData/P=Path1/S="Folder A:Folder B" "aPackedExpFile"

This starts loading from data folder “Folder B” which is in “Folder A” in the packed experiment file. Note
that the string specified by /S must specify each subdata folder until the desired data folder is reached. Since
this parameter is specified as a string, you must not use single quotes.
/S has no effect if you are loading from a file system folder rather than from a packed experiment file.
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-34 for details.
If /J=objectNamesStr is used, then only the objects named in objectNamesStr are loaded into the current
experiment. For example, /J="wave0;wave1" will load only the two named waves, ignoring any other
data in the file or folder being loaded.
Assume that you have an experiment that contains 5 runs where each run, stored in a separate data folder
in a packed experiment file, consists of data acquired from four channels from an ADC card. Using the /J
flag, you can load just one specific channel from each run. This way you can compare that channel’s data
from all runs without loading the other channels.
The list of object names used with /J must be semicolon-separated. A semicolon after the last object name
in the list is optional. Because the object names exist in a string expression, they should not be quoted. The
list is limited to 1000 characters.
Using /J="" acts like no /J at all.
If you load a hierarchy of data folders (using the /R flag) with /J in effect, LoadData will create each data
folder in the hierarchy even if it contains none of the named objects. This behavior is necessary to avoid
loading a subdata folder without loading its parent, as well as other such complications.

/O[=overwriteMode] If /O alone is used, overwrites existing data objects in case of a name conflict.

See Details for more about overwriting.

/P=pathName Specifies folder to look in for the specified file or folder. pathName is the name of
an existing symbolic path.

/Q Suppresses the normal messages in the history area.

/R Recursively loads subdata folders.

/S=subDataFolderStr Specifies a subdata folder within a packed experiment file to be loaded. See
Details for more.

/T[=topLevelName] If /T=topLevelName is specified, it creates a new data folder in the current data folder
with the specified name and places the loaded data in the new data folder.
If just /T is specified, it creates a new data folder in the current data folder with a
name derived from the name of the unpacked experiment folder, packed
experiment file or packed subdata folder being loaded.

overwriteMode is defined as follows:
0: No overwrite, as if there were no /O.
1: Normal overwrite. In the event of a name conflict, objects in the

incoming file replace the conflicting objects in memory.
Incoming data folders completely replace any conflicting data
folders in memory.

2: Mix-in overwrite. In the event of a name conflict, objects in the
incoming file replace the conflicting objects in memory but
nonconflicting objects in memory are left untouched.

LoadPackagePreferences

V-390

If you do a load of a data folder, overwriting an existing data folder of the same name, the behavior of
LoadData depends on whether you use /J. If you do not use /J, the entire data folder and all of its contents
are replaced. If you do use /J, just the specified objects in the data folder are replaced, leaving any other
preexisting objects in the data folder unchanged.
If you do not use the /O (overwrite) flag or if you use /O=0 and there is a conflict between objects or data
folders in the current data folder and objects or data folders in the file or folder being loaded, LoadData will
present a dialog to ask you if you want to replace the existing data. However, LoadData can not replace an
object with an object of a different type and will refuse to do so.
You can overwrite an object that is in use, such as a wave that is displayed in a graph or table. You can also
overwrite a data folder that contains objects that are in use. This is a powerful feature. Imagine that you
define a data structure consisting of waves, variables and possibly subdata folders. You can display the data
in graphs and tables and you can display these in a layout. You can then overwrite the data with an
analogous data structure from a packed experiment file and Igor will automatically update any graphs,
tables, or layouts that need to be updated.
Because LoadData can load from a complex packed Igor experiment file or from a complex hierarchy of file-
system folders, it does not set the variables normally set by a file loader: S_path, S_fileName, and
S_waveNames. The variable V_flag is set to the total number of objects loaded, or to -1 if the user cancelled
the open file dialog. To find what objects were created by LoadData, you can use the CountObjects and
GetIndexedObjName functions.

See Also
The SaveData operation. Chapter II-9, Importing and Exporting Data; Data Browser on page II-130.

LoadPackagePreferences
LoadPackagePreferences [/MIS=mismatch /P=pathName] packageName, prefsFileName,

recordID, prefsStruct
The LoadPackagePreferences operation loads preference data previously stored on disk by the
SavePackagePreferences operation. The data is loaded into the specified structure.

The structure can use fields of type char, uchar, int16, uint16, int32, uint32, float and double as well as fixed-
size arrays of these types and substructures with fields of these types.
If the /P flag is present then the location on disk of the preference file is determined by pathName and
prefsFileName. However in the usual case the /P flag will be omitted and the preference file is located in a file
named prefsFileName in a directory named packageName in the Packages directory in Igor’s preferences directory.

See Saving Package Preferences on page IV-231 for background information and examples.

Parameters
packageName is the name of your package of Igor procedures. It is limited to 31 characters and must be a
legal name for a directory on disk. This name must be very distinctive as this is the only thing preventing
collisions between your package and someone else’s package.
prefsFileName is the name of a preference file to be loaded by LoadPackagePreferences. It should include an
extension, typically ".bin".
prefsStruct is the structure into which data from disk, if it exists, will be loaded.
recordID is a unique positive integer that you assign to each record that you store in the preferences file. If
you store more than one structure in the file, you would use distinct recordIDs to identify which structure
you want to load. In the simple case you will store just one structure in the preference file and you can use
0 (or any positive integer of your choice) as the recordID.

Note: The package preferences structure must not use fields of type Variable, String, WAVE,
NVAR, SVAR or FUNCREF because these fields refer to data that may not exist when
LoadPackagePreferences is called.

Note: You must choose a very distinctive name for packageName as this is the only thing
preventing collisions between your package and someone else’s package.

LoadPICT

V-391

Flags

Details
LoadPackagePreferences sets the following output variables:

After calling LoadPackagePreferences if V_flag is nonzero or V_bytesRead is zero then you need to create
default preferences as illustrated by the example referenced below.
V_bytesRead, in conjunction with the /MIS flag, makes it possible to check for and deal with old versions
of a preferences structure as it loads the version field (typically the first field) of an older or newer version
structure. However in most cases it is sufficient to omit the /MIS flag and treat incompatible preference data
the same as missing preference data.

Example
See the example under Saving Package Preferences in a Special-Format Binary File on page IV-232.

See Also
SavePackagePreferences.

LoadPICT
LoadPICT [flags] [fileNameStr][, pictName]
The LoadPICT operation loads a picture from a file or from the Clipboard into Igor. Once you have loaded
a picture, you can append it to graphs and page layouts.

Parameters
The file to be loaded is specified by fileNameStr and /P=pathName where pathName is the name of an Igor symbolic
path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative to the folder
associated with pathName, or the name of a file in the folder associated with pathName. If Igor can not determine
the location of the file from fileNameStr and pathName, it displays a dialog allowing you to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-400 for details on forming
the path.
If you want to force a dialog to select the file, omit the fileNameStr parameter.
If fileNameStr is “Clipboard” and /P=pathName is omitted, LoadPICT loads its data from the Clipboard
rather than from a file.
pictName is the name that you want to give to the newly loaded picture. You can refer to the picture by its
name to append it to graphs and page layouts. LoadPICT generates an error if the name conflicts with some

/MIS=mismatch

/P=pathName Specifies the directory to look in for the file specified by prefsFileName.
pathName is the name of an existing symbolic path. See Symbolic Paths on page II-34
for details.
/P=$<empty string variable> acts as if the /P flag were omitted.

V_flag Set to 0 if no error occurred or to a nonzero error code.
If the preference file does not exist, V_flag is set to zero so you must use V_bytesRead
to detect that case.

V_bytesRead Set to the number of bytes read from the file. This will be zero if the preference file
does not exist.

V_structSize Set to the size in bytes of prefsStruct. This may be useful in handling structure version
changes.

Controls what happens if the number of bytes in the file does not match the size of
the structure:
0: Returns an error. Default behavior if /MIS is omitted.
1: Returns the smaller of the size of the structure and the number of

bytes in the file. Does not return an error. Use this if you want to
read and update old versions of a preferences structure.

LoadPICT

V-392

other type of object (e.g., wave or variable) or if the name conflicts with a built-in name (e.g., the name of
an operation or function).
If you omit pictName, LoadPICT automatically names the picture as explained in Details.

Flags

Details
If the picture file is not fully specified then LoadPICT presents a dialog from which you can select the file.
“Fully specified” means that LoadPICT can determine the name of the file (from the fileNameStr parameter)
and the folder containing the file (from the flag /P=pathName flag or from the fileNameStr parameter). If you
want to force a dialog, omit the fileNameStr parameter.
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-34 for details.
On Macintosh, LoadPICT can load picture data from the file’s data or resource fork. Most graphics
programs store a picture in the data fork. Some programs may store one or more pictures as resources. If
you use /R, /I, or /N, it loads the picture from the specified resource in the file. Otherwise, it loads the picture
from the file’s data fork.
If you omit pictName, LoadPICT automatically names the picture as follows:
On Macintosh, if the picture was loaded from the resource fork of a file (you used /R, /I, or /N) and the
resource had a nonempty name, it uses the resource name. If necessary, the name is made legal by replacing
illegal characters or shortening it.
If the picture was loaded from a file, LoadPICT uses the file name. If necessary, it makes it into a legal name
by replacing illegal characters or shortening it.
Otherwise, LoadPICT uses a name of the form “PICT_n”.
If the resulting name is in conflict with an existing picture name, Igor puts up a name conflict resolution dialog.
LoadPICT sets the variable V_flag to 1 if the picture exists and fits in available memory or to 0 otherwise.
It also sets the string variable S_info to a semicolon-separated list of values:

/I=resIndex Specifies the resource to load by resource index, starting from 1 (Macintosh only).

/M=promptStr Specifies a prompt to use if LoadPICT needs to put up a dialog to find the file.

/N=resNameStr A string that specifies the resource to load by resource name (Macintosh only).

/O Overwrites an existing picture with the same name.
If /O is omitted and there is an existing picture with the same name, LoadPICT
displays a dialog in which you can resolve the name conflict.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/Q Quiet: suppresses the insertion of picture info into the history area.

/R=resourceID Specifies the resource to load by resource ID (Macintosh only).

/Z Doesn’t load the picture, just checks for its existence.

Keyword Information Following Keyword

NAME Name of the loaded PICT, often “PICT_0”, etc.

SOURCE One of “data fork”, “resource fork” or “Clipboard”.

RESOURCENAME Name of the resource the picture was loaded from, or "" if the source was not the
file’s resource fork.

RESOURCEID Resource ID the picture was loaded from, or 0 if the source was not the file’s
resource fork.

LoadWave

V-393

See Also
See Pictures on page III-423 for general information on how Igor handles pictures.
The ImageLoad operation for loading PICT and other image file types into waves, and the PICTInfo function.

LoadWave
LoadWave [flags] [fileNameStr]
The LoadWave operation loads data from the named Igor binary, Igor text, delimited text, fixed field text,
or general text file into waves. LoadWave can load 1D and 2D data from delimited text, fixed field text and
general text files, or data of any dimensionality from Igor binary and Igor text files.

Parameters
The file to be loaded is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If
LoadWave can not determine the location of the file from fileNameStr and pathName, it displays a dialog
allowing you to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-400 for details on forming
the path.
If fileNameStr is “Clipboard” and /P=pathName is omitted, LoadWave takes its data from the Clipboard
rather than from a file. This is not implemented for binary loads.
If fileNameStr is omitted you get to locate the file via a dialog.

Flags

TYPE One of: “Enhanced metafile”, “Windows metafile”, “DIB”, “Windows bitmap”,
“PICT”, “PNG”, or “Unknown type”.

BYTES Amount of memory used by the picture.

WIDTH Width of the picture in pixels.

HEIGHT Height of the picture in pixels.

PHYSWIDTH Physical width of the picture in points.

PHYSHEIGHT Physical height of the picture in points.

/A “Auto-name and go” option (used with /G, /F or /J).
This skips the dialog in which you normally enter wave names. Instead it
automatically assigns names of the form wave0, wave1, choosing names that are not
already in use. When used with /W, it reads wave names from the file instead of
automatically assigning names and /A just skips the wave name dialog. The /B flag
can also override names specified by /A.

/A=baseName Same as /A but it automatically assigns wave names of the form baseName0,
baseName1.

/B=columnInfoStr Specifies the name, format, numeric type, and field width for columns in the file. See
Specifying Characteristics of Individual Columns.

/C This is used in experiment recreation commands generated by Igor to force
experiment recreation to continue if an error occurs in loading a wave.

/D Creates double precision waves. (Used with /G, /F or /J.) The /B flag can override the
numeric precision specified by the /D flag.

Keyword Information Following Keyword

LoadWave

V-394

/E=editCmd

/F={numColumns, defaultFieldWidth, flags}

Indicates that the file uses the fixed field file format. Most FORTRAN programs
generate files in this format.
numColumns is the number of columns of data in the file.
defaultFieldWidth is the default number of characters in each column. If the columns
do not all have the same number of characters, you need to use the /B flag to provide
more information to LoadWave.

All other bits are reserved and must be cleared.

/G Indicates that the file uses the general text format.

/H Loads the wave into the current experiment and severs the connection between the
wave and the file. When the experiment is saved, the wave copy will be saved as part
of the experiment. For a packed experiment this means it is saved in the packed
experiment file. For an unpacked experiment this means it is saved in the
experiment's home folder.
See Sharing Versus Copying Igor Binary Files on page II-165.

/J Indicates that the file uses the delimited text format.

/K=k

/L={nameLine, firstLine, numLines, firstColumn, numColumns}

Controls table creation:
editCmd=1: Makes a new table containing the loaded waves.
editCmd=2: Appends the loaded waves to the top table. If no table exists, a

new table is created.
editCmd=0: Same as if /E had not been specified (loaded waves are not put

in any table).

flags is a bitwise parameter that controls the conversion of text to values. The bits
are defined as follows:
Bit 0 : If set, any field that consists entirely of the digit “9” is taken to

be blank. A field that consists entirely of the digit “9” except for
a leading “+” or “-” is also taken to be blank.

Controls how to determine whether a column in the file is numeric or text (only for
delimited text and fixed field text files).

This flag as well as the ability to load text data into text waves were added in Igor
Pro 3.0. The default for the LoadWave operation is /K=1, meaning that it will treat
all columns as numeric. We did this so that existing procedures would behave the
same in Igor Pro 3.0 as before. Use /K=0 when you want to load text columns into
text waves. /K=2 may have use in a text-processing application.
For finer control, the /B flag specifies the format of each column in the file
individually.

k=0: Deduces the nature of the column automatically.
k=1: Treats all columns as numeric.
k=2: Treats all columns as text.

LoadWave

V-395

Affects loading delimited text, fixed field text, and general text files only (/J, /F or /G).
/L is accepted no matter what the load type but is ignored for Igor binary and Igor text
loads. Line and column numbers start from 0.
nameLine is the number of the line containing column names. For general text loads, 0
means auto. See Loading General Text Files on page II-153 for details.
firstLine is the number of the first line to load into a wave. For general text loads, 0
means auto. See Loading General Text Files on page II-153 for details.
numLines is the number of lines that should be treated as data. 0 means auto which
loads until the end of the file or until the end of the block of data in general text files.
The numLines parameter can also be used to make loading very large files more
efficient. See Loading Very Large Files.
firstColumn is the number of the first column to load into a wave. This is useful for
skipping columns.
numColumns is the number of columns to load into a wave. 0 means auto, which loads
all columns.

/M Loads data as matrix wave. If /M is used then it ignores the /W flag (read wave names)
and follows the /U flags instead.
The wave is autonamed unless you provide a specific wave name using the /B flag.
The type of the wave (numeric or text) is determined by an assessment of the type of
the first loaded column unless you override this using the /K flag or the /B flag.
See The Load Waves Dialog for Delimited Text — 2D on page II-149 for further
information.

/N Same as /A except that, instead of choosing names that are not in use, it overwrites
existing waves.

/N=baseName Same as /N except that it automatically assigns wave names of the form baseName0,
baseName1.

/O Overwrite existing waves in case of a name conflict.

/P=pathName Specifies the folder to look in for fileNameStr. pathName is the name of an existing
symbolic path.

/Q Suppresses the normal messages in the history area.

/R={languageName, yearFormat, monthFormat, dayOfMonthFormat, dayOfWeekFormat, layoutStr, pivotYear}

Specifies a custom date format for dates in the file. If the /R flag is used, it overrides
the date setting that is part of the /V flag.

languageName controls the language used for the alphabetic date components,
namely the month and the day-of-week. languageName is one of the following:

Default means the system language on Macintosh or the user default language on
Windows.

Default
Chinese ChineseSimplified Danish Dutch
English Finnish French German
Italian Japanese Korean Norwegian
Portuguese Russian Spanish Swedish

yearFormat is one of the following codes:
1: Two digit year.
2: Four digit year.

LoadWave

V-396

Starting from the end, parts of the layout string must be omitted if they are not used.
Extraneous spaces are not allowed in layoutStr. Each separator must be no longer than
15 characters. No component can be used more than once. Some components may be
used zero times.
pivotYear determines how LoadWave interprets two-digit years. If the year is
specified using two digits, yy, and is less than pivotYear then the date is assumed to
be 20yy. If the two digit year is greater than or equal to pivotYear then the year is
assumed to be 19yy. pivotYear must be between 4 and 40.
See Loading Custom Date Formats on page V-398 for further discussion of date
formats.

/T Indicates that the file uses the Igor text format.
Although LoadWave is generally thread-safe, it is not thread-safe to load an Igor text
file containing an Igor command (e.g., "X <command>").

/U={readRowLabels, rowPositionAction, readColLabels, colPositionAction}

These parameters affect loading a matrix (/M) from a delimited text (/J) or a fixed field
text (/F) file. They are accepted no matter what the load type is but are ignored when
they don’t apply.
If readRowLabels is nonzero, it reads the first column of data in the file as the row labels
for the matrix wave.

monthFormat is one of the following codes:
1: Numeric, no leading zero.
2: Numeric with leading zero.
3: Abbreviated alphabetic (e.g., Jan).
4: Full alphabetic (e.g., January).

dayOfMonthFormat is one of the following codes:
1: Numeric, no leading zero.
2: Numeric with leading zero.

dayOfWeekFormat is one of the following codes:
1: Abbreviated alphabetic (e.g., Mon).
2: Full alphabetic (e.g., Monday).

layoutStr describes which components appear in the date in what order and what
separators are used. layoutStr is constructed as follows (but with no line break):

where <component keyword> is one of the following:

and <separator> is a string of zero to 15 characters.

"<component keyword><separator>

<component keyword><separator>

<component keyword><separator>

<component keyword>"

Year

Month

DayOfMonth

DayOfWeek

LoadWave

V-397

The readColumnLabels and columnPositionAction parameters have analogous
meanings. The suffix used for the column position wave is “_CP”.
See Chapter II-9, Importing and Exporting Data for further details.

/V={delimsStr, skipCharsStr, numConversionFlags, loadFlags}

These parameters affect loading delimited text (/J) and fixed field text (/F) data and
column names. They are accepted no matter what the load type is but are ignored
when they don’t apply. These parameters should rarely be needed.
delimsStr is a string expression containing the characters that should act as delimiters
for delimited file loads. The default is “\t,” for tab and comma. You can specify the
space character as a delimiter, but it is always given the lowest priority behind any
other delimiters contained in delimsStr. The low priority means that if a line of text
contains any other delimiter besides the space character, then that delimiter is used
rather than the space character.
skipCharsStr is a string expression containing characters that should always be treated
as garbage and skipped when they appear before a number. The default is “$” for
space and dollar sign. This parameter should rarely be needed.

rowPositionAction has one of the following values:
0: The file has no row position column.
1: Uses the row position column to set the row scaling of the matrix

wave.
2: Creates a 1D wave containing the values in the row position column.

The name of the 1D wave will be the same as the matrix wave but
with the suffix “_RP”.

numConversionFlags is a bitwise parameter that controls the conversion of text to
numbers. The bits are defined as follows:

All other bits are reserved and must be cleared.
See Setting Bit Parameters on page IV-12 for details about bit settings.
If the /R flag is used to specify the date format, this overrides the setting of bit 0.

Bit 0: If set: dates are dd/mm/yy.
If cleared: dates are mm/dd/yy.

Bit 1: If set: decimal character is comma.
If cleared: it is period.

Bit 2: If set: thousands separators in numbers are ignored when loading
delimited text only (LoadWave/J).
The thousands separator is the comma in 1,234 or, if comma is the
decimal character, the dot in 1.234.
Most numeric data files do not use thousands separators and
searching for them slows loading down so this bit should usually be
0.
This bit has no effect if the thousands separator (e.g., comma) is also
a delimiter character as specified by delimsStr.

LoadWave

V-398

Details
Without the /G, /F, /J, or /T flags, LoadWave loads Igor Binary files.
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-34 for details.
When loading a general text file, the delimiters are always tab, comma and space.

Loading Custom Date Formats
Here are some examples showing custom date formats and how you would specify them using the /R flag:

When loading data as delimited text, if you use a date format containing a comma, such as “October 11,
1999”, you must use the /V flag to make sure that LoadWave will not treat the comma as a delimiter.
When loading a date format that consists entirely of digits, such as 991011, you must use the LoadWave/B
to specify that the data is a date. Otherwise, LoadWave will treat it as a regular number.

Loading Very Large Files
The number of waves (columns) or points (rows) that LoadWave can handle when loading a text file is
limited only by available memory.
You can improve the speed and efficiency of loading very large files (i.e., more than 50,000 lines of data)
using the numLines parameter of the /L flag. Normally this parameter is used to load a section of the file
instead of the whole file. However, in delimited, general text and fixed field text loads, the numLines

/W Looks for wave names in a file. (With /G, /F, and /J.)
Use /W/A to read wave names from the file and then continue the load without
displaying the normal wave name dialog.

Date Format Specification

October 11, 1999 /R={English, 2, 4, 1, 1, "Month DayOfMonth, Year", 40}

Oct 11, 1999 /R={English, 2, 3, 1, 1, "Month DayOfMonth, Year", 40}

11 October 1999 /R={English, 2, 4, 1, 1, "DayOfMonth Month Year", 40}

11 Oct 1999 /R={English, 2, 3, 1, 1, "DayOfMonth Month Year", 40}

10/11/99 /R={English, 1, 2, 1, 1, "Month/DayOfMonth/Year", 40}

11-10-99 /R={English, 1, 2, 2, 1, "DayOfMonth-Month-Year", 40}

11-Jun-99 /R={English, 1, 3, 2, 1, "DayOfMonth-Month-Year", 40}

991011 /R={English,1,2,2,1,"YearMonthDayOfMonth", 40}

19991011 /R={English,2,2,2,1,"YearMonthDayOfMonth", 40}

loadFlags is a bitwise parameter that controls the overall load. The bits are defined
as follows:

All other bits are reserved and must be cleared.

Bit 0: If set, ignores blanks at the end of a column. This is appropriate if the
file contains columns of unequal length. Set loadFlags = 1 to set bit 0.

Bit 1: If set, when the /W flag is specified and the line containing column
labels starts with one or more space characters, the spaces are taken
to be a blank column name. The resulting column will be named
Blank. Use this if both the line containing column labels and the lines
containing data start with leading spaces in a space-delimited file. Set
loadFlags = 2 to set bit 1.

Bit 2: If set: Disables pre-counting of lines of data. See Loading Very Large
Files below.

Bit 3: If set: Disables unescaping of backslash characters in text columns.
See Escape Sequences below.

LoadWave

V-399

parameter also specifies how many rows the waves should initially have. Thus all of the required memory
is allocated at the start of the load, rather than increasing the number of wave rows over and over as more
lines of data are loaded. When loading very large files, if you know the exact number of lines of data in the
file, use the numLines parameter of the /L flag. If you don’t know the exact number of lines, you can provide
a number that is guaranteed to be larger.
As of Igor Pro 6.02, if you omit the /L flag or if the numLines parameter is zero, and if you are loading a file
greater than 500,000 bytes, and if you are running on Windows, LoadWave will automatically count the
lines of data in the file so that the entire wave can be allocated before data loading starts. This acts as if you
used /L and set numLines to the exact correct value. For very large files on Windows, this can speed the
loading process considerably. For small files on Windows and for files of any size on Macintosh, it actually
makes the load slower. That’s why this feature takes effect only on Windows and only for files of greater
than 500,000 bytes. You can disable this feature by using the /V flag and setting bit 2 to 1.

Escape Sequences
An escape sequence is a two-character sequence used to represent special characters in plain text. Escape
sequences are introduced by a backslash character.
By default, in a text column, LoadWave interprets the following escape sequences: \t (tab), \n (linefeed),
\r (carriage-return), \\ (backslash), \" (double-quote) and \' (single-quote). This works well with Igor's
Save operation which uses escape sequences to encode the first four of these characters.
If you are loading a file that does not use escape sequences but which does contain backslashes, you can
disable interpretation of these escape sequences by setting bit 3 of the loadFlags parameter of the /V flag. This
is mainly of use for loading a text file that contains unescaped Windows file system paths.

Generating Wave Names
The /N flag automatically names new waves “wave” (or baseName if =baseName is used) plus a digit. The
digit starts from zero and increments by one for each wave loaded from the file. If the resulting name
conflicts with an existing wave, the existing wave is overwritten.
The /A flag is like /N except that it skips names already in use.

Specifying Characteristics of Individual Columns
The /B=columnInfoStr flag provides information to LoadWave for each column in a delimited text (/J), fixed
field text (/F) or general text (/G) file. The flag overrides LoadWave’s normal behavior. In most cases, you
will not need to use it.
columnInfoStr is constructed as follows:
"<column info>;<column info>; … ;<column info>;"

where <column info> consists of one or more of the following:

C=<number> The number of columns controlled by this column info specification. <number> is an
integer greater than or equal to one.

F=<format> A code that specifies the data type of the column or columns. <format> is an integer
from -2 to 10. The meaning of the <format> is:

The F= flag is used for delimited text and fixed field text files only. It is ignored for
general text files.

-2: Text. The column will be loaded into a text wave.
-1: Format unknown. It will deduce the format.
0 to 5: Numeric.
6: Date.
7: Time.
8: Date/Time.
9: Octal number.
10: Hexadecimal number.

LoadWave

V-400

Here is an example of the /B=columnInfoStr flag:
/B="C=1,F=-2,T=2,W=20,N=Factory; C=1,F=6,W=16,T=4,N=MfgDate;
C=1,F=0,W=16,T=2,N=TotalUnits; C=1,F=0,W=16,T=2,N=DefectiveUnits;"

This example is shown on two lines but in a real command it would be on a single line. In a procedure, it
could be written as:
String columnInfoStr = ""
columnInfoStr += "C=1,F=-2,T=2,W=20,N=Factory;"
columnInfoStr += "C=1,F=6,T=4,W=16,N=MfgDate;"
columnInfoStr += "C=1,F=0,T=2,W=16,N=TotalUnits;"
columnInfoStr += "C=1,F=0,T=2,W=16,N=DefectiveUnits;"

Note that each flag inside the quoted string ends with either a comma or a semicolon. The comma separates
one flag from the next within a particular column info specification. The semicolon marks the end of a column
info specification. The trailing semicolon is required. Spaces and tabs are permitted within the string.
This example provides information about a file containing four columns.
The first column info specification is “C=1;F=-2,T=2,W=20,N=Factory;”. This indicates that the
specification applies to one column, that the column format is text, that the numeric format is single-
precision floating point (but this has no effect on text columns), that the column data is in a fixed field width
of 20 characters, and that the wave created for this column is to be named Factory.
The second column info specification is “C=1;F=6,T=4,W=16,N=MfgDate;”. This indicates that the
specification applies to one column, that the column format is date, that the numeric format is double-
precision floating point (double precision should always be used for dates), that the column data is in a
fixed field width of 16 characters, and that the wave created for this column is to be named MfgDate.
The third column info specification is “C=1;F=0,T=2,W=16,N=TotalUnits;”. This indicates that the
specification applies to one column, that the column format is numeric, that the numeric format is single-
precision floating point, that the column data is in a fixed field width of 16 characters, and that the wave
created for this column is to be named TotalUnits.
The fourth column info specification is the same as the third except that the wave name is DefectiveUnits.
All of the items in a column specification are optional. The default value for each item in the column info
specification is as follows:

N=<name> A name to use for the column. <name> can be a standard name (e.g., wave0) or a
quoted liberal name (e.g., 'Heart Rate'). If <name> is '_skip_' (including single
quotation marks) then LoadWave will skip the column.
The N= flag works for delimited text, fixed field text and general text files.

T=<numtype>

W=<width> The column field width for fixed field files. <width> is an integer greater than or equal
to one. Fixed width files are FORTRAN-style files in which a fixed number of
characters is allocated for each column and spaces are used as padding.
The W= flag is used for fixed field text only.

C=<number> C=1. Specifies that the column info describes one column.

A number that specifies what the numeric type for the column should be. This flag
overrides the LoadWave/D flag. It has no effect on columns whose format is text.
<numtype> must be one of the following:
2: 32-bit float.
4: 64-bit float.
8: 8-bit signed integer.
16: 16-bit signed integer.
32: 32-bit signed integer.
72: 8-bit unsigned integer.
80: 16-bit unsigned integer.
96: 32-bit unsigned integer.

LoadWave

V-401

Taking advantage of the default values, we could abbreviate the example as follows:
/B="F=-2,W=20,N=Factory; F=6,T=4,W=16,N=MfgDate;
W=16,N=TotalUnits; W=16,N=DefectiveUnits;"

If the file were not a fixed field text file, we would omit the W= flag and the example would become:
/B="F=-2,N=Factory;F=6,T=4,N=MfgDate;N=TotalUnits;N=DefectiveUnits;"

Here are some more examples and discussion that illustrate the use of the /B=columnInfoStr flag.
In this example, the /B flag is used solely to specify the name to use for the waves created from the columns
in the file:
/B="N=WaveLength; N=Absorbance;"

The wave names in the previous example are standard names. If you want to use liberal names, such as
names containing spaces or dots, you must use single quotes. For example:
/B="N='Wave Number'; N='Reflection Angle';"

The name that you specify via N= can not be used if overwrite is off and there is already a wave with this
name or if the name conflicts with a macro, function or operation or variable. In these cases, LoadWave
generates a unique name by adding one or more digits to the name specified by the N= flag for the column
in question. You can avoid the problem of a conflict with another wave name by using the overwrite (/O)
flag or by loading your data into a newly-created data folder. You can minimize the likelihood of a name
conflict with a function, operation or variable by avoiding vague names.
If you specify the same name in two N= flags, LoadWave will generate an error, so make sure that the names
are unique.
Except if the specified name is '_skip_', the N= flag generates a name for one column only, even if the C=
flag is used to specify multiple columns. Consider this example:
/B="C=10,N=Test;"

This ostensibly uses the name Test for 10 columns. However, wave names must be unique, so LoadWave will
not do this. It will use the name Test for just the first column and the other columns will receive default names.
Also, when loading data into a matrix wave, LoadWave uses only one name. If you specify more than one
name, only the first is used.
In this example, the /B flag solely specifies the format of each column in the file. The file in question starts
with a text column, followed by a date column, followed by 3 numeric columns.
/B="F=-2; F=6; C=3,F=0"

In most cases, it is not necessary to use the F= flag because LoadWave can automatically deduce the formats. The
flag is useful for those cases where it deduces the column formats incorrectly. It is also useful to force LoadWave
to interpret a column as octal or hexadecimal because LoadWave can not automatically deduce these formats.
The numeric codes (0…10) used by the F= flag are the same as the codes used by the ModifyTable operation.
If you create a table using the /E flag, the F= flag controls the numeric format of table columns.
The code -1 is not a real column format code. If you use F=-1 for a particular column, LoadWave will deduce
the format for that column from the column text.
In this example, the /B flag is used solely to specify the width of each column in a fixed field file. This file
contains a 20 character column followed by ten 16 character columns followed by three 24 character columns.
/B="C=1,W=20; C=10,W=16; C=3,W=24"

The field widths specified via W= override the default field width specified by the /F flag. If all of the
columns in the file have the same field width then you can use just the /F flag.

F=<format> F=-1. Determines the format as dictated by the /K flag. If /K=0 is used, LoadWave will
automatically determine the column format.

N=<name> N=_auto_. Generates the wave name as it would if the /B flag were omitted.

T=<numtype> Defaults to T=4 (double precision) if the LoadWave/D flag is used or to T=2 (single
precision) if the /D flag is omitted.

W=<width> W=0. For a fixed width file, LoadWave will use the default field width specified by the
/F flag unless you provide an explicit field width greater than 0 using W=<width>.

Loess

V-402

You can load a subset of the columns in the file using the /L flag. Even if you do this, the column info
specifications that you provide via the /B flag start from the first column in the file, not from the first column
to be loaded.

Output Variables
LoadWave sets the following variables:

The setting of S_path was added in Igor Pro 3.14. S_path uses Macintosh path syntax (e.g.,
“hd:FolderA:FolderB:”), even on Windows. It includes a trailing colon. If LoadWave is loading from
the Clipboard, S_path is set to "".
When LoadWave presents an Open File dialog and the user cancels, V_flag is set to 0 and S_fileName is set to "".

See Also
The ImageLoad operation.
See Chapter II-9, Importing and Exporting Data for further information on loading waves, including
loading multidimensional data from HDF, PICT, TIFF and other graphics files. Check the “More
Extensions:File Loaders” folder other file-loader extensions.
Setting Bit Parameters on page IV-12 for further details about bit settings.

Loess
Loess [flags] srcWave = srcWaveName [, factors = factorWaveName1

[, factorWaveName2 …]]
The Loess operation smooths srcWaveName using locally-weighted regression smoothing. This algorithm is
sometimes classified as a “nonparametric regression” procedure. The regression can be constant, linear, or
quadratic. A robust option that ignores outliers is available. See Basic Algorithm, Robust Algorithm, and
References for additional details and terminology.
This implementation works with waveforms, XY pairs of waves, false-color images, matrix surfaces, and
multivariate data (one dependent data wave with multiple independent variable data waves).
Unlike the FilterFIR operation, Loess discards any NaN input values and will not generate a result that is
wholly NaN.

Parameters
srcWaveName is the input data to be smoothed. It may be a one-dimensional or a two-dimensional wave,
and it may contain NaNs.
When no /DEST flag is specified, Loess will overwrite srcWaveName with the smoothed result.
If srcWaveName is one-dimensional and no factors are provided, X values are derived from the X scaling of
srcWaveName.
If srcWaveName is two-dimensional, the factors keyword is not permitted and the X and Y values are
derived from the X and Y scaling of srcWaveName.
Higher dimensions of srcWaveName are not supported.
The optional factors parameter(s) provide the independent variable value(s) that correspond to the
observed value in srcWaveName.

Use one factors wave when srcWaveName is the one-dimensional Y wave of an XY data pair:
srcWaveName[i] = someFunction(factorWaveName1[i])

V_flag Number of waves loaded.

S_fileName Name of the file being loaded.

S_path File system path to the folder containing the file.

S_waveNames Semicolon-separated list of the names of loaded waves.

Note: Cleveland et al. (1992) use the term “multiple factors” instead of “multivariate”, hence the
keyword name “factors” is used to denote these waves.

Loess

V-403

Use multiple factors waves when srcWaveName contains the values of a multivariate function.
“Multivariate” means that srcWaveName contains the observed results of a process that combines multiple
independent input variables:
srcWaveName[i] = someFunction(factorWaveName1[i], factorWaveName2[i],…)

A maximum of 10 factors waves is supported.
All factors wave(s) must be numeric, noncomplex, one-dimensional and have the same number points as
srcWaveName.
Any NaN values in srcWaveName[i], factorWaveName1[i], factorWaveName2[i], … cause all corresponding
values to be ignored. Factors waves may contain NaN values only when /DFCT is specified.
Loess does not support NaNs in any of destFactorWaveName1, destFactorWaveName2,… and the results are
undefined.

Flags

/CONF={confInt, ciPlusWaveName [,ciMinusWaveName]}

confInt specifies the confidence interval (a probability value from 0 to 1).
ciPlusWaveName and the optional ciMinusWaveName are the names of new or
overwritten output waves to hold the fitted value ± the confidence interval.
Note: /CONF uses large memory allocations, approximately N*N*8 bytes, where
N is the number of points in srcWaveName (see Memory Details).

/DEST=destWaveName Specifies the name of the wave to hold the smoothed data. It creates
destWaveName if it does not already exist or overwrites it if it does. The x (and
possibly y) scaling of destWave determines the independent (factor) coordinates
unless /DFCT={destFactorWaveName1 [,destFactorWaveName2...]} is also specified.

/DFCT Specifies that the /DEST wave's x (and possibly y) scaling determines the
independent (factor) coordinates at which to compute the smoothed data.

/DFCT={destFactorWaveName1 [,destFactorWaveName2…]}

Specifies the names of one-dimensional waves providing the independent
coordinates at which to compute the smoothed data.
If /DFCT={...} is used, the same number of waves must be specified for /DFCT and
for factors = {factorWaveName1 [, factorWaveName2…]}, though their lengths may
(and usually will) be different. The length of destFactorWaveName waves must be
the same as that of the destWaveName wave.
All destination factor waves must be numeric, noncomplex, and one-
dimensional. The number of destination factor waves must match the number of
source factor waves (if specified), or match the dimensionality of srcWaveName
(one destination factor wave if srcWaveName is one-dimensional, two destination
factors waves if srcWaveName is two-dimensional.)
The values in the destination factor waves may not be NaN.

/E=extrapolate Set extrapolate to nonzero to use a slower fitting method that computes values
beyond the domain defined by the source factors. This is the “surface” parameter
named “direct” in Cleveland et al. (1992). The default is extrapolate = 0, which uses
the “interpolate” surface parameter, instead.

/N=neighbors Specifies the number of values in the smoothing window.
If neighbors is even, the next larger odd number is used. When neighbors is less
than two, no smoothing is done.
The default is 0.5*numpnts(srcWaveName) rounded up to the next odd
integer or 3, whichever is larger.
Use either /N or /SMTH, but not both.

Loess

V-404

Basic Algorithm
The basic locally-weighted regression algorithm fits a constant, line, or quadratic to each point of the source
data, using data that falls within the given span of neighbors over the factor data. Data outside of the span
is ignored (given a weight of zero), and data inside the span is given a weight that depends on the distance

/NORM [=norm] Set norm to 0 when specifying multiple factors and they all have the same scale
and meaning, for example multiple factors all in units of meters.
The default is norm = 1, which normalizes each factor independently when
computing the weighting function. This is appropriate when the factors are not
dimensionally related, for example one factor measures wavelength and another
measures temperature.

/ORD=order

/PASS=passes The number of iterations of local weighting and regression fitting performed. The
minimum is 1 and the default is 4. In Cleveland (1977), passes corresponds to r.

/R [=robust] Set robust to nonzero to use a robust fitting method that uses a bisquare weight
function instead of the normal tricube weight function. This corresponds to the
“symmetric” family in Cleveland et al. (1992). The robust method is less affected
by outliers. The default is robust = 0, which is the “gaussian” family in Cleveland
et al. (1992).

/SMTH=sf Another way to express the number of values in the smoothing window, 0 ≤ sf ≤
1. The default is 0.5.
To compute neighbors from sf, use:
neighbors = 1+floor(sf*numpnts(srcWaveName)).
Use either /N or /SMTH, but not both.

/TIME=secs secs is the number of seconds allowed to complete the calculation before either
warning (default) or stopping.
If the stop bit (4) of /V=verbose is set, the caculcation stops after the alloted time. If
the diagnostic bit of /V=verbose is also set, warnings about the calculation
exceeding the allotted time are printed to the history window.
As an example, use /TIME=30/V=6 to abort calculations longer than 30 seconds
and print the warning to the history window.

/V [=verbose]

/Z[=z] Set z to nonzero to prevent an error from stopping execution. Use the V_flag
variable to see if the smoothing succeeded.

Specifies the regression (fitting) order, the d parameter in Cleveland (1977):
order=0: Fits a constant to the locally-weighted neighbors around each

point.
order=1: Fits a line to the locally-weighted neighbors around each point

(Lowess smoothing).
order=2: Default; fits a quadratic (Loess smoothing).

Controls how much information to print to the history window. verbose is a
bitwise parameter with each bit controlling one aspect:

Set verbose to 6 to both limit the time and print diagnostic and error messages.
/V alone is the same as /V=3, which prints all information.
S_info contains all the informational messages regardless of the value of

verbose=0: Prints nothing to the history area (default).
verbose=1: Prints the number of observations, equivalent number of

parameters, and residual standard error.
verbose=2: Prints diagnostic information and error messages.
verbose=4 Use with /TIME. If this bit is set, calculations that exceed secs

seconds are aborted.

Loess

V-405

of the data from the point being evaluated: data closer to the point being evaluated have higher weights and
have a greater affect on the fit.
The basic algorithm uses the “tricube” weighting function to emphasize near values and deemphasize far
values. For the one-factor case (simple XY data), the weighting function can be expressed as:

where is the maximum Euclidean distance of the q factor values within the given span from the
factor point (x) whose observation (y) value is being evaluated.
The weights are applied to the factor values in the span to compute the constant, linear, or quadratic
regression at x.
When multiple factors are used, the Euclidean distance is computed using one dimension per factor. The
default is to normalize each factor’s range by the standard deviation of that factor’s values before
computing the Euclidean distances. When factors are dimensionally equal, use the /NORM=0 option to skip
this normalization. (See /NORM, about “dimensionally equal”.)

Robust Algorithm
The robust algorithm adds to the basic algorithm a method to identify and remove outliers by rejecting
values that exceed a threshold related to the “median absolute deviation” of the basic regression’s residuals.
The remaining values are used to compute robust “bisquare” weighting values:

where ei is the difference between the observed value and the regression’s fitted value, and is
evaluated for all the observed values.
These robust weighting values are multiplied with the original weighting values and a new regression
(with new residuals) is computed. This process repeats 4 times by default. Use the /PASS flag to specify a
different number of repetitions.

Details
Loess sets the variable V_flag to 0 if the smoothing was successful, or to an error code if not. Unlike other
operations, the /Z flag allows execution to continue even if input parameters are in error.
Information printed to the history area when /V is set is always stored in the S_info string, even if /V=0 (the
default). S_Info also contains the error message text if V_flag is an error code.
The error messages are described in Cleveland et al. (1992). They are often more dire than they seem.
The error message “Span too small. Fewer data values than degrees of freedom” usually means that the
/SMTH or /N values are too small. The error code returned in V_Flag for this case is 1106.
The “Extrapolation not allowed with blending” (V_Flag = 1115) error usually means that the destination factors
are trying to compute observations outside of the source factors domain without specifying /E=1. This happens
if the /DEST destWaveName already exists and has X scaling that extends beyond the X scaling of srcWaveName.
The solution is either kill the /DEST wave, limit the X scaling to the domain of the source wave, or use /E=1.

Memory Details
Loess requires a lot of memory, especially with the /CONF flag. Even without /CONF, the memory
allocations exceed this approximation:
Number of bytes allocated = number of points in srcWaveName * 216
With /CONF, Loess can allocate large amounts of memory, approximately N*N*8 bytes, where N is the
number of points in srcWaveName. The 2GB memory limit of 32-bit addressing limits srcWaveName to
approximately 10,000 points when using /CONF.
More precisely, the memory allocation may be approximated by this function:
Function ComputeLoessMemory(srcPoints, numFactorsWaves, doConfidence)

Variable srcPoints // number of points in srcWave, aka N

wi 1 x xi–()
maxi x xi–()

3
–

 3
=

maxq x xi–()

ri

1 ei
6 median ei()•

2
–

 2
for 0 ei 6 median ei()•<≤

0 for ei 6 median ei()•≥()

=

median ei()

Loess

V-406

Variable numFactorsWaves// 1 or number of factors (independent variables)
Variable doConfidence // true if /CONF is specified

Variable doubles= 9 * srcPoints // 9 allocated double arrays
doubles += 5 * numFactorsWaves * srcPoints // 5 more arrays
doubles += (1+numFactorsWaves) * srcPoints // another array
doubles += (1+numFactorsWaves) * srcPoints // another array
doubles += (4+5) * srcPoints // two more arrays
if(doConfidence)

doubles += srcPoints*srcPoints // one HUGE array
endif
Variable bytes= doubles * 8
return bytes

End

Macro DemoLoessMemory()
Make/O wSrcPoints={10,100,1000,2000,3000,5000,7500,10000,12500,15000,20000}
Duplicate/O wSrcPoints, loessMemory, loessMemory3, loessMemoryConf
SetScale d, 0,0, "Points", wSrcPoints
SetScale d, 0,0, "Bytes", loessMemory, loessMemory3, loessMemoryConf
loessMemory= ComputeLoessMemory(wSrcPoints[p],1, 0)// 1 factor (X) no /CONF
loessMemory3= ComputeLoessMemory(wSrcPoints[p],3, 0)// 3 factors (X,Y,Z) no /CONF
loessMemoryConf= ComputeLoessMemory(wSrcPoints[p],1, 1)// 1 factor (X)with /CONF
Display loessMemory vs wSrcPoints; Append loessMemory3 vs wSrcPoints
ModifyGraph highTrip(bottom)=1e+08, rgb(loessMemory3)=(0,0,65535)
ModifyGraph lstyle(loessMemory3)=2
Legend
Display loessMemoryConf vs wSrcPoints
AutoPositionWindow
ModifyGraph highTrip(bottom)=1e+08

End

Examples
1-D, factors are X scaling, output in new wave:
Make/O/N=200 wv=2*sin(x/8)+gnoise(1)
KillWaves/Z smoothed // ensure Loess creates a new wave
Loess/DEST=smoothed srcWave=wv // 21-point loess.
Display wv; ModifyGraph mode=3,marker=19
AppendtoGraph smoothed; ModifyGraph rgb(smoothed)=(0,0,65535)

1-D, output in existing wave with more points than original data:
Make/O/N=100 short=2*cos(x/4)+gnoise(1)
Make/O/N=300 out; SetScale/I x, 0, 99, "" out // same X range
Loess/DEST=out/DFCT/N=30 srcWave=short
Display short; ModifyGraph mode=3,marker=19
AppendtoGraph out
ModifyGraph rgb(out)=(0,0,65535),mode(out)=2,lsize(out)=2

1-D Y vs X wave data interpolated to waveform (Y vs X scaling) with 99% confidence interval outputs:
// NOx = f(EquivRatio)
// Y wave
// Note: The next 2 Make commands are wrapped to fit on the page.
Make/O/D NOx = {4.818, 2.849, 3.275, 4.691, 4.255, 5.064, 2.118, 4.602, 2.286, 0.97,
3.965, 5.344, 3.834, 1.99, 5.199, 5.283, 3.752, 0.537, 1.64, 5.055, 4.937, 1.561};

// X wave (Note that the X wave is not sorted)
Make/O/D EquivRatio = {0.831, 1.045, 1.021, 0.97, 0.825, 0.891, 0.71, 0.801, 1.074,
1.148, 1, 0.928, 0.767, 0.701, 0.807, 0.902, 0.997, 1.224, 1.089, 0.973, 0.98, 0.665};

// Interpolate to dense waveform over X range
Make/O/D/N=100 fittedNOx
WaveStats/Q EquivRatio
SetScale/I x, V_Min, V_max, "", fittedNOx
Loess/CONF={0.99,cp,cm}/DEST=fittedNOx/DFCT/SMTH=(2/3) srcWave=NOx, factors={EquivRatio}
Display NOx vs EquivRatio; ModifyGraph mode=3,marker=19
AppendtoGraph fittedNOx, cp,cm // fit and confidence intervals
ModifyGraph rgb(fittedNOx)=(0,0,65535)
ModifyGraph mode(fittedNOx)=2,lsize(fittedNOx)=2

Interpolate X, Y, Z waves as a 3D surface.
// Note: The next 3 Make commands are wrapped to fit on the page.
Make/O/D vels= {1769, 1711, 1538, 1456, 1608, 1574, 1565, 1692, 1538, 1505, 1764, 1723,
1540, 1441, 1428, 1584, 1552, 1690, 1673, 1548, 1485, 1526, 1536, 1591, 1671, 1647, 1608,
1562, 1740, 1753, 1590, 1466, 1409, 1429}
Make/O/D ews={8.46279, 3.46303, -1.51508, -6.51483, 16.597, -5.95541, -28.5078, 9.68438,
-6.00159, -21.7557, 14.263, 6.02058, -2.25772, -10.536, -18.7785, 10.7509, -6.07024,

log

V-407

1.77531, 0.767701, -0.235545, -1.24315, 21.7298, 10.3964, 0.133859, -10.1733, -20.4359,
13.7658, -8.88429, 10.8869, 4.91318, -0.0649319, -5.06469, -10.0428, -11.0601}
Make/O/D nss={-38.1732, -15.6207, 6.83407, 29.3865, 3.67947, -1.32028, -6.32004, -
10.3852, 6.43591, 23.3302, -37.1565, -15.6842, 5.88156, 27.4473, 48.9196, 10.0254, -
5.66059, -40.6613, -17.5832, 5.39486, 28.4729, 43.5833, 20.852, 0.26848, -20.4045, -
40.988, 3.0518, -1.9696, -49.1077, -22.1619, 0.292889, 22.8453, 45.3001, 49.8887}

// Evaluate the smoothed function as interpolated image
Make/O/N=(50,50) velsImage
WaveStats/Q ews
SetScale/I x, V_Min, V_Max, "" velsImage // destination factors
WaveStats/Q nss
SetScale/I y, V_Min, V_Max, "" velsImage // are X and Y scaling

Loess/DEST=velsImage/DFCT/NORM=0/SMTH=0.75/E/Z srcWave=vels, factors={ews,nss}

// Display source data as a contour with x, y markers.
Display; AppendXYZContour vels vs {ews,nss}
ModifyContour vels xymarkers=1, labels=0
ColorScale

// Display interpolated surface as an image
AppendImage velsImage
ModifyImage velsImage ctab= {*,*,Grays256,0}
ModifyGraph mirror=2

References
Cleveland, W.S., Robust locally weighted regression and smoothing scatterplots, J. Am. Stat. Assoc., 74, 829-

836, 1979.
Cleveland, W.S., E. Grosse, and M.-J. Shyu, A Package of C and Fortran Routines for Fitting Local

Regression Models, Technical Report, Bell Labs, 54pp, 1992. <http://cm.bell-
labs.com/cm/ms/departments/sia/wsc/webpapers.html>.

NIST/SEMATECH, LOESS (aka LOWESS), in NIST/SEMATECH e-Handbook of Statistical Methods,
<http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd144.htm>, 2005.

See Also
Smooth, Interpolate XOP, interp, MatrixFilter, MatrixConvolve, and ImageInterpolate.

log
log(num)
The log function returns the log base 10 of num.
It returns -INF if num is 0, and returns NaN if num is less than 0.
To compute a logarithm base n use the formula:

See Also
The ln function.

logNormalNoise
logNormalNoise(m,s)
The logNormalNoise function returns a pseudo-random value from the lognormal distribution function
whose probability distribution function is

logn (x) =
log(x)

log(n)
.

f (x,m, s) =
1

xs 2π
exp −

ln(x) − m[]
2

2s2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,

http://cm.bell-labs.com/cm/ms/departments/sia/wsc/webpapers.html
http://cm.bell-labs.com/cm/ms/departments/sia/wsc/webpapers.html
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd144.htm

LombPeriodogram

V-408

with a mean

and variance .

The random number generator initializes using the system clock when Igor Pro starts. This almost
guarantees that you will never repeat a sequence. For repeatable “random” numbers, use SetRandomSeed.
The algorithm uses the Mersenne Twister random number generator.

See Also
The SetRandomSeed operation.
Noise Functions on page III-334.
Chapter III-12, Statistics for a function and operation overview.

LombPeriodogram
LombPeriodogram [flags] srcTimeWave, srcAmpWave [, srcFreqWave]
The LombPeriodogram is used in spectral analysis of signal amplitudes specified by srcAmpWave which are
sampled at possibly random sampling times given by srcTimeWave. The only assumption about the
sampling times is that they are ordered from small to large time values. The periodogram is calculated for
either a set of frequencies specified by srcFreqWave (slow method) or by the flags /FR and /NF (fast method).
Unless you specify otherwise, the results of the operation are stored by default in W_LombPeriodogram
and W_LombProb in the current data folder.

Flags

/DESP=datafolderAndName

Saves the computed P-values in a wave specified by datafolderAndName. The
destination wave will be created or overwritten if it already exists. dataFolderAndName
can include a full or partial path with the wave name.
Creates by default a wave reference for the destination wave in a user function. See
Automatic Creation of WAVE References on page IV-57 for details.
If this flag is not specified, the operation saves the P-values in the wave W_LombProb
in the current data folder.

/DEST=datafolderAndName

Saves the computed periodogram in a wave specified by datafolderAndName. The
destination wave will be created or overwritten if it already exists. datafolderAndName
can include a full or partial path with the wave name
(/DEST=root:bar:destWave).
Creates by default a wave reference for the destination wave in a user function. See
Automatic Creation of WAVE References on page IV-57 for details.
If this wave is not specified the operation saves the resulting periodogram in the wave
W_LombPeriodogram in the current data folder.

/FR=fRes Use /FR to specify the frequency resolution of the output. This flag is used together
with /NF to specify the range of frequencies for which the periodogram is computed.
Note that fRes is also the lowest frequency in the output.

/NF=numFreq Use /NF to specify the number of frequencies at which the periodogram is computed.
The range of frequencies of the periodogram is then [fRes, (numFreq-1)*fRes].

/Q Quiet mode; suppresses printing results in the history area.

/Z Do not report any errors.

exp m +
1

2
s2�

��
�

��
,

exp 2m2 + s2() exp s2()�1�
�

�
� .

LombPeriodogram

V-409

Details
The LombPeriodogram (sometimes referred to as "Lomb-Scargle" periodogram) is useful in detection of
periodicities in data. The main advantage of this approach over Fourier analysis is that the data are not
required to be sampled at equal intervals. For an input consisting of N points this benefit comes at a cost of
an O(N^2) computations which becomes prohibitive for large data sets. The operation provides the option
of computing the periodogram at equally spaced (output) frequencies using /FR and /NF or at completely
arbitrary set of frequencies specified by srcFreqWave. It turns out that when you use equally spaced output
frequencies the calculation is more efficient because certain parts of the calculation can be factored.
The Lomb periodogram is given by

Here yi is the ith point in srcAmpWave, ti is the corresponding point in srcTimeWave,

and

In the absence of a Nyquist limit, the number of independent frequencies that you can compute can be
estimated using:

This expression was given by Horne and Baliunas derived from least square fitting. Nind is used to
compute the P-values as:

Note that you can invert the last expression to determine the value of LP(w) for any significance level.

See Also
The FFT and DSPPeriodogram operations.

References
1. J.H. Horne and S.L. Baliunas, Astrophysical Journal, 302, 757-763, 1986.
2. N.R. Lomb, Astrophysics and Space Science, 39, 447-462, 1976.
3. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes, 3rd ed., Section 13.8.

LP(�) =
1

2� 2

yi � y()cos � ti � �()�� �	
i=0

N�1

�

�
�

�

	
�

2

cos2 � ti � �()�� �	
i=0

N�1

+

yi � y()sin � ti � �()�� �	
i=0

N�1

�

�
�

�

	
�

2

sin2 � ti � �()�� �	
i=0

N�1

�

�
�

�

�
�

�

�

�
�

�

�
�

y =
1

N
yi

i=0

N�1

� ,

tan(2��) =
sin(2�ti)

i=0

N�1

�

cos(2�ti)
i=0

N�1

�
.

p = 1� 1� exp LP(w)[]{ }
Nind .

Nind = �6.362 +1.193N + 0.00098N 2 .

p = 1� 1� exp LP(w)[]{ }
Nind .

lorentzianNoise

V-410

lorentzianNoise
lorentzianNoise(a,b)
The function returns a pseudo-random value from a Lorentzian distribution

Here a is the center and b is the full line width at half maximum (FWHM).

See Also
SetRandomSeed, enoise, gnoise.
Noise Functions on page III-334.
Chapter III-12, Statistics for a function and operation overview.

LowerStr
LowerStr(str)
The LowerStr function returns a string expression identical to str except that all upper-case characters are
converted to lower-case.

See Also
The UpperStr function.

Macro
Macro macroName([parameters]) [:macro type]
The Macro keyword introduces a macro. The macro will appear in the Macros menu unless the procedure
file has an explicit Macros menu definition. See Chapter IV-4, Macros and Macro Syntax on page IV-102 for
further information.

MacroList
MacroList(matchStr, separatorStr, optionsStr)
The MacroList function returns a string containing a list of the names of user-defined procedures that start
with the Proc, Macro, or Window keywords that also satisfy certain criteria. Note that if the procedures
need to be compiled, then MacroList may not list all of the procedures.

Parameters
Only macros having names that match matchStr string are listed. See WaveList for examples.
The first character of separatorStr is appended to each macro name as the output string is generated. separatorStr
is usually “;” for list processing (See Processing Lists of Waves on page IV-178 for details on list processing).
optionsStr is used to further qualify the macros. It is a string containing keyword-value pairs separated by
commas. Available options are:

KIND:nk

NPARAMS:np Restricts the list to macros having exactly np parameters. Omitting this option lists
macros having any number of parameters.

SUBTYPE:typeStr Lists macros that have the type typeStr. That is, you could use ButtonControl as typeStr
to list only macros that are action procedures for buttons.

f (x) =
1

�

(b / 2)

(x � a)2 + (b / 2)2 .

Determines the kind of procedure returned.

nk can be the sum of these values to match multiple procedure kinds. For example,
use 3 to list both Proc and Macro procedures.

nk=1: List Proc procedures.
nk=2: List Macro procedures.
nk=4: List Window procedures.

magsqr

V-411

Examples
To list all Macros with three parameters:
Print MacroList("*",";","KIND:2,NPARAMS:3")

To list all Macro, Proc, and Window procedures in the main procedure window whose names start with b:
Print MacroList("b*",";","WIN:Procedure")

See Also
The DisplayProcedure operation and the FunctionList, OperationList, StringFromList, and WinList
functions.
For details on procedure subtypes, see Procedure Subtypes on page IV-183, as well as Button, CheckBox,
SetVariable, and PopupMenu.

magsqr
magsqr(z)
The magsqr function returns the sum of the squares of the real and imaginary parts of the complex number
z, that is, the magnitude squared.

Examples
Assume waveCmplx is complex and waveReal is real.
waveReal = sqrt(magsqr(waveCmplx))

sets each point of waveReal to the magnitude of the complex points in waveCmplx.
You may get unexpected results if the number of points in waveCmplx differs from the number of points
in waveReal because of interpolation. See Mismatched Waves on page II-100 for details.

See Also
The cabs function.
WaveMetrics provides Igor Technical Note 006, “DSP Support Macros” which uses the magsqr function to
compute the magnitude of FFT data, and Power Spectral Density with options such as windowing and
segmenting. See the Technical Notes folder. Some of the techniques discussed there are available as Igor
procedure files in the “WaveMetrics Procedures:Analysis:” folder.

Make
Make [flags] waveName [, waveName]…
Make [flags] waveName [= {n0,n1,…}]…
Make [flags] waveName [= {{n0,n1,…},{n0,n1,…},…}]…
The Make operation creates the named waves. Use braces to assign data values when creating the wave.

Flags

WIN:windowNameStr

Lists macros that are defined in the named procedure window. “Procedure” is the
name of the built-in procedure window.
Note: Because optionsStr keyword-value pairs are comma separated and procedure
window names can have commas in them, the WIN: keyword must be the last one
specified.

/B Makes 8-bit signed integer waves or unsigned waves if /U is present.

/C Makes complex waves.

/D Makes double precision waves.

/DF Wave holds data folder references.
Requires Igor Pro 6.1 or later. For advanced programmers only.
See Data Folder References on page IV-62 for more discussion.

Make

V-412

Wave Data Types
As a replacement for the above number type flags you can use /Y=numType to set the number type as an
integer code. See the WaveType function for code values. The /Y flag overrides other type flags but you may
still need to use the /C, /T, /DF or /WAVE flags to define the type of an automatic WAVE reference variable
when used in user functions.

Details
Unless overridden by the flags, the created waves have the default length, type, precision, units and scaling.
The factory defaults are:

/FREE Creates a free wave. Allowed only in functions and only if a simple name or structure
field is specified.
Requires Igor Pro 6.1 or later. For advanced programmers only.
See Free Waves on page IV-75 for more discussion.

/I Makes 32-bit signed integer waves or unsigned waves if /U is present.

/N=n n is the number of points each wave will have. If n is an expression, it must be
enclosed in parentheses: Make/N=(myVar+1) aNewWave

/N=(n1, n2, n3, n4)

n1, n2, n3, n4 specify the number of rows, columns, layers and chunks each wave will
have. Trailing zeros can be omitted (e.g., /N=(n1, n2, 0, 0) can be abbreviated as
/N=(n1, n2)).

/O Overwrites existing waves in case of a name conflict. After an overwrite, you cannot
rely on the contents of the waves and you will need to reinitialize them or to assign
appropriate values.

/R Makes real value waves (default).

/T Makes text waves.

/T=size Makes text waves with pre-allocated storage.
size is the number of bytes preallocated by Igor for each element in each text wave. The
waves are not initialized - it is up to you to initialize them.
Preallocation can dramatically speed up text wave assignment when the wave has a
very large number of points but only when all strings assigned to the wave are exactly
the same size as the preallocation size.

/U Makes unsigned Integer waves.

/W Makes 16-bit signed integer waves or unsigned waves if /U is present.

/WAVE Wave holds wave references.
Requires Igor Pro 6.1 or later. For advanced programmers only.
See Wave References on page IV-56 for more discussion.

/Y=type Specifies wave data type. See details below.

Property Default

Number of points 128

Precision Single precision floating point

Type Real

Note: The preferred precision set by the Miscellaneous Settings dialog only presets the Make
Waves dialog checkbox and determines the precision of imported waves. It does not affect
the Make operation.

MakeIndex

V-413

See Also
The SetScale, Duplicate, and Redimension operations.

MakeIndex
MakeIndex [/A/C/R] sortKeyWaves, indexWaveName
The MakeIndex operation sets the data values of indexWaveName such that they give the ordering of
sortKeyWaves.
For simple sorting problems, MakeIndex is not needed. Just use the Sort operation.

Parameters
sortKeyWaves is either the name of a single wave, to use a single sort key, or the name of multiple waves in
braces, to use multiple sort keys.
indexWaveName must specify a numeric wave.
All waves must be of the same length and must not be complex.

Flags

Details
MakeIndex is used in preparation for a subsequent IndexSort operation. If /R is used the ordering is from
largest to smallest. Otherwise it is from smallest to largest.

See Also
MakeIndex and IndexSort Operations on page III-139.

MandelbrotPoint
MandelbrotPoint(x, y, maxIterations, algorithm)
The MandelbrotPoint function returns a value between 0 and maxIterations based on the Mandelbrot set
complex quadratic recurrence relation z[n] = z[n-1]^2 + c where x is the real component of c, y is the
imaginary component of c and z[0] = 0.
The returned value is the number of iterations the equation was evaluated before |z[n]| > 2 (the escape
radius of the Mandelbrot set), or maxIterations, whichever is less.

dimensions 1

x, y, z, and t scaling offset=0, delta=1 (“point scaling”)

x, y, z, and t units "" (blank)

Data Full Scale 0, 0

Data units "" (blank)

/A Alphanumeric. When sortKeyWaves includes text waves, the normal sorting places “wave1”
and “wave10” before “wave9”. Use /A to sort the number portion numerically, so that
“wave9” is sorted before “wave10”.

/C Case-sensitive. When sortKeyWaves includes text waves, the ordering is case-insensitive unless
you use the /C flag which makes it case-sensitive.

/R Reverse the index so that ordering is from largest to smallest.

Property Default

MarcumQ

V-414

Parameters

See Also
The “MultiThread Mandelbrot Demo” experiment.

References
http://en.wikipedia.org/wiki/Mandelbrot_set
http://linas.org/art-gallery/escape/escape.html

MarcumQ
MarcumQ(m, a, b)
The MarcumQ function returns the generalized Q-function defined by the integral

where Ik is the modified Bessel function of the first kind and order k.
Its applications have been primarily in the fields of communication and detection theory. However, an
interesting interpretation of its result with m=1 and appropriate parameter scaling is the fractional power
of a two-dimensional circular Gaussian function within a displaced circular aperture.
Depending on the input arguments, the MarcumQ function may be computationally intensive but you can
abort the calculation at any time.

References
Cantrell, P.E., and A.K. Ojha, Comparison of Generalized Q-Function Algorithms, IEEE Transactions on

Information Theory, IT-33, 591-596, 1987.
Simon, M. K., A New Twist on the Marcum Q-Function and Its Application, IEEE Communications Letters,

3, 39-41, 1998.

MarkPerfTestTime
MarkPerfTestTime idval
Use the MarkPerfTestTime operation for performance testing of user-defined functions in conjunction with
SetIgorOption DebugTimer. When used between SetIgorOption DebugTimer, Start and
SetIgorOption DebugTimer, Stop, MarkPerfTestTime stores the ID value and the time of the call in
a buffer. When SetIgorOption DebugTimer, Stop is called the contents of the buffer are dumped to
a pair of waves: W_DebugTimerIDs will contain the ID values and W_DebugTimerVals will contain the
corresponding times of the calls relative to the very first call. The timings use the same high precision
mechanism as the startMSTimer and stopMSTimer calls.
By default, SetIgorOption DebugTimer, Start allocates a buffer for up to 10000 entries. You can
allocate a different sized buffer using SetIgorOption DebugTimer, Start=bufsize.

See Also
SetIgorOption, startMSTimer, and stopMSTimer.
Additional documentation can be found in an example experiment, PerformanceTesting.pxp, and a
WaveMetrics procedure file, PerformanceTestReport.ipf.

algorithm=0 The "Escape Time" algorithm returns the integer n which is the number of iterations
until |z[n]| > 2.

algorithm=1 The "Renormalized Iteration Count Algorithm" algorithm returns a floating point
value which is a refinement of the number of iterations n by adding the quantity:
5 - ln(ln(|z[n+4]|)) / ln(2)

(which requires four more iterations of the recurrence relation). The returned value is
clipped to maxIterations.

Qm a b(,) u u
a

 m 1– a2 u2+()

2
----------------------–

 exp Im 1– au() ud
b

∞

=

http://en.wikipedia.org/wiki/Mandelbrot_set
http://linas.org/art-gallery/escape/escape.html

MatrixConvolve

V-415

MatrixConvolve
MatrixConvolve [/R=roiWave] coefMatrix, dataMatrix
The MatrixConvolve operation convolves a small coefficient matrix coefMatrix into the destination
dataMatrix.

Flags

Details
On input coefMatrix contains an NxM matrix of coefficients where N and M should be odd. Generally N and
M will be equal. If N and M are greater than 13, it is more efficient to perform the using the Fourier
transform (see FFT).
The convolution is performed in place on the data matrix and is acausal, i.e., the output data is not shifted.
Edges are handled by replication of edge data.
When dataMatrix is an integer type, the results are clipped to limits of the given number type. For example,
unsigned byte is clipped to 0 to 255.
MatrixConvolve works also when both coefMatrix and dataMatrix are 3D waves. In this case the convolution
result is placed in the wave M_Convolution in the current data folder, and the optional /R=roiWave is
required to be an unsigned byte wave that has the same dimensions as dataMatrix.
This operation does not support complex waves.

See Also
MatrixFilter and ImageFilter for filter convolutions.
Matrix Math Operations on page III-143 for more about Igor’s matrix routines.
The Loess operation.

MatrixCorr
MatrixCorr [/COV][/DEGC] waveA [, waveB]
The MatrixCorr operation computes the correlation or covariance or degree of correlation matrix for the
input 1D wave(s).
If we denote elements of waveA by {xi} and elements of waveB by {yi} then the correlation matrix for these
waves is the vector product of the form:

where * denotes complex conjugation. If you use the optional waveB then the matrix is the cross correlation
matrix. waveB must have the same length of waveA but it does not have to be the same number type.

/R=roiWave Modifies only data contained inside the region of interest. The ROI wave should be 8-
bit unsigned with the same dimensions as dataMatrix. The interior of the ROI is
defined by zeros and the exterior is any nonzero value.

x1

x2

x3

.

.

.
xn

y1 y2 y3 … yn
∗

x1y1∗ x1y2∗ x1y3∗ … x1yn∗

x2y1∗ x2y2∗ x2y3∗ … x2yn∗

x3y1∗ x3y2∗ x3y3∗ … x3yn∗

.

.

.
xny1∗ xny2∗ xny3∗ … xnyn∗

=

MatrixDet

V-416

Flags
The flags are mutually exclusive; only one matrix can be generated at a time.

Examples
The covariance matrix calculation is equivalent to:
Variable N=1/(DimSize(waveA,0)-1)
Variable ma=mean(waveA,-inf,inf)
Variable mb=mean(waveB,-inf,inf)
waveA-=ma
waveB-=mb
MatrixTranspose/H waveB
MatrixMultiply waveA,waveB
M_product*=N

See Also
Matrix Math Operations on page III-143 for more about Igor’s matrix routines.

References
Hayes, M.H., Statistical Digital Signal Processing And Modeling, 85 pp., John Wiley, 1996.

MatrixDet
matrixDet(dataMatrix)
The matrixDet function returns the determinant of dataMatrix. The matrix wave must be a real, square
matrix or else the returned value will be NaN.

Details
The function calculates the determinant using LU decomposition. If, following the decomposition, any one of
the diagonal elements is either identically zero or equal to 10-100, the return value of the function will be zero.

See Also
The MatrixOp operation for more efficient matrix operations.
Matrix Math Operations on page III-143 for more about Igor’s matrix routines.

MatrixDot
MatrixDot(waveA, waveB)
The MatrixDot function calculates the inner (scalar) product for two 1D waves. A 1D wave A represents a
vector in the sense:

.

Given two such waves A and B, the inner product is defined as

.

When both waveA and waveB are complex and the result is assigned to a complex-valued number MatrixDot
returns:

/COV Calculates the covariance matrix.
The covariance matrix for the same input is formed in a similar way after subtracting from
each vector its mean value and then dividing the resulting matrix elements by (n-1) where
n is the number of elements of waveA.
Results are stored in the M_Corr or M_Covar waves in the current data folder.

/DEGC Calculates the complex degree of correlation. The degree of correlation is defined by:

where M_Covar is the covariance matrix and Var(wave) is the variance of the wave.

The complex degree of correlation should satisfy: .

degC M_Covar
Var waveA() Var waveB()⋅

---=

0 degC 1≤ ≤

A αiêi
(), ê

i
 is a unit vector=

ip αiβi=

MatrixEigenV

V-417

.

If the result is assigned to a real number, MatrixDot returns:

.

If either waveA or waveB is complex and the result is assigned to a real-valued number, MatrixDot returns:

.

When the result is assigned to a complex-valued number MatrixDot returns:

.

See Also
The MatrixOp operation for more efficient matrix operations.
Matrix Math Operations on page III-143 for more about Igor’s matrix routines.

MatrixEigenV
MatrixEigenV [flags] matrixA [, matrixB]
MatrixEigenV computes the eigenvalues and eigenvectors of a square matrix using LAPACK routines.

Flags for General Matrices

/B=balance

/L Calculates for left eigenvectors.

/O Overwrites matrixWave, requiring less memory.

/R Calculates for right eigenvectors.

/S=sense Determines which reciprocal condition numbers are calculated.

If sense is 1 or 3 you must compute both left and right eigenvectors.
NOTE: /S is applicable only with the /X flag or for the generalized eigenvalue
problem.

ipc α*
i βi=

ip α*
i βi=

ip αiβi=

ipc αiβi=

Determines how the input matrix should be scaled and or permuted to improve the
conditioning of the eigenvalues.
balance=0 (default), 1, 2, or 3, corresponding respectively to N, P, S, or B in the
LAPACK routines. Applicable only with the /X flag.
0: Do not scale or permute.
1: Permute.
2: Do diagonal scaling.
3: Scale and permute.

sense=0 (default), 1, 2, or 3, corresponding respectively to N, E, V, or B in the
LAPACK routines. Applicable only with the /X flag.
0: None.
1: Eigenvalues only.
2: Right eigenvectors.
3: Eigenvalues and right eigenvectors.

MatrixEigenV

V-418

Flags for Symmetric Matrices

Flags for Generalized Eigenvalue Problem
These are the same flags as for general (non-symmetric) matrices above except for /O and /X which are not
supported for the generalized eigenvalue solution.

Common Flags

Details
There are three mutually exclusive branches for the operation. The first is designed for a square matrix
input matrixA. The operation computes the solution to the problem

where A is the input matrix, x is an eigenvector and λ is an eigenvalue.
The second branch is designed for symmetric matrices A, i.e., when

where the superscript T denotes a transpose.
The third branch of the operation is designed to solve the generalized eigenvalue problem,

where A and B are square matrices, x is an eigenvector and λ is an eigenvalue.

/X Uses LAPACK expert routines, which require additional parameters (see /B and /S
flags). The operation creates additional waves:
The W_MatrixOpInfo wave contains in element 0 the ILO, in element 1 the IHI, and
in element 2 the ABNRM from the LAPACK routines.
The wave W_MatrixRCONDE contains the reciprocal condition numbers for the
eigenvalues.
The wave W_MatrixRCONDV contains the reciprocal condition number for the
eigenvectors.

/SYM Computes the eigenvalues of an NxN symmetric matrix and stores them in the wave
W_eigenValues. You must specify this flag if you want to use the special routines for
symmetric matrices. The number of eigenvalues is stored in the variable V_npnts. Because
W_eigenValues has N points, only the first V_npnts will contain relevant eigenvalues.
When using this flag with complex input the matrix is assumed to be Hermitian.

/EVEC Computes eigenvectors in addition to eigenvalues. Eigenvectors will be stored in the wave
M_eigenVectors, which is of dimension NxN. The first V_npnts columns of the wave will
contain the V_npnts eigenvectors corresponding to the eigenvalues in W_eigenValues. /EVEC
must be preceded by /SYM.

/RNG={method,low,high}

/Z No error reporting (except for setting V_flag).

Determines what is computed:

/RNG must be preceded by /SYM.

method=0: Computes all the eigenvalues or eigenvectors (default).
method=1: Computes eigenvalues for low and high double precision range.
method=2: Computes eigenvalues for low and high integer indices (1 based). For

example, to compute the first 3 eigenvalues use: /RNG={2,1,3}.

Ax = λx,

A = AT ,

Ax = λBx,

MatrixEigenV

V-419

Each branch of the operation supports its own set of flags as shown above. All branches support input of
single and double precision in real or complex waves. If you specify both matrixA and matrixB then they
must have the same number type.

Details for General Matrices
The eigenvalues are returned in the 1D complex wave W_eigenValues. The eigenvectors are returned in the
2D wave M_R_eigenVectors or M_L_eigenVectors.
The calculated eigenvectors are normalized to unit length.
Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the positive
imaginary part first.
If the jth eigenvalue is real, then the corresponding eigenvector u(j)=M[][j] is the jth column of
M_L_eigenVectors or M_R_eigenVectors. If the jth and (j+1)th eigenvalues form a complex conjugate pair,
then u(j) = M[][j] + i*M[][j+1] and u(j+1) = M[][j] - i*M[][j+1].
The variable V_flag is set to 0 when there is no error.

Details for Symmetric Matrices
The LAPACK routines that compute the eigenvalues and eigenvectors of symmetric matrices claim to use
the Relatively Robust Representation whenever possible. If your matrix is symmetric you should use this
branch of the operation (/SYM) for improved accuracy.

Details for Generalized Eigenvalue Problem
Here the right eigenvectors (/R) are solutions to the equation

and the left eigenvectors (/L) are solutions to

where the superscript H denotes the conjugate transpose.
When both matrixA and matrixB are real valued, the operation creates the following waves in the current
data folder:

Every point in the wave W_alphaValues corresponds to an eigenvalue. When the imaginary part of
W_alphaValues[j] is zero, the eigenvalue is real and the corresponding eigenvector is also real e.g.,
M_rightEigenVectors[][j]. When the imaginary part is positive then there are two eigenvalues that are
complex-conjugates of each other with corresponding complex eigenvectors given by
cmplx(M_rightEigenVectors[][j],M_rightEigenVectors[][j+1])

and
cmplx(M_rightEigenVectors[][j],-M_rightEigenVectors[][j+1])

When both matrixA and matrixB are complex the operation creates the complex waves:
W_alphaValues, W_betaValues, M_leftEigenVectors, M_rightEigenVectors
with the ratio W_alphaValues[j]/W_betaValues[j] expressing the generalized eigenvalue. The
corresponding M_leftEigenVectors[][j] and M_rightEigenVectors[][j] are the respective left and right
eigenvectors. The simplicity of the complex case suggests that when matrixA and matrixB are real it is best
to convert them to complex waves prior to executing matrixEigenV.

W_alphaValues Contains the complex alpha values.

W_betaValues Contains the real-valued denominator such that
the eigenvalues are given by

M_leftEigenVectors and
M_rightEigenVectors

Real valued waves where columns correspond
to eigenvectors of the equation.

Ax = λBx,

xHA = λxHB,

λ j =
α j

β j

.

MatrixFilter

V-420

Depending on the choice of /S the operation also calculates the reciprocal condition number for the
eigenvalues (stored in W_reciprocalConditionE) and the reciprocal condition number of the eigenvectors
(stored in W_reciprocalConditionV). Note that a zero entry in W_reciprocalConditionV implies that the
eigenvalues could not be ordered.

See Also
Matrix Math Operations on page III-143 for more about Igor’s matrix routines and for background
references with details about the LAPACK libraries.
Symmetric matrices can also be decomposed using the MatrixSchur operation and using MatrixOp chol.

MatrixFilter
MatrixFilter [flags] Method dataMatrix
The MatrixFilter operation performs one of several standard image filter type operations on the destination
dataMatrix.

Parameters
Method selects the filter type. Method is one of the following names:

Note: The parameters below are also available in ImageFilter. See ImageFilter for additional
parameters.

avg nxn average filter.

FindEdges 3x3 edge finding filter.

gauss nxn gaussian filter.

gradN, gradNW, gradW, gradSW, gradS, gradSE, gradE, gradNE

3x3 North, NorthWest, West, … pointing gradient filter.

median nxn median filter. You can assign values other than the median by specifying the
desired rank using the /M flag.

min nxn minimum rank filter.

max nxn maximum rank filter.

NanZapMedian nxn filter that only affects data points that are NaN. Replaces them with the median
of the nxn surrounding points. Unless /P is used, automatically cycles through matrix
until all NaNs are gone or until cols*rows iterations.

point 3x3 point finding filter 8*center-outer.

sharpen 3x3 sharpening filter=(12*center-outer)/4.

sharpenmore 3x3 sharpening filter=(9*center-outer).

thin Calculates binary image thinning using neighborhood maps based on the algorithm
in Graphics Gems IV, p. 465.
Note: The thin keyword to MatrixFilter will be removed someday. The functionality
will be available — just not as a part of MatrixFilter. The /R flag does not apply to the
lame duck thin keyword.

MatrixGaussJ

V-421

Flags

Details
This operation does not support complex waves.

See Also
ImageFilter operation for additional options. Matrix Math Operations on page III-143 for more about
Igor’s matrix routines. The Loess operation.

References
Heckbert, Paul S., (Ed.), Graphics Gems IV, 575 pp., Morgan Kaufmann Publishers, 1994.
Zhang, T. Y., and C. Y. Suen, A fast thinning algorithm for thinning digital patterns, Comm. of the ACM, 27,

236-239, 1984.

MatrixGaussJ
MatrixGaussJ matrixA, vectorsB
The MatrixGaussJ operation solves matrix expression A*x=b for column vector x given matrix A and
column vector b. The operation can also be used to calculate the inverse of a matrix.

Parameters
matrixA is a NxN matrix of coefficients and vectorsB is a NxM set of right-hand side vectors.

Details
On output, the array of solution vectors x is placed in M_x and the inverse of A is placed in M_Inverse.
If the result is a singular matrix, V_flag is set to 1 to indicate the error. All other errors result in an alert, and
abort any calling procedure.
All output objects are created in the current data folder.
An error is generated if the dimensioning of the input arrays is invalid.
This routine is provided for completeness only and is not recommended for general work (use LU decomposition
— see MatrixLUD). MatrixGaussJ does calculate the inverse matrix but that is not generally needed either.

See Also
Matrix Math Operations on page III-143 for more about Igor’s matrix routines. The MatrixLUD operation.

MatrixInverse
MatrixInverse [flags] srcWave
The MatrixInverse operation calculates the inverse or the pseudo-inverse of a square matrix. srcWave may
be real or complex.
MatrixInverse saves the result in the wave M_Inverse in the current data folder.

/B=b Specifies value that is considered background. Used with thin. If object is black on
white background, use 255. If object is white on a black background, use 0.

/M=rank Assigns a pixel value other than the median when used with the median filter. Valid
rank values are between 0 and n2-1 (for the default median rank= n2/2).

/N=n For any method described above as “nxn”, you can specify that the filtering kernel
will be a square matrix of size n. In the absence of the /N flag, the default size is 3.

/P=p Filter passes over the data p times. The default is one pass.

/R=roiWave Only the data outside the region of interest will be modified. roiWave should be an 8-
bit unsigned wave with the same dimensions as the data matrix. The exterior of the
ROI is defined by zeros and the interior is any nonzero value.

/T Applies the thining algorithm of Zhang and Suen with the thin parameter. The wave
M_MatrixFilter contains the results; the input wave is not overwritten.

MatrixLinearSolve

V-422

Flags

Example
Make/N=(2,2) mat0={{2,3},{1,7}}
MatrixInverse mat0 // Creates wave M_inverse
// Check the results
MatrixOP/O mat1=M_inverse x mat0
Print mat1 // Verify that you got the identity matrix

See Also
The MatrixOp operation for more efficient matrix operations.
Matrix Math Operations on page III-143 for more about Igor’s matrix routines.

References
See sec. 5.5.4 of:
Golub, G.H., and C.F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University Press, 1986.

MatrixLinearSolve
MatrixLinearSolve [flags] matrixA matrixB
The MatrixLinearSolve operation solves the linear system matrixA *X=matrixB where matrixA is an N-by-N
matrix and matrixB is an N-by-NRHS matrix of the same data type.

/D Creates the wave W_W that contains eigenvalues of the singular value decomposition (SVD)
for the pseudo-inverse calculation. If one or more of the eigenvalues are small, the matrix may
be close to singular.

/G Calculates only the direct inverse; does not affect calculation of pseudo-inverse. By default, it
calculates the inverse of the matrix using LU decomposition. The inverse is calculated using
Gauss-Jordan method. The only advantage in using Gauss-Jordan is that it is more likely to
flag singular matrices than the LU method.

/O Overwrites the source with the result.

/P Calculates the pseudo-inverse of a square matrix using the SVD algorithm. The calculated
pseudo-inverse is a unique minimal solution to the problem: .

X belongs to Rmxn.

min AX Im–

MatrixLinearSolveTD

V-423

Flags

Details
If /O is not specified, the operation also creates the n-by-n wave M_A and the n-by-nrhs solution wave M_B.
The variable V_flag is created by the operation. If the operation completes successfully, V_flag is set to zero,
otherwise it is set to the LAPACK error code.

See Also
Matrix Math Operations on page III-143 for more about Igor’s matrix routines and for background
references with details about the LAPACK libraries.

MatrixLinearSolveTD
MatrixLinearSolveTD [/Z] upperW, mainW, lowerW, matrixB
The MatrixLinearSolveTD operation solves the linear system TDMatrix*X = matrixB. In the matrix product on
the left hand side, TDMatrix is a tridiagonal matrix with upper diagonal upperW, main diagonal mainW, and
lower diagonal lowerW. It solves for vector(s) X depending on the number of columns (NRHS) in matrixB.

Flags

Details
The input waves can be single or double precision (real or complex). Results are returned in the wave
M_TDLinearSolution in the current data folder. The wave mainW determines the size of the main diagonal

/M=method

/D={sub,super} Specifies a band diagonal matrix. The subdiagonal (sub) and superdiagonal (super)
size must be positive integers.

/L Uses the lower triangle of matrixA. /L and /U are mutually exclusive flags.

/U Uses the upper triangle of matrixA. /U is the default.

/O Overwrites matrixA and matrixB with the results of the operation. This will save on
the amount of memory needed.

/Z No error reporting.

/Z No error reporting.

Determines the solution method which best suites input matrixA.
method=1: Uses simple LU decomposition (default). See also LAPACK

documentation for SGESV, CGESV, DGESV, and ZGESV.
Creates the wave W_IPIV that contains the pivot indices that define
the permutation matrix P. Row (i) if the matrix was interchanged
with row ipiv(i).

method=2: If matrixA is band diagonal, you also have to specify /D. See also
LAPACK documentation for SGBSV, CGBSV, DGBSV, and
ZGBSV.
Creates the wave W_IPIV, which contains the pivot indices that
define the permutation matrix P. Row (i) if the matrix was
interchanged with row ipiv(i). Also note that if you are using the
/O flag, the overwritten waves may have a different dimensions.

method=4: For tridiagonal matrix; still expecting full matrix in matrixA, but
it will ignore the data in the elements outside the 3 diagonals.
See also LAPACK documentation for SGTSV, CGTSV, DGTSV,
and ZGTSV.

method=8: Symmetric/hermitian. See also LAPACK documentation for
SPOSV, CPOSV, DPOSV, and ZPOSV.

method=16: Complex symmetric (complex only). See also LAPACK
documentation for CSYSV and ZSYSV.

MatrixLLS

V-424

(N). All other waves must match it in size with upperW and mainW containing one less point and matrixB
consisting of N-by-NRHS elements of the same data type.
MatrixLinearSolveTD should be more efficient than MatrixLinearSolve with respect to storage
requirements.
MatrixLinearSolveTD creates the variable V_flag, which is zero when it finishes successfully.

See Also
Matrix Math Operations on page III-143; the MatrixLinearSolve and MatrixOp operations.

MatrixLLS
MatrixLLS [/O/Z/M=method] matrixA matrixB
The MatrixLLS operation solves overdetermined or underdetermined linear systems involving MxN
matrixA, using either QR/LQ or SV decompositions. Both matrixA and matrixB must have the same number
type. Supported types are real or complex single precision and double precision numbers.

Flags

Details
When the /O flag is not specified, the solution vectors are stored in the wave M_B, otherwise the solution
vectors are stored in matrixB. Let matrixA be m rows by n columns and matrixB be an m by NRHS (if NRHS=1
it can be omitted). If m ≥ n, MatrixLLS solves the least squares solution to an overdetermined system:

.

Here the first n rows of M_B contain the least squares solution vectors while the remaining rows can be
squared and summed to obtain the residual sum of the squares. If you are not interested in the residual you
can resize the wave using, for example:
Redimension/N=(n,NRHS) M_B

If m<n, MatrixLLS finds the minimum norm solution of the underdetermined system: .

In this case, the first m rows of M_B contain the minimum norm solution vectors while the remaining rows
can be squared and summed to obtain the residual sum of the squares for the solution. If you are not
interested in the residual you can resize the wave using, for example:
Redimension/N=(m,NRHS) M_B

The variable V_flag is set to 0 when there is no error; otherwise it contains the LAPACK error code.

See Also
Matrix Math Operations on page III-143 for more about Igor’s matrix routines and for background
references with details about the LAPACK libraries.

/M=method

/O Overwrites matrixA with its decomposition and matrixB with the solution vectors.
This requires less memory.

/Z No error reporting.

Note: Here matrixB consists of one or more column vectors B corresponding to one or more
solution vectors X that are computed simultaneously. If matrixB consists of a single
column, M_B is a 2D matrix wave that contains a single solution column.

Specifies the decomposition method.
method=0: Decomposition is to QR or LQ (default). Creates the 2D wave

M_A, which contains details of the QR/LQ factorization.
method=1: Singular value decomposition. Creates the 2D wave MA, which

contains the right singular vectors stored row-wise in the first
min(m,n) rows. Creates the 1D wave M_SV, which contains
the singular values of matrixA arranged in decreasing order.

Minimize matrixB matrixA X ⋅–

matrixA X⋅ matrixB=

MatrixLUBkSub

V-425

MatrixLUBkSub
MatrixLUBkSub matrtixL, matrixU, index, vectorB
The MatrixLUBkSub operation provides back substitution for LU decomposition.

Details
This operation is used to solve the matrix equation Ax=b after you have performed LU decomposition (see
MatrixLUD). Feed this routine M_Lower, M_Upper and W_LUPermutation from MatrixLUD along with
your right-hand-side vector b. The solution vector x is returned as M_x. The array b can be a matrix
containing a number of b vectors and the M_x will contain a corresponding set of solution vectors.
Generates an error if the dimensions of the input matrices are not appropriate.

See Also
Matrix Math Operations on page III-143 for more about Igor’s matrix routines.

MatrixLUD
MatrixLUD matrixA
The MatrixLUD operation decomposes NxN wave, matrixA, into a pair of upper and lower triangular matrices.

Details
The output matrices are placed into waves named M_Upper and M_Lower. A permutation wave is
returned in W_LUPermutation. This is needed for the back substitution routine, MatrixLUBkSub.
The variable V_flag is set to zero if the operation succeeds and to 1 if singular. The polarity of the matrix is
returned in the variable V_LUPolarity.
All output objects are created in the current data folder.

See Also
Matrix Math Operations on page III-143 for more about Igor’s matrix routines.

MatrixMultiply
MatrixMultiply matrixA [/T], matrixB [/T] [, additional matrices]
The MatrixMultiply operation calculates matrix expression matrixA*matrixB and puts the result in a matrix
wave named M_product generated in the current data folder. The /T flag can be included to indicate that
the transpose of the specified matrix should be used.
If any of the source matrices are complex, then the result is complex.

Parameters
If matrixA is an NxP matrix then matrixB must be a PxM matrix and the product is an NxM matrix. Up to 10
matrices can be specified although it is unlikely you will need more than three. The inner dimensions must
be the same. Multiplication is performed from right to left.
It is legal for M_product to be one of the input matrices. Thus MatrixMultiply A,B,C could also be done as:
MatrixMultiply B,C
MatrixMultiply A,M_product

Details
Supports multiplication of complex matrices.
An error is generated if the dimensioning of the input arrays is invalid.

See Also
The MatrixOp operation for more efficient matrix operations.
Matrix Math Operations on page III-143 for more about Igor’s matrix routines.

MatrixOp
MatrixOp [/C /FREE /NTHR=n /O /S] destwave = matrixExpression
The MatrixOp operation evaluates matrixExpression and creates an output wave whose name is specified by
destWave.

MatrixOp

V-426

matrixExpression combines waves and scalar values using the set of MatrixOp-supported operators and
functions described below.
MatrixOp is faster and more readable than standard Igor waveform assignments and matrix operations.
For example, the expression
MatrixOp matA = Inv((Identity(vecSize) - matB x matC) x matD)

is equivalent to:
Make/O/N=(vecSize,vecSize) identityMatrix = p==q ? 1 : 0
MatrixMultiply matB,matC
identityMatrix-=M_Product
MatrixMultiply identityMatrix,matD
MatrixInverse M_Product
Rename M_Inverse, matA

Parameters

destWave Specifies a destination wave for the assignment expression. destWave is created at
runtime. If it already exists, you must use the /O flag to overwrite it or the operation
will return an error.
When the operation is completed, destWave has the dimensions and data type implied
by matrixExpression. In particular, it may be complex if matrixExpression evaluates to a
complex quantity. If matrixExpression evaluates to a scalar, destWave is a 1x1 wave.
The data type of destWave depends on the data types of the operands and the nature
of the operations on the right-hand side of the assignment. If matrixExpression
references integer waves only, destWave will be integer but all operation with a scalars
convert destWave into a double precision wave. Note: even if destWave exists before
the operation, MatrixOp changes its data type and dimensionality as implied by
matrixExpression.

matrixExpression matrixExpression is an algebraic expression referencing waves, local variables, global
variables and numeric constants together with the following MatrixOp operators:

MatrixOp Operator Precedence

^h ^t Highest

x

* /

+ -

&& || Lowest

MatrixOp

V-427

Operators
This section describes the behavior of the MatrixOp operators.

Functions
These functions are available for use with MatrixOp.

+ Addition between scalars, matrix addition or addition of a scalar (real or complex) to each
element of a matrix.

- Subtraction of one scalar from another, matrix subtraction, or subtracting a scalar from each
element of a matrix. Subtraction of a matrix from a scalar is not defined.

* Multiplication between two scalars, multiplication of a matrix by a scalar, or element-by-
element multiplication of two waves of the same dimensions.

/ Division of two scalars, division of a matrix by a scalar, or element-by-element division
between two waves of the same dimensions.

x Matrix multiplication (lower case x symbol only). Operator must be preceded and followed by
a space. Matrix multiplication requires that the number of columns in the matrix on the left
side be equal to the number of rows in the matrix on the right.

. Generalized form of a dot product. In an expression a.b it is expected that a and b have the
same number of points although they may be of arbitrary numeric type. The operator returns
the sum of the products of the sequential elements as if both a and b were 1D arrays.

^t Matrix transpose. This is a postfix operator meaning that ̂ t appears after the name of a matrix
wave.

^h Hermitian transpose. This is a postfix operator meaning that ^h appears after the name of a
matrix wave.

&& Logical AND operator supports all real data types and results in signed byte numerical type
with values of either 0 or 1. The operation acts on an element by element basis and is
performed for each element of the operand waves.

|| Logical OR operator supports all real data types and results in signed byte numerical type
with values of either 0 or 1. The operation acts on an element by element basis and is
performed for each element of the operand waves.

Abs() Absolute value of a real number or the magnitude of a complex number.

acos(z) Arc cosine of the generic argument z.

asin(z) Arc sine of the generic argument z.

asyncCorrelation(w) Asynchronous spectrum correlation matrix for a real valued input matrix
wave w. See also syncCorrelation.

atan(z) Arc tangent of the generic argument z.

atan2(y,x) Arc arc tangent of real y/x.

MatrixOp

V-428

beam(w,row,col) When w is a 3D wave the beam function returns a 1D array corresponding to
the data in the beam defined by w[row][col][]. In other words, it returns a 1D
array consisting of all elements in the specified row and column from all
layers. See also ImageTransform getBeam.
When w is a 4D wave it returns a 2D array containing w[row][col][][]. In other
words, it returns a matrix consisting of all elements in the specified row and
column from all layers and all chunks.
The beam function belongs to a special class in that it does not operate on a
layer by layer basis. It therefore does not permit compound expressions in
place of any of its parameters.
The beam function has the highest precedence.
beam is a non-layered function which requires that w be a proper multi-
dimensional wave and not the result of another expression.

ceil(z) Smallest integer larger than z.

clip(w,low,high) Returns the values in the wave w clipped between the low and the high
parameters. If w contains NaN or INF values, they are not modified. The
result retains the same number type as the input wave w irrespective of the
range of the low and high input parameters.

ChirpZ(data,A,W,M) Chirp Z Transform of the 1D wave data calculated for the contour defined by

Here both A and W are complex and the standard z transform for a sequence
{x(n)} is defined by

The phase of the output is inverted to match the result of the ChirpZ
transform on the unit circle with that of the FFT.

ChirpZf(data,f1,f2,df)

Chirp Z Transform except that the transform parameters are specified by
real-valued starting frequency f1, end frequency f2 and frequency resolution
df. The transform is confined to the unit circle because both A and W have unit
magnitude.

chol(w) Returns the Cholesky decomposition U of a positive definite symmetric
matrix w such that w=U^t x U. Note that only the upper triangle of w is
actually used in the computation.

col(w,c) Returns column c from matrix wave w.

Conj(matrixWave) Complex conjugate of the input expression.

zk = AW
�k ,

k = 0,1,...M �1.

X(z) = x(n)z�k .
k=0

N�1

�

MatrixOp

V-429

convolve(w1,w2,opt) Convolution of w1 with w2 subject to options opt. The dimensions of the
result are determined by the largest dimensions of w1 and w2 with the
number of rows padded (if necessary) so that they are even. Supported
options include opt=0 for circular convolution and opt=4 for acausal
convolution.
For fast 2D convolutions where where w1 is an image and w2 is a square
kernel of the same numeric type, you can use opt=-1 or opt=-2. When opt=-1 the
convolution at the boundaries is evaluated using zero padding. When opt=-2
the padding is a reflection of w1 about the boundaries. When working with
integer waves the kernel is internally normalized by the sum of its elements.
The kernel for floating point waves remain unchanged.
To convolve an image (in w1) with a smaller point spread function (in w2) you
can use opt=-1 if you want to pad the image boundaries with zeros or opt=-2
if you want to pad the boundaries by reflecting image values about each
boundary. Note that the negative options are designed for a very optimized
convolution calculation which requires that w1 and w2 have the same
numeric type. If the size of the point spread function is larger than about
13x13 it may become more efficient to compute the convolution using the
positive options.

correlate(w1,w2,opt) Correlation of w1 with w2 subject to options opt. The dimensions of the result
are determined by the largest dimensions of w1 and w2 with the number of
rows padded (if necessary) so that they are even. Supported options include
opt=0 for circular correlation and opt=4 for acausal correlation.

cos(z) Cosine of the generic argument z.

crossCovar(w1,w2,opt) Returns the cross-covariance for 1D waves w1 and w2. The options
parameter opt can be set to 0 for the raw cross-covariance or to 1 if you want
the results to be normalized to 1 at zero offset. If w1 has N rows and w2 has
M rows then the returned vector is of length N+M-1. The cross-covariance is
computed by subtracting the mean of each input followed by correlation and
optional normalization. See also Correlate with the /NODC flag.

Det(matrixWave) Returns a scalar corresponding to the determinant of matrixWave, which must
be real.

Diagonal(wave1D) Creates a square matrix that has the same number of rows as wave1D. All
entries are zero except for the diagonal elements for which the entries are
taken from the first column in wave1D. Use DiagRC if the input is not an
existing wave (such as a result from another function).

DiagRC(waveA,rows,cols)

2D matrix of dimensions rows by cols. All matrix elements are set to zero
except those of the diagonal which are filled sequentially from elements of
waveA. The dimensionality of waveA is unimportant. If the total number of
elements in waveA is less than the number of elements on the diagonal then
all elements will be used and the remaining diagonal elements will be set to
zero.

e Returns the base of the natural logarithm.

equal(a,b) Returns unsigned byte result with 1 for equality and zero otherwise. The
dimensionality of the result matches the dimensionality of the largest
parameter. Either or both a or b can be constants (i.e., one row by one column).
If a and b are not constants, they must have the same dimensions. Both
parameters can be either real or complex. A comparison of a real with a
complex parameter returns zero.

exp(z) Exponential function for a generic argument z, which can be real or complex,
scalar or a matrix.

MatrixOp

V-430

FFT(inWave,options) FFT of inWave subject to the options field. inWave must have an even number
of rows. The options field contains a binary field flag. Set the second bit to 1
if you want to disable the zero centering (see /Z flag in the FFT operation).
Other bits are reserved. MatrixOp does not support wave scaling and
therefore it does not produce the same wave scaling changes as the FFT
operation.

floor(z) Largest integer smaller than z.

Frobenius(matWave) Returns the Frobenius norm of a matrix defined as the square root of the sum
of the squared absolute values of all elements.

greater(a,b) Returns an unsigned byte for the truth of a > b. Both a and b must be real but
one or both can be constants (see equal() above). The dimensionality of the
result matches the dimensionality of the largest parameter.

IFFT(inWave,options) IFFT of inWave subject to the options field. The options field corresponds to the
/C and /Z flags of the IFFT operation. Set the first bit to 1 if you want to allow
real-valued output (in the case of a complex input of 2n+1 rows. Set the
second bit to 1 if you want to disable the zero centering. Other bits are
reserved. Note that MatrixOp does not support wave scaling and therefore it
does not produce the same wave scaling changes as the IFFT operation.

Identity(n,m)
Identity(n)

Creates a computational object that is an identity matrix. If you use a single
argument n, the identity created is an nxn square matrix with 1’s for diagonal
elements (the remaining elements are set to zero). If you use both arguments,
the function creates an nxm zero matrix and fills its diagonal elements with
1’s. Note that the identity is created at runtime and persists only for the
purpose of the specific operation.

imag(inWave) Imaginary part of inWave.

Inv(matrixWave) Inverse of a square matrixWave.

log(z) Log (i.e., log base 10) of a generic argument z which can be real or complex,
scalar or a matrix.

ln(z) Natural logarithm of a generic argument z which can be real or complex,
scalar or a matrix.

mag(inWave) Returns a real valued wave containing the magnitude of each element of
inWave. This is equivalent to the Abs() function.

magSqr(inWave) Returns a real value wave containing the square of a real inWave or the
squared magnitude of complex inWave.

maxVal(w) Returns the maximum value of the wave w. If w is complex it returns the
maximum magnitude of w. Note that this function does not support NaN
values.

mean(w) Returns the mean value of the wave w.

minVal(w) Returns the minimum value of the wave w. If w is complex the function
returns the minimum magnitude of w. Note that this function does not
support NaN values.

Normalize(inWave) Normalized version of a vector or a matrix. Normalization is such that the
returned wave should have a unity magnitude except if all entries are zero,
in which case output is unchanged.

NormalizeCols(w) Divides each column of the real wave w with the square root of the sum of the
squares of all elements of the column.

NormalizeRows(w) Divides each row of the real wave w with the square root of the sum of the
squares of all the elements in that row.

numCols(w) Returns the number of columns in the wave w.

MatrixOp

V-431

numPoints(w) Returns the number of points in a layer of the wave w.

numRows(w) Returns the number of rows in the wave w.

numType(z) Number type for the element passed to this function.

p2Rect(inWave) Performs the equivalent of the p2rect function on each element of inWave, i.e.,
each complex number of inWave is converted from polar to rectangular
representation.

phase(inWave) Returns a real valued wave containing the phase of each element of inWave
calculated using phase=atan2(y,x).

Pi Returns π.

powC(z1,z2) Complex valued z1z2 where z1 and z2 can be real or complex.

powR(x,y) Returns x^y for real x and y.

r2Polar(inWave) Performs the equivalent of the r2polar function on each element of inWave,
i.e., each complex number (x+iy) is converted into the polar represenation
r,theta with x+iy=r*exp(i*theta)

real(inWave) Real part of inWave.

rec(inWave) Reciprocal of each element in inWave.

Replace(w,findVal,replacementVal)

Replace in wave w every occurance of findVal with replacementVal. The wave
w retains its dimensionality and number type. replacementVal is converted to
the same number type as w which may cause truncation.

ReplaceNaNs(w,replacementVal)

Replaces every occurance of NaN in the wave w with replacementVal. The
wave w retains its dimensionality. replacementVal is converted to the same
number type as w which may cause truncation.

rotateRows(w,nr) Rotates the rows of a 2D wave w so that the last nr rows are moved to rows
[0,nr -1] of the data. If nr is negative the first abs(nr) rows are moved to rows
[n-1-abs(nr), n-1]. Here n is the total number of rows. It is an error to pass
NaN for nr. If nr is greater than the number of rows then the effective rotation
is mod(nr ,actualRows).

rotateCols(w,nc) Rotates the columns of a 2D wave w so that the last nc columns are moved to
columns [0,nc -1] of the data. If nc is negative the first abs(nc) columns are
moved to columns [n-1-nc ,n-1]. Here n is the total number of columns. It is
an error to pass NaN for nc . If nc is greater than the number of columns then
the effective rotation is mod(nc ,actualCols).

round(z) Rounds z to the nearest integer. The rounding method is “away from zero”.

row(w,r) Returns row r from matrix wave w. The returned row is a (1xC) wave where C
is the number of columns in w. To convert it to a 1D wave use
Redimension/N=(C). See also ImageTransform getRow.

scale(w,low,high) Returns the values in the wave w scaled between the low and the high
parameters. If w contains NaN or INF values, they are not modified. The
result retains the same number type as that of w irrespective of the range of
the low and high input parameters.

sgn(w) Returns the sign of each element in w. It returns -1 for negative numbers and
1 otherwise. It does not accept complex numbers.

shiftVector(w, n, val)

MatrixOp

V-432

Shifts the element of a 1D row-vector w by n elements and fills the displaced
elements with val, which must match the data type of w and should be
expressed as cmplx(a,b) for complex w.

sin(z) Sine of the generic argument z.

sqrt(z) Square root of the generic argument z.

SubtractMean(w,opt)

Computes the mean of the real wave w and returns the values of the wave
minus the mean value (opt=0). Computes the mean of each column and
subtracts it from that column (opt=1). Subtracts the mean of each row from
row values (opt=2).

sum(z) Returns the sum of all the elements in expression z.

sumBeams(w) Returns an nxm matrix containing the sum over all layers of all the beams of
the 3D wave w:

A beam is a 1D array in the Z-direction.
sumBeams is a non-layered function which requires that w be a proper 3D
wave and not the result of another expression.

sumCols(w) Returns an 1xm matrix containing the sums of the m columns in the nxm
input wave w:

sumRows(w) Returns an nx1 matrix containing the sums of the n rows in the nxm input
wave w:

sumSqr(inWave) Sum of the squares of all elements in inWave.

syncCorrelation(w) Synchronous spectrum correlation matrix for a real valued input matrix wave
w. See also asyncCorrelation.
The correlation matrix is computed by subtracting from each column of w its
mean value, multiplying the resulting matrix by its transpose, and finally
dividing all entries by (nrows-1) where nrows is the number of rows in w.

tan(z) Tangent of the generic argument z.

Trace(matrixWave) Returns a real or complex scalar which is the sum of the diagonal elements of
matrixWave. If matrixWave is not a square matrix, the sum is over the elements
for which the row and column indices are the same.

outij = wijk
k=0

nLayers�1

� .

out j = wij
i=0

nRows�1

� .

outi = wij
j=0

nCols�1

� .

MatrixOp

V-433

Wave Arguments
MatrixOp was designed to work with 2D matrices but it also works with a variety of other formats such as
the following “nonmatrix” formats:

transposeVol(w,mode)

TriDiag(w1,w2,w3) Returns a tri-diagonal matrix where w1 is the upper diagonal, w2 the main
diagonal and w3 the lower diagonal. If w2 has n points than w1 and w3 are
expected to have n-1 points. The waves can be of any numeric type and the
returned wave has a numeric type that accommodates the input.

varCols(w) Returns a 1xcols wave where each element contains the variance of the
corresponding column in w.

waveIndexSet(w1,w2,w3)

Returns a matrix of the same dimensions as w1 with values taken either from
w1 or from w3 depending on values in w2 using:

w1 and w2 must have the same number of rows and columns. w1 and w3 must
match in number type. w2 cannot be unsigned.
Values from w2 are used as point number indices into w3 which is treated like
a 1D wave regardless of its actual dimensionality.
An index value from w2 is out-of-bounds if it is greater than or equal to the
number of points in w3. In this case, the output value is taken from w1 as if
the index value were negative.

waveMap(w1,w2) Returns an array of the same dimensions as w2 containing the values
w1[w2[i][j]]. The data type of the output is the same as that of w1. Values of
w2 are taken as 1D integer indices into the w1 array. See also IndexSort.

wave1d[a] Where a is a constant index or a local variable. This will be converted into a
constant equal to the corresponding wave element. The index a will be clipped to
the valid range for wave1d.

wave2d[a][b] Where a and b are constants or local variables. Both indices will be clipped to the
valid range in the corresponding dimension.

wave3d[a][b][c] Where a, b, and c are constants or local variables. All three indices will be clipped
to the valid range in the corresponding dimension.

wave3d[][][a] Layer a from the 3D wave will be treated as a 2D matrix. The first and second
bracket pairs must be empty. a must be a constant that will be clipped to the valid
range of layers.

wave3d[][][a,b] matrixExpression is evaluated for all layers between layer a and layer b. The result
is a 3D wave.

For 3D wave w, transposeVol returns a transposed 3D wave depending on
the value of the mode parameter:

transposeVol is a non-layered function which requires that w be a proper
3D wave and not the result of another expression.

mode=1: output=w[p][r][q]
mode=2: output=w[r][p][q]
mode=3: output=w[r][q][p]
mode=4: output=w[q][r][p]
mode=5: output=w[q][p][r]

out[i][j] =
w1[i][j] if w2[i][j] < 0

w3[w2[i][j]] otherwise
.

�
�
�

MatrixOp

V-434

MatrixOp does not support expressions that include the same 3D wave on both sides of the expressions. For
example, the expression
MatrixOp/O wave3D=wave3D+A

is not permitted. You can also use waves of any dimensions in the standard numerical functions. For
example:
Make/O/N=128 wave1d=x
MatrixOp/O outWave=powR(wave1d,2)

Flags

Details
MatrixOp does not support wave scaling, it does not support the standard p, q, r, s, or x, y, z, t symbols
supported in a regular waveform assignment statement. It does not support operator combinations of the
form +=.
The operation creates a 1D or 2D destination wave, depending on matrixExpression. matrixExpression can
reference 1D, 2D and 3D waves.
You can use any combination of data types for operands. In particular, you can mix real and complex types
in matrixExpression without having to worry about /C declarations for complex waves. MatrixOp
determines the appropriate output data type at runtime.
Operator predence is indicated in the table above. When in doubt, use parentheses. When operators have
the same precedence, execution associativity is from right to left. This means that a * b / c is equivalent to a
* (b / c).
When using MatrixOp, simple matrix operations execute approximately 20-30 times faster than normal Igor
syntax. In most situations MatrixOp is faster than FastOp. However, for small waves, the extra overhead in
calling MatrixOp may make it slower than FastOp or a regular wave assignment statement. It is important
to note that usually you will find the best performance for single or double precision data types, so unless
there is a severe memory restriction, it is advantageous to convert integer waves to single precision floating
point before performing any operations.

Examples
The following matrices are used in the examples:
Make/O/N=(3,3) r1=x, r2=y

wave3d[][][a,b,c] matrixExpression is evaluated for layers starting with layer a and increasing the
layer number up to layer b using increments c. a, b, and c must be constants.
Layers are clipped to the valid range and c must be a positive integer.

/C Provides a complex wave reference for destWave. If omitted, MatrixOp creates a real wave
reference for destWave. The wave reference allows you to refer to the output wave in a
subsequent statement of a user-defined function.

/FREE Creates destWave as a free wave. Allowed only in functions and only if a simple name or
structure field is specified.

Requires Igor Pro 6.1 or later. For advanced programmers only.

See Free Waves on page IV-75 for more discussion.

/NTHR=n Sets the number of threads used to compute the results for 3D waves. Each thread computes
the results for a single layer of the input.

By default (/NTHR omitted) the calculations are performed by the main thread only.

If n=0 the operation uses as many threads you have processors on your computer.

If n>0, n specifies the number of threads to use. More threads may or may not improve
performance.

/O Overwrites destWave if it already exists.

/S Preserves the dimension scaling, units and wave note of a pre-existing wave that appears on
the lefthand side of the MatrixOp expression.

MatrixRank

V-435

Matrix addition and matrix multiplication by a scalar:
MatrixOp/O outWave = r1+r2-3*r1

Using the matrix Identity function:
MatrixOp/O outWave = Identity(3) x r1

Create a persisting identity matrix for another calculation:
MatrixOp/O id4 = Identity(4)

Using the Trace function:
MatrixOp/O outWave = (Trace(r1)*identity(3) x r1)-3*r1

Using matrix inverse function Inv() with matrix multiplication:
MatrixOp/O outWave = Inv(r2) x r2

Using the determinant function Det():
MatrixOp/O outWave = Det(r1)+Det(r2)

Using the Transpose postfix operator:
MatrixOp/O outWave = r1^t+(r2-r1)^t-r2^t

Using a mix of real and complex data:
Variable/C complexVar = cmplx(1,2)
MatrixOp/O outWave = complexVar*r2 - Cmplx(2,4)*r1

Hermitian transpose operator:
MatrixOp/O outWave = Trace(complexVar*r2)^h -Trace(cmplx(2,4)*r1)^h

In-place operation and conversion to complex:
MatrixOp/O r1 = r1*cmplx(1,2)

Image filtering using 2D spatial filter filterWave:
MatrixOp/O filteredImage=IFFT(FFT(srcImage,2)*filterWave,3)

Positive shift:
Make/O w={0,1,2,3,4,5,6}
MatrixOp/O w=shiftVector(w,2,77)
Print w
// w[0]= {77,77,0,1,2,3,4}

Negative shift:
Make/O w={0,1,2,3,4,5,6}
MatrixOp/O w=shiftVector(w,(-2),77)
Print w
// w[0]= {2,3,4,5,6,77,77}

References
syncCorrelation and asyncCorrelation:
Noda, I., Determination of Two-Dimensional Correlation Spectra Using the Hilbert Transform, Applied

Spectroscopy 54, 994-999, 2000.
ChirpZ:
Rabiner, L.R., and B. Gold, The Theory and Application of Digital Signal Processing, Prentice Hall, Englewood

Cliffs, NJ, 1975.

See Also
Matrix Math Operations on page III-143 for more about Igor’s matrix routines.
The FastOp operation and p2rect and r2polar functions.

MatrixRank
matrixRank(matrixWaveA [, conditionNumberA])
The matrixRank function returns the rank of matrixWaveA subject to the specified condition number.
The matrix is not considered to have full rank if its condition number exceeds the specified
conditionNumberA.
If the optional parameter conditionNumberA is not specified, Igor Pro uses the value 1020.
matrixRank supports real and complex single precision and double precision numeric wave data types.

MatrixSchur

V-436

The value of conditionNumberA should be large enough but taking into account the accuracy of the
numerical representation given the numeric data type.
If there are any errors the function returns NaN.

See Also
Matrix Math Operations on page III-143 for more about Igor’s matrix routines.

MatrixSchur
MatrixSchur [/Z] srcMatrix
The MatrixSchur operation computes for an NxN nonsymmetric srcMatrix, the eigenvalues, the real Schur
form A and the matrix of Schur vectors V.
The Schur factorization has the form: S = V x A x (V^T), where V^T is the transpose (use V^H if S is complex)
and x denotes matrix multiplication.

Flags

Details
The operation creates:

The variable V_flag is set to 0 when there is no error; otherwise it contains the LAPACK error code.

Examples
You can test this operation for an N-by-N source matrix:
Make/D/C/N=(5,5) M_S=cmplx(enoise(1),enoise(1))
MatrixSchur M_S
MatrixOP/O unitary=(M_V^h) x M_V // Check unitary
MatrixOP/O diff=abs(M_S-M_V x M_A x (M_V^H)) // Check decomposition

See Also
Matrix Math Operations on page III-143 for more about Igor’s matrix routines and for background
references with details about the LAPACK libraries.

MatrixSolve
MatrixSolve method, matrixA, vectorB
The MatrixSolve operation was superseded by MatrixLLS and is included for backward compatibility only.
Used to solve matrix equation Ax=b using the method of your choice. Choices for method are:

Details
The array b can be a matrix containing a number of b vectors and the output matrix M_x will contain a
corresponding set of solution vectors.
V_flag is set to zero if success, 1 if singular matrix using GJ or LU and 1 if SV fails to converge.
For normal problems you should use LU. GJ is provided only for completeness and has no practical use.

 /Z No error reporting.

 M_A Upper triangular matrix containing the Schur form A.

 M_V Unitary matrix containing the orthogonal matrix V of the Schur vectors.

 W_REigenValues
 W_IEigenValues

Waves containing the real and imaginary parts of the eigenvalues when srcMatrix is
a real wave. If srcMatrix is complex, the eigenvalues are stored in W_eigenValues.

method Solution Method

GJ Gauss Jordan.

LU LU decomposition.

SV Singular Value decomposition.

MatrixSVBkSub

V-437

When using SV, singular values smaller than 10-6 times the largest singular value are set to zero before back
substitution.
Generates an error if the dimensions of the input matrices are not appropriate.

See Also
The MatrixLLS operation. Matrix Math Operations on page III-143 for more about Igor’s matrix routines.

MatrixSVBkSub
MatrixSVBkSub matrixU, vectorW, matrixV, vectorB
The MatrixSVBkSub operation does back substitution for SV decomposition.

Details
Used to solve matrix equation Ax=b after you have performed an SV decomposition.
Feed this routine the M_U, W_W and M_V waves from MatrixSVD along with your right-hand-side vector
b. The solution vector x is returned as M_x.
The array b can be a matrix containing a number of b vectors and the M_x will contain a corresponding set
of solution vectors.
Generates an error if the dimensions of the input matrices are not appropriate.

See Also
Matrix Math Operations on page III-143 for more about Igor’s matrix routines.

MatrixSVD
MatrixSVD [flags] matrixWave
The Matrix SVD operation uses the singular value decomposition algorithm to decompose an MxN
matrixWave into a product of three matrices. The default decomposition is into MxM wave M_U, min(M,N)
wave W_W and NxN wave M_VT.

Flags

/B Assures backwards compatibility with the old version (Igor Pro 3) of MatrixSVD.
This option creates the variable V_SVConditionNumber and the M_V matrix.
None of the other flags will have an effect when /B is specified. The
decomposition is such that:

/O Overwrites matrixWave with the first columns of U. Use this flag to if you need to
conserve memory. See also related settings of /U and /V.

/U =UMatrixOptions

/V=VMatrixOptions

U*W*V^T = matrixWave
U: MxN column-orthonormal matrix.
W: NxN diagonal matrix of positive singular values.
V: NxN orthonormal matrix.

UMatrixOptions can have the following values:
0: All columns of U are returned in the wave M_U (default).
1: The first min(m,n) columns of U are returned in the wave M_U.
2: The first min(m,n) columns of U overwrite matrixWave (/O must be

specified).
3: No columns of U are computed.

VMatrixOptions can have the following values:
0: All rows of V^T are returned in the wave M_VT (default).
1: The first min(m,n) rows of V^T are returned in the wave M_VT.
2: The first min(m,n) rows of V^T are overwritten on matrixWave (/O must

be specified)
3: No rows of V^T are computed.

MatrixTrace

V-438

Details
The singular value decomposition is computed using LAPACK routines. The diagonal elements of matrix
W are returned as a 1D wave named W_W. If /B is used W_W will have N elements. Otherwise the number
of elements in W_W is min(M,N).
The matrix V is returned in a matrix wave named M_V if /B is used otherwise the transpose V^T is returned
in the wave M_VT.
If /B is used, the variable V_SVConditionNumber is set to the condition number of the input matrix A. The
condition number is the ratio of the largest singular value to the smallest.
All output objects are created in the current data folder.
The variable V_flag is set to zero if the operation succeeds. It is set to 1 if the algorithm fails to converge.

Example
Make/O/D/N=(10,20) A=gnoise(10)
MatrixSVD A
MatrixOp/O diff=abs(A-(M_U x DiagRC(W_W,10,20) x M_VT))
Print sum(diff,-inf,inf)

See Also
The MatrixOp operation for more efficient matrix operations.
Matrix Math Operations on page III-143 for more about Igor’s matrix routines and for background
references with details about the LAPACK libraries.

MatrixTrace
matrixTrace(dataMatrix)
The matrixTrace function calculates the trace (sum of diagonal elements) of a square matrix. dataMatrix can
be of any numeric data type.
If the matrix is complex, it returns the sum of the magnitudes of the diagonal elements.

See Also
Matrix Math Operations on page III-143 for more about Igor’s matrix routines.

MatrixTranspose
MatrixTranspose [/H] matrix
The MatrixTranspose operation Swaps rows and columns in matrix.
Does not take complex conjugate if data are complex. You can do that as a follow-on step.
Swaps row and column labels, units and scaling.
This works with text as well as numeric waves. If the matrix has zero data points, it just swaps the row and
column scaling.

Flags

See Also
The MatrixOp operation for more efficient matrix operations.
Matrix Math Operations on page III-143 for more about Igor’s matrix routines.

max
max(num1, num2)
The max function returns the more positive of num1 and num2.

/Z No error reporting.

/H Computes the Hermitian conjugate of a complex wave.

mean

V-439

See Also
The min function.

mean
mean(waveName [, x1, x2])
The mean function returns the arithmetic mean of the wave for points from x=x1 to x=x2.

Details
If x1 and x2 are not specified, they default to -∞ and +∞, respectively.
The wave values from x1 to x2 are summed, and the result divided by the number of points in the range.
The X scaling of the wave is used only to locate the points nearest to x=x1 and x=x2. To use point indexing,
replace x1 with pnt2x(waveName,pointNumber1), and a similar expression for x2.
If the points nearest to x1 or x2 are not within the point range of 0 to numpnts(waveName)-1, mean limits
them to the nearest of point 0 or point numpnts(waveName)-1.
If any values in the point range are NaN, mean returns NaN.
The function returns NaN if the input wave has zero points.
Unlike the area function, reversing the order of x1 and x2 does not change the sign of the returned value.

Examples
Make/O/N=100 data;SetScale/I x 0,Pi,data
data=sin(x)
Print mean(data,0,Pi) // the entire point range, and no more
Print mean(data) // same as -infinity to +infinity
Print mean(data,Inf,-Inf) // +infinity to -infinity

The following is printed to the history area:
•Print mean(data,0,Pi) // the entire point range, and no more

0.630201
•Print mean(data) // same as -infinity to +infinity

0.630201
•Print mean(data,Inf,-Inf) // +infinity to -infinity

0.630201

See Also
Variance, WaveStats
The figure “Comparison of area, faverage and mean functions over interval (12.75,13.32)”, in the Details
section of the faverage function.

MeasureStyledText
MeasureStyledText [/W=winName /A=axisName /F=fontName /SIZE=fontSize

/STYL=fontStyle] styledTextStr
The MeasureStyledText operation takes as input a string optionally containing style codes such as are used
in graph annotations. It sets various variables with information about the dimensions of the string.

Flags

/W=winName Takes default text information from the window winName.

/A=axisName Takes default text information from the axis named axisName. If the /W flag is
used, the axis should be in that window (the window should also be a graph). If
the /W flag is not used, MeasureStyledText looks at the top graph window.

/F=fontNameStr The name of the default font.

/SIZE=size Sets default font size.

Menu

V-440

Parameters

Details
In the absence of formatting codes within the text that set the font, font size and font style, some mechanism
must be provided that sets them. The /W flag tells MeasureStyledText to look at a particular window and
get defaults from that window.
The /A flag specifies that the defaults should come from a graph's axis of the given name.
MeasureStyledText will look for the axis in the window named by /W, or in the top graph window in the
absence of the /W flag.
The /F, /SIZE and /STYL flags set defaults that override any defaults from a window or axis. If you don't
use any flags, the defaults are Igor's overall defaults.

Variables
The MeasureStyledText operation returns information in the following variables:

See Also
TextBox on page V-782 for a list of text formatting codes.

Menu
Menu menuNameStr [, hideable, dynamic, contextualmenu]
The Menu keyword introduces a menu definition. You can use this to create your own menu, or to add
items to a built-in Igor menu.
Use the optional hideable keyword to make the menu hideable using HideIgorMenus.
Use the optional dynamic keyword to cause Igor to re-evaluate the menu definition when the menu is used.
This is helpful when the menu item text is provided by a user-defined function. See Dynamic Menu Items
on page IV-113.
Use the optional contextualmenu keyword for menus invoked by PopupContextualMenu/N.
See Chapter IV-5, User-Defined Menus for further information.

min
min(num1, num2)
The min function returns the more negative of num1 and num2.

See Also
The max function.

/STYL=fontStyle

styledTextStr The text to be measured.
The text can contain formatting codes such as those used in a graph annotation (see
TextBox on page V-782). Any such codes, just as in an annotation, will override
defaults.

V_width The width in points of the text.

V_height The height in points of the text.

Sets default font style:

See Setting Bit Parameters on page IV-12 for details about bit settings.

bit 0: Bold.
bit 1: Italic.
bit 2: Underline.
bit 3: Outline (Macintosh only).
bit 4: Shadow (Macintosh only).

mod

V-441

mod
mod(num, div)
The mod function returns the remainder when num is divided by div.
The mod function may give unexpected results when num or div is fractional because most fractional
numbers can not be precisely represented by a finite-precision floating point value.

See Also
trunc, gcd

modDate
modDate(waveName)
The modDate function returns the modification date/time of the wave.

Details
The returned value is a double precision Igor date/time value, which is the number of seconds from
1/1/1904. It returns zero for waves created by versions of Igor prior to 1.2, for which no modification
date/time is available.

See Also
The Secs2Date and Secs2Time functions.

Modify
Modify
We recommend that you use ModifyGraph, ModifyTable, ModifyLayout, or ModifyPanel rather than
Modify. When interpreting a command, Igor treats the Modify operation as ModifyGraph, ModifyTable,
ModifyLayout or ModifyPanel, depending on the target window. This does not work when executing a
user-defined function.

ModifyContour
ModifyContour [/W=winName]contourInstanceName, keyword=value

[, keyword=value…]
ModifyContour modifies the number, Z value and appearance of the contour level traces associated with
contourInstanceName.
contourInstanceName is a name derived from the name of the wave that provides the Z data values. It is
usually just the name of the wave, but may have #1, #2, etc. added to it in the unlikely event that the same
Z wave is contoured more than once in the same graph.
contourInstanceName can also take the form of a null name and instance number to affect the instanceth
contour plot. That is,
ModifyContour ''#1

modifies the appearance of the second contour plot in the top graph, no matter what the contour plot names
are. Note: Two single quotes, not a double quote.
The number of contour level traces and their Z values are set by the autoLevels, manLevels, and moreLevels
keywords, described in the Parameters section. Normally, you will use either autoLevels or manLevels, and
then optionally generate additional levels using moreLevels.

Parameters
Each parameter has the syntax
keyword = value

and is applied to all of the contour level traces associated with contourInstanceName.
To modify an individual contour level trace, use ModifyGraph.

autoLevels= {minLevel, maxLevel, numLevels}

ModifyContour

V-442

Controls automatic determination of contour levels.
If numLevels is zero, no automatic levels are generated. If it is nonzero, it specifies
the desired number of automatic contour levels.
minLevel specifies the minimum contour level and maxLevel specifies the
maximum contour level. The values that you specify are an approximate guide
for Igor to use in determining the actual levels.
However, if minLevel or maxLevel is * (asterisk symbol), Igor uses the minimum or
maximum value of the Z data for the corresponding contour level.
Using the autoLevels keyword cancels the effect of any previous autoLevels or
manLevels keyword.
When you first append a contour plot to a graph, default contour levels are
generated by the default setting autoLevels={*,*,11}.

boundary=b

cIndexLines= matrixWave

Sets the Z value mapping mode such that contour line colors are determined by
doing a lookup in the specified matrix wave.
matrixWave is a 3 column wave that contains red, green, and blue values from 0
to 65535. (The matrix can actually have more than 3 columns. Any extra columns
are ignored.)
The color for a the contour line at Z=z is determined by finding the RGB values in
the row of matrixWave whose scaled X index is z. In other words, the red value is
matrixWave(z)[0], the green value is matrixWave(z)[1] and the blue value is
matrixWave(z)[2].
If matrixWave has default X scaling, where the scaled X index equals the point
number, then row 0 contains the color for Z=0, row 1 contains the color for Z=1,
etc.
If you use cIndexLines, you must not use ctabLines or rgbLines in the same
command.

ctabLines={zMin, zMax, ctName, mode}

Sets the Z value mapping mode such that contour line colors are determined by
doing a lookup in the specified color table. zMin is mapped to the first color in the
color table. zMax is mapped to the last color. Z values between the min and max
are linearly mapped to the colors between the first and last in the color table.
You can enter * (an asterisk) for zMin and zMax, which uses the minimum and
maximum Z values of the data. The default is {*,*,Rainbow}.
Set parameter mode to 1 to reverse the color table; zero or missing does not reverse
the color table.
ctName can be any color table name returned by the CTabList function, such as
Grays or Rainbow. Also see Color Tables on page II-359.
If you use ctabLines, you must not use cIndexLines or rgbLines in the same
command.

equalVoronoiDistances=e

Draws an outline around the XY domain of the contour data. For a matrix, this
draws a rectangle showing the minimum and maximum X and Y values. For
XYZ triples, the outline is a polygon enclosing the outside edges of the
Delaunay Triangulation. Like the contour lines, the boundary is drawn using
a graph trace, whose name is usually something like
“contourInstanceName = boundary”.
b=0: Hides the data boundary (default).
b=1: Shows the data boundary.

ModifyContour

V-443

interpolate=i XYZ contours can be interpolated to increase the apparent resolution, resulting in
smoother contour lines.

The interpolate parameter can be up to 8. Each time you increase i by one, you
quadruple the apparent resolution and get smoother contour lines at the expense
of computation time. Values of i greater than two are impractical because of the
computation time required.

labelBkg=(r, g, b) Sets the background color for all contour level labels to the specified color. r, g,
and b are values from 0 to 65535.

labelBkg=b

labelDigits=d d is the number of digits after the decimal point when using labelFormat=3 or
labelFormat=5.

labelFont=fontName Default; specifies the font to use for contour level labels. If you pass "" for
fontName, it will use the graph font (set via the Modify Graph dialog) for contour
labels.

labelFormat=l

Normally the x range and y range of the data are each normalized to a 0-1
range separately to generate the Voronoi triangulation. Voronoi triangulation
is a distance-based ("nearest neighbor") algorithm that may benefit from
scaling the X and Y ranges together to avoid numerical problems that occur
when the triangles become very thin because of widely differing x and y
ranges.

The equalVoronoiDistances keyword is allowed only for XYZ contour plots.

e=0: The x and y ranges are scaled individually to the 0-1 range
(default).

e=1: The x and y ranges are scaled so that that maximum range of
x or y is scaled to the 0-1 range, and the other is proportionally
smaller. For example, if yMax-yMin = 1000 and xMax-xMin =
5, then the y range is scaled to 0-1 and the y range is scaled to
5/1000 = 0 - 0.005.

This keyword is allowed only for XYZ contours, created by
AppendXYZContour.
i=0: Linear interpolation (default). This means that only the original

Delaunay triangulation generates contour lines.
i=1: Four times the resolution generates a smoother set of contour lines.

As expected, this takes longer than Linear interpolation.
i=2: Sixteen times the resolution generates a much smoother set of

contour lines. This is rather slow.

Controls the background color of contour labels.
b=0: Uses each label’s individual background color, as set via the Modify

Annotation dialog.
b=1: Makes all contour level labels transparent.
b=2: Uses the plot area background color as the label background color

(default).
b=3 Uses the window background color as the label background color.

Controls the formatting of contour labels. See the printf operation for a
discussion of formatting.
l=0: Uses general format that is suitable for most data. This is equivalent

to "%<sigDigits>g".
l=1: Uses integer format, equivalent to "%<sigDigits>d".
l=3: Uses fixed point format, equivalent to "%<decimalDigits>f".
l=5 Uses exponential format, equivalent to "%<decimalDigits>e".

ModifyContour

V-444

labelFSize=s Specifies the font size of contour labels in points. For example, use labelSize=12
for 12 point type. The default value is 0, which chooses the size automatically
based on the size of the graph.

labelFStyle=n

labelHV=hv

labelRGB=(r, g, b) Sets the text color for all contour level labels. r, g, and b are values from 0 to 65535.
The default is black, labelRGB=(0,0,0).

labels=l

labelSigDigits=d d is the number of significant digits when labelFormat=0 is used.

n is a bitwise parameter with each bit controlling one aspect of the font style
for the contour level labels. The default is 0, plain text.

See Setting Bit Parameters on page IV-12 for details about bit settings.

bit 0: Bold.
bit 1: Italic.
bit 2: Underline.
bit 3: Outline (Macintosh only).
bit 4: Shadow (Macintosh only).
bit 5: Condensed (Macintosh only).
bit 6: Extended (Macintosh only).

Specifies the contour label orientation.
If hv is 3, 4, 5, or 6, the contour label's text rotates whenever it is redrawn,
usually when the underlying contour data changes, the graph is resized, or the
label is reattached to a new contour trace point.
hv=0: Horizontal contour level labels.
hv=1: Vertical contour level labels.
hv=2: Horizontal or vertical contour level labels, depending on the slope

of the contour line.
hv=3: Tangent to the contour line.
hv=4: Tangent to the contour line, snaps to vertical or horizontal if

within 2 degrees of vertical or horizontal (default).
hv=5: Perpendicular to the contour line.
hv=6: Perpendicular to the contour line, snaps to vertical or horizontal

if within 2 degrees of vertical or horizontal.

Controls the display of contour labels.
l=0: Hides contour level labels.
l=1: Leaves any contour level labels in place but stops updating them

and stops generation of new labels.
l=2: Generates or updates labels for the existing contour levels and

window size when the command executes, but disables further
updating of labels when window size or contour plot changes.
This is the recommended setting if updating the labels takes long
enough to annoy you.

l=3: Default; generates labels for all contour levels whenever the
contoured data changes but not when the window size changes.
If you resize the graph, the labels may overlap or be too sparse.

l=4: Generates labels for all contour levels whenever the contoured
data, contour levels, axis range, or the graph size changes.
(Actually, there are too many causes to list here. If all this update
annoys you, use labels=2 “update once, now”.)

ModifyContour

V-445

logLines= 1 or 0 0 sets the default linearly-spaced contour line colors.
1 turns on logarithmically-spaced line colors. This requires that the contour levels
values be greater than 0 to display correctly.
Affects line color only when the cIndexLines or ctabLines parameter is used.
logLines does not affect the contour levels. To assign logarithmically-spaced
contour levels, use the moreLevels parameter and disable autoLevels, for
example:
ModifyContour ''#0, autoLevels={*,*,0} // No auto levels
ModifyContour ''#0, moreLevels=0
ModifyContour ''#0, moreLevels={1e-07,1e-06,1e-05,1e-04}

The logLines keyword was added in Igor Pro 6.22.

manLevels= {firstLevel, increment, numLevels}

Explicitly specifies contour levels. ModifyContour will generate numLevels
contour levels, evenly spaced starting from firstLevel and stepping by increment.
manLevels cancels the effect of any previous manLevels or autoLevels settings.

manLevels= manLevelsWave

Explicitly specifies contour levels. ModifyContour will generate contour levels at
the values in manLevelsWave.
manLevels cancels the effect of any previous manLevels or autoLevels settings.

moreLevels= {level, level …}

Explicitly specifies contour levels. ModifyContour will generate a contour trace
for each of the listed levels. The maximum number of levels that you can specify
in a single command is the 50. However, you can concatenate any number of
ModifyContour moreLevels commands. moreLevels adds levels in addition to
any specified by manLevels or autoLevels. It does not override other parameters.
moreLevels=0: Removes all levels generated by previous moreLevels settings.

nullValue=zValue This keyword only affects the behavior of the ContourZ function. It is allowed
only for XYZ contours, created by AppendXYZContour.
By default, ContourZ treats data outside the domain of the contour as NaN and
so returns NaN if you ask for a contour value outside that domain.
The nullValue keyword allows you to change the default behavior to make
ContourZ treat values outside the domain as the specified zValue.

nullValueAuto This keyword only affects the behavior of the ContourZ function. It is allowed
only for XYZ contours, created by AppendXYZContour.
nullValueAuto acts like nullValue=zValue with zValue automatically set to the
minimum value in the Z wave minus 1.
See the nullValue keyword for details.
To turn nullValueAuto off and return the contour to the default state, execute:
ModifyContour <contourInstanceName>, nullValue=NaN

ModifyContour

V-446

Flags

See Also
AppendMatrixContour and AppendXYZContour.

perturbation=p

rgbLines=(r, g, b) Specifies red, green, and blue values for all contour lines. r, g, and b are values
from 0 to 65535.
If you use rgbLines, you must not use cIndexLines or ctabLines in the same
command.

triangulation=t Draws the Delaunay Triangulation. As part of the XYZ contouring algorithm, the
XY domain is subdivided into triangles in a process called Delaunay
Triangulation. Like the contour lines, the triangulation is drawn using a graph
trace, whose name is usually something like “contourInstanceName
=triangulation”.

update=u

xymarkers=x

/W=winName Applies to contours in the named graph window or subwindow. When omitted,
action will affect the active window or subwindow. This must be the first flag
specified when used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

Enable or disable perturbation (alteration) of the x and y values by a miniscule
amount to improve the natural neighbor triangulation of XYZ contours.

You can observe the perturbed x/y coordinates in the triangulation trace
added by ModifyContour triangulation=1.
The perturbation keyword is allowed only for XYZ contour plots.

p=0: Disables perturbation, preserving the original x and y values
unchanged.

p=1: Enables x/y perturbation (default). The values are shifted by random
values less than +/-0.000005 times the x and y domain extents.

The triangulation keyword is allowed only for XYZ contours, created by
AppendXYZContour.
t=0: Hides the Delaunay triangulation (default).
t=1: Shows the Delaunay triangulation.

Sets the type of updating of contour traces when the data or contour settings
change.

If you use it in a command, the result is similar to u=0, but the Modify Contour
Appearance dialog will automatically select “update once, now” from the
Update Contours pop-up menu.

u=0: Turns off dynamic updates, which might be advisable if updates take a
long time.

u=1: Updates the contours only once, or until you next execute an
update=1 command.

u=2: Updates are automatic (default).
u=3 Marks the contour plot as having been updated once (u=1) already.

This option is used in recreation macros to prevent an extra redraw
of a graph saved with u=1 update mode in effect.

Controls the visibility of XY markers.
x=0: Hides markers showing XY coordinates of the Z data (default).
x=1: Displays markers showing XY coordinates of Z data. Initially, this

uses marker number zero. You can change this using the Modify
Trace Appearance dialog.

ModifyControl

V-447

References
Watson, David F., nngridr - An Implementation of Natural Neighbor Interpolation, Dave Watson Publisher,
Claremont, Australia, 1994.

ModifyControl
ModifyControl [/Z] ctrlName [keyword = value [, keyword = value …]]
The ModifyControl operation modifies the named control. ModifyControl works on any kind of existing
control. To modify multiple controls, use ModifyControlList.

Parameters
ctrlName specifies the name of the control to be created or changed. The control must exist.

Keywords
The following keyword=value parameters are supported:

For details on these keywords, see the documentation for SetVariable on page V-641.
The following keywords are not supported:

Flags

Details
Use ModifyControl to move, hide, disable, or change the appearance of a control without regard to its kind

Example
Here is a TabControl procedure that shows and hides all controls in the tabs appropriately, without
knowing what kind of controls they are.
The “trick” here is that all controls that are to be shown within particular tab n have been assigned names
that end with “_tabn” such as “_tab0” and “_tab1”:
Function TabProc(ctrlName,tabNum) : TabControl

String ctrlName
Variable tabNum

String curTabMatch= "*_tab"+num2istr(tabNum)

String controls= ControlNameList("")
Variable i, n= ItemsInList(controls)
for(i=0; i<n; i+=1)

String control= StringFromList(i, controls)
Variable isInATab= stringmatch(control,"*_tab*")
if(isInATab)

Variable show= stringmatch(control,curTabMatch)
ControlInfo $control // gets V_disable
if(show)

V_disable= V_disable & ~0x1 // clear the hide bit
else

V_disable= V_disable | 0x1 // set the hide bit
endif
ModifyControl $control disable=V_disable

endif
endfor
return 0

End

activate appearance bodywidth disable fColor font

fSize fStyle help labelBack noproc pos

proc rename size title userdata valueBackColor

valueColor win

mod popmatch popvalue value variable

/Z No error reporting.

ModifyControlList

V-448

// Action procedures which enable or disable the buttons
Function Tab1CheckProc(ctrlName,enableButton) : CheckBoxControl

String ctrlName
Variable enableButton

ModifyControl button_tab1, disable=(enableButton ? 0 : 2)
End

Function Tab0CheckProc(ctrlName,enableButton) : CheckBoxControl
String ctrlName
Variable enableButton

ModifyControl button_tab0, disable=(enableButton ? 0 : 2)
End

// Panel macro that creates a TabControl using TabProc
Window TabbedPanel() : Panel

PauseUpdate; Silent 1 // building window...
NewPanel /W=(381,121,614,237) as "Tab Demo"
TabControl tab, pos={12,9},size={205,91},proc=TabProc,tabLabel(0)="Tab 0"
TabControl tab, tabLabel(1)="Tab 1",value= 0
Button button_tab0, pos={54,39},size={110,20},disable=2
Button button_tab0, title="Button in Tab0"
Button button_tab1, pos={54,63},size={110,20},disable=1
Button button_tab1, title="Button in Tab1"
CheckBox check1_tab1, pos={51,41}, size={117,14}, disable=1, value= 1
CheckBox check1_tab1, proc=Tab1CheckProc, title="Enable Button in Tab 1"
CheckBox check0_tab0, pos={51,73}, size={117,14}, proc=Tab0CheckProc
CheckBox check0_tab0, value= 0, title="Enable Button in Tab 0"

EndMacro

Run TabbedPanel to create the panel. Then click on “Tab 0” and “Tab 1” to run TabProc.

See Also
See Chapter III-14, Controls and Control Panels, for details about control panels and controls.
Related functions ModifyControlList and ControlNameList.
The Button, Chart, CheckBox, GroupBox, ListBox, PopupMenu, SetVariable, Slider, TabControl,
TitleBox, and ValDisplay controls.

ModifyControlList
ModifyControlList [/Z] listStr [, keyword = value]…
The ModifyControlList operation modifies the controls named in the listStr string expression.
ModifyControlList works on any kind of existing control.

Parameters
listStr is a semicolon-separated list of names in a string expression. The expression can be an explicit list of
control names such as "button0;checkbox1;" or it can be any string expression such as a call to the
ControlNameList string function:
ModifyControlList ControlNameList("",";","*_tab0") disable=1

The controls must exist.

Keywords
The following keyword=value parameters are supported:

For details on these keywords, see the documentation for SetVariable on page V-641.
The following keywords are not supported:

activate appearance bodywidth disable fColor font

fSize fStyle help labelBack noproc pos

proc rename size title userdata valueBackColor

valueColor win

mod popmatch popvalue value variable

ModifyFreeAxis

V-449

Flags

Details
Use ModifyControlList to move, hide, disable, or change the appearance of multiple controls without
regard to their kind.
If listStr contains the name of a nonexistent control, an error is generated.
if listStr is "" (or any list element in listStr is ""), it is ignored and no error is generated.

Example
Here is the TabControl procedure example from ModifyControl rewritten to use ModifyControlList. It
shows and hides all controls in the tabs appropriately, without knowing what kind of controls they are, but
the code is simpler. This method does not, however, preserve the enable bit when a control is hidden.
The “trick” here is that all controls that are to be shown within particular tab n have been assigned names
that end with “_tabn” such as “_tab0” and “_tab1”:
// Action procedure
Function TabProc2(ctrlName,tabNum) : TabControl

String ctrlName
Variable tabNum

String controlsInATab= ControlNameList("",";","*_tab*")

String curTabMatch= "*_tab"+num2istr(tabNum)
String controlsInCurTab= ListMatch(controlsInATab, curTabMatch)
String controlsInOtherTabs=ListMatch(controlsInATab,"!"+curTabMatch)

ModifyControlList controlsInOtherTabs disable=1 // hide
ModifyControlList controlsInCurTab disable=0 // show

return 0
End

// Panel macro that creates a TabControl using TabProc2():
Window TabbedPanel2() : Panel

PauseUpdate; Silent 1 // building window…
NewPanel /W=(35,208,266,374) as "Tab Demo"
TabControl tab,pos={12,9},size={205,140},proc=TabProc2
TabControl tab,tabLabel(0)="Tab 0"
TabControl tab,tabLabel(1)="Tab 1",value= 0
Button button_tab0,pos={26,43},size={110,20},title="Button in Tab0"
Button button2_tab0,pos={26,74},size={110,20},title="Button in Tab0"
Button button3_tab0,pos={26,106},size={110,20},title="Button in Tab0"
Button button_tab1,pos={85,43},size={110,20},title="Button in Tab1"
Button button2_tab1,pos={85,75},size={110,20},title="Button in Tab1"
Button button3_tab1,pos={84,108},size={110,20},title="Button in Tab1"
ModifyControlList ControlNameList("",";","*_tab1") disable=1

EndMacro

Run TabbedPanel2 and then click on "Tab 0" and "Tab 1" to run TabProc2.

See Also
See Chapter III-14, Controls and Control Panels for details about control panels and controls.
Related functions ModifyControl and ControlNameList.
The Button, Chart, CheckBox, GroupBox, ListBox, PopupMenu, SetVariable, Slider, TabControl,
TitleBox, and ValDisplay controls.

ModifyFreeAxis
ModifyFreeAxis [/W=winName] axisName, master=mastName

[, hook=funcName]
The ModifyFreeAxis operation designates the free axis (created with NewFreeAxis) to follow a controlling
axis from which it gets axis range and units information. The free axis updates whenever the controlling
axis changes. The axis limits and units can be modified by a user hook function.

Parameters
axisName is the name of the free axis (which must have been created by NewFreeAxis).

/Z No error reporting.

ModifyFreeAxis

V-450

masterName is the name of the master axis controlling axisName.
funcName is the name of the user function that modifies the limits and units properties of the axis. If
funcName is $"", the named hook function is removed.

Flags

Details
The free axis can also be designated to call a user-defined hook function that can modify limits and units
properties of the axis. The hook function must be of the following form:
Function MyAxisHook(info)

STRUCT WMAxisHookStruct &info

<code to modify graph units or limits>
return 0

End

where WMAxisHookStruct is a built-in structure with the following members:

The constants used to size the char arrays are internal to Igor and are subject to change in future versions.
The hook function is called when refreshing axis range information (generally early in the update of a
graph). Your hook must never kill a graph or an axis.

Example
This example demonstrates how to program a free axis hook function, whose most important task is to
change the values of info.min and info.max to alter the axis range of the free axis. The example free axis
displays Fahrenheit values for data in Celsius.
Function CentigradeAndFahrenheit()

Make/O/N=20 temperatures = -2+p/3+gnoise(0.5) // sample data
Display temperatures// default left axis will indicate data's centigrade range
String graphName = S_name
Label/W=$graphName left "°C"
ModifyGraph/W=$graphName zero(left)=1
Legend/W=$graphName

// make a right axis whose range will be Fahrenheit
NewFreeAxis/R/O/W=$graphName fahrenheit
ModifyGraph/W=$graphName freePos(fahrenheit)={0,kwFraction},lblPos(fahrenheit)=43
Label/W=$graphName fahrenheit "°F"

ModifyFreeAxis/W=$graphName fahrenheit, master=left, hook=CtoF_FreeAxisHook
// NOTE master=left part which makes the "free" axis
// actually a "slave" to the left ("master") axis.

End

Function CtoF_FreeAxisHook(info)
STRUCT WMAxisHookStruct &info

GetAxis/Q/W=$info.win $info.mastName // get master axis range in V_min, V_Max

/W=winName Modifies axisName in the named graph window or subwindow. If /W is omitted the
command affects the top graph window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

WMAxisHookStruct Structure Members

Member Description

char win[MAX_WIN_PATH+1] Host (sub)window.

char axName[MAX_OBJ_NAME+1] Name of the axis.

char mastName[MAX_OBJ_NAME+1] Name of controlling axis or nil.

char units[MAX_UNITS+1] Axis units. User modifiable.

double min, max Axis range minimum and maximum values. User modifiable.

ModifyGraph (general)

V-451

Variable minF = V_min*9/5+32
Variable maxF = V_max*9/5+32

// SetAxis/W=$info.win $info.axName, minF, maxF
// SetAxis here is fruitless. These values get overwritten by Igor
// after reading info.min and info.max, which we now set:

info.min = minF // new min for free axis
info.max= maxF // new max for free axis
return 0

End

See Also
The SetAxis, KillFreeAxis, and NewFreeAxis operations.
The ModifyGraph (axes) operation for changing other aspects of a free axis.

ModifyGraph (general)
ModifyGraph [/W=winName/Z] key=value [, key=value]…
The ModifyGraph operation modifies the target or named graph. This section of ModifyGraph relates to
general graph window settings.

Parameters

expand=e Specifies the onscreen expansion (or magnification) factor of a graph. e may be
zero or 0.125 to 8 times expansion.
Graph magnification affects only base graphs (not subwindowed graphs), and it
affects only the onscreen display; it has no effect on graph exporting or printing.
When magnification changes, the graph window will automatically resize except
for negative values, which are used in recreation macros where the size is already
correct.

frameInset= i Specifies the number of pixels by which to inset the frame of the graph
subwindow.

frameStyle= f

gfMult=f Multiplies font and marker size by f percent. Clipped to between 25% and 400%;
it is applied after all other font and marker size calculations.

gFont=fontStr Specifies the name of the default font for the graph, overriding the normal default
font. The normal default font for a subgraph is obtained from its parent while a
base graph uses the value set by the DefaultFont operation.

gfSize=gfs Sets the default size for text in the graph. Normally, the default size for text is
proportional to the graph size; gfSize will override that calculation as will the
gfRelSize method. Use a value of -1 to make a subgraph get its default font size from
its parent.

y p

Specifies the frame style for a graph subwindow.

The last three styles are fake 3D and will look good only if the background
color of the enclosing space and the graph itself is a light shade of gray.

f=0: None.
f=1: Single.
f=2: Double.
f=3: Triple.
f=4: Shadow.
f=5: Indented.
f=6: Raised.
f=7: Text well.

ModifyGraph (general)

V-452

Flags

Examples
The following code creates a graph where all the text expands and contracts directly in relation to the
window size:
Make jack=sin(x/8);display jack
ModifyGraph mode=4,marker=8,gfRelSize= 5.0
TextBox/N=text0/A=MC "Some \\Zr200big\\]0 and \\Zr050small\\]0\rtext"

The widthSpec and heightSpecs set the width and height mode for the top graph. The following examples
illustrate how to specify the various modes.

gfRelSize=pct Specifies the percentage of the graph size to use in calculating a default size for
text in the graph. This overrides the normal method for setting default font size
as a function of graph size. When used, the default marker size is set to one third
the font size. Use a value of 0 to revert to the default method.

gmSize=gms Sets the default size for markers in the graph. Use a value of -1 to make a
subgraph get its default marker size from its parent.

height=heightSpec Sets the height for the graph area. See the Examples.

swapXY=s

useComma=uc

useLongMinus=m Uses a normal (m=0; default) or long dash (m=1) for the minus sign.

width=widthSpec Sets the width of the graph area. See the examples.

/W=winName Modifies the named graph window or subwindow. When omitted, action will affect
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/Z Does not generate an error if the indexed trace, named wave, or named axis does not
exist in a style macro.

ModifyGraph width=0, height=0 Set to auto height, width mode. The width, height of horizontal
and vertical axes are automatically determined based on the
overall size of the graph and other factors such as axis offset setting
and effect of exterior textboxes. This is the normal, default mode.

Variable n=72*5
ModifyGraph width=n

Five inches as points absolute width mode, horizontal axis
width constrained to n points.

ModifyGraph height=n Absolute height mode, n is in points. The height of the vertical
axes is constrained to n points.

Sets the orientation of the X and Y axes.
s=0: Normal orientation of X and Y axes.
s=1: Swap X and Y values to plot Y coordinates versus the

horizontal axes and X coordinates versus the vertical axes.
The effect is similar to mirroring the graph about the lower-
left to upper-right diagonal.

Controls the decimal separator used in tick mark labels.
uc=0: Use period as decimal separator and comma as thousands

separator (default) when displaying numbers in graph labels
and annotations.

uc=1: Use comma as decimal separator and period as the thousands
separator. This does not alter the presentation of numbers in
\{expression} constructs in annotations.

ModifyGraph (traces)

V-453

ModifyGraph (traces)
ModifyGraph [/W=winName/Z] key [(traceName)] = value

[, key [(traceName)] = value]…
This section of ModifyGraph relates to modifying the appearance of wave “traces” in a graph. A trace is a
representation of the data in a wave, usually connected line segments.

Parameters
Each key parameter may take an optional traceName enclosed in parentheses. Usually traceName is simply the
name of a wave displayed in the graph, as in “mode(myWave)=4”. If “(traceName)” is omitted, all traces in the
graph are affected. For instance, “ModifyGraph lSize=0.5” sets the lines size of all traces to 0.5 points.
For multiple trace instances, traceName is followed by the “#” character and instance number. For example,
“mode(myWave#1)=4”. See Instance Notation on page IV-16.
A string containing a trace name can be used with the $ operator to specify traceName. For example, String
MyTrace="myWave#1"; mode($MyTrace)=4.
Though not shown in the syntax, the optional “(traceName)” may be replaced with “[traceIndex]”, where
traceIndex is zero or a positive integer denoting the trace to be modified. “[0]” denotes the first trace
appended to the graph, “[1]” denotes the second trace, etc. This syntax is used for style macros, in
conjunction with the /Z flag.
For certain modes and certain properties, you can set the conditions at a specific point on a trace by
appending the point number in square brackets after the trace name. For more information, see the
Customize at Point on page V-462. This feature was added in Igor Pro 6.20.
The parameter descriptions below omit the optional “(traceName)”. When using ModifyGraph from a user-
defined function, be careful not to pass wave references to ModifyGraph. ModifyGraph expects trace
names, not wave references. See Trace Name Parameters on page IV-72 for details.

Variable n=2
ModifyGraph
width={perUnit,n,bottom}

Per unit width mode. The width of the horizontal axes is n
points times the range of the bottom axis.

ModifyGraph height={Aspect,n} Aspect height mode, n = aspect ratio. The height of the
vertical axes is n times the width of the horizontal axes.

ModifyGraph
width={Plan,n,bottom,left}

Plan width mode. The width of the horizontal axes is n times
the height of the vertical axes times range of the bottom axis
divided by the range of the left axis.

arrowMarker=0

arrowMarker={aWave, lineThick, headLen, headFat, posMode [, barbSharp=b, barbSide=s, frameThick=f]}

Draws arrows instead of conventional markers at each data point in a wave. Arrows
are not clipped to the plot area and will be drawn wherever a data point is within the
plot area.
aWave contains arrow information for each data point. It is a two (or more) column
wave containing arrow line lengths (in points) in column 0 and angles (in radians
measured counterclockwise) in column 1. Zero angle is a horizontal arrow pointing
to the right. If an arrow is below the minimum length of 4 points, a default marker is
drawn.
You can change arrow markers into standard meteorological wind barbs by adding a
column to aWave and giving it a column label of windBarb. Values are integers from
0 to 40 representing wind speeds up to 4 flags. Use positive integers for clockwise
barbs and negative for the reverse. Use NaN to suppress the drawing. See Wind Barb
Plots on page II-303 for an example.
Additional columns may be supplied in aWave to control parameters on a point by
point basis. These optional columns are specified by dimension label and not by
specific column numbers. The labels are lineThick, headLen, and headFat that
correspond to the same parameters listed above.

ModifyGraph (traces)

V-454

lineThick is the line thickness in points.

headLen is the arrow head length in points.

headFat controls the arrow fatness. It is the width of the arrow head divided by the
length.

You can also enable inline mode even if aWave is not _inline_ by setting posMode
to values between 4 and 7. These are the same as modes 0-3 above.
Optional parameters must be specified using keyword = value syntax and can only be
appended after posMode in any order.

frameThick specifies the stroke outline thickness of the arrow in points. The default is
frameThick = 0 for solid fill.

aWave can contain columns with data for each optional parameter using matching
column names.

barStrokeRGB=(r,g,b)

Specifies a separate color for bar strokes (outlines) if useBarStrokeRGB is 1. r, g and b
specify the amount of red, green and blue in the color of the stroked lines as an integer
from 0 to 65535. The default is black (0,0,0).
Applies only to Histogram Bars drawing mode (mode=5).
The bar fill color continues to be set with the rgb=(r,g,b), zColor={...}, usePlusRGB,
plusRGB=(r,g,b), useNegRGB, and negRGB=(r,g,b) parameters.

posMode specifies the arrow location relative to the data point.
posMode=0: Start at point.
posMode=1: Middle on point.
posMode=2: End at point.

In addition to the wave specification, aWave can also be the literal _inline_ to
draw lines and arrows between points on the trace (see Examples). If aWave is
inline, posMode values are:
posMode=0: Arrow at start.
posMode=1: Arrow in middle.
posMode=2: Arrow at end.
posMode=3: Arrow in middle pointing backwards.

barbSharp is the continuously variable barb sharpness between -1.0 and 1. 0:
barbSharp=1: No barb; lines only.
barbSharp=0: Blunt (default).
barbSharp=-1: Diamond.

barbSide specifies which side of the line has barbs relative to a right-facing arrow:
barbSide=0: None.
barbSide=1: Top.
barbSide=2: Bottom.
barbSide=3: Both (default).

ModifyGraph (traces)

V-455

Use barStrokeRGB and useBarStrokeRGB to put a differently-colored outline around
Histogram Bars:

cmplxMode=c

column=n Changes the displayed column from a matrix. Out of bounds values are clipped.

gaps=g

hBarNegFill=n Fill kind for negative areas if useNegPat is true. n is the same as for the hbFill
keyword.

hbFill=n

useBarStrokeRGB=0 useBarStrokeRGB=1

Display method for complex waves.

cmplxMode=0 does not work when the trace is a subrange of a multi-dimensional
wave.

c=0: Default mode displays both real and imaginary parts (imaginary
part offset by dx/2).

c=1: Real part only.
c=2: Imaginary part only.
c=3: Magnitude.
c=4: Phase (radians).

Controls treatment of NaNs:
g=0: No gaps (ignores NaNs).
g=1: Gaps (shows NaNs as gaps).

Sets the fill pattern.
n=0: No fill.
n=1: Erase.
n=2: Solid black.
n=3: 75% gray.
n=4: 50% gray.
n=5: 25% gray.
n=6 through 77 selects one of the 72 fill patterns:

ModifyGraph (traces)

V-456

hideTrace=h

lHair=lh Sets the hairline factor for traces printed on a PostScript® printer.

live=lv Turns Live Mode off (lv=0) or on (lv=1).

logZColor=lzc

lOptions=options

lSize=l Sets the line thickness, which can be fractional or zero, which hides the line.

lSmooth=ls Sets the smoothing factor for traces printed on a PostScript® printer.

lStyle=s Sets trace line style or dash pattern.
s=0 for solid lines. s=1 to s=17 for various dashed line styles.

marker=n n =0 to 62 designates various markers if mode=3 or 4.
Markers 51 through 62 require Igor Pro 6.1 and are available in new graphics only (see
Graphics Technology). You can also create custom markers. See the SetWindow
markerHook keyword.
See Markers on page II-253 for a table of marker values.

mask={maskwave,mode,value} or 0

Removes a trace from the graph display.

When using h=1 to hide a graph trace, the hidden trace symbol and following text
in annotations are also hidden. The amount of hidden text is the lesser of: the
remaining text on the same line or the text up to but not including another trace
symbol "\s(traceName)".

h=0: Shows the trace if it is hidden.
h=1: Hides the trace and removes it from autoscale calculations.
h=2: Hides the trace.

Controls the interpretation of the zColor parameter.

Affects trace line color only when the zColor parameter is used with a color table
or color index wave - it has no effect if rgb=(r,g,b) parameter or
zColor={...,directRGB} are used.
logZColor was added in Igor Pro 6.22.

lzc=0: Sets the default linearly-spaced zColors.
lzc=1: Turns on logarithmically-spaced zColors. This requires that the

zWave values be greater than 0 to display correctly.

options is a bitwise parameter:

All other bits are reserved and must be cleared.
See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: If set, dashed lines use round end caps. If cleared they use square end caps.

ModifyGraph (traces)

V-457

mode=m

mrkStrokeRGB=(r,g,b)

Specifies the color for marker stroked lines if useMrkStrokeRGB = 1. r, g, and b values
are the amount of red, green, and blue in the color of the lines as an integer from 0 to
65535. The default is black (0,0,0).
The marker fill color continues to be set with the rgb=(r,g,b) or zColor={…}
parameters.
Applies only to the nontext and nonarrow marker modes.
Use mrkStrokeRGB and useMrkStrokeRGB to put a colored outline around filled
markers, such as marker=19:

Note: The stroke color of unfilled markers such as marker 8 is also affected by
mrkStrokeRGB, but their fill color is only affected by the opaque parameter (and the
opaque fill color is always white, so if you want a color-filled marker, don’t use
unfilled markers).

mrkThick=t Sets the thickness of markers in points, which can be fractional.

msize=m

Specifies individual points for display by comparing values in maskWave with value
as specified by mode.

maskwave can be specified using subrange notation. The length of maskwave (or
subrange) must match the size of specified trace’s wave (or subrange.) Bitwise
modes should be used with integer waves with the intent of using one mask wave
with multiple traces. See Examples.

mode=0: Exclude if equal.
mode=1: Include if equal.
mode=2: Include if bitwise AND is true.
mode=3: Include if bitwise AND is false.

Sets trace display mode.
m=0: Lines between points.
m=1: Sticks to zero.
m=2: Dots at points.
m=3: Markers.
m=4: Lines and markers.
m=5: Histogram bars.
m=6: Cityscape.
m=7: Fill to zero.
m=8: Sticks and markers.

useMrkStrokeRGB=0 useMrkStrokeRGB=1

Specifies the marker size in points.

m can be fractional, which will only make a difference when the graph is
printed because fractional points can not be displayed on the screen.

m=0: Autosize markers.
m>0: Sets marker size.

ModifyGraph (traces)

V-458

mskip=n Puts a marker on only every nth data point in Lines and Markers mode (mode=4).
Useful for displaying many data points when you want to identify the traces with
markers. The maximum value for n is 32767.

muloffset={mx,my} Sets the display multiplier for X (mx) and Y (my). The effective value for a given X or
Y data point then becomes muloffset*data+offset. A value of zero means “no multiplier”
— not multiply by zero.

negRGB=(r, g, b) Specifies the color for negative areas if useNegRGB is 1. r, g, and b specify the amount
of red, green, and blue in the color of the trace as an integer from 0 to 65535.

offset={x,y} Sets the display offset in horizontal (X) and vertical (Y) axis units.

opaque=o Displays transparent (o=0) or opaque (o=1) markers.

patBkgColor= 0, 1, 2 or (r,g,b)

Specifies the background color for fill patterns.
0, the default, is white, 1 is graph background, 2 is transparent (does not work when
exporting in the Enhanced Metafile or Windows Metafile formats).
Use (r,g,b) for a specific RGB color.

plotClip=p p =1 clips the trace by the operating system (not by Igor) to the plot rectangle. This
trims overhanging markers and thick lines. On Windows, this may not be supported
for certain printers or by certain applications when importing.

plusRGB=(r, g, b) Specifies the color for positive areas if usePlusRGB is 1. r, g, and b specify the amount
of red, green, and blue in the color of the trace as an integer from 0 to 65535.

quickdrag=q

rgb=(r,g,b) Specifies the amount of red, green, and blue (r, g, and b) in the color of the trace as an
integer from 0 to 65535.

textMarker={<char or wave>,font,style,rot,just,xOffset,yOffset} or 0

Uses the specified character or text from the specified wave in place of the marker for
each point in the trace.
If the first parameter is a quoted string or a string expression of the form ""+strexpr
in a user function, ModifyGraph uses the first three bytes of the string as the marker
for all points (three bytes are provided mainly for multi-byte Asian fonts but can be
used for 3 separate one byte characters). Otherwise, it interprets the first parameter as
the name of a wave. If the wave is a text wave, it uses the value of each point in the
text wave as the marker for the corresponding point in the trace. If the wave is a
numeric wave, the value for each point is converted into text and the result is used as
the marker for the corresponding point in the trace.

xOffset and yOffset are offsets in fractional points. Each marker will be drawn offset
from the location of the corresponding point in the trace by these amounts.

style is a font style code as used with the ModifyGraph fstyle keyword.

rot is a text rotation between -360 and 360 degrees.

just is a justification code as used in the DrawText operation except the X and Y codes
are combined as y*4+x. Use 5 for centered.

The font size is 3*marker size. Note that marker size and color can be dynamically set
via the zColor and zmrkSize keywords.

Controls dragging of traces.
q=0: Normal traces.
q=1: Traces that can be instantly dragged without the normal one second

delay. See the Quickdrag section below.
q=2: Causes the mouse cursor to change to 4 arrows when over the trace

and a reduced search is used.

ModifyGraph (traces)

V-459

toMode=t

useBarStrokeRGB=u

If u=1 then bar stroked lines use the color specified by the barStrokeRGB keyword.
Applies only to Histogram Bars drawing mode (mode=5).
The bar fill color continues to be set with the rgb=(r,g,b), zColor={...}, usePlusRGB,
plusRGB=(r,g,b), useNegRGB, and negRGB=(r,g,b) parameters.
If u=0 then the bar stroked line colors are set with the rgb=(r,g,b) or zColor={...}
parameters, just like the bar fill color.

useMrkStrokeRGB=u

If u =1 then marker stroked lines use the color specified by the mrkStrokeRGB keyword.
The marker fill color continues to be set with the rgb=(r,g,b) or zColor={…} parameters.
Applies only to the nontext and nonarrow marker modes.
If u=0 then the marker stroked line colors are set with the rgb=(r,g,b) or zColor={…}
parameters, just like the marker fill color.

useNegPat=u If u=1, negative fills use the mode specified by the hBarNegFill keyword. Applies to
the fill-to-zero, fill-to-next and histogram bar modes.

useNegRGB=u If u =1, negative fills use the color specified by the negRGB keyword. Applies to the
fill-to-zero, fill-to-next and histogram bar modes.

usePlusRGB=u If u =1, positive fills use the color specified by the plusRGB keyword. Applies to the
fill-to-zero, fill-to-next and histogram bar modes.

userData={udName, doAppend, data}

Attaches arbitrary data to a trace. You should specify a trace name
(userData(<traceName>)={...}). Otherwise copies of the data will be attached to every
trace, which is most likely not what you intend.
Use the GetUserData function to retrieve the data, with the trace name as the object
ID.
udName: The name of your user data. Use $"" for unnamed user data.
doAppend=0: Do not append. Any pre-existing data is replaced.
doAppend=1: Append the data. Data is added to the end of any pre-existing data.
data: A string expression containing the data you wish to attach to the trace.

zColor={zWave,zMin,zMax,ctName [,reverseMode [,ciWave]]} or 0

Modifies the behavior of the display modes as determined by the mode parameter.

For modes 1, 2 and 3, both Y-waves must have the same number of points and
must use the same X values. Igor uses the X values from the first wave for both Y-

t=0: Fill to zero.
t=1: Fill to next trace. Applies to Sticks to zero (mode=1), histogram bars

(mode=5), and fill to zero (mode=7).
t=2: Add the current trace’s Y values to the next trace’s Y values. Works

with all display modes.
t=3: Stack on next and is the same as t=2 except that the added value is

clipped to zero. Works with all display modes.
t=-1: This mode is used only with category plots and means “keep with

next” (i.e., put in the same subcategory as the next trace). It is used for
special effects only.

ModifyGraph (traces)

V-460

Dynamically sets color based on the values in zWave and color table specified by
ctName. Use * or a missing parameter for zMin and zMax to autoscale. See color index
mode, below, for usage of ciWave.
zWave may be a subrange expression such as myZWave[2,9] when zWave has more
points than the trace, in which case myZWave[2] provides the Z value for the first
point of the trace, and autoscaled zMin or zMax is determined over only the zWave
subrange.
If a value in the zWave is NaN then a gap or missing marker will be observed. If a
value is out of range it will be replaced with the nearest valid value. See also the
zColorMax and zColorMin keywords.

ctName can be any color table name returned by the CTabList function, such as Grays
or Rainbow (for color table mode), or it can be cindexRGB for color index mode, or
directRGB for direct color mode.
For color table mode, set the reverseMode parameter to 1 to reverse the color table; zero
sets the color table to unreversed. A reverseMode value of -1 (or if reverseMode is
missing) leaves the color table reverse state unchanged. Also see Color Table Details
on page II-363.
Normally the colors from the color table are linearly distributed between zMin and
zMax. Use logZColor=1 to distribute them logarithmically.

The zMin and zMax parameters are not used and should be set to *. Set ctName to
cindexRGB and reverseMode to 0.

Specify a 3 column wave of RGB values for ciWave (not for zWave). The zWave values
select the color from the row of ciWave whose X scaling is closest to the zWave value.

Example color table zColor command:
zColor(data)={myZWave[2,9],*,*,Rainbow,1}

You can directly specify the color of each point in a trace by using directRGB for
ctName. In this case, zWave is a 3 column wave of RGB values (column 0 is red, 1 is
green, and 2 is blue) corresponding to each point in the trace. If zWave is 8-bit
unsigned integer, then color values range from 0 to 255; for other numeric types color
values range from 0 to 65535. The zMin and zMax parameters are not used and should
be set to *. Also see the ColorTab2Wave operation (which generates such a wave) and
Indexed Color Details on page II-366.

Example directRGB zColor command:
zColor(data)={zWaveRGB,*,*,directRGB}

Color index mode uses both a zWave and a three-column RGB color index wave. See
Color Index Wave on page II-336.

The zMin and zMax parameters are not used and should be set to *, set ctName to
cindexRGB. Specify a value for reverseMode, 0 for normal, 1 for reversed color
indexing. Specify a a 3 column wave of RGB values for ciWave (not for zWave).
Normally, the zWave values select the color from the row of ciWave whose X scaling is
closest to the zWave value. ReverseMode=1 reverses the colors.

Example cindexRGB zColor command:
zColor(data)={myZWave,*,*,cindexRGB,0,M_colors}

(M_colors is generated by the ColorTab2Wave.)

zColor = 0 turns the zColor modes off.
Normally the colors from the color index wave are linearly distributed between
minimum and maximum X scaling of the color index wave. Use logZColor=1 to
distribute them logarithmically.

zColorMax=(red, green, blue)

ModifyGraph (traces)

V-461

Sets the color of the trace for zColor={zWave, …} values greater than the zColor’s
zMax. Also turns on zColorMax mode.
The red, green, and blue color values are in the range of 0 to 65535.

zColorMax=1, 0, or NaN

zColorMin=(red, green, blue)

Sets the color of the trace for zColor={zWave, …} values less than the zColor’s zMin.
Also turns zColorMin mode on.
The red, green, and blue color values are in the range of 0 to 65535.

zColorMin=1, 0, or NaN

zmrkNum={zWave} or 0

Dynamically sets the marker number for each point to the corresponding value in
zWave. The values in zWave are the marker numbers (as used with the marker
keyword). If a value in the zWave is NaN then no marker will be drawn at the
corresponding point. If a value is out of range it will be replaced with the nearest valid
value.
zmrkNum=0 turns this mode off.

zmrkSize={zWave,zMin,zMax,mrkmin,mrkmax} or 0

Dynamically sets marker size based on values in zWave. Use * or a missing parameter
for zMin and zMax to autoscale. mrkmin and mrkmax can be fractional. If a value in the
zWave is NaN then a gap or missing mark will be observed. The marker size is clipped
to 20 on the high end and 1 on the low end. If a value is out of range it will be replaced
with the nearest valid value.
zmrkSize = 0 turns this mode off.

zpatNum={zWave} or 0

Dynamically sets the positive fill type/pattern number for each point to the
corresponding value in zWave. The values in zWave are the pattern numbers (as used
with the hbFill keyword). If a value in the zWave is NaN then the corresponding point
will not be drawn. If a value is out of range it will be replaced with the nearest valid
value.
zpatNum=0 turns this mode off.

Turns zColorMax mode off, on, or transparent. These modes affect the color of
zColor={zWave, …} values greater than the zColor’s zMax.
1: Turns on zColorMax mode. The color of the affected trace pixels is black

or the last color set by zColorMax=(red, green, blue).
0: Turns off zColorMax mode (default). The color of the affected trace

pixels is the last color in the zColor’s ctname color table.
NaN: Transparent zColorMax mode. Affected trace pixels are not drawn.

Turns zColorMin mode off, on, or transparent. These modes affect the color of
zColor={zWave, …} values less than the zColor’s zMin.
1: Turns on zColorMin mode. The color of the affected image pixels is

black or the last color set by zColorMin=(red, green, blue).
0: Turns off zColorMin mode (default). The color of the affected trace

pixels is the first color in the zColor’s ctname color table.
NaN: Transparent zColorMin mode. Affected trace pixels are not drawn.

ModifyGraph (traces)

V-462

Flags

Details
Live Mode (live=1) improves graph update performance when one or more of the waves displayed in the
graph is frequently modified, for example, if the waves are being acquired from a data acquisition system.
Live Mode traces do not autoscale the axes.
Waves supplied with zmrkSize, zmrkNum, and zColor may use Subrange Display Syntax on page II-293.

Quickdrag
Quick drag mode (quickdrag=1) is a special purpose mode for creating cross hair cursors using a package
of Igor procedures. (See the Cross Hair Demo example experiment.) Normally you would have to click and
hold on a trace for one second before entering drag mode. When quickdrag is in effect, there is no delay. If
a trace is in quickdrag mode it should also be set to live mode. With this combination you can click a trace
and immediately drag it to a new XY offset. In addition to quick drag mode, the cross hair package relies
on Igor to store information about the drag in a string variable if certain conditions are in effect. The string
variable name (that you have to create) is S_TraceOffsetInfo, which must reside in a data folder that has the
same name as the graph (not title!) which in turn must reside in root:WinGlobals:. If these conditions are
met, then after a trace is dragged, information will be stored in the string using the following key-value
format: GRAPH:<name of graph>;XOFFSET:<x offset value>;YOFFSET:<y offset
value>;TNAME:<trace name>;

Customize at Point
You can customize the appearance of individual points on a trace in a graph for bar, marker, dot and lines
to zero modes using key(tracename[pnt])=value syntax. The point number must be a literal number
and the trace name is not optional. To turn off a customization, use key(tracename[-pnt-1])=value
where value is not important but must match the syntax for the keyword. The offset of -1 is needed because
point numbers start from zero.
Although the syntax is allowed for all trace modifiers, it has meaning only for the following: rgb, marker,
msize, mrkThick, opaque, mrkStrokeRGB, barStrokeRGB, hbFill, patBkgColor and lSize.
Note that useBarStrokeRGB and useMrkStrokeRGB are not needed. The act of using barStrokeRGB or
mrkStrokeRGB is enough to customize the point. But as a convenience, since these are generated by the
modify graph dialog, they are ignored if used with [pnt] syntax.
Also note that legend symbols can use [pnt] syntax like so:

\s(<tracename>[pnt])

Automatically generated legends automatically include symbols for customized points.
For example:
Make/O/N=10 jack=sin(x); Display jack
ModifyGraph mode=5,hbFill=6,rgb=(0,0,0)
ModifyGraph hbFill(jack[2])=7,rgb(jack[2])=(0,65535,0)
ModifyGraph rgb(jack[3])=(65535,0,0)
Legend/C/N=text1/F=0/A=MC

Examples
Arrow markers.
Make/N=10 wave1= x; Display wave1
Make/N=(10,2) awave
awave[][0]= p*5 // length
awave[][1]= pi*p/9 // angle
ModifyGraph mode=3,arrowMarker(wave1)={awave,1,10,0.3,0}

/W=winName Modifies the named graph window or subwindow. When omitted, action will affect
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the Command Line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/Z Does not generate an error if the indexed trace, named wave, or named axis does not
exist in a style macro.

ModifyGraph (axes)

V-463

// Now add an optional column to control headLen
Redimension/N=(-1,3) awave
awave[][2]= 7+p // will be head length

// Note: nothing changes until the following is executed
SetDimLabel 1,2,headLen,awave

Create meteorological wind barb symbols.
Make/O/N=50 jack= floor(x/10),jackx= mod(x,10)
Display jack vs jackx
Make/O/N=(50,3) jackbarb
jackbarb[][0]= 40 // length of stem
jackbarb[][1]= 45*pi/180 // angle (45deg)
jackbarb[][2]= p // wind speed code
SetDimLabel 1,2,windBarb,jackbarb
ModifyGraph mode=3,arrowMarker(jack)={jackbarb,1,10,0.5,0}
ModifyGraph margin(top)=62,margin(right)=84

See also Wind Barb Plots on page II-303.
Inline arrows and barb sharpness.
Make/O/N=20 wavex=cos(x/3),wavey=sin(x)
Display wavey vs wavex
ModifyGraph mode=3,arrowMarker={_inline_,1,20,.5,0,barbSharp= 0.2}

Use direct color mode to individually color each point in a trace:
Make jack=sin(x/8)
Make/N=(128,3)/B/U jackrgb
Display jack
ModifyGraph mode=3,marker=19
jackrgb= enoise(128)+128
ModifyGraph zColor(jack)={jackrgb,*,*,directRGB}

Use masking.
Make/N=100 jack= (p&1) ? sin(x/8) : cos(x/8)
Display jack

Make/N=100 mjack= (p&1) ? 0 : NaN // just to show NaN can be used
ModifyGraph mask(jack)={mjack,0,NaN}

// now switch which points are shown
mjack= (p&1) ? NaN : 0

See Also
Trace Names on page II-243, Programming With Trace Names on page IV-72.

ModifyGraph (axes)
ModifyGraph [/W=winName/Z] key [(axisName)] = value

[, key [(axisName)] = value]…
This section of ModifyGraph relates to modifying the appearance of axes in a graph.

Parameters
Each key parameter may take an optional axisName enclosed in parentheses.
axisName is “left”, “right”, “top”, “bottom” or the name of a free axis such as “vertCrossing”. For instance,
“ModifyGraph axThick(left)=0.5” sets the axis thickness for only the left axis.
If “(axisName)” is omitted, all axes in the graph are affected. For instance, “ModifyGraph standoff=0”
disables axis standoff for all axes in the graph.
The parameter descriptions below omit the optional “(axisName)”.

axisClip= c Specifies one of three clipping modes for traces.

c=0: Clips traces to a plot rectangle as defined by the pair of axes used by a
given trace (default).

c=1: Plots traces on an axis with a restricted range (as set by axisEnab) to
extend to the full range of the normal plot rectangle.

c=2: Traces extend outside the normal plot rectangle to the full extent of the
graph area.

ModifyGraph (axes)

V-464

axisEnab={lowFrac,highFrac}

Restricts the length of an axis to a subrange of normal. The axis is drawn from lowFrac
to highFrac of graph area height (vertical axis) or width (horizontal axis). For instance,
{0.1,0.75} specifies that the axis is drawn from 10% to 75% of the graph area
height/width, instead of the normal 0% to 100%. AxisEnab is discussed in Creating
Split Axes on page II-303 and Creating Stacked Plots on page II-297.

axisOnTop=t

axOffset=a Specifies the distance from default axis position to actual axis position in units of the
width of a zero character (0) in a tick mark label. Unlike margin, axOffset adjusts to
changes in the size of the graph.

axThick=t Specifies the axis thickness in points.

barGap=fraction Sets the fraction of the width available for bars to be used as gap between bars.
barGap sets the gap between bars within a single category while catGap sets the gap
between categories.

btLen=p Sets the length of major (“big”) tick marks to p points. If p is zero, it uses the default
length. p may be fractional.

btThick=p Sets the thickness of major (“big”) tick marks to p points. If p is zero, it uses the default
thickness. p may be fractional.

catGap=fraction The value for catGap is the fraction of the category width to be used as gap. The gap
is divided equally between the start and end of the category width. A value of 0.2
would use 20% of the available space for the gap and leave 80% of the available space
for the bars.
catGap sets the gap between categories while barGap sets the gap between bars
within a single category.

dateFormat={languageName, yearFormat, monthFormat, dayOfMonthFormat, dayOfWeekFormat, layoutStr,
commonFormat}

Sets the custom date format used in the active graph.
Note: Use a custom date format only if you turn it on via a ModifyGraph dateInfo
command. The last parameter to the ModifyGraph dateInfo command must be -1 to
turn on the custom date format.
Parameters are the same as for the LoadWave/R flag except for the last one.

Specifies drawing level of axis and associated grid lines.

t=0: Draws axis before traces and images (default).

t=1: Draws the axis after all traces and images.

ModifyGraph (axes)

V-465

If the commonFormat parameter is negative, then it will select the Use Custom Format
radio button in the Modify Axis dialog rather than Use Common Format and will then
use the absolute value of commonFormat to determine which item to select in the
Common Format pop-up menu.

dateInfo={sd,tm,dt}

font="fontName" Sets the axis label font, e.g., font(left)="Helvetica".

freePos(freeAxName)=p

Sets the position of the free axis relative to the edge of the plot area to which the axis
is anchored. p is in points. i.e., if the axis was made via /R=axName then the axis is
placed p points from the right edge of the plot area. Positive is away from the central
plot area. freeAxName may not be any of the standard axes: “left”, “bottom”, “right”
or “top”.

freePos(freeAxName)={crossAxVal,crossAxName}

Positions the free axis so it will cross the perpendicular axis crossAxName where it has
a value of crossAxVal. freeAxName may not be any of the standard axis names “left”,
“bottom”, “right”, or “top”, though crossAxName may.
You can position a free axis as a fraction of the distance across the plot area by using
kwFraction for crossAxName. crossAxVal must then be between 0 and 1; any values
outside this range are clipped to valid values.

commonFormat selects the common date format to use in the Modify Axis dialog.
The legal values correspond to the choices in the Common Format pop-up menu
of the Modify Axis dialog. They are:

Value Date Format Value Date Format
1 mm/dd/yy 16 mm/yy
2 mm-dd-yy 17 mm.yy
3 mm.dd.yy 18 Abbreviated month and year
4 mmddyy 19 Full month and year
6 dd/mm/yy 21 mm/dd
7 dd-mm-yy 22 dd.mm
8 dd.mm.yy 23 Abbreviated month and day
9 ddmmyy 24 Full month and day
11 yy/mm/dd 26 Abbreviated date without day of week
12 yy-mm-dd 27 Abbreviated date with day of week
13 yy.mm.dd 28 Full date without day of week
14 yymmdd 29 Full date with day of week

Controls formatting of date/time axes.

sd=0: Show date in the date&time format.

sd=1: Suppress date.

tm=0: 12 hour (AM/PM) time.

tm=1: 24 hour (military) time.

tm=2: Elapsed time.

dt=-1: Custom date as specified via the dateFormat keyword.

dt=0: Short dates (2/22/90).

dt=1: Long dates (Thursday, February 22, 1990).

dt=2: Abbreviated dates (Thurs, Feb 22, 1990).

ModifyGraph (axes)

V-466

fsize=s Autosizes (s=0) tick mark labels and axis labels.
If s is between 3 and 99 then the labels are fixed at s points.

fstyle=f

ftLen=p Sets the length of 5th (or emphasized minor) tick marks to p points. If p is zero, it uses
the default length. p may be fractional.

ftThick=p Sets the thickness of 5th (or emphasized minor) tick marks to p points (fractional). If
p is zero, it uses the default thickness.

grid=g

gridEnab={lowFrac,highFrac}

Restricts the length of axis grid lines to a subrange of normal. The grid is drawn from
lowFrac to highFrac of graph area height (if axis is horizontal) or width (if axis is vertical).

gridHair=h Sets the grid hairline thickness (h =0 to 3; 0 for thicker lines, 3 for thinner; default is 2).
If h=0, the thickness of grid lines on major tick marks is the same as the axis thickness,
half for a minor tick and one tenth for a subminor tick (log axis only). As h increases
these thicknesses decrease by a factor of 2^h. If you want to see the effect of different
values of gridHair, you will need to print a sample graph because you generally can’t
see the effect of thin lines on the screen. Also see the example experiment
“Examples:Testing & Misc:Graph Grid Demo”.

gridStyle=g

Also see the example experiment “Examples:Testing & Misc:Graph Grid Demo”.

f is a bitwise parameter with each bit controlling one aspect of the font style for the
axis and tick mark labels as follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

bit 0: Bold.
bit 1: Italic.
bit 2: Underline.
bit 3: Outline (Macintosh only).
bit 4: Shadow (Macintosh only).
bit 5: Condensed (Macintosh only).
bit 6: Extended (Macintosh only).

Controls grid lines.

g=0: Grid off.

g=1: Grid on.

g=2: Grid on major ticks only.

Sets the grid style to various combinations of solid and dashed lines. In the
following discussion, major, minor and subminor refer to grid lines the
corresponding tick marks. Subminor ticks are used only on log axes when there is
a small range and sufficient room (they correspond to hundredths of a decade).
The different grid styes are solid, dotted, dashed, and blank. The possible grids are
as follows:

g=0: Same as mode 1 if graph background is white else uses mode 5.

g=1: Major dotted, minor and subminor dashed.

g=2: All dotted.

g=3: Major solid, minor dotted, subminor blank.

g=4: Major and minor solid, subminor dotted.

g=5: All solid.

ModifyGraph (axes)

V-467

highTrip=h If the extrema of an axis are between its lowTrip and its highTrip then tick mark labels use
fixed point notation. Otherwise they use exponential (scientific or engineering) notation.

lblLatPos=p Sets a lateral offset for the axis label. This is an offset parallel to the corresponding
axis. p is in points. Positive is down for vertical axes and to the right for horizontal
axes.

lblMargin=l Specifies the distance from the edge of graph to a label in points.

lblPos=p Sets the distance from an axis to the corresponding axis label in points. If p=0, it
automatically picks an appropriate distance.
This setting is used only if the given graph edge has at least one free axis. Otherwise,
the lblMargin setting is used to position the axis label.

lblPosMode= m

The absolute modes are measured in points whereas scaled modes have similar
values but automatically expand or contract as the axis font height changes. Mode 0
is the default and results in no change relative to previous versions of Igor Pro that
used lblMargin unless a given side used a free axis in which case it used lblPos in
absolute mode. The margin modes measure relative to an edge of the graph while the
axis modes measure relative to the position of the axis. When using stacked axes, use
either margin modes. With multiple nonstacked axes, use Axis scaled if the graph
edge is not using a fixed margin or use axis absolute if it is.

lblRot=r Rotates the axis label by r degrees. r is a value from -360 to 360. Rotation is
counterclockwise and starts from the label's normal orientation.

linTkLabel=tl tl=1 attaches the data units with any exponent or prefix to each tick label on a normal
axis. tl=0 removes them.

log=l

logHTrip=h Same as highTrip but for log axes.

logLabel=l Sets the maximum number of decades in a log axis before minor tick labels are
suppressed.

logLTrip=l Same as lowTrip but for log axes.

loglinear=l Switches to a linear tick method (l=1) on a log axis if the number of decades of ranges
is less than 2. It switches to a linear tick exponent method if the number of decades is
greater than five.

logTicks=t Sets the maximum number of decades in log axis before minor ticks are suppressed.

Affects the meaning and usage of lblPos, lblLatPos, and lblMargin parameters.
Mainly for use when you have multiple axes on a side and you need axis labels to
be properly positioned even as you make graph windows dramatically larger or
smaller.

m=0: Default compatibility mode (Margin or Axis absolute depending on
presence of free axis).

m=1: Margin absolute.

m=2: Margin scaled.

m=3: Axis absolute.

m=4: Axis scaled.

Controls axis log mode.

g=0: Normal axis.

g=1: Log base 10.

g=2: Log base 2.

ModifyGraph (axes)

V-468

lowTrip=l If the extrema of an axis are between its lowTrip and its highTrip then tick mark labels use
fixed point notation. Otherwise they use exponential (scientific or engineering) notation.

manminor={number, emphasizeEvery}

Specifies how to draw minor ticks in manual tick mode. There will be number ticks
between each major (labeled) tick. You will usually want to set this to 4 to make 5
divisions, or 9 to make 10 divisions. A medium-sized tick (an emphasized minor tick)
will be drawn every emphasizeEvery minor tick.

manTick={cantick, tickinc, exp, digitsrt [, timeUnit]}

Turns on manual tick mode. The tick from which all other ticks are calculated is the
cononic tick (cantick). The numerical spacing between ticks is set by tickinc. cantick and
tickinc are multiplied by 10exp. The number of digits to the right of the decimal point
displayed in the tick labels is set by digitsrt.
The optional parameter timeUnit is used with Date/Time axes to specify the units of
tickinc. In this case, tickinc must be an integer. The value of timeUnit is one of the
following keywords:
second, minute, hour, day, week, month, year

On a date/time axis, the exp and digitsrt keywords are ignored, but must be present.
You can set them to zero.

manTick=0 Turns off manual tick mode.

margin=m

minor=m Disables (m=0) or enables (m=1) minor ticks.

mirror=m

mirrorPos=pos Specifies the position of the mirror axis relative to the normal position. pos is a value
between 0 and 1.

noLabel=n

notation=n Uses engineering (n=0) or scientific (n=1) notation for tick mark labels.
Affects tick mark labels displayed exponentially. See highTrip and lowTrip. Does not
affect log axes.

nticks=n Specifies the approximate number of ticks marks (n) on axis.

Sets a fixed margin from the edge of the window to the axis in points. Used
principally to make axes of multiple graphs on a page line up when “stacked”. You
can use the left, right, bottom, and top axis names (even if an axis with that name
doesn’t exist) to adjust the graph plot area. See Types of Axes on page II-242.

m=0: Sets “automatic” margin size (dependent on the length and height of
tick marks and labels).

m=-1: Sets the margin to “none”, or 0. The axis is drawn at the graph
window’s edge.

Controls axis mirroring.

m=1: Right axis mirroring left or top mirroring bottom.

m=2: Mirror axis without tick marks.

m=3: Mirror axis with tick marks and tick labels.

m=0: No mirroring.

Controls axis labeling.

n=0: Normal labels.

n=1: Suppresses tick mark labels.

n=2: Suppresses tick mark labels and axis labels.

ModifyGraph (axes)

V-469

prescaleExp=exp Multiplies axis range by 10^exp for tick labeling and exp is subtracted from the axis
label exponent. In other words, the exponent is moved from the tick labels to the axis
label. (This affects the display only, not the source data.)

sep=s Specifies the minimum number of screen points (s) between minor ticks.

standoff=s Suppresses (s=0) or enables (s=1) axis standoff.
Axis standoff prevents waves or markers from covering the axis.

stLen=p Sets the length of minor (“small”) tick marks to p points. If p is zero, it uses the default
length. p may be fractional.

stThick=p Sets the thickness of minor (“small”) tick marks to p points. If p is zero, it uses the
default thickness. p may be fractional.

tick=t

In a category plot, adding 4 to the usual values for the tick keyword will place the tick
marks in the center of each category rather than at the edges.

tickEnab={lowTick,highTick}

Restricts axis ticking to a subrange of normal. Ticks are drawn and labelled only if
they fall within this inclusive numerical range.

tickExp=te te=1 forces tick labels to exponential notation when labels have units with a prefix.
te=0 turns this off.

tickUnit=tu Suppresses (tu =1) or turns on (tu =0) units labels attached to tick marks.

tickZap={[v1 [,v2 [,v3]]]}

Suppresses drawing of the tick mark label for values given in the list. This is useful
when you have crossing axes to prevent tick mark labels from overlapping. The list may
contain zero, one, two or three values. The values must be exact to suppress the label.

tkLblRot=r Rotates the tick mark labels by r degrees. r is a value from -360 to 360. Rotation is
counterclockwise and starts from the label's normal orientation.

tlOffset=o Offsets the tick mark labels by o fractional points relative to the default tick mark label
position. Positive is away from the axis.

ttLen=p Sets the length of subminor (“tiny”) tick marks to p points. If p is zero, it uses the
default length. p may be fractional. Subminor ticks are used only in log axes.

ttThick=p Sets the thickness of subminor (“tiny”) tick marks to p points. If p is zero, it uses the
default thickness. p may be fractional.

userticks={tickPosWave, tickLabelWave}

Sets tick position.

t=0: Outside axis.

t=1: Crossing axis.

t=2: Inside axis.

t=3: None.

ModifyGraph (axes)

V-470

Flags

Details
With the prescaleExp parameter, you can force tick and axis label scaling to values different from the defaults.
For example, if you have data whose X scaling ranges from 9pA to 120pA and you display this on a log axis,
the tick marks will be labelled 10pA and 100pA. But if you really want the tick marks labeled 10 and 100 with
pA in the axis label, you can set the prescaleExp to 12. To see this, execute the following commands:
Make/O jack=x
Display jack
SetScale x,9e-12,120e-12,"A",jack
ModifyGraph log(bottom)=1

then execute:
ModifyGraph prescaleExp(bottom)=12

The tickExp parameter applies to units that do not traditionally use SI prefix characters. For example, one usually
speaks of 10-3 Torr and not mTorr. To see how this feature works, execute the following example commands:
Make/O jack=x
Display jack
SetScale x,1E-7,1E-5,"Torr",jack
ModifyGraph log(bottom)=1

then execute:

Draws axes with purely user-defined tick mark positions and labels. tickPosWave is a
numeric wave containing the desired positions of the tick marks, and tickLabelWave is
a text wave containing the labels. See User Ticks from Waves on page II-278 for an
example.
The tick mark labels can be multiline and use styled text. For more details, see Fancy
Tick Mark Labels on page II-318.
tickPosWave need not be monotonic. Igor will plot a tick if a value is in the range of the
axis. Both linear and log axes are supported.
Graph margins will adjust to accommodate tick labels. This will not prevent overlap
between labels, which you will need fix yourself.

useTSep=t t=1 displays a thousand's separator character between every group of three digits in
the tick mark label (e.g., "1,000" instead of "1000"). The default is t=0.

zapLZ=t Removes (t=1) leading zeros from tick mark labels. For example 0.5 becomes .5 and -
0.5 becomes -.5. Default is t=0.

zapTZ=t Removes (t=1) trailing zeros from tick mark labels. The the radix point will also be
removed if all digits are zero. Default is t=0.

zero=z

zeroThick=zt Sets the thickness of the zero line in points, from 0.0 to 5.0 points. zt=0.0 means the
zero line thickness automatically follows the thickness of the axis; this is the default.
You can use 0.1 for a thin zero line thickness.

ZisZ=t t=1 uses the single digit 0 as the zero tick mark label (if any) regardless of the number
of digits used for other labels. Default is t=0.

/W=winName Modifies the named graph window or subwindow. When omitted, action will affect
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/Z Does not generate an error if the named axis does not exist in a style macro.

Controls the zero line.

z=0: Zero line at x=0 or y=0.

z=1: No zero line.

ModifyGraph (colors)

V-471

ModifyGraph tickExp(bottom)=1

at this point, the tick mark labels have Torr in them. If you want to eliminate the units from the tick marks,
execute:
ModifyGraph tickUnit(bottom)=1

and if you now want Torr in the label string, use the \U escape in the label string:
Label bottom "\\U"

To see the effect of linTkLabel, execute these commands:
Make/O jack=x
Display jack
SetScale x,1E-7,1E-5,"Torr",jack

then execute:
ModifyGraph linTkLabel(bottom)=1

and then try:
ModifyGraph tickExp(bottom)=1

and finally:
ModifyGraph tickUnit(bottom)=1

ModifyGraph (colors)
ModifyGraph [/W=winName/Z] key [(axisName)] = (r,g,b)

[, key [(axisName)] = (r,g,b)]…
This section of ModifyGraph relates to modifying the use of colors in a graph.

Parameters
Most (but not all) of the key parameters may take an optional axisName enclosed in parentheses. axisName is
“left”, “right”, “top”, “bottom” or the name of an free axis such as “vertCrossing”.
Where the parameter descriptions indicate an “(axisName)”, it may be omitted to change all axes in the graph.
r, g, and b are each an integer from 0 to 65535 where (0, 0, 0) is black and (65535, 65535, 65535) is white.

Flags

Details
On Windows, use maximum white to set the control bar background color to track the 3D Objects color in
the Appearance Tab of the Display Properties control panel:
ModifyGraph cbRGB=(65535,65535,65535)

Parameter Specification Object Colored

alblRGB(axisName)=(r,g,b) Axis labels

axRGB(axisName)=(r,g,b) Axis

cbRGB=(r,g,b) Control bar background

gbRGB=(r,g,b) Graph background

gridRGB(axisName)=(r,g,b) Axis grid lines

tickRGB(axisName)=(r,g,b) Axis Tick marks

tlblRGB(axisName)=(r,g,b) Axis Tick labels

wbRGB=(r,g,b) Window background

/W=winName Modifies the named graph window or subwindow. When omitted, action will affect
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/Z Does not generate an error if the named axis does not exist in a style macro.

ModifyImage

V-472

See Also
See Instance Notation on page IV-16.

ModifyImage
ModifyImage [/W=winName] imageInstance, keyword = value

[, keyword = value]…
The ModifyImage operation changes properties of the given image in the top graph (or the specified graph
if /W is used). imageInstance is the name of the image to be altered. This name is usually simply the name of
the matrix wave containing the image data. If the same matrix wave is displayed more than once, you must
append #0, #1 etc. to the name to distinguish which is which.

imageInstance can also take the form of a null name with an instance number to affect the instanceth image.
That is,
ModifyImage ''#1

modifies the appearance of the second image that was appended to the top graph, no matter what the image
names are. Note: two single quotes are used, not a double quote.

Parameters
Here are the keyword-value pairs. These apply to false color images in which the data in the matrix is used
as an index into a color table. They do not apply to direct color images in which the data in the matrix
specifies the color directly.

cindex=matrixWave Sets the Z value mapping mode such that image colors are determined by doing a
lookup in the specified matrix wave.
matrixWave is a 3 column wave that contains red, green, and blue values from 0 to
65535. (The matrix can actually have more than 3 columns. It ignores any extra
columns.)
The color at Z=z is determined by finding the RGB values in the row of matrixWave
whose scaled X index is z. In other words, the red value is matrixWave(z)[0], the green
value is matrixWave(z)[1] and the blue value is matrixWave(z)[2].
If matrixWave has default X scaling, where the scaled X index equals the point number,
then row 0 contains the color for Z=0, row 1 contains the color for Z=1, etc.
If you use cindex, you should not use ctab in the same command.

ctab={zMin, zMax, ctName, reverse}

Sets z mapping mode by which values in the matrix are mapped linearly into the color
table specified by ctName. The color table name can be missing if you want to leave it
as is. zMin and zMax set the range of z values to map. Omit zMin or zMax to leave as
is or use * to autoscale. ctName can be any color table name returned by the CTabList
function, such as Grays or Rainbow. Also see Color Tables on page II-359. Set
parameter reverse to 1 to reverse the color table; zero or missing does not reverse the
color table.

ctabAutoscale=autoBits

eval={value, red, green, blue}

If the red, green, and blue values are in the valid range for a color value (0 to 65535)
the explicit value-color pair is added (or updated if value already exists). If the color
values are out of range (-1 is suggested) then the value is removed from the list if it is
present (no error if it is not).

Sets the range of data used for autoscaling ctab * values.

If neither bit is set (if autoBits = 0, the default), then all of the data in the image wave
is used to autoscale the *’d zMin, zMax values for ctab.

Bit 0: Autoscales only the XY subset being displayed.

Bit 1: Autoscales only the current plane being displayed.

ModifyImage

V-473

explicit=1 or 0

imCmplxMode=m

interpolate= mode mode = 1 turns on smoothing of the boundaries between pixels. Since this is
implemented via system graphics calls and not by Igor actually doing the
interpolation, it will not affect EPS or EMF export on Windows and will not affect EPS
export on Mac. Although this may create a more esthetically pleasing display, it is not
clear that it is appropriate for scientific data.
mode = -1 forces pixels to be drawn as individual rectangles. This is sometimes needed
when a third-party program improperly interpolates PDF or EPS exported images.

log= 1 or 0 0 sets the default linearly-spaced false-image colors.
1 turns on logarithmically-spaced false-image colors. This requires that the image
values be greater than 0 to display correctly.
Affects the image colors for color table and color index images only (see Color Table
Details on page II-363 and Indexed Color Details on page II-366).
The log keyword was added in Igor Pro 6.22.

lookup= waveName Specifies an optional 1D wave that can be used to modify the mapping of scaled z
values into the color table specified with the ctab parameter. Values should range
from 0.0 to 1.0. A linear ramp from 0 to 1 would have no effect while a ramp from 1
to 0 would reverse the image. Used to apply gamma correction to grayscale images or
for special effects. Use a NULL wave ($"") to remove the option.

maxRGB=(red, green, blue)

Sets the color of image values greater than the ctab zMax or greater than the cindex of
the matrixWave maximum X scaling value. Also turns max color mode on.
The red, green, and blue color values are in the range of 0 to 65535.

maxRGB=1 or 0 or NaN

minRGB=(red, green, blue)

Turns explicit (monochrome) mode on (1) or off (0). Meant to be used with
unsigned byte data but will do the best it can for other types. If value of data is
equal to one of the defined explicit values then its defined color is used otherwise
the pixel will be blank. The default predefined values are:

You can add, change, or delete explicit values with the eval keyword.

255: black

0: white

Sets complex data display mode.

m=0: Magnitude (default).

m=1: Real only.

m=2: Imaginary only.

m=3: Phase in radians.

Turns max color mode off, on, or transparent. These modes affect the display of
image values greater than the ctab zMax or greater than the cindex of the
matrixWave maximum X scaling value.

1: Turns on max color mode. The color of the affected image pixels is
black or the last color set by maxRGB=(red, green, blue).

0: Turns off max color mode (default). The color of the affected image
pixels is the last color table or color index color.

NaN: Transparent max color mode. The affected image pixels are not drawn.

ModifyLayout

V-474

Flags

See Also
AppendImage and RemoveImage.

ModifyLayout
ModifyLayout [flags] key [(objectName)] =value [, key [(objectName)] =value]…
The ModifyLayout operation modifies objects in the top layout or in the layout specified by the /W flag.

Parameters
Each key parameter may take an optional objectName enclosed in parentheses. If “(objectName)” is omitted,
all objects in the layout are affected.
Though not shown in the syntax, the optional “(objectName)” may be replaced with “[objectIndex]”, where
objectIndex is zero or a positive integer denoting the object to be modified. “[0]” denotes the first object
appended to the layout, “[1]” denotes the second object, etc. This syntax is used for style macros, in
conjunction with the /Z flag.

Sets the color of image values less than the ctab zMin or less than the cindex of the
matrixWave minimum X scaling value. Also turns min color mode on.
The red, green, and blue color values are in the range of 0 to 65535.

minRGB=1 or 0 or NaN

plane=p Determines which part of a 3D or 4D image wave to display.
The meaning of p depends on the nature of the image wave. If the size of the layer
dimension of the image wave is exactly three then the wave is treated as RGB data
with R, G, and B data in the three layers. Otherwise each layer of the wave is treated
as a separate grayscale image.

Plane=p With RGB Data
If the wave is 3D, plane=p has no effect.
If the wave is 4D, each chunk contains a different set of R, G and B layers and p selects
which chunk to display.

Plane=p With Grayscale Data
If the wave is 3D, p selects which layer to display.
If the wave is 4D, plane=p acts as if all of the chunks were combined into a virtual 3D
wave and p selects which layer of this virtual 3D wave to display.

rgbMult=m If m is non-zero, direct color values (3 plane RGB) are multiplied by m. This would
typically be used for 10, 12 or 14 bit integers in a 16 bit word. For example, if your
image data is 14 bits, use rgbMult=4.

/W=winName Directs action to a specific window or subwindow rather than the top graph window.
When omitted, action will affect the active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

Turns min color mode off, on, or transparent. These modes affect the display of
image values less than the ctab zMin or less than the cindex of the matrixWave
minimum X scaling value.

1: Turns on min color mode. The color of the affected image pixels is black
or the last color set by minRGB=(red, green, blue).

0: Turns off min color mode (default). The color of the affected image
pixels is the first color table or color index color.

NaN: Transparent min color mode. The affected image pixels are not drawn.

ModifyLayout

V-475

The parameter descriptions below omit the optional “(objectName)”.
The “units”, “mag” and “bgRGB” keywords apply to the layout as a whole, not to a specific object and do
not accept an objectName.

Flags

The /I and /M flags affect the units of the parameters for the left, top, width and height keywords only. If
neither /I nor /M is present then the parameters for the left, top, width and height keywords are points.

bgRGB=(r,g,b) Specifies the background color for the layout. r, g, and b are integers from 0 to 65535.

columns=c Specifies the number of columns for a table object.

fidelity=f

frame=f

height=h Sets the height of the object.

left=l l is the horizontal coordinate of the left edge of the object relative to the left edge of
the paper.

mag=m Sets the layout magnification where m=0.25, 0.5, 1, or 2.

rows=r Specifies the number of rows for table object.

top=t t is the vertical coordinate of the top edge of the object relative to the top edge of the paper.

trans=t

units=u

width=w Sets the object width.

/I Dimensions in inches.

/M Dimensions in centimeters.

/W=winName winName is the name of the page layout window to be modified. If /W is omitted or if
winName is $"", the top page layout is modified.

/Z Does not generate an error if the indexed or named object does not exist in a style macro.

Controls the drawing of layout objects.

f=0: Low fidelity.

f=1: High fidelity.

Specifies the type of frame enclosing the object.
f=0: No frame.
f=1: Single frame (default).
f=2: Double frame.
f=3: Triple frame.
f=4: Shadow frame.

Controls the transparency of the layout object:
t=0: Opaque (default).
t=1: Transparent. For this to be effective, the object itself must also be

transparent. Annotations have their own transparent/opaque
settings. Graphs are transparent only if their backgrounds are white.
PICTs may have been created transparent or opaque, and Igor cannot
make an opaque PICT transparent.

Sets dimension units in the layout info panel and in the Modify Objects dialog.

u=0: Points.

u=1: Inches.

u=2: Centimeters.

ModifyPanel

V-476

Details
Note that the units keyword affects only the units used in the layout info panel and in the Modify Objects
dialog. It has nothing to do with the units used for the left, top, width and height keywords. Those units are
points unless the /I or /M flags is present.

See Also
NewLayout, AppendLayoutObject and RemoveLayoutObjects.

ModifyPanel
ModifyPanel [/W=winName] keyword = value [, keyword = value …]
The ModifyPanel operation modifies properties of the top or named control panel window or subwindow.

Parameters
keyword is one of the following:

Flags

Details
On Windows, set r, g, and b = 65535 (maximum white) to set the background color of the control panel to
track the 3D Objects color in the Appearance Tab of the Display Properties control panel.

See Also
The NewPanel operation.

cbRGB=(r,g,b) Specifies the background color of the entire control panel or the graph’s control bar
area. r, g, and b are values from 0 to 65535.

fixedSize=f

frameInset= i Specifies the number of pixels by which to inset the frame of the panel subwindow.
Mostly useful for overlaying panels in graphs to give a fake 3D frame a better appearance.

frameStyle= f

noEdit= e

/W= winName Modifies the control panel in the named graph or control panel window or
subwindow. When omitted, action will affect the active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

Controls the resizing of the panel window.

f=0: Panel can be resized (default).

f=1: Panel cannot be resized by adjusting the size box or frame (nor
maximized on Windows), but the window can be minimized (on
Windows) and the MoveWindow operation can still change the size.

Specifies the frame style for a panel subwindow.

The last three styles are fake 3D and will look good only if the background color of
the enclosing space and the panel itself is a light shade of gray.

f=0: None.
f=1: Single.
f=2: Indented.
f=3: Raised.
f=4: Text well.

Sets the editability of the panel.

e=0: Editable (default).

e=1: Not editable. For a panel window, the Panel menu item is not
present and the ShowTools command is ignored. For a panel
subwindow, it can not be activated by clicking.

ModifyTable

V-477

Controls in Graphs on page III-390.

ModifyTable
ModifyTable [/W=winName/Z] key [(columnSpec)] =value [, key [(columnSpec)] =value]…
The ModifyTable operation modifies the appearance the top or named table window or subwindow.

Parameters
Many of the parameter keywords take an optional columnSpec enclosed in parentheses. Usually columnSpec is
simply the name of a wave displayed in the table. All table columns are affected when you omit (columnSpec).
More precisely, column specifications are wave names for waves in the current data folder or data folder
paths leading to waves in any data folder optionally followed by the suffixes .i, .l, .d, .id or .ld to specify
dimension indices, dimension labels, data values, dimension indices and data values, or dimension labels
and data values of the wave. For example, ModifyTable font(myWave.i)="Helvetica". If the wave
is complex, the column specification may be followed by .real or .imag suffixes.
One additional columnSpec is Point, which refers to the first column containing the dimension index
numbers. If multidimensional waves are displayed in the table, this column may have the title “Row”,
“Column”, “Layer”, “Chunk” or “Element”, but the columnSpec for this column is always Point. See
Column Names on page II-200 for details.
Though not shown in the syntax, the optional (columnSpec) may be replaced with [columnIndex],
where columnIndex is zero or a positive integer denoting the column to be modified. [0] denotes the Point
column, [1] denotes the first column appended to the table, [2] denotes the second appended column,
etc. This syntax is used for style macros, in conjunction with the /Z flag.
As of Igor Pro 6 you can use a range of column numbers instead of just a single column number, for example
[0,3].
The parameter descriptions below omit the optional (columnSpec).

alignment=a

autosize={mode, options, padding, perColumnMaxSeconds, totalMaxSeconds}

padding specifies extra padding for each column in points. Use -1 to get the default
amount of padding (16 points).
perColumnMaxSeconds specifies the maximum amount of time to spend autosizing a
single column. Use 0 to get the default amount of time (one second).
totalmaxSeconds specifies the maximum amount of time for autosizing the entire table.
Use 0 to get the default amount of time (ten seconds).

digits=d Specifies the number of digits after decimal point or, for hexadecimal and octal
columns, the number of total digits.

Sets the alignment of table cell text.
a=0: Left aligned.
a=1: Center aligned.
a=2: Right aligned.

Autosizes the specified column or columns.
mode=0: Sets width of each data column from a given multidimensional

wave individually.
mode=1: Sets width of all data columns from a given multidimensional wave

the same.

options is a bitwise parameter. Usually 0 is the best choice.

All other bits are reserved and must be set to zero.
See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Ignores column names.
Bit 1: Ignores horizontal indices.
Bit 2: Ignores data cells.

ModifyTable

V-478

elements=(row, col, layer, chunk)

entryMode=m

font="fontName" Sets font used in the table, e.g., font="Helvetica".

format=f

As of Igor Pro 6, you cannot apply date or date&time formats to a wave that is not
double-precision (see Date, Time, and Date&Time Units on page II-85). To avoid this
error, use Redimension to change the wave to double-precision.

frameInset= i Specifies the number of pixels by which to inset the frame of the table subwindow.

Selects the view of a multidimensional wave in the table. The values given to row,
col, layer, and chunk specify how to change the view.

See ModifyTable Elements Command on page II-223 for a detailed discussion of

-1: No change from current view.
-1: Display this dimension vertically.
-3: Display this dimension horizontally.
≥0: For waves with 3 or 4 dimensions, display this element of the

other dimensions.

Queries or sets the table’s entry line mode.
m=0: Just queries.
m=1: Accepts any entry that was started if possible.
m=2: Cancels any entry that was started if possible.

If m is 0 then the entry line state is not changed but is returned via V_flag as follows:
0: No entry is in progress.
-1: An entry is in progress and is valid.
Other: An entry is in progress and is invalid.

If m is 1 then the entry is accepted if it is valid and its state is returned via V_flag as
follows:
0: No entry is in progress.
-1: The entry was accepted.
Other: The entry is invalid and was not accepted.

If m is 2 then the entry is cancelled if possible and its state is returned via V_flag as
follows:
0: No entry is in progress.
-1: The entry was cancelled.

Sets the data format for the table.
f=0: General.
f=1: Integer.
f=2: Integer with thousands (e.g., "1,234").
f=3: Fixed point (e.g., "1234.56").
f=4: Fixed point with thousands (e.g., "1,234.56").
f=5: Exponential (scientific only).
f=6: Date format.
f=7: Time format (always 24 hour time).
f=8: Date&time format (date followed by time).
f=9: Octal.
f=10: Hexadecimal.

ModifyTable

V-479

frameStyle= f

horizontalIndex=h

The horizontal index row appears below the row of column names if the table
contains a multidimensional wave. Use horizontalIndex to override the default
behavior in order to display labels for the horizontal dimension while displaying
numeric indices for the vertical dimension or vice versa.
horizontalIndex controls the horizontal index row only. To control what is displayed
vertically, use AppendToTable to append a numeric index or dimension label
column.

rgb=(r, g, b) Sets color of text. r, g, and b are red, green, and blue components of the color and range
from 0 to 65,535. Default is black: (0,0,0).

selection=(firstRow, firstCol, lastRow, lastCol, targetRow, targetCol)

Sets the selected cells in the table.
If any of the parameters have the value -1 then the corresponding part of the selection
is not changed.
Otherwise they set the first and last selected cell and the target cell. Row and column
values are 0 or greater. The Point column can not be selected.
The proposed parameters are clipped to avoid invalid combinations, such as the last
selected row being before the first selected row.
With one exception, it does not support selecting unused cells. Therefore the
proposed selection is clipped to prevent this. The exception is that, if the parameters
call for selecting the first cell in the first unused column, then this is permitted.

showFracSeconds=s Shows (s=1) or hides (s=0; default) fractional seconds.

showParts=parts Specifies what elements of the table should be visible. Other elements are hidden.

Specifies the frame style for a table subwindow.

The last three styles are fake 3D and will look good only if the background
color of the enclosing space and the table itself is a light shade of gray.

f=0: None.
f=1: Single.
f=2: Double.
f=3: Triple.
f=4: Shadow.
f=5: Indented.
f=6: Raised.
f=7: Text well.

Controls what is displayed in the horizontal index row when multidimensional
waves are displayed.
h=0: Displays dimension labels if the multidimensional wave’s label column

is displayed, otherwise displays numeric indices (default).
h=1: Always displays numeric indices for multidimensional waves.
h=2: Always displays dimension labels for multidimensional waves.

ModifyTable

V-480

All other bits are reserved and must be set to zero except that you can pass -1 to
indicate that you want to show all parts of the table.
See Setting Bit Parameters on page IV-12 for details about bit settings.
Presentation tables in subwindows in graphs and page layouts do not have an entry
line or scroll bars and therefore never show these items.
See Parts of a Table on page II-194 and Showing and Hiding Parts of a Table on page
II-195 for further information.

sigdigits=d d is the number of significant digits when the numeric format is general.

size=s Font size, e.g., size=14.

style=n

For example, bold underlined is 20 + 22 = 1 + 4 = 5. See Setting Bit Parameters on page
IV-12 for details about bit settings.

title="title" Sets the title of a column to title.

topLeftCell=(row, column)

Scrolls the table contents so that the cell identified by (row, column) is the top left
visible data cell, or as close as possible.
If row is -1 then the table’s vertical scrolling is not changed. If column is -1 then the
table’s horizontal scrolling is not changed.
If they are positive, row and column are zero-based numbers which are clipped to valid
values before being used. row=0 refers to the first row of data in the table, column=0
refers to the first column of data.
The Point column can not be scrolled horizontally.

trailingZeros=t Shows trailing zeros (t=1). This affects the general numeric format only.

width=w Sets column width to w points.
You will not always get the exact number of points that you request. This is because
a column must have an even number of screen pixels, so that grid lines look good. Igor
will modify your requested number of points to meet this requirement.

parts is a bitwise parameter specifying what to show.
bit 0: Entry line and other top line controls.
bit 1: Name row.
bit 2: Horizontal index row.
bit 3: Point column.
bit 4: Horizontal scroll bar.
bit 5: Vertical scroll bar.
bit 6: Insertion cells.
bit 7: Insertion cells.

n is a bitwise parameter with each bit controlling one aspect of the column’s
font style as follows:
bit 0: Bold.
bit 1: Italic.
bit 2: Underline.
bit 3: Outline (Macintosh only).
bit 4: Shadow (Macintosh only).
bit 5: Condensed (Macintosh only).
bit 6: Extended (Macintosh only).

ModifyWaterfall

V-481

Flags

Examples
ModifyTable size(myWave)=14 // change font size of myWave column
ModifyTable width(Point)=0 // hide Point column
ModifyTable style(cmplxWave.imag)=32 // condensed= bit 5 = 2^5 = 32

See Also
See Column Names on page II-200 and ModifyTable Elements Command on page II-223.

ModifyWaterfall
ModifyWaterfall [/W=winName] keyword = value [, keyword = value …]
The ModifyWaterfall operation modifies the properties of the waterfall plot in the top or named graph.

Parameters
keyword is one of the following:

Flags

Details
Painter’s algorithm draws the traces from back to front and erases hidden lines while modes 2, 3 and 4
detect which line segments are hidden and suppresses the drawing of these segments.

See Also
Waterfall Plots on page II-300.
The NewWaterfall and ModifyGraph operations.

/W= winName Modifies the named table window or subwindow. When omitted, action will affect
the active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/Z No errors generated if the indexed or specified column does not exist in a style macro.

angle= a Angle in degrees from horizontal of the angled Y axis (a =10 to 90).

axlen= len Relative length of angled Y axis. len is a fraction between 0.1 and 0.9.

hidden= h

/W= winName Modifies waterfall plot in the named graph window or subwindow. When omitted,
action will affect the active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

Controls the hidden line algorithm.

Hidden lines are active only when the mode is lines between points.

h=0: Turns hidden lines off.

h=1: Uses painter’s algorithm.

h=2: True hidden.

h=3: Hides lines with bottom removed.

h=4: Hides lines using a different color for the bottom. When specified, the
top color is the normal color for lines and the bottom color is set using
ModifyGraph negRGB=(r,g,b).

ModuleName

V-482

ModuleName
#pragma ModuleName = modName
The ModuleName pragma assigns a name, which must be unique, to a procedure file so that you can use
static functions and Proc Pictures in a global context, such as in the action procedure of a control or on the
Command Line.
Using the ModuleName pragma involves at least two steps. First, within the procedure file assign it a name
using #pragma ModuleName=modName, and then access objects in the named file by preceding the object
name with the name of the module and the # character, such as or example: ModName#StatFuncName().

See Also
The Regular Modules on page IV-216, Static, Picture, and #pragma.

MoveDataFolder
MoveDataFolder sourceDataFolderSpec, destDataFolderPath
The MoveDataFolder operation removes the source data folder (and everything it contains) and places it at
the specified location with the original name.

Parameters
sourceDataFolderSpec can be just the name of a child data folder in the current data folder, a partial path
(relative to the current data folder) and name or an absolute path (starting from root) and name.
destDataFolderPath can be a partial path (relative to the current data folder) or an absolute path (starting
from root).

Details
MoveDataFolder generates an error if a data folder of the same name already exists at the destination.

Examples
Move data folder foo into data folder bar:
MoveDataFolder foo,root:bar:

Move data folder foo into data folder bar:
MoveDataFolder foo,:bar:

See Also
See the DuplicateDataFolder operation. Chapter II-8, Data Folders.

MoveFile
MoveFile [flags][srcFileStr] [as destFileOrFolderStr]
The MoveFile operation moves or renames a file on disk. A file is renamed by “moving” it to the same folder
it is already in using a different name.

Parameters
srcFileStr can be a full path to the file to be moved or renamed (in which case /P is not needed), a partial path
relative to the folder associated with pathName, or the name of a file in the folder associated with pathName.
If Igor can not determine the location of the file from srcFileStr and pathName, it displays an Open File dialog
allowing you to specify the source file.
destFileOrFolderStr is interpreted as the name of (or path to) an existing folder when /D is specified,
otherwise it is interpreted as the name of (or path to) a possibly existing file.
If destFileOrFolderStr is a partial path, it is relative to the folder associated with pathName.
If /D is specified, the source file is moved inside the folder using the source file’s name.
If Igor can not determine the location of the destination file from pathName, srcFileStr, and
destFileOrFolderStr, it displays a Save File dialog allowing you to specify the destination file (and folder).
If you use a full or partial path for either srcFileStr or destFileOrFolderStr, see Path Separators on page III-400
for details on forming the path.
Folder paths should not end with single Path Separators. See the Details section for MoveFolder.

MoveFile

V-483

Flags

Variables
The MoveFile operation returns information in the following variables:

Examples
Rename a file, using full paths:
MoveFile "HD:folder:aFile.txt" as "HD:folder:bFile.txt"

Rename a file, using a symbolic path:
MoveFile/P=myPath "aFile.txt" as "bFile.txt"

Move a file into a subfolder (the subfolder must exist):
MoveFile/D "Macintosh HD:folder:aFile.txt" as ":subfolder"

Move a file into an unrelated folder (the subfolder must exist):
MoveFile/D "Macintosh HD:folder:afile.txt" as "Server:archive"

Move a file from one folder to another and rename it:

/D Interprets destFileOrFolderStr as the name of (or path to) an existing folder (or
directory). Without /D, destFileOrFolderStr is the name of (or path to) a file.
If destFileOrFolderStr is not a full path to a folder, it is relative to the folder associated
with pathName.

/I [=i]

/M=messageStr Specifies the prompt message in the Open File dialog. If /S is not specified, then
messageStr will be used for both Open File and for Save File dialogs.

/O Overwrite existing destination file, if any. Without /O, the user is asked if replacing
the existing file is to be allowed.

/P=pathName Specifies the folder to look in for the source file, and the folder into which the file is
copied. pathName is the name of an existing symbolic path.
Using /P means that both srcFileStr and destFileOrFolderStr must be either simple file
or folder names, or paths relative to the folder specified by pathName.

/S=saveMessageStr Specifies the prompt message in the Save File dialog.

/Z[=z]

V_flag Set to zero if the file was moved, to -1 if the user cancelled either the Open File or Save
File dialogs, and to some nonzero value if an error occurred, such as the specified file
does not exist.

S_fileName Stores the full path to where the file was moved from. If an error occurred or if the
user cancelled, it is set to an empty string.

S_path Stores the full path where the file was moved to. If an error occurred or if the user
cancelled, it is set to an empty string.

Specifies the level of interactivity with the user.
/I=0: Interactive only if srcFileStr or destFileOrFolderStr is not specified or if

the source file is missing. (Same as if /I was not specified.)
/I=1: Interactive even if srcFileStr is specified and the source file exists.
/I=2: Interactive even if destFileOrFolderStr is specified.
/I=3: Interactive even if srcFileStr is specified and the source file exists. Same

as /I only.

Prevents procedure execution from aborting if it attempts to move a file that
does not exist. Use /Z if you want to handle this case in your procedures rather
than having execution abort.
/Z=0: Same as no /Z.
/Z=1: Moves a file only if it exists. /Z alone is equivalent to /Z=1.
/Z=2: Moves a file if it exists or displays a dialog if it does not exist.

MoveFolder

V-484

MoveFile "Macintosh HD:folder:afile.txt" as "Server:archive:destFile.txt"

Move user-selected file into a particular folder:
MoveFile/D as "C:My Data:Selected Files Folder"

Move user-selected file in any folder as bFile.txt in same folder:
MoveFile as "bFile.txt"

Move user-selected file in any folder as bFile.txt in any folder:
MoveFile/I=2 as "bFile.txt"

See Also
The Open, MoveFolder, CopyFolder, NewPath, and CreateAliasShortcut operations. The IndexedFile
function. Symbolic Paths on page II-34.

MoveFolder
MoveFolder [flags][srcFolderStr] [as destFolderStr]
The MoveFolder operation moves or renames a folder on disk. A folder is renamed by “moving” it into the
same folder it is already in, but with a different name.

Parameters
srcFolderStr can be a full path to the folder to be moved or renamed (in which case /P is not needed), a partial
path relative to the folder associated with pathName, or the name of a folder within the folder associated
with pathName.
If the location of the source folder cannot be determined from srcFolderStr and pathName, it displays a Select
Folder dialog allowing you to specify the source.
If /P=pathName is given, but srcFolderStr is not, then the folder associated with pathName is moved or renamed.
destFolderStr specifies the final location of the folder or, if /D is used, the parent of the final location of the folder.
destFolderStr can be a full path to the output (destination) folder (in which case /P is not needed), or a partial
path relative to the folder associated with pathName.
If the location of the destination folder cannot be determined from destFolderStr and pathName, it displays a
Save Folder dialog allowing you to specify the destination.
If you use a full or partial path for either file, see Path Separators on page III-400 for details on forming the path.

Flags

Warning: The MoveFolder command can destroy data by overwriting another folder and its contents!
If you overwrite an existing folder on disk, MoveFolder will do so only if permission is
granted by the user. The default behavior is to display a dialog asking for permission. The
user can alter this behavior via the Miscellaneous Settings dialog’s Misc category. For
further details see Misc Settings on page III-416.
If permission is denied, the folder will not be moved and V_Flag will return 1088
(Command is disabled) or 1275 (You denied permission to overwrite a folder). Command
execution will cease unless the /Z flag is specified.

/D Interprets destFolderStr as the name of (or path to) an existing folder (or “directory”)
to move the source folder into. Without /D, it interprets destFolderStr as the name of
(or path to) the moved folder.

If destFolderStr is not a full path to a folder, it is relative to the source folder.

/I [=i] Specifies the level of interactivity with the user.
/I=0: Interactive only if srcFolderStr or destFolderStr is not specified or if the

source folder is missing. (Same as if /I was not specified.)
/I=1: Interactive even if srcFolderStr is specified and the source folder exists.
/I=2: Interactive even if destFolderStr is specified.
/I=3: Interactive even if srcFolderStr is specified and the source folder exists.

Same as /I only.

MoveFolder

V-485

Variables
The MoveFolder operation returns information in the following variables:

Details
You can use only /P=pathName (omitting srcFolderStr) to specify the source folder to be moved.
A folder path should not end with single Path Separators. For example:
MoveFolder "Macintosh HD:folder" as "Macintosh HD:Renamed Folder:"
MoveFolder "Macintosh HD:folder:" as "Macintosh HD:Renamed Folder"
MoveFolder "Macintosh HD:folder:" as "Macintosh HD:Renamed Folder:"

will do weird, unexpected things (and probably damaging things when /O is also used). Instead, use:
MoveFolder "Macintosh HD:folder" as "Macintosh HD:Renamed Folder"

Beware of PathInfo and other command which return paths with an ending path separator. (They can be
removed with the RemoveEnding function.)
A folder may not be moved into one of its own subfolders.
Conversely, the command:
MoveFolder/O/P=myPath "afolder"

which attempts to overwrite the folder associated with myPath with a folder that is inside it (namely
“afolder”) is not allowed. Instead, use:
MoveFolder/O/P=myPath "::afolder"

On Windows, renaming or moving a folder never updates the value of any Igor Symbolic Paths that point
to a moved folder:
// Create a folder
NewPath/O/C myPath "C:\\My Data\\My Work"

/M=messageStr Specifies the prompt message in the Open File dialog. If /S is not used, then messageStr
will be used for both Open File and for Save File dialogs.

/O Overwrite existing destination folder, if any. This deletes the existing destination
folder. When /O is specified, the source folder can’t be moved into an existing folder
without specifying the name of the moved folder in destFolderStr.

/P=pathName Specifies the folder for relative paths in srcFolderStr and destFolderStr. pathName is the
name of an existing symbolic path.
If srcFolderStr is omitted, the folder associated with pathName is moved. If destFolderStr
is omitted, the source folder is moved into the folder associated with pathName.
Using /P means that srcFolderStr (if specified) and destFolderStr must be either simple
folder names or paths relative to the folder specified by pathName.

/S=saveMessageStr Specifies the prompt message in the Save File dialog.

/Z[=z]

V_flag Set to zero if the file was moved, to -1 if the user cancelled either the Open File or Save
File dialogs, and to some nonzero value if an error occurred, such as the specified file
does not exist.

S_fileName Stores the full path to the folder that was moved, with a trailing colon. If an error
occurred or if the user cancelled, it is set to an empty string.

S_path Stores the full path of the moved folder, with a trailing colon. If an error occurred or
if the user cancelled, it is set to an empty string.

Prevents procedure execution from aborting if it attempts to move a folder that
does not exist. Use /Z if you want to handle this case in your procedures rather than
having execution abort.
/Z=0: Same as no /Z.
/Z=1: Moves a folder only if it exists. /Z alone is equivalent to /Z=1.
/Z=2: Moves a folder if it exists or displays a dialog if it does not exist.

MoveString

V-486

// Move the folder
MoveFolder/P=myPath as "C:\\My Data\\Moved"

// Display the path's value
PathInfo myPath // (or use the Path Status dialog)
Print S_Path
• C:My Data:My Work

You can use PathInfo to determine if a folder referred to by an Igor symbolic path exists and where it is on
the disk. Use NewPath/O to reset the path’s value.
On the Macintosh, however, renaming or moving a folder on the same volume does alter the value of
symbolic path. This is because MoveFolder uses a Mac OS alias to keep track of the folder. A folder renamed
or moved on the same volume retains the original “volume refnum” and “directory ID” stored in the alias
mechanism, so that the alias (and hence Igor’s symbolic path) remains pointing to the moved folder. After
moving the folder, using the unchanged volume refnum and directory ID (in PathInfo or when you use
/P=pathName) returns the updated path.
Moving the folder to a different volume actually creates a new folder with new volume refnum and
directory IDs, and symbolic paths pointing to or into the moved folder aren’t updated. They will be
pointing at a deleted folder (they’re probably invalid).

Examples
Rename a folder (“move” it to the same folder):
MoveFolder "Macintosh HD:folder" as "Macintosh HD:Renamed Folder"

Rename a folder referred to by only a path:
NewPath/O myPath "Macintosh HD:folder"
MoveFolder/P=myPath as "::Renamed Folder"

Move a folder from one volume to another. This moves “Macintosh HD:My Folder” inside “Server:My
Folder” if “Server:My Folder” already exists:
MoveFolder "Macintosh HD:My Folder" as "Server:My Folder"

Move a folder from one volume to another. This overwrites “Server:My Folder” (if it existed) with the
moved “Macintosh HD:My Folder”:
MoveFolder/O "Macintosh HD:My Folder" as "Server:My Folder"

Move user-selected folder in any folder as “Renamed Folder” into a user-selected folder (possibly the same
one):
MoveFolder as "Renamed Folder"

Move user-selected file in any folder as “Moved Folder” in any folder:
MoveFolder/I=3 as "Moved Folder"

See Also
MoveFile, CopyFolder, IndexedDir, PathInfo, and RemoveEnding. Symbolic Paths on page II-34.

MoveString
MoveString sourceString, destDataFolderPath [newname]
The MoveString operation removes the source string variable and places it in the specified location
optionally with a new name.

Parameters
sourceString can be just the name of a string variable in the current data folder, a partial path (relative to the
current data folder) and variable name or an absolute path (starting from root) and variable name.
destDataFolderPath can be a partial path (relative to the current data folder) or an absolute path (starting
from root).

Details
An error is issued if a variable or wave of the same name already exists at the destination.

Examples
MoveString :foo:s1,:bar: // Move string s1 into data folder bar
MoveString :foo:s1,:bar:ss1 // Move string s1 into bar with new name ss1

MoveSubwindow

V-487

See Also
The MoveVariable, MoveWave, and Rename operations; andChapter II-8, Data Folders.

MoveSubwindow
MoveSubwindow [/W=winName] key = (values)[, key = (values)]…
The MoveSubwindow operation moves the active or named subwindow to a new location within the host
window. This command is primarily for use by recreation macros; users should use layout mode for
repositioning subwindows.

Parameters

Flags

Details
When moving an exterior subwindow, only the fnum keyword may be used. The values are the same as the
NewPanel /W flag for exterior subwindows.
The names for the built-in guides are as defined in the following table:

The frame guides apply to all window and subwindow types. The graph rectangle and plot rectangle guide
types apply only to graph windows and subwindows.

fguide=(gLeft, gTop, gRight, gBottom)

Specifies the frame guide name(s) to which the outer frame of the subwindow is
attached inside the host window.
The frame guides are identified by the standard names or user-defined names as
defined by the host. Use * to specify a default guide name.
When the host is a graph, additional standard guides are available for the outer graph
rectangle and the inner plot rectangle (where traces are plotted).
See Details for standard guide names.

fnum=(left, top, right, bottom)

Specifies the new location of the subwindow. The location coordinates of the
subwindow sides can have one of two possible meanings:
When all values are less than 1, coordinates are assumed to be fractional relative to
the host frame size.
When any value is greater than 1, coordinates are taken to be fixed locations measured in
points, or pixels for control panels, relative to the top left corner of the host frame.

pguide=(gLeft, gTop, gRight, gBottom)

Specifies the guide name(s) to which the plot rectangle of the graph subwindow is
attached inside the host window.
Guides are identified by the standard names or user-defined names as defined by the
host. Use * to specify a default guide name.
See Details for standard guide names.

/W= winName Moves the subwindow in the named window or subwindow. When omitted, action
will affect the active subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

Left Right Top Bottom
Subwindow Frame FL FR FT FB
Outer Graph Rectangle GL GR GT GB
Inner Plot Rectangle PL PR PT PB

MoveVariable

V-488

See Also
The MoveWindow operation. Chapter III-4, Embedding and Subwindows for further details and
discussion.

MoveVariable
MoveVariable sourceVar, destDataFolderPath [newname]
The MoveVariable operation removes the source numeric variable and places it in the specified location
optionally with a new name.

Parameters
sourceVar can be just the name of a numeric variable in the current data folder, a partial path (relative to the
current data folder) and variable name or an absolute path (starting from root) and variable name.
destDataFolderPath can be a partial path (relative to the current data folder) or an absolute path (starting
from root).

Details
An error is issued if a variable or wave of the same name already exists at the destination.

Examples
MoveVariable :foo:v1,:bar: // Move v1 into data folder bar
MoveVariable :foo:v1,:bar:vv1 // Move v1 into bar with new name vv1

See Also
The MoveString, MoveWave, and Rename operations; and Chapter II-8, Data Folders.

MoveWave
MoveWave sourceWave, destDataFolderPath [newname]
The MoveWave operation removes the source wave and places it in the specified location optionally with
a new name.

Parameters
sourceWave can be just the name of a wave in the current data folder, a partial path (relative to the current
data folder) and wave name or an absolute path (starting from root) and wave name.
destDataFolderPath can be a partial path (relative to the current data folder) or an absolute path (starting
from root).

Details
An error is issued if a variable or wave of the same name already exists at the destination.

Examples
MoveWave :foo:w1,:bar: // Move wave w1 into data folder bar
MoveWave :foo:w1,:bar:ww1 // Move w1 into bar with new name ww1

See Also
The MoveString, MoveVariable, and Rename operations; and Chapter II-8, Data Folders.

MoveWindow
MoveWindow [flags] left, top, right, bottom
The MoveWindow operation moves the target or specified window to the given coordinates.

Flags

/C Moves Command window instead of the target window.

/F Windows: Moves the Igor Pro application “frame” and the frame is then adjusted so
that no part is offscreen.
Macintosh: Moves nothing.

/I Coordinates are in inches.

MultiThread

V-489

Details
Note that neither winName nor procedureTitleAsName is a string but is the actual window name or procedure
window title. If the procedure window’s title (procedure windows don’t have names) has a space in it, use
$ and quotes:
MoveWindow/P=$"Log Histogram" 0,0,600,400

If /W, /F, /C, and /P are omitted, MoveWindow moves the target window.
The coordinates are in points if neither /I nor /M is used.
On Windows, you can use the MoveWindow operation to minimize, restore, or maximize a window by
specifying 0, 1, or 2 for all of the coordinates, respectively, as follows:
MoveWindow 0, 0, 0, 0 // Minimize target window.
MoveWindow 1, 1, 1, 1 // Restore target window.
MoveWindow 2, 2, 2, 2 // Maximize target window.

These special commands are of use on Windows only. Macintosh Igor Pro 3.1 or later ignores these special
commands. In earlier versions, the commands set the target window to its smallest allowed size.

See Also
The MoveSubwindow and DoWindow operations.

MultiThread

MultiThread wave = expression
In user-defined functions, the MultiThread keyword can be inserted in front of wave assignment statements
to speed up execution on multiprocessor computer systems.

The expression must be thread-safe. This means that if it calls a function, the function must be thread-safe.
This goes for both built-in and user-defined functions.
Not all built-in functions are thread-safe. Use the Command Help tab in the Igor Help Browser to see which
functions are thread-safe.
User-defined functions are thread-safe if they are defined using the ThreadSafe keyword. See ThreadSafe
Functions on page IV-87 for details.

See Also
Automatic Parallel Processing with MultiThread on page IV-289.
Waveform Arithmetic and Assignments on page II-94.
The “MultiThread Mandelbrot Demo” experiment.

NameOfWave
NameOfWave(wave)
The NameOfWave function returns a string containing the name of the specified wave.
In a user-defined function that has a parameter or local variable of type WAVE, NameOfWave returns the
actual name of the wave identified by the WAVE reference. It can also be used with wave reference
functions such as WaveRefIndexedDFR.
NameOfWave does not return the full data folder path to the wave. Use GetWavesDataFolder for this
information.

/M Coordinates are in centimeters.

/P=procedureTitleAsName

Moves the specified procedure window instead of the target window.

/W=winName Moves the named window.

Warning: Misuse of this keyword can result in a performance penalty or even a crash. Be sure to
read Automatic Parallel Processing with MultiThread on page IV-289 before using
MultiThread.

NaN

V-490

A null wave reference returns a zero-length string. This might be encountered, for instance, when using
WaveRefIndexedDFR in a loop to act on all waves in a data folder, and the loop has incremented beyond
the highest valid index.

Examples
Function ZeroWave(w)

Wave w
w = 0
Print "Zeroed the contents of", NameOfWave(w)

End

See Also
See WAVE; the GetWavesDataFolder and WaveRefIndexed functions; and Wave Reference Functions on
page IV-177.

NaN
NaN
The NaN function returns the “Not a Number” value according to the IEEE standards.
Comparison operators do not work with NaN parameters because, by definition, NaN compared to
anything, even another NaN, is false. Use numtype to test if a value is NaN.

NeuralNetworkRun
NeuralNetworkRun [/Q/Z] Input=testWave, WeightsWave1=w1, WeightsWave2=w2
The NeuralNetworkRun operation uses the interconnection weights generated by NeuralNetworkTrain,
and saved in the waves M_Weights1 and M_Weights2, to execute the network for a given input. The input
can contain a single run represented by a 1D wave or M runs represented by M columns of a 2D wave. The
output of the calculation is saved in the wave W_NNResults or M_NNResults depending on the
dimensionality of the input wave. The structure of the network is completely specified by the two weights
waves and must match the number of rows in the input wave.

Flags

Parameters

See Also
The NeuralNetworkTrain operation.

NeuralNetworkTrain
NeuralNetworkTrain [/Q/Z] [keyword = value]…
The NeuralNetworkTrain operation trains a three-layer neural network. The training produces two 2D
waves that store the interconnection weights between the network neurodes. Once you obtain the weights,
you can use them with NeuralNetworkRun.

/Q Suppresses printing information in the History area.

/Z No error reporting.

Input=testWave Specifies the input to the neural network. testWave must be a single or double
precision wave containing entries in the range [0,1] and have the correct number
of rows to match the weights. Execute the network for multiple runs by using a
2D input wave where each column corresponds to a single run. For a 2D input,
the result will be stored in M_NNResults with a corresponding column structure.

WeightsWave1=w1 Specifies the interconnection weights between the input and the hidden layer.

WeightsWave2=w2 Specifies the interconnection weights between the hidden layer and the output.

NeuralNetworkTrain

V-491

Flags

Parameters
keyword is one of the following:

Details
NeuralNetworkTrain is the first half of the implementation of a three-layer neural network in which both
in inputs and outputs are taken as normalized quantities in the range [0,1]. Network training is based on
back-propagation to iteratively minimize the error between the output and the expected output for any
given training set. Training creates in two 2D waves that contain the interconnection weights between the

/Q Suppresses printing information in the History area.

/Z No error reporting.

Input=inWave Specifies the input patterns for training. inWave is a 2D wave where each row corresponds
to a single training event and each column corresponds to the input values. The number
of rows in inWave (the number of training sets) and in the output wave must be equal.
inWave must be single or double precision and all entries must be in the range [0,1].

Iterations=num Specifies the number of iterations. Default is 10000.

MinError=val Terminates training when the total error drops below val (default is 1e-8). The total
error is normalized, and is defined as the sum of the squared errors divided by the
number of training sets times outputs.

Momentum=val Specifies a coefficient for the back-propagation algorithm. This coefficient adds to the
change in a particular weight a contribution proportional to the error in a previous
iteration. Default momentum is 0.075.

NHidden=num Specifies the number of hidden neurodes. You do not need to use the Structure
keyword with NHidden because the network is completely specified by the training
waves and NHidden.

NReport=num Specifies over how many iterations (default is 1000) to print the global RMS error to
the history window. Ignored with /Q.

Output=outWave Specifies the expected outputs corresponding to the entries in the input wave. The
number of rows in outWave (the number of training sets) and in the input wave must
be equal. outWave must be single or double precision and all entries must be in the
range [0,1].

LearningRate=val Sets the network learning rate, which is used in the backpropagation calculation.
Default is 0.15.

Restart Allows specification of your own set of weights as the starting values. Use this to run
the training and feed the output weights of one training session as the input for the
next.

Structure={Ni, Nh, No}

Specifies the structure of the network. Ni is the number of neurodes at the input, Nh
is the number of hidden neurodes, and No is the number of output neurodes.
Structure is unnecessary when using NHidden is because the remaining numbers are
determined by the sizes of the input and output waves.

WeightsWave1=w1 Specifies the weights for propagation from the first layer to the second. The 2D wave
must be double precision and the dimensions must match the specified neurodes with
the same numbers of rows and inputs and with matching numbers of columns and
hidden neurodes.

WeightsWave2=w2 Specifies the weights for propagation from the second to the third layer. The 2D wave
must be double precision and the dimensions must match the specified neurodes with
the same numbers of rows and hidden neurodes and with matching numbers of
columns and outputs.

NewDataFolder

V-492

neurodes. M_Weights1 contains the weights between the input layer and the hidden layer and M_Weights2
contains the weights between the hidden layer and the output layer. During the iteration stage, global error
information can be printed in the history window.
The algorithm computes the output of the kth neurode by

where wi is the weight corresponding to input i, si is the signal corresponding to that input, and n is the
number of inputs connected to the neurode.
The total error is defined as the sum (over all training sets and all outputs) of the squared differences between
the network outputs and the expected values. The sum is normalized by the product of the number of training
sets and the number of outputs. The history reports (see NReport parameter) the square root of the total error
(RMS error). The square root of the error computed at the end of the last iteration is stored in the variable V_rms.

See Also
The NeuralNetworkRun operation.

NewDataFolder
NewDataFolder [/O/S] dataFolderSpec
The NewDataFolder operation creates a new data folder of the given name.

Parameters
dataFolderSpec can be just a data folder name, a partial path (relative to the current data folder) with name
or a full path (starting from root) with name. If just a data folder name is used then the new data folder is
created in the current data folder. If a full or partial path is used, all data folders except for the last in the
path must already exist.

Flags

Examples
NewDataFolder foo // Creates foo in the current data folder
NewDataFolder :bar:foo // Creates foo in bar in current data folder
NewDataFolder root:foo // Creates foo in the root data folder

See Also
Chapter II-8, Data Folders.

NewFIFO
NewFIFO FIFOName
The NewFIFO operation creates a new FIFO.

Details
Useless until channel info is added with NewFIFOChan.
An error is generated if a FIFO of same name already exists. FIFOName needs to be unique only among
FIFOs. You can not overwrite a FIFO.

See Also
FIFOs are used for data acquisition. See FIFOs and Charts on page IV-282 and the NewFIFOChan
operation for more information.

/O No error if a data folder of the same name already exists.

/S Sets the current data folder to dataFolderSpec after creating the data folder.

Vk 1 wisi

i 1=

n

–

exp+

1–

=

NewFIFOChan

V-493

NewFIFOChan
NewFIFOChan [flags] FIFOName, channelName, offset, gain, minusFS, plusFS,

unitsStr [, vectPnts]
The NewFIFOChan operation creates a new channel for the named FIFO.

Parameters
channelName must be unique for the specified FIFO.
The offset, gain, plusFS, minusFS and unitsStr parameters are used when the channel’s data is displayed in a
chart or transferred to a wave. If given, vectPnts must be between 1 and 65535.

Flags
The flags define the type of data to be stored in the FIFO channel:

Wave Data Types
As a replacement for the above number type flags you can use /Y=numType to set the number type as an
integer code. See the WaveType function for code values. Do not use /Y in combination with other type flags.

Details
You can not invoke NewFIFOChan while the named FIFO is running.
If you provide a value for vectPnts, you will create a channel capable of holding a vector of data rather than
just a single data value. When such a channel is used in a Chart, it is displayed as an image using one of the
built-in color tables.
Igor scales values in the FIFO channel before displaying them in a chart or transferring them to a wave as follows:
scaled_value = (FIFO_value - offset) * gain

Igor uses the plusFS and minusFS parameters (plus and minus full scale) to set the default display scaling
for charts.
The unitsStr parameter is limited to a maximum of three characters.
When you transfer a channel’s data to a wave, using the FIFO2Wave operation, Igor stores the plusFS and
minusFS values and the unitsStr in the wave’s Y scaling.

See Also
FIFOs are used for data acquisition. See FIFOs and Charts on page IV-282 and the NewFIFO and
FIFO2Wave operations for more information.
The Chart operation for displaying FIFO data.

NewFreeAxis
NewFreeAxis[flags] axisName
The NewFreeAxis operation creates a new free axis that has no controlling wave.

Parameters
axisName is the name for the new free axis.

/B 8-bit signed integer. Unsigned if /U is present.

/C Complex.

/D Double precision IEEE floating point.

/I 32-bit signed integer. Unsigned if /U is present.

/S Single precision IEEE floating point (default).

/U Unsigned integer data.

/W 16-bit signed integer. Unsigned if /U is present.

/Y=type Specifies wave data type. See details below.

NewFreeDataFolder

V-494

Flags

Details
A truly free axis does not use any scaling or units information from any associated waves (which need not
exist.) You can set the properties of a free axis using SetAxis or ModifyFreeAxis.

Example
Copy this function to your Procedure window and compile:
Function axhook(s)

STRUCT WMAxisHookStruct &s

Variable t= s.max
s.max= s.min
s.min= t
return 0

End

Now execute this code on the Command line:
Make jack=x
Display jack
NewFreeAxis fred
ModifyFreeAxis fred, master=left, hook=axhook

See Also
The SetAxis, KillFreeAxis, and ModifyFreeAxis operations.

NewFreeDataFolder
NewFreeDataFolder()
The NewFreeDataFolder function creates a free data folder and then returns its data folder reference.
Requires Igor Pro 6.1 or later.
Recommended for advanced programmers only.

Details
Free data folders are those that are not a part of the normal data folder hierarchy and can not be located by
name.

See Also
Chapter II-8, Data Folders, Free Data Folders on page IV-79 and Data Folder References on page IV-62.

NewFreeWave
NewFreeWave(type, numPoints)
The NewFreeWave function creates a free 1D wave of the given type and number of points and then returns
its wave reference.
Requires Igor Pro 6.1 or later.
Recommended for advanced programmers only.

Details
NewFreeWave creates a free wave named 'f'.
You can also create free waves using Make/FREE and Duplicate/FREE. These are preferable for creating
multidimensional free waves and also fine for general use.

/L/R/B/T Specifies whether to attach the free axis to the Left, Right, Bottom, or Top plot edge,
respectively. The Left edge is used by default.

/O Replaces axisName if it already exists, which means any existing axis is marked as truly
free.

/W=winName Draws in the named graph window. winName may also be the name of a subwindow.
winName must not conflict with other axis names except when using the /O flag. If /W
is omitted, it creates a new axis in the active graph window or subwindow.

NewImage

V-495

The type parameter can be either a code as documented for WaveType or can be 0x100 to create a data
folder reference wave or 0x200 to create a wave reference wave.
You can redimension free waves as desired but, for maximum efficiency, you should create the wave with
the desired type and total number of points and then use the /E=1 flag with Redimension to simply reshape
without moving data.
A free wave is automatically discarded when the last reference to it disappears.

See Also
Free Waves on page IV-75, Make, Duplicate.

NewImage
NewImage [flags] matrix
The NewImage operation creates a new image graph much like “Display;AppendImage matrix”
except the graph is prepared using a style more appropriate for images. Rather than using preferences,
NewImage provides several discrete styles to choose from.

Parameters
matrix is usually an MxN matrix containing image data. See AppendImage for details.

Flags

Details
The graph is sized to make the image pixels a multiple of the screen pixels with the graph size constrained
to be not too small and not too large.

/F By default, the image is flipped vertically to correspond to normal image orientation.
if /F is present then the image is not flipped.

/G=g

/HIDE=h Hides (h = 1) or shows (h = 0, default) the window.

/HOST=hcSpec Embeds the new image plot in the specified host window or subwindow hcSpec.
When identifying a subwindow with hcSpec, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/K=k

/N=name Requests that the created graph have this name, if it is not in use. If it is in use, then
name0, name1, etc. are tried until an unused window name is found. In a function or
macro, S_name is set to the chosen graph name. Use DoWindow/K name to ensure
that name is available.

/S=s

Controls treatment of three-plane images as direct (RGB) color.

g=1: Suppresses the autodetection of three-plane images as direct (RGB) color.

g=1: Same as no /G flag (default).

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

Specifies one of several window styles.
s=0: Fills entire window with image. No axes. However, this can result in

the lower-right corner not being visible due to the target icon or
grow icon (Macintosh).

s=1: Like s=0 but insets image to avoid corner icon.
s=2: Provides minimalist axes (default).

NewLayout

V-496

If matrix appears to fit Igor’s standard monochrome category, then explicit mode is set (See ModifyImage
explicit). To be considered monochrome the wave must be unsigned byte and contain only values of 0, 64 or 255.
Once the graph is created it is a normal graph and has no special properties other than the settings it was
created with. Specifically, it will not autosize itself if the dimensions of matrix are changed. NewImage is
just a shortcut for creating a graph window with a style appropriate for images.
This operation is limited in scope by design. If you need to specify the position, size or title, then use the
operations Display and AppendImage.
If the styles provided are not what you desire, touch up an image graph to meet your needs and then use
Capture Graph Prefs from the Graphs menu. Then use “Display;AppendImage” rather than NewImage.

See Also
The Display, DoWindow, AppendImage, and ModifyImage operations.

NewLayout
NewLayout [flags] [as titleStr]
The NewLayout operation creates a page layout.
Unlike the Layout operation, NewLayout can be used in user-defined functions. Therefore, NewLayout
should be used in new programming instead of Layout.
NewLayout just creates the layout window. Use AppendLayoutObject to add objects to the window.

Parameters
The optional titleStr parameter is a string expression containing the layout’s title. If not specified, Igor will
provide one which identifies the objects displayed in the graph.

Flags

/B=(r,g,b) Specifies the background color for the layout. r, g, and b are integers from 0 to 65535.
Defaults to white (65535, 65535, 65535).

/C=colorOnScreen Obsolete; still accepted but has no effect. Prior to Igor Pro 5, this switched the layout
display mode between black and white and color, but now layouts are always in
color.

/HIDE=h Hides (h = 1) or shows (h = 0, default) the window.

/K=k

/N=name Requests that the layout have this name, if it is not in use. If it is in use, then name0,
name1, etc. are tried until an unused window name is found. In a function or macro,
S_name is set to the chosen layout name. Use DoWindow/K name to ensure that name
is available.
If /N is not used, a name of the form “Layoutn”, where n is some integer, is assigned.
In a function or macro, the assigned name is stored in the S_name string. This is the
name you can use to refer to the page layout window from a procedure. Use the
RenameWindow operation to rename the window.

/P=orientation Sets the orientation of the page in the layout to either Portrait or Landscape (e.g.,
Layout/P=Landscape). See Details.

/W=(left,top,right,bottom)

Gives the layout window a specific location and size on the screen. Coordinates for
/W are in points.

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

NewMovie

V-497

Details
The orientation of the page is controlled by the page setup record associated with the layout. When you
create a new layout window, the page setup record comes from your preferred page setup (which you
specify via the Capture Layout Prefs dialog) or from a default page setup that Igor creates by calling the
current printer driver. When you recreate a layout window using a Window macro, Igor reuses the page
setup originally used for the layout window.

See Also
AppendLayoutObject, DoWindow, RemoveLayoutObjects, and ModifyLayout.

NewMovie
NewMovie [flags] [as fileNameStr]
The NewMovie operation opens a movie file in preparation for adding frames. QuickTime is used by
default but on Windows if QuickTime is not installed or if the /A flag is present, then Windows AVI files
will be created. Prior to Igor Pro 6.12, QuickTime was required on Windows.

Parameters
The file to be opened is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If
NewMovie can not determine the location of the file from fileNameStr and pathName, it displays a dialog
allowing you to specify the file.
On Macintosh, the name of the movie file is limited to 31 characters because Igor calls Apple routines that
have this limit.
If you use a full or partial path for fileNameStr, see Path Separators on page III-400 for details on forming
the path.

Flags

/A On Windows, creates an AVI file even if QuickTime is present. On Macintosh /A is
ignored. Requires Igor Pro 6.12 or later.

/F=frameRate Frames per second between 1 and 60. Defaults to 10.

/I Presents a system-provided dialog in which you can change the compression settings.
The selections you make become the new default settings but only until you quit Igor
Pro.

/L[=flatten] Flattens a QuickTime movie when done. Use this option when transferring the movie
to a different platform. Creates the movie as a single file rather than two files
(Windows) or a file with both a data fork and resource fork (Macintosh). This flag has
no effect on AVI movies.
As of Igor Pro 6.21, flattened movies are created by default. You can use /L=0 to force
the old non-flattened method.

/O Overwrite existing file, if any.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/PICT=pictName Uses the specified picture (see Pictures on page III-423) rather than the top graph.
Requires Igor Pro 6.12 or later.

/S=soundWave Creates and defines sound track. The specified wave can be either a full-range 16 bit
or 8 bit integer type. Floating point waves can also be used and are assumed to contain
values from -128 to +127. The wave's time/point, as determined by its X scaling, must
be between 1.5625e-5 to 2e-4 which correspond to sampling rates of 5000 to 64000
hertz. The duration should match the duration of a video frame.

/Z No error reporting; an error is indicated by nonzero value of the output variable
V_flag. If the user clicks the cancel button in the Save File dialog, V_flag is set to -1.

NewNotebook

V-498

Details
If either the path or the file name is omitted then NewMovie displays a Save File dialog to let you create a
movie file. If both are present, NewMovie creates the file automatically.
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-34 for details.
There can be only one open movie at a time.
The target window at the time you invoke NewMovie must be a graph (unless the /PICT flag is present) and
the graph size should remain constant while adding frames to the movie. The graph and optional sound wave
are used to determine the size and sound properties only; they do not specify the first frame.
The /PICT flag allows you to create a movie from a page layout in conjunction with the
SavePICT/P=_PictGallery_ method. See SavePICT on page V-617.

See Also
Movies on page IV-225.
The AddMovieFrame, AddMovieAudio, CloseMovie, PlayMovie, PlayMovieAction and SavePICT
operations.

NewNotebook
NewNotebook [flags] [as titleStr]
The NewNotebook operation creates a new notebook document.

Parameters
The optional titleStr is a string containing the title of the notebook window.

Flags

/HOST=hcSpec Embeds the new notebook in the host window or subwindow specified by hcSpec. The
host window or subwindow must be a control panel. Graphs and page layouts are not
supported as hosts for notebook subwindows.
When identifying a subwindow with hcSpec, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.
See Notebooks as Subwindows in Control Panels on page III-96 for more
information.

/F=format

/K=k

/N=winName Sets the notebook’s window name to winName.

Specifies the format of the notebook:
format=0: Normal with dialog (default).
format=1: Kills with no dialog.
format=-1: Disables killing.

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

NewNotebook

V-499

Details
A notebook has a file name, a window name, and a window title. In the simplest case these will all be the same.
The file name is the name by which the operating system identifies the notebook once it is saved to disk.
When you initially create a notebook, it is not associated with any file. However it still has a file name. This
is the name that will be used when the file is saved to disk.
The window name is the name by which Igor identifies the window and therefore the name you specify in
operations that act on the notebook.
The window title is what appears in the window’s title bar. If you omit the title, NewNotebook uses a
default title that is the same as the window name.
If you specify the window name and the notebook format and omit the window title, this is the simplest
case. NewNotebook creates the document with no user interaction. The file name, window name and
window title will all be the same. For example:
NewNotebook/N=Notebook1/F=0

If you omit the window name, NewNotebook chooses a default name (e.g., “Notebook0”) and presents the
standard New Notebook dialog.
If you omit the format or specify a format of -1 (either plain or formatted text), NewNotebook presents the
standard New Notebook dialog. For example:
NewNotebook/N=Notebook1 // no format specified

See Also
The Notebook and OpenNotebook operations, and Chapter III-1, Notebooks.
Notebooks as Subwindows in Control Panels on page III-96.

/OPTS=options

/V=visible Specifies whether the notebook window is visible (visible=1; default) or invisible
(visible=0).

/W=(left,top,right,bottom)

Sets window location. Coordinates are in points for normal notebook windows.
When used with the /HOST flag, the specified location coordinates can have one of
two possible meanings:
When all values are less than 1, coordinates are assumed to be fractional relative to
the host frame size.
When any value is greater than 1, coordinates are taken to be fixed locations measured
in pixels relative to the top left corner of the host frame.

Sets special options. options is a bitwise parameter interpreted as follows:

All other bits are reserved and must be set to zero.
If /OPTS is omitted, all bits default to zero.
See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Hide the vertical scroll bar.
Bit 1: Hide the horizontal scroll bar.
Bit 2: Set the write-protect icon initially to on.
Bit 3: Sets the changeableByCommandOnly bit. When set, the user can

not make any modifications.

NewPanel

V-500

NewPanel
NewPanel [flags] [as titleStr]
The NewPanel operation creates a control panel window or subwindow, which may contain Igor controls
and drawing objects.

Flags

/EXT=e

/FG=(gLeft, gTop, gRight, gBottom)

Specifies the frame guide to which the outer frame of the subwindow is attached
inside the host window.
The standard frame guide names are FL, FR, FT, and FB, for the left, right, top, and
bottom frame guides, respectively, or user-defined guide names as defined by the
host. Use * to specify a default guide name.
Guides may override the numeric positioning set by /W.

/FLT[=f] /FLT or /FLT=1 makes the panel a floating panel.
/FLT=2 makes it a floating panel with no close box.
/FLT=0 is the same as omitting /FLT and creates a regular (non-floating) control panel.
You must execute the following after the NewPanel command:
SetActiveSubwindow _endfloat_

See Floating Panels below for further information.

/HIDE=h Hides (h = 1) or shows (h = 0, default) the window.

/HOST=hcSpec Embeds the new control panel in the specified host window or subwindow hcSpec.
When identifying a subwindow with hcSpec, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/I Sets coordinates to inches.

/K=k

/M Sets coordinates to centimeters.

/N=name Requests that the created panel have this name, if it is not in use. If it is in use, then
name0, name1, etc. are tried until an unused window name is found. In a function or
macro, S_name is set to the chosen panel name. Use DoWindow/K name to ensure
that name is available.

Note that a function or macro with the same name will cause a name conflict.

Creates an exterior subwindow in combination with /HOST. e specifies the host
window side location:
e=0: Right.
e=1: Left.
e=2: Bottom.
e=3: Top.

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.
Exterior subwindows never display a dialog when killed.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

NewPanel

V-501

Details
If /N is not used, NewPanel automatically assigns to the panel a window name of the form “Paneln”, where
n is some integer. In a function or macro, the assigned name is stored in the S_name string. This is the name
you can use to refer to the panel from a procedure. Use the RenameWindow operation to rename the panel.

Floating Panels
Floating control panels float above all other windows except dialogs. Because floating panels cover up other
windows, you should use them sparingly and you should take care to make them small and unobtrusive.
Floating panels are not resizable by default. To allow panel resizing use
ModifyPanel fixedSize=0

Because floating panels always act as if they are on top, the standard rules for target windows and keyboard
focus do not apply.
Normally, a floating panel is never the target window and control procedures will need to explicitly designate
the target. But a newly-created floating panel is the default target and will remain so until you execute
SetActiveSubwindow _endfloat_

It also becomes the default target when the tools are showing and in any non-Operate mode. Similarly, a
floating panel with tools not in Operate mode has keyboard focus. To avoid confusion, do not attempt to
work on other windows when a floating panel is the default target.
When working with a floating panel, you can show or hide tools or create a recreation macro by Control-
clicking (Macintosh) or right-clicking (Windows) in the panel.
A floating panel does not have keyboard focus. However, a floating panel gains keyboard focus when a
control that needs focus is clicked. Focus remains until you press Enter or Escape for a text entry in a
setvariable, press Tab until no control has the focus, or until you click outside a focusable control.
On Macintosh, if a floating panel has focus and you activate another window, focus will leave the panel.
However on Windows, if a floating panel has focus and you activate another window, the activate sequence
will be fouled up leaving the windows in an indeterminate state. Consequently, it is important that you
always finish any keyboard interaction started in a floating panel before moving on to other windows. If
this can cause confusion, you should not use controls such as SetVariable and ListBox in a floating panel.
On Macintosh, floating panels are hidden when dialogs are up or when Igor Pro is not the front application.

Exterior Subwindows
Exterior subwindows are automatically positioned along the designated side of a host graph window. You
can designate fixed sizes or automatic size with minima. Subwindows are stacked beside the designated
side in their creation order with the first one closest.
Subwindow dimensions have various meanings depending on their location. Interior values are taken to be
additional grout, exterior values are taken to be sizes. For left or right panels, top is taken to be the

/NA= n

/W=(left,top,right,bottom)

Sets the initial coordinates of the panel window (in pixels unless /I or /M are used
before /W).
When used with the /HOST flag, the specified location coordinates of the sides can
have one of two possible meanings:
When all values are less than 1, coordinates are assumed to be fractional relative to
the host frame size.
When any value is greater than 1, coordinates are taken to be fixed locations measured
in pixels relative to the top left corner of the host frame.
When the subwindow position is fully specified using guides (using the /HOST or /FG
flags), the /W flag may still be used although it is not needed.

Sets panel no-activate mode.
n=0: Normal (default).
n=1: Button click doesn’t activate window but click outside of any control does.
n=2: No activation even if click is outside controls. Title bar clicks still activate.

NewPanel

V-502

minimum height and bottom, if not zero, is height. For top and bottom, left is taken to be the minimum
width and right, if not zero, is width. Zero values default to 50 for width and height or size of host.
Exterior subwindows are nonresizable by default. Use ModifyPanel fixedSize=0 to allow manual
resizing. If you resize a panel, the original window dimensions are lost. You can also use MoveSubwindow
to resize the subwindow.
Unlike normal subwindows, exterior subwindows have a tools palette. Click in the window and then
choose the Show Tools or Hide Tools menu item.
Exterior subwindows have hook functions independent of the host window.

Examples
In a new experiment, execute these commands on the command line to create two exterior subwindows:
Display
// Create panel on right with min height of 200 pixels, width of 100.
NewPanel/HOST=Graph0/EXT=0/W=(0,200,100,0)
// Create another panel on right with grout of 10 and height= width= 100.
NewPanel/HOST=Graph0/EXT=0/W=(10,0,100,100)

Now try resizing and moving the graph.
For a demonstration of how the various exterior panels work, copy the following code to the procedure
window in a new experiment:
Function bpNewExSw(ba) : ButtonControl

STRUCT WMButtonAction &ba

switch(ba.eventCode)
case 2: // mouse up

ControlInfo/W=$ba.win ckUseRect
Variable useR= V_Value
ControlInfo/W=$ba.win popSide
Variable side= V_Value-1
ControlInfo/W=$ba.win ckResizeable
Variable resizeable= V_Value
WAVE w=root:epsizes
if(useR)

NewPanel/HOST=$ba.win/EXT=(side)/W=(w[0],w[1],w[2],w[3])
else

NewPanel/HOST=$ba.win/EXT=(side)
endif
if(resizeable)

ModifyPanel fixedSize=0 // default is 1 for floating and exterior sw
endif
break

endswitch

return 0
End

Window ExSwTest() : Graph
PauseUpdate; Silent 1 // building window...
Display /W=(803,377,1158,591)
Button bNewSW,pos={35,21},size={181,30},proc=bpNewExSw,title="Exterior Subwindow"
SetVariable svLeft,pos={118,82},size={96,15},title="left"
SetVariable svLeft,limits={0,100,1},value= epsizes[0],bodyWidth= 76
SetVariable svTop,pos={120,97},size={94,15},title="top"
SetVariable svTop,limits={0,100,1},value= epsizes[1],bodyWidth= 76
SetVariable svRight,pos={112,113},size={102,15},title="right"
SetVariable svRight,limits={0,100,1},value= epsizes[2],bodyWidth= 76
SetVariable svBottom,pos={103,129},size={111,15},title="bottom"
SetVariable svBottom,limits={0,100,1},value= epsizes[3],bodyWidth= 76
CheckBox ckUseRect,pos={70,62},size={61,14},title="Use Rect:",value= 0
PopupMenu popSide,pos={73,149},size={78,20},title="Side"
PopupMenu popSide,mode=1,popvalue="Right",value= #"\"Right;Left;Bottom;Top\""
CheckBox ckResizeable,pos={76,176},size={65,14},title="Resizeable",value= 0

EndMacro

Function test()
Make/O/N=4 epsizes=0
Execute "ExSwTest()"

End

After compiling the procedures, execute test() on the command line. You can now experiment with
different sides and size values.

NewPath

V-503

See Also
Chapter III-14, Controls and Control Panels, for details about control panels and controls.
The ModifyPanel operation.

NewPath
NewPath [flags] pathName [, pathToFolderStr]
The NewPath operation creates a new symbolic path name that can be used as a shortcut to refer to a folder
on disk.

Parameters
pathToFolderStr is a string containing the path to the folder for which you want to make a symbolic path.
pathToFolderStr can also point to an alias (Macintosh) or shortcut (Windows) for a folder.
If you use a full path for pathToFolderStr, see Path Separators on page III-400 for details on forming the path.
If you use a partial path or just a simple name for pathToFolderStr, and you use the /C flag, a new folder is
created relative to the Igor Pro folder. No dialog is presented.
If you omit pathToFolderStr, you get a chance to select a folder or create a new folder from a dialog.

Flags

Details
Symbolic paths help to isolate your experiments from specific file system paths that contain files created or
used by Igor. By using a symbolic path, if the actual location or name of the folder changes, you won’t need
to change all of your commands. Instead, you need only to change the symbolic path so that it points to the
changed folder location.
NewPath sets the variable V_flag to zero if the operation succeeded or to nonzero if it failed. The main use
for this is to determine if the user clicked Cancel when you use NewPath to display a choose-folder dialog.
On the Macintosh, pressing Command-Option as the Choose Folder dialog comes up will allow you to
choose package folders and folders inside packages.

Examples
NewPath Path1, "hd:IgorStuff:Test 1" // Macintosh

NewPath Path1, "C:IgorStuff:Test 1" // Windows

creates the symbolic path named Path1 which refers to the specified folder (the path’s “value”). You can
then refer to this folder in many Igor operations and dialogs by using the symbolic path name Path1.

See Also
The PathInfo operation; especially if you need to preset a starting path for the dialog.
KillPath

/C Create the folder specified by pathToFolderStr if it does not already exist.

/M=messageStr Specifies the prompt message in the dialog.

/O Overwrites the symbolic path if it exists.

/Q Suppresses printing path information in the history.

/Z Doesn’t generate an error if the folder does not exist.

Windows Note:

You can use either the colon or the backslash character to separate folders. However,
the backslash character is Igor’s escape character in strings. This means that you have
to double each backslash to get one backslash like so:
NewPath stuff, "C:\\IgorStuff\\Test 1"

Because of this complication, it is recommended that you use Macintosh path syntax
even on Windows. See Path Separators on page III-400 for details.

NewWaterfall

V-504

NewWaterfall
NewWaterfall [flags] mwave [vs {wavex,wavez}]
The NewWaterfall operation creates a new waterfall plot window or subwindow using each column in the
2D matrix wave, mwave, as a waterfall trace.
You can manually set x and z scaling by specifying wavex and wavez to override the default scalings. Either
wavex or wavez may be omitted by using a “*”.

Flags

/FG=(gLeft, gTop, gRight, gBottom)

Specifies the frame guide to which the outer frame of the subwindow is attached
inside the host window.
The standard frame guide names are FL, FR, FT, and FB, for the left, right, top, and
bottom frame guides, respectively, or user-defined guide names as defined by the
host. Use * to specify a default guide name.
Guides may override the numeric positioning set by /W.

/HIDE=h Hides (h = 1) or shows (h = 0, default) the window.

/HOST=hcSpec Embeds the new waterfall plot in the specified host window or subwindow hcSpec.
When identifying a subwindow with hcSpec, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/I Sets window coordinates to inches.

/K=k

/M Sets window coordinates to centimeters.

/N=name Requests that the created waterfall plot window have this name, if it is not in use. If it
is in use, then name0, name1, etc. are tried until an unused window name is found. In
a function or macro, S_name is set to the chosen name. Use DoWindow/K name to
ensure that name is available.

/PG=(gLeft, gTop, gRight, gBottom)

Specifies the inner plot rectangle of the waterfall plot subwindow inside its host
window.
The standard plot rectangle guide names are PL, PR, PT, and PB, for the left, right, top,
and bottom plot rectangle guides, respectively, or user-defined guide names as
defined by the host. Use * to specify a default guide name.
Guides may override the numeric positioning set by /W.

/W=(left,top,right,bottom)

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

norm

V-505

Details
The X and Z axes are always at the bottom and left, whereas the Y axis runs at a default 45 degrees along
the right-hand side. The angle and length of the Y axis can be changed using the ModifyWaterfall operation.
Other features of the graph can be changed using normal graph operations.
Each column from mwave is plotted in (and clipped by) a rectangle defined by the X and Z axes with the
rectangle displaced along the angled Y axis as a function of the y value.
Except when hidden lines are active, the traces are drawn from back to front.
To modify certain properties of a waterfall plot, you need to use the ModifyWaterfall operation. For other
properties, use the usual axis and trace dialogs.

See Also
Waterfall Plots on page II-300.
The ModifyWaterfall and ModifyGraph operations.

norm
norm(srcWave)

The norm function evaluate the norm of srcWave. It returns: .

This function does not support TEXT waves.

note
note(waveName)
The note function returns a string containing the note associated with the specified wave.

See Also
To create a wave note, use the Note operation.

Note
Note [/K/NOCR] waveName [, str]
The Note operation appends str to the wave note for the named wave.

Parameters
str is a string expression.

Flags

Examples
Note/K wave0 // remove existing note
Note wave0, "This is the first line of the note"

Specifies window size. Coordinates are in points unless /I or /M is specified before /W.
When used with the /HOST flag, the specified location coordinates of the sides can
have one of two possible meanings:
When all values are less than 1, coordinates are assumed to be fractional relative to
the host frame size.
When any value is greater than 1, coordinates are taken to be fixed locations measured
in points relative to the top left corner of the host frame.
When the subwindow position is fully specified using guides (using the /HOST, /FG,
or /PG flags), the /W flag may still be used although it is not needed.

/K Kills existing note for specified wave.

/NOCR Appends note without a preceding carriage return (\r character). No effect when
used with /K.

abs w i[]()2

Notebook

V-506

Note wave0, "This is the second line of the note"
Note/K wave0, "This is now the only line of the note"

See Also
To get the contents of a wave note, use the note function.

Notebook
Notebook winName, keyword=value [, keyword=value]…
The Notebook operation sets various properties of the named notebook window. Notebook also inserts text
and graphics. See Chapter III-1, Notebooks, for general information on notebooks.
Notebook returns an error if the notebook is open for read-only. Keywords that don't materially change the
notebook, including findText, findPicture, selection, visible, magnification, statusWidth, userKillMode,
showRuler and rulerUnits, are still permitted. See Notebook Read/Write Properties on page III-12 for
further information.

Parameters
winName is either kwTopWin for the top notebook window, the name of a notebook window or a host-child
specification (an hcSpec) such as Panel0#nb0. See Subwindow Syntax on page III-97 for details on host-
child specifications.
If winName is an hcSpec, the host window or subwindow must be a control panel. Graphs and page layouts
are not supported as hosts for notebook subwindows.
The parameters to the Notebook operation are of the form keyword=value where keyword says what to do and
value is a parameter or list of parameters. Igor limits the parameters that you specify to legal values before
applying them to the notebook.
The parameters are classified into related groups of keywords.

See Also
To create or modify a notebook action special character, see NotebookAction.
To create a notebook subwindow in a control panel, see Notebooks as Subwindows in Control Panels on
page III-96.

Notebook (Document Properties)

V-507

Notebook (Document Properties)
Notebook document property parameters
This section of Notebook relates to setting the document properties of the notebook.

adopt=a

backRGB=(r,g,b) Sets background color. r, g, and b are integers from 0 to 65535.

changeableByCommandOnly=c

defaultTab=dtw dtw is the default tab width in points.

magnification=m

pageMargins={left, top, right, bottom}

Sets page margins in points. left, top, right, and bottom are distances from the respective
edges of the physical page.

rulerUnits=r

showRuler=s Hides (s=0) or shows (s=1) the ruler.

startPage=sp Sets the starting page number for printing.

statusWidth=sw Sets the width in points of the status area on the left of the horizontal scroll bar.

userKillMode=k

writeProtect=wp

Adopts a notebook if it is a file saved to disk. Adopting a notebook makes it part
of the packed experiment file, which becomes more self-contained; if you send the
experiment to a colleague you will not need to send a notebook file.
a=0: Checks only whether the notebook is adoptable. Sets V_flag to 0 if

the notebook is already adopted or to 1 if it is adoptable.
a=1: Checks only whether the notebook is adoptable. Sets V_flag to 0 if

the notebook is already adopted or to 1 if it is adoptable.

This changeableByCommandOnly property is used to prevent manual
modifications to the notebook but allow modifications using commands.

See Notebook Read/Write Properties on page III-12 for details.

c=0: Turn changeableByCommandOnly off.
c=1: Turn changeableByCommandOnly on.

Specifies the desired magnification in percent (between 25 and 500). Otherwise, m
can be one of these special values:
m=1: Default magnification.
m=2: Fit Width.
m=3: Fit Page.

Sets the units for the ruler:
r=0: Points.
r=1: Inches.
r=2: Centimeters.

Specifies window behavior when the user attempts to close it.
k=0: Normal with dialog (default).
k=1: Clicking the close button kills the notebook with no dialog.
k=2: Clicking the close button does nothing.
k=3: Clicking the close button hides the notebook with no dialog.

The write-protect property is used to prevent inadvertent manual changes to the
notebook.

See Notebook Read/Write Properties on page III-12 for details.

wp=0: Turn write-protect off.
wp=1: Turn write-protect on.

Notebook (Headers and Footers)

V-508

Notebook (Headers and Footers)
Notebook headers and footers
You can turn headers and footers on and off and position headers and footers using the keywords in this
section.
There is currently no way to set the content of headers and footers except manually through the Document
Settings dialog. You may be able to use stationery files to create files with specific headers and footers.

Notebook (Miscellaneous)
Notebook miscellaneous parameters
This section of Notebook relates to setting miscellaneous properties of the notebook.

footerControl={defaultFooter, firstFooter, evenOddFooter}

defaultFooter is 1 to turn the default footer on, 0 to turn it off.
firstFooter is 1 to turn the first page footer on, 0 to turn it off.
evenOddFooter is 1 to turn different footers for even and odd pages on, 0 to use the
same footer for even and odd pages.

footerPos=pos pos is the position of the footer relative to the bottom of the page in points.

headerControl={defaultHeader , firstHeader , evenOddHeader}

defaultHeader is 1 to turn the default header on, 0 to turn it off.
firstHeader is 1 to turn the first page header on, 0 to turn it off.
evenOddHeader is 1 to turn different headers for even and odd pages on, 0 to use the
same header for even and odd pages.

headerPos=pos pos is the position of the header relative to the top of the page in points.

autoSave=v

status={messageStr, flags}

Sets the message in the status area at the bottom left of the notebook window.

If all bits are zero, the message stays until a new message comes along. All other bits
are reserved for future use and should be zero. See Setting Bit Parameters on page
IV-12 for details about bit settings.

updating={flags, r} Sets parameters related to the updating of special characters.

Controls auto-save mode.

This affects notebook subwindows in control panels only. Use autoSave=0 if you
do not want the notebook's contents to be saved and restored when the control
panel is recreated. Otherwise the notebook subwindow’s contents will be restored
when recreated.

v=0: Notebook subwindow contents will not be saved in recreation
macros.

v=1: Notebook subwindow contents will be saved in recreation macros
(default).

flags is interpreted bitwise. Message is erased when:
Bit 0: Selection changes.
Bit 1: Window is activated.
Bit 2: Window is deactivated.
Bit 3: Document is modified.

Notebook (Paragraph Properties)

V-509

Notebook (Paragraph Properties)
Notebook paragraph property parameters
This section of Notebook relates to setting the paragraph properties of the current selection in the notebook.
The margins, spacing, justification, tabs and rulerDefaults keywords provide control over paragraph
properties which are governed by rulers. These keywords, in conjunction with the ruler and newRuler
keywords, allow you to set paragraph properties. They are allowed for formatted text notebooks only, not
for plain text notebooks.
The ruler keywords are described in detail below. Before we get to the detail, you should understand the
different things you can do with rulers.
There are four things you can do with a ruler:

Igor’s behavior in response to ruler keywords depends on the order in which the keywords appear.
To modify the ruler(s) for the selected paragraph(s), use the margins, spacing, justification, tabs and
rulerDefaults keywords without using the newRuler or ruler keywords. For example:
Notebook Notebook0 tabs={36,144,288},justification=1

To redefine an existing ruler, invoke the ruler=rulerName keyword before any other keywords. For example:
Notebook Notebook0 ruler=Ruler1,tabs={36,144,288},justification=1

Unlike redefining the ruler manually, when you redefine an existing ruler using ruler=rulerName, it does
not apply the ruler to the selected text. However, it does update any text governed by the redefined ruler.
To create a new ruler, invoke the newRuler=rulerName keyword before any other keywords. For example:
Notebook Notebook0 newRuler=Ruler1,tabs={36,144,288},justification=1

All other bits are reserved for future use and should be zero. See Setting Bit
Parameters on page IV-12 for details about bit settings.

r is the update rate in seconds for updating date and time special characters.

These settings have no effect on the updating of special characters in headers or
footers. These characters are always automatically updated when the document is
printed.

We recommend that you leave automatic updating off (set bit 0 of the flags parameter
to 1) so that updating occurs only via the specialUpdate keyword or via the Special
menu.

visible=v

modify it (analogous to manually adjusting a ruler).

redefine it (analogous to the Redefine Ruler dialog).

create it (analogous to the Define New Ruler dialog).

apply it (analogous to selecting a ruler name from Ruler pop-up menu).

flags is interpreted bitwise:
Bit 0: Suppress automatic periodic updating of date and time special

characters. By default this bit is set so date and time special characters
are updated only when the user explicitly requests it or during printing
when they appear in headers and footers.

Bit 1: Allow manual updating of special characters via the specialUpdate
keyword or via the Special menu. By default this is cleared so manual
updating is not allowed.

Sets notebook visibility.
v=0: Hides notebook.
v=1: Shows notebook but does not make it top window.
v=2: Shows notebook and makes it top window.

Notebook (Paragraph Properties)

V-510

Unlike creating it manually, when you create a new ruler using newRuler=rulerName, it does not apply the
new ruler to the selected text. If you do not set a particular ruler property when creating a new ruler, the
property will be the same as for the Normal ruler. If the specified ruler already exists, newRuler=rulerName
overwrites the existing ruler.
To apply an existing ruler to the selected text, invoke the ruler=rulerName keyword without any other
keywords. For example:
Notebook Notebook0 ruler=ruler1

You and Igor will get confused if you mix ruler keywords with other types of keywords in the same
command. It is alright, however to put a selection keyword at the start of the command. Mixing will not
cause a crash or any drastic problem but it will likely produce results that you don’t understand.
To keep things clear, follow these rules:
• If you use ruler=rulerName or newRuler=rulerName, put them before any other ruler keywords.
• Do not mix ruler keywords with other kinds, except that it is alright to use the selection keyword

at the start of the command.

justification=j

margins={indent,left,right}

indent sets the indentation of first line from left page margin.
left sets the paragraph’s left margin in points measured from the left page margin.
right sets the paragraph’s right margin in points measured from the left page margin.

newRuler=rulerName

Creates a new ruler with the specified name. If a ruler with this name already exists,
it is overwritten.

ruler=rulerName Applies the named ruler to the selected text or to redefine the named ruler, as
explained above.

rulerDefaults={"fontName", fSize, fStyle, (r,g,b)}

"fontName" sets the ruler’s text font, e.g., "Helvetica".
fSize sets the ruler’s text size.
fStyle sets the ruler’s text style.
(r,g,b) sets the ruler’s text color. r, g, and b are integers from 0 to 65535.
You can only use rulerDefaults if you are redefining an existing ruler, using
ruler=rulerName, or you are creating a new ruler using newRuler=rulerName.

spacing={spaceBefore,spaceAfter,lineSpace}

spaceBefore sets the extra space before paragraph in points.
spaceAfter sets the extra space after paragraph in points.
lineSpace sets the extra space between lines of a paragraph in points.

tabs={tabSpec} tabSpec is list of tab stops in points added to special values that change the tab stop
type.
Tab stops have two parts: the tab stop position and the tab type. Each integer in the
list of tabs encodes both of these parts as follows:
The low 11 bits contains the tab stop position in points.
The next two bits are reserved for future use and must be zero.

Sets text justification:
j=0: Left aligned.
j=1: Center aligned.
j=2: Right aligned.
j=3: Fully justified.

Notebook (Paragraph Properties)

V-511

Tabs Example
The following puts a left tab at 1 inch, a center tab at 3 inches and a decimal tab at 5 inches:
Notebook Notebook1 tabs={1*72, 3*72 + 8192, 5*72 + 3*8192}

The high three bits are used to contain the tab type as follows:
left tab 0
center tab 1 add 1*8192 to tab stop position.
right tab 2 add 2*8192 to tab stop position.
decimal tab 3 add 3*8192 to tab stop position.
comma tab 4 add 4*8192 to tab stop position.

Notebook (Selection)

V-512

Notebook (Selection)
Notebook selection parameters
This section of Notebook relates to selecting a range of the content of the notebook.

findPicture={graphicNameStr, flags}

Searches for the picture containing the named graphic (Macintosh only) or the next
picture if you pass "". Sets V_flag to 1 if the picture was found or to 0 if not found.

The search is always forward from the end of the current selection to the end of the
document.

findSpecialCharacter={specialCharacterNameStr, flags}

Searches for the special character with the specified name or the next special character
if you pass "". Selects the special character if it is found.
Sets V_flag to 1 if the special character was found or to 0 if not. Sets S_name to the
name of the found special character or to "" if it was not found.

If specialCharacterNameStr is empty (""), the search proceeds from the end of the
current selection to the end of the document. Otherwise the search always covers the
entire document.

findText={textToFindStr, flags}

Searches for the specified text. Sets V_flag to 1 if the text was found or to 0 if not found.
textToFindStr is a string expression for the text you want to find. If the text contains a
carriage return, Igor considers only the part of the text before the carriage return.

To set bit 0 and bit 3, use 20+23 = 9 for flags. See Setting Bit Parameters on page IV-12
for details about bit settings.
If you are searching forward, the search starts from the end of the current selection. If
you are searching backward, the search starts from the start of the current selection.
If you specify "" as the text to search for, it “finds” the current selection. This displays
the current selection using findText={"", 1}.

selection={selStart, selEnd}

flags is a bitwise parameter interpreted as follows:

All other bits are reserved for future use. Set bit 0 by setting flags = 1.

Bit 0: Show selection after the find.

flags is a bitwise parameter interpreted as follows:

All other bits are reserved for future use. Set bit 0 by setting flags = 1.

Bit 0: Show selection after the find.

flags is a bitwise parameter interpreted as follows:

All other bits are reserved and must be set to zero.

Bit 0: Show selection after the find.
Bit 1: Do case-sensitive search.
Bit 2: Search for whole words.
Bit 3: Wrap around.
Bit 4: Search backward.

Notebook (Selection)

V-513

Selection Examples
Following are some examples of setting the selection:
// select all text in notebook
Notebook Notebook1 selection={startOfFile, endOfFile}

// move selection to the start of the notebook and display the selection
Notebook Notebook1 selection={startOfFile,startOfFile}, findText={"",1}

// move selection to the end of the notebook and display the selection
Notebook Notebook1 selection={endOfFile,endOfFile}, findText={"",1}

// select all of paragraph 3
Notebook Notebook1 selection={(3,0), (4,0)}

// select all of paragraph 3 and display the selection
Notebook Notebook1 selection={(3,0), (4,0)}, findText={"",1}

// select all of current paragraph except for trailing CR, if any
Notebook Notebook1 selection={startOfParagraph, endOfChars}

// select the first occurrence of "Hello" in the document and display the selection
Notebook Notebook1 selection={startOfFile,startOfFile}, findText={"Hello",1}

// select the first picture in the document
Notebook Notebook1 selection={startOfFile,startOfFile}, findPicture={"",1}

See Also
The GetSelection operation to “copy” the selection.

Igor clips the specified locations to legal values. It also sets the V_flag variable to 0 if
the selStart location that you specified was valid, to 1 if the start paragraph was out of
bounds and to 2 if the start position was out of bounds. You can use the
startOfNextParagraph keyword to step through the document one paragraph at a
time. When V_flag is nonzero, you are at the end of the document.
The terms next and prev are relative to the paragraph containing the start of the
selected text before the selection keyword was invoked.
The selection keyword just sets the selection. If you also want to scroll the selected text
into view you must also use the findText keyword as shown in the examples.

selStart and selEnd are locations within the document. You can specify these
document locations by using the following expressions:
(paragraph, pos) paragraph and pos are numeric expressions.

paragraph is a paragraph number from 0 to n-1 where n is
the number of paragraphs in the document.
pos is a character position from 0 to n where n is the
number of characters in the paragraph. Position 0 is to
the left of the first character in the paragraph. Position n
is to the right of the last character in the paragraph.

startOfFile Start of the document.
endOfFile End of the document.
startOfParagraph Start of current selStart paragraph.
endOfParagraph End of current selStart paragraph.
startOfNextParagraph Start of paragraph after current selStart paragraph.
endOfNextParagraph End of paragraph after current selStart paragraph.
startOfPrevParagraph Start of paragraph before current selStart paragraph.
endOfPrevParagraph End of paragraph before current selStart paragraph.
endOfChars Just before the carriage return of current selStart

paragraph.

Notebook (Text Properties)

V-514

Notebook (Text Properties)
Notebook text property parameters
This section of Notebook relates to setting the text properties of the current selection in the notebook.

Notebook (Writing Graphics)
Writing notebook graphics parameters
This section of Notebook relates to inserting graphics at the current selection in the notebook.
These graphics keywords are allowed for formatted text files only, not for plain text files.

font="fontName" "fontName" is the name of the font. Use "default" to specify the paragraph’s ruler
font.
If you specify an unavailable font, it does nothing. This is so that, when you share
procedures with a colleague, using a font that the colleague does not have will not
cause your procedures to fail. The downside of this behavior is that if you misspell a
font name you will get no error message.

fSize=fontSize Text size from 3 to 32000 points.
Use -1 to specify the paragraph’s ruler size.

fStyle=fontStyle

textRGB=(r,g,b) Specifies text color. r, g, and b are integers from 0 to 65535. (0, 0, 0) specifies black.
(65535, 65535, 65535) specifies white.

vOffset=v Sets the vertical offset in points (positive offset is down, negative is up). Use this to
create subscripts and superscripts. vOffset is allowed for formatted text files only, not
for plain text files.

convertToPNG=x Converts all pictures in the current selection to cross-platform PNG format. If the
picture is already PNG, it does nothing.
x is the resolution expansion factor, an integer from 1 to 16 times screen resolution. x
is clipped to legal limits.

frame=f

insertPicture={pictureName, pathName, filePath, options}

Inserts a picture from a file specified by pathName and filePath. The supported
graphics file formats are listed under Inserting Pictures on page III-16.

A binary coded integer with each bit controlling one aspect of the text style as
follows:

Use -1 to specify the paragraph’s ruler style. To set bit 0 and bit 1 (bold italic), use
20+21 = 3 for fontStyle. See Setting Bit Parameters on page IV-12 for details about
bit settings.

Bit 0: Bold.
Bit 1: Italic.
Bit 2: Underline.
Bit 3: Outline (Macintosh only).
Bit 4: Shadow (Macintosh only).

Sets the frame used for the picture and insertPicture keywords.
f=0: No frame (default).
f=1: Single frame.
f=2: Double frame.
f=3: Triple frame.
f=4: Shadow frame.

Notebook (Writing Graphics)

V-515

pictureName is the special character name (see Special Character Names on page
III-17) to use for the inserted notebook picture or $"" to automatically assign a name.
pathName is the name of an Igor symbolic path created via NewPath or $"" to use no
path.
filePath is a full path to the file to be loaded or a partial path or simple file name
relative to the specified symbolic path.
If pathName and filePath do not fully specify a file, an Open File dialog is displayed
from which the user can choose the file to be inserted.

The variable V_flag is set to 1 if the picture was inserted or to 0 otherwise, for example,
if the user canceled from the Open File dialog.

The string variable S_name is set to the special character name of the picture that was
inserted or to "" if no picture was inserted.

The string variable S_fileName is set to the full path of the file that was inserted or to
"" if no picture was inserted.

picture={objectSpec, mode, flags}

Inserts a picture based on the specified object.
objectSpec is usually just an object name, which is the name of a graph, table, page
layout or picture from Igor's picture gallery (Misc→Pictures). See further discussion
below.
mode controls what happens when you insert a picture of a graph, table or page layout
window. It does not affect insertions of pictures from the picture gallery.

Mode 0 is recommended unless you are concerned about cross-platform
compatibility in which case you must use mode -5 (PNG).
See Chapter III-5, Exporting Graphics (Macintosh), or Chapter III-6, Exporting
Graphics (Windows), for further discussion of these formats. The PNG format is
discussed further in Picture Compatibility on page III-397.

options is a bitwise parameter interpreted as follows:

All other bits are reserved and must be set to zero.
See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: If set, an Open File dialog is displayed even if the file is fully specified
by pathName and filePath.

Bit 1: Determines what to do in the event of a name conflict. If set, the existing
special character with the conflicting name is overwritten. If cleared, a
unique name is created and used as the special character name for the
inserted picture.

mode specifies the format of the graph, table, or page layout picture as follows:
mode Macintosh Windows
-5 PNG PNG
-4 HiRes bitmap Device-independent bitmap
-2 HiRes PICT Enhanced metafile
-1 Quartz PDF Enhanced metafile
0 Quartz PDF Enhanced metafile
1 1X PICT Enhanced metafile
2 2X PICT Enhanced metafile
4 4X PICT Enhanced metafile
8 8X PICT Enhanced metafile

Notebook (Writing Graphics)

V-516

When using the picture keyword, you may include a coordinate specification after the object name in
objectSpec. For example:
Notebook Notebook1 picture={Layout0(100, 50, 500, 700), 1, 1}

The coordinates are in points. A coordinate specification of (0, 0, 0, 0) behaves the same as no coordinate
specification at all.
If the object is a graph, the coordinate specification determines the width and height of the graph. If you
omit the coordinate specification, Igor takes the width and height from the graph window.
If the object is a layout, the coordinate specification identifies a section of the layout. If you omit the coordinate
specification, Igor selects a section of the layout that includes all objects in the layout plus a small margin.
For any other kind of object, Igor ignores the coordinate specification if it is present.
The scaling and frame keywords affect the selected picture, if any. If no picture is selected, they affect the
insertion of a picture using the picture or insertPicture keywords. For example, this command inserts a picture
of Graph0 with 50% scaling and a double frame:
Notebook Test1 scaling={50, 50}, frame=2, picture={Graph0, 1, 1}

If no picture is selected and no picture is inserted, scaling and frame have no effect.

InsertPicture Example
Function InsertPictureFromFile(nb)

String nb // Notebook name or "" for top notebook

if (strlen(nb) == 0)
nb = WinName(0, 16, 1)

endif

if (strlen(nb) == 0)
Abort "There are no notebooks"

endif

// Display Open File dialog to get the file to be inserted
Variable refNum // Required for Open but not really used
String fileFilter = "Graphics Files:.eps,.jpg,.png;All Files:.*;"
Open /D /R /F=fileFilter refNum
String filePath = S_fileName
if (strlen(filePath) == 0)

Print "You cancelled"
return -1

endif

Notebook $nb, insertPicture={$"", $"", filePath, 0}
if (V_flag)

Print "Picture inserted"
else

Print "No picture inserted"
endif

return 0
End

scaling={h, v} Sets the horizontal(h) and vertical (v) scaling for the selected picture or the picture and
insertPicture keywords. h and v are in percent.

flags is a bitwise parameter interpreted as follows:

All other bits are reserved and must be set to zero.

For color, set flags = 20 = 1.
See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: 0 for black and white, 1 for color.

Notebook (Writing Special Characters)

V-517

Save notebook pictures to files
The savePicture keyword is allowed for formatted text files only, not for plain text files.

Notebook (Writing Special Characters)
Writing special character parameters
This section of Notebook relates to inserting special characters at the current selection in the notebook. To
insert a notebook action, see NotebookAction.
The special characters are page break, short date, long date, abbreviated date and time. They act in some
respects like a single character but have special properties. You can insert the special characters using the
specialChar keyword.
The specialChar keyword is allowed for formatted text files only, not for plain text files.
Other special characters are allowed in headers and footers only and you can not insert them in a document
using the specialChar keyword. These are window title, page number and total pages.
The special characters other than page break character are dynamic and update periodically.

savePicture={pictureName, pathName, filePath, options}

Saves a picture from a formatted text notebook to a file specified by pathName and
filePath.
pictureName is the special character name (see Special Character Names on page
III-17) of the picture to be saved or $"" to save the selected picture in which case one
picture and one picture only must be selected in the notebook.
pathName is the name of an Igor symbolic path created via NewPath or $"" to use no
path.
filePath is a full path to the file to be written or a partial path or simple file name
relative to the specified symbolic path.
If pathName and filePath do not fully specify a file, a Save File dialog is displayed in
which the user can specify the file to be written.

The variable V_flag is set to 1 if the picture was written or to 0 otherwise, for example,
if the user canceled from the Save File dialog.
The string variable S_name is set to the special character name of the picture that was
saved or to "" if no picture was saved.
The string variable S_fileName is set to the full path of the file that was written or to
"" if no picture was written.

specialChar={type, flags, optionsStr}

options is a bitwise parameter interpreted as follows:

All other bits are reserved and must be set to zero.
See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: If set, a Save File dialog is displayed even if the file is fully specified by
pathName and filePath.

Bit 1: If set, a file with the same name is overwritten if it exists. If cleared, a
Save File dialog is displayed if the specified file already exists.

Bit 2: If set then the leaf name specified by filePath is ignored and a name is
automatically generated based on the picture name.

Notebook (Accessing Contents)

V-518

See Also
Chapter III-1, Notebooks. The NewNotebook, NotebookAction, and OpenNotebook operations; the
SpecialCharacterInfo and SpecialCharacterList functions.

Notebook (Accessing Contents)
Accessing Notebook Contents

See the Notebook In Panel example experiment for examples using getData and setData.

flags is reserved for future use. You should pass 0 for flags.
optionsStr is reserved for future use. You should pass "" for optionsStr.

specialUpdate=flags

Updates special characters in the notebook.

The specialUpdate keyword can update pictures of graphs, tables, and page layouts
that were created from windows in the current experiment.

getData=mode Causes Igor to return the contents of the notebook in the S_value variable. The
contents are binary data in a private Igor format encoded as text. The only use for this
keyword is to transfer data from one notebook to another by calling getData followed
by setData.

type is the special character type as follows:
1: Page break.
2: Short date.
3: Long date.
4: Abbreviated date.
5: Time.

flags is interpreted bitwise:

If 1, updates regardless of whether updating is enabled or not.
All other bits are reserved and must be set to zero.
See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: 0 to update all special characters.
Bit 1: 1 to update special characters in the selected text.

Causes Igor to return the contents of the notebook in the S_value variable. The
contents are binary data in a private Igor format encoded as text. The only use for
this keyword is to transfer data from one notebook to another by calling getData
followed by setData.
mode=1: Stores in S_value plain text or formatted text data, depending on the

type of the notebook, from the entire notebook.
mode=2: Stores in S_value plain text data, regardless of the type of the

notebook, from the entire notebook.
mode=3: Stores in S_value plain text or formatted text data, depending on the

type of the notebook, from the notebook selection only.
mode=4: Stores in S_value plain text data, regardless of the type of the

notebook, from the notebook selection only.

Notebook (Writing Text)

V-519

Notebook (Writing Text)
Writing notebook text parameters
This section of Notebook relates to inserting text at the current selection in the notebook.

NotebookAction
NotebookAction [/W=winName] keyword = value [, keyword = value …]
The NotebookAction operation creates or modifies an “action” in a notebook. A notebook action is an object
that executes commands when clicked.
See Chapter III-1, Notebooks, for general information about notebooks.
NotebookAction returns an error if the notebook is open for read-only. See Notebook Read/Write
Properties on page III-12 for further information.

Parameters
The parameters are in keyword =value format. Parameters are automatically limited to legal values before
being applied to the notebook.

text=textStr Inserts the text at the current selection.
Before the text is inserted, Igor converts escape sequences in textStr as described in
Escape Characters in Strings on page IV-13.
Then, it checks for illegal characters. The only character code that is illegal is zero
(ASCII NUL character). If it finds an illegal character, Igor generates an error and does
not insert the text.

setData=dataStr Inserts the data at the current selection.
dataStr is either a regular string expression or the result returned by Notebook
getData.

zData=dataStr This keyword is used by Igor during the recreation of a notebook subwindow in a
control panel. dataStr is encoded binary data created by Igor when the recreation
macro was generated. It represents the contents of the notebook subwindow in a
format private to Igor.

zDataEnd=1 This keyword is used by Igor during the recreation of a notebook subwindow in a
control panel. It marks the end of encoded binary data created by Igor when the
recreation macro was generated.

bgRGB=(r, g, b) Specifies the action background color. r, g, and b are values from 0 to 65535.

commands=str Specifies the command string to be executed when clicking the action. For multiline
commands, add a carriage return (\r) between lines.

enableBGRGB=enable

Uses the background color specified by bgRGB (enable=1). Background color is
ignored for enable=0.

frame=f

helpText=helpTextStr

Specifies the frame enclosing the action.
f=0: No frame.
f=1: Single frame (default).
f=2: Double frame.
f=3: Triple frame.
f=4: Shadow frame.

NotebookAction

V-520

Flags

Examples
String nb = WinName(0, 16, 1) // Top visible notebook

Specifies the help string for the action. The text is limited to 255 characters. On
Macintosh, help appears when the cursor is over the action after choosing
Help→Show Igor Tips. On Windows, help appears in the status line when the cursor
is over the action.

ignoreErrors=ignore

Controls whether an error dialog will appear (ignore=0) or not (ignore is nonzero) if an
error occurs while executing the action commands.

linkStyle=linkStyle Controls the action title text style. If linkStyle=1, the style is the same as a help link (blue
underlined). If linkStyle=0, the style properties are the same as the preceding text.

name=name Specifies the name of the new or modified notebook action. This is a standard Igor
name. See Standard Object Names on page III-417 for details.

padding={leftPadding, rightPadding, topPadding, bottomPadding, internalPadding}

Sets the padding in points. internalPadding sets the padding between the title and the
picture when both elements are present.

picture=name Specifies a picture for the action icon. name is the name of a picture in the picture
collection (see Pictures on page III-423).
If name is null ($""), it clears the picture parameter.

procPICTName=name

Specifies a Proc Picture for the action icon (see Proc Pictures on page IV-44). name is
the name of a Proc Picture or null ($"") to clear it. This will be a name like
ProcGlobal#myPictName or MyModuleName#myPictName. If you use a module
name, the Proc Picture must be declared static.
If you specify both picture and procPICTName, picture will be used.

quiet=quiet Displays action commands in the history area (quiet=0), otherwise (quiet=1) no
commands will be recorded.

scaling={h, v} Scales the picture in percent horizontally, h, and vertically, v.

showMode=mode

title=titleStr Sets the action title to titleStr, which is limited to 255 characters.

/W= winName Specifies the notebook window of interest.
winName is either kwTopWin for the top notebook window, the name of a notebook
window or a host-child specification (an hcSpec) such as Panel0#nb0. See
Subwindow Syntax on page III-97 for details on host-child specifications.

If /W is omitted, NotebookAction acts on the top notebook window.

Determines if the title or picture are displayed.

Without a picture specification, the action will use title mode regardless of what
you specify.

mode=1: Title only.
mode=2: Picture only.
mode=3: Picture below title.
mode=4: Picture above title.
mode=5: Picture to left of title.
mode=6: Picture to right of title.

num2char

V-521

NotebookAction name=Action0, title="Beep", commands="Beep"// Create action
NotebookAction name=Action0, enableBGRGB=1, padding={4,4,4,4,4}

Notebook $nb, findSpecialCharacter={"Action0",1} // Select action

Notebook $nb, frame=1 // Set frame

See Also
Chapter III-1, Notebooks.
The Notebook, NewNotebook, and OpenNotebook operations; the SpecialCharacterInfo and
SpecialCharacterList functions.

num2char
num2char(num)
The num2char function returns a string containing a single byte whose value is the low 8 bits of num.

Examples
Print num2char(65) // prints A
Print num2char(97) // prints a

See Also
The char2num, str2num and num2str functions.

num2istr
num2istr(num)
The num2istr function returns a string representing num after rounding to the nearest integer.

num2str
num2str(num)
The num2str function returns a string representing the number num.
Precision is limited to only five decimal places. This can cause unexpected and confusing results. For this
reason, we recommend that you use num2istr or sprintf for better control of the format and precision of the
number conversion.

See Also
The sprintf operation.
The str2num, char2num and num2char functions.

NumberByKey
NumberByKey(keyStr, kwListStr [, keySepStr [, listSepStr [, matchCase]]])
The NumberByKey function returns a numeric value extracted from kwListStr based on the specified key
contained in keyStr. kwListStr should contain keyword-value pairs such as "KEY=value1,KEY2=value2"
or "Key:value1;KEY2:value2", depending on the values for keySepStr and listSepStr.
Use NumberByKey to extract a numeric value from a strings containing "key1=value1;key2=value2;"
style lists such as those returned by functions like AxisInfo or TraceInfo.
If the key is not found or if any of the arguments is "" or if the conversion to a number fails then it returns NaN.
keySepStr, listSepStr, and matchCase are optional; their defaults are ":", ";", and 0 respectively.

Details
keyStr is limited to 255 characters.
kwListStr is searched for an instance of the key string bound by listSepStr on the left and a keySepStr on the
right. The text up to the next listSepStr is converted to the returned number.
kwListStr is treated as if it ends with a listSepStr even if it doesn’t.
Searches for keySepStr and listSepStr are always case-sensitive. Searches for keyStr in kwListStr are usually
case-insensitive. Setting the optional matchCase parameter to 1 makes the comparisons case sensitive.
Only the first characters of keySepStr and listSepStr are used.

numpnts

V-522

If listSepStr is specified, then keySepStr must also be specified. If matchCase is specified, keySepStr and
listSepStr must be specified.

Examples
Print NumberByKey("AKEY", "AKEY:123;") // prints 123
Print NumberByKey("BKEY", "AKEY=123;Bkey=456;", "=") // prints 456
Print NumberByKey("KEY2", "KEY1=123,KEY2=999,", "=", ",")// prints 999
Print NumberByKey("ckey", "CKEY=123;ckey=456;", "=") // prints 123
Print NumberByKey("ckey", "CKEY=123;ckey=456;", "=", ";", 1)// prints 456

See Also
The StringByKey, RemoveByKey, ReplaceNumberByKey, ReplaceStringByKey, ItemsInList, AxisInfo,
IgorInfo, SetWindow, and TraceInfo functions.

numpnts
numpnts(waveName)
The numpnts function returns the total number of data points in the named wave. To find the number of
elements in a dimension of a multidimensional wave, use the DimSize function.

numtype
numtype(num)
The numtype function returns a number which indicates what kind of value num contains.

Details
If num is a real number, numtype returns a real number whose value is:

If num is a complex number, numtype returns a complex number in which the real part is the number type
of the real part of num and the imaginary part is the number type of the imaginary part of num.

NumVarOrDefault
NumVarOrDefault(pathStr, defVal)
The NumVarOrDefault function checks to see if the pathStr points to a numeric variable. If the numeric variable
exists, NumVarOrDefault returns its value. If the numeric variable does not exist, it returns defVal instead.

Details
NumVarOrDefault initializes input values of macros so they can remember their state without needing
global variables to be defined first. String variables use the corresponding numeric function,
StrVarOrDefault.

Examples
Macro foo(nval,sval)

Variable nval=NumVarOrDefault("root:Packages:mypack:nvalSav",2)
String sval=StrVarOrDefault("root:Packages:mypack:svalSav","Hi")

String dfSav= GetDataFolder(1)
NewDataFolder/O/S root:Packages
NewDataFolder/O/S mypack
Variable/G nvalSav= nval
String/G svalSav= sval
SetDataFolder dfSav

End

NVAR
NVAR [/C][/Z] localName [= pathToVar][, localName1 [= pathToVar1]]…
NVAR is a declaration that creates a local reference to a global numeric variable accessed in a user-defined
function.

0: If num contains a normal number.

1: If num contains +/-INF.

2: If num contains NaN.

NVAR_Exists

V-523

The NVAR reference is required when you access a global numeric variable in a function. At compile time,
the NVAR statement specifies the local name referencing a global numeric variable. At runtime, it makes
the connection between the local name and the actual global variable. For this connection to be made, the
global numeric variable must exist when the NVAR statement is executed.
When localName is the same as the global numeric variable name and you want to reference a global variable
in the current data folder, you can omit pathToVar. Prior to Igor Pro 4.0, pathToVar was always required.
pathToVar can be a full literal path (e.g., root:FolderA:var0), a partial literal path (e.g., :FolderA:var0) or $
followed by string variable containing a computed path (see Converting a String into a Reference Using
$ on page IV-48).
You can also use a data folder reference or the /SDFR flag to specify the location of the numeric variable if
it is not in the current data folder. See Data Folder References on page IV-62 and The /SDFR Flag on page
IV-64 for details.
If the global variable may not exist at runtime, use the /Z flag and call NVAR_Exists before accessing the
variable. The /Z flag prevents Igor from flagging a missing global variable as an error and dropping into
the Igor debugger. For example:
NVAR/Z nv=<pathToPossiblyMissingNumericVariable>
if(NVAR_Exists(nv))

<do something with nv>
endif

Note that to create a global numeric variable, you use the Variable/G operation.

Flags

See Also
NVAR_Exists function.
Accessing Global Variables and Waves on page IV-50.
Converting a String into a Reference Using $ on page IV-48.

NVAR_Exists
NVAR_Exists(name)
The NVAR_Exists function returns one if specified NVAR reference is valid or zero if not. It can be used
only in user-defined functions.
For example, in a user function you can test if a global numeric variable exists like this:
NVAR /Z var1 = gVar1 // /Z prevents debugger from flagging bad NVAR
if (!NVAR_Exists(var1)) // No such global numeric variable?

Variable/G gVar1 = 0 // Create and initialize it
endif

See Also
WaveExists, SVAR_Exists, and Accessing Global Variables and Waves on page IV-50.

Open
Open [flags] refNum [as fileNameStr]
The Open operation can, depending on the flags passed to it:
• Open an existing file to read data from (/R flag without /D).
• Open a to append results to (/A flag without /D).
• Create a new file or overwrite an existing file to write results to (no /D, /R or /A flags).
• Display an Open File dialog (/D/R or /D/A flags with or without /MULT).
• Display a Save File dialog (/D flag without /R or /A).

Parameters
refNum is the name of a numeric variable to receive the file reference number. refNum is set by Open if Open
actually opens a file for reading or writing (cases 1, 2 and 3). You use refNum with the FReadLine, FStatus,

/C Variable is complex.

/Z Ignores variable reference checking failures.

Open

V-524

FSetPos, FBinWrite, FBinRead, fprintf, and wfprintf operations to read from or write to the file. When
you’re finished, use pass refNum to the Close operation to close the file.
Open does not set the file reference number when the /D flag is used (cases 4 and 5) but you must still
supply a refNum parameter.
The following discussion of the pathName and fileNameStr parameters applies when you are attempting to
open a file for reading or writing (cases 2, 3, and 5 above).
The targeted file is specified by a combination of the pathName parameter and the fileNameStr parameter.
There are three ways to specify the targeted file:

If you use a full or partial path for fileNameStr, see Path Separators on page III-400 for details on forming
the path.
The targeted file is fully specified if fileNameStr is a full path or if both pathName and fileNameStr are present
and not empty strings.
The targeted file is not fully specified in any of these cases:
• as fileNameStr is omitted
• fileNameStr is an empty string
• fileNameStr is not a full path and no symbolic path is specified

Opening an Existing File For Reading Only
This covers cases 1 (/R without /D).
If the file is fully-specified but does not exist, an error is generated. If you want to detect and handle the
error yourself, use the /Z flag.
If the file is not fully-specified, Open displays an Open File dialog.
If a file is opened, refNum is set to the file reference number.

Opening an Existing File For Appending
This covers cases 1 (/R without /D) and 2 (/A without /D).
If the file is fully-specified and exists, it is opened for read/write and the current file position is moved to
the end of the file.
If the file is fully-specified but does not exist, the file is created and opened for read/write.
If the file is not fully-specified, Open displays an Open File dialog.
If a file is opened, refNum is set to the file reference number.

Opening a File For Write
This covers case 3 (no /R, /A or /D).
If the targeted file exists, it is overwritten.
If the targeted file does not exist and it is fully-specified and targets a valid path, a new file is created.
If the file is fully-specified and targets an invalid path, an error is generated. If you want to detect and
handle the error yourself, use the /Z flag.
If the file is not fully-specified, Open displays a Save File dialog.
If a file is opened, refNum is set to the file reference number.

Method How To Use It

Symbolic path and
simple file name

Use /P=pathName and fileNameStr, where pathName is the name of an Igor
symbolic path (see Symbolic Paths on page II-34) that points to the folder
containing the file and fileNameStr is the name of the file.

Symbolic path and
partial path

Use /P=pathName and fileNameStrs, where pathName is the name of an Igor
symbolic path that points to the folder containing the file and fileNameStr is a
partial path starting from the folder and leading to the file.

Full path Use just fileNameStr, where fileNameStr is a full path to the file.

Open

V-525

Displaying an Open File Dialog To Select a Single File
This covers cases 4 (/D with /R or /A).
Open does not actually open the file but just displays the Open File dialog.
If the user chooses a file in the Open File dialog, the S_fileName output string variable is set to a full path
to the file. You can use this in subsequent commands. If the user cancels, S_fileName is set to "".
See the documentation for the /D, /F and /M flags and then read Displaying an Open File Dialog on page
IV-130 for details.
refNum is left unchanged.

Displaying an Open File Dialog To Select Multiple Files
This covers cases 4 (/D with /R or /A) with the /MULT=1 flag.
Open does not actually open the file but just displays the Open File dialog.
If the user chooses one or more files in the Open File dialog, the S_fileName output string variable is set to
a carriage-return-delimited list of full paths to one or more files. You can use this in subsequent commands.
If the user cancels, S_fileName is set to "".
See the documentation for the /D, /F, /M and /MULT flags and then read Displaying a Multi-Selection
Open File Dialog on page IV-130 for details.
refNum is left unchanged.

Displaying a Save File Dialog
This covers cases 5 (/D without /R or /A).
Open does not actually open the file but just displays the Save File dialog.
If the user chooses a file in the Save File dialog, the S_fileName output string variable is set to a full path to
the file. You can use this in subsequent commands. If the user cancels, S_fileName is set to "".
See the documentation for the /D, /F and /M flags and then read Displaying a Save File Dialog on page
IV-132 for details.
refNum is left unchanged.

Flags

/A Opens an existing file for appending or, if the file does not exist, creates a new file and
opens it for appending.

/C=creatorStr Specifies the file creator code. This is meaningful on Macintosh only and is ignored on
Windows. For opening an existing file, creator defaults to “????” which means “any
creator”. For creating a new file, creatorStr defaults to “IGR0” which is Igor’s creator code.

/D[=mode]

The /D=1 and /D=2 forms of this command were added in Igor Pro 6.1.
Use this mode to allow the user to choose a file to be opened by a subsequent
operation, such as LoadWave.

With /D or /D=1, open presents a dialog from which the user can select a file but does
not actually open the file. Instead, Open puts the full path to the file into the string
variable S_fileName.
/D=2 does the same thing except that it skips the dialog if pathName and fileNameStr
specify a valid file. In this case, if pathName and fileNameStr refer to an alias
(Macintosh) or shortcut (Windows), the target of the alias or shortcut is returned.
If the user clicks the Cancel button, S_fileName is set to an empty string.

Specifies dialog-only mode.
/D: A dialog is always displayed.
/D=1: Same as /D.
/D=2: A dialog is displayed only if pathName and fileNameStr do not specify

a valid file.

Open

V-526

Details
When Open returns, if a file was actually opened, the refNum parameter will contain a file reference number
that you can pass to other operations to read or write data. If the file was not opened because of an error or
because the user canceled or because /D was used, refNum will be unchanged.
If you use /R (open for read), Open opens an existing file for reading only.

Use Open/D/R to bring up an Open File dialog. See Displaying an Open File Dialog
on page IV-130 for details.
Use Open/D/R/MULT=1 to bring up an Open File dialog to select multiple files. See
Displaying a Multi-Selection Open File Dialog on page IV-130 for details.
Use Open/D to bring up a Save File dialog. See Displaying a Save File Dialog on page
IV-132 for details.
See Using Open in a Utility Routine on page IV-133 for an example using /D=2.
Do not use /Z with /D.

/F=fileFilterStr /F provides control over the file filter menu in the Open File dialog. /F was added in
Igor Pro 6.10. See Open File Dialog File Filters on page IV-131 and Save File Dialog
File Filters on page IV-132 for details.

/M=messageStr Prompt message text in the dialog used to select the file, if any.

/MULT=m Use /D/R/MULT=1 to display a multi-selection Open File dialog.

/D/R/MULT=0 or just /D/R displays a single-selection Open File dialog.

/MULT=1 is allowed only if /D or /D=1 and /R are specified.

See Displaying a Multi-Selection Open File Dialog on page IV-130 for details.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/R The file is opened read only.

/T=typeStr When creating a new file on Macintosh (/A and /R flag omitted), /T sets the Macintosh
file type property for the file if it does not already exist. For example, /T="BINA" sets
the Macintosh file type to 'BINA'. If /T is omitted the Macintosh file type will be
'TEXT'. Apple has deemphasized Macintosh file types in favor of file name
extensions.
For new code, /F is recommended instead of /T.

When opening an existing file (/A or /R flag used), /T provides control over the file
filter menu in the Open File dialog. See Open File Dialog File Filters on page IV-131
for details.
When creating a new file (/A and /R flag omitted), /T provides control over the file
filter menu in the Save File dialog. See Save File Dialog File Filters on page IV-132
for details.

/Z[=z] Prevents aborting of procedure execution if an error occurs, for example if the
procedure tries to open a file that does not exist for reading. Use /Z if you want to
handle this case in your procedures rather than having execution abort.
When using /Z, /Z=1, or /Z=2, V_flag is set to 0 if no error occurred or to a nonzero
value if an error did occur.

Do not use /Z with /D.
/Z=0: Same as no /Z.
/Z=1: Suppresses normal error reporting. When used with /R, it opens the

file if it exists. /Z alone has the same effect as /Z=1.
/Z=2: Suppresses normal error reporting. When used with /R, it opens the

file if it exists or displays a dialog if it does not exist.

Open

V-527

If you use /A, Open opens an existing file for appending. If the file does not exist, it is created and then
opened for appending.
If both /R and /A are omitted then Open creates and opens a file. If the specified file does not already exist,
Open creates it and opens it for writing. If the file does already exist then Open opens it and sets the current
file position to the start of the file. The current file position determines where in the file data will be written.
Thus, you will be overwriting existing data in the file.

Output Variables
The Open operation returns information in the following variables:

When using /D, the value of V_flag is undefined. Do not use /Z with /D. Use S_fileName to determine if the
user selected a file or canceled.

Examples
This example function illustrates using Open to open a text file from which data will be read. The function
takes two parameters: an Igor symbolic path name and a file name. If either of these parameters is an empty
string, the Open operation will display a dialog allowing the user to choose the file. Otherwise, the Open
operation will open the file without displaying a dialog.
Function DemoOpen(pathName, fileName)

String pathName // Name of symbolic path or "" for dialog.
String fileName // File name, partial path, full path or "" for dialog.
Variable refNum
String str

// Open file for read.
Open/R/Z=2/P=$pathName refNum as fileName

// Store results from Open in a safe place.
Variable err = V_flag
String fullPath = S_fileName

if (err == -1)
Print "DemoOpen canceled by user."
return -1

endif

if (err != 0)
DoAlert 0, "Error in DemoOpen"
return err

endif

Printf "Reading from file \"%s\". First line is:\r", fullPath
FReadLine refNum, str // Read first line into string variable
Print str
Close refNum
return 0

End

See Also
Symbolic Paths on page II-34.
Close, FReadLine, FStatus, FSetPos, FBinWrite, FBinRead, fprintf, and wfprintf.

Warning: If you open an existing file for writing (you do not use /R) then you will overwrite or
truncate existing data in the file. To avoid this, open for read (use /R) or open for append
(use /A).

V_flag Set only when the /Z flag is used.
V_flag is set to zero if the file was opened, to -1 if Open displayed a dialog (because
the file was not fully-specified) and the user canceled, and to some nonzero value if
an error occurred.

S_fileName Stores the full path to the file that was opened.
If /MULT=1 is used, S_fileName is a carriage-return-separated list of full paths to one
or more files.
If an error occurred or if the user canceled, S_fileName is set to an empty string.

OpenNotebook

V-528

Displaying an Open File Dialog on page IV-130, Displaying a Multi-Selection Open File Dialog on page
IV-130, Open File Dialog File Filters on page IV-131
Displaying a Save File Dialog on page IV-132, Save File Dialog File Filters on page IV-132
Using Open in a Utility Routine on page IV-133
The Load File Demo example in “Igor Pro Folder:Examples:Programming”.

OpenNotebook
OpenNotebook [flags] [fileNameStr]
The OpenNotebook operation opens a file for reading or writing as an Igor notebook.
Unlike the Open operation, OpenNotebook will not create a file if the specified file does not exist. To create
a new notebook, use the NewNotebook operation.

Parameters
The file to be opened is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-400 for details on forming
the path.

Flags

Details
The /A (append) flag has no effect other than to move the selection to the end of the notebook after it is opened.
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-34 for details.

/A Moves the notebook’s selection to the end of the notebook.

/K=k

/M=messageStr Prompt message text in the dialog used to find the file, if any.

/N=winName Specifies the window name to be assigned to the new notebook. If omitted, it assigns
a name like “Notebook0”.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/R Opens the file as read only.

/T=typeStr Specifies the type or types of files that can be opened.

/V=visible Hides (visible= 0) or shows (visible= 1; default) the notebook.

/W=(left,top,right,bottom)

Specifies window size and position. Coordinates are in points.

/Z Suppresses error generation. Use this to check if a file exists. If you use /Z,
OpenNotebook sets the variable V_flag to 0 if the notebook was opened or to nonzero
if there was an error, usually because the specified file does not exist.

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

OpenProc

V-529

The /T=typeStr flag affects only the dialog that OpenNotebook presents if you do not specify a path and
filename. The dialog presents only those files whose type is specified by /T=typeStr. There are two file types
that are allowed for notebooks: 'TEXT' which is a plain text file and 'WMT0' which is a WaveMetrics
formatted text file. Therefore, the file type, if you use it, should be either “TEXT” or “WMT0”. If /T=typeStr is
missing, it defaults to “TEXTWMT0”. This opens either type of notebook file. On Windows, Igor considers
files with “.txt” extensions to be of type TEXT and considers files with “.ifn” to be of type WMT0. See File
Types and Extensions on page III-406 for details.

See Also
The Notebook and NewNotebook operations, and Chapter III-1, Notebooks.

OpenProc
OpenProc [flags] [fileNameStr]
The OpenProc operation opens a file as an Igor procedure file.
Note: This operation is used automatically to open procedure files when you open an Igor experiment.

You can invoke OpenProc only from the command line. Do not invoke it from a procedure. To
open procedure files from a procedure or from a menu definition, use the Execute/P operation.

Parameters
The file to be opened is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-400 for details on forming
the path.

Flags

Details
The /A (append) flag has no effect other than to move the selection to the end of the procedure file after it
is opened.
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-34 for details.
OpenProc automatically opens procedure files when you open an Igor experiment. Normally, you will have
no use for it. You can not open a procedure file while procedures are executing. Thus, you can’t invoke
OpenProc from within a procedure. You can only invoke it from the command line or from a user menu
definition (actually, you may get away with it in a macro, but it’s not recommend).

See Also
Chapter III-13, Procedure Windows.
The Execute operation.

/A Moves the procedure window’s selection to the end of the window.

/M=messageStr Prompt message text in the dialog used to find the file, if any.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/R The file is opened read only.

/T=typeStr Specifies the type or types of files that can be opened.

/V=visible Hides (visible= 0) or shows (visible= 1; default) the procedure window.

/Z Suppresses error generation if the specified file does not exist.

OperationList

V-530

OperationList
OperationList(matchStr, separatorStr, optionsStr)
The OperationList function returns a string containing a list of internal (built-in) or external operation
names corresponding to matchstr.

Parameters
Only operation names that match matchStr string are listed. Use "*" to match all names. See WaveList for
examples.
The first character of separatorStr is appended to each operation name as the output string is generated.
separatorStr is usually ";" for list processing (See Processing Lists of Waves on page IV-178 for details).
Use optionsStr to further qualify the list of operations. optionsStr is a (case-insensitive) string containing one
of these values:

Any other value for optionsStr ("all" is recommended) will return both internal and external operations.

See Also
The DisplayProcedure operation and the FunctionList, MacroList, StringFromList, and WinList
functions.

Optimize
Optimize [flags] funcspec, pWave
The Optimize operation determines extrema (minima or maxima) of a specified nonlinear function. The
function must be defined in the form of an Igor user function.
Use the first form for univariate functions (one dimensional functions; functions taking just one variable).
Use the second form with multivariate functions (functions in more than one dimension; functions of more
than one variable).
Optimize uses Brent’s method for univariate functions. For multivariate functions you can choose several
variations of quasi-Newton methods or simulated annealing.

Flags

"internal" Restricts the list to built-in operations.

"external" Restricts the list to external operations (see Igor Extensions on page III-425).

/A [= findMax] Finds a maximum (/A=1 or /A) or minimum (/A=0 or no flag).

/D=nDigits Specifies the number of good digits returned (default is 15) by the function being
optimized. If you use /X=xWave with a single-precision wave, the default is seven.
Ignored with simulated annealing (/M={3,0}).

/DSA=destWave Sets a wave to track the current best model only found with simulated annealing
(/M={3,0}). destWave must have the same number of points as the X vector.

/F=trustRegion Sets the initial trust region when /M={1 or 2, …} with multivariate functions. The value
is a scaled step size (see Multivariate Details). After the first iteration the trust region
is adjusted according to conditions.
Ignored with simulated annealing (/M={3,0}).

/H= highBracket
/L= lowBracket

Find the extrema of a univariate function. lowBracket and highBracket are X values on either
side of the extreme point. An extreme point is found between the bracketing values.
If lowBracket and highBracket are equal, Optimize adds 1.0 to highBracket before looking
for an extreme point.
Default values for lowBracket and highBracket are zero. Thus, if neither lowBracket nor
highBracket is present, this is the same as /L=0/H=1.
Ignored with simulated annealing (/M={3,0}).

Optimize

V-531

/I=maxIters Sets the maximum number of iterations in searching for an extreme point to maxIters.
Default is 100 for stepMethod (/M flag) 0-2, 10000 for stepMethod = 3 (simulated annealing).
If you use this form of the /I flag with simulated annealing, maxItersAtT is set to
maxIters/2 and maxAcceptances is set to maxIters/10.

/I={maxIters, maxItersAtT, maxAcceptances}

Specifies the number of iterations for simulated annealing. The maximum number of
iterations is set by maxIters, maxItersAtT sets the maximum number of iterations at a
given temperature in the cooling schedule, and maxAcceptances sets the total number
of accepted changes in the X vector (whether they increase or decrease the function)
at a given temperature.
If you use this form of the flag with any stepMethod (/M flag) other than 3, maxItersAtT
and maxAcceptances are ignored.
Defaults for stepMethod = 3 are {10000, 5000, 500}.

/M={stepMethod, hessMethod}

Default values are {0,0}. The hessMethod variable is ignored if you select stepMethod = 3.

/Q Suppresses printout of results in the history area. Ordinarily, the results of root
searches are printed in the history.

/R={typX1, typX2, …}

/R=typXWave Specifies the expected size of X values with multivariate functions. These values are
used to scale X values. If the X values you expect are very different from one, you will
get more accurate results if you can give a reasonable estimate. Optimize will use
typXi to scale Xi to reduce floating-point truncation error.

You must provide the same number of values in either a wave or a list of values as
you provide to the /X flag.
Ignored with simulated annealing (/M={3,0}).

/S=stepMax Limits the largest scaled step size allowed with multivariate functions. Optimize will
stop if five consecutive steps exceed stepMax.
Ignored with simulated annealing (/M={3,0}).

/SSA=stepWave Name of a 3-column wave having number of rows equal to the length of the X vector
only when used with simulated annealing (/M={3,0}). stepWave sets information about
the step size used to generate new X vectors. The step sizes are in terms of normalized
X values. The normalization is such that the Xi ranges from -1 to 1 based on the ranges
set by the /XSA flag.
Column zero sets the step size used when creating new trial X vectors. Default is 1.0.
Column one sets the minimum step size. Default is 0.001.
Column two sets the maximum step size. Default is 1.0.

Specifies the method used for selecting the next step (stepMethod) and the method
for calculating the Hessian (matrix of second derivatives) with multivariate
functions.

stepMethod Method hessMethod Method

0 Line Search 0 secant (BFGS)

1 Dogleg 1 finite differences

2 More-Hebdon

3 Simulated Annealing

Optimize

V-532

Parameters
func specifies the name of your user-defined function that will be optimized.
pwave gives the name of a parameter wave that will be passed to your function as the first parameter. It is
not modified by Igor. It is intended for your private use to pass adjustable constants to your function.

Function Format
Finding extreme points of a nonlinear function requires that you realize the function as a Igor user function
of a certain form. See Finding Minima and Maxima of Functions on page III-291 for detailed examples.
Your function must look like this:
Function myFunc(w,x1, x2, …)

Wave w
Variable x1, x2

return f(x1, x2, …) // an expression …
End

/T=tol Sets the stopping criterion with univariate functions. Optimize will attempt to find a
minimum within ± tol.
When this form is used with a multivariate function, gradTol is set to tol and stepTol is
set to gradTol2.
Ignored with simulated annealing (/M={3,0}).

/T={gradtol, stepTol} Sets the stopping criteria for multivariate functions. Iterations stop if a point is found
with estimated scaled gradient less than gradTol, or if an iteration takes a scaled step
shorter than stepTol. Default values are {8.53618x10-6, 7.28664x10-11}. These values are
(6.022x10-16)1/3 and (6.022x10-16)2/3 as suggested by Dennis and Schnabel. 6.022x10-16
is the smallest double precision floating point number that, when added to 1, is
different from 1.
Ignored with simulated annealing (/M={3,0}).

/TSA={InitialTemp, CoolingRate}

Used only with simulated annealing (/M={3,0}).
InitialTemp sets the initial temperature. If InitialTemp is set to zero, Optimize calls your
function 100 times to estimate the best initial temperature. This is the recommended
setting unless your function is very expensive to evaluate (in which case, you may not
want to use simulated annealing at all).
CoolingRate sets the factor by which the temperature is decreased.

/X=xWave
/X={x1, x2, …}

Sets the starting point for searching for an extreme point with multivariate functions or
with simulated annealing (/M={3,0}). The starting point can be specified with a wave
having as many points as the number of independent variables, or you can write out a
list of X values in braces. If you are finding extreme points of a univariate function, use
/L and /H instead unless you are using the simulated annealing method. If you specify
a wave, this wave is also used to receive the result of the extreme point search.

/XSA=XLimitWave Name of a 2-column wave having number of rows equal to the length of the X vector
only when used with simulated annealing (/M={3,0}).
Column zero sets the minimum value allowed for each element of the X vector.
Column one sets the maximum value allowed for each element of the X vector.
Default is ±Xi*10 if Xi is nonzero, or ±1 if Xi is zero. While a default is provided, it is
highly recommended that you provide an XLimitWave.

/Y=funcSize Specifies expected sizes of function values with multivariate functions. If you expect
your function will return values very different from one, you should set funcSize to
the expected size. Optimize will use this value to scale the function results to reduce
floating-point truncation error.

Optimize

V-533

A univariate function would have only one X variable.
A multivariate function can use a wave to pass in the X values:
Function myFunc(w,xw)

Wave w
Wave xw

return f(xw) // an expression …
End

Replace “f(…)” with an appropriate numerical expression.

Univariate Details
The method used by Optimize to find extreme points of univariate functions requires that the point be
bracketed before starting. If you don’t use /L and /H to specify the bracketing X values, the defaults are zero
and one. Optimize first attempts to find the requested extreme point using the bracketing values (or the
default). If that is unsuccessful, it attempts to bracket an extreme point by expanding the bracketing
interval. If a suitable interval is found (the search is by no means perfectly reliable), then the search for an
extreme point is made again.
Optimize uses Brent’s method for univariate functions, which requires no derivatives. This combines a
quadratic extrapolation with checking for wild results. In the case of wild results (points beyond the best
current bracketing values) the method reverts to a golden section bisection algorithm. For well-behaved
functions, the quadratic extrapolation converges superlinearly. The golden section bisection algorithm
converges more slowly but features global convergence, that is, if an extremum is there, it will be found.

The stopping criterion is .

In this expression, a and b are the current bracketing values, and x is the best estimate of the extreme point
within the bracketing interval.
The left side of this expression works out to being simply the distance from the current solution to the
boundary of the bracketing interval.

Multivariate Details
With multivariate functions, Optimize scales certain quantities to reduce floating point truncation error.
You enter scaling factors using the /R and /Y flags. The /R flag specifies the expected magnitude of X values;
Optimize then uses Xi/typXi in all calculations. Likewise, /Y specifies the expected magnitude of function
values.
This scaling can be important for maintaining accuracy if your X’s or Y’s are very different from one, and
especially if your X’s have values spanning orders of magnitude.
The Optimize operation uses a quasi-Newton method with derivatives estimated numerically. The function
gradient is calculated using finite differences. For estimation of the Hessian (second derivative matrix) you can
use either a secant method (hessMethod = 0) or finite differences (hessMethod = 1). The finite difference method
gives a more accurate estimate and may succeed with difficult functions but requires more function evaluations
per iteration. The finite difference method’s greater accuracy may reduce the total number of iterations required,
so the overall number of function evaluations depends on details of the problem being solved. Usually the secant
method requires fewer function evaluations and is preferred for functions that are expensive to evaluate.
Once a Newton step is calculated, there are three choices for the method used to find the best next value-
line search along the Newton direction (stepMethod = 0), double dogleg (stepMethod = 1), or More-Hebdon
(stepMethod = 2). The best method can be found only by experimentation. See Dennis and Schnabel (cited in
References) for details.
The /F=trustRegion, /S=stepMax and /T={…, stepTol} all refer to scaled step sizes. That is,

.

Note: Optimizing a univariate function with the simulated annealing method (/M={3,0}) works
like a multivariate function, and this section does not apply. See the sections devoted to
simulated annealing.

x a b+()–
2

------------------------- a b–
2

------------+ 2
3
--- tol⋅≤

stepXi
Δxi

max xi typXi,()

=

Optimize

V-534

The Optimize operation presumes that an extreme point has been found when either the gradient at the
latest point is less than gradTol or when the last step taken was smaller than stepTol. These criteria both refer
to scaled quantities:

 or .

Simulated Annealing Introduction
The simulated annealing or Metropolis algorithm optimizes a function using a random search of the X
vector space. It does not use derivatives to guide the search, making it a good choice if the function to be
optimized is in some way poorly behaved. For instance, it is a good method for functions with
discontinuities in the function value or in the derivatives.
Simulated annealing also has a good chance of finding a global minimum or maximum of a function having
multiple local minima or maxima.
Because simulated annealing uses a random search method, it may require a large number of function
evaluations to find a minimum, and it is not guaranteed that it will stop at an actual minimum. For these
reasons, it is best to use one of the other methods unless those methods have failed.
The simulated annealing method generates new trial solutions by adding a random vector to the current X
vector. The elements of the random vector are set to stepsizei*Ri, where Ri is a random number in the interval
(-1, 1). As the solution progresses, the stepsize is gradually decreased.
Bad trials, that is, those that change the function value in the wrong direction are accepted with a probably
that depends on the simulated temperature. It is this aspect that allows simulated annealing to find a global
minimum.
Function values are generated and accepted or rejected for some number of iterations at a given
temperature, then the temperature is reduced. The probability of a bad iteration being accepted decreases
with decreasing temperature. A too-fast cooling rate can freeze in a bad solution.

Simulated Annealing Details
It is highly recommended that you use the XSA flag to specify XLimitWave. This wave sets bounds on the
values of the elements of the X vector during the random search. The defaults may be adequate but are
totally ad hoc. You are better off to specify bounds that make sense to the problem you are solving.
The values of XLimitWave in addition to bounding the search space also scale the X vector during computations
of probabilities, temperatures, etc. Consequently, the X limits can affect the performance of the algorithm.
A large number of iterations is required to have a good probability of finding a reasonable solution.
It is recommended that you set the initial temperature to zero so that Optimize can estimate a good initial
temperature. If you can’t afford the 100 function evaluations required, you probably shouldn’t be using
simulated annealing.
Optimize uses an exponential cooling schedule in which Ti+1 = CoolingRate*Ti (see the /TSA flag).
CoolingRate must be in the range 0 to 1. A fast cooling rate (small value of CoolingRate) can cause simulated
quenching; that is, a bad solution can be frozen in. Very slow cooling will result in slow convergence.
When simulated annealing is selected, the optimization is treated as multivariate even if your function has
only a single X input. That is, the output variables and waves are the ones listed under multivariate functions.

Variables and Waves for Output
The Optimize operation reports success or failure via the V_flag variable. A nonzero value is an error code.
Variables for a univariate function:

V_flag 0: Search for an extreme point was successful.

57: User abort.

785: Function returned NaN.

786: Unable to find bracketing values for an extreme point.

max
1 i n≤ ≤

gi
max xi typXi,()

max f funcSize(,)
---⋅

gradTol≤ max
1 i n≤ ≤

Δxi
max xi typXi(,)

stepTol≤

Optimize

V-535

If you searched for a minimum:

If you searched for a maximum:

For simulated annealing only:

Variables for a multivariate function:

If you searched for a minimum:

V_minloc X value at the minimum.

V_min Function value (Y) at the minimum.

V_maxloc X value at the maximum.

V_max Function value (Y) at the maximum.

V_SANumIncreases Number of “bad” iterations accepted.

V_SANumReductions Number of iterations resulting in a better solution.

V_flag 0: Search for an extreme point was successful.

57: User abort.

788: Iteration limit was exceeded.

789: Maximum step size was exceeded in five consecutive iterations.

790: The number of points in the typical X size wave specified by /R does not
match the number of X values specified by the /X flag

791: Gradient nearly zero and no iterations taken. This means the starting
point is very nearly a critical point. It could be a solution, or it could be so
close to a saddle point or a maximum (when searching for a minimum)
that the gradient has no useful information. Try a slightly different
starting point.

V_OptTermCode Indicates why Optimize stopped. This may be useful information even if V_flag is
zero. Values are:

1: Gradient tolerance was satisfied.

2: Step size tolerance was satisfied.

3: No step was found that was better than the last iteration. This could be
because the current step is a solution, or your function may be too
nonlinear for Optimize to solve, or your tolerances may be too large (or
too small), or finite difference gradients are not sufficiently accurate for
this problem.

4: Iteration limit was exceeded.

5: Maximum step size was exceeded in five consecutive iterations. This may
mean that the maximum step size is too small, or that the function is
unbounded in the search direction (that is, goes to -inf if you are
searching for a minimum), or that the function approaches the solution
asymptotically (function is bounded but doesn’t have a well-defined
extreme point).

6: Same as V_flag = 791.

V_min Function value (Y) at the minimum.

Override

V-536

If you searched for a maximum:

Variables for all functions:

Waves for a multivariate function:

See Also
Finding Minima and Maxima of Functions on page III-291 for further details and examples.

References
The Optimize operation uses Brent’s method for univariate functions. Numerical Recipes has an excellent
discussion (see section 10.2) of this method (but we didn’t use their code):
Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C,

2nd ed., 994 pp., Cambridge University Press, New York, 1992.
For multivariate functions Optimize uses code based on Dennis and Schnabel. To truly understand what
Optimize does, read their book:
Dennis, J. E., Jr., and Robert B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear

Methods, 378 pp., Society for Industrial and Applied Mathematics, Philadelphia, 1996.

Override
Override constant objectName = newVal
Override strconstant objectName = newVal
Override Function funcName()
The Override keyword redefines a constant, strconstant, or user function. The objectName or funcName must
be the same as the name of the original object or function that is being redefined. The override must be
defined before the target object appears in the compile sequence.

See Also
Function Overrides on page IV-88 and Constants on page IV-40 for further details.

p
p
The p function returns the row number of the current row of the destination wave when used in a wave
assignment statement. The row number is the same as the point number for a 1D wave.

Details
Outside of a wave assignment statement p acts like a normal variable. That is, you can assign a value to it
and use it in an expression.

See Also
Waveform Arithmetic and Assignments on page II-94.
For other dimensions, the q, r, and s functions.
For scaled dimension indices, the x, y, z, and t functions.

V_max Function value (Y) at the maximum.

V_OptNumIters Number of iterations taken before Optimize terminated.

V_OptNumFunctionCalls Number of times your function was called before Optimize terminated.

W_extremum Solution if you didn’t use /X=<xWave>. Otherwise the solution is returned in your X wave.

W_OptGradient Estimated gradient of your function at the solution.

p2rect

V-537

p2rect
p2rect(z)
The p2rect function returns a complex value in rectangular coordinates derived from the complex value z
which is assumed to be in polar coordinates (magnitude is stored in the real part and the angle, in radians,
in the imaginary part of z).

Examples
Assume waveIn and waveOut are complex, then:
waveOut = p2rect(waveIn)

sets each point of waveOut to the rectangular coordinates based on the magnitude in the real part and the
angle (in radians) in the imaginary part of the points in waveIn.
You may get unexpected results if the number of points in waveIn differs from the number of points in waveOut.

See Also
The functions cmplx, conj, imag, r2polar, and real.

PadString
PadString(str, finalLength, padValue)
The PadString function returns a string identical to str except that it has been extended to a total length of
finalLength using bytes of padValue. Use zero to create a C-language style string or use 0x20 to pad with spaces
(FORTRAN style). This is useful when reading or writing binary files using FBinRead and FBinWrite.

See Also
The UnPadString function.

Panel
Panel
Panel is a procedure subtype keyword that identifies a macro as being a control panel recreation macro. It
is automatically used when Igor creates a window recreation macro for a control panel. See Procedure
Subtypes on page IV-183 and Saving a Window as a Recreation Macro on page II-61 for details.

ParamIsDefault
ParamIsDefault(pName)
The ParamIsDefault function determines if an optional user function parameter pName was specified during
the function call. It returns 1 when pName is default (not specified) or it returns 0 when it was specified.

Details
ParamIsDefault works only in the body of a user function and only with optional parameters. The variable
pName must be valid at compile time; you can not defer lookup to runtime with $.

See Also
Optional Parameters on page IV-30 and Using Optional Parameters on page IV-46.

ParseFilePath
ParseFilePath(mode, pathInStr, separatorStr, whichEnd, whichElement)
The ParseFilePath function provides the ability to manipulate file paths and to extract sections of file paths.

Parameters
Several of the modes refer to elements of the file path. In these modes, whichEnd is 0 to select an element
relative to the beginning of pathInStr, 1 to select an element relative to the end. whichElement is zero-based.
pathInStr is the input path, assumed to either a full path, a partial path (starts with the separator specified
by separatorStr) or a simple file or folder name (contains no separators).
For modes 0 through 4, separatorStr is ":" if pathInStr is a Macintosh path or "\\" if pathInStr is a Windows
path. See Path Separators on page III-400 for details about Macintosh versus Windows paths.
For mode 5, separatorStr is as shown above.

ParseFilePath

V-538

For modes 6, 7 and 8, separatorStr must be non-empty - pass "*" for it.
whichEnd is 0 to extract an element from the beginning of pathInStr or 1 to extract if from the end. whichEnd
is used only if mode is 0 or 1. For other modes, pass 0.
whichElement is a zero-based index to the element that you want to extract. whichElement is used only if mode
is 0 or 1. For other modes, pass 0.

Details
When dealing with Windows paths, you need to be aware that Igor treats the backslash character as an
escape character. When you want to put a backslash in a literal string, you need to use two backslashes. See
see Escape Characters in Strings on page IV-13 and Path Separators on page III-400 for details.
On Windows two types of file paths are used: drive-letter paths and UNC (“Universal Naming
Convention”) paths. For example:
// This is a drive-letter path.
C:\Program Files\WaveMetrics\Igor Pro Folder\Igor.exe

// This is a UNC path.
\\BigServer\SharedApps\Igor Pro Folder\Igor.exe

mode Information Returned

0 Element specified by whichEnd and whichElement.

1 Entire pathInStr, up to but not including the element specified by whichEnd and whichElement.

2 Entire pathInStr with a trailing separator added if it is not already there. This is useful when
you have a path to a folder and want to tack on a file name.

3 Last element of pathInStr with the extension, if any, removed. The extension is anything after
the last dot in pathInStr.

4 Extension in pathInStr or "" if there is no extension. The extension is anything after the last dot
in pathInStr.

5 Entire pathInStr but converts it to a format determined by separatorStr.

separatorStr = ":"
Converts the path to Macintosh style if it is Windows style. Does nothing to a Macintosh path.

separatorStr = "\\"
Converts the path to Windows style if it is Macintosh style. Does nothing to a Windows path.

separatorStr = "*"
Converts the path to the native style of the operating system Igor is running on. Does nothing
to a native path.

separatorStr = "/"
Macintosh-only: Converts the Macintosh-style pathInStr input to a Posix (UNIX) path. Unlike the
other conversions, the directory or file to which pathInStr refers must exist, otherwise "" is
returned.
To generate a Posix path for a non-existent file, generate the path for the existing folder and
append the file name.
This always returns "" on Windows.

6 UNC volume name ("\\Server\Share") if pathIn starts with a UNC volume name or "" if not. Pass
"*" as separatorStr.

7 UNC server name ("Server" from "\\Server\Share") if pathIn starts with a UNC volume name
or "" if not. Pass "*" as separatorStr.

8 UNC share name ("Share" from "\\Server\Share") if pathIn starts with a UNC volume name or
"" if not. Pass "*" as separatorStr.

ParseOperationTemplate

V-539

In this example, ParseFilePath considers the volume name to be C: in the first case and
\\BigServer\SharedApps in the second. The volume name is treated as one element by ParseFilePath,
except for modes 7 and 8 which permit you to extract the components of the UNC volume name.
Except for the leading backslashes in a UNC path, ParseFilePath modes 0 and 1 internally strip any leading
or trailing separator (as defined by the separatorStr parameter) from pathInStr before it starts parsing. So
if you pass ":Igor Pro Folder:WaveMetrics Procedures:", it is the same as if you had passed
"Igor Pro Folder:WaveMetrics Procedures".
If there is no element corresponding to whichElement and mode is 0, ParseFilePath returns "".
If there is no element corresponding to whichElement and mode is 1, ParseFilePath returns the entire
pathInStr.

Examples
String pathIn, pathOut

// Full path
pathIn= "hd:Igor Pro Folder:WaveMetrics Procedures:Waves:Wave Lists.ipf"

// Extract first element.
Print ParseFilePath(0, pathIn, ":", 0, 0) // Prints "hd"

// Extract second element.
Print ParseFilePath(0, pathIn, ":", 0, 1) // Prints "Igor Pro Folder"

// Extract last element.
Print ParseFilePath(0, pathIn, ":", 1, 0) // Prints "Wave Lists.ipf"

// Extract next to last element.
Print ParseFilePath(0, pathIn, ":", 1, 1) // Prints "Waves"

// Get path to folder containing the file.
// Prints "hd:Igor Pro Folder:WaveMetrics Procedures:Waves:"
Print ParseFilePath(1, pathIn, ":", 1, 0)

// Extract the file name without extension.
Print ParseFilePath(3, pathIn, ":", 0, 0) // Prints "Wave Lists"

// Extract the extension.
Print ParseFilePath(4, pathIn, ":", 0, 0) // Prints "ipf"

// Make sure the given path ends with a colon and concatenate file name.
String path = <routine that returns a Macintosh-style path to a folder>
path = ParseFilePath(2, path, ":", 0, 0)
path += "AFile.txt"

See Also
Escape Characters in Strings on page IV-13, UNC Paths on page III-401, and Path Separators on page
III-400 for details. The RemoveEnding function.

ParseOperationTemplate
ParseOperationTemplate [flags] cmdTemplate
The ParseOperationTemplate operation helps XOP programmers and WaveMetrics programmers write
code to implement Igor operations. If you are not an XOP programmer nor a WaveMetrics programmer, it
will be of no interest.
ParseOperationTemplate generates starter code for programmers who are creating Igor operations. The
starter code is copied to the clipboard, overwriting any previous clipboard contents.

ParseOperationTemplate

V-540

Flags

Parameters
cmdTemplate is the template that describes the syntax for your operation. See the Igor XOP Toolkit Reference
Manual for details.

Details
ParseOperationTemplate parses your command template, generating structures that embody the syntax of
your operation. It then uses these structures to generate code that can serve as a starting point for
implementing your operation. The starter code is stored in the clipboard.
For most uses, the recommended flags are:
/T/S=1/C=2 // For non-threadsafe operations
/T/S=1/C=2/TS // For threadsafe operations

ParseOperationTemplate sets the following output variable, but only when called from a function or macro:

If V_flag is nonzero, this indicates that your cmdTemplate syntax is incorrect. See the Igor XOP Toolkit
Reference Manual for details.

Examples
Function Test()

String cmdTemplate
cmdTemplate = "MyTest"
cmdTemplate += " /A={number:aNum1,string:aStrH}"
cmdTemplate += " /B=wave:bWaveH"
cmdTemplate += " key1={name:k1N1[,wave:k1WaveH,name:k1N2,string[2]:k1StrHArray]}"

// If your XOP is C instead of C++, use /C=2 instead of /C=6
TestOperationParser/T/S=1/C=6 cmdTemplate

/C=c

/S=s

/T Stores a comment listing your command template in the clipboard.

/TS Identifies a ThreadSafe operation by adding an extra field to the runtime parameter structure.
This is only of use to WaveMetrics programmers.

V_flag 0: cmdTemplate was successfully parsed.

-1: cmdTemplate was not successfully parsed.

If c is nonzero, ParseOperationTemplate stores code for your ExecuteOperation and
RegisterOperation functions in the clipboard.

The only difference between /C=6 and /C=2 is that the ExecuteOperation function is
declared as extern "C" instead of static. C++ files that use static work fine although extern
"C" is correct.

c=0: Do not generate code
c=1: Generate simplified C code - not recommended
c=2: Generate C code
c=6: Generate C++ code - added in Igor Pro 6.22

Stores a definition of your runtime parameter structure in the clipboard if s is nonzero.

We recommend that you use /S=1 and provide unique mnemonic parameter names in your
template. ParseOperationTemplate then uses your parameter names as structure field
names.
If you use /S=2, ParseOperationTemplate creates unique field names by concatenating flag
or keyword text and your mnemonic names. This is left over from the early days of
Operation Handler and is not recommended.

s=0: Do not generate the runtime parameter structure
s=1: Use your mnemonic names - recommended
s=2: Automatically generate mnemonic names - not recommended

PathInfo

V-541

Print V_flag, S_value
End

See Also
Igor Extensions on page III-425.

PathInfo
PathInfo [/S /SHOW] pathName
The PathInfo operation stores information about the named symbolic path in the following variables:

The path returned is a colon-separated path which can be used on Macintosh or Windows. See Path
Separators on page III-400 for details.

Flags

Examples
// The following lines perform equivalent actions:
PathInfo/S myPath;Open refNum
Open/P=myPath refNum

// Show Igor's Preferences folder in the Finder/Windows Explorer.
String fullpath= SpecialDirPath("Preferences",0,0,0)
NewPath/O/Q tempPathName, fullpath
PathInfo/SHOW tempPathName

See Also
Symbolic Paths on page II-34.
The NewPath, GetFileFolderInfo, ParseFilePath and SpecialDirPath operations.

PathList
PathList(matchStr, separatorStr, optionsStr)
The PathList function returns a string containing a list of symbolic paths selected based on the matchStr
parameter.

Details
For a path name to appear in the output string, it must match matchStr. The first character of separatorStr is
appended to each path name as the output string is generated.
PathList works like the WaveList function, except that the optionsStr parameter is reserved for future use.
Pass "" for it.

Examples
When a new experiment is created there is only one path:
Print PathList("*",";","")

Prints the following in the history area:
Igor;

See Also
The WaveList function for an explanation of the matchStr and separatorStr parameters and for examples. See
also Symbolic Paths on page II-34 for an explanation of symbolic paths.

V_flag: 0 if the symbolic path does not exist, 1 if it does exist.

S_path: The full path (e.g., "hd:This:That:").

/S Presets the next otherwise undirected open or save file dialog to the given disk folder.

/SHOW Shows the folder, if it exists, in the Finder (Mac OS X) or Windows Explorer
(Windows).

PauseForUser

V-542

PauseForUser
PauseForUser [/C] mainWindowName [, targetWindowName]
The PauseForUser operation pauses procedure execution to allow the user to manually interact with a
window. For example, you can call PauseForUser from a loop to allow the user to move the cursors on a
graph. In this scenario, targetWindowName would be the name of the graph and mainWindowName would be
the name of a control panel containing a message telling the user to adjust the cursors and then click, for
example, the Continue button.
If targetWindowName is omitted then mainWindowName plays the role of target window.
PauseForUser works with graph, table, and panel windows only.

Flags

Details
During execution of PauseForUser, only mouse and keyboard activity directed toward either
mainWindowName or targetWindowName is allowed.
While waiting for user action, PauseForUser disables double-clicks and any contextual menus that can lead
to dialogs in order to prevent changes on the command line. It also disables killing windows by clicking the
close icon in the title bar unless the window was originally created with the /K=1 flag (kill with no dialog).
If /C is omitted, PauseForUser returns only when the main window has been killed.
If /C is present, PauseForUser handles any pending events, sets V_Flag to the truth the target window still
exists, and then returns control to the calling user-defined function. Use PauseForUser/C in a loop if you
need to do something while waiting for the user to finish interacting with the target window. The /C flag
requires Igor Pro 6.1 or later.

See Also
Pause For User on page IV-134 for examples and further discussion.

PauseUpdate
PauseUpdate
The PauseUpdate operation delays the updating of graphs and tables until you invoke a corresponding
ResumeUpdate command.

Details
PauseUpdate is useful in a macro that changes a number of things relating to the appearance of a graph. It
prevents the graph from being updated after each change. Its effect ends when the macro in which it occurs
ends. It also affects updating of tables.
This operation is not allowed from the command line. It is allowed but has no effect in user-defined
functions. During execution of a user-defined function, windows update only when you explicitly call the
DoUpdate operation.

See Also
The DelayUpdate, DoUpdate, ResumeUpdate, and Silent operations.

PCA
PCA [flags][wave0, wave1,… wave99]
The PCA operation performs principal component analysis. Input data can be in the form of a list of 1D
waves, a single 2D wave, or a string containing a list of 1D waves. The operation can produce multiple
output waves depending on the specified flags.

Flags

/C Tells PauseForUser to return immediately after handling any pending events. See Details.

/ALL Shortcut for the combination of commonly used flags: /CVAR, /SL, /NF, /IND, /IE, and
/RMS.

PCA

V-543

/COV Calculates the input wave(s) covariance matrix, which as the input for the remainder of
the analysis. The covariance matrix is computed by first creating a matrix copying each
input 1D wave into sequential columns and then multiplying that matrix by its transpose.

/CVAR Computes the cumulative percent variance defined as 100 * sum of first m eigenvalues
divided by the sum of all eigenvalues. The results are stored in the wave
W_CumulativeVAR in the current data folder. See also /VAR.

/IE Computes the imbedded error. Returns errors in the wave W_IE in the current data
folder. The wave is scaled using SetScale/P x 1,1,"", W_IE. The imbedded
error is a function of the number of factors, the number of rows and columns and the
sum of the eigenvectors not included in the significant factors. The behavior of IE
determines the number of significant factors.

/IND Computes the factor indicator function. Note that if you specify /IND the residual
standard deviation will also be calculated. Returns results in the wave W_IND in the
current data folder. The wave is scaled using SetScale/P x 1,1,"", W_IND.

/LEIV Limits eigenvalues so that the SVD calculation does not require too much memory.
The limit is set to the minimum of the number of rows or columns of the input.

/NF Finds the number of significant factors and stores it in the variable V_npnts. You must
use /IND in order to compute the significant factors.

/O Overwrites input waves.

/Q Suppresses printing of factors in the history area.

/RSD[=rsdMode] Computes the Residual Standard Deviation (RSD) and returns the RSD in the wave
W_RSD in the current data folder. The first element in W_RSD is NaN and all
remaining wave elements correspond to the number of significant factors.
rsdMode =0: Covariance about the origin.
rsdMode =1: Correlation about the origin.

/RMS Computes the RMS error. Returns results in the wave W_RMS in the current data
folder. The wave is scaled using SetScale/P x 1,1,"", W_RMS.

/SCMT Saves C matrix after the singular value decomposition (SVD) in the wave M_C in the
current data folder.

/SCR Converts the individual wave input into standard scores. Does not work when the
input is a single 2D wave. It is an error to convert to standard scores when one or more
entries in the waves are NaN or INF. If you use this feature make sure to use the
appropriate form of the RSD calculation.

/SDM Saves a copy of the data matrix at the end of the calculation. This is useful if your input
consists of individual waves or if you want to save the computed standard scores. If
the input is a 2D matrix, you will get a copy of the input matrix in the wave M_D.

/SEVC Saves the eigenvalue vector in the wave W_Eigen, which are the raw eigenvalues
generated by the SVD, in the current data folder. Normally, if the SVD was applied to a
raw data matrix, i.e., not covariance or correlation matrix, you must square each
element of the wave to obtain the PCA eigenvalues. Note that this wave has default
wave scaling.

/SL Computes percent significance level and stores it in the wave W_PSL in the current
data folder.

/SQEV Does not square SVD eigenvalues. If you specify /COV there is no need to use this flag.
Use only if your input is already a covariance matrix. In this case the results of the
SVD are the eigenvalues not their square roots.

/SRMT Saves R matrix after the SVD in the wave M_R in the current data folder.

pcsr

V-544

Details
The input is either via /WSTR=waveListStr or a list of up to 100 1D waves or a single 2D wave following the
last flag.
waveListStr is string containing a semicolon-separated list of 1D waves to be used for the data matrix.
waveListStr can include any legal path to a wave. Liberal names can be quoted or not quoted. It is assumed
that all waves are of the same numerical type (either single or double precision) and that all waves have the
same number of points.
Regardless of the inputs, the operation expects that the number of rows in the resulting matrix is greater
than or equal to the number of columns.
The operation starts by creating the data matrix from the input wave(s). If you provide a list of 1D waves
they become the columns of the data matrix. You can choose to use the covariance matrix (/COV) as the data
matrix and you can also choose to normalize each column of the data matrix to convert it into standard
scores. This involves computing the average and standard deviation of each column and then setting the
new values to be:

.

You can pre-process the input data using MatrixOp with the SubtractMean, NormalizeRows, and
NormalizeCols functions.
After creating the data matrix the operation computes the singular value decomposition (SVD) of the data
matrix. Results of the SVD can be saved or processed further. Save the C and R matrices using /SCMT and
/SRMT. These are related to the input data matrix through: .

The remainder of the operation lets you compute various statistical quantities defined by Malinowski (see
References). Use the flags to determine which ones are computed.
The operation generates a number of output waves. All waves are stored in the current data folder.
You can save the input matrix D in the wave M_D, the optional SVD results are stored in the waves M_C
that contains the column matrix C, M_R that contains the row matrix R, and W_Eigen that contains the
eigenvalues of the data matrix. Note that these can be the eigenvalues or the square of the eigenvalues
depending on the input matrix being a covariance matrix or not (see /SQEV).
The optional 1D output waves (W_RSD, W_RMS, W_IE, W_IND, W_PSL) are saved with wave scaling to
make it easier to display the wave as a function of the number of factors.

References
Kaiser, H., Computer Program for Varimax Rotation in Factor Analysis, Educational and Psychological

Measurement, XIX, 413-420, 1959.
Malinowski, E.R., Factor Analysis in Chemistry, 3rd ed., John Wiley, 2002.

pcsr
pcsr(cursorName [, graphNameStr])
The pcsr function returns the point number of the point which the specified cursor (A through J) is on in the
top (or named) graph. When used with cursors on images or waterfall plots, pcsr returns the row number,
and when used with a free cursor, it returns the relative X coordinate.

/U Leaves the input waves unchanged only when the input is a 2D wave. Note that
covariance calculations will not be made even if the appropriate flag is used.

/VAR Computes the variance associated with each eigenvalue. The variance is defined as
the ratio of the eigenvalue to the sum of all eigenvalues. The results are stored in the
wave W_VAR in the current data folder. See also /CVAR above.

/WSTR=waveListStr

String containing a list of names for all input waves.

/Z No error reporting.

newValue oldValue colAverage–
colStdv

--=

D R C⋅=

Pi

V-545

Parameters
cursorName identifies the cursor, which can be cursor A through J.
graphNameStr specifies the graph window or subwindow.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.

Details
The pcsr result is not affected by any X axis.

See Also
The hcsr, qcsr, vcsr, xcsr, and zcsr functions.
Programming With Cursors on page II-292.

Pi
Pi
The Pi function returns π (3.141592…).

PICTInfo
PICTInfo(pictNameStr)
The PICTInfo function returns a string containing a semicolon-separated list of information about the
named picture. If the named picture does not exist, then "" is returned. Valid picture names can be found
in the Pictures dialog.

Details
The string contains six pieces of information, each prefaced by a keyword and colon and terminated with a
semicolon.

Examples
print PictInfo("PICT_0")

will print the following in the history area:
TYPE:PICT;BYTES:55734;WIDTH:468;HEIGHT:340;PHYSWIDTH:468;PHYSHEIGHT:340;

See Also
The ImageLoad operation for loading PICT and other image file types into waves, and the PICTList
function. The StringFromList operation for parsing the information string.
See Pictures on page III-423 and Pictures Dialog on page III-425 for general information on picture
handling.

PICTList
PICTList(matchStr, separatorStr, optionsStr)
The PICTList function returns a string containing a list of pictures based on matchStr and optionsStr
parameters. See Details for information on listing pictures in graphs, panels, layouts, and the picture gallery.

Keyword Information Following Keyword

TYPE One of: “PICT”, “PNG”, “JPEG”, “Enhanced metafile”, “Windows metafile”, “DIB”,
“Windows bitmap”, or “Unknown type”.

BYTES Amount of memory used by the picture.

WIDTH Width of the picture in pixels.

HEIGHT Height of the picture in pixels.

PHYSWIDTH Physical width of the picture in points.

PHYSHEIGHT Physical height of the picture in points.

Picture

V-546

Details
For a picture name to appear in the output string, it must match matchStr and also must fit the requirements of
optionsStr. The first character of separatorStr is appended to each picture name as the output string is generated.
The name of each picture is compared to matchStr, which is some combination of normal characters and the
asterisk wildcard character that matches anything. For example:

matchStr may begin with the ! character to return windows that do not match the rest of matchStr. For
example:

The ! character is considered to be a normal character if it appears anywhere else, but there is no practical
use for it except as the first character of matchStr.
optionsStr is used to further qualify the picture.
Use "" accept all pictures in the Pictures Dialog that are permitted by matchStr.
Use the WIN: keyword to limit the pictures to the named or target window:

Examples

See Also
The ImageLoad operation for loading PICT and other image file types into waves, and the PICTInfo
function. Also the StringFromList function for retrieving items from lists.
See Pictures on page III-423 and Pictures Dialog on page III-425 for general information on picture
handling.

Picture
Picture pictureName
The Picture keyword introduces an ASCII code picture definition of binary image data.

See Also
Proc Pictures on page IV-44 for further information.

"*" Matches all picture names.

"xyz" Matches picture name xyz only.

"*xyz" Matches picture names which end with xyz.

"xyz*" Matches picture names which begin with xyz.

"*xyz*" Matches picture names which contain xyz.

"abc*xyz" Matches picture names which begin with abc and end with xyz.

"!*xyz" Matches picture names which do not end with xyz.

"WIN:" Match all pictures displayed in the top graph, panel, or layout.

"WIN:windowName" Match all pictures displayed in the named graph, panel, or layout window.

PICTList("*",";","") Returns a list of all pictures in the Pictures Dialog.

PICTList("*", ";","WIN:") Returns a list of all pictures displayed in the top panel, graph, or
layout.

PICTList("*_bkg", ";", "WIN:Layout0")

Returns a list of pictures whose names end in “_bkg” and which are
displayed in Layout0.

PixelFromAxisVal

V-547

PixelFromAxisVal
PixelFromAxisVal(graphNameStr, axNameStr, val)
The PixelFromAxisVal function returns the local graph pixel coordinate corresponding to the axis value in
the graph window or subwindow.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
If the specified axis is not found and if the name is “left” or “bottom” then the first vertical or horizontal
axis will be used.
If graphNameStr references a subwindow, the returned pixel value is relative to top left corner of base
window, not the subwindow.

See Also
The AxisValFromPixel and TraceFromPixel functions.

PlayMovie
PlayMovie [flags] [as fileNameStr]
The PlayMovie operation opens a QuickTime movie file into a window and plays it.

Parameters
The file to be opened is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-400 for details on forming
the path.
On Windows, if QuickTime is not installed or cannot open the file, the file is passed to the operating system
to be opened with the default program for the given filename extension. This allows PlayMovie to display
movies without QuickTime. If this happens, the /W parameters are ignored.

Flags

Details
Coordinates are the initial coordinates of the movie window in points unless /I or /M are used before /W.
Only the top and left coordinates are used. The window has the standard width and height for movies.
If either the path or fileNameStr is omitted then PlayMovie will bring up a dialog to let you find a movie file.
If both are present, PlayMovie opens the file automatically.
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-34 for details.
Any movie file can be played, not just movies made by Igor. There is no limit on the number of movie
windows opened for playing.

/I Coordinates are in inches.

/M Coordinates are in centimeters.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing
symbolic path.

/W=(left,top,right,bottom) Sets the initial coordinates of the movie window (in points unless /I or /M are
used before /W).

/Z No error reporting; an error is indicated by nonzero value of the variable
V_flag. If the user clicks the cancel button in the Open File dialog, V_flag is set
to -1.

PlayMovieAction

V-548

Movie windows are considered transient and are not restored when an experiment is reopened.

See Also
Movies on page IV-225.
The PlayMovieAction operation.

PlayMovieAction
PlayMovieAction [/Z] keyword [=value][, keyword [=value]]
PlayMovieAction operates on the top movie window, opened via PlayMovie, or on a movie file opened via
the open keyword (requires Igor Pro 6.12 or later).
If the /Z flag is present, errors are not fatal. V_flag is set to error return regardless.

Parameters

Flags

Details
Operations are performed in the following order: kill, stop, gotoBeginning, gotoEnd, frame, step, getTime,
extract, start. kill overrides all other parameters.
If you want to extract a grayscale image, you can convert the RGB image into grayscale using the
ImageTransform command as follows:

extract Extracts current frame into an 8-bit RGB image wave named M_MovieFrame. (Can be
combined with frame=f.)

extract=e Extracts e frames into a single multiframe wave, M_MovieChunk. This wave will have
3 planes for RGB and will have e chunks.

frame=f Moves to specified movie frame (and stops movie).

getID Returns top movie ID number in V_Value. Do not use in same call with getTime.

getTime Reads current movie time into variable V_value (in seconds).

gotoBeginning Goes to beginning of movie.

gotoEnd Goes to end of movie.

kill Kills movie window.
Windows only: when used with the ref keyword, closes the open movie file.

open=fullPath This keyword is supported on Windows only and fullPath must point to an AVI file
with a ".avi" extension.
Opens the specifed movie file to enable frame extraction. No movie window is
involved. V_Flag is set to zero if no error occurred and V_Value is set to the file
reference number. Requires Igor Pro 6.12 or later.

ref=refNum This keyword is supported on Windows only and for AVI files only.
The ref keyword is required with all PlayMovieAction commands after using the
open keyword to access a movie file. refNum must be the file reference number
returned in V_Value in the open step. Requires Igor Pro 6.12 or later.

setFrontMovie= id Sets movie with given id as top window. Error if no such window (use /Z to suppress
errors). Do not use in same call with getID.

start Starts movie playing.

step=s Moves by s frames into movie (0 is same as 1, negative values move backwards).

stop Stops movie.

/Z No error reporting; an error is indicated by nonzero value of the variable V_flag.

PlaySnd

V-549

PlayMovieAction extract
ImageTransform rgb2gray M_MovieFrame
NewImage M_RGB2Gray

Windows Only Features
The open and ref keywords support extracting frames from AVI files on Windows only. They require Igor
Pro 6.12 or later.
When accessing a file using the open keyword, none of the keywords related to movie windows or playing
a movie are supported. Each command that targets the file must include the ref keyword using the file
reference number returned in the open step.
When you are finished extracting frames, use the kill keyword to close the file.
To get a full path for use with the open keyword, use the PathInfo or Open /D/R commands.

Examples
How to determine the number of frames in a simple movie:
PlayMovie
PlayMovieAction stop,gotoEnd,getTime
Variable tend= V_value
PlayMovieAction step=-1,getTime
Print "frames= ",tend/(tend-V_value)
PlayMovieAction kill

See Also
Movies on page IV-225.
The PlayMovie operation.

PlaySnd
PlaySnd [flags] fileNameStr
Note: PlaySnd is obsolete. Use PlaySound instead.
Available only on the Macintosh.
The PlaySnd operation plays a sound from the file’s data fork, or from an 'snd ' resource.

Parameters
The file containing the sound is specified by fileNameStr and /P=pathName where pathName is the name of
an Igor symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path
relative to the folder associated with pathName, or the name of a file in the folder associated with pathName.
If Igor can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing
you to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-400 for details on forming
the path.

Flags

Details
If none of /I, /N or /R are specified, PlaySnd tries to play a sound stored in the data fork of the file. If the file
dialog is used, only files of type 'sfil' are shown.

/I=resourceIndex Specifies the 'snd ' resource to load by resource index, starting from 1.

/M=promptStr Specifies a prompt if PlaySnd needs to put up a dialog to find the file.

/N=resNameStr Specifies the resource to load by resource name.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/Q Quiet: suppresses the insertion of 'snd ' info into the history area.

/R=resourceID Specifies the 'snd ' resource to load by resource ID.

/Z Does not play the sound, just checks for its existence.

PlaySound

V-550

If any of /I, /N or /R are specified, PlaySnd tries to play a sound from an 'snd ' resource. Most programs
store sounds in 'snd ' resources. If the file dialog is used, files of all types are shown.
If /P=pathName is omitted, then fileNameStr can take on three special values:

If you specify /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a file
system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-34 for details.
There are no sounds in the Igor Pro application file.
If the file is not fully specified and fileNameStr is not one of these special values, then PlaySnd presents a
dialog from which you can select a file. “Fully specified” means that Igor can determine the name of the file
(from the fileNameStr parameter) and the folder containing the file (from the /P=pathName flag or from the
fileNameStr parameter).
PlaySnd sets the variable V_flag to 1 if the sound exists and fits in available memory or to 0 otherwise.
If the sound exists, PlaySnd also sets the string variable S_Info to:
"SOURCE:sourceName;RESOURCENAME:resourceName;RESOURCEID:resourceID"

If the sound is not a resource then resourceName is "" and resourceID is 0. sourceName will be the name of the
file that was loaded or “Clipboard”, “System” or “Igor”.

Examples
PlaySnd/I=1/P=mySnds/Z "Wild Eep"
If (V_flag) // Any 'snd ' in the "Wild Eep" file?

Print S_info // Yes, print resource number, etc.
Endif

This prints the following into the history area:
SOURCE:resource fork;RESOURCENAME:Wild Eep;RESOURCEID:8;

PlaySound
PlaySound [/A[=a] /C] soundWave
PlaySound /A[=a] {soundWave1, soundWave2 [, soundWaveN…]}
The PlaySound operation plays the audio samples in the named wave. The various sound output
parameters — number of samples, sample rate, number of channels, and number of bits of resolution — are
determined by the corresponding parameters of the wave.

Flags

Details
The wave's time per point, as determined by its X scaling, must be a valid sampling rate. A value of 1/44100
(CD standard) is typical.

“Clipboard” Loads data from Clipboard.

“System” Loads data from System file.

“Igor” Loads data from Igor Pro application.

/A[=a]

/C Obsolete - do not use.
On Windows /C causes sound wave data greater than 16-bits to be converted to 16-bit integer.
Such data should range from -32768 to +32767.

On Macintosh /C is ignored.

Plays sounds asynchronously so that sounds will continue to play after the command itself
has executed.
/A=0: Same as no /A flag.
/A=1: Plays sounds asynchronously; same as /A.
/A=2: Stop playing any current sound before starting this one.
/A=3: Return with user abort error if output buffers are full (rather than waiting.)

Use GetRTError(1) to detect and clear the error condition.

pnt2x

V-551

Sound waves should be 16 bit integers with a range of -32768 to +32767. On Macintosh as of Igor version
6.11, 32-bit floating point data with a range of -1 to +1 can also be used. For backward compatibility, 8-bit
integer data with a range of -128 to +127 is also supported.
With the /A flag, the sound plays asynchronously (i.e., the command returns before the sound is finished).
If another command is issued before the sound is finished then the new command will wait until the last
sound finishes. A PlaySound without the /A flag can play on top of the current sound. The transition
between sounds should be seamless on Macintosh but may be slightly delayed on Windows.
It is OK to kill a sound wave immediately after PlaySound returns even if the /A flag is used.
To play a stereo sound, provide a 2 column wave with the left channel in column 0. Actually, the software
will attempt to play as many channels as there are columns in the wave. You can also use multiple1D waves
with the /A flag. To use this method, enclose the list of 1D waves in braces

Examples
Under Windows, support for sound is somewhat idiosyncratic so these sound examples may not work
correctly with your particular hardware configuration.
Make/B/O/N=1000 sineSound // 8 bit samples
SetScale/P x,0,1e-4,sineSound // Set sample rate to 10Khz
sineSound= 100*sin(2*Pi*1000*x) // Create 1Khz sinewave tone
PlaySound sineSound

The following example will create a rising pitch in the left channel and a falling pitch in the right channel:
Make/W/O/N=(20000,2) stereoSineSound // 16 bit data
SetScale/P x,0,1e-4,stereoSineSound // Set sample rate to 10Khz
stereoSineSound= 20000*sin(2*Pi*(1000 + (1-2*q)*150*x)*x)
PlaySound/A stereoSineSound // 16 bit, asynchronous

Multichannel sounds as in the previous example but from multiple 1D waves:
Make/W/O/N=20000 stereoSineSoundL,stereoSineSoundR // 16 bit data
SetScale/P x,0,1e-4,stereoSineSoundL,stereoSineSoundR// Set sample rate to 10Khz
stereoSineSoundL= 20000*sin(2*Pi*(1000 + 150*x)*x)// rising pitch in left
stereoSineSoundR= 20000*sin(2*Pi*(1000 - 150*x)*x)// falling in right
PlaySound/A {stereoSineSoundL,stereoSineSoundR} // two 1D waves

pnt2x
pnt2x(waveName, pointNum)
The pnt2x function returns the X value of the named wave at the point pointNum. The point number is
truncated to an integer before use.

Details
The result is derived from the wave’s X scaling, not any X axis of a graph it may be displayed in. If you
would like to convert a fractional point number to an X value you can use:
leftx(waveName)+deltax(waveName)*pointNum.
There is no equivalent function for multidimensional waves. To calculate this information for other
dimensions, use this expression:
DimOffset(waveName, dim) + ScaledDimPos*DimDelta(waveName,dim)

This expression calculates the scaled position of an element in the dimension dim (x, y, z, or t). ScaledDimPos
is the element number in that dimension (p, q, r, or s). dim is 0 for rows, 1 for columns, 2 for layers or 3 for
chunks. Setting dim =0 is equivalent to using pnt2x. You may want to use round, ceil, or floor to truncate
the result to an integer.

See Also
The functions DimDelta and DimOffset.
Waveform Model of Data on page II-77 and Changing Dimension and Data Scaling on page II-83 for an
explanation of waves and dimension scaling.

Point
The point structure is used as a substructure usually to store the location of the mouse on the screen.

Note: The SoundInput operations provide matching sound recording capabilities. See the
SoundInStatus operation.

poissonNoise

V-552

Structure Point
Int16 v
Int16 h

EndStructure

poissonNoise
poissonNoise(num)
The poissonNoise function returns a pseudo-random value from the Poisson distribution whose
probability distribution function is

with mean and variance equal to numI (= λ).

The random number generator initializes using the system clock when Igor Pro starts. This almost
guarantees that you will never repeat a sequence. For repeatable “random” numbers, use SetRandomSeed.
The algorithm uses the Mersenne Twister random number generator.

See Also
The SetRandomSeed operation.
Noise Functions on page III-334.
Chapter III-12, Statistics for a function and operation overview.

poly
poly(coefsWaveName, x1)
The poly function returns the value of a polynomial function at x = x1.
coefsWaveName is a wave that contains the polynomial coefficients. The number of points in the wave
determines the number of terms in the polynomial.

Examples
To fill wave0 with 100 points containing the polynomial 1 + 2*x + 3*x2 + 4*x3 evaluated over the range from
x = -1 to x= 1 (and graph it):
Make coefs = {1, 2, 3, 4} // f(x) = 1 + 2*x + 3*x^2 + 4*x^3
Make/N=100/O wave0; SetScale/I x, -1, 1, wave0; Display wave0
wave0 = poly(coefs, x)

poly2D
poly2D(coefsWaveName, x1, y1)
The poly2D function returns the value of a 2D polynomial function at x = x1, y = y1.
coefsWaveName is a wave that contains the polynomial coefficients. The number of points in the wave
determines the number of terms in the polynomial and therefore the polynomial degree.

Details
The coefficients wave contains polynomial coefficients for low degree terms first. All coefficients for terms
of a given degree must be present, even if they are zero. Among coefficients for a given degree, those for
terms having higher powers of X are first. Thus, poly2D returns, for a coefficient wave cw:
f(x,y) = cw[0] + cw[1]*x + cw[2]*y + cw[3]*x^2 + cw[4]*x*y + cw[5]*y^2 + …
A 2D polynomial of degree N has (N+1)(N+2)/2 terms.

Examples
To fill wave0 with 400 points (20 by 20) containing the polynomial 1 + 2*x + 2.5*y + 3*x2 + 3.5*xy + 4*y2
evaluated over the range x = (-1, 1) and y = (-1, 1) and make a contour plot of it:
Make/O coefs = {1, 2, 2.5, 3, 3.5, 4}
Make/N=(20,20)/O wave0
SetScale/I x, -1, 1, wave0
SetScale/I y, -1, 1, wave0

f (x;�) =
e��� x

x!
,

� > 0

x = 0,1,2...

PolygonArea

V-553

wave0 = poly2D(coefs, x, y)
Display; AppendMatrixContour wave0

The polynomial is second degree, so the first command above made the wave coefs with six elements
because (2+1)(2+2)/2 = 6.
To fill wave0 with 100 points containing the polynomial 1 + 2*x + 3*y+ 4*x2 + 4*y2 + 5*x3 + 6*y3 (note the lack
of cross terms) evaluated over the range x = (-1, 1) and y = (-1, 1) (the contour plot already made should
update with the new data). The first zero eliminates the second-order cross term x*y and the second and
third zeros eliminate the third-order cross terms x2*y and x*y2:
Make/O coefs = {1, 2, 3, 4, 0, 4, 5, 0, 0, 6}
wave0 = poly2D(coefs, x, y)

PolygonArea
PolygonArea(xWave, yWave)
The PolygonArea function returns the area of a simple, closed, convex or nonconvex planar polygon
described by consecutive vertices in xWave and yWave.
A simple polygon has no internal “holes” and its boundary curve does not intersect itself. Both xWave and
yWave must be 1D, real, numerical waves of the same dimensions. The minimum number of vertices is 3.
The function uses the shoelace algorithm to compute the area (see theorem 1.3.3 in the reference below). If
there is any error in the input, the function returns NaN.

Example
Function estimatePi(num)

Variable num

Make/O/N=(num+1) xxx,yyy
xxx=sin(2*pi*x/num)
yyy=cos(2*pi*x/num)

printf "Relative Error=%g\r",(pi-PolygonArea(xxx,yyy))/pi
End

See also
The areaXY and faverageXY functions.

References
O’Rourke, Joseph, Computational Geometry in C, 2nd ed., Cambridge University Press, New York, 1998.

popup
popup menuList
The popup keyword is used with Prompt statements in Functions and Macros. It indicates that you want a
pop-up menu instead of the normal text entry item in a DoPrompt simple input dialog (or a Macro’s missing
parameter dialog (archaic)). menuList is a string expression containing a list of items, separated by
semicolons, that are to appear in the pop-up menu.
Pop-up menus accept both numeric and string parameters. For numeric parameters, the number of the item
selected is placed in the variable. Numbering starts from one. For string parameters, the selected item’s text
is placed in the string variable.
Pop-up items support all of the special characters available for user-defined menu definitions (see Special
Characters in Menu Item Strings on page IV-118) with the exception that items in pop-up menus are
limited to 50 characters, keyboard shortcuts are not supported, and special characters must be enabled.

See Also
Prompt, DoPrompt, and Pop-Up Menus in Simple Dialogs on page IV-127.
See WaveList, TraceNameList, ContourNameList, ImageNameList, FontList, MacroList, FunctionList,
StringList, and VariableList for functions useful in generating lists of Igor objects.
Chapter III-14, Controls and Control Panels for details about control panels and controls.

PopupContextualMenu

V-554

PopupContextualMenu
PopupContextualMenu [/C=(xpix, ypix) /N] popupStr
The PopupContextualMenu operation displays a popup menu until the user makes a selection or cancels
the menu by clicking outside of its window.
The menu appears at the current mouse position or at the location specified by the /C flag.
The content of the menu is contained in popupStr as a semicolon-separated list of items or in a user-defined
menu definition referred to by the name contained in popupStr.

Parameters
If popupStr specifies the pop-up menu’s items (/N is not specified), then popupStr is a semicolon-separated
list of items such as “yes;no;maybe;”, or a string expression that returns such a list, such as TraceNameList.
The menu items can be formatted and checkmarked, like user-defined menus can. See Special Characters
in Menu Item Strings on page IV-118.
If /N is specified, popupStr must be the name of a user-defined menu that also has the
popupcontextualmenu keyword. See Example 3.

Flags

Details
If the /N flag is not set, PopupContextualMenu sets the following variables:

If the /N flag is set, PopupContextualMenu sets the following variables in a manner similar to (though
different from) PopupContextualMenu:

/C=(xpix, ypix) Sets the coordinates of the menu’s top left corner. Units are in pixels relative to the
top-most window, such as the MOUSEX and MOUSEY values passed to a window
hook. See the window hook example, below and SetWindow.
If /C is not specified, the menu’s top left corner appears at the current mouse position.

/N Indicates that popupStr contains the name of a menu definition instead of containing
a list of menu items.

V_flag=0 User cancelled the menu without selecting an item, or there was an error such as an
empty popupStr.

V_flag=>= 1 1 if the first menu item was selected, 2 for the second, etc.

S_selection "" if the user cancelled or error, else the text of the selected menu item.

V_kind The kind of menu that was selected:

 See Specialized Menu Item Definitions on page IV-116 for details about these
special user-defined menus.

V_kind Menu Kind

0 Normal text menu item, including Optional Menu Items (see
page IV-114) and Multiple Menu Items (see page IV-115).

3 "*FONT*"

6 "*LINESTYLEPOP*"

7 "*PATTERNPOP*"

8 "*MARKERPOP*"

9 "*CHARACTER*"

10 "*COLORPOP*"

13 "*COLORTABLEPOP*"

PopupContextualMenu

V-555

Examples

Example 1 - popupStr contains a list of menu items
// Menu formatting example

String checked= "\\M0:!" + num2char(18) + ":" // checkmark code
String items= "first;\M1-;"+checked+"third;" // 2nd is divider, 3rd is checked
PopupContextualMenu items
switch(V_Flag)

case 1:
// do something because first item was chosen
break;

case 3:
// do something because first item was chosen
break;

endswitch

V_flag

S_selection

In the case of Specialized Menu Item Definitions (see page IV-116), S_selection will
be the title of the menu or submenu, etc.

V_Red, V_Green, V_Blue

If a user-defined color menu ("*COLORPOP*" menu item) was selected then these
values hold the red, green, and blue values of the chosen color. The values range from
0 to 65535.
Will be 0 if the last user-defined menu selection was not a color menu selection.

-1 if the user didn't select any item, otherwise V_flag returns a value which
depends on the kind of menu the item was selected from:

V_kind V_flag Meaning

0 Text menu item number (the first menu item is number 1).

3 Font menu item number (use S_selection, instead).

6 Line style number (0 is solid line)

7 Pattern number (1 is the first selection, a SW-NE light
diagonal).

8 Marker number (1 is the first selection, the X marker).

9 Character as an integer, = char2num(S_selection). Use
S_selection instead.

10 Color menu item (use V_red, V_green, and V_blue instead).

13 Color table list menu item (use S_selection instead).

The menu item text, depending on the kind of menu it was selected from:

V_kind S_selection Meaning

0 Text menu item text.

3 Font name or "default".

6 Name of the line style menu or submenu.

7 Name of the pattern menu or submenu.

8 Name of the marker menu or submenu.

9 Character as string.

10 Name of the color menu or submenu.

13 Color table name.

PopupContextualMenu

V-556

Example 2 - popupStr contains a list of menu items
// Window hook example

SetWindow kwTopWin hook=TableHook, hookevents=1 // mouse down events
Function TableHook(infoStr)

String infoStr

Variable handledEvent=0
String event= StringByKey("EVENT",infoStr)
strswitch(event)

case "mousedown":
Variable isContextualMenu= NumberByKey("MODIFIERS",infoStr) & 0x10
if(isContextualMenu)

Variable xpix= NumberByKey("MOUSEX",infoStr)
Variable ypix= NumberByKey("MOUSEY",infoStr)
PopupContextualMenu/C=(xpix,ypix) "yes;no;maybe;"
strswitch(S_selection)

case "yes":
// do something because "yes" was chosen
break

case "no":
break

case "maybe":
// do something because "maybe" was chosen
break

endswitch
handledEvent=1

endif
endswitch
return handledEvent

End

Example 3 - popupStr contains the name of a user-defined menu
// User-defined contextual menu example

// dynamic menu (to keep WaveList items updated), otherwise not required.
// contextualmenu keyword is required, and implies /Q for all menu items.
//
// NOTE: Actions here are accomplished by the menu definition's
// execution text, such as DoSomethingWithColor.
// See Example 4 for another approach.
//
Menu "ForContext", contextualmenu, dynamic

"Hello", Beep
Submenu "Color"

"*COLORPOP*", DoSomethingWithColor()
End
Submenu "Waves"

WaveList("*",";",""), /Q, DoSomethingWithWave()
End

End

Function DoSomethingWithColor()
GetLastUserMenuInfo
Print V_Red, V_Green, V_Blue

End

Function DoSomethingWithWave()
GetLastUserMenuInfo
WAVE w = $S_value
Print "User selected "+GetWavesDataFolder(w,2)

End

// Use this code in a function or macro:
PopupContextualMenu/N "ForContext"
if(V_flag < 0)

Print "User did not select anything"
endif

Example 4 - popupStr contains the name of a user-defined menu
// User-defined contextual menu example

Menu "JustColorPop", contextualmenu
"*COLORPOP*(65535,0,0)", ;// initially red, empty execution text

End

PopupMenu

V-557

// Use this code in a function or macro
PopupContextualMenu/C=(xpix, ypix)/N "JustColorPop"
if(V_flag < 0)

Print "User did not select anything"
else

Print V_Red, V_Green, V_Blue
endif

See Also
Creating a Contextual Menu on page IV-143.
Special Characters in Menu Item Strings on page IV-118 and Chapter III-14, Controls and Control Panels,
for details about control panels and controls.
The SetWindow and PopupMenu operations.

PopupMenu
PopupMenu [/Z] ctrlName [keyword = value [, keyword = value …]]
The PopupMenu operation creates or modifies a pop-up menu control in the target or named window.
For information about the state or status of the control, use the ControlInfo operation.

Parameters
ctrlName is the name of the PopupMenu control to be created or changed.
The following keyword=value parameters are supported:

appearance={kind [, platform]}

Sets the appearance of the control. platform is optional. Both parameters are names,
not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
See Button and DefaultGUIControls for more appearance details.

bodyWidth=width Specifies an explicit size for the body (nontitle) portion of a PopupMenu control. By
default (bodyWidth=0), the body portion autosizes depending on the current text. If
you supply a bodyWidth>0, then the body is fixed at the size you specify regardless
of the body text. This makes it easier to keep a set of controls right aligned when
experiments are transferred between Macintosh and Windows, or when the default
font is changed.

disable=d

fColor=(r,g,b) Sets the initial color of the title. r, g, and b range from 0 to 65535. fColor defaults to
black (0,0,0). To further change the color of the title text, use escape sequences as
described for title=titleStr.

font="fontName" Sets the font used for the pop-up title, e.g., font="Helvetica".

fsize=s Sets the font size for the pop-up title.

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Draw in gray state; disable control action.

PopupMenu

V-558

fstyle=fs

help={helpStr} Sets the help for the control. The help text is limited to a total of 255 characters. On
Macintosh, the help appears if you turn Igor Tips on. On Windows, the help for the
first 127 characters or up to the first line break appears in the status line. If you press
F1 while the cursor is over the control, you will see the entire help text. You can insert
a line break by putting “\r” in a quoted string.

mode=m

noproc Specifies that no procedure is to execute when choosing in the pop-up menu.

popColor=(r,g,b) Specifies the color initially chosen in the color pop-up palette. r, g, and b are integers
from 0 to 65535. See the Colors, Color Tables, Line Styles, Markers, and Patterns
section.

popmatch=matchStr

Sets mode to the enabled menu item that matches matchStr. matchStr may be a
"wildcard" expression. See StringMatch. If no item is matched, mode is unchanged.

popvalue=valueStr Sets the string displayed by the menu when first created, if mode is not zero. See
Popvalue Keyword section.

pos={left,top} Sets the position of the pop-up menu in pixels.

pos+={dx,dy} Offsets the position of the pop-up in pixels.

proc=procName Specifies the procedure to execute when the pop-up menu is clicked. See Action
Procedure below.

rename=newName Gives pop-up menu a new name.

size={width,height} Sets pop-up menu size in pixels.

title=titleStr Sets title of pop-up menu to the specified string expression. Defaults to "" (no title).
titleStr can contain formatting escape codes in order to create fancy, styled results. The
escape codes are the same as used by the TextBox operation. The easiest way to
generate fancy text is to make selections from the Insert popup in the PopupMenu
Control dialog.

userdata(UDName)=UDStr

Sets the unnamed user data to UDStr. Use the optional (UDName) to specify a named
user data to create. You can retrieve the data using GetUserData.

userdata(UDName)+=UDStr

Appends UDStr to the current unnamed user data. Use the optional (UDName) to
append to the named UDStr.

fs is a bitwise parameter with each bit controlling one aspect of the font style
as follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold.
Bit 1: Italic.
Bit 2: Underline.
Bit 3: Outline (Macintosh only).
Bit 4: Shadow (Macintosh only).

Specifies the pop-up title location.
m=0: Title is in pop-up menu.
m=1: Title is to the left of pop-up menu, the chosen menu item

appears in the pop-up menu, and menu item number m is
initially selected.

PopupMenu

V-559

Flags

Details
The target window, or the window named with the win=winName keyword, must be a graph or panel.

Action Procedure
The action procedure is called when the user chooses a menu item. It can take one of two forms.
The original form of the action procedure takes there parameters:
Function PopupMenuAction (ctrlName,popNum,popStr) : PopupMenuControl

String ctrlName
Variable popNum // which item is currently selected (1-based)
String popStr // contents of current popup item as string
...

End

The ": PopupMenuControl" designation tells Igor to include this procedure in the list of available popup
menu action procedures in the PopupMenu Control dialog used to create a popup menu.
The second form of the action procedure takes one parameter, a reference to the built-in WMPopupAction
structure:
Function PopupMenuAction(PU_Struct) : PopupMenuControl

STRUCT WMPopupAction &PU_Struct
...

End

The WMPopupAction structure has members as described in the following table:

value=itemListSpec Specifies the pop-up menu’s items. itemListSpec can take several forms as described
below under Setting The Popup Menu Items.

win=winName Specifies which window or subwindow contains the named control. If not given, then
the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/Z No error reporting.

WMPopupAction Structure Members

Member Description

char ctrlName[MAX_OBJ_NAME+1] Control name.

char win[MAX_WIN_PATH+1] Host (sub)window.

STRUCT Rect winRect Local coordinates of host window.

STRUCT Rect ctrlRect Enclosing rectangle of the control.

STRUCT Point mouseLoc Mouse location.

Int32 eventCode Event that executed the procedure.

Int32 eventMod Bitfield of modifiers. See Control Structure eventMod Field on
page III-387.

String userData Primary (unnamed) user data. If this changes, it is written back
to the control automatically.

eventCode Event
-1 Control being killed
2 Mouse up

PopupMenu

V-560

Action procedures should respond only to documented eventCode values. Other event codes may be
added along with more fields. Although the return value is not currently used, action procedures should
always return zero.
The constants used to specify the size of structure char arrays are internal to Igor Pro and may change.

Setting The Popup Menu Items
This section discusses popup menus containing lists of text items. The next section discusses popup menus
for choosing colors, line styles, markers and patterns.
The items in the popup menu are determined by the itemListSpec parameter used with the value keyword.
itemListSpec can take several different forms from simple to complex.
No matter what the form, Igor winds up storing an expression that returns a string in the popup menu's
internal structure. This expression may be a literal string ("Red;Green;Blue;"), a call to a built-in or user-
defined function that returns a string, or the path to a global string variable. Igor evaluates this expression
when the popup menu is first created and again each time the user clicks on the menu. You can see the
string expression for a given popup menu using the PopupMenu Control dialog.
The right form for itemListSpec depends on your application. Here is a guide to choosing the right form with
the simpler forms first.

A literal string expression
Use this if you know the items you want in your popup menu when you write the PopupMenu call. For
example:
Function PopupDemo1() // Literal string

NewPanel
PopupMenu popup0, value="Red;Green;Blue;"

End

This method is limited to 400 characters of menu item text.

A function call
Use this if you need to compute the popup menu item list when the user clicks the popup menu. The
function must return a string containing a semicolon-separated list of menu items. This example creates a
popup menu which displays the name of each wave in the current data folder at the time the menu is
clicked:
Function PopupDemo2() // Built-in function

NewPanel
PopupMenu popup0, value=WaveList("*", ";", "")

End

You can also use a user-defined function. This example shows how to list waves from other than the current
data folder:
Function/S MyPopupWaveList()

String saveDF

// Create some waves for demo purposes
saveDF = GetDataFolder(1)
NewDataFolder/O/S root:Packages
NewDataFolder/O/S PopupMenuDemo
Make/O demo0, demo1, demo2
SetDataFolder saveDF

saveDF = GetDataFolder(1)
SetDataFolder root:Packages:PopupMenuDemo
String list = WaveList("*", ";", "")

Int32 blockReentry Prevents reentry of control action procedure. See Control
Structure blockReentry Field on page III-388.

Int32 popNum Item number currently chosen (1-based).

char popStr[MAXCMDLEN] Contents of current popup item.

WMPopupAction Structure Members

Member Description

PopupMenu

V-561

SetDataFolder saveDF

return list
End

Function PopupDemo3() // User-defined function
NewPanel
PopupMenu popup0, value=MyPopupWaveList()

End

followed by a local string variable specifying items
Use this when the popup menu item list is not known when you write the code but you can compute it at
runtime. For example:
Function PopupDemo4() // Local string variable specifying items

NewPanel
String quote = "\""
String list
if (CmpStr(IgorInfo(2),"Windows") == 0)

list = quote + "Windows XP; Windows VISTA;" + quote
else

list = quote + "Mac OS X 10.4;Mac OS X 10.5;" + quote
endif
PopupMenu popup0, value=#list

End

The strange-looking use of the quote string variable is necessary because the parameter passed to the
value=# keyword is evaluated once when the PopupMenu command executes and the result of that
evaluation is evaluated again when the PopupMenu is created or clicked. The result of the first evaluation
must be a legal string expression.
This method is limited to 400 characters of menu item text.

followed by a local string variable specifying a function
Use this when you need to compute the popup menu item list at click time and you need to select the
function which computes the list when the popup menu is created. For example:
Function/S WindowsItemList()

String list
list = "Windows XP; Windows VISTA;"
return list

End

Function/S MacItemList()
String list
list = "Mac OS X 10.4;Mac OS X 10.5;"
return list

End

Function PopupDemo5() // Local string variable specifying function
String listFunc
if (CmpStr(IgorInfo(2),"Windows") == 0)

listFunc = "WindowsItemList()"
else

listFunc = "MacItemList()"
endif
NewPanel
PopupMenu popup0, value=#listFunc

End

This form is useful when you create a control panel in an independent module. Since the control panel runs
in the global name space, you must specify the independent module name in the invocation of the function
that provides the popup menu items. For example:
// Calling a non-static function in an independent module from #included code
#pragma IndependentModuleName=IM
. . .
String listFunc= GetIndependentModuleName()+"#PublicFunctionInIndepMod()"
PopupMenu popup0, value=#listFunc

// Calling a static function in an independent module from #included code
#pragma IndependentModuleName=IM
#pragma ModuleName=ModName
. . .

PopupMenu

V-562

String listFunc= GetIndependentModuleName()+"#ModName#StaticFunctionInIndepMod()"
PopupMenu popup0, value=#listFunc

We use GetIndependentModuleName rather than hard-coding the name of the independent module so that
the code will continue to work if the name of the independent module is changed. Also, because this code
does not depend on the specific name of the independent module, it can be added to an independent
module via a #included procedure file.
Also see GetIndependentModuleName and Independent Modules and Popup Menus on page IV-222.

followed by a quoted literal path to a global string variable
Use this if you want to compute the popup menu item list before it is clicked, not each time it is clicked. This
would be advantageous if it takes a long time to compute the item list, and the list changes only at well-
defined times when you can set the global string variable.
The global string variable must exist when the PopupMenu command executes and when the menu is
clicked. In this example, the gPopupMenuItems global string variable is created and initialized when the
popup menu is created but can be changed to a different value later before the menu is clicked:
Function PopupDemo6() // Global string variable containing list

NewDataFolder/O root:Packages
NewDataFolder/O root:Packages:PopupMenuDemo
String/G root:Packages:PopupMenuDemo:gPopupMenuItems = "Red;Green;Blue;"

NewPanel
PopupMenu popup0 ,value=#"root:Packages:PopupMenuDemo:gPopupMenuItems"

End

followed by a local string variable containing a path to a global string variable
Use this when the popup menu item list contents will be stored in a global string variable whose location
is not known until the popup menu is created. For example:
Function PopupDemo7() // Local string containing path to global string

String graphName = WinName(0, 1, 1)// Name of top graph
if (strlen(graphName) == 0)

Print "There are no graphs."
return -1

endif

NewDataFolder/O root:Packages
NewDataFolder/O root:Packages:PopupMenuDemo

// Create data folder for graph
NewDataFolder/O root:Packages:PopupMenuDemo:$(graphName)

String list = "Red;Green;Blue;"
String/G root:Packages:PopupMenuDemo:$(graphName):gPopupMenuItems = list

NewPanel

String path // Local string containing path to global string
path = "root:Packages:PopupMenuDemo:" + graphName + ":gPopupMenuItems"
PopupMenu popup0, value=#path

return 0
End

Colors, Color Tables, Line Styles, Markers, and Patterns
You can create PopupMenu controls for color, color tables, line style (dash
modes), markers, and patterns. To do so, simply specify the itemListSpec
parameter to the value keyword as one of "*COLORPOP*",
"*COLORTABLEPOP*", "*COLORTABLEPOPNONAMES*",
"*LINESTYLEPOP*", "*MARKERPOP*", or "*PATTERNPOP*". In these modes
the body of the control will contain a color box, a color table (gradient), a line
style sample, a marker, or a pattern sample.
For these special pop-up menus, mode=0 (“Title in Box” checked) is not used.
For a line style pop-up menu, the mode value is the line style number plus one. Thus line style 0 (a solid
line) is mode=1.

PopupMenu

V-563

For a marker pop-up, the mode value is the marker number plus one, and marker 0 (the + marker) is mode=1.
For a pattern pop-up, the mode value is the SetDrawEnv fillPat number minus 4, so mode=1 corresponds
to fillpat=5, the SW-NE lines fill pattern shown above.
For a color table pop-up, the mode value is the CTabList() index plus 1, so mode=1 corresponds to the first
item in the list returned by CTabList, which is “Grays”:
ControlInfo $ctrlName // Sets V_Value
Print StringFromList(V_Value-1,CTabList()) // Prints "Grays"

ControlInfo also returns the color table name in S_Value.
To set the pop-up to a given color table name, you can use code like this:
Variable m = 1 + WhichListItem(ctabName, CTabList())
PopupMenu $ctrlName mode=m

For color pop-up menus, you set the current value using the popColor=(r,g,b) keyword. On output (via
the popStr parameter of your action procedure or via the S_value output from ControlInfo) the color is
encoded as “(r,g,b)” where r, g, and b are numbers. To get these numerical values, you can extract them from
the string using the MyRGBstrToRGB function below or use ControlInfo which sets V_Red, V_Green,
V_Blue.
The following example demonstrates the line style and color pop-up menus. To run the example, copy the
following code to the procedure window of a new experiment and then run the panel macro.
Window Panel0() : Panel

PauseUpdate; Silent 1 // building window …
NewPanel /W=(150,50,400,182)
PopupMenu popup0,pos={74,31},size={96,20},proc=ColorPopMenuProc,title="colors"
PopupMenu popup0,mode=1,popColor= (0,65535,65535),value= "*COLORPOP*"
PopupMenu popup1,pos={9,68},size={221,20},proc=LStylePopMenuProc
PopupMenu popup1,title="line styles",mode=1,value= "*LINESTYLEPOP*"

EndMacro

Function ColorPopMenuProc(ctrlName,popNum,popStr) : PopupMenuControl
String ctrlName
Variable popNum
String popStr

Variable r,g,b
MyRGBstrToRGB(popStr,r,g,b) // One way to get r, g, b
print popStr," gives: ",r,g,b

ControlInfo $ctrlName // Another way: sets V_Red, V_Green, V_Blue
Printf "ControlInfo returned (%d,%d,%d)\r", V_Red, V_Green, V_Blue

End

// Take (r,g,b) string and extract out numeric r,g,b values
Function MyRGBstrToRGB(rgbStr,r,g,b)

String rgbStr
Variable &r, &g, &b

r= str2num(rgbStr[1,inf])
variable spos= strsearch(rgbStr,",",0)
g= str2num(rgbStr[spos+1,inf])
spos= strsearch(rgbStr,",",spos+1)
b= str2num(rgbStr[spos+1,inf])
return 1

End

Function LStylePopMenuProc(ctrlName,popNum,popStr) : PopupMenuControl
String ctrlName
Variable popNum
String popStr

print "style:",popNum-1
End

Popvalue Keyword
There are times when the displayed value cannot be determined and saved such that it can be displayed
when the pop-up menu is recreated. For instance, because window recreation macros are evaluated in the
root folder, a pop-up menu of waves may not contain the correct list when a panel is recreated. That is, the
intention may be to have the menu show a particular wave from a data folder other than root. When the
panel recreation macro runs, the function that lists waves will list waves in the root data folder. The desired
selection may be wrong or nonexistent.

PopupMenuControl

V-564

Similarly, a pop-up menu of fonts may need to display a particular font upon recreation on a different computer
having a different list of fonts. The mode=m keyword probably won’t pick the correct font from the new list.
The solution to these problems is to save the correct selection with the popvalue=valueStr keyword. The list
function will not be executed when the menu is first created. If the menu is popped, the list function will be
evaluated, and the correct list will be displayed then.
It is a good idea to set the mode=m keyword to the correct number, if it is known. That way, when the menu
is popped the correct item is chosen.
Normally you can let Igor redraw the pop-up menu when it redraws the graph or control panel containing
it. However, there are situations in which you may want to force the pop-up menu to be redrawn. This can
be done using the ControlUpdate operation.

See Also
The ControlInfo operation for information about the control. The ControlUpdate, WaveList, and
TraceNameList operations. Chapter III-14, Controls and Control Panels, for details about control panels
and controls. The GetUserData operation for retrieving named user data. Special Characters in Menu Item
Strings on page IV-118.

PopupMenuControl
PopupMenuControl
PopupMenuControl is a procedure subtype keyword that identifies a macro or function as being an action
procedure for a user-defined pop-up menu control. See Procedure Subtypes on page IV-183 for details. See
PopupMenu for details on creating a popup menu control.

PossiblyQuoteName
PossiblyQuoteName(nameStr)
The PossiblyQuoteName function returns the input name string if it conforms to the rules of standard wave
or Data Folder names. If it does not, then the name is returned in single quotes. This is used when
generating a command string that you will pass to the Execute command. You might get the input name
string from a function such as NameOfWave or CsrXWave.

Examples
Print PossiblyQuoteName("wave0") // prints wave0
Print PossiblyQuoteName("wave 0") // prints 'wave 0'

Details
See Programming with Liberal Names on page IV-151 for an example.

Preferences
Preferences [/Q] [newPrefsState]
The Preferences operation sets or displays the state of user preferences.
User preferences affect the creation of new graphs, panels, tables, layouts, notebooks, procedure windows,
and the command window. They also affect the appearance of waves appended to graphs and tables, and
objects appended to layouts.

Parameters
If newPrefsState is present, it sets the state of user preferences as follows:

If newPrefsState is omitted, the state of user preferences is printed in the history area.

newPrefsState=0: Preferences off (use factory defaults).

newPrefsState=1: Preferences on.

PrimeFactors

V-565

Flags

Details
The Preferences operation sets the variable V_flag to the state of user preferences that were in effect before
the Preferences command executed: 1 for on, 0 for off.
You can also set the state of Preferences with the Misc menu.
Under most circumstances we want procedures to be independent of preferences so that a particular
procedure will do the same thing regardless of the state of preferences. To achieve this, preferences are
automatically off when you initiate procedure execution. When execution is complete, the state of
preferences is restored to what it was before.
If you want preferences to be in effect during procedure execution, you must turn it on with the Preferences
operation.
If the preferences setting is changed by a procedure, the effect of the call is propagated down the calling
chain. If a macro changes the preferences setting, that change is undone when the macro returns. If a
function changes the preferences setting, the change persists after the function returns. However, even with
a function, the changed preferences state does not persist when Igor regains control.

Examples
Function Test()

Variable oldPrefState
Preferences 1; oldPrefState=V_flag // remember prefs setting
Make wave0=x
Display wave0 // Display uses preferences
Preferences oldPrefState // put prefs back, like a macro would

End

See Also
Chapter III-17, Preferences.

PrimeFactors
PrimeFactors [/Q] inNumber
PrimeFactors calculates the prime factors of inNumber. By default factors are printed in the history and are
also stored in the wave W_PrimeFactors in the current data folder.

Flags

Details
The largest number that this operation can handle is 232-1.

Print
Print [flags] expression [, expression]…
The Print operation prints the evaluated expressions in the history area.

Parameters
An expression can be a wave, a numeric expression (e.g., 3*π/4), a string expression (e.g., "Today is "
+ date()), or a individual structure element or an entire structure variable.

Flags

/Q Disables printing to the history.

/Q Suppresses printing of factors in the history area.

/C Evaluates all numeric expressions as complex.

/D Prints a greater number of digits.

/F Prints numeric wave data (1D and 2D waves only) using “nice,” easily readable formatting.

/LEN=len Sets the string break length to len number of characters (default is 200).

printf

V-566

Details
Numeric expressions are always evaluated in double precision. The /D flag just controls the number of
digits displayed.
Print determines if an expression is real, complex, or string from the first symbol in the expression. Usually this
works fine, but occasionally Print guesses wrong and you may have to rearrange your expression. For example:
Print 1+cmplx(1,2)

will give an error because the first symbol, “1”, is real but the expression should be complex. Changing this
to
Print cmplx(1,2)+1

will work.
Printing numeric or string expressions involving structure elements must not start with the structure
element. Instead an appropriate numeric or string literal must appear first so that Igor can determine what
kind of expression to compile. For example rather than
Print astruct.astring + "hello"

use
Print "" + astruct.astring + "hello"

Print will break long string expressions into multiline pieces. If there are no natural breaks (carriage returns
or semicolons) within a default length, then it will break the string arbitrarily.
The default line length is 200 chars or it can be set using the /LEN flag. The maximum number of characters
that can be printed on a line in the History area is 400.
When printing waves, you can use either formatted (specified by /F) or unformatted (default) methods.
Unformatted output is in an executable syntax for each printed line: wave={}.

Printing formatted wave data gives easily (human) readable output, and works best for small 1D and 2D
waves. If the data are too large or in an unsupported format (3D or greater, or the wave is text), then the output
will be unformatted. Formatting is done using spaces, so the output will look best in a fixed-width font.
Printed wave data, both formatted and unformatted, are limited to no more than 100 lines of output. When
the line limit is exceeded a warning message will be printed at the end of the truncated output. For text waves,
output is limited to 50 characters of each string element, and there is no warning when a string is truncated.

See Also
The printf operation.
The PrintGraphs, PrintTable, PrintLayout andPrintNotebook operations.

printf
printf formatStr [, parameter [, parameter]…]
The printf operation prints formatted output to the history area.

Parameters
formatStr is a string which specifies the formatting of the output.

/S Obsolete. Numeric results are printed with a moderate number of digits whether you use /S
or not. To print more digits, use /D.

/SR Prints a wave subrange for expressions that start as “waveName[“. Without /SR, such an
expression is taken as the start of a numeric expression such as wave[3]-wave[2]. (You can
still use wave[pnt] but only if it does not start the numeric expression.)
Wave subrange printing is not done with /F.
You can specify a single row or column using [r] syntax. For example, to print column 4 of a
matrix, use:
Print mymat[][4]

Note: Executing lines printed from floating point waves will not exactly reproduce the source
data due to round-off or insufficient digits in the printed output.

printf

V-567

The type of the parameter, string or numeric, must agree with the corresponding conversion specification
in formatStr, or else the results will be indeterminate.
The printf parameters can be numeric or string expressions. Numeric and string structure fields are allowed
except that complex structure fields and non-numeric (e.g., WAVE, FUNCREF) structure fields are not
allowed.

Details
The formatStr contains literal text and conversion specifications.
A conversion specification starts with the % character and ends with a conversion character (for example,
g, e, f, d, or s as illustrated below). In between the % and the conversion character you may include one or
more flag characters, a field width specifier, and a precision specifier. The first % corresponds to the first
parameter, the second % corresponds to the second parameter, etc. If formatStr contains no % characters, no
parameters are expected.
Here are some simple examples. numVar is a numeric variable and strVar is a string variable.
printf "The answer is: %g\r", numVar
printf "Created wave %s\r", strVar
printf "Created wave %s, %d points\r", strVar, numVar

%g is a general-purpose format (floating point or scientific notation) that represents the value of numVar.
%d is an integer format that represents the value of numVar. %s specifies that the corresponding parameter
(strVar) is a string.
The "\r" in these examples appends a carriage return to the end of the printed text.
Here is a complex example using all of these elements of a conversion specification:
printf "%+015.4f\r", 1e6*PI

This prints:
The answer is: +003141592.6536

"+" is a flag character that tells printf to put a + or - sign in front of the number.
"015" is a field width specifier that tells printf to print the number in a field of at least 15 characters, padded
with leading zeros. Using "15" instead of "015" would cause printf to pad with spaces before the + sign
instead of zeros after it.
".4" is a precision specifier that tells printf to print four digits after the decimal point.
"f" tells printf to use a floating point format.
The most common conversions characters are “f” for floating point, “g” for general, “d” for decimal, and
“s” for string. They are interpreted as for the printf() function in the C programming language.
The escape codes \t and \r represent the tab and return characters respectively. See Escape Characters in
Strings on page IV-13 for more information.
The supported flag characters and their meanings are as follows:

The meaning of the precision specifier depends on the numeric format (%g, %e, %f, %d, etc.) being used:

You can replace both the field width and precision specifiers with an asterisk. This gets the field width or
precision specifier from a parameter. For example:
printf "%*.*f\r" 4, 3, 1e6*PI

- Left align the result in the field.

+ Put a plus or minus sign before the number.

<space> Put a space before a positive number.

Specifies alternate form for e, f, g, and x formats.

e, E, f Precision specifies number of digits after decimal point.

g, G Precision specifies maximum number of significant digits.

d, o, u, x, X Precision specifies minimum number of digits.

printf

V-568

means that the field width is 4 and the precision is 3. You could use numeric expressions instead of the
literal numbers to control the field width and precision algorithmically.
Here is a complete list of the conversion characters supported by printf:

Igor also supports a non-C, WaveMetrics extension to the conversion characters recognized by printf. This
conversion specification starts with “%W”. It is followed by a flag digit and a format character. For example,
printf "%W0Ps", 12.345E-6

prints 12.345000µs. In this example, the “%W0” introduces the WaveMetrics conversion specification. The
“0” (zero) following the “W” is the flag digit. The “P” that follows is the format specifier character, which
prints the number using a prefix, in this case, “µ”.
There is only one WaveMetrics format specifier character, “P”, which prints using a prefix such as µ, m, k,
or M. It recognizes two flag-digits, “0” or “1”. Option “0” prints with no space between the numeric part
and the prefix character while flag “1” prints with 1 space. Numbers greater than tera or less than femto
print using a power of ten notation. Here are a few examples:

f Converts a numeric parameter as [-]ddd.ddd, where the number of digits after the
decimal point is determined by the precision specifier and defaults to 6. If the # flag is
present, a decimal point will be used even if there are no digits to the right of it.
This conversion character uses the “round-to-half-even” rule, also known as “banker’s
rounding”. When the truncated digits are exactly 0.5000..., the quantity is rounded to an
even number. For example:
Printf “%.0f\r”, 15.5 // Prints 16 (rounded up to even)
Printf “%.0f\r”, 16.5 // Prints 16 (rounded down to even)

e, E Converts a numeric parameter as [-]d.ddde+/-dd, where the number of digits after the
decimal point is determined by the precision specifier and defaults to 6. If you use “E”
instead of “e” then printf uses a capital “E” in the number. If the # flag is present, a decimal
point will be used even if there are no digits to the right of it.

g, G Converts a numeric parameter using “f” or “e” style conversion depending on the
magnitude of the number. “e” is used if the exponent is less than -4 or greater than the
precision. “G” uses “f” or “E” style conversion. If the # flag is present, a decimal point will
be used even if there are no digits to the right of it and trailing zeros will not be removed.

d, o, u Converts a numeric parameter as a signed decimal integer, unsigned octal integer or
unsigned decimal integer, truncating any fractional part. The precision defaults to one
and specifies the minimum number of digits to print.
These conversion characters use the “round-away-from-zero” rule, like Igor’s round
function. For example:
Printf “%d\r”, 15.5 // Prints 16 (rounded away from zero)
Printf “%d\r”, 16.5 // Prints 17 (rounded away from zero)

x, X Converts a numeric parameter as an unsigned hexadecimal integer, truncating any
fractional part. The “x” style uses lower case for the hexadecimal numerals “abcdef”
where the “X” style uses upper case. The precision defaults to one and specifies the
minimum number of digits to print. If the # flag is present, the string “0x” or “0X” is
prepended to the number if it is not zero.

s Converts a numeric parameter as an unsigned hexadecimal integer, truncating any
fractional part. The “x” style uses lower case for the hexadecimal numerals “abcdef”
where the “X” style uses upper case. The precision defaults to one and specifies the
minimum number of digits to print. If the # flag is present, the string “0x” or “0X” is
prepended to the number if it is not zero.

b WaveMetrics extension. Converts a numeric parameter to binary.

c Converts a numeric parameter to a single character.

% Prints a % sign. No parameter is used.

%W WaveMetrics extension. See description below.

PrintGraphs

V-569

printf "%.2W0PHz", 12.342E6 // prints 12.34MHz
printf "%.2W1PHz", 12.342E6 // prints 12.34 MHz
printf "%.0W0Ps", 12.342E-6 // prints 12µs
printf "%.0W1Ps", 12.342E-9 // prints 12 ns

See Also
The sprintf, fprintf, and wfprintf operations; Creating Formatted Text on page IV-235 and Escape
Characters in Strings on page IV-13.

PrintGraphs
PrintGraphs [flags] graphSpec [, graphSpec]…
The PrintGraphs operation prints one or more graphs.
PrintGraphs prints one or more graphs on a single page from the command line or from a procedure. The
graphs can be overlaid or positioned any way you want.

Parameters
The graphSpec specifies the name of a graph to print, the position of the graph on the page and some other
options.

Flags

Details
Graph coordinates are in inches (/I) or centimeters (/M) relative to the top left corner of the physical page.
If none of these options is present, coordinates are assumed to be in points.
The form of a graphSpec is:
graphName [(left, top, right, bottom)] [/F=f] [/T]

Here are some examples:
// Take size and position from window size and position.
PrintGraphs Graph0, Graph1

// Specify size and position explicitly.
PrintGraphs/I Graph0(1, 1, 6, 5)/F=1, Graph1(1, 6, 6, 10)/F=1

If the coordinates are missing and the /T or /S flags are present before graphSpec then the graphs are tiled or
stacked. If the coordinates are missing but no /T or /S flags are present then the graph is sized and
positioned based on its position on the desktop.

/C=num Renders graphs in black and white (num=0) or in color (num=1; default).

/D Disables high resolution printing. This flag is of use only on Macintosh. It has no effect on
Windows.

/G=grout Specifies grout, the spacing between objects, for tiling in prevailing units.

/I Coordinates are in inches.

/M Coordinates are in centimeters.

/R Coordinates are in percent of page size (see Examples).

/PD Displays print dialog. This allows the user to use Print Preview or to print to a file.

/S Stacks graphs.

/T Tiles graphs.

PrintLayout

V-570

Finally there are these graphSpec options, which appear after the graph name:

Examples
You can put an entire graphSpec into a string variable and use the string variable in its place. In this case the
name of the string variable must be preceded by the $ character. This is handy for printing from a procedure
and also keeps the PrintGraphs command down to a reasonable number of characters. For example:
String spec0, spec1, spec2
spec0 = "Graph0(1, 1, 6, 5)/F=1"
spec1 = "Graph1(1, 6, 6, 10)/F=1"
spec2 = "" // PrintGraphs will ignore spec2.
PrintGraphs/I $spec0, $spec1, $spec2

If you use a string for a graphSpec and that string contains no characters then PrintGraphs will ignore that
graphSpec.

See Also
The PrintSettings, PrintTable, PrintLayout and PrintNotebook operations.

PrintLayout
PrintLayout [/C=num /D] winName
The PrintLayout operation prints the named page layout window.

Parameters
winName is the window name of the page layout to print.

Flags

Details
Normally page layouts are printed at the highest available resolution of the output device (printer, plotter,
or whatever). On Macintosh, it may not work properly at high resolution with some unusual output
devices. If this happens, you can try using the /D flag to see if it works properly at the default resolution.

See Also
The PrintSettings, PrintGraphs, PrintTable and PrintNotebook operations.

/F=f

/T Graph is transparent. This allows special effects when graphs are overlaid.
For this to be effective, the graph and its contents must also be transparent. Graphs are
transparent only if their backgrounds are white. Annotations have their own
transparent/opaque settings. PICTs may have been created transparent or opaque; an opaque
PICT cannot be made transparent.

/C=num Renders graphs, tables, and annotations in black-and-white (num=0) or in color (num=1;
default). It has no effect on pictures, which are colored independently.

/D Prints the layout at the default resolution of the output device. Otherwise it is printed at the
highest resolution. This flag is of use only on Macintosh. It has no effect on Windows.

Specifies a frame around the graph.
f=0: No frame (default).
f=1: Single frame.
f=2: Double frame.
f=3: Triple frame.
f=4: Shadow frame.

PrintNotebook

V-571

PrintNotebook
PrintNotebook [flags] notebookName
The PrintNotebook operation prints the named notebook window.

Parameters
notebookName is either kwTopWin for the top notebook window, the name of a notebook window or a host-
child specification (an hcSpec) such as Panel0#nb0. See Subwindow Syntax on page III-97 for details on
host-child specifications.

Flags

Details
If no /B flag is given, the default method of handling HiRes PICTs is used (/B=1). Printing of HiRes PICTs is
not well supported on the Macintosh, so by default it prints them using temporary high resolution bitmaps.
If a future version of the Mac OS improves in this respect, we will change the default method to print directly.

See Also
Chapter III-1, Notebooks.
The PrintSettings, PrintGraphs, PrintTable and PrintLayout operations.

PrintSettings
PrintSettings [/I /M /W=winName] [copySource=source, orientation=o,

margins={left,top,right,bottom}, scale=s, colorMode=m, getPrinterList,
getPrinter, setPrinter=printerNameStr, getPageSettings, getPageDimensions]

The PrintSettings operation gets or sets parameters associated with printing, such as a list of available
printers or page setup information for a particular window.
When getting or setting page setup information, PrintSettings acts on a particular window called the
destination window. The destination window is the top graph, table, page layout, or notebook window or
the window specified by the /W flag.
PrintSettings can not act on page setup records associated with the command window, procedure
windows, help windows, control panel, XOP windows, or any type of window other than graphs, tables,
page layouts, and notebooks.
The PrintSettings operation services the keywords in the order shown above, not in the order in which they
appear in the command. Thus, for example, the getPageSettings and getPageDimensions keywords report
the settings after all other keywords are executed.

/B=hiResMethod

/P=(startPage,endPage) Specifies a page range to print. 1 is the first page.

/S=selection

Macintosh only; this flag has no effect on Windows.
hiResMethod=1: Print HiRes PICTs using high resolution bitmaps.
hiResMethod=0: Don’t print HiRes PICTs using high resolution

bitmaps.
hiResMethod=-1: Print using the default method. Prints HiRes PICTs

using high resolution bitmaps and is the same as
method 1.

Controls what is printed.
selection=0: Print entire notebook (default).
selection=1: Print selection only.

PrintSettings

V-572

Flags

Keywords

/I Measurements are in inches. If both /I and /M are omitted, measurements are in
points.

/M Measurements are in centimeters. If both /I and /M are omitted, measurements are
in points.

/W=winName Acts on the page setup record of the graph, table, page layout, or notebook window
identified by winName. If winName is omitted or if winName is "", then it used the
page setup for the top window.

colorMode=m Sets the color mode for the page setup to monochrome (m=0) or to color (m=1).
This keyword does nothing on Macintosh because it is not supported by Mac OS X.

copySource=source

getPageDimensions Returns page dimensions via the string variable S_value, which contains keyword-
value pairs that can be extracted using NumberByKey and StringByKey. See
Details for keyword-value pair descriptions.

getPageSettings Returns page setup settings in the string variable S_value, which contains keyword-
value pairs that can be extracted using NumberByKey and StringByKey. See
Details for keyword-value pair descriptions.

getPrinter Returns the name of the selected printer for the destination window in the string
variable S_value. On Macintosh the returned value will be "" if the setPrinter
keyword was never used on the destination window. This means that the window
will use the operating system’s “current printer”.

getPrinterList

margins={left, top, right, bottom}

Copies page setup settings from the specified source to the destination window.
source can be the name of a graph, table, page layout, or notebook window or it
can be one of the following special keywords:
Default_Settings: Sets the page setup record to the default for the associated

printer as specified by the printer driver.
Factory_Settings: Sets the page setup record to the WaveMetrics factory

default. This is the page setup you get when creating a new
window with user preferences turned off.

Preferred_Settings: Sets the page setup record to the user preferred page setup.
This is the page setup you get when creating a new
window with user preferences turned on. Because there is
only one page setup for all graphs and one page setup for
all tables, this has no effect when the destination window
is a graph or table. It does work for layouts and notebooks.

Returns a semicolon-separated list of printer names in the string variable S_value.
Mac OS X: Returns a list of printers added through Print Center.
Windows: Returns the names of any local printers and names of

network printers to which the user has made previous
connections.

PrintSettings

V-573

Details
All graphs in the current experiment share a single page setup record so if you change the page setup for
one graph, you change it for all graphs.
All tables in the current experiment share a single page setup record.
Each page layout window has its own page setup record.
Each notebook window has its own page setup record.
The keyword-value pairs for the getPageSettings keyword are as follows:

Sets the page margins. Dimensions are in points unless /I or /M is used.
The margins are clipped so that they are no smaller than the minimum allowed by
the printer driver and no larger than one-half the size of the paper.
The terms left, top, right, and bottom refer to the sides of the page after possible
rotation for landscape orientation.
Passing zero for all four margins sets the margins to the minimum margin allowed
by the printer.
On Macintosh only, passing -1 for all four margins sets the margins to whatever
minimum margin is allowed by the printer, even if the printer is changed later. This
is how Igor Pro behaved on Macintosh prior to the creation of the PrintSettings
operation, when the minimum printer margins were always used.

orientation=o Sets the paper orientation to portrait (o=0) or to landscape (o=nonzero).

scale=s Sets the page scaling in percent. s is clipped to the range 5 to 5000. A value of 50
prints graphics at one-half the normal size. Some printer drivers do not support
scaling in which case the scale keyword does nothing. Many Windows printer
drivers that do support scaling still do not work with the scale keyword because
their scaling support does not use the standard Windows technique.

setPrinter=printerNameStr

Sets the selected printer for the destination window.
SetPrinter attempts to preserve orientation, margins, scale, and color mode but
other settings may revert to the default state.

printerNameStr is a name as returned by the getPrinterList keyword and may not be
identical to the name displayed in various dialogs. For example, on Mac OS X, the
printer name “DESKJET 840C” is returned by getPrinterList as “DESKJET_840C”.
The latter is the “Queue Name” displayed by the Mac OS X Print Center or Printer
Setup Utility programs.

If you receive an error when using setPrinter, use the getPrinterList keyword to
verify that the printer name you are using is correct. Verify that the printer is
connected and turned on.
Windows printer names are sometimes UNC names of the form
“\\Server\Printer”. You must double-up backslashes when using a UNC name in
a literal string. See UNC Paths on page III-401 for details.

If printerNameStr is "", the printer for the destination window is set to the default
state. This means different things depending on the operating system:
Mac OS X: The destination window will use the operating system’s

“current printer”, as if the setPrinter keyword had never
been used.

Windows: The destination window will use the system default
printer.

PrintTable

V-574

The keyword-value pairs for the getPageDimensions keyword are as follows:

Examples
For an example using the PrintSettings operation, see the PrintSettings Tests example experiment file in the
“Igor Pro Folder:Examples:Testing & Misc” folder.
Here are some simple examples showing how you can use the PrintSettings operation.
Function GetOrientation(name) // Returns 0 (portrait) or 1 (landscape)

String name // Name of graph, table, layout or notebook

PrintSettings/W=$name getPageSettings
Variable orientation = NumberByKey("ORIENTATION", S_value)
return orientation

End

Function SetOrientationToLandscape(name)
String name // Name of graph, table, layout or notebook

PrintSettings/W=$name orientation=1
End

Function/S GetPrinterList()
PrintSettings getPrinterList
return S_value

End

Function SetPrinter(destWinName, printerName)
String destWinName, printerName

PrintSettings/W=$destWinName setPrinter=printerName
return 0

End

See Also
The PrintGraphs, PrintTable, PrintLayout and PrintNotebook operations.

PrintTable
PrintTable [/P=(startPage,endPage) /S=selection] winName
The PrintTable operation prints the named table window.

Parameters
winName is the window name of the table to print.

Keyword Information Following Keyword

ORIENTATION: 0 if the page is in portrait orientation, 1 if it is in landscape orientation.

MARGINS: The left, top, right, and bottom margins in points, separated by commas.

SCALE: The page scaling expressed in percent. 50 means that the graphics are drawn at 50% of
their normal size.

COLORMODE: 0 for black&white, 1 for color. This is not supported on Macintosh and always returns 1.

Keyword Information Following Keyword

PAPER: The left, top, right, and bottom coordinates of the paper in points, separated by
commas. The top and left are negative numbers so that the page can start at (0,0).

PAGE: The left, top, right, and bottom coordinates of the page in points, separated by commas. The
term page refers to the part of the paper inside the margins. The top/left corner of the page
is always at (0, 0).

PRINTAREA: The left, top, right, and bottom coordinates of the page in points, separated by commas.
The print area is the part of the paper on which printing can occur, as determined by
the printer. This is equal to the paper inset by the minimum supported margins. The top
and left are negative numbers so that the page can start at (0,0).

Proc

V-575

Flags

See Also
Chapter II-11, Tables.
The PrintSettings, PrintGraphs, PrintLayout and PrintNotebook operations.

Proc
Proc macroName([parameters]) [:macro type]
The Proc keyword introduces a macro that does not appear in any menu. Otherwise, it works the same as
Macro. See Macro Syntax on page IV-102 for further information.

ProcedureText
ProcedureText(macroOrFunctionNameStr [, linesOfContext [,

procedureWinTitleStr]])
The ProcedureText function returns a string containing the text of the named macro or function as it exists
in some procedure file, optionally with additional lines that are before and after to provide context or to
collect documenting comments.
Alternatively, all of the text in the specified procedure window can be returned.

Parameters
macroOrFunctionNameStr identifies the macro or function. It may be just the name of a global (nonstatic)
procedure, or it may include a module name, such as "myModule#myFunction" to specify the static
function myFunction in a procedure window that contains a #pragma ModuleName=myModule statement.
If macroOrFunctionNameStr is set to "", and procedureWinTitleStr specifies the title of a single procedure
window, then all of the text in the procedure window is returned.
linesOfContext optionally specifies the number of lines around the function to include in the returned string.
The default is 0 (no additional contextual lines of text are returned). This parameter is ignored if
macroOrFunctionNameStr is "" and procedureWinTitleStr specifies the title of a single procedure window.
Setting linesOfContext to a positive number returns that many lines before the procedure and after the
procedure. Blank lines are not omitted.
Setting linesOfContext to -1 returns lines before the procedure that are not part of the preceding macro or
function. Usually these lines are comment lines describing the named procedure. Blank lines are omitted.
Setting linesOfContext to -n, where n>1, returns at most n lines before the procedure that are not part of the
preceding macro or function. Blank lines are not omitted in this case. n can be -inf, which acts the same as
-1 but includes blank lines.
The optional procedureWinTitleStr can be the title of a procedure window (such as "Procedure" or "File Name
Utilities.ipf"). The text of the named macro or function in the specified procedure window is returned.
You can use procedureWinTitleStr to select one of several static functions with identical names among
different procedure windows, even if they do not use a #pragma moduleName=myModule statement.

Advanced Parameters
If SetIgorOption IndependentModuleDev=1, procedureWinTitleStr can also be a title followed by a
space and, in brackets, an independent module name. In such cases ProcedureText retrieves function text
from the specified procedure window and independent module. (See Independent Modules on page
IV-218 for independent module details.)
For example, in a procedure file containing:

/P=(startPage,endPage) Specifies a page range to print. 1 is the first page.
If /P is omitted all pages are printed unless /S is used.

/S=selection Controls what is printed.
selection=0: Print entire table (default).
selection=1: Print selection only.

ProcGlobal

V-576

#pragma IndependentModule=myIM
#include <Axis Utilities>

A call to ProcedureText like this:
String text=ProcedureText("HVAxisList",0,"Axis Utilities.ipf [myIM]")

will return the text of the HVAxisList function located in the Axis Utilities.ipf procedure window, which
is normally a hidden part of the myIM independent module.
You can see procedure window titles in this format in the Windows→Procedure Windows menu when
SetIgorOption IndependentModuleDev=1 and when an experiment contains procedure windows
that comprise an independent module, as does #include <New Polar Graphs>.
procedureWinTitleStr can also be just an independent module name in brackets to retrieve function text from
any procedure window that belongs to the named independent module:
String text=ProcedureText("HVAxisList",0,"[myIM]")

See Also
Regular Modules on page IV-216 and Independent Modules on page IV-218.
The WinRecreation and FunctionList functions.

ProcGlobal
ProcGlobal#procPictureName
The ProcGlobal keyword is used with Proc Pictures to avoid possible naming conflicts with any other global
pictures in the experiment. When you add a picture to an experiment using the Pictures dialog, such a
picture is global in scope and may potentially have the same name as a Proc Picture. When a Proc Picture
is global (and only then), you should use the ProcGlobal keyword to make sure that the Proc Picture is used
with your code and to avoid confusion with pictures in the Pictures dialog.

See Also
See Proc Pictures on page IV-44 for details. Pictures Dialog on page III-425.

Project
Project [/C={long,lat}/M=method /P={p1,p2,…}] longitudeWave, latitudeWave
The Project operation calculates projections of XY data, which most often are longitude and latitude waves
of geographic coordinates. The output waves are W_XProjection and W_YProjection. Longitude and
Latitude are in degrees.

Parameters
longitudeWave is the name of the wave supplying the longitude or equivalent coordinates. latitudeWave is
the name of the wave supplying the latitude or equivalent coordinates.

Flags

/C={long,lat} Specifies longitude and latitude center of projection. By default long=0 and lat=90.

/M=method

/P={p1,p2,…} One or more parameters required by a particular projection. See the following
sections for parameters required by the various projections.

Indicates the type of projection. method can be one of the following:
0: Orthographic (default).
1: Stereographic.
2: Gnomonic.
3: General perspective.
4: Lambert equal area.
5: Equidistant.
6: Mercator.
7: Transverse Mercator.
8: Albers Equal Area conic.

Prompt

V-577

Gnomonic
Here there is one extra parameter that defines the boundaries based on the angle. The specific expression
for the limit is that cos(c) in Eq. (5-3) of Snyder is greater than the specified parameter:
/P={cos(c)}

The actual transformation uses Eqs. (22-4) and (22-5) of Snyder with k' given by (22-3).

General Perspective
Here there is one extra parameter that defines the boundaries based on the angle. The specific expression
for the limit is that cos(c) in Eq. (5-3) of Snyder is greater than the specified parameter.
The actual transformation uses Eqs. (22-4) and (22-5) with k' given by (22-3). Here we specify the height H
is units of sphere radius. The tilt of the plane is specified by omega and gamma following the notation of
Snyder page 175.
The parameters actually specified by the command are:
/P={H,omega,gamma,deltax,deltay }
H is the height (in radii) above the surface of the earth, gamma is the azimuth east of north of the Y axis, and
omega is the tilt angle or the angle between the projection plane and the tangent plane. The x output will be
limited to ± deltax and the y output will be limited to the range ± deltay.

Mercator
This projection requires the following parameters:
/P={minLong,maxLong,minLat,maxLat}
If /P is not specified, the default is {0,360,-90,90}
Note that this projection flips the sign of y when cos(longitude-long_0) changes sign. If you are plotting a
continuous path in which consecutive points exhibit the sign change, you should add a NaN entry in the
wave so that the path does not wrap.

Albers Equal Area Conic
This projection requires:
/P={minLong, maxLong, minLat, maxLat, Phi1, Phi2}
Phi1 and Phi2 are the specification of the two standard parallels, the other four parameters determine the
boundary of the map area for display.

References
Snyder, John P., Map Projections—A Working Manual, U.S.G.S. Professional Paper 1395, U.S. Government

Printing Office, Washington D.C., 1987, reprinted 1989, 1994, 1997 with corrections.

Prompt
Prompt variableName, titleStr [, popup, menuListStr]
The Prompt command is used in functions for the simple input dialog and in macros for the missing
parameter dialog. Prompt supplies text to describe variableName to the user, and optionally provides a pop-
up menu of choices for the value of variableName.

Parameters
variableName is the name of a macro input parameter or function variable.
titleStr is a string or string expression containing the text to present in the dialog to describe what variableName
is. This string should be short if the number of items exceeds 5 (when the dialog uses two columns).
The optional keyword popup is used to provide a pop-up list of choices for the values of variableName. If
popup is used, then menuListStr is required.
menuListStr is a string or string expression that contains a semicolon-separated list of choices for the value
of variableName. If variableName is a string, choosing from this list will set the string to the selection. If it is a
numeric variable, then it is set to the item number of the selection (if the first item is selected, the numeric
variable is set to 1, etc.).

PulseStats

V-578

Details
In macros, there must be a blank line after the set of input parameter declarations and prompt statements
and there must not be any blank lines within the set.
In user-defined functions, Prompt may be used anywhere within the body of the function, but must precede
any DoPrompt that uses the Prompt variable.
menuListStr may be continued on succeeding lines only in macros, as long as no comment is appended to
the Prompt line. The additional lines should start with a semicolon, and are appended to the menuListStrs
on preceding lines.

See Also
For use in user-defined functions, see The Simple Input Dialog on page IV-126.
For use in macros, see The Missing Parameter Dialog on page IV-105.
For use in functions and macros, see the DoPrompt and popup keywords.

PulseStats
PulseStats [flags] waveName
The PulseStats operation produces simple statistics on a region of the named wave that is expected to contain
three edges as shown below. If more than three edges exist, PulseStats works on the first three edges it finds.

PulseStats handles other cases in which there are only one or two edges.

Flags

/A=n Determines startLevel and endLevel automatically by averaging n points centered at
startX and endX. This does not work in case 2, which requires that you use the /L flag.
Default is /A=1.

/B=box Sets box size for sliding average. This should be an odd number. If /B=box is omitted
or box equals 1, no averaging is done.

/F=f Specifies levels 1, 2, and 3 as a fraction of (endLevel-startLevel):
level1 = level2 = level3 = f*(endLevel-startLevel) + startLevel

f must be between 0 and 1. The default value is 0.5 which sets the levels to midway
between the base levels.

/L=(startLevel, endLevel)

point 1
point 3

level 1 level 2

startLevel

endLevel
point 2

level 3

startX endX

point 4

point 0

Case 1: 3 edges.

point 2

level 1

startLevel

endLevel
point 1

level 2

startX endX

point 4point 0
Case 2: 2 edges.
There is no point 3

point 1
startLevel

endLevel

level 1

startX endX

point 4

point 0

Case 3: 1 edge.
There is no point 2 or 3

PulseStats

V-579

Details
The /B=box, /T=dx, /P and /Q flags behave the same as for the FindLevel operation.
PulseStats considers a region of the input wave between two X locations, called startX and endX. startX and
endX are set by the /R=(startX,endX) flag. If this flag is missing, startX and endX default to the start and end
of the entire wave.
The startLevel and endLevel values define the base levels of the pulse. You can explicitly set these levels with
the /L=(startLevel, endLevel) flag or you can let PulseStats find the base levels for you by using the /A=n flag.
With this flag, PulseStats determines startLevel and endLevel by averaging n points centered at startX and at
endX. In case 2, you must use /L=(startLevel, endLevel) since startLevel is not at point 0.
Given startLevel and endLevel and an f value (which you can set with the /F=f flag), PulseStats computes
level1, level2 and level3 which are always equal. With the default f value of 0.5, level1 is midway between
startLevel and endLevel.
With these levels defined, PulseStats searches the wave from startX to endX looking for one, two or three
level crossings. PulseStats sets the following variables:

X locations and distances are in terms of the X scaling of the source wave, unless you use the /P flag in which
case they are in terms of point number.

Sets startLevel and endLevel explicitly.

/M=dx Sets minimum edge width. Once an edge is found, the search for the next edge starts
dx units beyond the found edge. Default dx is 0.

/P Output edge locations (see Details) are set in terms of point number. If /P is omitted,
edge locations are set in terms of X values.

/Q Prevents results from being printed in history and prevents error if edge is not found.

/R=(startX,endX) Specifies an X range of the wave to search. You may exchange startX and endX to
reverse the search direction.

/R=[startP,endP] Specifies a point range of the wave to search. You may exchange startP and endP to
reverse the search direction.
If you specify the range as /R=[startP] then the end of the range is taken as the end of
the wave. If /R is omitted, the entire wave is searched.

/T=dx Forces search in two directions for a possibly more accurate result. dx controls where
the second search starts.

V_flag 0: All three level crossings were found.
1: One or two level crossings were found.
2: No level crossings were found.

V_PulseLoc1 X location where level1 was found.

V_PulseLoc2 X location where level2 was found.

V_PulseLoc3 X location where level3 was found.

V_PulseLvl0 startLevel value.

V_PulseLvl123 Level1 value that is the same as level2 and level3.

V_PulseLvl4 endLevel value.

V_PulseAmp4_0 Pulse amplitude (endLevel - startLevel).

V_PulseWidth2_1 Left pulse width (x distance between point 2 and point 1).

V_PulseWidth3_2 Right pulse width (x distance between point 3 and point 2).

V_PulseWidth3_1 Pulse period (x distance between point 3 and point 1).

V_PulsePolarity Trend of the edge at point 1 (-1 if decreasing, +1 if increasing).

PutScrapText

V-580

If any level crossings are missing then PulseStats sets the associated variables to NaN (Not a Number). If
one crossing is missing, variables depending on point 3 are set to NaN. If two crossings are missing,
variables depending on points 2 and 3 are set to NaN. If all crossings are missing, variables depending on
points 1, 2, and 3 are set to NaN. You can use the numtype function to test a variable to see if it is NaN.
The PulseStats operation is not multidimensional aware. See Analysis on Multidimensional Waves on
page II-110 for details.

See Also
The FindLevel operation about the /B=box, /T=dx, /P and /Q flags, EdgeStats and the numtype function.

PutScrapText
PutScrapText textStr
The PutScrapText operation places textStr on the Clipboard (aka “scrap”). This text will be used when the
user subsequently chooses Paste from the Edit menu.

Details
All contents of the Clipboard (including pictures) are cleared before the text is placed there.

Examples
Put two lines of text into the Clipboard:
String text = "This is the first line.\rAnd this is the second."
PutScrapText text

Empty the Clipboard:
PutScrapText ""

See Also
The GetScrapText function and the SavePICT operation.

pwd
pwd
The pwd operation prints the full path of the current data folder to the history area. It is equivalent to Print
GetDataFolder(1).
pwd is named after the UNIX "print working directory" command.

See Also
GetDataFolder, cd, Dir, Data Folders on page II-121

q
q
The q function returns the current column index of the destination wave when used in a multidimensional
wave assignment statement. The corresponding scaled column index is available as the y function.

Details
Unlike p, outside of a wave assignment statement, q does not act like a normal variable.

See Also
Waveform Arithmetic and Assignments on page II-94.
For other dimensions, the p, r, and s functions.
For scaled dimension indices, the x, y, z and t functions.

qcsr
qcsr(cursorName [, graphNameStr])
The qcsr function can be used with cursors on images or waterfall plots to return the column number. It can
also be used with free cursors to return the relative Y coordinate.

Quit

V-581

Parameters
cursorName identifies the cursor, which can be cursor A through J.
graphNameStr specifies the graph window or subwindow.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.

See Also
The hcsr, pcsr, vcsr, xcsr, and zcsr functions.
Programming With Cursors on page II-292.

Quit
Quit [/N/Y]
The Quit operation quits Igor Pro.

Flags

r
r
The r function returns the current layer index of the destination wave when used in a multidimensional
wave assignment statement. The corresponding scaled layer index is available as the z function.

Details
Unlike p, outside of a wave assignment statement, r does not act like a normal variable.

See Also
Waveform Arithmetic and Assignments on page II-94. For other dimensions, the p, q, s, and t functions.
For scaled dimension indices, the x, y, z, and t functions.

r2polar
r2polar(z)
The r2polar function returns a complex value in polar coordinates derived from the complex value z, which
is assumed to be in rectangular coordinates. The magnitude is stored in the real part and the angle (in
radians) is stored in the imaginary part of the returned complex value.

Examples
Assume waveIn and waveOut are complex.
waveOut= r2polar(waveIn)

sets each point of waveOut to the polar coordinates derived from the real and imaginary parts of waveIn.
You may get unexpected results if the number of points in waveIn differs from the number of points in waveOut.

See Also
The functions cmplx, conj, imag, p2rect, and real.

RatioFromNumber
RatioFromNumber [flags] num
The RatioFromNumber operation computes two integers whose ratio is equal to num ± maxError (/MERR
flag). The ratio is returned in V_numerator and V_denominator.

Parameters
num is the number to approximate by V_numerator/V_denominator.

/N Quits without saving changes and without dialog.

/Y Saves current experiment before quitting without putting up dialog unless current
experiment is “Untitled”.

Rect

V-582

Flags

Details
The ratio is computed by continued fraction expansion and recurrence relations for the convergents and
checking num - (V_numerator/V_denominator) against maxError.
Setting maxError = 0 computes a maximally accurate ratio. The returned values can be surprisingly large:
RatioFromNumber/V/MERR=0 (1/1666)
 V_numerator= 4398046511104; V_denominator= 7.3271454874993e+15;
 ratio= 0.00060024009603842; V_difference= 0;

Using the default /MERR returns the expected 1 and 1666. The difference is attributable to floating-point
roundoff errors.
The ratio is computed by continued fraction expansion and recurrence relations for the convergents and
checking num - (V_numerator/V_denominator) against /MERR.
Prior to Igor Pro 6.22, RatioFromNumber iterated one less time than specified by maxIterations. This was
corrected in Igor Pro 6.22.

Output Variables
RatioFromNumber sets the following output variables:

Examples
RatioFromNumber/V pi
 V_numerator= 355; V_denominator= 113; ratio= 3.141592920354;
 V_difference= 2.6676418940497e-07; V_iterations= 3;

RatioFromNumber/V/MITS=2 pi
 V_numerator= 22; V_denominator= 7; ratio= 3.1428571428571;
 V_difference= 0.0012644892673497; V_iterations= 1;

See Also
The gcd and trunc functions.

Rect
The Rect structure is used as a substructure usually to store the coordinates of a window or control.
Structure Rect

Int16 top
Int16 left
Int16 bottom

/MERR=maxError Specifies the maximum tolerable error. The computed ratio differs from num by
no more than maxError (default value is num*1e-6).
maxError must be a value between 0 and num. See Details about setting maxError
to 0.

/MITS = maxIterations Keeps returned values small by specifying a small number for maxIterations.
maxIterations must be a value between 1 and 32767 (default is 100).

/V[=v] Prints output variables to history.
v=1: Prints variables (same as /V).
v=0: Nothing printed (same as no /V).

V_difference V_numerator/V_denominator - num (positive if the approximation is too big).

V_flag 0: V_difference less than or equal to /MERR.
1: V_difference greater than /MERR.

V_numerator, V_denominator

Values for the numerator and denominator. The ratio of V_numerator/V_denominator
approximates num.

V_iterations The number of iterations actually used.

ReadVariables

V-583

Int16 right
EndStructure

ReadVariables
ReadVariables
The ReadVariables operation reads variables into an experiment.
ReadVariables is used automatically when you open an experiment. You need not invoke it.

real
real(z)
The real function returns the real component of the complex value z.

See Also
The functions cmplx, conj, imag, p2rect, and r2polar.

Redimension
Redimension [flags] waveName [, waveName]…
The Redimension operation remakes the named waves, preserving their contents as much as possible.

Flags

Wave Data Types
As a replacement for the above number type flags you can use /Y=numType to set the number type as an
integer code. See the WaveType function for code values. Do not use /Y in combination with other type
flags. This technique cannot be used to change the number type without changing the real/complex setting.

Details
The waves must already exist. New points in waves that are extended are zeroed.

/B Converts waves to 8-bit signed integer or unsigned integer if /U is present.

/C Converts real waves to complex.

/D Converts single precision waves to double precision.

/E=e

/I Converts waves to 32-bit signed integer or unsigned integer if /U is present.

/N=n n is the new number of points each wave will have. Multidimensional waves are converted to
1 dimension. If n =-1, the wave is converted to a 1-dimensional wave with the original number
of rows.

/N=(n1, n2, n3, n4)

n1, n2, n3, n4 specify the number of rows, columns, layers, and chunks each wave will have.
Trailing zeros can be omitted (e.g., /N=(n1, n2, 0, 0) can be abbreviated as /N=(n1, n2)). If any
dimension size is to remain unchanged, pass -1 for that dimension.

/R Converts complex waves to real by discarding the imaginary part.

/S Converts double precision waves to single precision.

/U Converts integer waves to unsigned.

/W Converts waves to 16-bit integer (unsigned integer if /U is present).

/Y=type Specifies wave data type. See details below.

Controls the redimension mode:
e=0: No special action (default).
e=1: Force reshape without converting or moving data.
e=2: Perform endian swap. See FBinRead for a discussion of endian byte ordering.

Remove

V-584

In general, Redimension does not move data from one dimension to another. For instance, if you have a 6x6
matrix wave, and you would like it to be 3x12, the rows have been shortened and the data for the last three
rows is lost.
As a special case, if converting to or from a 1D wave, Redimension will leave the data in place while
changing the dimensionality of the wave. For example, you can use Redimension to convert a 36-element
1D wave into a 6x6 matrix in which the elements in the first column (column 0) are the first 6 elements of
the 1D wave, the elements of the second column are the next 6, etc. When redimensioning from a 1D wave,
columns are filled first, then layers, followed by chunks.

Examples
Reshaping a 1D wave having 4 elements to make a 2x2 matrix:
Make/N=4 vector=x Redimension/N=(2,2) vector

See Also
Lists of Values on page II-96; the DeletePoints and Make operations.

Remove
Remove
When interpreting a command, Igor treats the Remove operation as RemoveFromGraph,
RemoveFromTable, or See Also, depending on the target window. This does not work when executing a
user-defined function. Therefore, we recommend that you use RemoveFromGraph, RemoveFromTable, or
RemoveLayoutObjects rather than Remove.

RemoveByKey
RemoveByKey(keyStr, kwListStr [, keySepStr [, listSepStr [, matchCase]]])
The RemoveByKey function returns kwListStr after removing the keyword-value pair specified by keyStr.
kwListStr should contain keyword-value pairs such as "KEY=value1,KEY2=value2" or
"Key:value1;KEY2:value2", depending on the values for keySepStr and listSepStr.
Use RemoveByKey to remove information from a string containing a "key1:value1;key2:value2;" or
"key1=value1,key2=value2," style list such as those returned by functions like AxisInfo or TraceInfo.
If keyStr is not found then kwListStr is returned unchanged.
keySepStr, listSepStr, and matchCase are optional; their defaults are ":", ";", and 0 respectively.

Details
keyStr is limited to 255 characters.
kwListStr is searched for an instance of the key string bound by listSepStr on the left and a keySepStr on the
right. The key, the keySepStr, and the text up to and including the next listSepStr (if any) are removed from
the returned string.
If the resulting string contains only listSepStr characters, then an empty string ("") is returned.
kwListStr is treated as if it ends with a listSepStr even if it doesn’t.
Searches for keySepStr and listSepStr are always case-sensitive. Searches for keyStr in kwListStr are usually
case-insensitive. Setting the optional matchCase parameter to 1 makes the comparisons case sensitive.
Only the first characters of keySepStr and listSepStr are used.
If listSepStr is specified, then keySepStr must also be specified. If matchCase is specified, keySepStr and
listSepStr must be specified.

RemoveContour

V-585

Examples
Print RemoveByKey("AKEY", "AKEY:123;BKEY:val") // prints "BKEY:val"
Print RemoveByKey("AKEY", "akey=1;BK=b;", "=") // prints "BK=b;"
Print RemoveByKey("AKEY", "AKEY=1,BK=b,", "=", ",") // prints "BK=b,"
Print RemoveByKey("ckey","CKEY:1;BKEY:2") // prints "BKEY:2"
Print RemoveByKey("ckey","CKEY:1;BKEY:2",":",";",1) // prints "CKEY:1;BKEY:2"

See Also
The NumberByKey, StringByKey, ReplaceNumberByKey, ReplaceStringByKey, ItemsInList, AxisInfo,
IgorInfo, SetWindow, and TraceInfo functions.

RemoveContour
RemoveContour [/W=winName] contourInstanceName [, contourInstanceName]…
The RemoveContour operation removes the traces, and releases memory associated with the contour plot
of contourInstanceName in the target or named graph.

Parameters
contourInstanceName is usually simply the name of a wave. More precisely, contourInstanceName is a wave
name, optionally followed by the # character and an instance number to identify which contour plot of a
given wave is to be removed.

Flags

Details
If the axes used by the contour plot are no longer in use, they will also be removed.
An contour instance name in a string can be used with the $ operator to specify imageInstance.

Examples
Display;AppendMatrixContour zw //new graph, contour of zw matrix
AppendMatrixContour zw //two contours of zw
RemoveContour zw#1 //remove the second contour

See Also
The AppendMatrixContour and AppendXYZContour operations.

RemoveEnding
RemoveEnding(str [, endingStr])
The RemoveEnding function removes one character from the end of str, or it removes the endingStr from
the end of str.
endingStr is optional. If missing, one character is removed from the end of str.

Details
endingStr is compared to the end of str using a case insensitive comparison (such as cmpstr uses). If the end
of str does not match endingStr, the unaltered str is returned.

Examples
Print RemoveEnding("123") // prints "12"
Print RemoveEnding("no semi" , ";") // prints "no semi"
Print RemoveEnding("trailing semi;" , ";") // prints "trailing semi"
Print RemoveEnding("file.txt" , ".TXT") // prints "file"

See Also
The cmpstr and ParseFilePath functions.

/W=winName Removes contours from the named graph window or subwindow. When omitted,
action will affect the active window or subwindow. This must be the first flag
specified when used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

RemoveFromGraph

V-586

RemoveFromGraph
RemoveFromGraph [/W=winName/Z] traceName [, traceName]…
The RemoveFromGraph operation removes the specified wave traces from the target or named graph. A
trace is a representation of the data in a wave, usually connected line segments.

Parameters
traceName is usually just the name of a wave.
More generally, traceName is a wave name, optionally followed by the # character and an instance number
- for example, wave0#1. See Instance Notation on page IV-16 for details.

Flags

Details
Up to 100 traceNames may be specified, subject to the 400 character command limit.
If the axes used by the given trace are not in use after removing the trace, they will also be removed.
A string containing a trace name can be used with the $ operator to specify traceName.
Specifying $"#0" for traceName removes the first trace in the graph. $"#1" removes the second trace in the
graph, and so on. $"" is equivalent to $"#0".
Note that removing all the contour traces from a contour plot is not the same as removing the contour plot
itself. Use the RemoveContour operation.

Examples
The command:
Display myWave,myWave;Modify mode(myWave#1)=6

appends two instances of myWave to the graph.The first/backmost instance of myWave is instance 0, and
its trace name is just myWave as a synonym for myWave#0. The second or frontmost instance of myWave
is myWave#1 and it is displayed with the cityscape mode.
To remove the second instance from the graph requires the command:
RemoveFromGraph myWave#1

or
String MyTraceName="myWave#1"
RemoveFromGraph $MyTraceName

See Also
Trace Names on page II-243, Programming With Trace Names on page IV-72.

RemoveFromLayout
RemoveFromLayout objectSpec [, objectSpec]…
Deprecated — use RemoveLayoutObjects.
The RemoveFromLayout operation removes the specified objects from the top layout.

Parameters
objectSpec is either an object name (e.g., Graph0) or an objectName with an instance (e.g., Graph0#1). An
instance is needed only if the same object appears in the layout more than one time. Graph0 is equivalent
to Graph0#0 and Graph0#1 refers to the second instance of Graph0 in the layout.

See Also
The RemoveLayoutObjects operation.

/W=winName Removes traces from the named graph window or subwindow. When omitted, action
will affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/Z Suppresses errors if specified trace or image is not on the graph.

RemoveFromList

V-587

RemoveFromList
RemoveFromList(itemOrListStr, listStr [, listSepStr [, matchCase]])
The RemoveFromList function returns listStr after removing the item or items specified by itemOrListStr.
listStr should contain items separated by the listSepStr character, such as "abc;def;".
If itemOrListStr contains multiple items, they should be separated by the listSepStr character, too.
Use RemoveFromList to remove item(s) from a string containing a list of items separated by a single character,
such as those returned by functions like TraceNameList or AnnotationList, or a line from a delimited text file.
If all items in itemOrListStr are not found or if any of the arguments is "" then listStr is returned unchanged
(unless listStr contains only list separators, in which case an empty string is returned).
listSepStr and matchCase are optional; their defaults are ";" and 1 respectively.

Details
itemStr may have any length.
listStr is searched for an instance of the item string(s) bound by listSepStr on the left and right. All instances
of the item(s) and any trailing listSepStr (if any) are removed from the returned string.
If the resulting string contains only listSepStr characters, then an empty string ("") is returned.
listStr is treated as if it ends with a listSepStr even if it doesn’t.
Searches for listSepStr are case-sensitive. Searches for items in itemOrListStr are usually case-sensitive.
Setting the optional matchCase parameter to 0 makes the comparisons case insensitive.
Only the first character of listSepStr is used.
If matchCase is specified, then listSepStr must also be specified.

Examples
Print RemoveFromList("wave1", "wave0;wave1;") // prints "wave0;"
Print RemoveFromList("wave1", ";wave1;;;;") // prints ""
Print RemoveFromList("KEY=joy", "AX=3,KEY=joy", ",") // prints "AX=3,"
Print RemoveFromList("fred", "fred\twilma", "\t") // prints "wilma"
Print RemoveFromList("fred;barney","fred;wilma;barney")// prints "wilma;"
Print "X"+RemoveFromList("",";;;;")+"Y" // prints "XY"
Print RemoveFromList("FRED", "fred;wilma") // prints "fred;wilma"
Print RemoveFromList("FRED", "fred;wilma", ";", 0) // prints "wilma"

See Also
The FindListItem, FunctionList, ItemsInList, RemoveByKey, RemoveListItem, StringFromList,
StringList, TraceNameList, UpperStr, VariableList, and WaveList functions.

RemoveFromTable
RemoveFromTable [/W=winName] columnSpec [, columnSpec]…
The RemoveFromTable operation removes the specified columns from the top table.

Parameters
columnSpecs are the same as for the Edit operation; usually they are just the names of waves.

Flags

See Also
Edit about columnSpecs, and AppendToTable.

/W=winName Removes columns from the named table window or subwindow. When omitted,
action will affect the active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

RemoveImage

V-588

RemoveImage
RemoveImage [/W=winName/Z] imageInstance [, imageInstance]…
The RemoveImage operation removes the given image from the target or named graph.

Parameters
imageInstance is usually simply the name of a wave. More precisely, imageInstance is a wave name, optionally
followed by the # character and an instance number to identify which image of a given wave is to be removed.

Flags

Details
If the axes used by the given image are not in use after removing the image, they will also be removed.
An image name in a string can be used with the $ operator to specify imageInstance.

See Also
The AppendImage operation.

RemoveLayoutObjects
RemoveLayoutObjects [/W=winName/Z] objectSpec [, objectSpec]
The RemoveLayoutObjects operation removes the specified object or objects from the top page layout, or
from the layout specified by the /W flag.
Unlike the RemoveFromLayout operation, RemoveLayoutObjects can be used in user-defined functions.
Therefore, RemoveLayoutObjects should be used in new programming.

Parameters
objectSpec is either an object name (e.g., Graph0) or an objectName with an instance (e.g., Graph0#1). An
instance is needed only if the same object appears in the layout more than one time. Graph0 is equivalent
to Graph0#0 and Graph0#1 refers to the second instance of Graph0 in the layout.

Flags

See Also
NewLayout, AppendLayoutObject and ModifyLayout.

RemoveListItem
RemoveListItem(itemNum, listStr [, listSepStr])
The RemoveListItem function returns listStr after removing the item specified by the list index itemNum.
listStr should contain items separated by the listSepStr character, such as "abc;def;". itemNum should be a
number between 0 (the index of the first item in a list) and ItemsInList(listStr) - 1.
RemoveListItem removes an item from a string containing a list of items separated by a single character, such
as those returned by functions like TraceNameList or AnnotationList, or a line from a delimited text file.
listSepStr is optional. If missing, listSepStr is presumed to be ";".

/W=winName Removes an image from the named graph window or subwindow. When omitted,
action will affect the active window or subwindow. Must be the first flag specified
when used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/Z Suppresses errors if specified image is not on the graph.

/W=winName winName is the name of the page layout window from which the object is to be
removed. If /W is omitted or if winName is $"", the top page layout is used.

/Z Does not report errors if the specified layout object does not exist.

RemovePath

V-589

Details
RemoveListItem differs from RemoveFromList in that RemoveListItem specifies the item to be removed by
index and removes only that item, while RemoveFromList specifies the item to be removed by value, and
removes all matching items.
If itemNum less than 0 or greater than ItemsInList(listStr) - 1, or if listSepStr is "" then listStr is returned
unchanged (unless listStr contains only list separators, in which case an empty string is returned).
If the resulting string contains only listSepStr characters, then an empty string ("") is returned.
listStr is treated as if it ends with a listSepStr even if it doesn’t. Searches for itemStr and listSepStr are case-
sensitive.
Only the first character of listSepStr is used.

Examples
Print RemoveListItem(1, "wave0;wave1;w2;") // prints "wave0;w2;"
Print RemoveListItem(0, "wave1;;;;") // prints ""
Print RemoveListItem(1, "AX=3,KEY=joy", ",") // prints "AX=3,"
Print RemoveListItem(1, "fred\twilma", "\t") // prints "fred\t"

See Also
The AddListItem, FindListItem, FunctionList, ItemsInList, RemoveByKey, RemoveFromList,
StringFromList, StringList, TraceNameList, VariableList, WaveList, and WhichListItem functions.

RemovePath
RemovePath [/A/Z] pathName
The RemovePath operation removes a path from the list of symbolic paths. RemovePath is an old name for
the new KillPath operation, which we recommend you use instead.

Rename
Rename oldName, newName
The Rename operation renames waves, strings, or numeric variables from oldName to newName.

Parameters
oldName may be a simple object name or a data folder path and name. newName must be a simple object name.

Details
You can not rename an object using a name that already exists. The following will result in an error:
Make wave0, wave1
// Rename wave0 and overwrite wave1.
Rename wave0, wave1 // This will not work.

However, you can achieve the desired effect as follows:
Make wave0, wave1
Duplicate/O wave0, wave1; KillWaves wave0

See Also
The Duplicate operation.

RenameDataFolder
RenameDataFolder sourceDataFolderSpec, newName
The RenameDataFolder operation changes the name of the source data folder to the new name.
sourceDataFolderSpec can be just the name of a child data folder in the current data folder, a partial path
(relative to the current data folder) and name or an absolute path (starting from root) and name.
newName is just the new name for the data folder, without any path.

Details
RenameDataFolder generates an error if the new name is already in use as a data folder contained within
the source data folder.

RenamePath

V-590

Examples
RenameDataFolder root:foo,foo2 // Change name of foo to foo2

See Also
Chapter II-8, Data Folders.

RenamePath
RenamePath oldName, newName
The RenamePath operation renames an existing symbolic path from oldName to newName.

See Also
Symbolic Paths on page II-34

RenamePICT
RenamePICT oldName, newName
The RenamePICT operation renames an existing picture to from oldName to newName.

See Also
Pictures on page III-423.

RenameWindow
RenameWindow oldName, newName
The RenameWindow operation renames an existing window or subwindow from oldName to newName.

Parameters
oldName is the name of an existing window or subwindow.
When identifying a subwindow with oldName, see Subwindow Syntax on page III-97 for details on forming
the window hierarchy.

See Also
The DoWindow operation.

ReorderImages
ReorderImages [/W=winName] anchorImage, {imageA, imageB, …}
The ReorderImages operation changes the ordering of graph images to that specified in the braces.

Flags

Details
Igor keeps a list of images in a graph and draws the images in the listed order. The first image drawn is
consequently at the bottom. All other images are drawn on top of it. The last image is the top one; no other image
obscures it.
ReorderImages works by removing the images in the braces from the list and then reinserting them at the
location specified by anchorImage. If anchorImage is not in the braces, the images in braces are placed before
anchorImage.
If the list of images is A, B, C, D, E, F, G and you execute the command
ReorderImages F, {B,C}

images B and C are placed just before F: A, D, E, B, C, F, G.
The result of

/W=winName Reorders images in the named graph window or subwindow. When omitted, action
will affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

ReorderTraces

V-591

ReorderImages E, {D,E,C}

is to reorder C, D and E and put them where E was. Starting from the initial ordering this gives A, B, D, E,
C, F, G.
ReorderImages generates an error if the same trace is in the list twice.

See Also
The ReorderTraces operation.

ReorderTraces
ReorderTraces [/W=winName] anchorTrace, {traceA, traceB, …}
The ReorderTraces operation changes the ordering of graph traces to that specified in the braces.

Flags

Details
Igor keeps a list of traces in a graph and draws the traces in the listed order. The first trace drawn is consequently
at the bottom. All other traces are drawn on top of it. The last trace is the top one; no other trace obscures it.
ReorderTraces works by removing the traces in the braces from the list and then reinserting them at the location
specified by anchorTrace. If anchorTrace is not in the braces, the traces in braces are placed before anchorTrace.
If the list of traces is A, B, C, D, E, F, G and you execute the command
ReorderTraces F, {B,C}

traces B and C are placed just before F: A, D, E, B, C, F, G.
The result of
ReorderTraces E, {D,E,C}

is to reorder C, D and E and put them where E was. Starting from the initial ordering results in A, B, D, E,
C, F, G.
ReorderTraces generates an error if the same trace is in the list twice.

See Also
Trace Names on page II-243, Programming With Trace Names on page IV-72.
The ReorderImages operation.

ReplaceNumberByKey
ReplaceNumberByKey(keyStr, kwListStr, newNum [, keySepStr

[, listSepStr [, case]]])
The ReplaceNumberByKey function returns kwListStr after replacing the numeric value of the keyword-value
pair specified by keyStr. kwListStr should contain keyword-value pairs such as "KEY=value1,KEY2=value2"
or "Key:value1;KEY2:value2", depending on the values for keySepStr and listSepStr.
Use ReplaceNumberByKey to add or modify numeric information in a string containing a
"key1:value1;key2:value2;" style list such as those returned by functions like AxisInfo or TraceInfo.
If keyStr is not found in kwListStr, then the key and the value are appended to the end of the returned string.
keySepStr, listSepStr, and case are optional; their defaults are ":", ";", and 0 respectively.

Details
The actual string appended is:
[listSepStr] keyStr keySepStr newNum listSepStr
The optional leading list separator listSepStr is added only if kwListStr does not already end with a list separator.

/W=winName Reorders traces in the named graph window or subwindow. When omitted, action
will affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

ReplaceString

V-592

keyStr is limited to 255 characters.
kwListStr is searched for an instance of the key string bound by listSepStr on the left and a keySepStr on the
right. The text up to the next “;” is replaced by newNum after conversion to text using the %.15g format (see
printf for format conversion specifications).
kwListStr is treated as if it ends with a listSepStr even if it doesn’t.
Searches for keySepStr and listSepStr are always case-sensitive. Searches for keyStr in kwListStr are usually
case-insensitive. Setting the optional case parameter to 0 makes the comparisons case sensitive.
Only the first characters of keySepStr and listSepStr are used.
If listSepStr is specified, then keySepStr must also be specified. If case is specified, keySepStr and listSepStr
must be specified.

Examples
Print ReplaceNumberByKey("K1", "K1:7;", 4) // prints "K1:4;"
Print ReplaceNumberByKey("k2", "K2=8;", 5, "=") // prints "K2=5;"
Print ReplaceNumberByKey("K3", "K3:9,", 6, ":", ",") // prints "K3:6,"
Print ReplaceNumberByKey("k3", "K0:9", 6, ":", ",") // prints "K0:9,k3:6,"
Print ReplaceNumberByKey("k3", "K3:9,", 6, ":", ",") // prints "K3:6,"
Print ReplaceNumberByKey("k3", "K3:9,", 6, ":", ",", 1) // prints "K3:9,k3:6,"

See Also
The ReplaceStringByKey, NumberByKey, StringByKey, RemoveByKey, ItemsInList, AxisInfo,
IgorInfo, SetWindow, and TraceInfo functions.

ReplaceString
ReplaceString(replaceThisStr, inStr, withThisStr [, caseSense [, maxReplace]])
The ReplaceString function returns inStr after replacing any instance of replaceThisStr with withThisStr.
The comparison of replaceThisStr to the contents of inStr is case-insensitive. Setting the optional caseSense
parameter to nonzero makes the comparison case-sensitive.
Usually all instances of replaceThisStr are replaced. Setting the optional maxReplace parameter limits the
replacements to that number.

Details
If replaceThisStr is not found, inStr is returned unchanged.
If maxReplace is less than 1, then no replacements are made. Setting maxReplace = Inf is the same as
omitting it.

Examples
Print ReplaceString("hello", "say hello", "goodbye")// prints "say goodbye"
Print ReplaceString("\r\n", "line1\r\nline2", "") // prints "line1line2"
Print ReplaceString("A", "an Ack-Ack", "a", 1) // prints "an ack-ack"
Print ReplaceString("A", "an Ack-Ack", "a", 1, 1) // prints "an ack-Ack"
Print ReplaceString("", "input", "whatever") // prints "input" (no change)

See Also
The ReplaceStringByKey, cmpstr, StringMatch, and strsearch functions.

ReplaceStringByKey
ReplaceStringByKey(keyStr, kwListStr, newTextStr [, keySepStr

[, listSepStr [, matchCase]]])
The ReplaceStringByKey function returns kwListStr after replacing the text value of the keyword-value pair
specified by keyStr. kwListStr should contain keyword-value pairs such as "KEY=value1,KEY2=value2"
or "Key:value1;KEY2:value2", depending on the values for keySepStr and listSepStr.
Use ReplaceStringByKey to add or modify text information in a string containing a
"key1:value1;key2:value2;" style list such as those returned by functions like AxisInfo or TraceInfo.
If keyStr is not found in kwListStr, then the key and the value are appended to the end of the returned string.
keySepStr, listSepStr, and matchCase are optional; their defaults are ":", ";", and 0 respectively.

ReplaceText

V-593

Details
The actual string appended is:
[listSepStr] keyStr keySepStr newTextStr listSepStr
The optional leading list separator listSepStr is added only if kwListStr does not already end with a list separator.
keyStr is limited to 255 characters.
kwListStr is searched for an instance of the key string bound by a “;” on the left and a “:” on the right. The
text up to the next “;” is replaced by newTextStr.
If newTextStr is "", any existing value is deleted, but the key, the key separator, and the list separator are
retained. To remove a keyword-value pair, use the RemoveByKey function.
kwListStr is treated as if it ends with a listSepStr even if it doesn’t.
Searches for keySepStr and listSepStr are always case-sensitive. Searches for keyStr in kwListStr are case-
insensitive. Setting the optional matchCase parameter to 1 makes the comparisons case-sensitive.
Only the first characters of keySepStr and listSepStr are used.
If listSepStr is specified, then keySepStr must also be specified. If matchCase is specified, keySepStr and
listSepStr must be specified.

Examples
Print ReplaceStringByKey("KY", "KY:a;KZ:c", "b") // prints "KY:b;KZ:c"
Print ReplaceStringByKey("KY", "ky=a;", "b", "=") // prints "ky=b;"
Print ReplaceStringByKey("KY", "KY:a,", "b", ":", ",")// prints "KY:b,"
Print ReplaceStringByKey("ky", "ZZ:a,", "b", ":", ",")// prints "ZZ:a,ky:b,"
Print ReplaceStringByKey("kz", "KZ:a,", "b", ":", ",")// prints "KZ:b,"
Print ReplaceStringByKey("kz", "KZ:a,", "b", ":", ",", 1)// prints "KZ:a,kz:b,"

See Also
The ReplaceString, ReplaceNumberByKey, NumberByKey, StringByKey, ItemsInList, RemoveByKey,
AxisInfo, IgorInfo, SetWindow, and TraceInfo functions.

ReplaceText
ReplaceText [/W=winName/N=name] textStr
The ReplaceText operation replaces the text in the most recently created or changed annotation or in the
annotation specified by /W=winName and/N=name.

Parameters
textStr can contain escape codes to control font, font size and other stylistic variations.
If the annotation is a color scale, this command replaces the text of the color scale’s main axis label.

Flags

See Also
See the Tag and TextBox operations for details about the textStr parameter.
The ColorScale operation.

/N=name Replaces the text of the named tag or textbox.

/W=winName Replaces text in the named graph window or subwindow. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

ReplaceWave

V-594

ReplaceWave
ReplaceWave [/W=winName] allinCDF
ReplaceWave [/X/W=winName] trace=traceName, waveName
ReplaceWave [/X/Y/W=winName] image=imageName, waveName
ReplaceWave [/X/Y/W=winName] contour=contourName, waveName
The ReplaceWave operation replaces waves displayed in a graph with other waves. The waves to be
replaced, and the replacement waves are chosen by the flags, the keyword and the wave names on the
command line.

Flags

Keywords

Details
Waves are replaced in the graph specified by /W=winName otherwise waves are replaced in the top graph.
Updating a contour plot in response to replacing a wave can be time-consuming. If you must replace more
than one wave, put all the commands separated by semicolons on a single line. In a macro, use
DelayUpdate to prevent updates between command lines.
When using the allinCDF keyword, ReplaceWave cannot find waves buried in dynamic annotation text (for
instance, using the \{} syntax in an annotation). ReplaceWave will not replace waves used for error bars, either.
Subsets of data, including individual rows or columns from a matrix, may be specified using Subrange
Display Syntax on page II-293.

Examples
Make XY plot, then replace the waves:
Make fred=x, sam=log(x)
Display fred vs sam
Make fred2=2*x, sam2=ln(x)
ReplaceWave/X trace=fred, sam2
ReplaceWave trace=fred, fred2 // trace is now named fred2

/W=winName Replaces the wave in the named graph window or subwindow. When omitted, action
will affect the active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/X Replaces the wave defining the X data spacing.

/Y Replaces the wave defining the Y data spacing.

allinCDF Searches the current data folder for waves with the same names as waves used in
the graph. If found and if the waves are of the correct type, they replace the
existing waves. Thus, if you have several data folders with identically-named
waves containing data from different experimental runs, you can browse through
the runs by moving from one data folder to another, using ReplaceWave
allinCDF to update the graph.

contour=contourName Replaces the wave supplying the Z data for contourName. If /X or /Y is used,
replaces the wave used to set the X or Y data spacing (if the Z data are in a matrix)
or the wave used to supply the X or Y positions if XYZ triplets were specified with
three separate waves.

image=imageName Replaces the wave supplying the Z data for imageName. If /X or /Y is used, replaces
the wave used to set the X or Y data spacing.

trace=traceName Replaces the wave associated with traceName. With the /X flag, waveName will
replace the X wave associated with traceName, otherwise it will replace the Y
wave. Note that traceName is derived from the Y wave name; if you created a
graph using Display jack vs sam, you would use ReplaceWave/X
trace=jack,newsam to replace the X wave.

Resample

V-595

Make contour plot with XYZ triplet waves, then replace the waves. Note the DelayUpdate commands after
the first two ReplaceWave commands:
Make/N=100 junkx, junky, junkz // Waves for XYZ triplets
junkx=trunc(x/10) // X wave for XYZ triplets
junky=mod(x,10) // Y wave for XYZ triplets
junkz=sin(junkx[p])*cos(junky[p]) // Z wave for XYZ triplets
Display; AppendXYZContour junkz vs {junkx, junky} // Make contour plot
Make/O/N=150 junkx2, junky2, junkz2 // Make replacement waves
junkx2=trunc(x/15)
junky2=mod(x,15)
junkz2=sin(junkx2[p])*cos(junky2[p])
ReplaceWave/X contour=junkz,junkx2; DelayUpdate
ReplaceWave/Y contour=junkz,junky2; DelayUpdate
ReplaceWave contour=junkz,junkz2

This example is suitable for copying all the lines and pasting into the command line, or for use in a macro.
If you are typing on the command line, you would want to put the ReplaceWave commands all on one line:
ReplaceWave/X contour=junkz,junkx2; ReplaceWave/Y contour=…

See Also
Trace Names on page II-243, Programming With Trace Names on page IV-72.

Resample
Resample [flags] waveName [, waveName]…
The Resample operation resamples waveName by interpolating or up-sampling (set by /UP=upSample),
lowpass filtering, and decimating or down-sampling (set by /DOWN=downSample).
Lowpass filtering is specified with /N and /WINF or with /COEF=coefsWaveName.
The sampling frequency (1/DimDelta) of a resampled output wave waveName is changed by the ratio of
downSample/upSample. For example, if upSample=4 and downSample=3, then the final sampling rate is 3/4 of
the original value.
Straight interpolation can be accomplished by setting upSample to the interpolation factor and downSample=1,
in which case the sample rate is multiplied by upSample. Deltax(waveName) will be proportionally smaller.
For decimation only, set upSample=1 and downSample to the decimation factor. The sample rate is divided
by downSample, and deltax(waveName) will be proportionally larger.
Use RatioFromNumber to choose appropriate values for upSample and downSample, or use
/SAME=sWaveName or /RATE=sampRate. See Resampling Rates Example for details.
When using /COEF=coefsWaveName, the filter coefficients should implement a low-pass filter appropriate
for the upSample and downSample values or aliasing (filtering errors) will result. See Advanced Externally-
Supplied Low Pass Filter Example for details.

Resampling Rates Flags
The upSample and downSample values define how much interpolation and decimation to perform. They can
be set directly with /UP and /DOWN or indirectly with /SAME or /RATE

/DOWN=downSample Down-samples or decimates the filtered result by this integer factor after up-
sampling and lowpass filtering. The default is 1 (no down-sampling).
For example, /DOWN=3 places only every third value in the output wave.
Down-sampling divides the sampling rate of the filtered data by a factor of
downSample. The DimDelta(waveName, dim) value is multiplied by the same
factor.

Resample

V-596

Internal Sinc Reconstruction Filter Flags
If /COEF=coefsWaveName is not specified, Resample computes a windowed sinc filter from /N, /DOWN,
/UP, and /WINF flag values.
If /COEF=coefsWaveName is specified, then coefsWaveName supplies the filter, and /N and /WINF are
ignored. See Externally-Supplied Low Pass Filter Flags.

/RATE=sampRate Converts the output waveName to the specified sampling rate frequency
(normally Hz).
The necessary upSample and downSample values for each waveName are computed
internally as if you had executed:
RatioFromNumber (deltax(waveName)*sampRate)
upSample = V_numerator
downSample = V_denominator

/RATE returns V_numerator and V_denominator set to these automatically-
determined values for the last waveName.

/SAME=sWaveName

Converts the output waveName to the same sampling rate as sWaveName,
1/DimDelta(sWaveName, dim). The necessary upSample and downSample values are
computed internally as if you had executed:
Variable dd = DimDelta(waveName,dim)
RatioFromNumber dd/DimDelta(sWaveName,dim)
upSample = V_numerator
downSample = V_denominator

/SAME returns V_numerator and V_denominator set to these automatically
determined values for the last waveName.

/UP=upSample Up-samples or interpolates the input by this integer factor. The default is 1 (no
up-sampling).
For example, /UP=4 inserts three extra points between each input point
(producing 4 times as many values) before the lowpass filtering and down-
sampling occurs.
Up-sampling multiplies the sampling rate of the input data by a factor of
upSample, though no additional signal information is created. The
DimDelta(waveName, dim) value is divided by the same factor.

/COEF Replaces the first waveName with coefficients generated by downSample, upSample,
numReconstructionSamples, and windowKind, a windowed sinc impulse response.
When resampling multiple waveNames with different filters (because /RATE or
/SAME were specified and the multiple waveNames had different sampling rates), the
filter used to resample the last waveName is returned.

/N=numReconstructionSamples

Specifies the number of input values used to created the up-sampled values (default is 21).
The value of numReconstructionSamples must be odd.
The size of the computed filter is (numReconstructionSamples-1) * upSample + 1.
Bigger is better: 15 is usually on the low side for yielding reasonably accurate results,
and although 101 will nearly always give very good results, it will be slow.

Resample

V-597

Externally-Supplied Low Pass Filter Flags

Use /COEF to output the impulse response, and the FFT to display the frequency
response of the interpolator:
Make/O coefs
Variable numReconstructionSamples= 51, upSample= 5
Resample/COEF/N=(numReconstructionSamples)/UP=(upSample) coefs
Variable evenNum= 2*floor((numpnts(coefs)+1)/2)
FFT/OUT=3/PAD={evenNum}/DEST=coefs_FFT coefs
Display coefs_FFT

Bigger is also slower: the filtering is computed in the time-domain, and execution time
is linearly related to
upSample/downSample * numReconstructionSamples.

 /WINF=windowKind

Applies the window, windowKind, to the computed filter coefficients. If /WINF is
omitted, the Hanning window is used. For no coefficient windowing, use
/WINF=None, though this is discouraged.
Windows alter the frequency response of the filter in obvious and subtle ways,
enhancing the stop-band rejection or steepening the transition region between passed
and rejected frequencies. They matter less when numReconstructionSamples is large.
Choices for windowKind are:
Bartlett, Blackman367, Blackman361, Blackman492, Blackman474, Cos1, Cos2, Cos3,
Cos4, Hamming, Hanning, KaiserBessel20, KaiserBessel25, KaiserBessel30, Parzen,
Poisson2, Poisson3, Poisson4, and Riemann.
See FFT for window equations and details.

/COEF =coefsWaveName

Identifies the wave, coefsWaveName, containing filter coefficients that implement a
low-pass filter with a cutoff frequency of the lesser of 0.5/upSample and
0.5/downSample, where 0.5 corresponds to the Nyquist frequency of the up-sampled
data.
For example, if upSample=2, then the filter must contain the classic “half-band” filter,
which stops the higher half of the frequencies and passes the lower half. If
upSample=10, then the filter must pass only the lowest 1/10th of the frequencies.

For downSample > upSample, the low-pass filter’s cutoff frequency must be
0.5/downSample. This prevents the decimation from introducing aliasing to the
resampled data.

To avoid shifting the output with respect to the input, coefsWaveName must have an
odd length with the “center” coefficient in the middle of the wave.

The length of coefsWaveName must be 1+upSample*n, where n is any even integer.

Note: Instead of using /N=numReconstructionSamples with /COEF=coefsWaveName,
numReconstructionSamples is computed from upSample and the number of points in
coefsWaveName:
numReconstructionSamples=1+(numpnts(coefsWaveName)-1)/upSample.

Coefficients are usually symmetrical about the middle point, but this is not enforced.

coefsWaveName must not be a destination waveName.
coefsWaveName must be single- or double-precision numeric and one-dimensional.

Resample

V-598

Data Range Flags

Parameters
waveName can be a wave with any number of dimensions. Only one dimension is resampled. Use multiple
Resample calls to resample across multiple dimensions.
Without /DIM, resampling is done along the row (first) dimension. Each column is resampled as if it were
a separate one-dimensional row. This allows multichannel audio to be resampled to another frequency.
If /DIM=1, then resampling proceeds across all the columns of each row.
If /COEF is specified without coefsWaveName, then the first waveName is overwritten by the filter coefficients
instead of being resampled.

Details
The filtering convolution is performed in the time-domain. That is, the FFT is not employed to filter the
data. For this reason the coefficients length (/N or the length of coefsWaveName) should be small in
comparison to the resampled waves.
Resample assumes that the middle point of coefsWaveName corresponds to the delay=0 point. The “middle”
point number = trunc(numpnts(coefsWaveName -1)/2). coefsWaveName usually contains the two-sided
impulse response of a filter, an odd number of points, and implements a low-pass filter whose cutoff
frequency is the lesser of 0.5/upSample and 0.5/downSample (0.5 corresponds to the Nyquist frequency = 1/2
sampling frequency).
When /COEF creates a coefficients wave it sets the X scale deltax to 1 and alters the leftx value so that the
zero-phase (center) coefficient is located at x=0.

Simple Examples
Interpolation by factor of 4, default filter:
Resample/UP=4 data

Decimation by factor of 3, default filter:
Resample/DOWN=3 data

Match sampling rates, default filter:
Resample/SAME=dataAtDesiredRate dataAtWrongRate1, dataAtWrongRate2,...

Resample waves to 10 KHz sampling rate:
Resample/RATE=10e3 dataAtWrongRate1, dataAtWrongRate2,...

Interpolate an image by a factor of 2:

/DIM=d Specifies the wave dimension to resample.
For d =0, 1, …, resampling is along rows, columns, etc.
The default is /DIM=0, which resamples each individual column (each one a channel,
say left and right) in a multidimensional waveName where each row comprises all
sound samples at a particular time.
To resample in multiple dimensions, execute the command once for each dimension.
For example, use /DIM=0 followed by another command with /DIM=1 to resample a
two-dimensional wave in each direction.

E=endEffect Determines how to handle the ends of the resampled wave(s) (w) when fabricating
missing neighbor values.
endEffect=0: Bounce method. Uses w[i] in place of the missing w[-i] and

w[n-i] in place of the missing w[n+i].
endEffect=1: Wrap method. Uses w[n-i] in place of the missing w[-i] and vice

versa.
endEffect=2: Zero method (default). Uses 0 for any missing value.
endEffect=3: Repeat method. Uses w[0] in place of the missing w[-i] and

w[n] in place of the missing w[n+i].

Resample

V-599

Resample/UP=2 image // default is /DIM=0, resample rows
Resample/UP=2/DIM=1 image // resample across columns

Resampling Rates Example
Suppose we have an audio wave sampled at 44,100 Hz and we wish to resample it to a higher 192,000 Hz
frequency.
We can use /RATE= 192000 and let Resample determine the correct values (provided waveName has its X
scaling set properly to reflect sampling at 44100 Hz), but let’s compute upSample and downSample ourselves.
Because the sampling rate = 1/deltax(wave), we can recast the /SAME formula to RatioFromNumber
(desiredSamplingRate/currentSamplingRate):
•RatioFromNumber/V (192000 / 44100)
 V_numerator= 640; V_denominator= 147;
 ratio= 4.3537414965986;
 V_difference= 0;

Then upSample=640 and downSample=147.
The 44100 Hz input data will be interpolated by 640 to 28,224,000 Hz.
The result is low-pass filtered with a “cutoff frequency” of 1/640th of the interpolated Nyquist frequency =
(28224000/2)/640 = 22,050 Hz, the same as the input signal’s original Nyquist frequency.
The result will be decimated by 147 to 192,000 Hz, which is the desired output sampling frequency.

Resample/UP=640/DOWN=147 sound // convert 44.1 KHz to 192 KHz

Advanced Externally-Supplied Low Pass Filter Example
You can generate an appropriate filter by executing commands like these:
// Compute a filter for after the input is upsampled
// to restore the frequency content to the original range.
Variable fc = min(0.5 / upSample, 0.5 * upSample / downSample)
// Transition width, small widths need big n
Variable tw= fc/10
// Set end of pass band
Variable f1= fc-tw/2
// Set start of stop band
Variable f2= fc+tw/2
// Use bigger values of n to make the filter smoother
Variable nReconstruct= 31
Variable n= (nReconstruct-1)*upSample+1 // odd = no phase shift
// Create a wave to hold the coefficients; it gets resized to n
Make/O/N=0 coefsWaveName
FilterFIR/COEF/LO={f1,f2,n} coefsWaveName

However, FilterFIR does not create windowed sinc lowpass filters that have the endearing property that the
original input values are unaltered in the filtered output, though only if upSample > downSample. This is
called a “Nyquist filter” or “Kth-band filter” in the literature.
If upSample > downSample, you can enforce the Nyquist criterion by “zeroizing” the designed filter by setting
every upSampleth value to 0 except the center one.
// coefsWaveName length must be 1+upSample*n, where n is any even integer

Function Zeroize(w, upSample)
Wave w // coefsWaveName
Variable upSample // upSample value

Variable n= DimSize(w,0)
Variable centerP= floor((n-1)/2) // if n=101, centerP= 50
Variable i
for (i=0; i<n; i+=upSample)

Note: Interpolating by a factor of two does not produce an image with twice as many rows and
columns. The new number of rows = (original rows-1)*upSample +1, and a similar
computation applies to columns.

Note: If downSample had been greater than upSample, then the low-pass filter’s cutoff frequency
would have been 1/downSampleth of the interpolated Nyquist frequency =
(28224000/2)/downSample. This prevents the decimation from introducing aliasing to the
resampled data.

Resample

V-600

if(i != centerP)
w[i] = 0

endif
endfor

End

Resample zeroizes the internally-generated low pass filter when upSample > downSample.
Additionally, the FilterFIR command generates a low-pass filter whose gain needs to be multiplied by upsample:
coefsWaveName *= upSample
When designing an externally supplied filter, you should also consider the filter’s “polyphase” nature;
coefsWaveName is actually a set of upSample interleaved filters, each with its own response. It makes sense
to adjust these filters to produce consistent responses. If you don’t, the results will contain ringing with a
period of upSample/downSample. This is most apparent when downSample is 1.
Using the filter we’ve designed so far with upSample=4, here’s the output of a constant-input wave:
Make/O constantData= 1
Resample/COEF=coefsWaveName/UP=4 constantData

The graph shows that the filter response at 0 Hz for the first of 4 filters is 1.0010, the second and fourth
filter’s responses are very close to 1.0, and the third filter’s response at 0 Hz is a little less than 1.0.
These variations can be eliminated by normalizing the sum of each polyphase filter to 1.0:
Function PolyphaseNormalize(w, upSample)

Wave w // coefsWaveName
Variable upSample // upSample value

Variable n= DimSize(w,0)
Variable filt
// for each filter (0..upSample-1)
for (filt=0; filt<upSample; filt+=1)

Variable total=0
Variable pt
// compute total for this filter
for (pt=filt; pt<n; pt+=upSample)

total += w[pt]
endfor
// divide by total to normalize total to 1
for (pt=filt; pt<n; pt+=upSample)

w[pt] /= total
endfor

endfor
End

Now the filter is ready to be used to filter data:

1.0010

1.0008

1.0006

1.0004

1.0002

1.0000

0.9998

0.9996

3.02.52.01.51.00.50.0

 constant data
 FilterFIR coefs without poly-phase filter adjustments (upSample=4)

1.0000

0.9999

0.9998

0.9997

0.9996

0.9995

3.02.52.01.51.00.50.0

 constant data
 FilterFIR coefs with poly-phase filter adjustments

ResumeUpdate

V-601

Resample/COEF=coefsWaveName/UP=(upSample)/DOWN=(downSample) dataWave

You can see that designing an externally-supplied lowpass filter is much more complicated than using the
internal sinc reconstruction filter, which does all this zeroizing, scaling, and polyphase normalization for you.

References
Mintzer, F., On half-band, third-band, and Nth band FIR filters and their design, IEEE Trans. on Acoust.,

Speech, Signal Process., ASSP-30, 734-738, 1982.

See Also
The RatioFromNumber, FilterFIR, interp, Interp2D, ImageInterpolate, and Loess operations; and the
Interpolate XOP.

ResumeUpdate
ResumeUpdate
The ResumeUpdate operation cancels the corresponding PauseUpdate.
This operation is of use in macros. It is not allowed from the command line. It is allowed but has no effect
in user-defined functions. During execution of a user-defined function, windows update only when you
explicitly call the DoUpdate operation.

See Also
The DelayUpdate, DoUpdate, and PauseUpdate operations.

return
return [expression]
The return flow control keyword immediately stops execution of the current procedure. If called by another
procedure, it returns expression and control to the calling procedure.
Functions can return only a single value directly to the calling procedure with a return statement. The
return value must be compatible with the function type. A function may contain any number of return
statements; only the first one encountered during procedure execution is evaluated.
A macro has no return value, so return simply quits the macro.

See Also
The Return Statement on page IV-31.

Reverse
Reverse [type flags][/DIM=d /P] waveA [/D = destWaveA][, waveB [/D = destWaveB][, …]]
The Reverse operation reverses data in a wave in a specified dimension. Reverse does not accept text waves.

Flags

Type Flags (used only in functions)
Reverse also can use various type flags in user functions to specify the type of destination wave reference
variables. These type flags do not need to be used except when it is needed to match another wave reference
variable of the same name or to identify what kind of expression to compile for a wave assignment. See
WAVE Reference Types on page IV-58 and WAVE Reference Type Flags on page IV-59 for a complete list
of type flags and further details.

/DIM = d Specifies the wave dimension to reverse.
d=-1: Treats entire wave as 1D (default).
For d=0, 1, …, operates along rows, columns, etc.

/P Suppresses adjustment of dimension scaling. Without /P the scaled dimension value
of reversed points remains the same.

RGBColor

V-602

Wave Parameters

Details
If the optional /D = destWave flag is omitted, then the wave is reversed in place.

See Also
The Sort operation and Sorting on page III-136.

RGBColor
The RGBColor structure is used as a substructure usually to store various color settings.
Structure RGBColor

UInt16 red
UInt16 green
UInt16 blue

EndStructure

rightx
rightx(waveName)
The rightx function returns the X value corresponding to point N of the named 1D wave of length N.

Details
Note that the point numbers in a wave run from 0 to N-1 so there is no point with this X value. To get the
X value of the last point in a wave (point N-1), use the following:
pnt2x(waveName,numpnts(waveName)-1) // N = numpnts(waveName)

which is more accurate than:
rightx(waveName) - deltax(waveName)

The rightx function is not multidimensional aware. See Analysis on Multidimensional Waves on page
II-110 for details. The equivalent information for any dimension can be calculated this way:
IndexN = DimSize(wave, dim)*DimDelta(wave, dim) + DimOffset(wave, dim)
Here IndexN is the value of the scaled dimension index corresponding to element N of the dimension dim
in a wave named wave that has N elements in that dimension.

See Also
The deltax and leftx functions, also the pnt2x and numpnts functions.
For an explanation of waves and dimension scaling, see Changing Dimension and Data Scaling on page II-83.
For multidimensional waves, see DimDelta, DimOffset, and DimSize.

root
root[:dataFolderName[:dataFolderName[:…]]][:objectName]
Igor’s data folder hierarchy starts with the root folder as its basis. The root data folder always exists and it
contains all other objects (waves, variables, strings, and data folders). By default, the root data folder is the
current data folder in a new experiment. In commands, root is used as part of a path specifying the location
of a data object in the folder hierarchy.

See Also
Chapter II-8, Data Folders.

Note: All wave parameters must follow wave in the command. All wave parameter flags and
type flags must appear immediately after the operation name (Reverse).

/D=destWave Specifies the name of the wave to hold the reversed data. It creates destWave if it does not
already exist or overwrites it if it exists.

Rotate

V-603

Rotate
Rotate rotPoints, waveName [, waveName]…
The Rotate operation rotates the Y values of waves in wavelist by rotPoints points.

Parameters
If rotPoints is positive then values are rotated from the start of the wave toward the end and rotPoints values
from the end of a wave wrap around to the start of the wave.
If rotPoints is negative then values are rotated from the end of the wave toward the start and rotPoints values
from the start of a wave wrap around to the end of the wave.

Details
The X scaling of the named waves is changed so that the X values for the Y values remains the same except
for the points that wrap around.
The Rotate operation is not multidimensional aware. See Analysis on Multidimensional Waves on page
II-110 for details.
The Rotate operation is not multidimensional aware. To rotate rows or columns of 2D waves, see the
rotateRows and rotateCols keywords for the MatrixOp and ImageTransform operations.
For general information about multidimensional analysis, see Analysis on Multidimensional Waves on
page II-110.

See Also
The shift parameter of the WaveTransform operation.

round
round(num)
The round function returns the integer value closest to num.
The rounding method is “away from zero”.

See Also
The ceil, floor, and trunc functions.

rtGlobals
#pragma rtGlobals = 0, 1, 2, or 3
#pragma rtglobals=<n> is a compiler directive that controls compiler and runtime behaviors for the
procedure file in which it appears.
This statement must be flush against the left edge of the procedure file with no indentation. It is usually
placed at the top of the file.
#pragma rtglobals=0 turns off runtime creation of globals. This is obsolete.
#pragma rtglobals=1 is a directive that turns on runtime lookup of globals. This is the default behavior
if #pragma rtGlobals is omitted from a given procedure file.
#pragma rtGlobals=2 turns off compatibility mode. This is mostly obsolete. See Legacy Code Issues on
page IV-94 for details.
#pragma rtglobals=3 turns on runtime lookup of globals, strict wave reference mode and wave index
bounds checking.
If your procedures will run only with Igor Pro 6.20 or later, rtGlobals=3 is recommended. Otherwise
rtGlobals=1 is recommended.
See The rtGlobals Pragma on page IV-41 for a detailed explanation of rtGlobals.

s

V-604

s
s
The s function returns the current chunk index of the destination wave when used in a multidimensional
wave assignment statement. The corresponding scaled chunk index is available as the t function.

Details
Unlike p, outside of a wave assignment statement, s does not act like a normal variable.

See Also
Waveform Arithmetic and Assignments on page II-94.
For other dimensions, the p, r, and q functions.
For scaled dimension indices, the x, y, z and t functions.

Save
Save [flags] waveList [as fileNameStr]
The Save operation saves the named waves to disk as text (/F, /G or /J) or as Igor binary.

Parameters
waveList is either a list of wave names or, if the /B flag is present, a string list of references to waves. For
example, the following commands are equivalent, assuming that the waves in question are in the root data
folder and root is the current data folder:
Save/J wave0,wave1 as "Test.dat"
Save/J root:wave0,root:wave1 as "Test.dat"
Save/J/B "wave0;wave1;" as "Test.dat"
Save/J/B "root:wave0;root:wave1;" as "Test.dat"
String list="root:wave0;root:wave1;"; Save/J/B list as "Test.dat"

The form using the /B flag and a string containing a list of references to waves saves a very large number of
waves using one command. This is not possible using a list of wave names because of the 400 character limit
in a command. When using this form, the string must contain semicolon-separated wave names or data
folder paths leading to waves. Liberal names in the string may be quoted or unquoted.
The file to be written is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If it
cannot determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-400 for details on forming
the path.

Flags

/A[=a]

/B The waveList parameter is a string containing a list of references to waves instead of a
literal list of waves.

/C Saves a copy of the wave when saving as Igor binary.

/DSYM=dsStr Specifies a string containing the character to use as the decimal symbol for all
numbers (default is a period). If dsStr is empty (""), then the decimal symbol is as
defined in system preferences.

Appends to the file rather than overwriting it (with /T, /G or /J).
a=0: Does not append.
a=1: Appends to the file with a blank line before the appended data (same as

/A only).
a=2: Appends to the file with no blank line before the appended data.

Save

V-605

/E=useEscapeCodes

/F Writes delimited and general text files with numeric formatting as it appears in the
top table. Has no effect if there is no top table or if the wave being saved does not
appear in the top table.
Note: The text written to the file is exactly as displayed in the table. Set the table to
display as many digits of precision as you want in the file.
Note: When saving a multi-column wave (1D complex wave or multi-dimensional
wave), all columns of the wave are saved using the table format for the first table
column from the wave.

/G Saves waves in general text format.

/H "Adopts" the waves specified by waveList.
"Adopt" means that any connection between the waves and external files is severed.
The waves become part of the current experiment. When the experiment is next
saved, the waves are saved in the experiment file (for an packed experiment) or in the
experiment folder (for an unpacked experiment).

When you use the /H flag, all other flags and the fileNameStr parameter are ignored.
The wave is not actually saved but rather is marked for saving as part of the current
experiment.
You would normally do this to make an experiment more self-contained which makes
it easier to send to other people. See Sharing Versus Copying Igor Binary Files on
page II-165 and the LoadWave /H flag.

/I Presents a dialog from which you can specify file name and folder.

/J Saves waves in tab-delimited text format.

/M=termStr Specifies the terminator character or characters to use at the end of each line of text.
The default is /M="\r", which uses a carriage return character. This is the Macintosh
convention. To use the Windows convention, carriage return plus linefeed, specify
/M="\r\n". To use the Unix convention, just a linefeed, specify /M="\n".

/O Overwrites file if it exists already.

/P=pathName Specifies the folder to store the file in. pathName is the name of an existing symbolic path.

/T Saves waves in Igor Text format.

/U={writeRowLabels, rowPositionAction, writeColLabels, colPositionAction}

These parameters affect the saving of a matrix (2D wave) to a delimited text (/J) or
general text (/G) file. They are accepted no matter what the save type is but are
ignored when they don’t apply.
If writeRowLabels is nonzero, Save writes the row labels of the matrix as the first
column of data in the file.

Determines whether to use escape sequences for special characters.
/E=1: Converts carriage-return, linefeed, tab, and backslash characters to

escape sequences when writing general or delimited text files
(default; same as no /E).

/E=0: No escape sequences used in general or delimited text files. When
saving text waves containing backslashes (such as Windows paths)
in a file intended for another program, you probably should use
/E=0.

Save

V-606

Details
The Save operation saves only the named waves; it does not save the entire experiment.
Waves saved in Igor binary format are saved one wave per file. If you are saving more than one wave, you
must not specify a fileNameStr. Save will give each file a name which consists of the wave name concatenated
with “.ibw”.
When you save a wave as Igor binary, unless you use the /C flag to save a copy, the current experiment
subsequently references the file to which the wave was saved. See References to Files and Folders on page
II-37 for details.
In a general text file (/G), waves with different numbers of points are saved in different groups. Waves with
different precisions and number types are saved in same group if they have the same number of points.
In a tab-delimited text file (/J), all waves are saved in one group whether or not they have the same number
of points.
If you save multiple 2D waves, the blocks of data are written one after the other.
If you save 3D waves, the data for each wave is written as a contiguous block having as many columns as
there are columns in the wave, and R*L rows, where R is the number of rows in the multidimensional wave
and L is the number of layers. All rows for layer 0 are saved followed by all rows for layer 1, and so on.
If you save 4D waves, the data for each wave is written as a contiguous block having R*L*C rows, where R
is the number of rows, L is the number of layers and C is the number of chunks. Igor writes all data for
chunk 0 followed by all data for chunk 1, and so on.
The Save operation will always present a save dialog if you try to save to an existing file without using the
overwrite flag.
Here are some details about saving an Igor binary file.
If you omit the path or the file name, the Save operation will normally present a save dialog. However, if
the wave has already been saved to a stand-alone file and if you use the overwrite flag, it will save the wave
to the same file without a dialog. Also, if the wave has never been saved and the current experiment is an
unpacked experiment, it will save to the home folder without a dialog.
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-34 for details.

Examples
This function uses the string list of references to waves to save some or all of the waves in the current data folder:
Function SaveWavesFromCurrentDF(matchStr)

String matchStr // As for the WaveList function.

String list
list = WaveList(matchStr, ";", "")
Save/O/J/W/I/B list

End

For example, to save all of the waves in the current data folder, execute:
SaveWavesFromCurrentDF("*")

writeColumnLabels and columnPositionAction have analogous meanings. The suffix
used for the column position wave is “_CP”.
See Chapter II-9, Importing and Exporting Data, for further details.

/W Saves wave names (with /G or /J).

rowPositionAction has one of the following values:
0: Don’t write a row position column.
1: Writes a row position column based on the row scaling of the matrix

wave.
2: Writes a row position column based on the contents of the row

position wave for the matrix. The row position wave is an optional
1D wave whose name is the same as the matrix wave but with the
suffix “_RP”.

SaveData

V-607

To save those waves in the current data folder whose name starts with “wave”, execute:
SaveWavesFromCurrentDF("wave*")

This function saves all of the waves used in a particular graph:
Function SaveWavesFromGraph(graphName) // Saves all waves in graph.

String graphName // "" for top graph.

String list, traceList, traceName
Variable index = 0
list = ""
traceList = TraceNameList(graphName, ";", 1)
do

traceName = StringFromList(index, traceList, ";")
if (strlen(traceName) == 0)

break
endif
Wave w = TraceNameToWaveRef(graphName, traceName)
list += GetWavesDataFolder(w,2) + ";"
index += 1

while(1)

if (strlen(list) > 0)
Save/O/J/W/I/B list

endif
End

See Also
Saving Waves on page II-175.

SaveData
SaveData [flags] fileOrFolderNameStr
The SaveData operation writes data from the current data folder of the current experiment to a packed
experiment file on disk or to a file system folder. “Data” means Igor waves, numeric and string variables,
and data folders containing them. The data is written as a packed experiment file or as unpacked Igor
binary files in a file-system folder.

SaveData provides a way to save data for archival storage or unload data from memory during a lengthy process
like data acquisition. The file or files that SaveData writes are disassociated from the current experiment.
Use SaveData to save experiment data using Igor procedures. To save experiment data interactively, use
the Save Copy button in the Data Browser (Data menu).

Parameters
fileOrFolderNameStr specifies the packed experiment file (if /D is omitted) or the file system folder (if /D is
present) in which the data is to be saved. The documentation below refers to this file or folder as the “target”.
If you use a full or partial path for fileOrFolderNameStr, see Path Separators on page III-400 for details on
forming the path.
If fileOrFolderNameStr is omitted or is empty (""), SaveData displays a dialog from which you can select the
target. You also get a dialog if the target is not fully specified by fileOrFolderNameStr or the /P=pathName flag.

Flags

Warning: If you make a mistake using SaveData, it is possible to overwrite critical data, even entire
folders containing critical data. It is your responsibility to make sure that any file or folder
that you can not afford to lose is backed up. If you provide procedures for use by other
people, you should warn them as well.

/D [=d] Writes to a file-system folder (a directory). If omitted, SaveData writes to an Igor
packed experiment file.

If in doubt, use /D=1. See Details below.

d=1: If the target folder already exists, the new data is “mixed-in” with the
data already there (same as /D).

d=2: If the target folder already exists, it is completely deleted before the
writing of data starts.

SaveData

V-608

Details
If /J=objectNamesStr is used, then only the objects named in objectNamesStr are saved. For example, specifying
/J="wave0;wave1;" will save only the two named waves, ignoring any other data in all data folders.
The list of object names used with /J must be semicolon-separated. A semicolon after the last object name in the
list is optional. The object names must not be quoted even if they are liberal. The list is limited to 1000 characters.
Using /J="" acts like no /J at all.

/I Presents a dialog in which you can interactively choose the target.

/J=objectNamesStr Saves only the objects named in the semicolon-separated list of object names. See
Details below.

/L=saveFlags

To save multiple data types, sum the values shown in the saveFlags column. For
example, /L=1 saves waves only, /L=2 saves numeric variables only and /L=3 saves
both waves and numeric variables.
If /L is not specified, all of these object types are saved. This is equivalent to /L=7. All
other bits are reserved and must be set to zero. See Setting Bit Parameters on page
IV-12 for details about bit settings.

/M=modDateTime Saves waves modified on or after the specified modification date/time. Waves
modified before modDateTime will not be saved. Applies to waves only (not variables
or strings).
modDateTime is in standard Igor time format — seconds since 1/1/1904. If modDateTime
is zero, all waves will be saved, as if there were no /M flag at all.

/O Overwrites existing files or folders on disk.
Warning: If you use the /O flag and if the target already exists, it will be overwritten
without any warning. If you use /O with /D=2, you will completely overwrite the
target folder and all of its contents, including subfolders. Do not use /O with /D
unless you are absolutely sure you know what your doing.

/P=pathName Specifies the folder in which to save the specified file or folder.
pathName is the name of an Igor symbolic path, created via NewPath. It is not a file
system path like "hd:Folder1:" or "C:\\Folder1\". See Symbolic Paths on page II-34
for details.
When used with the /D flag, if /P=pathName is present and fileOrFolderNameStr is ":",
the target is the directory specified by /P=pathName.

/Q Suppresses normal messages in the history area.

/R Recursively saves subdata folders.

/T [=topLevelName] Creates an enclosing data folder in the target with the specified name, topLevelName,
and writes the data to the new data folder.
If just /T is specified, it creates an enclosing data folder in the target using the name of
the data folder being saved. However, if the data folder being saved is the root data
folder, the name Data is used instead of root. In packed experiment files and
unpacked experiment folders, the root data folder is implicit.
If /T is omitted, the contents of the current data folder are saved with no enclosing
data folder.

Controls what kind of data objects are saved with a bit for each data type:

saveFlags Bit Number Saves this Type of Object

1 0 Waves

2 1 Numeric variables

4 2 String variables

SaveData

V-609

The /M=modDateTime flag can be used in data acquisition projects to save only those waves modified since the
previous save. For example, assume that we have a global variable in the root data folder named
gLastWaveSaveDateTime. Then this function will write out only those waves modified since the previous save:
Function SaveModifiedWaves(savePath)

String savePath // Symbolic path pointing to output directory
NVAR lastSave = root:gLastWaveSaveDateTime
SaveData/O/P=$savePath/D=1/L=1/M=(lastSave) ":"
lastSave = datetime

End

Because the datetime function and the wave modification date have a coarse resolution (one second), this
function may sometimes save the same wave twice.
The /M flag makes sense only in conjunction with the /D=1 flag because /D=1 is the only way to mix-in new
data with existing data.

Writing to a Packed Experiment File
When writing to a packed file, SaveData creates a standard packed Igor experiment file which you can open
as an experiment, browse using the Data Browser, or access using the LoadData operation.
If you do not use the /O (overwrite) flag and the packed file already exists on disk, SaveData will present a dialog
to confirm which file you want to write to. If you use the /O flag, SaveData will overwrite without presenting a
dialog. When writing a packed file, SaveData always completely overwrites the preexisting packed file.
Appending to a packed experiment file is not supported because dealing with the possibility of name
conflicts (e.g., two waves with the same name in the same data folder in the packed experiment file) would
be technically difficult, very slow and errors would result in corrupted files.

Writing to a File-System Folder
When saving to a folder on disk, SaveData writes wave files, variables files, and subfolders. This resembles
the experiment folder of an unpacked experiment, but it does not contain other unpacked experiment files,
such as history or procedures. You can browse the folder using the Data Browser or access it using the
LoadData operation.
If the target directory does not exist, SaveData creates it.
If you do not use the /O (overwrite) flag and the target folder already exists on disk, SaveData will present
a dialog to confirm that you want to write to it. SaveData checks for the existence of the top file system
folder only. For example, if you write data to hd:Data:Run1, SaveData will display a dialog if hd:Data:Run1
exists. But SaveData will not display a dialog for any folders inside hd:Data:Run1.
If you use the /O flag, SaveData will write without presenting a dialog.
When writing to a directory, SaveData can operate in one of two modes. If you use /D=1 or just /D, SaveData
operates in “mix-in” mode. If you use /D=2, SaveData operates in “delete” mode.

If the target directory exists and mix-in mode is used, SaveData does not do any explicit deletion. It writes
data to the target directory and any subdirectories. Conflicting files in any directory are overwritten but
other files are left intact.
To prevent you from inadvertently deleting an entire volume, SaveData will not permit you to target the
root directory of any volume. You must target a subdirectory.
The /J flag will not work as expected when writing numeric and string variables in mix-in mode. Instead of
mixing-in the specified variables, SaveData will overwrite all variables already in the target. This is because
all numeric and string variables in a particular data folder are stored in a single file-system folder (named
“variables”), so it is not possible to mix-in. Since waves are written one-to-a-file, /J will work as expected
for waves.
When SaveData writes a wave to a file-system folder, the file name for the wave is the same as the wave
name, with the extension “.ibw” added. This is true even if the wave in the experiment was loaded from a
file with a different name.

Warning: If the target directory exists and delete mode is used, SaveData deletes the target directory
and all of its contents. Then SaveData creates the target directory and writes the data to it.
This is a complete overwrite operation.

SaveExperiment

V-610

Outputs
SaveData sets the variable V_flag to zero if the operation succeeded or to nonzero if it failed. The main use for
this is to determine if the user clicked Cancel during an interactive save. This would occur if you use the /I flag
or if you omit /O and the target already exists. V_flag will also be nonzero if an error occurs during the save.
SaveData sets the string variable S_path to the full file system path to the file or folder that was written.
S_path uses Macintosh path syntax (e.g., "hd:FolderA:FolderB:"), even on Windows. When saving
unpacked, S_path includes a trailing colon.

Examples
Write the contents of the current data folder and all subdata folders to a packed experiment file:
Function SaveDataInPackedFile(pathName, fileName)

String pathName // Name of symbolic path
String fileName // Name of packed file to be written

SaveData/R/P=$pathName fileName
End

Write the contents of the current data folder and all subdata folders to an unpacked file-system folder:
Function SaveDataInUnpackedFolder(pathName, folderName)

String pathName // Name of symbolic path
String folderName // Name of file-system folder

SaveData/D=1/R/P=$pathName folderName
End

Copy the contents of an unpacked file-system folder to a packed experiment file:
Function TransferUnpackedToPacked(path1, folderName, path2, fileName)

String path1 // Points to parent of unpacked folder
String folderName // Name of folder containing unpacked data
String path2 // Points to folder where file is to be written
String fileName // Name of packed file to be written

String savedDF = GetDataFolder(1)

NewDataFolder/O/S :TempTransfer

// Load all data from the unpacked folder.
LoadData/D/Q/R/P=$path1 folderName

// Save all data to the packed file.
SaveData/R/P=$path2 fileName

KillDataFolder : // Kill TempTransfer

SetDataFolder savedDF
End

See Also
The LoadData and SaveGraphCopy operations; the SpecialDirPath function. Saving Package Preferences
on page IV-231; Chapter II-9, Importing and Exporting Data; Data Browser on page II-130.

SaveExperiment
SaveExperiment [flags] [as fileName]
The SaveExperiment operation saves the current experiment.
Warning: SaveExperiment overwrites any previously-existing file named fileName.

Parameters
The optional fileName string contains the name of the experiment to be saved. fileName can be the currently
open experiment, in which case it overwrites the experiment file.
If fileName and pathName are omitted and the experiment is Untitled, you will need to locate where the
experiment file will be saved interactively via a dialog.
If you use a full or partial path for pathName, see Path Separators on page III-400 for details on forming the path.

SaveExperiment

V-611

Flags

Details
SaveExperiment acts like the Save menu command in the File menu. If the experiment is associated with an
already saved file, then SaveExperiment with no parameters will simply save the current experiment. If the
experiment resides only in memory and has not yet been saved, then a dialog will be presented unless the
path and file name are specified.
If you use a full path in the name you will not need the /P flag. If instead you use /P=pathName, note that it
is the name of an Igor symbolic path, created via NewPath. It is not a file system path like “hd:Folder1:”
or “C:\\Folder1\\”. See Symbolic Paths on page II-34 for details.

Experiment File Format
For background information on experiment file formats, see Experiments on page II-29.
The /F flag was added in Igor Pro 6.23 to provide control of the file format of a previously-unsaved
experiment independent of the user's preferences as set in the Experiment Settings section of the
Miscellaneous Settings dialog. It also allows you to save a previously-saved experiment using a different
experiment file format.
If you just want to save the current experiment in its current format, you don't need to use /F.
If you use /F, you must fully-specify the location of the experiment file through the /P flag and the fileName
parameter or through fileName alone if it contains a full path.
The format parameter controls the experiment file format used by SaveExperiment:

If /F is omitted or if format is -1 then the experiment is saved in its current format or, if it was never saved
to disk, in the format specified in the Experiment Settings section of the Miscellaneous Settings dialog.
If format = 0, the experiment is saved in unpacked experiment file format. fileName must end with ".uxp" or
".uxt".
If format = 1, the experiment is saved in packed experiment file format. fileName must end with ".pxp" or
".pxt".

Unpacked Experiment Folder
The unpacked experiment folder is the folder in which wave files, the history file, the variables file, and
other experiment files are stored for an unpacked experiment. See Saving as an Unpacked Experiment File
on page II-30 for details.
The /F unpackedExpFolderNameStr parameter specifies the name of the experiment folder for an unpacked
experiment. It contains a folder name, not a full or partial path. It is ignored unless saving in unpacked
experiment format.
The unpacked experiment folder is created in the same directory as the experiment file.
If /F=0 is used and unpackedExpFolderNameStr is "" then the experiment folder name is the same as the
experiment file name with the extension removed and a space and "Folder" added.

/C Saves an experiment copy (valid only when fileName or pathName is provided or both
if experiment is Untitled).

/F={format, unpackedExpFolderNameStr, unpackedExpFolderMode}

Specifies the experiment file format.
See Experiment File Format below for details.

/P=pathName Specifies folder in which to save the experiment. pathName is the name of an existing
symbolic path.

format =-1: Default format.

format =0: Unpacked experiment file

format =1: Packed experiment file

SaveGraphCopy

V-612

If the specified unpacked experiment folder already exists and is the current experiment's unpacked
experiment folder, it is reused. "Reuse" means that SaveExperiment saves files in the unpacked experiment
folder, possibly overwriting files already in it, but does not delete any files or folders already in it.
The unpackedExpFolderMode parameter controls what happens if the folder to be used as the unpacked
experiment folder already exists and is not the current experiment's unpacked experiment folder:

SaveGraphCopy
SaveGraphCopy [flags][as fileNameStr]
The SaveGraphCopy operation saves a graph and its waves in an Igor packed experiment file.

Parameters
The file to be written is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-400 for details on forming
the path.

Flags

Details
The main uses for saving as a packed experiment are to save an archival copy of data or to prepare to merge data
from multiple experiments (see Merging Experiments on page II-32). The resulting experiment file preserves
the data folder hierarchy of the waves displayed in the graph starting from the “top” data folder, which is the
data folder that encloses all waves displayed in the graph. The top data folder becomes the root data folder of
the resulting experiment file. Only the graph, its waves, dashed line settings, and any pictures used in the graph
are saved in the packed experiment file, not procedures, variables, strings or any other objects in the experiment.
SaveGraphCopy does not work well with graphs containing controls. First, the controls may depend on
waves, variables or FIFOs (for chart controls) that SaveGraphCopy will not save. Second, controls typically
rely on procedures which are not saved by SaveGraphCopy.
SaveGraphCopy does not know about dependencies. If a graph contains a wave, wave0, that is dependent
on another wave, wave1 which is not in the graph, SaveGraphCopy will save wave0 but not wave1. When
the saved experiment is open, there will be a broken dependency.
SaveGraphCopy sets the variable V_flag to 0 if the operation completes normally, to -1 if the user cancels,
or to another nonzero value that indicates that an error occurred. If you want to detect the user canceling
an interactive save, use the /Z flag and check V_flag after calling SaveGraphCopy.

unpackedExpFolderMode=0 : SaveExperiment returns an error.

unpackedExpFolderMode=1 : SaveExperiment displays a dialog asking the user if it is OK to
reuse the folder. If the user answers yes, the operation proceeds.
Otherwise, it returns an error.

unpackedExpFolderMode=2 : SaveExperiment reuses the folder without asking the user.

Warning: If you pass 2 for unpackedExpFolderMode, files and folders in the unpacked experiment
folder may be overwritten without the user's express permission.

/I Presents a dialog from which you can specify file name and folder.

/O Overwrites file if it exists already.

/P=pathName Specifies the folder to store the file in. pathName is the name of an existing symbolic path.

/W= winName winName is the name of the graph to be saved. If /W is omitted or if winName is "", the
top graph is saved.

/Z Errors are not fatal and error dialogs are suppressed. See Details.

SaveNotebook

V-613

The SaveData operation also has the ability to save data from a graph to a packed experiment file. SaveData
is more complex but a bit more flexible than SaveGraphCopy.

Examples
This function saves all graphs in the experiment to individual packed experiment files.
Function SaveAllGraphsToPackedFiles(pathName)

String pathName // Name of an Igor symbolic path.

String graphName
Variable index

index = 0
do

graphName = WinName(index, 1)
if (strlen(graphName) == 0)

break
endif

String fileName
sprintf fileName, "%s.pxp", graphName

SaveGraphCopy/P=$pathName/W=$graphName as fileName

index += 1
while(1)

End

See Also
SaveTableCopy and SaveData operations; Merging Experiments on page II-32.

SaveNotebook
SaveNotebook [flags] notebookName [as fileNameStr]
The SaveNotebook operation saves the named notebook.

Parameters
notebookName is either kwTopWin for the top notebook window, the name of a notebook window or a host-
child specification (an hcSpec) such as Panel0#nb0. See Subwindow Syntax on page III-97 for details on
host-child specifications.
If notebookName is an host-child specification, /S must be used and saveType must be 3 or higher.
The file to be written is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-400 for details on forming
the path.

Flags

/H={encodingName, writeParagraphProperties, writeCharacterProperties, PNGOrJPEG, quality, bitDepth}

Controls the creation of an HTML file.

encodingName specifies the HTML file encoding. The recommended value for most
purposes is "UTF-8". See Details for more information.

writeParagraphProperties determines what paragraph properties SaveNotebook will
write to the HTML file. This is a bitwise parameter with the bits defined as follows:
Bit 0: Write paragraph alignment.
Bit 1: Write first indent.
Bit 2: Write minimum line spacing.
Bit 3: Write space-before and space-after paragraph.
All other bits are reserved for future use and should be set to zero.

SaveNotebook

V-614

Details
Interactive (/I) means that Igor displays the Save, Save As, or Save a Copy dialog.
The save will be interactive under the following conditions:
• You include the /I flag and the saveType is 2, 3, 4, 5, 6, or 7.

writeCharacterProperties determines what character properties SaveNotebook will
write to the HTML file. This is a bitwise parameter with the bits defined as follows:
Bit 0: Write font families.
Bit 1: Write font sizes.
Bit 2: Write font styles.
Bit 3: Write text colors.
Bit 4: Write text vertical offsets.
All other bits are reserved for future use and should be set to zero.
If you set bit 2, SaveNotebook exports only the bold, underline, and italic styles
because other character styles are not supported by HTML.

PNGOrJPEG determines whether SaveNotebook will write picture files as PNG or
JPEG:
0: PNG (default).
1: JPEG.
2: JPEG.

Prior to Igor Pro 5, PNGOrJPEG=2 wrote as JPEG if QuickTime JPEG support was
available or as PNG otherwise. As of Igor Pro 5, which has built-in JPEG support, both
PNGOrJPEG=2 and PNGOrJPEG=1 write as JPEG. For both codes, QuickTime is used
if it is available because it supports the quality and depth parameters although built-
in JPEG support currently always uses quality=0.9.
See Details for more on HTML picture files.

The next two parameters, quality, and bitDepth, are used only when writing JPEG files
using QuickTime.

quality specifies the degree of compression or image quality when writing pictures as
JPEG files. It is a value from 1.0 (default) to 0.0, with 1.0 giving the greatest quality but
largest file size and 0.0 giving the least quality but smallest file size. Use the highest
quality that gives an acceptable file size. Often this will be 1.0.

bitDepth specifies the color depth when writing pictures as JPEG files. It specifies the
desired bit depth of the picture. Only the following values are legal: 1, 8 (default), 16,
24, 32. For most Web use, 8 is fine. As of QuickTime 4, QuickTime ignores this
parameter.

/I Saves interactively. A dialog is displayed.

/M=messageStr Specifies prompt message used in save dialog.

/O Overwrites existing file without asking permission.

/P=pathName Specifies the folder to store the file in. pathName is the name of an existing symbolic path.

/S=saveType Controls the type of save.
saveType=1: Normal save (default).
saveType=2: Save-as.
saveType=3: Save-a-copy.
saveType=4: Export as RTF (Rich Text Format).
saveType=5: Export as HTML (Hypertext Markup Language).
saveType=6: Export as plain text.
saveType=7: Export as formatted notebook.

SavePackagePreferences

V-615

• saveType is 2, 3, 4, 5, 6, or 7 and you do not specify the path or filename.

If the saveType is normal and the notebook has previously been saved to a file then the /I flag, the path and
file name that you specify, if any, are ignored and the notebook is saved to its associated file without user
intervention.
The full path to the saved file is stored in the string S_path. If the save was unsuccessful, S_path will be "".
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-34 for details.
For background information on writing RTF files, see Import and Export Via Rich Text Format Files on
page III-24.
For background information on writing HTML files, see Exporting a Notebook as HTML on page III-26.
For background information regarding the HTML encodingName parameter, see HTML Character
Encoding on page III-29. This table lists how Igor responds to various values for this parameter:

In addition, you can provide any other string of 63 or fewer bytes. The main use for this is for documents
that are primarily in an Asian language. For example, if your document is primarily in Japanese, then the
characters in the document are already in the Shift-JIS encoding. You can specify "Shift-JIS" as the
encodingName. This uses "Shift-JIS" in the Content-Type meta tag and to write the text out without any
special encoding. The main advantage of this technique over the UTF-8 encoding is that a file written using
Shift-JIS can be edited in Igor or other commonly-available text editors while UTF-8 can not.
When creating an HTML file, SaveNotebook can write pictures using the PNG or JPEG graphics formats. PNG
support is built into Igor Pro. Built-in JPEG support was added in Igor Pro 5. Previously Igor used QuickTime
to write JPEG files. It still does if QuickTime is available but if not, it uses built-in routines. For most
applications, the only reason to use JPEG rather than PNG is that some old web browsers do not support PNG.

See Also
Chapter III-1, Notebooks.
 Setting Bit Parameters on page IV-12 for further details about bit settings.

SavePackagePreferences
SavePackagePreferences [/FLSH=flush /KILL /P=pathName] packageName,

prefsFileName, recordID, prefsStruct
The SavePackagePreferences operation saves preference data in the specified structure so that it can be
accessed later via by the LoadPackagePreferences operation.

The structure can use fields of type char, uchar, int16, uint16, int32, uint32, float and double as well as fixed-
size arrays of these types and substructures with fields of these types.

"UTF-8" Encodes the document using the UTF-8 encoding which is a kind of packed Unicode. It is
good for documents that contain non-Roman text, such as symbols and Asian text. This is
the best choice for most documents.

"UTF-2" Encodes the document using the UTF-2 encoding which is 16-bit Unicode. It is generally
not recommended because some browsers don’t support it. However, as time goes by,
browser support will improve.

"Native" Writes the document using the native character set of the operating system. On
Macintosh, this equates to "mac" (the Mac OS Roman character set). On Windows, it
equates to "Windows-1252" (the Windows Western character set). This may give better
results than UTF-8 for some documents and with some browsers but you should use it
only if you determine that UTF-8 doesn’t work for your application.

"" Writes the document using the native character set of the operating system but omits the
Content-Type meta tag.

Note: The package preferences structure must not use fields of type Variable, String, WAVE,
NVAR, SVAR or FUNCREF because these fields refer to data that may not exist when
LoadPackagePreferences is called.

SavePackagePreferences

V-616

The data is stored in memory and by default flushed to disk when the current experiment is saved or closed
and when Igor quits.
If the /P flag is present then the location on disk of the preference file is determined by pathName and
prefsFileName. However in the usual case the /P flag will be omitted and the preference file is located in a file
named prefsFileName in a directory named packageName in the Packages directory in Igor’s preferences directory.

See Saving Package Preferences on page IV-231 for background information and examples.

Parameters
packageName is the name of your package of Igor procedures. It is limited to 31 characters and must be a
legal name for a directory on disk. This name must be very distinctive as this is the only thing preventing
collisions between your package and someone else’s package.
prefsFileName is the name of a preference file to be saved by SavePackagePreferences. It should include an
extension, typically ".bin".
prefsStruct is the structure containing the data to be saved in the preference file on disk.
recordID is a unique positive integer that you assign to each record that you store in the preferences file. If
you store more than one structure in the file, you would use distinct recordIDs to identify which structure
you want to save. In the simple case you will store just one structure in the preference file and you can use
0 (or any positive integer of your choice) as the recordID.

Flags

Details
SavePackagePreferences sets the following output variables:

Example
See the example under Saving Package Preferences in a Special-Format Binary File on page IV-232.

Note: You must choose a very distinctive name for packageName as this is the only thing
preventing collisions between your package and someone else’s package.

/FLSH=flush

/KILL Instead of saving prefsStruct under the specified record ID, that record is deleted
from the package's preference if it exists. If it does not exist, nothing is done and no
error is returned.

/P=pathName Specifies the directory in which to save the file specified by prefsFileName.
pathName is the name of an existing symbolic path. See Symbolic Paths on page II-34
for details.
/P=$<empty string variable> acts as if the /P flag were omitted.

V_flag Set to 0 if preferences were successfully saved or to a nonzero error code if they were
not saved. The latter case is unlikely and would indicate some kind of corruption such
as if Igor's preferences directory were deleted.

V_structSize Set to the size in bytes of prefsStruct. This may be useful in handling structure version
changes.

Controls when the data is actually written to the preference file:
flush=0: The data will be flushed to disk when the current experiment is

saved, reverted or closed or when Igor quits. This is the default
behavior used when /FLSH is omitted and is recommended for most
purposes.

flush=1: The data is flushed to disk immediately.

SavePICT

V-617

See Also
LoadPackagePreferences.

SavePICT
SavePICT [flags] [as fileNameStr]
The SavePICT operation creates a picture file representing the top graph, table or layout. The picture file
can be opened by many word processing, drawing, and page layout programs.
To use any of the QuickTime graphic export formats (/T flag), you will need to have QuickTime 4 or later
installed (full install) in your system.

Parameters
The file to be written is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-400 for details on forming
the path.
If you omit fileNameStr but include /P=pathName, SavePICT writes the file using a default file name. The
default file name is the window name followed by an extension, such as “.png”, “.emf” or “.PICT”, that
depends on the graphic format being exported.
If you specify the file name as “Clipboard”, and do not specify a /P=pathName, Igor copies the picture to
the Clipboard, rather than to a file. EPS is a file-only format and can not be stored in the clipboard. Also
QuickTime formats (/T) can not be stored in the clipboard.
If you specify the file name as “_string_” the output will be saved into a string variable named S_Value,
which is used with the ListBox binary bitmap display mode.
If you use the special name _PictGallery_ with the /P flag, then the picture will be stored in Igor's picture
collection (see Pictures on page III-423) with the name you provide via fileNameStr. QuickTime formats (/T)
can not be put in the picture collection. This feature was added in support of making movies using the /PICT
flag with NewMovie. It requires Igor Pro 6.12 or later.

Flags

/B=dpi Controls image resolution in dots-per-inch (dpi). The legal values for dpi are n*72
where n can be from 1 to 8. The actual image dpi is not used. Igor calculates n from
your value of dpi and then multiplies n by your computer’s screen resolution. This is
because bitmap images that are not an integer multiple of the screen resolution look
quite bad. The /B flag can be used with QuickTime export types (/T).
Also see the /RES flag.

/C=c

/D=d Specifies bit depth for QuickTime image export. d may be 1, 8, 16, 24 (default), or 32
bits. Not all formats use depth. An intermediate picture at the current screen depth is
used and may limit the quality.

/E=e Sets graphics format used when exporting a graphic. See Details for formats. See also
Chapter III-5, Exporting Graphics (Macintosh), or Chapter III-6, Exporting Graphics
(Windows), for a description of these modes and when to use them.

Specifies color mode.
c=0: Black and white.
c=1: RGB color (default).
c=2: CMYK color (EPS and native TIFF only).

SavePICT

V-618

/EF= e

/I Specifies that /W coordinates are inches.

/M Specifies that /W coordinates are centimeters.

/N=winSpec Deprecated: Igor Pro 4.09-compatibility version of /WIN.

/O Overwrites file if it exists.

/P=pathName Saves file into a folder specified by pathName, which is the name of an existing
symbolic path.

/PICT=pict Saves specified named picture rather than the target window. Native format of the
picture is used and all format flags are ignored.

/PLL=p

/Q=q Sets quality factor (0.0 is lowest, 1.0 is highest). Default is dependent on individual
format. Used only by lossy formats such as QuickTime JPEG.

/R=resID Saves the picture in a resource fork with resource ID=resID, where resID is between 1
and 32767.
This flag is meaningful on Macintosh only. It is ignored on Windows. Also, it does not
work with EPS or PNG graphics.

/RES=dpi Controls the resolution of image formats in dots-per-inch. Unlike the similar /B flag, the
value for /RES is the actual output resolution and is useful when your publisher demands
a specific resolution. The /RES flag can be used with QuickTime export types (/T).

/S Suppresses the preview that is normally included with an EPS file.

/SNAP=s

Snapshot mode is available only for graphs and panels and only for bitmap export
formats PNG, JPEG, and TIFF at screen resolution. When using /W to specify the size
of a graph, the capture is sized to fit within the specified rectangle while maintaining
the window aspect ratio. Coordinates used with /W are in pixels.

/T=t Specifies a QuickTime export type. An error will be generated if QuickTime is not
present or if the desired export type is not available. t is a string containing a 4
character code for the export type. Valid types include “PNGf” for PNG, “TIFF” for
TIFF, “JPEG” for JPEG. GIF is “GIFf” but is not currently supported by QuickTime
presumably due to the patent situation. This might change in the future if Apple or a
third party provides a component for GIF writing.

/TRAN[=1 or 0] Makes white background areas transparent using an RGBA type PNG when used
with native PNG export of graphs or page layouts. In layouts, only embedded graphs
and textboxes marked as transparent will be transparent. Nonembedded graphs,
pictures, and tables will be opaque. PNG transparency is not honored when placed in
Igor.
On Macintosh in new graphics mode (see Graphics Technology on page III-423)
under some versions of OS X, you may find text is not properly transparent. In this
instance, you can use /TRAN=2 to turn off font smoothing which is the source of the
problem.

Sets font embedding.
e=0: No font embedding.
e=1: Embed nonstandard fonts.
e=2: Embed all fonts.

Specifies Postscript language level when used in conjunction with EPS export.
p=1: For very old Postscript printers.
p=2: For all other uses (default).

Saves a snapshot (screen dump) of a graph or panel window.
s=1: Include all controls in capture.
s=2: Capture only window data content.

SavePICT

V-619

Details
SavePICT sets the variable V_flag to 0 if the operation succeeds or to a nonzero error code if it fails.
If you specify a path using the /P=pathName flag, then Igor saves the file in the folder identified by the path.
Note that pathName is the name of an Igor symbolic path, created via NewPath. It is not a file system path
like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-34 for details. Otherwise, with
no path specified, Igor presents a standard save dialog to let you specify where the file is to be saved.
When writing an EPS file, it normally includes a screen preview. On Macintosh, this is a PICT in the
resource fork of the file. On Windows, it is a TIFF embedded in the EPS file. Using the /S flag, you can
suppress the preview to save disk space, to work around a program that is confused by the preview, or to
create a completely platform-neutral file.
On Macintosh, the picture is normally written to the data fork of the file. Most applications read it from the
data fork. Some, however, read PICTs from the resource fork. If you use /R=resID, it writes the PICT to the
resource fork of the file, using resID as the resource ID.
Graphics formats, specified via /E, are as follows:

/W=(left,top,right,bottom)

Specifies the size of the picture when exporting a graph. If /W is omitted, it uses the
graph window size.
When exporting a page layout, specifies the part of the page to export. Only objects
that fall completely within the specified area are exported. If /W is omitted, the area
of the layout containing objects is exported. Specify /W=(0,0,0,0) to use a full page size.
Coordinates for /W are in points unless /I or /M are specified before /W.

/WIN=winSpec Saves the named window or subwindow. winSpec can be just a window name, or a
window name following by a “#” character and the name of the subwindow, as in
/WIN=Panel0#G0.

/Z Errors are not fatal. V_flag is set to zero if no error, else nonzero if error.

/E Value Macintosh File Format Windows File Format

-8 PDF file. PDF file.

-7 TIFF file. Lossless but larger file than PNG; best for text, graph traces, and simple images with
sharp edges. The default resolution is 72 dpi. You can specify the resolution with the /B or /RES
flag. Cross-platform compatible.

-6 JPEG file. Lossy compression; best used for grayscale and color images with smooth tones. The
/Q flag specifies compression quality and the /B or /RES flag sets the resolution. Cross-platform
compatible.

-5 PNG (Portable Network Graphics) file. Lossless compression; best for text, graph traces, and
simple images with sharp edges. The default resolution is 72 dpi. Specify the resolution with
/B or /RES. Cross-platform compatible.

-4 High resolution bitmap PICT file. Default
resolution is 288 dpi. Specify the resolution
with /B or /RES.

Device-independent bitmap file (DIB). Default
resolution is 4x screen resolution. Specify the
resolution with /B or /RES.

-3 Encapsulated PostScript (EPS) file.
Use /S to suppress the screen preview if
exporting to Latex.

Encapsulated PostScript (EPS) file.
Use /S to suppress the screen preview if
exporting to Latex.

-2 Quartz PDF. High-resolution Enhanced Metafile (EMF).

-1 Quartz PDF (was PostScript PICT). Obsolete (was PostScript-enhanced metafile).

0 Quartz PDF (was PostScript PICT with
QuickDraw text).

Obsolete (was PostScript-enhanced metafile).

1 Low resolution Quartz PDF at 1x normal size. High-resolution Enhanced Metafile (EMF).

SaveTableCopy

V-620

Prior to Igor Pro 6.1, e=-2 on Macintosh created a high-resolution Macintosh PICT.
The low resolution PDF formats on Macintosh are probably not useful and are just placeholders for
compatibility with old procedures. Prior to Igor Pro 6.1, e=1, e=2, e=4 and e=8 created Macintosh PICTs on
Macintosh.
On Windows, for e>=1, Enhanced Metafile (EMF) is used except for graph and table windows when old
graphics mode is in effect (see Graphics Technology on page III-423) in which case Windows Metafile
(WMF) is used at e times screen resolution.

See Also
The ImageSave operation for saving waves as PICTs and other image file formats. The LoadPICT operation.
See Chapter III-5, Exporting Graphics (Macintosh), or Chapter III-6, Exporting Graphics (Windows), for a
description of the /E modes.

SaveTableCopy
SaveTableCopy [flags][as fileNameStr]
The SaveTableCopy operation saves a copy of the data displayed in a table on disk. The saved file can be
an Igor packed experiment file, a tab-delimited text file, or a comma-separated values text file.
When saving as text, the data format matches the format shown in the table. Keep in mind that this will
cause truncation if the underlying data has more precision than shown in the table. The point column is
never saved.
To save data as text with full precision, use the Save operation.
When saving 3D and 4D waves as text, only the visible layer is saved. To save the entirety of a 3D or 4D
wave, use the Save operation.

Parameters
The file to be written is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-400 for details on forming the
path.

Flags

2 Low resolution Quartz PDF at 2x normal size. High-resolution Enhanced Metafile (EMF).

4 Low resolution Quartz PDF at 4x normal size. High-resolution Enhanced Metafile (EMF).

8 Low resolution Quartz PDF at 8x normal size. High-resolution Enhanced Metafile (EMF).

/A=a

/I Presents a dialog from which you can specify file name and folder.

/M=termStr Specifies the terminator character or characters to use at the end of each line of text.
The default is /M="\r" on Macintosh and /M="\r\n" on Windows; it is used when
/M is omitted. To use the Unix convention, just a linefeed, specify /M="\n".

/E Value Macintosh File Format Windows File Format

Appends data to the file rather than overwriting.

/A applies when saving text files and is ignored when saving packed experiment
files.
If the file does not exist, a new file is created and /A has no effect.

a=0: Does not append.
a=1: Appends to the file with a blank line before the appended data.
a=2: Appends to the file with no blank line before the appended data.

SaveTableCopy

V-621

Details
The main uses for saving a table as a packed experiment are to save an archival copy of data or to prepare
to merge data from multiple experiments (see Merging Experiments on page II-32). The resulting
experiment file preserves the data folder hierarchy of the waves displayed in the table starting from the
“top” data folder, which is the data folder that encloses all waves displayed in the table. The top data folder
becomes the root data folder of the resulting experiment file. Only the table and its waves are saved in the
packed experiment file, not variables or strings or any other objects in the experiment.
SaveTableCopy does not know about dependencies. If a table contains a wave, wave0, that is dependent on
another wave, wave1 which is not in the table, SaveTableCopy will save wave0 but not wave1. When the
saved experiment is open, there will be a broken dependency.
The main use for saving as a tab or comma-delimited text file is for exporting data to another program.
When calling SaveTableCopy from a procedure, you should call DoUpdate before calling SaveTable copy.
This insures that the table is up-to-date if your procedure has redimensioned or otherwise changed the
number of points in the waves in the table.
SaveTableCopy sets the variable V_flag to 0 if the operation completes normally, to -1 if the user cancels, or
to another nonzero value that indicates that an error occurred. If you want to detect the user canceling an
interactive save, use the /Z flag and check V_flag after calling SaveTableCopy.
The SaveData operation also has the ability to save a table to a packed experiment file. SaveData is more
complex but a bit more flexible than SaveTableCopy.

Examples
This function saves all tables to a single tab-delimited text file.
Function SaveAllTablesToTextFile(pathName, fileName)

String pathName // Name of an Igor symbolic path.
String fileName

String tableName
Variable index

index = 0
do

tableName = WinName(index, 2)
if (strlen(tableName) == 0)

/N=n Specifies whether to use column names, titles, or dimension labels.

/O Overwrites file if it exists already.

/P=pathName Specifies the folder to store the file in. pathName is the name of an existing symbolic path.

/S=s Saves all of the data in the table (s=0; default) or the selection only (s=1).
/S applies when saving text files and is ignored when saving packed experiment files.

/T=saveType

/W= winName winName is the name of the table to be saved. If /W is omitted or if winName is "", the
top table is saved.

/Z Errors are not fatal and error dialogs are suppressed. See Details.

n is a bitwise parameter with the bits defined as follows:

The default setting for n is 1. All other bits are reserved and must be zero.

Bit 0: Include column names or titles. The column title is included if it is not
empty. If it is empty, the column name is included.

Bit 1: Include horizontal dimension labels if they are showing in the table.

Specifies the file format of the saved table.
saveType=0: Packed experiment file.
saveType=1: Tab-delimited text file.
saveType=2: Comma-separated values text file.
saveType=3: Space-delimited values text file.

sawtooth

V-622

break
endif

SaveTableCopy/P=$pathName/W=$tableName/T=1/A=1 as fileName

index += 1
while(1)

End

See Also
SaveGraphCopy and SaveData operations; Merging Experiments on page II-32.

sawtooth
sawtooth(num)
The sawtooth function returns ((num +n2π) mod 2π)/2π where n is used to correct if num is negative.
Sawtooth is used to create arbitrary periodic waveforms like sine and cosine.

Examples
wave1 = sawtooth(x)

creates a sawtooth in wave1 whose Y values range from 0 to 1 as its X values go through 2π units.
wave1 = exp(sawtooth(x))

creates a series of exponentials in wave1 of amplitude exp(1) and period 2π.
You can also use sawtooth to create periodic repetitions of a given part of a wave:
wave1 = wave2(sawtooth(x))

creates a periodic repetition of wave2 in wave1 given the correct X scaling for the waves.

ScreenResolution
ScreenResolution
The ScreenResolution function returns the logical resolution of your video display screen in dots per inch
(dpi). On Macintosh this is always 72. On Windows it is usually 96 (small fonts) or 120 (large fonts).

Examples
// 72 is the number of points in an inch which is constant.
Variable pixels = numPoints * (ScreenResolution/72) // Convert points to pixels
Variable points = numPixels * (72/ScreenResolution) // Convert pixels to points

sec
sec(angle)
The sec function returns the secant of angle which is in radians:

In complex expressions, angle is complex, and sec(angle) returns a complex value.

See Also
sin, cos, tan, csc, cot

Secs2Date
Secs2Date(seconds, format [, sep])
The Secs2Date function returns a string containing a date.
With format values 0, 1, and 2, the formatting of dates depends on your operating system and on your preferences
entered in the Date & Time control panel (Macintosh) or the Regional Settings control panel (Windows).
If format is -1, the format is independent of the operating system. The fixed-length format is “day /month /year
(dayOfWeekNum)”, where dayOfWeekNum is 1 for Sunday, 2 for Monday… and 7 for Saturday.
If format is -2, the format is YYYY-MM-DD.

sec(x) =
1

cos(x)
.

Secs2Time

V-623

The optional sep parameter affects format -2 only. If sep is omitted, the separator character is "-". Otherwise,
sep specifies the separator character.

Parameters
seconds is the number of seconds from 1/1/1904 to the date to be returned.
format is a number between -2 and 2 which specifies how the date is to be constructed.

Examples
Print Secs2Date(DateTime,-2) // 1993-03-14
Print Secs2Date(DateTime,-2,"/") // 1993/03/14
Print Secs2Date(DateTime,-1) // 15/03/1993 (2)
Print Secs2Date(DateTime,0) // 3/15/93
Print Secs2Date(DateTime,1) // Monday, March 15, 1993
Print Secs2Date(DateTime,2) // Mon, Mar 15, 1993

See Also
For further discussion of how Igor represents dates, see Date/Time Waves on page II-102.
The date, date2secs and DateTime functions.

Secs2Time
Secs2Time(seconds, format, [fracDigits])
The Secs2Time function returns a string containing a time.

Parameters
seconds is the number of seconds from 1/1/1904 to the time to be returned.
format is a number between 0 and 5 that specifies how the time is to be constructed. It is interpreted as follows:

“Normal” formats (0 and 1) follow the preferred formatting of the short time format as set in the
International control panel (Macintosh) or in the Regional and Language Options control panel (Windows).
“Military” means that the hour is a number from 0 to 23. Hours greater than 23 are wrapped.
“Elapsed” means that the hour is a number from -9999 to 9999. The result for hours outside that range is
undefined.
The fracDigits parameter is optional and specifies the number of digits of fractional seconds. The default
value is 0. The fracDigits parameter is ignored for format=0, 1, 2,and 4.

Examples
Print Secs2Time(DateTime,0) // prints 1:07 PM
Print Secs2Time(DateTime,1) // prints 1:07:28 PM
Print Secs2Time(DateTime,2) // prints 13:07
Print Secs2Time(DateTime,3) // prints 13:07:29
Print Secs2Time(30*60*60+45*60+55,4) // Prints 30:45
Print Secs2Time(30*60*60+45*60+55,5) // Prints 30:45:55

See Also
For a discussion of how Igor represents dates, see Date/Time Waves on page II-102.
The Secs2Date, date, date2secs and DateTime functions. Also, Operators on page IV-5 for ?: details.

0: Normal time, no seconds.

1: Normal time, with seconds.

2: Military time, no seconds.

3: Military time, with seconds and optional fractional seconds.

4: Elapsed time, no seconds.

5: Elapsed time, with seconds and optional fractional seconds.

SelectNumber

V-624

SelectNumber
SelectNumber(whichOne, val1, val2 [, val3])
The SelectNumber function returns one of val1, val2, or (optionally) val3 based on the value of whichOne.
SelectNumber(whichOne, val1, val2) returns val1 if whichOne is zero, else it returns val2.
SelectNumber(whichOne, val1, val2, val3) returns val1 if whichOne is negative, val2 if whichOne is zero, or val3
if whichOne is positive.

Details
SelectNumber works with complex (or real)val1, val2, and val3 when the result is assigned to a complex
wave or variable. (Print expects a real result, see the “causes error” example, below).
If whichOne is NaN, then NaN is returned.
whichOne must always be a real value.
Unlike the ? : conditional operator, SelectNumber always evaluates all of the numeric expression
parameters val1, val2, …
SelectNumber works in a macro, whereas the conditional operator does not.

Examples
Print SelectNumber(0,1,2) // prints 1
Print SelectNumber(0,1,2,3) // prints 2
wv=SelectNumber(numtype(wv[p])==2,wv[p],0) // replace NaNs with zeros

// chooses among complex values
Variable/C cx= SelectNumber(negZeroPos,cmplx(-1,-1),0,cmplx(1,1))

// causes error because Print expects a real value (not complex)
Print SelectNumber(negZeroPos,cmplx(-1,-1),0,cmplx(1,1))

// The real function expects a complex result
Print real(SelectNumber(negZeroPos,cmplx(-1,-1),0,cmplx(1,1)))

See Also
The SelectString and limit functions, and Waveform Arithmetic and Assignments on page II-94. Also,
Operators on page IV-5 for details about the ?: operator.

SelectString
SelectString(whichOne, str1, str2 [, str3])
The SelectString function returns one of str1, str2, or (optionally) str3 based on the value of whichOne.
SelectString(whichOne, str1, str2) returns str1 if whichOne is zero, else it returns str2.
SelectString(whichOne, str1, str2, str3) returns str1 if whichOne is negative, str2 if whichOne is zero, or str3 if
whichOne is positive.

Details
If whichOne is NaN, then "" is returned.
whichOne must always be a real value.
Unlike the ? : conditional operator, SelectString always evaluates all of the string expression parameters
str1, str2, …
SelectString works in a macro, whereas the conditional operator does not.

Examples
Print SelectString(0,"hello","there") // prints "hello"
Print SelectString(1,"hello","there") // prints "there"
Print SelectString(-3,"hello","there","jack") // prints "hello"
Print SelectString(0,"hello","there","jack") // prints "there"
Print SelectString(100,"hello","there","jack") // prints "jack"

See Also
The SelectNumber function and String Expressions on page IV-12. Also, Operators on page IV-5 for details
about the ?: operator.

SetActiveSubwindow

V-625

SetActiveSubwindow
SetActiveSubwindow subWinSpec
The SetActiveSubwindow operation specifies the subwindow that is to be activated. This operation is
mainly for use by recreation macros.

Parameters
subWinSpec specifies an existing subwindow. See Subwindow Syntax on page III-97 for details on
subwindow specifications.
Use _endfloat_ for subWinSpec to make a newly-created floating panel not be the default target.

SetAxis
SetAxis [flags] axisName [, num1, num2]
The SetAxis operation sets the extent (or “range”) of the named axis.

Parameters
axisName is usually “left”, “right”, “top” or “bottom”, but it can also be the name of a free axis, such as
“vertCrossing”.
If axisName is a vertical axis such as “left” or “right” then num1 sets the bottom end of the axis and num2
sets the top end of the axis.
If axisName is a horizontal axis such as “top” or “bottom” then num1 sets the left end of the axis and num2
sets the right end of the axis.
You can flip the graph by reversing num1 and num2 (or by using /A/R). This is particularly useful for
images, because Igor plots an image inverted.
If you pass * (asterisk) for num1 and/or num2 then the corresponding end of the axis will be autoscaled.

Flags

/A[=a]

/E=z

/N=n

/R Reverses the autoscaled axis (smaller values at the left for horizontal axes, at the top
for vertical axes) when used with /A. Although it only has an effect for autoscale, it
can be used with nonautoscale version of SetAxis so that the next time the Axis Range
tab is used the “reverse axis” checkbox will already be set.

/W=winName Sets axes in the named graph window or subwindow. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.

Autoscale axis (when used, num1, num2 should be omitted).
a=0: No autoscale. Same as no /A flag.
a=1: Normal autoscale. Same as /A.
a=2: Autoscale Y axis to a subset of the data defined by the current X axis

range.

Sets the treatment of zero when the axis is in autoscale mode.
z=0: Normal mode where zero is not treated special.
z=1: Forces the smaller end of the axis to be set to zero (autoscale from zero).
z=2: Axis is symmetric about zero.
z=3: If the data is unipolar (all positive or all negative), this behaves like /E=1

(autoscale from zero). If the data is bipolar, it behaves like /E=0 (normal
autoscaling).

Sets the algorithm for axis autoscaling.
n=0: Normal mode; sets the axis limits equal to the data limits.
n=1: Picks nice values for the axis limits.
n=2: Picks nice values; also ensures that the data is inset from the axis ends.

SetBackground

V-626

SetBackground
SetBackground numericExpression
The SetBackground operation sets numericExpression as the current unnamed background task.
SetBackground works only with the unnamed background task. New code should used named background
tasks instead. See Background Tasks on page IV-285 for details.
The background task runs while Igor is not busy with other things. Normally, there won’t be a background task.
The most common use for the background task is to monitor or drive a continuous data acquisition process.

Parameters
numericExpression is a single precision numeric expression that Igor executes when it isn’t doing anything
else.

Details
numericExpression is expected to return one of three numeric values:

Usually the expression will be a call to a user-defined numeric function or external function to drive or
monitor data acquisition. The expression should be designed to execute very quickly and it should not present
a dialog to the user nor should it create or destroy windows. Generally, it should do nothing more than store
data into waves or variables. You can use Igor’s dependency mechanism to perform more extensive tasks.
SetBackground designates the background task but you must use CtrlBackground to start it. You can also
use KillBackground to stop it. You can not call SetBackground from the background function itself.

See Also
The BackgroundInfo, CtrlBackground, CtrlNamedBackground, KillBackground, and SetProcessSleep
operations, and Background Tasks on page IV-285.

SetDashPattern
SetDashPattern dashNumber, {d1, s1 [, d2, s2]…}
The SetDashPattern operation defines a dashed-line pattern for a user-defined dashed line. These dashed
lines are used by the drawing tools and the Modify Waves Appearance dialog, and are elsewhere referred
to as “line styles”.

Parameters
dashNumber specifies which dash pattern is to be set. It must be between 1 and 17. Dash pattern 0 is reserved
for a solid line.

{d1,s1 [,d2,s2]…} defines the dash pattern. The dash pattern consists of 1 to 8 “dash,skip” pairs. Each pair
consists of the number of drawn points followed by the number of skipped points.

When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/Z No error reporting if named axis doesn’t exist in a style macro.

0: Background task executed normally.

1: Background task wants to stop.

2: Background task encountered error and wants to stop.

SetDataFolder

V-627

d1 specifies the number of drawn points and s1 specifies the number of skipped points in the first
“dash,skip” pair. d2 and s2 specify the number of drawn and skipped points in the second pair and so on.
Each draw or skip value must be between 1 and 127.

Details
SetDashPattern updates all graphs, panels and layouts so that any dashed lines will be updated with the
new pattern. If you repeatedly call SetDashPattern from within a macro, you should precede the commands
with the PauseUpdate operation to prevent multiple updates (which would be slow).
Dashed lines may also be redefined by the Dashed Lines dialog which you can choose from the Misc menu.
The dashed line patterns are saved as part of the experiment. When a new experiment is opened, the
preferred dash patterns are restored.
Some programs and printer drivers do not properly render dashed lines with many “dash,skip” pairs.

Examples
Make test; Display test
SetDashPattern 17, {20,3,15,8} // sets last dashed line pattern
ModifyGraph lstyle(test)=17 // apply pattern to trace

See Also
PauseUpdate and ResumeUpdate operations, and Dashed Lines on page III-412.

SetDataFolder
SetDataFolder dataFolderSpec
The SetDataFolder operation sets the current data folder to the specified data folder.

Parameters
dataFolderSpec can be a simple name (MyDataFolder), a path (root:MyDataFolder) or a string expression
containing a name or path. It can also be a data folder reference created by the DFREF keyword or returned
by GetDataFolderDFR.
If dataFolderSpec is a path it can be a partial path relative to the current data folder (:MyDataFolder) or an
absolute path starting from root (root:MyDataFolder).

Examples
SetDataFolder foo // Sets CDF to foo in the current data folder.
SetDataFolder :bar:foo // Sets CDF to foo in bar current data folder.
SetDataFolder root:foo // Sets CDF to foo in the root data folder.
String savedDF= GetDataFolder(1) // Remember CDF in a string.
NewDataFolder/O/S root:MyDataFolder // Set CDF to a new data folder.
Variable/G newVariable=1 // Do work in the new data folder.
SetDataFolder savedDF // Restore CDF from the string value.

See Also
Chapter II-8, Data Folders and Data Folder References on page IV-62.

SetDimLabel
SetDimLabel dimNumber, dimIndex, label, wavelist
The SetDimLabel operation sets the dimension label or dimension element label to the specified label.

Parameters
Use dimNumber=0 for rows, 1 for columns, 2 for layers and 3 for chunks.
If dimIndex is -1, it sets the label for the entire dimension. For dimIndex ≥ 0, it sets the dimension label for
that element of the dimension.
label is a name (e.g., time), not a string (e.g., "time").
label is limited to 31 characters.

See Also
GetDimLabel, FindDimLabel

SetDrawEnv

V-628

Dimension Labels on page II-109 and Example: Wave Assignment and Indexing Using Labels on page
II-99 for further usage details and examples.

SetDrawEnv
SetDrawEnv [/W=winName] keyword [=value][, keyword [=value]]…
The SetDrawEnv operation sets properties of the drawing environment.
If one or more draw objects are selected in the top window then the SetDrawEnv command will apply only
to those objects.
If no objects are selected and if the keyword save is not used then the command applies only to the next object
drawn.
If no objects are selected and if the keyword “save” is used then the command sets the environment for all
following objects.
Each draw layer has its own draw environment settings.

Parameters
SetDrawEnv can accept multiple keyword=value parameters on one line.
In the following descriptions, (r, g, b) specifies a color. r, g, and b are each a number from 0 to 65535. (0, 0, 0)
specifies black. (65535, 65535, 65535) specifies white.
Also note that the abs and rel values for the coordinate keywords “xcoord” and “ycoord” are the literal
characters “abs” and “rel”; they are not substitute names for numbers, names, or strings.

arrow=arr

arrowfat=afat Sets ratio of arrowhead width to length (default is 0.5).

arrowlen=alen Sets length of arrowhead in points (default is 10).

arrowSharp=s

arrowframe=f Specifies the stroke outline thickness of the arrow in points (default is f=0 for solid fill).

astyle=s

dash=dsh dsh is a dash pattern number between 0 and 17 (see SetDashPattern for patterns). 0
(solid line) is the default.

fillbgc=(r, g, b) Specifies fill background color. Default is the window’s background color.

fillfgc=(r, g, b) Specifies fill foreground color. The default is white.

Specifies the arrow head position on lines.
arr=0: No arrowhead (default).
arr=1: Arrowhead at end.
arr=2: Arrowhead at start.
arr=3: Arrowhead at start and end.

Specifies the continuously variable barb sharpness between -1.0 and 1. 0.
s=1: No barb; lines only.
s=0: Blunt (default).
s=-1: Diamond.

Specifies which side of the line has barbs relative to a right-facing arrow.
s=0: None.
s=1: Top.
s=2: Bottom.
s=3: Both (default).

SetDrawEnv

V-629

fillpat=fpatt

fname="fontName" Sets font name, default is the default font or the graph font.

fsize=size Sets text size, default is 12 points.

fstyle=style Sets text style (same as for the TextBox operation), default is plain.

gedit= flag

gname= name Supplies optional name for an object group. Use with gstart.

gstart Marks the start of a group of objects.

gstop Marks the end of a group of objects.

linebgc=(r, g, b) Sets the line background color. Default is window’s background color.

linefgc=(r, g, b) Sets the line foreground color, default is black.

linepat=patt

linethick=thick thick is a line thickness ≥ 0, default is 1 point.

origin= x0,d0 Moves coordinate system origin to x0,d0. Unlike translate, rotate, and scale, this
survives a change in coordinate system and is most useful that way. See Coordinate
Transformation.

pop Pops a draw environment from the stack. Pops should always match pushes.

push Pushes the current draw environment onto a stack (limited to 10).

rotate= deg Rotates coordinate system by deg degrees. Only makes sense if X and Y coordinate
systems are the same. See Coordinate Transformation.

rounding=rnd Radius for rounded rectangles in points, default is 10.

rsabout Redefines coordinate system rotation or scaling to occur at the translation point
instead of the current origin. To use, combine rotate or scale with translate and
rsabout parameters.

save Stores the current drawing environment as the default environment.

scale= sx,sy Scales coordinate system by sx and sy. Affects only coordinates — not line thickness
or arrow head sizes. See Coordinate Transformation.

textrgb=(r, g, b) Sets text color, default is black.

Specifies fill pattern density.
fpatt=-1: Erase to background color.
fpatt=0: No fill.
fpatt=1: 100% (solid pattern, default).
fpatt=2: 75% gray.
fpatt=3: 50% gray.
fpatt=4: 25% gray.

Supplies optional edit flag for a group of objects. Use with gstart.
flag=0: Select entire group, moveable (default).
flag=1: Individual components editable as if not grouped. Allows

objects to be grouped by name but still be editable.

Specifies the line pattern/density.
patt=1: 100% (solid pattern, default).
patt=2: 75% gray.
patt=3: 50% gray.
patt=4: 25% gray.

SetDrawEnv

V-630

Flags

Coordinate Transformation
The execution order for the translate, rotate, scale, and origin parameters is important. Translation followed
by rotation is different than rotation followed by translation. When using multiple keywords in one
SetDrawEnv operation, the order in which they are applied is origin, translate, rotate followed by scale

textrot=rot Text rotation in degrees.
rot is a value from -360 to 360.
0 is normal (default) horizontal left-to-right text,
90 is vertical bottom-to-top text, etc.

textxjust=xj

textyjust=yj

translate= dx,dy Shifts coordinate system by dx and dy. Units are in the current coordinate system. See
Coordinate Transformation.

xcoord=abs X coordinates are absolute window coordinates (default for all windows except graphs
where the default is xcoord=prel). The unit of measurement is pixels if the window is
a panel, otherwise they are points. The left edge of the window (or of the printable
area in a layout) is at x=0.

xcoord=rel X coordinates are relative window coordinates. x=0 is at the left edge of the window;
x=1 is at the right edge.

xcoord=prel X coordinates are relative plot rectangle coordinates (graphs only). x=0 is at the left
edge of the rectangle; x=1 is at the right edge of the rectangle. This coordinate system
ideal for objects that should maintain their size and location relative to the axes, and
is the default for graphs.

xcoord=axisName X coordinates are in terms of the named axis (graphs only).

ycoord=abs Y coordinates are absolute window coordinates (default for all windows except graphs
where the default is ycoord=prel). The unit of measurement is pixels if the window is
a panel, otherwise they are points. The top edge of the window (or the of the printable
area in a layout) is at y=0.

ycoord=rel Y coordinates are relative window coordinates. y=0 is at the top edge of the window;
y=1 is at the bottom edge.

ycoord=prel Y coordinates are relative plot rectangle coordinates (graphs only). y=0 is at the top
edge of the rectangle; y=1 is at the bottom edge of the rectangle. This coordinate
system ideal for objects that should maintain their size and location relative to the
axes, and is the default for graphs.

ycoord=axisName Y coordinates are in terms of the named axis (graphs only).

/W=winName Sets the named window or subwindow for drawing. When omitted, action will affect
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

Sets horizontal text alignment.
xj=0: Left aligned text (default).
xj=1: Center aligned text.
xj=2: Right aligned text.

Sets vertical text alignment.
yj=0: Bottom aligned text (default).
yj=1: Middle aligned text.
yj=2: Top aligned text.

SetDrawEnv

V-631

regardless of the command order (with the exception of the rsabout parameter). Before using origin with
the save keyword, you should use push to save the current draw environment and then use pop after
drawing objects using the new origin.

Examples
Following is a simple example of arrow markers:
NewPanel
SetDrawEnv arrow= 1,arrowlen= 30,save
SetDrawEnv arrowsharp= 0.3
DrawLine 61,67,177,31
SetDrawEnv arrowsharp= 1
DrawLine 65,95,181,59
SetDrawEnv astyle= 1
DrawLine 69,123,185,87
SetDrawEnv arrowframe= 1
DrawLine 73,151,189,115

You can position objects in one coordinate system and then draw them in another with the origin keyword.
In the following coordinate transformation example, we position arrows in axis units but size them in
absolute units.
Make/O jack=sin(x/8)
Display jack
SetDrawEnv xcoord=bottom,ycoord=left,save
SetDrawEnv push
SetDrawEnv origin=50,0
SetDrawEnv xcoord=abs,ycoord=abs,arrow=1,arrowlen=20,arrowsharp=0.2,save
DrawLine 0,0,50,0 // arrow 50 points long pointing to the right
DrawLine 0,0,0,50 // arrow 50 points long pointing down
// now let's move over, rotate a bit and draw the same arrows:
SetDrawEnv translate=100,0
SetDrawEnv rotate=30,save
DrawLine 0,0,50,0
DrawLine 0,0,0,50
SetDrawEnv pop

Now try zooming in on the graph. You will see that the first pair of arrows always starts at 50 on the bottom
axis and 0 on the left axis whereas the second pair is 100 points to the right of the first.

See Also
Chapter III-3, Drawing, and the TextBox and DrawAction operations.

SetDrawLayer

V-632

SetDrawLayer
SetDrawLayer [/K/W=winName] layerName
The SetDrawLayer operation makes all future drawing operations use the named layer.

Parameters
Valid layerNames for graphs:

Valid layerNames for panels and page layouts:

Flags

Details
There are really only two layers for Panels but ProgFront is allowable as an alias for ProgBack. Likewise
UserFront is an alias for UserBack.
The back-to-front order of the layers is shown by the Environment pop-up menu if you hold down Option
(Macintosh) or Alt (Windows). This is the Environment pop-up menu for graphs:

See Also
Layers on page III-80 and the DrawAction operation.

SetFileFolderInfo
SetFileFolderInfo [flags][fileOrFolderNameStr]
The SetFileFolderInfo operation changes the properties of a file or folder.

Parameters
fileOrFolderNameStr specifies the file or folder to be changed.
If you use a full or partial path for fileOrFolderNameStr, see Path Separators on page III-400 for details on
forming the path.
Folder paths should not end with single Path Separators. See the MoveFolder Details section.
If Igor can not determine the location of the file or folder from fileOrFolderNameStr and /P=pathName, it
displays a dialog allowing you to specify the file to be deleted. Use /D to select a folder in this event,
otherwise Igor prompts your for a file.

Flags
At least one of the seven following flags is required, or nothing is actually accomplished:

ProgBack UserBack ProgAxes UserAxes ProgFront UserFront

ProgBack UserBack ProgFront UserFront

/K Kills (erases) the given layer.

/W=winName Sets the named window or subwindow for drawing. When omitted, action will affect
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/CDAT=cdate Specifies the number of seconds since midnight January 1, 1904 when the file or folder
was first created.

Gray items are not layers;
they show drawing order
of nondraw objects

Current draw layer
Drawn at very front

Drawn at very back

Environment icon

SetFileFolderInfo

V-633

If fileOrFolderNameStr refers to a file (not a folder), SetFileFolderInfo updates the file properties to reflect
values given with the following keywords:

Optional Flags

/INV[=inv]

/MDAT=mDate Specifies the number of seconds since midnight January 1, 1904 when the file or folder
was modified most recently.

/RO[=ro]

On Macintosh, locking the file or folder is equivalent to setting the locked property
manually using the Get Info window in the Finder.
On Windows, locking the file or folder is equivalent to setting the read-only property
manually using the Properties window in Windows Explorer.

/CRE8=creatorStr Sets the four-character creator code string, such as 'IGR0' (Igor Pro creator code).

Ignored on Windows, where files have no “creator code”; instead file extensions are
“registered” or “owned” by one, and only one, application. You cannot change that
ownership from Igor Pro.

/FTYP=fTypeStr Sets the four-character file type code, such as 'TEXT' or 'IGsU' (packed experiment).
Ignored on Windows. Use MoveFile to change the file extension.

/STA[=st]

/D Uses the Select Folder dialog rather than Open File dialog when pathName and
fileOrFolderNameStr do not specify an existing file or folder.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/R[=r]

Sets the visibility of a file.
inv=0: File is visible.
inv=1: Default; file is invisible (Macintosh) or Hidden (Windows).

Sets the read/write state of a file or folder.
ro=0: File or folder is writable.
ro=1: File or folder is locked (default).

Specifies whether the file is a stationery file or not.

Ignored on Windows. Use MoveFile to change the file extension.

st=1: Stationery file (default).
st=0: Normal file.

Recursively applies change(s) to all files or folders in the folder specified by
/P=pathName or fileOrFolderNameStr, and the folder itself:

/R requires /D and a folder specification.

r=0: No recursion. Same as no /R.
r=1: Recursively apply changes to files.
r=2: Recursively apply changes to folders, including the folder specified

by pathName or fileOrFolderNameStr.
r=3: Recursively apply changes to both files and folders (default).

SetFormula

V-634

Variables
SetFileFolderInfo returns information about the file or folder in the following variables:

Examples
Change the file creator code; no complaint if it doesn’t exist:
SetFileFolderInfo/Z /CRE8="CWIE", "Macintosh HD:folder:afile.txt"

Set the file modification date:
Variable mDate= Date2Secs(2000,12,25) + hrs*3600+mins*60+secs
SetFileFolderInfo/P=myPath/MDAT=(mDate), "afile.txt"

Remove read-only property from a folder and everything within it:
SetFileFolderInfo/P=myPath/D/R/RO=0

See Also
The GetFileFolderInfo, ImageFileInfo, MoveFile, and FStatus operations. The IndexedFile, date2secs,
and ParseFilePath functions.

SetFormula
SetFormula waveName, expressionStr
SetFormula variableName, expressionStr
The SetFormula operation binds the named wave, numeric or string variable to the expression or, if the
expression is "", unbinds it from any previous expression. In user functions, SetFormula must be used to
create dependencies.

Parameters
expressionStr is a string containing a numeric or string expression, depending on the type of the bound object.
Pass an empty string ("") for expressionStr to clear any previous dependency expression associated with the
wave or variable.

Details
The dependent object (the wave or variable) will depend on the objects referenced in the string expression.
The expression will be reevaluated any time an object referred to in the expression is modified.
Besides being set from a string expression this differs from just typing:
name := expression

in that syntax errors in expressionStr are not reported and are not fatal. You end up with a dependency
assignment that is marked as needing to be recompiled. The recompilation will be attempted every time an
object is created or when the procedure window is recompiled.
Use the Object Status dialog in the Misc menu to check up on dependent objects.

/Z[=z]

V_flag 0: File or folder was found.

-1: User cancelled the Open File dialog.

>0: An error occurred, such as the specified file or folder does not exist.

S_path File system path of the selected file or folder.

Prevents procedure execution from aborting if SetFileFolderInfo tries to set
information about a file or folder that does not exist. Use /Z if you want to handle
this case in your procedures rather than having execution abort.
/Z=0: Same as no /Z at all.
/Z=1: Used for setting information for a file or folder only if it exists. /Z

alone has the same effect as /Z=1.
/Z=2: Used for setting information for a file or folder if it exists and

displaying a dialog if it does not exist.

SetIgorHook

V-635

Examples
This command makes the variable v_sally dependent on the user-defined function anotherFunction,
waves wave_fred and wave_sue, and the system variable K2:
SetFormula v_sally, "anotherFunction(wave_fred[1]) + wave_sue[0] + K2"

This is equivalent to:
v_sally := anotherFunction(wave_fred[1]) + wave_sue[0] + K2

except that no error will be generated for the SetFormula if, for instance, wave_fred does not exist.
A string variable dependency can be created by a command such as:
SetFormula myStringVar, "note(wave_joe)"

observe that expressionStr is a string containing a string expression, and that:
SetFormula myStringVar,note(wave_joe)

is not the same thing. In this case the note of wave_joe would contain the expression that myStringVar
would depend on! Also, wave_joe would have to exist for Igor to understand the statement.

See Also
Chapter IV-9, Dependencies, and the GetFormula function.

SetIgorHook
SetIgorHook [/K/L] [hookType = [procName]]
The SetIgorHook operation tells Igor to call a user-defined "hook" function at the following times:
• After procedures have been successfully compiled (AfterCompiledHook)
• After a file is opened (AfterFileOpenHook)
• After the MDI frame window is resized on Windows (AfterMDIFrameSizedHook)
• After a window is created (AfterWindowCreatedHook)
• Before the debugger is opened (BeforeDebuggerOpensHook)
• Before an experiment is saved (BeforeExperimentSaveHook)
• Before a file is opened (BeforeFileOpenHook)
• Before a new experiment is opened (IgorBeforeNewHook)
• Before Igor quits (IgorBeforeQuitHook)
• When a menu item is selected (IgorMenuHook)
• During Igor's quit processing (IgorQuitHook)
• When Igor starts or a new experiment is created (IgorStartOrNewHook)

The term “hook” is used as in the phrase “to hook into”, meaning to intercept or to attach.
Hook functions are typically used by a sophisticated procedure package to make sure that the package's private
data is consistent.
In addition to using SetIgorHook, you can designate hook functions using fixed function names (see User-
Defined Hook Functions on page IV-257). The advantage of using SetIgorHook over fixed hook names is that
you don't have to worry about name conflicts.
You can designate hook functions for specific windows using window hooks (see SetWindow on page V-646).

Flags

/K Removes procName from the list of functions called for the hookType events.
If procName is not specified all hookType functions are removed.
If hookType is not specified all functions are removed for all hookType events, returning Igor to
the pre-SetIgorHook state.

SetIgorHook

V-636

Parameters

Details
The parameters and return type of the user-defined function procName varies depending on the hookType it
is registered for.
For example, a function registered for the AfterFileOpenHook type must have the same parameters and
return type as the shown for the AfterFileOpenHook on page IV-259.
The procName function is called after any window-specific hook for these hookTypes, and the procName
function is called before any other hook functions previously registered by calling SetIgorHook unless the /L
flag is given, in which case it still runs after window-specific hook functions, but also after all other
previously registered hook functions.
The procName function should return a nonzero value (1 is typical) to prevent later functions from being
called. Returning 0 allows successive functions to be called.
SetIgorHook does not work at Igor start or new experiment time, so SetIgorHook IgorStartOrNewHook is
disallowed. Define a global or static fixed-name IgorStartOrNewHook function (see page IV-269).
The saved Igor experiment file remembers the SetIgorHooks that are in effect when the experiment is saved:

Hook Function Interactions
After all the SetIgorHook functions registered for hookType have run (and all have returned 0), any static fixed-
name hook functions are called and then the (only) fixed-name user-defined hook function, if any, is called.
As an example, when a menu event occurs, Igor handles the event by calling routines in this order:

/L Executes procName last. Without /L, a newly added hook function runs before previously
registered hook functions.
A function that has been previously registered with SetIgorHook can be moved from being
called first to being called last by calling SetIgorHook again with /L.
To move a function from being called last to being called first requires removing the hook
function with /K and then calling SetIgorHook without /L.

hookType Specifies one of the fixed-name hook function names:

AfterCompiledHook

AfterFileOpenHook

AfterMDIFrameSizedHook

AfterWindowCreatedHook

BeforeDebuggerOpensHook

BeforeExperimentSaveHook

BeforeFileOpenHook

IgorBeforeNewHook

IgorBeforeQuitHook

IgorMenuHook

IgorQuitHook

IgorStartOrNewHook

See the note below about these hookType names.
hookType is required except with /K.

procName Names the user-defined hook function that is called for the hookType event.

SetIgorHook

V-637

1. The top window's hook function as set by SetWindow
2. Any SetIgorHook-registered hook functions
3. Any static fixed-named IgorMenuHook functions (in any independent module)
4. The one-and-only non-static fixed-named IgorMenuHook function (in only the ProcGlobal indepen-

dent module)

Variables
SetIgorHook returns information in the following variables:

Examples
This hook function invokes the Export Graphics menu item when Command-C (Macintosh) or Ctrl+C
(Windows) is selected for a graph, preventing the usual Copy.
SetIgorHook IgorMenuHook=CopyIsExportHook

Function CopyIsExportHook(isSelection,menuName,itemName,itemNo,win,wType)
Variable isSelection
String menuName,itemName
Variable itemNo
String win
Variable wType

Variable handledIt= 0
if(isSelection && wType==1) // menu was selected, window is graph

if(Cmpstr(menuName,"Edit")==0 && CmpStr(itemName,"Copy")==0)
DoIgorMenu "Edit", "Export Graphics" // dialog instead
handledIt= 1 // don't call other IgorMenuHook functions.

endif
endif
return handledIt

End

To unregister CopyIsExportHook as a hook procedure:
SetIgorHook/K IgorMenuHook=CopyIsExportHook // unregister CopyIsExportHook

To discover which functions are associated with a hookType, use a command such as:
SetIgorHook IgorMenuHook // inquire about names registered for IgorMenuHook
Print S_info // list of functions

To remove (or “unregister”) named hooks:
SetIgorHook/K // removes all hook functions for all hookTypes
SetIgorHook/K IgorMenuHook // removes all IgorMenuHook functions
SetIgorHook/K IgorMenuHook=CopyIsExportHook// removes only this hook function

See Also
The SetWindow operation and User-Defined Hook Functions on page IV-257.
Independent Modules on page IV-218.

1. SetWindow event
(called first)

2. SetIgorHook hookType
(called second)

3. User-defined Hook Function(s)
(called last)

enableMenu IgorMenuHook IgorMenuHook

menu IgorMenuHook IgorMenuHook

Note: Although you can technically use one of the fixed-name functions, as described in User-
Defined Hook Functions on page IV-257, for procName, the result would be that the
function will be called twice: once as a registered named hook function and once as the
fixed-named hook function. That is, don’t use SetIgorHook this way:
SetIgorHook AfterFileOpenHook=AfterFileOpenHook // NO

S_info Semicolon-separated list of all current hook functions associated with hookType, listed in
the order in which they are called. As of Igor 6.13 the S_info includes the full independent
module paths (e.g.,"ProcGlobal#MyMenuHook;MyIM#MyModule#MyMenuHook;").

SetIgorMenuMode

V-638

SetIgorMenuMode
SetIgorMenuMode MenuNameStr, MenuItemStr, Action
The SetIgorMenuMode operation allows an Igor programmer to disable or enable Igor’s built-in menus and
menu items. This is useful for building applications that will be used by end-users who shouldn’t have
access to all Igor’s extensive and confusing functionality.

Parameters

Details
All menu names and menu item text are in English. This ensures that code developed for a localized version
of Igor will run on all versions. Note that no trailing “...” is used in MenuItemStr.
The SetIgorMenuModeProc.ipf procedure file includes procedures and commands that disable or enable
every menu and item possible. It is in your Igor Pro folder, in WaveMetrics Procedures:Utilities. It is not
intended to be used as-is. You should make a copy and edit the copy to include just the parts you need.
The text of some items in the File menu changes depending on the type of the active window. In these cases
you must pass generic text as the MenuItemStr parameter. Use “Save Window”, “Save Window As”, “Save
Window Copy”, “Adopt Window” and “Revert Window” instead of “Save Notebook” or “Save Procedure”,
etc. Use “Page Setup” instead of “Page Setup For All Graphs”, etc. Use “Print” instead of “Print Graph”, etc.
The Edit→Insert File menu item was previously named Insert Text. For compatibility reasons, you can specify
either "Insert File" or "Insert Text" as MenuItemStr to modify this item.

See Also
The DoIgorMenu operation.

SetIgorOption
SetIgorOption [mainKeyword,] keyword= value
SetIgorOption [mainKeyword,] keyword= ?
The SetIgorOption operation makes unusual and temporary changes to Igor Pro’s behavior. This operation is not
compilable and you will need to use the Execute operation to use it in a user function. The details of the syntax
depend on the application and are documented where the alternate behaviors are described. In most cases the
current value of a setting can be read using the keyword=? syntax. Simple numeric options are stored in V_flag
and color options are stored in V_Red, V_Green, and V_Blue. The settings last for the life of the Igor session.

See Also
Syntax Coloring on page III-354 for some usage examples; Macintosh and LAPACK Library on page
III-144; SetIgorOption IndependentModuleDev=1 on page IV-219; Conditional Compilation on page
IV-90; Pre-Carbon Page Setup Records on page III-399. MarkPerfTestTime operation.

SetMarquee
SetMarquee [/W=winName] left, top, right, bottom
The SetMarquee operation creates a marquee on the target graph or layout window or the specified
window or subwindow.
The left, top, right, bottom coordinates are the same as those returned by the GetMarquee operation (screen
units measured in points).
If the coordinates are all 0, the marquee, if it exists, is killed.

MenuNameStr The name of an Igor menu, like “File”, “Graph”, or “Load Waves”.

MenuItemStr The text of an Igor menu item, like “Copy” (in the Edit menu) or “New Graph” (in the
Windows menu).

Action One of DisableItem, EnableItem, DisableAllItems, or EnableAllItems.
DisableItem and EnableItem disable or enable just the single item named by
MenuNameStr and MenuItemStr. If MenuItemStr is "", then the menu itself is disabled.
DisableAllItems and EnableAllItems disable and enable all the items in the menu
named by MenuNameStr.

SetProcessSleep

V-639

The optional axis modes supported by GetMarquee are not supported by SetMarquee.

Flags

See Also
The GetMarquee operation.

SetProcessSleep
SetProcessSleep sleepTicks
The SetProcessSleep operation determines how much time Igor will give to background tasks or other
Macintosh applications executing in the background. This operation does nothing on Windows.

Parameters
sleepTicks is the amount of time given to background tasks in sixtieths of a second. sleepTicks values between
0 and 60 are valid.

Details
Igor starts up with sleepTicks = 1. Use 0 to give Igor maximum time, use a larger number to give other
applications more time.
Background tasks are used mainly by data acquisition programs.

See Also
Background Tasks on page IV-285 and the SetBackground operation.

SetRandomSeed
SetRandomSeed seed
The SetRandomSeed operation seeds the random number generator used for the enoise and gnoise
functions. Use SetRandomSeed if you need “random” numbers that are reproducible. If you don’t use
SetRandomSeed, the random number generator is initialized using the system clock when Igor starts. This
almost guarantees that you will never get the same sequence twice unless you use SetRandomSeed.

Flags

Parameters
seed should be a number in the interval (0, 1]. For any given seed, enoise or gnoise or any of the other random-
number generator functions generates a particular sequence of pseudorandom numbers. Calling
SetRandomSeed with the same seed restarts and repeats the sequence.

Details
Internally seed is scaled to a 32-bit unsigned integer. Consequently, the number of different values for the
internally-scaled seed is less than the resolution of the double-precision numbers in the (0, 1] range.
You should use /BETR unless you need consistency with older versions of Igor. /BETR was introduced in Igor
Pro 6.20.
The Mersenne Twister random number generator is used for most of Igor's noise functions (and optionally for
enoise and gnoise), and internally for operations that need random sequences, such as StatsSample or
StatsResample.
Without the /BETR flag, SetRandomSeed maps seed to an internal 16-bit integer for seeding the Mersenne
Twister random number generator. With /BETR it maps to an internal 32-bit integer seed. So using /BETR
reduces the chance that two values of seed will map to the same internal integer seed.

/W=winName Specifies the named window or subwindow. When omitted, action will affect the
active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/BETR[=better] If better is absent or non-zero, a better method is used for seeding the Mersenne
Twister random number generator.

SetScale

V-640

See Also
The enoise and gnoise functions. Noise Functions on page III-334.

SetScale
SetScale [/I/P] dim, num1, num2 [, unitsStr] ,waveName [, waveName]…
SetScale d, num1, num2 [, unitsStr], waveName [, waveName]…
The SetScale operation sets the dimension scaling or the data full scale for the named waves.

Parameters
The first parameter dim must be one of the following:

If setting the scaling of any dimension (x, y, z, or t), num1 is the starting index value — the scaled index for the
first point in the dimension. The meaning of num2 changes depending on the /I and /P flags. If you use /P, then
num2 is the delta value — the difference in the scaled index from one point to the next. If you use /I, num2 is
the “ending value” — the index value for the last element in the dimension. If you use neither flag, num2 is
the “right value” — the index value that the element after the last element in the dimension would have.
These three methods are just three different ways to specify the two scaling values, the starting value and
the delta value, that are stored for each dimension of each wave.
If setting the data full scale (d), then num1 is the nominal minimum and num2 is the nominal maximum data
value for the waves. The data full scale values are not used. They serve only to document the minimum and
maximum values the waves are expected to attain. No flags are used when setting the data full scale.
The unitsStr parameter is a string that identifies the natural units for the x, y, z, t, or data values of the named
waves. Igor will use this to automatically label graph axes. This string must be one to 49 characters such as “m”
for meters, “g” for grams or “s” for seconds. If the waves have no natural units you can pass "" for this parameter.
Setting unitsStr to "dat" (case-sensitive) tells Igor that the wave is a date/time wave containing data in Igor
date/time format (seconds since midnight on January 1, 1904). Date/time waves must be double-precision.

Flags
At most one flag is allowed, and then only if dimension scaling (not data full scale) is being set:

Details
SetScale will not allow the delta scaling value to be zero. If you execute a SetScale command with a delta
value of zero, it will set the delta value to 1.0.
If you do not use the /P flag, SetScale converts num1 and num2 into a starting index value and a delta index
value. If you call SetScale on a dimension with fewer than two elements, it does this conversion as if the
dimension had two elements.
Prior to Igor Pro 3.0, Igor supported only 1D waves. “SetScale x” was used to set the scaling for the rows
dimensions and “SetScale y” was used to set the data full scale. With the addition of multidimensional
waves, “SetScale y” is now used to set the scaling of the columns dimension and “SetScale d” is used to set
the data full scale. For backward compatibility, “SetScale y” on a 1D wave sets the data full scale.
When setting the dimension scaling of a numeric wave, you can omit the unitsStr parameter. Igor will set
the wave’s scaling but not change its units. However, when setting the dimension scaling of a text wave,

Character Signifies
d Data full scale.
t Scaling of the chunks dimension (t scaling).
x Scaling of the rows dimension (x scaling).
y Scaling of the columns dimension (y scaling).
z Scaling of the layers dimension (z scaling).

/I Inclusive scaling. num2 is the ending index — the index value for the very last element in the
dimension.

/P Per-point scaling. num2 is the delta index value — the difference in scaled index value from
one element to the next.

SetVariable

V-641

you must supply a unitsStr parameter (use "" if the wave has no units). If you don’t, Igor will think that the
text wave is the start of a string expression and will attempt to treat it as the unitsStr.

See Also

See Also
CopyScales, DimDelta, DimOffset, DimSize, WaveUnits
For an explanation of waves and dimension scaling, see Changing Dimension and Data Scaling on page
II-83.
For further discussion of how Igor represents dates, see Date/Time Waves on page II-102.

SetVariable
SetVariable [/Z] ctrlName [keyword = value [, keyword = value …]]
The SetVariable operation creates or modifies a SetVariable control in the target window.
A SetVariable control sets the value of a global numeric or string variable or a point in a wave when you
type or click in the control. As of Igor Pro 6.1, a SetVariable can also hold its own value without the need
for a global or wave.
For information about the state or status of the control, use the ControlInfo operation.

Parameters
ctrlName is the name of the SetVariable control to be created or changed.
The following keyword=value parameters are supported:

Note: Prior to Igor Pro 3.0, SetScale with no wave names would set the default characteristics for
waves made subsequently with the Make command. In Igor Pro 2.0, this behavior was
considered obsolete and the manual warned that it was not recommended. As of Igor Pro 3.0
SetScale will still set the default x scaling, but will beep and put up a warning dialog. In future
versions, SetScale without a wave name will not work. At present, you cannot set the default
y, z, or t scaling with SetScale.

activate Activates the control and selects the text that sets the value. Use ControlUpdate
to deactivate the control and deselect the text.

appearance={kind [, platform]}

Sets the appearance of the control. platform is optional. Both parameters are
names, not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
See Button and DefaultGUIControls for more appearance details.

bodyWidth=width Specifies an explicit size for the body (nontitle) portion of a SetVariable control.
By default (bodyWidth=0), the body portion is the amount left over from the
specified control width after providing space for the current text of the title
portion. If the font, font size or text of the title changes, then the body portion may
grow or shrink. If you supply a bodyWidth>0, then the body is fixed at the size
you specify regardless of the body text. This makes it easier to keep a set of
controls right aligned when experiments are transferred between Macintosh and
Windows, or when the default font is changed.

disable=d Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: No user input.

SetVariable

V-642

fColor=(r,g,b) Sets the initial color of the title. r, g, and b range from 0 to 65535. fColor defaults
to black (0,0,0). To further change the color of the title text, use escape sequences
as described for title=titleStr.

font="fontName" Sets the font used to display the value of the variable, e.g., font="Helvetica".

format=formatStr Sets the numeric format of the displayed value, e.g., format="%g". Not used with
string variables. Never use leading text or the "%W" formats, because Igor reads
the value back without interpreting the units. For a description of formatStr, see
the printf operation.

frame=f

fsize=s Sets the size of the type used to display the variable’s value.

fstyle=fs

help={helpStr} Sets the help for the control. The help text is limited to a total of 255 characters.
On Macintosh, the help appears if you turn Igor Tips on. On Windows, the help
for the first 127 characters or up to the first line break appears in the status line. If
you press F1 while the cursor is over the control, you will see the entire help text.
You can insert a line break by putting “\r” in a quoted string.

labelBack=(r,g,b) or 0 Specifies the background fill color for labels. r, g, and b are integers from 0 to
65535. The default is 0, which uses the window’s background color.

limits={low,high,inc} Sets the limits of the allowable values (low and high) for the variable. inc sets the
amount by which the variable is incremented if you click the control’s up/down
arrows. This applies to numeric variables, not to string variables. If inc is zero then
the up/down arrows will not be drawn.

live=l

noedit=val noedit=1 prevents the user from clicking (or tabbing into) a SetVariable control to
directly edit its value. This is useful when you want to make a string read-only or
when you want to restrict a numeric setting to those available only via the
control’s up or down arrow buttons.
noedit=0 reactivates user editing.
noedit=2 is deprecated as of Igor 6.34 but still supported. It allows the use of fancy
text using the escape codes defined for the TextBox operation. Use styledText=1,
instead.

noproc No procedure is to execute when the control’s value is changed.

pos={left,top} Sets the position of the control in pixels.

pos+={dx,dy} Offsets the position of the control in pixels.

proc=procName Sets the procedure to execute when the control’s value is changed.

Sets the frame for the value readout.
f=0: Value unframed.
f=1: Value framed (default).

fs is a bitwise parameter with each bit controlling one aspect of the font style
as follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold.
Bit 1: Italic.
Bit 2: Underline.
Bit 3: Outline (Macintosh only).
Bit 4: Shadow (Macintosh only).

Determines when the readout is updated.
l=0: Update only after variable changes (default).
l=1: Update as variable changes.

SetVariable

V-643

rename=newName Gives control a new name.

styledText=val styledText=1 allows the use of fancy text using the escape codes defined for the
TextBox operation. See Annotation Escape Codes on page V-778.
For example:
SetVariable sv0 value=_STR:"\\JC\\K(65535,0,0)Centered Red
Text"

styledText=0 treats escape codes as plain text.
The styledText keyword was added in Igor 6.34. For compatibility with earlier
versions of Igor, the combination of noedit=1 and styledText=1 is recorded as
noedit=2 in recreation macros. Only Igor 6.34 and later support simultaneous
editing and styled text values.

size={width,height} Sets width of control in pixels. height is ignored.

title=titleStr Sets title of control to the specified string expression. The title is displayed to the
left of the control. If titleStr is empty (""), the name of the controlled variable is
displayed as the title. Use title=" " (put a space within the quotation marks)
to create a “blank” title.
titleStr can contain formatting escape codes in order to create fancy, styled results.
The escape codes are the same as used by the TextBox operation. The easiest way
to generate fancy text is to make selections from the Insert popup in the
SetVariable Control dialog.

userdata(UDName)=UDStr

Sets the unnamed user data to UDStr. Use the optional (UDName) to specify a
named user data to create.

userdata(UDName)+=UDStr

Appends UDStr to the current unnamed user data. Use the optional (UDName) to
append to the named UDStr.

value=varOrWaveName Sets the numeric or string variable or wave element to be controlled.
If varOrWaveName references a wave, the point is specified using standard
bracket notation with either a numeric point number or a row label, for example:
value=awave[4] or value=awave[%alabel].
You may also use a matrix wave and specify a column index in addition to the
row index.
As of Igor Pro 6.1, you can have the control store the value internally rather than
in a global variable. In place of varName, use _STR:str or _NUM:num. For
example:
NewPanel; SetVariable sv1,value=_NUM:123

valueColor=(r,g,b) Sets the color of the value text. r, g, and b range from 0 to 65535. valueColor
defaults to black (0,0,0).

valueBackColor=(r,g,b) Sets the background color under the value text. r, g, and b range from 0 to 65535.

valueBackColor=0 Sets the background color under the value text to the default color, the standard
document background color used on the current operating system, which is
usually white.

win=winName Specifies which window or subwindow contains the named control. If not given,
then the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page
III-97 for details on forming the window hierarchy.

SetVariable

V-644

Flags

Details
The target window must be a graph or panel.
The procedure, which may be a function or a macro, has the format:
Function procName(ctrlName,varNum,varStr,varName) : SetVariableControl

String ctrlName
Variable varNum // value of variable as number
String varStr // value of variable as string
String varName // name of variable
…

End

The “: SetVariableControl” designation tells Igor to include this procedure in the Procedure pop-up
menu in the SetVariable Control dialog.
As of Igor Pro 6.1, you can use ctrl-return to enter a carriage return in a string SetVariable. A carriage return
in a string SetVariable appears as a symbol representing a carriage return.
As of Igor Pro 6.1, if you set noedit to 2, you can use fancy text using the escape codes defined for the
TextBox operation. See Annotation Escape Codes on page V-778.
The action procedure for a SetVariable control can also use a predefined structure WMSetVariableAction
as a parameter to the function. The control will use this more efficient method when the function properly
matches the structure prototype for a SetVariable control, otherwise it will use the old-style method.
A SetVariable action procedure using a structure has the format:
Function newActionProcName(SV_Struct) : SetVariableControl

STRUCT WMSetVariableAction &SV_Struct
…

End

For a SetVariable control, the WMSetVariableAction structure has members as described in the
following table:

/Z No error reporting.

WMSetVariableAction Structure Members

Member Description

char ctrlName[MAX_OBJ_NAME+1] Control name.

char win[MAX_WIN_PATH+1] Host (sub)window.

STRUCT Rect winRect Local coordinates of host window.

STRUCT Rect ctrlRect Enclosing rectangle of the control.

STRUCT Point mouseLoc Mouse location.

Int32 eventCode Event that executed the procedure.

SetVariable

V-645

Action functions should respond only to documented eventCode values. Other event codes may be added
along with more fields. Although the return value is not currently used, action functions should always
return zero.
The constants used to specify the size of structure char arrays are internal to Igor Pro and may change.

-1: Control being killed
 1: Mouse up
 2: Entery key
 3: Live update
 4: Mouse scroll wheel up
 5: Mouse scroll wheel down
 6: Value changed by dependency update
Code -1 is never sent to an old-style (non-structure
parameter) action procedure.
Codes 4 and 5 (Igor Pro 6.1 or later) are sent only for string
SetVariables or numeric SetVariables whose increment
setting is zero.
For numeric SetVariables whose increment is non-zero, the
mouse scroll wheel acts like a mouse click on the increment or
decrement arrows.
Code 6 (Igor Pro 6.1 or later) is by default sent to only
structure-based action procedures.
Use SetIgorOption EnableSVE6=0 to disable sending
this event at all, =2 to send the event to both structure-based
and old-style SetVariable action procedures. (The default is
=1).

Int32 eventMod Bitfield of modifiers. See Control Structure eventMod Field
on page III-387.

String userData Primary (unnamed) user data. If this changes, it is written
back automatically.

Int32 blockReentry Prevents reentry of control action procedure. See Control
Structure blockReentry Field on page III-388.

Int32 isStr TRUE for a string variable.

double dval Numeric value of variable.

char sval[MAXCMDLEN] Value of variable as a string.

char vName[MAX_OBJ_NAME+2+MAX_OBJ_NAME+4+1]

Name of variable or wave. Dimension labels can be used for
waves.

WAVE svWave Valid if using wave.

Int32 rowIndex Row index for a wave, if rowLabel is empty.

char rowLabel[MAX_OBJ_NAME+1] Wave row label.

nt32 colIndex Column index for a wave, if colLabel is empty.

char colLabel[MAX_OBJ_NAME+1] Wave column label.

WMSetVariableAction Structure Members

Member Description

SetVariableControl

V-646

Examples
Executing the commands:
Variable/G globalVar=99
SetVariable setvar0 size={120,20}
SetVariable setvar0 font="Helvetica", value=globalVar

creates this SetVariable control:

See Also
The printf operation for an explanation of formatStr, and Set Variable on page III-364.
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls. The GetUserData operation for retrieving named user data.

SetVariableControl
SetVariableControl
SetVariableControl is a procedure subtype keyword that identifies a macro or function as being an action
procedure for a user-defined SetVariable control. See Procedure Subtypes on page IV-183 for details. See
SetVariable for details on creating a SetVariable control.

SetWaveLock
SetWaveLock lockVal, waveList
The SetWaveLock operation locks a wave or waves and protects them from modification. Such protection
is not absolute, but it should prevent most common attempts to change or kill a wave.

Parameters
lockVal can be 0, to unlock, or 1, to lock the wave(s).
waveList is a list of waves or it can be allinCDF to act on all waves in the current data folder.

See Also
WaveInfo to check if a wave is locked.

SetWindow
SetWindow winName [, keyword = value]…
The SetWindow operation sets the window note and user data for the named window or subwindow.
SetWindow can also set hook functions for a base window or exterior subwindow (interior subwindows
not supported).

Parameters
winName can be a window or subwindow name. It can also be the keyword kwTopWin to specify the
topmost graph, panel, layout, table, or notebook window.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.

hide =h

hook=procName Sets the window hook function that Igor will call when certain events happen. Use
SetWindow hook=$"" to specify no hook function.
See Unnamed Window Hook Functions on page IV-276 for further details.

hook(hName)=procName

Hides or unhides widows or subwindows.

When unhiding subwindows, you should combine with needUpdate=1 if
conditions require the subwindow to be redrawn since the window was
hidden.

h=0: Unhides a subwindow or base window.
h=1: Hides a subwindow or base window.
h=2: Unhides without restoring minimized windows (Windows only).

SetWindow

V-647

Details
For details on named window hooks, see Window Hook Functions on page IV-270.
Unnamed window hook functions are supported for backward compatibility only. New code should use
named window hook functions. For details on unnamed window hooks, see Unnamed Window Hook
Functions on page IV-276.
For details on marker hooks, see Custom Marker Hook Functions on page IV-279.

See Also
The GetWindow, SetIgorHook, and SetIgorMenuMode operations and AxisValFromPixel,
NumberByKey, PopupContextualMenu, and TraceFromPixel functions. The GetUserData operation for
retrieving named user data.

Defines a named window hook hName and sets the function that Igor will call
when certain events happen. hName can be any legal name. Named hooks are
called before any unnamed hooks.
Use $"" for procName to specify no hook.
See Named Window Hook Functions on page IV-271 for further details.
To hook a subwindow, see Window Hooks and Subwindows on page IV-271.

hookcursor=number Sets the mouse cursor. This keyword is antiquated. See Setting the Mouse Cursor
on page IV-274 for the preferred technique.

hookevents=flags

To set bit 0 and bit 1 (mouse clicks and mouse moved), use 20+21 = 1+2 = 3 for flags.
Use 7 to also enable cursor moved events. See Setting Bit Parameters on page
IV-12 for details about bit settings.
This keyword applies to the unnamed hook function only. It does not affect named
hook functions which always receive all events.

markerHook= {hookFuncName, start, end}

Specifies a user function and marker number range for custom markers. The
marker range can be any positive integers less than 1000 and can overlap built-in
marker numbers. See Custom Marker Hook Functions on page IV-279 for details.
Use $"" for hookFuncName to specify no hook.

needUpdate= n Marks a window as needing an update (n=1) or takes no action (n=0).

note=noteStr Sets the window note to noteStr, replacing any existing note.

note+=noteStr Appends noteStr to current contents of the window note.

userdata=UDStr
userdata(UDName)=UDStr

Sets the window or subwindow user data to UDStr. Use the optional (UDName) to
specify a named user data to create.

userdata+=UDStr
userdata(UDName)+=UDStr

Appends UDStr to the current window or subwindow user data. Use the optional
(UDName) to append to the named user data.

Bitfield of flags to enable certain events for the unnamed hook function:
Bit 0: Mouse button clicks.
Bit 1: Mouse moved events.
Bit 2: Cursor moved events.

ShowIgorMenus

V-648

ShowIgorMenus
ShowIgorMenus [MenuNameStr [, MenuNameStr] …
The ShowIgorMenus operation shows the named built-in menus or, if none are explicitly named, shows all
built-in menus in the menu bar.
User-defined menus attached to built-in menus are also affected by this operation.

Parameters

Details
See HideIgorMenus for details.

See Also
Chapter IV-5, User-Defined Menus.
The HideIgorMenus, DoIgorMenu, and SetIgorMenuMode operations.

ShowInfo
ShowInfo [/CP=num /W=winName]
The ShowInfo operation puts an information box on the target or named graph. The information box
contains cursors and readouts of values associated with waves in the graph.

Flags

See Also
Info Box and Cursors on page II-290.
The HideInfo operation.
Programming With Cursors on page II-292.

ShowTools
ShowTools [/A/W=winName][toolName]
The ShowTools operation puts a tool palette for drawing along the left hand side of the target or named
graph or control panel, and optionally activates the named tool.

Flags

Parameters
If you specify a toolName (which can be one of: normal, arrow, text, line, rect, rrect, oval, or poly) the named
tool is activated. Specifying the “normal” tool has the same effect as issuing the GraphNormal command
for a graph that has the drawing tools selected.

MenuNameStr The name of an Igor menu, like “File”, “Data”, or “Graph”.

/CP=num

/W=winName Displays info box in the named window.

/A Sizes window automatically to make extra room for the tool palette. This preserves
the proportion and size of the actual graph area.

/W=winName Shows tool palette in the named window. This must be the first flag specified when
used in a Proc or Macro or on the command line.

Selects a cursor pair to display in the info panel.
num=0: Selects cursor A and cursor B.
num=1: Selects cursor C and cursor D.
num=2: Selects cursor E and cursor F.
num=3: Selects cursor G and cursor H.
num=4: Selects cursor I and cursor J.

sign

V-649

Details
The activated tool is not highlighted until the top graph or control panel becomes the topmost (activated)
window. Use DoWindow/F to bring a window to the top (or “front”).

See Also
The DoWindow, GraphNormal, GraphWaveDraw, GraphWaveEdit, and HideTools operations.

sign
sign(num)
The sign function returns -1 if num is negative or 1 if it is not negative.

Silent
Silent num
The Silent operation enables or disables the display of macro commands in the command line as they are
executed.

Parameters
If num is one, the display of macro commands is disabled. If num is zero, it is enabled.
When executed from the command line, “Silent 100” activates a compatibility mode that can run legacy
macro code containing old-style comments, which use | instead of //, without causing errors. To exit this
mode, execute “Silent 101” on the command line. Also see Comments on page IV-2.
If you create procedure files for use by others and you want to use the new logic operations such as || that
require that Silent 101 be in effect, then you can specify
#pragma rtGlobals=2

in place of the normal rtGlobals=1.
If your procedure file is included in an experiment running in compatibility mode (Silent 100) then an alert
dialog will allow the user to switch the experiment to the new syntax. However, keep in mind that when
the procedures are recompiled in the new mode, the user’s other procedures may not compile due to
obsolete use of the vertical bar (|) as a comment character.

Details
Macros run faster if this display is disabled. If Silent is used in a macro its effect ends when the macro ends.
This has no effect in user-defined functions. During execution of a user-defined function, Igor does not
display anything in the command line.
Commands sent to Igor Pro from another program via PPC or Apple events are normally logged into the
history area. You can turn off the logging of these commands with the Silent operation. See also The Silent
Option on page IV-106.

See Also
The PauseUpdate operation and rtGlobals.

sin
sin(angle)
The sin function returns the sine of angle which is in radians.
In complex expressions, angle is complex, and sin(angle) returns a complex value:

See Also
asin, cos, tan, sec, csc, cot

sinc
sinc(num)
The sinc function returns sin(num)/num. The sinc function returns 1.0 when num is zero. num must be real.

sin(x + iy) = sin(x)cosh(y)+ i cos(x)sinh(y).

sinh

V-650

sinh
sinh(num)
The sinh function returns the hyperbolic sine of num:

In complex expressions, num is complex, and sinh(num) returns a complex value.

See Also
cosh, tanh, coth

Sleep
Sleep [flags] timeSpec
The Sleep operation puts Igor to sleep for a while. After the while is up, Igor continues execution. You could
use this, for example, to print a graph late at night, when the load on your printer is light.

Parameters
The format of timeSpec depends on which flags, if any, are present.
If no flags are present, then timeSpec is in hh:mm:ss format and specifies the number of elapsed hours,
minutes and seconds to sleep.

Flags

Details
The Sleep operation does not let the user choose menus, move cursors, run procedures, draw in graphs, or
do any other interactive task.
Normally timeSpec specifies an amount of elapsed time. If the /A flag is present, then timeSpec is an absolute
time when sleep is to end. If the specified absolute time has already passed, no sleep occurs unless you also
use /W, which makes it wait until tomorrow.
If you specify time in hh:mm:ss format, you can also specify the time indirectly through a string variable.
See the examples.
You can end sleep by pressing Command-period (Macintosh) or Ctrl+Break (Windows). Normally when you
do this, it aborts any procedure that is running. However, if you use the /Q flag, the procedure continues
running normally.

Examples
These examples assume the current time is 4 pm:

/A timeSpec is an absolute time in 24 hour format (e.g., 16:00:00).

/A/W Wait until tomorrow if absolute time has passed.

/B Stop sleeping if the user clicks the mouse button.

/C=cursor

/Q Continue executing the procedure containing the Sleep operation even if Command-
period (Macintosh) or Ctrl+Break (Windows) was pressed.

/S timeSpec is a numeric expression in seconds.

/T timeSpec is a numeric expression in ticks (about 1/60 of a second).

sinh(x) =
ex � e� x

2
.

Controls what kind of cursor to display during sleep.
cursor=-1: No cursor change.
cursor=0: Hour glass (default).
cursor=1: Arrow.
cursor=2: “Click”.
Other: Watch.

Slider

V-651

Sleep 00:01:30 // sleeps for 1 minute, 30 seconds
Sleep/A 23:30:00 // sleeps until 11:30 PM
Sleep/A 03:00:00 // doesn't sleep at all because time is past
Sleep/A/W 03:00:00 // sleeps until 3 AM tomorrow
String str1= "03:00:00" // put wakeup call time in string
Sleep/A/W $str1 // sleeps until 3 AM tomorrow
Sleep/B/C=2/S/Q 60 // sleep 60 seconds, or until user clicks,

// and keep going (don't abort)

Slider
Slider [/Z] controlName [key [= value]][, key [= value]]…
The Slider operation creates or modifies a Slider control in the target window.
A Slider control sets or displays a single numeric value. The user can adjust the value by dragging a thumb
along the length of the Slider.
For information about the state or status of the control, use the ControlInfo operation.

Parameters
ctrlName is the name of the Slider control to be created or changed.
The following keyword=value parameters are supported:

appearance={kind [, platform]}

Sets the appearance of the control. platform is optional. Both parameters are names,
not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
Note: The Slider control reverts to os9 appearance on Macintosh if thumbColor isn’t
the default blue (0,0,65535).
See Button and DefaultGUIControls for more appearance details.

disable=d

fColor=(r,g,b) Sets the color of the tick marks. r, g, and b range from 0 to 65535. fColor defaults to
black (0,0,0).

font="fontName " Sets the font used to display the tick labels, e.g., font="Helvetica".

fsize=s Sets the size of the type for tick mark labels.

help={helpStr} Sets the help for the control. The help text is limited to a total of 255 characters. On
Macintosh, the help appears if you turn Igor Tips on. On Windows, the help for the
first 127 characters or up to the first line break appears in the status line. If you press
F1 while the cursor is over the control, you will see the entire help text. You can insert
a line break by putting “\r” in a quoted string.

limits= {low,high,inc}

low sets left or bottom value, high sets right or top value. Use inc=0 for continuous or
use desired increment between stops.

live=l

noproc Specifies that no procedure is to execute when the control’s value is changed.

pos={left,top} Sets the position of the slider in pixels.

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Draw in gray state; disable control action.

Controls updating of readout.
l=0: Update only after mouse is released.
l=1: Update as slider moves (default).

Slider

V-652

pos+={dx,dy} Offsets the position of the slider in pixels.

proc=procName Specifies the procedure to execute when the control’s thumb is moved by the user.

rename=newName Gives control a new name.

side=s

size={width,height} Sets width or height of control in pixels. height is ignored if vert=0 and width is ignored
if vert=1.

thumbColor=(r,g,b) Sets dominant foreground color of thumb. r, g, and b are integers from 0 to 65535.
Only the hue and saturation are used. Therefore (0,1000,0) is the same tint of green as
(0,10000,0).

ticks=t

tkLblRot= deg Rotates tick labels. deg is a value between -360 and 360. Prior to Igor Pro 6.1, rotation
was supported in multiples of 90 degrees only.

userdata(UDName)=UDStr

Sets the unnamed user data to UDStr. Use the optional (UDName) to specify a named
user data to create.

userdata(UDName)+=UDStr

Appends UDStr to the current unnamed user data. Use the optional (UDName) to
append to the named UDStr.

userTicks={tvWave,tlblWave}

User-defined tick positions and labels. tvWave contains the tick positions, and text
wave tlblWave contains the labels. See ModifyGraph userticks for more info.
Overrides normal ticking specified by ticks keyword.

value=v v is the new value for the Slider.

valueColor=(r,g,b) Sets the color of the tick labels. r, g, and b range from 0 to 65535. valueColor defaults
to black (0,0,0).

variable= var Sets the variable (var) that the slider will update. It is not necessary to connect a Slider
to a variable — you can get a Slider’s value using the ControlInfo operation.

vert=v Set vertical (v =1; default) or horizontal (v =0) orientation of the slider.

win=winName Specifies which window or subwindow contains the named control. If not given, then
the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

Controls slider thumb.
s=0: Thumb is blunt.
s=1: Thumb points right or down (default).
s=2: Thumb points up or left.

Controls slider ticks.
t=0: No ticks.
t=1: Number of ticks is calculated from limits (no ticks drawn if

calculated value is less than 2 or greater than 100). Default value.
t>1: t is the number of ticks distributed between the start and stop

position. Ticks are labeled using the same automatic algorithm
used for graph axes. Use negative tick values to force ticks to not
be labeled. Ticks are shown on the side specified by the side
keyword and are not drawn if side=0.

Slider

V-653

Flags

Details
The target window must be a graph or panel.
The format of the action procedure (set by the proc keyword) that will be called as the user drags the Slider’s
thumb is:
Function MySliderProc(name, value, event) : SliderControl

String name // name of this slider control
Variable value // value of slider
Variable event // bit field:bit 0:value set; 1:mouse down,

// 2:mouse up, 3:mouse moved

return 0 // other return values reserved
End

The “: SliderControl” designation tells Igor to include this procedure in the Procedure pop-up menu
in the Slider Control dialog.
If you use negative ticks to suppress automatic labeling, you can label tick marks using drawing tools
(panels only).
The action procedure for a Slider control can also use a predefined structure WMSliderAction as a
parameter to the function. The control will use this more efficient method when the function properly
matches the structure prototype for a Slider control, otherwise it will use the old-style method.
A Slider action procedure using a structure has the format:
Function newActionProcName(S_Struct) : SliderControl

STRUCT WMSliderAction &S_Struct
…

End

For a Slider control, the WMSliderAction structure has members as described in the following table:

/Z No error reporting.

WMSliderAction Structure Members

Member Description

char ctrlName[MAX_OBJ_NAME+1] Control name.

char win[MAX_WIN_PATH+1] Host (sub)window.

STRUCT Rect winRect Local coordinates of host window.

STRUCT Rect ctrlRect Enclosing rectangle of the control.

STRUCT Point mouseLoc Mouse location.

Int32 eventCode Event that caused the procedure to execute. Sets bit fields:
bit 0: value set.
bit 1: mouse down.
bit 2: mouse up.
bit 3: mouse moved.

When the control is about to be killed, eventCode is set to -1.

Int32 eventMod Bitfield of modifiers. See Control Structure eventMod Field on
page III-387.

String userData Primary (unnamed) user data. If this changes, it is written back
automatically.

Int32 blockReentry Prevents reentry of control action procedure. See Control
Structure blockReentry Field on page III-388.

double curval Value of slider.

Slow

V-654

Action functions should respond only to documented eventCode values. Other event codes may be added
along with more fields. Although the return value is not currently used, action functions should always
return zero.
The constants used to specify the size of structure char arrays are internal to Igor Pro and may change.

Examples
Function SliderExample()

NewPanel /W=(150,50,501,285)
Variable/G var1
Execute "ModifyPanel cbRGB=(56797,56797,56797)"
SetVariable setvar0,pos={141,18},size={122,17},limits={-Inf,Inf,1},value=var1
Slider foo,pos={26,31},size={62,143},limits={-5,10,1},variable=var1
Slider foo2,pos={173,161},size={150,53}
Slider foo2,limits={-5,10,1},variable=var1,vert=0,thumbColor=(0,1000,0)
Slider foo3,pos={80,31},size={62,143}
Slider foo3,limits={-5,10,1},variable=var1,side=2,thumbColor=(1000,1000,0)
Slider foo4,pos={173,59},size={150,13}
Slider foo4,limits={-5,10,1},variable=var1,side=0,vert=0
Slider foo4,thumbColor=(1000,1000,1000)
Slider foo5,pos={173,90},size={150,53}
Slider foo5,limits={-5,10,1},variable= var1,side=2,vert=0
Slider foo5,ticks=5,thumbColor=(500,1000,1000)

End

See Also
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls. The GetUserData operation for retrieving named user data.

Slow
Slow ticks
The Slow operation slows down execution of macros for debugging purposes.

Parameters
ticks is in units of 1/60 second. A value of 30 is about right to allow you to read the macro command lines
as they are executed. Slow 0 resumes normal macro execution.

Details
This has no effect in user-defined functions.

Smooth
Smooth [flags] num, waveName [, waveName…]
The Smooth operation smooths the named waves using binomial (Gaussian) smoothing, boxcar (sliding
average) smoothing, Savitzky-Golay (polynomial) smoothing, or running-median filtering.

Parameters
num is the number of smoothing operations to be applied for binomial smoothing or the integer number of
points in the smoothing window for boxcar, Savitzky-Golay, and running-median smoothing.
Each waveName is smoothed in-place, overwriting the values with the smoothed result. waveName may be
a floating point or integer wave.
If waveName complex, the real and imaginary parts are smoothed independently.
If waveName contains NaNs, the results are undefined. (The Loess operation and the Interpolate XOP can
fill in NaNs).

Smooth

V-655

Flags

/B [=b] Invokes boxcar smoothing algorithm. If given, b specifies the number of passes to use
when smoothing the data with smoothing factor num (box width). The number of
passes can be any value between 1 and 32767.

/DIM=d Specifies the wave dimension to smooth.
d=-1: Treats entire wave as 1D (default).
For d=0, 1,…, operates along rows, columns, etc.

/E=endEffect

/EVEN [=evenAllowed]

/F [=f]

/M=threshold Invokes running-median smoothing and specifies an absolute numeric threshold
used to optionally replace “outliers”. Points that differ from the central median by an
amount exceeding threshold are replaced, either with the replacement value specified
by /R, or otherwise with the median value.

The smoothing factor num is the number of points in the smoothing window used to
compute each median.

/MPCT=percentile Used with /M to compute a smoothed value that is a different percentile than the
median. /M must be present if /MPCT is used.
percentile is a value from 0 to 100.

Determines how to handle the ends of the wave (w) when fabricating missing
neighbor values.
endEffect=0: Bounce method (default). Uses w[i] in place of the missing w[-

i] and w[n-i] in place of the missing w[n+i].
endEffect=1: Wrap method. Uses w[n-i] in place of the missing w[-i] and vice

versa.
endEffect=2: Zero method. Uses 0 for any missing value.
endEffect=3: Repeat method. Uses w[0] in place of the missing w[-i] and

w[n] in place of the missing w[n+i].

Specifies the smoothing increment for boxcar smoothing (/B). Values are:
0: Increments even values of num to the next odd value. Default when

/EVEN omitted.
1: Uses even values of num for boxcar smoothing despite the half-

sample shifting this introduces in the smoothed output (prior to
version 6, this shift was prevented). Same as/EVEN alone.

Selects the boxcar or multipass binomial smoothing method:
f=0: Slow, but accurate, method (default).
f=1: Fast method. Same as /F alone.

Special threshold values are:
0: Replace all values with running-median values or the replacement

value.
(NaN): Replace only NaN input values with running-median values or the

replacement value.

Smooth

V-656

Binomial Smoothing Details
For binomial smoothing, use no flags (other than /DIM, /E, and /F) and a num value from 1 to 32767.
The binomial smooth algorithm automatically switches to a nearly equivalent (but much faster) multipass
box smooth at smooth factor of 50. The original algorithm can be used when you set this global variable:
Variable/G root:V_doOrigBinomSmooth=1
To get the pre-Igor Pro 6 behavior you also need to add the /F flag.
The /F (fast boxcar smoothing) algorithm creates small errors when the data has a large offset. For some data
sets you may want to subtract the mean of the data before smoothing and add it back in afterwards.
The binomial smoothing algorithm does not detect and ignore NaNs in the input data.

Boxcar Smoothing Details
For boxcar smoothing, use the /B flag and a num value from 1 to 32767.
For num < 2, no smoothing is done.
If num is even and /EVEN is not specified, num is incremented to the next (odd) integer.
If num is even and /EVEN is specified, each smoothed output is formed from one more previous value than
future values.
The boxcar smoothing algorithm detects and ignores NaNs in the input data. If num is less than the number
of NaNs near the output point, then the result is NaN. Otherwise the average of the non-NaN neighboring
points is used to compute the smoothed result.

Savitzky-Golay Smoothing Details
For Savitzky-Golay smoothing, use the /S flag and an odd num value from 5 to 25. An even value for num
returns an error. If sgOrder=4, then num= 5 gives no smoothing at all so num should be at least 7.
The Savitzky-Golay smoothing algorithm does not detect and ignore NaNs in the input data.

Median and Percentile Smoothing Details
For running-median smoothing, use the /M flag and a num value from 1 to 32767. When num is 1, no
smoothing is done.
If num is even, the median is the average of the two middle values.
For example, the median of 6 values around data[i] is the median of data[i-3], data[i-2], data[i-1], data[i],
data[i+1], and data[i+2], and if these values were already sorted, the median would be the average of data[i-
1] and data[i].
Use /M=0 to replace all values with the median over the smoothing window or use
/M=threshold/R=(NaN) to replace outliers with NaNs.
Use /M=(NaN) to replace only NaN input values with the running-median values or the replacement value.

/R=replacement Specifies the value that replaces input values that exceed the central median by
threshold (requires /M). threshold can be any value (including NaN or ±Inf if waveName
is floating point).

/S=sgOrder Invokes Savitzky-Golay smoothing algorithm and specifies the smoothing order.
sgOrder must be either 2 or 4.

Roughly speaking, the smoothed value returned is the smallest value in the
smoothing window that is greater than the smallest percentile % of the values. See
"Median and Percentile Smoothing Details", below.
percentile=0: The smoothed value is the minimum value in the smoothing

window.
percentile=50: The smoothed value is the median of the values in the

smoothing window. This is the default if /MPCT is omitted.
percentile=100: The smoothed value is the maximum value in the smoothing

window.

Smooth

V-657

The running-median smoothing algorithm detects and ignores NaNs in the input data. If num is less than
the number of NaNs near the output point, then the result is NaN. Otherwise the median of the non-NaN
neighboring points is used to compute the smoothed result.
The running-median is a special case of running-percentile, with percentile=50.
The /M and /MPCT algorithm uses an interpolated rank to compute the value of percentiles other than 0
and 100.
Using Example 1 from <http://cnx.org/content/m10805/latest/> ("A Third Definition"), the 25th percentile
(/MPCT=25) of the 8 values:

Make/O sortedData={3,5,7,8,9,11,13,15}// Already sorted, rank 1 to 8

The first step is to compute the rank (R) of the 25th percentile. This is done using the following formula: R=
(percentile/100)*(num+1), where percentile is 25 and num is 8, so here R = 2.25.
If R were an integer, the Pth percentile would be the number with rank R; if R were 2 the result would be
the 2nd value = 5.
Since R is not an integer, we compute the Pth percentile by interpolation as follows:
1. Define IR as the integer portion of R (the number to the left of the decimal point). For this example, IR=2.
2. Define FR as the fractional portion of R. For this example, FR=0.25
3. Find the values with Rank IR and with Rank IR+1. For this example, this means the values with Rank 2

and the score with Rank 3. The values are 5 and 7.
4. Interpolate by multiplying the difference between the values by FR and add the result to the lower

values. For these data, this is 0.25(7-5)+5=5.5
Therefore, the 25th percentile is 5.5:

Smooth/M=0/MPCT=(percentile) 8, sortedData // 8-point smoothing window
Print sortedData[3] // prints 5.5, the 25th percentile of all 8 values

Smoothing Window and End Effects Details
These smoothing algorithms compute the output value for a given point using each point’s neighbors.
Except for running-median smoothing, each algorithm combines neighboring points before and after the
point being smoothed. At the start or end of a wave some points will not have enough neighbors so some
method for fabricating neighbor values must be implemented. The /E flag specifies the method.
The running-median filter, however, ignores /E. At each end of the data fewer values are included in the
median calculation, so that values “beyond” the end of data are not needed.
The first output value is the median of wave[0, floor((num-1)/2)]. For example, if num = 7, then the
first output value is the median of wave[0], wave[1], wave[2], and wave[3]. Because that is an even number
of points, the median is the average of the two middle values. Continuing the example, if the values were
3, 1, 7, and 5, the two middle values are 3 and 5. The computed median would be (3+5)/2=4.

Examples
Box smoothing example:
Make/N=100 wv; Display wv
wv=gnoise(1)
Smooth/B/E=3 3,wv // output[p] = average of wv[p-1], wv[p] and wv[p+1]

// /E=3 causes wv[0] = (w[0]+w[0]+w[1])/3
// and wv[n-1] = (w[n-2]+w[n-1]+w[n-1])/3

Demonstrate the impulse response of Savitzky-Golay Smoothing:
Make/O/N=100 wv
wv= p==50 // 1 at center of wave, 0 elsewhere; an impulse
SetScale/P x, 0, 1/1000, "s", wv // 1000 Hz sampling rate
Smooth/S=2 5,wv
Display wv
ModifyGraph mode=8,marker=19
FFT/MAG/DEST=fftMag wv
Display fftMag

http://cnx.org/content/m10805/latest/

SmoothCustom

V-658

Replace NaN with median:
Make/O/N=100 data= enoise(1)>.9 ? NaN : sin(x/8) // signal with NaNs
Duplicate/O data, dataMedian
Smooth/M=(NaN) 5, dataMedian // replace (only) NaNs with 5-point median

Binomial Smoothing References
Marchand, P., and L. Marmet, Revues of Scientific Instrumentation 54, 1034, 1983.

Savitzky-Golay Smoothing References
Savitzky, A., and M.J.E. Golay, Analytical Chemistry, 36, 1627-1639, 1964.
Steiner, J., Y. Termonia, and J. Deltour, Analytical Chemistry, 44, 1906-1909, 1972.
Madden, H., Analytical Chemistry, 50, 1386-1386, 1978.

Percentile References
<http://en.wikipedia.org/wiki/Percentile>
<http://cnx.org/content/m10805/latest/>

See Also
See the Loess, MatrixConvolve, and MatrixFilter operations for true 2D smoothing.
The FilterFIR, FilterIIR, and Loess operations; the Interpolate XOP.
Also see the Smooth Operation Responses example experiment.

SmoothCustom
SmoothCustom [/E=endEffect] coefsWaveName, waveName [, waveName]…

The SmoothCustom operation smooths waves by convolving them with coefsWaveName.

Parameters
coefsWaveName must be single or double floating point, must not be one of the destination waveNames, must
not be complex.
waveName is a numeric destination wave that is overwritten by the convolution of itself and coefsWaveName.

Note: SmoothCustom is obsolete. Use the FilterFIR operation instead. For multidimensional
data use the MatrixConvolve or MatrixFilter operations.

0.4

0.3

0.2

0.1

0.0

6055504540
ms

1.0

0.8

0.6

0.4

0.2

5004003002001000
Hz

-1.0

-0.5

0.0

0.5

1.0

806040200

-1.0

-0.5

0.0

0.5

1.0
 data
 dataMedian

http://en.wikipedia.org/wiki/Percentile
http://cnx.org/content/m10805/latest/

Sort

V-659

Flags

Details
The convolution is in the time domain. That is, the FFT is not employed. For this reason the length of
coefsWaveName should be small or small in comparison to the destination waves.
SmoothCustom presumes that the middle point of coefsWaveName corresponds to the delay = 0 point. The
“middle” point number = trunc(numpnts(coefsWaveName-1)/2). coefsWaveName usually contains the two-
sided impulse response of a filter, and contains an odd number of points. This is the type of wave created
by FilterFIR.
SmoothCustom ignores the X scaling of all the waves.
The SmoothCustom operation is not multidimensional aware. See Analysis on Multidimensional Waves
on page II-110 for details.

Sort
Sort [/A /DIML /C /R] sortKeyWaves, sortedWaveName [, sortedWaveName]…
The Sort operation sorts the sortedWaveNames by rearranging their Y values to put the data values of
sortKeyWaves in order.

Parameters
sortKeyWaves is either the name of a single wave, to use a single sort key, or the name of multiple waves in
braces, to use multiple sort keys.
All waves must be of the same length.
The sortKeyWaves must not be complex.

Flags

Details
sortKeyWaves are not actually sorted unless they also appear in the list of destination waves.
The sort algorithm does not maintain the relative position of items with the same key value.

Examples
Sort/R myWave,myWave // sorts myWave in decreasing order
Sort xWave,xWave,yWave // sorts x wave in increasing order,

// corresponding yWave values follow.
Make/O/T myWave={"1st","2nd","3rd","4th"}
Make/O key1={2,1,1,1} // places 2nd, 3rd, 4th before 1st.
Make/O key2={0,1,3,2} // arranges 2nd, 3rd, 4th as 2nd, 4th, 3rd.
Sort {key1,key2},myWave // sorts myWave in increasing order by key1.

// For equal key1 values, sorted by key2.
// Result is myWave={"2nd","4th","3rd","1st"}

Make/O/T tw={"w1","w10","w9","w-2.1"}
Sort/A tw,tw // sorts tw in increasing number-aware order:

// Result is tw={"w-2.1","w1","w9","w10"}

See Also
The MakeIndex, IndexSort, Reverse and SortList operations. See Sorting on page III-136.

/E=endEffect End effect method, a value between 0 and 3. See the Smooth operation for a
description of the /E flag.

/A Alphanumeric sort. When sortKeyWaves includes text waves, the normal sorting places
“wave1” and “wave10” before “wave9”. Use /A to sort the number portion numerically, so
that “wave9” is sorted before “wave10”.

/C Case-sensitive sort. When sortKeyWaves includes text waves, the sort is case-insensitive unless
you use the /C flag to make it case-sensitive.

/DIML Moves the dimension labels with the values (keeps any row dimension label with the row's
value).

/R Reversed sort; sort from largest to smallest.

SortList

V-660

SortList
SortList(listStr [, listSepStr [, options])
The SortList function returns listStr after sorting it according to the default or listSepStr and options parameters.
listStr should contain items separated by the listSepStr character, such as “the first item;second item;”.
Use SortList to sort the items in a string containing a list of items separated by a single character, such as
those returned by functions like TraceNameList or WaveList, or a line of text from a delimited text file.
listSepStr and options are optional; their defaults are “;” and 0 (alphabetic sort), respectively.

Details
listStr is treated as if it ends with a listSepStr even if it doesn’t. The returned list will always have an ending
listSepStr character.
Only the first character of listSepStr is used. If listSepStr is "" then the default of “;” is used.
options is a literal number which controls the sorting method. options is one of:

or a bitwise combination of the above with the following restriction: only one of 2, 4, 8, or 16 may be specified.
The legal values are thus 0, 1, 2, 3, 4, 5, 8, 9, 16, and 17. Other values will produce undefined sorting criteria.

Examples
// alphabetic sorts
Print SortList("b;c;a;") // prints "a;b;c;"
Print SortList("you,me,i", ",", 4) // prints "i,me,you,"
Print SortList("9,93,91,33,15,3", ",") // prints "15,3,33,9,91,93,"
Print SortList("Zx;abc;All;", ";", 0) // prints "All;Zx;abc;"
Print SortList("Zx;abc;All;", ";", 8) // prints "abc;All;Zx;"
Print SortList("w9;w10;w02;", ";", 16) // prints "w02;w9;w10;"

// numeric sorts
Print SortList("9,93,91,33,15,3",",",2) // prints "3,9,15,33,91,93,"

// (reversed)
Print SortList("9,93,91,33,15,3",",",3) // prints "93,91,33,15,9,3,"

See Also
The Sort, StringFromList and WaveList functions.
See Setting Bit Parameters on page IV-12 for details about bit settings.

SoundInRecord
SoundInRecord [/Z] wave
The SoundInRecord operation records audio input at the sample rate obtained from the wave’s X scaling
and for the number of points determined by the length of the wave. The recording is done synchronously.
The number type of the wave must be one of the types reported by the SoundInStatus operation in the
V_SoundInSampSize variable. On Windows this will typically be 8- or 16-bit integer while on Macintosh
16-bit integer and 32-bit floating point (the OS X native type) will be supported.
To record in stereo, provide a 2 column wave. (The software is designed to handle any number of channels
but has not been tested on more than 2.)

0: Default sort (ascending case-sensitive alphabetic ASCII sort).

1: Descending sort.

2: Numeric sort.

4: Case-insensitive sort.

8: Case-sensitive alphanumeric sort using system script.

16: Case-insensitive alphanumeric sort that sorts wave0 and wave9 before wave10.

SoundInSet

V-661

Flags

Details
SoundInRecord requires a computer with sound inputs. Several sample experiments using sound input can
be found in your Igor Pro Folder in the Examples folder.

See Also
The SoundInSet, SoundInStartChart, and SoundInStatus operations.

SoundInSet
SoundInSet [/Z][gain=g, agc=a]
The SoundInSet operation is used to setup the input device for recording.

Parameters
SoundInSet can accept multiple keyword =value parameters on one line.

Flags

Details
SoundInSet requires a computer with sound inputs. Several sample experiments using sound inputs are in
your Igor Pro Folder in the Examples folder.

See Also
The SoundInRecord, SoundInStartChart, and SoundInStatus operations.

SoundInStartChart
SoundInStartChart [/Z] buffersize , destFIFOname
The SoundInStartChart operation starts audio data acquisition into the given FIFO.

Parameters
buffersize is the number of bytes to allocate for the interrupt time buffer which then feeds into the given Igor
named FIFO destFIFOname. The FIFO must be set up with the correct number of channels and number type
- use SoundInStatus to find legal values. The sample rate is read from the FIFO also, so that also needs to
be correct.

Flags

Details
SoundInStartChart requires a computer with sound inputs. Several sample experiments using sound inputs
are in your Igor Pro Folder in the Examples folder.

/Z Errors are not fatal. V_flag is set to zero if no error, else nonzero if error.

agc=a Turns automatic gain control mode on (a=1) or off (a=0). Will generate an error if device does
not support setting agc. Use SoundInStatus to check or use /Z flag to make errors nonfatal.
Windows: This is not supported and V_SoundInAGC from the SoundInStatus command
always returns -1.

gain=g Sets input gain, 0 is lowest gain and 1 is highest. Will generate an error if device does not
support setting gain. Use SoundInStatus to check or use /Z flag to make errors nonfatal.

Windows: SoundInSet attempts to adjust the master gain of the sound input device but not all
sound cards have a master gain. If V_SoundInGain from the SoundInStatus command returns
-1, you will have to use your sound card software to adjust the input gain for the particular
input source your are using. On some cards there are separate line-in and microphone-in
sources.

/Z Errors are not fatal. V_flag is set to zero if no error, else nonzero if error.

/Z Errors are not fatal. V_flag is set to zero if no error, else nonzero if error.

SoundInStatus

V-662

On systems where 32-bit floating point data is supported, you can use NewFIFOChan with no flags and a
range of -1 to 1.

See Also
The SoundInRecord, SoundInSet, SoundInStatus and SoundInStopChart operations, and FIFOs and
Charts on page IV-282.

SoundInStatus
SoundInStatus
The SoundInStatus operation creates and sets a set of variables and strings with information about the
current sound input device. The variable V_flag is set to an error code and will be zero if the device is
available. If not then none of the following are valid.

See Also
The SoundInRecord, SoundInSet, and SoundInStartChart operations.

SoundInStopChart
SoundInStopChart [/Z]
The SoundInStopChart operation stops audio data acquisition started by SoundInStartChart.

Flags

Details
SoundInStopChart requires a computer equipped with sound input hardware.
Audio data acquisition also stops automatically when an experiment is closed.

See Also
The SoundInStartChart and SoundInStatus operations.

SpecialCharacterInfo
SpecialCharacterInfo(notebookNameStr, specialCharacterNameStr, whichStr)
The SpecialCharacterInfo function returns a string containing information about the named special
character in the named notebook window.

Variables Contents

S_SoundInName String with name of device.

V_SoundInAGC Automatic gain control on or off (1 or 0). This is an optional item and if the
current device does not support AGC then V_SoundInAGC will be set to -1.

V_SoundInChansAv Available number of channels (e.g., 1 for mono, 2 for stereo).

V_SoundInGain Current input gain. Ranges from 0 (lowest) to 1. This is an optional item and if
the current device does not support gain then V_SoundInGain will be set to -1.

V_SoundInSampSize Bits set depending on number of bits available in a sample.
Bit 0: Set if can do 8 bits.
Bit 1: Set if can do 16 bits.
Bit 3: Set if 32-bit floating point is supported (range is -1 to 1).

W_SoundInRates Wave containing sample rate info: if point zero contains zero then points 1 and 2
contain the lower and upper limits of a continuous range else point zero contains
the number of discrete rates which follow in the wave. The usual rates are 44100
Hz and 4800 Hz.

/Z Errors are not fatal. V_flag is set to zero if no error, else nonzero if error.

SpecialCharacterInfo

V-663

Parameters
If notebookNameStr is "", the top visible notebook is used. Otherwise notebookNameStr contains either
kwTopWin for the top notebook window, the name of a notebook window or a host-child specification (an
hcSpec) such as Panel0#nb0. See Subwindow Syntax on page III-97 for details on host-child specifications.
specialCharacterNameStr is the name of a special character in the notebook.
If specialCharacterNameStr is "" and if exactly one special character is selected, the selected special
character is used. If other than exactly one special character is selected, an error is returned.
whichStr identifies the information item you want. Because SpecialCharacterInfo can return several items
that may contain semicolons, it does not return a semicolon-separated keyword-value list like other info
functions. Instead it returns just one item as specified by whichStr.

Details
Here are the supported values for whichStr.

These keywords apply to Igor-object pictures only. If the specified character is not an Igor-object picture, “”
is returned.

The remaining keywords apply to notebook action characters only. If the specified special character is not
a notebook action character, "" is returned.

Keyword Returned Information

NAME The name of the special character.

FRAME 0: None
1: Single
2: Double
3: Triple
4: Shadow

LOC Paragraph and character position (e.g., 1,3).

SCALING Horizontal and vertical scaling in units of one tenth of a percent (e.g., 1000,1000).

TYPE Special character type is: Picture, Graph, Table, Layout, Action, ShortDate,
LongDate, AbbreviatedDate, Time, Page, TotalPages, or WindowTitle.

Keyword Returned Information

WINTYPE 1 for graphs, 2 for tables, 3 for layouts.

OBJECTNAME The name of the window with which the special character is associated.

Keyword Returned Information

BGRGB Background color in RGB format (e.g., 65535,65534,49151).

COMMANDS Command string.

ENABLEBGRGB 1 if the action’s background color is enabled, 0 if not.

HELPTEXT Help text string.

IGNOREERRORS 0 or 1.

LINKSTYLE 0 or 1.

PADDING The value of the left, right, top, bottom and internal padding properties, in that
order (.e.g, 4,4,4,4,8).

PICTURE 1 if the action has a picture, 0 if not.

PROCPICTNAME The name of the action Proc Picture or "" if none.

SpecialCharacterList

V-664

If whichStr is an unknown keyword, SpecialCharacterInfo returns "" but does not generate an error.

Examples
Function PrintSpecialCharacterInfo(notebookName, specialCharacterName)

String notebookName, specialCharacterName

String typeStr=SpecialCharacterInfo(notebookName, specialCharacterName, "TYPE")
String locStr=SpecialCharacterInfo(notebookName, specialCharacterName, "LOC")

Printf "TYPE: %s\r", typeStr
Printf "LOC: %s\r", locStr

End

See Also
The Notebook and NotebookAction operations; the SpecialCharacterList function; Using Igor-Object
Pictures on page III-21.

SpecialCharacterList
SpecialCharacterList(notebookNameStr, separatorStr, mask, flags)
The SpecialCharacterList function returns a string containing a list of names of special characters in a
formatted text notebook.

Parameters
If notebookNameStr is "", the top visible notebook is used. Otherwise notebookNameStr contains either
kwTopWin for the top notebook window, the name of a notebook window or a host-child specification (an
hcSpec) such as Panel0#nb0. See Subwindow Syntax on page III-97 for details on host-child specifications.
separatorStr should contain a single character, usually semicolon, to separate the names.
mask determines which types of special characters are included. mask is a bitwise parameter with values:

or a bitwise combination of the above for more than one type. See Setting Bit Parameters on page IV-12 for
details about bit settings.
flags is a bitwise parameter. Pass 0 to include all special characters or 1 to include only selected special
characters. All other bits are reserved and should be passed as zero.

Details
Only formatted text notebooks have special characters. When called for a plain text notebook,
SpecialCharacterList always returns "".

Examples
Print a list of all special characters in the top notebook:
Print SpecialCharacterList("", ";", -1, 0)

Prints a list of notebook action characters in Notebook0:
Print SpecialCharacterList("Notebook0", ";", 2, 0)

QUIET 0 or 1.

SHOWMODE 1: Title only
2: Picture only
3: Picture below title
4: Picture above title
5: Picture to the left of title
6: Picture to the right of title

TITLE Title string.

1: Pictures including graphs, tables and layouts.

2: Notebook actions.

4: All other special characters such as dates and times.

Keyword Returned Information

SpecialDirPath

V-665

Print a list of selected notebook action characters in Notebook0:
Print SpecialCharacterList("Notebook0", ";", 2, 1)

See Also
The Notebook and NotebookAction operations; the SpecialCharacterInfo function.

SpecialDirPath
SpecialDirPath(dirIDStr, domain, flags, createDir)
The SpecialDirPath function returns a full path to a file system directory specified by dirIDStr and domain.
It provides a programmer with a way to access directories of special interest, such as the preferences
directory and the desktop directory.
The path returned always ends with a separator character which may be a colon, backslash, or forward
slash depending on the operating system and the flags parameter.
SpecialDirPath depends on operating system behavior. The exact path returned depends on the locale, the
operating system, the specific installation, the current user, and possibly other factors.

Parameters
dirIDStr is one of the following strings:

domain permits discriminating between, for example, the preferences folder for all users versus the
preferences folder for the current user. It is supported only for certain dirIDStrs. It is one of the following:

flags a bitwise parameter:

All other bits are reserved and must be set to zero.
See Setting Bit Parameters on page IV-12 for details about bit settings.

"Packages" Place for advanced programmers to put preferences for their procedure
packages.

"Documents" The OS-defined place for users to put documents.

"Preferences" The OS-defined place for applications to put preferences.

"Desktop" The desktop.

"Temporary" The OS-defined place for applications to put temporary files.

"Igor Application" The folder in which Igor.app or Igor.exe is installed. Use only with domain =
0 (the current user).

"Igor Preferences" The folder in which Igor's own preference files are stored.

"Igor Pro User Files" A guaranteed-writable folder for the user to store their own Igor files, and to
activate extensions, help, and procedure files by creating shortcuts or aliases
in the appropriate subfolders. Use only with domain = 0 (the current user).
This is the folder opened using the Show Igor Pro User Files menu item in the
Help menu.

0: The current user (recommended value for most purposes).

1: All users (may generate an error or return the same path as 0).

2: System (may generate an error or return the same path as 1).

Bit 0: If set, the returned path is a native path (Macintosh-style on Mac OS 9, Unix-style on Mac OS
X, Windows-style on Windows). If cleared, the returned path is a Macintosh-style path
regardless of the current platform. In most cases you should set this bit to zero since Igor
accepts Macintosh-style paths on all operating systems. You must set this bit to one if you are
going to pass the path to an external script.

sphericalBessJ

V-666

createDir is 1 if you want the directory to be created if it does not exist or 0 if you do not want it to be created.
This flag will not work if the current user does not have sufficient privileges to create the specified
directory. In almost all cases it is not needed, you can’t count on it, and you should pass 0.

Details
The domain parameter has no effect in most cases. In almost all cases you should pass 0 (current user) for this
parameter. For values other than 0, SpecialDirPath might return an error which you must be prepared to handle.
In the event of an error, SpecialDirPath returns a NULL string and sets a runtime error code. You can check
for an error like this:
String fullPath = SpecialDirPath("Packages", 0, 0, 0)
Variable len = strlen(fullPath) // strlen(NULL) returns NaN
if (numtype(len) == 2) // fullPath is NULL?

Print "SpecialDirPath returned error."
endif

Here is sample output from SpecialDirPath(“Packages”,0,0,0):

where <user> is the name of the current user. The preferences directory may be hidden by some operating
systems.

Example
For an example using SpecialDirPath, see Saving Package Preferences on page IV-231.

sphericalBessJ
sphericalBessJ(n, x [, accuracy])
The sphericalBessJ function returns the spherical Bessel function of the first kind and order n.

.

For example:

 .

Details
See the bessI function for details on accuracy and speed of execution.

See Also
The sphericalBessJD and sphericalBessY functions.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

sphericalBessJD
sphericalBessJD(n, x [, accuracy])
The sphericalBessJD function returns the derivative of the spherical Bessel function of the first kind and
order n.

Details
See the bessI function for details on accuracy and speed of execution.

See Also
The sphericalBessJ and sphericalBessY functions.

Mac OS X hd:Users:<user>:Library:Preferences:WaveMetrics:Igor Pro 6 Intel:Packages:

Windows C:Documents and Settings:<user>:Application Data:WaveMetrics:Igor Pro 6:Packages:

jn x() π
2x
------Jn 1 2⁄+ x()=

j0 x() x()sin
x

---------------= j1 x() x()sin
x2

--------------- x()cos
x

----------------–= j2 x() 3
x3
----- 1

x
---–

x()sin 3
x2
----- x()cos–=

sphericalBessY

V-667

sphericalBessY
sphericalBessY(n, x [, accuracy])
The sphericalBessY function returns the spherical Bessel function of the second kind and order n.

.

Details
See the bessI function for details on accuracy and speed of execution.

See Also
The sphericalBessYD and sphericalBessJ functions.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

sphericalBessYD
sphericalBessYD(n, x [, accuracy])
The sphericalBessYD function returns the derivative of the spherical Bessel function of the second kind and
order n.

Details
See the bessI function for details on accuracy and speed of execution.

See Also
The sphericalBessJ and sphericalBessY functions.

sphericalHarmonics
sphericalHarmonics(L, M, q, f)
The sphericalHarmonics function returns the complex-valued spherical harmonics

where is the associated Legendre function.

See Also
The legendreA function. The NumericalIntegrationDemo.pxp experiment.

References
Arfken, G., Mathematical Methods for Physicists, Academic Press, New York, 1985.

SphericalInterpolate
SphericalInterpolate triangulationDataWave, dataPointsWave, newLocationsWave
The SphericalInterpolate operation works in conjunction with the SphericalTriangulate operation to
calculate interpolated values on a surface of a sphere. Given a set of {xi, yi, zi} points on the surface of a
sphere with their associated values {vi}, the SphericalTriangulate operation performs the Delaunay
triangulation and creates an output that is used by the SphericalInterpolate operation to calculate values at
any other point on the surface of a sphere. The interpolation calculation uses Voronoi polygons to weigh
the contribution of the nearest neighbors to any given location on the sphere.

Parameters
triangulationDataWave is a 13 column wave that was created by the SphericalTriangulate operation.
dataPoints is a 4 column wave. The first 3 columns are the {xi, yi, zi} locations that were used to create the
triangulation, and the last column corresponds to the {vi} values at the triangulation locations.

yn x() π
2x
------Yn 1 2⁄+ x()= y0 x() x()cos

x
----------------–=

y1 x() x()cos
x2

----------------– x()sin
x

---------------–= y2 x() 1
x
--- 3

x3
-----–

x()cos 3
x2
----- x()sin–=

YL
M θ φ(,) 1–()M 2L 1+

4π
---------------- L M–()!

L M+()!
---------------------PL

M θcos()eiMφ=

PL
M θcos()

SphericalTriangulate

V-668

newLocationsWave is a 3 column wave that specifies the x, y, z locations on the sphere at which the
interpolated values are calculated. Note that internally, each triplet is normalized to a point on the unit
sphere before it is used in the interpolation.

Details
You will always need to use the SphericalTriangulate operation first to generate the triangulationDataWave
input for this operation.
The result of the operation are put in the wave W_SphericalInterpolation.

See Also
The SphericalTriangulate operation.

SphericalTriangulate
SphericalTriangulate [/Z] tripletWaveName
The SphericalTriangulate operation triangulates an arbitrary XYZ triplet wave on a surface of a sphere.
It starts by normalizing the data to make sure that sqrt(x2+y2+z2)=1, and then proceeds to calculate the
Delaunay triangulation.

Flags

Details
The result of the triangulation is the wave M_SphericalTriangulation. This 13 column wave is used in
SphericalInterpolate to obtain the interpolated values.

See Also
The SphericalInterpolate operation.

SplitString
SplitString /E=regExprStr str [, substring1 [, substring2,… substringN]]
The SplitString operation uses the regular expression regExprStr to split str into subpatterns. See
Subpatterns on page IV-166 for details. Each matched subpattern is returned sequentially in the
corresponding substring parameter.

Parameters
str is the input string to be split into subpatterns.
The substring1…substringN output parameters must be the names of existing string variables if you need to use
the matched subpatterns. The first matched subpattern is returned in substring1, the second in substring2, etc.

Flags

Details
regExprStr is a regular expression with successive subpattern definitions, such as shown in the examples.
(Subpatterns are regular expressions within parentheses.)
For unmatched subpatterns, the corresponding substring is set to "". If you specify more substring
parameters than subpatterns, the extra parameters are also set to "".
The number of matched subpatterns is returned in V_flag.
The part of str that matches regExprStr (often all of str) is stored in S_value.

Examples
// Split the output of the date() function:
Print date()
 Mon, May 2, 2005

String expr="([[:alpha:]]+), ([[:alpha:]]+) ([[:digit:]]+), ([[:digit:]]+)"
String dayOfWeek, monthName, dayNumStr, yearStr

/Z No error reporting.

/E=regExprStr Specifies the Perl-compatible regular expression string containing subpattern definition(s).

sprintf

V-669

SplitString/E=(expr) date(), dayOfWeek, monthName, dayNumStr, yearStr
Print V_flag
 4
Print dayOfWeek
 Mon
Print monthName
 May
Print dayNumStr
 2
Print yearStr
 2005
Print S_value
 Mon, May 2, 2005

// Get the part of str that matches regExprStr
SplitString/E=",.*," "stuff in front,second value,stuff at end"
Print S_value
 ,second value,

See Also
Regular Expressions on page IV-156 and Subpatterns on page IV-166.
The sscanf and Grep operations. The strsearch and str2num functions.

sprintf
sprintf stringName, formatStr [, parameter]…
The sprintf operation is the same as printf except it prints the formatted output to the string variable
stringName rather than to the history area.

Parameters

See Also
The printf operation for complete format and parameter descriptions and Creating Formatted Text on page
IV-235.

sqrt
sqrt(num)
The sqrt function returns the square root of num or NaN if num is negative.
In complex expressions, num is complex, and sqrt(num) returns the complex value x + iy.

sscanf
sscanf scanStr, formatStr, var [, var]
The sscanf operation is useful for parsing text that contains numeric or string data. It is based on the C sscanf
function and provides a subset of the features available in C.
Here is a trivial example:
Variable v1
sscanf "Value= 1.234", "Value= %f", v1

This skips the text “Value=” and the following space and then converts the text “1.234” (or whatever
number appeared there) into a number and stores it in the local variable v1.
The sscanf operation sets the variable V_flag to the number of values read. You can use this as an initial
check to see if the scanStr is consistent with your expectations.

formatStr See printf.

parameter See printf.

stringName Results are “printed” into the named string variable.

Note: The sscanf operation is supported in user functions only. It is not available using the
command line, using a macro, or using the Execute operation.

sscanf

V-670

Parameters
scanStr contains the text to be parsed.
formatStr is a format string which describes how the parsing is to be done.
formatStr is followed by the names of one or more local numeric or string variables or NVARs (references to
global numeric variables) or SVARs (references to global string variables), which are represented by var above.
sscanf can handle a maximum of 100 var parameters.

Details
The format string consists of the following:
• Normal text, which is anything other than a percent sign (“%”) or white space.
• White space (spaces, tabs, linefeeds, carriage returns).
• A percent (“%”) character, which is the start of a conversion specification.

The trivial example illustrates all three of these components.
Variable v1
sscanf "Value= 1.234", "Value= %f", v1

sscanf attempts to match normal text in the format string to the identical normal text in the scan string. In
the example, the text “Value=” in the format string skips the identical text in the scan string.
sscanf matches a single white space character in the format string to 0 or more white space characters in the
scan string. In the example, the single space skips the single space in the scan string.
When sscanf encounters a percent character in the format string, it attempts to convert the corresponding
text in the scan string into a number or string, depending on the conversion character following the percent,
and stores the resulting number or string in the corresponding variable in the parameter list. In the example,
“%f” converts the text “1.234” into a number which it stores in the local variable v1.
A conversion specification consists of:
• A percent character (“%”).
• An optional “*”, which is a conversion suppression character.
• An optional number, which is a maximum field width.
• A conversion character, which specifies how to interpret text in the scan string.

Don’t worry about the suppression character and the maximum width specification for now. They will be
explained later.
The sscanf operation supports a subset of the conversion characters supported by the C sscanf operation.
The supported conversion characters, which are case-sensitive, are:

d Converts text representing a decimal number into an integer numeric value.

i Converts text representing a decimal, octal or hexadecimal number into an integer value.
If the text starts with “0x” (zero-x), it is interpreted as hexadecimal. Otherwise, if it starts
with “0” (zero), it is interpreted as octal. Otherwise it is interpreted as decimal.

o Converts text representing an octal number into an integer numeric value.

u Converts text representing an unsigned decimal number into an integer numeric value.

x Converts text representing a hexadecimal number into an integer numeric value.

c Converts a single character into an integer value which is the ASCII code representing
that character.

e Converts text representing a decimal number into a floating point numeric value.

f Same as e.

sscanf

V-671

Here are some simplified examples to illustrate each of these conversions.
Variable v1
String s1

Convert text representing a decimal number to an integer value:
sscanf "1234", "%d", v1

Convert text representing a decimal, octal, or hexadecimal number:
sscanf "1.234", "%i", v1 // Convert from decimal.
sscanf "01234", "%i", v1 // Convert from octal.
sscanf "0x123", "%i", v1 // Convert from hex.

Convert text representing an octal number:
sscanf "1234", "%o", v1

Convert text representing an unsigned decimal number:
sscanf "1234", "%u", v1

Convert text representing a hexadecimal number:
sscanf "1FB9", "%x", v1

Convert a single character:
sscanf "A", "%c", v1

Convert text representing a decimal number to an floating point value:
sscanf "1.234", "%e", v1
sscanf "1.234", "%f", v1
sscanf "1.234", "%g", v1

Copy a string of text up to the first white space:
sscanf "Hello There", "%s", s1

Copy a string of text matching the specified characters:
sscanf "+4.27", "%[+-]", s1

In a C program, you will sometimes see the letters “l” (ell) or “h” between the percent and the conversion
character. For example, you may see “%lf” or “%hd”. These extra letters are not needed or tolerated by
Igor’s sscanf operation.
When sscanf matches the format string to the scan string, it reads from the scan string until a character that
would be inappropriate for the section of the format string that sscanf is trying to match. In the following
example, sscanf stops reading characters to be converted into a number when it hits the first character that
is not appropriate for a number.
Variable v1
String s1, s2
sscanf "1234Volts DC", "%d%s %s", v1, s1, s2

sscanf stops matching text for “%d” when it hits “V” and stores the converted number in v1. It stops
matching text for the first “%s” when it hits white space and stores the matched text in s1. It then skips the
space in the scan string because of the corresponding space in the format string. Finally, it matches the
remaining text to the second “%s” and stores the text in s2.
The maximum field width must appear just before the conversion character (“d” in this case).
Variable v1, v2
sscanf "12349876", "%4d%4d", v1, v2

The suppression character (“*”) is used in a conversion specification to skip values in the scan string. It
parses the value, but sscanf does not store the value in any variable. In the following example, we read one
number into local variable v1, skip a colon, and read another number into local variable v2, skip a colon,
and read another number into local variable v3.

g Same as e.

s Stores text up to the next white space into a string.

[Stores text that matches a list of specific characters into a string. The list consists of the
characters inside the brackets (“%[abc]”). If the first character is “^”, this means to match any
character that is not in the list. You can specify a range of characters to match. For example
"%[A-Z]" matches all of the upper case letters and "%[A-Za-z]" matches all of the upper
and lower case letters.

Stack

V-672

Variable v1, v2, v3
sscanf "12:30:45", "%d%*[:]%d%*[:]%d", v1, v2, v3

Here “%*[:]” means “read a colon character but don’t store it anywhere”. The “*” character must appear
immediately after the percent. Note that there is nothing in the parameter list corresponding to the
suppressed strings.
If the text in the scan string is not consistent with the text in the format string, sscanf may not read all of the
values that you expected. You can check for this using the V_flag variable, which is set to the number of
values read. This kind of inconsistency does not cause sscanf to return an error to Igor, which would cause
procedure execution to abort. It is a situation that you can deal with in your procedure code.
The sscanf operation returns the following kinds of errors:
• Out-of-memory.
• The number of parameters implied by formatStr does not match the number of parameters in the var list.
• formatStr calls for a numeric variable but the parameter list expects a string variable.
• formatStr calls for a string variable but the parameter list expects a numeric variable.
• formatStr includes an unsupported, unknown or incorrectly constructed conversion specification.
• The var list references a global variable that does not exist.

Examples
Here is a simple example to give you the general idea:
Function SimpleExample()

Variable v1, valuesRead
sscanf "Value=1.234", "Value=%g", v1
valuesRead = V_flag
if (valuesRead != 1)

Printf "Error: Expected 1 value, got %d values\r", valuesRead
else

Printf "Value read = %g\r", v1
endif

End

For an example that uses sscanf to load data from a text file, see the Load File Demo example in “Igor Pro
Folder:Examples:Programming”.

See Also
str2num, strsearch, and StringMatch.

Stack
Stack [flags] [objectName][, objectName]…
The Stack operation stacks the named layout objects in the top page layout.

Parameters
objectName is the name of a graph, table, picture or annotation object in the top page layout.

Flags

See Also
The Tile operation for details on the flags and parameters.

/A=(rows,cols) /I /O=objTypes /S
/G=grout /M /R /W=(left,top,right,bottom)

StackWindows

V-673

StackWindows
StackWindows [flags] [windowName [, windowName]…]
The StackWindows operation stacks the named windows on the desktop.

Flags

See Also
See the TileWindows operation for details on the flags and parameters.

startMSTimer
startMSTimer
The startMSTimer function creates a new microsecond timer and returns a timer reference number.

Details
You can create up to ten different microsecond timers using startMSTimer. A valid timer reference number
is a number between 0 and 9. If startMSTimer returns -1, there are no free timers available. startMSTimer
works in conjunction with stopMSTimer.

See Also
The stopMSTimer and ticks functions.

Static
Static constant objectName = value
Static strconstant objectName = value
Static Function funcName()
Static Structure structureName
Static Picture pictName
The Static keyword specifies that a constant, user-defined function, structure, or Proc Picture is local to the
procedure file in which it appears. Static objects can only be used by other functions; they cannot be
accessed from macros; they cannot be accessed from other procedure files or from the command line.

See Also
Static Functions on page IV-86, Proc Pictures on page IV-44, and Constants on page IV-40.

StatsAngularDistanceTest
StatsAngularDistanceTest [flags][srcWave1, srcWave2, srcWave3…]
The StatsAngularDistanceTest operation performs nonparametric tests on the angular distance between sample
data and reference directions for two or more samples in individual waves. The angular distance is the shortest
distance between two points on a circle (in radians). Specify the sample waves using /WSTR or by listing them
following the flags. Set reference directions with /ANG, /ANGW, or the sample mean direction.

/A=(rows,cols) /G=grout /O=objTypes /P /W=(left,top,right,bottom)
/C /I /M /R

StatsAngularDistanceTest

V-674

Flags

Details
The inputs for StatsAngularDistanceTest are two or more waves each corresponding to individual sample.
The waves must be single or double precision expressing the angles in radians. There is no restriction on
the number of points or dimensionality of the waves but the data should not contain NaNs or INFs. We
recommend that you use double precision waves, especially if there are ties in the data. The reference
directions should also be in radians. For two samples, StatsAngularDistanceTest computes the angular
distances between the input data and the reference directions and then uses the Mann-Whitney-Wilcoxon
test (StatsWilcoxonRankTest). Results are stored in the W_WilcoxonTest wave and in the corresponding
table. For more than two samples, StatsAngularDistanceTest uses the Kruskal-Wallis test, storing results in
the wave W_KWTestResults wave in the current data folder.
V_flag will be set to -1 for any error and to zero otherwise.

References
See, in particular, Chapter 27 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsWilcoxonRankTest and
StatsKWTest.
Examples:Statistics:Circular Statistics:AngularDistanceTest.pxp.

/ALPH=val Sets the significance level (default 0.05).

/ANG={d1, d2} Sets reference directions (in radians) for two samples; for more than two samples use
/ANGW.

/ANGM Computes the mean direction of each sample and uses it as the reference direction.

/ANGW=dWave Sets reference directions (in radians) for more than two samples using directions in
dWave, which must be single or double precision.

/APRX=m Controls the approximation method for computing the P-value in the case of two
samples (Mann-Whitney Wilcoxon). See StatsWilcoxonRankTest for more details.
The default value is 0, which may require long computation times if your sample size
is large. Use /APRX=1 if you have a large sample and you expect ties in the data.

/Q No results printed in the history area.

/T=k

/TAIL=tail

See Setting Bit Parameters on page IV-12 for details about bit settings.
The P value corresponding to the last tail calculated will be entered in the table.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

tail is a bitwise parameter that specifies the tails tested.
Bit 0: Lower tail.
Bit 1: Upper tail (default).
Bit 2: Two tail.

StatsANOVA1Test

V-675

StatsANOVA1Test
StatsANOVA1Test [flags] [wave1, wave2,… wave100]
The StatsANOVA1Test operation performs a one-way ANOVA test (fixed-effect model). The standard
ANOVA test results are stored in the M_ANOVA1 wave in the current data folder.

Flags

Details
Inputs to StatsANOVA1Test are two or more 1D numerical waves containing (one wave for each group of
samples). Use NaN for missing entries or use waves with different numbers of points. The standard
ANOVA results are in the M_ANOVA1 wave with corresponding row and column labels. Use /T to display
the results in a table. In each case you will get the two degrees of freedom values, the F value, the critical
value Fc for the choice of alpha and the degrees of freedom, and the P-value for the result. V_flag will be
set to -1 for any error and to zero otherwise.
In some cases the ANOVA test may not be appropriate. For example, if groups do not exhibit sufficient
homogeneity of variances. Although this may not be fatal for the ANOVA test, you may get more insight
by performing the variances test in StatsVariancesTest.
If there are only two groups this test should be equivalent to StatsTTest.
You can evaluate the power of an ANOVA test for a given set of degrees of freedom and noncentrality
parameter using:
power=1-StatsNCFCDF(StatsInvFCDF((1-alpha),n1,n2),n1,n2,delta)

Here n1 is the Groups’ degrees of freedom, n2 is the Error degrees of freedom, and delta is the noncentrality
parameter. For more information see ANOVA Power Calculations Panel and the associated example experiment.

References
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsVariancesTest, StatsTTest,
StatsNCFCDF, and StatsInvFCDF.

/ALPH=val Sets the significance level (default 0.05).

/BF Performs the Brown and Forsythe test computing F'' and degrees of freedom. The
W_ANOVA1BnF wave in the current data folder contains the output.

/Q No results printed in the history area.

/T=k Displays results in a table; additional tables are created with /BF and /W.

/W Performs the Welch test F' and computes degrees of freedom. The W_ANOVA1Welch
wave in the current data folder contains the output.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsANOVA2NRTest

V-676

StatsANOVA2NRTest
StatsANOVA2NRTest [flags] srcWave
The StatsANOVA2NRTest operation performs a two-factor analysis of variance (ANOVA) on the data that
has no replication where there is only a single datum for every factor level. srcWave is a 2D wave of any
numeric type. Output is to the M_ANOVA2NRResults wave in the current data folder or optionally to a table.

Flags

Details
Input to StatsANOVA2NRTest is a 2D wave in which the Factor A corresponds to rows and Factor B
corresponds to columns. H0 provides that there is no difference in the means of the respective populations,
i.e., if H0 is rejected for Factor A but accepted for Factor B that means that there is no difference in the means
of the columns but the means of the rows are different.
NaN and INF entries are not supported although you may use a single NaN value in combination with the
/FOMD flag. If srcWave contains dimension labels they will be used to designate the two factors in the
output.
The contents of the M_ANOVA2NRResults output wave columns are as follows:

/ALPH=val Sets the significance level (default 0.05).

/FOMD Estimates one missing value. You will also have to use a single or double precision
wave for srcWave and designate the single missing value as NaN. The estimated value
is printed to the history as well as the bias used to correct the sum of the squares of
factor A.

/INT=val Sets the degree of interactivity.

As indicated in the table, factor B is not tested for significant interaction under Model
3 and neither factor A nor factor B are tested for Model 1. If you are willing to accept
an increase in Type II error you can obtain the relevant values by specifying Model 2.
None of the models support a test for interaction A x B.

/MODL=m

/Q No results printed in the history area.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Sets the degree of interactivity.
val=0: No interaction between the factors (default).
val=1: Significant interaction effect between factors.

Combination with /MODL determines which factors to test:

val Model 1 Model 2 Model 3

1 A&B A

0 A&B A&B A&B

Sets the model number.
m=1: Factor A and factor B are fixed.
m=2: Both factors are random.
m=3: Factor A is fixed and factor B is random (default).

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsANOVA2RMTest

V-677

The variable V_flag is set to zero if the operation succeeds or to -1 otherwise.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsANOVA1Test and
StatsANOVA2Test.

StatsANOVA2RMTest
StatsANOVA2RMTest [flags] srcWave
The StatsANOVA2RMTest operation performs analysis of variance (ANOVA) on srcWave where replicates
consist of multiple measurements on the same subject (repeated measures). srcWave is a 2D wave of any
numeric type. Output is to the M_ANOVA2RMResults wave in the current data folder or optionally to a table.

Flags

Details
Input to StatsANOVA2RMTest is the 2D srcWave in which the factor A (Groups) are columns and the
different subjects are rows. It does not support NaNs or INFs.
The contents of the M_ANOVA2RMResults output wave columns are: the first contains the sum of the
squares (SS) values, the second contains the degrees of freedom (DF), the third contains the mean square
(MS) values, the fourth contains the single F value for this test, the fifth contains the critical F value for the
specified alpha and degrees of freedom, and the last column contains the conclusion with 0 to reject H0 or
1 to accept it. In each case H0 corresponds to the mean level, which is the same for all subjects.
V_flag will be set to -1 for any error and to zero otherwise.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsANOVA2NRTest and
StatsANOVA2Test.

StatsANOVA2Test
StatsANOVA2Test [flags] srcWave
The StatsANOVA2Test operation performs a two-factor analysis of variance (ANOVA) on srcWave. Output
is to the M_ANOVA2Results wave in the current data folder or optionally to a table.

Column 0 Sum of the squares (SS) values

Column 1 Degrees of freedom (DF)

Column 2 Mean square (MS) values

Column 3 Computed F value for this test

Column 4 Critical F value (Fc) for the specified alpha

Column 5 Conclusion with 0 to reject H0 or 1 to accept it

/ALPH=val Sets the significance level (default 0.05).

/Q No results printed in the history area.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsBetaCDF

V-678

Flags

Details
Input to StatsANOVA2Test is the single or double precision 3D srcWave in which the factor A levels are
columns, the factor B levels are rows, and the replicates are layers. If srcWave contains dimension labels they
will be used to designate the factors in the output.
Ideally, the number of replicates must be equal for each factor and each level. StatsANOVA2Test supports
both equal replication and proportional replication. Proportional replication allows for different number of
data in each cell with missing data represented as NaN and the number of points in each cell is given by
Nij=(sum of data in row i)*(sum of data in column j)/number of samples.

If you have no replicates (a single datum per cell) use StatsANOVA2NRTest instead. If the number of
replicates in your data does not satisfy these conditions you may be able to “estimate” additional replicates
using various methods. In that case use the /FAKE flag so that the operation can account for the estimated
data by reducing the total and error degrees of freedom. /FAKE only accounts for the number of estimates
being used. You must provide an appropriate number of estimated values.
The contents of the M_ANOVA2Results output wave columns are: the first contains the sum of the squares
(SS) values, the second the degrees of freedom (DF), the third contains the mean square (MS) values, the
fourth contains the computed F value for this test, the fifth contains the critical Fc value for the specified
alpha and degrees of freedom, and the last contains the conclusion with 0 to reject H0 or 1 to accept it. In
each case H0 corresponds to the mean level, which is the same for all populations.
V_flag will be set to -1 for any error and to zero otherwise.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsANOVA1Test and
StatsANOVA2NRTest.

StatsBetaCDF
StatsBetaCDF(x, p, q [, a, b])
The StatsBetaCDF function returns the beta cumulative distribution function

where B(p,q) is the beta function

/ALPH=val Sets the significance level (default 0.05).

/FAKE=num Specifies the number of points in srcWave obtained by “estimation”. num is subtracted
from the total and error degrees of freedom.

/MODL=m

/Q No results printed in the history area.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Sets the model number.
m=1: Factor A and factor B are fixed.
m=2: Both factors are random.
m=3: Factor A is fixed and factor B is random (default).

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

F(x,p,q,a,b)=
1

B(p,q)
t p�1(1� t)q�1 dt

0

x�a

b�a� ,
p,q > 0

a 	 x 	 b

StatsBetaPDF

V-679

The defaults (a=0 and b=1) correspond to the standard beta distribution were a is the location parameter, (b-
a) is the scale parameter, and p and q are shape parameters.

References
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsBetaPDF and StatsInvBetaCDF.

StatsBetaPDF
StatsBetaPDF(x, p, q [, a, b])
The StatsBetaPDF function returns the beta probability distribution function

where B(p,q) is the beta function

The defaults (a=0 and b=1) correspond to the standard beta distribution were a is the location parameter, (b-
a) is the scale parameter, and p and q are shape parameters. When p<1, f(x=a) returns Inf.

References
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsBetaCDF and StatsInvBetaCDF.

StatsBinomialCDF
StatsBinomialCDF(x, p, N)
The StatsBinomialCDF function returns the binomial cumulative distribution function

where

See Also
Chapter III-12, Statistics for a function and operation overview; StatsBinomialCDF and
StatsBinomialPDF.

StatsBinomialPDF
StatsBinomialPDF(x, p, N)
The StatsBinomialPDF function returns the binomial probability distribution function

B(p,q) = t p�1(1� t)q�1 dt.
0

1

�

f (x; p,q,a,b) =
x � a()

p�1
b � x()

q�1

B p,q() b � a()
p+q�1 ,�������������

a 	 x 	 b

p,q > 0

B(p,q) = t p�1(1� t)q�1dt
0

1

� .

F(x; p,N) = N
i

�

�
�

�

�
	

i=1

x

� pi (1� p)N � i , x = 1,2,...

N
i

�

�
�

�

�
� =

N !

i!(N � i)!
.

StatsCauchyCDF

V-680

where

is the probability of obtaining x good outcomes in N trials where the probability of a single successful
outcome is p.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsBinomialCDF and
StatsInvBinomialCDF.

StatsCauchyCDF
StatsCauchyCDF(x, μ, σ)
The StatsCauchyCDF function returns the Cauchy-Lorentz cumulative distribution function

See Also
Chapter III-12, Statistics for a function and operation overview; StatsCauchyCDF and StatsCauchyPDF.

StatsCauchyPDF
StatsCauchyPDF(x, μ, σ)
The StatsCauchyPDF function returns the Cauchy-Lorentz probability distribution function

where μ is the location parameter and σ is the scale parameter. Use μ=0 and σ=1 for the standard form of
the Cauchy-Lorentz distribution.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsCauchyCDF and StatsInvCauchyCDF.

StatsChiCDF
StatsChiCDF(x, n)
The StatsChiCDF function returns the chi-squared cumulative distribution function for the specified value
and degrees of freedom n.

where is γ(a,b) the incomplete gamma function. The distribution can also be expressed as

f (x; p,N) = N
x

�

�
�

�

�
� p

x (1� p)N � x , x = 0,1,2,...

N
x

�

�
�

�

�
� =

N !

x!(N � x)!
.

F(x;μ,�) =
1

2
+

1

�
tan�1 x � μ

�

�

��
�

	

.

f (x;μ,�) =
1

��

1

1+
x � μ

�

�

��
�

	

2 ,

F(x;n) =
�

n

2
,
x

2
�

��
�

		

�
n

2
�

��
�

��

.

StatsChiPDF

V-681

See Also
Chapter III-12, Statistics for a function and operation overview; StatsChiPDF, StatsInvChiCDF, and
gammq.

StatsChiPDF
StatsChiPDF(x, n)
The StatsChiPDF function returns the chi-squared probability distribution function for the specified value
and degrees of freedom as

See Also
Chapter III-12, Statistics for a function and operation overview; StatsChiCDF and StatsChiPDF.

StatsChiTest
StatsChiTest [flags] srcWave1, srcWave2
The StatsChiTest operation computes a χ2 statistic for comparing two distributions or a χ2 statistic for
comparing a sample distribution with its expected values. In both cases the comparison is made on a bin-
by-bin basis. Output is to the W_StatsChiTest wave in the current data folder or optionally to a table.

Flags

Details
The source waves, srcWave1 and srcWave2, must have the same number of points and can be any real
numeric data type. Any nonpositive values (including NaN) in either wave removes the entry in both
waves from consideration and reduces the degrees of freedom by one. The number degrees of freedom is
initially the number of points in srcWave1-1-nCon. By default it is assumed that srcWave1 and srcWave2
represent two distributions of binned data.
When you specify /S, srcWave1 must consist of binned values of measured data and srcWave2 must contain
the corresponding expected values. The calculation is:

/ALZR Allows zero entries in source waves. If you are using /S zero entries in srcWave2 are
skipped.

/NCON=nCon Specifies the number of constraints (0 by default), which reduces the number degrees
of freedom and the critical value by nCon.

/S Sets the calculation mode to a single distribution where srcWave1 represents an array
of binned measurements and srcWave2 represents the corresponding expected values.

/T=k

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

F(x;n) = 1� gammq
n

2
,
x

2
	

��
�

��
.

f (x;n) =
exp �

x

2
�

��
�

��
x
n

2
�1

2
n

2 �
n

2
�

��
�

��

.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsCircularCorrelationTest

V-682

Here Yi is the sample point from srcWave1, Vi is the expected value of Yi based on an assumed distribution
(srcWave2), and n is the number of points in the each wave. If you do not use /S, it calculates:

where Y1i and Y2i are taken from srcWave1 and srcWave2 respectively.
V_flag will be set to -1 for any error and to zero otherwise.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsContingencyTable.

StatsCircularCorrelationTest
StatsCircularCorrelationTest [flags] waveA, waveB
The StatsCircularTwoSampleTest operation peforms a number of tests for two samples of circular data.
Using the appropriate flags you can choose between parametric or nonparametric, unordered or paired
tests. The input consists of two waves that contain one or two columns. The first column contains angle data
expressed in radians and an optional second column contains associated vector lengths. The waves must be
either single or double precision floating point. Results are stored in the W_StatsCircularCorrelationTest
wave in the current data folder and optionally displayed in a table. Some flags generate additional outputs,
described below.

Flags

Details
The nonparametric test (/NAA) follows Fisher and Lee’s modification of Mardia’s statistic, which is an
analogue of Spearman’s rank correlation. The test ranks the angles of each sample and computes the
quantities r' and r'' as follows:

/ALPH=val Sets the significance level (default 0.05).

/NAA Performs a nonparametric angular-angular correlation test.

/PAA Performs a parametric angular-angular correlation test.

/PAL Performs a parametric angular-linear correlation test. In this case the angle wave is
waveA and the linear data corresponds to waveB.

/Q No results printed in the history area.

/T=k

/Z Ignores errors.

� 2 =
Yi �Vi()

2

Vi
.

i=0

n�1

�

� 2 =
Y1i �Y2i()

2

Y1i +Y2i

,
i=0

n�1

�

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

r ' =

cos
2�
n

rai � rbi()�

��
�

	
i=0

n�1

�
�
�

�
�
�

2

+ sin
2�
n

rai � rbi()�

��
�

	
i=0

n�1

�
�
�

�
�
�

2

n2 ,

StatsCircularCorrelationTest

V-683

Here n is the number of data pairs and rai and rbi are the ranks of the ith member in the first and second
samples respectively.
The test statistic is (n-1)(r'-r''), which is compared with the critical value (for one and two tails). The CDF of
the statistic is a highly irregular function. The critical value is computed by a different methods according
to n. For 3 ≤ n ≤ 8, a built-in table of CDF transitions gives a “conservative” estimate of the critical value. For
9 ≤ n ≤ 30, the CDF is approximated by a 7th order polynomial in the region x > 0. For n ≥ 30, the CDF is
from the asymptotic expression. For 3 ≤ n ≤ 30, CDF values are obtained by Monte-Carlo simulations using
1e6 random samples for each n.
The parametric test for angular-angular correlation (/PAA) involves computation of a correlation coefficient
raa and then evaluating the mean and variance of equivalent correlation coefficients computed
from the same data but by deleting a different pair of angles each time. The mean and variance are then
used to compute confidence limits L1 and L2:

where is the normal distribution two-tail critical value at the a level of significance. H0 (corresponding
to no correlation) is rejected if zero is not contained in the interval [L1,L2].
The parametric test for angular-linear correlation (/PAL) involves computation of the correlation coefficient ral
which is then compared with a critical value from for alpha significance and two degrees of freedom.

where:

r '' =

cos
2�
n

rai + rbi()�

��
�

	
i=0

n�1

�
�
�

�
�
�

2

+ sin
2�
n

rai + rbi()�

��
�

	
i=0

n�1

�
�
�

�
�
�

2

n2 .

raa sraa

2

L1 = nraa � n �1()raa � Z� (2)

sraa
2

n
,

L2 = nraa � n �1()raa + Z� (2)

sraa
2

n

Zα 2()

χ2

ral =
rxc

2 + rxs
2 � 2rxcrxsrcs
1� rcs

2
,

rxc =
Xi cos(ai) �

1
n

Xi
i=0

n�1

� cos(ai)
i=0

n�1

�
i=0

n�1

�

Xi
2 �

1
n

Xi
i=0

n�1

�
�

��
�

��

2

i=0

n�1

�
�

�
�

�

�
� cos2 (ai) �

1
n

cos(ai)
i=0

n�1

�
�

��
�

��

2

i=0

n�1

�
�

�
�

�

�
�

,

rxs =
Xi sin(ai) �

1
n

Xi
i=0

n�1

� sin(ai)
i=0

n�1

�
i=0

n�1

�

Xi
2 �

1
n

Xi
i=0

n�1

�
�

��
�

��

2

i=0

n�1

�
�

�
�

�

�
� sin2 (ai) �

1
n

sin(ai)
i=0

n�1

�
�

��
�

��

2

i=0

n�1

�
�

�
�

�

�
�

,

StatsCircularMeans

V-684

References
Fisher, N.I., and A.J. Lee, Nonparametric measures of angular-angular association, Biometrica, 69, 315-321,

1982.
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsInvChiCDF, StatsInvNormalCDF,
and StatsKendallTauTest.

StatsCircularMeans
StatsCircularMeans [flags] srcWave
The StatsCircularMeans operation calculates the mean of a number of circular means, returning the mean
angle (grand mean), the length of the mean vector, and optionally confidence interval around the mean
angle. Output is to the history area and to the W_CircularMeans wave in the current data folder.

Flags

/ALPH=val Sets the significance level (default 0.05).

/CI Calculates the confidence interval (labeled CI_t1 and CI_t2) around the mean angle.

/NSOA Performs nonparametric second order analysis according to Moore’s version of
Rayleigh’s test where H0 corresponds to uniform distribution around the circle.
Moore’s test ranks entries by the lengths of the mean radii (second column of the
input) from smallest (rank 1) to largest (rank n) and then computes the statistic:

where ai are the mean angle entries (from column 1) corresponding to vector length
rank (i+1). The critical value is obtained from Moore’s distribution
StatsInvMooreCDF.

/PSOA Perform parametric second order analysis where H0 corresponds to no mean
population direction. It assumes that the second order quantities are from a bivariate
normal distribution. If this is not the case, use /NSOA above. The test statistic is:

where

rcs =
cos(ai)sin(ai) �

1
n

sin(ai)
i=0

n�1

� cos(ai)
i=0

n�1

�
i=0

n�1

�

sin2 (ai) �
1
n

sin(ai)
i=0

n�1

�
�

��
�

��

2

i=0

n�1

�
�

�
�

�

�
� cos2 (ai) �

1
n

cos(ai)
i=0

n�1

�
�

��
�

��

2

i=0

n�1

�
�

�
�

�

�
�

.

R ' =

1
n

i +1()cos ai()
i=0

n�1

�
�

��
�

��

2

+
1
n

i +1()sin ai()
i=0

n�1

�
�

��
�

��

2

n
,

F =
k(k � 2)

2

X 2S
y2 � 2XYSxy +Y

2S
x2

S
x2Sy2 � Sxy

2

�

�

�
�

StatsCircularMoments

V-685

Details
The srcWave input to StatsCircularMeans must be a single or double precision two column wave containing
in each row a mean angle (radians) and the length of a mean radius (the first column contains mean angles
and the second column contains mean vector lengths). srcWave must not contain any NaNs or INFs. The
confidence interval calculation follows the procedure outlined by Batschelet.
V_flag will be set to -1 for any error and to zero otherwise.

References
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsCircularMoments,
StatsInvMooreCDF, and StatsInvFCDF.

StatsCircularMoments
StatsCircularMoments [flags] srcWave
The StatsCircularMoments operation computes circular statistical moments and optionally performs
angular uniformity tests for the data in srcWave. The extent of the calculation is determined by the requested
moment. The default results are stored in the W_CircularStats wave in the current data folder and are
optionally displayed in a table. Additional results are listed under the corresponding flags.

Flags

Here n is the number of means in srcWave and the critical value is computed from the
F distribution, equivalent to executing:
Print StatsInvFCDF(1-alpha,2,n-2)

/Q No results printed in the history area.

/T=k

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

/ALPH=alpha Sets an alpha value for computing confidence intervals (default is 0.05).

X =
1

n
Xi

i=0

n�1

� =
1

n
ri

i=0

n�1

� cos ai(),

Y =
1

n
Yi

i=0

n�1

� =
1

n
ri

i=0

n�1

� sin ai(),

S
x2 = Xi

2

i=0

n�1

� �
1

n
Xi

i=0

n�1

�
�

��
�

��

2

,

S
y2 = Yi

2

i=0

n�1

� �
1

n
Yi

i=0

n�1

�
�

��
�

��

2

,

Sxy = XiYi
i=0

n�1

� �
1

n
Xi

i=0

n�1

� Yi
i=0

n�1

� .

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsCircularMoments

V-686

/AXD=p Designates the input as p-axial data. For example, if the input represents undirected
lines then p =2 and the operation multiplies the angles by a factor p (after shifting
/ORGN and accounting for /CYCL). It does not back-transform the mean or median
axis.

/CYCL=cycle Specifies the length of the data cycle. You do not need to do so if you are using one of
the built-in modes, but this is still a useful option, as for setting the length of a
particular month when using /MODE=5.

/GRPD={start, delta}

Computes circular statistics for grouped data. In this case srcWave contains
frequencies or the number of events that belong to a particular angle group. There are
as many groups as there are elements in srcWave. The first group is centered at start
radians and each consecutive group is centered delta radians away. You must set both
the start and delta to sensible values. srcWave may contain NaNs but it is an error if all
values are NaN. The only other flags that work in combination with this flag are /Q,
/T, and /Z.

/KUPR Tests the uniformity of the distribution for ungrouped data using Kuiper statistic. The
data are converted into a set {xi} by normalizing the input angles to the range [0,1],
ranking the results then using the two quantities D+ and D- to compute the Kuiper
statistic

,

where

,

,

and n is the number of valid points in srcWave. You can find the results in the wave
W_CircularStats under row label “Kuiper V” and “Kuiper CDF(V)”. See Fisher and
Press et al. for more information.

 /LOS Computes Linear Order Statistics by sorting the angle values from small to large,
dividing each angle by 2π and shifting the origin so that the output range is [0,1]. The
results are stored in the wave W_LinearOrderStats in the current data folder. The X
scaling of the wave is set so that the offset and the delta are 1/(n+1) where n is the
number of non-NaN points in the input.

/M=moment Computes specified moments. By default, it computes the second order moments as
well as skewness, kurtosis, median, and mean deviation. Use /M=1 for the first
moment. For higher moments, both the specified moment and all the default
quantities are computed.

V= D+ + D�() n+0.155+0.24/ n()

D+ = Max of:
1

n
-x0 ,

2

n
-x1,... ,1-xn-1

D- = Max of: x0 , x
1-

1

n

,... , x
n-1-

n-1

n

,

StatsCircularMoments

V-687

Details
StatsCircularMoments is equivalent to WaveStats but it applies to circular data, which are distributed on
the perimeter of a circle representing some period or cycle. If your data are not described by one of the built-
in modes, you can specify the value of the origin (/ORGN), which is mapped to zero degrees and the size
of a cycle or period.
When you use Igor date formats with the built-in modes for dates, the default origin is set to zero. The
default cycle in the case of Mode 4 is 366. This is done in order to handle both leap and nonleap years.
Similarly, Mode 5 uses a cycle of 31 days. Note that the internal conversion from Igor date to (year, month,

/MODE=mode

/ORGN=origin Specifies the origin of the data (the value corresponding to an angle of zero degrees).
For example, if you are using Igor date format and you want the origin to be the first
second in year YYYY, use /ORGN=(date2secs(YYYY,1,1)).

/Q No results printed in the history area.

/RAYL[=meanDirection]

Performs the Rayleigh test for uniformity. If the “alternative” mean direction is
specified (in radians), the test computes
r0Bar=rBar cos(tBar-meanDirection)

and then computes the significance probability of r0Bar. The null hypothesis H0
corresponds to uniformity. It is rejected when r0Bar is too large. If the mean direction
is not specified then r0Bar is rBar which is always calculated as part of the first
moments so the operation only computes the relevant significance probability (P-
Value). The critical values for both cases are computed according to Durand and
Greenwood.

/SAW Saves the translated angle data in the wave W_AngleWave in the current data folder.

/T=k

The table is associated with the test and not with the data. If you repeat the test, it will
update the table with the new results unless you moved the output wave to a different
data folder. If the named table exists, but does not display the output wave from the
current data folder, the table is renamed and a new table is created.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Handles special types of data.

mode Data in srcWave

0 Angles in radians [0,2π]

1 Angles in radians [-π, π]

2 Angles in degrees [0,360]

3 Angles in degrees [-180,180]

4 Igor date format for one year cycles.

5 Igor date format for one month cycles.

6 Igor date format for one week cycles.

7 Igor date format for one day cycles.

8 Igor date format for one hour cycles.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsCircularMoments

V-688

day) is independent of the cycle specification and is therefore not affected by this choice. You should use
the /CYCL flag if you use one of these modes with a fixed size of year or month.
The parameters listed below are computed and displayed (see row labels) in the table. Here N is the number
of valid (non-NaN) angles {θi}

median is the value which minimizes

mean deviation = The minimum of the last equation when θ → median.
Higher order moments are denoted with the moment number such that t3Bar is the uncentered third
moment of the angle while primed quantities are relative to mean direction tBar. Using this notation

C= cos	i
i=1

n

�

S= sin	i
i=1

n

�

R = C 2 + S2

cBar = C = C n

sBar = S = S n

rBar = R = R n

tBar = � =

atan(S C) S > 0,C > 0

atan(S C) + � C < 0

atan(S C) + 2� S < 0,C > 0

�

�
�

�
�

V = 1� R

v = �2 log 1�V()

d(�) = � �
1

n
� � �i ��

i=1

n

�

�2
� =

1

n
cos2 �i ��()

i=1

n

�

circular �dispersion =

1� �2
�

2R
2

skewness =
�2
� sin �μ̂2 � 2�()

1� R()
3

2

StatsCircularTwoSampleTest

V-689

where

and

References
Fisher, N.I., Statistical Analysis of Circular Data, 295pp., Cambridge University Press, New York, 1995.
Press, William H., et al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New York,

1992.
Durand, D., and J.A. Greenwood, Modifications of the Rayleigh test for uniformity in analysis of two-

dimensional orientation data, J. Geol., 66, 229-238, 1958.

See Also
Chapter III-12, Statistics for a function and operation overview.
WaveStats, StatsAngularDistanceTest, StatsCircularCorrelationTest, StatsCircularMeans,
StatsHodgesAjneTest, StatsWatsonUSquaredTest, StatsWatsonWilliamsTest, and
StatsWheelerWatsonTest.

StatsCircularTwoSampleTest
StatsCircularTwoSampleTest [flags] waveA, waveB
The StatsCircularTwoSampleTest operation performs second order analysis of angles. Using the appropriate
flags you can choose between parametric or nonparametric, unordered or paired tests. The input consists of
two waves that contain one or two columns. The first column contains angle data (mean angles) expressed in
radians and an optional second column that contains associated vector lengths. The waves must be either
single or double precision. Results are stored in the W_StatsCircularTwoSamples wave in the current data
folder and optionally displayed in a table. Some of the tests may have additional outputs.

Flags

/ALPH = val Sets the significance level (default val=0.05).

/NPR Performs nonparametric paired-sample test (Moore). The input waves must contain
paired angular data so both must have single column and the same number of points.

/NSOA Perform nonparametric second order two-sample test. Input waves must each contain
two columns.

/PPR Performs parametric paired-sample test. Input waves must contain paired data and
must have the same number of points.

/PSOA Performs parametric second order analysis of two samples. The input waves must
each contain two columns.

/Q No information printed in the history area.

kurtosis =
�2
� cos �μ̂2 � 2�() � R

4

1� R()
2

�μ̂p =

atan Sp Cp() Sp > 0,Cp > 0

atan Sp Cp() + � Cp < 0

atan Sp Cp() + 2� Sp < 0,Cp > 0

�

�

�
�

�

�
�

Cp =
1

n
cos p	i

i=1

n

� , Sp =
1

n
sin p	i

i=1

n

� .

StatsCMSSDCDF

V-690

Details
The nonparametric paired-sample test (/NPR) is Moore’s test for paired angles applied in second order
analysis. The input can consist of one or two column waves. When both waves contain a single column the
operation proceeds as if all the vector length were identically 1. The Moore statistic (H0 → pair equality) is
computed and compared to the critical value from the Moore distribution (see StatsInvMooreCDF).
The nonparametric second-order two-sample test (/NSOA) consists of pre-processing where the grand
mean is subtracted from the two inputs followed by application of Watson’s U2 test
(StatsWatsonUSquaredTest) with H0 implying that the two samples came from the same population. The
results of this test are stored in the wave W_WatsonUtest.
The parametric paired-sample test (/PPR) is due to Hotelling. In this test the input should consist of both angular
and vector length data. The test statistic is compared with a critical value from the F distribution (StatsInvFCDF).
The parametric second order two-sample test (/PSOA) is an extension of Hotelling one-sample test to
second order analysis where an F-like statistic is computed corresponding to H0 of equal mean angles.

References
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsInvMooreCDF,
StatsWatsonUSquaredTest, and StatsInvFCDF.

StatsCMSSDCDF
StatsCMSSDCDF(C, n)
The StatsCMSSDCDF function returns the cumulative distribution function of the C distribution (mean
square successive difference), which is

where

The distribution (C>0) can then be expressed as

where 2F1 is the hypergeometric function hyperG2F1.

/T= k

/Z Ignores any errors.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

f (C,n) =
�(2m + 2)

a22m+1 �(m +1)[]
2 1�

C 2

a2

�

��
�

�	

m

,

a2 =
n2 + 2n �12() n � 2()

n3 �13n + 24()
,

m =
n4 � n3 �13n2 + 37n � 60()

2 n3 �13n + 24()
.

F(C,n) =
�(2m + 2)

a22m+1 �(m +1)[]
2 C 2F1

1

2
,�m,

3

2
,
C 2

a2

�

��
�

�	
,

StatsCochranTest

V-691

References
Young, L.C., On randomness in ordered sequences, Annals of Mathematical Statistics, 12, 153-162, 1941.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsCMSSDCDF and StatsSRTest.

StatsCochranTest
StatsCochranTest [flags] [wave1, wave2,… wave100]
The StatsCochranTest operation performs Cochran’s (Q) test on a randomized block or repeated measures
dichotomous data. Output is to the M_CochranTestResults wave in the current data folder or optionally to
a table.

Flags

Details
StatsCochranTest computes Cochran's statistic and compares it to a critical value from a Chi-squared
distribution, which depends only of the significance level and the number of groups (columns). The null
hypothesis for the test is that all columns represent the same proportion of the effect represented by a non-
zero data.
The Chi-square distribution is appropriate when there are at least 4 columns and at least 24 total data
points.
Dichotomous data are presumed to consist of two values 0 and 1, thus StatsCochranTest distinguishes only
between zero and any nonzero value, which is considered to be 1; it does not allow NaNs or INFs. Input
waves can be a single 2D wave or a list of 1D numeric waves, which can also be specified in a string list with
/WSTR. In the standard terminology, data rows represent blocks and data columns represent groups. H0
corresponds to the assumption that all groups have the same proportion of 1’s.
With the /T flag, it displays the results in a table that contains the number of rows, the number of columns,
the Cochran statistic, the critical value, and the conclusion (1 to accept H0 and 0 to reject it).
V_flag will be set to -1 for any error and to zero otherwise.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsFriedmanTest.

StatsContingencyTable
StatsContingencyTable [flags] srcWave
The StatsContingencyTable operation performs contingency table analysis on 2D and 3D tables. Output is to
the W_ContingencyTableResults wave in the current data folder or optionally to a table or the history area.

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/T=k

The table is associated with the test and not with the data. If you repeat the test, it will
update the table with the new results unless you moved the output wave to a different
data folder. If the named table exists but it does not display the output wave from the
current data folder, the table is renamed and a new table is created.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsContingencyTable

V-692

Flags

Details
StatsContingencyTable supports 2D waves representing single contingency tables or 3D waves
representing multiple 2D tables (where each table is a layer) or a single 3D table. Each entry in the wave
must contain a frequency value and must be a positive number; it does not support 0’s, NaNs, or INFs. In
the special case of 2x2 tables, use the /COR flag to compute the statistic using either the Yates or Haber
corrections. Except for the heterogeneity option you can also compute the log likelihood statistic. In all the
tests, H0 corresponds to independence between the tested variables.
For 3D tables StatsContingencyTable provides Chi-squared, degrees of freedom, the critical value, and
optionally the log likelihood G statistic (/LLIK flag) for each of the following cases:
• Mutual independence by testing if all three variables are independent of each other.
• Partial dependence (rows) by testing if rows independent of columns and layers.
• Partial dependence (columns) by testing if columns independent of rows and layers.
• Partial dependence (layers) by testing if layers independent of rows and columns.

/ALPH = val Sets the significance level (default val=0.05).

/COR=mode Sets the correction type for 2x2 tables. By default there is no correction. Use mode=1 for
Yates and mode=2 for Haber correction.

/FEXT={row, col} Computes Fisher’s Exact P-value with 2x2 contingency tables. row and col are zero-
based indices of the table entry where it computes the probability of getting the
results in the table or more extreme values. Without the /Q flag, it prints the
probabilities of each individual table in the history.

Example 1: When you use /FEXT={0,0} the P-value represents the sum of the
probabilities of the first group having in the Succeeded column 11 or more extreme
values, i.e., 12, 13, 14, and 15. In each case the remaining table elements are adjusted
so that row and column sums remain constant.

Example 2: When you needed to evaluate the sum of the probabilities of Group2
having 4 counts or less in the Succeeded column, then the appropriate flag is
/FEXT={1,1}, which effectively computes the equivalent of having 9, 10, 11, 12, and
13 Failed counts. In each case it computes the upper, the lower, and the two-tail
probabilities.

/HTRG Tests for heterogeneity between tables stored as layers of 3D wave.

/LLIK Computes log likelihood statistic.

/Q No results printed in the history area.

/T=k

The table is associated with the test and not with the data. If you repeat the test, it will
update the table with the new results unless you moved the output wave to a different
data folder. If the named table exists but it does not display the output wave from the
current data folder, the table is renamed and a new table is created.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Given the contingency table:

Succeeded Failed

Group1 11 8

Group2 4 9

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsCorrelation

V-693

In each case you should compare the statistic with the critical value and reject H0 if the statistic exceeds or
equals the critical value.
You should examine the table entries to determine if the Chi-square statistic is appropriate (if the frequency
is smaller than 6 for /ALPH=0.05 you should consider computing the Fisher exact test).
V_flag will be set to -1 for any error and to zero otherwise.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsInvChiCDF.

StatsCorrelation
StatsCorrelation(waveA [, waveB])
The StatsCorrelation function computes Pearson’s correlation coefficient between two real valued arrays of
data of the same length. Pearson r is give by:

Here A is the average of the elements in waveA, B is the average of the elements of waveB and the sum is
over all wave elements.

Details
If you use both waveA and waveB then the two waves must have the same number of points but they could
be of different number type. If you use only the waveA parameter then waveA must be a 2D wave. In this
case StatsCorrelation will return 0 and create a 2D wave M_Pearson where the (i,j) element is Pearson’s r
corresponding to columns i and j.
Fisher’s z transformation converts Person’s r above to a normally distributed variable z:

with a standard error

You can convert between the two representations using the following functions:
Function pearsonToFisher(inr)

Variable inr
return 0.5*(ln(1+inr)-ln(1-inr))

End

Function fisherToPearson(inz)
Variable inz
return tanh(inz)

End

See Also
Correlate, StatsLinearCorrelationTest, and StatsCircularCorrelationTest.

StatsDExpCDF
StatsDExpCDF(x, m, s)
The StatsDExpCDF function returns the double-exponential cumulative distribution function

r =

waveA[i]� A() waveB[i]� B()
i=0

n�1

�

waveA[i]� A()
2

waveB[i]� B()
2

i=0

n�1

�
i=0

n�1

�

z =
1

2
ln

1+ r

1� r
	

��
�

��
,

� z =
1

n � 3
.

StatsDExpPDF

V-694

for σ>0. It returns NaN when σ=0.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsDExpPDF and StatsInvDExpCDF.

StatsDExpPDF
StatsDExpPdf(x, m, s)
The StatsDExpPdf function returns the double-exponential probability distribution function

where μ is the location parameter and σ>0 is the scale parameter. Use μ=0 and σ=1 for the standard form of
the double exponential distribution. It returns NaN when σ=0.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsDExpCDF and StatsInvDExpCDF.

StatsDIPTest
StatsDIPTest [/Z] srcWave
The StatsDIPTest operation performs Hartigan test for unimodality.

Flags

Details
The input to the operation srcWave is any real numeric wave. Outputs are: V_Value contains the dip
statistic; V_min is the lower end of the modal interval; and V_max is the higher end of the modal interval.
Percentage points or critical values for the dip statistic can be obtained from simulations using an identical
sample size as in this example:
Function getCriticalValue(sampleSize,alpha)
Variable sampleSize,alpha

Make/O/N=(sampleSize) dataWave
Make/O/N=100000 dipResults
Variable i
for(i=0;i<100000;i+=1)

dataWave=enoise(100)
StatsDipTest dataWave
dipResults[i]=V_Value

endfor
Histogram/P/B=4 dipResults // Compute the PDF.
Wave W_Histogram
Integrate/METH=1 W_Histogram/D=W_INT // Compute the CDF.
Findlevel/Q W_int,(1-alpha) // Find the critical value.
return V_LevelX

End

References
Hartigan, P. M., Computation of the Dip Statistic to Test for Unimodality, Applied Statistics, 34, 320-325, 1985.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

F(x;μ,�) =

exp
x � μ

�

�

��

��
when�x < μ

1�
1

2
exp �

x � μ

�

�

��

��
when�x � μ

�

�

�
�

�

�
�

f(x;μ,�)=
1

2�
exp �

x � μ

�

�

	

�

	
�,

StatsDunnettTest

V-695

See Also
Chapter III-12, Statistics for a function and operation overview.

StatsDunnettTest
StatsDunnettTest [flags] [wave1, wave2,… wave100]
The StatsDunnettTest operation performs the Dunnett test by comparing multiple groups to a control
group. Output is to the M_DunnettTestResults wave in the current data folder or optionally to a table.
StatsDunnettTest usually follows StatsANOVA1Test.

Flags

Details
StatsDunnettTest inputs are two or more 1D numeric waves (one wave for each group of samples). The input
waves may contain different number of points, but they must contain two or more valid entries per wave.
For output to a table (using /T), each labelled row represents the results of the test for comparing the means of
one group to the control group, and rows are ordered so that all comparisons are computed sequentially starting
with the group having the smallest mean. The contents of the labeled columns are:

V_flag will be set to -1 for any error and to zero otherwise.

/ALPH = val Sets the significance level (default val=0.05).

/CIDX=cIndex Specifies the (zero based) index of the input wave corresponding to the control group.
The default is zero (the first wave corresponds to the control group).

/Q No results printed in the history area.

/SWN Creates a text wave, T_DunnettDescriptors, containing wave names corresponding to
each row of the comparison table (Save Wave Names). Use /T to append the text wave
to the last column.

/T=k

/TAIL=tc

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

First The difference between the group means

Second SE (which is computed for possibly unequal number of points)

Third The q statistic for the pair which may be positive or negative

Fourth The critical q' value

Fifth 0 if the conclusion is to reject H0 or 1 to accept H0

Sixth The P-value

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

Specifies H0.

Code combinations are not allowed.

tc=1: Default; one tailed test (μc ≤ μa).
tc=2: One tailed test (μc ≥ μa).
tc=4: Two tailed test (μc = μa).

StatsErlangCDF

V-696

See Also
Chapter III-12, Statistics for a function and operation overview; StatsTukeyTest, StatsANOVA1Test,
StatsScheffeTest, and StatsNPMCTest.

StatsErlangCDF
StatsErlangCDF(x, b, c)
The StatsErlangCDF function returns the Erlang cumulative distribution function

where b>0 (also as λ=1/b) is the scale parameter, c> 0 the shape parameter, Γ(x) the gamma function, and
Γ(a,x) the incomplete gamma function gammaInc.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsErlangPDF.

StatsErlangPDF
StatsErlangPDF(x, b, c)
The StatsErlangPDF function returns the Erlang probability distribution function

where b>0 (also as λ=1/b) is the scale parameter and c> 0 the shape parameter.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsErlangCDF.

StatsErrorPDF
StatsErrorPDF(x, a, b, c)
The StatsErrorPDF function returns the error probability distribution function or the exponential power
distribution

where a is the location parameter, b> 0 is the scale parameter, c> 0 is the shape parameter, and Γ(x) is the
gamma function.

See Also
Chapter III-12, Statistics for a function and operation overview.

StatsEValueCDF
StatsEValueCDF(x, μ, σ)
The StatsEValueCDF function returns the extreme-value (type I, Gumbel) cumulative distribution function

F(x;b,c) = 1�
� c,

x

b
�

��
�

�	

�(c)
.

f (x;b,c) =

x

b
	

��
�

��

c�1

exp �
x

b
	

��
�

��

b(c �1)!
.

f (x;a,b,c) =

exp �
1
2

x � a

b

�

��

��

2

c
�

	

�
�

�

�
�

b2
c

2
+1
� 1+

c

2
�

��

��

.

StatsEValuePDF

V-697

where σ>0. This is also known as the “minimum” form or distribution of the smallest extreme. To obtain
the distribution of the largest extreme reverse the sign of σ.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsEValuePDF and
StatsInvEValueCDF.

StatsEValuePDF
StatsEValuePDF(x, μ, σ)
The StatsEValuePDF function returns the extreme-value (type I, Gumbel) probability distribution function

where σ>0. This is also known as the “minimum” form or the distribution of the smallest extreme. To obtain
the distribution of the largest extreme reverse the sign of σ.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsEValueCDF and
StatsInvEValueCDF.

StatsExpCDF
StatsExpCDF(x, μ, σ)
The StatsExpCDF function returns the exponential cumulative distribution function

where x ≥ μ and σ > 0. It returns NaN for σ = 0.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsExpPDF and StatsInvExpCDF.

StatsExpPDF
StatsExpPDF(x, μ, σ)
The StatsExpPDF function returns the exponential probability distribution function

where μ is the location parameter and σ>0 is the scale parameter. Use μ=0 and σ=1 for the standard form of
the exponential distribution. It returns NaN for σ=0.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsExpCDF and StatsInvExpCDF.

StatsFCDF
StatsFCDF(x, n1, n2)
The StatsFCDF function returns the cumulative distribution function for the F distribution with shape
parameters n1 and n2

F(x;μ,�) = 1� exp � exp
x � μ

�

�

��
�

�	
�

��
�

�	
,

F(x;μ,�) = 1� exp � exp
x � μ

�

�

��
�

�	
�

��
�

�	
,

F(x;μ,�) = 1� exp �
x � μ

�

�

��
�

�	
,

f (x;μ,�) =
1

�
exp �

x � μ

�

�

��
�

�	
,

StatsFPDF

V-698

where Betai is the incomplete beta function.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsFPDF and StatsInvFCDF.

StatsFPDF
StatsFPDF(x, n1, n2)
The StatsFPDF function returns the probability distribution function for the F distribution with shape
parameters n1 and n2

See Also
Chapter III-12, Statistics for a function and operation overview; StatsFCDF and StatsInvFCDF.

StatsFriedmanCDF
StatsFriedmanCDF(x, n, m, method, useTable)
The StatsFriedmanCDF function returns the cumulative probability distribution of the Friedman
distribution with n rows and m columns. The exact Friedman distribution is computationally intensive,
taking on the order of (n!)m iterations. You may be able to use a range of precomputed exact values by
passing a nonzero value for useTable, which will use method only if the value is not in the table. For large m,
consider using the Chi-squared or the Monte-Carlo approximations. To abort execution, press Command-
period (Macintosh) or Ctrl+Break (Windows).

See Also
Chapter III-12, Statistics for a function and operation overview; StatsInvFriedmanCDF and
StatsFriedmanTest.

StatsFriedmanTest
StatsFriedmanTest [flags] [wave1, wave2,… wave100]
The StatsFriedmanTest operation performs Friedman’s test on a randomized block of data. It is a
nonparametric analysis of data contained in either individual 1D waves or in a single 2D wave. Output is
to the M_FriedmanTestResults wave in the current data folder or optionally to a table.

Flags

method What It Does

0 Exact computation.

1 Chi-square approximation.

2 Monte-Carlo approximation.

3 Use built-table only and return NaN if not in table.

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

F(x;n1,n2) = 1� Betai
n2

2
,
n1

2
,

n2

n2 + n1x

	

��
�

��
,

f (x;n1,n2) =

�
n1 + n2

2
�

��
�

�	
n1

n2

�

��
�

�	

n1

2

x
n1

2
�1

�
n1

2
�

��
�

�	
�

n2

2
�

��
�

�	
1+

n1x

n2

�

��
�

�	

n1 +n2

2

.

StatsFTest

V-699

Details
The Friedman test ranks the input data on a row-by-row basis, sums the ranks for each column, and
computes the Friedman statistic, which is proportional to the sum of the squares of the ranks.
Input waves can be a single 2D wave or a list of 1D numeric waves, which can also be specified in a string list
with /WSTR. All 1D waves must have the same number of points. A 2D wave must not contain any NaNs.
The critical value for the Friedman distribution is fairly difficult to compute when the number of rows and
columns is large because it requires a number of permutations on the order of (numColumns!)^numRows. A
certain range of these critical values are supported by precomputed tables. When the exact critical value is not
available you can use one of the two approximations that are always computed: the Chi-squared approximation
or the Iman and Davenport approximation, which converts the Friedman statistic is converted to a new value Ff
then compares it with critical values from the F distribution using weighted degrees of freedom.
With the /T flag, it displays the results in a table that contains the number of rows, the number of columns,
the Friedman statistic, the exact critical value (if available), the Chi-squared approximation, the Iman and
Davenport approximation, and the conclusion (1 to accept H0 and 0 to reject it).
V_flag will be set to -1 for any error and to zero otherwise.

References
Iman, R.L., and J.M. Davenport, Approximations of the critical region of the Friedman statistic, Comm.

Statist. A9, 571-595, 1980.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsFriedmanCDF and
StatsInvFriedmanCDF.

StatsFTest
StatsFTest [flags] wave1, wave2
The StatsFTest operation performs the F-test on the two distributions in wave1 and wave2, which can be any
real numeric type, must contain at least two data points each, and can have an arbitrary number of
dimensions. Output is to the W_StatsFTest wave in the current data folder or optionally to a table.

Flags

/RW Saves the ranking wave M_FriedmanRanks, which contains the rank values
corresponding to each input datum.

/T=k

The table is associated with the test and not with the data. If you repeat the test, it will
update the table with the new results.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/T=k

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsGammaCDF

V-700

Details
The F statistic is the ratio of the variance of wave1 to the variance of wave2. We assume the waves have equal
wave variances and that H0 is sigma1=sigma2. For the upper one-tail test we reject H0 if F is greater than
the upper critical value or if F is smaller than the lower critical value in the lower one-tail test. In the two-
tailed test we reject H0 if F is either greater than the upper critical value or smaller than the lower critical
value. The critical values are computed by numerically solving for the argument at which the cumulative
distribution function (CDF) equals the appropriate values for the tests. The CDF is given by

where the degrees of freedom n1 and n2 equal the number of valid (non-NaN) points in each wave -1, and
betai is the incomplete beta function. To get the critical value for the upper one-tail test we solve F(x)=1-
alpha. For the lower one-tail test we solve F(x)=alpha. In the two-tailed test the lower critical value is a
solution for F(x)=alpha/2 and the upper critical value is a solution for F(x)=1-alpha/2.
The F-test requires that the two samples are from normally distributed populations.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsVariancesTest, StatsFCDF, and betai.

StatsGammaCDF
StatsGammaCDF(x, μ, σ, γ)
The StatsGammaCDF function returns the gamma cumulative distribution function

where Γ is the gamma function and Γinc is the incomplete gamma function gammaInc.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsGammaPDF and
StatsInvGammaCDF.

StatsGammaPDF
StatsGammaPDF(x, μ, σ, γ)
The StatsGammaPDF function returns the gamma probability distribution function

where μ is the location parameter, σ is the scale parameter, γ is the shape parameter, and Γ is the gamma
function.

/TAIL=tc

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Specifies the tail tested.
tc=1: Lower one-tail test with Ha: sigma1>sigma2.
tc=2: Upper one-tail test with Ha: sigma1<sigma2.
tc=3: Default; the null hypothesis H0:

sigma1=sigma2 with Ha: sigma1!=sigma2.

F(x,n1,n2) = 1� betai
n2

2
,
n1

2
,

n2

n2 + n1x

	

��
�

��
,

F(x;μ,� ,�) =
� inc � ,

x � μ

�

�

��
	

�

�(�)
.

x � μ

� ,� > 0

f (x;μ,� ,�) =

x � μ

�

�

��
	

�

� �1

exp �
x � μ

�

�

��
	

�

��(�)
.

x � μ

� ,� > 0

StatsGeometricCDF

V-701

See Also
Chapter III-12, Statistics for a function and operation overview; StatsGammaCDF and
StatsInvGammaCDF.

StatsGeometricCDF
StatsGeometricCDF(x, p)
The StatsGeometricCDF function returns the geometric cumulative distribution function

where p is the probability of success in a single trial and x is the number of trials for x ≥ 0.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsGeometricPDF and
StatsInvGeometricCDF.

StatsGeometricPDF
StatsGeometricPDF(x, p)
The StatsGeometricPDF function returns the geometric probability distribution function

where the p is the probability of success in a single trial and x is the number of trials x ≥ 0.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsGeometricCDF and
StatsInvGeometricCDF.

StatsHodgesAjneTest
StatsHodgesAjneTest [flags] srcWave
The StatsHodgesAjneTest operation performs the Hodges-Ajne nonparametric test for uniform distribution
around a circle. Output is to the W_HodgesAjne wave in the current data folder or optionally to a table.

Flags

Details
The input srcWave must contain angles in radians, can be any number of dimensions, can be single or double
precision, and should not contain NaNs or INFs.
StatsHodgesAjneTest performs the standard Hodges-Ajne test, which simply tests for uniformity against
the hypothesis that the population is not uniformly distributed around the circle. This test finds a diameter
that divides the circle into two halves such that one contains the least number of data m, the test statistic.

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/SA=specAngle Uses the Batschelet modification of the Hodges-Ajne test to test for uniformity against
the alternative of concentration around the specified angle. specAngle must be
expressed in radians modulus 2π.

/T=k

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

F(x, p) = 1� (1� p)x+1.

f (x, p) = p(1� p)x ,

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsHyperGCDF

V-702

Use /SA to perform the modified (Batschelet) test, which tests against the alternative that the population is
concentrated somehow about the specified angle. The modified test counts the number of points m' in 90-
degree neighborhoods around the specified angle. The test statistic is given by C=n-m' where n is the
number of points in the wave. The critical value is computed from the binomial probability density.
In both cases H0 is rejected if the statistic is smaller than the critical value.

V_flag will be set to -1 for any error and to zero otherwise.

References
Ajne, B., A simple test for uniformity of a circular distribution, Biometrica, 55, 343-354, 1968.
See, in particular, Chapter 27 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview.
StatsCircularMeans, StatsCircularMoments, StatsWatsonUSquaredTest, StatsWatsonWilliamsTest, and
StatsWheelerWatsonTest.

StatsHyperGCDF
StatsHyperGCDF(x, m, n, k)
The StatsHyperGCDF function returns the hypergeometric cumulative distribution function, which is the
probability of getting x marked items when drawing (without replacement) k items out of a population of
m items when n out of the m are marked.

Details
The hypergeometric distribution is

where is the binomial function. All parameters must be positive integers and must have m>n and x<k;
otherwise it returns NaN.

References
Klotz, J.H., Computational Approach to Statistics, <http://www.stat.wisc.edu/~klotz/Book.pdf>.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsHyperGPDF.

StatsHyperGPDF
StatsHyperGPDF(x, m, n, k)
The StatsHyperGPDF function returns the hypergeometric probability distribution function, which is the
probability of getting x marked items when drawing without replacement k items out of a population of m
items where n out of the m are marked.

Details
The hypergeometric distribution is

F(x;m,n,k) =

n
L

�

�
�

�

�
	

m � L
k � L

�

�
�

�

�
	

m
k

�

�
�

�

�
	

L=0

x

� ,

a
b

http://www.stat.wisc.edu/~klotz/Book.pdf

StatsInvBetaCDF

V-703

where is the binomial function. All parameters must be positive integers and must have m>n and x<k.

References
Klotz, J.H., Computational Approach to Statistics, <http://www.stat.wisc.edu/~klotz/Book.pdf>.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsHyperGCDF.

StatsInvBetaCDF
StatsInvBetaCDF(cdf, p, q [, a, b])
The StatsInvBetaCDF function returns the inverse of the beta cumulative distribution function. There is no
closed form expression for the inverse beta CDF; it is evaluated numerically.
The defaults (a=0 and b=1) correspond to the standard beta distribution.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsBetaCDF and StatsBetaPDF.

StatsInvBinomialCDF
StatsInvBinomialCDF(cdf, p, N)
The StatsInvBinomialCDF function returns the inverse of the binomial cumulative distribution function.
The inverse function returns the value at which the binomial CDF with probability p and total elements N,
has the value 0.95. There is no closed form expression for the inverse binomial CDF; it is evaluated
numerically.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsBinomialCDF and
StatsBinomialPDF.

StatsInvCauchyCDF
StatsInvCauchyCDF(cdf, μ, σ)
The StatsInvCauchyCDF function returns the inverse of the Cauchy-Lorentz cumulative distribution
function

It returns NaN for cdf <0 or cdf> 1.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsCauchyCDF and StatsCauchyPDF.

StatsInvChiCDF
StatsInvChiCDF(x, n)
The StatsInvChiCDF function returns the inverse of the chi-squared distribution of x and shape parameter
n. The inverse of the distribution is also known as the percent point function.

f (x;m,n,k) =

n
x

	

�
�

�

�
�

m � n
k � x

	

�
�

�

�
�

m
k

	

�
�

�

�
�

,

a
b

x = μ + � tan � cdf �
1

2
�

��

��
�

�
	

�
� .

http://www.stat.wisc.edu/~klotz/Book.pdf

StatsInvCMSSDCDF

V-704

See Also
Chapter III-12, Statistics for a function and operation overview; StatsChiCDF and StatsChiPDF.

StatsInvCMSSDCDF
StatsInvCMSSDCDF(cdf, n)
The StatsInvCMSSDCDF function returns the critical values of the C distribution (mean square successive
difference distribution), which is given by

where

Critical values are computed from the integral of the probability distribution function.

References
Young, L.C., On randomness in ordered sequences, Annals of Mathematical Statistics, 12, 153-162, 1941.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsCMSSDCDF and StatsSRTest.

StatsInvDExpCDF
StatsInvDExpCDF(cdf, μ, σ)
The StatsInvDExpCDF function returns the inverse of the double-exponential cumulative distribution
function

It returns NaN for cdf <0 or cdf > 1.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsDExpCDF and StatsDExpPDF.

StatsInvEValueCDF
StatsInvEValueCDF(cdf, μ, σ)
The StatsInvEValueCDF function returns the inverse of the extreme-value (type I, Gumbel) cumulative
distribution function

where σ>0. It returns NaN for cdf<0 or cdf>1. This inverse applies to the “minimum” form of the distribution.
Reverse the sign of σ to obtain the inverse distribution of the maximum form.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsEValueCDF and StatsEValuePDF.

f (C,n) =
�(2m + 2)

a22m+1 �(m +1)[]
2 1�

C 2

a2

�

��
�

�	

m

,

a2 =
n2 + 2n �12() n � 2()

n3 �13n + 24()
,

m =
n4 � n3 �13n2 + 37n � 60()

2 n3 �13n + 24()
.

x =
μ + � ln(2cdf) when cdf < 0.5

μ � � ln 2 1� cdf()�	
� when cdf � 0.5

�
�
�

	�

x = μ �� ln 1� cdf()

StatsInvExpCDF

V-705

StatsInvExpCDF
StatsInvExpCDF(cdf, μ, σ)
The StatsInvExpCDF function returns the inverse of the exponential cumulative distribution function

It returns NaN for cdf <0 or cdf > 1.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsExpCDF and StatsExpPDF.

StatsInvFCDF
StatsInvFCDF(x, n1, n2)
The StatsInvFCDF function returns the inverse of the F distribution cumulative distribution function for x
and shape parameters n1 and n2. The inverse is also known as the percent point function.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsFCDF and StatsFPDF.

StatsInvFriedmanCDF
StatsInvFriedmanCDF(cdf, n, m, method, useTable)
The StatsInvFriedmanCDF function returns the inverse of the Friedman distribution cumulative distribution
function of cdf with n rows and m columns. Use this typically to compute the critical values of the distribution
Print StatsInvFriedmanCDF(1-alpha,n,m,0,1)

where alpha is the significance level of the associated test.
The complexity of the computation of Friedman CDF is on the order of (n!)m. For nonzero values of useTable,
searches are limited to the built-in table for distribution values. If n and m are not in the table the calculation
may still proceed according to the method.

For large m and n, consider using the Chi-squared or the Iman and Davenport approximations. To abort
execution, press Command-period (Macintosh) or Ctrl+Break (Windows).

Precomputed tables use these values:

method What It Does

0 Exact computation(slow, not recommended).

1 Chi-square approximation.

2 Monte-Carlo approximation (slow).

3 Use built-in table only and return a NaN if not in table.

Note: Table values are different from computed values for both methods. Table values use more
conservative criteria than computed values. Table values are more consistent with
published values because the Friedman distribution is a highly irregular function with
multiple steps of arbitrary sizes. The standard for published tables provides the X value
of the next vertical transition to the one on which the specified P is found.

n m

3 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

4 2, 3, 4, 5, 6, 7, 8, 9

5 2, 3, 4, 5, 6

6 2, 3, 4, 5

x = μ �� ln 1� cdf().

StatsInvGammaCDF

V-706

References
Iman, R.L., and J.M. Davenport, Approximations of the critical region of the Friedman statistic, Comm.

Statist., A9, 571-595, 1980.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsFriedmanCDF and
StatsFriedmanTest.

StatsInvGammaCDF
StatsInvGammaCDF(cdf, μ, σ, γ)
The StatsInvGammaCDF function returns the inverse of the gamma cumulative distribution function.
There is no closed form expression for the inverse gamma distribution; it is evaluated numerically.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsGammaCDF and StatsGammaPDF.

StatsInvGeometricCDF
StatsInvGeometricCDF(cdf, p)
The StatsInvGeometricCDF function returns the inverse of the geometric cumulative distribution function

where p is the probability of success in a single trial and x is the number of trials.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsGeometricCDF and
StatsGeometricPDF.

StatsInvKuiperCDF
StatsInvKuiperCDF(cdf)
The StatsInvKuiperCDF function returns the inverse of Kuiper cumulative distribution function.
There is no closed form expression. It is mapped to the range of 0.4 to 4, with accuracy of 1e-10.

References
See in particular Section 14.3 of
Press, William H., et al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New York, 1992.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsKuiperCDF.

StatsInvLogisticCDF
StatsInvLogisticCDF(cdf, a, b)
The StatsInvLogisticCDF function returns the inverse of the logistic cumulative distribution function

7 2, 3, 4

8 2, 3

9 2, 3

n m

x =
ln(1� cdf)

ln(1� p)
�1.

x = a + b log
cdf

1� cdf

	

��
�

��
.

StatsInvLogNormalCDF

V-707

where the scale parameter b>0 and the shape parameter is a.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsLogisticCDF and
StatsLogisticPDF functions.

StatsInvLogNormalCDF
StatsInvLogNormalCDF(cdf, sigma, theta, mu)
The StatsInvLogNormalCDF function returns the numerically evaluated inverse of the lognormal
cumulative distribution function.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsLogNormalCDF and
StatsLogNormalPDF functions.

StatsInvMaxwellCDF
StatsInvMaxwellCDF(cdf, k)
The StatsInvMaxwellCDF function returns the evaluated numerically inverse of the Maxwell cumulative
distribution function. There is no closed form expression.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsMaxwellCDF and
StatsMaxwellPDF functions.

StatsInvMooreCDF
StatsInvMooreCDF(cdf, N)
The StatsInvMooreCDF function returns the inverse cumulative distribution function for Moore’s R*,
which is used as a critical value in nonparametric version of the Rayleigh test for uniform distribution
around the circle. It supports the range 3 ≤ N ≤ 120 and does not change appreciably for N > 120.
The inverse distribution is computed from polynomial approximations derived from simulations and
should be accurate to approximately three significant digits.

References
Moore, B.R., A modification of the Rayleigh test for vector data, Biometrica, 67, 175-180, 1980.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsCircularMeans function.

StatsInvNBinomialCDF
StatsInvNBinomialCDF(cdf, k, p)
The StatsInvNBinomialCDF function returns the numerically evaluated inverse of the negative binomial
cumulative distribution function. There is no closed form expression.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNBinomialCDF and
StatsNBinomialPDF functions.

StatsInvNCChiCDF
StatsInvNCChiCDF(cdf, n, d)
The StatsInvNCChiCDF function returns the inverse of the noncenteral chi-squared cumulative
distribution function. It is computationally intensive because the inverse is computed numerically and
involves multiple evaluations of the noncentral distribution, which is evaluated from a series expansion.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNCChiCDF, StatsNCChiPDF,
StatsChiCDF, and StatsChiPDF functions.

StatsInvNCFCDF

V-708

StatsInvNCFCDF
StatsInvNCFCDF(cdf, n1, n2, d)
The StatsInvNCFCDF function returns the numerically evaluated inverse of the cumulative distribution
function of the noncentral F distribution. n1 and n2 are the shape parameters and d is the noncentrality
measure. There is no closed form expression for the inverse.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNCFCDF and StatsNCFPDF
functions.

StatsInvNormalCDF
StatsInvNormalCDF(cdf, m, s)
The StatsInvNormalCDF function returns the numerically computed inverse of the normal cumulative
distribution function. There is no closed form expression.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNormalCDF and
StatsNormalPDF functions.

StatsInvParetoCDF
StatsInvParetoCDF(cdf, a, c)
The StatsInvParetoCDF function returns the inverse of the Pareto cumulative distribution function

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsParetoCDF and StatsParetoPDF
functions.

StatsInvPoissonCDF
StatsInvPoissonCDF(cdf, λ)
The StatsInvPoissonCDF function returns the numerically evaluated inverse of the Poisson cumulative
distribution function. There is no closed form expression for the inverse Poisson distribution.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsPoissonCDF and
StatsPoissonPDF functions.

StatsInvPowerCDF
StatsInvPowerCDF(cdf, b, c)
The StatsInvPowerCDF function returns the inverse of the Power Function cumulative distribution
function

where the scale parameter b and the shape parameter c satisfy b,c>0.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsPowerCDF, StatsPowerPDF and
StatsPowerNoise functions.

StatsInvQCDF
StatsInvQCDF(cdf, r, c, df)
The StatsInvQCDF function returns the critical value of the Q cumulative distribution function for r the number
of groups, c the number of treatments, and df the error degrees of freedom (df=r*c*(n-1) with sample size n).

x =
a

1� cdf()
(1/c)

x = b / cdf (1/c).

StatsInvQpCDF

V-709

Details
The Q distribution is the maximum of several Studentized range statistics. For a simple Tukey test, use r=1.

Examples
The critical value for a Tukey test comparing 5 treatments with 6 samples and 0.05 significance is:
Print StatsInvQCDF(1-0.05,1,5,5*(6-1))

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsTukeyTest function.

StatsInvQpCDF
StatsInvQpCDF(ng, nt, df, alpha, side, sSizeWave)
The StatsInvQpCDF function returns the critical value of the Q' cumulative distribution function for ng the
number of groups, nt the number of treatments, and df the error degrees of freedom. side=1 for upper-tail or
side=2 for two-tailed critical values.
sSizeWave is an integer wave of ng columns and nt rows specifying the number of samples in each treatment.
If sSizeWave is a null wave ($"") StatsInvQpCDF computes the number of samples from df=ng*nt*(n-1) with
n truncated to an integer.

Details
StatsInvQpCDF is a modified Q distribution typically used with Dunnett’s test, which compares the various
means with the mean of the control group or treatment.
StatsInvQpCDF differs from other StatsInvXXX functions in that you do not specify a cdf value for the
inverse (usually 1-alpha for the critical value). Here alpha selects one- or two-tailed critical values.
It is computationally intensive, taking longer to execute for smaller alpha values.

Examples
The critical value for a Dunnett test comparing 4 treatments with 4 samples and (upper tail) 0.05
significance is:
// here n=4 because 12=1*4*(4-1).
Print StatsInvQpCDF(1,4,12,0.05,1,$"")
 2.28734

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsDunnettTest and StatsInvQCDF
functions.

StatsInvRayleighCDF
StatsInvRayleighCDF(cdf [, s [, m]])
The StatsInvRayleighCDF function returns the inverse of the Rayleigh cumulative distribution
functiongiven by

with defaults s=1 and m=0. It returns NaN for s ≤ 0 and zero for x ≤ m.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRayleighCDF and
StatsRayleighPDF functions.

StatsInvRectangularCDF
StatsInvRectangularCDF(cdf, a, b)
The StatsInvRectangularCDF function returns the inverse of the rectangular (uniform) cumulative
distribution function

where a< b.

x = μ + � �2 ln 1� cdf(),

x = a + cdf (b � a), a < b.

StatsInvSpearmanCDF

V-710

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRectangularCDF and
StatsRectangularPDF functions.

StatsInvSpearmanCDF
StatsInvSpearmanCDF(cdf, N)
The StatsInvSpearmanCDF function returns the inverse cumulative distribution function for Spearman’s r,
which is used as a critical value in rank correlation tests.
The inverse distribution is computed by finding the value of r for which it attains the cdf value. The result
is usually lower than in published tables, which are more conservative when the first derivative of the
distribution is discontinuous.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRankCorrelationTest,
StatsSpearmanRhoCDF, and StatsKendallTauTest functions.

StatsInvStudentCDF
StatsInvStudentCDF(cdf, n)
The StatsInvStudentCDF function returns the numerically evaluated inverse of Student cumulative
distribution function. There is no closed form expression.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsStudentCDF and
StatsStudentPDF functions.

StatsInvTopDownCDF
StatsInvTopDownCDF(cdf, N)
The StatsInvTopDownCDF function returns the inverse cumulative distribution function for the top-down
distribution. For 3 ≤ N ≤ 7 it uses a lookup table CDF and returns the next higher value of r for which the
distribution value is larger than cdf. For 8 ≤ N ≤ 50 it returns the nearest value for which the built-in
distribution returns cdf. For N>50 it returns the scaled normal approximation.
Tabulated values are from Iman and Conover who pick as the critical value the very first transition of the
distribution following the specified cdf value. These tabulated values tend to be slightly higher than
calculated values for 7<N<15.

References
Iman, R.L., and W.J. Conover, A measure of top-down correlation, Technometrics, 29, 351-357, 1987.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRankCorrelationTest and
StatsTopDownCDF functions.

StatsInvTriangularCDF
StatsInvTriangularCDF(cdf, a, b, c)
The StatsInvTriangularCDF function returns the inverse of the triangular cumulative distribution function

where a<c<b.

x =
a + cdf (b � a)(c � a) ����������������������� 0 	 cdf 	

c � a

b � a

b � (1� cdf)(b � a)(b � c) ���������������
c � a

b � a
	 cdf 	 1

�

�

�
�

�

�
�

StatsInvUSquaredCDF

V-711

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsTriangularCDF and
StatsTriangularPDF functions.

StatsInvUSquaredCDF
StatsInvUSquaredCDF(cdf, n, m, method, useTable)
The StatsInvUSquaredCDF function returns the inverse of Watson’s U2 cumulative distribution function
integer sample sizes n and m. Use a nonzero value for useTable to search a built-in table of values. If n and
m cannot be found in the table, it will proceed according to method:

For large n and m, consider using the Tiku approximation. To abort execution, press Command-period
(Macintosh) or Ctrl+Break (Windows). Because n and m are interchangeable, n should always be the smaller
value. For n>8 the upper limit in the table matched the maximum that can be computed using the Burr
algorithm. There is no point in using method 0 with m values exceeding these limits.
The inverse is obtained from precomputed tables of Watson’s U2 (see StatsUSquaredCDF).

References
Burr, E.J., Small sample distributions of the two sample Cramer-von Mises’ W2 and Watson’s U2, Ann. Mah.

Stat. Assoc., 64, 1091-1098, 1964.
Tiku, M.L., Chi-square approximations for the distributions of goodness-of-fit statistics, Biometrica, 52, 630-

633, 1965.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsWatsonUSquaredTest and
StatsUSquaredCDF functions.

StatsInvVonMisesCDF
StatsInvVonMisesCDF(cdf, a, b)
The StatsInvVonMisesCDF function returns the numerically evaluated inverse of the von Mises cumulative
distribution function where the value of the integral of the distribution matches cdf. Parameters are as for
StatsVonMisesCDF.

References
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsVonMisesPDF and
StatsVonMisesNoise functions.

StatsInvWeibullCDF
StatsInvWeibullCDF(cdf, m, s, g)
The StatsInvWeibullCDF function returns the inverse of the Weibull cumulative distribution function

method What It Does

0 Exact computation using Burr algorithm (could be slow).

1 Tiku approximation using chi-squared.

2 Use built-in table only and return a NaN if not in table.

Note: Table values are different from computed values. These values use more conservative
criteria than computed values. Table values are more consistent with published values
because the U2 distribution is a highly irregular function with multiple steps of arbitrary
sizes. The standard for published tables provides the X value of the next vertical transition
to the one on which the specified P is found. See StatsInvFriedmanCDF.

StatsJBTest

V-712

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsWeibullCDF and
StatsWeibullPDF functions.

StatsJBTest
StatsJBTest [flags] srcWave
The StatsJBTest operation performs the Jarque-Bera test on srcWave. Output is to the W_JBResults wave in
the current data folder.

Flags

Details
StatsJBTest computes the Jarque-Bera statistic

where S is the skewness, K is the kurtosis, and n is the number of points in the input wave. We can express
S and K terms of the jth moment of the distribution for n samples Xi

as

and

The Jarque-Bera statistic is asymptotically distributed as a Chi-squared with two degrees of freedom. For
values of n in the range [7,2000] the operation provides critical values obtained from Monte-Carlo
simulations. For further details or if you would like to run your own simulation to obtain critical values for
other values of n, use the JarqueBeraSimulation example experiment.
StatsJBTest reports the number of finite data points, skewness, kurtosis, Jarque-Bera statistic, asymptotic critical
value, and the critical value obtained from Monte-Carlo calculations as appropriate; it ignores NaNs and INFs.

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/T=k

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

x = μ + � � ln 1� cdf()�	 ��
1/�

.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

JB =
n

6
S2 +

K 2

4

�

��
�

��
,

μ j =
1

n
(Xi � X) j

i=1

n

�

S =
μ3

μ2()
3/2 ,

K =
μ4

μ2()
2 � 3.

StatsKendallTauTest

V-713

References
Jarque, C., and A. Bera, A test of normality of observations and regression residuals, International Statistical

Review, 55, 163-172, 1987.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsKSTest, WaveStats, and
StatsCircularMoments.

StatsKendallTauTest
StatsKendallTauTest [flags] wave1 [, wave2]
The StatsKendallTauTest operation performs the nonparametric Mann-Kendall test, which computes a
correlation coefficient τ (similar to Spearman’s correlation) from the relative order of the ranks of the data.
Output is to the W_StatsKendallTauTest wave in the current data folder.

Flags

Details
Inputs may be a pair of XY (1D) waves of any real numeric type or a single 1D wave, which is equivalent to
using a pair of XY waves where the X wave is monotonically increasing function of the point number.
StatsKendallTauTest ignores wave scaling.
Kendall’s τ is 1 for a monotonically increasing input and -1 for monotonically decreasing input. The
significance of the test is computed from the normal approximation

where n is the number of data points in each wave. The significance is expressed as a P-value for the null
hypothesis of no correlation.

References
Kendall, M.G., Rank Correlation Methods, 3rd ed., Griffin, London, 1962.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsRankCorrelationTest.
For small values of n you can compute the exact probability using the procedure
WM_KendallSProbability().

StatsKSTest
StatsKSTest [flags] srcWave [, distWave]
The StatsKSTest operation performs the Kolmogorov-Smirnov (KS) goodness-of-fit test for two continuous
distributions. The first distribution is srcWave and the second distribution can be expressed either as the optional
wave distWave or as a user function with /CDFF. Output is to the W_KSResults wave in the current data folder.

Flags

/Q No results printed in the history area.

/T=k

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

/ALPH = val Sets the significance level (default val=0.05).

/CDFF=func Specifies a user function expressing the cumulative distribution function. See Details.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

Var(�) =
4n +10

9n(n �1)
,

StatsKuiperCDF

V-714

Details
The Kolmogorov-Smirnov (KS) goodness-of-fit test applies only to continuous distributions and cases
where the compared distribution (expressed as a user function) is completely specified without estimating
parameters from the data. It compares the cumulative distribution function (CDF) of two distributions and
sets the test statistic D to the largest difference between the CDFs. Because CDFs are in the range [0,1], D is
also bound by this range.
When specifying the distributions with two waves, StatsKSTest first sorts the data in the waves and then
computes the CDFs and D. You can also specify one of the distributions with a user function. For example,
the following function tests if the data in srcWave is normally distributed with zero mean and stdv=5:
Function getUserCDF(inX)

Variable inX
return statsNormalCDF(inX,0,5)

End

Outputs are the number of elements, the KS statistic D, and the critical value. When both distributions are
specified by waves, the number of elements is the weighted value (n1*n2)/(n1+n2).

References
Critical values are based on:
Birnbaum, Z. W., and Fred H. Tingey, One-sided confidence contours for probability distribution functions,

The Annals of Mathematical Statistics, 22, 592–596, 1951.
A statistically more powerful modification of the classic KS test can be found in:
Khamis, H.J., The two-stage delta-corrected Kolmogorov-Smirnov test, Journal of Applied Statistics, 27, 439-

450, 2000.
StatsKSTest implements the original KS test. The difficulty in implementing the modified tests for all the
cases defined by Stephens is in obtaining the critical values which have to be derived by time consuming
Monte-Carlo simulations.
Critiques can be found in:
D’Agostino, R.B., and M. Stephens, eds., Goodness-Of-Fit Techniques, Marcel Dekker, New York, 1986.
NIST/SEMATECH, Kolmogorov-Smirnov Goodness-of-Fit Test, in NIST/SEMATECH e-Handbook of

Statistical Methods,
<http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm>, 2005.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsJBTest, WaveStats, and
StatsCircularMoments.

StatsKuiperCDF
StatsKuiperCDF(V)
The StatsKuiperCDF function returns the Kuiper cumulative distribution function

Accuracy is on the order of 1e-15. It returns 0 for values of V<0.4 or 1 for V>3.1.

/Q No results printed in the history area.

/T=k

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

F(V) = 1� 2 4 j2V 2 �1()exp �2 j2V 2().
j=1

�

�

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm

StatsKWTest

V-715

References
See in particular Section 14.3 of
Press, William H., et al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New York, 1992.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsInvKuiperCDF.

StatsKWTest
StatsKWTest [flags] [wave1, wave2,… wave100]
The StatsKWTest operation performs the nonparametric Kruskal-Wallis test which tests variances using the
ranks of the data. Output is to the W_KWTestResults wave in the current data folder.

Flags

Details
Inputs are two or more 1D numerical waves (one for each group of samples). Use NaNs for missing data or
use waves with different number of points.
StatsKWTest always computes the critical values using both the Chi-squared and Wallace approximations.
If appropriate (small enough data set) you can also use /E to obtain the exact P value. When the calculation
involves many waves or many data points the calculation of the exact critical value can be very lengthy. All
the results are saved in the wave W_KWTestResults in the current data folder and are optionally displayed
in a table (/T). The wave contains the following information:

/ALPH = val Sets the significance level (default val=0.05).

/E Computes the exact P-value using the Klotz and Teng algorithm, which may require
long computation times for large data sets. You can stop the calculation by pressing
Command-period (Macintosh) or Ctrl+Break (Windows) after which all remaining
results remain valid and the exact P-value is set to NaN.

/Q No results printed in the history area.

/T=k

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Row Data

0 Number of groups

1 Number of valid data points (excludes NaNs)

2 Alpha

3 Kruskal-Wallis Statistic H

4 Chi-squared approximation for the critical value Hc

5 Chi-squared approximation for the P value

6 Wallace approximation for the critical value Hc

7 Wallace approximation for the P value

8 Exact P value (requires /E)

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsLinearCorrelationTest

V-716

H0 for the Kruskal-Wallis test is that all input waves are the same. If the test fails and the input consisted of
more than two waves, there is no indication for possible agreement between some of the waves. See
StatsNPMCTest for further analysis.
V_flag will be set to -1 for any error and to zero otherwise.

References
Klotz, J.H., Computational Approach to Statistics, <http://www.stat.wisc.edu/~klotz/Book.pdf>.
Klotz, J., and Teng, J., One-way layout for counts and the exact enumeration of the Kruskal-Wallis H

distribution with ties, J. Am. Stat. Assoc, 72, 165-169, 1977.
Wallace, D.L., Simplified Beta-Approximation to the Kruskal-Wallis H Test, J. Am. Stat. Assoc., 54, 225-230, 1959.
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsWilcoxonRankTest, StatsNPMCTest,
and StatsAngularDistanceTest.

StatsLinearCorrelationTest
StatsLinearCorrelationTest [flags] waveA, waveB
The StatsLinearCorrelationTest operation performs correlation tests on waveA and waveB, which must be
real valued numeric waves and must have the same number of points. Output is to the
W_StatsLinearCorrelationTest wave in the current data folder or optionally to a table.

Flags

Details
The linear correlation tests start by computing the linear correlation coefficient for the n elements of both
waves:

Next it computes the standard error of the correlation coefficient

The basic test is for hypothesis H0: the correlation coefficient is zero, in which case t and F statistics are
applicable. It computes the statistics:

/ALPH = val Sets the significance level (default val=0.05).

/CI Computes confidence intervals for the correlation coefficient.

/Q No results printed in the history area.

/RHO=rhoValue Tests hypothesis that the correlation has a nonzero value |r|≤ 1.

/T=k

/Z Ignores errors.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

r =
XiYi

i=1

n

� �
1
n

Xi
i=1

n

� Yi
i=1

n

�

Xi
2

i=1

n

� �
1
n

Xi
i=1

n

�
�

��
�

�	

2�

�
�

�

�
	 Yi

2

i=1

n

� �
1
n

Yi
i=1

n

�
�

��
�

�	

2�

�
�

�

�
	

sr =
1� r2

n � 2

http://www.stat.wisc.edu/~klotz/Book.pdf

StatsLinearRegression

V-717

and

and then the critical values for one and two tailed hypotheses (designated by tc1, tc2, Fc1, and Fc2
respectively). Critical value for r are computed using

where i takes the values 1 or 2 for one and two tailed hypotheses. Finally, it computes the power of the test
at the alpha significance level for both one and two tails (Power1 and Power2).
If you use /RHO it uses the Fisher transformation to compute

the standard error approximation

and the critical values from the normal distribution Zci.

The confidence intervals are calculated differently depending on the hypothesis for the value of the
correlation coefficient. If /RHO is not used the confidence intervals are computed using the critical value
Fc2, otherwise they are computed using the critical Zc2 and sigmaZ.

References
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsCircularCorrelationTest,
StatsMultiCorrelationTest, and StatsRankCorrelationTest.

StatsLinearRegression
StatsLinearRegression [flags] [wave0, wave1,…]
The StatsLinearRegression operation performs regression analysis on the input wave(s). Output is to the
W_StatsLinearRegression wave in the current data folder or optionally to a table. Additionally, the
M_DunnettMCElevations, M_TukeyMCSlopes, and M_TukeyMCElevations waves may be created as specified.

t = r / sr

F =
1+ r

1� r
,

rci =
tc

2

tc
2 + n

FisherZ=
1

2
ln

1+r

1-r
�

��
�

��

zeta=
1

2
ln

1+�

1-�

�

��
�

��

sigmaZ=
1

n � 3
,

Zstatistic=
FisherZ � zeta

sigmaZ
,

StatsLinearRegression

V-718

Flags

/ALPH = val Sets the significance level (default val=0.05).

/B=beta0 Tests the hypothesis that the slope b= beta0 (default is 0). The results are expressed by
the t-statistic, which can be compared with the tc value for the two-tailed test. Get the
critical value for a one-tailed test using StatsStudentCDF(1-alpha,N-2). It does
not work with /MYVW.

/BCIW Computes two confidence interval waves for the high side and the low side of the
confidence interval. The new waves are named with _CH and _CL suffixes
respectively appended to the Y wave name and are created in the current data folder.
For multiple runs a numeric suffix will also be appended to the names.

/BPIW[=mAdditional]

Computes prediction interval waves for the high side and the low side of the
confidence interval on a single additional measurement (default). Use mAdditional to
specify additional measurements. The new waves are named with _PH and _PL
suffixes respectively appended to the Y wave name and are created in the current data
folder. For multiple runs a numeric suffix will also be appended to the names.

/DET=controlIndex Performs Dunnett’s multicomparison test for the elevations. The test requires more
than two Y waves for regression, the test for the slopes should not reject the equal
slope hypothesis, and the test for the elevations should reject the equal elevation
hypothesis. controlIndex is the zero-based index of the Y wave representing the control
(X waves do not count in the index specification). The test compares the elevation of
every Y wave with the specified control.

Output is to the M_DunnettMCElevations wave in the current data folder or
optionally to a table. For every Y wave and control Y wave combination, the results
include SE, q, q' (shown as qp), and the conclusion with 1 to accept the hypothesis of
equal elevations or 0 to reject it. Use /TAIL to determine the critical value and the
sense of the test. If you use /TUK you will also get the Tukey test for the set of
elevations.

/MYVW={xWave, yWave}

Specifies that the input consists of multiple Y values for each X value. It ignores all
other inputs and the results are appropriate only for multiple Y values at each X point.
yWave is a 2D wave of values arranged in columns. Use NaNs for padding where
rows do not have the same number of entries as others. It will use the X scaling of
yWave when xWave is null, /MYVW={*,yWave}.

It first tests the hypothesis (H0) that the population regression is linear in an analysis
of variance calculation. It generates results 1-7 (see Details) as well as: Among Groups
SS, Among Groups DF, Within Groups SS, Within Groups DF, Deviations from
Linearity SS, Deviations from Linearity DF, F statistic defined by the ratio of
Deviation from Linearity MS to Within Groups MS, and the critical value Fc.

Next, it tests the hypothesis that the slope beta=0. If the original H0 was accepted, the
new F statistic=regressionMS/residualMS. Otherwise the with the critical
F=regressionMS/WithinGroupsMS with a corresponding critical value. Finally, it
reports the values of the coefficient of determination r2 and the standard error of the
estimate SYX.

/PAIR Specifies that the input waves are XY pairs, where each pair must be an X wave
followed by a Y wave.

/Q No results printed in the history area.

/RTO Reflects the regression through the origin.

StatsLinearRegression

V-719

Details
Inputs may consist of Y waves or XY wave pairs. If X data are not used, the X values are inferred from the
Y wave scaling. For multiple waves where only some have pairs, use the /PAIR flag and enter * in each place
where the X values should be computed.
For each input StatsLinearRegression calculates:
1. Least squares regression line y=a+b*x.
2. Mean value of X: xBar.
3. Mean value of Y: yBar.
4. Sum of the squares (xi-xBar)2.

5. Sum of the squares (yi-yBar)2.
6. Sum of the product (xiyi-xyBar).
7. Standard error of the estimate SYX=.
8. F statistic for the hypothesis beta=0.
9. Critical F value Fc.
10. Coefficient of determination r2.
11. Standard error of the regression coefficient Sb.
12. t-statistic for the hypothesis beta=beta0, NaN if /B is not specified.
13. Critical value tc for the t-statistic above (used to calculate L1 and L2).
14. Lower confidence interval boundary (L1) for the regression coefficient.
15. Upper confidence interval boundary (L2) for the regression coefficient.
For two Y waves with the same slope, it computes a common slope (bc) and then tests the equality of the
elevations (a). In both cases it computes a t-statistic and compares it with a critical value. If the elevations are
also the same then it computes the common elevation (ac) and the pooled means of X and Y in (xp) and (yp).
For more than two Y waves it computes:

/T=k

/TAIL=tCode Sets the sense of the test when applying Dunnett’s test (see /DET). tCode is 1 or 2 for a
one-tail critical value and 4 for a two-tail critical value.

/TUK Performs a Tukey-type test on multiple regressions on two or more Y waves. There
are two possible Tukey-type tests: The first is performed if the hypothesis of equal
slopes is rejected. It compares all combinations of two Y waves to identify if some of
the waves have equal slopes. Output is to the M_TukeyMCSlopes wave in the current
data folder or optionally to a table. For every Y wave pair, the results include the
difference between slopes (absolute value), q, the critical value qc, and the conclusion
set to 1 for accepting the equality of the pair of slopes or 0 for rejecting the hypothesis.

The second Tukey-type test is performed if all the slopes are the same but the
elevations are not. The test (see /DET) compares all possible pairs of elevations to
determine which satisfy the hypothesis of equality. Output is to the
M_TukeyMCElevations wave in the current data folder.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsLinearRegression

V-720

Here W is the number of Y-waves and is the total number of data points in all Y-waves.

The test statistic F for equality of slopes is given by:

Fc is the corresponding critical value.
Output is to the W_LinearRegressionMC wave in the current data folder.
V_flag will be set to -1 for any error and to zero otherwise.

References
See, in particular, Chapter 18 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

Ac = Aj
j=1

W

� ; Aj � xi
2� = Xi

2

i=0

n j �1

� �
1

nj
Xi

i=0

nj �1

�
�

�
�

�

	

2

Bc = Bj
j=1

W

� ; Bj � xy� = XY
i=0

n j �1

� �
1

nj
Xi

i=0

n j �1

�
�

�
�

�

	

 Yi

i=0

nj �1

�
�

�
�

�

	

Cc = Cj
j=1

W

� ; Cj � y2� = Yi
2

i=0

nj �1

� �
1

nj
Yi

i=0

nj �1

�
�

�
�

�

	

2

SSp = Cj �
Bj

2

Ajj=1

W

�

SSc = Cc �
Bc

2

Ac
2

SSt = Yji
2

i=0

nj

�
j=1

W

� �
1

N
Yji

i=0

nj

�
j=1

W

�
�

�
�

�

	
	

2

�

XjiYji
i=0

nj

�
j=1

W

� �
1
N

Xji
i=0

n j

�
j=1

W

�
�

�
�

�

	
	 Yji

i=0

n j

�
j=1

W

�
�

�
�

�

	
	

�

�
�

�

	
	

2

Xji
2

i=0

nj

�
j=1

W

� �
1
N

Xji
i=0

n j

�
j=1

W

�
�

�
�

�

	
	

2

DFp = ni � 2()
j=1

W

�

DFt = ni � 2
j=1

W

�

N = nj
j=1

W

�

F =
SSc � SSp

numWaves �1
�

��
�

��
SSp

DFp
.

StatsLogisticCDF

V-721

See Also
Chapter III-12, Statistics for a function and operation overview; curvefit.

StatsLogisticCDF
StatsLogisticCDF(x, a, b)
The StatsLogisticCDF function returns the logistic cumulative distribution function

where the scale parameter b>0 and the shape parameter is a.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsLogisticPDF and
StatsInvLogisticCDF functions.

StatsLogisticPDF
StatsLogisticPDF(x, a, b)
The StatsLogisticPDF function returns the logistic probability distribution function

where the scale parameter b>0 and the shape parameter is a.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsLogisticCDF and
StatsInvLogisticCDF functions.

StatsLogNormalCDF
StatsLogNormalCDF(x, σ [, θ, μ])
The StatsLogNormalCDF function returns the lognormal cumulative distribution function

for x ≥ θ and σ, μ>0. The standard lognormal distribution is for θ=0 and μ=1, which are the optional
parameter defaults.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsLogNormalPDF and
StatsInvLogNormalCDF functions.

StatsLogNormalPDF
StatsLogNormalPDF(x, σ [, θ, μ])
The StatsLogNormalPDF function returns the lognormal probability distribution function

F(x;a,b) =
1

1+ exp �
x � a

b
�

��
�

��

.

f (x;a,b) =
exp �

x � a

b
�

��
	

�

b 1+ exp �
x � a

b
�

��
	

�

�

�
�

�

�

2 ,

F(x;� ,�,μ) =
1

� 2�

1

t ��
exp � ln

t ��

μ

�

��
�

��
	

�

$

%
&

2

2� 2
�

�

��

'

*
�

-�
0

x

� dt,

StatsMaxwellCDF

V-722

for x ≥ θ and σ, μ > 0, where θ is the location parameter, μ is the scale parameter and, σ is the shape
parameter. The standard lognormal distribution is for θ=0 and μ=1, which are the optional parameter
defaults.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsLogNormalCDF and
StatsInvLogNormalCDF functions.

StatsMaxwellCDF
StatsMaxwellCDF(x, k)
The StatsMaxwellCDF function returns the Maxwell cumulative distribution function

where gammp is the regularized incomplete gamma function.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsMaxwellPDF and
StatsInvMaxwellCDF functions.

StatsMaxwellPDF
StatsMaxwellPDF(x, k)
The StatsMaxwellPDF function returns Maxwell’s probability distribution function

The Maxwell distribution describes, for example, the speed distribution of molecules in an ideal gas.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsMaxwellCDF and
StatsInvMaxwellCDF functions.

StatsMedian
StatsMedian(waveName)
The StatsMedian function returns the median value of a numeric wave waveName, which must not contain NaNs.

Example
Make/N=5 sample1={1,2,3,4,5}
Print StatsMedian(sample1)
3
Make/N=6 sample2={1,2,3,4,5,6}
Print StatsMedian(sample2)
3.5

See Also
Chapter III-12, Statistics for a function and operation overview; WaveStats and StatsQuantiles.

f (x;� ,�,μ) =
1

� 2�

1

x ��
exp � ln

x ��

μ

�

��
�

��
	

�

�

�
�

2

2� 2
�

�

��

�

�
�

��
,

F(x;k) = gammp
3

2
,
kx2

2

�

��
�

��
, x > 0.

f (x;k) =
2

�
k 3/2x2 exp �

kx2

2

�

��
�

		
, x > 0.

StatsMooreCDF

V-723

StatsMooreCDF
StatsMooreCDF(x, N)
The StatsMooreCDF function returns the cumulative distribution function for Moore’s R*, which is used in
a nonparametric version of the Rayleigh test for uniform distribution around the circle. It supports the
range 3 ≤ N ≤ 120 and does not change appreciably for N>120.
The distribution is computed from polynomial approximations derived from simulations and should be
accurate to approximately three significant digits.

References
Moore, B.R., A modification of the Rayleigh test for vector data, Biometrica, 67, 175-180, 1980.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsCircularMeans function.

StatsMultiCorrelationTest
StatsMultiCorrelationTest [flags] corrWave, sizeWave
The StatsMultiCorrelationTest operation performs various tests on multiple correlation coefficients. Inputs
are two 1D waves: corrWave, containing correlation coefficients, and sizeWave, containing the size (number
of elements) of the corresponding samples. Although you can do all the tests at the same time, it rarely
makes sense to do so.

Flags

/ALPH = val Sets the significance level (default val=0.05).

/CON={controlRow,tails}

Performs a multiple comparison test using the controlRow element of corrWave as a
control. It is one- or two-tailed test according to the tails parameter. Output is to the
M_ControlCorrTestResults wave in the current data folder.

/CONT=cWave Performs a multiple contrasts test on the correlation coefficients. The contrasts wave,
cWave, contains the contrast factor, ci, entry for each of the n correlation coefficients ri
in corrWave, and satisfying the condition that the sum of the entries in cWave is zero.
H0 corresponds to

The test statistic S is

where zi is the Fisher z transform of the correlation coefficient ri:

It produces the SE value, the contrast statistic S, and the critical value, which are
labeled ContrastSE, ContrastS, and Contrast_Critical, respectively, in the
W_StatsMultiCorrelationTest wave.

/Q No results printed in the history area.

ci
i=0

n�1

� ri = 0.

S =
1

ci
2

ni � 3

cizi
i=0

n�1

� ,

zi =
1

2
ln

1+ ri
1� ri

�

��
�

��
.

StatsMultiCorrelationTest

V-724

Details
Without any flags, StatsMultiCorrelationTest computes χ2 for the correlation coefficients and compares it
with the critical value.

where zi is the Fisher’s z transform of the correlation coefficients and ni is the corresponding sample size. It
computes the common correlation coefficient rw and its transform zw.

These values are calculated even when not appropriate, such as when χ2 exceeds the critical value and H0
(all samples came from populations of identical correlation coefficients) is rejected.
The operation also computes ChiSquaredP (due to S.R. Paul), a different variant of χ2 that is corrected for
bias and should be compared with the same critical value. Output is to the W_StatsMultiCorrelationTest
wave in the current data folder or optionally to a table.

References
See, in particular, Chapters 19 and 11 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview.
StatsLinearCorrelationTest, StatsCircularCorrelationTest, StatsDunnettTest, StatsTukeyTest,
StatsInvQCDF, and StatsScheffeTest.

/T=k

/TUK Performs a Tukey-type multi comparison testing between the correlation coefficients
by comparing every possible combination of pairs of correlation coefficients,
computing the difference in their z-transforms, the SE, and the q statistic:

The critical value is computed from the q CDF (StatsInvQCDF) with degrees of
freedom numWaves and infinity. Output is to the M_TukeyCorrTestResults wave in
the current data folder or optionally to a table.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

q =
z j � zi

1
2

1
ni � 3

+
1

nj � 3

�

�
�

�

�
�

.

� 2 = zi
2 ni � 3()

i=0

n�1

� �

zi ni � 3()
i=0

n�1

�
�

��
�

	

2

ni � 3()
i=0

n�1

�
,

zw =

zi ni � 3()
i=0

n�1

�

ni � 3()
i=0

n�1

�

StatsNBinomialCDF

V-725

StatsNBinomialCDF
StatsNBinomialCDF(x, k, p)
The StatsNBinomialCDF function returns the negative binomial cumulative distribution function

where betai is the regularized incomplete beta function.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNBinomialPDF and
StatsInvNBinomialCDF functions.

StatsNBinomialPDF
StatsNBinomialPDF(x, k, p)
The StatsNBinomialPDF function returns the negative binomial probability distribution function

where is the binomial function.

The binomial distribution expresses the probability of the kth success in the x+k trial for two mutually
exclusive results (success and failure) and p the probability of success in a single trial.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNBinomialCDF and
StatsInvNBinomialCDF functions.

StatsNCChiCDF
StatsNCChiCDF(x, n, d)
The StatsNCChiCDF function returns the noncentral chi-squared cumulative distribution function

where n>0 corresponds to degrees of freedom, d ≥ 0 is the noncentrality parameter, and Fc is the central chi-
squared distribution.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsChiCDF, StatsNCChiPDF, and
StatsChiPDF functions.

 StatsNCChiPDF
StatsNCChiPDF(x, n, d)
The StatsNCChiPDF function returns the noncentral chi-squared probability distribution function

F(x;k, p) = Betai(k, x +1; p),

f (x;k, p) = x + k �1
k �1

�

�
�

�

�
� p

k (1� p)x , x = 0,1,2...

a
b

F(x;n,d) = exp d 2()
i=1

�

�
d 2()

i

i!
Fc(x;n + 2i),

f (x;n,d) =
d exp �

x + d

2
�

��
�

��
x(n�1)/2

2(dx)n /4 In /2�1 dx().

StatsNCFCDF

V-726

where n>0 is the degrees of freedom, d ≥ 0 is the noncentrality parameter, and Ik(x) is the modified Bessel
function of the first kind, bessI.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNCChiCDF, StatsInvNCChiCDF,
StatsChiCDF, and StatsChiPDF functions.

StatsNCFCDF
StatsNCFCDF(x, n1, n2, d)
The StatsNCFCDF function returns the cumulative distribution function of the noncentral F distribution.
n1 and n2 are the shape parameters and d is the noncentrality measure. There is no closed form expression
for the distribution.

References
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNCFPDF and StatsInvNCFCDF
functions.

StatsNCFPDF
StatsNCFPDF(x, n1, n2, d)
The StatsNCFPDF function returns the probability distribution function of the noncentral F distribution

where B() is the beta function and 1F1() is the hypergeometric function hyperG1F1.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNCFCDF and StatsInvNCFCDF
functions.

StatsNCTCDF
StatsNCTCDF(x, df, d)
The StatsNCTCDF function returns the cumulative distribution function of the noncentral Student-T
distribution. df is the degrees of freedom (positive integer) and d is the noncentrality measure. There is no
closed form expression for the distribution.

References
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsStudentCDF, StatsStudentPDF,
and StatsNCTPDF functions.

StatsNCTPDF
StatsNCTPDF(x, df, d)
The StatsNCTPDF function returns the probability distribution function of the noncentral Student-T
distribution. df is the degrees of freedom (positive integer) and d is the noncentrality measure.

f (x;n1,n2 ,d) =
exp �d / 2()

B
n1

2
,
n2

2
�

��
�

��

xn1 /2�1(xn1 + n2)�(n1 +n2)/2n1
n1 /2n2

n2 /2
1F1

n1 + n2

2
,
n1

2
,

xdn1

2 xn1 + n2()

�

�
�

�

�
� ,

StatsNormalCDF

V-727

References
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsStudentPDF, StatsStudentCDF,
and StatsNCTCDF functions.

StatsNormalCDF
StatsNormalCDF(x, m, s)
The StatsNormalCDF function returns the normal cumulative distribution function

where erf is the error function.

See Also
Chapter III-12, Statistics for a function and operation overview; the erf, StatsNormalPDF and
StatsInvNormalCDF functions.

StatsNormalPDF
StatsNormalPDF(x, m, s)
The StatsNormalPDF function returns the normal probability distribution function

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNormalCDF and
StatsInvNormalCDF functions.

StatsNPMCTest
StatsNPMCTest [flags] [wave1, wave2,… wave100]
The StatsNPMCTest operation performs a number of nonparametric multiple comparison tests. Output
waves are saved in the current data folder according to the test(s) performed. Some tests are only
appropriate when you have the same number of samples in all groups. StatsNPMCTest usually follows
StatsANOVA1Test or StatsKWTest.

Flags

/ALPH = val Sets the significance level (default val=0.05).

f (x;n,�) =
nn 2n!

2n e�
2 2 (n + x2)n 2�

n
2

�

��
�

��

2�x 1F1

n

2
+1;

3
2

;
� 2x2

2(n + x2)

�

��
�

��

(n + x2)�
n +1

2
�

��
�

��

+

1F1

n +1
2

;
1
2

;
� 2x2

2(n + x2)

�

��
�

��

(n + x2)�
n

2
+1�

��
�

��

	

�
�

�

�
�

�

�
�

�

�
�

F(x,μ,�) =
1

2
+

1

2
erf

x � μ

� 2

�

��
�

		
,

f (x,μ,�) =
1

� 2�
exp �

(x � μ)2

2� 2

�

��
�

.

StatsNPMCTest

V-728

/CIDX=controlIndex Performs nonparametric multiple comparisons on a control group specified by the
zero-based controlIndex wave in the input list. Output is to the M_NPCCResults wave
in the current data folder or optionally to a table. The output column contents are: the
first contains the difference between the rank sums of the control and each of the other
waves; the second contains the standard error (SE); the third contains the statistic q,
defined as the ratio of the difference in rank sums to SE; the fourth contains the critical
value which also depends on the tails specification (see /TAIL); and the fifth contains
the conclusion with 0 to reject H0 and 1 to accept it. One version of this test applies
when all inputs contain the same number of samples. When that is not the case, it uses
the Dunn-Hollander-Wolfe approach to compute an appropriate SE and to handle
possible ties.

/CONW=cWave Performs a nonparametric multiple contrasts tests. cWave has one point for each input
wave. The cWave value is 1 to include the corresponding (zero based) input wave in
the first group, 2 to include the wave in the second group, or zero to exclude the wave.

The contrast is defined as the difference between the normalized sum of the ranks of
the first group and that of the second group. If cWave={0,1,1,1,2}, then the contrast is
computed as

where Rni is the normalized rank sum of the samples from the corresponding input
wave. Note the significance of allowing zeros in the contrast wave because the actual
ranking is performed on the pool of all the samples.

Output is to the M_NPMConResults wave in the current data folder or optionally to
a table. The output column contents are: the first is the contrast value; the second is
the standard error (SE); the third is the statistic S, which is the ratio of the absolute
value of the contrast to SE; the fourth is the critical value (from χ2 the approximation);
and the fifth is the conclusion with 0 to reject H0 and 1 indicating acceptance.

This test supports input waves with different number of samples and can also handle
tied ranks. Note that the contrast wave used here is structured differently than for
StatsMultiCorrelationTest.

/DHW Performs the Dunn-Holland-Wolfe test, which supports unequal number of samples
and accounts for ties in the rank sums. Output is to the M_NPMCDHWResults wave
in the current data folder or optionally to a table. The output column contents are: the
first contains the difference between the means of the rank sums (rank sums divided
by the number of samples in the group), the second contains the standard error (SE),
the third contains the DHW statistic Q, the fourth contains the critical value, and the
fifth contains the conclusion (0 to reject H0 and 1 to accept).

/Q No results printed in the history area.

/SWN Creates a text wave containing wave names corresponding to each row of the
comparison table. Depending on your choice of tests, the following wave names are
created:
/CIDX test: T_NPCCResultsDescriptors
/DHW test: T_NPMCDHWDescriptors
/SNK test: T_NPMCSNKResultsDescriptors
/TUK test: T_NPMCTukeyDescriptors

/T=k Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsNPMCTest

V-729

Details
Inputs to StatsNPMCTest are two or more 1D numerical waves (one wave for each group of samples)
containing two or more valid entries. The waves must have the same number of points for the use /SNK and
/TUK tests, otherwise, for waves of differing lengths you must use the Dunn-Hollander-Wolfe test (/DHW).
V_flag will be set to zero for no execution errors. Individual tests may fail if, for example, there are different
number of samples in the input waves for a test that requires an equal number of points. StatsNPMCTest
skips failed tests and V_flag will be a binary combination identifying the failed test(s):

V_flag will be set to -1 for any other errors.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsANOVA1Test and StatsKWTest.
For multiple comparisons in parametric tests see: StatsDunnettTest and StatsScheffeTest.

The table is associated with the test and not with the data. If you repeat the test, it will
update the table with the new results.

/TAIL=tc

Code combinations are not allowed.

/SNK Performs a nonparametric variation on the Student-Newman-Keuls test where the
standard error SE is a function of p (the rank difference). This test requires equal
numbers of samples in all groups; use /DHW for unequal sizes.

Output is to the M_NPMCSNKResults wave in the current data folder. The output
column contents are: the first contains the difference between rank sums, the second
contains the standard error (SE), the third contains the p value (rank difference), the
fourth the statistic, the fifth contains the critical value, and the sixth contains the
conclusion (0 to reject H0 and 1 to accept). This test is more sensitive to differences
than the Tukey test (/TUK).

/TUK Perform a Tukey-type (Nemenyi) multiple comparison test using the difference
between the rank sums. This is the default that is performed if you do not specify any
of the test flags. This test requires equal numbers of points in all waves; use /DHW for
unequal sizes.
Output is to the M_NPMCTukeyResults wave in the current data folder. The output
column contents are: the first contains the difference between the rank sums, the
second contains the SE values, the third contains the statistic q, the fourth contains the
critical value for this specific alpha and the number of groups; and the last contains a
conclusion flag with 0 indicating a rejection of H0 and 1 indicating acceptance. H0
postulates that the paired means are the same.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors.

V_flag & 1 Tukey method failed (/TUK).

V_flag & 2 Student-Newman-Keuls failed (/SNK).

Specifies H0 with /CIDX.

tc=1: One tailed test (μc ≤ μa).
tc=2: One tailed test (μc ≥ μa).
tc=4: Default; two tailed test (μc = μa).

StatsNPNominalSRTest

V-730

StatsNPNominalSRTest
StatsNPNominalSRTest [flags] [srcWave]
The StatsNPNominalSRTest operation performs a nonparametric serial randomness test for nominal data
consisting of two types. The null hypothesis is that the data are randomly distributed. Output is to the
W_StatsNPSRTest wave in the current data folder.

Flags

Details
The input wave to StatsNPNominalSRTest is specified with srcWave or /P. The wave must contain exactly two
values. If srcWave is a text wave, then each type can be designated by a letter or by a short string (less than 200
characters). If srcWave is numeric, you should avoid the usual floating point waves, which can give rise to
internal representations of more than two distinct values. Output to W_StatsNPSRTest includes the total
number of points (N), the number of occurrences (m) of the first variable, the number of occurrences (n) of the
second variable, and the number of runs (u). When both m and n are less than 300, it computes the P value
(probability P(u'<u)) and the critical values using the Swed and Eisenhart algorithm. When m or n are larger
than 300, it computes the mean and standard deviation of an equivalent normal distribution with the
corresponding critical value.

References
Swed, F.S., and C. Eisenhart, Tables for testing randomness of grouping in a sequence of alternatives, Ann.

Math. Statist., 14, 66-87, 1943.
See, in particular, Chapter 25 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsSRTest.

StatsParetoCDF
StatsParetoCDF(x, a, c)
The StatsParetoCDF function returns the Pareto cumulative distribution function

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsParetoPDF and
StatsInvParetoCDF functions.

StatsParetoPDF
StatsParetoPDF(x, a, c)
The StatsParetoPDF function returns the Pareto probability distribution function

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/P={m,n,u} Provides a summary of the data instead of providing the nominal series. m is the
number of elements of the first type, n is the number of elements of the second type,
and u is the number of runs or contiguous sequences of each type. Do not use srcWave
with /P.

/T=k

/Z Ignores errors.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

F(x;a,c) = 1�
a

x
�

��
�

��

c

.

StatsPermute

V-731

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsParetoCDF and
StatsInvParetoCDF functions.

StatsPermute
StatsPermute(waveA, waveB, dir)
The StatsPermute function permutes elements in waveA based on the lexicographic order of waveB and the
direction dir. It returns 1 if a permutation is possible and returns 0 otherwise. Use dir=1 for the next
permutation and dir=-1 for a previous permutation.

Details
Both waveA and waveB must be numeric. The lexicographic order of elements in the index wave is set so that
permutations start with the index wave waveB in ascending order and end in descending order. Elements of
waveA are permuted in place according to the order of the indices in waveB which are clipped (after permutation)
to the valid range of entries in waveA. waveB is also permuted in place in order to allow you to obtain sequential
permutations. If waveA consists of real numbers you can permute them using the lexicographic value of the
entries directly. To do so pass $"" for waveB. Whenever it returns 0, neither waveA and waveB are changed.

Examples
Function allPermutations(num)

Variable num

Variable i,nf=factorial(num)
Make/O/N=(num) wave0=p+1,waveA,waveB=p

Print wave0
for(i=0;i<nf;i+=1)

waveA=wave0
if(statsPermute(waveA,waveB,1)==0)

break
endif
print waveA

endfor
end

Executing allPermutations(3) prints:
 wave0[0]= {1,2,3}
 waveA[0]= {1,3,2}
 waveA[0]= {2,1,3}
 waveA[0]= {2,3,1}
 waveA[0]= {3,1,2}
 waveA[0]= {3,2,1}

See Also
Chapter III-12, Statistics for a function and operation overview.

StatsPoissonCDF
StatsPoissonCDF(x, λ)
The StatsPoissonCDF function returns the Poisson cumulative distribution function

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsPoissonPDF and
StatsInvPoissonCDF functions.

f(x;a,c)=
c

x

a

x
�

��
�

��

c

,
a,c > 0

x � a.

F(x;�) =
exp ��()� i

i!i=0

x

� , x = 0,1,2...

StatsPoissonPDF

V-732

StatsPoissonPDF
StatsPoissonPDF(x, λ)
The StatsPoissonPDF function returns the Poisson probability distribution function

where λ is the shape parameter.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsPoissonCDF and
StatsInvPoissonCDF functions.

StatsPowerCDF
StatsPowerCDF(x, b, c)
The StatsPowerCDF function returns the Power Function cumulative distribution function

where the scale parameter b and the shape parameter c satisfy b,c > 0 and b ≥ x ≥ 0.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsPowerPDF, StatsInvPowerCDF
and StatsPowerNoise functions.

StatsPowerNoise
StatsPowerNoise(b, c)
The StatsPowerNoise function returns a pseudorandom value from the power distribution function with
probability distribution:

The random number generator initializes using the system clock when Igor Pro starts. This almost
guarantees that you will never repeat a sequence. For repeatable “random” numbers, use SetRandomSeed.
The algorithm uses the Mersenne Twister random number generator.

See Also
The SetRandomSeed operation.
The StatsPowerPDF StatsInvPowerCDF and StatsInvPowerCDF functions.
Noise Functions on page III-334.
Chapter III-12, Statistics for a function and operation overview.

StatsPowerPDF
StatsPowerPDF(x, b, c)
The StatsPowerPDF function returns the Power Function probability distribution function

where b is a scale parameter and c is a shape parameter.

For b,c > 0, x is drawn from b >= x >= 0.

f (x;�) =
exp ��()� x

x!
, x = 0,1,2...

F(x;b,c) =
x

b
�

��
�

��

c

f (x;b,c) =
c

x

x

b
�

��
�

��

c

.

f (x,b,c) =
c

x

x

b
�

��
�

��

c

,

StatsQCDF

V-733

For b>0, c<0, x is drawn from x>b.

For b<0, c>0, x is drawn from -b <= x <= 0.

For b<0, c<0, x is drawn from x<-b.

Note that for -1<c<0 the average diverges and the magnitude of a mean calculated from N samples will in-
crease indefinitely with N.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsPowerCDF, StatsInvPowerCDF
and StatsPowerNoise functions.

StatsQCDF
StatsQCDF(q, r, c, df)
The StatsQCDF function returns the value of the Q cumulative distribution function for r the number of
groups, c the number of treatments, and df the error degrees of freedom (f=rc(n-1) with sample size n).

Details
The Q distribution is the maximum of several Studentized range statistics. For a simple Tukey test, use r=1.

References
Copenhaver, M.D., and B.S. Holland, Multiple comparisons of simple effects in the two-way analysis of

variance with fixed effects, Journal of Statistical Computation and Simulation, 30, 1-15, 1988.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsTukeyTest function.

StatsQpCDF
StatsQpCDF(q, nr, nt, dt, side, sSizeWave)
The StatsQpCDF function returns the the Q' cumulative distribution function associated with Dunnett's
test.
Here nr is the number of groups (should be set to 1), nt is the number of treatments, df is the error degrees
of freedom.
Set side=1 for upper-tail or side=2 for two-tailed CDF.
sSizeWave is an integer wave of nt rows specifying the number of samples in each treatment.

Details
StatsQpCDF is a modified Q distribution typically used with Dunnett's test, which compares the various
means with the mean of the control group or treatment

References
"Algorithm AS 251: Multivariate Normal Probability Integrals with Product Correlations Structure", C. W.

Dunnett, Appl. Stat., 38 (1989) 564-579.
A short correction for the algorithm was published in: Appl. Stat., 42 (1993) 709.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsDunnettTest, StatsInvQpCDF,
and StatsInvQCDF functions.

StatsQuantiles
StatsQuantiles [flags] srcWave
The StatsQuantiles operation computes quantiles and elementary univariate statistics for a set of data in srcWave.

Flags

/ALL Invokes all flags except /Q, /QM, and /Z.

/BOX Computes parameters necessary to construct a box plot.

StatsQuantiles

V-734

Details
StatsQuantiles produces quick five-number summaries or more detailed results for univariate data. Values
are returned in the wave W_StatsQuantiles and in the variables:

Entries in the wave W_StatsQuantiles depend on your choice of flags. Each row has a row label explicitly
defining its value. If you use the /ALL flag, W_StatsQuantiles will contain the following row labels:

Otherwise, W_StatsQuantiles will contain the first five entries and any additionally requested value. You
should always access values using the dimension labels (see Dimension Labels on page II-109).
There is frequently some confusion in comparing statistical results computed by different programs
because each may use a different definition of quartiles. You can specify the method of computing the
quartiles as you prefer with the /QM flag. If you neglect to choose a method, StatsQuantiles uses Tukey’s
method, which computes quartiles (also called hinges) as the lower and upper median values between the

/iNaN Ignores NaNs, which are sorted to the end of the array by default.

/IW Creates an index wave W_QuantilesIndex. W_QuantilesIndex[i] corresponds to the
position of srcWave[i] when sorted from minimum to maximum.

/Q No information printed in the history area.

/QM=qMethod

/QW Creates a single precision wave W_QuantileValues containing the quantile value
corresponding to each entry in srcWave.

/STBL Uses a stable sort, which may require significant computation time for multiple
entries with the same value.

/TM Computes the tri-mean: 0.25*(V_Q25+2*median+V_Q75).

/TRIM=tVal Computes the trimmed mean which is the mean value of the entries between the
quantiles tVal (in %) and 100-tVal. By default tVal=25 and the trimmed mean
corresponds to the midmean.

/Z Ignores any errors.

V_min Minimum value.

V_max Maximum value.

V_Median Median value.

V_Q25 Lower quartile.

V_Q75 Upper quartile.

V_IQR Inter-quartile range V_Q75-VQ25, which is also known as the H-spread.

minValue lowerInnerFence

maxValue lowerOuterFence

Median upperInnerFence

Q25 upperOuterFence

Q75 triMean

IQR trimmedMean

Specifies the method for computing quartiles. qMethod has one of these values:

See Details for more information.

0: Tukey (default).
1: Minitab.
2: Moore and McCabe.
3: Mendenhall and Sincich.

StatsRankCorrelationTest

V-735

median of the data and the edges of the array. The Moore and McCabe method is similar to Tukey’s method
except you do not include the median itself in computing the quartiles. Mendenhall and Sincich compute
the quartiles using 1/4 and 3/4 of (numDataPoints+1) and round to the nearest integer (if the fraction part
is exactly 0.5 they round up for the lower quartile and down for the upper quartile). Minitab uses the same
expressions but instead of rounding it uses linear interpolation.
StatsQuantiles uses a stable index sorting routine so that
IndexSort W_QuantilesIndex,srcWave

is a monotonically increasing wave.

References
Tukey, J. W., Exploratory Data Analysis, 688 pp., Addison-Wesley, Reading, Massachusetts, 1977.
Mendenhall, W., and T. Sincich, Statistics for Engineering and the Sciences, 4th ed., 1008 pp., Prentice Hall,

Englewood Cliffs, New Jersey, 1995.

See Also
Chapter III-12, Statistics for a function and operation overview; WaveStats, StatsMedian, Sort, and
MakeIndex.

StatsRankCorrelationTest
StatsRankCorrelationTest [flags] waveA, waveB
The StatsRankCorrelationTest operation performs Spearman’s rank correlation test on waveA and waveB,
1D waves containing the same number of points. Output is to the W_StatsRankCorrelationTest wave in the
current data folder.

Flags

Details
StatsRankCorrelationTest ranks waveA and waveB and then computes the sum of the squared differences of
ranks for all rows. Ties are assigned an average rank and the corrected Spearman rank correlation
coefficient is computed with ties. It reports the sum of the squared ranks (sumDi2), the sums of the ties
coefficients (sumTx and sumTy respectively), the Spearman rank correlation coefficient (in the range [-1,1]),
and the critical value. H0 corresponds to zero correlation against the alternative of nonzero correlation. The
critical value is usually lower than the one in published tables. When the first derivative of the CDF is
discontinuous, tables tend to use a more conservative value by choosing the next transition of the CDF as
the critical value. StatsRankCorrelationTest is not as powerful as StatsLinearCorrelationTest.

See Also
Chapter III-12, Statistics for a function and operation overview.
StatsLinearCorrelationTest, StatsCircularCorrelationTest, StatsKendallTauTest,
StatsSpearmanRhoCDF, and StatsInvSpearmanCDF.

StatsRayleighCDF
StatsRayleighCDF(x [, s [, m]])
The StatsRayleighCDF function returns the Rayleigh cumulative distribution function

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/T=k

/Z Ignores errors.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsRayleighPDF

V-736

with defaults s=1 and m=0. It returns NaN for s ≤ 0 and zero for x ≤ m.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRayleighPDF and
StatsInvRayleighCDF functions.

StatsRayleighPDF
StatsRayleighPDF(x [, s [, m]])
The StatsRayleighPDF function returns the Rayleigh probability distribution function

with defaults s=1 and m=0. It returns NaN for s ≤ 0 and zero for x ≤ m.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRayleighCDF and
StatsInvRayleighCDF functions.

StatsRectangularCDF
StatsRectangularCDF(x, a, b)
The StatsRectangularCDF function returns the rectangular (uniform) cumulative distribution function

where a< b.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRectangularPDF and
StatsInvRectangularCDF functions.

StatsRectangularPDF
StatsRectangularPDF(x, a, b)
The StatsRectangularPDF function returns the rectangular (uniform) probability distribution function

where a< b.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRectangularCDF and
StatsInvRectangularCDF functions.

F(x;� ,μ) = 1� exp �
x � μ()2

2� 2

�

�
�

�

�
	 , � > 0, x > μ.

f (x;� ,μ) =
x � μ

� 2 exp �
x � μ()2

2� 2

�

�
�

�

�
	 , � > 0, x > μ.

F(x,a,b) =

0 x 	 a

x � a

b � a
a 	 x 	 b

1 x � b

�

�

�
�

�

�
�

f (x;a,b) =
1

b � a
a 	 x 	 b

0 otherwise

�

�
�

��

StatsResample

V-737

StatsResample
StatsResample /N=numPoints [flags] srcWave
The StatsResample operation resamples srcWave by drawing (with replacement) numPoints values from
srcWave and storing them in the wave W_Resampled or M_Resampled if /MC is used. You can iterate the
process and compute various statistics on the data samples.

Flags

/ITER=n Repeats the resampling for n iterations, which is useful only when combined with
/WS or /SQ.

/JCKN=ufunc Performs Jack-Knife analysis. Here ufunc is a user function of the format:

Function ufunc(inWave)
 wave inWave
 ... compute some statistic for inWave
 return someValue
End

The results are stored in the wave W_JackKnifeStats in the current data folder. Use
Edit W_JackKnifeStats.ld

to display the wave with dimension labels.

The idea behind this method is that ufunc returns some statistic z for inWave which is
a subsample of srcWave of size (n-1). There are exactly n iterations and in each
iteration the operation calls ufunc with one element of srcWave missing and stores the
result in an internal array. At the end of iterations it uses the array to compute the
various Jack-Knife estimates.

The standard estimator is defined as:

The Jack-Knife estimator is simply:

The Jack-Knife t-estimator is slightly less biased. It is given by:

The estimate of the standard error is given by:

/K Kills W_Resampled after passing it to WaveStats. When /ITER is used, W_Resampled
is not saved.

/MC Use /MC when you want to sample random (complete) rows from a multi-column 2D
srcWave. The combination of /N=n with /MC results in the wave M_Resampled in the
current data folder. M_Resampled will have n rows, the same number of columns and
the same data type as srcWave.

/N=numPoints Specifies the number of points sampled from srcWave.

Z = ufunc(srcWave).

ẑ =
1

n
zi

i=1

n

� .

t = nZ � (n �1)ẑ,

�̂ ẑ =
n �1

n
(zi � ẑ)

2

i=1

n

� .

StatsResample

V-738

Details
StatsResample can perform Bootstrap Analysis, permutations tests, and Monte-Carlo simulations. It draws
the specified number of data points (with replacement) from srcWave and places them in a destination wave
W_Resampled.
Specify /WS or /SQ to use the WaveStats or StatsQuantiles operations, respectively, to compute results directly
from the data. StatsResample normally creates the wave W_Resampled and, optionally, the M_WaveStats and
W_StatsQuantiles waves. Both options also create various V_ variables described below. If you use more than
one iteration, StatsResample creates instead the waves M_WaveStatsSamples and M_StatsQuantilesSamples for
the results.
M_WaveStatsSamples (with /WS) contains a column for each iteration. Each column is equivalent to the
contents of M_WaveStats for that iteration. You can use the command
Edit M_WaveStatsSamples.ld

to display the results in a table using row labels, and, for example, to display a graph of the rms of the
samples as a function of iteration number execute:
Display M_WaveStatsSamples[5][]

M_StatsQuantilesSamples (with /SQ) contains a column for each iteration. Each column consists of the
contents of W_StatsQuantiles for the corresponding data. Here again you can execute the command
Edit M_StatsQuantilesSamples.ld

to display the wave in a table using row labels. To display a graph of the median as a function of iteration execute:
Display M_statsQuantilesSamples[2][]

Output Variables
StatsResample creates the following variables: V_Median, V_Q25, V_Q75, V_IQR, V_min, V_max,
V_numNaNs, V_numINFs, V_avg, V_sdev, V_rms, V_adev, V_skew, V_kurt, and V_Sum.
These variables are valid only if you use either /SQ or /WS, but not both, and only if you do not use /ITER.
Unused variables are set to NaN.
If you use /SQ the operation sets V_Median, V_Q25, V_Q75, V_IQR, V_min, and V_max.
If you use /WS the operation sets V_min, V_max, V_numNaNs, V_numINFs, V_avg, V_sdev, V_rms,
V_adev, V_skew, V_kurt, and V_Sum.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsSample, WaveStats and
StatsQuantiles.

/Q No information printed in the history area.

/SQ=m

/WS=m

/Z Ignores any errors.

Uses StatsQuantiles to compute the data quartiles. The methods are:

See Details for information about how the results are stored.
The default trim value is 25%.

m=0: Tukey (default).
m=1: Minitab.
m=2: Moore and McCabe.
m=3: Mendenhall and Sincich.

Uses WaveStats operation to calculate data statistics.

See Details for information about how the results are stored.

m=0: Creates a new wave containing the samples (default).
m=1: Creates the new wave and passes it to WaveStats/Q/M=1.
m=2: Creates the new wave and passes it to WaveStats/Q/M=2.

StatsSample

V-739

StatsSample
StatsSample /N=numPoints [flags] srcWave
StatsSample creates a random, non-repeating sample from srcWave.
It samples srcWave by drawing without replacement numPoints values from srcWave and storing them in
the output wave W_Sampled or M_Sampled if /MC or /MR are used.

Flags

Details
If you omit /MC and /MR, the output is a 1D wave named W_Sampled where the samples are chosen from
srcWave without regard to its dimensionality.
If you use either /MC or /MR the output is a 2D wave named M_Sampled which will have either the same
number of columns (/MC) as srcWave or the same number of rows (/MR) as srcWave.

See Also
Chapter III-12, Statistics, StatsResample

StatsRunsCDF
StatsRunsCDF(n, r)
The StatsRunsCDF function returns the cumulative distribution function for the up and down runs
distribution for total number of runs r in a random linear arrangement of n unequal elements. There is no
closed form expression. It is computed numerically from the recursion of the probability density

with the initial condition

References
Bradley, J.V., Distribution-Free Statistical Tests, Prentice Hall, Englewood Cliffs, New Jersey, 1968.
Olmstead, P.S., Distribution of sample arrangements for runs up and down, Annals of Mathematical

Statistics, 17, 24-33, 1946.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsSRTest function.

StatsScheffeTest
StatsScheffeTest [flags] [wave1, wave2,… wave100]
The StatsScheffeTest operation performs Scheffe’s test for the equality of the means. It supports two basic
modes: the default tests all possible combinations of pairs of waves; the second tests a single combination

/N=numPoints Specifies the number of points sampled from srcWave. When combined with /MC,
numPoints is the number of sampled rows and when combined with /MR, it is the
number of sampled columns.

/MC Use /MC (multi-column) to randomly sample full rows from srcWave, i.e., the output
consists of all columns of each selected row. /MC and /MR are mutually exclusive
flags.

/MR Use /MR (multi-row) to randomly sample full columns from srcWave, i.e., the output
consists of all rows of each of the selected columns. /MC and /MR are mutually
exclusive flags.

/Z Ignores errors.

f (r,n) =
rf (r,n �1) + 2 f (r �1,n �1) + (n � r) f (r � 2,n �1)

n
,

f (1,n) =
2

n!
.

StatsScheffeTest

V-740

where the precise form of H0 is determined by the coefficients of a contrast wave (see /CONT). Output is to
the M_ScheffeTestResults wave in the current data folder.

Flags

/ALPH=val Sets the significance level (default 0.05).

/CONW=cWave Performs a multiple contrasts test. cWave has one point for each input wave. The
cWave value is 1 to include the corresponding (zero based) input wave in the first
group, 2 to include the wave in the second group, or zero to exclude the wave.

The contrast is defined as the difference between the normalized sum of the ranks of
the first group and that of the second group. If cWave={0,1,1,1,2}, then the contrast
hypothesis H0 corresponds to:

For each pair of waves (i, j) with i ¦ j, it computes

the statistic

the critical value, and a result field which is set to 1 if H0 should be accepted or 0 if it

should be rejected. W is the total number of waves, ni and are respectively the
number of data points and the average of wave i.

/Q No results printed in the history area.

/SWN Creates a text wave, T_ScheffeDescriptors, containing wave names corresponding to
each row of the comparison table (Save Wave Names). Use /T to append the text wave
to the last column.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

X1 + X2 + X3

3
� X4 = 0.

SEij = s2 1

nj
+

1

ni

�

�
�

�

�
	 , s2 = Xj

2 �
j=0

n j �1

�
i=1

W

�

Xj
j=0

nj �1

�
�

�
�

�

�
	

2

nj
,

i=1

W

�

S =

ci Xi

i=0

n�1

�

SE
,

Xi

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsSignTest

V-741

Details
The default of StatsScheffeTest (also known as the S test) tests the hypotheses of equality of means for each
possible pair of samples. It is not as powerful as Tukey’s test (StatsTukeyTest) and is more useful for
hypotheses formulated as multiple contrasts (see /CONT).

References
See, in particular, Chapter 11 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsANOVA1Test, StatsDunnettTest and
StatsTukeyTest.

StatsSignTest
StatsSignTest [flags] wave1, wave2
The StatsSignTest operation performs the sign test for paired-sample data contained in wave1 and wave2.

Flags

Details
The input waves must be the equal length, real numeric waves and must not contain any NaNs or INFs.
Results are saved in the wave W_SignTest and are optionally displayed in a table. StatsSignTest computes
the differences in each pair and counts the total number of entries with positive and negative differences,
and tests the results using a binomial distribution. When the number of data pairs exceeds 1024 it uses a
normal approximation to the binomials for calculating the probabilities and the power of the test.

References
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview.

StatsSpearmanRhoCDF
StatsSpearmanRhoCDF(r, N)
The StatsSpearmanRhoCDF function returns the cumulative distribution function for Spearman’s r, which
is used in rank correlation test. It is valid for N>1 and -1 ≤ r ≤ 1. The distribution is mostly computed using
the Edgeworth series expansion.

References
Algorithm AS 89, Appl. Statist., 24, 377, 1975.
van de Wiel, M.A., and A. Di Bucchianico, Fast computation of the exact null distribution of Spearman’s rho

and Page’s L statistic for samples with and without ties, J. of Stat. Plan. and Inference, 92, 133-145, 2001.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRankCorrelationTest,
StatsInvSpearmanCDF, and StatsKendallTauTest functions.

/ALPH=val Sets the significance level (default 0.05).

/Q No results printed in the history area.

/T=k

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsSRTest

V-742

StatsSRTest
StatsSRTest [flags] srcWave
The StatsSRTest operation performs a parametric or nonparametric serial randomness test on srcWave,
which must contain finite numerical data. The null hypothesis of the test is that the data are randomly
distributed. Output is to the W_StatsSRTest wave in the current data folder.

Flags

Details
The parametric test for serial randomness is according to Young. C is given by

where is the mean and n is the number of points in srcWave. The critical value is obtained from mean
square successive difference distribution StatsInvCMSSDCDF. For more than 150 points, StatsSRTest uses
the normal approximation and provides the critical values from the normal distribution. For samples from
a normal distribution, C is symmetrically distributed about 0 with positive values indicating positive
correlation between successive entries and negative values corresponding to negative correlation.
The nonparametric test consists of counting the number of runs that are successive positive or successive
negative differences between sequential data. If two sequential data are the same it computes two numbers
of runs by considering the two possibilities where the equality is replaced with either a positive or a
negative difference. The results of the operation include the number of runs up and down, the number of
unchanged values (the number of places with no difference between consecutive entries), the size of the
longest run and its associated probability, the number of converted equalities, and the probability that the
number of runs is less than or equal to the reported number (StatsRunsCDF). When equalities are
encountered the operation computes the probabilities that the computed number of runs or less can be
found in an equivalent random sequence.

/ALPH = val Sets the significance level (default val=0.05).

/GCD Tests the output of a random number generator (RNG). srcWave consists of values
between 0 and 232 (converted to unsigned 32-bit integers). GCD computes the gcd for
consecutive pairs of data in srcWave. The number of steps in the GCD and the
distribution of the GCD’s are compared with ideal distributions and corresponding P
values are reported. This test is part of Marsaglia’s Die-Hard battery of tests. P-values
close to either 0 or 1 indicate a nonideal RNG. You should use the reported minimum
and maximum values to check that the input is indeed in the proper range. Typically
srcWave consists of at least1e6 entries.

/NAPR Use the normal approximation even when the number of points is below 150.

/NP Performs a nonparametric serial randomness test by counting the numbers of runs up
and down and computing the probability that such a value is obtained by chance.

/P Performs a parametric serial randomness test.

/Q No results printed in the history area.

/T=k

/Z Ignores errors.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

C = 1�
Xi � Xi+1()

2

i=0

n�2

�

2 Xi � X()
2

i=0

n�1

�
,

X

StatsStudentCDF

V-743

Converted equalities are those with the same sign on both sides so that when we replace the equality by the
opposite sign we increase the number of runs. The equalities that are not converted are found between two
different signs and therefore regardless of the sign that we give them they do not affect the total number of
runs. We implicitly assume that the data does not contain more than one sequential equalities.
The longest run is determined without taking into account equalities or their conversions. The probability
of the longest run is computed from Equation 6 of Olmstead, which is accurate within 0.001 when the
number of runs is 5 or more. This probability applies to either positive or negative differences and should
be divided by two if a specific sign is selected.

References
Bradley, J.V., Distribution-Free Statistical Tests, Prentice Hall, Englewood Cliffs, New Jersey, 1968.
Olmstead, P.S., Distribution of sample arrangements for runs up and down, Annals of Mathematical

Statistics, 17, 24-33, 1946.
Wallis, W.A., and G.H. Moore, A significance test for time series, J. Amer. Statist. Assoc., 36, 401-409, 1941.
Young, L.C., On randomness in ordered sequences, Annals of Mathematical Statistics, 12, 153-162, 1941.
See, in particular, Chapter 25 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.
<http://www.csis.hku.hk/cisc/projects/va/index.htm>

See Also
Chapter III-12, Statistics for a function and operation overview; StatsNPNominalSRTest and
StatsRunsCDF.

StatsStudentCDF
StatsStudentCDF(t, n)
The StatsStudentCDF function returns the Student (uniform) cumulative distribution function

where n>0 is degrees of freedom and is the incomplete beta function betai.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsStudentPDF and
StatsInvStudentCDF functions.

StatsStudentPDF
StatsStudentPDF(t, n)
The StatsStudentPDF function returns the Student (uniform) probability distribution function

where n>0 is degrees of freedom and B() is the beta function.

F(t,n) =

1

2
1+ I

n

2
,
1

2
;1

�

��

��
� I

n

2
,
1

2
;

n

n + t 2

�

��

��
�
�
�

�
�

t > 0

1

2
1+ I

n

2
,
1

2
;

n

n + t 2

�

��

��
� I

n

2
,
1

2
;1

�

��

��
�
�
�

�
�

t < 0

1

2
t = 0

�

�

	
	
		

�

	
	
	
	

f (t,n) =

n

n + t 2

�

��
�

��

(n+1)/2

nB
n

2
,
1
2

�

��
�

��

.

://www.csis.hku.hk/cisc/projects/va/index.htm

StatsTopDownCDF

V-744

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsStudentCDF and
StatsInvStudentCDF functions.

StatsTopDownCDF
StatsTopDownCDF(r, N)
The StatsTopDownCDF function returns the cumulative distribution function for the top-down correlation
coefficient. It is computationally intensive because it must evaluate many permutations [O((n!)2)]. It exactly
calculates the distribution for 3 ≤ N ≤ 7; outside this range it uses Monte-Carlo estimation for 8 ≤ N ≤ 50 and
asymptotic Normal approximation for N>50. The Monte-Carlo estimate uses 1e6 random permutations
fitted with two 9-order polynomials for the range [-1,0] and [0,1]. The results are within 0.2% of exact values
where known.

References
Iman, R.L., and W.J. Conover, A measure of top-down correlation, Technometrics, 29, 351-357, 1987.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRankCorrelationTest and
StatsInvTopDownCDF functions.

StatsTriangularCDF
StatsTriangularCDF(x, a, b, c)
The StatsTriangularCDF function returns the triangular cumulative distribution function

where a<c<b.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsTriangularPDF and
StatsInvTriangularCDF functions.

StatsTriangularPDF
StatsTriangularPDF(x, a, b, c)
The StatsTriangularPDF function returns the triangular probability distribution function

where a<c<b.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsTriangularCDF and
StatsInvTriangularCDF functions.

F(x;a,b,c) =

(x � a)2

(b � a)(c � a)
a 	 x 	 c

1�
(b � x)2

(b � a)(c � a)
������������c 	 x 	 b.

�

�

�
�

�

�
�

f (x;a,b,c) =

2(x � a)

(b � a)(c � a)
a 	 x 	 c

2(b � x)

(b � a)(c � a)
����������c < x < b

0 ���������������������������������otherwise.

�

�

�
�
�

�

�
�
�

StatsTrimmedMean

V-745

StatsTrimmedMean
StatsTrimmedMean(waveName, trimValue)
The StatsTrimmedMean function returns the mean of the wave waveName after removing trimValue fraction
of the values from both tails of the distribution. trimValue is a number in the range [0, 0.5]. waveName can be
any real numeric type.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsQuantiles and mean.

StatsTTest
StatsTTest [flags] wave1 [, wave2]
The StatsTTest operation performs two kinds of T-tests: the first compares the mean of a distribution with a
specified mean value (/MEAN) and the second compares the means of the two distributions contained in wave1
and wave2, which must contain at least two data points, can be any real numeric type, and can have an arbitrary
number of dimensions. Output is to the W_StatsTTest wave in the current data folder or optionally to a table.

Flags

/ALPH = val Sets the significance level (default val=0.05).

/CI Computes the confidence intervals for the mean(s).

/DFM=m

/MEAN=meanV Compares meanV with the mean of the distribution in wave1. Outputs are the number
of points in the wave, the degrees of freedom (accounting for any NaNs), the average,
standard deviation (σ),

the statistic

and the critical value, which depends on /TAIL.

/PAIR Specifies that the input waves are pairs and computes the difference of each pair of
data to get the average difference and the standard error of the difference . The t
statistic is the ratio of the two

In this case H0 is that the difference is zero.

This mode does not support /CI and /DFM.

/Q No results printed in the history area.

Specifies method for calculating the degrees of freedom.
m=0: Default; computes equivalent degrees of freedom accounting for

possibly different variances.
m=1: Computes equivalent degrees of freedom but truncates to a smaller

integer.
m=2: Computes degrees of freedom by DF=n1+n2-2, where n is the sum of

points in the wave. Appropriate when variances are equal.

s
X
=

�

DF +1
,

t =
X � meanV

s
X

d Sd

t =
d

s
d

.

d

StatsTTest

V-746

Details
When comparing the mean of a single distribution with a hypothesized mean value, you should use
/MEAN and only one wave (wave1). If you use two waves StatsTTest performs the T-test for the means of
the corresponding distributions (which is incompatible with /MEAN).
When comparing the means of two distributions, the default t-statistic is computed from Welch's
approximate t:

where are variances, ni the number of samples, and the averages of the respective waves. This expres-
sion is appropriate when the number of points and the variances of the two waves are different. If you want
to compute the t-statistic using pooled variance you can use the /AEVR flag. In this case the pooled variance
is given by

and the t-statistic is

The different test are:

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/TAIL=tailCode

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

H0 Rejection Condition

μ1 = μ2 |t| ≥ Tc(alpha,ν)

μ1 > μ2 t ≤ Tc(alpha, ν)

μ1 < μ2 t ≥ Tc(alpha, ν)

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

Specifies H0.

tailCode=1: One tailed test (μ1 ≤ μ2).
tailCode=2: One tailed test (μ1 ≥ μ2).
tailCode=4: Default; two tailed test (μ1!= μ2).

t ' =
x1 � x2

s1
2

n1

+
s2

2

n2

,

si
2 Xi

sp
2 =

n1 �1()s1
2 + n2 �1()s2

2

n1 + n2 � 2
,

t =
x1 � x2

sp
1
n1

+
1
n2

.

StatsTukeyTest

V-747

Tc is the critical value and ν is the effective number of degrees of freedom (see /DFM flag).When accounting
for possibly unequal variances, ν is given by

The critical values (Tc) are computed by numerically by solving for the argument at which the cumulative
distribution function (CDF) equals the appropriate values for the tests. The CDF is given by

To get the critical value for the upper one-tail test we solve F(x)=1-alpha. For the lower one-tail test we solve
for x the equation F(x)=alpha. In the two-tailed test the lower critical value is a solution for F(x)=alpha/2 and
the upper critical value is a solution for F(x)=1-alpha/2.
The T-test assumes both samples are randomly taken from normal population distributions.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsStudentCDF, StatsStudentPDF, and
StatsInvStudentCDF.

References
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999. See in
particular Section 8.1.

StatsTukeyTest
StatsTukeyTest [flags] [wave1, wave2,… wave100]
The StatsTukeyTest operation performs multiple comparison Tukey (HSD) test and optionally the
Newman-Keuls test. Output is to the M_TukeyTestResults wave in the current data folder. StatsTukeyTest
usually follows StatsANOVA1Test.

Flags

/ALPH = val Sets the significance level (default val=0.05).

/NK Computes the Newman-Keuls test.

/Q No results printed in the history area.

/SWN Creates a text wave, T_TukeyDescriptors, containing wave names corresponding to
each row of the comparison table (Save Wave Names). Use /T to append the text wave
to the last column.

/T=k

/WSTR=waveListString

� =

s1
2

n1

+
s2

2

n2

�

��
�

�	

2

s1
2

n1

�

��
�

�	

2

n1 �1
+

s2
2

n2

�

��
�

�	

2

n2 �1

.

F(x) =

1

2
betai

�

2
,
1

2
,

�

� + x2

�

��

��
x < 0

1�
1

2
betai

�

2
,
1

2
,

�

� + x2

�

��

��
x � 0.

�

�

�

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsUSquaredCDF

V-748

Details
Inputs to StatsTukeyTest are two or more 1D numeric waves (one wave for each group of samples)
containing any numbers of points but with at least two or more valid entries.
The contents of the M_TukeyTestResults columns are: the first contains the difference between the group
means , the second contains SE (supports unequal number of points), the third contains the q statistic
for the pair, and the fourth contains the critical q value, the fifth contains the conclusion with 0 to reject H0
(μi == μj) or 1 to accept H0, with /NK, the sixth contains the p values

the seventh contains the critical values, and the eighth contains the Newman-Keuls conclusion (with 0 to
reject and 1 to accept H0). The order of the rows is such that all possible comparisons are computed
sequentially starting with the comparison of the group having the largest mean with the group having the
smallest mean.
 V_flag will be set to -1 for any error and to zero otherwise.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsANOVA1Test, StatsScheffeTest, and
StatsDunnettTest.

StatsUSquaredCDF
StatsUSquaredCDF(u2, n, m, method, useTable)
The StatsUSquaredCDF function returns the cumulative distribution function for Watson’s U2 with
parameters u2 (U2 statistic) and integer sample sizes n and m. The calculation is computationally intensive,
on the order of binomial(n+m, m). Use a nonzero value for useTable to search a built-in table of values. If n
and m cannot be found in the table, it will proceed according to method:

For large n and m, consider using the Tiku approximation. To abort execution, press Command-period
(Macintosh) or Ctrl+Break (Windows).
Precomputed tables, using the algorithm described by Burr, contain these values:

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors.

method What It Does

0 Exact computation using Burr algorithm (could be slow).

1 Tiku approximation using chi-squared.

2 Use built-in table only and return a NaN if not in table.

n m

4 4-30

5 5-30

6 6-30

7 7-30

8 8-26

9 9-22

10 10-18

Xi Xi–

p = rank[Xi]� rank[Xj]+1,

StatsVariancesTest

V-749

Because n and m are interchangeable, n should always be the smaller value. For n>8 the upper limit in the
table matched the maximum that can be computed using the Burr algorithm. There is no point in using
method 0 with m values exceeding these limits.

References
Burr, E.J., Small sample distributions of the two sample Cramer-von Mises’ W2 and Watson’s U2, Ann. Mah.

Stat. Assoc., 64, 1091-1098, 1964.
Tiku, M.L., Chi-square approximations for the distributions of goodness-of-fit statistics, Biometrica, 52, 630-

633, 1965.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsWatsonUSquaredTest and
StatsInvUSquaredCDF functions.

StatsVariancesTest
StatsVariancesTest [flags] [wave1, wave2,… wave100]
The StatsVariancesTest operation performs Bartlett’s or Levene’s test to determine if wave variances are
equal. Output is to the W_StatsVariancesTest wave in the current data folder or optionally to a table.

Flags

Details
All tests define the null hypothesis by

against the alternative

11 11-16

12 12-14

13 13

/ALPH = val Sets the significance level (default val=0.05).

/METH=m

/Q No results printed in the history area.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

n m

Specifies the test type.
m=0: Bartlett test (default).
m=1: Levene’s test using the mean.
m=2: Modified Levene’s test using the median.
m=3: Modified Levene’s test using the 10% trimmed mean.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

H 0 : �1
2 = � 2

2 = ... = � k
2 ,

StatsVariancesTest

V-750

Bartlett’s test computes:

Here is the variance of the ith wave, N is the sum of the points of all the waves, ni is the number of points
in wave i, and k is the number of waves. The weighted variance is given by

H0 is rejected if T is greater than the critical value taken from the χ2 distribution computed by solving for x:

Levene’s test computes:

where

 depends on /METH.

H0 is rejected if W is greater than the critical value from the F distribution computed by solving for x:

References
NIST/SEMATECH, Bartlett’s Test, in NIST/SEMATECH e-Handbook of Statistical Methods,

<http://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm>, 2005.

See Also
Chapter III-12, Statistics for a function and operation overview.

Ha : � i
2 � � j

2 � for �at �least �one�i � j.

T =

n � k() ln �w
2() � ni �1()ln � i

2()
i=1

k

�

1+
1

3 k �1()
1

ni �1
�

1
N � ki=1

k

�
�

�
�

�

	

.

σ2
i

�w
2 =

ni �1()� i
2

N � ki=1

k

� .

1� alpha = 1� gammq
k �1

2
,
x

2
�

��
�

��
.

W =

N � k() ni Z i � Z()
i=1

k

�
2

k �1() Zij � Zi()
2

j=1

k

�
i=1

k

�
,

Zij = Yij �Y i ,

Zi =
1

ni
Zij

j=1

k

� ,

Z =
1

N
Zij

j=1

k

�
i=1

k

� .

Yi

1� alpha = 1� betai
�2

2
,
�1

2
,

�2

�2 + �1x

�

��
�

�	
.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm

StatsVonMisesCDF

V-751

StatsVonMisesCDF
StatsVonMisesCDF(x, a, b)
The StatsVonMisesCDF function returns the von Mises cumulative distribution function

where I0(b) is the modified Bessel function of the first kind (bessI), and

References
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsVonMisesPDF,
StatsInvVonMisesCDF, and StatsVonMisesNoise functions.

StatsVonMisesNoise
StatsVonMisesNoise(a, b)
The StatsVonMisesNoise function returns a pseudo-random number from a von Mises distribution whose
probability density is

where I0 is the zeroth order modified Bessel function of the first kind.

References
Best, D.J., and N. I. Fisher, Efficient simulation of von Mises distribution, Appl. Statist., 28, 152-157, 1979.

See Also
StatsVonMisesCDF, StatsVonMisesPDF, and StatsInvVonMisesCDF.
Noise Functions on page III-334.
Chapter III-12, Statistics for a function and operation overview

StatsVonMisesPDF
StatsVonMisesPDF(q, a, b)
The StatsVonMisesPDF function returns the von Mises probability distribution function

where I0(b) is the modified Bessel function of the first kind bessI, and

F(�;a,b) =
1

2� I0 (b)
exp bcos(x � a)()dx

0

�

� .

0 < � � 2�

0 < a � 2�

b > 0.

f (�;a,b) =
exp bcos(� � a)[]

2� I0 (b)
,

f (�;a,b) =
exp bcos � � a()()

2� I0 (b)
.

0 < � � 2�

0 < a � 2�

b > 0.

StatsWaldCDF

V-752

References
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsVonMisesCDF,
StatsInvVonMisesCDF, and StatsVonMisesNoise functions.

StatsWaldCDF
StatsWaldCDF(x, m, l)
The StatsWaldCDF function returns the numerically evaluated inverse Gaussian or Wald cumulative
distribution function.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsWaldPDF function.

StatsWaldPDF
StatsWaldPDF(x, m, l)
The StatsWaldPDF function returns the inverse Gaussian or Wald probability distribution function

where x, m, l> 0.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsWaldCDF function.

StatsWatsonUSquaredTest
StatsWatsonUSquaredTest [flags] srcWave1, srcWave2
The StatsWatsonUSquaredTest operation performs Watson’s nonparametric two-sample U2 test for samples
of circular data. Output is to the W_WatsonUtest wave in the current data folder or optionally to a table.

Flags

Details
The input waves, srcWave1 and srcWave2, each must contain at least two angles in radians (mod 2π), can have
any number of dimensions, and can be single or double precision. They must not contain any NaNs or INFs.
The Watson U2 H0 postulates that the two samples came from the same population against the different
populations alternative. In the calculation, StatsWatsonUSquaredTest ranks the two inputs, accounts for
possible ties, computes the test statistic U2, and compares it with the critical value. Because of the difficulty
of computing the critical values, it always computes first the approximation due to Tiku and if possible it
computes the exact critical value using the method outlined by Burr. You can evaluate the U2 CDF to get
more information about the critical region.

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/Z Ignores errors.

f (x;μ,�) =
�

2� x3 exp �
� x � μ()2

2μ2x

�

�
�
�

�

	

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsWatsonWilliamsTest

V-753

V_flag will be set to -1 for any error and to zero otherwise.

References
We have found that this method leads to slightly different results depending on the compiler and the
system on which it is implemented:
Burr, E.J., Small sample distributions of the two sample Cramer-von Mises’ W2 and Watson’s U2, Ann. Mah.

Stat. Assoc., 64, 1091-1098, 1964.
Tiku, M.L., Chi-square approximations for the distributions of goodness-of-fit statistics, Biometrica, 52, 630-

633, 1965.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsWatsonWilliamsTest,
StatsWheelerWatsonTest, StatsUSquaredCDF, and StatsInvUSquaredCDF.

StatsWatsonWilliamsTest
StatsWatsonWilliamsTest [flags] [srcWave1, srcWave2, srcWave3,…]
The StatsWatsonWilliamsTest operation performs the Watson-Williams test for two or more sample means.
Output is to the W_WatsonWilliams wave in the current data folder or optionally to a table.

Flags

Details
The StatsWatsonWilliamsTest must have at least two input waves, which contain angles in radians, can be
single or double precision, and can be of any dimensionality; the waves must not contain any NaNs or INFs.
The Watson-Williams H0 postulates the equality of the means from all samples against the simple
inequality alternative. The test computes the sums of the sines and cosines from which it obtains a weighted
r value (rw). According to Mardia, you should use different statistics depending on the size of rw: for
rw>0.95 use the simple F statistic, but for 0.95>rw>0.7 you should use the F-statistic with the K correction
factor. Otherwise you should use the t-statistic. StatsWatsonWilliamsTest computes both the (corrected) F-
statistic and the t-statistic as well as their corresponding critical values.
 V_flag will be set to -1 for any error and to zero otherwise.

References
See, in particular, Section 6.3 of:
Mardia, K.V., Statistics of Directional Data, Academic Press, New York, New York, 1972.
See, in particular, Chapter 27 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsWeibullCDF

V-754

See Also
Chapter III-12, Statistics for a function and operation overview; StatsWatsonUSquaredTest and
StatsWheelerWatsonTest.

StatsWeibullCDF
StatsWeibullCDF(x, m, s, g)
The StatsWeibullCDF function returns the Weibull cumulative distribution function

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsWeibullPDF and
StatsInvWeibullCDF functions.

StatsWeibullPDF
StatsWeibullPDF(x, m, s, g)
The StatsWeibullPDF function returns the Weibull probability distribution function

where m is the location parameter, s is the scale parameter, and g is the shape parameter with x ≥ m and s,
g > 0.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsWeibullCDF and
StatsInvWeibullCDF functions.

StatsWheelerWatsonTest
StatsWheelerWatsonTest [flags] [srcWave1, srcWave2, srcWave3,…]
The StatsWheelerWatsonTest operation performs the nonparametric Wheeler-Watson test for two or more
samples. Output is to the W_WheelerWatson wave in the current data folder or optionally to a table.

Flags

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/T=k Displays results in a table. k specifies the table behavior when it is closed.

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors.

F(x;μ,� ,�) = 1� exp �
x � μ

�

�

��
�

�

�	

�

�

�
�
�
, x � μ �and �� ,� > 0.

f (x;μ,� ,�) =
�

�

x � μ

�

�

��
�

��

� �1

exp �
x � μ

�

�

��
�

��

��

�
	
	

�

�
�
�
,

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsWilcoxonRankTest

V-755

Details
The StatsWatsonWilliamsTest must have at least two input waves, which contain angles in radians (mod
2π), can be single or double precision, and can be of any dimensionality; the waves must not contain any
NaNs or INFs.
The Wheeler-Watson H0 postulates that the samples came from the same population. The extension of the
test to more than two samples is due to Mardia. The Wheeler-Watson test is not valid for data with ties, in
which case you should use Watson’s U2 test.
 V_flag will be set to -1 for any error and to zero otherwise.

References
Mardia, K.V., Statistics of Directional Data, Academic Press, New York, New York, 1972.
See, in particular, Chapter 27 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.
See Also
Chapter III-12, Statistics for a function and operation overview; StatsWatsonUSquaredTest and
StatsWheelerWatsonTest.

StatsWilcoxonRankTest
StatsWilcoxonRankTest [flags] waveA, waveB
The StatsWilcoxonRankTest operation performs the nonparametric Wilcoxon-Mann-Whitney two-sample
rank test or the Wilcoxon Signed Rank test (for paired data) on waveA and waveB. Output is to the
W_WilcoxonTest wave in the current data folder or optionally to a table.
waveA and waveB must not contain NaNs or INFs.

Flags

/ALPH = val Sets the significance level (default val=0.05).

/APRX=m

Approximations may be appropriate for large sample sizes when computation may
take a long time.

/Q No results printed in the history area.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/TAIL=tail

See Setting Bit Parameters on page IV-12 for details about bit settings.
You can perform any combination of tests by adding their corresponding tail values
(/TAIL=7 tests all tail possiblities). Note that H0 changes according to the selected tail.

Sets the approximation method. It computes an exact critical value by default.
m=1: Standard normal approximation with ties (Zar P. 151).
m=2: Improved normal approximation (Zar P. 152).

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

tail is a bitwise parameter that specifies the tails tested.
Bit 0: Lower tail.
Bit 1: Upper tail (default).
Bit 2: Two tail.

StatsWilcoxonRankTest

V-756

Details
The Wilcoxon-Mann-Whitney test combines the two samples and ranks them to compute the statistic U. If
waveA has m points and waveB has n points, then U is given by

with the corresponding statistic U' given by

where Ri is the ranks of data in the ith wave (ranked in ascending order).

The distribution of U is difficult to compute, requiring the number of possible permutations of m elements
of waveA and n elements of waveB that give rise to U values that do not exceed the one computed. The
distribution is computed according to the algorithm developed by Klotz. With increasing sample size one
can avoid the time consuming distribution computation and use a normal approximation instead. Klotz
recommends this approximation for N=m+n~100.
Use /APRX=2 for the best approximation. The two approximations are discussed by Zar.
The Wilcoxon Signed Rank Test, or Wilcoxon Paired-Sample Test, ranks the difference between pairs of
values and computes the sums of the positive ranks (Tp) and the negative ranks (Tm). It calculates Tp and
Tm and P-values for all tail combinations. The P-values are:
P_lower_tail P(Wp<=Tp)
P_upper_tail P(Wp>=Tp)
P_two_tail 2*Min(P_lower_tail,P_upper_tail)
Wp is the generic symbol for the sum of positive ranks for the given number of pairs.
 V_flag will be set to -1 for any error and to zero otherwise.
In both Wilcoxon-Mann-Whitney two-sample rank test and the Wilcoxon Signed Rank test H0 is that the
data in the two input waves are statistically the same.

References
Cheung, Y.K., and J.H. Klotz, The Mann Whitney Wilcoxon distribution using linked lists, Statistica Sinica,

7, 805-813, 1997.
See in particular Chapter 15 of:
Klotz, J.H., Computational Approach to Statistics, <http://www.stat.wisc.edu/~klotz/Book.pdf>.
Streitberg, B., and J. Rohmel, Exact distributions for permutations and rank tests: An introduction to some

recently published algorithms, Statistical Software Newsletter, 12, 10-17, 1986.
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsAngularDistanceTest and
StatsKWTest.

/WSRT Performs the Wilcoxon Signed Rank Test for paired data. The testh computes statistics
Tp and Tm, lower-tail, upper-tail, and two-tail P-values. If the number of samples is
less than 200 it computes exact P-values, otherwise they are computed using the
normal approximation. Do not use /ALPH, /APRX, and /TAIL with this flag.

/Z Ignores errors.

U = mn +
m m +1()

2
� R1,

U ' = nm +
n n +1()

2
� R2.

http://www.stat.wisc.edu/~klotz/Book.pdf

StatsWRCorrelationTest

V-757

StatsWRCorrelationTest
StatsWRCorrelationTest [flags] waveA, waveB
The StatsWRCorrelationTest operation performs a Weighted Rank Correlation test on waveA and waveB,
which contain the ranks of sequential factors. The waves are 1-based, integer ranks of factors in the range
1-2^31.
StatsWRCorrelationTest computes a top-down correlation coefficient using Savage sums as well as the
critical and P-values. Output is to the W_StatsWRCorrelationTest wave in the current data folder or
optionally to a table.

Flags

Details
The StatsWRCorrelationTest input waves must be one-dimensional and have the same length. The waves are 1-
based, integer ranks of factors corresponding to the point number. Ranks may have ties in which case you should
repeat the rank value. For example, if the second and third entries have the same rank you should enter {1,2,2,4}.
H0 stipulates that the same factors are most important in both groups represented by waveA and waveB.
The top-down correlation is the sum of the product of Savage sums for each row:

where n is the number of rows and the Savage sum Si is

and SiA corresponds to the Si value of the rank of the data in row (i-1) of waveA.

References
Iman, R.L., and W.J. Conover, A measure of top-down correlation, Technometrics, 29, 351-357, 1987.
See, in particular, Chapter 19 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsLinearCorrelationTest,
StatsRankCorrelationTest, StatsTopDownCDF, and StatsInvTopDownCDF.

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/Z Ignores errors.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

rTD =

SiASiB � n
i=1

n

�

n � S1

,

Si =
1

jj= i

n

� ,

stopMSTimer

V-758

stopMSTimer
stopMSTimer(timerRefNum)
The stopMSTimer function frees up the timer associated with the timerRefNum and returns the number of
elapsed microseconds since startMSTimer was called for this timer.

Parameters
timerRefNum is the value returned by startMSTimer or the special values -1 or -2. If timerRefNum is not valid
then stopMSTimer returns 0. Passing -1 returns the clock frequency of the timer and, on the Macintosh,
performs a calibration. Passing -2 returns the time in microseconds since the computer was started.

Details
If you want to make sure that all timers are free, call stopMSTimer ten times with timerRefNum equal to 0
through 9. It is OK to stop a timer that you never started.
On the Macintosh, the first call to stopMSTimer will take longer (approximately 0.1 sec. more) because of a
clock frequency calibration. This will also happen when calling with a value of -1. If the extra time for the
first call will cause problems, be sure to force the calibration before your first real timing run.

Examples
How long does an empty loop take on your computer?
Function TestMSTimer()

Variable timerRefNum
Variable microSeconds
Variable n

timerRefNum = startMSTimer
if (timerRefNum == -1)

Abort "All timers are in use"
endif
n=10000
do

n -= 1
while (n > 0)
microSeconds = stopMSTimer(timerRefNum)
Print microSeconds/10000, "microseconds per iteration"

End

See Also
The startMSTimer and ticks functions.

str2num
str2num(str)
The str2num function returns a number represented by the string expression str.

Details
str2num returns NaN if str does not contain the text for a number.
str2num skips leading spaces and tabs and then reads up to the first non-numeric character.

See Also
The char2num, num2char and num2str functions.
The sscanf operation for more complex parsing jobs.

Strconstant
Strconstant ksName="literal string"
The Strconstant declaration defines the string literal string under the name ksName for use by other code,
such as in a switch construct.

See Also
The Constant keyword for numeric types, Constants on page IV-40, and Switch Statements on page IV-34.

String

V-759

String
String [/G] strName [=strExpr][, strName [=strExpr]…]
The String declaration creates string variables and gives them the specified names.

Flags

Details
The string variable is initialized when it is created if you supply the =strExpr initializer. However, when
String is used to declare a function parameter, it is an error to attempt to initialize it.
You can create more than one string variable at a time by separating the names and optional initializers with
commas.
If used in a procedure, the new string is local to that procedure unless the /G (global) flag is used. If used
on the command line, String is equivalent to String/G.
strName can optionally include a data folder path.

StringByKey
StringByKey(keyStr, kwListStr [, keySepStr [, listSepStr [, matchCase]]])
The StringByKey function returns a substring extracted from kwListStr based on the specified key contained
in keyStr. kwListStr should contain keyword-value pairs such as "KEY=value1,KEY2=value2" or
"Key:value1;KEY2:value2", depending on the values for keySepStr and listSepStr.
Use StringByKey to extract a string value from a string containing a "key1:value1;key2: value2;"
style list such as those returned by functions like AxisInfo or TraceInfo.
If the key is not found or if any of the arguments is "" then a zero-length string is returned.
keySepStr, listSepStr, and matchCase are optional; their defaults are ":", ";", and 0 respectively.

Details
keyStr is limited to 255 characters.
kwListStr is searched for an instance of the key string bound by listSepStr on the left and a keySepStr on the
right. The text up to the next listSepStr is returned.
kwListStr is treated as if it ends with a listSepStr even if it doesn’t.
Searches for keySepStr and listSepStr are always case-sensitive. Searches for keyStr in kwListStr are usually
case-insensitive. Setting the optional matchCase parameter to 1 makes the comparisons case sensitive.
Only the first characters of keySepStr and listSepStr are used.
If listSepStr is specified, then keySepStr must also be specified. If matchCase is specified, keySepStr and
listSepStr must be specified.

Examples
Print StringByKey("BKEY", "AKEY:hello;BKEY:nok-nok") // prints "nok-nok"
Print StringByKey("KY", "KX=1;ky=hello", "=") // prints "hello"
Print StringByKey("KY", "KX:1,KY:joey,", ":", ",") // prints "joey"
Print StringByKey("kz", "KZ:1st,kz:2nd,", ":", ",") // prints "1st"
Print StringByKey("kz", "KZ:1st,kz:2nd,", ":", ",", 1)// prints "2nd"

See Also
The NumberByKey, RemoveByKey, ReplaceNumberByKey, ReplaceStringByKey, ItemsInList,
AxisInfo, IgorInfo, SetWindow, and TraceInfo functions.

StringCRC
StringCRC(inCRC,str)
The StringCRC function returns a 32-bit cyclic redundancy check value of bytes in str starting with inCRC.
Pass 0 for inCRC the first time you call StringCRC for a particular stream of bytes as represented by the
string data.

/G Creates a global string. Overwrites any existing string with the same name.

StringFromList

V-760

Pass the last-returned value from StringCRC for inCRC if you are creating a CRC value for a given stream
of bytes through multiple calls to StringCRC.

Details
Polynomial used is:
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1
See crc32.c in the public domain source code for zlib for more information.
See Also
The WaveCRC function.

StringFromList
StringFromList(index, listStr [, listSepStr])
The StringFromList function returns the indexth substring extracted from listStr. listStr should contain items
separated by the listSepStr character, such as "abc;def;".
Use StringFromList to extract an item from a string containing a list of items separated by a single character, such
as those returned by functions like TraceNameList or AnnotationList, or a line from a delimited text file.
index is zero-based (set index to zero to get the first item in the string list).
If index < 0, or index ≥ the number of items in list, or if listStr or listSepStr is "", then a zero-length string is
returned.
listSepStr is optional. When omitted, listSepStr is presumed to be “;”.

Details
listStr is searched for an instance of the key string bound by listSepStr on the left and right. The text between
the bounding listSepStrs is returned.
listStr is treated as if it ends with a listSepStr even if it doesn’t.
Only the first character of listSepStr is used.

Examples
Print StringFromList(0, "wave0;wave1;") // prints "wave0"
Print StringFromList(2, "wave0;wave1;") // prints ""
Print StringFromList(1, "wave0;;wave2") // prints ""
Print StringFromList(2, "fred\twilma\tbarney", "\t") // prints "barney"

A function that applies a unique line style to each trace in the top graph:
Function LineStyler()

String traces= TraceNameList("",";",1) // Traces in top graph
String traceName
Variable i=0
do

traceName= StringFromList(i,traces)
if(strlen(traceName) == 0)

break
endif
ModifyGraph lstyle($traceName)= mod(i,18) // 0 to 17, then repeat
i += 1

while (1) // exit is via break statement
End

A function that converts a string list into a text wave:
Function List2Wave()

String traces= TraceNameList("",";",1) // Traces in top graph
Variable n= ItemsInList(traces)
Make/O/T/N=(n) textWave= StringFromList(p,traces)

End

See Also
The AddListItem, ItemsInList, FindListItem, RemoveFromList, WaveList, WhichListItem, StringByKey,
ListMatch, ControlNameList, TraceNameList, StringList, VariableList, and FunctionList functions.

StringList

V-761

StringList
StringList(matchStr, separatorStr)
The StringList function returns a string containing a list of global string variables selected based on the
matchStr parameter. The string variables listed are all in the current data folder.

Details
For a string variable name to appear in the output string, it must match matchStr. The first character of
separatorStr is appended to each string variable name as the output string is generated.
The name of each string variable is compared to matchStr, which is some combination of normal characters
and the asterisk wildcard character that matches anything. For example:

The list contains names only, without data folder paths. Thus, they are not suitable for accessing string
variables outside the current data folder.
matchStr may begin with the ! character to return windows that do not match the rest of matchStr. For example:

The ! character is considered to be a normal character if it appears anywhere else, but there is no practical
use for it except as the first character of matchStr.

Examples

See Also
See the VariableList and WaveList functions.

StringMatch
StringMatch(string, matchStr)
The StringMatch function tests string for a match to matchStr. You may include asterisks in matchStr as a
wildcard character.
StringMatch returns 1 to indicate a match, 0 for no match or NaN if it ran out of memory.

Details
matchStr is some combination of normal characters and the asterisk wildcard character that matches
anything. For example:

"*" Matches all string variable names

"xyz" Matches name xyz only

"*xyz" Matches names which end with xyz

"xyz*" Matches names which begin with xyz

"*xyz*" Matches names which contain xyz

"abc*xyz" Matches names which begin with abc and end with xyz

"!*xyz" Matches variable names which do not end with xyz

StringList("*",";") Returns a list of all string variables in the current data folder.

StringList("S_*", ";") Returns a list of all string variables in the current data folder
whose names begin with “S_”.

"*" Matches any string.

"xyz" Matches the string “xyz” only.

"*xyz" Matches strings ending with “xyz”, for instance “abcxyz”.

"xyz*" Matches strings beginning with xyz, for instance “xyzpqr”.

"*xyz*" Matches strings containing xyz, for instance “abcxyzpqr”.

"abc*xyz" Matches strings beginning with abc and ending with xyz, for instance “abcpqrxyz”.

strlen

V-762

If matchStr begins with the ! character, a match is indicated if string does not match matchStr. For example:

The ! character is considered to be a normal character if it appears anywhere else.
Note that matching is case-insensitive, so “xyz” also matches “XYZ” or “Xyz”.
Also note that it is impossible to match an asterisk in string: use GrepString instead.
Among other uses, the StringMatch function can be used to build your own versions of the WaveList
function, using NameOfWave and stringmatch to qualify names of waves found by WaveRefIndexedDFR.

See Also
The GrepString, cmpstr, strsearch, SplitString, ListMatch, and ReplaceString functions and the sscanf
operation.

strlen
strlen(str)
The strlen function returns the number of characters in the string expression str.
strlen returns NaN if the str is NULL. A local string variable or a string field in a structure that has never
been set is NULL. NULL is not the same as zero length. Use numtype to test if the result from strlen is NaN.

Examples
String zeroLength = ""
String neverSet
Print strlen(zeroLength), strlen(neverSet)

// Test if a string is null
Variable len = strlen(neverSet) // NaN if neverSet is null
if (numtype(len) == 2) // strlen returned NaN?

Print "neverSet is null"
endif

strsearch
strsearch(str, findThisStr, start [, options])
The strsearch function returns the numeric position of the string expression findThisStr in the string
expression str.

Details
strsearch performs a case-sensitive search.
strsearch returns -1 if findThisStr does not occur in str.
The search starts from the character position in str specified by start; 0 is the first character in str.
strsearch limits start to one less than the length of str, so it is useful to use Inf for start when searching
backwards to ensure that the search is from the end of str.
The optional options parameter is a bitmask specifying the search options:

Examples
String str="This is a test isn't it?"
Print strsearch(str,"test",0) // prints 10
Print strsearch(str,"TEST",0) // prints -1
Print strsearch(UpperStr(str),"TEST",0) // prints 10
Print strsearch(str,"TEST",0,2) // prints 10
Print strsearch(str,"is",0) // prints 2
Print strsearch(str,"is",3) // prints 5
Print strsearch(str,"is",Inf,1) // prints 15

"!*xyz" Matches strings which do not end with xyz.

1: Search backwards from start.

2: Ignore case.

3: Search backwards and ignore case.

strswitch-case-endswitch

V-763

See Also
The sscanf operation and FindListItem and ReplaceString functions.
See Setting Bit Parameters on page IV-12 for details about bit settings.

strswitch-case-endswitch
strswitch(<string expression>)

case <literal><constant>:
<code>
[break]

[default:
<code>]

endswitch
A strswitch-case-endswitch statement evaluates a string expression and compares the result to the case
labels using a case-insensitive comparison. If a case label matches string expression, then execution proceeds
with code following the matching case label. When none of the cases match, execution will continue at the
default label, if it is present, or otherwise the strswitch will be exited with no action taken. Note that
although the break statement is optional, in almost all case statements it will be required for the strswitch
to work correctly.

See Also
Switch Statements on page IV-34, default and break for more usage details.

STRUCT
STRUCT structureName localName
STRUCT is a reference that creates a local reference to a Structure accessed in a user-defined function. When
a Structure is passed to a user function, it can only be passed by reference, so in the declaration within the
function you must use &localStructName to define the function input parameter.

See Also
Structures in Functions on page IV-82 for further information.
See the Structure keyword for creating a Structure definition.

StructGet
StructGet [/B=b] structVar, waveStruct[[colNum]]
StructGet /S [/B=b] structVar, strStruct
The StructGet operation reads binary numeric data from a specified column of a wave or from a string
variable and copies the data into the designated structure variable. The source wave or string will have been
filled beforehand by StructPut.

Parameters
structVar is the name of an existing structure that is to be filled with new data values.
waveStruct is the name of a wave containing binary numeric data that will be used to fill structVar. Use the
optional colNum parameter to specify a column from the structure wave. The contents of waveStruct are
created beforehand using StructPut.
strStruct is the name of a string variable containing binary numeric data. The contents of strStruct are
created beforehand using StructPut.

Flags

/B=b

/S Reads binary data from a string variable, which was set previously with StructPut.

Sets the byte ordering for reading of structure data.
b=0: Reads in native byte order.
b=1: Reads bytes in reversed order.
b=2: Default; reads data in big-endian, high-byte-first order (Motorola).
b=3: Reads data in little-endian, low-byte-first order (Intel).

StructPut

V-764

Details
The data that are stored in waveStruct and strStruct are in binary format so you can not directly view a
meaningful representation of their contents by printing them or viewing the wave in a table. To view the
contents of waveStruct or strStruct you must use StructGet to export them back into a structure and then
retrieve the members.
If colNum is out of bounds it will be clipped to valid values and an error reported. If the row dimension does
not match the structure size, as much data as possible will be copied to the structure.
By default, data are read in big-endian, high-byte order (Motorola). This allows data written on one
platform to be read on the other.

See Also
The StructPut operation for writing structure data to waves or strings.

StructPut
StructPut [/B=b] structVar, waveStruct[[colNum]]
StructPut /S [/B=b] structVar, strStruct
The StructPut operation copies the binary numeric data in a structure variable to a specified column in a wave
or to a string variable. The data in the wave or string can be read out into another structure using StructGet.

Parameters
structVar is the name of a structure from which data will be exported.
waveStruct is the name of an existing wave to which data will be exported. Use the optional colNum
parameter to specify a column in waveStruct to contain the data. The first column of waveStruct will be filled
if colNum is omitted.
strStruct is the name of an existing string variable to which data will be exported.

Flags

Details
The structure to be exported must contain only numeric data in either integer, floating point, or double
precision format. If the structure contains any objects such as String, NVAR, WAVE, etc., then an error will
result at compile time.
If needed, StructPut will redimension waveStruct to unsigned byte format, will set the number of rows to equal
the size of the structure, and set the column dimension large enough to accommodate the size specified by
colNum. You can think of waveStruct as a one-dimensional array of structure contents indexed by colNum
although the wave is actually two-dimensional with each column containing a copy of a separate structure.
By default, data are written in big-endian, high-byte order (Motorola). This allows data written on one
platform to be read on the other.
After you have exported the structure data to waveStruct or strStruct they will contain binary data that you
cannot inspect directly. To view the contents of waveStruct or strStruct, you must use the original structure
or use StructGet to export them into another structure.

See Also
The StructGet operation for reading structure data from waves or strings.

/B=b

/S Writes binary data to a string variable.

Sets the byte ordering for writing of structure data.
b=0: Writes in native byte order.
b=1: Writes bytes in reversed order.
b=2: Default; writes data in big-endian, high-byte-first order (Motorola).
b=3: Writes data in little-endian, low-byte-first order (Intel).

Structure

V-765

Structure
Structure structureName

memType memName [arraySize] [, memName [arraySize]]
…

EndStructure
The Structure keyword introduces a structure definition in a user function. Within the body of the structure
you declare the member type (memType) and the corresponding member name(s) (memName). Each
memName may be declared with an optional array size.

Details
Structure member types (memType) can be any of the following Igor objects: Variable, String, WAVE,
NVAR, SVAR, DFREF, FUNCREF, or STRUCT.
Igor structures also support additional member types, as given in the next table, for compatibility with C
programming structures and disk files.

The Variable and double types are identical although Variable can be also specified as complex (using the
/C flag).
Each structure member may have an optional arraySize specification, which gives the number of elements
contained by the structure member. The array size is an integer number from 1 to 400 except for members
of type STRUCT for which the upper limit is 100.

See Also
Structures in Functions on page IV-82 for further information.
See the STRUCT declaration for creating a local reference to a Structure.

StrVarOrDefault
StrVarOrDefault(pathStr, defStrVal)
The StrVarOrDefault function checks to see if pathStr points to a string variable and if so, it returns its value.
If the string variable does not exist, returns defStrVal instead.

Details
StrVarOrDefault initializes input values of macros so they can remember their state without needing global
variables to be defined first. Numeric variables use the corresponding numeric function, NumVarOrDefault.

Examples
Macro foo(nval,sval)

Variable nval=NumVarOrDefault("root:Packages:mypack:nvalSav",2)
String sval=StrVarOrDefault("root:Packages:mypack:svalSav","Hi")

String dfSav= GetDataFolder(1)
NewDataFolder/O/S root:Packages
NewDataFolder/O/S mypack
Variable/G nvalSav= nval
String/G svalSav= sval

Igor Member Type C Equivalent Byte Size

char signed char 1

uchar unsigned char 1

int16 short int 2

uint16 unsigned short int 2

int32 long int 4

uint32 unsigned long int 4

float float 4

double double 8

StudentA

V-766

SetDataFolder dfSav
End

StudentA
StudentA(t, DegFree)

The StudentA function returns the area from -t to t under the Student’s T distribution having DegFree degrees
of freedom. That is, it returns the probability that a random sample from Student’s T is between -t and t.
Note that this is the bi-tail result. That is, it gives the area from -t to t, rather than the cumulative area from
-∞ to t. It is this latter number that is commonly tabulated- StudentA returns the probability 1-α where the
area from -∞ to t is the probability 1-α/2.
StudentA tests whether a normally-distributed statistic is significantly different from a certain value. You
could use it to test whether an intercept from a line fit is significantly different from zero:
Make/O/N=20 Data=0.5*x+2+gnoise(1) // line with Gaussian noise
Display Data
CurveFit line Data /D
Print "Prob = ", StudentA(W_coef[0]/W_sigma[0], V_npnts-2)

Because the noise is random, the results will differ slightly each time this is tried. When we did it, the result was:
Prob = 0.999898

which indicates that the intercept of the line fit was different from zero with 99.99 per cent probability.

See Also
StatsStudentCDF, StatsStudentPDF, StatsInvStudentCDF

StudentT
StudentT(Prob, DegFree)

The StudentT function returns the t value corresponding to an area Prob under the Student’s T distribution
from -t to t for DegFree degrees of freedom.
Note that this is a bi-tail result, which is what is usually desired. Tabulated values of the Student’s T
distribution are commonly the one-sided result.
StudentT calculates confidence intervals from standard deviations for normally-distributed statistics. For
instance, you can use it to calculate a confidence interval for the coefficients from a curve fit:
Make/O/N=20 Data=0.5*x+2+gnoise(1) // line with Gaussian noise
Display Data
CurveFit line Data /D
print "intercept = ", W_coef[0], "±", W_sigma[0]*StudentT(0.95, V_npnts-2)
print "slope = ", W_coef[1], "±", W_sigma[1]*StudentT(0.95, V_npnts-2)

See Also
StatsStudentCDF, StatsStudentPDF, StatsInvStudentCDF

Submenu
Submenu menuNameStr
The Submenu keyword introduces a submenu definition. It is used inside a Menu definition. See Chapter
IV-5, User-Defined Menus for further information.

Note: This function is deprecated. New code should use the more accurate StatsStudentCDF.

Note: This function is deprecated. New code should use the more accurate
StatsInvStudentCDF.

sum

V-767

sum
sum(waveName [, x1, x2])
The sum function returns the sum of the wave elements for points from x=x1 to x=x2.

Details
The X scaling of the wave is used only to locate the points nearest to x=x1 and x=x2. To use point indexing,
replace x1 with pnt2x(waveName,pointNumber1), and a similar expression for x2.
If x1 and x2 are not specified, they default to -∞ and +∞, respectively.
If the points nearest to x1 or x2 are not within the point range of 0 to numpnts(waveName)-1, sum limits them
to the nearest of point 0 or point numpnts(waveName)-1.
If any values in the point range are NaN, sum returns NaN.

Examples
Make/O/N=100 data;SetScale/I x 0,Pi,data
data=sin(x)
Print sum(data,0,Pi) // the entire point range, and no more
Print sum(data) // same as -infinity to +infinity
Print sum(data,Inf,-Inf) // +infinity to -infinity

The following is printed to the history area:
•Print sum(data,0,Pi) // the entire point range, and no more

63.0201
•Print sum(data) // same as -infinity to +infinity

63.0201
•Print sum(data,Inf,-Inf) // +infinity to -infinity

63.0201

See Also
mean and area functions.

SVAR
SVAR [/Z] localName [= pathToStr][, localName1 [= pathToStr1]]…
SVAR is a declaration that creates a local reference to a global string variable accessed in a user-defined
function.
The SVAR reference is required when you access a global string variable in a function. At compile time, the
SVAR statement specifies a local name referencing a global string variable. At runtime, it makes the
connection between the local name and the actual global variable. For this connection to be made, the global
string variable must exist when the SVAR statement is executed.
When localName is the same as the global string variable name and you want to reference a global variable
in the current data folder, you can omit pathToStr. Prior to Igor Pro 4.0, pathToStr was always required.
pathToStr can be a full literal path (e.g., root:FolderA:var0), a partial literal path (e.g., :FolderA:var0) or $
followed by string variable containing a computed path (see Converting a String into a Reference Using
$ on page IV-48).
You can also use a data folder reference or the /SDFR flag to specify the location of the string variable if it
is not in the current data folder. See Data Folder References on page IV-62 and The /SDFR Flag on page
IV-64 for details.
If the global variable may not exist at runtime, use the /Z flag and call SVAR_Exists before accessing the
variable. The /Z flag prevents Igor from flagging a missing global variable as an error and dropping into
the Igor debugger. For example:
SVAR/Z nv=<pathToPossiblyMissingStringVariable>
if(SVAR_Exists(sv))

<do something with sv>
endif

Note that to create a global string variable, you use the String/G operation.

SVAR_Exists

V-768

Flags

See Also
SVAR_Exists function.
Accessing Global Variables and Waves on page IV-50.
Converting a String into a Reference Using $ on page IV-48.

SVAR_Exists
SVAR_Exists(name)
The SVAR_Exists function returns 1 if the specified SVAR reference is valid or 0 if not. It can be used only
in user-defined functions.
For example, in a user function you can test if a global string variable exists like this:
SVAR /Z str1 = gStr1 // /Z prevents debugger from flagging bad SVAR
if (!SVAR_Exists(str1)) // No such global string variable?

String/G gStr1 = "" // Create and initialize it
endif

See Also
WaveExists, NVAR_Exists, and Accessing Global Variables and Waves on page IV-50.

switch-case-endswitch
switch(<numeric expression>)

case <literal><constant>:
<code>
[break]

[default:
<code>]

endswitch
A switch-case-endswitch statement evaluates a numerical expression. If a case label matches numerical
expression, then execution proceeds with code following the matching case label. When no cases match,
execution continues at the default label, if present, or otherwise the switch exits with no action taken. Note
that although the break statement is optional, in almost all case statements it is required for the switch to
work correctly.

See Also
Switch Statements on page IV-34, default and break for more usage details.

t
t
The t function returns the T value for the current chunk of the destination wave when used in a
multidimensional wave assignment statement. T is the scaled chunk index while s is the chunk index itself.

Details
Unlike x, outside of a wave assignment statement, t does not act like a normal variable.

See Also
Waveform Arithmetic and Assignments on page II-94.
For other dimensions, the p, q, r, and s functions.
For scaled dimension indices, the x, y, and z functions.

/Z An SVAR reference to a null string variable does not cause an error or a debugger
break.

TabControl

V-769

TabControl
TabControl [/Z] ctrlName [keyword = value [, keyword = value …]]
The TabControl operation creates tab panels for controls.
For information about the state or status of the control, use the ControlInfo operation.

Parameters
ctrlName is the name of the TabControl to be created or changed.
The following keyword=value parameters are supported:

appearance={kind [, platform]}

Sets the appearance of the control. platform is optional. Both parameters are
names, not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
See DefaultGUIControls Default Fonts and Sizes for how enclosed controls are
affected by native TabControl appearance.
See Button for more appearance details.

disable=d

fColor=(r,g,b) Sets the initial color of the tab labels. r, g, and b can range from 0 to 65535.
To further change the color of the tab labels text, use escape sequences in the text
specified by the tabLabel keyword.
fColor defaults to black (0,0,0).

font= "fontName" Sets the font used for tabs, e.g., font="Helvetica".

fsize= s Sets the font size for tabs.

fstyle=fs

labelBack=(r,g,b) or 0 Sets fill color for current tab and the interior. r, g, and b are integers from 0 to
65535. If not set, then interior is transparent and the current tab is filled with the
window background. Note that if you use a fill color, draw objects can not be used
because they will be covered up.

noproc Specifies that no function is to run when clicking a tab.

pos={left,top} Sets the position of the control in pixels.

pos+={dx,dy} Offsets the position of the control in pixels.

proc=procName Specifies the function to run when the tab is pressed. Your function must hide and
show other controls as desired. The TabControl does not do this automatically.

size={width,height} Sets TabControl size in pixels.

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Draw in gray state; disable control action.

fs is a bitwise parameter with each bit controlling one aspect of the font style
as follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold.
Bit 1: Italic.
Bit 2: Underline.
Bit 3: Outline (Macintosh only).
Bit 4: Shadow (Macintosh only).

TabControl

V-770

Flags

Details
The action procedure for a TabControl can use a predefined structure WMTabControlAction as a
parameter to the function. The control will use this more efficient method when the function properly
matches the structure prototype for a TabControl, otherwise it will use the old-style method.
A TabControl action procedure using a structure has the format:
Function newActionProcName(TC_Struct) : TabControl

STRUCT WMTabControlAction &TC_Struct
…

End

The “: TabControl” designation tells Igor to include this procedure in the Procedure pop-up menu in
the Tab Control dialog.
For a TabControl, the WMTabControlAction structure has members as described in the following table:

tabLabel(n)=lbl Sets nth tab label to lbl. Set the label of the last tab to "" to reduce the number of tabs.
You can use escape sequences, as with the TextBox operation, in lbl to change text
color and style. For example:
TabControl tab0 tabLabel(1)="\K(0,0,65535)\f01Bold Blue Text"

userdata(UDName)=UDStr

Sets the unnamed user data to UDStr. Use the optional (UDName) to specify a
named user data to create.

userdata(UDName)+=UDStr

Appends UDStr to the current unnamed user data. Use the optional (UDName) to
append to the named UDStr.

value=v Sets current tab number. Tabs count from 0.

win=winName Specifies which window or subwindow contains the named control. If not given,
then the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page
III-97 for details on forming the window hierarchy.

/Z No error reporting.

WMTabControlAction Structure Members

Member Description

char ctrlName[MAX_OBJ_NAME+1] Control name.

char win[MAX_WIN_PATH+1] Host (sub)window.

STRUCT Rect winRect Local coordinates of host window.

STRUCT Rect ctrlRect Enclosing rectangle of the control.

STRUCT Point mouseLoc Mouse location.

Int32 eventCode Event that executed the procedure.

Int32 eventMod Bitfield of modifiers. See Control Structure eventMod Field on
page III-387.

eventCode Event
-1 Control being killed
2 Mouse up

TabControl

V-771

Action functions should respond only to documented eventCode values. Other event codes may be added
along with more fields. Although the return value is not currently used, action functions should always
return zero.
The constants used to specify the size of structure char arrays are internal to Igor Pro and may change.
When clicking a TabControl with the selector arrow, click in the title region. The control will not be selected if
you click in the body. This is to make it easier to select controls in the body rather than the TabControl itself.
TabControls may be used to simplify complex control panels. If you are not already familiar with the concept of
a TabControl, see Modifying Axes on page II-266 for an illustration of tabs as used in the Modify Axis dialog.
Designing a TabControl with all the accompanying interior controls can be somewhat difficult. Here is a
suggested technique:
First, create and set the size and label for one tab. Then create the various controls for this first tab. Before
starting on the 2nd tab, create the TabControl’s procedure so that it can be used to hide the first set of
controls. Then add the 2nd tab, click it to run your procedure and start adding controls for this new tab.
When done, update your procedure so the new controls will be hidden when you start on the third tab. You
may find it useful to create a recreation macro of your panel to get a convenient listing of the controls. Here
is an example:
(The commands given include size and position information obtained by manual adjustment.)
1. Create a panel and a TabControl:
NewPanel /W=(150,50,478,250)
ShowTools
TabControl foo,pos={29,38},size={241,142},tabLabel(0)="first tab",value=0

2. Add a few controls to the interior of the TabControl:
Button button0,pos={52,72},size={50,20},title="First"
CheckBox check0,pos={52,105},size={102,15},title="Check first",value=0

3. Write a function:
Function fooProc(name,tab)

String name
Variable tab

Button button0,disable= (tab!=0)
CheckBox check0,disable= (tab!=0)

End

4. Set proc and add a new tab:
TabControl foo,proc=fooProc,tabLabel(1)="second tab"

5. Click the second tab (which hides the first tab’s controls) and then add new controls like so:
Button button1,pos={58,73},size={50,20},title="Second"
CheckBox check1,pos={60,105},size={114,15},title="Check second",value= 0

6. Finally, change fooProc by adding these lines at the end:
Button button1,disable= (tab!=1)
CheckBox check1,disable= (tab!=1)

See Also
The ControlInfo operation for information about the control along with the ModifyControl and
ModifyControlList operations. Chapter III-14, Controls and Control Panels, for details about control
panels and controls. The GetUserData operation for retrieving named user data.

String userData Primary (unnamed) user data. If this changes, it is written back
automatically.

Int32 blockReentry Prevents reentry of control action procedure. See Control
Structure blockReentry Field on page III-388.

Int32 tab Tab number.

WMTabControlAction Structure Members

Member Description

Table

V-772

Table
Table
Table is a procedure subtype keyword that identifies a macro as being a table recreation macro. It is
automatically used when Igor creates a window recreation macro for a table. See Procedure Subtypes on
page IV-183 and Killing and Recreating a Table on page II-199 for details.

TableStyle
TableStyle
TableStyle is a procedure subtype keyword that puts the name of the procedure in the Style pop-up menu
of the New Table dialog and in the Table Macros menu. See Table Style Macros on page II-231 for details.

TableInfo
TableInfo(winNameStr, itemIndex)
The TableInfo function returns a string containing a semicolon-separated list of keywords and values that
describe a column in a table or overall properties of the table. The main purpose of TableInfo is to allow an
advanced Igor programmer to write a procedure which formats or arranges a table or which manipulates
the table selection.

Parameters
winNameStr is the name of an existing table window or "" to refer to the top table.
itemIndex is one of the following:

TableInfo returns "" in the following situations:
• winNameStr is "" and there are no table windows.
• winNameStr is a name but there are no table windows with that name.
• itemIndex not -2 and is out of range for an existing column.

Details
If itemIndex is -2, the returned string describes the table as a whole and contains the following keywords,
with a semicolon after each keyword-value pair.

itemIndex Value Returns

-2 Information about the table as a whole.

-1 Information about the Point column

≥0 Information about a column other than the Point column. 0 refers to the first column
after the Point column, 1 refers to the second column after the Point column, and so on.

Keyword Information Following Keyword

TABLENAME The name of the table.

HOST The host specification of the table’s host window if it is a subwindow or "" if
it is a top-level table window.

ROWS Number of used rows in the table.

COLUMNS Number of used columns in the table including the Point column.

SELECTION A description of the table selection as you would specify it when invoking the
ModifyTable operation’s selection keyword.

FIRSTCELL An identification of the first visible data cell in the top/left corner of the table
in row-column format. The first data cell is at location 0, 0.

TableInfo

V-773

If itemIndex is -1 up to but not including the number of used columns to the right of the Point column, the
returned string describes the specified column and contains the following keywords, with a semicolon after
each keyword-value pair.

LASTCELL An identification of the last visible data cell in the bottom/right corner of the
table in row-column format.

TARGETCELL An identification of the target (highlighted) data cell in row-column format.

ENTERING 1 if an entry has been started in the entry line, 0 if not.

Keyword Information Following Keyword

TABLENAME The name of the table.

HOST The host specification of the table’s host window if it is a subwindow or "" if
it is a top-level table window.

COLUMNNAME Name of the column as you would specify it to the Edit operation if you were
creating a table showing just the column of interest.

TYPE Column’s type which will be one of the following: Unused, Point, Index, Label,
Data, RealData, ImagData. “Index” identifies a index column such as the X
values of a wave. “Label” identifies a column of dimension labels. “Data”
identifies a data column of a scalar wave. RealData and ImagData identify a
real or imaginary column of a complex wave.

INDEX Column’s position. -1 refers to the Point column, 0 to the first data column, and
so on.

DATATYPE Numeric data type of the wave or zero for text waves. See WaveType for a
definition of data type codes.

WAVE A full data folder path to the wave displayed in the column or "" for the Point
column.

COLUMNS The total number of columns in the table from the wave for the column for which
you are getting information. This can be used to skip over all of the columns of
a multidimensional wave.

HDIM The wave dimension displayed horizontally as you move from one column to
the next. 0 means rows, 1 means columns, 2 means layers, 3 means chunks.

VDIM The wave dimension displayed vertically in the column. 0 means rows, 1 means
columns, 2 means layers, 3 means chunks.

TITLE As specified for the ModifyTable operation’s title keyword.

WIDTH Column’s width in points.

FORMAT As specified for the ModifyTable operation’s format keyword.

DIGITS As specified for the ModifyTable operation’s digits keyword.

SIGDIGITS As specified for the ModifyTable operation’s sigDigits keyword.

TRAILINGZEROS As specified for the ModifyTable operation’s trailingZeros keyword.

SHOWFRACSECONDS As specified for the ModifyTable operation’s showFracSeconds keyword.

FONT The name of the column’s font.

SIZE Column’s font size.

STYLE As specified for the ModifyTable operation’s style keyword.

Keyword Information Following Keyword

Tag

V-774

Examples
This example makes the table’s target cell advance by one position within the range of selected cells each time
it is called. To try it, create a table, select a range of cells and then run the function using the Macros menu.
Menu "Macros"

"Test/1", /Q, AdvanceTargetCell("")
End

Function AdvanceTargetCell(tableName)
String tableName // Name of table or "" for top table.

String info = TableInfo(tableName, -2)
if (strlen(info) == 0)

return -1 // No such table
endif

String selectionInfo
selectionInfo = StringByKey("SELECTION", info)

Variable fRow, fCol, lRow, lCol, tRow, tCol
sscanf selectionInfo, "%d,%d,%d,%d,%d,%d", fRow, fCol, lRow, lCol, tRow, tCol

tCol += 1
if (tCol > lCol)

tCol = fCol
tRow += 1
if (tRow > lRow)

tRow = fRow
endif

endif

ModifyTable selection=(-1, -1, -1, -1, tRow, tCol)
End

See Also
The ModifyTable operation.

Tag
Tag [flags] [traceOrAxisName, xAttach [, textStr]]
The Tag operation puts a tag on the target or named graph window or subwindow. A tag is an annotation
that is attached to a particular point on a trace, image, waterfall plot, or axis in a graph.

Parameters
traceOrAxisName is an optional trace or axis name. A trace name can be optionally followed by the #
character and an instance number in order to distinguish multiple instances of the same wave in a graph. It
identifies the trace or image to which the tag is to be attached. An axis name can be one of the standard axis
names (Bottom, Top, Left, or Right) or a user-defined custom axis name.
A string containing traceOrAxisName must be used with the $ operator to specify traceOrAxisName.
xAttach is the X value of the point on the trace to which the tag is to be attached. For a multidimensional
image, it is the linear index into the matrix array. For an axis, xAttach can be the X or Y point depending on
the particular axis to which the tag is attached; specifying NaN for xAttach will center the tag on the axis.
textStr is the text that is to appear in the tag.

ALIGNMENT 0=left, 1=center, 2=right.

RGB The column’s color in R,G,B format.

ELEMENTS As specified for the ModifyTable operation’s elements keyword.

Keyword Information Following Keyword

Tag

V-775

Flags

/A=anchorCode

The anchor point is on the tag itself. Any line or arrow drawn from the tag to the wave
starts at the tag’s anchor point. The anchor point also determines the precise spot on
the tag which represents its position.

/AO=ao Sets the text's auto-orientation mode. A non-zero a0 value overrides the /O value.
/AO is for trace tags only. Setting /AO for any other kind of annotation has no effect.
An auto-oriented tag's text rotates whenever it is redrawn, usually when the
underlying data changes, the graph is resized, or when the tag is attached to a new
point.

/B=(r,g,b) Sets color of the tag’s background. r, g, and b specify the amount of red, green, and
blue as an integer from 0 to 65535.

/B=b

/C Changes the existing tag.

/F=frame

/G=(r,g,b) Sets color of the text in the tag. r, g, and b specify the amount of red, green, and blue
as an integer from 0 to 65535.

/H=legendSymbolWidth

legendSymbolWidth sets width of the legend symbol (the sample line or marker) in
points. Use 0 for the default, automatic width.

Specifies position of tag anchor point. anchorCode is a literal, not a string.
LT left top
LC left center
LB left bottom
MT middle top
MC middle center (default)
MB middle bottom
RT right top
RC right center
RB right bottom

The values for ao are:
ao=0: No auto-orientation. Use the /O value (default).
ao=1: Tangent to the trace line at the attachment point.
ao=2: Tangent to the trace line, snaps to vertical or horizontal if within 2

degrees of vertical or horizontal.
ao=3: Perpendicular to the trace line.
ao=4: Perpendicular to the trace line, snaps to vertical or horizontal if

within 2 degrees of vertical or horizontal.

Controls the tag background.
b=0: Opaque background.
b=1: Transparent background.
b=2: Same background as the graph plot area background.
b=3: Same background as the window background.

Controls the tag frame.
frame=0: No frame.
frame=1: Underline frame.
frame=2: Box frame.

Tag

V-776

/I=i

/K Kills existing tag.

/L=line

/LS= linespace Specifies a tweak to the normal line spacing where linespace is points of extra (plus or
minus) line spacing. For negative values, a blank line may be necessary to avoid
clipping the bottom of the last line.

/M[=sameSize] /M or /M=1 specifies that legend markers should be the same size as the marker in the
graph.
/M=0 turns same-size mode off so that the size of the marker in the legend is based on
text size.

/N=name Specifies name of the tag to create or change.

/O=rot Sets the text's rotation. rot is in (integer) degrees, counterclockwise and must be a
number from -360 to 360.
0 is normal horizontal left-to-right text, 90 is vertical bottom-to-top text.
If the tag is attached to a trace (not an image or axis), any non-zero /AO value will
overwrite this rotation value.

/P=tipOffset Sets the offset from the tip of a tag’s line or arrow to the point on the wave that it is
tagging. tipOffset is a positive number from 0 to 200 in points. If tipOffset=0 (default),
it automatically chooses an appropriate offset.

/Q[=contourInstance] Associates a tag with a particular contour level trace in a graph recreation macro. Of
interest mainly to hard-core programmers.

When “=contourInstance” is present, /Q associates the tag with the contour wave. Igor
will feel free to change or delete the tag, as appropriate, when it recalculates the
contour (because you changed the contour data or appearance, the graph size or the
axis range). contourInstance is a contour instance name, such as zWave or zWave#1 if
you have the same wave contoured twice in the graph.

/Q by itself, with “=contourInstance” not present, disassociates the tag from the contour
wave. Igor will no longer modify or delete the tag (unless the contour level to which
it is attached is deleted). If you manually tweak a contour label, using the Modify
Annotation dialog, Igor uses this flag.

/R=newName Renames the tag.

/S=style

Controls the tag visibility.
i=1: Tag will be invisible if it is “off screen”. “Off screen” means that its

attachment point or any part of the tag’s text is off screen. This is
esthetically pleasing but gives you nothing to grab if you want to
drag the tag back on screen.

i=0: Tag will always be visible. If it is “off screen”, it appears at the
extreme edge of the graph.

Controls the line attaching the tag to the tagged point.
line=0: No line from tag to attachment point.
line=1: Line connecting tag to attachment point.
line=2: Line with arrow pointing from tag to attachment point.
line=3: Line with arrow pointing from attachment point to tag.
line=4: Line with arrows at both ends.

Controls the tag frame style.
style=0: Single frame.
style=1: Double frame.
style=2: Triple frame.
style=3: Shadow frame.

Tag

V-777

Details
If the /C flag is used, it must be the first flag in the command and must be followed immediately by the
/N=name flag.
If the /K flag is used, it must be the first flag in the command and must be followed immediately by the
/N=name flag with no further flags or parameters.
traceOrAxisName, xAttach, and textStr are all optional. If traceOrAxisName is specified, then xAttach must be
specified, and vice versa. textStr may be specified only if traceOrAxisName and xAttach are specified.
This syntax allows changes to the tag to be made through the flags parameters without needing to respecify
the other parameters. Similarly, the tag’s attachment point can be changed without needing to respecify the
textStr parameter.
xAttach is in terms of the wave’s X scaling. If traceOrAxisName is displayed as an XY pair, we recommend
that you use “point scaling” for the waves, so that xAttach can be a point number (because xAttach will not
be an X axis value).
A tag can have at most 100 lines.

/T=tabSpec tabSpec is a single number in points, such as /T=72, for evenly spaced tabs or a list of
tab stops in points such as /T={50, 150, 225}.

/TL=extLineSpec Specifies extended tag line parameters similar to the SetDrawEnv arrow settings.
extLineSpec = {keyword = value,…} or zero to turn off all extended specifications.

/W=winName Operates on the named graph window or subwindow. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/V=vis

/X=xOffset Distance from point to tag as percentage of graph width. For axis tags, the offsets are
proportional to the size of the text used for the axis labels.

/Y=yOffset Distance from point to tag as percentage of graph height. For axis tags, the offsets are
proportional to the size of the text used for the axis labels.

/Z=freeze

Valid keyword-value pairs are:
len=l Length of arrow head in points (l=0 for auto).
fat=f Width to length ratio of arrow head (default is 0.5 same as f=0).
style=s Sets barb side mode (see SetDrawEnv astyle for values).
shar =s Sets sharpness between -1 and 1 (default is 0; blunt).
frame=f Sets frame thickness in outline mode.
lThick=l Sets line thickness in points (default is 0.5 for l=0).
lineRGB=(r,g,b) Sets color for lines. Default is all zeros (black); the same as the tag

frame.
dash=d Specifies dash pattern number between 0 and 17 (see

SetDashPattern for patterns).

Controls annotation visibility.
vis=0: Invisible annotation; not selectable. The annotation is still listed

in AnnotationList.
vis=1: Visible annotation (default).

Controls freezing of tag position.
freeze=1: Freezes tag position (you can’t move it with the mouse).
freeze=0: Unfreezes it.

Tag

V-778

Annotation Escape Codes
textStr can contain the following escape codes which affect subsequent characters in string.

The characters “<??>” in a tag indicate that you specified an invalid escape code or used a font that is not
available.
The escape codes are:

textStr can also contain escape codes to manipulate text info variables (see About Text Info Variables on
page III-66).

Note: These escape codes contain backslashes, which must themselves be preceded with
another backslash in literal text. These are automatically inserted by the Add Annotation
dialog, but must be manually added when writing a procedure or in the command line.
See the discussion in the TextBox operation about backslashes in textStr.

\B Use subscript (smaller type).

\F'fontName' Use specified font (e.g., \F'Helvetica').

\fdd

For example, bold underline is 20 + 22 = 1 + 4 = 5. See Setting Bit Parameters on page
IV-12 for details about bit settings.

\JR Right aligned text.

\JC Center aligned text.

\JL Left aligned text.

\K(r,g,b) Use specified color for text. r, g, and b are integers from 0 to 65535.

\M Use normal (main) script (reverts to main line and size).

\$PICT$name=pictName$/PICT$

Inserts specified picture. pictName can be a ProcPict or the name of a picture as listed
in the Pictures dialog (Misc menu). This is useful for inserting fancy math expressions
created by another program. Available in new graphics only (see Graphics
Technology on page III-423).

\S Use superscript (uses smaller type).

\sa+dd Adds extra space above line. dd is two digits in units of half points (1/144 inch). Can
go anywhere in a line.

\sa-dd Reduces space above line. dd is two digits in units of half points (1/144 inch). Can go
anywhere in a line.

\sb+dd Adds extra space below line. dd is two digits in units of half points (1/144 inch). Can
go anywhere in a line.

\sb-dd Reduces space below line. dd is two digits in units of half points (1/144 inch). Can go
anywhere in a line.

\Znn Use font size nn (nn must be exactly two digits).

\Zrnnn nnn is a 3 digit percentage by which to change the current font size. (nnn must be
exactly three digits).

dd is a bitwise parameter with each bit controlling one aspect of the font style as
follows:
Bit 0: Bold.
Bit 1: Italic.
Bit 2: Underline.
Bit 3: Outline (Macintosh only).
Bit 4: Shadow (Macintosh only).

Tag

V-779

When specifying an axis tag, you can also use additional dynamic escape codes that are available with the
Label operation.
textStr can also contain the following escape codes which insert dynamically computed substrings:

Dynamically evaluated text (dynText) may contain numeric and string expressions. Igor automatically
reevaluates dynText when a numeric or string variable or wave referenced in dynText changes.

dynText can take two forms, an easy one for a single numeric expression and a more complex form that
provides precise control over the formatting of the result.
The easy form is:
\{numeric-expression}

This evaluates the expression and prints with generic ("%g") formatting.
The full form is:
\{formatStr, list-of-numeric-or-string-expressions}

formatStr and list-of-numeric-or-string-expressions are treated as for printf.
As an aid in typing the expressions, Igor considers carriage returns between the braces to be equivalent to
spaces. Rather than typing (in the Add Annotation dialog):
\{"twice K0 is %g, and today is %s",2*K0,date()}

you can type:
\{

"twice K0 is %g, and today is %s",
2*K0,
date()

}

Carriage returns can be typed directly in the Add Annotations dialog, or they can be typed as “\r” in a
macro, function or the command line. Since \r is not a tag escape sequence, only one backslash is needed.
See the examples.

Examples
Tag/C/N=t1/X=25/Y=50

moves the tag named t1 to the location defined by X=25 and Y=50.
Tag/C/N=t1 wave1, 50

moves the tag named t1 to wave1 at x=50.
Tag/N=t2 wave1, 50,"\\JC\\{numpnts(wave1)} points\rin this wave"

creates a new tag on wave1 that looks like this:

Tag w,0,"\\{\"%g is first, %g is last\"\rw[0],w[numpnts(w)-1]}"

creates a new tag on w that looks like this:

\ON Inserts name of wave to which tag is attached.

\On Inserts name of trace and its instance number, if greater than 0.

\OP Inserts point number to which tag is attached.

\OX Inserts X value of point to which tag is attached (xAttach).

\OY Inserts Y value of point to which tag is attached.

\OZ Inserts Z value of point to which tag is attached for contour level traces. Inserts NaN
for other traces.

\{dynText} dynText is dynamically evaluated text, which is discussed below.

Note: When used in dynText expressions, user-defined numeric and string variables in macros
or functions must be declared as global variables for the expression to evaluate correctly.

TagVal

V-780

Observe how the “\r” in the textStr breaks the annotation text by examining the Modify Annotation dialog:

Following is an example of various ways in which axis tags can be used:
Make/O jack=sin(x/8)
SetScale x,0,14e9,"y" jack
Display jack
Label bottom "\\u#2" // turn off default axis label
ModifyGraph axOffset(bottom)=1.16667 // make room for tag (manual adustment)
Tag/N=text0/F=0/A=MT/X=0.20/Y=-4.29/L=0 bottom, Nan, "\\JCTime (\\U)\r2nd line"

// now a few "important location" tags...
Tag/N=text1/F=0/A=LB/X=1.20/Y=3.00 bottom, 0, "Big Bang"
Tag/N=text2/F=0/A=MB/X=0.00/Y=2.86 bottom, 8000000000, "Earth formed"
Tag/N=text3/F=0/A=RB/X=-0.80/Y=4.71 bottom, 13040000000, "Dinosaurs ruled"

See Also
TagVal, TagWaveRef, Legend, TextBox, AppendText, AnnotationInfo, AnnotationList.
See About Text Info Variables on page III-66 for textStr escape codes that manipulate text info variables
and see the discussion in the TextBox operation about backslashes in textStr. The AppendText operation.
For an explanation of graphing XY pairs, and X versus point scaling, see Chapter II-5, Waves.
For additional axis tag escape codes see the Label operation and Axis Labels on page II-284.
Trace Names on page II-243, Programming With Trace Names on page IV-72.

TagVal
TagVal(code)
TagVal is a very specialized function that is only valid when called from within the text of a tag as part of
a \{} dynamic text escape sequence. It returns a number reflecting some property of the tag and helps you
to display information about the tagged wave. The property is selected by the code parameter:

Because TagVal returns a numeric value, the result can be formatted any way you wish using the printf
formatting codes. In contrast, the \O codes insert preformatted text, and you don’t have control over the format.
TagVal is sometimes used in conjunction with the TagWaveRef function. For example, you might write a
user-defined function that calculates a value as a function of a wave and a point number.

code Return Value

0 Similar to \OP, returns the tag attach point number.

1 Similar to \OX, returns the X coordinate of tag attachment in the graph. When a tag is attached to
an XY pair of traces, the X coordinate will most likely be different than the tag’s X scaling
attachment value specified in the Tag command.

2 Similar to \OY, returns the Y coordinate of tag attachment in the graph or the Y axis value in
a Waterfall plot.

3 Similar to \OZ, returns the Z coordinate of tag attachment in a contour, image, or Waterfall
plot.

4 Similar to \Ox, returns the trace x offset.

5 Similar to \Oy, returns the trace y offset.

6 Returns the X muloffset (with the not set value 0 translated to 1).

7 Returns the Y muloffset (with the not set value 0 translated to 1).

TagWaveRef

V-781

Examples
Tag wave0, 0, "Y value is \\{\"%g\",TagVal(2)}"
Tag wave0, 0, "Y value is \\{\"%g\",TagWaveRef()[TagVal(0)]}"
Tag wave0, 0, "Y value is \\OY"

These examples all produce identical results.

See Also
The Tag operation, the TagWaveRef function.
For a discussion of wave references, see Wave Reference Functions on page IV-177.

TagWaveRef
TagWaveRef()
TagWaveRef is a very specialized function that is only valid when called from within the text of a tag as
part of a \{} dynamic text escape sequence. It returns a wave reference to the wave that the tag is on and
helps you to display information about the tagged wave. It is often used in conjunction with the TagVal
function. You can pass the result of TagWaveRef to any function that takes a Wave parameter.

Examples
Show the name of the data folder containing the tagged wave:
Tag wave0, 0,"\\ON is in \\{\"%s\",GetWavesDataFolder(TagWaveRef(),0)}"

See Also
The Tag operation, the TagVal function
For a discussion of wave references, see Wave Reference Functions on page IV-177.

tan
tan(angle)
The tan function returns the tangent of angle which is in radians.
In complex expressions, angle is complex, and tan(angle) returns a complex value:

See Also
atan, atan2, sin, cos, sec, csc, cot

tanh
tanh(num)
The tanh function returns the hyperbolic tangent of num:

In complex expressions, num is complex, and tanh(num) returns a complex value.

See Also
sinh, cosh, coth

tan(x + iy) =
sin(x+ iy)

cos(x + iy)
=

sin(2x)+ isinh(2y)

cos(2x)+ cosh(2y)
.

tanh(x) =
ex � e� x

ex + e� x
.

TextBox

V-782

TextBox
TextBox [flags] [textStr]
The TextBox operation puts a textbox on the target or named graph window. A textbox is an annotation that
is not associated with any particular trace.

Parameters
textStr is the text that is to appear in the textbox. It is optional.

Flags

/A=anchorCode

anchorCode is a literal, not a string.
For interior textboxes, the anchor point is on the rectangular edge of the plot area of
the graph window (where the left, bottom, right, and top axes are drawn).
For exterior textboxes, the anchor point is on the rectangular edge of the entire graph
window.

/B=(r,g,b) Sets the color of the tag’s background. r, g, and b specify the amount of red, green, and
blue as an integer from 0 to 65535.

/B=b

/C Changes existing textbox.

/D={thickMult [, shadowThick [, haloThick]]}

thickMult multiplies the normal frame thickness of a text-box. The thickness may be
set using just /D=thickMult.
shadowThick, if present, overrides Igor’s normal shadow thickness. It is in units of
fractional points.

haloThick governs the annotation’s halo thickness (a surrounding band of the
annotation’s background color), which can be -1 to 10 points wide.

The default haloThick value is -1, which preserves the behavior of previous versions of
Igor where the halo of all annotations was set by the global variable
root:V_TBBufZone. Any negative value of haloThick (-0.5, for example) will be
overridden by V_TBBufZone if it exists, otherwise the absolute value of haloThick will
be used. A zero or positive value overrides V_TBBufZone.

Any of the parameters may be missing. To set haloThick to 0 without changing other
parameters, use /D={,,0}.

Specifies position of textbox anchor point.

anchorCode Position anchorCode Position

LT left top RT right top

LC left center RC right center

LB left bottom RB right bottom

MT middle top

MC middle center

MB middle bottom

Controls the textbox background.
b=0: Opaque background.
b=1: Transparent background.
b=2: Same background as the graph plot area background.
b=3: Same background as the window background.

TextBox

V-783

/E[=exterior] /E or /E=1 forces textbox (or legend) to be exterior to graph (provided anchorCode is
not MC) and pushes the graph margins away from the anchor edge(s). /E=2 also forces
exterior mode but does not push the margins.
/E=0 returns it to the default (an “interior textbox” which can be anywhere in the
graph window).

/F=frame

/G=(r,g,b) Sets color of the text in the tag. r, g, and b specify the amount of red, green, and blue
as an integer from 0 to 65535.

/H=legendSymbolWidth

legendSymbolWidth sets width of the legend symbol (the sample line or marker) in
points. Use 0 for the default, automatic width.

/K Kills existing textbox.

/LS= linespace Specifies a tweak to the normal line spacing where linespace is points of extra (plus or
minus) line spacing. For negative values, a blank line may be necessary to avoid
clipping the bottom of the last line.

/M[=sameSize] /M or /M=1 specifies that legend markers should be the same size as the marker in the
graph.
/M=0 turns same-size mode off so that the size of the marker in the legend is based on
text size.

/N=name Specifies the name of the textbox to change or create.

/O=rot Sets the text's rotation. rot is in (integer) degrees, counterclockwise and must be a
number from -360 to 360.
0 is normal horizontal left-to-right text, 90 is vertical bottom-to-top text.

/R=newName Renames the textbox.

/S=style

/T=tabSpec tabSpec is a single number in points, such as /T=72, for evenly spaced tabs or a list of
tab stops in points such as /T={50, 150, 225}.

/V=vis

/W=winName Operates in the named graph window or subwindow. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

Controls the textbox frame.
frame=0: No frame.
frame=1: Underline frame.
frame=2: Box frame.

Controls the textbox frame style.
style=0: Single frame.
style=1: Double frame.
style=2: Triple frame.
style=3: Shadow frame.

Controls annotation visibility.
vis=0: Invisible annotation; not selectable. The annotation is still listed

in AnnotationList.
vis=1: Visible annotation (default).

TextBox

V-784

Details
Use the optional /W=winName flag to specify a specific graph or layout window. When used on the
command line or in a Macro, Proc, or Window procedure, /W must precede all other flags.
If the /C flag is used, it must be the first flag in the command (except that if may follow an initial /W) and
must be followed immediately by the /N=name flag.
If the /K flag is used, it must be the first flag in the command (or follow an initial /W) and must be followed
immediately by the /N=name flag with no further flags or parameters.
textStr is optional. If missing, the textbox text is unchanged. This allows changes to the textbox to be made
through the flags without changing the text.
A textbox can have at most 100 lines.
textStr can contain the following escape codes which affect subsequent characters in string. See Notes about
Backslashes.
The characters “<??>” in a textbox indicate that you specified an invalid escape code or used a font that is
not available.
The escape codes are:

/X=xOffset For interior textboxes xOffset is the distance from anchor to textbox as a percentage of
the plot area width.
For exterior textboxes xOffset is the distance from anchor to textbox as a percentage of
the graph window width. See /E and /A.

/Y=yOffset yOffset is the distance from anchor to textbox as a percentage of the plot area height
(interior textboxes) or graph window height (exterior textboxes). See /E and /A.

/Z=freeze

\[<digit> Store info variable.

\]<digit> Recall info variable.

\B Use subscript (in smaller type above baseline).

\F'fontName' Use specified font (e.g., \F'Helvetica').

\fdd

For example, bold underline is 20 + 22 = 1 + 4 = 5. See Setting Bit Parameters on page
IV-12 for details about bit settings.

\JR Right align text.

\JC Center align text.

\JL Left align text.

\K(r,g,b) Use specified color for text. r, g, and b are integers from 0 to 65535.
\K also sets the marker fill color for markers added by \W. For setting the marker
stroke color, use \k.

Controls freezing of textbox position.
freeze=1: Freezes textbox position (you can’t move it with the mouse).
freeze=0: Unfreezes it.

dd is a bitwise parameter with each bit controlling one aspect of the font style as
follows:
Bit 0: Bold.
Bit 1: Italic.
Bit 2: Underline.
Bit 3: Outline (Macintosh only).
Bit 4: Shadow (Macintosh only).

TextBox

V-785

textStr can also contain escape codes to manipulate text info variables (see About Text Info Variables on
page III-66).
textStr can also contain the following escape code which inserts the symbol used to display the named wave:
\s(traceName)

\s is mainly used in Legends, where legend symbols are automatically created and removed, but it can also
be used in Tags, Textboxes, and axis labels where the symbol is updated, but not automatically added or
removed. See Freezing the Legend Text on page III-55.
textStr can also contain an escape code which inserts dynamically evaluated text:
\{dynText}

Dynamically evaluated text (dynText) may contain numeric and string expressions. Igor automatically
reevaluates dynText when a numeric or string variable or wave referenced in dynText changes.

dynText can take two forms, an easy one for a single numeric expression and a more complex form that
provides precise control over the formatting of the result.
The easy form is:
\{numeric-expression}

This evaluates the expression and prints with generic ("%g") formatting.
The full form is:
\{formatStr, list-of-numeric-or-string-expressions}

\k(r,g,b) Use specified color for marker stroke (line color). r, g, and b are integers from 0 to
65535. Use before \Wtdd to change marker stroke color from the default of black
(0,0,0).
For setting the marker fill color for markers added by \W, use \K.

\Ldtss Draws a line from x position specified in text info variable d to the current x position.
Uses current text color. Thickness is encoded by digit t with values of 4,5,6 and 7
giving 0.25, 0.5, 1.0 and 1.5 pt. Line style is specified by 2 digit number ss.

\M Use normal (main) script (reverts to main line and size).

\S Use superscript (in smaller type below baseline).

\Wtdd Draws a marker symbol using current font size and color.
The marker outline thickness is specified by the one-digit number t with 1, 4, 5 and 6
giving 0.0, 0.25, 0.5 and 1.0 point. A t value of 1, which sets the outline thickness to
zero, is useful only for filled markers as it makes unfilled markers disappear.
The marker symbol number is specified by the two-digit number dd.
Use \k to set the marker stroke color. Use \K to set the marker fill color.

\X<digit> Recall X position.

\x+dd Moves X position right by 2*dd percent of the current font max width.

\x-dd Moves X position left by 2*dd percent of the current font max width.

\Y<digit> Recall Y position.

\y+dd Moves Y position up by 2*dd percent of the current font height.

\y-dd Moves Y position down by 2*dd percent of the current font height.

\Znn Use font size nn (nn must be exactly two digits).

\Zrnnn nnn is a 3 digit percentage by which to change the current font size. (nnn must be
exactly three digits).

Note: When used in dynText expressions, user-defined numeric and string variables in macros
or functions must be declared as global variables for the expression to evaluate correctly.

TextFile

V-786

formatStr and list-of-numeric-or-string-expressions are treated as for printf.
As an aid in typing the expressions, Igor considers carriage returns between the braces to be equivalent to
spaces. Rather than typing (in the Add Annotation dialog):
\{"twice K0 is %g, and today is %s",2*K0,date()}

you can type:
\{

"twice K0 is %g, and today is %s",
2*K0,
date()

}

These carriage returns can be typed directly in the Add Annotations dialog, or be typed as “\r” in a macro,
function or the command line.

Notes about Backslashes
Each backslash character in textStr must be preceded by another backslash when it appears in literal text a
procedure or on the command line. This is because backslash is itself a special escape character for strings.
Future versions of Igor may require this double-backslash syntax; currently Igor accepts either the single or
double backslash as synonyms for inserting a single backslash into a string.
For example:
String myStr = "\\OK"
Print myStr

Prints the following in the history area:
\OK

myStr contains a single backslash character. See Escape Characters in Strings on page IV-13 for more about
the backslash character. This behavior affects how escape sequences in textStr should be written:
TextBox/C/N=text0 "\Z14Bigger" // no: Future Igors may see "Z14Bigger"
TextBox/C/N=text0 "\\Z14Bigger" // yes
TextBox/C/N=text0 "first line\rsecond line // carriage return uses one \

Since \r (carriage return) is not a textbox escape sequence, only one backslash is needed.
You can see how backslashes in textStr should be entered by using the Add Annotation dialog and
observing the command it creates. You will observe many double backslash sequences. Single backslash
sequences were used by Igor 1.2, which Igor Pro currently accepts for backward compatibility reasons.

Examples
TextBox/C/N=t1/X=25/Y=50

moves the textbox named t1 to the location defined by X=25 and Y=50.
TextBox/C/N=t1 "New Text"

changes the text for t1.

See Also
Legend, Tag, AppendText, AnnotationInfo, AnnotationList.
See About Text Info Variables on page III-66 for textStr escape codes that manipulate text info variables.
See the discussion above in Notes about Backslashes and Escape Characters in Strings on page IV-13 for
still more about the backslash character.
See the printf operation for formatting codes used in formatStr.
Trace Names on page II-243, Programming With Trace Names on page IV-72.

TextFile
TextFile(pathName, index [, creatorStr])

The TextFile function returns a string containing the name of the indexth TEXT file from the folder specified
by pathName.
On Macintosh, TextFile returns only files whose file type property is TEXT, regardless of the file's extension.

Note: TextFile is antiquated. Use IndexedFile instead.

ThreadGroupCreate

V-787

On Windows, Igor considers files with “.txt” extensions to be of type TEXT.

Details
TextFile returns an empty string ("") if there is no such file.
pathName is the name of an Igor symbolic path; it is not a string.
index starts from zero.
creatorStr is an optional string argument containing four characters such as “IGR0”. Only files of the
specified Macintosh creator code are indexed. Set creatorStr to “????” to index all text files (or omit the
argument altogether). This argument is ignored on Windows systems.
The order of files in a folder is determined by the operating system.

Examples
You can use TextFile in a procedure to sequence through each TEXT file in a folder, put the name of the text
file into a string variable, and use this string variable as a parameter to the LoadWave or Open operations:
Function/S PrintFirstLineOfTextFiles(pathName)

String pathName // Name of an Igor symbolic path.

Variable refNum, index
String str, fileName
index = 0
do

fileName = TextFile($pathName, index)
if (strlen(fileName) == 0)

break // No more files
endif
Open/R/P=$pathName refNum as fileName
FReadLine refNum, str // Read first line including CR/LF
Print fileName +":" + str // Print file name and first line
Close refNum
index += 1 // Next file

while (1)
End

See Also
See the IndexedFile function, which is similar to TextFile but works on files of any type, and also
IndexedDir. Also see the LoadWave and Open the operations.

ThreadGroupCreate
ThreadGroupCreate(nt)
The ThreadGroupCreate function creates a thread group containing nt threads and returns a thread ID
number. Use the number of computer processors for nt when trying to improve computation speed using
parallel threads. A background worker might use just one thread regardless of the number of processors.

See Also
ThreadSafe Functions on page IV-87 and ThreadSafe Functions and Multitasking on page IV-295.

ThreadGroupGetDF
ThreadGroupGetDF(tgID, waitms)
For use with Igor Pro 6.20 or later, ThreadGroupGetDFR should be used instead of ThreadGroupGetDF
which causes memory leaks.
The ThreadGroupGetDF function retrieves a data folder path string from a thread group queue and
removes the data folder from the queue.
When called from a preemptive thread it returns a data folder from the thread group's input queue. When
called from the main thread it returns a data folder from the thread group's output queue.
tgID is a thread group ID returned by ThreadGroupCreate. You can pass 0 for tgID when calling
ThreadGroupGetDF from a preemptive thread. You must pass a valid thread group ID when calling
ThreadGroupGetDF from the main thread.
waitms is the maximum number of milliseconds to wait for a data folder to become available in the queue.
Pass 0 to test if a data folder is available immediately. Pass INF to wait indefinitely or until a user abort.

ThreadGroupGetDFR

V-788

ThreadGroupGetDF returns "" if the timeout period specified by waitms expires and no data folder is
available in the queue.

See Also
ThreadSafe Functions on page IV-87 and ThreadSafe Functions and Multitasking on page IV-295.
The ThreadGroupGetDFR function.

ThreadGroupGetDFR
ThreadGroupGetDFR(tgID, waitms)
The ThreadGroupGetDF function retrieves a data folder reference from a thread group queue and removes
the data folder from the queue. The data folder becomes a free data folder.
When called from a preemptive thread it returns a data folder from the thread group's input queue. When
called from the main thread it returns a data folder from the thread group's output queue.
tgID is a thread group ID returned by ThreadGroupCreate. You can pass 0 for tgID when calling
ThreadGroupGetDFR from a preemptive thread. You must pass a valid thread group ID when calling
ThreadGroupGetDFR from the main thread.
waitms is the maximum number of milliseconds to wait for a data folder to become available in the queue.
Pass 0 to test if a data folder is available immediately. Pass INF to wait indefinitely or until a user abort.
ThreadGroupGetDFR returns a NULL data folder reference if the timeout period specified by waitms
expires and no data folder is available in the queue. You can test for NULL using DataFolderRefStatus.
ThreadGroupGetDFR was added in Igor Pro 6.20.

See Also
ThreadSafe Functions on page IV-87, ThreadSafe Functions and Multitasking on page IV-295 and Free
Data Folders on page IV-79.

ThreadGroupPutDF
ThreadGroupPutDF tgID, datafolder
The ThreadGroupPutDF operation posts data to a preemptive thread group.

Parameters
tgID is thread group ID returned by ThreadGroupCreate, datafolder is the data folder you wish to send to
the thread group.
datafolder can be just the name of a child data folder in the current data folder, a partial path (relative to the
current data folder) and name or an absolute path (starting from root) and name.

Details
When you call it from the main thread, ThreadGroupPutDF removes datafolder from the main thread’s data
hierarchy and posts to the input queue of the thread group specified by tgID.
When you call it from a preemptive thread, use 0 for tgID and the data folder will be posted to the output
queue of thread group to which thread belongs.
Input and output data folders may be retrieved from the queues by calling the string function
ThreadGroupGetDF or ThreadGroupGetDFR. If your code is to run on Igor Pro 6.20 or later only, use
ThreadGroupGetDFR.

Warning: Take care not to use any stale WAVE, NVAR, or SVAR variables that might contain
references to objects in the data folder. Use WAVEClear on all WAVE reference variables
that might contain references to waves that are in the data folder being posted before calling
ThreadGroupPutDF. An error will occur if any waves in the data folder are in use or
referenced in a WAVE variable.

Warning: Any DFREF variables that refer to the data folder (or any child thereof) must be cleared
prior to executing this command. You can clear a DFREF using dfr=$"".

ThreadGroupRelease

V-789

From the standpoint of the source thread, ThreadGroupPutDF is conceptually similar to KillDataFolder
and, like KillDataFolder, if the current data folder is within datafolder, the current data folder is set to the
parent of datafolder. You can not pass root: as datafolder.

See Also
The ThreadGroupCreate function, ThreadSafe Functions on page IV-87, and ThreadSafe Functions and
Multitasking on page IV-295.

ThreadGroupRelease
ThreadGroupRelease(tgID)
The ThreadGroupRelease function releases thread group (and tgID is no longer valid). tgID is the thread
group ID returned by ThreadGroupCreate.
If threads are still running, they are killed. An attempt is made to safely stop running threads but, if they
continue to run, they will be force quit.
ThreadGroupRelease returns zero if successful, -1 if an error occurred (probably invalid tgID), or -2 if a force
quit was needed. In the latter case, you should restart Igor Pro.
Any data folders remaining in the group’s input or output queues will be discarded.

See Also
The ThreadGroupCreate function, ThreadSafe Functions on page IV-87, and ThreadSafe Functions and
Multitasking on page IV-295.

ThreadGroupWait
ThreadGroupWait(tgID, waitms)
The ThreadGroupWait function returns index+1 of the first thread found still running after waitms
milliseconds or returns zero if all are done.
tgID is the thread group ID returned by ThreadGroupCreate and waitms is milliseconds to wait.
If any of the threads of the group encountered a runtime error, the first such error will be reported now.
Use zero for waitms to just test or provide a large value to cause the main thread to sleep until the threads
are finished. You can use INF to wait forever or until a user abort. If you know the maximum time the
threads should take, you can use that value so you can print an error message or take other action if the
threads don’t return in time.
When ThreadGroupWait is called, Igor updates certain internal variables including variables that track
whether a thread has finished and what result it returned. Therefore you must call ThreadGroupWait
before calling ThreadReturnValue.
Prior to Igor Pro 6.23, ThreadGroupWait did not update the thread return value for thread i until threads 0
to i-1 were finished. As of Igor Pro 6.23, ThreadGroupWait updates the internal state of all threads in the
group.

Finding a Free Thread
In Igor Pro 6.23 and later, if you pass -2 for waitms , ThreadGroupWait returns index+1 of the first free (not
running) thread or 0 if all threads in the group are running.
This allows you to dispatch a thread anytime a free thread is available. See Parallel Processing - Thread-at-
a-Time Method on page IV-298 for an example.

See Also
The ThreadGroupCreate function, ThreadSafe Functions on page IV-87, and ThreadSafe Functions and
Multitasking on page IV-295.

ThreadProcessorCount
ThreadProcessorCount
The ThreadProcessorCount function returns the number of processors in your computer. For example, on
a Macintosh Core Duo, it would return 2.

ThreadReturnValue

V-790

ThreadReturnValue
ThreadReturnValue(tgID, index)
The ThreadReturnValue function returns the value that the specified thread function returned when it exited.
Returns NAN if thread is still running. tgID is the thread group ID returned by ThreadGroupCreate and index
is the thread number.
When ThreadGroupWait is called, Igor updates certain internal variables including variables that track
whether a thread has finished and what result it returned. Therefore you must call ThreadGroupWait before
calling ThreadReturnValue.

See Also
The ThreadGroupCreate function, ThreadSafe Functions on page IV-87, and ThreadSafe Functions and
Multitasking on page IV-295.

ThreadSafe
ThreadSafe Function funcName()
The ThreadSafe keyword declaration specifies that a user function can be used for preemptive multitasking
background tasks on multiprocessor computer systems.
A ThreadSafe function is one that can operate correctly during simultaneous execution by multiple threads.
Such functions are generally limited to numeric or utility functions. Functions that access windows are not
ThreadSafe. To determine if an operation is ThreadSafe, use the Command Help tab of the Help Browser
and choose ThreadSafe from the pop-up menu.
ThreadSafe functions can call other ThreadSafe functions but may not call non-ThreadSafe functions. Non-
ThreadSafe functions can call ThreadSafe functions.

See Also
ThreadSafe Functions on page IV-87 and ThreadSafe Functions and Multitasking on page IV-295.

ThreadStart
ThreadStart tgID, index, WorkerFunc(param1, param2,…)
The ThreadStart operation starts the specified function running in a preemptive thread.

Parameters
tgID is thread group ID returned by ThreadGroupCreate, index is the desired thread of the group to set up
to execute the specified ThreadSafe WorkerFunc.

Details
The worker function starts running immediately.
The worker function must be defined as ThreadSafe and must return a real or complex numeric result.
The worker function's return value can be obtained after the function finishes by calling
ThreadReturnValue. Igor records the fact that a thread has terminated when you call ThreadGroupWait so
you must call ThreadGroupWait before calling ThreadReturnValue.
The worker function can take variable and wave parameters. It can not take pass-by-reference parameters
or data folder reference parameters.
Any waves you pass to the worker are accessible to both the main thread and to your preemptive thread.
Such waves are marked as being in use by a thread and Igor will refuse to perform any manipulations that
could change the size of the wave.

See Also
The ThreadGroupCreate and ThreadReturnValue functions; ThreadSafe Functions on page IV-87, and
ThreadSafe Functions and Multitasking on page IV-295.

ticks
ticks
The ticks function returns the number of ticks (approximately 1/60 second) elapsed since the operating
system was initialized.

Tile

V-791

See Also
The stopMSTimer function.

Tile
Tile [flags] [objectName [, objectName]…]
The Tile operation tiles the specified objects in the top page layout.

Parameters
objectName is the name of a graph, table, picture or annotation object in the top page layout.

Flags

Details
If /A=(rows,cols) is not used, Tile uses an appropriate number of rows and columns. If /A=(rows,cols) is used,
objects are tiled in a grid of that many rows and columns. If rows or cols is zero, it substitutes an appropriate
number for the zero parameter.
Objects to be tiled are determined by the /S and /O=objTypes flags and by any objectNames.
If no /S or /O flags are present and there are no objectNames, then all objects in the layout are tiled.
Otherwise the objects to be tiled are determined as follows:
• All objectNames are tiled.
• If the /S flag is present, the selected objects (if any) are also tiled.
• If the /O=objTypes flag is present then any objects specified by objTypes are also tiled. objTypes is a

bitwise mask, so /O=3 tiles both graphs and tables.

See Also
The Stack operation.

/A=(rows,cols) Specifies number of rows/columns in which to tile objects.

/G=grout Specifies grout, the spacing between window tiles, in prevailing coordinates (points
unless preceded by /I, /M or /R).

/I Specifies coordinates in inches.

/M Specifies coordinates in centimeters.

/O=objTypes

/R Specifies coordinates measured in percent of the printable page.

/S Adds selected objects to objects to be tiled.

/W=(left,top,right,bottom)

Specifies page layout area in which to tile objects. Coordinates are in points unless /I,
/M or /R are specified before /W.

Adds objects of type(s) specified by bitwise mask to list of objects to be tiled:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Tile graphs.
Bit 1: Tile tables.
Bit 3: Tile pictures.
Bit 5: Tile textboxes.

TileWindows

V-792

TileWindows
TileWindows [flags] [windowName [, windowName]…]
The TileWindows operation tiles the specified windows on the desktop (Macintosh) or in the Igor frame
window (Windows).

Flags

Details
The windows to be tiled are determined by the /C, /P, and /O=objTypes flags and by the windowNames. If no
/C, /P or /O flags are present and there is no windowNames then all windows are tiled.
Otherwise the windows to be tiled are determined as follows:
• All named windows are tiled.
• If the /C flag is present, the command window is also tiled.
• If the /P flag is present, the procedure window is also tiled.
• If the /O=objTypes flag is present, any windows specified by objTypes are also tiled.

Examples
To tile all the procedure windows, including the main one, use:
TileWindows/P/O=128 // 2^7=128

See Also
The StackWindows operation.

/A=(rows,cols) Specifies number of rows/columns in which to tile windows.

/C Adds the command window to the windows to be tiled.

/G=grout Specifies grout, the spacing between tiles, in prevailing units (points unless /I or /M
are used).

/I Specifies coordinates in inches.

/M Specifies coordinates in centimeters.

/O=objTypes Adds windows of types specified by objTypes to windows to be tiled.

Other bits should always be zero. See Setting Bit Parameters on page IV-12 for details
about bit settings.

/P Adds the main procedure window to the windows to be tiled.

/R Specifies coordinates measured as % of tiling rectangle.

/W=(left,top,right,bottom)

Specifies tiling rectangle on the screen. Coordinates are in points unless /I, /M, or /R
are specified before /W.

objTypes is a bitwise mask where:
Bit 0: Graphs.
Bit 1: Tables.
Bit 2: Page layouts.
Bit 4: Notebooks.
Bit 6: Control panels.
Bit 7: Procedure windows.
Bit 9: Help windows.
Bit 12: XOP target windows.

time

V-793

time
time()
The time function returns a string containing the current time. The empty parentheses are required.

See Also
The date, date2secs and DateTime functions.

TitleBox
TitleBox [/Z] ctrlName [keyword = value [, keyword = value …]]
The TitleBox operation creates the named title box in the target window.
For information about the state or status of the control, use the ControlInfo operation.

Parameters
ctrlName is the name of the TitleBox control to be created or changed.
The following keyword=value parameters are supported:

anchor= hv Specifies the anchor mode using a two letter code, hv. h may be L, M, or R for left,
middle, and right. v may be T, C, or B for top, center and bottom. Default is LT.

If fixedSize=1, the anchor code sets the positioning of text within the frame.

appearance={kind [, platform]}

Sets the appearance of the control. platform is optional. Both parameters are names,
not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
See Button and DefaultGUIControls for more appearance details.

disable=d

fColor=(r,g,b) Sets color of the titlebox. r, g, and b are integers from 0 to 65535.

fixedSize=f

font="fontName" Sets the font used for the control, e.g., font="Helvetica".

frame= f

fsize=s Sets font size.

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Draw in gray state.

Controls title box sizing:
f =0: The titlebox automatically sizes itself to fit the title text (default).
f =1: The size settings are honored, and the titlebox does not

automatically size itself to fit the title text.

Sets frame style:
f=0: No frame.
f=1: Default (same as f=3).
f=2: Simple box.
f=3: 3D sunken frame.
f=4: 3D raised frame.
f=5: Text well.

TitleBox

V-794

Flags

Details
The text can come from either the title=titleStr or variable=svar method. Whichever is used last is the current
method. The maximum length of text with the title=titleStr method is 100 characters while the variable=svar
method has no limit.
The text can contain escape codes to create fancy results with multiple lines, font changes etc. The escape
codes are essentially the same as those for the TextBox operation. The easiest way to generate fancy text is
to create a dummy TextBox, set up the text as desired and then click the To Cmd Line button followed by
editing of the command line.
By default, the titlebox automatically resizes itself relative to the anchor point on the rectangle that encloses
the text. Therefore you can specify a size of 0,0 along with a pos value in order to place the anchor point at
the desired position. When fixedSize=1 is used, the titlebox does not resize itself and instead honors the
values specified via the size keyword.
TitleBoxes can be used not only for titles but also as status or results readout areas, especially in conjunction
with the variable= svar mode. When using a titlebox like this, you may find it useful to use fixedSize=1 so
that the titlebox doesn't change size as the text changes.

Examples
NewPanel /W=(94,72,459,294)
DrawLine 150,32,150,140
DrawLine 70,100,213,100 // draw crossing lines at 150,100

// illustrate a default box
TitleBox tb1,title="A title box\rwith 2 lines",pos={150,100}

// Move center to 150,100
TitleBox tb1,pos={150,100},size={0,0},anchor=MC

// Set background color and therfore opaque mode
TitleBox tb1,labelBack=(55000,55000,65000)

fstyle=fs

labelBack=(r,g,b) or 0

Sets background color for title box. r, g, and b are integers from 0 to 65535. If not set
(or labelBack=0), then background is transparent (not erased).

pos={left,top} Sets the location of the top left corner in pixels.

pos+={dx,dy} Offsets the position of the control in pixels.

size={w,h} Set the width and height in pixels.

title=titleStr Sets text of title box to titleStr. Limited to 63 characters.

variable= svar Specifies an optional global string variable from which to get the TitleBox text.

win=winName Specifies which window or subwindow contains the named control. If not given, then
the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

/Z No error reporting.

fs is a bitwise parameter with each bit controlling one aspect of the font style
as follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold.
Bit 1: Italic.
Bit 2: Underline.
Bit 3: Outline (Macintosh only).
Bit 4: Shadow (Macintosh only).

ToCommandLine

V-795

// Now a few frame styles. Run these one at a time
TitleBox tb1,frame= 0 // no frame
TitleBox tb1,frame= 2 // plain frame
TitleBox tb1,frame= 3 // 3D sunken
TitleBox tb1,frame= 4 // 3D raised
TitleBox tb1,frame= 5 // text well

// Now some fancy text…
TitleBox tb1,frame= 1 // back to default (3D raised)
TitleBox tb1,title= "\Z18\[020 log\\B10\\M|[1 + 2K(jwt) + (jwt)\\S2\\M]|\\S-1"

// Create a string variable and hook up to the TitleBox
String s1= "text from a string variable"
TitleBox tb1,variable=s1

// Change string variable contents & note automatic update of TitleBox
s1= "something new"

See Also
The TextBox operation for additional text formatting escape codes and the ControlInfo operation for
information about the control. Chapter III-14, Controls and Control Panels, for details about control panels
and controls. The GetUserData operation for retrieving named user data.

ToCommandLine
ToCommandLine commandsStr
The ToCommandLine operation sends command text to the command line without executing the command(s).
The intended usage is for user-created panel windows with “To Cmd Line” buttons that are mimicking
built-in Igor dialogs. You’ll usually want to use Execute, instead.

Parameters

Details
To send more than one line of commands, separate the commands with “\r” characters.

Examples
Macro CmdPanel()

PauseUpdate; Silent 1
NewPanel /W=(150,50,430,229)
Button toCmdLine,pos={39,148},size={103,20},title="To Cmd Line"
Button toCmdLine,proc=ToCmdLineButtonProc

End

Function ToCmdLineButtonProc(ctrlName) : ButtonControl
String ctrlName

String cmd="MyFunction(xin,yin,\"yResult\")"// line 1: generate results
cmd +="\rDisplay yOutput vs wx as \"results\"" // line 2: display results
ToCommandLine cmd

End

See Also
The Execute and DoIgorMenu operations.

ToolsGrid
ToolsGrid [/W=winName] keyword = value [, keyword = value …]
The ToolsGrid operation controls the grid you can use for laying out draw or control objects.

Parameters
ToolsGrid can accept multiple keyword = value parameters on one line.

commandsStr The text of one or more commands.

Note: ToCommandLine does not work when typed on the command line; use it only in a Macro,
Proc, or Function.

snap=n Turns snap to grid on (n=1) or off (n=0).

TraceFromPixel

V-796

Flags

Details
The default grid is 1 inch with 8 subdivisions. The grid is visible only in draw or selector mode and appears
in front of the currently active draw layer.

TraceFromPixel
TraceFromPixel(xpixel, ypixel, optionsString)
The TraceFromPixel function returns a string based on an attempt to hit test the provided X and Y
coordinates. Used to determine if the mouse was clicked on a trace in a graph.
When a trace is found, TraceFromPixel returns a string containing the following KEY:value; pairs:
TRACE:tracename

HITPOINT:pnt

tracename will be quoted if necessary and may contain instance notation. pnt is the point number index into
the trace’s wave when the hit was detected. If a trace is not found near the coordinate point, a zero length
string is returned.

Parameters
xpixel and ypixel are the X and Y pixel coordinates.
optionsString can contain the following:
WINDOW:winName;

PREF:traceName;

ONLY:traceName;

DELTAX:dx;DELTAY:dy;

Use the WINDOW option to hit test in a graph other than the top graph. Use the ONLY option to search only
for a special target trace. If the PREF option is used then the search will start with the specified trace but if
no hit is detected, it will go on to the others.
When identifying a subwindow with WINDOW:winName, see Subwindow Syntax on page III-97 for details
on forming the window hierarchy.
The DELTAX and DELTAY values must both be specified to alter the region that Igor searches for traces.
The dx and dy values are in pixels and the region searched is the rectangle from xpixel-dx to xpixel+dx and
ypixel-dy to ypixel+dy.
If DELTAX or DELTAY are omitted, the search region depends on whether PREF or ONLY are specified. If
either are specified then Igor first searches for the trace using dx = 3 and dy = 3. If the trace is not identified,
Igor searches again using dx = 6 and dy = 6. If the trace is still not identified, Igor gives up and returns a zero-
length result string.
If neither PREF nor ONLY are specified then Igor uses tries 3, 6, 12, and 24 for dx and dy until it finds a trace
or gives up and returns a zero-length result string.

visible=n Turns on grid visibility (n=1) or hides it (n=0).

grid=(xy0,dxy,ndiv) Defines both X and Y grids where ndiv is the number of subdivisions between major
grid lines and xy0 and dxy define the origin and spacing. Units are in points.

gridx=(x0,dx,ndiv) Defines the X grid where ndiv is the number of subdivisions between major grid lines
and x0 and dx define the origin and spacing. Units are in points.

gridy=(y0,dy,ndiv) Defines the Y grid where ndiv is the number of subdivisions between major grid lines
and y0 and dy define the origin and spacing. Units are in points.

/W=winName Sets the named window or subwindow for drawing. When omitted, action will affect
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-97
for details on forming the window hierarchy.

TraceInfo

V-797

See Also
The NumberByKey, StringByKey, AxisValFromPixel, and PixelFromAxisVal functions.
ModifyGraph (traces) and Instance Notation on page IV-16 for discussions of trace names and instance
notation.
Trace Names on page II-243, Programming With Trace Names on page IV-72.

TraceInfo
TraceInfo(graphNameStr, ywavenameStr, instance)
The TraceInfo function returns a string containing a semicolon-separated list of information about the trace
in the named graph window or subwindow.

Parameters
graphNameStr can be "" to refer to the top graph.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
yWaveNameStr is either the name of a wave containing data displayed as a trace in the named graph, or a
trace name (wave name with “#n” appended to distinguish the nth image of the wave in the graph). You
might get a trace name from the TraceNameList function.
If yWaveNameStr contains a wave name, instance identifies which trace of yWaveNameStr you want
information about. instance is usually 0 because there is normally only one instance of a given wave
displayed in a graph. Set instance to 1 for information about the second trace of the wave named by
yWaveNameStr, etc. If yWaveNameStr is "", then information is returned on the instanceth trace in the graph.
If yWaveNameStr is a trace name, and instance is zero, the instance is extracted from yWaveNameStr. If
instance is greater than zero, the wave name is extracted from yWaveNameStr, and information is returned
concerning the instanceth instance of the wave.

Details
The string contains several groups of information. Each group is prefaced by a keyword and colon, and
terminated with the semicolon. The keywords are as follows:

Keyword Information Following Keyword

AXISFLAGS Flags used to specify the axes. Usually blank because /L and /B (left and bottom axes)
are the defaults.

AXISZ Z value of a contour level trace or NaN if the trace is not a contour trace.

ERRORBARS The ErrorBars command for the trace, as it would appear in the recreation macro
(without the beginning tab character).

RECREATION List of keyword commands as used by ModifyGraph command. The format of these
keyword commands is:

keyword(x)=modifyParameters;

XAXIS X axis name.

XRANGE Point subrange of the trace’s X data wave in “[startPoint,þendPoint : increment]” format.

Note: Unlike the actual syntax of a trace subrange specification where increment is
preceded by a semicolon character, here it is preceded by a colon character to preserve
the notion that semicolon is what separates the keyword-value groups.

If the entire X wave is displayed (the usual case), the XRANGE value is “[*]”.

If an X wave is not used to display the trace, then the XRANGE value is "".

XWAVE X wave name if any, else blank.

XWAVEDF Full path to the data folder containing the X wave or blank if no X wave.

YAXIS Y axis name.

YRANGE Point subrange of the trace’s Y data wave or “[*]”.

TraceNameList

V-798

The format of the RECREATION information is designed so that you can extract a keyword command from
the keyword and colon up to the “;”, prepend “ModifyGraph ”, replace the “x” with the name of a trace
(“data#1” for instance) and then Execute the resultant string as a command.

Examples
This example shows how to extract a string value from the keyword-value list returned by TraceInfo:
String yAxisName= StringByKey("YAXIS", TraceInfo("","",0))

This example shows how to extract a subrange and put the semicolon back:
String yRange= StringByKey("YRANGE", TraceInfo("","",0))
Print yRange // prints "[30,40:2]"
yRange= ReplaceString(":", yRange, ";")
Print yRange // prints "[30,40;2]"

The next example shows the trace information for the second instance of the wave “data” (which has an
instance number of 1) displayed in the top graph:
Make/O data=x;Display/L/T data,data // two instances of data: 0 and 1
Print TraceInfo("","data",1)[0,64] // error if you try to print all
Print TraceInfo("","data",1)[65,128]

Prints the following in the history area:
XWAVE:;YAXIS:left;XAXIS:top;AXISFLAGS:/T;AXISZ:NAN(255);XWAVEDF:;
RECREATION:zColor(x)=0;zmrkSize(x)=0;zmrkNum(x)=0;textMarker(x)=

Following is a function that returns the marker code from the given instance of a named wave in the top
graph. This example uses the convenient GetNumFromModifyStr() function provided by the #include
<Readback ModifyStr> procedures, which are useful for parsing strings returned by TraceInfo.
#include <Readback ModifyStr>

Function MarkerOfWave(wv,instance)
Wave wv
Variable instance

Variable marker
String info = TraceInfo("",NameOfWave(wv),instance)

marker = GetNumFromModifyStr(info,"marker","",0)

return marker
End

See Also
Trace Names on page II-243, Programming With Trace Names on page IV-72.
The Execute operation.

TraceNameList
TraceNameList(graphNameStr, separatorStr, optionsFlag)
The TraceNameList function returns a string containing a list of trace names in the graph window or
subwindow identified by graphNameStr.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
The parameter separatorStr should contain a single character such as “,” or “;” to separate the names.

Details
The bits of optionsFlag have the following meanings:
See Setting Bit Parameters on page IV-12 for details about bit settings.

Note: The syntax of any subrange specifications in the RECREATION information are modified
in the same way as for XRANGE and YRANGE. Currently only the zColor, zmrkSize, and
zmrkNum keywords might have a subrange specification.

TraceNameToWaveRef

V-799

A trace name is defined as the name of the Y wave that defines the trace with an optional #ddd suffix that
distinguishes between two or more traces that have the same wave name. Since the trace name has to be
parsed, it is quoted if necessary.
Commands that take a trace name as a parameter or in a keyword can use a string containing a trace name
with the $ operator to specify traceName. For instance, to change the display mode of a wave, you might use
ModifyGraph mode(myWave#1)=3

but
String myTraceName="myWave#1"
ModifyGraph mode($myTraceName)=3

will also work.

Examples
Make/O jack,'jack # 2';Display jack,jack,'jack # 2','jack # 2'
Print TraceNameList("",";",1)
Prints: jack;jack#1;'jack # 2';'jack # 2'#1;

// Generate a list of hidden traces
Make/O jack,jill,joy;Display jack,jill,joy
ModifyGraph hideTrace(joy)=1// hide joy
// (hidden + visible) - visible = hidden
String visibleTraces=TraceNameList("",";",1+4)// only visible normal traces
String allNormalTraces=TraceNameList("",";",1)// hidden + visible normal traces
String hiddenTraces= RemoveFromList(visibleTraces,allNormalTraces)
Print hiddenTraces
// Prints: joy;

See Also
Trace Names on page II-243, Programming With Trace Names on page IV-72.
For other commands related to waves and traces: WaveRefIndexed, XWaveRefFromTrace,
TraceNameToWaveRef, CsrWaveRef, and CsrXWaveRef.
For a description of traces: ModifyGraph. For a discussion of contour traces: All About Contour Traces on
page II-334.
For commands referencing other waves in a graph: ImageNameList, ImageNameToWaveRef,
ContourNameList, and ContourNameToWaveRef.
ModifyGraph (traces) and Instance Notation on page IV-16 for discussions of trace names and instance
notation.

TraceNameToWaveRef
TraceNameToWaveRef(graphNameStr, traceNameStr)
The TraceNameToWaveRef function returns a wave reference to the Y wave corresponding to the given
trace in the graph window or subwindow named by graphNameStr.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
The trace is identified by the string in traceNameStr, which could be a string determined using
TraceNameList. Note that the same trace name can refer to different waves in different graphs.
Use Instance Notation (see page IV-16) to choose from traces in a graph that represent waves of the same
name. For example, if traceNameStr is “myWave#2”, it refers to the third instance of wave “myWave” in the
graph (“myWave#0” or just “myWave” is the first instance).

Bit Number Bit Value Meaning
0 1 Include normal graph traces
1 2 Include contour traces
2 4 Omit hidden traces (the default is to list even hidden traces)

Triangulate3D

V-800

See Also
Trace Names on page II-243, Programming With Trace Names on page IV-72.
For other commands related to waves and traces: WaveRefIndexed, XWaveRefFromTrace,
TraceNameList, CsrWaveRef, and CsrXWaveRef.
For a description of traces: ModifyGraph. For a discussion of contour traces, see All About Contour Traces
on page II-334.
For a discussion of wave references, see Wave Reference Functions on page IV-177.
For commands referencing other waves in a graph: ImageNameList, ImageNameToWaveRef,
ContourNameList, and ContourNameToWaveRef.

Triangulate3D
Triangulate3D [/OUT=format] srcWave
The Triangulate3D operation creates a Delaunay “triangulation” of a 3D scatter wave. The output is a list
of tetrahedra that completely span the convex volume defined by srcWave. Triangulate3D can also generate
the triangulation needed for performing 3D interpolation for the same domain. Normally srcWave is a
triplet wave (a 2D wave of 3 columns), but can use any 2D wave that has more than 3 columns (the
operation ignores all but the first 3 columns).

Flags

Details
Triangulate3D implements Watson’s algorithm for tetrahedralization of a set of points in three dimensions. It
starts by creating a very large tetrahedron which inscribes all the data points followed by a sequential insertion
of one datum at a time. With each new datum the algorithm finds the tetrahedron in which the datum falls. It
then proceeds to subdivide the tetrahedron so that the datum becomes a vertex of new tetrahedra.
The algorithm suffers from two known problems. First, it may, due to numerical instabilities, result in
tetrahedra that are too thin. You can get around this problem by introducing a slight random perturbation
in the input wave. For example:
srcWave+=enoise(amp)

Here amp is chosen so that it is much smaller than the smallest cartesian distance between two input points.
The second problem has to do with memory allocations which may exhaust available memory for some
pathological spatial distributions of data points. The operation reports both problems in the history
window.

Examples
Make/O/N=(10,3) ddd=gnoise(5) // create random 10 points in space
Triangulate3d/out=2 ddd

// now display the triangulation in Gizmo:
Window Gizmo0() : GizmoPlot

PauseUpdate; Silent 1
if(exists("NewGizmo")!=4)

DoAlert 0, "Gizmo XOP must be installed"
return

endif

/OUT=format Specifies how to save the output triangulation data.
format=1: Default; saves the triangulation result in the wave M_3DVertexList,

which contains in each row, indices to rows in srcWave that describe
the X, Y, Z coordinates of a single tetrahedral vertex. Each
tetrahedron is described by one row in M_3DVertexList.

format=2: Saves the triangulation result in the wave M_TetraPath, which is a
triplet path wave describing the tetrahedra edges. For each
tetrahedron, there are four rows (triangles) separated by row of
NaNs. The total number of rows in M_TetraPath is 20 times the
number of tetrahedra in the triangulation.

format=4: Saves a wave containing internal diagnostic information generated
during the triangulation process.

trunc

V-801

NewGizmo/N=Gizmo0 /W=(309,44,642,373)
ModifyGizmo startRecMacro
ModifyGizmo scalingMode=2
AppendToGizmo Scatter=root:ddd,name=scatter0
ModifyGizmo ModifyObject=scatter0 property={ scatterColorType,0}
ModifyGizmo ModifyObject=scatter0 property={ Shape,2}
ModifyGizmo ModifyObject=scatter0 property={ size,0.2}
ModifyGizmo ModifyObject=scatter0 property={ color,0,0,0,1}
AppendToGizmo Path=root:M_TetraPath,name=path0
ModifyGizmo ModifyObject=path0 property={ pathColor,0,0,1,1}
ModifyGizmo setDisplayList=0, object=scatter0
ModifyGizmo setDisplayList=1, object=path0
ModifyGizmo autoscaling=1
ModifyGizmo compile
ModifyGizmo endRecMacro

End

References
Watson, D.F., Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes,

The Computer J., 24, 167-172, 1981.
Further information about this algorithm can be found in:
Watson, D.F., CONTOURING: A guide to the analysis and display of spatial data, Pergamon Press, 1992.

See Also
The Interpolate3D operation and the Interp3D function.

trunc
trunc(num)
The trunc function returns the integer closest to num in the direction of zero.

See Also
The round, floor, and ceil functions.

try-catch-endtry
try

<possible abort code>
catch

<code to handle abort>
endtry
A try-catch-endtry flow control statement provides a means for catching and responding to abort conditions
in user functions.
When code executes in the try-catch area, any programmatic aborts will immediately jump to code within
the catch-endtry area rather than jumping to the end of the user function. Normal flow (no aborts) will skip
all code within the catch-endtry area.

Details
During execution of code in the catch-endtry area, user aborts are suppressed. This means that when the
user attempts to abort procedure execution by holding down the appropriate abort key combination, it will
not abort the catch code itself.
Whenever an abort occurs, information about the cause of the abort is returned via the V_AbortCode
 variable as follows:

-4: Abort triggered by AbortOnRTE.

-3: Abort caused by Abort operation.

-2: Stack overflow abort.

-1: User abort.

>=1: Abort triggered by AbortOnValue.

UniqueName

V-802

See Also
Flow Control for Aborts on page IV-38 and try-catch-endtry Flow Control on page IV-38 for further
details.
The AbortOnRTE and AbortOnValue keywords, and the Abort operation.

UniqueName
UniqueName(baseName, objectType, startSuffix [, windowNameStr])
The UniqueName function returns the concatenation of baseName and a number such that the result is not
in conflict with any other object name.
windowNameStr is optional. If missing, it is taken to be the top graph, panel, layout, or notebook according
to the value of objectType.

Details
baseName should be an unquoted name, such as you might receive from the user via a dialog or control panel.
objectType is one of the following:

startSuffix is the number used as a starting point when generating the numeric suffix that makes the name
unique. Normally you should pass zero for startSuffix. If you know that names of the form base0 through
baseN are in use, you can make UniqueName run a bit faster by passing N+1 as the startSuffix.
The windowNameStr argument is used only with objectTypes 14, 15, and 16. The returned name is unique only
to the window (other windows might have objects with the same name). If a named window is given but does
not exist, UniqueName returns baseName startSuffix. windowNameStr is ignored for other objectTypes

Examples
String uniqueWaveName = UniqueName(baseWaveName, 1, 0)
String uniqueControlName = UniqueName("ctrl", 15, 0, "Panel0")

See Also
CheckName and CleanupName.

UnPadString
UnPadString(str, padValue)
UnPadString returns str after removing all trailing characters whose value is padValue. This undoes the
action of PadString.
UnPadString can be used to recover the values of text waves created with Make/T=size. This is useful for
speeding up access to very long text waves. Such waves are set by assigning the output of PadString to their
elements.
UnPadString allows for the storage of variable length C strings (padValue of zero) in text waves created with
preallocated string sizes.

See Also
The PadString function. The Make operation.

1 Wave. 9 Control panel window.
2 Reserved. 10 Notebook window.
3 Numeric variable. 11 Data folder.
4 String variable. 12 Symbolic path.
5 XOP target window. 13 Picture.
6 Graph window. 14 Annotation in the named or topmost graph or layout.
7 Table window. 15 Control in the named or topmost graph or panel.
8 Layout window. 16 Notebook action character in the named or topmost

notebook.

Unwrap

V-803

Unwrap
Unwrap modulus, waveName [, waveName]…
The Unwrap operation scans through each named wave trying to undo the effect of a modulus operation.

Parameters
modulus is the value applied to the named waves through the mod function as if the command:
waveName = mod(waveName,modulus)

had been executed. It is this calculation which Unwrap attempts to undo.

Details
The unwrap operation works with 1D waves only. See ImageUnwrapPhase for phase unwrapping in two
dimensions.

Examples
If you perform an FFT on a wave, the result is a complex wave in rectangular coordinates. You can create a
real wave that contains the phase of the result of the FFT with the command:
wave2 = imag(r2polar(wave1))

However, the rectangular to polar conversion leaves the phase information modulo 2π. You can restore the
phase information with the command:
Unwrap 2*pi, wave2

Because the first point of a wave that has been FFTed has no phase information, in this example you would
precede the Unwrap command with the command:
wave2[0] = wave2[1]

See Also
The ImageUnwrapPhase operation and mod function.

UpperStr
UpperStr(str)
The UpperStr function returns a string expression in which all lower-case characters in str are converted to
upper-case.

See Also
The LowerStr function.

URLDecode
URLDecode(inputStr)
The URLDecode function returns a percent-decoded copy of the percent-encoded string inputStr. It is
unlikely that you will need to use this function; it is provided for completeness.
For an explanation of percent-encoding, see Percent Encoding on page IV-245.

Example
String theURL = "http://google.com?key1=35%25%20larger"
theURL = URLDecode(theURL)
Print theURL
 http://google.com?key1=35% larger

See Also
URLEncode, URLs on page IV-244.

URLEncode
URLEncode(inputStr)
The URLEncode function returns a percent-encoded copy of inputStr.
Percent-encoding is useful when encoding the query part of a URL or when the URL contains special
characters that might otherwise be misinterpreted by a web server. For an explanation of percent-encoding,
see Percent Encoding on page IV-245.

ValDisplay

V-804

Example
String baseURL = "http://google.com"
String key1 = "key1"
String value1 = URLEncode("35% larger")
String theURL = ""
sprintf theURL, "%s?%s=%s", baseURL, key1, value1
Print theURL
 http://google.com?key1=35%25%20larger

See Also
URLDecode, URLs on page IV-244.

ValDisplay
ValDisplay [/Z] ctrlName [keyword = value [, keyword = value …]]
The ValDisplay operation creates or modifies the named control that displays a numeric value in the target
window. The appearance of the control varies; see the Examples section.
For information about the state or status of the control, use the ControlInfo operation.

Parameters
ctrlName is the name of the ValDisplay control to be created or changed.
The following keyword=value parameters are supported:

appearance={kind [, platform]}

Sets the appearance of the control. platform is optional. Both parameters are
names, not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
See Button and DefaultGUIControls for more appearance details.

barBackColor=(r,g,b) Sets the background color under the bar (if any). r, g, and b range from 0 to 65535.

barBackColor=0 Sets the background color under the bar to the default color, the standard
document background color used on the current operating system, which is
usually white.

barmisc={lts, valwidth} Sets the “limits text size” and the size of the type showing the bar limits. If lts is
zero, the bar limits are not displayed. Otherwise, lts must be between 5 and 100.
valwidth is the “value readout width”. It claims the amount of horizontal space for
the numeric part of the display.
If valwidth equals or exceeds the control width available to it, the numeric readout
uses all the room, and prevents display of any bar.
If valwidth is zero, there is no numeric readout, and only the bar is displayed.
valwidth can range from zero to 4000, and it defaults to 1000 (which usually leaves
no room for the display bar).

bodyWidth=width Specifies an explicit size for the body (nontitle) portion of a ValDisplay control.
By default (bodyWidth=0), the body portion is the amount left over from the
specified control width after providing space for the current text of the title
portion. If the font, font size, or text of the title changes, then the body portion
may grow or shrink. If you supply a bodyWidth>0, then the body is fixed at the
size you specify regardless of the body text. This makes it easier to keep a set of
controls right aligned when experiments are transferred between Macintosh and
Windows, or when the default font is changed.

ValDisplay

V-805

disable=d

fColor=(r,g,b) Sets the initial color of the title. r, g, and b range from 0 to 65535. fColor defaults
to black (0,0,0). To further change the color of the title text, use escape sequences
as described for title=titleStr.

font="fontName" Sets the font used to display the value of the variable, e.g.,
font="Helvetica"

format=formatStr Sets the numeric format of the displayed value. The default format is "%g". For a
description of formatStr, see the printf operation.

frame=f

fsize=s Sets the size of the type used to display the value in the numeric readout. The
default is 12 points.

fstyle=fs

help={helpStr} Sets the help for the control. The help text is limited to a total of 255 characters.
On Macintosh, help appears when you turn Igor Tips on. On Windows, help for
the first 127 characters or up to the first line break appears in the status line. If you
press F1 while the cursor is over the control, you will see the entire help text. You
can insert a line break by putting “\r” in a quoted string.

highColor=(r,g,b) Specifies the bar color when the value is greater than base in the limits keyword.
r, g, and b are integers from 0 to 65535.

labelBack=(r,g,b) or 0 Specifies the background fill color for labels. r, g, and b are integers from 0 to
65535. The default is 0, which uses the window’s background color.

limits={low,high,base} Controls how the value is translated into a graphical representation when the display
includes a bar (described fully in Details). Defaults are {0,0,0}, which aren’t too
useful.

limitsColor=(r,g,b) Sets the color of the limits text, if any. r, g, and b range from 0 to 65535. limitsColor
defaults to black (0,0,0).

limitsBackColor=(r,g,b) Sets the background color under the limits text. r, g, and b range from 0 to 65535.

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Disable user input.

Does not change control appearance because it is read-only.
d=3: Hide and disable the control.

This is useful to disable a control that is also hidden because it is
in a hidden tab.

Sets frame style:
f=0: Value is unframed.
f=1: Default; value is framed (same as f=3).
f=2: Simple box.
f=3: 3D sunken frame.
f=4: 3D raised frame.
f=5: Text well.

fs is a bitwise parameter with each bit controlling one aspect of the font style
as follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold.
Bit 1: Italic.
Bit 2: Underline.
Bit 3: Outline (Macintosh only).
Bit 4: Shadow (Macintosh only).

ValDisplay

V-806

limitsBackColor=0 Sets the background color under the limits text to the default color, the standard
document background color used on the current operating system, which is
usually white.

lowColor=(r,g,b) Specifies the bar color when the value is less than base in the limits keyword. r, g,
and b are integers from 0 to 65535.

mode=m

pos={left,top} Sets the position of the display in pixels, from 0 to 32767.

pos+={dx,dy} Offsets the position of the display in pixels.

rename=newName Gives the ValDisplay control a new name.

size={width,height} Sets width and height of display in pixels. width can range from 10 to 200 pixels,
height from 5 to 200 pixels. Default width is 50, default height is determined by
the numeric readout font size.

title=titleStr Sets title of display to the specified string expression. The title appears to the left
of the display. If this title is too long, it won’t leave enough room to display the
bar or even the numeric readout! Defaults to "" (no title).
titleStr can contain formatting escape codes in order to create fancy, styled results.
The escape codes are the same as used by the TextBox operation. The easiest way
to generate fancy text is to make selections from the Insert popup in the
ValDisplay Control dialog.

value=valExpr Displays the numeric expression valExpr. It is not a string.
As of version 6.1, you can use the syntax _NUM:num to specify a numeric value
without using a dependency.

valueColor=(r,g,b) Sets the color of the value readout text, if any. r, g, and b range from 0 to 65535.
valueColor defaults to black (0,0,0).

valueBackColor=(r,g,b) Sets the background color under the value readout text.r, g, and b range from 0 to
65535.

valueBackColor=0 Sets the background color under the value readout text to the default color, the
standard document background color used on the current operating system,
which is usually white.

win=winName Specifies which window or subwindow contains the named control. If not given,
then the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page
III-97 for details on forming the window hierarchy.

zeroColor=(r,g,b) Governs the LED color (in LED mode only). r, g, and b are integers from 0 to
65535. Used in conjunction with the limits keyword such that zeroColor
determines one endpoint color when base is between low and high, or LED color
when the value is less than low.

Specifies the type of LED display to use, if any.
m=0: Bar mode (default).
m=1: Oval LED.
m=2: Rectangular LED.
m=3: Bar mode with no fractional part.
m=4: Candy-stripe effect for the bar area to support indefinite-style

progress windows. The value is taken to be the phase of the
candy stripe. When using value= _NUM:n, n is taken as an
increment value so you would normally just use 1. Uses the
native platform appearance if the high and low colors are left as
default. Note native formats may not fill vertical space. See
Progress Windows on page IV-138 for an example.

ValDisplay

V-807

Flags

Details
The target window must be a graph or panel.
The appearance of the ValDisplay control depends primarily on the width and valwidth parameters and the width
of the title. Space for the individual elements is allocated from left to right, with the title receiving first priority.
If the control width hasn’t all been used by the title, then the value display gets either valwidth pixels of room, or
what is left. If the control width hasn’t been used up, the bar is displayed in the remaining control width:

If you use the bodyWidth keyword, the value readout width and bar width occupy the body width. The
total control width is then bodyWidth+title width, and the width from the size keyword is ignored.
The limits values low, high, and base and the value of valExpr control how the bar, if any, is drawn. The bar
is drawn from a starting position corresponding to the base value to an ending position determined by the
value of valExpr, low and high. low corresponds to the left side of the bar, and high corresponds to the right.
The position that corresponds to the base value is linearly interpolated between low and high.
For example, with low= -10, high=10, and base= 0, a valExpr value of 5 will draw from the center of the bar
area (0 is centered between -10 and 10) to the right, halfway from the center to the right of the bar area (5 is
halfway from 0 to 10):

The valExpr must be executable at any time. The expression is stored and executed when the ValDisplay
needs to be updated. However, execution will occur outside the routine that creates the ValDisplay, so you
must not use local variables in the expression.
valExpr may be enclosed in quotes and preceded with a # character (see When Dependencies are Updated
on page IV-210) to defer evaluation of the validity of the numeric expression, which may be needed if the
expression references as-yet-nonexistent global variables or user-defined functions:
ValDisplay valdisp0 value=notAVar*2 // "unknown name or symbol" error
ValDisplay valdisp0 value=#"notAVar*2" // still not valid, no error
Variable notAVar=3 // now valid; ValDisplay works

In a ValDisplay, the #"" syntax permits use of a string expression. Normally, the # prefix signifies that the
following text must be a literal quoted string. String expressions are evaluated at runtime to obtain the final
expression for the ValDisplay. In other words, there is a level of indirection.

/Z No error reporting.

The Title

Bar Width = Control Width -
Title Width - Value Readout Width

Control Width
Title Width

Value
Readout

Width

Bar “snakes”
up/down/up
for additional
resolution.

Value of valExpr

high limit

low limit

Draws Blue Bar Draws Red Bar

low = -10 high = 10
5

base = 0

Variable

V-808

Examples
Here is a sampling of the various types of ValDisplay controls available:

You can use a ValDisplay to replace the bar mode with a solid color fill designed to look like an LED. Use
the mode keyword with mode=1 to create an oval LED or mode=2 to create a rectangular LED. You can
specify different frames with the rectangular LED but only a simple frame is available for the oval mode.
Use mode=0 to revert to bar mode.
The color and brightness of the LED depends on the value that the ValDisplay is monitoring combined with
the limits={low, high, base) setting, the two color settings used in bar mode along with a third color (zeroColor)
that is used only in LED mode. When the value is between low and high, the color is a linear combination of
endpoint colors. If base is between low and high, the endpoint colors are the low color and the zero color, or the
zero color and the high color. For values outside the limits, the appropriate limiting color is chosen.
If base is less than the low, the endpoint colors are the low color and the high color. In this case, if the value
is less than low the LED takes on the zero color.
You should use the bodyWidth setting in conjunction with LED mode to keep the LED from dramatically
changing size or disappearing when the title is changed or if your experiment is moved to a different
platform (Macintosh vs PC).
Try the ValDisplay Demo example experiment to see these different modes in action. The experiment file is
in your Igor Pro folder, in the “Examples:Feature Demos” subfolder.

See Also
See ValDisplay on page III-382 for more examples, and the printf operation about formatStr.
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls. The GetUserData operation for retrieving named user data.
Progress Windows on page IV-138 for an example of candy-stripe mode=4.

Variable
Variable [flags] varName [=numExpr][, varName [=numExpr]]…
The Variable declaration creates real or complex variables and gives them the specified name.

Flags

Details
The variable is initialized when it is created if you supply the initial value. However, when Variable is used
to declare a function parameter, it is an error to attempt to initialize it.

/C Declares a complex variable.

/D Obsolete, included only for backward compatibility (see Details).

/G Creates a variable with global scope and overwrites any existing variable.

Current value

High limit

Low limit

Low limit High limit

Blue

Red

LED displays
in a GroupBox.

Variance

V-809

You can create more than one variable at a time by separating the names and optional initializers for
multiple variables with a comma.
As of Igor Pro 2.02 for Power Macintosh, Igor Pro 3.0 for all Macintoshes, and for all Windows versions, all
numeric variables are double precision. Previously variables could be single or double precision and the /D
flag meant double precision. The /D flag is allowed for backward compatibility but is no longer needed and
should not be used in new code.
If used in a macro or function the new variable is local to that macro or function unless the /G (global) flag
is used. If used on the command line, the new variable is global.
varName can include a data folder path.

Examples
To initialize a complex variable, use the cmplx function. For example:
Variable/C cv1 = cmplx(1,2)

sets the real part of cv1 to 1 and the imaginary part to 2.

Variance
Variance(inWave [, x1, x2])
Returns the variance of the real-valued inWave. The function ignores NaN and INF values in inWave.

Parameters
inWave is expected to be a real-valued numeric wave. If inWave is a complex or text wave, Variance returns
NaN.
x1 and x2 specify a range in inWave over which the variance is to be calculated. They are used only to locate
the points nearest to x=x1 and x=x2 . The variance is then calculated over that range of points. The order of
x1 and x2 is immaterial.
If omitted, x1 and x2 default to -∞ and +∞ respectively and the variance is calculated for the entire wave.

Details
The variance is defined by

where

Examples
Make/O/N=5 test = p
SetScale/P x, 0, .1, test

// Print variance of entire wave
Print Variance(test)

// Print variance from x=0 to x=.2
Print Variance(test, 0, .2)

// Print variance for points 1 through 3
Variable x1=pnt2x(test, 1)
Variable x2=pnt2x(test, 3)
Print Variance(test, x1, x2)

See Also
mean, WaveStats

var =
xi � x()

2

i=1

n

�

n �1

x =
Xi

i=1

n

�

n
.

VariableList

V-810

VariableList
VariableList(matchStr, separatorStr, variableTypeCode)
The VariableList function returns a string containing a list of global variables selected based on the matchStr
and variableTypeCode parameters. The variables listed are all in the current data folder.

Details
For a variable name to appear in the output string, it must match matchStr and also must fit the
requirements of variableTypeCode. The first character of separatorStr is appended to each variable name as
the output string is generated.
The name of each variable is compared to matchStr, which is some combination of normal characters and
the asterisk wildcard character that matches anything. For example:

matchStr may begin with the ! character to return windows that do not match the rest of matchStr. For
example:

The ! character is considered to be a normal character if it appears anywhere else, but there is no practical
use for it except as the first character of matchStr.
variableTypeCode is used to further qualify the variable. The variable name goes into the output string only
if it passes the match test and its type is compatible with variableTypeCode. variableTypeCode is any one of:

Examples

See Also
See the StringList and WaveList functions.
See Setting Bit Parameters on page IV-12 for details about bit settings.

vcsr
vcsr(cursorName [, graphNameStr])
The vcsr function returns the Y (vertical) value of the point which the specified cursor (A through J) is
attached to in the top (or named) graph.

Parameters
cursorName identifies the cursor, which can be cursor A through J.
graphNameStr specifies the graph window or subwindow.

"*" Matches all variable names.

"xyz" Matches variable name xyz only.

"*xyz" Matches variable names which end with xyz.

"xyz*" Matches variable names which begin with xyz.

"*xyz*" Matches variable names which contain xyz.

"abc*xyz" Matches variable names which begin with abc and end with xyz.

"!*xyz" Matches variable names which do not end with xyz.

2: System variables (K0, K1 . . .)

4: Scalar variables

5: Complex variables

VariableList("*",";",4) Returns a list of all scalar variables.

VariableList("!V_*", ";",5) Returns a list of all complex variables except those whose names
begin with “V_”.

version

V-811

When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.

Details
The result is computed from the coordinate system of the graph’s Y axis. The Y axis used is the one used to
display the wave on which the cursor is placed.

See Also
The hcsr, pcsr, qcsr, xcsr, and zcsr functions.
Programming With Cursors on page II-292.

version
#pragma version = versNum
In the File Information dialog, #pragma version=versNum provides file version information that is
displayed next to the file name in the dialog. This line must not be indented and must appear in the first
fifty lines of the file. See Procedure File Version Information on page IV-149.

See Also
The The version Pragma on page IV-42, Procedure File Version Information on page IV-149, the IgorInfo
function, and #pragma.

WAVE
WAVE [/C][/T][/Z] localName [=pathToWave][, localName1 [=pathToWave1]]…
WAVE is a declaration that identifies the nature of a user-defined function parameter or creates a local
reference to a wave accessed in the body of a user-defined function.
The optional parameter pathToWave is used only in the body of a function, not in a parameter declaration.
The WAVE reference is required when you use a wave in an assignment statement in a function. At compile
time, the WAVE statement specifies that the local name references a wave. At runtime, it makes the
connection between the local name and the actual wave. For this connection to be made, the wave must exist
when the WAVE statement is executed.
When localName is the same as the global wave name and you want to reference a wave in the current data
folder, you can omit the pathToWave. Prior to Igor Pro 4.0, pathToWave was always required.
pathToWave can be a full literal path (e.g., root:FolderA:wave0), a partial literal path (e.g., :FolderA:wave0)
or $ followed by string variable containing a computed path (see Converting a String into a Reference
Using $ on page IV-48).
You can also use a data folder reference or the /SDFR flag to specify the location of the wave if it is not in
the current data folder. See Data Folder References on page IV-62 and The /SDFR Flag on page IV-64 for
details.
If the wave may not exist at runtime, use the /Z flag and call WaveExists before accessing the wave. The /Z
flag prevents Igor from flagging a missing wave as an error and dropping into the debugger. For example:
WAVE/Z wv=<pathToPossiblyMissingWave>

if(WaveExists(wv))
<do something with wv>

endif

Note that to create a wave, you use the Make operation.

Flags

See Also
WaveExists function.
WAVE Reference Type Flags on page IV-59 for additional wave type flags and information.

/C Complex wave.

/T Text wave.

/Z Ignores wave reference checking failures.

WAVEClear

V-812

Accessing Global Variables and Waves on page IV-50.
Accessing Waves in Functions on page IV-66.
Converting a String into a Reference Using $ on page IV-48.

WAVEClear
WAVEClear localName [, localName1 …]
The WAVEClear operation clears out a WAVE reference variable. WAVEClear is equivalent to WAVE/Z
localName= $"".

Details
Use WAVEClear to avoid unexpected results from certain operations such as Duplicate or Concatenate,
which will reuse the contents of a WAVE reference variable and may not generate the wave in the desired
data folder or with the desired name.
WAVEClear ensures that memory is deallocated after waves are killed as in this example:
Function foo()

Make wave1
FunctionThatKillsWave1()
WAVEClear wave1
AnotherFunction()

End

Although memory used for wave1 will be deallocated when foo returns, that memory will not be
automatically released while the function executes because the WAVE variable still contains a reference to
the wave. In this example, WAVEClear deallocates that memory before AnotherFunction executes.
You can also use WAVEClear before passing a data folder to preemptive threads using
ThreadGroupPutDF.

See Also
Accessing Waves in Functions on page IV-66, Wave Reference Counting on page IV-185, and ThreadSafe
Functions and Multitasking on page IV-295.

WaveCRC
WaveCRC(inCRC, waveName [, checkHeader])
The WaveCRC function returns a 32-bit cyclic redundancy check value of the bytes in the named wave
starting with inCRC.
Pass 0 for inCRC the first time you call WaveCRC for a particular stream of bytes as represented by the wave
data.
Pass the last-returned value from WaveCRC for inCRC if you are creating a CRC value for a given stream
of bytes through multiple calls to WaveCRC.
waveName may be a numeric or text wave.
The optional checkHeader parameter determines how much of the wave is checked:

Details
Polynomial used is:
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1
See crc32.c in the public domain source code for zlib for more information.

See Also
The StringCRC function.

checkHeader What It Does

0 Check only the wave data (default).

1 Check only the internal binary header.

2 Check both.

WaveDims

V-813

WaveDims
WaveDims(wave)
The WaveDims function returns the number of dimensions used by wave.
Returns zero if wave reference is null. See WaveExists for a discussion of null wave references.
Also returns zero if wave has zero rows. A matrix will return 2.

WaveExists
WaveExists(wave)
The WaveExists function returns one if wave reference is valid or zero if the wave reference is null. For
example if, in a user function, you have:
Wave w= $"no such wave"

then WaveExists(w) will return zero.
WaveExists should be used in functions only. In macros, use the exists function instead.

See Also
exists, NVAR_Exists, SVAR_Exists, and Accessing Global Variables and Waves on page IV-50.

WaveInfo
WaveInfo(waveName, 0)
The WaveInfo function returns a string containing a semicolon-separated list of information about the
named wave.
The second parameter is reserved for future use and must be zero.

Details
The string contains six kinds of information. Each group is prefaced by a keyword and colon, and
terminated with a semicolon. The keywords are:

Keyword Information Following Keyword

DUNITS The wave’s data units.

FULLSCALE Three numbers indicating whether the wave has any data full scale information, and the
min and max data full scale values. The format of the FULLSCALE description is:
FULLSCALE:validFS,minFS,maxFS;

validFS is 1 if minFS and maxFS have been set via a SetScale d command; otherwise
it is 0.

LOCK Reads back the value set by SetWaveLock.

MODIFIED 1 if the wave has been modified since the experiment was last saved, else 0.

MODTIME The date and time that the wave was last modified in seconds since January 1, 1904.

NUMTYPE A number denoting the data type of the wave.
For text waves this is 0.
For wave reference waves it is 16384.
For data folder reference waves it is 256.

WaveList

V-814

Always pass 0 as the second input parameter. In future versions of Igor, this parameter may request other
kinds of information to be returned.
A null wave reference returns a zero-length string. This might be encountered, for instance, when using
WaveRefIndexedDFR in a loop to act on all waves in a data folder, and the loop has incremented beyond
the highest valid index.

Examples
Make/O wave1;SetScale x,0,1,"dyn",wave1;SetScale y,3,20,"v",wave1
String info = WaveInfo(wave1,0)
Print NumberByKey("NUMTYPE", info) // Prints 2
Print StringByKey("DUNITS", info) // Prints "v"

See Also
The functions and operations listed under “About Waves” categories in the Command Help tab of the Igor
Help Browser; among them are CreationDate, modDate, WaveType, note, and numpnts.
NumberByKey and StringByKey functions for parsing the returned keyword list.
WaveInfo lacks information about multidimensional waves. Individual functions are provided to return
dimension-related information: DimDelta, DimOffset, DimSize, WaveUnits, and GetDimLabel.

WaveList
WaveList(matchStr, separatorStr, optionsStr)
The WaveList function returns a string containing a list of waves selected from the current data folder based
on matchStr and optionsStr parameters. See Details for information on listing waves in graphs, and for
references to newer, data folder-aware functions.

Details
For a wave name to appear in the output string, it must match matchStr and also must fit the requirements
of optionsStr and it must be in the current data folder. The first character of separatorStr is appended to each
wave name as the output string is generated.
The name of each wave is compared to matchStr, which is some combination of normal characters and the
asterisk wildcard character that matches anything.
For example:

For example, the number denoting a complex double precision wave is 5 (i.e., 1+4).

PATH The name of the symbolic path in which the wave file is stored (e.g., PATH:home;) or
nothing if there is no path for the wave (PATH:;).

XUNITS The wave’s X units.

"*" Matches all wave names in current data folder.

"xyz" Matches wave name xyz only, if xyz is in the current data folder.

"*xyz" Matches wave names which end with xyz and are in the current data folder.

"xyz*" Matches wave names which begin with xyz and are in the current data folder.

Keyword Information Following Keyword

For numeric waves it is one of the following:
1: Complex, added to one of the following
2: 32-bit (single precision) floating point
4: 64-bit (double precision) floating point
8: 8-bit signed integer
16: 16-bit signed integer
32: 32-bit signed integer
64: Unsigned, added to 8, 16, or 32 if wave is unsigned

WaveList

V-815

matchStr may begin with the ! character to return windows that do not match the rest of matchStr. For
example:

The ! character is considered to be a normal character if it appears anywhere else, but there is no practical
use for it except as the first character of matchStr.
optionsStr is used to further qualify the wave.
Use "" to accept all waves in the current data folder that are permitted by matchStr.
Set optionsStr to one or more of the following comma-separated keyword-value pairs:

"*xyz*" Matches wave names which contain xyz and are in the current data folder.

"abc*xyz" Matches wave names which begin with abc and end with xyz and are in the current data
folder.

"!*xyz" Matches wave names which do not end with xyz.

optionsStr Selection Criteria

"BYTE:0" or "BYTE:1" Waves that are not 8-bit integer (if 0) or only waves that are 8-bit integer (if 1).

"CMPLX:0" or
"CMPLX:1"

Waves that are not complex (if 0) or only waves that are complex (if 1).

"DIMS:numberOfDims" All waves in current data folder that have numberOfDims dimensions. This is the
number of dimensions reported by WaveDims.

Use "DIMS:0" for all waves having no points (numpnts(w)==0).

Use "DIMS:1" for graph traces (or one of the X, Y, and Z waves of a contour plot).

Use "DIMS:2" for false color and indexed color images (see Indexed Color
Details on page II-366).

Use "DIMS:3" for direct color images (see Direct Color Details on page II-368).

"DF:0" or "DF:1" Consider waves that are not data folder reference waves (if 0) or only waves that
are data folder reference waves (if 1). You can create waves that contain data
folder references using the Make /DF flag.

"DP:0" or "DP:1" Waves that are not double precision floating point (if 0) or only waves that are
double precision floating point (if 1).

"INT64:0" or
"INT64:1"

Consider waves that are not 64-bit integer (if 0) or only waves that are 64-bit
integer (if 1). 64-bit integer waves are supported in Igor 7 and later.

"INTEGER:0" or
"INTEGER:1"

Waves that are not 32-bit integer (if 0) or only waves that are 32-bit integer (if 1).

"MAXCHUNKS:max" Waves having no more than max chunks.

"MAXCOLS:max" Waves having no more than max columns.

"MAXLAYERS:max" Waves having no more than max layers.

"MAXROWS:max" Waves having no more than max rows.

"MINCHUNKS:min" Waves having at least min chunks.

"MINCOLS:min" Waves having at least min columns.

"MINLAYERS:min" Waves having at least min layers.

"MINROWS:min" Waves having at least min rows.

"SP:0" or "SP:1" Waves that are not single precision floating point (if 0) or only waves that are
single precision floating point (if 1).

WaveList

V-816

You can specify more than one option by separating the options with a comma. See the Examples.

There are several functions that are more useful for listing waves in graphs and tables.
WaveList with WIN:windowName gives only the names of the waves in the graph or table and does not
include the data folder for each wave. If you need to know what data folder the waves are in, use
WaveRefIndexed to get the wave itself and then if needed use GetWavesDataFolder to get the path.
When identifying a subwindow with WIN:windowName, see Subwindow Syntax on page III-97 for details
on forming the window hierarchy.
To list the actual waves used in a graph, or to distinguish two or more instances of the same named wave
in a graph, use TraceNameList. This function can be used in conjunction with TraceNameToWaveRef, and
XWaveRefFromTrace.
Use ContourNameList to list contour plots in a given window and ContourNameToWaveRef to access the
waves used to generate the contour plot.
To list the contour traces (that is, the contour lines themselves) use TraceNameList with the appropriate option.
Use ImageNameList to list images in a given window and ImageNameToWaveRef to access the waves
used to generate the images.

Processing Lists of Waves
Contrary to what you might expect, you can not use the output of WaveList directly with operations that have a
list of waves as their parameters. See Processing Lists of Waves on page IV-178 for ways of dealing with this.

Examples
// Returns a list of all waves in the current data folder.
WaveList("*",";","")

// Returns a list of all waves in the current data folder and displayed in the top table or graph.
WaveList("*", ";","WIN:")

// Returns a list of waves in the current data folder whose names
// end in “_bkg” and which are displayed in Graph0 as 1D traces.
WaveList("*_bkg", ";", "WIN:Graph0")

// Returns a list of waves in the current data folder whose names do not
// end in “X” and which are displayed in Graph0 as 1D traces or as one

"TEXT:0" or "TEXT:1" Waves that are not text (if 0) or only waves that are text (if 1).

"UNSIGNED:0" or
"UNSIGNED:1"

Waves that are not unsigned integer (if 0) or only waves that are unsigned
integer (if 1).

"WAVE:0" or "WAVE:1" Consider waves that do not contain wave references (if 0) or only waves that
contain wave references (if 1). You can create waves that contain wave
references using the Make /WAVE flag.

"WIN:" All waves in the current data folder that are displayed in the top graph or table.

"WIN:windowName" All waves in the current data folder that are displayed in the named table or
graph window or subwindow.

"WORD:0" or "WORD:1" Waves that are not 16-bit integer (if 0) or only waves that are 16-bit integer (if 1).

Note: Even when optionsStr is used to list waves used in a graph or table, the waves must be in
the current data folder.

Note: In addition to waves displayed as normal graph traces, WaveList will list matrix waves
used with AppendImage or NewImage and the X, Y, and Z waves used with
AppendXYZContour.

Note: Individual contour traces are not listed because they have no corresponding waves. See
All About Contour Traces on page II-334.

optionsStr Selection Criteria

WaveMax

V-817

// of the X, Y, and Z waves of an AppendXYZContour plot.
WaveList("!*X", ";", "WIN:Graph0,DIMS:1")

See Also
Chapter II-6, Multidimensional Waves.
Execute, ContourNameList, ImageNameList, TraceNameList, and WaveRefIndexed.

WaveMax
WaveMax(waveName [, x1, x2])
The WaveMax function returns the maximum value in the wave for points between x=x1 to x=x2, inclusive.

Details
If x1 and x2 are not specified, they default to -inf and +inf, respectively.
The X scaling of the wave is used only to locate the points nearest to x=x1 and x=x2. To use point indexing,
replace x1 with pnt2x(waveName,pointNumber1), and a similar expression for x2.
If the points nearest to x1 or x2 are not within the point range of 0 to numpnts(waveName)-1, WaveMax limits
them to the nearest of point 0 or point numpnts(waveName)-1.
For a floating-point wave, WaveMax runs about three times faster than getting the same information using
WaveStats. For an integer wave, WaveMax runs about ten times faster than WaveStats. The advantage may
not hold for short waves.

See Also
The WaveMin function and WaveStats operation.

WaveMeanStdv
WaveMeanStdv srcWave binSizeWave
The WaveMeanStdv operation calculates the standard deviation of the means for the specified bin
distribution saving the result in the wave W_MeanStdv.
For each entry in binSizeWave, srcWave is divided into the specified number of bins. Values in each bin are
averaged and then the mean and standard deviation of the averages (among all bins) are calculated. The
value of the standard deviation of the bin averages divided by the mean is then stored in W_MeanStdv
corresponding to the bin size entry in binSizeWave.
All entries in binSizeWave must be positive integers.

Details
When the number of points in srcWave does not divide evenly into the bin size entry from binSizeWave, the
last bin will have a smaller number of data points. In order not to skew the results the values corresponding
to the last bin will be dropped. If your data set is small compared to the bin size you might want to pad
srcWave with additional values (e.g., duplicate values from the beginning of the wave).
This operation does not support NaNs. If you get a NaN as an entry in the output wave then there is either
a NaN in srcWave or something is wrong with the calculation for that entry.

WaveMin
WaveMin(waveName [, x1, x2])
The WaveMin function returns the minimum value in the wave for points between x=x1 to x=x2, inclusive.

Details
If x1 and x2 are not specified, they default to -inf and +inf, respectively.
The X scaling of the wave is used only to locate the points nearest to x=x1 and x=x2. To use point indexing,
replace x1 with pnt2x(waveName,pointNumber1), and a similar expression for x2.
If the points nearest to x1 or x2 are not within the point range of 0 to numpnts(waveName)-1, WaveMin limits
them to the nearest of point 0 or point numpnts(waveName)-1.
For a floating-point wave, WaveMin runs about three times faster than getting the same information using
WaveStats. For an integer wave, WaveMin runs about ten times faster than WaveStats. The advantage may
not hold for short waves.

WaveName

V-818

See Also
The WaveMax function and WaveStats operation.

WaveName
WaveName(winNameStr, index, type)
The WaveName function returns a string containing the name of the indexth wave of the specified type in
the named window or subwindow.

Parameters
winNameStr can be "" to refer to the top graph or table.
When identifying a subwindow with winNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.

Details
WaveName works on waves displayed in a graph, in a table or on the list of waves in the current data folder.
If the window is a table, WaveName returns the column name (e.g., “wave0.d”), rather than the name of
the wave itself (e.g., “wave0”).
For most uses, we recommend that you use WaveRefIndexed or WaveRefIndexedDFR instead of
WaveName. WaveName returns a string containing the wave name only, with no data folder path
qualifying it. Thus, you may get erroneous results if the wave referred to in the graph has the same name
as a different wave in the current data folder. Likewise, if the named wave resides in a data folder that is
not the current data folder, you will not be able to refer to the named wave. Use WaveRefIndexedDFR
instead.
winNameStr is a string expression containing the name of a graph or table or an empty string (""). If the
string is empty and type is 4 then WaveName works on the list of all waves in the current data folder. If the
string is empty and the type parameter is not 4 then WaveName works on the top graph or table.
index starts from zero.
type is a number from 1 to 4. When type is 4 and winNameStr is "", WaveName works on the list of all waves
in the current data folder.
For graph windows, type is 1 for y waves, 2 for x waves, 3 for either y or x waves.
For table windows, type is 1 for data columns, 2 for index or dimension label columns, 3 for either data or
index or dimension label columns.
WaveName returns an empty string ("") if there is no wave matching the parameters.

Examples
WaveName("",0,4) // Returns name first wave current data folder.
WaveName("",0,1) // Returns name of first Y wave in the top graph.
WaveName("Graph0",1,2) // Returns name of second X wave in Graph0.
WaveName("Table0",1,3) // Returns name of second column in Table0.

WaveRefsEqual
WaveRefsEqual(w1, w2)
The WaveRefsEqual function returns the truth the two wave references are the same.
Requires Igor Pro 6.20 or later.

See Also
Wave Reference Functions on page IV-177

WaveRefIndexed

V-819

WaveRefIndexed
WaveRefIndexed(winNameStr, index, type)
The WaveRefIndexed function returns a wave reference to the indexth wave of the specified type in the
named window or subwindow.
In Igor Pro 6.30 or later, to iterate through the waves in a data folder, use WaveRefIndexedDFR instead of
WaveRefIndexed.

Parameters
winNameStr can be "" to refer to the top graph or table window or the current data folder.
When identifying a subwindow with winNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.

Details
WaveRefIndexed is analogous to WaveName but works better with data folders. We recommend that you
use it instead of WaveName.
winNameStr is a string expression containing the name of a graph or table or an empty string (""). If the
string is empty and type is 4 then WaveRefIndexed works on Igor’s list of all waves in the current data
folder. If the string is empty and the type parameter is not 4 then WaveRefIndexed works on the top graph
or table.
index starts from zero.
type is a number from 1 to 4. When type is 4 and winNameStr is "", WaveRefIndexed works on the list of all
waves in the current data folder.
For graph windows, type is 1 for y waves, 2 for x waves, 3 for either y or x waves.
For table windows, type is 1 for data columns, 2 for index or dimension label columns, 3 for either data or
index or dimension label columns.
WaveRefIndexed returns a null reference (see WaveExists) if there is no wave matching the parameters.

Examples
WaveRefIndexed("",0,1) // Returns first Y wave in the top graph.
WaveRefIndexed("Graph0",1,2) // Returns second X wave in Graph0.
WaveRefIndexed("Table0",1,3) // wave in second column in Table0.

See Also
WaveRefIndexedDFR, NameOfWave, GetWavesDataFolder
For a discussion of wave references, see Wave Reference Functions on page IV-177.

WaveRefIndexedDFR
WaveRefIndexedDFR(dfr, index)
The WaveRefIndexedDFR function returns a wave reference to the indexth wave in the specified data folder.
WaveRefIndexedDFR requires Igor Pro 6.30 or later.

Parameters
dfr is a data folder reference.
index is the zero-based index of the wave you want to access.

Details
WaveRefIndexedDFR returns a null reference (see WaveExists) if there is no wave corresponding to index
in the specified data folder.

Example
// DemoWaveRefIndexedDFR can be called like this:
// DemoWaveRefIndexedDFR(root:, 0) // Work on root
// DemoWaveRefIndexedDFR(root:SubDataFolder, 0) // Work on root:SubDataFolder
// DemoWaveRefIndexedDFR(:, 0) // Work on current data folder
Function DemoWaveRefIndexedDFR(dfr, recurse)

DFREF dfr
Variable recurse

WaveStats

V-820

Variable index = 0
do

Wave/Z w = WaveRefIndexedDFR(dfr, index)
if (!WaveExists(w))

break
endif
String path = GetWavesDataFolder(w, 2)
Print path
index += 1

while(1)

if (recurse)
Variable numChildDataFolders = CountObjectsDFR(dfr, 4)
Variable i
for(i=0; i<numChildDataFolders; i+=1)

String childDFName = GetIndexedObjNameDFR(dfr, 4, i)
DFREF childDFR = dfr:$childDFName
DemoWaveRefIndexedDFR(childDFR, 1)

endfor
endif

End

See Also
WaveRefIndexed, NameOfWave, GetWavesDataFolder
For a discussion of wave references, see Wave Reference Functions on page IV-177.

WaveStats
WaveStats [flags] waveName
The WaveStats operation computes several statistics on the named wave.

Flags

/ALPH=val Sets the significance level for the confidence interval of the mean (default val=0.05).

/C=method Calculates statistics for complex waves only. Does not affect real waves.
You can use method in various combinations to process the real, imaginary,
magnitude, and phase of the wave. The result is stored in the wave M_WaveStats (see
Details for format).

If you use a single method the results are stored both in M_WaveStats and in the
standard variables (e.g., V_avg, etc.). If you specify method as a combination of more
than one binary field then the variables reflect the results for the lowest chosen field
and all results are stored in the wave M_WaveStats.
For example, if you use /C=12, the variables will be set for the statistics of the
magnitude and M_WaveStats will contain columns corresponding to the magnitude
and to the phase.
In this mode V_numInfs will always be zero.

method is defined as follows:
method=0: Default; ignores the imaginary part of waveName. Use /W to also

store statistics in M_WaveStats.
method=1: Calculates statistics for real part of waveName and stores it in

M_WaveStats.
method=2: Calculates statistics for imaginary part of waveName and stores the

result in M_WaveStats.
method=4: Calculates statistics for magnitude of waveName, i.e.,

sqrt(real^2 +imag^2), and stores the result in M_WaveStats.
method=8: Calculate statistics for phase of waveName using

atan2(imag,real).

WaveStats

V-821

Details
WaveStats uses a two-pass algorithm to produce more accurate results than obtained by computing the
binomial expansions of the third and fourth order moments.
WaveStats returns the statistics in the automatically created variables:

Note: If you invoke this operation and M_WaveStats already exists in the current data
folder, it will be either overwritten or initialized to NaN.

/M=moment Calculates statistical moments.

/Q Prevents results from being printed in history.

/R=(startX,endX) Specifies an X range of the wave to evaluate.

/R=[startP,endP] Specifies a point range of the wave to evaluate.
If you specify the range as /R=[startP] then the end of the range is taken as the end of
the wave. If /R is omitted, the entire wave is evaluated.

/W Stores results in the wave M_WaveStats in addition to the various V_ variables when /C=0.

/Z No error reporting.

/ZSCR Computes z scores, , saved in W_ZScores.

V_npnts Number of points. Does not include points whose value is NaN or INF.

V_numNans Number of NaNs.

V_numINFs Number of INFs.

V_avg Average of Y values.

V_sum Sum of Y values.

V_sdev Standard deviation of Y values, .

(“Variance” is V_sdev2.)

V_sem Standard error of the mean .

V_rms .

V_adev .

V_skew .

moment is defined as follows:
moment=1: Calculates only lower moments: V_avg, V_npnts, V_numInfs, and

V_numNaNs. Use it if you do not need the higher moments.
moment=2: Default; calculates both lower moments and higher order

quantities: V_sdev, V_rms, V_adev, V_skew, and v_kurt.

zi Yi Y–() σ⁄=

σ 1
V_npnts 1–
---------------------------- Yi V_avg–()2=

sem = σ / V _numPnts

RMS (Root Mean Square) of Y values 1
V_npnts
------------------- Yi

2=

Average deviation 1
V_npnts
------------------- xi x–

i 0=

V_npnts 1–

=

Skewness 1
V_npnts

xi x–
σ

3

i 0=

V_npnts 1–

=

WaveStats

V-822

WaveStats prints the statistics in the history area unless /Q is specified. The various multidimensional min
and max location variables will only print to the history area for waves having the appropriate
dimensionality.
The format of the M_WaveStats wave is:

meanL1 and meanL2 are the confidence intervals for the mean

 and

where ta,v is the critical value of the Student T distribution for alpha significance and degree of freedom
v=V_npnts-1.

V_kurt .

V_minloc X location of minimum Y value.

V_min Minimum Y value.

V_maxloc X location of maximum Y value.

V_max Maximum Y value.

V_minRowLoc Row containing minimum data value.

V_maxRowLoc Row containing maximum data value.

V_minColLoc Column containing minimum Z value (2D or higher waves).

V_maxColLoc Column containing maximum Z value (2D or higher waves).

V_minLayerLoc Layer containing minimum Z value (3D or higher waves).

V_maxLayerLoc Layer containing maximum Z value (3D or higher waves).

V_minChunkLoc Chunk containing minimum Z value (4D waves only).

V_maxChunkLoc Chunk containing maximum Z value (4D waves only).

V_startRow First wave point. Zero if you do not use /R.

V_endRow Last wave point. Last point if you do not use /R.

Row Statistic Row Statistic Row Statistic

0 numPoints 9 minLoc 18 maxColLoc

1 numNaNs 10 min 19 maxLayerLoc

2 numInfs 11 maxLoc 20 maxChunkLoc

3 avg 12 max 21 startRow

4 sdev 13 minRowLoc 22 endRow

5 rms 14 minColLoc 23 sum

6 adev 15 minLayerLoc 24 meanL1

7 skew 16 minChunkLoc 25 meanL2

8 kurt 17 maxRowLoc 26 sem

Kurtosis 1
V_npnts
------------------- xi x–

σ

4

3–

i 0=

V_npnts 1–

=

MeanL1= V _ avg − tα ,v
V _ sdev

V _ npnts
, MeanL2 = V _ avg + tα ,ν

V _ sdev

V _ npnts

WaveTransform

V-823

Use Edit M_WaveStats.ld to display the results in a table with dimension labels identifying each of the
row statistics.
WaveStats is not entirely multidimensional aware. Even so, much of the information computed by
WaveStats is useful. See Analysis on Multidimensional Waves on page II-110 for details.

See Also
Chapter III-12, Statistics for a function and operation overview.
The ImageStats operation for calculating wave statistics for specified regions of interest in 2D matrix waves.
The WaveMax, WaveMin, mean and Variance functions.

WaveTransform
WaveTransform [flags] keyword srcWave
The WaveTransform operation transforms srcWave in various ways. If the /O flag is not specified then
unless otherwise indicated the output is stored in the wave W_WaveTransform, which will be of the same
data type as srcWave and saved in the current data folder.

Parameters
keyword is one of the following:

abs Calculates the absolute value of the entries in srcWave. It stores results in W_Abs if
srcWave is 1D or M_Abs otherwise. It will overwrite srcWave when used with the /O
flag. srcWave must be single or double precision real wave.

acos Calculates the inverse cosine of the entries in srcWave. It stores results in W_Acos if
srcWave is 1D or M_Acos otherwise. It will overwrite srcWave when used with the /O
flag. srcWave must be single or double precision real wave.

asin Calculates the inverse sine of the entries in srcWave. It stores results in W_Asin if
srcWave is 1D or M_Asin otherwise. It will overwrite srcWave when used with the /O
flag. srcWave must be single or double precision real wave.

atan Calculates the inverse tangent of the entries in srcWave. It stores results in W_Atan if
srcWave is 1D or M_Atan otherwise. It will overwrite srcWave when used with the /O
flag. srcWave must be single or double precision real wave.

cconjugate Calculates the complex conjugate of srcWave. Stores results in W_CConjugate or
M_CConjugate, depending on wave dimensionality, or overwrites srcWave if /O is used.

cos Calculates the cosine of the entries in srcWave. It stores results in W_Cos if srcWave is
1D or M_Cos otherwise. It will overwrite srcWave when used with the /O flag. srcWave
must be single or double precision real wave.

crystalToRect Converts triplet (three column {x,y,z}) waves from nonorthogonal crystallographic
coordinates to rectangular cartesian system. The parameters provided in the /P flag
are the crystallographic definition of the coordinate system given by {a, b, c, alpha,
beta, gamma}. The three angles are assumed to be expressed in radians unless the /D
flag is specified. The transformation sets the first component parallel to the vector a
and the third component parallel to c*. The output is stored in the current data folder
in the wave M_CrystalToRect which has the same data type. If the /O flag is specified,
the output overwrites the original data.

flip Flips the data in srcWave about its center. If /O flag is used, srcWave is overwritten.
Otherwise a new wave is created in the current data folder. The wave is named
W_flipped or M_flipped according to the dimensionality of srcWave.

index Fills srcWave as in jack=p.
If /P is specified then jack=p+param1.
The /O flag does not apply here.

inverse Computes 1/srcWave[i] for each point in srcWave and stores it in W_Inverse or
M_Inverse depending on the dimensionality of srcWave.

WaveTransform

V-824

inverseIndex Fills srcWave as in jack=numPnts-1-p.
If /P is specified the jack=numPnts-1-p+param1.

magnitude Creates a real-valued wave that is the magnitude of srcWave. If you do not specify the
/O flag, the output is stored in W_Magnitude or M_Magnitude depending on the
dimensionality of srcWave; the output precision will be the same as srcWave.

magsqr Creates a real-valued wave that is the magnitude squared of srcWave. If srcWave is a
double precision complex wave, the output is also double precision, otherwise the
output is a single precision wave. Stores the result in wave W_MagSqr or M_MagSqr,
depending on the dimensionality of srcWave, or overwrites srcWave if /O is used.

max Calculates the maximum of a point in srcWave and a fixed number specified as a single
parameter with the /P flag. It stores results in W_max if srcWave is 1D or M_max
otherwise. It will overwrite srcWave when used with the /O flag. See also the min
keyword and the example below.

min Calculates the minimum of a point in srcWave and a fixed number specified as a single
parameter with the /P flag. It stores results in W_min if srcWave is 1D or M_min
otherwise. It will overwrite srcWave when used with the /O flag. See also the max
keyword and the example below.

normalizeArea Calculates the area under the curve and rescales the wave so that the area is 1. Note
that waves with negative areas will be rescaled to positive values. Applies to 1D real-
valued waves. It does not affect wave scaling. Stores the result in the wave
W_normalizedArea or overwrites srcWave if /O is used.

phase Creates a real-valued wave containing the phase of the complex input wave. If the /O
flag is not used, the output is stored in W_Phase or M_Phase depending on the
dimensionality of imageMatrix. You can also use /P={norm} to divide the output wave
by the value of norm.

rectToCrystal Converts triplet (three column {x,y,z}) waves from cartesian coordinates to
nonorthogonal crystallographic coordinate system. The parameters provided in the
/P flag are the crystallographic definition of the coordinate system given by {a, b, c,
alpha, beta, gamma}. The three angles are assumed to be expressed in radians unless
the /D flag is specified. The transformation assumes the first component parallel to the
vector a and the third component parallel to c*. The output is stored in the current
data folder in the wave M_RectToCrystal which has the same data type. If the /O flag
is specified, the output overwrites the original data.

sgn Sets the value to -1 if the entry is negative, 1 otherwise. Stores the results in W_Sgn or
overwrites srcWave if /O is used. This operation will not work on UNSIGNED waves.

shift Shifts the position of data in srcWave by the specified number of points.
Unlike Rotate, WaveTransform discards data points that shift outside existing wave
boundaries. After the shift, vacated wave points are set to the specified fillValue. The
shift and the fillValue are specified with the /P flag using the syntax: /P={numPoints,
fillValue}. If you do not provide a fill value, it will be 0 for integer waves and NaN for
SP and DP.

sin Calculates the sine of the entries in srcWave. Stores results in W_Sin if srcWave is 1D
or M_Sin otherwise. Overwrites srcWave when used with the /O flag. srcWave must be
a real single or double precision floating point wave.

sqrt Calculates the square root of the entries in srcWave. It stores results in W_sqrt if
srcWave is 1D or M_sqrt otherwise. It will overwrite srcWave when used with the /O
flag. srcWave must be single- or double-precision real wave.

tan Calculates the tangent of the entries in srcWave. The results are stored in W_tan if
srcWave is 1D or M_tan otherwise. It will overwrite srcWave when used with the /O
flag. srcWave must be single- or double-precision real wave.

WaveType

V-825

Flags

Examples
// Produce output values in the range [-1,1]:
WaveTransform /P={(pi)} phase complexWave

// Faster than myWave=myWave>1 ? 1 : myWave
WaveTransform /P={1}/O min myWave

See Also
The Rotate operation.

References
Shmueli, U. (Ed.), International Tables for Crystallography, Volume B: 3.3, Kluwer Academic Publishers,

Dordrecht, The Netherlands, 1996.

WaveType
WaveType(waveName [,selector])
The WaveType function returns the type of data stored in the wave.
The optional selector parameter requires Igor Pro 6.1 or later.
If selector = 1, WaveType returns 0 for a null wave, 1 if numeric, 2 if text, 3 if the wave holds data folder
references or 4 if the wave holds wave references.
If selector = 2, WaveType returns 0 for a null wave, 1 for a normal global wave or 2 for a free wave or a wave
that is stored in a free data folder.
If selector is omitted or zero, the returned value for non-numeric waves (text waves, wave-reference waves
and data folder-reference waves) is 0.
If selector is omitted or zero, the returned value for numeric waves is a combination of bit values shown in
the following table:

zapINFs Deletes elements whose value is infinity or -infinity. This is relevant for 1D single-
precision and double-precision floating point waves only and does nothing for other
types of 1D waves. It is not suitable for multi-dimensional waves and returns an error
if srcWave is multi-dimensional. Use MatrixOp replace for multi-dimensional
waves.

zapNaNs Deletes elements whose value is NaN. This is relevant for 1D single-precision and
double-precision floating point waves only and does nothing for other types of 1D
waves. It is not suitable for multi-dimensional waves and returns an error if srcWave
is multi-dimensional. Use MatrixOp replaceNaNs for multi-dimensional waves.

/D If present, angles in wave data are interpreted as in degrees. Otherwise they are
interpreted as in radians.

/O Overwrites input wave.

/P={param1…} Specifies parameters as appropriate for the keyword that you are using. The number
of parameters and their order depends on the keyword.

Type Bit Number Decimal Value Hexadecimal Value

complex 0 1 1

32-bit float 1 2 2

64-bit float 2 4 4

8-bit integer 3 8 8

16-bit integer 4 16 10

WaveUnits

V-826

The unsigned bit is used only with the integer types while the complex bit can be used with any numeric
type. Only one of the bits 1-5 are set at a time. See Setting Bit Parameters on page IV-12 for details about
bit settings.

Examples
Variable waveIsComplex = WaveType(wave) & 0x01
Variable waveIs32BitFloat = WaveType(wave) & 0x02
Variable waveIs64BitFloat = WaveType(wave) & 0x04
Variable waveIs8BitInteger = WaveType(wave) & 0x08
Variable waveIs16BitInteger = WaveType(wave) & 0x10
Variable waveIs32BitInteger = WaveType(wave) & 0x20
Variable waveIsUnsigned = WaveType(wave) & 0x40

See Also
For concepts related to selector = 1 or 2, see Free Waves on page IV-75, Wave Reference Waves on page
IV-61 and Data Folder Reference Waves on page IV-66.

WaveUnits
WaveUnits(waveName, dimNumber)
The WaveUnits function returns a string containing the units for the given dimension.
Use dimNumber=0 for rows, 1 for columns, 2 for layers, and 3 for chunks. Use -1 to get the data units. If the wave
is just 1D, dimNumber=0 returns X units and 1 returns data units. This behavior is just like the WaveMetrics
procedure WaveUnits found in the WaveMetrics Procedures folder in previous versions of Igor Pro.

See Also
DimDelta, DimOffset, DimSize, SetScale

wfprintf
wfprintf refNumOrStr, formatStr [flags] waveName [, waveName]…
The wfprintf operation is like the printf operation except that it prints the contents of the named waves to
a file whose file reference number is in refNum.
The Save operation also outputs wave data to a text file. Use Save unless you need the added flexibility
provided by wfprintf.

Parameters
refNumOrStr is a numeric expression, a string variable or an SVAR pointing to a global string variable.
If a numeric expression, then it is a file reference number returned by the Open operation or an expression
that evaluates to 1.
If refNumOrStr is 1, Igor prints to the history area instead of to a file.
If refNumOrStr is the name of a string variable, the wave contents are “printed” to the named string
variable. refNumOrStr can also be the name of an SVAR to print to a global string:

SVAR sv = root:globalString
wfprintf sv, "", wave0

refNumOrStr can not be an element of a text wave.
The value of each named wave is printed to the file according to the conversion specified in formatStr.
formatStr contains one numeric conversion specification per column. See printf. If formatStr is "", wfprintf
uses a default format which gives tab-delimited columns.

32-bit integer 5 32 20

unsigned 6 64 40

Type Bit Number Decimal Value Hexadecimal Value

WhichListItem

V-827

Flags

Details
A complex wave in the wavelist is treated as two separate columns and requires two separate conversion
specifications if you do not use the default "" specification.
The number of conversion characters must exactly match the number of columns (one column per real
wave, two columns per complex wave) in the wave list. The wave list is limited to 100 waves. You can
output up to 200 columns by using complex waves instead of real waves.
The only conversion characters allowed are: fFeEgdouxXcs (the floating point, integer and string
conversion characters). You cannot use an asterisk to specify field width or precision.
If any of these restrictions is intolerable, you can use fprintf in a loop.
The wfprintf operation is not multidimensional aware. See Analysis on Multidimensional Waves on page
II-110 for details.

Examples
Function Example1()

Make/O/N=10 wave0=sin(p*pi/10) // test numeric wave
Make/O/N=10/T textWave= "row "+num2istr(p) // test text wave
Variable refNum
Open/P=home refNum as "output.txt"// open file for write
wfprintf refNum, "%s = %g\r"/R=[0,5], textWave, wave0 // print 6 values each
Close refNum

End

The resulting output.txt file contains:
row 0 = 0
row 1 = 0.309017
row 2 = 0.587785
row 3 = 0.809017
row 4 = 0.951057
row 5 = 1

Function/S NumericWaveToStringList(w)
Wave w // numeric wave (if text, use /T here and %s below)
String list
wfprintf list, "%g;" w // semicolon-separated list
return list

End

Print NumericWaveToStringList(wave0)
 0;0.309017;0.587785;0.809017;0.951057;1;0.951057;0.809017;0.587785;0.309017;

See Also
The printf operation for complete format and parameter descriptions and Creating Formatted Text on page
IV-235. The Open operation about refNum and for another way of writing wave files.
The Save operation.

WhichListItem
WhichListItem(itemStr, listStr [, listSepStr [, startIndex [, matchCase]]])
The WhichListItem function returns the index of the first item of listStr that matches itemStr. listStr should
contain items separated by the listSepStr character, such as "abc;def;". If the item is not found in the list, -1
is returned.
Use WhichListItem to locate an item in a string containing a list of items separated by a single character, such
as those returned by functions like TraceNameList or AnnotationList, or a line from a delimited text file.
listSepStr, startIndex, and matchCase are optional; their defaults are ";", 0, and 1 respectively.

Note: /R must follow the formatStr parameter directly without an intervening comma.

/R=(startX,endX) Specifies an X range in the wave(s) to print.

/R=[startP,endP] Specifies a point range in the wave(s) to print.

WignerTransform

V-828

Details
WhichListItem differs from FindListItem in that WhichListItem returns a list index, while FindListItem
returns a character offset into a string.
listStr is searched for itemStr bound by listSepStr on the left and right.
listStr is treated as if it ends with a listSepStr even if it doesn’t.
Searches for listSepStr are always case-sensitive. The comparison of itemStr to the contents of listStr is
usually case-sensitive. Setting the optional matchCase parameter to 0 makes the comparison case insensitive.
If itemStr is not found, if listStr is "", or if startIndex is not within the range of 0 to ItemsInList(listStr)-1, then
-1 is returned.
Only the first character of listSepStr is used.
Items can be empty. The lists "abc;def;;ghi" and ";abc;def;;ghi;" have four items (the third item
is ""). Use WhichListItem("", listStr) to find the first empty item.
If startIndex is specified, then listSepStr must also be specified. If matchCase is specified, startIndex and
listSepStr must be specified.

Examples
Print WhichListItem("wave0", "wave0;wave1;") // prints 0
Print WhichListItem("c", "a;b;") // prints -1
Print WhichListItem("", "a;;b;") // prints 1
Print WhichListItem("c", "a,b,c,x,c", ",") // prints 2
Print WhichListItem("c", "a,b,c,x,c", ",", 3) // prints 4
Print WhichListItem("C", "x;c;C;") // prints 2
Print WhichListItem("C", "x;c;C;", ";", 0, 0) // prints 1

See Also
The AddListItem, FindListItem, FunctionList, ItemsInList, RemoveFromList, RemoveListItem,
StringFromList, StringList, TraceNameList, VariableList, and WaveList functions.

WignerTransform
WignerTransform [/Z][/WIDE=wSize][/GAUS=gaussianWidth][/DEST=destWave] srcWave
The WignerTransform operation computes the Wigner transformation of a 1D signal in srcWave, which is
the name of a real or complex wave. The result of the WignerTransform is stored in destWave or in the wave
M_Wigner in the current data folder.

Flags

Details
The Wigner transform maps a time signal U(t) into a 2D time-frequency representation:

.

The computation of the Wigner transform evaluates the offset product

/DEST=destWave Creates by default a real wave reference for the destination wave in a user function.
See Automatic Creation of WAVE References on page IV-57 for details.

/GAUS=gWidth Computes the Gaussian Wigner Transform, which is a convolution of the Wigner
Transform with a two-dimensional Gaussian (in the two parameters of the
transform). The computation of the transform simplifies significantly when the
product of the widths of the two Gaussians is unity (minimum uncertainty ellipse).
gWidth uses the same units as the srcWave scaling.

/WIDE=wSize Computes Wigner Transform and sets the transform width to wSize. This is the
default transformation with wSize set to the size of srcWave.

/Z No error reporting.

W t ν,() U t x'
2
---+

 U∗ t x'
2
---–

 e 2πix'ν– x'd
∞–

∞

=

U t x'
2
---+

 U∗ t x'
2
---–

Window

V-829

over a finite window and then Fourier transforms the result. The offset product can be evaluated over a
finite window width, which can vary from a few elements of the input wave to the full length of the wave.
You can control the width of this window using the /WIDE flag. If you do not specify the output destination,
WignerTransform saves the results in the wave M_Wigner in the current data folder.
The input wave can be of any numeric data type, and the output data type and precision will be the same
as the input. Although the Wigner transform is real, the output will be complex when srcWave is complex.
By inspecting the complex wave you can gain some insight into the numerical stability of the algorithm. The
X-scaling of the output wave is identical to the scaling of srcWave. The Y-scaling of the input wave is taken
from the Fourier Transform of the offset product, which in turn is determined by the X-scaling of srcWave.
Specifically, if dx=DimDelta(srcWave,0) and srcWave has N points then
dy=DimDelta(M_Wigner,1)=1/(dx*N). WignerTransform does not set the units of the output wave.
The Ambiguity Function is related to the Wigner Transform by a Fourier Transform, and is defined by

.

Convolving the Wigner Transform with a 2D Gaussian leads to what is sometimes called the Gaussian
Wigner Transform or GWT. Formally the GWT is given by the equation:

.

Computationally this equation simplifies if the respective widths of the two Gaussians satisfy the minimum
uncertainty condition δt*δν=1. The /Gaus flag calculates the Gaussian Wigner Transform using your
specified width, δt, and it selects a δν such that it satisfies the minimum uncertainty condition.

See Also
CWT, FFT, and WaveTransform operations.
For further discussion and examples see Wigner Transform on page III-247.

References
Wigner, E. P., On the quantum correction for thermo-dynamic equilibrium, Physics Review, 40, 749-759,

1932.
Bartelt, H.O., K.-H. Brenner, and A.W. Lohman, The Wigner distribution function and its optical

production, Optics Communications, 32, 32-38, 1980.

Window
Window macroName([parameters]) [:macro type]
The Window keyword introduces a macro that recreates a graph, table, layout, or control panel window.
The macro appears in the appropriate submenu of the Windows menu. Window macros are automatically
created when you close a graph, table, layout, control panel, or XOP target window. You should use Macro,
Proc, or Function instead of Window for your own window macros. Otherwise, it works the same as Macro.

See Also
The Macro, Proc, and Function keywords. Data Folders and Window Macros on page II-125 for details.
Macro Syntax on page IV-102 for further information.

WindowFunction
WindowFunction [/FFT[=f] /DEST=destWave] windowKind, srcWave
The WindowFunction operation multiplies a one-dimensional (real or complex) srcWave by the named
window function.
By default the result overwrites srcWave.

Parameters

srcWave A one-dimensional wave of any numerical type. See ImageWindow for windowing
two-dimensional data.

A τ ν,() U t τ
2
---+

 U∗ t τ
2
---–

 e 2πitν– td
∞–

∞

=

GWT t ν δt δν,;,() 1
δtδν
---------- t'd ν'W t' ν',()e

2π t t'–
δt

 2

–

e
2π ν ν'–

δν

 2

–

d=

WindowFunction

V-830

Flags

Details
A “window function” alters the input data by decreasing values near the start and end of the data smoothly
towards zero, so that when the FFT of the data is computed the effects of nonintegral-periodic signals are
diminished. This improves the ability of the FFT to distinguish among closely-spaced frequencies. Each
window function has advantages and disadvantages, usually trading off rejection of “leakage” against the
ability to discriminate adjacent frequencies. For more details, see the References.
WindowFunction stores the window function’s normalization value (the average squared window value)
in V_value. This is the value you would get from WaveStats’s V_rms*V_rms for a wave of srcWave’s length
whose values were all equal to 1:
Make/O data = 1
WindowFunction Bartlet, data // Bartlet allowed as synonym for Bartlett
Print V_value // Prints 0.330709, mean of squared window values

WaveStats/Q data
Print V_rms*V_rms // Prints 0.330709

See Also
FFT and ImageWindow operations.

References
For more information about the use of window functions see:
Harris, F.J., On the use of windows for harmonic analysis with the discrete Fourier Transform, Proc, IEEE,

66, 51-83, 1978.
Wikipedia entry: <http://en.wikipedia.org/wiki/Window_function>.

windowKind Specifies the windowing function. Choices for windowKind are:
Bartlett, Blackman367, Blackman361, Blackman492, Blackman474, Cos1, Cos2, Cos3,
Cos4, Hamming, Hanning, KaiserBessel20, KaiserBessel25, KaiserBessel30, Parzen,
Poisson2, Poisson3, Poisson4, and Riemann.

See FFT for window equations and details. The equations assume that /FFT=1.

/DEST=destWave Creates or overwrites destWave with the result of the multiplication of srcWave and the
window function.
When used in a function, the WindowFunction operation by default creates a real
wave reference for the destination wave. See Automatic Creation of WAVE
References on page IV-57 for details.

/FFT [=1] The window interval is 0…N=numpnts(srcWave). This sets the first value of srcWave
to zero, but not the last value. This is appropriate for windowing data in preparation
for Fourier Transforms, and is the same algorithm used by FFT.
The window interval is 0…N=numpnts(srcWave)-1 if /FFT is missing or /FFT=0.
This sets the first and last value of srcWave to 0. This is the (only) algorithm that the
Hanning operation uses.

http://en.wikipedia.org/wiki/Window_function

WinList

V-831

WinList
WinList(matchStr, separatorStr, optionsStr)
The WinList function returns a string containing a list of windows selected based on the matchStr and
optionsStr parameters.

Details
For a window name to appear in the output string, it must match matchStr and also must fit the
requirements of optionsStr. The first character of separatorStr is appended to each window name as the
output string is generated.
The name of each window is compared to matchStr, which is some combination of normal characters and
the asterisk wildcard character that matches anything. For example:

matchStr may begin with the ! character to return windows that do not match the rest of matchStr. For example:

The ! character is considered to be a normal character if it appears anywhere else, but there is no practical
use for it except as the first character of matchStr.
optionsStr is used to further qualify the window. The acceptable values for optionsStr are:

"*" Matches all window names

"xyz" Matches window name xyz only

"*xyz" Matches window names which end with xyz

"xyz*" Matches window names which begin with xyz

"*xyz*" Matches window names which contain xyz

"abc*xyz" Matches window names which begin with abc and end with xyz

"!*xyz" Matches window names which do not end with xyz

"" Consider all windows.

"WIN:" The target window.

"WIN:windowTypes" Consider windows that match windowTypes.

"INCLUDE:includeTypes" Consider procedure windows that match includeTypes.

Using INCLUDE: implies WIN:128.

"INDEPENDENTMODULE:1" Consider procedure windows that are part of any independent
module as well as those that are not. Matching windows names are
actually the window titles followed by " [<independent module
name>]".
Using INDEPENDENTMODULE: implies WIN:128.

"INDEPENDENTMODULE:0" Consider procedure windows only if they are not part of any
independent module. Matching windows names are actually the
window titles, which for an external file includes the file extension,
such as "WMMenus.ipf".
Using INDEPENDENTMODULE: implies WIN:128.

"FLT:1" Return only panels that were created with NewPanel/FLT=1.
Specifying "FLT" also implies "WIN:64".
Omit FLT or use "FLT:0" to return windows that do not float (and
most do not).

"FLT:2" Return only panels that were created with NewPanel/FLT=2.
Specifying "FLT" also implies "WIN:64".

"VISIBLE:1" Return only visible windows (ignore hidden windows).

WinList

V-832

windowTypes is a literal number. The window name goes into the output string only if it passes the match
test and its type is compatible with windowTypes. windowTypes is a bitwise parameter:

See Setting Bit Parameters on page IV-12 for details about bit settings.
Procedure windows and help windows don't have names. WinList returns the window title instead.
includeTypes is also a literal number. The window name goes into the output string only if it passes the
match test and its type is compatible with includeTypes. includeTypes is one of:

or a bitwise combination of the above for more than one type of inclusion.
You can combine the WIN, INCLUDE and INDEPENDENTMODULE options by separating them with a comma.
When the INDEPENDENTMODULE option is used, the title of any procedure window that is part of an
independent module will be followed by " [<independent module name>]".
For example, if a procedure file contains:
#pragma IndependentModule=myIndependentModule
#include <Axis Utilities>

A call to WinList like this:
String list = WinList("* [myIndependentModule]", ";", "INDEPENDENTMODULE:1")

will store "Axis Utilities.ipf [myIndependentModule];" in the list string, along with any other procedure
windows that are part of that independent module.
When the INDEPENDENTMODULE option is omitted, the returned procedure window titles do not include
any independent module name suffix, and the procedure files "visible" to WinList depend on the setting of
SetIgorOption independentModuleDev (which must be done after opening the experiment):

1: Graphs

2: Tables

4: Layouts

16: Notebooks

64: Panels

128: Procedure windows

512: Help windows

4096: XOP target windows

1: Procedure windows that are not #included.

2: Procedure windows included by #include "someFileName".

4: Procedure windows included by #include <someFileName>.

SetIgorOption
independentModuleDev=0

Consider procedure windows only if they are not part of
any independent module and if they are not hidden
(using #pragma hide, for example).

SetIgorOption
independentModuleDev=1

Consider all procedure windows including those in
independent modules or hidden.

WinName

V-833

Examples

See Also
Independent Modules on page IV-218. The ChildWindowList and WinType functions.

WinName
WinName(index, windowTypes [, visibleWindowsOnly [, floatKind]])
The WinName function returns a string containing the name of the indexth window of the specified type, or
an empty string ("") if no window fits the parameters.
If the optional visibleWindowsOnly parameter is nonzero, only visible windows are considered. Otherwise
both visible and hidden windows are considered.
If the optional floatKind parameter is 1, only floating windows created with NewPanel/FLT=1 are
considered. If floatKind is 2, only NewPanel/FLT=2 windows are considered. windowTypes must contain at
least 64 (panels).
If floatKind is omitted or is 0 only non-floating ("normal") windows are considered.
Procedure windows don’t have names. WinName returns the procedure window title instead.

Details
index starts from zero, and returns the top-most window matching the parameters.
The window names are ordered in window-stacking order, as returned by WinList.
DoWindow/B moves the window to the back and changes the index needed to retrieve its name to the
greatest index that returns any name.
Hiding or showing a window (with SetWindow hide=1 or Notebook visible=0 or by manual means)
does not affect the index associated with the window.
windowTypes is a bitwise parameter:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Examples
Print WinName(0,1) // Prints the name of the top graph.
Print WinName(0,3) // Prints the name of the top graph or table.
String win=WinName(0,1) // The name of the top visible graph.
SetWindow $win hide=1 // Hide the graph (it may already be hidden).
Print WinName(0,1) // Prints the name of the now-hidden graph.

Command Returned List

WinList("*",";","") All existing non-floating windows.

WinList("*", ";","WIN:3") All graph and table windows.

WinList("Result_*", ";", "WIN:1") Graphs whose names start with “Result_”.

WinList("*", ";","WIN:64,FLT:1,FLT:2") All floating panel windows.

WinList("*", ";","INCLUDE:6") All #included procedure windows.

WinList("*", ";","WIN:1,INCLUDE:6") All graphs and #included procedure windows.

1: Graphs.

2: Tables.

4: Layouts.

16: Notebooks.

64: Panels.

128: Procedure windows.

4096: XOP target windows.

WinRecreation

V-834

Print WinName(0,1,1) // Prints the name of the top visible graph.
Print WinName(0,64,1,1) // Name of the top visible NewPanel/FLT=1 window.

See Also
WinList, DoWindow (/F and /B flags), SetWindow (hide keyword), Notebook (Miscellaneous) (visible
keyword), NewPanel (/FLT flag).

WinRecreation
WinRecreation(winStr, options)
The WinRecreation function returns a string containing the window recreation macro (or style macro) for
the named window.

Parameters
winStr is the name of a graph, table, page layout, panel, notebook, or XOP target window or the title of a
procedure window or help file. If winStr is "" and options is 0 or 1, information for the top graph, table, page
layout, panel, notebook, or XOP target window is returned.
The meaning of options depends on the type of window as described in the following sections.

Target Window Details
Target windows include graphs, tables, page layouts, panels, notebooks, and XOP target windows.
If options is 0, WinRecreation returns the window recreation macro.
If options is 1, WinRecreation returns the style macro or an empty string if the window does not support
style macros.

Graphs Details
If options is 2, WinRecreation returns a recreation macro in which all occurrences of wave names are
replaced with an ID number having the form ##<number>## (for instance, ##25##). These ID numbers can
be found easily using the strsearch function. This is intended for applications that need to alter the
recreation macro by replacing wave names with something else, usually other wave names. The ID
numbers are the same as those returned by the GetWindow operation with the wavelist keyword.

Graphs and Panels Details
If options is 4, WinRecreation returns the window recreation macro without the default behavior of causing
the graph to revert to “normal” mode (as if the GraphNormal operation had been called). This allows the
use of WinRecreation when a graph or panel is in drawing tools mode without exiting that mode. For
windows other than graphs or panels, this is equivalent to an options value of 0.

Notebooks Details
If options is -1, WinRecreation returns the same text that the Generate Commands menu item would generate
with the Selected paragraphs radio button selected and all the checkboxes selected (includes text commands).
If options is 0, WinRecreation returns the same text that the Generate Commands menu item would generate with
the Entire document radio button selected and all the checkboxes except “Generate text commands” selected).
If options is 1, WinRecreation returns the same text that the Generate Commands menu item would generate
with the Entire document radio button selected and all the checkboxes selected (includes text commands).
Regardless of the value of options the text returned by WinRecreation for notebook always ends with 5 lines
of file-related information formatted as comments:

// File Name: MyNotebook.txt
// Path: "Macintosh HD:Desktop Folder:"
// Symbolic Path: home
// Selection Start: paragraph 100, position 31
// Selection End: paragraph 100, position 31

Help Windows Details
WinRecreation returns the same 5 lines of file-related information as described above for notebooks.
Set options to -3 to ensure that winStr is interpreted as a help window title (help windows have only titles,
not window names).

Procedures Details
WinRecreation returns the same 5 lines of file-related information as described above for notebooks.

WinType

V-835

Set options to -2 to ensure that winStr is interpreted as a procedure window title (procedure windows have
only titles, not window names).
If SetIgorOption IndependentModuleDev=1 is in effect, winStr can also be a procedure window title
followed by a space and, in brackets, an independent module name. In such cases WinRecreation returns
text from or information about the specified procedure file which is part of that independent module. (See
Independent Modules on page IV-218 for independent module details.)
For example, in an experiment containing:
#pragma IndependentModule=myIM
#include <Axis Utilities>

code like this:
String text=WinRecreation("Axis Utilities.ipf [myIM]",-2)

will return the file-related information for the Axis Utilities.ipf procedure window, which is normally a
hidden part of the myIM independent module.
To get the text content of a procedure window, use the ProcedureText function.

Examples
WinRecreation("Graph0",0) // Returns recreation macro for Graph0.

WinRecreation("",1) // Style macro for top window.

String win= WinName(0,16,1) // top visible notebook
String str= WinRecreation(str,-1) // Selected Text commands
Variable line= itemsInList(str,"\r")-5 // First file info line
Print StringFromList(line, str,"\r") // Print File Name:
Print StringFromList(line+1, str,"\r") // Print Path:
Print StringFromList(line+2, str,"\r") // Print Symbolic Path:
Print StringFromList(line+3, str,"\r") // Selection Start:
Print StringFromList(line+4, str,"\r") // Selection End:

See Also
Saving a Window as a Recreation Macro on page II-61.

WinType
WinType(winNameStr)
The WinType function returns a value indicating the type of the named window.

Details
winNameStr is a string or string expression containing the name of a window or subwindow, or "" to signify
the target window. When identifying a subwindow with winNameStr, see Subwindow Syntax on page
III-97 for details on forming the window hierarchy.
WinType returns the following values:
0: No window by that name.

Because command and procedure windows do not have names (they only have titles), WinType can not even
be asked about those windows.

See Also
The WinName, ChildWindowList, and WinList functions.

1: Graph.

2: Table.

3: Layout.

5: Notebook.

7: Panel.

13: XOP target window.

WMAxisHookStruct

V-836

WMAxisHookStruct
See NewFreeAxis for further explanation of WMAxisHookStruct.
Structure WMAxisHookStruct

char win[200] // Host window or subwindow name
char axName[32] // Name of axis
char mastName[32] // Name of controlling axis or ""
char units[50] // Axis units.
Variable min // Current axis range minimum value
Variable max // Current axis range maximum value

EndStructure

WMBackgroundStruct
See CtrlNamedBackground, Background Tasks on page IV-285, and Preemptive Background Task on
page IV-300 for further explanation of WMBackgroundStruct.
Structure WMBackgroundStruct

char name[32] // Background task name
UInt32 curRunTicks // Tick count when task was called
Int32 started // TRUE when CtrlNamedBackground start is issued
UInt32 nextRunTicks // Precomputed value for next run

// but user functions may change this
EndStructure

WMButtonAction
See Button for further explanation of WMButtonAction.
Structure WMButtonAction

char ctrlName[32] // Control name
char win[200] // Host window or subwindow name
STRUCT Rect winRect // Local coordinates of host window
STRUCT Rect ctrlRect // Enclosing rectangle of the control
STRUCT Point mouseLoc // Mouse location
Int32 eventCode // -1: Control being killed

// 1: Mouse down
// 2: Mouse up
// 3: Mouse up outside control
// 4: Mouse moved
// 5: Mouse enter
// 6: Mouse leave

Int32 eventMod // See Control Structure eventMod Field on page III-387
String userData // Primary unnamed user data.
Int32 blockReentry // See Control Structure blockReentry Field on page III-388

EndStructure

WMCheckboxAction
See CheckBox for further explanation of WMCheckboxAction.
Structure WMCheckboxAction

char ctrlName[32] // Control name
char win[200] // Host window or subwindow name
STRUCT Rect winRect // Local coordinates of host window
STRUCT Rect ctrlRect // Enclosing rectangle of the control
STRUCT Point mouseLoc // Mouse location
Int32 eventCode // -1: Control being killed

// 2: Mouse up
Int32 eventMod // See Control Structure eventMod Field on page III-387
String userData // Primary unnamed user data
Int32 blockReentry // See Control Structure blockReentry Field on page III-388
Int32 checked // Checkbox state

EndStructure

WMCustomControlAction
See CustomControl for further explanation of WMCustomControlAction.
Structure WMCustomControlAction

char ctrlName[32] // Control name
char win[200] // Host window or subwindow name
STRUCT Rect winRect // Local coordinates of host window
STRUCT Rect ctrlRect // Enclosing rectangle of the control

WMFitInfoStruct

V-837

STRUCT Point mouseLoc // Mouse location
Int32 eventCode // See CustomControl for details
Int32 eventMod // See Control Structure eventMod Field on page III-387
String userData // Primary unnamed user data
Int32 blockReentry // See Control Structure blockReentry Field on page III-388
Int32 missedEvents // TRUE when events occurred but the user

// function was not available for action
Int32 mode // General purpose
Int32 isVariable // TRUE if varName is a variable
Int32 isWave // TRUE if varName referenced a wave
Int32 isString // TRUE if varName is a String type
NVAR nVal // Valid if isVariable and not isString
SVAR sVal // Valid if isVariable and isString
WAVE nWave // Valid if isWave and not isString
WAVE/T sWave // Valid if isWave and not isString
Int32 rowIndex // If isWave, this is the row index

// unless rowLabel is not empty
char rowLabel[32] // Wave row label
Int32 kbChar // Keyboard key character code
Int32 kbMods // Keyboard key modifiers bit field

// Bit 0: Command pressed (Macintosh)
// Bit 1: Shift pressed
// Bit 2: Alpha pressed lock
// Bit 3: Option (Mac) or Alt (Windows) pressed
// Bit 4: Control pressed

Int32 curFrame // Input and output, used with kCCE_frame event
Int32 needAction // See CustomControl for details

EndStructure

WMFitInfoStruct
See The WMFitInfoStruct Structure on page III-230 for further explanation of WMFitInfoStruct.
Structure WMFitInfoStruct

char IterStarted // Nonzero on the first call of an iteration
char DoingDestWave // Nonzero when called to evaluate autodest wave
char StopNow // Fit function sets this to nonzero to

// indicate that a problem has occurred
// and fitting should stop

Int32 IterNumber // Number of iterations completed
Int32 ParamPerturbed // See The WMFitInfoStruct Structure on page III-230

EndStructure

WMGizmoHookStruct
See ModifyGizmo in the Gizmo Reference help file for further explanation of WMGizmoHookStruct.
Structure WMGizmoHookStruct

Int32 version
char winName[32]
char eventName[32]
Int32 width
Int32 height
Int32 mouseX
Int32 mouseY
Variable xmin
Variable xmax
Variable ymin
Variable ymax
Variable zmin
Variable zmax
Variable eulerA
Variable eulerB
Variable eulerC
Variable wheelDx
Variable wheelDy

EndStructure

WMListboxAction
See ListBox for further explanation of WMListboxAction.
Structure WMListboxAction

char ctrlName[32] // Control name
char win[200] // Host window or subwindow name

WMMarkerHookStruct

V-838

STRUCT Rect winRect // Local coordinates of host window
STRUCT Rect ctrlRect // Enclosing rectangle of the control
STRUCT Point mouseLoc // Mouse location
Int32 eventCode // -1: Control being killed

// 1: Mouse down
// 2: Mouse up
// 3: Double click
// 4: Cell selection (mouse or arrow keys)
// 5: Cell selection plus Shift key
// 6: Begin edit
// 7: Finish edit
// 8: Vertical scroll. See ListBox for details.
// 9: Horizontal scroll
// 10: Top row set or first column set
// 11: Column divider resized
// 12: Keystroke, char code is in row field

Int32 eventMod // See Control Structure eventMod Field on page III-387
String userData // Primary unnamed user data
Int32 blockReentry // See Control Structure blockReentry Field on page III-388
Int32 eventCode2 // Obsolete
Int32 row // Selection row. See ListBox for details.
Int32 col // Selection column. See ListBox for details.
WAVE/T listWave // List wave specified by ListBox command
WAVE selWave // Selection wave specified by ListBox command
WAVE colorWave // Color wave specified by ListBox command
WAVE/T titleWave // Title wave specified by ListBox command

EndStructure

WMMarkerHookStruct
See Custom Marker Hook Functions on page IV-279 for further explanation of WMMarkerHookStruct.
Structure WMMarkerHookStruct

Int32 usage // 0= normal draw, 1= legend draw
Int32 marker // Marker number minus start
float x, y // Location of desired center of marker
float size // Half width/height of marker
Int32 opaque // 1 if marker should be opaque
float penThick // Stroke width
STRUCT RGBColor mrkRGB // Fill color
STRUCT RGBColor eraseRGB // Background color
STRUCT RGBColor penRGB // Stroke color
WAVE ywave // Trace's y wave
double ywIndex // Point number on ywave where marker is being drawn

EndStructure

WMPopupAction
See PopupMenu for further explanation of WMPopupAction.
Structure WMPopupAction

char ctrlName[32] // Control name
char win[200] // Host window or subwindow name
STRUCT Rect winRect // Local coordinates of host window
STRUCT Rect ctrlRect // Enclosing rectangle of the control
STRUCT Point mouseLoc // Mouse location
Int32 eventCode // -1: Control being killed

// 2: Mouse up
Int32 eventMod // See Control Structure eventMod Field on page III-387
String userData // Primary unnamed user data
Int32 blockReentry // See Control Structure blockReentry Field on page III-388
Int32 popNum // Item number currently selected (1-based)
char popStr[400] // Contents of current popup item

EndStructure

WMSetVariableAction
See SetVariable for further explanation of WMSetVariableAction.
Structure WMSetVariableAction

char ctrlName[32] // Control name
char win[200] // Host window or subwindow name
STRUCT Rect winRect // Local coordinates of host window
STRUCT Rect ctrlRect // Enclosing rectangle of the control
STRUCT Point mouseLoc // Mouse location

WMSliderAction

V-839

Int32 eventCode // -1: Control being killed
// 1: Mouse up
// 2: Enter key
// 3: Live update
// 4: Scroll wheel up if increment is zero
// 5: Scroll wheel down if increment is zero
// 6: Value changed by dependency update

Int32 eventMod // See Control Structure eventMod Field on page III-387
String userData // Primary unnamed user data
Int32 blockReentry // See Control Structure blockReentry Field on page III-388
Int32 isStr // TRUE for a string variable
Variable dval // Numeric value of variable
char sval[400] // Value of variable as a string
char vName[106] // Name of variable or wave
WAVE svWave // Valid if using wave
Int32 rowIndex // Row index for a wave if rowLabel is empty
char rowLabel[32] // Wave row label
Int32 colIndex // Column index for a wave if colLabel is empty
char colLabel[32] // Wave column label

EndStructure

WMSliderAction
See Slider for further explanation of WMSliderAction.
Structure WMSliderAction

char ctrlName[32] // Control name
char win[200] // Host window or subwindow name
STRUCT Rect winRect // Local coordinates of host window
STRUCT Rect ctrlRect // Enclosing rectangle of the control
STRUCT Point mouseLoc // Mouse location
Int32 eventCode // -1 if control about to be killed

// or bit field:
// Bit 0: Value set
// Bit 1: Mouse down
// Bit 2: Mouse up
// Bit 3: Mouse moved

Int32 eventMod // See Control Structure eventMod Field on page III-387
String userData // Primary unnamed user data
Int32 blockReentry // See Control Structure blockReentry Field on page III-388
Variable curval // Value of slider

EndStructure

WMTabControlAction
See TabControl for further explanation of WMTabControlAction.
Structure WMTabControlAction

char ctrlName[32] // Control name
char win[200] // Host window or subwindow name
STRUCT Rect winRect // Local coordinates of host window
STRUCT Rect ctrlRect // Enclosing rectangle of the control
STRUCT Point mouseLoc // Mouse location
Int32 eventCode // -1: Control being killed

// 2: Mouse up
Int32 eventMod // See Control Structure eventMod Field on page III-387
String userData // Primary unnamed user data
Int32 blockReentry // See Control Structure blockReentry Field on page III-388
Int32 tab // Tab number

EndStructure

WMWinHookStruct
See Named Window Hook Functions on page IV-271 for further explanation of WMWinHookStruct.
Structure WMWinHookStruct

char winName[200] // Host window or subwindow name
STRUCT Rect winRect // Local coordinates of the affected (sub)window
STRUCT Point mouseLoc // Mouse location
Variable ticks // Tick count when event happened
Int32 eventCode // See Named Window Hook Events on page IV-272
char eventName[32] // See Named Window Hook Events on page IV-272
Int32 eventMod // See Control Structure eventMod Field on page III-387
char menuName[256] // Name of the menu item as for SetIgorMenuMode
char menuItem[256] // Text of the menu item as for SetIgorMenuMode

wnoise

V-840

char traceName[32] // See Named Window Hook Functions on page IV-271
char cursorName[2] // Cursor name A through J
Variable pointNumber // See Named Window Hook Functions on page IV-271
Variable yPointNumber // See Named Window Hook Functions
Int32 isFree // 1 if the cursor is not attached to anything
Int32 keycode // ASCII value of key struck
char oldWinName[32] // Simple name of the window or subwindow
Int32 doSetCursor // Set to 1 to change cursor to cursorCode
Int32 cursorCode // See Setting the Mouse Cursor on page IV-274
Variable wheelDx // Vertical lines to scroll
Variable wheelDy // Horizontal lines to scroll

EndStructure

wnoise
wnoise(shape, scale)
The wnoise function returns a pseudo-random value from the two-parameter Weibull distribution
characterized by the shape and scale, the respective gamma and alpha parameters. The two-parameter Weibull
probability distribution function is

The mean of the Weibull distribution is

and the variance is

Note that this definition of the PDF uses different scaling than the one used in StatsWeibullPDF. To match
the scaling of StatsWeibullPDF multiply the result from Wnoise by the factor scale^(1-1/shape).
The random number generator initializes using the system clock when Igor Pro starts. This almost
guarantees that you will never repeat a sequence. For repeatable “random” numbers, use SetRandomSeed.
The algorithm uses the Mersenne Twister random number generator.

See Also
The SetRandomSeed operation.
Noise Functions on page III-334.
Chapter III-12, Statistics for a function and operation overview.

x
x
The x function returns the scaled row index for the current point of the destination wave in a wave
assignment statement. This is the same as the X value if the destination wave is a vector (1D wave).

Details
Outside of a wave assignment statement, x acts like a normal variable. That is, you can assign a value to it
and use it in an expression.

See Also
The p function and Waveform Arithmetic and Assignments on page II-94.

x � 0

f (x;�,�) =
�

�
x� �1 exp �

1

�
x��

��
	

�

� > 0

� > 0

�

1

� � 1+
1

�

�

��
�

,

�

2

� � 1+
2

�

�

��
�

	

��

2

� � 1+
1

�

�

��
�

	

�

�

�

�
�

2

.

x2pnt

V-841

x2pnt
x2pnt(waveName, x1)
The x2pnt function returns the point number on the wave whose X value is closest to x1.

Details
There are no equivalent functions for multidimensional waves. To calculate this information for other
dimensions, use this expression:
(ScaledDimPos - DimOffset(waveName, dim))/DimDelta(waveName,dim)

This expression calculates the number of an element in the dimension dim (p, q, r, or s). ScaledDimPos is the
scaled position in that dimension (x, y, z, or t). dim is 0 for rows, 1 for columns, 2 for layers or 3 for chunks.
Setting dim =0 is equivalent to using x2pnt. The point number includes a fractional part; you may wish to
use ceil, round, trunc, or floor to calculate an integer point number.

See Also
The functions DimDelta, and DimOffset.
For an explanation of waves and X scaling, see Changing Dimension and Data Scaling on page II-83.

xcsr
xcsr(cursorName [, graphNameStr])
The xcsr function returns the X value of the point which the named cursor (A through J) is on in the top or
named graph.

Parameters
cursorName identifies the cursor, which can be cursor A through J.
graphNameStr specifies the graph window or subwindow.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.

Details
The result is derived from the wave that the cursor is on, not from the X axis of the graph. If the wave is
displayed as an XY pair, the X axis and the wave’s X scaling will usually be different.

See Also
The hcsr, pcsr, qcsr, vcsr, and zcsr functions.
Programming With Cursors on page II-292.

XWaveName
XWaveName(graphNameStr, traceNameStr)
The XWaveName function returns a string containing the name of the wave supplying the X coordinates
for the named trace in the named graph window or subwindow.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.
traceNameStr is the name of the trace in question.

Details
XWaveName returns an empty string ("") if the trace is not plotted versus an X wave.
For most uses, we recommend that you use XWaveRefFromTrace instead of WaveName. XWaveName
returns a string containing the wave name only, with no data folder path qualifying it. Thus, you may get
erroneous results if the X wave referred to in the graph has the same name as a different wave in the current
data folder. Likewise, if the named wave resides in a folder that is not the current data folder, you will not
be able to refer to the named wave.
graphNameStr and traceNameStr are strings, not names.

XWaveRefFromTrace

V-842

Examples
Display ywave vs xwave // XY graph
Print XWaveName("","ywave") // prints xwave

See also
Trace Names on page II-243, Programming With Trace Names on page IV-72.

XWaveRefFromTrace
XWaveRefFromTrace(graphNameStr, traceNameStr)
The XWaveRefFromTrace function returns a wave reference to the wave supplying the X coordinates
against which the named trace is displayed in the named graph window or subwindow.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.

Details
XWaveRefFromTrace returns a null reference (see WaveExists) if the wave is not plotted versus an X wave.
graphNameStr and traceNameStr are strings, not names.

Examples
Display ywave vs xwave // XY graph
Print XWaveRefFromTrace("","ywave")[50] // prints value of xwave at point 50

See Also
For other commands related to waves and traces: WaveRefIndexed, TraceNameToWaveRef,
TraceNameList, CsrWaveRef, and CsrXWaveRef.
For a description of traces: ModifyGraph.
For a discussion of contour traces see All About Contour Traces on page II-334.
For commands referencing other waves in a graph: ImageNameList, ImageNameToWaveRef,
ContourNameList, and ContourNameToWaveRef.
For a discussion of wave references, see Wave Reference Functions on page IV-177.

See Also
Trace Names on page II-243, Programming With Trace Names on page IV-72.

y
y
The y function returns the Y value for the current column of the destination wave when used in a
multidimensional wave assignment statement. Y is the scaled column index whereas q is the column index itself.

Details
Unlike x, outside of a wave assignment statement, y does not act like a normal variable.

See Also
x, z, and t functions for other dimensions.
p, q, r, and s functions for the scaled indices.

z
z
The z function returns the Z value for the current layer of the destination wave when used in a
multidimensional wave assignment statement. z is the scaled layer index whereas r is the layer index itself.

zcsr

V-843

Details
Unlike x, outside of a wave assignment statement, z does not act like a normal variable.

See Also
x, y, and t functions for other dimensions.
p, q, r, and s functions for the scaled indices.

zcsr
zcsr(cursorName [, graphNameStr])
The zcsr function returns a Z value when the specified cursor is on a contour, image, or waterfall plot.
Otherwise, it returns NaN.

Parameters
cursorName identifies the cursor, which can be cursor A through J.
graphNameStr specifies the graph window or subwindow.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-97 for details on
forming the window hierarchy.

Examples
Print zcsr(A) // not zcsr("A")
Print zcsr(A,"Graph0") // specifies the graph

See Also
The hcsr, pcsr, qcsr, vcsr, and xcsr functions.
Programming With Cursors on page II-292.

ZernikeR
ZernikeR(n,m,r)
The ZernikeR function returns the Zernike radial polynomials of degree n that contains no power of r that
is less than m. Here m is even or odd according to whether n is even or odd, and r is in the range 0 to 1.
Note that the full circle polynomials are complex. For any angle t (theta), they are given by:
ZernikeR(n,m,r)*exp(imt).

ZernikeR

V-844

Index 1

Symbols
(character in menus IV-119
(left parenthesis

multidimensional wave indexing II-111
wave indexing II-95

! character in menus IV-119
! operator IV-5, IV-33
!= operator IV-5, IV-32
operator

deferred assignment V-807
deferred assignments IV-210
in instance names IV-16
instance names and $ IV-17
string expressions V-807

#define IV-90
predefined symbols IV-91

#define statement V-15
#if-#elif-#endif statement V-15
#if-#endif statement V-15
#ifdef-#endif statement V-16
#ifndef-#endif statement V-16
#include (see include statements)
#pragma (see pragma statements)
#pragma hide III-349
#pragma rtGlobals (see rtGlobals)
#undefine statement V-17
$ operator IV-5

convert string to name IV-5, IV-15
in dependency formulas IV-211
in macros IV-105
in user functions IV-48–IV-49, IV-67
instance notation IV-17
load waves (example) II-171
page layout object names V-369–V-370
precedence IV-16

tricky case IV-16
quoting liberal data folder path names II-124
quoting liberal data folder paths IV-152
with # operator IV-17
with data folder paths IV-49
with NVAR, SVAR, WAVE IV-48
with window names IV-49

%& operator
obsolete IV-7

%^ operator IV-5
%~ operator

obsolete IV-7
%| operator

obsolete IV-7
%d, %e, %f, %g, %s, etc.

conversion specifications for printf IV-236,
V-567–V-569

%W V-568
& character in menus IV-120
& operator IV-5, IV-33

pass-by-reference IV-45
&& operator IV-5–IV-6, IV-33
&~ operator IV-5
* (asterisk)

operator IV-5
wave indexing II-96

*= operator IV-5
+ operator IV-5
+= operator

accumulate operator IV-5
string concatenation operator IV-5

- character in menus IV-119
- operator IV-5
-= operator IV-5
/ character in menus IV-119
/ operator IV-5
// (comment symbol) IV-2
/= operator IV-5
/C flag

in user functions IV-29, IV-53
WAVE reference IV-67, V-811

/D flag
in user functions IV-29

/S flag
in user functions IV-29

/SDFR flag IV-64
/T flag

in user functions IV-53, IV-67
WAVE reference V-811

/Z flag IV-17
^ operator IV-5
"" empty string IV-13, V-14
'snd ' sound files

SndLoadWave XOP II-167
:

conditional operator IV-5–IV-6
indicating current data folder II-124

:= (see dependency formulas)
; character in menus IV-119
; command separator IV-2
< operator IV-5, IV-32
<= operator IV-5, IV-32
<??> V-367, V-778, V-784
= operator

assignment operator IV-5
string assignment operator IV-5

== operator IV-5, IV-7, IV-32
and roundoff error IV-7

> operator IV-5, IV-32
>= operator IV-5, IV-32

Index

?: conditional operator AfterMDIFrameSizedHook hook function

Index 2

?: conditional operator IV-5–IV-6
[left bracket

wave indexing II-95
[left square bracket

multidimensional wave indexing II-111
[used in Reference chapter V-14
\ (see backslash characters, escape codes)
\\ (double backslash)

in annotation programming V-786
insert \ in annotation III-48

\\M (see menu definitions:special characters)
~ operator IV-5, IV-33
auto trace

curve fit residuals III-165, III-193
auto wave

curve fit residuals III-165, III-194
calculated (see calculated X values)
default

curve fitting coefficient wave menu III-177
curve fitting coefficients III-167

New Wave
curve fit destination III-179
curve fit epsilon values III-175
curve fit residuals III-195
curve fitting coefficients wave III-177

none
curve fit destination III-178
curve fit epsilon III-175

PictGallery V-617
| (vertical bar character)

bitwise operator IV-5, IV-33
obsolete for comments IV-94

|| operator IV-5–IV-6, IV-33
.noindex files II-43
… (ellipses) used in Reference chapter V-14

Numbers
16 bit integer wave type II-90
16 bit unsigned integer wave type II-90
2D waves (see contour plots, image plots, matrices)
32 bit integer wave type II-90
32 bit unsigned integer wave type II-90
3D waves

(see also multidimensional waves)
displaying II-110, II-238

4D waves (see multidimensional waves)
8 bit integer wave type II-90
8 bit unsigned integer wave type II-90

A
abbreviated date

in notebooks III-16
Abort Experiment Load button II-40, II-42
Abort operation V-17

aborting
curve fitting III-159
from control panel IV-141
macros IV-107
network operations IV-247
procedures IV-38, V-17–V-18, V-801
progress windows IV-138
user functions IV-93

AbortOnRTE keyword IV-38, V-17
AbortOnValue keyword IV-38, V-18
About Igor dialog II-15
abs (absolute value) function V-18
abs of a wave V-823
absolute value V-823

abs (real) function V-18
cabs (complex) function V-46

acausal convolution III-252
accelerators

in menus IV-120
Accumulate into dest III-133
accumulating histogram III-133
acos function V-18
acos of a wave V-823
acosh function V-18
action procedures (see controls:action procedures)
ActiveX Automation IV-241

as server IV-241
example experiment IV-242

Adams-Moulton method V-353
Add Annotation dialog III-44–III-61

dynamic pop-up menu III-48
for page layouts II-391
Insert: group III-45
Special pop-up menu III-47

Add Controls submenu III-365
AddDropLine macro III-85
AddFIFOData operation V-18
AddFIFOVectData operation V-19
addition IV-5
AddListItem function V-19
AddMovieAudio operation V-19
AddMovieFrame operation V-20
ADInstruments data acquisition package IV-281
Adjust Indentation IV-23
Adobe Acrobat Reader

PDF manual II-9
AdoptFiles operation V-20
adopting

all procedure files II-38
files programmatically V-20
notebooks II-38, V-507
procedure files II-38, III-351
unadopting II-38

AfterFileOpenHook hook function IV-259
example IV-262

AfterMDIFrameSizedHook hook function IV-263

AfterWindowCreatedHook hook function annotations

Index 3

AfterWindowCreatedHook hook function IV-264
AIFC sound files

SndLoadWave XOP II-167
AIFF sound files

SndLoadWave XOP II-167
SndSaveAIFF IV-225

airy functions V-21–V-22
airyA function V-21
airyAD function V-21
airyB function V-21
airyBD function V-22
alerts

from procedures V-134
aliases

CreateAliasShortcut operation V-86
creating V-86
finding folders II-42

aligning
(see also stacking)
controls III-366
drawing objects III-78
graphs in page layouts II-393
pictures in notebooks III-11

All Files IV-131–IV-132
all-at-once fit functions III-224
alog function V-22
alternation

in regular expressions IV-164
Ambiguity function III-247
amplitude compensation in windowing III-244
analysis III-117–III-153

area III-124–III-126
convolution III-251–III-253
correlation III-253
decimation III-139–III-268

by omission III-139
by smoothing III-140

differential equations III-270–III-283
differentiation III-124, V-127
Fourier Transforms III-237–III-245
function plotting III-268–III-270
functions

plotting III-268–III-270
histogram III-128–III-136
image operations V-3
integration III-124
interpolation III-118–III-121
level detection III-254–III-256
matrix operations V-3, V-6
missing values (NaNs) III-121
of XY data III-117
peak detection III-256–III-258
principle component analysis V-542
programming III-144–III-153
related functions V-7
related operations V-2

root finding III-285–III-291
rotate wave III-264
smoothing III-258–III-264
sorting III-136–III-139
statistics operations V-3
unwrap wave III-265
wave statistics III-126–III-128
windowing III-242–III-245

anchors
in page layouts II-391
legends III-52, III-54
Simple Text drawing tool III-73
tags III-60
textboxes III-52, III-54

AND
bitwise operator IV-5–IV-6, IV-33
logical operator IV-5–IV-6, IV-33

Annotation Tweaks dialog III-51, III-53, III-55,
III-60

AnnotationInfo function V-22
AnnotationList function V-23
annotations III-43–III-68

(see also labels, legends, tags, textboxes)
Add Annotation dialog III-44
anchors III-52, III-54, III-60
AnnotationInfo function V-22
AnnotationList function V-23
AppendText operation V-29
as input mechanisms V-22
background color III-51
backslash characters III-48
centering text III-48
color scale bars III-43, III-61–III-65
creating III-43, III-68
deleting III-43, III-59, III-68
drawing layer III-80
duplicating III-43
dynamic text III-48, V-785

in tags III-48, V-779
elaborate III-65–III-68
equation editor alternatives III-65
escape codes III-46–III-49, III-54, V-784
exterior III-52

affects graph plot area III-53
fonts III-46

default III-46
relative size III-47
size III-46, III-55

default III-46
style (bold, italic, etc.) III-47

frame III-50
halo III-51, IV-269
in graphs III-43–III-68
in page layouts II-385, II-391–II-393,

III-43–III-68
in style macros II-310

annotations arrows

Index 4

interior III-52
Legend operation V-373–V-374
legends III-54–III-56

definition III-43
position III-52, III-54

markers III-55–III-56
Modify Annotation dialog III-44
modifying III-43, III-45, III-68
names III-50, III-68
naming rules III-417
Normal escape code, \M III-47–III-48, III-67
Object Status dialog III-420
opaque III-51
position III-52–III-54, III-60–III-61

anchors III-52–III-54
exterior III-52
frozen III-54, III-60
in graphs III-52–III-53, III-60–III-61
in page layouts II-391, III-54
interior III-52
offset III-53

programming with III-68
quick start III-43
renaming III-50, III-68
ReplaceText operation V-593
rotating III-51
subscripts III-47
superscripts III-47
tab characters III-50
Tag operation V-774–V-780
tags III-57–III-61

definition III-43
TagVal function III-49
TagWaveRef function III-49
text

color III-48, III-51
content III-45, V-29, V-593
justification III-48

text info variables (see text info variables)
TextBox operation V-782–V-786
textboxes

definition III-43
position III-52, III-54

transparency III-51
typography settings III-414
variables displayed in III-49
wave symbols III-48, III-54–III-56
wave symbols (see also wave symbols)

APMath operation V-23
Append Columns dialog II-201
Append Contour Plot dialog II-330
Append from Layout dialog II-390
Append Image Plot dialog II-351
Append Objects dialog II-387
Append operation V-26
Append to Layout dialog II-387

Append Traces to Graph dialog II-243, II-306
AppendImage operation V-26
AppendLayoutObject operation V-27
AppendMatrixContour operation V-27–V-32

example II-329
AppendText operation V-29
AppendToGraph operation V-29
AppendToLayout operation V-30
AppendToTable operation V-31
AppendXYZContour operation V-31–V-32
Apple events IV-238–IV-240

supported events IV-238
details IV-239

AppleScript IV-240
executing scripts V-162

AppleScripts
executing Unix shell scripts IV-241

arbitrary numeric precision V-23
arc functions

inverse cosine V-18, V-823
inverse hyperbolic cosine V-18
inverse hyperbolic sine V-33
inverse hyperbolic tangent V-34
inverse sine V-33, V-823
inverse tangent V-33–V-34, V-823

area
faverage function V-169
faverageXY function V-169
functions compared V-169
Integrate operation V-348
integrate1D function V-349
normalized V-824
PolygonArea function V-553
using cubic spline III-126
waveform data III-124
XY area procedures III-126

area function III-125, V-32
subranges III-125

areaXY function III-126, V-32
arithmetic (see wave assignments, expressions, and

operators)
Arrange Objects dialog II-395
arrays (see waves)
arrow keys

in tables II-203
moving graph cursors II-291

arrow markers in graphs V-453
arrow tool

in page layouts II-383
selecting, deselecting drawing objects III-72

arrows
(see also drawing tools, tags)
double arrow cursor II-246, II-249, II-269
drawing V-628

arrow head shape III-74, V-628
four-arrow cursor II-263

arrows axes

Index 5

markers in graphs II-255
examples V-462
wind barbs V-453

on tags III-59–III-60
ASCII codes

char2num function V-48
escape codes for IV-13
in strings IV-13
num2char function V-521

ASCII files (see files, text files, text operations)
Asian language settings

Miscellaneous Settings dialog III-415
asin function V-33
asin of a wave V-823
asinh function V-33
assignment operators IV-5
assignment statements IV-4–IV-9

data folders IV-3
deferred IV-210, V-807

assignments (see dependency assignments,
strings:assignment, wave assignments)

atan function V-33
atan of a wave V-823
atan2 function V-34
atanh function V-34
authentication

in URLs IV-244
security IV-246

auto
general text tweaks II-157

auto-compiling procedures III-351, IV-22
auto-correlation III-254, V-82
auto-save

in notebooks V-508
auto-trace destination waves in curve fitting III-178,

III-206
(see also curve fitting:destination waves)

Auto/Man Ticks tab II-270
automatic Igor update II-14
automation IV-216–IV-305

Apple events IV-238
AppleScript IV-240
generating notebook commands III-35
loading files in folder (example) II-174
loading waves II-170

example II-170, II-173
notebooks III-32–III-36

examples III-32
overview I-7
retrieving text from notebooks III-35
Unix shell scripts IV-241
updating in notebooks III-34

AutoPositionWindow operation V-34
Autoscale Axes in Graph Menu II-246
autoscaling II-245, II-248, II-263, II-304

log axes II-264

Autosizing Columns By Double-Clicking II-213
Autosizing Columns Using Menus II-213
auxiliary procedure files III-342, III-345
average deviation of wave V-323, V-821

2D V-323
average functions

compared V-169
faverage V-169
faverageXY V-169
FindSegmentMeans user-defined function

III-149
mean V-439

average of several waves
WavesAverage user-defined function III-148

average value of a wave III-124
avg3D filter V-288
AVI

movies IV-225
AVI movies

NewMovie operation V-497
PlayMovieAction operation V-549
related operations V-5

axes II-241–II-248, II-266–II-289, II-296–II-304
(see also axis labels, graphs:axes)
adding to graph II-243
AppendToGraph operation V-29
AppendWithCapturedAxis macro II-306
auto ticks II-270
autoscaling modes II-248
AxisInfo function V-34
AxisList function V-35
AxisValFromPixel function V-35
bottom axis II-242
broken axes (see axes:split axes)
category axis V-35
category plots

bar gaps V-464
category gaps V-464

color II-269, V-471
computed manual ticks II-270
contour plot V-67
controlling wave II-242, II-284, II-286, II-317,

V-35
coordinates for drawing III-79
crossing II-269
curve fit residuals III-194
date/time II-268, II-280–II-284

custom formats II-281
manual ticks II-283–II-284
range II-282
suppress date II-282
weekly ticks II-283

dragging II-249, II-269
draw between (examples) II-268, II-297, II-299
drawing layer III-80
exponential labels II-271

axes AxisValFromPixel function

Index 6

exponent prescale II-289
mode II-271
tick marks II-271

fake (custom axes) II-284
flags in Display operation V-129
free axis II-241–II-243, II-275

creating V-362, V-493
crossing at II-269
distance II-269
examples I-38, II-243, II-296–II-297, II-299
killing V-362
mirror axis II-268
modifying V-449

GetAxis operation V-231
hiding II-269
HorizCrossing free axis II-241, II-243
image plot V-294
KillFreeAxis operation V-362
labels

(see also axis labels)
margin II-275
on mirror axes II-268
position II-275
scaling II-271
units II-242

left axis II-242
log axes II-271, II-276–II-277, II-288

curve fitting auto-trace III-178
minor ticks II-277

labels II-277
unexpected behavior II-276

log or linear axes II-268
low trip, high trip II-271
manual ticks II-277–II-280
minor ticks II-270

on log axes II-277
mirror axis II-268–II-269
ModifyFreeAxis operation V-449
ModifyGraph operation V-463, V-471
modifying II-266–II-289, V-463
moving II-249, II-269
multiple axes (example) I-38, II-296–II-297
NewFreeAxis operation V-362, V-493
not listed in dialogs II-317
offset II-249, II-269
PixelFromAxisVal function V-547
preferences II-305, II-324, II-345, II-371
probability II-284
range II-247–II-248

date/time II-282
GetAxis operation V-231
SetAxis operation V-625

reciprocal II-284
removed automatically II-242
reversed II-248, V-625
right axis II-242

scaling II-245–II-248, II-287
SetAxis operation V-625
shortcuts II-312–II-313
split axes II-303–II-304
stacked axes V-464

example I-41
standard axes II-242
standoff II-250, II-269, II-299

ignored II-269
styles II-307–II-310
swap X & Y axes II-249
tags V-774–V-780
thickness II-269
thousands separators V-470
tick mark labels (see tick mark labels)
tick marks (see tick marks)
top axis II-242
transforming II-284
units II-242, II-284, II-287–II-289, V-35
user ticks from waves II-270
VertCrossing free axis II-241, II-243
WMAxisHookStruct V-450
zero line II-273

Axis Label tab in Modify Graph dialog II-284
axis labels II-284–II-289

(see also annotations, tick mark labels)
<??> V-367
escape codes II-285
examples II-287–II-289
exponential notation II-271
fonts II-269, II-285

size II-285
hiding II-275
Label operation V-366–V-367
legend wave (trace) symbols II-286
marker symbols II-287, III-48
parentheses omitted II-287
position II-275
preferences II-305
special characters II-287, III-48
subscripts II-286
superscripts II-286
text color II-269, II-286, V-366
text info variables (see text info variables)
units II-284, II-287–II-289

Manual Override escape code II-287
prefix II-287
scaling II-287
x10^n prevention II-287

Axis Range tab II-247–II-248
Axis Range tab in Modify Axis dialog

Quick Set buttons II-248
Axis tab II-268–II-270
AxisInfo function IV-156, V-34
AxisList function V-35
AxisValFromPixel function V-35

B-spline surfaces Blackman window function

Index 7

B
B-spline surfaces V-325
back projection V-325
background color

in graphs III-391
in notebooks III-7
in panels III-392
in procedure windows III-353

background removal
DSPDetrend operation V-146

background tasks IV-285–IV-289
BackgroundInfo operation V-36
caveats IV-287
CtrlBackground operation V-90
CtrlNamedBackground operation V-91
debugger IV-287
demo IV-289
dialogs IV-287
errors IV-287
example IV-285, IV-287, IV-289
exit code IV-285
FakeData function V-166
KillBackground operation V-360
limitations IV-286
multitasking

example IV-300
Object Status dialog III-420
old techniques IV-289
period IV-286
preemptive

example IV-300
SetBackground operation V-626
SetProcessSleep operation V-639
terminating IV-285
tips IV-287

BackgroundInfo operation IV-289, V-36
backslash characters

(see also escape codes)
in annotations III-48
in escape codes V-786
in file paths III-400

procedures III-406
in strings IV-13
LoadWave operation V-399

Backwards Differentiation Formula V-353
balloon help (see Igor Tips)
bar charts (see category plots)
bar display (see controls:Value Displays)
bar limits for ValDisplays III-365, III-384
Bartlet window function V-175

for images V-342
Bartlett window function V-147, V-176, V-830

for images V-342
batch files

Igor Pro automation IV-242

Battle-Lemarie wavelet transform V-151
beams

definition V-327
extracting V-327

Beep operation V-36
BeforeDebuggerOpensHook hook function IV-262
BeforeExperimentSaveHook hook function IV-264
BeforeFileOpenHook hook function IV-265

example IV-258, IV-266
BEGIN keyword in Igor Text files II-159
Bessel functions V-36–V-37, V-666–V-667
besseli function V-36
besselj function V-37
besselk function V-37
bessely function V-37
bessI function V-37
beta function V-39
betai function V-39
bilinear interpolation V-297
binary files

(see also Igor Binary files)
description of II-141
FBinRead operation V-170
FBinWrite operation V-171
FReadLine operation V-204
general binary files II-167
Igor Binary files II-162–II-165, III-414
PadString function V-537

binary operators IV-5
AND IV-6
OR IV-6
XOR IV-6

BinarySearch function V-40
BinarySearchInterp function V-40
binning (see histogram)
binomial function V-41
binomial smoothing III-259
binomialln function V-41
binomialNoise function V-41
bit streams

random V-375
bitmaps

exporting graphics III-101, III-110
PNGs III-101

bitmaps (see BMP files, HiRes bitmap PICTs,
images, PNGs)

bits
setting IV-12

bitwise operators IV-5, IV-33
AND IV-6, IV-33
complement IV-5, IV-33
OR IV-6, IV-33
XOR IV-6

Blackman window function V-147, V-176, V-830
for images V-342

blanks category plots

Index 8

blanks
(see also missing values, NaNs)
entering in tables II-206
in delimited text files II-144, II-152

blockReentry field III-388
blocks

in general text files II-153
in Igor Text files II-159

BMP files
exporting V-314
importing II-165, V-301

BMPs
exporting graphics III-109
importing III-424

bottlenecks IV-305
GetRTLocation V-247
GetRTLocInfo V-247

bounce end effect method III-264
bounding sphere V-42
boundingBall operation V-42
box smoothing III-261, V-654
break

in for loops IV-37
in switch statements IV-35

break keyword V-42
Brent’s method V-530
Bring to Front II-383
broken axes (see axes:split axes)
broken dependency objects IV-210

example III-422
Browse Waves dialog II-89
browser (see Data Browser, help browser)
Browser XOP II-89
BrowseURL operation V-42
browsing

experiments II-34
waves II-89

BuildMenu operation IV-114, V-43
built-in fit functions

notes III-167–III-173
Bulirsch–Stoer method V-353
bulldozer icon (what it is) III-77
Burt-Adelson wavelet transform V-151
bush icon (it’s a tree, really) III-77
Button Control dialog III-367
Button controls

custom III-370
custom examples III-370
examples III-369
programming III-367–III-371
using III-362

button controls
aborts IV-141

Button operation III-367–III-371, V-43
ButtonControl subtype IV-184

keyword V-46

subtype III-369
.bwav extension II-163
byte data

defined II-81

C
C language IV-185

for external functions and operations IV-185
cabs (complex absolute value) function V-46
call-outs (see annotations, labels, drawing tools)
Canny edge detector V-286
canonic tick defined II-277
Capture Graph Preferences dialog II-305
Capture Layout Preferences dialog II-398
Capture Notebook Preferences dialogs III-36
Capture Procedure Preferences dialog III-354
Capture Table Preferences dialog II-230
CaptureHistory function V-46
CaptureHistoryStart function V-46
carriage returns

cross-platform issues III-404
escape code for IV-13
in data files II-143
in delimited text files II-150
in Igor Text files II-162
in tables II-219
saving text waves II-178

cartesian coordinates
conversion from crystallographic V-823
conversion to crystallographic V-824

Case Sensitive III-30–III-31
case statements IV-34

Constant keyword V-67
default keyword V-117
Strconstant keyword V-758

catch keyword V-47
category plots II-316–II-324

Add to next II-321
axis preferences II-324
axis range II-319, II-322
bar gaps II-317, V-464
bars disappear II-323
bars don’t line up II-321–II-322
bars don’t stack correctly II-323
bars on left or right II-319
category gaps II-317, V-464
combining with numeric II-322
creating II-316–II-317, V-129

example I-31
Draw to next II-320, II-323
drawing order II-319
horizontal bars II-319
Keep with next II-321
modifying II-317–II-320
New Category Plot dialog II-324

category plots cmplx function

Index 9

numeric categories II-322
options I-32
pitfalls II-322–II-323
preferences II-323–II-324

axes II-324
wave styles II-324

programming (example) II-316
Stack on next II-323
stacked bar charts II-320
tick in center II-318
tick mark labels II-318

multiline II-318
vs numeric categories II-322
wave style preferences II-324
X scaling II-319, II-322

Catmull-Clark surfaces V-325
cd operation V-47
ceil function V-47
centering text (see justification of text)
cequal function V-47
Change Wave Scaling dialog II-83–II-85

Delta II-85
End II-85
Right II-85
SetScale Mode II-85
Start II-85

changeableByCommandOnly
in notebooks III-12

channels
in FIFO buffers IV-282

char2num function V-48
character classes IV-159
character properties

in notebooks III-10
character set

cross-platform issues III-403
translation between platforms III-403

chart controls III-362, IV-284–IV-285
extent bar III-372
live mode III-372
programming IV-282–IV-285
review mode III-372
scrolling III-372
updates IV-283
using III-371–III-372

Chart operation V-48–V-50
chebyshev function V-50
chebyshevU function V-51
Checkbox controls

custom III-373
programming III-372
using III-363

CheckBox operation III-372, V-51
CheckBoxControl subtype IV-184, V-53

keyword V-54
CheckDisplayed operation V-54

CheckName function V-55
chi-square

weighting wave III-181
ChildWindowList function V-56
Cholesky decomposition V-428
Choose Dimensions dialog II-222
ChooseColor operation V-56
chunks

in multidimensional waves II-108, II-111
in tables II-222
indexing

chunk numbers, s function V-604
scaled index, t function V-768

maximum location V-822
minimum location V-822

circles (see drawing tools, markers)
circular convolution III-252
circular correlation V-82
CleanupName function V-56
Clear Cmd Buffer II-21
clearing

drawing objects III-80
in tables II-206

Clipboard
Export Graphics dialog III-102, III-110
importing data II-207
in SavePICT operation V-617
loading PICTs V-391–V-393
playing sound V-550
programming

GetScrapText operation V-248
PutScrapText operation V-580

searching V-258
clipboard

exporting data II-212
Close Notebook Window dialog III-5
Close operation IV-175, V-57
Close Procedure Window dialog III-346
Close Window dialogs II-60, II-306
CloseMovie operation V-57
CloseProc operation V-57
closest integer function V-200
closing

graphs II-306
help windows II-11
page layouts II-379
procedure windows III-346
tables II-199
windows II-59

clustering
FPClustering operation V-203

CM_Kn: covariance matrix waves V-95
cmap conversions

cmap2rgb V-325
CMPLX (complex wave type) II-90
cmplx function V-58

CmpStr function COLORTABLEPOP

Index 10

CmpStr function V-59
CMYK III-104, III-112
CMYK conversions

CMYK2RGB V-326
Cochran’s (Q) test V-691
coefficients

coefficients wave in curve fitting III-176
curve fitting III-159

(see also curve fitting:coefficients)
coercion

in user functions IV-92
Coifman wavelet transform V-151
color

accuracy III-413–III-414
control panel background V-476
dialog V-56
direct color mode V-459
drawing environment V-628
Export Graphics dialog III-102, III-110
in contour plots II-335–II-338, V-442–V-446
in graphs V-471

axes II-269
axis label text II-269, II-286
control bar V-471
cursors II-290
traces V-458–V-459

direct color mode V-459
in image plots II-359–II-368, V-472
in notebooks III-10

background V-507
text V-514

in procedure windows III-354
legends II-262
of annotation background III-51, V-782
of annotation text III-48, III-51, V-783
of axis label text V-366
of markers V-459
of text in tables V-479
Save EPS File dialog III-103, III-111
Save PICT File dialog III-103, III-111
selecting V-56

color index wave II-336–II-337, II-366–II-368
example II-337, II-367
from color table V-64
in contour plots II-335–II-337
in image plots II-366–II-368, V-472

color legends (see color scale bars)
color palette III-412–III-414

in pop-up menu controls V-562
Other... III-412
Recent Colors III-412, III-414

color scale bars III-43, III-61–III-65
axis ticks III-64
ColorScale operation V-59
dialog III-62
dimensions III-63

height III-63
lateral offset III-63
margins III-63
orientation III-62
pasting in layouts II-398
position III-62
rotation III-63
settings III-62
size III-62
units III-63
user-defined ticks III-65
width III-63

color settings
Miscellaneous Settings dialog III-414

color space conversion
cmap

to RGB V-325
CMYK

to RGB V-326
grayscale V-326
HSL

to RGB V-328
RGB

to grayscale V-330
to HSL V-331
to i123 V-331
to XYZ V-331

XYZ
to RGB V-335

color tables II-359–II-366
automatic color mapping II-335
color effects II-362
ColorTab2Wave operation V-64
compatibility II-363
first half, using II-336
gamma II-362
gradients II-363
Igor and IgorRecent V-65
Igor Pro 4 II-363
Igor Pro 5 II-363
Igor Pro 6 II-365
Igor Pro 6.2 II-366
in contour plots II-335
in image plots II-359, V-472
listing V-90
manual color mapping II-336
names of built-in tables II-359
number of colors II-359
overlays II-360
reversing the color order II-358
specialized II-362, II-364

color tables contrast effects II-362
COLORPOP V-562
ColorScale operation V-59
ColorTab2Wave operation V-64
COLORTABLEPOP V-562

COLORTABLEPOPNONAMES comparison functions

Index 11

COLORTABLEPOPNONAMES V-562
column indices

in tables II-221, V-477
column labels

in delimited text files II-146, II-149, II-151
in general text files II-154–II-155, II-158
troubleshooting II-152

column names
can use index number instead V-477
for multidimensional waves II-220
pasting in tables II-198

column position waves
in delimited text files II-150

column styles preference II-231, III-413
column types

in delimited text files II-150–II-151
column-major order II-114
columns

.i, .d, .id, .real, .imag V-154

.x, .y, .xy V-154
appending to tables II-201
AppendToTable operation V-31
changing

positions II-212
styles II-214
widths II-213

extracting V-327
flipping V-326
formats II-208, II-217
Igor Tips II-4
in multidimensional waves II-108, II-111

column numbers, q function V-580
scaled indices, y function V-842

index columns II-200, II-208
list of V-814
maximum location V-822
minimum location V-822
names II-200
pasting column formats II-208
pasting index columns II-208
removing from tables II-202, V-587
showing X values II-192
specifying by index number V-477
titles in tables II-216
X columns II-200

command buffer II-20–II-25, IV-2
searching II-24

command line II-20–II-25
copying commands to V-795
length limit II-20, IV-2
magnification II-71
searching II-24
Silent operation V-649
zooming II-71

command line interface I-6

Command Settings III-5
Miscellaneous Settings dialog III-413

command window II-20–II-25, III-413
background color II-24
Clear Cmd Buffer II-21
help II-6, II-24
help for functions and operations II-5
Igor Help Browser icon II-6
overview I-6
preferences II-24
shortcuts II-25
text format II-24
title II-22

Command/History Settings II-24
commands IV-2–IV-18

assignment operators IV-5
assignment statements IV-4–IV-9
comments IV-2
copy to history from worksheets III-413
dependency assignments III-48, IV-204–IV-211
executing from

help windows II-11, III-5
notebooks III-5
procedure windows III-5

functions IV-10
line continuation IV-2, V-14
max characters per line II-20, IV-2
multiple IV-2
notebooks actions III-18–III-21, V-519, V-662,

V-664
operands IV-7
operations IV-9
operators IV-5
overview II-20
parameters IV-2, IV-11–IV-18
relation to menus I-7
ToCommandLine operation V-795
types IV-3–IV-11
use of commas IV-11

commas
as decimal separator in graphs II-251
in commands IV-11
in delimited text files II-146
in general text files II-153
pasting in tables II-220

commentizing III-355
Comments

using obsolete style V-649
comments IV-2

obsolete style V-649
replacing obsolete | character IV-94

comparison functions
CmpStr V-59
equalWave V-157
limit V-374
max V-438

comparison functions contextual menus

Index 12

min V-440
RemoveEnding V-585
SelectNumber V-624
SelectString V-624

comparison operations
Extract V-165

comparison operators IV-7
roundoff error IV-7

compatibility mode IV-94
Silent operation IV-94, V-649
turning off IV-94, V-603

compatibility, cross-platform (see cross-platform
issues, platform related issues)

Compile button III-343, IV-22
compile time vs runtime IV-49
compiler directives (see include statements,

pragma statements)
compiling IV-22

auto-compiling IV-22
help files II-11–II-12
procedures III-343, IV-22

complement operator IV-5–IV-6, IV-33
complementary error function V-158
complex

columns in tables II-200
waves in graphs III-241

complex conjugate V-823
complex conjugate function V-66
complex functions V-6

cabs V-46
cequal V-47
cmplx V-58
conj V-66
cpowi V-85
fresnelCS V-206
imag V-281
magsqr V-411
p2rect V-537
r2polar function V-581
real V-583
user functions IV-29

complex number type II-81
complex variables II-117, V-809
complex waves II-98

accessing IV-53, IV-67, V-811
assignments IV-53, IV-67, V-811
in graphs II-264
in Igor Text files II-159
in user functions IV-50, IV-53, IV-67, IV-92,

V-811
inverse V-421
statistics V-820
type II-90

Compose Expression dialog III-142
table selection III-142

compressing images V-326

Concatenate operation V-65
concatenating

strings IV-7
waves II-98, V-65

conditional compilation IV-90
#define statement V-15
#if-#elif-#endif statement V-15
#if-#endif statement V-15
#ifdef-#endif statement V-16
#ifndef-#endif statement V-16
#undefine statement V-17
IgorVersion function V-280
predefined symbols IV-91

Conditional Compilation Examples IV-91
conditional operator II-99, IV-5–IV-6
conditional statements

if-else-endif IV-31
if-elseif-endif IV-32
in macros IV-104
in user functions IV-31
precedence of operators IV-33

conditionals in procedures
conditional operator IV-6

confidence bands
for curve fitting III-196, III-199

confidence intervals
curve fit coefficients III-196

conj function V-66
constant

numeric declaration IV-40
Constant keyword V-67
constant keyword

in switch statements IV-35
constants IV-40

Constant keyword V-67
in switch statements IV-35
in user functions IV-40
static IV-40
Static keyword V-673
Strconstant keyword V-758
syntax IV-40

constraints
sum of fit functions III-216

constraints in curve fitting III-199, III-204
context

loading text files II-148
context-sensitive help II-5

buttons II-5
dialogs II-5
for controls III-384
icons II-5
menus II-5

contextual menus
contextualmenu IV-111
controls V-554
dynamic IV-111

contextual menus contour plots

Index 13

example IV-143
contextualmenu IV-111
continuation characters IV-2
continue keyword V-67
continue statements

for loops IV-38
continuous phase III-265
continuous wavelet transform (see wavelet

transform)
Contour Labels dialog II-342
contour plots II-327–II-346

calculated X and Y II-330
appearance preferences II-345
Append Contour Plot dialog II-330, II-345
AppendMatrixContour operation V-27–V-32
AppendXYZContour operation V-31–V-32
axes

GetAxis operation V-231
SetAxis operation V-625

axis preferences II-345
boundary II-333
change updating V-446
color II-333, II-335–II-338, V-442–V-446
color index wave II-336–II-337

ColorTab2Wave operation V-64
programming (example) II-337

color scale bars II-341, III-43, III-61–III-65, V-59
(see also color scale bars)

color tables II-335
(also see color tables)

ColorScale operation V-59
combining with image plots II-329
contour instance names II-340–II-341
Contour Labels dialog II-342
contour lines (see contour traces)
contour traces II-334–II-340

appearance II-334
color II-335–II-338
cursors II-338
drawing order II-339
extracting XY data II-340
instance names II-335
list of V-798
names II-334–II-335
removing II-338
updating II-338
wave reference V-799
Z value II-338

ContourInfo operation V-67
ContourNameList function V-68
ContourNameToWaveRef function V-69
creating II-328–II-331, V-27, V-31, V-131
crossing lines II-344
cursors II-338

z value V-843
data

gridded II-327, II-330
loading II-328
matrix II-327, II-330
nonlinear grid II-327
sparse II-328, II-331
XYZ II-328, II-331

Delaunay triangulation II-333
DelayUpdate and DoUpdate II-339
drawing order II-339, II-343
gridded data II-327, II-330
interpolation II-334, II-343, V-69
labels II-341–II-343

color II-342
content II-342
coping with II-342
drawing order II-343
format II-342
ModifyContour operation V-443–V-444
modifying II-342–II-343
positioning II-341
removing II-341
rotation II-341–II-342
Tag/Q purpose II-343
turning off II-332
updating II-332

layers II-339, II-343
legends II-341, III-43, III-61–III-65

(see also color scale bars)
levels II-332, II-338

arbitrary II-332
automatic II-332
manual II-332
ModifyContour operation V-445
More Levels dialog II-332, II-338
stored in a wave II-332

Line Colors dialog II-333, II-335–II-337
lines (see contour traces)
loading data II-328
log colors V-445
manual color mapping II-336
matrix data II-327, II-330
Modify Contour Appearance dialog

II-331–II-334
ModifyContour operation V-441–V-446
modifying II-331–II-334
More Levels dialog II-332
multiple plots in graph II-340
names II-334–II-335, II-340–II-341

in legends II-334
NaNs V-445
New Contour Plot dialog II-330, II-345
pitfalls II-343–II-344
preferences II-344–II-345
programming notes II-335, II-337, II-339–II-341
references II-345
related operations V-1

contour plots controls

Index 14

removing V-585
ReplaceWave operation V-594
resolution II-334, II-343
shortcuts II-346
sparse data II-328, II-331
TraceInfo function V-797
traces (see contour traces)
treatment of NaNs V-445
triangulation II-333
updating II-332, II-338
Voronoi triangulation V-443
XY markers II-333
XYZ data II-328, II-331
Z level (see levels)
Z value II-338

ContourInfo operation V-67
ContourNameList function V-68
ContourNameToWaveRef function IV-178, V-69
ContourZ function V-69
control bar in graphs III-390

color V-471
ControlBar operation V-70

control panels
notebook subwindows III-96

control panels (see panels)
Control Procedure dialog III-367
control procedures (see controls:action procedures)
control structures III-386

blockReentry field III-388
eventMod field III-387

ControlBar operation V-70
ControlInfo operation V-71–V-74
ControlNameList function V-75
controls III-361–III-394

(see also panels, individual control names)
aborts IV-141
action procedures III-362, III-367–III-379,

III-390–III-391, V-45, V-53, V-559, V-644
independent modules IV-220
regular modules IV-217

background color III-385
blockReentry field III-388
blue bar III-365, III-384
Buttons III-362, III-367–III-371

Button operation V-43
user data V-44
WMButtonAction structure V-45

charts III-362, III-371–III-372, IV-282–IV-285
Chart operation V-48–V-50

CheckBoxes
user data V-52, V-104
WMCheckboxAction structure V-53

Checkboxes III-363, III-372
CheckBox operation V-51

color III-385
Color pop-up menu V-562

context-sensitive help III-384
control bar III-390

example I-44
control panels (see panels)
control structures III-386
ControlBar operation V-70
ControlInfo operation V-71–V-74
ControlNameList function V-75
ControlUpdate operation V-75
copying III-366
custom

WMCustomAction structure V-105
CustomControl III-363, III-373

examples III-373
CustomControl operation V-103
data folders II-126
default appearance V-118

preferences III-416
default font V-120
deferred compilation III-378, V-807
disabling III-385
duplicating III-366
eventMod field III-387
Fill Pattern pop-up menu V-562
format strings III-367, V-642
global variables

deferred evaluation III-378, V-807
graphic elements

GroupBox III-363, III-376
TitleBox III-365, III-382

group boxes V-265
GroupBox III-363, III-376

user data V-266
hiding III-385
Igor Tips III-384
in graphs III-390

drawing limitations III-391
killing III-384

KillControl operation V-361
labelBack keyword III-385
Line Style pop-up menu V-562
list boxes V-378
ListBox III-363, III-376

user data V-382
WMListboxAction structure V-383

Marker Style pop-up menu V-562
ModifyControl operation V-447
ModifyControlList operation V-448
modifying III-361, III-366, V-447–V-448
moving and resizing III-72, III-366
naming rules III-417
Object Status dialog III-420
pop-up menus III-363, III-377–III-378

contextual menus V-554
PopupContextualMenu operation V-554
PopupMenu operation V-557

controls correlation matrix for curve fit

Index 15

user data V-558
WMPopupAction structure V-559

procedures (see controls:action procedures)
programming III-365–III-391

syntax III-367
radio buttons III-363, III-372
red bar III-365, III-384
related operations V-5
selecting III-366
Set Variable III-364, III-378–III-379

SetVariable operation V-641–V-646
WMSetVariableAction structure V-644

SetVariable
user data V-643

shortcuts III-394
Slider operation V-651
Sliders III-364, III-379

user data V-652
WMSliderAction structure V-653

status line help III-384
structures for III-386
tab controls V-769
tabbed panes III-364, III-380
TabControl III-364, III-380

creating III-380
user data V-770
WMTabControlAction structure V-770

tabs V-769
TitleBox III-365, III-382
titles III-365, III-382, V-793
updating III-384–III-385

ControlUpdate operation V-75
updating problems III-391
user data III-389, V-71, V-252

examples III-389
using III-269, III-362–III-372

example I-44
Value Displays III-365, III-382–III-384, III-391

ValDisplay operation V-804–V-808
ControlUpdate operation V-75
conversion functions V-6

char2num V-48
cmplx V-58
date2secs V-113
dateToJulian V-113
imag V-281
JulianToDate V-360
LowerStr V-410
magsqr V-411
num2char V-521
num2istr V-521
num2str V-521
number-to-string V-669
p2rect V-537
pnt2x V-551
r2polar V-581

real V-583
Secs2Date V-622
Secs2Time V-623
str2num V-758
UpperStr V-803
x2pnt V-841

conversion specifications in printf IV-236,
V-567–V-569

ConvexHull operation V-76
convolution III-251–III-253, V-77–V-78

(see also correlation, smoothing)
acausal III-252
circular III-252
curve fitting III-224
delay III-252
end effects III-252
FilterFIR operation V-180
for smoothing III-263
linear III-252
number of points in result III-252
Resample operation V-595
SmoothCustom operation V-658

Convolve dialog III-251
Convolve operation V-77–V-78
cool graphs II-16
coordinate systems for drawing III-79–III-80

SetDrawEnv operation V-630
coordinates

cartesian to crystallographic conversion V-824
crystallographic to cartesian conversion V-823
window III-409

Copy or Share Wave dialog II-164, III-414
copy to home II-38, II-164, III-414
CopyFile operation V-78
CopyFolder operation V-80

warning V-80
copying

data folders V-150
data from tables II-199, II-206, II-212, II-228
from Clipboard V-248
from page layouts II-397
graphics (see exporting)
Igor Binary files II-38
in page layouts II-384, II-388
rulers III-15
to Clipboard V-580
waves V-149

CopyScales operation V-82
Correlate dialog III-254
Correlate operation V-82–V-84
correlation III-253, V-82–V-84, V-415

(see also convolution)
auto-correlation III-254, V-82
circular correlation V-82
cross-correlation III-254

correlation matrix for curve fit III-199

cos function cursors

Index 16

cos function V-84
cos of a wave V-823
Cos window function V-176
cosh function V-84
cot function V-84
coth function V-84
CountObjects operation V-85
CountObjectsDFR operation V-85
covariance V-415

cross-covariance V-429
covariance matrix

curve fitting III-199, V-95
cpowi function V-85
crashes III-428–III-429

(see also troubleshooting)
crash log file III-429

Create Line dialog
Arrow Fat III-74

Create Oval dialog (see Create Rectangle dialog)
Create Rectangle dialog III-74

Fill Mode III-74
Create Rounded Rect dialog (see Create Rectangle

dialog)
Create Text dialog III-73
create-paste II-207
CreateAliasShortcut operation V-86
creating

control panel V-500
data

in tables II-191, II-197, II-207
data folders V-492
derived rulers III-14
experiments II-33
files V-523
free data folders V-494
help files II-11
new rulers III-14
notebook V-498
procedure files III-345
procedures III-344
symbolic paths II-35
waves V-411

CreationDate function V-87
creator code

changing II-48
for Igor files III-397
Open operation V-525

Cross operation V-87
cross product V-87
cross-correlation III-254
cross-covariance V-429
cross-platform issues

(see also platform-related issues)
carriage return III-404
character set III-403
file extensions

in procedures III-406
file transfers III-396
file types

in procedures III-406
fonts III-403
FTP III-396
keyboard III-402
linefeed characters III-404
mouse III-402
notebook pictures III-22
procedure files III-406
text III-403

crystallographic coordinates
conversion from cartesian V-824
conversion to cartesian V-823

csc function V-87
CsrInfo function V-88
CsrWave function V-88

use CsrWaveRef instead IV-177
CsrWaveRef function IV-177, V-89

example IV-144, IV-177
CsrXWave function V-89
CsrXWaveRef function IV-177, V-89
CTabList function V-90
CtrlBackground operation IV-289, V-90
CtrlFIFO operation V-92
CtrlNamedBackground operation IV-285, V-91
cubic spline interpolation

example III-120
current data folder

(see data folders:current data folder)
current experiment II-29
Cursor operation V-93
CursorMovedHook function IV-302
cursors

(see also info box)
activating II-291
as input for procedures IV-144
attached to wave II-291
Click cursor V-650
color II-290, V-93
cross hair style II-290
CsrInfo function V-88
CsrWave function V-88
CsrWaveRef function V-89
CsrXWave function V-89
CsrXWaveRef function V-89
Cursor operation V-93
dashed lines II-290
detecting movement IV-302–IV-305
double arrow cursor II-246, II-249, II-269
four-arrow cursor II-263
free II-291
functions II-292
hcsr function V-269
hook functions IV-302

cursors curve fitting

Index 17

horizontal coordinate V-269
hour glass V-650
in contour plots II-338
in graphs (example) I-40, II-246
information about V-88
locking (deactivating) II-291
moving II-291
moving cursor calls function IV-302–IV-305
operations II-292
PauseForUser operation IV-134, IV-136
pcsr function V-544
putting in graphs II-290–II-292
qcsr function V-580
ranges of interest in curve fit III-179

example III-180
multivariate fit III-184

related functions V-9
related operations V-5
removing II-291
ShowInfo operation V-648
Sleep operation V-650
specifying range of interest II-292
style macros II-291
styles II-290
vcsr function V-810
vertical coordinate V-810
watch III-416, V-650
xcsr function V-841
z value from contour trace V-843
zcsr function V-843

Cursors button
in Duplicate Waves dialog II-86

CursorStyle subtype
keyword V-94

Curve Fit progress window III-159, III-206
curve fitting III-158–III-234

(see also cubic spline)
auto trace (examples) I-49, I-53
aborting III-159
algorithms III-159–III-160
all-at-once functions III-224

Curve Fitting dialog and III-225
restrictions III-225

auto-trace destination waves III-178, III-206
length III-178

built-in functions
dblexp_XOffset III-168
double exponential III-169
exp_XOffset III-168
exponential III-168
gauss III-167
gauss2D III-172
Hill equation III-171
line III-170
lognormal III-172
Lorentzian III-168

notes III-167–III-173
poly2D III-172
polynomial III-170–III-171
power law III-171
sigmoid III-171
sin III-170
two dimensional

gaussian III-172
polynomial III-172

chi-square III-159, III-206
CM_Kn: covariance matrix waves V-95
coefficients III-159

coefficient names III-177
Coefficients tab in Curve Fitting dialog

III-164, III-166
coefficients wave III-164, III-176–III-178
confidence intervals III-196
default coefficient wave III-177
explicit coefficients wave III-177
for user-defined fit function III-173
names III-173
new wave III-177
values III-164

confidence bands
nonlinear functions III-199
statistics III-198
waves generated by Igor III-198

 III-196, III-199
confidence intervals

calculating after fit III-197
constraints V-98

constraint expressions III-201
equality constraint III-201
examples III-201
infeasible III-202
ODR III-210, V-101
pitfalls III-203
using command line III-200
using Curve Fitting dialog III-200
violated III-202

 III-199, III-204
convolution and III-224
correlation coefficient III-205
correlation matrix III-199
covariance matrix III-199, V-95
Curve Fitting dialog III-188
CurveFit operation V-94
data folders III-204
dblexp (double exponential) V-97
derivatives III-175
destination waves III-178–III-180

auto-trace III-178
explicit destination III-179
log axes III-178
multivariate fits III-184
no destination wave III-178

curve fitting curve fitting

Index 18

saving III-178
differential equations and III-224
epsilon wave III-175
error estimates III-160, III-178, III-192, III-196

ODR III-210
examples

ellipse III-213–III-215
experiments III-232
function list in a string III-217
holding a coefficient III-164
implicit functions III-213–III-215
ODR III-210–III-212
residuals III-164
simple line fit III-162
summed exponentials III-216

excluding points III-181
exp (exponential) V-97
expected points/cycle III-170
exponentials III-166, III-168–III-169, III-233

problems III-169
extrapolation (example) I-52
fit function expression III-174
FitFunc keyword III-220, V-200
FuncFit operation V-215
FuncFitMD operation V-218
gauss (Gaussian)

1D V-97
2D V-98

gaussian (examples) I-49, I-57
growing exponential III-166
handling errors III-206
Hill equation V-97
history III-164, III-188

coefficients III-177
holding coefficients III-164

ODR III-209
implicit functions III-213–III-215, V-96

example III-213–III-215
independent variables III-173, III-223

multiple III-213
INFs III-204
initial guesses III-160, III-167, V-101

graphing III-175
ODR III-209
problems III-166

input values III-188
iteration paths, saving III-206
iteration start III-207
Levenberg-Marquardt algorithm

III-159–III-160
line fit III-162, III-170, III-205, V-97
list of functions III-215

constraints III-216
linear dependency III-215

log axes
and auto-trace III-178

log normal V-97
lor (Lorentzian) V-97
M_Covar wave III-199
M_FitConstraint wave III-203
manual guesses III-166
mask wave III-181

multivariate fit III-184
maximum iterations III-205
miscellaneous options III-204
model curve III-178
multidimensional V-218
multiprocessor support

curve fitting
multitasking III-218–III-219

multivariate functions III-182–III-187, V-218
and update time III-185
examples

built-in function III-185
user-defined function III-186

independent variables III-173
model results III-184
Poly2D III-185
selecting data III-183

gridded III-184
multicolumn III-183

selecting function III-183
NaNs III-204
nonlinear least squares III-159
ODR III-208–III-212, V-96

constraints III-210, V-101
error estimates III-210
examples III-210–III-212
holding variables III-209
initial guesses III-209
results III-209
weighting III-209

ODR not threadsafe III-208
ODRPACK95 III-208
only guess III-167
Orthogonal Distance Regression (see curve

fitting:ODR)
output values III-164, III-188

coefficients III-177
ODR III-209

overview III-159
parameters (see coefficients)
poly (polynomial)

1D V-97
2D V-98

polynomials III-170–III-171, III-233–III-234
two-dimensional III-172, V-312

example III-185
power law V-97
prediction bands III-199
problems

automatic guess didn’t work III-166

curve fitting Curve Fitting dialog

Index 19

with dialog III-187
quality in line fit III-206
quick fit III-161

limitations III-161
quit reason III-206
quitting III-159
ranges of interest III-179
references III-234, V-103
report III-164

coefficient values III-177
residuals III-164, III-193

auto trace III-193
auto wave III-194
axes III-194
calculating after fit III-195
example I-59
explicit residual wave III-194
removing the auto-trace III-194

results III-164, III-188
robust fitting III-206
sigmoid V-97
simple example III-162–III-164
simplified III-161
sin (sine) V-97
singular value decomposition III-159, III-233
singularities III-232
special variables III-204–III-208
standard deviation for a point III-181
statistics III-196–III-199, V-766
structure fit functions III-228–III-231

examples III-229
multivariate III-231
syntax III-230
WMFitInfoStruct structure III-230

subset of data III-179–III-181
continuous III-179
discontinuous III-181
multivariate fit III-184

sums of fit functions III-215
constraints III-216
linear dependency III-215

suppressing Curve Fit progress window III-206
termination criteria III-160, III-204–III-205
terminology III-158
to subset of data (example) I-51
to user-defined functions III-173–III-176

coefficient names III-173, III-177
Coefficients tab III-175
compile errors III-174
creating fit function III-173
FitFunc keyword III-220
forms not suitable for dialog III-223
function expression III-174
function format III-219–III-228
graphing initial guesses III-175
independent variables III-173

initial guesses III-175
making function always available III-175
special comments III-222

to XFUNCS (external functions) III-176
total least squares III-208
troubleshooting III-233–III-234

constraints III-203
Curve Fitting dialog III-187
singularities III-232

user-defined functions
all-at-once functions III-224
multivariate functions III-223
structure fit functions III-228–III-231

V_ variables III-204–III-208, III-233
W_coef wave III-178, V-101
W_sigma wave III-178, III-196
weighting (example) I-57
weighting wave III-181–III-182

ODR III-209
XY data ranges III-179

Curve Fitting dialog III-161–III-192
all-at-once functions III-225
Coefficient Wave menu III-177
Coefficients list III-164, III-167
Coefficients tab III-164, III-166

constraints III-200
details III-192
user-defined function III-175

constraints III-200
Data Options tab III-179

Data Mask menu III-181
details III-191–III-192
multivariate fit III-184

detailed description III-188–III-192
external functions and III-176
fit function selection III-163
From Target checkbox III-163
Function and Data tab III-163

details III-189–III-191
multivariate functions

selecting III-183
selecting gridded data III-184
selecting multicolumn data III-183

Function menu III-163
multivariate functions III-183

global controls III-189
Graph Now button III-175
input data III-163
New Fit Function dialog III-173

compile errors III-174
Save Fit Function Now button III-174
Test Compile button III-174

Output Options tab III-165
auto-trace length III-178
create covariance matrix III-199
Destination menu III-178

Curve Fitting dialog data folders

Index 20

destination, New Wave III-179
details III-192
error analysis III-196
residuals III-193

problems III-187
selecting data waves III-163
simple example III-162
user-defined functions III-173

problems III-223
special comments III-222

CurveFit operation V-94
data folders IV-154

curves in graphs (see traces)
CustomControl III-363
CustomControl operation III-373, V-103
customize at point II-266, V-462

legends III-55
cutting

in page layouts II-384, II-388
in tables II-207
rows or columns in tables II-227

CWT (see wavelet transform)
CWT operation V-108
cyclic redundancy check value V-759, V-812

D
d

suffix in tables II-200, II-216
dashed lines III-412

drawing V-628
in graphs II-255
preferences III-412
SetDashPattern operation V-626

Dashed Lines dialog III-412
data

(see also variables, waves, waveform data, XY
data)

archiving V-607
creating II-80, II-108

examples I-36, I-48, I-55
in tables II-191, II-197, II-207

editing by drawing (example) I-23, I-30
loading

example I-23
from files II-141–II-175
from Igor experiment file V-388–V-390
waves, LoadWave operation V-393

reading binary files V-170
saving in files II-175–II-179, V-171
saving waves in file V-605
sparse II-328
typing into a table (example) I-14
writing formatted V-204

data acquisition IV-281
BackgroundInfo operation V-36

chart controls III-371–III-372, IV-282–IV-285
Chart operation V-48–V-50
CtrlBackground operation V-90
CtrlFIFO operation V-92
CtrlNamedBackground operation V-91
FakeData function V-166
FIFO buffers III-371–III-372, IV-282–IV-285

(see also FIFO buffers)
FIFO2Wave operation V-178
FIFOStatus operation V-179
GPIB IV-281
GW Instruments IV-281
Instrutech IV-281
KillBackground operation V-360
KillFIFO operation V-361
National Instruments IV-281
NewFIFO operation V-492
NewFIFOChan operation V-493
NIDAQ Tools IV-281
oscilloscope displays II-304
serial port IV-281
SetBackground operation V-626
sound IV-281

Data Browser II-89, II-122, II-130–II-138
browsing experiments II-34
saving experiment copies II-134
shortcuts II-137

data folder references IV-62–IV-66
/SDFR flag IV-64
as function results IV-65
checking validity IV-65
CountObjectsDFR operation V-85
DataFolderRefStatus function V-112
DFREF keyword IV-64
functions IV-65
GetDataFolderDFR function V-232
GetIndexedObjNameDFR function V-238
GetWavesDataFolder function V-250
NewFreeDataFolder function V-494
structure fields IV-64
waves containing IV-66

data folders II-122–II-138
$ operator II-124
accessing in user functions IV-62–IV-66
assignment statements II-126, IV-3
clearing IV-155
controls II-126
conventions IV-153
CountObjects operation V-85
CountObjectsDFR operation V-85
creating II-132, V-150, V-492, V-494
creating global variables in user functions

IV-229
current data folder II-124–II-125, II-131, IV-154

determining V-232
setting II-122, II-131, V-627

data folders dates

Index 21

curve fitting III-204
data folder containing wave V-250
DataFolderDir function V-111
DataFolderExists function V-112
DataFolderRefStatus function V-112
dependencies II-126, III-48, IV-204
DFREF keyword IV-64
dialogs II-123
Dir operation V-129
DuplicateDataFolder operation V-150
dynamic text in annotations III-48
examples II-127–II-130
free IV-79–IV-81
full data folder paths IV-3, IV-178
GetDataFolder function V-232
GetDataFolderDFR function V-232
GetWavesDataFolder function V-250
global variables II-122, II-125, II-130
in unpacked experiments II-133
KillDataFolder operation IV-155, V-361
killing II-124
listing objects in V-238
listing of II-131
loading from Igor experiment file V-388–V-390
MoveDataFolder operation V-482
MoveString operation V-486
MoveVariable operation V-488
MoveWave operation V-488
multitasking IV-295
names II-123

CheckName function V-55
examples II-123

naming rules III-417
NewDataFolder operation V-492
NewFreeDataFolder function V-494
NVAR, SVAR and Wave keywords IV-51, IV-55
objects in data folders II-122
Packages data folder IV-153
problems II-130
procedures II-130
programming IV-152–IV-155
quoting liberal names IV-152
references using $ IV-49
referring to waves II-125, II-130
related functions II-124, V-11
related operations II-124, V-5
relative data folder paths IV-3
renaming V-589
ReplaceWave operation II-129, V-594
root II-123, II-131, IV-3, V-602
saving unpacked II-31
Set Variable controls II-126
SetDataFolder operation V-627
setting and restoring current IV-154
storing runs of data IV-153
string containing name II-124

syntax II-123
quoting liberal names II-124

system variables II-126
UniqueName function V-802
use in commands IV-3
user-defined functions II-125
Value Display controls II-126
wave references IV-68
window macros II-125
XOPs II-130

data loading settings
Miscellaneous Settings dialog III-414

Data Mask menu
Curve Fitting dialog III-181

data type
in Igor Text files II-159
Redimension operation V-583

data units
changing II-83

SetScale operation V-640
max length II-84

data values II-78
changing units V-82
in tables II-192, II-200
in wave assignments II-94

databases
SQL II-179

DataFolderDir function V-111
DataFolderExists function V-112
DataFolderRefStatus function IV-65, V-112
Date Format dialog II-281
date function V-113
date/time axes II-268, II-280–II-284

date format II-281
in Modify Axis dialog II-281
manual ticks II-283–II-284
range II-282
suppress date II-282
time format II-281
weekly ticks II-283

date/time data II-102
date2secs

example II-102
date2secs function V-113
dates

CreationDate function V-87
Date Format dialog II-144
date/time axes II-268, II-280–II-284

custom formats II-281
range II-282

date2secs function V-113
DateTime function V-114
dateToJulian function V-113
formats II-204
in delimited text files II-144, II-147, II-151
in Igor Text files II-159

dates default font

Index 22

in notebooks III-16, III-23
in tables II-198, II-204, II-218
Julian V-113, V-360
JulianToDate function V-360
loading custom formats II-144
LoadWave operation II-146
modDate function V-441
ordering of components II-204
pasting in tables II-208
range of II-280
related functions V-6
representation of II-204, II-218, II-280
Secs2Date function V-622
SetScale operation V-640
stored in waves II-102
Table Date Format dialog II-204
units II-84–II-85
wave precision II-85

DateTime function V-114
dateToJulian function V-113
Daubechies wavelet transform V-151
dawson function V-114
dblexp (double exponential) curve fit V-97
DDBs

importing RTF III-26
DDE (see dynamic data exchange)
DDEExectute function V-114
DDEInitiate function V-114
DDEPokeString function V-115
DDEPokeWave function V-115
DDERequestString function V-115
DDERequestWave function V-116
DDEStatus function V-116
DDETerminate function V-116
debug on error IV-189

preventing IV-262
debugger IV-188–IV-201

background tasks IV-287
breakpoints IV-189
debug button IV-190
debug on error IV-189
Debugger operation V-117
DebuggerOptions operation V-117
enabling IV-188
enabling independent modules IV-219
function variables IV-192
Go button IV-191
independent modules IV-219
macro variables IV-193
NVAR checking IV-189
procedure pane IV-199
setting breakpoints IV-189
shortcuts IV-200
stack list IV-191
Step Into button IV-191
Step Out button IV-191

Step Over button IV-190
stepping through code IV-190
Stop button IV-190
STRUCT references IV-198
SVAR checking IV-189
text expression evaluator IV-200
V_debugDangerously IV-200–IV-201
variables list IV-191

columns IV-192
Variables pop-up menu IV-192
WAVE checking IV-189
WAVE references IV-198
waves

editing IV-196
showing IV-196

waves, structures, and expressions pane IV-195
showing IV-195

Debugger operation V-117
DebuggerOptions operation V-117
debugging procedures IV-188–IV-201

(see also debugger)
background tasks IV-287
Debugger operation V-117
DebuggerOptions operation V-117
fprintf operation IV-237, V-204
Print operation V-565
printf operation V-566
runtime stack information V-247
Silent operation V-649
Slow operation V-654
using print statements IV-188

decimal numeric format
in tables II-217

decimal separator
in delimited text files II-151
in general text files II-157
in graphs II-251
in tables II-217

decimation III-139–III-268
(see also interpolation)
FindSegmentMeans user-defined function

III-149
Resample operation III-141, V-595
techniques

omission III-139
smoothing III-140

decommentizing III-355
decomposing waves II-98
decompressing images V-326
deconvolution

images V-313
default

in switch statements IV-35
default font

GetDefaultFont function V-232
GetDefaultFontSize function V-233

default font dependency formulas

Index 23

GetDefaultFontStyle function V-233
in controls V-120
in graphs II-249
in notebooks III-10
in page layouts II-393
preference III-434

Default Font dialog III-434
default keyword V-117
default symbolic path II-90
default tab width

in notebooks III-7
default wave properties II-82

do not use SetScale V-641
DefaultFont operation V-118
DefaultGuiControls operation V-118
DefaultGuiFont operation V-120
define statement V-15
defined function V-121
DefineGuide operation V-122
Delaunay triangulation

contour plots V-446
Triangulate3d operation V-800

delay
Sleep operation V-650

DelayUpdate
box in tables II-195, II-203
in page layouts II-378, II-382, II-385

DelayUpdate operation V-123
Delete Points dialog II-93

tables II-209
DeleteFile operation V-123
DeleteFolder operation V-124

warning V-124
DeletePoints operation II-93, V-125
deleting

(see also killing)
data in waves II-93, II-209
recreation macros II-62

delimited text files II-143–II-152
carriage returns II-150
column labels II-146, II-149, II-151
column position waves II-150
column types II-150–II-151
date columns II-147
dates II-144, II-151
decimal character II-151
delimiter characters II-146, II-151
escape codes II-151
example II-146
features of II-141–II-142
fixed field text files II-152
FORTRAN files II-152
INFs II-144
loading

matrices II-149
text waves II-150

loading process II-147
missing values II-151–II-152
NaNs II-144
nonnumeric columns II-147
numeric formats II-148
quotation marks II-151
row labels II-149
row position waves II-150
saving multidimensional waves II-177
saving waves II-176
skipping lines II-151
spaces II-151
special characters II-150
times II-144
troubleshooting II-152
tweaks II-151
versus general text II-154
X scaling II-149

delimiter characters
in delimited text files II-141, II-146, II-151
in general text files II-153
in text data columns II-150
spaces II-151

deltax function V-125
use DimDelta instead V-128

DEMs
loading II-167

dependencies IV-5, IV-204–IV-211
antecedents IV-207–IV-209
cascading IV-207–IV-209, IV-211
caveats IV-211
creating

in user functions IV-210
data folders IV-204
in user defined functions IV-211
independent modules IV-224
Object Status dialog III-419–III-423
updating

in macros IV-107
in user functions IV-93

when updated IV-210
dependency assignments III-48, IV-204–IV-211

operator IV-210
creating III-421, IV-204–IV-209

in user functions IV-210
data folders IV-204
deferred evaluation IV-210
deleting IV-209
examples I-45, III-269, IV-204
numeric variables IV-206
SetFormula operation V-634
string variables IV-206
system variables IV-207
waves IV-207

dependency formulas IV-204–IV-211
:= operator IV-5

dependency formulas DimOffset function

Index 24

broken objects IV-210
example III-422

creating III-421, IV-204–IV-209
in user functions IV-210

data folders IV-204
deleting IV-209
dynamic text in annotations III-48
for waves II-101
GetFormula function V-237–V-238
guided tour (example) I-45
Object Status dialog IV-205–IV-206
SetFormula operation IV-211, V-634
status IV-206
using $ operator IV-211
using operations IV-211

dependent objects IV-204–IV-211
Object Status dialog IV-205–IV-206

derivatives in curve fitting III-175
derived rulers III-14
desktop

path to folder V-665
destination waves IV-69

automatic wave references IV-57
in curve fitting III-178–III-180
in wave assignment II-94
inline wave references IV-58, IV-70
issues IV-71
standalone wave references IV-57
subranges of II-96
wave references IV-70

determinant V-416
development systems IV-185
DF flag

function results IV-65
DFREF keyword IV-64

example IV-63
function results IV-65
functions IV-65
structure fields IV-64

DFTs (see FFTs)
dialogs

Asian language settings III-416
background tasks IV-287
from procedures V-134–V-135
from user functions IV-126
help II-6
modeless using panels IV-140
positions remembered III-434
relation to commands I-7
relation to menus I-7
some settings remembered III-434
synchronization

font/keyboard III-416
text areas

magnification II-71
zooming II-71

DIBs
exporting graphics III-109
exporting RTF III-26
importing RTF III-26
saving V-617

differential equations III-270–III-283
coupled first-order equations III-274
curve fitting and III-224
derivative function III-271
discontinuities III-283
first-order equations III-273
higher order equations III-276
IntegrateODE operation V-351
interrupting calculations III-281
stopping and restarting calculations III-282
stopping on a condition III-282

Differentiate operation V-127
differentiation III-124

Differentiate operation V-127
multidimensional III-124
of XY data III-124
waveform data III-124

digamma function V-128
digital elevation models(see DEMs)
digital line graphs (see DLGs)
digital signal processing (see signal processing)
digits after decimal point

in tables II-218
DimDelta function V-128
dimension labels II-109–II-110

(see also column labels, row labels)
example II-99
FindDimLabel function V-189
GetDimLabel function V-234
in delimited text files II-146
in tables II-221
length limit II-110, II-204
naming conventions II-110
SetDimLabel operation V-627
speed considerations II-110
viewing in tables II-193
wave indexing II-99

dimension scaling
changing II-83

SetScale operation V-640
checking in tables II-192

dimension units
changing

SetScale operation V-640
dimensions

changing II-91
Redimension operation V-583

number of, WaveDims function V-813
platform-related issues III-408

DimOffset function V-128

DimSize function drawing tools

Index 25

DimSize function V-128
example IV-180

Dir operation V-129
direct color mode V-459
direct reference to globals IV-95

converting to runtime lookup IV-97
directories

creating via FTP IV-252
deleting via FTP IV-252
downloading via FTP IV-250
FTPCreateDirectory operation V-207
FTPDelete operation V-208
uploading via FTP IV-251

directories (see paths, symbolic paths)
disappearing drawing objects III-77–III-78, III-80
discrete Fourier transforms (see FFTs)
discrete wavelet transform (see wavelet transform)
dispersion of wave V-821

2D V-323
Display operation V-129–V-131
DisplayHelpTopic operation V-131
DisplayProcedure operation V-132
distributing

drawing objects III-78
dithering

image plots V-473
division IV-5
DLGs

loading II-167
Do It button I-7
do-while

in user functions IV-36
do-while statements V-134
DoAlert operation V-134
document properties

in notebooks III-7
Document Settings dialog III-7, III-23, III-353
documents

path to folder V-665
DOG wavelet transform V-110
DoIgorMenu operation V-134
DoPrompt operation

example IV-126
DoPrompt statements V-135
dot product V-416
dot-underscore files V-346
double precision II-90, III-414, V-583

(see also numeric precision)
defined II-81
numeric variables II-117

double-clicking
on text III-355

DoUpdate operation IV-93, IV-211, V-136
in macros IV-107

DoWindow operation V-136
style macros V-138

window title V-138
downloading

directories via FTP IV-250
files via FTP IV-250
files via HTTP IV-254
web pages via HTTP IV-253

DoXOPIdle operation V-139
DP (double precision wave type) II-90
DPI

platform-related issues III-408
drag and drop II-50, IV-257
dragging

a marquee in a page layout II-384
cells in tables II-202
column boundaries in tables II-213
columns in tables II-212
object handles in layouts II-383
objects in layouts II-383

DrawAction operation V-139
DrawArc operation V-140
DrawBezier operation III-83, V-141
drawing

grouped objects III-84
Drawing Limitations III-391
drawing order of images

ReorderImages operation V-590
drawing order of traces II-258

ReorderTraces operation V-591
drawing tools III-71–III-86, III-416

absolute coordinates III-79
Align objects III-78
anchor for text III-73
arcs III-74, V-140–V-141
Arrow Fat III-74
Arrow tool III-72
arrows III-73–III-74
axis coordinates III-79
bezier curves V-141

creating III-83
circles III-74, V-143
coordinate systems III-79–III-81, V-630
copy III-80–III-81
creating objects III-72–III-76, III-82
curves V-141
dashed lines III-74, III-77

SetDashPattern operation V-626
deleting objects III-72, III-84, V-139
disappearing objects III-77–III-78, III-80–III-81
Distribute objects III-78
draw object commands V-139
Draw Poly tool III-75
Draw Wave tool III-76
DrawAction operation V-139
DrawArc operation V-140
DrawBezier operation V-141
Drawing mode III-71

drawing tools Duplicate operation

Index 26

DrawLine operation V-142
DrawOval operation V-143
DrawPICT operation V-143
DrawPoly operation V-143–V-144
DrawRect operation V-145
DrawRRect operation V-145
DrawText operation V-145
duplicating objects III-72
Edit Poly tool III-75
Edit Wave tool III-76
environment III-82, III-85
Environment pop-up menu III-77
fill modes III-74, III-77
Freehand Poly tool III-75
Freehand Wave tool III-76
grids III-78, V-795
grouped objects III-77, III-82, III-85
HideTools operation V-271
in page layouts II-377
inserting objects V-139
kill layer III-84
layers II-376, III-77, III-80, III-84–III-85

ProgAxes layer III-80
ProgBack layer III-80
ProgFront layer III-80
selection (example) I-26
SetDrawLayer operation V-632
UserAxes layer III-80
UserBack layer III-80
UserFront layer III-80

Line Properties III-77
lines III-73–III-74, V-142
Lines (and Arrows) tool III-73–III-74
modifying objects III-72, III-82
monotonic waves III-76
Mover pop-up menu III-77–III-78
moving, resizing objects III-72, III-80–III-81
offscreen objects III-77–III-78, III-80–III-81
Operate mode III-71
operations III-81–III-84
Oval tool III-74
ovals V-143
paste III-80–III-81
pasted objects disappearing III-81
pasted picture resizing III-81
picture resizing III-81
plot relative coordinates III-79
Polygon tool III-75–III-76
polygons

as input for procedures IV-145
creating III-75, III-83

example I-21
DrawPoly operation V-143
editing III-75–III-76
exiting edit mode III-76
last point III-75

origin III-83
scaling III-76

ProgAxes drawing layer III-80
ProgBack drawing layer III-80
ProgFront drawing layer III-80
programming III-81–III-85

example III-85
strategies III-84

Rectangle tool III-74
related operations V-4
relative coordinates III-79
replace group method III-84
Retrieve objects III-78, III-80
retrieving objects III-77
rotating objects III-72
Rounded Rectangle tool III-74
rounded rectangles

DrawRRect operation V-145
selecting, deselecting objects III-72, III-80, III-82
SetDashPattern operation V-626
SetDrawEnv operation III-82, V-628–V-631
SetDrawLayer operation V-632
shortcuts III-86
Show Tools III-71
ShowTools operation V-648
text III-72–III-73

anchor III-73
color III-72
properties III-73
rotation III-72

Text tool III-72–III-73
tool palette III-71–III-78
ToolsGrid operation V-795
UserAxes drawing layer III-80
UserBack drawing layer III-80
UserFront drawing layer III-80
wave editing III-76, III-84
waves as bezier curves III-83
waves as polygons III-83

DrawLine operation V-142
DrawOval operation V-143
DrawPICT operation V-143

in independent modules IV-224
DrawPoly operation III-83, V-143–V-144

xOrg, yOrg III-83
DrawRect operation V-145
DrawRRect operation V-145
DrawText operation V-145
DSP (see signal processing)
DSPDetrend operation V-146
DSPPeriodgram operation V-146
dummy objects in page layouts II-382
Duplicate operation II-86, V-149

examples II-87
in user functions V-149
warning V-150

Duplicate Waves dialog equality operator

Index 27

Duplicate Waves dialog II-86
DuplicateDataFolder operation V-150
duplicating

controls III-366
data folders V-150
drawing objects III-72
waves II-86, V-149
waves in tables II-199, II-228

DWT (see wavelet transform)
DWT operation V-151
dynamic IV-111
dynamic data exchange (DDE)

DDEExectute function V-114
DDEInitiate function V-114
DDEPokeString function V-115
DDEPokeWave function V-115
DDERequestString function V-115
DDERequestWave function V-116
DDEStatus function V-116
DDETerminate function V-116

dynamic menu items IV-113
dynamic text

escape codes for tags V-779
in annotations III-48, V-785
in tags V-779
TagVal function V-780
TagWaveRef function V-781

E
e function V-152
edge detection

ImageEdgeDetection operation V-286
edge detectors

Canny V-286
Frei–Chen V-286
Kirsch V-286
Marr–Hildreth V-286
Prewitt V-286
Roberts V-286
Shen–Castan V-286
Sobel V-286

EdgeStats operation III-256, V-152–V-153
Edit operation V-154–V-155
editing waves II-192

using drawing tools III-76
ei function V-155
eigenvalues

MatrixEigenV operation V-417
eigenvectors

MatrixEigenV operation V-417
elapsed time II-218, II-280–II-284, V-623

loading format II-144
elements column in tables

hiding V-481

elements keyword for ModifyTable operation
II-223

email II-15
embedding III-88–III-98

(see also subwindows)
in control panels III-392

EMF
saving V-617

EMF (see enhanced metafiles)
emphasized ticks

in user tick waves II-279
Enable Updating

pictures in notebooks III-21
Enable Updating dialog III-18
Encapsulated PostScript (see EPS)
encodings

file names II-50
end effects

in convolution III-252
in smoothing III-264

End keyword
in Igor Text files II-159
in procedures V-155

EndMacro keyword V-156
EndStructure keyword V-156
endtry keyword V-156
energy loss when windowing III-244
engineering units

printf operation V-568
enhanced metafiles

exporting graphics III-108
exporting RTF III-26
importing III-424
importing RTF III-26
saving V-617

enoise function V-156
Enter key

in tables II-203
entering data in tables II-191, II-197, II-203
EPS

CMYK III-104, III-112
creating file III-103, III-111

using printer driver III-111
embedding fonts III-104, III-112
exporting graphics III-101, III-109
exporting pictures III-81
exporting RTF III-26
exporting tables II-230
missing PostScript fonts III-104, III-112
PostScript language level III-101, III-109
saving V-617
screen preview III-101, III-109, III-424

epsilon wave in curve fitting III-175, III-188
equality IV-5
equality operator IV-5, IV-7

and roundoff error IV-7

equalWave function experiments

Index 28

equalWave function V-157
equations (see wave assignments)
equidistant projection V-576
erf function V-157
erfc function V-158
erfcw function V-158
error bars

(see also graphs:error bars)
arbitrary error values II-265
bar thickness II-266
cap thickness II-266
cap width II-266
examples II-266
in graphs II-265–II-266
modes II-265
NaNs in error values II-265
parts identified V-160
single sided II-265–II-266
XY Error box II-266

Error Bars dialog II-265
error estimates in curve fitting III-196
error function V-157, V-359
error waves II-265
ErrorBars operation V-159–V-161
errors

GetErrMessage function V-236
GetRTErrMessage function V-247
GetRTError function V-246
handling IV-38, V-801
in background tasks IV-287
in macros IV-106
in user functions IV-91–IV-92

escape codes
backslashes V-786

LoadWave operation V-399
examples III-46
for carriage return IV-13
for linefeed IV-13
in annotations III-46–III-49, III-54
in axis label II-285, V-367
in delimited text files II-151
in Igor Text files II-162
in strings IV-13
LoadWave operation V-399
saving text waves II-178
text info variables III-65–III-68
wave symbols III-54

eventMod field III-387
examples

all-at-once function III-225
with convolution III-226

confidence bands III-196
confidence interval calculation III-198
constraints III-201
creating user-defined function III-173
fit arbitrary number of Gaussian peaks III-223

implicit function fitting III-213–III-215
manual guesses III-166
multivariate fit III-185
ODR fitting III-210–III-212
Poly2D III-185
prediction bands III-196
subrange destination III-180
sums of fit functions III-216–III-218
user-defined fit code III-221
user-defined multivariate function III-186

Excel files II-167
excluding points in curve fitting III-181
exclusive OR operator IV-5
Execute operation IV-93, IV-180, V-161

calling external operations from functions
IV-181

calling macros from functions IV-181
data folder name V-250
GetErrMessage function V-236
independent modules IV-223
use of liberal names with IV-151

Execute/P operation V-162
operation queue IV-256

ExecuteCmdOnList function IV-180
ExecuteScriptText operation V-162
exists function V-163
exp (exponential) curve fit V-97
exp function V-164
expanding graphs II-246

examples I-37
expected points/cycle in curve fitting III-170
experiment file

loading data from V-388–V-390
packed II-29, III-414
SaveExperiment operation V-610
snooping II-39
unpacked II-30, III-414

experiment files
errors saving II-43
locked II-44
read-only II-44

experiment folder II-30, III-414
experiment recreation procedures II-39
ExperimentModified operation V-164
experiments II-29–II-44

browsing II-34, II-133
current experiment II-29
data folders II-31
empty table II-33
errors while loading II-40
ExperimentModified operation V-164
Igor Binary files II-31
initialization commands II-40, IV-183
LoadData operation II-164, V-388–V-390
loading data from II-133
loading of II-39

experiments expressions

Index 29

Macro Execute Error dialog II-40
merging II-32
missing folders II-41
name of II-22
new II-33, IV-269
new table in III-414
notebooks in III-4, III-31
opening II-32, IV-269
packed file II-29, III-414
procedure files II-31, III-343, III-345, III-347,

III-351
references to files and folders II-37
reverting II-33
safe save II-43
SaveExperiment operation V-610
saving II-29–II-32, IV-264

copies II-134
saving of II-43
settings II-191

Miscellaneous Settings dialog III-414
sharing Igor Binary files II-165, III-414
table in new experiments II-191
templates II-34
temporary files II-43
transferring II-38, II-133
unpacked file II-30, III-414
variables file II-31

expInt function V-164
expnoise function V-165
exponent prescale II-289
exponential curve fitting III-233, V-97

problems III-169
exponential functions V-6

acosh V-18
alog V-22
asinh V-33
atanh V-34
cosh V-84
coth V-84
cpowi V-85
exp V-164
ln V-387
log V-407
sinh V-650
tanh V-781

exponential integral V-164
exponential notation

axes, exponent prescale II-289
recognized in data files II-143
tick mark labels II-271

forcing II-274
exponentiation IV-5
exponentiation operator IV-6
Export Graphics dialog III-102, III-110
exporting

(see also saving waves)

bitmaps III-101, III-110
BMP files V-314
BMPs III-109
choosing a format III-102, III-110
CMYK III-104, III-112
DIB files V-617
DIBs III-109
EMF files V-617
enhanced metafiles III-108
EPS III-101, III-109
EPS files V-617
FBinWrite operation V-171
from tables II-212, II-229, V-617

SaveTableCopy operation V-620
graphics III-100, III-108–III-114, V-314

with drawing objects III-81
graphics formats III-100, III-108
graphs II-295, V-617
graphs of large data sets III-112
image plots III-104, III-112
images V-314
ImageSave operation V-314
JPEG files V-314, V-617
metafiles III-108
notebooks III-24, III-26
numeric variables V-171
PadString function V-537
page layouts II-384, II-388, II-397, V-617
PDFs III-101, III-109
PhotoShop files V-314
PICT files V-314, V-617

HiRes V-617
PICTs III-100
PNG files V-314, V-617
PNGs III-101
PostScript language level III-101, III-109
PostScript PICT files V-617
QuickTime files V-314
SavePICT operation V-617
screen preview III-101, III-109
SGI files V-314
string variables V-171
tables as graphics II-229
Targa files V-314
TIFF files V-314, V-316
to databases II-179
waves II-175–II-179, II-229, V-171, V-620, V-826
WMF files V-617

exporting raw
raw PNG files V-316

expressions
as operation flag values IV-11
as parameters IV-11
strings IV-12

extensions fifth tick

Index 30

extensions
(see Igor extensions, system extensions, file

extensions, Windows OS:file
extensions)

Igor Pro User Files folder III-426
exterior annotations III-52

affects graph plot area III-53
exterior subwindows III-392, IV-275, V-251
external functions IV-185

creating IV-185
curve fitting to III-176
FuncRefInfo function V-220
FunctionInfo function V-220
information about V-220
using II-50

external operations IV-185
calling from a user function IV-181
conditional compilation IV-90
creating IV-185, V-539
IDLE events V-139
listing V-530
on Intel Macintosh III-426
OperationList function V-530
ParseOperationTemplate operation V-539
using II-50

External Operations Toolkit (see XOP Toolkit)
Extract operation V-165
extrema, finding (see minimization)

F
f(z)

markers II-259
F1 help (see context-sensitive help)
factorial function V-166
FakeData function V-166
false and true IV-31
FAQ II-3, II-16
Fast Fourier Transforms (see FFTs)
Fast Hartley Transform (see Hartley Transform)
FastGaussTransform operation V-166
FastOp operation V-167
faverage function III-125, V-169

subranges III-125
faverageXY function V-169
FAX number for technical support II-16
FBinRead operation IV-175, V-170

very big files II-169
FBinWrite operation IV-175, V-171
FetchURL function V-172
FFT

spatial frequency filtering III-306
wave references IV-59

FFT operation V-173–V-178
FFTs III-237–III-241, V-173–V-178

(see also IFFTs)

compared to Fourier transform III-239
continuous wavelet transform III-249
DFT equation III-239
effect on graphs III-241
effect on wave type and number of points

III-238
Hanning window function III-244
harmonic analysis V-146
IDFT equation III-239
IFFT operation V-277–V-278
image analysis III-305–III-308
number of points restrictions III-237
one-sided spectrum III-238
periodograms V-146
phase calculation V-803

unwrapping V-803
phase polarity III-241
power spectra III-246
scaling amplitude III-239
spectral leakage III-244
speed III-241
swap diagonal quadrants V-334
two-sided spectrum III-238
wave type restrictions III-237
windowing III-242–III-245, V-146, V-829

for images V-341
for matrices V-341
Hanning operation V-268

X scaling and units changed III-238
fidelity II-390

in page layouts II-381
FIFO buffers

AddFIFOData operation V-18
AddFIFOVectData operation V-19
channels IV-282
chart controls III-371–III-372, IV-282–IV-285
Chart operation V-48–V-50
CtrlFIFO operation V-92
FIFO2Wave operation V-178
FIFOStatus operation V-179
KillFIFO operation V-361
NewFIFO operation V-492
NewFIFOChan operation V-493
programming IV-282
related operations V-5
SoundInStartChart V-661
SoundInStopChart V-662
updates IV-283
valid state IV-282

FIFO files
format IV-283

FIFO2Wave operation V-178
FIFOStatus operation V-179
fifth tick

in user tick waves II-279

file extensions files

Index 31

file extensions III-407–III-408
(see also file types, Windows OS:file

extensions)
.noindex II-43
.bwav II-163
cross-platform issues

in procedures III-406
.ibw II-163
Igor Binary file II-163
Igor Text files II-162
.itx II-162
Open File dialog IV-131
platform-related issues III-397
Save File dialog IV-132

File Information dialog
for notebooks III-31–III-32
procedure file version IV-150

file loaders II-167–II-168
file name encodings II-50
file paths

in procedures III-406
file permissions

Macintosh II-44
saving files II-43
Windows II-44

file reference numbers IV-176, V-523, V-526
File Transfer Protocol (see FTP)
file types III-407–III-408

(see also file extensions)
cross-platform issues III-397

in procedures III-406
Open File dialog IV-131
Save File dialog IV-132

files
(see also text operations)
alias creation V-86
appending V-524
carriage returns II-143
Close operation V-57
closing IV-175
CopyFile operation V-78
copying V-78
CreateAliasShortcut operation V-86
creating V-523

formatted text IV-235–IV-237
movies V-497

creator code IV-260, V-525
cross-platform compatibility III-396–III-397
current file position V-206
DeleteFile operation V-123
deleting V-123
delimited text files II-143–II-152
delimiter characters II-141
dot-underscore files V-346
downloading via FTP IV-250
downloading via HTTP IV-254

drag and drop II-50, IV-257
errors saving II-43
extensions (see file extensions)
FIFO buffers III-371–III-372, IV-282–IV-285
file name encodings II-50
file types IV-131–IV-132
finding IV-175
fixed field text files II-152
formats II-141
FORTRAN files II-152
FTPCreateDirectory operation V-207
FTPDelete operation V-208
FTPDownload operation V-210
FTPUpload operation V-212
FunctionPath function V-227
general text files II-153–II-158
GetFileFolderInfo operation V-234
headers II-141
Igor Binary files II-162–II-165, III-414
Igor Text files II-158–II-162
ImageFileInfo operation V-287
IndexedFile function V-345
information about V-234
linefeed characters II-143, III-404
loading binary files II-169
loading data files II-141–II-175, IV-257
locked II-44
MIME-TSV IV-259, IV-261, IV-265
MoveFile operation V-482
movies (see movies)
moving V-482
names

length on Macintosh III-400
length under Windows III-400
platform-related issues III-400
XOP length on Windows III-400

notebooks III-31
numeric formats II-143
Open File dialog IV-131
Open operation V-523–V-528
opening IV-175, IV-257, V-528–V-529
ParseFilePath function V-537
paths

extracting V-537
manipulating V-537
to functions V-227

procedure
path separators III-406

programming IV-175
read-only II-44
reading V-524
reading binary files V-170, V-204
reading text files V-204
recognized exponential notation II-143
reference numbers V-523, V-526
related functions V-11

files flow control

Index 32

related operations V-4
safe save II-43
Save File dialog IV-132
saving data V-607
saving data files II-175–II-179
saving waves to V-604
searching V-258
SetFileFolderInfo operation V-632
setting information about V-632
shortcut creation V-86
Spotlight II-44
status V-206
temporary files II-43
TextFile function V-786
third party files II-167–II-168
transferring

cross-platform III-396–III-397
FTP III-396
via FTP V-210, V-212

types III-406, IV-259
(see also file types, file extensions)

uploading via FTP IV-251
writing V-524

binary files V-171
formatted data V-204

writing to IV-176
Files and Folder setting III-414
fill patterns

in pop-up menu controls V-562
fill type in graphs II-256
FilterFIR operation V-180–V-183
FilterIIR operation V-183–V-189
filtering (see convolution, curve fitting, smoothing)
filters

Open File dialog IV-131
Save File dialog IV-132

Find dialog
searching help II-10

Find Same
in procedure windows III-352

Find Selection
in procedure windows III-352

Find Text dialog III-30
FindDimLabel function V-189
finding

file types II-9
FindSequence operation V-198
FindValue operation V-199
folders II-42
Igor Help Browser

Search Igor Files tab II-7–II-9
in Igor files II-7–II-9
in tables II-209
procedures III-343, III-351
Procedures pop-up menu III-352
results II-9

rulers in notebooks III-15
search expressions II-8
search folders II-8
speed II-9
strategies II-9
table values II-209
text in command window II-24
text in notebooks III-30
text in procedure windows III-351
wave value V-198–V-199

finding (see also regular expressions)
FindLevel operation III-254, V-189–V-190
FindLevels operation III-254, V-190–V-191
FindLevelXY macro III-255
FindListItem function V-192
FindPeak operation III-256–III-258, V-192–V-194
FindPointsInPoly operation V-194
FindRoots operation V-194–V-198

polynomial coefficients V-196
FindSequence operation V-198
FindValue operation V-199
First-In-First-Out buffer (see FIFO)
fit_

curve fitting destination wave name III-178
FitFunc keyword III-220, V-200
FitFunc subtype IV-184
fitting data (see curve fitting, cubic spline)
fixed dimension

in tables II-224
fixed field text files

(see also FORTRAN files)
blanks II-153
field widths II-153
loading II-153
number of columns II-153
padding II-152
spaces II-152

flags
in operations IV-9, IV-11

expressions require parentheses V-14
in user functions IV-29

floating panels V-500–V-501
WinList function V-831
WinName function V-833

floating point data III-414
described II-81
in Igor Text files II-159

floating point truncation error
and equality operator IV-7

floor function V-200
flow control

break keyword V-42
break statements IV-37
continue keyword V-67
continue statements IV-38
default keyword V-117

flow control FORTRAN files

Index 33

do-while V-134
do-while loops IV-36
extraneous text after IV-95
for loops IV-37
for-endfor V-203
if-else-endif IV-31, V-277
if-elseif-endif IV-32, V-277
if-endif IV-32, V-277
in macros IV-104
in user functions IV-31
keywords V-12
loops IV-36
return keyword V-601
strswitch statements V-763
switch statements IV-34, V-768
try-catch-endtry statements IV-38, V-801
while loops IV-36

FlushFileBuffers III-401
Folder button II-43
folders

alias creation V-86
browsing II-133
CopyFolder operation V-80
copying V-80
CreateAliasShortcut operation V-86
creating via FTP IV-252
data folders II-122–II-138
DeleteFolder operation V-124
deleting V-124
deleting via FTP IV-252
downloading via FTP IV-250
experiment folder II-30, III-414
finding II-42
FTPCreateDirectory operation V-207
FTPDelete operation V-208
GetFileFolderInfo operation V-234
Igor Extensions folder II-46
Igor Help Files folder II-46
Igor Pro Folder II-46, IV-149
Igor Pro User Files II-46
Igor Procedures folder II-47
information about V-234
missing II-41
MoveFolder operation V-484
moving V-484
names

platform-related issues III-400
SetFileFolderInfo operation V-632
setting information about V-632
shortcut creation V-86
special II-44
symbolic paths II-34–II-37
uploading via FTP IV-251
User Procedures folder II-47, IV-149
WaveMetrics Procedures folder II-47, IV-149

font/keyboard synchronization III-415

FontList function V-200
fonts

cross-platform issues III-403
default III-434, V-118, V-120, V-232

in controls V-120
size V-233
style V-233

exporting tables II-230
fractional character widths III-415
functions

FontList function V-200
FontSizeHeight function V-201
FontSizeStringWidth function V-202

in an axis label II-285
in annotations III-46
in graphs II-249, II-269
in notebooks III-10
in procedure windows III-354
in tick labels II-269
missing

substitution III-404
notebook rulers III-9, III-14
outline fonts III-415
precision text sizes III-415
relative size

in annotations III-47
size

(see also text sizes)
in an axis label II-285
in annotations III-46, III-55
in Text Size menu III-434

style
(see also text styles)
in annotations III-47

substitution for missing III-404
typography settings III-414

FontSizeHeight function V-201
FontSizeStringWidth function V-202
footers

in notebooks III-7, III-23
in procedure windows III-353
programming in notebooks III-32

for loops
in user functions IV-37

for-endfor statements V-203
format strings IV-236

engineering units V-568
printf operation V-567–V-569

formatted notebooks (see notebooks:formatted)
formula (see dependency formula)
FORTRAN files

(see also fixed field files)
features of II-142
loading II-141
number formats II-143

Fourier transforms functions

Index 34

Fourier transforms III-237–III-241
(see also FFTs)
compared to FFTs III-239
discrete (see FFTs)
discrete wavelet transform III-250
fast (see FFTs)
harmonic analysis V-146
inverse (see IFFTs)
periodograms V-146
phase polarity III-241
windows V-146
X scaling and units changed III-238

FPClustering operation V-203
fprintf operation IV-175, IV-235–IV-237, V-204

conversion specifications IV-236
example IV-237
for debugging IV-237

fractional character widths III-415
frames

for notebook pictures III-17
in page layouts II-385

FReadLine operation IV-175, V-204
cross-platform issues III-404

free axis II-241, II-243
(see also axes:free axis)
creating V-362, V-493
killing V-362
modifying V-449

free data folder
lifetime IV-79

free data folders IV-79–IV-81
converting to global IV-81
creating V-494
deletion of waves IV-80
Multithread keyword example IV-291
NewFreeDataFolder function V-494
objects lifetime IV-80

free dimension
in tables II-224

free waves IV-75–IV-78
converting to global IV-78
Extract operation V-165
leaks IV-78
lifetime IV-76
Multithread keyword example IV-292

Frei–Chen edge operator V-286
Frequently Asked Questions (see FAQ)
fresnel functions V-205–V-206
fresnelCos function V-205
fresnelCS function V-206
fresnelSin function V-206
FSetPos operation IV-175, V-206
FStatus operation IV-175, V-206
FTP II-15, IV-249–IV-253

ASCII transfers IV-252
binary transfers IV-252

creating directories IV-252
creating help file links II-13
deleting directories IV-252
downloading directories IV-250
downloading files IV-250
example experiment IV-249
FetchURL function V-172
FTPCreateDirectory operation V-207
FTPDelete operation V-208
FTPDownload operation V-210
FTPUpload operation V-212
image transfers IV-252
limitations IV-249
opening browser for URLs V-42
path specification IV-250
transfer types IV-252
transferring files III-396
troubleshooting IV-253
uploading directories IV-251
uploading files IV-251

FTPCreateDirectory operation V-207
FTPDelete operation V-208
FTPDownload operation V-210
FTPUpload operation V-212
full data folder paths (see data folders)
FuncFit operation V-215
FuncFitMD operation V-218
FUNCREF keyword IV-88–IV-89, V-219

example IV-89
FuncRefInfo function V-220
Function Execution Error dialog III-362, IV-92
function keys in user menus IV-122
Function keyword V-220, V-765
function references IV-88–IV-89

example IV-89
FUNCREF keyword V-219

FunctionInfo function V-220
FunctionList function V-225
FunctionPath function V-227
functions III-369, IV-10, V-536

(see also macros, minimization, operations,
procedures, user functions)

bits
setting IV-12

by category V-6–V-11
complex V-6
conversion V-6
date and time V-6
definition I-4
DoPrompt statements V-135
exists function V-163
exponential V-6
external IV-185
FindRoots operation V-194
FunctionList function V-225
help II-6

functions GetLastUserMenuInfo operation

Index 35

in command and procedure windows II-5
hook functions IV-257–IV-269, IV-302

named window hooks IV-270
SetIgorHook operation V-635
SetWindow operation V-646
static IV-269
subwindows IV-271
unnamed window hooks IV-276
user-defined hook functions V-635
window hooks V-646

MultiThread keyword V-489
numbers V-6
numeric types IV-10
overriding V-536
parameters IV-10
plotting III-268–III-270

example III-268
using dependencies III-269

printing result of IV-10
roots of III-285–III-291, V-194

nonlinear, 1D III-287
nonlinear, 2D III-289

cautions III-290
polynomials III-285

rounding V-6
runtime stack information V-247
special V-7
Static keyword V-673
statistics V-9
subtype V-53, V-559, V-644
syntax guide V-14
ThreadSafe keyword V-790
trigonometric V-6

G
GalleryGlobal keyword

in independent modules IV-224
gamma function V-228
gammaNoise function V-228
gammInc function V-228
gammln function V-229
gammp function V-229
gammq function V-229
gaps in graphs II-264
gauss (Gaussian) curve fit

1D V-97
2D V-98

Gauss function V-230
gauss transform

discrete V-166
Gauss-Jordan method

MatrixInverse operation V-421
Gauss1D function V-230
Gauss2d function V-230
gauss3D filter V-288

Gaussian filtering III-259
gaussian quadrature V-349
GBLoadWave operation

very big files II-169
GCD (see greatest common divisor)
gcd function V-231
GDI III-423
Gear method V-353
general binary files II-167
general numeric format

in tables II-217
general perspective projection V-576
general text files II-153–II-158

blocks II-153
column labels II-158
commas II-153
decimal character II-157
example II-154
features of II-142
headers II-153
labels II-154–II-155
loading matrices II-156
loading process II-155
missing values II-157
saving waves II-177
saving waves as V-605
skipping lines II-157
spaces II-153
tabs II-153
trouble-shooting II-157
tweaks II-156
versus delimited text II-154
X scaling II-156

Generate Commands dialog III-35
Generate Notebook Commands dialog III-35
geometry

related operations V-4
GeoTIFF II-169
GET method IV-255
GetAxis operation V-231
GetDataFolder function V-232
GetDataFolderDFR function V-232
GetDefaultFont function V-232
GetDefaultFontSize function V-233
GetDefaultFontStyle function V-233
GetDimLabel function V-234
GetErrMessage function V-236
GetFileFolderInfo operation V-234
GetFormula function V-237–V-238
GetIndependentModuleName function V-238

independent modules IV-223
pop-up menus IV-222

GetIndexedObjName function V-238
GetIndexedObjNameDFR function V-238
GetKeyState function V-239
GetLastUserMenuInfo operation V-240

GetMarquee operation graphs

Index 36

GetMarquee operation V-243–V-244
GetMouse operation V-245
GetRTErrMessage function V-247
GetRTError function V-246
GetRTLocation function V-247
GetRTLocInfo function V-247
GetRTStackInfo function V-247
GetScrapText operation V-248
GetSelection operation V-248–V-249

example III-35
GetUserData function V-250
GetWavesDataFolder function V-250

example IV-178
GetWindow operation V-251
GIF files

file info V-287
importing II-165, V-301

GIS
GeoTIFF II-169
GIS Utilities package II-169
GISLoadWave II-169
IgorGIS package II-169
shapefiles II-169

GIS Utilities package II-169
GISLoadWave II-167
GISLoadWave XOP II-169
Gizmo II-110

data conversion V-334
global procedure files III-342, III-347, IV-21

Igor Pro User Files folder III-347
global variables II-117, IV-47

(see also variables:global)
created by Igor operations IV-95
direct reference IV-95
for packages IV-229
in user functions IV-55
using structures instead IV-85

gnoise function V-255
gnomonic projection V-576
Go Back button II-11
GPIB

data acquisition IV-281
gradient plots II-255, V-453
Graph Macros submenu II-61–II-62, II-307
Graph menu II-239
Graph Now button in Curve Fitting dialog III-175
graph size problems II-250
Graph subtype IV-184

keyword V-256
graphics

compatibility III-423
features of II-142
technology III-423

graphics formats III-100, III-108
exporting III-102, III-110

GraphMarquee subtype IV-184, V-243
keyword V-256

GraphNormal operation V-256
graphs II-238–II-313

(see also annotations, axes, contour plots,
controls, cursors, drawing tools, image
plots, info box, labels, traces, Waterfall
plots, waves)

3D II-110, II-238
absolute width and height II-250
AddDropLine macro III-85
adding new axes II-243
AddPlotFrame macro II-299
annotation position III-52–III-54, III-60–III-61
annotations III-43–III-68

(see also annotations)
appending waves to II-243, II-305–II-306

example I-24
AppendToGraph operation V-29
arrow markers II-255, V-453
aspect ratio II-250
auto ticks II-270
auto width and height II-250
autoscaling and offsets II-263
autoscaling modes II-245, II-248, II-304
axes II-241, II-266–II-289, II-296–II-312, V-463

(see also axes, axis labels)
AxisValFromPixel function V-35
colors II-269, V-471
GetAxis operation V-231
PixelFromAxisVal function V-547
SetAxis operation V-625

background color III-391, V-471
bar charts (see category plots)
bars II-256
bars to next II-257, II-320
blank II-241
calibrator bars III-80
category plot options I-32
category plots (see category plots)
CheckDisplayed operation V-54
close graph (examples) I-27
color scale bars V-59
ColorScale operation V-59
comma as decimal separator II-251
complex traces II-264
computed manual ticks II-270
contour plots (see contour plots)
control bar V-70

color V-471
default control appearance V-118

preferences III-416
default font V-120

ControlNameList function V-75
controls III-390

drawing limitations III-391

graphs graphs

Index 37

creating (see graphs:making a new graph)
crossing axes II-269
cursors II-246, II-290–II-292

colors II-290
horizontal coordinate V-269
moving cursor calls function IV-302–IV-305
vertical coordinate V-810
z value from contour trace V-843

dash patterns for traces V-626
dashed lines II-255
data acquisition II-304
date/time axes II-268, II-280–II-284

custom date formats II-281
range II-282

default font II-249, V-118
display modes II-252
Display operation V-129–V-131
drawing (see drawing tools)
drawing coordinate systems III-79–III-80
drawing layers III-80
dynamic updating II-238
editing waves by drawing (example) I-23, I-30
error bars II-265–II-266

(see also error bars)
ErrorBars operation V-159–V-161
expand II-246
expansion II-311
expansion onscreen V-451
exporting II-295, V-617

(see also exporting:graphics)
with large data sets III-112

FFT and IFFT side effects III-241
fill between traces II-258
fill to next II-257
fill type II-256
fixed size II-250
fling mode II-247

preferences III-413
font II-249, II-269
free axis II-243

creating V-362, V-493
killing V-362
modifying V-449

free axis (example) I-38
gaps II-245, II-264
gradient plots II-255, V-453
grids II-272–II-273

color II-272
colors V-471
disappearing when printed II-272
styles II-272

illustrations II-273
grouping

add to next II-257
draw to next II-257
next trace defined II-257

pop-up II-257
stack on next II-257
trace order affects II-258

histogram bars II-256
Igor Tips for traces II-4
image plots (see image plots)
in notebooks III-21
info box (Show Info) II-290–II-292

floating vs. internal preferences III-416
HideInfo operation V-271
ShowInfo operation V-648

KillFreeAxis operation V-362
labels (see axis labels, tick mark labels)
layers (see graphs:drawing layers)
legend position III-52–III-54
legends (see legends, annotations)
line size II-255
line style II-255, II-305
linking in notebooks III-21
list of V-831, V-833
live II-304
log axes II-276–II-277
log or linear axes II-268
magnification II-311
magnification on screen V-451
making a new category graph

example I-31
making a new graph II-58, II-240, II-305–II-306,

V-129–V-131
example I-16

manual scaling mode II-246, II-248
manual ticks II-277–II-280
margin adjust (examples) I-39, I-41
margins II-249
markers II-249, II-253, II-261, II-269

as f(z) II-259
numeric codes II-261
stroke color II-254
table of II-261

marquee for scaling II-246
masking traces V-456

example V-463
mirror axis II-268–II-269
Modify Graph dialog II-248–II-251
ModifyContour operation V-441–V-446
ModifyFreeAxis operation V-449
ModifyGraph operation V-451–V-472
ModifyImage operation V-472–V-474
modifying annotations III-45
modifying styles II-251–II-266
modifying traces appearance II-251–II-266,

V-453
movies IV-225
multiple axes (example) I-38, II-296–II-297
names II-240, II-306
names and titles II-56

graphs GraphStyle subtype

Index 38

NaNs and INFs in graphs II-245
New Graph dialog II-240–II-241, II-306

examples II-297
NewFreeAxis operation V-362, V-493
next trace defined II-257
of complex waves II-264
oscilloscope displays II-304
page setups II-294, II-305
panning II-247

fling mode II-247
preferences III-413

per unit width and height modes II-250
pixel coordinates V-35, V-547
PixelFromAxisVal function V-547
plan width and height modes II-250
plot area II-242, II-250, V-252

affected by annotations III-53
polar graph macros III-81
pop-up menu for scaling II-246
position II-305
positioning traces II-247
poster-sized II-295
preferences II-305–II-306, II-323, II-344, II-370,

III-413
printing II-294–II-295, II-305, II-396, III-104,

III-112, V-569–V-570
printing with large data sets II-396, III-104,

III-112
quick append II-304, V-30
recreating from macro II-306–II-307
recreation macros V-834
related functions V-9
related operations V-1
relation to layouts I-3
relation to waves I-3
removing

contour plots V-585
image plot V-588
traces II-244
waves V-586

ReorderImages operation V-590
reordering traces II-258
ReorderTraces operation V-591
ReplaceWave operation V-594
replacing traces II-244
reverse plotting II-248, V-625
saving II-295

SaveGraphCopy operation V-612
with waves II-295, V-612

saving as macro II-306–II-307
scaling II-245–II-248
screen dumps V-618
setting axis range II-247–II-248
settings

Miscellaneous Settings dialog III-413
shortcuts II-312–II-313, III-394

shrink II-246
size II-305, V-251
Slider operation V-651
split axes II-303–II-304
Split Axis procedure file II-303
stacked plots II-249, II-297–II-300, V-464

examples II-268, II-297
staggered plots (examples) II-299
sticks and markers to next II-257
sticks to next II-257
stroke color II-254
style macros II-307–II-310
subwindows III-89
subwindows in layouts II-382
surface plots II-110, II-238
swap X & Y axes II-249
tag position III-60–III-61
tags (see tags, annotations)
target window II-239
ternary II-284
textbox position III-52–III-54
textboxes (see textboxes, annotations)
tick mark control II-270
ticks (see axes, tick marks, tick mark labels)
title II-240–II-241
titles

(see also window titles, annotations)
trace color II-259
trace names II-243
TraceInfo function V-797
TraceNameList function V-798
TraceNameToWaveRef function V-799
traces (see traces)
transparency in layouts II-399
typography settings III-414
user ticks from waves II-270
vector plots II-255, V-453
volumetric II-110
wave list V-252
wave names by index V-818
waveform data II-241
WaveName function V-818
waves in V-819
width II-249, II-305
window color V-471
window names V-802
window recreation macro II-306
wintype function V-835
wireframe plots II-110, II-238
X wave from trace V-842
XY data II-241, V-841–V-842
zero line II-273
zooming II-246
zooming, panning (examples) I-37

GraphStyle subtype IV-184
keyword V-256

GraphWaveDraw operation help

Index 39

GraphWaveDraw operation III-84, V-256
GraphWaveEdit operation III-84, V-257
GraphWaveNormal operation III-84
grayscale conversions

convert2gray V-326
grayscale images

exporting V-316
greater than IV-5
greatest common divisor V-231
greedy

regular expressions IV-168
grep (see regular expressions)
Grep operation IV-156, V-258
GrepList function V-264
GrepList operation IV-157
GrepString function IV-157, V-265
grids

for controls V-795
for drawing III-78, V-795
ToolsGrid operation V-795

grids in graphs II-272–II-273
(see also graphs:grids)
colors II-272
drawing level V-464
styles II-272

GridStyle subtype
keyword V-265

GroupBox controls III-363, III-376
drawing order of V-119

GroupBox operation V-265
guesses in curve fitting III-167

graphing III-175
guided tour of Igor I-13
GuideInfo function V-267
GuideNameList function V-268
GW Instruments data acquisition package IV-281
GWLoadWave II-167

H
Haar wavelet transform V-110, V-151
Hamming window function V-147, V-176, V-830

for images V-342
Hanning operation V-268
Hanning window function III-244, V-147, V-177,

V-268, V-830
for images V-342

harmonic analysis V-146
Hartley Transform V-326
Hartley transform III-310
Hash function V-268
hcsr function V-269
HDF files II-167

loading II-169
HDF5 files II-167

headers
in delimited text files II-150
in general text files II-153
in notebooks III-7, III-23
in procedure windows III-353
in text files II-141
programming in notebooks III-32

help II-3–II-17
(see also Igor Tips, context-sensitive help, Igor

Help Browser, Igor help system)
checking links II-13
closing help windows II-11
compiling help files II-11–II-12
context-sensitive II-5

buttons II-5
dialogs II-5
icons II-5
menus II-5

creating help files II-11
creating links II-13
DisplayHelpTopic operation V-131
F1 key II-6
FAQ II-3, II-16
Find dialog II-10
for command window II-24
for dialogs II-6
for Igor extensions II-4
for user menus IV-112
from command and procedure windows II-5
FTP links in II-13
functions II-6
Go Back button II-11
help files II-10
Help key II-6
Help menu II-6
help windows II-10
hiding help windows II-11
Igor Help Browser II-6–II-10
in simple input dialog IV-127
keywords II-6
killing help windows II-11
kinds of help II-3
known problems II-3
links II-10
magnification II-71
online manual II-9
opening help files II-10
operations II-6
other sources II-10
overview I-8, II-3
PDF manual II-9
programmatic display of topics V-131
related topics II-10, II-12
shortcuts II-6, II-17
status line II-5
subtopics II-10, II-12

help hook functions

Index 40

syntax of help file II-12
technical support II-15
templates

for a function III-343
for an operation III-343

tool tips II-5
topics II-10, II-12
topics list II-10
URLs II-13
Web links in II-13
zooming II-71

help files II-10
(see also help)
compiling II-12
creating II-11
Igor Help File Template II-11–II-12
Igor Help Files folder II-4, II-10, II-46
links

checking II-13
creating II-13
finding II-13

magnification II-71
setting default II-71

More Help Files folder II-4, II-10
opening II-10
syntax II-12
URL links II-13
Web links II-13
zooming II-71

setting default II-71
help windows II-10

(see also help)
executing commands from II-11, III-5

hermite function V-269
hermite functions V-269
hermiteGauss function V-269
hexadecimal numbers

in tables II-217, II-219
representation of II-219

hidden procedure files III-349
changes in Igor functionality III-350
creating III-350

hide
pragma keyword V-269

Hide Info II-290
hide keyword V-269
hide pragma IV-43
Hide Tools III-71
hideable IV-111
HideIgorMenus operation V-270
HideInfo operation V-271
HideProcedures operation V-271
HideTools operation V-271
hiding

help windows II-11
HideProcedures operation V-271

notebooks III-5, V-509
procedure windows III-346
traces II-264
vs killing windows II-59
windows II-59

high fidelity II-390
Hilbert transform III-246
HilbertTransform operation V-271
Hill equation curve fit V-97
HiRes Bitmap PICTs III-112
HiRes PICTs

in notebooks III-24
PrintNotebook operation III-24

histogram III-128–III-136
accumulating III-133
adaptive histogram equalization III-301
bin range III-128–III-134
bin width III-128–III-134
destination wave III-131
example I-55, III-134
histogram equalization III-301
Igor 1.2 compatibility III-134
image analysis V-291, V-293
integrating III-136
logarithmic III-151–III-152
of images III-318

Histogram dialog III-133
Histogram operation III-128–III-136, V-272–V-275
history archive II-22
history area II-20–II-25

CaptureHistory function V-46
CaptureHistoryStart function V-46
colored II-22
copying from II-22
extracting text programmatically V-46
history archive II-22
history carbon copy II-22
limit command history III-413
limiting size of II-22
magnification II-71
printing to V-565–V-566
saving II-22
searching II-24
selecting text II-22
zooming II-71

history carbon copy II-22
holding coefficients in curve fitting

example III-164
home folder II-36, II-38, II-41

for packed experiments II-29
for unpacked experiments II-30

home symbolic path II-36
hook functions

independent modules IV-220
named window hooks IV-270
regular modules IV-217

hook functions Igor Binary files

Index 41

subwindows IV-271
unnamed window hooks IV-276

hook functions (see functions:hook functions)
HorizCrossing free axis II-241, II-243
horizontal dimension in tables II-223
horizontal index row II-221
Hough transform III-310, V-328
HSL conversions

hsl2rgb V-328
rgb2hsl V-331

HTML
cascading style sheets III-27
character encoding III-29

Native III-29
RFC2070 standard III-29
Shift-JIS III-29
UTF-2 III-29
UTF-8 III-29

embedding in notebooks III-29
examples III-30

graphics in notebooks III-28
JPEG III-28
picture frames III-28
PNG III-28

HTML 4.01 specification III-27
notebook character formatting III-28
notebook paragraph formatting III-27–III-28
notebooks III-26
saving notebooks III-27
specifications III-27
standards III-27

HTTP IV-253–IV-256
downloading files IV-254
downloading web pages IV-253
FetchURL function V-172
GET method IV-255
limitations IV-253
POST method IV-253
proxy servers IV-253
queries IV-255
SSL IV-253
troubleshooting IV-255

hybridmedian filter V-288
hyperbolic functions

arbitrary precision V-23
cosine V-84
cotangent V-84
sine V-650
tangent V-781

hyperG0F1 function V-275
hyperG1F1 function V-275
hyperG2F1 function V-275
hypergeometric function V-275

confluent V-275
generalized V-276

hyperGNoise function V-276

hyperGPFQ function V-276

I
i

suffix in tables II-200
i function V-276
i123 conversions

rgb2i123 V-331
.ibw extension II-163
if-else-endif V-277

conditional operator IV-6
extraneous text after IV-95
in user functions IV-31

if-elseif-endif V-277
in user functions IV-32

if-endif V-277
in user functions IV-32

IFFT
wave references IV-59

IFFT operation V-277–V-278
IFFTs

(see also FFTs)
effect on graphs III-241
number of points restrictions III-238
speed III-241
wave type restrictions III-238
X scaling and units changed III-239

.ifn file extension
notebooks III-3

Igor
symbolic path II-36
updating II-14
upgrading II-14

Igor and IgorRecent
color tables V-65

Igor Batch File
(see also batch files)

Igor binary data
exporting from tables II-212

Igor Binary files II-162–II-165, III-414
browsing II-90
.bwav extension II-163
copy to home II-38
default symbolic path II-90
features of II-142
file extensions II-163
.ibw extension II-163
in experiments II-31
KillWaves operation II-88
LoadData operation II-164
names II-163
references to II-38
saving II-178
sharing versus copying II-38

Igor extensions IgorInfo function

Index 42

Igor extensions III-425–III-427, IV-185
(see also external operations)
activating III-426
creating IV-185
definition I-5
development systems IV-185
external functions (see external functions)
external operations (see external operations)
help for II-4
loading waves II-167–II-168
third party XOPs III-426
WaveMetrics XOPs III-425

Igor Extensions folder I-5, II-46
Igor External Operations Toolkit (see XOP Toolkit)
Igor Help Browser I-8, II-6–II-10

(see also help)
Command Help tab II-6
Help Topics tab II-6
Manual tab II-9
Search Igor Files tab II-7–II-9
Shortcuts tab II-6
Support tab II-10

Igor Help File Template II-11–II-12
Igor help files II-10

compiling II-12
creating II-11
FAQ II-16
Igor Help File Template II-11–II-12
Igor Help Files folder II-10
links

checking II-13
creating II-13
finding II-13

More Help Files folder II-4, II-10
opening II-10
syntax II-12
URL links II-13
Web links II-13

Igor Help Files folder II-4, II-10, II-46
Igor help system

(see also help, Igor Help Browser)
Igor Help Files folder II-4
overview I-8, II-3

IGOR keyword in Igor Text files II-159
Igor mailing list II-16
Igor objects (see objects)
Igor Pro 6 User Files (see Igor Pro User Files
Igor Pro application

launching multiple instances
Windows OS IV-243

Igor Pro Folder II-46
include statement IV-149

Igor Pro User Files
activating extensions III-426

Igor Pro User Files folder II-46, III-426
example I-64

global procedure files III-347
packages IV-227
shared procedure files III-347

Igor Procedures IV-21
Igor Procedures folder II-47, III-347
Igor program name

under Windows III-396
Igor Text files II-158–II-162

BEGIN keyword II-159
blocks II-159
carriage returns II-162
commands II-160
creating V-605
data type II-159
data type flags II-159
dates II-159
End keyword II-159
escape codes II-162
examples II-158–II-159
features of II-142
format II-159
IGOR keyword II-159
IGTX file type II-162
linefeeds II-162
loading II-158–II-162
missing values II-159
multidimensional waves II-159, II-161
NaNs II-159
not thread-safe II-160
saving multidimensional waves II-177
saving waves II-177
text waves II-161
times II-159
WAVES keyword II-159
X keyword II-160
X scaling II-160

Igor Tips II-4
accessing II-4
for columns in tables II-4
for controls III-384
for traces in graphs II-4
overview I-8
shortcut II-4, II-17

Igor version II-15, V-279
localization V-279

Igor XOP Toolkit IV-186
Igor-object pictures III-21
igor-object pictures

platform compatibility III-22
Igor.exe IV-242

instances of on Windows IV-243
IgorBeforeNewHook hook function IV-266
IgorBeforeQuitHook function IV-267
IgorExchange II-16
IgorGIS package II-169
IgorInfo function V-278

IgorMenuHook function image analysis

Index 43

IgorMenuHook function IV-267
IgorQuitHook hook function IV-269
IgorStartOrNewHook hook function IV-269

example IV-258, IV-269
IgorVersion

pragma keyword V-280
IgorVersion function V-280
IgorVersion keyword V-280
IGR0 creator code for Igor Text files II-162
IGTX file type for Igor Text files II-162
IIR filters V-183–V-189

coefficients, designing V-187
ilim function V-281
imag

suffix in tables II-200
imag function V-281

example II-99
image analysis III-299–III-328

(see also matrices)
2D kernels III-311
3D morphology V-304
adaptive histogram equalization III-301, V-291,

V-293
alpha blending V-284
average 3D filter V-288
averaging V-325
B-spline surfaces V-325
back projection V-325
background subtraction III-325, V-312
Bartlet window V-342
Bartlett window V-342
beams

definition V-327
extracting V-327

bilinear interpolation V-296–V-297
binary dilation V-304
binary erosion V-304
Blackman window V-342
blending images V-284
Catmull-Clark surfaces V-325
close V-304
closing III-315
cmap conversions

cmap2rgb V-325
CMYK conversions

CMYK2RGB V-326
color III-325
color space conversion III-299–III-300

cmap2rgb V-325
CMYK2RGB V-326
convert2gray V-326
hsl2rgb V-328
rgb2gray V-330
rgb2hsl V-331
rgb2i123 V-331
rgb2xyz V-331

xyz2rgb V-335
color transforms III-299–III-300
columns

extracting V-327
flipping V-326
setting values from a wave V-330
summing V-333
summing all V-333

comparing images V-307
compressing images V-326

JPEG V-329
convolution filters III-311

gauss III-311
median III-311
sharpen III-311

convolutions III-306
correlation V-323
correlations III-308
decompressing images V-326
dilation III-314, V-304
dot product V-335
edge detection III-311–III-314
edge detectors V-286
erosion III-314, V-304
extracting color info III-300
extracting ROIs V-331
feature extraction V-333
FFT III-305–III-308

calculating derivatives III-307
calculating integrals III-308
calculating sums III-308
cautions when using III-305
convolutions III-306
correlations III-308
high pass filtering III-307
low pass filtering III-307
spatial frequency filtering III-306
windowing III-308

filling V-317
filling from 1D wave V-326
filtering V-288, V-341, V-420
find lakes V-326
finding flat areas V-326
focus V-289
fuzzy classification V-327
gaussian 3D filter V-288
grayscale conversions

convert2gray V-326
rgb2gray V-330

grayscale transforms III-299–III-302
Hamming window V-342
Hanning window V-342
Hartley transform III-310, V-326
histogram equalization III-301, V-291, V-293
histograms III-318, V-291, V-293
Hough transform III-310, V-328

image analysis image analysis

Index 44

line detection III-310
HSL conversions

hsl2rgb V-328
rgb2hsl V-331

HSL segmentation III-320, V-328
hue segmentation III-300
hybridmedian filter V-288
i123 conversions

rgb2i123 V-331
image statistics III-317
ImageAnalyzeParticles operation V-281
ImageBlend operation V-284
ImageBoundaryToMask operation V-285
ImageEdgeDetection operation V-286
ImageFocus operation V-289
ImageGenerateROIMask operation V-290
ImageHistModification operation V-291
ImageHistogram operation V-293
ImageInterpolate operation V-295
ImageLineProfile operation III-318, V-300
ImageMorphology operation V-304
ImageRegistration operation V-307
ImageRemoveBackground operation V-312
ImageRestore operation V-313
ImageRotate operation V-313
ImageSeedFill operation V-317
ImageSnake operation V-320
ImageStats operation V-322
ImageThreshold operation V-323
ImageTransform operation III-327, V-325
ImageUnwrapPhase operation V-339
ImageWindow operation V-341
indexing V-329
inserting images V-328
interpolation III-305, V-295
JPEG compression V-329
k-means clustering V-364
Kaiser window V-342
Kriging V-296
line detection III-310
line profile V-300
masking V-290, V-332
mathematical transforms III-304–III-310
maximum rank 3D filter V-288
median 3D filter V-288
minimum rank 3D filter V-288
morphological operations III-314–III-317

binary dilation V-304
binary erosion V-304
close V-304
closing III-315
dilation III-314, V-304
erosion III-314, V-304
ImageMorphology operation V-304
open V-304
opening III-315

top hat III-316, V-304
watershed III-317, V-305

multidimensional morphology V-304
multiplane images V-327, V-333
offsetting V-330
open V-304
opening III-315
operations V-3
padding V-330

example V-339
particle analysis III-321, V-281
particles

classification III-321
morphology V-304

path profile V-300
pixels

inverting V-329
matching V-329

planes
extracting V-327, V-333

example V-339
flipping V-327
inserting V-329
matching V-329
removing V-331
scaling V-332
summing V-333
summing all V-334

point finding 3D filter V-288
profiles III-318
projection slice V-330
rectification V-297
references III-328
reflectance V-333
region of interest III-324–III-325

boundary to ROI mask III-324
creating ROI wave III-324
creation V-290
marquee procedures III-325
marquee2mask procedures III-325
ROI masking III-324

registration III-304, V-297, V-307
resizing V-330
restoring V-313
RGB conversions

cmap2rgb V-325
CMYK2RGB V-326
hsl2rgb V-328
rgb2gray V-330
rgb2hsl V-331
rgb2i123 V-331
rgb2xyz V-331
xyz2rgb V-335

ROI masking V-285
ROIs III-325, V-331
rotating image columns V-332

image analysis image plots

Index 45

rotating image rows V-332
rotation III-304, V-313
rows

extracting V-327
flipping V-327
setting values from a wave V-330
summing V-334
summing all V-333

sampling III-305
scaling V-332
seed fill III-323
segmentation III-320
selectColor V-332
shading V-333
shifting V-330
shrinkRect V-333
spatial transforms III-304
stacking images V-333
statistics V-322
subimage selection III-325
subscene extraction V-333
surface extraction V-326
swap diagonal quadrants V-334
textures V-328
threshold III-302–III-304, V-323

adaptive III-302
bimodal III-302
examples III-302
fuzzy entropy III-302
fuzzy means III-302
iterated III-302

top hat V-304
transforms V-325

adaptive histogram equalization III-301
color III-299–III-300
explicit lookup tables III-300
grayscale III-300–III-302
histogram equalization III-301
hue segmentation III-300
RGB to HSL III-300
to grayscale III-299
to RGB III-299
value III-300–III-302

transpose volume V-334
unwrapping phase III-320
value transforms III-300–III-302
vol2surf V-334
Voronoi interpolation V-297
voronoi tesselation V-334
warping V-297
watershed V-305
wave operations III-304

efficiency III-305
wavelet transforms III-308–III-309

denoising III-309
image compression III-309

windowing III-308, V-341
example V-342

X projection V-334
XYZ conversions

rgb2xyz V-331
xyz2rgb V-335

Y projection V-335
Z projection V-335

image plots II-347–II-371
(see also image analysis)
calculated X and Y II-351, II-354
appearance preferences II-370
Append Image Plot dialog II-351, II-371
AppendImage operation V-26
axes

GetAxis operation V-231
SetAxis operation V-625

axis preferences II-371
color

24-bit II-349, II-368
ColorTab2Wave operation V-64
custom II-367
direct II-349, II-368
false II-349
indexed II-349, II-366–II-368
negative II-358
reversing II-358
RGB II-349, II-368

color index wave II-366–II-368
color scale bars II-368–II-369, III-43,

III-61–III-65, V-59
(see also color scale bars)

color tables II-359–II-366
ColorScale operation V-59
combining with contour plots II-329
creating II-349–II-352, V-131
Cursor operation V-93
cursors V-93, V-544, V-580

moving cursor calls function IV-302–IV-305
dithering V-473
evenly-spaced data II-354
example II-367–II-368
export speed III-104, III-112
filtering V-288, V-420
flipping II-357–II-358
image instance names II-370
ImageFilter operation V-288
ImageFromXYZ operation V-289
ImageInfo operation V-293
ImageNameList function V-306
ImageNameToWaveRef function V-307
images

color effects II-362
contrast effects II-362
contrast enhancement II-360
overlays II-360

image plots images

Index 46

interpolation V-473
inverting V-625
legends II-368–II-369, III-43, III-61–III-65

(see also color scale bars)
linear colors II-366
log colors II-353, II-367
logarithmic V-473
MatrixFilter operation V-420
missing data II-353
Modify Image Appearance dialog II-352–II-353
ModifyImage operation V-472–V-474
modifying II-352
names II-370
NaNs II-353
New Image Plot dialog II-351, II-371
NewImage operation V-495
orientation II-357–II-358
pcsr function V-544
pixel size II-353, II-358
pixels II-353
preferences II-370–II-371
programming notes II-367, II-370
qcsr function V-580
rectangle edges II-353
related operations V-1
ReplaceWave operation V-594
reversing II-357–II-358
Set Axis Range Dialog II-357
shortcuts II-371
smoothing V-473
transparent data II-353
unevenly-spaced II-354
with non-gridded data II-356
with XY centers II-355
X and Y coordinates II-353
X and Y waves II-354
Z value II-349

image processing
contrast enhancement II-360

image processing (see image analysis)
ImageAnalyzeParticles operation V-281
ImageBlend operation V-284
ImageBoundaryToMask operation V-285
ImageEdgeDetection operation V-286
ImageFileInfo operation V-287
ImageFilter operation V-288
ImageFocus operation V-289
ImageFromXYZ operation V-289
ImageGenerateROIMask operation V-290
ImageHistModification operation V-291
ImageHistogram operation V-293
ImageInfo operation V-293
ImageInterpolate operation V-295
ImageLineProfile operation V-300
ImageLoad operation V-301
ImageMorphology operation V-304

ImageNameList function V-306
ImageNameToWaveRef function IV-178, V-307
ImageRegistration operation V-307
ImageRemoveBackground operation V-312
ImageRestore operation V-313
ImageRotate operation V-313
images

(see also image analysis, image plots)
average deviation V-323
average value V-323
averaging V-325
background subtraction V-312
beams

extracting V-327
color scale bars II-368–II-369, III-43,

III-61–III-65, V-59
(see also color scale bars)

ColorScale operation V-59
columns

extracting V-327
flipping V-326
setting values from a wave V-330
summing V-333
summing all V-333

compressing V-326
JPEG V-329

decompressing V-326
deconvolution V-313
dispersion V-323
exporting

BMP files V-314
DIB files V-617
EMF files V-617
EPS files V-617
ImageSave operation V-314
JPEG files V-314, V-617
normalization V-316
PhotoShop files V-314
PICT files V-314, V-617

HiRes V-617
PNG files V-314, V-617
PostScript PICT files V-617
QuickTime files V-314
raw PNG files V-316
SavePICT operation V-617
SGI files V-314
Targa files V-314
TIFF files V-314, V-316
WMF files V-617

exporting graphs of III-112
features of II-142
filling from 1D wave V-326
ImageFileInfo operation V-287
ImageLoad operation V-301
importing II-165, V-301
indexing V-329

images include statements

Index 47

inserting V-328
JPEG compression V-329
kurtosis V-323
legends II-368–II-369, III-43, III-61–III-65

(see also color scale bars)
Load Image Dialog II-165
loading

BMP files II-165, V-301
GIF files II-165, V-301
JPEG files II-165, V-301
PhotoShop files II-165, V-301
PICT files II-165, V-301
PNG files II-165, V-301
raw PNG files V-301
SGI files II-165, V-301
Sun Raster files II-165, V-301
Targa files II-165, V-301
TIFF files II-165, V-301

masking V-332
maximum column location V-323
maximum row location V-323
maximum value V-323
minimum column location V-323
minimum row location V-323
minimum value V-323
multiplane images V-327, V-333
NewImage operation V-495
number of points in ROI V-323
offsetting V-330
padding V-330

example V-339
pixels

inverting V-329
planes

extracting V-327
flipping V-327
inserting V-329
removing V-331
summing V-333
summing all V-334

reflectance V-333
removing V-588
ReorderImages operation V-590
resizing V-330
restoring V-313
RMS value V-323
rotating image columns V-332
rotating image rows V-332
rotation V-313
rows

extracting V-327
flipping V-327
setting values from a wave V-330
summing V-334
summing all V-333

selectColor V-332

shading V-333
shifting V-330
skewness V-323
smoothing V-402
stacking V-333
standard deviation V-323
textures V-328
variance V-323
voronoi tesselation V-334

ImageSave operation V-314
normalization V-316

ImageSeedFill operation V-317
ImageSnake operation V-320
ImageStats operation V-322
ImageThreshold operation V-323
ImageTransform operation V-325
ImageUnwrapPhase operation V-339
ImageWindow operation V-341
imaginary component function V-281
implicit functions

curve fitting III-213–III-215
implicit functions:curve fitting(see curve

fitting:implicit functions V-6
importing

BMPs III-424
data in tables II-198, II-207
EMFs III-424
FBinRead operation V-170
FReadLine operation V-204
from databases II-179
from Igor experiment file V-388–V-390
graphics II-165, V-301

Load Image Dialog II-165
with drawing objects III-81

ImageLoad operation V-301
images II-165, V-301

Load Image Dialog II-165
JPEGs III-424
limitations on graphics III-424
notebooks III-24
numeric variables V-170
PadString function V-537
pasted picture resizing III-81
PICTs III-424–III-425
PNGs III-424
string variables V-170, V-204
TIFFs III-424
UnPadString function V-802
waves II-141–II-175, V-170, V-393

(see also loading waves)
waves in a folder (example) II-174

in line
in notebooks III-11

include statements III-347–III-348, IV-21, IV-149
include keyword V-16
independent modules IV-220

include statements instance names

Index 48

IndependentModule pragma IV-220
menu control IV-150
optional IV-150
version control IV-149

incomplete gamma function V-229
increment in wave assignment II-95
Indent Left IV-23
Indent Right IV-23
indentation

in notebooks III-8–III-9
in procedure windows III-353
of procedures IV-22

independent modules IV-218
containing regular modules IV-222
control action procedures IV-220
debugger IV-219
dependencies IV-224
example IV-218
Execute operation IV-223
hook functions IV-220
include statements IV-220
IndependentModuleList function V-343
limitations IV-220
pictures IV-224
pop-up menus IV-222
procedure windows IV-219
ProcGlobal keyword IV-218
qualified names IV-218–IV-219
static functions IV-218–IV-219
user-defined menus IV-221
WinList function V-831

independent variables
curve fitting III-173

IndependentModule keyword V-343
IndependentModule pragma IV-43, IV-218

(see also independent modules)
GetIndependentModuleName function V-238
include statements IV-220

index sort III-139
index values

(see also X values)
CopyScales operation V-82
in tables II-200, II-221
index columns in tables II-200
multidimensional waves V-128
pasting in tables II-208
viewing in tables II-192

IndexedDir function V-343
IndexedFile function V-345

dot-underscore files V-346
example II-174
sorting file lists V-346

indexing
dimension labels II-99
multidimensional waves II-108, II-111–II-113
strings IV-13

text waves IV-14
using dimension labels II-109
waves II-95

(see also point numbers, wave
assignments, X values)

IndexSort operation III-139, V-347
applications III-139

indicator display (see controls:Value Displays)
inequality IV-5
Inf function V-347
infinities (see INFs)
infinity function V-347
Info (File Information dialog) III-31–III-32
info box

(see also cursors)
HideInfo operation V-271
in graphs II-290–II-292
scrolling in graphs II-292
ShowInfo operation V-648

INFs II-100
detecting V-522
in curve fitting III-204–III-205
in delimited text files II-144
in graphs II-245
in tables II-206
in WaveStats operation III-128
number of V-821
removing from waves V-825

initial guesses in curve fitting III-160, V-101
initialization commands II-40
inline wave references IV-58

destination waves IV-70
input devices

cross-platform issues III-402
input/output queues

multitasking
example IV-298

Insert File III-16, III-350
Insert Page Break III-22
Insert Points dialog II-93

tables II-209
insert-paste II-207
inserting

pictures in notebooks V-514
inserting data II-209

in tables II-203
in waves II-92

inserting pictures
in notebooks III-16

inserting text
in procedure windows III-350

insertion cell in tables II-194, II-198, II-203
InsertPoints operation II-92, V-347
instance names IV-16

(see also wave instance names)
contour instance in ModifyContour V-441

instances .itx file extension

Index 49

instances
of Igor on Windows IV-243

Instrutech data acquisition package IV-281
INT16 (16 bit integer wave type) II-90
INT32 (32 bit integer wave type) II-90
INT8 (8 bit integer wave type) II-90
integer data II-102

defined II-81
in Igor Text files II-159
numeric format

in tables II-217
integers

in wave assignments IV-8
numeric format

in tables II-217
Integrate operation V-348
integrate1D function V-349
IntegrateODE operation III-270, V-351–V-356
integrating histogram III-136
integration III-124

area function V-32
area under curve III-124
areaXY function V-32
faverage function V-169
faverageXY function V-169
gaussian quadrature V-349
Integrate operation V-348
integrate1D function V-349
multidimensional III-124
of user functions III-284
of XY data III-124
Romberg V-349
trapezoidal V-32, V-169, V-348–V-349
using cubic spline III-126
waveform data III-124
XY area procedures III-126

Intel Macintosh
XOP considerations III-426

interior annotations III-52
Internet

FetchURL function V-172
FTP IV-249
FTP transfer V-212
FTP transfers V-210
HTTP IV-253
opening preferred browser V-42

internet
(see also FTP, World Wide Web)

interp function V-356
example II-98, III-119

Interp2D function V-357
Interp3D function V-357
Interp3DPath operation V-357
Interpolate external operation

example III-120

removing NaNs III-123
Interpolate3D function V-358
interpolation III-123

(see also decimation)
2D

ContourZ function V-69
Interp2D function V-357

3D
Interp3D function V-357
Interpolate3D function V-358

bilinear V-296
example II-98, III-118, III-120
image analysis V-296
in image plots V-473
in wave assignments II-96, II-100
inverse (see level detection)
methods III-123
not in multidimensional waves II-111
of multidimensional data V-357
of XY data III-118, V-356
of XYZ data V-357, V-667
Resample operation V-595
spherical V-667

inverse cosine V-18
Inverse Fast Fourier Transforms (see IFFTs)
inverse hyperbolic functions

cosine V-18
sine V-33
tangent V-34

inverse interpolation (see level detection)
inverse of a matrix V-421
inverse of a wave V-823
inverse sine function V-33
inverse tangent V-34
inverse tangent function V-33
inverse trig functions

inverse cosine V-18, V-823
inverse sine V-33, V-823
inverse tangent V-33, V-823

inverseErf function V-359
inverseErfc function V-359
invisible characters

in tables II-219
invisible procedure files III-349

changes in Igor functionality III-350
creating III-350

issues
dimensions III-408

italics
in Reference chapter V-14

ItemsInList function V-359
iterate-loop

loop index V-276, V-360
loop limit V-281, V-360

.itx file extension II-162

j function kwFrame

Index 50

J
j function V-360
Japanese

file name issues II-50
JCAMP-DX files II-167
jlim function V-360
JPEGs

compressing images V-329
exporting V-314
exporting RTF III-26
file info V-287
HTML graphics III-28
importing II-165, III-424, V-301
importing RTF III-26
saving V-617

Julian dates
dateToJulian function V-113
JulianToDate function V-360

JulianToDate function V-360
justification of text

in annotations III-48
in notebooks III-8–III-9

K
k-means clustering V-364
K0, K1, … (see system variables)
Kaiser Bessel window function V-147, V-177, V-342,

V-830
Kaiser window function

for images V-342
keyboard

cross-platform issues III-402
shortcuts in user menus IV-119, IV-122, V-239

keyboard/font synchronization III-415
keyword-value packed strings II-102, IV-155
keywords V-12

extraction
by index number V-760
FindListItem function V-192
ItemsInList function V-359
NumberByKey function V-521
RemoveByKey function V-584
RemoveFromList function V-587
RemoveListItem function V-588
ReplaceNumberByKey function V-591
ReplaceStringByKey function V-592
StringByKey function V-759
StringFromList function V-760
WhichListItem function V-827

flow control V-12
help II-6
insertion

AddListItem function V-19
object references V-12

other programming keywords V-12
procedure declarations V-12
procedure subtypes V-12
syntax guide V-14

kill
defined I-23

Kill Paths (see Kill Symbolic Paths)
Kill Symbolic Paths dialog II-37
Kill Waves dialog II-87
KillBackground operation IV-289, V-360
KillControl operation V-361
KillDataFolder operation V-361

example IV-155
KillFIFO operation V-361
KillFreeAxis operation V-362
killing

background task V-360
controls III-384, V-361
data folders II-124, V-361
defined I-23
FIFO buffers V-361
graphs II-306
help windows II-11
notebooks III-5
numeric variables II-134, V-363
page layouts II-379
pictures III-425, V-362
procedure windows III-346
string variables II-134, V-363
symbolic paths II-37, V-362
tables II-199
vs hiding windows II-59
waves II-87–II-89, II-134, V-363

all of them II-88
from tables II-202

windows II-59, V-137
KillPath operation V-362
KillPICTs operation V-362
KillStrings operation II-119, V-363
KillVariables operation II-118, V-363
KillWaves operation II-87, V-363

examples II-88
Igor Binary files II-88

KillWindow operation V-363
Kirsch edge detector V-286
KMeans operation V-364
known problems II-3
Kotoeri III-415
Kriging V-296
kurtosis of wave V-323, V-822

2D V-323
kwCmdHist

GetWindow operation V-251
kwFrame

DoWindow operation V-138

kwFrameInner legends

Index 51

kwFrameInner
GetWindow operation V-251

kwFrameOuter
GetWindow operation V-251

kwTopWin
DoWindow operation V-138
GetWindow operation V-251
Notebook operation V-506
NotebookAction operation V-520
PrintNotebook operation V-571
SaveNotebook operation V-613
SetWindow operation V-646
SpecialCharacterInfo operation V-663
SpecialCharacterList operation V-664

L
l

suffix in tables II-200
Label operation V-366–V-367
Label Options tab II-274–II-276
labels

(see also annotations, axis labels, legends, tags,
textboxes, tick mark labels, row labels,
column labels, dimension labels)

in delimited text files II-146
in general text files II-154–II-155
in graphs II-254–II-255

laguerre function V-367–V-368
LaguerreA function V-367
Lambert equal area projection V-576
languages

file name issues II-50
LAPACK matrix routines

errors III-143
MatrixEigenV operation V-417
MatrixLinearSolve operation V-422
MatrixLLS operation V-424
MatrixSchur operation V-436
MatrixSVD operation V-437
numeric support III-143
references III-143
V_flag III-143
veclib III-144
Velocity Engine III-144

layers
(see also drawing tools:layers)
change drawing layer III-77
drawing layers III-80
in control panels III-80
in graphs III-80
in multidimensional waves II-108, II-111
in page layouts II-375–II-377
in tables II-222
indexing V-842

z function V-842

maximum location V-822
minimum location V-822
names III-80
numbers V-581

r function V-581
ProgAxes layer III-80
ProgBack layer III-80

in page layouts II-376–II-377
ProgFront layer III-80

in page layouts II-376–II-377
UserAxes layer III-80
UserBack layer III-80

in page layouts II-376–II-377
UserFront layer III-80

in page layouts II-376–II-377
Layout Macros submenu II-62
Layout menu II-378
Layout operation V-368
Layout subtype IV-184

keyword V-370
LayoutInfo function V-371
LayoutMarquee subtype IV-184, V-243

keyword V-372
layouts (see page layouts)
LayoutStyle subtype IV-184

keyword V-372
LCM (see least common multiple)
leaks

free waves IV-78
least common multiple V-231
least squares (see curve fitting, smoothing)
leftx function V-373

use DimOffset instead V-128
Legend operation V-373–V-374
legend symbols (see wave symbols)
legendreA function V-374
legends III-54–III-56

(see also annotations, color scale bars,
textboxes, tags)

automatically updated III-54–III-55
color as f(z) II-262
color scale bars III-43, III-61–III-65
customize at point III-55
default III-54
definition III-43
exterior III-52

affects graph plot area III-53
font size III-55
in page layouts II-385, II-392
interior III-52
making a legend (example) I-18
markers III-55–III-56
modifying III-45
offset III-53
position III-52–III-54
standard legend III-54

legends lists

Index 52

wave symbols III-48, III-54–III-56
length limit II-20, IV-2
less than IV-5
level detection III-254–III-256

EdgeStats operation III-256, V-152–V-153
FindLevel operation III-254, V-189–V-190
FindLevels operation III-254, V-190–V-191
FindPeak operation V-192–V-194
PulseStats operation III-256, V-578–V-580
risetime measurements III-256
XY data III-255

liberal names
accessing waves and variables IV-53
data folders II-124
dimension labels II-110
in user functions IV-53
parsing by Igor IV-151
programming with IV-151–IV-152
quoting with data folders IV-152
rules III-417, IV-2

CleanupName function V-56
limit command history II-22, III-413
limit function V-374
Line Colors dialog II-333, II-335–II-337
line continuation (none) V-14
line continuation character IV-2
line continuation characters IV-2
line fit III-162, V-97

through origin III-164
line size in graphs II-255
line styles II-255, II-305, III-412

applying programmatically V-760
in pop-up menu controls V-562
SetDashPattern operation V-626

linear colors
in image plots II-366

linear convolution III-252
LinearFeedbackShiftRegister operation V-375
linefeed characters

cross-platform issues III-404
escape code for IV-13
in data files II-143
in strings IV-13
saving text waves II-178

linefeeds
in Igor Text files II-162

lines (see drawing tools, markers, tags)
LINESTYLEPOP V-562
linking

graphs in notebooks III-21
links

checking in help files II-13
creating in help files II-13
finding in help files II-13
in help files II-10

ListBox controls III-363, III-376

ListBox operation V-378
ListBoxControl subtype IV-184

keyword V-387
ListMatch function V-387
lists

adding items V-19
AddListItem function V-19
AnnotationList function V-23
appending items V-591–V-592
AxisList function V-35
ContourNameList function V-68
converting to text wave V-760
counting items V-359
CountObjects operation V-85
CountObjectsDFR operation V-85
CTabList function V-90
DataFolderDir function V-111
deleting items V-584, V-587–V-588
FindListItem function V-192
GetIndexedObjName function V-238
GetIndexedObjNameDFR function V-238
GetRTStackInfo function V-247
ImageNameList function V-306
IndexedFile function V-346
ItemsInList function V-359
ListBox controls III-363, III-376
ListMatch function V-387
NumberByKey function V-521
of controls V-75, V-448
of windows V-833
PathList function V-541
PICTList function V-545
processing lists IV-155
processing lists of waves IV-178–IV-180
related functions V-10
RemoveByKey function V-584
RemoveFromList function V-587
RemoveListItem function V-588
ReplaceNumberByKey function V-591
ReplaceString function V-592
ReplaceStringByKey function V-592
replacing items V-591–V-592
selected column names V-249
selected layout objects V-249
sscanf operation V-669
StringByKey function V-759
StringFromList function V-760
StringList function V-761
stringmatch function V-761
TraceFromPixel function V-796
TraceNameList function V-798
VariableList function V-810
WaveList function V-814
WaveRefIndexed function V-819
WaveRefIndexedDFR function V-819
waves in graph V-252

lists log axes

Index 53

waves loaded by LoadWave V-402
WhichListItem function V-827
WinList function V-831

live display of waves II-304
ln function V-387
Load Data Tweaks dialog

auto II-157
delimited text files II-151
general text files II-156

Load Delimited Text dialog II-143, II-148
loading 2D waves II-149

Load General Text dialog II-143, II-155
Load Igor Binary dialog II-143, II-164, III-414
Load Igor Text dialog II-143, II-161
Load Image Dialog II-165
Load It button II-90
Load Row Data procedure II-168
Load Waves dialog

Copy to home III-414
copy to home II-164
creating tables II-193
delimited text files II-147
Double Precision III-414
fixed field text files II-153
general text files II-155
Igor Binary II-163, III-414
Igor Text II-160

Load Waves submenu II-142
file loaders II-167

LoadData operation II-163–II-164, V-388–V-390
loading experiments II-39

error handling II-40
loading waves II-141–II-175

automation II-170
binary files II-169
BMP files II-165, V-301
choosing names II-148, II-155
creating tables II-193
delimited text files II-143–II-152
drag and drop II-50, IV-257
example II-170, II-173–II-174
Excel files II-167
FBinRead operation V-170
fixed field text files II-152
FORTRAN files II-152
from row-oriented files II-168
general binary files II-167
general text files II-153–II-158
GIF files II-165, V-301
GIS files II-169
GISLoadWave II-167
GWLoadWave II-167
HDF files II-167, II-169
HDF5 files II-167
Igor Binary files II-162–II-165, III-414
Igor Text files II-158–II-162

JCAMP-DX files II-167
JPEG files II-165, V-301
Matlab files II-167
Nicolet files II-167
number of loaded waves V-402
PhotoShop files II-165, V-301
PICT files II-165, V-301
PNG files II-165, V-301
programming II-170
raw PNG files V-301
S_fileName string II-170
S_path II-170
S_waveNames string II-170
SGI files II-165, V-301
sound files II-167
spectroscopic data II-167
Sun Raster files II-165, V-301
Targa files II-165, V-301
third party files II-167–II-168
TIFF files II-165, V-301
Unicode II-162
UTF-16 II-162
V_flag variable II-170
variables II-170

LoadPackagePreferences operation V-390
LoadPICT operation V-391–V-393
LoadWave operation II-163, V-393–V-402

backslashes V-399
copy to home II-38
escape codes V-399
example II-170

LoadWAVfile XOP II-167
local functions

Static keyword V-673
local variables II-119, IV-47

automatic creation IV-47
in macros IV-103
in user functions IV-30
initialization

in macros IV-103
in user functions IV-30

name conflicts
in macros IV-103
in user functions IV-31

lock icon
in procedure files III-344

locking
notebooks III-6
procedure files III-344

Loess operation V-402
loess smoothing III-262
log axes II-268, II-276–II-277

(see also axes)
loglin checkbox II-276
minor tick labels II-277
tick mark labels II-288

log axes M_LakeFill

Index 54

unexpected behavior II-276
log colors

for traces II-259
for traces in graphs V-456
in contour plots V-445
in image plots II-353, II-367, V-473

log function V-407
log normal curve fit V-97
log10 V-407
loge V-387
logical operators IV-5, IV-33

AND IV-6, IV-33
NOT IV-33
OR IV-6, IV-33
side effects IV-6

loglin checkbox II-276
logNormalNoise function V-407, V-410
LogRatio function III-147
LombPeriodogram operation V-408
long date

in notebooks III-16
Look for File button II-40
Look for Folder button II-43
loops IV-36

break statements IV-37
continue statements IV-38
for loops IV-37
in macros IV-104
in user functions IV-36
nested IV-36

lor (Lorentzian) curve fit V-97
lower-case string conversion V-410
LowerStr function V-410
LOWESS smoothing III-262, V-402
Lucy-Richardson deconvolution V-313

M
M_3DParticleInfo V-284

format V-284
M_3DVertexList V-800
M_A V-423–V-424, V-436
M_Abs V-823
M_Acos V-823
M_Affine V-296
M_alphaBlend V-284
M_ANOVA1 V-675
M_ANOVA2NRResults V-676
M_ANOVA2Results V-677
M_ANOVA2RMResults V-677
M_Asin V-823
M_Atan V-823
M_AveImage V-325
M_B V-423–V-424
M_BackProjection V-325
M_Boxy V-334

M_C V-543–V-544
M_CCBScalar V-325
M_CCBSplines V-325
M_CConjugate V-823
M_Chunk V-327
M_clustersCM V-203
M_CMYK2RGB V-326
M_CochranTestResults V-691
M_ColorIndex V-330
M_colors V-64
M_ControlCorrTestResults V-723
M_Convolution V-415
M_Corr V-416
M_Cos V-823
M_Covar III-188, III-199, V-95, V-101, V-416
M_CrystalToRect V-823
M_CWT V-108
M_D V-543–V-544
M_Detrend V-146
M_DunnettMCElevations V-717
M_DunnettTestResults V-695
M_DWT V-151
M_eigenVectors V-418
M_ExtractedSurface V-326, V-338
M_FFT V-173
M_FGT V-166
M_FitConstraint III-203, V-95, V-101
M_flipped V-823
M_FriedmanRanks V-699
M_FriedmanTestResults V-698
M_FuzzySegments V-338
M_GradImage V-320
M_Hartley V-326
M_Hilbert V-271
M_Hough V-328
M_HSL2RGB V-328
M_Hull V-76
M_I123 V-331
M_Image2Gray V-326
M_ImageEdges V-286
M_ImageHistEq V-291
M_ImageLineProfile V-300
M_ImageMorph V-304
M_ImagePlane V-327

multitasking example IV-291–IV-292
M_ImageThresh V-323–V-324
M_IndexImage V-330
M_InsertedWave V-329
M_InterClusterDistance V-203
M_InterpolatedImage V-295–V-296
M_Inverse V-421, V-823
M_Inverted V-329
M_JPEGQ V-329
M_KMClasses V-364–V-365
M_L_eigenVectors V-419
M_LakeFill V-326

M_leftEigenVectors macros

Index 55

M_leftEigenVectors V-419
M_LineProfileStdv V-300
M_Lower V-425
M_Magnitude V-824
M_MagSqr V-824
M_matchPlanes V-329
M_max V-824
M_min V-824
M_Moments V-282
M_MovieChunk V-548
M_MovieFrame V-548
M_NNResults V-490
M_NPCCResults V-728
M_NPMCDHWResults V-728
M_NPMConResults V-728
M_NPMCSNKResults V-729
M_NPMCTukeyResults V-729
M_OffsetImage V-330
M_PaddedImage V-330
M_paddedImage V-337
M_Particle V-282, V-284
M_ParticleArea V-282, V-284
M_ParticleMarker V-281, V-283
M_ParticlePerimeter V-282, V-284
M_Phase V-824
M_PhaseLUT V-340
M_PixelatedImage V-296
M_product V-425
M_ProjectionSlice V-330
M_R V-543–V-544
M_R_eigenVectors V-419
M_RawCanny V-286
M_rawMoments V-284
M_Reconstructed V-313
M_ReducedWave V-331
M_RegMaskOut V-311
M_RegOut V-311
M_RemovedBackground V-312
M_Resampled V-737
M_RGB2Gray V-330
M_RGB2HSL V-331
M_RGB2XYZ V-331
M_RGBOut V-325
M_rightEigenVectors V-419
M_ROIMask V-285, V-291
M_RotatedImage V-313
M_ScaledPlanes V-332
M_ScheffeTestResults V-740
M_SeedFill V-317
M_SelectColor V-332
M_ShadedImage V-333
M_Shrunk V-333
M_Sin V-824
M_SphericalTriangulation V-668
M_sqrt V-824
M_Stack V-333

M_StackDot V-335
M_StatsQuantilesSamples V-738
M_StdvImage V-325
M_SumPlanes V-334
M_SV V-424
M_TDLinearSolution V-423
M_TetraPath V-800
M_TukeyCorrTestResults V-724
M_TukeyMCElevations V-717
M_TukeyMCSlopes V-717
M_TukeyTestResults V-747
M_U V-437
M_UnwrappedPhase V-339
M_Upper V-425
M_V V-436–V-437
M_VolumeTranspose V-334
M_VoronoiEdges V-299, V-334
M_WaveStats V-738, V-820

format V-822
M_WaveStatsSamples V-738
M_Weights1 V-492
M_Weights2 V-492
M_Wigner V-828
M_WindowedImage V-341–V-342
M_x V-421, V-425, V-436–V-437
M_xProjection V-334
M_XYZ2RGB V-335
M_yProjection V-335
M_zProjection V-335, V-337
MA V-424
Macintosh

creator code for Igor III-397
date system II-204, II-218
dot-underscore files V-346
file permissions II-44
Intel XOPs III-426
memory management III-427
system extensions (see system extensions,

Macintosh)
system requirements III-428
system version info V-279

Macintosh System Requirements III-428
MacLab data acquisition package IV-281
Macro Execute Error dialog

during experiment load II-40
Macro keyword IV-102, V-410
macro submenus in Windows menu II-62
MacroList function V-410
macros IV-100–IV-108

(see also procedures, user functions)
$ operator IV-105
aborting IV-107
based on history (example) I-61
body code IV-103
calling from a user function IV-181
compared to functions IV-100

macros matrices

Index 56

conditional statements IV-104
default values V-522, V-765
DelayUpdate operation V-123
deleting II-62
DoUpdate operation IV-107, V-136
DoXOPIdle operation V-139
errors IV-106
exists function V-163
flow control IV-104
initialization of local variables IV-103
local variable declaration IV-103
locating a window macro II-62
loops IV-104
MacroList function V-410
menus (see menu definitions, menus)
menus showing IV-104
missing parameter dialog IV-105
names IV-102
parameter lists IV-102
parameters III-144, IV-10
PauseUpdate operation IV-107, V-542
procedure type IV-102
ProcedureText function V-575
Prompt statements IV-105, V-577–V-578
recreation macros V-136
ResumeUpdate operation IV-107, V-601
retrieve code

ProcedureText function V-575
return statements IV-104
returning waves III-145
runtime stack information V-247
S_ variables IV-107
scope of variables II-117, II-119, IV-103, IV-107
Silent operation IV-106, V-649
Sleep operation V-650
Slow operation IV-106, V-654
style macros II-63, II-307–II-310, V-138
subtype II-60, II-63, III-369, IV-102, V-53, V-559,

V-644
syntax IV-102–IV-104
updates IV-107
V_ variables IV-107
variables

scope II-117, II-119, IV-103, IV-107
wave parameters IV-105
window recreation II-59, II-61–II-63, II-306

magnification
(see also zooming)
in command line II-71
in dialogs

text areas II-71
in help II-71
in help files II-71
in history area II-71
in notebooks II-71
in page layouts II-380

in procedure windows II-71
setting default II-71

magnitude III-241–III-242, V-824
magnitude squared V-824

of complex number V-411
magsqr function V-411

example II-99
mailing list II-16
major ticks

in user tick waves II-279
Make operation V-411

automatic IV-60
automatic creation of Wave IV-57
examples II-83
in user functions IV-57
overwriting caveats II-83

Make Waves dialog II-82
Double Precision III-414

MakeIndex operation III-139, V-413
applications III-139
example III-139

making waves II-80, II-82, II-108, V-411
MandelbrotPoint function V-413
map projections

Project operation V-576
MarcumQ function V-414
margins

in graphs II-249
in notebooks III-7–III-9

MARKERPOP V-562
markers

as f(z) II-259
centering in annotations III-55
in graphs II-249, II-253, II-261, II-269
in pop-up menu controls V-562
numeric codes II-261
size in annotations III-55
table of II-261
width in annotations III-56

MarkPerfTestTime operation V-414
marquee menus IV-123

as input for procedures IV-144
marquee2mask procedures III-325
marquees

in graphs II-246, V-243–V-244, V-638
in page layouts I-43, II-377, II-384, V-243–V-244,

V-638
tiling in page layouts II-396

Marr–Hildreth edge detector V-286
mask wave in curve fitting III-181, III-184
matching characters III-355
Matlab files II-167
matrices

(see also image analysis, LAPACK matrix
routines, multidimensional waves)

addition III-143

matrices matrices

Index 57

analysis
continuous wavelet transform V-108
convolution V-415
CWT operation V-108
determinant V-416
discrete wavelet transform V-151
DWT operation V-151
eigenvalues V-417
eigenvectors V-417
FFT V-173–V-178
Gauss-Jordan V-421
IFFT V-277–V-278
least squares V-422–V-424
linear equations V-422–V-424
LU decomposition V-425

back substitution V-425
multiply V-425
rank V-435
related operations V-3, V-6
Schur factorization V-436
solving V-436
SV decomposition V-437

back substitution V-437
trace V-438
transpose V-438

Bartlet window V-342
Bartlett window V-342
Blackman window V-342
built from waveforms II-112
columns

extracting V-327
flipping V-326
summing V-333
summing all V-333

combining V-65
Concatenate operation V-65
converting to waveform II-113
correlation V-415
covariance V-415
dot product V-416
efficient execution V-425
exporting

BMP files V-314
JPEG files V-314
PhotoShop files V-314
PICT files V-314
PNG files V-314
QuickTime files V-314
raw PNG files V-316
SGI files V-314
Targa files V-314
TIFF files V-314, V-316

Extract operation V-165
extracting a column II-112
extracting a row II-113
FFT of II-114

filling from 1D wave V-326
from XYZ data V-289
Hamming window V-342
Hanning window V-342
Hartley transform V-326
Hough transform V-328
image filtering V-288, V-420
in Igor Text files II-159, II-161
indexing V-329
interpolation V-69, V-357
inverse of V-421
Kaiser window V-342
LAPACK routines III-143
loading

BMP files II-165, V-301
from delimited text files II-149
from general text files II-156
GIF files V-301
JPEG files V-301
PhotoShop files V-301
PICT files V-301
PNG files V-301
raw PNG files V-301
SGI files V-301
Sun Raster files V-301
Targa files II-165, V-301
TIFF files V-301

making from 1D waves in tables II-226
MatrixOP operation V-425
maximum

chunk location V-822
column location V-822
layer location V-822
row location V-822

minimum
chunk location V-822
column location V-822
layer location V-822
row location V-822

multiplication III-143
by scalar III-143

offsetting V-330
padding V-330

example V-339
plane extraction V-333
planes

summing all V-334
printing V-565
redimensioning II-113
reshaping 1D to 2D V-584
resizing V-330
Reverse operation V-601
rotating

columns V-332
rows V-332

rows

matrices menu definitions

Index 58

extracting V-327
flipping V-327
summing V-334
summing all V-333

saving
as delimited text II-176

shifting V-330
smoothing V-402
speeding up V-425
summing

sum V-333
swap diagonal quadrants V-334
terminology II-108
windowing V-341

matrix data
as image (see image analysis, image plots)
contouring (see contour plots)
converting from XYZ data II-328

MatrixConvolve operation V-415
matrixCorr function V-415
matrixDet function V-416
matrixDot function V-416
MatrixEigenV operation V-417
MatrixFilter operation V-420
MatrixGaussJ operation V-421
MatrixInverse operation V-421
MatrixLinearSolve operation V-422
MatrixLinearSolveTD operation V-423
MatrixLLS operation V-424
MatrixLUBkSub operation V-425
MatrixLUD operation V-425
MatrixMultiply operation V-425
MatrixOp

Cholesky decomposition V-428
cross-covariance V-429

MatrixOP operation V-425
MatrixSchur operation V-436
MatrixSolve operation V-436
MatrixSVBkSub operation V-437
MatrixSVD operation V-437
matrixTrace function V-435, V-438
MatrixTranspose operation V-438
max function V-438
max3D filter V-288
maximization (see minimization)
maximized windows V-252

MDI frame IV-264
maximum among several waves

WavesMax user-defined function III-148
maximum location in wave V-323, V-822
maximum of two numbers V-438
maximum of wave V-824
MDI frame window IV-263
mean function III-124, V-439

subranges III-125

mean of wave segments
FindSegmentMeans user-defined function

III-149
mean of waveform data III-124
measurements

EdgeStats operation V-152–V-153
PulseStats operation V-578–V-580

Median function III-137
median smoothing III-261
median3D filter V-288
memory

deallocating IV-185, V-812
fragmentation III-427, IV-184
free V-279
management III-427
used by page layouts II-376
using effectively IV-184
very big files II-169
virtual III-427

memory limits IV-184
menu bar names II-55, III-416
menu definitions IV-110–IV-123

(character IV-119–IV-120
! character IV-119–IV-120
& character IV-120
FONT menu limitations IV-117
- character IV-119–IV-120
/ character IV-119–IV-120
; character IV-119–IV-120
< character IV-119
accelerators IV-120
BuildMenu operation IV-114
checkmark character IV-119
contextualmenu IV-111
creating a new menu IV-112
creating submenus IV-111
disabling items IV-119–IV-120, V-638
DoIgorMenu operation V-134
dynamic IV-111
dynamic menu items IV-113
extending built-in menus IV-112
function keys IV-122
GetKeyState function V-239
help IV-112
hideable IV-111
independent modules IV-221
keyboard shortcuts IV-119, IV-122, V-239
limitations IV-110
limits IV-117
marking items IV-119–IV-120
marquee menus IV-123
menus and multiple procedure files IV-115
multiple menu items IV-115
operation queue IV-256
optional menu items IV-114
rebuilding from procedure V-43

menu definitions missing parameters

Index 59

regular modules IV-218
separating items IV-119–IV-120
SetIgorMenuMode operation V-638
special characters IV-118–IV-121, IV-127

enabling and disabling IV-120
Windows IV-120

specialized menu items IV-116
examples IV-117

syntax IV-111
trace menus IV-123
Windows IV-120

Menu keyword IV-111, V-440
menus

activating V-134
consolidating items into a submenu IV-115
disabling items V-638
GetKeyState function V-239
hiding V-270
include statements IV-150
information about V-240
invoking V-134
packages III-349
pop-up menu controls III-363, III-377–III-378
programming V-134, V-240, V-270, V-648
relation to commands I-7
relation to dialogs I-7
showing V-648
showing macros IV-104
too many pop-up menu items III-416
why the menu bar changes II-55, III-416

Mercator projection V-576
Transverse V-576

merging experiments II-32
Mersenne Twister V-156, V-255, V-639
meta characters (see menu definitions:special

characters)
metafiles III-108
meteorological wind barbs V-453
Metropolis algorithm V-534
MexHat wavelet transform V-110
microphone

recording from IV-281
Microsoft Visual C++ IV-185
MIME-TSV files IV-259, IV-261, IV-265
min function V-440
min3D filter V-288
minimization III-291–III-296

1D functions III-291
1D nonlinear functions III-291, V-533
bracketing extrema III-292
Brent’s method V-533
caveats III-295
dogleg method V-531, V-533
finite differences V-533
finite differences method V-531
function format V-532

line search method V-531, V-533
More-Hebdon method V-531, V-533
multidimensional functions III-291
multidimensional nonlinear functions III-293,

V-533
multivariate functions III-293, V-533
Optimize operation V-530
output variables V-534
output waves III-294, V-534
quasi-Newton method V-533
references III-296, V-536
secant (BFGS) method V-531, V-533
stopping tolerances III-294
tolerances III-294, V-534

setting V-532
univariate

stopping criterion V-533
univariate functions III-291, V-533
user-defined functions

1D III-291
multidimensional III-293

minimized windows
MDI frame IV-264

minimum location in wave V-323, V-822
minimum of two numbers V-440
minimum of wave V-824
minor ticks

in user tick waves II-279
mirror axis in graphs II-268–II-269
Misc pop-up menu in page layouts II-385
Miscellaneous Settings dialog III-413–III-417

Asian Language Settings III-415
Color Settings III-414
Command Settings III-413
Data Loading Settings III-414
Default Data Precision II-198
Experiment Settings III-414
Graph Settings III-413
Loaded Igor Binary Data II-38
Misc Settings III-416
Repeat Column Style Prefs in Tables II-231
Repeat Wave Style Prefs in Graphs II-305
Save and Restore Recent Colors III-412
Saved Experiment Format II-29
Table Settings III-413
Typography Settings III-414
wave styles III-413
waves II-83

Missing Folder dialog II-42
missing folders II-41
missing parameter dialog IV-105

equivalent for user functions IV-126
missing parameters

in functions V-135
in macros V-577–V-578

missing values MoveFile operation

Index 60

missing values II-100
in analysis III-121
in delimited text files II-144, II-147,

II-151–II-152
in general text files II-155, II-157
in graphs II-245, II-264
in Igor Text files II-159
NaNs II-206
removing by interpolation III-123
working around III-122

Missing Wave File dialog II-40, II-43
MLLoadWave XOP II-167
mod function V-441
modal and modeless user interface IV-126
modDate function V-441
modeless dialogs IV-140
Modify Annotation dialog III-45

Dynamic pop-up menu III-48
for page layouts II-391
Insert: group III-45
Special pop-up menu III-47

Modify Axis dialog II-266–II-276
Auto/Man Ticks tab II-270
Axis Label tab II-284
Axis Range tab II-247–II-248

autoscaling modes II-248
Quick Set buttons II-248

Axis tab II-268–II-270
date/time items II-281
draw between II-268
global controls II-267
Label Options tab II-274–II-276
live update II-267, II-274, II-285
log axes

changed to dialog II-276
tick marks II-277

manual ticks II-277
computed manual ticks II-277
date/time axes II-283
user ticks from waves II-279

mirror axes II-268
multiple axis selection II-267, II-298
Tick Options tab II-274
Ticks and Grids tab II-271–II-274

Modify Columns dialog II-214
Modify Contour Appearance dialog II-331–II-334

Label Tweaks II-342
Modify Draw Environment dialog III-77

(see also drawing tools, SetDrawEnv
operation)

Modify Graph dialog II-248–II-251, III-46
Modify Image Appearance dialog II-352–II-353
Modify Objects dialog II-390
Modify operation V-441
Modify Polygon dialog III-76

Modify Trace Appearance dialog II-127,
II-251–II-266

customize at point II-266
Set as f(z) II-259

ModifyContour operation V-441–V-446
ModifyControl operation V-447
ModifyControlList operation V-448
ModifyFreeAxis operation V-449
ModifyGraph operation V-451–V-472

axes appearance V-463
colors V-471
general graph window settings V-451
live keyword II-304
traces

customize at point V-462
traces appearance V-453

ModifyImage operation V-472–V-474
ModifyLayout operation V-474–V-476
ModifyPanel operation V-476
ModifyTable operation V-477–V-481

multidimensional waves II-223
ModifyWaterfall operation II-300, V-481
ModuleName keyword IV-42, V-482
ModuleName pragma IV-43, IV-216

(see also regular modules)
modules (see regular modules)
modulus functions

mod V-441
undone III-265, V-803

monitors
dimensions, platform-related III-408
number, depth, and size V-279
resolution V-622

More Extensions folder I-5
More Help Files folder II-4, II-10
More Levels dialog II-332
Morlet wavelet transform V-110

complex V-110
morphological operations

3D V-304
multidimensional V-304

mouse
cross-platform issues III-402
GetMouse operation V-245

move
data folders V-482
numeric variables V-488
string variables V-486
waves V-488
windows V-488

Move Backward II-383
Move Forward II-383
MoveDataFolder operation V-482

converting free data folder IV-81
MoveFile operation V-482

MoveFolder operation multidimensional waves

Index 61

MoveFolder operation V-484
warning V-484

MoveString operation V-486
MoveSubwindow operation V-487
MoveVariable operation V-488
MoveWave

free waves IV-78
MoveWave operation V-488
MoveWindow operation V-488
movies IV-225

AddMovieAudio operation V-19
AddMovieFrame operation V-20
AVI IV-225
CloseMovie V-57
creatiing IV-225
extracting frames IV-226
from pictures IV-226
NewMovie operation V-497
of graphs IV-225
playing IV-225
PlayMovie operation V-547
PlayMovieAction operation V-548
QuickTime IV-225
related operations V-5
window not appearing V-548

moving
a window on-screen II-67
all windows on-screen II-67

moving average III-261, V-654
moving cursor calls function IV-302–IV-305

example IV-304
multidimensional data

(see also matrices)
copy/paste in tables II-225–II-228

multidimensional waves II-108–II-114
analysis II-110
average 3D filter V-288
averaging V-325
beams

extracting V-327
built from matrices II-112
chunk indexing in assignments V-768
chunk numbers in assignments V-604
chunks II-108, II-111

maximum location V-822
minimum location V-822

columns
extracting V-327
flipping V-326
indexing in assignments V-842
maximum location V-822
minimum location V-822
names II-220
numbers in assignments V-580
setting values from a wave V-330
styles in tables II-195

summing V-333
summing all V-333

create-paste in tables II-228
creating II-108–II-109, V-412

in tables II-192
cutting columns in tables II-227
deleting points II-93, II-108
DimDelta function V-128
dimensions

how many? V-813
labels II-109–II-110, V-189, V-234, V-627
names II-108
numbers II-108

DimOffset function V-128
DimSize function V-128
duplicating II-109
editing in tables II-220–II-228
extracting

matrix II-112
matrix from a 3D wave II-228
row slice II-113

FFT of II-114
filling from 1D wave V-326
format in text file V-606
FuncFitMD operation V-218
gaussian 3D filter V-288
GetDimLabel function V-234
graphing (see image plots, contour plots)
Hartley transform V-326
Hough transform V-328
hybridmedian filter V-288
in Igor Text files II-159, II-161
index columns in tables II-201
index values V-128
indexing II-111–II-113, V-329
initial values II-108
insert-paste in tables II-225, II-227
inserting images V-328
inserting points II-108
interpolation V-69, V-357–V-358
interpolation, not II-111
labels II-109–II-110

example II-99
FindDimLabel function V-189
GetDimLabel function V-234
in delimited text files II-146
in tables II-221
length limit II-110, II-204
naming conventions II-110
SetDimLabel function V-627
viewing in tables II-193
wave indexing II-99

layers II-108, II-111
indexing in assignments V-842
maximum location V-822
minimum location V-822

multidimensional waves names

Index 62

numbers in assignments V-581
matrix to matrix conversion II-113
maximum rank 3D filter V-288
median 3D filter V-288
minimum rank 3D filter V-288
number of points V-128
padding

example V-339
pixels

inverting V-329
planes

extracting V-327, V-333
example V-339

flipping V-327
inserting V-329
matching V-329
removing V-331
scaling V-332
summing V-333
summing all V-334

point finding 3D filter V-288
polynomial function V-552
projection slice V-330
redimensioning II-108–II-109, II-113
replace-paste in tables II-225
rows

extracting V-327
flipping V-327
maximum location V-822
minimum location V-822
setting values from a wave V-330
summing V-334
summing all V-333

saving
as delimited text II-177
as Igor Text II-177
in text files II-179

spherical interpolation V-667
stacking V-333
storing into a subrange II-113
storing matrix as 3D layer II-112
styles in tables II-215
subset of II-109
surface extraction V-326
swap diagonal quadrants V-334
terminology II-108
transpose volume V-334
treating as 1D II-114
vol2surf V-334
voronoi tesselation V-334
wave assignments II-111–II-113
WaveDims function V-813
waveform to matrix conversion II-113
X projection V-334
Y projection V-335
Z projection V-335

multiple line commands: nope V-14
multiplication IV-5
multiprocessor support (see multitasking)
multitasking IV-295–IV-302

curve fitting III-218–III-219
data folders IV-295
examples IV-296–IV-302
free data folders example IV-291
free waves example IV-292
MultiThread keyword V-489
Multithread keyword IV-289–IV-294
network operations IV-247
preemptive IV-87, IV-295–IV-302
processor count V-789
queues IV-295
return value V-790
starting threads V-790
structures example IV-294
thread groups

creating V-787
data folders V-787–V-788
posting data to V-788
releasing V-789
stopping V-789

ThreadGroupCreate function V-787
ThreadGroupGetDF function V-787
ThreadGroupGetDFR function V-788
ThreadGroupPutDF operation V-788
ThreadGroupRelease function V-789
ThreadGroupWait function V-789
ThreadReturnValue function V-790
ThreadSafe keyword V-790
ThreadStart function V-789
ThreadStart operation V-790
user functions IV-87, IV-295–IV-302

MultiThread
Mandelbrot demo V-414

MultiThread keyword V-489
Multithread keyword IV-289–IV-294

free data folders example IV-291
free waves example IV-292
structures example IV-294

multivariate functions
curve fitting III-182, V-218
Gauss2D V-230

mushroom cloud icon (it’s a tree, really) III-77

N
Name in Reference chapter V-14
name spaces III-418
NameOfWave function V-489

example IV-180
names III-417–III-419

(see also window names, column names,
column labels)

names neural networks

Index 63

$ operator IV-15, IV-48
allowed characters III-417, IV-2
annotations III-50, III-68, V-23
case insensitive III-417
CheckName function V-55
CleanupName function V-56
column names II-200
ContourNameList function V-68
ControlNameList function V-75
creating in tables II-197, II-207
CTabList function V-90
data folders II-123
dimension labels II-110
FontList function V-200
FunctionList function V-225
graphs II-240, II-306
ImageNameList function V-306
in graphs IV-16

ContourNameToWaveRef function V-69
ImageNameToWaveRef function V-307

in Igor Binary files II-163
in page layouts II-379, IV-16
instance names IV-16, V-453
layers III-80
length III-417
liberal rules III-417, IV-2
loading

delimited text II-148
general text II-155

local variables
in macros IV-103
in user functions IV-31

macro names IV-102
MacroList function V-410
Name in Reference chapter V-14
name spaces III-418
notebooks III-31
objects II-381
OperationList function V-530
parsing by Igor IV-151
paths

IndexedDir function V-343
pictures III-424–III-425
programming with liberal names

IV-151–IV-152
quoting III-418
related functions V-10
Rename Objects dialog III-418
Rename operation II-91, V-589
RenameDataFolder operation V-589
RenamePath operation V-590
RenamePICT operation V-590
RenameWindow operation V-590
renaming with Data Browser II-136
rulers III-14
standard rules III-417

suffixes in tables II-200, II-216
table names II-199
trace names V-453
UniqueName function V-802
uniqueness III-418
user function names IV-29
using $string IV-48
using $stringName IV-15
variables II-116
waves II-78, II-80

in tags III-48
window names II-56

namespaces
independent modules IV-218, IV-223
regular modules IV-216

NaN (Not a Number) function V-490
NaNs II-100

as missing values II-206
comparison with IV-5
detecting V-522
entering in tables II-206
in analysis III-121
in curve fitting III-204–III-205
in delimited text files II-144
in error waves II-265
in general text files II-155
in graphs II-245, II-264
in Igor Text files II-159
in tables II-206
in WaveStats operation III-128
not an integer II-101
number of V-821
removing

by interpolation III-123
by median smoothing III-123
from waves V-825

removing from waves III-122
replacing in waves III-122
working around III-122

National Instruments data acquisition package
IV-281

Native character encoding III-29
natural logarithm function V-387
NCSA

HDF files II-169
negation IV-5
negation operator IV-6
nested loops IV-36
network

UNC paths III-401
Unix paths III-401

networking
aborting operations IV-247
multitasking IV-247

neural networks
NeuralNetworkRun operation V-490

neural networks notebooks

Index 64

NeuralNetworkTrain operation V-490
NeuralNetworkRun operation V-490
NeuralNetworkTrain operation V-490
new (see creating)
New Contour Plot dialog II-330
New Fit Function dialog III-173
New Free Axis dialog II-241
New Graph dialog II-240–II-241, II-306

examples II-297
New Image Plot dialog II-351
New Notebook dialog III-4
New Page Layout dialog II-378
New Path (see New Symbolic Path, NewPath)
New Symbolic Path

example II-34
New Symbolic Path dialog II-36
New Table dialog II-191–II-192
New window II-58
NewDataFolder operation V-492
NewFIFO operation V-492
NewFIFOChan operation V-493
NewFreeAxis operation V-362, V-493
NewFreeDataFolder function V-494
NewImage operation V-495
NewLayout operation V-496
newline

in regular expressions IV-165
NewMovie operation IV-225, V-497
NewNotebook operation V-498

example III-33
NewPanel operation V-500
NewPath

platform-related issues III-397
NewPath operation V-503

example II-35, II-174
in experiment files II-41

NewWaterfall operation II-300, V-504
Nicolet files II-167
NIDAQ Tools IV-281
NIGPIB XOP IV-281
NILoadWave XOP II-167
noise functions

enoise V-156
gnoise V-255
LinearFeedbackShiftRegister operation V-375
SetRandomSeed operation V-639

nonlinear least squares curve fitting III-159
norm function V-505
normal ruler in notebooks III-11, III-13
Normal+ ruler III-14
normalization

exporting images V-316
of waves II-97

normalized Gaussian function V-230
NOT

logical operator IV-33

Not a Number (see NaNs)
Not a Number function V-490
note function V-505
Note operation V-505
Notebook operation V-506–V-519

accessing contents V-518
document property parameters V-507
example III-33
miscellaneous parameters V-508
paragraph property parameters V-509
pictures III-33
selection parameters V-512
setting contents V-519
text property parameters V-514
writing

graphics parameters V-514
special character parameters V-517–V-518
text parameters V-519

notebook operation
autoSave V-508
writeProtect V-507

NotebookAction operation V-519
Notebooks

recreating subwindows V-519
notebooks III-3–III-38

accessing contents V-518
actions III-18–III-21, V-519, V-662, V-664

commands III-19–III-20
editing III-20
help text III-18
helper procedures III-20
NotebookAction operation V-519
pictures III-18
SpecialCharacterInfo function V-662
SpecialCharacterList function V-664
styles III-18

adopting II-38, V-507
adopting programmatically V-20
aligning pictures III-11
as subwindows III-96
as worksheets III-5
auto-save V-508
automation III-32–III-36
background color III-7
changeableByCommandOnly III-12
character properties III-10
creating derived rulers III-14
creating new rulers III-14
dates III-16, III-23
default tab width III-7
document properties III-7, V-507
embedding HTML code III-29

examples III-30
HTMLCode ruler III-29

executing commands from III-5
experiments III-4, III-31

notebooks notebooks

Index 65

exporting III-24, III-26
File Information dialog III-31–III-32
file names III-31, V-499
finding

pictures V-512
rulers III-15
text III-30, V-512

fonts III-10
sizes (see notebooks:text sizes, ruler text

sizes)
styles (see notebooks:text styles, ruler text

styles)
footers III-7, III-23

programming III-32, V-508
formatted III-3
generating commands III-35
graphs III-21
headers III-7, III-23

platform-related issues III-23
programming III-32, V-508

hiding III-5, V-509
HiRes PICTs III-24
HTML III-26

cascading style sheets III-27
character formatting III-28
graphics III-28

JPEG III-28
picture frames III-28
PNG III-28

HTML 4.01 specification III-27
paragraph formatting III-27–III-28

.ifn file extension III-3
Igor object pictures III-21, III-34
importing III-24
in line III-11
indentation III-8–III-9
Insert Page Break III-22
inserting pictures III-16, V-514
justification of text III-8–III-9
killing III-5
linking graphs III-21
list of V-831, V-833
locking III-6
magnification II-71
making a new notebook II-58
margins III-7–III-9
names II-56, III-31, V-499
NewNotebook operation V-498
normal ruler III-11, III-13
Notebook operation V-506–V-519
NotebookAction operation V-519
opening III-4

as RTF III-25
OpenNotebook operation V-528
page breaks III-22
page layouts III-21

page numbers III-16, III-23
page setups III-36
paragraph properties III-8, V-509
picture compatibility III-22
pictures III-16, III-21, V-514

type of III-409
updating III-34, V-508, V-518

plain III-3
platform-related issues III-23, III-409
styles III-9
tabs III-9

platform-related issues III-409
preferences III-36
printing III-24, V-571

quality III-24
programming III-32–III-36

examples III-32
read-only property III-12
recreation macros III-96
redefining rulers III-14
references to II-37, III-4
removing rulers III-15
replacing text III-31
retrieving text III-35
RTF III-24

graphics III-26
Ruler pop-up menu III-13
rulers III-8–III-9, III-13–III-15, V-509

(see also rulers)
fonts III-9, III-14
names III-14
text color III-9, III-14
text sizes III-9, III-14
text styles III-9, III-14

SaveNotebook operation V-613
saving

as HTML III-27
as RTF III-25

saving pictures III-17, V-517
scaling pictures III-18
selections V-248, V-512
shortcuts III-38
showing III-5
spacing III-8–III-9
special character names III-17
special characters III-16, V-508, V-517–V-518
SpecialCharacterInfo function V-662
SpecialCharacterList function V-664
subscripts III-11
superscripts III-11
tab characters III-8–III-9
tables III-21
template files III-37
text

color III-10
formats III-10

notebooks NVAR keyword

Index 66

inserting V-519
properties V-514
retrieving III-35
sizes III-10–III-11
styles III-10

TEXT files III-3
text formats III-10
times III-16, III-23
titles II-56, V-499
transferring rulers III-15
.txt file extension III-3
unformatted

page setup on Windows III-399
Unicode III-4
unlocking III-6
updating

pictures III-21
special characters III-18, V-508, V-518

UTF-16 III-4
vertical offsets III-10–III-11
window names V-802
window titles III-16, III-23, III-31
wintype function V-835
WMT0 files III-3
write-protect V-507
write-protect icon III-6
write-protect property III-12
zooming II-71

notes
in windows V-252
waves (see wave notes)
windows (see windows:notes)

num2char function V-521
num2istr function V-521
num2str function II-92, V-521
number functions V-6

(see also special numbers)
number-to-string conversion IV-237, V-521, V-669
NumberByKey function IV-155, V-521
numeric formats

commas in tables II-217
copying from table II-212
dates in tables II-204, II-218
hexadecimal in tables II-219
in data files II-143
in delimited text files II-148
in tables II-217
octal in tables II-219
pasting in tables II-208
printf operation (see printf operation)
times in tables II-218

numeric precision II-117
APMath operation V-23
arbitrary V-23
changing II-91
copying from table II-212

default for waves II-82, III-414
defined II-81
in functions IV-29
in Igor Text files II-159
in tables II-198, II-218
of calculations IV-8
of waves II-81, II-83, V-583, V-813, V-825
Redimension operation V-583
saving waves II-177

numeric readout (see controls:Value Displays, Set
Variables)

numeric types IV-8
changing II-91
coercion in user functions IV-92
double precision defined II-81
of functions IV-10
of waves II-81, V-813, V-825
single precision defined II-81

numeric variables II-117–II-118
complex II-117, V-809
copying II-136
default values V-522
deleting II-118
dependency assignments IV-206
displayed in annotations III-49
global II-117–II-118, III-364, III-378–III-379,

V-809
in operation flags V-14
initializing II-117, V-808
killing II-118, II-134
KillVariables operation V-363
MoveVariable operation V-488
moving to data folder II-136
names

CheckName function V-55
numeric type II-117
Object Status dialog III-420
precision II-117
renaming II-136, III-418, V-589
Set Variable controls III-364, III-378
Slider controls III-364, III-379
UniqueName function V-802
ValDisplay operation V-804–V-808
Variable declaration II-117, V-808
VariableList function V-810

numpnts function V-522
use DimSize for multidimensional waves V-128

numtype function V-522
NumVarOrDefault function V-522

example IV-129
saving parameters IV-129

NVAR keyword IV-51, V-522
/Z flag IV-53
automatic creation IV-56
automatic creation with rtGlobals IV-56, IV-60
example IV-55

NVAR keyword operators

Index 67

failures IV-53
NVAR_Exists function V-523
use with $ IV-48
use with data folders IV-55, IV-229

NVAR_Exists IV-53, V-523

O
object references

FUNCREF keyword V-219
NVAR keyword V-522
STRUCT keyword V-763
SVAR keyword V-767
Wave keyword V-811

Object Status dialog III-419–III-423, IV-207–IV-209
dependencies IV-205–IV-206
user functions not listed III-421

objects
broken objects IV-210

example III-422
dependent IV-204–IV-211

Object Status dialog IV-205–IV-206
exists function V-163
how objects relate I-3
in experiments II-29
in page layouts II-380, V-369–V-370

properties II-398
indexing in style macros IV-17
name spaces III-418
names III-417–III-419, V-369–V-370

instance names IV-16
Object Status dialog III-419–III-423
overview I-2
pictures (see pictures)
pictures in notebooks III-21

updating III-34
Rename Objects dialog III-418
unique names III-418

octal numbers
in tables II-217, II-219
representation of II-219

ODBC II-179
ODR (see curve fitting:ODR)
ODRPACK95 III-208
offscreen drawing objects III-77–III-78, III-80
offsetting traces in graphs II-263–II-264

log axes II-264
multipliers II-264
preventing II-263
tags III-48
undoing II-263

online help (see help)
only guess in curve fitting III-167
Open Experiment dialog II-32
Open File dialog IV-131, V-525

multi-selection V-525

Open File submenu II-58
Open operation IV-175–IV-176, V-523–V-528

appending V-524
file reference numbers V-523
open for appending IV-176
open for reading IV-176
paths V-524
reading V-524
symbolic paths V-524
writing V-524

opening
data files II-141
experiments II-32
files II-58, IV-176
help files II-10
notebooks III-4
procedure files III-345
RTF as notebooks III-25

OpenNotebook operation V-528
OpenProc operation V-529
operands IV-7
operation queue IV-256

Execute/P operation V-162
OperationList function V-530
operations IV-9

(see also functions)
bits

setting IV-12
by category V-1–V-5
definition I-4
destination waves IV-69
exists function V-163
external IV-185
flags

expressions require parentheses V-14
help II-6

in command and procedure windows II-5
in user functions IV-92
listing V-530
on functions III-268

differential equations III-270
minimization III-291
root finding III-285

OperationList function V-530
syntax IV-9
syntax guide V-14
trace names IV-72

operators IV-5
! IV-5, IV-33
!= IV-5
$ IV-5
%^ IV-5
& IV-5, IV-33
&& IV-5, IV-33
* IV-5
+ IV-5

operators packed strings

Index 68

- IV-5
/ IV-5
^ IV-5
< IV-5
<= IV-5
== IV-5

and roundoff error IV-7
> IV-5
>= IV-5
?: IV-5
~ IV-5, IV-33
| IV-5, IV-33
|| IV-5, IV-33
addition IV-5
bitwise

AND IV-5–IV-6, IV-33
complement IV-33
OR IV-5–IV-6, IV-33
XOR IV-5–IV-6

comparison IV-7
complement IV-5–IV-6
conditional II-99, IV-5–IV-6
division IV-5
equality IV-5
exponentiation IV-5–IV-6
greater than IV-5
greater than or equal IV-5
inequality IV-5
less than IV-5
less than or equal IV-5
logical

AND IV-5–IV-6, IV-33
NOT IV-5, IV-33
OR IV-5–IV-6

multiplication IV-5
negation IV-5–IV-6
obsolete IV-7, IV-94
precedence IV-5, IV-7, IV-33
strings

substitution IV-5
subtraction IV-5

optimization (see minimization)
Optimize operation V-530–V-536
optional include statements IV-150
optional parameters IV-30

determining usage V-537
example IV-46

options
in operations IV-9, IV-11

OR
bitwise operator IV-5–IV-6, IV-33
logical operator IV-5–IV-6, IV-33

Orthogonal Distance Regression (see curve
fitting:ODR)

orthographic projection V-576

outliers
RemoveOutliers user-defined function III-146

outline fonts III-415
ovals (see drawing tools)
Override keyword V-536

user functions IV-88
overriding functions

Override keyword V-536

P
p function V-536

in multidimensional waves II-108–II-109, II-112
in wave assignments II-94

p2rect function V-537
packages III-349, IV-226–IV-229

lightweight IV-229
LoadPackagePreferences operation V-390
managing globals IV-229
naming IV-231
Open File dialog IV-132
opening V-503
path to folder V-665
preferences IV-231–IV-235

loading IV-231, V-390
saving IV-231, V-615

in binary files IV-232
in experiments IV-234

private data IV-229
Save File dialog IV-133
SavePackagePreferences operation V-615
WaveMetrics IV-227

Packages data folder IV-153, IV-229
packages menu (see packages)
packed experiments II-29

adopting files II-38
adopting files programmatically V-20
LoadData operation II-164
preferences III-414

packed strings
adding items V-19
AddListItem function V-19
appending items V-591–V-592
counting items V-359
deleting items V-584, V-587–V-588
FindListItem function V-192
ItemsInList function V-359
NumberByKey function V-521
RemoveByKey function V-584
RemoveFromList function V-587
RemoveListItem function V-588
ReplaceNumberByKey function V-591
ReplaceStringByKey function V-592
replacing items V-591–V-592
StringByKey function V-759
StringFromList function V-760

packed strings page layouts

Index 69

WhichListItem function V-827
PadString function V-537
page breaks

in notebooks III-22
page layouts II-375–II-400, III-416

$ and object names V-369–V-370
adjusting objects II-383
aligning

graph axes II-393
objects II-383

anchors for annotations II-391
annotation tool III-44
annotations II-385, II-391–II-393, III-43–III-68

(see also annotations)
position III-54

appending
objects II-387
pictures II-387

appending into marquee (example) I-43
AppendLayoutObject operation V-27
AppendToLayout operation V-30
arranging objects II-395
arrow tool II-383
auto-sizing objects II-383
background color II-376
changing drawing layers II-377
changing printers II-380
closing II-379
color scale bars V-59
ColorScale operation V-59
constrain during drag II-383
copying objects II-384, II-388, II-397
corrupted scaling III-399
creating II-378
creating from functions V-496
cutting objects II-384, II-388
default font II-393, V-118
DelayUpdate II-378, II-382, II-385
drawing (see drawing tools)
drawing icon II-377
drawing layers III-80
drawing tools II-377
dummy objects II-382
dynamic updating II-375
exporting II-397, V-617

(see also exporting)
exporting section II-384, II-388
exporting with large data sets III-112
fidelity II-381, II-390
frames II-385
graph transparency II-399
in notebooks III-21
info V-371
killing II-379
layers II-375–II-377

ProgBack layer II-376–II-377

ProgFront layer II-376–II-377
UserBack layer II-376–II-377
UserFront layer II-376–II-377

layout icon II-377
Layout operation V-368
LayoutInfo function V-371
legend position III-54
legends II-385, II-392, V-374

(see also legends, annotations)
list of V-831, V-833
magnification II-380

corrupted III-399
making a new layout II-58

example I-20
marquees II-384
memory used by II-376
Misc pop-up menu II-385
modifying annotations III-45
modifying objects II-390
ModifyLayout operation V-474–V-476
names II-381, V-369–V-370

instance names IV-16
names and titles II-56
NewLayout operation V-496
objects II-380

properties II-398
page setups II-379
pasting color scale annotations II-398
pasting objects II-384, II-388, II-397
pasting pictures II-398
picture collection II-388
picture formats II-388
picture transparency II-399
placing pictures II-389
positioning annotations II-391
preferences II-398
printing II-396, III-104, III-112, V-570

with large graphs II-396, III-104, III-112
problems II-399
ProgBack drawing layer II-376–II-377
ProgFront drawing layer II-376–II-377
recreating II-379
recreation macros V-834
related operations V-1
relation to graphs I-3
relation to tables I-3
RemoveLayoutObjects operation V-588
removing objects from II-390, V-586, V-588
resizing objects II-383
scaling

corrupted III-399
selecting multiple objects II-383
selecting objects II-383
selections V-248
speed considerations II-390
Stack operation V-672

page layouts pass-by-value

Index 70

stacking graphs II-393
stacking objects II-384, II-395, V-672
style macros II-399
subwindows II-382, III-96
textbox position III-54
textboxes II-385

(see also textboxes, annotations)
Tile operation V-791
tiling objects II-384, II-388, II-395, V-791
tool palette II-383–II-386
tools II-377
typography settings III-414
UserBack drawing layer II-376–II-377
UserFront drawing layer II-376–II-377
window names II-379, V-802
window titles II-379
wintype function V-835
zooming II-380

page numbers
in notebooks III-16, III-23

Page Setup dialog
graphs II-294, II-305
Reduce/Enlarge II-295
scaling

nonsensical III-399
page setups

for Windows unformatted notebooks III-399
in graphs II-294, II-305
in notebooks III-36
in page layouts II-379
in procedure windows III-352
in tables II-229
logical paper size V-252
logical print table size V-252
platform-related issues III-398
preference in tables II-231
settings V-571

Panel subtype IV-184
keyword V-537

panels III-391–III-394, III-416
aborts IV-141
as modeless dialog IV-140
background color III-392, V-476
ControlNameList function V-75
default control appearance V-118

preferences III-416
default font V-120
drawing (see drawing tools)
drawing layers III-80
floating III-392, V-500–V-501
from user function IV-140
list boxes V-378
list of V-831, V-833
making a new panel II-58
ModifyPanel operation V-476
names and titles II-56

NewPanel operation V-500
PauseForUser operation IV-137
preferences III-392
progress windows IV-138
recreation macros V-834
screen dumps V-618
shortcuts III-394
Slider operation V-651
subwindows III-89
window names V-802
wintype function V-835

panning graphs II-247
examples I-37
fling mode II-247

preferences III-413
paragraph properties

in notebooks III-8
parallel processing (see multitasking)
parameter lists

in macros IV-102
in user functions IV-30
optional IV-30, IV-46, V-537

parameters
(see also curve fitting:coefficients)
bits

setting IV-12
complex IV-30
curve fitting III-159
declaration

in macros IV-102
in user functions IV-30

expressions IV-11
for functions IV-10
for macros IV-10
in commands IV-2, IV-11–IV-18
optional IV-30, IV-46, V-537
ParamIsDefault function V-537
pass-by-reference IV-44–IV-45
pass-by-value IV-44
saving for reuse IV-129
string IV-30
string substitution IV-15–IV-16
waves in macros IV-105

parametric (see XY)
ParamIsDefault function V-537
ParseFilePath function V-537
ParseOperationTemplate operation V-539
parsing

liberal names IV-151
particle analysis

images V-281
Parzen window function V-147, V-177, V-830
pass-by-reference IV-44–IV-45

waves IV-46
pass-by-value IV-44

passwords PICTs

Index 71

passwords
in URLs IV-244
security IV-246

pasting
data in tables II-198
in page layouts II-384, II-388, II-397
in tables II-207
pictures in layouts II-388

Path Status dialog II-37
PathInfo operation V-541
PathList function V-541
paths

(see symbolic paths, data folders)
cross-platform path separators III-400
desktop V-665
documents V-665
extracting V-537
length limit under Windows III-400
manipulating V-537
Open operation V-524
packages V-665
ParseFilePath function V-537
path separators III-406
platform-related issues III-397
preferences V-665
SpecialDirPath function V-665
temporary V-665
to functions V-227
UNC paths III-401
UniqueName function V-802
Unix paths III-401
user files V-665

PATTERNPOP V-562
Paul wavelet transform V-110
pause Igor

Sleep operation V-650
PauseForUser

control panel example IV-137
cursor example IV-134, IV-136

PauseForUser operation IV-134, V-542
examples IV-134

PauseUpdate operation IV-107, V-542
PCA (see principle component analysis)
PCA operation V-542
pcsr function V-544
PDF manual II-9
PDFs

embedding fonts III-104
exporting graphics III-101, III-109
exporting RTF III-26
missing PostScript fonts III-104

peaks
detection

FindPeak operation III-256–III-258,
V-192–V-194

Multi-peak Fit experiment III-256

Technical Notes III-256
measurement

area using cubic spline III-126
pencil icon

(see also write-protect icon)
in notebooks III-6
in procedure windows III-344

percent encoding IV-245
percent-encoding

URL function V-803
URLDecode function V-803

percentiles
smoothing III-262, V-654

performance testing IV-305, V-414
GetRTLocation V-247
GetRTLocInfo V-247

periodic functions
cos V-84
cot V-84
csc V-87
fresnelCos V-205
fresnelCS V-206
fresnelSin V-206
sawtooth V-622
sec V-622
sin V-649
sinc V-649
tan V-781

periodograms III-246
calculation V-146

permissions (see file permissions)
phase III-241–III-242, V-824

continuous III-265
unwrapping III-241, III-320, V-339

ImageUnwrapPhase operation V-339
Unwrap operation V-803

phone number for technical support II-16
PhotoShop files

exporting V-314
file info V-287
importing II-165, V-301

Pi function V-545
PICT III-423
PICTInfo function V-545
PICTList function V-545
PICTs

as EPS preview III-101, III-109
DrawPICT operation V-143
exporting V-314
exporting file III-103, III-111, V-617
exporting graphics III-100
exporting RTF III-26
file info V-287
importing II-165, III-424–III-425, V-301
importing RTF III-26
in page layouts II-387

PICTs PNGs

Index 72

LoadPICT operation V-391–V-393
saving V-617

HiRes V-617
PostScript V-617

picture collection III-424
page layouts II-388
SavePICT operation V-617

picture formats III-398, III-424
Picture keyword V-546
pictures III-423–III-425

(see also Proc Pictures)
aligning in notebooks III-11
cross-platform

in notebooks III-409
deleting (killing) III-425
DrawPICT operation V-143
exporting tables II-230
exporting via EPS III-81
finding in notebooks V-512
gray boxes III-398
Igor object pictures III-21
importing III-424–III-425
in independent modules IV-224
in notebooks III-16, III-21, V-508, V-512, V-514,

V-517–V-518
in page layouts II-387–II-389, II-398
inserting in notebooks III-16, V-514
KillPICTs operation V-362
LoadPICT operation V-391–V-393
movies from IV-226
names III-424–III-425

CheckName function V-55
naming rules III-417
Notebook operation III-33
PICTInfo function V-545
PICTList function V-545
picture formats III-398, III-424
platform compatibility III-22
PNG (see PNGs)
related functions V-11
renaming III-418, V-590
SavePICT operation V-617
saving from notebooks III-17, V-517
scaling in notebooks III-18
transparency II-399
UniqueName function V-802
unnamed III-425
updating Igor object pictures III-34
updating in notebooks III-34

Pictures dialog II-389, III-425
pitfalls

constrained curvefitting III-203
PixelFromAxisVal function V-547
pixels

AxisValFromPixel function V-35
image plots II-353

inverting V-329
logical screen dimensions III-408
matching V-329
PixelFromAxisVal function V-547

Place Picture III-425
plain notebooks (see notebooks:plain)
planes

extracting V-327, V-333
matching V-329
scaling V-332
summing V-333
summing all V-334

platform-related issues III-396–III-410
(see also cross-platform issues)
backslash in file paths III-400

procedures III-406
experiment files III-396

versions before 3.1 III-396
file compatibility III-396–III-397
file names III-400
file paths in procedures III-406
file system III-400
folder names III-400
Macintosh file type III-397
notebook pictures III-22
notebooks III-409

headers III-23
plain III-23, III-409

page setup compatibility III-398
path separators III-400
Paths III-397
picture compatibility III-397
PNG graphic format III-398, III-409
symbolic path III-397
transferring files III-396–III-397
UNC paths III-401
Unix paths III-401
window position III-409
Windows file extensions III-397

(see also Windows OS:file extensions)
Windows-specific III-396

PlayMovie operation IV-225, V-547
PlayMovie without QuickTime installed V-547
PlayMovieAction operation IV-226, V-548
PlaySnd operation IV-225, V-549
PlaySound operation IV-224, V-550
plot area in graphs II-242, III-52

AddPlotFrame macro II-299
affected by annotations III-53

plot symbols (see wave symbols)
plots (see graphs)
PNGs III-101

Convert to PNG III-409
converting to III-22, III-398
creating III-409
cross-platform compatibility III-398, III-409

PNGs poster-sized graphs

Index 73

exporting III-398, V-314
exporting RTF III-26
file info V-287
HTML graphics III-28
importing II-165, III-424, V-301
importing RTF III-26
in notebooks III-22, III-409
Loading Raw PNG II-166
on Clipboard III-101, III-103, III-111
raw

importing V-301
raw PNG files V-316
resolution III-410
saving V-617

pnt2x function V-551
point column in tables II-213

hiding V-481
multidimensional waves II-221

point number-to-x value conversion V-551
point numbers II-78

BinarySearch function V-40
BinarySearchInterp function V-40
fractional point numbers II-96
increment II-95
indexing II-94–II-95
p function V-536
pnt2x function V-551
relation to X values II-78
x2pnt function V-841

point scaling II-79
setting V-640

Point structure IV-85, V-551
point3D filter V-288
points

versus pixels III-408
Poisson window function V-147, V-177, V-830
poissonNoise function V-552
polar graph macros III-81
polar-to-rectangular conversion V-537
poly curve fit function

1D V-97
2D V-98

poly function V-552
poly_XOffset III-171, V-97
Poly2D curve fit function

example III-185
poly2D function V-552
PolygonArea function V-553
polygons (see drawing tools:polygon)
polynomials

2D series function V-552
chebyshev function V-50
chebyshevU function V-51
curve fitting III-170–III-171, III-233–III-234

two-dimensional III-172, V-312
FindRoots V-196

FindRoots operation V-194
hermite function V-269
hermiteGauss function V-269
laguerre function V-367–V-368
LaguerreA function V-367
legendreA function V-374
roots of III-285
series function V-552
x offset III-171, V-97
ZernikeR function V-843

pop-up menu controls
colors V-562
fill patterns V-562
line styles V-562
marker styles V-562
menu items III-377
mode III-377
programming III-377–III-378
update problems V-75
updating III-378
using III-363
value keyword III-377

pop-up menus
CTabList function V-90
example of creating IV-143
in macro dialogs V-577–V-578
in simple input dialogs IV-127
independent modules IV-222
special characters IV-118–IV-121, IV-127

Windows IV-120
too many items III-416
TraceNameList function IV-127
WaveList function IV-127

popup keyword V-553
in Prompt statements IV-127

PopupContextualMenu
example IV-143

popupcontextualmenu V-554
PopupContextualMenu operation V-554
PopupMenu operation III-377–III-378, V-557

value keyword III-377, V-560
PopupMenuControl subtype IV-184, V-559

keyword V-564
Portable Network Graphics (see PNGs)
position

managing windows II-67
moving windows to preferred II-67
retrieving all windows II-67
retrieving windows II-67
window III-409

Posix paths V-538
PossiblyQuoteList function IV-152
PossiblyQuoteName function V-564

example IV-151
POST method IV-253
poster-sized graphs II-295

PostScript printing

Index 74

PostScript
(see also EPS)
exporting

Macintosh OS X III-105
Windows OS III-113

exporting file III-103, III-111
exporting tables II-230
fonts

embedding III-104, III-112
exporting

Macintosh OS X III-104–III-105
Windows OS III-112–III-113

graphs of large data sets III-112
language level III-101, III-109

PostScript PICTs
in notebooks III-24

power law curve fit V-97
power spectra III-246
power spectral density III-246
PPC (see program-to-program communication)
pragmas IV-40

hide III-349, IV-43
hide keyword V-269
IgorVersion keyword V-280
IndependentModule IV-43, IV-218
IndependentModule keyword V-343
ModuleName IV-43, IV-216
ModuleName keyword IV-42, V-482
pragma keyword V-16
rtGlobals IV-41, IV-51

(see also rtGlobals)
rtGlobals keyword V-603
unknown IV-43
version IV-42
version keyword V-811

precedence
in conditional statements IV-33
of operators IV-5, IV-7

precision (see numeric precision)
precision text sizes III-415
predefined symbols IV-91
prediction bands

for curve fitting III-199
preemptive multitasking (see multitasking)
preferences III-432–III-434

(see also Miscellaneous Settings dialog)
auto-trace destination waves III-178
capturing III-433–III-434
category plots II-323–II-324
column styles II-231
command window II-24
contour plots II-344–II-345
current values III-433
Curve Fitting dialog III-183
dashed lines III-412
Data Browser II-134

default font III-434
default values III-433
for New Experiments III-434
graphs II-305–II-306, II-323, II-344, II-370,

III-413
image plots II-370–II-371
in page layouts II-398
in procedure windows III-354
in procedures IV-183, V-565
load waves (example) II-172
notebooks III-36
packages IV-231–IV-235

loading IV-231, V-390
saving IV-231, V-615

in binary files IV-232
in experiments IV-234

path to folder V-665
Preferences operation IV-183, V-564
reverting some III-433
tables II-230, III-413
using III-432–III-433
vs style macros II-307, II-309
wave styles II-305
when applied III-434
XY Plots II-305

Preferences operation IV-183, V-564
example IV-183

Prewitt compass gradient filters V-286
PrimeFactors operation V-565
principle component analysis V-542
Print dialog

Custom Size II-294–II-295
Fill Page II-294
Graph Margin II-294
Graph Size II-294
graphs II-294–II-295
Same Aspect II-294
Same Size II-294

Print Graphs dialog II-250
Print operation V-565

structure elements V-566
printers

listing available V-571
page layouts II-380

printf operation IV-235–IV-237, V-566–V-569
conversion specifications IV-236, V-567–V-569
engineering units V-568
WaveMetrics extension V-568

PrintGraphs operation V-569–V-570
printing

(see also HP printers, LaserWriter)
graphs II-294–II-295, II-305
graphs of large data sets III-112
notebooks III-24
page setup (see Page Setup dialog)
poster-sized graphs II-295

printing procedure windows

Index 75

Print dialog (see Print dialog)
PrintSettings operation V-571
problems

typography settings III-414
procedure windows III-352
related operations V-5
resolution (see resolution)
selection from table II-229
settings V-571
structure elements V-566
tables II-229, V-574
text operations (see text operations)
to history area V-565–V-566
typography settings III-414

PrintLayout operation V-570
PrintNotebook operation V-571

example III-33
printing of HiRes PICTs III-24

PrintSettings operation V-571
PrintTable operation V-574
private

static functions IV-86
privileges (see file permissions)
problems II-15
Proc keyword IV-102, V-575
Proc Pictures IV-44

creating IV-44
global IV-44, V-576
ProcGlobal keyword IV-44, V-576
static IV-44
using in commands IV-44

procedure declarations
End keyword V-155
EndMacro keyword V-156
Function keyword V-220, V-765
Macro keyword V-410
Picture keyword V-546
Proc keyword V-575
Window keyword V-829

procedure files III-342
adopting II-38, III-351
adopting all II-38
adopting programmatically V-20
auxiliary III-342, III-345
creating III-344–III-345
cross-platform issues III-406
easy access III-349
global III-342, III-347
hidden III-349

changes in Igor functionality III-350
creating III-350

hiding IV-43
Igor Pro User Files folder III-347
in experiments II-31, III-343, III-345, III-347,

III-351
include statements III-347–III-348

inserting text III-350
invisible III-349

changes in Igor functionality III-350
creating III-350

lock icon III-344
locking III-344
opening III-345
packages III-349
read-only III-344
references to II-37
rtGlobals automatic in new III-345
shared III-342, III-345, III-347
Unicode III-355
unlocking III-344
UTF-16 III-355
version control IV-149
versions IV-42

procedure subtypes
ButtonControl keyword V-46
CheckBoxControl keyword V-54
CursorStyle keyword V-94
FitFunc keyword V-200
Graph keyword V-256
GraphMarquee keyword V-256
GraphStyle keyword V-256
GridStyle keyword V-265
Layout keyword V-370
LayoutMarquee keyword V-372
LayoutStyle keyword V-372
ListBoxControl keyword V-387
Panel keyword V-537
PopupMenuControl keyword V-564
SetVariableControl keyword V-646
Table keyword V-772
TableStyle keyword V-772

procedure windows III-342–III-357
built-in III-342
CloseProc operation V-57
closing III-346
closing programmatically V-57
color III-354
executing commands from III-5
experiment recreation macros II-39
finding text III-351
fonts III-354
footers III-353
headers III-353
help for functions and operations II-5
hiding III-346

HideProcedures operation V-271
include statements IV-149
indentation III-353
independent modules IV-219
initialization commands II-40
killing III-346
magnification II-71

procedure windows programming

Index 76

making a new procedure window II-58
names and titles II-56
new window (example) I-61
OpenProc operation V-529
page setups III-352
preferences III-354
printing III-352
Procedures pop-up menu III-343
replacing text III-352
rtGlobals statements IV-51
showing III-345

DisplayProcedure operation V-132
syntax coloring III-354
templates III-343
text sizes III-354
text styles III-354
write-protect icon III-344
zooming II-71

procedures IV-216–IV-305
(see also macros, user functions)
aborting IV-38, IV-93, V-17–V-18, V-801
auto-compiling III-351, IV-22
bitwise and logical operators IV-33
case statements IV-34

Constant keyword V-67
Strconstant keyword V-758

comparisons IV-32
compiling III-343, IV-22
creating III-344
cross-platform issues

file extensions III-406
file types III-406

data folder-aware II-130
debugger IV-188–IV-201
debugging

(see also debugger)
using print statements IV-188

enabling preferences IV-183
experiment initialization commands IV-183
experiment recreation II-39
file path separators III-406
finding III-343, III-351
for controls (see controls:action procedures)
global IV-21
Igor Procedures IV-21
include statements IV-149
indentation IV-22
IndependentModule keyword V-343
local variable declaration IV-30
logical operators IV-6
loops IV-36
MacroList function V-410
menu definitions IV-110–IV-123, V-43
ModuleName keyword IV-42, V-482
names IV-29
operation queue IV-256

organizing IV-20–IV-21
overview I-5
parameter declarations IV-30
parameter lists IV-30
parameters IV-10
pause for user IV-134
PauseForUser operation V-542
ProcedureText function V-575
processing lists of waves IV-178–IV-180
programming with liberal names

IV-151–IV-152
retrieve code

ProcedureText function V-575
saving parameters for reuse IV-129
scanning IV-22
subtypes IV-29, IV-183–IV-184
switch statements IV-34

Constant keyword V-67
Strconstant keyword V-758

User Procedures IV-21
using cursors IV-144
using marquee menus IV-144
using polygons for input IV-145
utility procedures IV-21
WaveMetrics Procedures IV-21
writing utility procedures IV-150

Procedures pop-up menu III-343
finding a procedure III-352

ProcedureText function V-575
ProcGlobal keyword IV-44, V-576

independent modules IV-218
pop-up menus IV-222
regular modules IV-216

profiling IV-305
GetRTLocation V-247
GetRTLocInfo V-247

ProgAxes drawing layer III-80
(see also drawing tools:layers)

ProgBack drawing layer III-80
in page layouts II-376–II-377

ProgFront drawing layer III-80
in page layouts II-376–II-377

program name
under Windows III-396

programming IV-216–IV-305
(see also macros, procedures, user functions)
advanced topics IV-216–IV-305
analysis procedures III-144–III-153
annotations III-68
AppleScript execution V-162
closing files IV-175
commands IV-2–IV-18
conditional compilation IV-90
controls III-365–III-391
DDEExectute function V-114
DDEInitiate function V-114

programming qualified names

Index 77

DDEPokeString function V-115
DDEPokeWave function V-115
DDERequestString function V-115
DDERequestWave function V-116
DDEStatus function V-116
DDETerminate function V-116
debugging IV-188–IV-201
dependencies IV-204–IV-211
displaying help topics V-131
drawing tools III-81–III-85
examples III-145–III-152
Execute operation V-161
Execute/P operation V-162
ExecuteScriptText operation V-162
files IV-175

(see also files, text operations)
finding files IV-175
functions

user-defined IV-28–IV-97
generating notebook commands III-35
GetRTStackInfo function V-247
interaction IV-126–IV-145
keywords

#define V-15
#if-#elif-#endif V-15
#if-#endif V-15
#ifdef-#endif V-16
#ifndef-#endif V-16
#include V-16
#pragma V-16
#undefine V-17
Constant V-67
DoPrompt V-135
hide V-269
IgorVersion V-280
IndependentModule V-343
Menu V-440
ModuleName IV-42, V-482
Override V-536
popup V-553
ProcGlobal V-576
Prompt V-577
root V-602
rtGlobals V-603
Static V-673
Strconstant V-758
Submenu V-766
version V-811

loading files in folder (example) II-174
loading waves II-170

examples II-170, II-173
macros IV-100–IV-108
menus IV-110–IV-123
notebooks III-32–III-36

examples III-32
opening files IV-175

overview I-7, IV-20–IV-23
predefined symbols IV-91
related functions V-10
related operations V-4
retrieving text from notebooks III-35
runtime stack information V-247
SetIgorOption operation V-638
syntax coloring III-354
techniques IV-149–IV-186
updating in notebooks III-34
user interaction IV-126–IV-145
user-defined functions IV-28–IV-97
waves as parameters III-144
writing to text files IV-176

programming keywords
(see also keywords)

progress windows IV-138
Project operation V-576
projections

Project operation V-576
Prompt statements V-577–V-578

in macros IV-105
in user functions IV-126
location of IV-129
pop-up menus IV-127

prototype functions IV-88
Provide Wave Names II-148, II-155
proxy servers IV-253
Pseudo-Coifman wavelet transform V-151
pseudorandom numbers

LinearFeedbackShiftRegister operation V-375
pseudorandom sequences

LinearFeedbackShiftRegister operation V-375
public functions (see static functions)
pulse measurements

EdgeStats operation III-256
FindLevel operation V-189–V-190
FindLevels operation V-190–V-191
FindPeak operation V-192–V-194
PulseStats operation III-256

pulse statistics
EdgeStats operation V-152
PulseStats operation V-578

PulseStats operation V-578–V-580
NaN results V-580

PutScrapText operation V-580

Q
q function V-580

in multidimensional waves II-108–II-109, II-112
qcsr function V-580
qualified names IV-216

independent modules IV-218–IV-219
triple names IV-223

Quartz regular expressions

Index 78

Quartz III-423
font embedding III-104

queues
multitasking IV-295

quick append II-304
QuickDraw III-423

graphs of large data sets III-112
HiRes PICTs III-24
typography settings III-414

QuickTime IV-225
file info V-287
movies IV-225

QuickTime files
exporting V-314

QuickTime movies
NewMovie operation V-497
related operations V-5

quit Igor hook function IV-269
Quit operation V-581
Quit Scan button IV-106
quotation marks

for liberal names III-418
in delimited text files II-151
saving text waves II-178

R
r function V-581

in multidimensional waves II-108–II-109, II-112
r2polar function V-581

example II-99
radio button controls

programming III-372
using III-363

random functions
enoise V-156
gnoise V-255
LinearFeedbackShiftRegister operation V-375
Mersenne Twister V-156, V-255, V-639
SetRandomSeed operation V-639

ranges (see subranges)
ranges of interest

curve fitting to III-179
example III-180

in Duplicate Waves dialog II-86
using cursors in graphs II-292

ratio of integers V-581
RatioFromNumber operation V-581
Raw PNG

Loading II-166
read-only

notebooks III-12
ReadVariables operation V-583
real

columns in tables II-200
suffix in tables II-200

real component function V-583
real function V-583

example II-99
real number type II-81
recalculation (see dependency assignment)
Recent Colors III-412
Recent Windows submenu II-58
recreating

graphs II-306–II-307
page layouts II-379
tables II-199

recreation macros II-59, II-61–II-63, II-306, V-834
deleting II-62
DoWindow operation V-136
notebook subwindows III-96

Rect structure IV-85, V-582
rectangles (see drawing tools, annotations,

markers)
rectangular-to-polar conversion V-581
rectification

images V-297
Redefine Ruler from Selection III-14
redefining

rulers III-14
Redimension operation II-91, II-113, V-583
Redimension Waves dialog II-91

from tables II-226, II-228
references

convolution V-78
curve fitting III-234, V-103
to files and folders II-37
to global procedure files III-348
to Igor Binary files II-38, II-164–II-165, III-414

why it’s bad II-165
to notebooks III-4
to procedure files III-345, III-347

region of interest III-324
(see also image analysis)
creating V-290
creating ROI wave III-324
example V-291
masking V-285
objects V-291
statistics V-322

regression (see curve fitting, smoothing)
regular expressions IV-156–IV-175

alternation IV-164
assertions IV-170–IV-172

lookahead IV-171
lookbehind IV-171
multiple IV-172

atomic grouping IV-169
back references IV-170
backslashes IV-159–IV-162

generic character types IV-161
nonprinting characters IV-160

regular expressions ResumeUpdate operation

Index 79

simple assertions IV-162
brackets IV-163
character classes IV-159, IV-163
characters

circumflex IV-162
dollar IV-162
dot IV-162
newline IV-165
period IV-162
vertical bar IV-164

circumflex character IV-162
comments IV-173
dollar character IV-162
dot character IV-162
full stop IV-162
greedy IV-168
Grep operation IV-156, V-258
GrepList function V-264
GrepList operation IV-157
GrepString function IV-157, V-265
match option settings IV-164
metacharacters IV-158
newline IV-165
period character IV-162
posessive qualifiers IV-169
POSIX character classes IV-163
quantifiers IV-167
recursive patterns IV-173
references IV-174
repetition IV-167
SplitString function V-668
SplitString operation IV-157
subpatterns IV-166

conditional IV-172
named IV-166
subroutines IV-174

vertical bar character IV-164
regular expressions)
Regular Modules

ProcGlobal keyword IV-216
regular modules IV-216

control action procedures IV-217
hook functions IV-217
qualified names IV-216
user-defined menus IV-218
within independent modules IV-222

related topics (see help:related topics)
relative data folder paths (see data folders)
Relocate to File button II-89
remainder function V-441
Remove Columns dialog II-202
Remove from Graph dialog II-244
Remove Objects dialog II-390
Remove operation V-584
Remove Ruler dialog III-15
RemoveByKey function V-584

RemoveContour operation V-585
RemoveEnding function V-585
RemoveFromGraph operation V-586
RemoveFromLayout operation V-586
RemoveFromList function V-587
RemoveFromTable operation V-587
RemoveImage operation V-588
RemoveLayoutObjects operation V-588
RemoveListItem function V-588
RemoveNaNsXY function III-122
RemoveOutliers function III-146
RemovePath operation V-589
Rename Objects dialog II-91, III-418
Rename operation V-589

renaming waves II-91
RenameDataFolder operation V-589
RenamePath operation V-590
RenamePICT operation V-590
RenameWindow operation V-590
renaming

(see also names)
waves in tables II-192, II-197
with Data Browser II-136

ReorderImages operation V-590
reordering traces II-258
ReorderTraces operation V-591
repeat end effect method III-264
Replace Text dialog III-31
replace-paste II-207
ReplaceNumberByKey function V-591
ReplaceString function V-592
ReplaceStringByKey function V-592
ReplaceText operation V-593
ReplaceWave operation V-594

examples II-129, II-244
replacing

in notebooks III-31
in tables II-211
replace text shortcut III-31
table values II-211
text in procedure windows III-352
traces in graph II-129

Resample operation V-595–V-601
reserved characters

in URLs IV-245
residuals in curve fitting III-164, III-193
resolution

HiRes PICTs
in notebooks III-24

printing notebooks III-24
resource fork

lost when transferring to Windows
III-398–III-399, III-409

restoring
images V-313

ResumeUpdate operation IV-107, V-601

retrieving drawing objects rulers

Index 80

retrieving drawing objects III-77
Retry button IV-106
Return key

in tables II-203
return keyword V-601
return statements

in macros IV-104
in user functions IV-31

reverse fast Fourier transforms (see IFFTs)
Reverse operation V-601
reverting

experiments II-33
preferences III-433

RGB conversions
cmap2rgb V-325
CMYK2RGB V-326
hsl2rgb V-328
rgb2gray V-330
rgb2hsl V-331
rgb2i123 V-331
rgb2xyz V-331
xyz2rgb V-335

RGB images
exporting V-316

RGBColor structure IV-85, V-602
Rich Text Format (see RTF)
Richardson-Lucy deconvolution V-313
Riemann window function V-147, V-177, V-830
rightx function V-602
risetime measurements III-256
Robert’s row and column edge detector V-286
ROI (see region of interest)
Roman text III-415
Romberg integration V-349
root data folder (see data folders:root)
root keyword V-602
roots

finding III-285–III-291
FindRoots operation V-194
of nonlinear 1D functions III-287
of nonlinear 2D functions III-289–III-290
of polynomials III-285
references III-296

Rotate dialog III-264
Rotate operation III-264, V-603

X scaling change III-265
rotated text III-72
rotating

annotations III-51
drawn objects III-72

round function V-603
rounded rectangles (see drawing tools)
rounding

integer wave calculations IV-8
rounding functions V-6

abs V-18

cabs V-46
ceil V-47
floor V-200
mod V-441
round V-603
sign V-649
trunc V-801

roundoff error IV-7
and equality operator IV-7

row column in tables
hiding V-481

row indices
in tables II-221

row labels
in delimited text files II-149

row major order II-114
row numbers

p function V-536
row position waves

in delimited text files II-150
rows

extracting V-327
flipping V-327
in multidimensional waves II-108, II-111
in waveform data II-77
maximum location V-822
minimum location V-822
relation to X values II-78
summing all V-333

RRect radius drawing setting III-74
RTF

graphics display III-26
graphics in notebooks III-26
margins III-7
notebooks III-24
opening notebooks III-25
saving notebooks III-25

rtGlobals IV-41, IV-51
automatic in new procedure files III-345, IV-51
compatibility mode IV-94
converting to rtGlobals=1 IV-97
position in procedure windows IV-96
pragma keyword V-603
rtGlobals=0 IV-95
rtGlobals=1 IV-51–IV-53
rtGlobals=2 IV-94

rulers
(see also notebooks:rulers)
creating derived rulers III-14
creating new rulers III-14
finding where used III-15
fonts in notebooks III-9, III-14
HTMLCode III-29
in notebooks III-8–III-9, III-13–III-15
names III-14
naming rules III-417

rulers saving waves

Index 81

redefining III-14
removing III-15
Ruler pop-up menu III-13
text color in notebooks III-9, III-14
text sizes in notebooks III-9, III-14
text styles in notebooks III-9, III-14
transferring III-15

Runge–Kutta–Fehlberg method V-353
runtime lookup of globals IV-51–IV-53

converting from direct reference IV-97
example IV-55
failures IV-53

runtime stack
information about V-247

runtime vs compile time IV-49

S
s function V-604

in multidimensional waves II-108–II-109, II-112
S_ variables

in macros IV-107
in user functions IV-47

S_aliasPath V-235
S_columnWidths V-72
S_creator V-235
S_dataFolder V-72, V-249
S_Filename V-210
S_fileName IV-130–IV-131, V-79, V-81, V-87, V-207,

V-303, V-402, V-483, V-485, V-515, V-517,
V-525

loading waves (example) II-170
LoadWave operation II-170
Open operation V-525, V-527

S_fileType V-235
S_fileVersion V-236
S_graphName V-242
S_Info III-205
S_info V-91, V-179, V-207, V-392, V-404–V-405,

V-550, V-637
S_marqueeWin V-243
S_name V-121, V-130, V-154, V-246, V-495–V-496,

V-500, V-504, V-512, V-515, V-517
S_path V-79, V-81, V-87, V-124–V-125, V-207, V-235,

V-288, V-303, V-402, V-483, V-485, V-541,
V-610, V-634

LoadWave operation II-170
S_recreation V-71, V-139
S_selection V-249, V-554–V-555
S_SoundInName V-662
S_traceName V-242
S_TraceOffsetInfo V-462
S_UserData V-71
S_Value V-617

S_value V-36, V-71–V-72, V-74, V-162, V-241,
V-251–V-253, V-258, V-260, V-563, V-572,
V-668

S_waveNames V-303, V-402
loading waves (example) II-170
LoadWave operation II-170

Save a Copy button II-90
Save and Kill button II-90
Save and then kill button III-5
save as template II-34
Save Delimited Text dialog II-176
Save EPS File dialog III-103, III-111

for page layouts II-397
Save Experiment dialog II-29–II-30
Save File dialog IV-132, V-525
Save Graphics

pictures in notebooks III-17
Save operation V-604
Save PICT File dialog III-103, III-111

for page layouts II-397
save save II-43
Save Waves submenu II-176
SaveData operation V-607
SaveExperiment operation V-610
SaveGraphCopy operation V-612
SaveNotebook operation V-613
SavePackagePreferences operation V-615
SavePICT operation V-617

PictGallery V-617
SaveTableCopy operation V-620
saving

pictures from notebooks V-517
saving data

SaveData operation V-607
saving experiments II-29–II-32, II-43

errors II-43
SaveExperiment operation V-610
Spotlight II-44

saving graphs
save graph copy II-295
SaveGraphCopy operation V-612
with waves II-295, V-612

saving notebooks
as HTML III-27
as RTF III-25
SaveNotebook operation V-613

saving pictures
from notebooks III-17

saving tables
save table copy II-229
SaveTableCopy operation V-620

saving waves II-175–II-179
appending II-177
archiving V-607
carriage returns II-178
column labels II-176

saving waves SetScale operation

Index 82

delimited text files II-176
escape characters II-178
FBinWrite operation V-171
general text files II-177
graphics V-314
Igor Binary files II-178
Igor Text files II-177
images V-314
ImageSave operation V-314
linefeeds II-178
multidimensional waves II-179, V-606
numeric precision II-177
quotation marks II-178
row labels II-176
Save operation V-604
SaveData operation V-607
table formatting V-605
tabs II-178
text waves II-178
use table formatting II-177
wfprintf operation V-826
with graphs II-295, V-612

Savitzky-Golay smoothing III-260, V-654
sawtooth function V-622
scaling (see dimension scaling)
scaling pictures

in notebooks III-18
in page layouts II-383
with drawing tools III-72

scanning
procedures IV-22

schemes
in URLs IV-244

scientific notation
axis labels II-287
prevention in graph labels II-287
tick mark labels II-271

forcing II-274
scientific numeric format

in tables II-217
screen

dimensions, platform-related III-408
screen dumps V-618
screen preview

EPS III-101, III-109, III-424
ScreenResolution function V-622
script systems III-415
scrolling graphs (examples) I-37
Search Backwards III-30–III-31
Search Selected Text Only III-31, III-352
searching (see finding V-10
sec function V-622
Secs2Date function V-622
Secs2Time function V-623
Secure Hash Algorithm-256 V-268
Secure Socket Layer IV-253

security
for passwords IV-246

Select All
in Modify Columns dialog II-215
in tables II-202

Select Control III-366
Select Current Folder button II-43
selecting

cells in tables II-202, V-248
controls III-366
drawing objects III-72
multiple controls III-366
objects in page layouts V-248
Select All in tables II-202
text in notebooks V-248

SelectNumber function V-624
SelectString function V-624
Send to Back II-383
serial port

data acquisition IV-281
series III-118
Set as f(z) dialog II-259
Set Text Format dialog III-10
Set Variable controls

(see also SetVariable operation)
programming III-378–III-379

SetActiveSubwindow operation V-625
SetAxis operation V-625
SetBackground operation IV-210, IV-289, V-626
SetDashPattern operation V-626
SetDataFolder operation V-627
SetDimLabel operation V-627
SetDrawEnv operation III-82, V-628–V-631

(see also Modify Draw Environment dialog)
grouping with gstart and gstop III-82
save III-82

SetDrawLayer operation III-82, V-632
SetFileFolderInfo operation V-632
SetFormula operation IV-210–IV-211, V-634
SetIgorHook operation V-635
SetIgorMenuMode operation V-638
SetIgorOption

UseOldGraphics III-423
SetIgorOption operation V-638

enable debugger for independent modules
IV-219

Procedure Window submenu IV-219
SetIgorOption opertaion

disable veclib III-144
page setup corruption III-399
syntax coloring III-354

SetMarquee operation V-638
SetProcessSleep operation V-639
SetRandomSeed operation V-639
SetScale operation V-640–V-641

(see also X scaling, X units)

SetScale operation Simple File Sharing

Index 83

dates V-640
setting X scaling II-78
setting Y scaling II-109

SetVariable operation III-378–III-379, V-641–V-646
example IV-140

SetVariableControl subtype IV-184, V-644
keyword V-646

SetWaveLock operation V-646
SetWindow operation V-646
SGI files

exporting V-314
file info V-287
importing II-165, V-301

shapefiles II-169
shared procedure files III-342, III-347

Igor Pro User Files folder III-347
sharing (see references:to Igor Binary files)
Shen–Castan edge detector V-286
Shift key

on starting Igor III-396
on starting Igor under Windows III-396

Shift-JIS character encoding III-29
shoelace algorithm V-553
short date

in notebooks III-16
shortcuts

axes II-312–II-313
command window II-24–II-25
contour plots II-346
controls III-394
CreateAliasShortcut operation V-86
creating V-86
data browser II-137
debugger IV-200
drawing tools III-86
graphs II-312–II-313, II-346, II-371, III-394
help II-6, II-17
Igor Shortcuts menu item II-5
Igor Tips II-17
image plots II-371
page layouts II-400
panels III-394
procedure windows III-356
templates II-17, III-343
traces II-312–II-313
windows II-73

Show Igor Pro User Files III-426
Show Info II-290
Show Multivariate Functions

in Curve Fitting dialog III-183
Show Tools III-71
ShowAvgStdDev function III-128
ShowIgorMenus operation V-648
ShowInfo operation V-648
showing

notebooks III-5

procedure windows III-345
DisplayProcedure operation V-132

ShowTools operation V-648
shrinking graphs II-246
sigmoid curve fit V-97
sign function V-649
sign of a wave V-824
signal processing III-237–III-258

continuous wavelet transform III-248, V-108
convolution III-251
Convolve operation V-77
correlation III-253
CWT operation V-108
decimating III-141, V-595
discrete wavelet transform III-250, V-151
down-sampling V-595
DSP support procedures III-242
DSPDetrend operation V-146
DSPPeriodogram operation V-146
DWT operation V-151
FFT III-237
FFT operation V-173
FilterFIR operation V-180–V-183
FilterIIR operation V-183–V-189
Hanning operation V-268
Hanning window III-244
Hilbert transform III-246
HilbertTransform operation V-271
IFFT operation V-277
IIR filters V-183–V-189

coefficients, designing V-187
ImageWindow operation V-341
interpolating V-595
LombPeriodogram operation V-408
lowpass filtering V-595
magnitude III-241
operations V-3
periodograms III-246, V-146, V-408
phase III-241
power spectra III-246
Resample operation V-595–V-601
Rotate operation V-603
SmoothCustom operation V-658
time frequency analysis III-247
trend removal V-146
Unwrap operation V-803
up-sampling V-595
Wigner transform III-247
WignerTransform operation V-828
windowing III-242, V-146

significant digits
(see also numeric precision)
in tables II-218

Silent operation IV-106, V-649
compatibility mode IV-94, V-649

Simple File Sharing II-44

simple input dialog sounds

Index 84

simple input dialog IV-126
Help button IV-127
pop-up menus IV-127
saving parameters for reuse IV-129

simulated annealing V-530, V-534
sin (sine) curve fit V-97
sin function V-649
sin of a wave V-824
sinc function V-649
single precision II-90, III-414, V-583

(see also numeric precision)
defined II-81

singular value decomposition III-159, III-233, V-437
MatrixInverse operation V-421

singularities in curve fitting III-232
sinh function V-650
size

expanding windows to full II-67
managing windows II-67
moving windows to preferred II-67

skewness of wave V-821
2D V-323

Skip this block button II-155
Skip this Path button II-43
Skip this Wave button II-40
skipping lines

in delimited text files II-151
in general text files II-157

Sleep operation V-650
slices

in tables II-222
Slider controls III-364, III-379

Slider operation V-651
Slider operation V-651
sliding average V-654
Slow operation IV-106, V-654
Smooth operation V-654–V-658
SmoothCustom operation III-263, V-658
smoothing III-258–III-264

(see also cubic spline)
binomial III-259, V-654
box III-261, V-654
convolution III-263
custom coefficients III-263, V-180, V-183
end effects III-264
FilterFIR operation V-180–V-183
FilterIIR operation V-183–V-189
gaussian III-259, V-654
in image plots V-473
Least Squares Polynomial III-260, V-654
locally-weighted regression V-402
loess III-262
Loess operation V-402
LOWESS III-262, V-402
median III-123, III-261
nonparametric regression V-402

percentile III-262
percentiles V-654
polynomial V-654
Savitzky-Golay III-260, V-654
Smooth operation V-654–V-658
SmoothCustom operation V-658
WavesAverage user-defined function III-148

Smoothing dialog III-258
snapshots V-618
SndLoadSaveWave XOP II-168, IV-225
SndLoadWave IV-225
SndLoadWave XOP II-167
SndSaveAIFF IV-225
SndSaveWAV IV-225
Sobel edge detector V-286
Sort operation III-136, V-659
sorting III-136–III-139

description of III-137
file lists V-346
guided tour (example) I-50
index sort III-139
index wave applications III-139
IndexSort operation III-139, V-347
MakeIndex operation III-139, V-413
many waves III-139
multiple keys III-138
Reverse operation V-601
simplest case III-137
Sort operation III-136, V-659
SortList function V-660
text III-138

case-sensitive III-138
example III-138

unsorting III-139
XY data III-137

SortList function V-660
sorting file lists V-346

SoundInRecord operation V-660
SoundInSet operation V-661
SoundInStartChart operation V-661
SoundInStatus operation V-662
SoundInStopChart operation V-662
sounds

AddMovieAudio operation V-19
Beep operation V-36
files

loading waves from II-167
input IV-224–IV-225
NewMovie operation V-497
output IV-224
PlaySnd operation V-549
PlaySound operation V-550
recording from microphone IV-281
related operations V-5
SndLoadWave IV-225
SndLoadWave XOP II-168, IV-225

sounds Spotlight

Index 85

SndSaveAIFF IV-225
SndSaveWAV IV-225
SoundInRecord operation V-660
SoundInSet operation V-661
SoundInStartChart operation V-661
SoundInStatus operation V-662
SoundInStopChart operation V-662

source waves
in wave assignment II-94
subranges of II-96

SP (single precision wave type) II-90
spaces

as delimiters II-151
in delimited text files II-151
in fixed field text files II-151–II-152
in general text files II-153
in text data columns II-150

spacing
in notebooks III-8–III-9

sparse data
converting to matrix II-328

sparse matrices
ImageFromXYZ operation V-289

spatial frequency filtering III-306
Spec suffix used in Reference chapter V-14
special characters

in notebooks III-16, V-517–V-518
special folders II-44
special functions V-7

airyA V-21
airyAD V-21
airyB V-21
airyBD V-22
besseli V-36
besselj V-37
besselk V-37
bessely V-37
bessI V-37
beta V-39
betai V-39
binomial V-41
binomialln V-41
binomialNoise V-41
chebyshev V-50
chebyshevU V-51
dawson V-114
digamma V-128
ei V-155
erf V-157
erfc V-158
erfcw V-158
expInt V-164
expnoise V-165
factorial V-166
fresnelCos V-205
fresnelCS V-206

fresnelSin V-206
gamma V-228
gammaNoise V-228
gammInc V-228
gammln V-229
gammp V-229
gammq V-229
hermite V-269
hermiteGauss V-269
hyperG0F1 V-275
hyperG1F1 V-275
hyperG2F1 V-275
hyperGNoise V-276
hyperGPFQ V-276
inverseErf V-359
inverseErfc V-359
laguerre V-367–V-368
LaguerreA V-367
legendreA V-374
logNormalNoise V-407, V-410
poissonNoise V-552
sphericalBessJ V-666
sphericalBessJD V-666
sphericalBessY V-667
sphericalBessYD V-667
sphericalHarmonics V-667
sqrt function V-669
StatsVonMisesNoise V-751
wnoise V-840
ZernikeR V-843

special numbers
e V-152
Inf V-347
NaN V-490
Pi V-545

Special submenu III-17
SpecialCharacterInfo function V-662
SpecialCharacterList function V-664
SpecialDirPath function V-665
spectral leakage

in FFTs III-244
spherical interpolation V-667
sphericalBessJ function V-666
sphericalBessJD function V-666
sphericalBessY function V-667
sphericalBessYD function V-667
sphericalHarmonics function V-667
SphericalInterpolate operation V-667
SphericalTriangulate operation V-668
spline (see cubic spline)
splines wavelet transform V-151
split axes (see axes:split axes)
SplitAxis Dialog II-304
SplitString operation IV-157, V-668
splitting up waves II-86
Spotlight II-44

spreadsheets statistics

Index 86

spreadsheets
(see also tables)
compared to tables II-191

sprintf operation IV-235–IV-237, V-669
conversion specifications IV-236

SQL II-179
sqrt function V-669
sqrt of a wave V-824
square root V-669, V-824
sscanf operation V-669
SSL IV-253
Stack operation V-672
stacked bar charts (see category plots:stacked bar

charts)
stacking

(see also aligning, graphs:stacked plots)
graphs in page layouts II-393
in page layouts II-384, II-388, II-395, V-672
windows II-65, V-673

StackWindows operation V-673
standard deviation

for a point in curve fitting III-159, III-181
of a wave V-323, V-817, V-821
of an image V-323
of parameters in curve fitting III-196

standard error of mean V-821
StartMSTimer function V-673
static

constants IV-40
functions V-673
user functions

ModuleName pragma IV-43
static functions IV-86, IV-216

independent modules IV-218–IV-219, IV-223
regular modules IV-216

Static keyword V-673
user functions IV-40, IV-86

stationery
experiment files II-34
notebook files III-37

statistics III-330–III-339
classification V-364
clustering V-364
complementary error function V-158
complex III-128
confidence intervals V-766
curve fitting III-196–III-199, V-766
error function V-157, V-359
functions V-9

binomialln V-41
binomialNoise V-41
enoise V-156
erf V-157
erfc V-158
erfcw V-158
expnoise V-165

faverage V-169
faverageXY V-169
gamma V-228
gammaNoise V-228
gammInc V-228
gammln V-229
gammp V-229
gammq V-229
gnoise V-255
hyperGNoise V-276
inverseErf V-359
inverseErfc V-359
logNormalNoise V-407, V-410
max V-438
mean V-439
min V-440
norm V-505
poissonNoise V-552
StatsBetaCDF V-678
StatsBetaPDF V-679
StatsBinomialCDF V-679
StatsBinomialPDF V-679
StatsCauchyCDF V-680
StatsCauchyPDF V-680
StatsChiCDF V-680
StatsChiPDF V-681
StatsCMSSDCDF V-690
StatsCorrelation V-693
StatsDExpCDF V-693
StatsDExpPdf V-694
StatsErlangCDF V-696
StatsErlangPDF V-696
StatsErrorPDF V-696
StatsEValueCDF V-696
StatsEValuePDF V-697
StatsExpCDF V-697
StatsExpPDF V-697
StatsFCDF V-697
StatsFPDF V-698
StatsFriedmanCDF V-698
StatsGammaCDF V-700
StatsGammaPDF V-700
StatsGeometricCDF V-701
StatsGeometricPDF V-701
StatsHyperGCDF V-702
StatsHyperGPDF V-702
StatsInvBetaCDF V-703
StatsInvBinomialCDF V-703
StatsInvCauchyCDF V-703
StatsInvChiCDF V-703
StatsInvCMSSDCDF V-704
StatsInvDExpCdf V-704
StatsInvEValueCDF V-704
StatsInvExpCDF V-705
StatsInvFCDF V-705
StatsInvFriedmanCDF V-705

statistics statistics

Index 87

StatsInvGammaCDF V-706
StatsInvGeometricCDF V-706
StatsInvKuiperCDF V-706
StatsInvLogisticCDF V-706
StatsInvLogNormalCDF V-707
StatsInvMaxwellCDF V-707
StatsInvMooreCDF V-707
StatsInvNBinomialCDF V-707
StatsInvNCChiCDF V-707
StatsInvNCFCDF V-708
StatsInvNormalCDF V-708
StatsInvParetoCDF V-708
StatsInvPoissonCDF V-708
StatsInvPowerCDF V-708
StatsInvQCDF V-708
StatsInvQpCDF V-709
StatsInvRayleighCdf V-709
StatsInvRectangularCDF V-709
StatsInvSpearmanCDF V-710
StatsInvStudentCDF V-710
StatsInvTopDownCDF V-710
StatsInvTriangularCDF V-710
StatsInvUSquaredCDF V-711
StatsInvVonMisesCDF V-711
StatsInvWeibullCDF V-711
StatsKuiperCDF V-714
StatsLogisticCDF V-721
StatsLogisticPDF V-721
StatsLogNormalCDF V-721
StatsMaxwellCDF V-722
StatsMaxwellPDF V-722
StatsMedian V-722
StatsMooreCDF V-723
StatsNBinomialCDF V-725
StatsNBinomialPDF V-725
StatsNCChiCDF V-725
StatsNCChiPDF V-725
StatsNCFCDF V-726
StatsNCFPDF V-726
StatsNCTCDF V-726
StatsNCTPDF V-726
StatsNormalCDF V-727
StatsNormalPDF V-727
StatsParetoCDF V-730
StatsParetoPDF V-730
StatsPermute V-731
StatsPoissonCDF V-731
StatsPoissonPDF V-732
StatsPowerCDF V-732
StatsPowerNoise V-732
StatsPowerPDF V-732
StatsQCDF V-733
StatsRayleighCDF V-735
StatsRayleighPDF V-736
StatsRectangularCDF V-736
StatsRectangularPDF V-736

StatsRunsCDF V-739
StatsSpearmanRhoCDF V-741
StatsStudentCDF V-743
StatsStudentPDF V-743
StatsTopDownCDF V-744
StatsTriangularCDF V-744
StatsTriangularPDF V-744
StatsTrimmedMean V-745
StatsUSquaredCDF V-748
StatsVonMisesCDF V-751
StatsVonMisesNoise V-751
StatsVonMisesPDF V-751
StatsWaldCDF V-752
StatsWaldPDF V-752
StatsWeibullCDF V-754
StatsWeibullPDF V-754
StudentA V-766
StudentT V-766
sum V-767
variance V-809
waveMax V-817
waveMin V-817
wnoise V-840

incomplete gamma function V-229
k-means clustering V-364
maximum V-824
minimum V-824
of complex waves V-820
of matrices

maximum chunk location V-822
maximum column location V-822
maximum layer location V-822
maximum row location V-822
minimum chunk location V-822
minimum column location V-822
minimum layer location V-822
minimum row location V-822

of waves III-126–III-128, V-820
average deviation V-821
average value V-821
dispersion V-821
kurtosis V-822
maximum V-817, V-822, V-824
maximum location V-822
mean V-439
minimum V-817, V-822, V-824
minimum location V-822
number of points V-821
RMS V-821
root mean squared V-821
skewness V-821
standard deviation V-821
standard error of mean V-821
sum V-767
sum of values V-821
variance V-809, V-821

statistics StatsInvKuiperCDF function

Index 88

operations V-3
EdgeStats V-152
Histogram V-272
ImageHistModification V-291
ImageHistogram V-293
ImageStats V-322
PulseStats V-578
SetRandomSeed V-639
StatsAngularDistanceTest V-673
StatsANOVA1Test V-675
StatsANOVA2NRTest V-676
StatsANOVA2RMTest V-677
StatsANOVA2Test V-677
StatsChiTest V-681
StatsCircularCorrelationTest V-682
StatsCircularMeans V-684
StatsCircularMoments V-685
StatsCircularTwoSampleTest V-689
StatsCochranTest V-691
StatsContingencyTable V-691
StatsDExpPdf V-694
StatsDunnettTest V-695
StatsFriedmanTest V-698
StatsFTest V-699
StatsHodgesAjneTest V-701
StatsJBTest V-712–V-713
StatsKendallTauTest V-713
StatsKWTest V-715
StatsLinearCorrelationTest V-716
StatsLinearRegression V-717
StatsMultiCorrelationTest V-723
StatsNPMCTest V-727
StatsNPNominalSRTest V-730
statsQuantiles V-733
StatsRankCorrelationTest V-735
StatsResample V-737
StatsSample V-739
StatsScheffeTest V-739
StatsSignTest V-741
StatsSRTest V-742
StatsTTest V-745
StatsTukeyTest V-747
StatsVariancesTest V-749
StatsWatsonUSquaredTest V-752
StatsWatsonWilliamsTest V-753
StatsWheelerWatsonTest V-754
StatsWilcoxonRankTest V-755
StatsWRCorrelationTest V-757
WaveMeanStdv V-817
WaveStats V-820

random V-156, V-255
references III-338
special functions V-228–V-229
Student’s T distribution V-766

StatsAngularDistanceTest operation V-673
StatsANOVA1Test operation V-675

StatsANOVA2NRTest operation V-676
StatsANOVA2RMTest operation V-677
StatsANOVA2Test operation V-677
StatsBetaCDF function V-678
StatsBetaPDF function V-679
StatsBinomialCDF function V-679
StatsBinomialPDF function V-679
StatsCauchyCDF function V-680
StatsCauchyPDF function V-680
StatsChiCDF function V-680
StatsChiPDF function V-681
StatsChiTest operation V-681
StatsCircularCorrelationTest operation V-682
StatsCircularMeans operation V-684
StatsCircularMoments operation V-685
StatsCircularTwoSampleTest operation V-689
StatsCMSSDCDF function V-690
StatsCochranTest operation V-691
StatsContingencyTable operation V-691
StatsCorrelation function V-693
StatsDExpCDF function V-693
StatsDExpPdf function V-694
StatsDIPTest operation V-694
StatsDunnettTest operation V-695
StatsErlangCDF function V-696
StatsErlangPDF function V-696
StatsErrorPDF function V-696
StatsEValueCDF function V-696
StatsEValuePDF function V-697
StatsExpCDF function V-697
StatsExpPDF function V-697
StatsFCDF function V-697
StatsFPDF function V-698
StatsFriedmanCDF function V-698
StatsFriedmanTest operation V-698
StatsFTest operation V-699
StatsGammaCDF function V-700
StatsGammaPDF function V-700
StatsGeometricCDF function V-701
StatsGeometricPDF function V-701
StatsHodgesAjneTest operation V-701
StatsHyperGCDF function V-702
StatsHyperGPDF function V-702
StatsInvBetaCDF function V-703
StatsInvBinomialCDF function V-703
StatsInvCauchyCDF function V-703
StatsInvChiCDF function V-703
StatsInvCMSSDCDF function V-704
StatsInvDExpCdf function V-704
StatsInvEValueCDF function V-704
StatsInvExpCDF function V-705
StatsInvFCDF function V-705
StatsInvFriedmanCDF function V-705
StatsInvGammaCDF function V-706
StatsInvGeometricCDF function V-706
StatsInvKuiperCDF function V-706

StatsInvLogisticCDF function String declaration

Index 89

StatsInvLogisticCDF function V-706
StatsInvLogNormalCDF function V-707
StatsInvMaxwellCDF function V-707
StatsInvMooreCDF function V-707
StatsInvNBinomialCDF function V-707
StatsInvNCChiCDF function V-707
StatsInvNCFCDF function V-708
StatsInvNormalCDF function V-708
StatsInvParetoCDF function V-708
StatsInvPoissonCDF function V-708
StatsInvPowerCDF function V-708
StatsInvQCDF function V-708
StatsInvQpCDF function V-709
StatsInvRayleighCdf function V-709
StatsInvRectangularCDF function V-709
StatsInvSpearmanCDF function V-710
StatsInvStudentCDF function V-710
StatsInvTopDownCDF function V-710
StatsInvTriangularCDF function V-710
StatsInvUSquaredCDF function V-711
StatsInvVonMisesCDF function V-711
StatsInvWeibullCDF function V-711
StatsJBTest operation V-712–V-713
StatsKendallTauTest operation V-713
StatsKuiperCDF function V-714
StatsKWTest operation V-715
StatsLinearCorrelationTest operation V-716
StatsLinearRegression operation V-717
StatsLogisticCDF function V-721
StatsLogisticPDF function V-721
StatsLogNormalCDF function V-721
StatsMaxwellCDF function V-722
StatsMaxwellPDF function V-722
StatsMedian function V-722
StatsMooreCDF function V-723
StatsMultiCorrelationTest operation V-723
StatsNBinomialCDF function V-725
StatsNBinomialPDF function V-725
StatsNCChiCDF function V-725
StatsNCChiPDF function V-725
StatsNCFCDF function V-726
StatsNCFPDF function V-726
StatsNCTCDF function V-726
StatsNCTPDF function V-726
StatsNormalCDF function V-727
StatsNormalPDF function V-727
StatsNPMCTest operation V-727
StatsNPNominalSRTest operation V-730
StatsParetoCDF function V-730
StatsParetoPDF function V-730
StatsPermute function V-731
StatsPoissonCDF function V-731
StatsPoissonPDF function V-732
StatsPowerCDF function V-732
StatsPowerNoise function V-732
StatsPowerPDF function V-732

StatsQCDF function V-733
statsQuantiles operation V-733
StatsRankCorrelationTest operation V-735
StatsRayleighCDF function V-735
StatsRayleighPDF function V-736
StatsRectangularCDF function V-736
StatsRectangularPDF function V-736
StatsResample operation V-737
StatsRunsCDF function V-739
StatsSample operation V-739
StatsScheffeTest operation V-739
StatsSignTest operation V-741
StatsSpearmanRhoCDF function V-741
StatsSRTest operation V-742
StatsStudentCDF function V-743
StatsStudentPDF function V-743
StatsTopDownCDF function V-744
StatsTriangularCDF function V-744
StatsTriangularPDF function V-744
StatsTrimmedMean function V-745
StatsTTest operation V-745
StatsTukeyTest operation V-747
StatsUSquaredCDF function V-748
StatsVariancesTest operation V-749
StatsVonMisesCDF function V-751
StatsVonMisesNoise function V-751
StatsVonMisesPDF function V-751
StatsWaldCDF function V-752
StatsWaldPDF function V-752
StatsWatsonUSquaredTest operation V-752
StatsWatsonWilliamsTest operation V-753
StatsWeibullCDF function V-754
StatsWeibullPDF function V-754
StatsWheelerWatsonTest operation V-754
StatsWilcoxonRankTest operation V-755
StatsWRCorrelationTest operation V-757
status line help II-5

for controls III-384
stellar images

deconvolution V-313
stereographic projection V-576
StopMSTimer function V-758
stopping

from control panel IV-141
macros IV-107
user functions IV-93

Str suffix used in Reference chapter V-14
str2num function II-92, V-758
Strconstant keyword V-758

in switch statements IV-35
string declaration IV-40

strict wave reference mode IV-41
String declaration II-118, V-759

automatic creation of SVAR IV-56, IV-60
in user functions IV-56
local variables in macros IV-103

String declaration strings

Index 90

local variables in user functions IV-30
not in a macro loop IV-103

string variables II-118–II-119, IV-12–IV-16
(see also strings, text waves)
$ operator IV-15, IV-48
"" empty string IV-13
assignment IV-5, IV-14
char2num function V-48
CmpStr function V-59
constants IV-40
converting to names IV-15–IV-16, IV-48
copying II-136
creating V-759
declaring II-118, V-759
default values V-765
deleting II-119
dependency assignments IV-206
displayed in annotations III-49
empty IV-13
exists function V-163
expressions IV-12
global II-118, III-364, III-378, V-759
GrepList function V-264
GrepString function V-265
indexing IV-13
initializing II-118, V-759

in macros IV-103
in user functions IV-30

killing II-119, II-134, V-363
KillString operation V-363
length of IV-13, V-762
list of

GetIndexedObjName function V-238
GetIndexedObjNameDFR function V-238

ListBox controls III-363, III-376
listing in data folder V-111
ListMatch function V-387
loading from Igor experiment file V-388–V-390
LowerStr function V-410
MoveString operation V-486
moving to data folder II-136
names

CheckName function V-55
naming rules III-417
num2char function V-521
num2istr function V-521
num2str function V-521
Object Status dialog III-420
parsing V-669
pass-by-reference IV-45
ProcedureText function V-575
related functions V-10
renaming II-136, III-418, V-589
saving V-607
Set Variable controls III-364, III-378
SortList function V-660

SplitString operation V-668
sscanf operation V-669
static IV-40
Static keyword V-673
str2num function V-758
Strconstant V-758
StringByKey function V-759
StringFromList function V-760
StringList function V-761
stringmatch function V-761
strlen function V-762
strsearch function V-762
StrVarOrDefault function V-765
substitution IV-15–IV-16

precedence IV-16
text waves IV-13
UniqueName function V-802

string-to-number conversion V-758
StringByKey function IV-155, V-759
stringCRC function V-759
StringFromList function IV-155, V-760

example IV-179
load waves (example) II-170–II-171

StringList function V-761
stringmatch function V-761
strings IV-12–IV-16

(see also string variables, text waves)
$ operator IV-15, IV-48
"" empty string IV-13, V-14
and sprintf IV-237
as lists IV-155
assignment IV-5, IV-14
char2num function V-48
CmpStr function V-59
command in string: Execute operation V-161
concatenation IV-5, IV-7
constants IV-40
conversion to upper case V-803
converting to names IV-15–IV-16, IV-48
declaring II-118
empty IV-13, V-14
escape characters IV-13, V-367
exists function V-163
expressions IV-12
FontSizeHeight function V-201
FontSizeStringWidth function V-202
Grep operation V-258
GrepList function V-264
GrepString function V-265
in user functions IV-29
indexing IV-13
initializing

in macros IV-103
in user functions IV-30

keyword-value packed strings II-102, IV-155
length of IV-13, V-762

strings structures

Index 91

ListBox controls III-363, III-376
LowerStr function V-410
naming rules III-417
null IV-13
num2char function V-521
num2istr function V-521
num2str function V-521
PadString function V-537
parsing V-669
pass-by-reference IV-45
ProcedureText function V-575
processing lists of waves IV-178–IV-180
related functions V-10
RemoveEnding function V-585
ReplaceString function V-592
replacing items V-592
searching V-258, V-264–V-265, V-762
SelectString function V-624
SortList function V-660
SplitString operation V-668
splitting V-668
sprintf operation V-669
Static keyword V-673
Str in Reference chapter V-14
str2num function V-758
StringByKey function V-759
StringFromList function V-760
StringList function V-761
stringmatch function V-761
strlen function V-762
strsearch function V-762
substitution IV-15–IV-16, IV-48

in user functions IV-67
precedence IV-16

substrings IV-13
text waves IV-13
UnPadString function V-802
utility functions IV-16

strip chart (see controls:charts)
strlen function V-762
StrSearch function V-762
strswitch statements IV-34, V-763

default keyword V-117
STRUCT keyword V-763
StructGet operation V-763

use in multitasking IV-294
StructPut operation V-764

use in multitasking IV-294
structure fit functions III-228–III-231

examples III-229
multivariate III-231
syntax III-230
WMFitInfoStruct structure III-230

structures IV-82–IV-86
accessing members IV-82
action procedures IV-85

alignment IV-82
applications IV-85
arrays of

disallowed IV-83
built-in IV-85

Point V-551
Rect V-582
RGBColor V-602
WMAxisHookStruct V-450, V-836
WMBackgroundStruct V-836
WMButtonAction V-45, V-836
WMCheckboxAction V-53, V-836
WMCustomAction V-105
WMCustomControlAction V-836
WMFitInfoStruct V-837
WMGizmoHookStruct V-837
WMListboxAction V-383, V-837
WMMarkerHookStruct IV-280, V-838
WMPopupAction V-559, V-838
WMSetVariableAction V-644, V-838
WMSliderAction V-653, V-839
WMTabControlAction V-770, V-839
WMWinHookStruct IV-270, IV-273, V-839

controls III-386, IV-85
declaring IV-82
defining IV-82
DFREF keyword IV-64
EndStructure keyword V-156
examples IV-83, IV-86
exporting V-171

into a string V-764
into a wave V-764

for axes
WMAxisHookStruct V-450

for controls
WMButtonAction V-45
WMCheckboxAction V-53
WMCustomAction V-105
WMListboxAction V-383
WMPopupAction V-559
WMSetVariableAction V-644
WMSliderAction V-653
WMTabControlAction V-770

global IV-86
importing V-170

from a string V-763
from a wave V-763

limitations IV-86
local references V-763
member arrays IV-82
member types IV-82
Multithread keyword example IV-294
named window hooks

WMWinHookStruct IV-270
passing IV-83
passing to XOPs IV-86

structures subwindows

Index 92

Point structure V-551
predefined IV-85
printing V-565–V-566
printing structure elements V-566
reading V-170
Rect structure V-582
RGBColor structure V-602
static IV-82
STRUCT keyword V-763
StructGet operation V-763
StructPut operation V-764
structure fit functions III-228–III-231

examples III-229
multivariate III-231
syntax III-230
WMFitInfoStruct structure III-230

user data IV-85
using IV-82
windows IV-85
WMAxisHookStruct structure V-836
WMBackgroundStruct structure V-836
WMButtonAction structure V-836
WMCheckboxAction structure V-836
WMCustomControlAction structure V-836
WMFitInfoStruct structure V-837
WMGizmoHookStruct structure V-837
WMListboxAction structure V-837
WMMarkerHookStruct structure V-838
WMPopupAction structure V-838
WMSetVariableAction structure V-838
WMSliderAction structure V-839
WMTabControlAction structure V-839
WMWinHookStruct structure V-839
writing V-171

StrVarOrDefault function V-765
example IV-129
saving parameters IV-129

StudentA function V-766
StudentT function V-766
Student’s T distribution V-766
style macros II-63, II-307–II-310, V-834

adding annotations II-310
DoWindow operation V-138
for page layouts II-399
for tables II-231
limitations II-310
load waves II-172
object indexing IV-17
vs preferences II-307, II-309

styles
(see also column styles, wave styles)
plain notebooks III-9

Submenu keyword IV-111, V-766
submenus

consolidating items IV-115
creating IV-111

subminor ticks
in user tick waves II-279
log axes II-270, II-272

subpatterns
in regular expressions IV-166
named IV-166

subrange
display syntax II-293
displaying II-292
limitations II-293

subranges
clipping of X values II-96
of text waves IV-14
of waves II-96

subscripts
in an axis label II-286
in annotations III-47
in notebooks III-11

subset of data
using cursors in graphs II-292

subtopics (see help:subtopics)
subtraction IV-5
subtypes IV-102, IV-183–IV-184

ButtonControl III-369, IV-184
CheckBoxControl IV-184, V-53
FitFunc IV-184
Graph IV-184
GraphMarquee IV-184, V-243
GraphStyle IV-184
Layout IV-184
LayoutMarquee IV-184, V-243
LayoutStyle IV-184
ListBoxControl IV-184
Panel IV-184
PopupMenuControl IV-184, V-559
SetVariableControl IV-184, V-644
Table IV-184
TableStyle IV-184
user functions IV-29
window macros II-60

subwindows III-88–III-98
(see also embedding)
ChildWindowList function V-56
closing V-363
command syntax III-97
contextual menus III-90
converting to III-96
creating III-90
DefineGuide operation V-122
draw mode III-88, III-91
examples III-93
exterior III-392, IV-275, V-251, V-500–V-501

examples V-502
frame style III-91
frames III-88
graphs III-89

subwindows tab characters

Index 93

GuideInfo function V-267
GuideNameList function V-268
guides III-88, III-90, III-92

built-in III-90, V-123
creating V-122
deleting V-122
information about V-267
list of V-268
moving V-122
user-defined III-91–III-92

in control panels III-392
killing V-363
layout mode III-88, III-92
limitations III-89
listing V-56
MoveSubwindow operation V-487
notebook subwindows III-96
operate mode III-88, III-91
page layouts II-382, III-89, III-96
panels III-89
path to active V-251
positioning III-90
programming III-97
recreating notebooks V-519
renaming V-590
repositioning V-487
selection III-88
SetActiveSubwindow operation V-625
setting active V-625
sizing in commands III-97
tables III-89
terminology III-88
tutorial III-93
window hook functions IV-271

sum function V-767
Sun Raster files

file info V-287
importing II-165, V-301

superscripts
in an axis label II-286
in annotations III-47
in notebooks III-11

support Web page II-16
surface plots II-110, II-238
SVAR keyword IV-51, V-767

/Z flag IV-53
automatic creation IV-56
automatic creation with rtGlobals IV-56, IV-60
example IV-55
failures IV-53
SVAR_Exists function V-768
use with $ IV-48
use with data folders IV-55
with data folders IV-229

SVAR_Exists IV-53, V-768
SVD (see singular value decomposition)

switch statements IV-34, V-768
break IV-35
Constant keyword V-67
default IV-35
default keyword V-117
Strconstant keyword V-758

Symbolic Path Status dialog II-37
symbolic paths II-34–II-37

automatically created II-36
browsing files II-90
creating manually II-35, V-503
default II-90
example II-34, II-174
home II-36
Igor II-36
killing II-37
KillPath operation V-362
naming rules III-417

CheckName function V-55
NewPath operation V-503
Open operation V-524
PathInfo operation V-541
PathList function V-541
platform-related issues III-397
related functions V-11
related operations V-4
renaming III-418, V-590

synchronization
font/keyboard III-415

syntax coloring III-354
changing III-354

system encoding
file name issues II-50

system software required III-428
system variables (see variables:system)

T
t function V-768

in multidimensional waves II-108–II-109, II-111
T scaling

changing V-82
SetScale operation V-640

CopyScales operation V-82
SetScale operation V-640

T units
changing V-82, V-640

T values
t function V-768

T_Tags V-302
tab characters

escape code for IV-13
in annotations III-50
in delimited text files II-146
in general text files II-153
in notebooks III-8–III-9

tab characters tables

Index 94

in strings IV-13
in tables II-219
in text data columns II-150
indentation conventions IV-22
plain notebooks III-9
saving text waves II-178

Tab key
in tables II-203

tab-delimited data
exporting from tables II-212
pasting II-198
saving waves as V-605

TabControl III-364, III-380
creating III-380
drawing order of V-119

TabControl operation V-769
Table Macros submenu II-62
Table menu II-191, II-194
Table pop-up menu II-194
table selection

Compose Expression dialog III-142
Table subtype IV-184

keyword V-772
TableInfo function V-772
tables II-191–II-233

appending columns II-201
AppendToTable operation V-31
arrow keys II-203
Asian language settings III-416
can’t enter X values II-204
carriage returns II-219
cell area II-194
cell ID area II-202
CheckDisplayed operation V-54
Choose Dimensions dialog II-222
chunks of data II-222
clearing values II-206
closing II-199
columns

autosizing
by double-clicking II-213
by menus II-213
limitations II-214

formats II-217
pasting II-208

headings by index V-818
indices II-221
names II-200, II-220
positions II-212
styles II-231
titles II-216
widths II-213

comma as decimal separator II-217
compared to spreadsheets II-191
complex columns II-200
Compose Expression dialog III-142

copy/paste multidimensional data II-225–II-228
copying II-206, II-212
create-paste of multidimensional data II-228
creating II-191, V-154–V-155

blank values II-206
multidimensional waves II-192
text waves II-192
waves by copy/paste II-199, II-228
while loading waves II-193

cutting II-207
rows or columns II-227

d suffix II-200
data values II-192
dates II-198, II-204, II-218

formats II-205
pasting of II-206

decimal numeric format II-217
decimal separators II-197
DelayUpdate box II-195, II-203
deleting data II-209
digits after decimal point II-218
dimension labels II-193, II-221
dynamic updating II-191, II-195
Edit operation V-154–V-155
editing existing waves II-192
elapsed time II-218
elements column hiding V-481
empty table in new experiments II-33
Enter key II-203
entering dates II-205
entering new waves II-191, II-197
entering values II-203
exporting as graphics II-229, V-617
exporting data II-212

save table copy II-229
SaveTableCopy operation V-620

exporting graphics (see exporting)
extracting a matrix from a 3D wave II-228
finding values II-209
fixed dimension II-224
fractional seconds II-218
free dimension II-224
general numeric format II-217
hexadecimal numbers II-219
hiding parts of II-195
horizontal dimension II-223
horizontal index row II-221
i suffix II-200
imag suffix II-200
in new experiments II-191, III-414
in notebooks III-21
index columns II-200, II-208

for multidimensional waves II-201
INFs II-206
insert-paste of multidimensional data II-225,

II-227

tables tags

Index 95

inserting data II-203, II-209
insertion cell II-194, II-198, II-203
integer numeric format II-217
invisible characters II-219
killing II-199
killing waves II-202
l suffix II-200
layers of data II-222
list of V-831, V-833
making a matrix from 1D waves II-226
making a new table II-58

example I-14
ModifyTable operation II-216, V-477–V-481
multidimensional waves II-220–II-228
names and titles II-56
NaNs II-206
new table II-58

example I-14
numeric formats II-217
numeric precision II-198, II-218
octal numbers II-219
page setup preference II-231
page setups II-229
parts of a table II-194
pasting

commas II-220
data II-198, II-207
dates II-206
index columns II-208
with column names II-198
X columns (see tables:X columns)

point column II-213, II-221
hiding V-481

preferences II-230, III-413
printing II-229, V-574
printing selection II-229
properties V-772
real columns II-200
real suffix II-200
recreating II-199
recreation macros V-834
Redimension Waves dialog II-226, II-228
related operations V-1
relation to layouts I-3
relation to waves I-3, II-191
removing columns II-202, V-587
replace-paste of multidimensional data II-225
replacing values II-211
Return key II-203
row column hiding V-481
row indices II-221
scientific numeric format II-217
Select All II-202
Select All in Modify Columns dialog II-215
selecting cells II-202
selection

Compose Expression dialog III-142
selections V-248
setting to NaN II-206
settings

Miscellaneous Settings dialog III-413
shortcuts II-232
showing parts of II-195
showing X values II-192
significant digits II-218
slices of data II-222
specifying column by index number V-477
style macros II-231
styles II-214, II-216

for multidimensional waves II-215
subwindows III-89
subwindows in layouts II-382
synchronization

font/keyboard III-416
tab characters II-219
Tab key II-203
tab-delimited data II-198
Table pop-up menu II-194
TableInfo function V-772
target cell ID II-194
target cells II-202
text color V-479
text waves II-219
thousands separators II-197
time–of–day II-218
times II-198, II-218
troubleshooting II-198, II-204
vertical dimension II-223
views of multidimensional waves II-223
WaveName function V-818
waves in V-819
window names II-199, V-802
window titles II-192, II-199
wintype function V-835
X columns II-200
x suffix II-200, II-216
X values II-192
y suffix II-200, II-216

TableStyle subtype IV-184
keyword V-772

Tag operation V-774–V-780
/Q and contour plots II-343

tags III-57–III-61
(see also annotations, textboxes, legends)
<??> V-778
anchors III-60
arrows III-59–III-60
as contour labels II-341–II-342
attached to wave III-57
attachment point III-48, III-57

changing III-59
definition III-43

tags text waves

Index 96

deleting III-59
dynamic text III-48, V-779
hidden III-61
lines III-59–III-60
lines too close to markers III-60
making a tag (example) I-18
modifying III-45
offscreen III-61
position III-60–III-61

offscreen III-61
problems in style macros II-310
standoff III-60
Tag operation V-774–V-780
TagVal function III-49, V-780
TagWaveRef function III-49, V-781
trace offsets III-48
unwanted III-61
wave name III-48

TagVal function III-49, V-780
in contour labels II-342

TagWaveRef function III-49, IV-178, V-781
tan function V-781
tan of a wave V-824
tanh function V-781
tank icon (it’s a bulldozer, really) III-77
Targa files

exporting V-314
file info V-287
importing II-165, V-301

target cells in tables II-202
target window II-55

graphs II-239
technical support II-15

email II-15
FAQ II-3, II-16
FAX number II-16
FTP II-15
known problems II-3
mailing list II-16
phone number II-16
World Wide Web II-16

template files
formatted notebooks III-37

templates
experiments II-34
file extensions II-34
in procedure windows III-343

temporary files
saving experiments II-43

termination criteria in curve fitting III-160
ternary graphs II-284
text

cross-platform issues III-403
DrawText operation V-145
dynamic text in tags V-779
in annotations III-45

retrieving from notebooks III-35
typography settings III-414

TEXT files
notebooks III-3

text files
delimited text files II-143–II-152
delimiter characters II-141
description of II-141
fixed field text files II-152
FORTRAN files II-152
FReadLine operation V-204
general text files II-153–II-158
headers II-141
Igor Text files II-158–II-162
TextFile function V-786

text formats
(see also fonts, font size, font style)
in notebooks III-10

text info variables III-65–III-68
\M III-67
escape codes III-66
examples

elaborate III-67
simple III-66

initial state III-66
Text Markers dialog II-254
text markers in graphs II-254–II-255
text operations

Close operation V-57
DrawText operation V-145
fprintf operation IV-235–IV-237, V-204
FReadLine operation V-204
FSetPos operation V-206
FStatus operation V-206
IndexedFile function V-345
Open operation IV-176, V-523–V-528
Print operation V-565
printf operation IV-235–IV-237, V-566–V-569
sprintf operation IV-235–IV-237, V-669
sscanf operation V-669
TextFile function V-786
wfprintf operation IV-235–IV-237, V-826

text sizes
(see also font size)
in notebooks III-10–III-11
in procedure windows III-354

text styles
(see also font style)
in notebooks III-10
in procedure windows III-354

text transfers IV-252
text waves

(see also strings, string variables)
accessing IV-53, IV-67, V-811
allowable content of II-104
assignments IV-15, IV-53, IV-67, V-811

text waves Tick Options tab

Index 97

converting to/from numeric wave II-92
creating IV-15
creating in tables II-192
in category plots II-316, V-129
in Igor Text files II-161
in tables II-219
in user functions IV-53, IV-67, V-811
indexing IV-14
labels in graphs II-254–II-255
loading from delimited text files II-150
making II-83, II-103–II-104

examples II-83, II-104
markers in graphs II-254–II-255
preallocation V-412
programmer notes II-104
redimensioning II-92
saving in text files II-178
SetScale pitfall V-640
speeding up V-412
strings IV-13
subranges IV-14–IV-15

TextBox operation V-782–V-786
textboxes

(see also annotations, tags, legends, drawing
tools:Simple Text tool)

<??> V-784
definition III-43
exterior III-52

affects graph plot area III-53
in page layouts II-385
interior III-52
modifying III-45
offset III-53
position III-52–III-54
TextBox operation V-782–V-786

TextFile function V-786
textures

creating V-328
thermometer display (see controls:Value Displays)
thousands separators

in tick mark labels V-470
ThreadGroupCreate function V-787
ThreadGroupGetDF function V-787
ThreadGroupGetDFR IV-296
ThreadGroupGetDFR function V-788
ThreadGroupPutDF IV-296
ThreadGroupPutDF operation V-788
ThreadGroupRelease function V-789
ThreadGroupWait function V-789
ThreadProcessorCount function V-789
ThreadReturnValue function V-790
threads IV-295–IV-302

Igor Text files II-160
network operations IV-247
worker functions IV-295

ThreadSafe Functions IV-87

ThreadSafe functions IV-295–IV-302
ThreadSafe Functions (see also preemptive

multitasking)
ThreadSafe keyword V-790
ThreadStart operation V-790
tick mark labels II-269

axis scaling II-287
color II-269, V-471
engineering mode II-271
exponential mode II-271
exponential notation II-271

forcing II-274
font II-269
hiding II-275
log axes II-288
low trip, high trip II-271
minor tick labels on log axes II-277
no leading zero II-274
no trailing zeroes II-274
scaling II-271
scientific notation II-271
tweaks II-274
units

suppress II-274
units in every label II-274
use thousands separator II-274, V-470
x10^n prevention II-287
zero as 0 II-274

tick marks
auto ticks II-270
color II-269
computed manual ticks II-270
control of II-270
control of minor II-270
crossing II-272
hiding II-269
inside II-272
length II-272
location II-272
manual II-277–II-280

canonic tick II-277
date/time axes II-283–II-284
from waves II-278–II-280
tick increment II-277

minor ticks on log axes II-277
on mirror axes II-268
outside II-272
problems II-281
separation II-270
subminor on log axes II-270
thickness II-269, II-272
types illustrated II-272
user ticks from waves II-270, II-278–II-280

specifying tick type II-279
Tick Options tab II-274

Ticks and Grids tab traces

Index 98

Ticks and Grids tab II-271–II-274
date/time items II-281

ticks function IV-226, V-790
TIFF

CMYK III-104, III-112
GeoTIFF II-169

TIFF files
exporting V-314, V-316

2D waves V-316
RGB waves V-316
stacks V-317
tags V-314

file info V-287
importing II-165, V-301

tags V-301
TIFFs

as EPS preview III-101, III-109
exporting RTF III-26
importing III-424

Tile operation V-791
Tile or Stack Windows dialog II-66
TileWindows operation V-792
tiling

in page layouts II-384, II-388, II-395, V-791
windows II-65, V-792

time format in date/time axes II-281
time frequency analysis III-247
time function V-793
time–of–day II-218, II-280–II-284, V-623

loading format II-144
timeouts

in network operations IV-247
timers IV-226

MarkPerfTestTime operation V-414
StartMSTimer function V-673
StopMSTimer function V-758
ticks function V-790

times II-282
date/time axes II-268, II-280–II-284
DateTime function V-114
elapsed time II-144, II-218, II-280–II-284, V-623
in delimited text files II-144
in Igor Text files II-159
in notebooks III-16, III-23
in tables II-198, II-218

formats II-218
pasting in tables II-208
related functions V-6
representation of II-280
Secs2Time function V-623
ticks function V-790
time function V-793
time–of–day II-144, II-218, II-280–II-284, V-623
units II-84–II-85
UTC V-113
wave precision II-85

TitleBox controls III-365, III-382
TitleBox operation V-793
titles

(see also window titles, annotations)
column titles in tables II-216
TitleBox operation V-793

To Clip button I-7
To Cmd Line button I-7
ToCommandLine operation V-795
too many items in pop-up menus III-416
tool palette

(see also drawing tools:tool palette)
floating vs. internal preferences III-416
HideTools operation V-271
in page layouts II-377, II-383–II-386
ShowTools operation V-648

tool tips II-5
settings III-417

tools (see tool palette, drawing tools)
ToolsGrid operation V-795
topics (see help:topics)
total least squares (see curve fitting:ODR)
total pages

in notebooks III-16
trace instance names II-241
trace menus IV-123
trace name parameters

user-defined IV-73
trace names II-243

as parameters IV-72
programming IV-72
programming example IV-73

Trace Offset dialog II-263
TraceFromPixel function V-796
TraceInfo function IV-156, V-797
TraceNameList function V-798

example IV-177, IV-179
in dialogs IV-127

TraceNameToWaveRef function IV-69, IV-178,
V-799

example IV-128, IV-177
traces

(see also waves, graphs)
appearance in graphs II-251–II-266, II-305,

II-324, II-345, V-453
AppendToGraph operation V-29
apppending II-243
color II-259, V-29, V-459

of each point V-459
cursors

z value from contour trace V-843
customize at point II-266, V-462
dashed lines II-255
data folder II-127
defined II-240
display modes II-252, V-30

traces troubleshooting

Index 99

drawing layer III-80
editing by drawing (example) I-23, I-30
f(z) II-259
fill between II-258
gaps II-245, II-264
hiding II-255, II-264
hiding portions trick II-304
Igor Tips II-4
in graphs V-798
index in style macros II-309
instance names III-48, IV-17, V-453
labels II-254–II-255
line size II-255
line style II-255, II-305, II-324, II-345
list of V-798, V-814
live II-304
log colors II-259, V-456
markers II-249, II-253, II-261, II-269

as f(z) II-259
coloring uniquely V-459

ModifyGraph operation V-453
names as parameters IV-72
next defined II-257
offsetting in graphs II-263–II-264

example I-25
multipliers II-264
preventing II-263
undoing II-263

preferences II-305, II-324, II-345, III-413
programming IV-72
programming example IV-73
property from auxiliary wave II-259
related functions V-7
related operations V-1
removing II-244, V-586
reordering II-258
ReorderTraces operation V-591
ReplaceWave operation V-594
replacing II-129, II-244
selecting for modification II-252
sending to back II-258
Set as f(z) II-259
SetDashPattern operation V-626
setting all the same II-252
shortcuts II-312–II-313
styles (see waves:styles)
symbol in an axis label II-286–II-287, III-48
text markers II-254–II-255
trace instance names II-241
trace names II-243
TraceFromPixel function V-796
TraceInfo function V-797
TraceNameList function V-798
TraceNameToWaveRef function V-799
user-defined trace names IV-73
wave reference from V-799

X wave from trace V-842
transferring

experiments II-38
files III-396–III-397

FTP III-396, V-210, V-212
files via FTP IV-249
files via HTTP IV-253
rulers III-15

transforms (see image analysis:transforms,
waves:transforms, and specific transform
names)

transparency
annotations III-51
graphs in layouts II-399
pictures in layouts II-399

Transverse Mercator projection V-576
trapezoidal integration

area function V-32
areaXY function V-32
faverage function V-169
faverageXY function V-169
Integrate operation V-348
integrate1D operation V-349

tree icon (what it is) III-77
trend removal

DSPDetrend operation V-146
trial exponent for axis label II-287
triangle window function III-245
Triangulate3d operation V-800
triangulation

convexHull operation V-76
Delaunay V-446
Triangulate3d operation V-800

triangulaton
ModifyContour operation V-443
perturbation in contour plots V-446

trigonometric functions V-6
acos V-18
arbitrary precision V-23
asin V-33
atan V-33
atan2 V-34
cos V-84, V-823
cot V-84
csc V-87
sawtooth V-622
sec V-622
sin V-649
tan V-781, V-824

triple-clicking
on text III-355

troubleshooting II-15, III-428–III-429
(see also crashes)
crash log file III-429
curve fitting III-232–III-234
delimited text files II-152

troubleshooting user data

Index 100

general text files II-157
tables II-198, II-204

true and false IV-31
TrueType

embedding in EPS III-104, III-112
embedding in PDFs III-104
exporting tables II-230

Macintosh OS X III-105
Windows OS III-113

truncate to integer (trunc) function V-801
try-catch-endtry statements IV-38, V-801

catch keyword V-47
endtry keyword V-156

TSV files (see MIME-TSV)
tutorial I-13
.txt file extension

notebooks III-3
type (see numeric type)
typography settings

Miscellaneous Settings dialog III-414

U
UINT16 (16 bit unsigned integer wave type) II-90
UINT32 (32 bit unsigned integer wave type) II-90
UINT8 (8 bit unsigned integer wave type) II-90
UNC

paths III-401
undefine statement V-17
Unicode

file name issues II-50
in notebooks III-4
in procedure files III-355
loading waves II-162

uniform spacing (see waveform data, X scaling)
UniqueName function V-802
units

(see also X units, Y units)
dat II-85

precision II-85
of waves V-826

Universal Name Convention
paths III-401

Unix
paths III-401
shell scripts IV-241

example IV-241
unlocking

notebooks III-6
procedure files III-344

unpacked experiments
adopting files II-38
adopting files programmatically V-20
experiment file II-30
LoadData operation II-164
preferences III-414

UnPadString function V-802
Unwrap dialog III-265
Unwrap operation III-265, V-803
unwrapping phase III-241, V-339
Update All Now III-18, III-21
Update Selection Now III-18, III-21
updates

during macros IV-107
during user functions IV-93
for Igor II-14

updating
annotations III-48–III-50
controls

ControlUpdate operation V-75
ControlUpdate operation III-384–III-385
DelayUpdate operation V-123
DoUpdate operation V-136
during procedures V-123, V-136, V-542, V-601
Igor II-14
PauseUpdate operation V-542
pictures in notebooks III-21
pop-up menu controls III-378
ReplaceWave operation V-594
ResumeUpdate operation V-601
special characters in notebooks III-18, V-518
traces in graph II-129

upgrading
Igor II-14

uploading
directories via FTP IV-251
files via FTP IV-251

upper-case string conversion V-803
UpperStr function V-803
URLDecode function V-803
URLEncode function IV-245, V-803
URLs IV-244

in help files II-13
percent encoding IV-245
reserved characters IV-245
URLDecode function V-803
URLEncode function V-803

use table formatting checkbox II-177
UseOldGraphics III-423
user data

controls III-389
Buttons V-44
CheckBoxes V-52, V-104
examples III-389
GroupBox V-266
ListBox V-382
pop-up menus V-558
SetVariable V-643
Sliders V-652
TabControl V-770

GetUserData function V-250
storing global variables IV-85

user data user functions

Index 101

windows II-72, V-647
examples II-72
getting V-250

user files
path to folder V-665

user files folder (see Igor Pro User Files
user functions IV-28–IV-97

$ operator IV-48
& operator IV-45
aborting IV-38, IV-93, V-17–V-18, V-801
accessing global variables IV-55
accessing waves III-144–III-149, IV-66–IV-69
automatic local variables IV-47
bitwise and logical operators IV-33
body code IV-31
break in switch IV-35
break statements IV-37
calling a macro IV-181
calling an external operation IV-181
case statements IV-34
coercion of data types IV-92
compared to macros IV-100
comparisons IV-32
compile time vs runtime IV-49
complex IV-29
complex return value IV-29
complex wave references IV-50
complex waves IV-53, IV-67
conditional compilation IV-90
conditional statements IV-31
constants IV-40
continue statements IV-38
control panels IV-140
creating global variables in data folders IV-229
curve fitting to III-173, V-215
data folder references IV-62–IV-66
data folders II-125
debugging

debugger IV-188–IV-201
GetRTStackInfo function V-247
runtime stack information V-247

default values V-522, V-765
dependency assignment IV-210, V-634
dialogs IV-126
direct reference to globals IV-95
do-while loops IV-36
DoUpdate IV-93
Duplicate operation V-149
errors IV-91
examples III-145–III-152

DoLogHist III-151–III-152
FindSegmentMeans III-149
LogRatio III-147
modifying a wave III-146
RemoveOutliers III-146
WavesAverage III-148

WavesMax III-148
WaveSum III-146

Execute operation IV-181
exists function V-163
FitFunc keyword V-200
flags IV-29
flow control IV-31
for loops IV-37
FuncRefInfo function V-220
Function Execution Error dialog IV-92
function references IV-88–IV-89
FunctionInfo function V-220
FunctionList function V-225
GetRTError IV-92
GetRTStackInfo function V-247
global variables IV-50–IV-56
hook functions IV-257–IV-269
if-else-endif IV-31
if-elseif-endif IV-32
in curve fitting

details III-219–III-228
IndependentModule keyword V-343
information about V-220
initialization of local variables IV-30
invoking operations IV-92
liberal names IV-53
local variable declaration IV-30
local variables IV-47
loops IV-36
MultiThread keyword V-489
multivariate curve fitting to V-218
names IV-29
Object Status dialog III-421
operation queue IV-256
optional parameters IV-30, IV-46, V-537
overriding IV-88, V-536
parameter lists IV-30
pass-by-reference IV-45
path to V-227
pause for user IV-134
PauseForUser operation V-542
performance V-414
pop-up menus IV-127
precision of calculations IV-29
predefined symbols IV-91
preemptive multitasking IV-87, IV-295–IV-302
preferences IV-183
ProcedureText function V-575
processing waves III-145–III-152
programming with liberal names

IV-151–IV-152
Prompt reuse IV-129
Prompt statements IV-126, IV-129
prototype functions IV-88
retrieve code

ProcedureText function V-575

user functions V_FitTol

Index 102

return statements IV-31
returning waves III-144
reusing prompts IV-129
rtGlobals=0 IV-95
runtime stack information V-247
S_ variables IV-47
scope of variables II-117, II-119, IV-30, IV-47
simple input dialog IV-126
static IV-86

ModuleName keyword IV-42, V-482
Static keyword V-673
string IV-29
string return value IV-29
subtypes IV-29
switch statements IV-34
syntax for curve fitting III-220
syntax of IV-29
text waves IV-53, IV-67
ThreadSafe IV-87, IV-295–IV-302
ThreadSafe keyword V-790
timing V-414
updates IV-93
V_ variables IV-47
variables

declaration IV-30
global IV-50–IV-56
local IV-47
scope II-117, II-119, IV-30, IV-47

wave access IV-50–IV-56
wave as parameter IV-67
wave parameters IV-46
wave reference functions IV-69
wave references IV-56–IV-62
waves as parameters III-144, V-489
while loops IV-36

user interface I-6
User Procedures IV-21
User Procedures folder II-47, III-347, IV-21, IV-149
user-defined functions (see user functions)
user-defined menus

contextual menu example IV-143
user-defined menus (see menu definitions)
user-defined trace names IV-73
UserAxes drawing layer III-80

(see also drawing tools:layers)
UserBack drawing layer III-80

in page layouts II-376–II-377
UserFront drawing layer III-80

in page layouts II-376–II-377
usernames

in URLs IV-244
UTC V-113
UTF-16

in notebooks III-4
in procedure files III-355
loading waves II-162

UTF-2 character encoding III-29
UTF-8 character encoding III-29
utility procedures IV-21

writing IV-150

V
V_ variables II-117

curve fitting III-204–III-208
in macros IV-107
in user functions IV-47

V_AbortCode IV-39, V-801
V_adev III-126, V-323, V-738, V-821
V_avg III-126, V-323, V-738, V-821
V_Blue V-56, V-73–V-74, V-555, V-638
V_blue V-241
V_bottom V-243, V-251–V-252
V_BPP V-288
V_bytesRead V-391
V_CenterX V-42
V_CenterY V-42
V_CenterZ V-42
V_chisq III-188, III-205–III-206
V_correlation V-324
V_creationDate V-235
V_debugDangerously IV-200–IV-201
V_debugOnError V-117
V_denominator V-581
V_disable V-71
V_EdgeAmp4_0 V-153
V_EdgeDLoc3_1 V-153
V_EdgeLoc1 V-153
V_EdgeLoc2 V-153
V_EdgeLoc3 V-153
V_EdgeLvl0 V-153
V_EdgeLvl1 V-153
V_EdgeLvl2 V-153
V_EdgeLvl3 V-153
V_EdgeLvl4 V-153
V_EdgeSlope3_1 V-153
V_enable V-117
V_endCol V-249
V_endParagraph V-249
V_endPos V-139, V-249
V_endRow III-127, V-249, V-822
V_FIFOChunks V-179
V_FIFOnchans V-179
V_FIFORunning V-179
V_filePos V-207
V_FitError III-205–III-206
V_FitIterStart III-205, III-207
V_FitMaxIters III-205
V_FitNumIters III-205
V_FitOptions III-188, III-204–III-205
V_FitQuitReason III-205–III-206, V-146
V_FitTol III-204

V_Flag V_rising

Index 103

V_Flag
use with GetErrMessage V-236

V_flag V-36, V-42, V-54, V-56, V-71, V-79, V-81, V-87,
V-110, V-121, V-124–V-125, V-132,
V-134–V-135, V-137, V-139, V-146–V-147,
V-153, V-161–V-162, V-179, V-184,
V-190–V-191, V-193, V-197, V-207, V-210,
V-212, V-231, V-235, V-241, V-243, V-246,
V-249, V-253, V-288, V-303, V-322, V-377,
V-391–V-392, V-402, V-405, V-421,
V-423–V-425, V-436, V-483, V-485, V-497,
V-507, V-512–V-513, V-515, V-517, V-527,
V-534–V-535, V-540–V-541, V-547–V-548,
V-550, V-554–V-555, V-565, V-579, V-610,
V-612, V-616, V-619, V-621, V-634, V-638,
V-661–V-662, V-668, V-674–V-678, V-681,
V-685, V-687, V-691–V-692, V-695,
V-699–V-701, V-712–V-715, V-724, V-729,
V-740, V-746, V-748–V-749, V-753,
V-755–V-756

loading waves (example) II-170
LoadWave operation II-170

V_frameCount V-288
V_Green V-56, V-73–V-74, V-555, V-638
V_green V-241
V_Height V-71, V-74
V_horizScroll V-72
V_IQR V-738
V_isAliasShortcut V-235
V_isFile V-235
V_isFolder V-235
V_isInvisible V-235
V_isReadOnly V-235
V_isStationery V-235
V_kind V-554
V_kurt III-127, V-323, V-738, V-822
V_LeadingEdgeLoc V-193
V_left V-71, V-243, V-246, V-251–V-252
V_LevelsFound V-191
V_LevelX V-190
V_logEOF V-207, V-235
V_LUPolarity V-425
V_marquee V-244
V_max III-127, V-203, V-231, V-323, V-535–V-536,

V-738, V-822
V_maxChunkLoc III-127, V-822
V_maxColLoc III-127, V-323, V-822
V_maxLayerLoc III-127, V-822
V_maxloc III-127, V-535, V-822
V_maxRowLoc III-127, V-323, V-822
V_Median V-738
V_min III-127, V-231, V-323, V-535, V-738, V-822
V_minChunkLoc III-127, V-822
V_minColLoc III-127, V-323, V-822
V_minLayerLoc III-127, V-822
V_minloc III-127, V-535, V-822

V_minRowLoc III-127, V-323, V-822
V_modificationDate V-235
V_nextRun V-36
V_nextValue V-377
V_nheld III-205
V_no_MIME_TSV_Load IV-261
V_npnts III-126, III-188, V-323, V-543, V-821

curve fitting III-205
V_nterms III-205
V_numCols V-288
V_numerator V-581
V_numImages V-288, V-303
V_numINFs III-126, III-205, V-738, V-821
V_numNaNs III-126, III-205, V-738, V-821
V_NumParticles V-283
V_numRegions V-341
V_numResidues V-339, V-341
V_numRoots V-197
V_numRows V-288
V_NVAR_SVAR_WAVE_Checking V-117
V_ODEFunctionCalls V-355
V_ODEMinStep V-355
V_ODEStepCompleted III-282, V-355
V_ODEStepSize V-355
V_ODETotalSteps V-355
V_OptNumFunctionCalls V-536
V_OptNumIters V-536
V_OptTermCode V-535
V_PeakLoc V-193
V_PeakVal V-193
V_PeakWidth V-193
V_period V-36
V_Pr III-205
V_PrintUsingBitmap II-396, III-104, III-112
V_PulseAmp4_0 V-579
V_PulseLoc1 V-579
V_PulseLoc2 V-579
V_PulseLoc3 V-579
V_PulseLvl0 V-579
V_PulseLvl123 V-579
V_PulseLvl4 V-579
V_PulsePolarity V-579
V_PulseWidth2_1 V-579
V_PulseWidth3_1 V-579
V_PulseWidth3_2 V-579
V_q III-205–III-206
V_Q25 V-738
V_Q75 V-738
V_quality V-288
V_r2 III-205
V_Rab III-205
V_Radius V-42
V_Red V-56, V-73–V-74, V-555, V-638
V_red V-241
V_right V-243, V-251–V-252
V_rising V-190

V_rms variables

Index 104

V_rms III-126, V-323, V-738, V-821
V_Root V-197
V_Root2 V-197
V_rowHeight V-72
V_SANumIncreases V-535
V_SANumReductions V-535
V_sdev III-126, V-323, V-738, V-821
V_selCol V-72
V_sem V-821
V_siga III-205
V_sigb III-205
V_skew III-127, V-323, V-738, V-821
V_SoundInAGC V-661–V-662
V_SoundInChansAv V-662
V_SoundInGain V-661–V-662
V_SoundInSampSize V-662
V_startCol V-249
V_startParagraph V-249
V_startPos V-139, V-199, V-249
V_startRow III-127, V-72, V-249, V-822
V_structSize V-391, V-616
V_Sum V-738
V_sum V-821
V_SVConditionNumber V-437
V_tapValue V-377
V_TBBufZone III-51, IV-269, V-782
V_threshold V-324
V_tol III-204, III-233
V_top V-71, V-243, V-246, V-251–V-252
V_TrailingEdgeLoc V-193
V_value V-71, V-121, V-198–V-199, V-241, V-251,

V-329, V-333–V-334, V-342, V-380, V-548,
V-830

V_version V-236
V_vertScroll V-72
V_Width V-71
V_YatRoot V-197
V_YatRoot2 V-197
ValDisplay operation III-382–III-384, IV-210,

V-804–V-808
Value Display controls

bar display III-365, III-383–III-384
examples III-382–III-384
height III-383
LED display III-383
limits III-365, III-383–III-384
numeric readout III-383
programming III-382–III-384
title III-384
updating

problems III-391, V-75
using III-365
widths explained III-382

Variable declaration II-117, V-808
automatic creation of NVAR IV-56, IV-60
in user functions IV-56

local variables in macros IV-103
local variables in user functions IV-30
not in a macro loop IV-103

VariableList function V-810
variables II-116–II-119

(see also numeric variables, string variables,
system variables)

complex II-117
default values V-522
exists function V-163
global II-116–II-119, II-126, III-364,

III-378–III-379
creating II-116
in data folders II-122
in user functions IV-50–IV-56
numeric variables V-809
runtime lookup IV-51–IV-53
string variables V-759
uses of II-116
using structures instead IV-85
versus local IV-47

list of
GetIndexedObjName function V-238
GetIndexedObjNameDFR function V-238

listing in data folder V-111
LoadData operation II-164
loading from Igor experiment file V-388–V-390
loading waves II-170
local II-119

in macros IV-103
in user functions IV-30
versus global IV-47

MoveVariable operation V-488
names II-116

CheckName function V-55
naming rules III-417
numeric II-117–II-118
NVAR_Exists function V-523
pass-by-reference IV-45
references using $ IV-48
runtime lookup of globals IV-51–IV-53
saving V-607
saving procedure parameters IV-129
scope II-117, II-119, IV-30, IV-47, IV-103, IV-107
Static keyword V-673
string II-118–II-119
SVAR_Exists function V-768
system II-116

and data folders II-126
system variables and dependency assignments

IV-207
user II-117
uses for global variables II-116
V_ variables II-117
veclen II-116
writing formatted data V-204

variables file W_JBResults

Index 105

variables file
in experiments II-31

variance
of images V-323
of waves V-323, V-821

variance function V-809
vcsr function V-810

in wave assignments II-101
VDT XOP IV-281
veclen II-116
veclib

disabling for matrix operations III-144
vector (see waveform data)
vector plots II-255, V-453

wind barbs V-453
vectors

cross product V-87
Velocity Engine

matrix operations III-144
vers resource

in procedure files IV-149
version

IgorVersion function V-280
in include statement IV-149
of Igor II-15, V-279
of procedure file IV-149
pragma keyword V-811
vers resource IV-149

version pragma IV-42
VertCrossing free axis II-241, II-243
vertical dimension in tables II-223
vertical offsets

in notebooks III-10–III-11
very big files II-169
virtual memory

very big files II-169
virtual memory (see memory)
Visual C++ IV-185
volumetric plots II-110
Voronoi interpolation V-297, V-443
voronoi tesselation V-334

W
W_Abs V-823
W_Acos V-823
W_alphaValues V-419
W_AngleWave V-687
W_ANOVA1BnF V-675
W_ANOVA1Welch V-675
W_Asin V-823
W_Atan V-823
W_BackgroundCoeff V-312
W_Beam V-327
W_betaValues V-419
W_BoundaryIndex V-283

W_BoundaryX V-283
W_BoundaryY V-283
W_CConjugate V-823
W_circularity V-283
W_CircularMeans V-684
W_CircularStats V-685
W_coef III-188

in curve fitting III-177–III-178, V-94, V-101
W_Compressed V-326
W_ContingencyTableResults V-691
W_Cos V-823
W_Covar III-199
W_Cross V-87
W_CumulativeVAR V-543
W_CWTScaling V-109
W_DebugTimerIDs V-414
W_DebugTimerVals V-414
W_DeCompressed V-326
W_Detrend V-146
W_DWT V-151
W_Eigen V-543–V-544
W_eigenValues V-418–V-419, V-436
W_ExtractedCol V-327
W_ExtractedRow V-327
W_extremum III-294, V-536
W_FFT V-173
W_FindLevels V-190
W_FitConstraint III-203, V-95, V-101
W_flipped V-823
W_FPCenterIndex V-203
W_FPClusterIndex V-203
W_FuzzyClasses V-327
W_Hilbert V-271
W_HodgesAjne V-701
W_IE V-543–V-544
W_IEigenValues V-436
W_ImageHist V-293
W_ImageHistB V-293
W_ImageHistG V-293
W_ImageHistR V-293
W_ImageLineProfile V-300
W_ImageObjArea V-283
W_ImageObjPerimeter V-283
W_IND V-543–V-544
W_Index V-260
W_index V-258
W_IndexedValues V-329
W_inPoly V-194
W_IntAvg V-282
W_Interpolated V-357
W_IntMax V-282
W_IntMin V-282
W_Inverse V-823
W_IPIV V-423
W_JackKnifeStats V-737
W_JBResults V-712

W_KMDispersion waterfall plots

Index 106

W_KMDispersion V-364
W_KMMembers V-364–V-365
W_KSResults V-713
W_KWTestResults V-674, V-715
W_LFSR V-377
W_LinearOrderStats V-686
W_LinearRegressionMC V-720
W_LineProfileStdv V-300
W_LineProfileX V-300
W_LineProfileY V-300
W_LombPeriodogram V-408
W_LombProb V-408
W_LUPermutation V-425
W_Magnitude V-824
W_MagSqr V-824
W_MatrixOpInfo V-418
W_MatrixRCONDE V-418
W_MatrixRCONDV V-418
W_max V-824
W_MeanStdv V-817
W_min V-824
W_NNResults V-490
W_normalizedArea V-824
W_OptGradient III-294, V-536
W_ParamConfidenceInterval V-101
W_Periodogram V-146
W_Phase V-824
W_polyRoot V-198
W_PolyX V-139
W_PolyY V-139
W_PrimeFactors V-565
W_PSL V-543–V-544
W_QuantilesIndex V-734
W_QuantileValues V-734
W_reciprocalConditionE V-420
W_reciprocalConditionV V-420
W_rectangularity V-283
W_RegParams V-311
W_REigenValues V-436
W_Resampled V-737–V-738
W_RMS V-543–V-544
W_roi_to_1d V-331
W_Root V-197
W_RSD V-543–V-544
W_Sgn V-824
W_sigma III-188

in curve fitting V-101
W_sigma wave in curve fitting III-178, III-196
W_Sin V-824
W_SoundInRates V-662
W_SphericalInterpolation V-668
W_SpotX V-283
W_SpotY V-283
W_sqrt V-824
W_SqrtN V-273
W_StatsChiTest V-681

W_StatsCircularTwoSamples V-682, V-689
W_StatsFTest V-699
W_StatsKendallTauTest V-713
W_StatsLinearCorrelationTest V-716
W_StatsLinearRegression V-717
W_StatsMultiCorrelationTest V-723–V-724
W_StatsNPSRTest V-730
W_StatsQuantiles V-734, V-738
W_StatsRankCorrelationTest V-735
W_StatsSRTest V-742
W_StatsTTest V-745
W_StatsVariancesTest V-749
W_StatsWRCorrelationTest V-757
W_sumCols V-333
W_sumRows V-333
W_tan V-824
W_Texture V-328
W_TriangulationData V-297, V-299
W_W V-422, V-437
W_WatsonUtest V-690, V-752
W_WatsonWilliams V-753
W_WaveList wave V-252
W_WaveTransform V-823
W_WheelerWatson V-754
W_WilcoxonTest V-674, V-755
W_XHull V-76
W_xmax V-284
W_xmin V-284
W_XPolyn V-256
W_XPolynn III-76
W_XProjection V-576
W_YatRoot V-197
W_YHull V-76
W_ymax V-284
W_ymin V-284
W_YPolyn V-256
W_YPolynn III-76
W_YProjection V-576
W_ZScores V-821
wait

Sleep operation V-650
wait until user clicks

Sleep/B V-650
warping

images V-297
watch cursor

nonspinning V-650
spinning III-416

waterfall
subranges II-293

waterfall plots II-300
creating II-300, V-504
cursors V-544, V-580
displaying II-300
modifying V-481
ModifyWaterfall operation V-481

waterfall plots WaveExists

Index 107

NewWaterfall operation V-504
pcsr function V-544
qcsr function V-580
“poor man’s” II-263

WAV sound files
LoadWAVfile XOP II-167
SndLoadWave IV-225
SndSaveWAV IV-225

wave (see waveform data, waves)
wave assignments II-94–II-100

* II-96
bounds checking IV-42
chunk indexing V-768
chunk numbers V-604
column indexing V-842
column numbers V-580
Compose Expression dialog III-142
concatenating waves II-98
data values II-94
decomposing waves II-98
dependency formulas II-101, IV-207
destination waves II-94
evaluation of II-94
example II-94
FastOp operation V-167
impulses II-99
increment II-95
interpolation II-96, II-100
layer indexing V-842
layer numbers V-581
lists of values II-96
mismatched waves II-100, III-152
missing indices II-96
multidimensional waves II-111–II-113
MultiThread keyword V-489
p function II-94, II-112
point numbers V-536
q function II-112
r function II-112
row indexing in assignments V-840
row numbers V-536
s function II-112
source waves II-94
speeding up V-167
subranges II-96
synthesis II-99
unexpected results II-101
x function II-94
X indexing in assignments V-840
XY data II-97

wave instance names IV-16
in annotations III-48

WAVE keyword IV-51, V-811
/Z flag IV-53
automatic creation with rtGlobals IV-57, IV-60
example IV-55

failures IV-53
function results IV-60
in procedures III-144
inline IV-58
reference type flags IV-59
reference types IV-58
standalone IV-57
use with $ IV-48
use with data folders IV-55
wave reference waves IV-61
with data folders IV-229

wave notes II-102
browsing II-90
copy/paste in tables II-199, II-228
in graphs and tables II-102
keyword-value packed strings II-102
note function V-505
Note operation V-505

Wave parameters III-144
in macros IV-105

wave reference functions IV-69, IV-177
WaveExists function V-813
WaveRefIndexed function V-819
WaveRefIndexedDFR function V-819
XWaveRefFromTrace function V-842

wave references IV-56–IV-62
as destination waves IV-69–IV-70
as function results IV-60
automatic creation IV-57
creation with $ IV-48, IV-67
explicit IV-60
inline IV-58
passed as function parameter IV-67
problems IV-60
real versus complex IV-50
standalone IV-57
strict mode IV-41
WAVE keyword IV-51
waves containing IV-61

wave scaling
default, do not use SetScale V-641

Wave Stats dialog III-127
wave styles (see waves:styles)
wave symbols III-54

centering in annotations III-55
customize at point III-55
in an axis label II-286–II-287, III-48
in annotations III-48, III-54
markers III-55–III-56
size in annotations III-55
width in annotations III-56

WAVEClear keyword V-812
waveCRC function V-812
WaveDims function V-813
WaveExists IV-53

WaveExists function waves

Index 108

WaveExists function V-813
example IV-180

waveform arithmetic (see wave assignments)
waveform data

(see also waves)
computing areas III-124
computing means III-124
converting to matrix II-113
definition I-2
description of II-77
generating from XY data III-118
loading waves (example) II-170
versus XY data III-117

WaveInfo function V-813
wavelet transforms

continuous III-248, V-108
CWT operation V-108
discrete III-250, V-151
DWT operation V-151
image analysis III-308–III-309
inverse V-151

WaveList function V-814
in dialogs IV-127
liberal names with IV-152

waveMax function V-817
WaveMeanStdv operation V-817
WaveMetrics

FAX number for technical support II-16
FTP sites II-15
Igor mailing list II-16
packages IV-227
phone number for technical support II-16
sales email II-15
support II-15
support email II-15
support Web page II-16

WaveMetrics Procedures IV-21
WaveMetrics Procedures folder II-47, III-347, IV-21,

IV-149
packages III-349
read only III-344

waveMin function V-817
WaveName function V-818
WaveRefIndexed function IV-177, V-819

example IV-180
WaveRefIndexedDFR function V-819
WaveRefsEqual function IV-178
waves II-77–II-104

(see also waveform data, traces)
2D (see contour plots, image plots, matrices)
3D (see multidimensional waves)
4D (see multidimensional waves)
accessing in user functions IV-50–IV-62
adopting programmatically V-20
appearance in graphs II-251–II-266, II-305,

II-324, II-345

AppendToGraph operation V-29
AppendToTable operation V-31
as bezier curves III-83
as polygons III-83, V-194
as XY pair I-3, V-841–V-842
auxiliary

setting markers II-259
average deviation V-323, V-821
average value III-148, V-323, V-821
axis controlled by wave II-242, II-284, II-286,

V-35, V-67, V-294
browsing II-89
combining V-65
comparing V-157
complex II-98
Concatenate operation V-65
concatenating II-98
contour names V-68
converting to/from text II-92
copying II-136
CopyScales operation V-82
creating II-80, II-108, V-149, V-411

by drawing
GraphWaveDraw operation V-256

examples I-36, I-48, I-55
in tables II-197, II-207

CreationDate function V-87
CsrWave function V-88
CsrWaveRef function V-89
CsrXWaveRef function V-89
D full scale II-109
dat units II-85

precision II-85
data

scaling V-640
types II-90
units V-640
values II-78

finding point number V-40
data folder containing wave V-250
data full scale II-85
date format II-204, II-280
date/time II-102
deallocating memory IV-185, V-812
decomposing II-98
default properties II-82

do not use SetScale V-641
definition I-2, II-77
deleting data II-93, II-209, V-125
dependency formulas II-101, IV-207
DimDelta function V-128
dimension labels (see waves:labels, dimension

labels, column labels, row labels)
dimensions

how many V-813
labels V-189, V-234

waves waves

Index 109

scaling V-640
DimOffset function V-128
DimSize function V-128
dispersion V-323, V-821
display of complex III-241
Duplicate operation V-149
duplicating II-86

in tables II-199, II-228
dynamic updating in tables II-191, II-195
editing by drawing III-76, III-84

examples I-23, I-30
GraphWaveDraw operation V-257

error waves II-265
exists function V-163
exporting (see exporting:waves)
Extract operation V-165
f(z) II-259
finding values V-198–V-199
FindSequence operation V-198
FindValue operation V-199
fixed length V-412, V-583
flip V-823
free IV-75–IV-78

Extract operation V-165
freeing memory IV-185, V-812
freezing

brr V-646
graphing II-238–II-313
hiding in graphs II-255
image names V-306
in experiments V-814
in graphs V-814

CheckDisplayed operation V-54
in macros III-145
in tables V-814

exporting II-229, V-620
in user functions III-144–III-149, IV-66–IV-69
in windows V-814
index V-823
index in style macros II-309
indexing II-95

dimension labels II-109
using dimension labels II-99

information about II-89, V-813
initialization II-97
inserting data II-92, II-209, V-347
instance names III-48, IV-16
integer data types II-102
integer wave calculations IV-8
inverse V-823
killing II-87–II-89, II-134
KillWaves operation V-363
kurtosis V-323, V-822
labels II-109–II-110

example II-99
FindDimLabel function V-189

GetDimLabel function V-234
in delimited text files II-146
in tables II-221
length limit II-110, II-204
naming conventions II-110
SetDimLabel operation V-627
speed considerations II-110
viewing in tables II-193
wave indexing II-99

list of V-814
CountObjects operation V-85
CountObjectsDFR operation V-85
GetIndexedObjName function V-238
GetIndexedObjNameDFR function V-238
properties II-104
waves in graph V-252

listing in data folder V-111
live II-304
loading

(see also Load Waves, loading waves)
from Igor experiment file V-388–V-390

locking V-646
magnitude squared V-824
Make operation V-411
making II-80, II-82, II-108, V-149, V-411
maximum

column location V-323
location V-822
row location V-323
value V-323, V-822

memory considerations IV-184
minimum

column location V-323
location V-822
row location V-323
value V-323, V-822

mismatched waves II-100, III-152
modification date/time V-441
MoveWave operation V-488
moving to data folder II-136
multidimensional (see multidimensional

waves)
name from wave reference V-489
names II-78, II-80, II-130, III-48

(see also waves:renaming)
as parameters IV-69
CheckName function V-55
in Igor Binary files II-163
instance names IV-16
related functions V-10

naming rules III-417
normalization II-97
notes (see wave notes)
number of INFs V-821
number of NaNs V-821

waves WaveUnits function

Index 110

number of points II-83, III-118, III-139, V-128,
V-412, V-522, V-583, V-821

default II-82
numeric precision II-81, II-83, V-583

default II-82
numeric types II-81, V-825
numpnts function V-522
Object Status dialog III-420
offsets in graphs II-263–II-264

multipliers II-264
preventing II-263
undoing II-263

overview of waves I-2–I-3
overwriting caveats II-83
parameters

in user functions IV-46
to functions IV-10, V-489
to macros IV-10

pass-by-reference IV-46
passed as function parameter IV-67
point numbers II-78, V-841
preventing modification V-646
printing V-565
processing lists of waves IV-178–IV-180
properties default II-82
Redimension operation V-583
redimensioning II-91, V-583
related functions V-7
related operations V-2
relation to graphs I-3
relation to tables I-3, II-191
removing INFs V-825
removing NaNs V-825
renaming II-91, II-136, III-418, V-589

in tables II-192, II-197
reshaping 1D to 2D V-584
Reverse operation V-601
RMS value V-323, V-821
rotate V-823
Rotate operation V-603
rows II-77
runtime lookup of globals IV-51–IV-53
saving

(see also saving waves)
wfprintf operation V-826

scaling II-83, V-128, V-640
searching V-198–V-199
SetDimLabel operation V-627
SetScale operation V-640–V-641
SetWaveLock operation V-646
shift V-823
sign V-824
skewness V-323, V-821
splitting up II-86
standard deviation V-817, V-821
standard error of mean V-821

statistics III-126–III-128, V-817, V-820
styles II-251–II-266, II-307–II-310

preferences II-305, II-324, II-345, III-413
sum function V-767
sum of values V-821
symbols in legends III-48, III-54
synthesis II-99
temporary II-122
terminology I-2, II-77
text (see text waves)
time format II-204, II-280
trace instance names III-48
transforms V-823
types II-90
uniform spacing I-2
UniqueName function V-802
units string of V-826
variance V-821
wave instance names IV-16
wave reference functions IV-177

ContourNameToWaveRef V-69
ImageNameToWaveRef V-307

WAVEClear keyword V-812
WaveDims function V-813
WaveExists function V-813
WaveInfo function V-813
WaveList function V-814
WaveName function V-818
WaveRefIndexed function V-819
WaveRefIndexedDFR function V-819
WaveStats operation III-126
WaveTransform operation V-823
X scaling I-2, II-78, V-125, V-373, V-602
X values II-77–II-78
x0, dx II-78
Y full scale II-109
Y scaling II-109
zero padding V-583

WAVES keyword in Igor Text files II-159
WavesAverage function III-148
WavesMax function III-148
WaveStats

multidimensional waves II-114
WaveStats operation V-820

for finding the mean III-124
NaNs and INFs III-128
special variables III-126
suppressing printing III-128

WaveSum function III-146
WaveTransform

removing NaNs III-122
WaveTransform function V-823
WaveType function V-825
WaveUnits function V-826
WDF (see Wigner Distribution Function)
Web (see World Wide Web)

web pages windows

Index 111

web pages
downloading via HTTP IV-253
HTTP queries IV-255

weighting wave
curve fitting III-181

wfprintf operation IV-175, IV-235–IV-237, V-826
conversion specifications IV-236
example IV-237

WhichListItem function V-827
while loops

in user functions IV-36
Whole Word III-30–III-31
width of graphs II-249
Wigner Distribution Function III-247
Wigner transform III-247
WignerTransform operation V-828
wildcard character V-761, V-810, V-814

WinList function V-831
wind barbs II-303, V-453
Window Control dialog II-64, II-199, II-240

graph style macro (example) II-309
Window keyword IV-102, V-829

data folders II-125
window names II-56

(see also window titles)
changing V-136
CheckName function V-55
graphs II-240, V-131
references using $ IV-49
UniqueName function V-802

window position
platform-related issues III-409

window recreation
(see also recreation macros)
DoWindow operation V-136
page layouts II-379
tables II-200

Window Tiling Area dialog II-66
window titles II-56

(see also window names)
command window II-22
DoWindow operation V-138
for notebooks III-16, III-23, III-31
for page layouts II-379
for tables II-192, II-199
graphs II-240–II-241

WindowFunction operation V-829
windowing

amplitude compensation III-244
Bartlet function V-175
Bartlett function V-147, V-176, V-830
Blackman function V-147, V-176, V-830
Cos function V-176
DSPPeriodgram operation V-146
energy loss III-244
Hamming function V-147, V-176, V-830

Hanning function V-147, V-177, V-830
Hanning window function III-244
images V-341

Bartlet V-342
Bartlett V-342
Blackman V-342
Hamming V-342
Hanning V-342
Kaiser V-342

Kaiser Bessel function V-147, V-177, V-342,
V-830

matrices V-341
other window functions III-245
Parzen function V-147, V-177, V-830
Poisson function V-147, V-177, V-830
Riemann function V-147, V-177, V-830
triangle window function III-245
used with FFT III-242–III-245
WindowFunction operation V-829

Windows
file permissions II-44

windows II-54–II-73
activating II-58
active state V-251
AutoPositionWindow operation V-34
Bring to Front II-67
Close Window dialogs II-60, II-306
closing II-59, V-363
control dialog II-64
DefineGuide operation V-122
DoWindow operation V-136
expand to full size II-67
GetUserData function V-250
GetWindow operation V-251
GuideInfo function V-267
GuideNameList function V-268
guides

built-in V-123
creating V-122, V-267
deleting V-122
information about V-267
list of V-268
moving V-122

help windows II-10
hiding II-58–II-59

HideProcedures operation V-271
hook function V-251

named V-251, V-646
unnamed V-646

hook functions
named IV-270
subwindows IV-271
unnamed IV-276

killing II-59, V-363
list of V-831, V-833
macro submenus II-62

windows World Wide Web

Index 112

MacroList function V-410
making a new window II-58
managing position and size II-67
maximized state V-252
menu II-58–II-67
move to preferred position II-67
MoveWindow operation V-488
names

(see also window names)
of notebooks III-31, V-499
of tables II-199

naming rules III-417
note V-252, V-647
overview II-54
Recent Windows submenu II-58
recreation macros II-59, II-61–II-63, II-306,

V-136, V-834
related functions V-9
related operations V-2
renaming V-590
retrieving II-67
retrieving all II-67
saving II-59
Send to Back II-67
SetWindow operation V-646
shortcuts II-73
showing II-58

DisplayProcedure operation V-132
size V-252
stacking II-65, V-673
style macros V-138
subwindows (see subwindows)
target window II-55
Tile or Stack Windows dialog II-66
tiling II-65, V-792
titles (see window titles)
user data II-72, V-647

examples II-72
getting V-250

Windows menu II-58–II-67
Windows metafiles

importing RTF III-26
saving V-617

Windows OS
ActiveX Automation IV-241
batch files

Igor Pro automation IV-242
date system II-204
file extensions III-407–III-408

cross-platform issues
in procedures III-406

Igor Text files II-162
in procedure files III-406
.itx II-162
platform-related issues III-397
template files II-34

file paths
in procedures III-406

issues III-396
Igor program name III-396

launching multiple Igor instances IV-243
memory management III-427
system requirements III-428
system version info V-279
virtual memory III-427

WinList function V-831
independent modules V-831

WinName function V-833
WinRecreation function V-834
wintype function V-835
wireframe plots II-110, II-238
WMAxisHookStruct V-450
WMAxisHookStruct structure V-836
WMBackgroundStruct structure IV-285–IV-286,

V-836
WMButtonAction structure V-836
WMCheckboxAction structure V-836
WMCustomControlAction structure V-836
WMF

saving V-617
WMF (see Windows metafiles)
WMFitInfoStruct structure V-837
WMGizmoHookStruct structure V-837
WMListboxAction structure V-837
WMMarkerHookStruct IV-280
WMMarkerHookStruct structure V-838
WMMenus.ipf IV-227
WMPopupAction structure V-838
WMSetVariableAction structure V-838
WMSliderAction structure V-839
WMT0 files

notebooks III-3
WMTabControlAction structure V-839
WMWinHookStruct IV-273
WMWinHookStruct structure V-839
wnoise function V-840
word data

defined II-81
worker functions for threads IV-295
worksheets

copy to history III-413
using a notebook as III-5

World Wide Web II-16
creating help file links II-13
HDF file format specification II-169
Igor as browser IV-259, IV-261, IV-265
Igor as server IV-243
NIDAQ Tools information IV-281
opening preferred browser V-42
WaveMetrics

home page II-16
support page II-16

WorldScript Y scaling

Index 113

WorldScript III-415
Wrap Around Search III-30–III-31
wrap end effect method III-264
write-protect

in notebooks III-12, V-507
write-protect icon

in notebooks III-6
in procedure windows III-344

WWW (see World Wide Web, internet)

X
x

suffix in tables II-200, II-216
x function V-840

in multidimensional waves II-108–II-109, II-111
in wave assignments II-94

X keyword in Igor Text files II-160
x offset

in polynomial fitting III-171, V-97
X scaling I-2, II-78

changed by FFTs III-238
changed by IFFTs III-239
changing II-83, V-82

SetScale operation V-640
checking II-90

in tables II-192
CopyScales operation V-82
default II-82
deltax function V-125
for XY data II-78
in Igor Text files II-160
leftx function V-373
loading text files II-149, II-156
pnt2x function V-551
rightx function V-602
Rotate operation III-265
SetScale operation V-640
x2pnt function V-841

X units
changed by FFTs III-238
changed by IFFTs III-239
changing II-83, V-82

SetScale operation V-640
default II-82

X values II-77–II-78
(see also index values)
can’t enter in tables II-204
clipping in subranges II-96
conversion to point numbers V-841
definition II-78
in tables II-192, II-200
in wave assignments II-94
indexing II-94–II-95
interpolation II-96
pnt2x function V-551

relation to point numbers II-78
tag attached at III-58
viewing in tables II-192
x function V-840
x2pnt function V-841

X waves
CsrXWave function V-89
CsrXWaveRef function V-89

x2pnt function V-841
Xcode IV-185
xcsr function V-841
XFUNCs (see external functions)
XLLoadWave XOP II-167
XOP Toolkit IV-185–IV-186
XOPs IV-185
XOPs (see external operations)
XOR

bitwise operator IV-5–IV-6
XWaveName function V-841
XWaveRefFromTrace function IV-177, V-842
XY data

areaXY function V-32
converting to waveform data II-97, III-118
definition I-3
description of II-78
faverageXY function V-169
in curve fitting III-163, III-179
in graphs II-241, V-841–V-842
interpolation of III-118, V-356
loading waves (example) II-173
overview I-3
versus waveform data III-117
X scaling of II-78
XY area procedures III-126

XY Pair to Waveform panel III-119
XYToWave1 user-defined function III-120
XYToWave2 user-defined function III-121
XYZ (color) conversions

rgb2xyz V-331
xyz2rgb V-335

XYZ data
bounding sphere V-42
converting to matrix II-328
interpolation V-357, V-667

Y
y

suffix in tables II-200
Y full scale

default II-82
y function V-842

in multidimensional waves II-108–II-109, II-111
Y scaling

changing V-82
SetScale operation V-640

Y scaling zooming

Index 114

CopyScales operation V-82
SetScale operation V-640
use in Axis Range tab II-248

Y units
changing V-82

SetScale operation V-640
default II-82

Y values
lists of II-96
y function V-842

Z
z function V-842

in multidimensional waves II-108–II-109, II-111
Z scaling

changing V-82
SetScale operation V-640

CopyScales operation V-82
SetScale operation V-640

Z units
changing V-82

SetScale operation V-640

Z values
z function V-842

zcsr function V-843
ZernikeR function V-843
zero end effect method III-264
zero line in graphs II-273
zero padding waves V-583
zeros of functions

finding III-285–III-291
FindRoots operation V-194

zooming
command line II-71
dialogs

text areas II-71
graphs II-246

example I-37
help II-71
help files II-71
history area II-71
notebooks II-71
page layouts II-380
procedure windows II-71
setting default II-71

	Table of Contents
	Volume I Getting Started
	Introduction to Igor Pro
	Introduction to Igor Pro
	Igor Objects
	Waves — The Key Igor Concept
	How Objects Relate
	More Objects

	Igor’s Toolbox
	Built-In Routines
	User-Defined Procedures
	Igor Extensions

	Igor’s User Interface
	The Command Window
	Menus, Dialogs and Commands

	Using Igor for Heavy-Duty Jobs
	Igor Documentation
	Igor Tips (Macintosh only)
	Status Line Help, Tool Tips and Context-Sensitive Help (Windows only)
	The Igor Help System
	The Igor Manual

	Learning Igor
	Getting Hands-On Experience

	Guided Tour of Igor Pro
	Overview
	Terminology
	About the Tour
	Guided Tour 1 - General Tour
	Launching Igor Pro
	Entering Data
	Making a Graph
	Touching up a Graph
	Adding a Legend
	Adding a Tag
	Using Preferences
	Making a Page Layout
	Saving Your Work
	Loading Data
	Appending to a Graph
	Offsetting a Trace
	Unoffsetting a Trace
	Drawing in a Graph
	Making a Window Recreation Macro
	Recreating the Graph
	Saving Your Work
	Using Igor Documentation
	Graphically Editing Data
	Making a Category Plot (Optional)
	Category Plot Options (Optional)
	The Command Window
	Browsing Waves
	Using the Data Browser
	Synthesizing Data
	Zooming and Panning
	Making a Graph with Multiple Axes
	Saving Your Work
	Using Cursors
	Removing a Trace and Axis
	Creating a Graph with Stacked Axes
	Appending to a Layout
	Saving Your Work
	Creating Controls
	Creating a Dependency
	Saving Your Work
	End of the General Tour

	Guided Tour 2 - Data Analysis
	Launching Igor Pro
	Creating Synthetic Data
	Quick Curve Fit to a Gaussian
	More Curve Fitting to a Gaussian
	Sorting
	Fitting to a Subrange
	Extrapolating a Fit After the Fit is Done
	Appending a Fit

	Guided Tour 3 - Histograms and Curve Fitting
	Launching Igor Pro
	Creating Synthetic Data
	Histogram of White Noise
	Histogram of Gaussian Noise
	Curve Fit of Histogram Data
	Curve Fit Residuals (Optional)
	Writing a Procedure (Optional)
	Saving a Procedure File (Optional)
	Including a Procedure File (Optional)

	For Further Exploration

	Volume II User’s Guide: Part 1
	Getting Help
	Overview
	Online Manual
	WaveMetrics Support Web Page
	Online Help
	Igor Tips (Macintosh)
	User-Defined Igor Tips

	Status Line Help, Tool Tips and Context-Sensitive Help (Windows)
	Status Line Help
	Tool Tips
	Context-Sensitive Help

	Igor Shortcuts Help
	Help from a Procedure Window or the Command Line
	The Help Button in Dialogs
	Igor Help Browser
	Help Topics Tab
	Shortcuts Tab
	Command Help Tab
	Search Igor Files Tab
	Manual Tab
	Support Tab

	Igor Help Files
	Igor Help Windows
	Hiding and Killing a Help Window
	Executing Commands from a Help Window
	Compiling Help Files
	Creating Your Own Help File (For Advanced Users)
	Syntax of a Help File
	Creating Links
	Checking Links

	Updating Igor
	Technical Support
	Email Support
	FTP Sites
	World Wide Web
	WaveMetrics Support Web Page
	Igor Mailing List
	IgorExchange
	Telephone Support
	FAX Support

	Help Shortcuts

	The Command Window
	Overview
	Command Window Example
	The Command Buffer
	Command Window Title
	History Area
	Limiting Command History
	History Archive
	History Carbon Copy

	Searching the Command Window
	Command Window Formats
	Getting Help from the Command Line
	Command Window Shortcuts

	Experiments, Files and Folders
	Experiments
	Saving Experiments
	Saving as a Packed Experiment File
	Saving as an Unpacked Experiment File

	Opening Experiments
	Merging Experiments
	Reverting an Experiment
	New Experiments
	Saving an Experiment as a Template
	Browsing Experiments
	Symbolic Paths
	Symbolic Path Example
	Automatically Created Paths
	New Symbolic Path Dialog
	Symbolic Path Status Dialog
	Kill Paths Dialog

	References to Files and Folders
	Avoiding Shared Igor Binary Files
	Adopting Notebook and Procedure Files
	Adopt All

	How Experiments Are Loaded
	Experiment Recreation Procedures
	Experiment Initialization Commands
	Errors During Experiment Load
	How Igor Searches for Missing Folders

	How Experiments Are Saved
	Experiment Save Errors

	Special Folders
	Igor Pro Folder
	Igor Pro User Files
	Igor Help Files Folder
	Igor Extensions Folder
	Igor Procedures Folder
	User Procedures Folder
	WaveMetrics Procedures Folder
	Activating Additional WaveMetrics Files
	Activating Other Files
	Activating Files in a Multi-User Scenario

	Igor File-Handling
	Open or Load File Dialog
	Recent Files and Experiments
	Desktop Drag and Drop

	Problems With File Names Using Non-ASCII Characters

	Windows
	Overview
	The Command Window
	The Rest of the Windows

	The Target Window
	Window Names and Titles
	Allowable Window Names

	The Open File Submenu
	The Windows Menu
	Making a New Window
	Activating Windows
	Showing and Hiding Windows
	Closing a Window
	Saving a Window as a Recreation Macro
	Window Macros Submenus
	The Window Control Dialog
	Arranging Windows
	The Tile or Stack Windows Dialog
	Window Position and Size Management
	Send to Back — Bring to Front

	Text Windows
	Executing Commands
	Text Window Navigation
	Finding Text in the Active Window
	Find and Replace
	Finding Text in Multiple Windows

	Text Magnification
	Window User Data
	Chapters About Specific Windows
	Window Shortcuts

	Waves
	Overview
	Waveform Model of Data
	XY Model of Data
	Making Waves
	Wave Names
	Number of Dimensions
	Number Type and Precision
	Default Wave Properties
	Make Operation
	Make Operation Examples

	Waves and the Miscellaneous Settings Dialog
	Changing Dimension and Data Scaling
	Date, Time, and Date&Time Units

	Duplicate Operation
	Duplicate Operation Examples

	Killing Waves
	KillWaves Operation Examples

	Browsing Waves
	Renaming Waves
	Redimensioning Waves
	Inserting Points
	Deleting Points
	Waveform Arithmetic and Assignments
	Indexing and Subranges
	Interpolation in Wave Assignments
	Lists of Values
	Wave Initialization
	Example: Normalizing Waves
	Example: Converting XY Data to Waveform Data
	Example: Concatenating Waves
	Example: Decomposing Waves
	Example: Complex Wave Calculations
	Example: Comparison Operators and Wave Synthesis
	Example: Wave Assignment and Indexing Using Labels
	Mismatched Waves
	NaNs, INFs and Missing Values
	Strange Cases

	Wave Dependency Formulas
	Using the Wave Note
	Integer Waves
	Date/Time Waves
	Text Waves
	Programmer Notes

	Complete List of Wave Properties

	Multidimensional Waves
	Overview
	Creating Multidimensional Waves
	Programmer Notes
	Dimension Labels
	Graphing Multidimensional Waves
	Analysis on Multidimensional Waves
	Multidimensional Wave Indexing
	Multidimensional Wave Assignment
	Vector (Waveform) to Matrix Conversion
	Matrix to Matrix Conversion
	Multidimensional Fourier Transform
	Treating Multidimensional Waves as 1D

	Numeric and String Variables
	Overview
	Creating Global Variables
	Uses For Global Variables
	Variable Names
	System Variables
	User Variables
	Special User Variables
	Numeric Variables
	String Variables
	Local and Parameter Variables in Procedures

	Data Folders
	Overview
	Data Folder Syntax
	Data Folder Operations and Functions
	Data Folders Reference Functions

	Data Folders and Commands
	Data Folders and User-Defined Functions
	Data Folders and Window Macros
	Data Folders and Assignment Statements
	Data Folders and Controls

	Data Folders and Traces
	Using Data Folders
	Hiding Waves, Strings, and Variables
	Separating Similar Data
	Using Data Folders Example

	Problems with Data Folders
	Data Browser
	Current Data Folder
	Display Checkboxes
	Info Checkbox
	Plot Checkbox
	New Folder Button
	Browse Expt. Button
	Save Copy Button
	Delete Button
	The Preferences Button
	The Execute Cmd Button
	Using the Data Browser Find Dialog
	Programming the Data Browser
	DataBrowser Pop-Up Menu
	Other Data Browser Operations
	Data Browser Shortcuts

	Importing and Exporting Data
	Loading Waves
	Load Waves Submenu
	Number Formats
	The End of the Line

	Loading Delimited Text Files
	Date/Time Formats
	Column Labels
	Examples of Delimited Text
	The Load Waves Dialog for Delimited Text — 1D
	Editing Wave Names
	Set Scaling After Loading Delimited Text Data
	The Load Waves Dialog for Delimited Text — 2D
	2D Label and Position Details
	Loading Text Waves from Delimited Text Files
	Delimited Text Tweaks
	Troubleshooting Delimited Text Files

	Loading Fixed Field Text Files
	The Load Waves Dialog for Fixed Field Text

	Loading General Text Files
	Examples of General Text
	Comparison of General Text, Fixed Field and Delimited Text
	The Load Waves Dialog for General Text — 1D
	Editing Wave Names for a Block
	The Load Waves Dialog for General Text — 2D
	Set Scaling After Loading General Text Data
	General Text Tweaks
	Troubleshooting General Text Files

	Loading Igor Text Files
	Examples of Igor Text
	Igor Text File Format
	Setting Scaling in an Igor Text File
	The Load Waves Dialog for Igor Text
	Loading MultiDimensional Waves from Igor Text Files
	Loading Text Waves from Igor Text Files
	The Igor Text File Type Code and File Extension

	Loading UTF-16 Files
	Loading Igor Binary Data
	The Igor Binary File
	The Load Waves Dialog for Igor Binary
	The LoadData Operation
	Sharing Versus Copying Igor Binary Files

	Loading Image Files
	The Load Image Dialog
	Image Loading Details

	Loading Other Files
	Loading Row-Oriented Text Data
	Loading Sound Files
	Loading HDF Data
	Loading GIS Data
	Loading Very Big Binary Files
	Loading Waves Using Igor Procedures
	Variables Set by the LoadWave Operation
	Loading and Graphing Waveform Data
	Loading and Graphing XY Data
	Loading All of the Files in a Folder

	Saving Waves
	Saving Waves in a Delimited Text File
	Saving Waves in a General Text File
	Saving Waves in an Igor Text File
	Saving Waves in Igor Binary Files
	Saving Waves in Image Files
	Saving Sound Files

	Exporting Text Waves
	Exporting MultiDimensional Waves
	Accessing SQL Databases

	Dialog Features
	Overview
	Operation Dialogs
	Resizable Dialogs
	Movable Dividers
	Dialog Wave Browser
	Dialog Wave Browser Details

	Operation Result Chooser
	Operation Result Displayer

	Tables
	Overview
	Creating Tables
	Table Creation with New Experiment
	Creating an Empty Table for Entering New Waves
	Creating a Table to Edit Existing Waves
	Showing Index Values
	Showing Dimension Labels
	The Horizontal Index Row
	Creating a Table While Loading Waves From a File

	Parts of a Table
	Showing and Hiding Parts of a Table
	Arrow Keys in Tables
	Keyboard Navigation in Tables
	Decimal Symbol and Thousands Separator in Tables
	Using a Table to Create New Waves
	Creating a New Wave by Entering a Value
	Creating New Waves by Pasting Data from Another Program
	Troubleshooting
	Creating New Waves by Pasting Data from Igor

	Table Names and Titles
	Hiding and Showing a Table
	Killing and Recreating a Table
	Index Columns
	Column Names
	Appending Columns
	Removing Columns
	Selecting Cells
	The Insertion Cell
	Entering Values
	Date Values
	Special Values
	Missing Values (NaNs)
	Infinities (INFs)

	Clearing Values
	Copying Values
	Cutting Values
	Pasting Values
	Mismatched Number of Columns
	Pasting and Index Columns
	Pasting and Column Formats

	Copy-Paste Waves
	Inserting and Deleting Points
	Insert Points Dialog and Tables
	Delete Points Dialog and Tables

	Finding Table Values
	Replacing Table Values
	Selectively Replacing Table Values

	Exporting Data from Tables
	Changing Column Positions
	Changing Column Widths
	Autosizing Columns By Double-Clicking
	Autosizing Columns Using Menus
	Autosizing Limitations

	Changing Column Styles
	Modifying Column Properties
	Column Titles
	Numeric Formats
	Date/Time Formats
	Octal and Hexadecimal Formats

	Editing Text Waves
	Large Amounts of Text in a Single Cell
	Tabs, CRs and Invisible Characters
	Treatment of Names When Pasting Text
	Tab Separators in Text

	Editing Multidimensional Waves
	Changing the View of the Data
	Changing the Viewed Dimensions
	ModifyTable Elements Command
	Multidimensional Copy/Cut/Paste/Clear

	Printing Tables
	Save Table Copy
	Exporting Tables as Graphics
	Exporting a Table as a Picture
	Exporting a Table as an EPS file

	Table Preferences
	Table Style Macros
	Table Shortcuts

	Graphs
	Overview
	Graph Features
	The Graph Menu
	The Target Window
	Typing in Graphs (Macintosh)
	Graph Names
	Creating Graphs
	Waves and Axes
	Types of Axes
	Appending Traces
	Trace Names
	Removing Traces
	Replacing Traces
	Plotting NaNs and INFs
	Scaling Graphs
	Autoscaling
	Manual Scaling
	Panning
	Fling Mode

	Setting the Range of an Axis
	Manual Axis Ranges
	Automatic Axis Ranges

	Overall Graph Properties
	Graph Dimensions

	Modifying Styles
	Selecting Traces to be Modified
	Display Modes
	Markers
	Text Markers
	Arrow Markers
	Line Styles and Sizes
	Fills
	Bars
	Grouping, Stacking and Adding Modes
	Color
	Setting Trace Properties from an Auxiliary (Z) Wave
	Color as f(z) Example
	Trace Offsets
	Trace Multipliers
	Hiding Traces
	Complex Display Modes
	Gaps
	Error Bars
	Customize at Point

	Modifying Axes
	Axis Tab
	Auto/Man Ticks Tab
	Ticks and Grids Tab
	Tick Options Tab
	Axis Label Tab
	Label Options Tab
	Log Axes
	Manual Ticks
	Date/Time Axes
	Date/Time Examples
	Manual Ticks for Date/Time Axes

	“Fake” Axes
	Axis Labels
	Annotations in Graphs
	Info Box and Cursors
	Programming With Cursors

	Identifying a Trace
	Subrange Display
	Subrange Display Syntax
	Limitations

	Printing Graphs
	Printing Poster-Sized Graphs
	Other Printing Methods

	Save Graph Copy
	Exporting Graphs
	Creating Graphs with Multiple Axes
	Creating Stacked Plots
	Staggered Stacked Plot

	Waterfall Plots
	Evenly-Spaced Waterfall Plot Example
	Unevenly-Spaced Waterfall Plot Example
	Fake Waterfall Plots

	Wind Barb Plots
	Creating Split Axes
	Live Graphs and Oscilloscope Displays
	Graph Preferences
	How to use Graph Preferences

	Saving and Recreating Graphs
	Graph Style Macros
	Example of Creating a Style Macro
	Style Macros and Preferences
	Applying the Style Macro
	Limitations of Style Macros
	Where to Store Style Macros

	Graph Pop-Up Menus
	Graph Expansion
	Graph Shortcuts

	Category Plots
	Overview
	Creating a Category Plot
	Combining Category Plots and XY Plots

	Modifying a Category Plot
	Bar and Category Gaps
	Tick Mark Positioning
	Fancy Tick Mark Labels
	Horizontal Bars
	Reversed Category Axis
	Category Axis Range
	Bar Drawing Order

	Stacked Bar Charts
	Numeric Categories
	Combining Numeric and Category Traces
	Category Plot Pitfalls
	Pitfall: X Scaling Moves Bars
	Pitfall: Changing the Drawing Order Breaks Stacked Bars
	Pitfall: Bars Disappear with “Draw to next” Mode

	Category Plot Preferences
	Category Plot Axes and Axis Labels
	Category Plot Wave Styles
	How to Use Category Plot Preferences

	Contour Plots
	Overview
	Contour Data
	Gridded Data
	XYZ Data

	Creating a Contour Plot
	The Contour Plot Dialogs

	Modifying a Contour Plot
	Modify Contour Appearance Dialog

	All About Contour Traces
	Contour Trace Names
	The Color of Contour Traces
	Removing Contour Traces from a Graph
	Cursors on Contour Traces
	Contour Trace Updates
	Drawing Order of Contour Traces
	Extracting Contour Trace Data

	Contour Instance Names
	Examples

	Legends
	Contour Labels
	Controlling Label Updates
	Repositioning and Removing Contour Labels
	Adding Contour Labels
	Modifying Labels
	Overriding the Contour Labels
	Labels and Drawing Tools

	Contouring Pitfalls
	Insufficient Resolution
	Crossing Contour Lines
	Flat Areas in the Contour Data

	Contour Preferences
	Contour Appearance Preferences
	Contour Axis Preferences
	How to Use Contour Plot Preferences

	References
	Contour Plot Shortcuts

	Image Plots
	Overview
	False Color Images
	Indexed Color Images
	Direct Color Images

	Loading an Image
	Creating an Image Plot
	Image Plot Dialogs

	Modifying an Image Plot
	The Modify Image Appearance Dialog

	How Images Are Displayed
	Image X and Y Coordinates
	Image X and Y Coordinates - Evenly Spaced
	Image X and Y Coordinates - Unevenly Spaced
	Plotting a 2D Z Wave With 1D X and Y Center Data
	Plotting 1D X, Y and Z Waves With Gridded XY Data
	Plotting 1D X, Y and Z Waves With Non-Gridded XY Data

	Image Orientation
	Image Rectangle Aspect Ratio
	Image Polarity
	Color Tables
	Color Table Ranges
	Example: Overlaying Data on a Background Image
	Color Table Ranges - Lookup Table (Gamma)
	Specialized Color Tables

	Color Table Details
	Igor Pro 4-Compatible Color Tables
	Igor Pro 5-Compatible Color Tables
	Igor Pro 6-Compatible Color Tables
	Igor Pro 6.2-Compatible Color Tables

	Indexed Color Details
	Linear Indexed Color
	Logarithmic Indexed Color
	Example: Point-Scaled Color Index Wave

	Direct Color Details
	Creating Color Legends
	Image Instance Names
	Image Preferences
	Image Appearance Preferences
	Image Axis Preferences
	How to Use Image Preferences

	Image Plot Shortcuts
	References

	Page Layouts
	Overview
	Memory Usage in Page Layouts
	Layout Background Color
	Layers
	Activating the Layout Layer
	Activating the Current Drawing Layer
	Changing the Current Drawing Layer
	DelayUpdate and Drawing Commands
	For Further Information on Drawing Layers

	Creating a Layout
	Layout Menu
	Layout Names and Titles
	Hiding and Showing a Layout
	Killing and Recreating a Layout
	Page Setups
	Changing Printers
	Changing Computer Platforms

	Zooming
	Objects in the Layout Layer
	Layout Object Names
	Layout Object Properties
	Dummy Objects
	Automatic Updating of Layout Objects

	Subwindows in the Layout Layer
	Layout Layer Tool Palette
	Arrow Tool
	Marquee Tool
	Annotation Tool
	Frame Pop-Up Menu
	Misc Pop-Up Menu
	Graph Pop-Up Menu
	Table Pop-Up Menu

	The Layout Layer Contextual Menu
	Activate Object’s Window
	Recreate Object’s Window
	Kill Object’s Window
	Show Object’s Window
	Hide Object’s Window
	Scale Object
	Convert Object to Embedded
	Recreate Selected Objects’ Windows
	Kill Selected Objects’ Windows
	Scale Selected Objects

	Appending a Graph or Table to the Layout Layer
	Inserting a Picture in the Layout Layer
	Placing a Picture

	Removing Objects from the Layout Layer
	Modifying Layout Objects
	High Fidelity
	Annotations in the Layout Layer
	Creating a New Annotation
	Modifying an Existing Annotation
	Positioning an Annotation
	Positioning Annotations Programmatically
	Legends in the Layout Layer
	Default Font

	Front-To-Back Relationship of Objects
	Aligning Stacked Graph Objects
	Prepare the Graphs
	Append the Graphs to the Layout
	Align Left Edges of Layout Objects
	Set Width and Height of Layout Objects
	Set Vertical Positions of Layout Objects
	Set Graph Plot Areas and Margins

	Arranging Objects
	Printing Graphs as Bitmaps
	Exporting Layouts
	Copying Objects from the Layout Layer
	Copying as an Igor Object Only

	Pasting Objects into the Layout Layer
	Pasting into a Different Experiment
	Pasting Color Scale Annotations

	Page Layout Preferences
	Layout Style Macros
	Problems with Layouts
	Picture Transparency
	Graphs Transparency
	Transparency on Screen and in the Printout

	Page Layout Shortcuts

	Volume III User’s Guide: Part 2
	Notebooks
	Overview
	Plain and Formatted Notebooks
	UTF-16 Files
	Creating a New Notebook File
	Opening an Existing File as a Notebook
	Opening a File for Momentary Use
	Sharing a Notebook File Among Experiments

	Notebooks as Worksheets
	Showing, Hiding and Killing Notebook Windows
	Parts of a Notebook
	Write-Protect Icon
	Magnifier Icon

	Notebook Properties
	Document Properties
	Paragraph Properties
	Plain Notebook Paragraph Properties
	Formatted Notebook Paragraph Properties

	Character Properties
	Plain Notebook Text Formats
	Formatted Notebook Text Formats
	Text Sizes
	Vertical Offset
	Superscript and Subscript

	Notebook Read/Write Properties
	Read-only
	Write-protect
	Changeable By Command Only

	Working with Rulers
	Defining a New Ruler
	Redefining a Ruler
	Creating a Derived Ruler
	Finding Where a Ruler Is Used
	Removing a Ruler
	Transferring Rulers Between Notebooks

	Special Characters
	Inserting Pictures
	Saving Pictures

	Special Character Names
	The Special Submenu
	Scaling Pictures
	Updating Special Characters

	Notebook Action Special Characters
	Creating a Hyperlink Action
	Modifying Action Special Characters
	Modifying the Action Frame
	Modifying the Action Picture Scaling
	Notebook Action Helper Procedure Files

	Using Igor-Object Pictures
	Updating Igor-Object Pictures
	The Size of the Picture
	Activating The Igor-Object Window
	Breaking the Link Between the Object and the Picture
	Compatibility Issues

	Cross-Platform Pictures
	Page Breaks
	Headers and Footers
	Printing Notebooks
	Quality of Printed Pictures (Macintosh)
	Quality of Printed Pictures (Windows)

	Import and Export Via Rich Text Format Files
	Saving an RTF File
	Opening an RTF File
	Rich Text Format Graphics

	Exporting a Notebook as HTML
	HTML Standards
	HTML Horizontal Paragraph Formatting
	HTML Vertical Paragraph Formatting
	HTML Character Formatting
	HTML Pictures
	HTML Character Encoding
	Embedding HTML Code

	Finding Text
	Replacing Text
	Notebook Names, Titles and File Names
	Notebook Info Dialog
	Programming Notebooks
	Logging Text
	Inserting Graphics
	Updating a Report Form
	Updating Igor-Object Pictures
	Retrieving Text
	Generate Notebook Commands Dialog

	Notebook Preferences
	Notebook Template Files
	Notebook Shortcuts

	Annotations
	Overview
	Annotations Quick Start
	The Annotation Dialog
	Modifying Annotations
	Text Content
	About Text Escape Codes
	Font Escape Codes
	Font Size Escape Codes
	Relative Font Size Escape Codes
	Special Escape Codes
	Dynamic Escape Codes for Tags
	Other Dynamic Escape Codes
	TagVal and TagWaveRef Functions

	Tabs
	General Annotation Properties
	Name
	Frame
	Color

	Annotation Positioning
	Textbox, Legend, and Color Scale Positioning in a Graph
	Textbox and Legend Positioning in a Page Layout

	Legends
	Legend Text
	Marker Size
	Wave Symbol Centering
	Wave Symbol Width
	Symbol With Color as f(z)

	Tags
	Tag Text
	Tag Wave and Attachment Point
	Tag Positioning
	Contour Labels Are Tags

	Color Scales
	ColorScale Main Tab
	ColorScale Size and Orientation
	ColorScale Axis Labels Tab
	ColorScale Ticks Tab

	Elaborate Annotations and Axis Labels
	Elaborate Annotations Versus Equation Editors
	About Text Info Variables
	Simple Text Info Variables Example
	Text Info Variables Escape Codes
	Elaborate Text Info Variables Example
	More Examples

	Programming with Annotations
	Changing Annotation Names
	Changing Annotation Types
	Changing Annotation Text
	Generating Text Programmatically
	Deleting Annotations

	Drawing
	Overview
	The Tool Palette
	Arrow Tool
	Simple Text Tool
	Lines (and Arrows) Tool
	Rectangle , Rounded Rectangle , Oval
	Arcs and Circles
	Polygon Tool
	Drawing and Editing Waves
	Drawing Environment Pop-Up Menu
	Mover Pop-Up Menu

	Coordinate Systems
	Absolute
	Relative
	Plot Relative (Graphs Only)
	Axis-Based (Graphs Only)

	Layers
	Export/Import
	Copy/Paste Within Igor
	Pasting a Picture Into a Drawing Layer
	Copying from Igor to a Drawing Program

	Programming
	Drawing Operations
	Programming Usage Notes
	SetDrawLayer
	SetDrawEnv
	Draw<object> Operations
	DrawPoly and DrawBezier
	GraphWaveDraw, GraphWaveEdit, and GraphNormal

	Programming Strategies
	The Replace Layer Method
	The Replace Group Method
	The Append Method
	Grouping
	Example: Drop Lines

	Drawing Shortcuts

	Embedding and Subwindows
	Overview
	Subwindow Terminology
	Restrictions
	Creating Subwindows
	Positioning and Guides
	Frames

	Subwindow User-Interface Concepts
	Subwindow Layout Mode and Guides
	Layout Mode and Guide Tutorial
	Graph Control Bars and Subpanels
	Page Layouts and Subwindows

	Notebooks as Subwindows in Control Panels
	Subwindow Command Concepts
	Subwindow Syntax
	Subwindow Sizing
	Subwindow Operations and Functions

	Exporting Graphics (Macintosh)
	Overview
	Macintosh PICT Format
	PDF Format
	Encapsulated PostScript (EPS) Format
	Platform-Independent Bitmap Formats

	Choosing a Graphics Format
	Exporting Graphics Via the Clipboard
	Exporting Graphics Via a File
	Exporting a Graphic File for Transfer to a Windows Computer

	Exporting a Section of a Layout
	Exporting Colors
	Exporting and Printing Graphs of Large Data Sets
	Graphs in Page Layouts

	Font Embedding
	PostScript Font Names (OS X)

	Exporting Graphics (Windows)
	Overview
	Metafile Formats
	BMP Format
	PDF Format
	Encapsulated PostScript (EPS) Format
	Platform-Independent Bitmap Formats

	Choosing a Graphics Format
	Exporting Graphics Via the Clipboard
	Exporting Graphics Via a File
	Exporting a Section of a Layout
	Exporting Colors
	Exporting and Printing Graphs of Large Data Sets
	Graphs in Page Layouts

	Font Embedding
	PostScript Font Names

	Analysis
	Overview
	Analysis of Multidimensional Waves
	Waveform Versus XY Data
	Converting XY Data to a Waveform
	Using the XY Pair to Waveform Panel
	Using the Interp Function
	Using the Interpolate External Operation

	Dealing with Missing Values
	Replace the Missing Values With Another Value
	Remove the Missing Values
	Work Around Gaps in Data
	Replace Missing Data with Interpolated Values
	Replace Missing Data Using the Interpolate XOP
	Replace Missing Data Using Median Smoothing

	Interpolation
	Differentiation and Integration
	Areas and Means
	X Ranges and the Mean, faverage, and area Functions
	Finding the Mean of Segments of a Wave
	Area for XY Data

	Wave Statistics
	Histograms
	Histogram Caveats
	Graphing Histogram Results
	Histogram Dialog
	Histogram Example
	Computing a Histogram with Logarithmic Bins
	Computing an “Integrating” Histogram

	Sorting
	Simple Sorting
	Sorting to Find the Median Value
	Multiple Sort Keys
	Sorting Text
	MakeIndex and IndexSort Operations

	Decimation
	Decimation by Omission
	Decimation by Smoothing

	Miscellaneous Operations
	WaveTransform

	Compose Expression Dialog
	Table Selection Item
	Create Formula Checkbox

	Matrix Math Operations
	Normal Wave Expressions
	matrixXXX Operations
	MatrixOp Operation
	Matrix Commands
	Macintosh and LAPACK Library

	Analysis Programming
	Passing Waves to User Functions and Macros
	Returning Created Waves from User Functions
	Returning Created Waves from Macros
	Writing Functions that Process Waves
	Finding the Mean of Segments of a Wave
	Computing a Logarithmic Histogram
	Working with Mismatched Data

	References

	Curve Fitting
	Overview
	Curve Fitting Terminology
	Overview of Curve Fitting
	Iterative Fitting
	Data for Curve Fitting

	Curve Fitting Using the Quick Fit Menu
	Limitations of the Quick Fit Menu

	Using the Curve Fitting Dialog
	A Simple Case — Fitting to a Built-In Function: Line Fit
	Automatic Guesses Didn’t Work
	Notes on the Built-in Fit Functions
	Fitting to a User-Defined Function
	Fitting to an External Function (XFUNC)
	The Coefficient Wave
	The Destination Wave
	Fitting a Subset of the Data
	Weighting
	Fitting to a Multivariate Function
	Model Results for Multivariate Fitting
	Time Required to Update the Display
	Multivariate Fitting Examples
	Problems with the Curve Fitting Dialog

	Inputs and Outputs for Built-In Fits
	Detailed Description of the Curve Fitting Dialog Tabs
	Global Controls
	Function and Data Tab
	Data Options Tab
	Coefficients Tab
	Output Options Tab

	Computing Residuals
	Residuals Using Auto Trace
	Residuals Using Auto Wave
	Residuals Using an Explicit Residual Wave
	Calculating Residuals After the Fit

	Estimates of Error
	Confidence Bands and Coefficient Confidence Intervals

	Covariance Matrix
	Correlation Matrix

	Fitting with Constraints
	Constraints Using the Curve Fitting Dialog
	Complex Constraints Using a Constraints Wave
	Constraint Expressions
	Equality Constraint
	Example Fit with Constraint
	Constraint Matrix and Vector
	Constrained Curve Fit Pitfalls

	NaNs and INFs in Curve Fits
	Special Variables for Curve Fitting
	V_FitOptions
	V_chisq
	V_q
	V_FitError and V_FitQuitReason
	V_FitIterStart
	S_Info

	Errors in Variables: Orthogonal Distance Regression
	ODR Fitting is Not Threadsafe
	Weighting Waves for ODR Fitting
	ODR Initial Guesses
	Holding Independent Variable Adjustments
	ODR Fit Results
	Constraints and ODR Fitting
	Error Estimates from ODR Fitting
	ODR Fitting Examples

	Fitting Implicit Functions
	Example: Fit to an Ellipse

	Fitting Sums of Fit Functions
	Linear Dependency: A Major Issue
	Constraints Applied to Sums of Fit Functions
	Example: Summed Exponentials
	Example: Function List in a String

	Curve Fitting with Multiple Processors
	Multithreaded Curve Fits
	Multiple Curve Fits Simultaneously

	User-Defined Fitting Function: Detailed Description
	Discussion of User-Defined Fitting Function Formats
	Format of a Basic Fitting Function
	Intermediate Results for Very Long Expressions
	Conditionals
	Fit Function Dialog Adds Special Comments
	Functions that the Fit Function Dialog Doesn’t Handle Well
	Format of a Multivariate Fitting Function
	All-At-Once Fitting Functions
	Structure Fit Functions

	Fitting Using Commands
	Batch Fitting

	Curve Fitting Examples
	Singularities
	Special Considerations for Polynomial Fits
	Errors Due to X Values with Large Offsets
	Curve Fitting Troubleshooting
	Curve Fitting References

	Signal Processing
	Overview
	Fourier Transforms
	Why Some Waves Aren’t Listed
	Changes in Wave Type and Number of Points
	Magic Number of Points and the IFFT
	Changes in X Scaling and Units
	FFT Amplitude Scaling
	Phase Polarity
	Effect of FFT and IFFT on Graphs
	Effect of the Number of Points on the Speed of the FFT

	Finding Magnitude and Phase
	Magnitude and Phase Using WaveMetrics Procedures

	Spectral Windowing
	Hanning Window
	Other Windows
	Multidimensional Windowing

	Power Spectra
	Periodogram

	Hilbert Transform
	Time Frequency Analysis
	Wigner Transform
	Continuous Wavelet Transform
	Discrete Wavelet Transform

	Convolution
	Correlation
	Level Detection
	Finding a Level in Waveform Data
	Finding a Level in XY Data

	Edge Statistics
	Pulse Statistics
	Peak Measurement
	Smoothing
	Built-in Smoothing Algorithms
	Binomial Smoothing
	Savitzky-Golay Smoothing
	Box Smoothing
	Median Smoothing
	Percentile, Min, and Max Smoothing
	Loess Smoothing
	Custom Smoothing Coefficients
	End Effects

	Rotate Operation
	Unwrap Operation
	References

	Analysis of Functions
	Operations that Work on Functions
	Function Plotting
	Using Dependencies
	Using Controls
	Plotting a User-Defined Function

	Solving Differential Equations
	Terminology
	ODE Inputs
	ODE Outputs
	The Derivative Function
	A First-Order Equation
	A System of Coupled First-Order Equations
	Optimizing the Derivative Function
	Higher Order Equations
	Free-Run Mode
	Stiff Systems
	Error Monitoring
	Solution Methods
	Interrupting IntegrateODE
	Stopping and Restarting IntegrateODE
	Stopping IntegrateODE on a Condition

	Integrating a User Function
	Finding Function Roots
	Roots of Polynomials with Real Coefficients
	Roots of a 1D Nonlinear Function
	Roots of a System of Multidimensional Nonlinear Functions
	Caveats for Multidimensional Root Finding

	Finding Minima and Maxima of Functions
	Extreme Points of a 1D Nonlinear Function
	Extrema of Multidimensional Nonlinear Functions
	Stopping Tolerances
	Problems with Multidimensional Optimization

	References

	Image Processing
	Overview
	Image Transforms
	Color Transforms
	Grayscale or Value Transforms

	Threshold
	Threshold Examples

	Spatial Transforms
	Rotating Images
	Image Registration

	Mathematical Transforms
	Standard Wave Operations
	Interpolation and Sampling
	Fast Fourier Transform
	Wavelet Transform
	Hough Transform
	Fast Hartley Transform

	Convolution Filters
	Edge Detectors
	Using More Exotic Edge Detectors

	Morphological Operations
	Image Analysis
	ImageStats
	ImageLineProfile
	Histograms
	Unwrapping Phase
	HSL Segmentation
	Particle Analysis
	Seed Fill

	Other Tools
	Working with ROI
	Subimage Selection
	Handling Color
	Background Removal
	General Utilities: ImageTransform Operation

	References

	Statistics
	Overview
	Grouping by Functionality
	Statistical Test Operations
	Noise Functions
	Cumulative Distribution Functions
	Probability Distribution Functions
	Inverse Cumulative Distribution Functions
	General purpose operations and functions

	Hazard and Survival functions
	Procedures
	Obsolete XOP
	References

	Procedure Windows
	Overview
	Types of Procedure Files
	Working with the Built-in Procedure Window
	Compiling the Procedures
	Templates Pop-Up Menu
	Procedures Pop-Up Menu
	Magnifier Icon
	Write-Protect Icon

	Creating Procedures
	Creating New Procedure Files
	Opening an Auxiliary Procedure File
	Showing Procedure Windows
	Hiding and Killing Procedure Windows
	Shared Procedure Files
	Saving Shared Procedure Files

	Global Procedure Files
	Saving Global Procedure Files

	Including a Procedure File
	Creating Packages
	Invisible Procedure Files
	Invisible Procedure Windows Using #pragma hide
	Invisible Procedure Windows Using Independent Modules
	Invisible Procedure Files Using The Files Visibility Property

	Inserting Text
	Adopting a Procedure File
	Auto-Compiling
	Debugging Procedures
	Finding Text
	Replacing Text
	Printing Procedure Text
	Indentation
	Document Settings
	Syntax Coloring
	Text Character Settings
	Procedure Window Preferences
	Double and Triple-Clicking
	Matching Characters
	Code Comments
	UTF-16 Files
	Procedure Window Shortcuts

	Controls and Control Panels
	Overview
	Modes of Operation
	Using Controls
	Buttons
	Charts
	Checkboxes
	CustomControl
	GroupBox
	ListBox
	Pop-Up Menus
	Set Variable
	Sliders
	TabControl
	TitleBox
	Value Displays

	Creating Controls
	General Command Syntax
	Button
	Charts and FIFOs
	CheckBox
	CustomControl
	GroupBox
	ListBox
	PopupMenu
	SetVariable
	Slider
	TabControl
	TitleBox
	ValDisplay

	Killing a Control
	Getting Information About a Control
	Updating a Control
	Help Text for User-Defined Controls
	Modifying a Control
	Disabling and Hiding a Control
	Background Color
	Control Structures
	Control Structure Example
	Control Structure eventMod Field
	Control Structure blockReentry Field
	Control Structure blockReentry Advanced Example
	User Data for Controls

	Action Procedures for Multiple Controls
	Controls in Graphs
	Drawing Limitations
	Updating Problems

	Control Panels
	Embedding into Control Panels

	Exterior Subwindows
	Floating Panels
	Control Panel Preferences
	Controls Shortcuts

	Platform-Related Issues
	Platform-Related Issues
	Windows-Specific Issues
	Cross-Platform File Compatibility
	Experiment Files — Working with Earlier Versions
	Crossing Platforms
	Transferring Files Using File Transfer Programs
	File Name Extensions, File Types, and Creator Codes
	Experiments and Paths
	Picture Compatibility
	Page Setup Compatibility
	Pre-Carbon Page Setup Records

	File System Issues
	File and Folder Names
	Path Separators
	UNC Paths
	Unix Paths
	FlushFileBuffers

	Keyboard and Mouse Usage
	Command Window Input
	Other Input Issues

	Cross-Platform Text and Fonts
	Character Set Compatibility
	Text Styles
	Carriage Returns and Linefeeds
	Font Substitution

	Cross-Platform Procedure Compatibility
	File Paths
	File Types and Extensions
	Points Versus Pixels
	Window Position Coordinates

	Notebook Issues
	PNG Pictures in Notebooks

	Miscellany
	Dashed Lines
	The Color Environment
	Miscellaneous Settings
	Graph Settings
	Table Settings
	Command Settings
	Experiment Settings
	Data Loading Settings
	Color Settings (Macintosh)
	Typography Settings (Macintosh)
	Asian Language Settings (Macintosh)
	Compatibility Settings
	Misc Settings
	Help Settings (Windows)

	Object Names
	Standard Object Names
	Liberal Object Names
	Name Spaces

	Renaming Objects
	The Object Status Dialog
	User Functions
	Broken Objects

	Graphics Technology
	Pictures
	Importing Pictures
	The Picture Collection Stores Named Pictures
	Pictures Dialog
	NotebookPictures

	Igor Extensions
	WaveMetrics XOPs
	Third Party Extensions
	Activating Extensions
	XOPs on Intel Macintosh
	Running PowerPC XOPs on Intel Macintosh

	Memory Management
	Increasing Virtual Memory Space in Windows VISTA and Windows 7
	Increasing Virtual Memory Space in Windows XP

	Macintosh System Requirements
	Windows System Requirements
	Crashes
	Crash Logs on Mac OS X
	Crashes On Windows

	Preferences
	Overview
	Igor Preferences Directory
	How to Use Preferences
	Captured Preferences
	Current Captured Preference Values
	Capturing Other Settings

	When Preferences Are Applied

	Volume IV Programming
	Working with Commands
	Overview
	Multiple Commands
	Comments
	Maximum Length of a Command
	Parameters
	Liberal Object Names
	Data Folders

	Types of Commands
	Assignment Statements
	Operation Commands
	User-Defined Procedure Commands

	Parameter Lists
	Expressions as Parameters
	Parentheses Required for /N=(<expression>)
	String Expressions
	Setting Bit Parameters

	Strings
	String Expressions
	Strings in Text Waves
	String Properties
	Escape Characters in Strings
	String Indexing
	String Assignment
	String Substitution Using $
	$ Precedence Issues In Commands
	String Utility Functions

	Special Cases
	Instance Notation
	Object Indexing
	/Z Flag

	Programming Overview
	Overview
	Organizing Procedures
	WaveMetrics Procedure Files
	Macros and Functions
	Scanning and Compiling Procedures
	Indentation Conventions
	What’s Next

	User-Defined Functions
	Overview
	Function Syntax
	The Function Name
	The Procedure Subtype
	The Parameter List and Parameter Declarations
	Optional Parameters
	Local Variable Declarations
	Body Code
	The Return Statement

	Conditional Statements in Functions
	If-Else-Endif
	If-Elseif-Endif
	Comparisons
	Bitwise and Logical Operators

	Switch Statements
	Loops
	Do-While Loop
	Nested Do-While Loops
	While Loop
	For Loop
	Break Statement
	Continue Statement

	Flow Control for Aborts
	AbortOnRTE Keyword
	AbortOnValue Keyword
	try-catch-endtry Flow Control

	Constants
	Pragmas
	The rtGlobals Pragma
	The version Pragma
	The IgorVersion Pragma
	The hide Pragma
	The ModuleName Pragma
	The IndependentModule Pragma
	Unknown Pragmas

	Proc Pictures
	How Parameters Work
	Example of Pass-By-Value
	Pass-By-Reference
	How Waves Are Passed
	Using Optional Parameters

	Local Versus Global Variables
	Local Variables Used by Igor Operations
	Converting a String into a Reference Using $
	Using $ to Refer to a Window
	Using $ In a Data Folder Path

	Compile Time Versus Runtime
	Accessing Global Variables and Waves
	Runtime Lookup of Globals
	Put WAVE Declaration After Wave Is Created
	Runtime Lookup Failure
	Runtime Lookup Failure and the Debugger
	Accessing Complex Global Variables and Waves
	Accessing Text Waves
	Accessing Global Variables and Waves Using Liberal Names
	Runtime Lookup Example
	Automatic Creation of NVAR and SVAR References

	Wave References
	Automatic Creation of WAVE References
	Standalone WAVE Reference Statements
	Inline WAVE Reference Statements
	WAVE Reference Types
	WAVE Reference Type Flags
	Problems with Automatic Creation of WAVE References
	WAVE Reference Is Not Needed to Pass a Wave Parameter
	Wave Reference Function Results
	Wave Reference Waves

	Data Folder References
	Using Data Folder References
	The /SDFR Flag
	The DFREF Type
	Built-in DFREF Functions
	Checking Data Folder Reference Validity
	Data Folder Reference Function Results
	Data Folder Reference Waves

	Accessing Waves in Functions
	Wave Reference Passed as Parameter
	Wave Accessed Via String Passed as Parameter
	Wave Accessed Via String Calculated in Function
	Wave Accessed Via Literal Wave Name
	Wave Accessed Via Wave Reference Function

	Destination Wave Parameters
	Wave Reference as Destination Wave
	Exceptions To Destination Wave Rules
	Updating of Destination Wave References
	Inline Wave References With Destination Waves
	Destination Wave Reference Issues
	Changes in Destination Wave Behavior

	Programming With Trace Names
	Trace Name Parameters
	User-defined Trace Names
	Trace Name Programming Example

	Free Waves
	Free Wave Created When Free Data Folder Is Deleted
	Free Wave Created For User Function Input Parameter
	Free Wave Lifetime
	Free Wave Leaks
	Converting a Free Wave to a Global Wave

	Free Data Folders
	Free Data Folder Lifetime
	Free Data Folder Objects Lifetime
	Converting a Free Data Folder to a Global Data Folder

	Structures in Functions
	Defining Structures
	Using Structures
	Built-In Structures
	Applications of Structures
	Using Structures with Windows and Controls
	Limitations of Structures

	Static Functions
	ThreadSafe Functions
	Function Overrides
	Function References
	Conditional Compilation
	Predefined Global Symbols
	Conditional Compilation Examples

	Function Errors
	Coercion in Functions
	Operations in Functions
	Updates During Function Execution
	Aborting Functions
	Legacy Code Issues
	Old-Style Comments and Compatibility Mode
	Text After Flow Control
	Global Variables Used by Igor Operations
	Direct Reference to Globals

	Macros
	Overview
	Comparing Macros and Functions
	Macro Syntax
	The Defining Keyword
	The Procedure Name
	The Procedure Subtype
	The Parameter List and Parameter Declarations
	Local Variable Declarations
	Body Code

	Conditional Statements in Macros
	Loops in Macros
	Return Statement in Macros
	Invoking Macros
	Using $ in Macros
	Waves as Parameters in Macros
	The Missing Parameter Dialog
	Macro Errors
	The Silent Option
	The Slow Option
	Accessing Variables Used by Igor Operations
	Updates During Macro Execution
	Aborting Macros
	Converting Macros to Functions

	User-Defined Menus
	Overview
	Menu Definition Syntax
	Built-in Menus That Can Be Extended
	Adding a New Main Menu
	Help for User Menus
	Dynamic Menu Items
	Optional Menu Items

	Multiple Menu Items
	Consolidating Menu Items Into a Submenu
	Specialized Menu Item Definitions
	Menu Limits

	Special Characters in Menu Item Strings
	Special Menu Characters on Windows
	Enabling and Disabling Special Character Interpretation
	Keyboard Shortcuts
	Function Keys

	Marquee Menus
	Trace Menus
	Popup Contextual Menus

	Interacting with the User
	Overview
	Modal and Modeless User Interface Techniques

	The Simple Input Dialog
	Pop-Up Menus in Simple Dialogs
	Saving Parameters for Reuse
	Multiple Simple Input Dialogs

	Displaying an Open File Dialog
	Displaying a Multi-Selection Open File Dialog
	Open File Dialog File Filters

	Displaying a Save File Dialog
	Save File Dialog File Filters

	Using Open in a Utility Routine
	Pause For User
	PauseForUser Simple Cursor Example
	PauseForUser Advanced Cursor Example
	PauseForUser Control Panel Example

	Progress Windows
	Control Panels and Event-Driven Programming
	Detecting a User Abort
	Creating a Contextual Menu
	Cursors as Input Device
	Marquee Menu as Input Device
	Polygon as Input Device

	Programming Techniques
	Overview
	The Include Statement
	Procedure File Version Information
	Turning the Included File’s Menus Off
	Optionally Including Files

	Writing General-Purpose Procedures
	Programming with Liberal Names
	Programming with Data Folders
	Storing Procedure Globals
	Storing Runs of Data
	Setting and Restoring the Current Data Folder
	Determining a Function’s Target Data Folder
	Clearing a Data Folder

	Using Strings
	Using Strings as Lists
	Using Keyword-Value Packed Strings
	Using Strings with Extractable Commands

	Regular Expressions
	Regular Expression Operations and Functions
	Basic Regular Expressions
	Regular Expression Metacharacters
	Character Classes in Regular Expressions
	Backslash in Regular Expressions
	Backslash and Nonprinting Characters
	Backslash and Nonprinting Characters Arcania
	Backslash and Generic Character Types
	Backslash and Simple Assertions
	Circumflex and Dollar
	Dot, Period, or Full Stop
	Character Classes and Brackets
	POSIX Character Classes
	Alternation
	Match Option Settings
	Matching Newlines
	Subpatterns
	Named Subpatterns
	Repetition
	Quantifier Greediness
	Quantifiers With Subpatterns
	Atomic Grouping and Possessive Quantifiers
	Back References
	Assertions
	Conditional Subpatterns
	Regular Expression Comments
	Recursive Patterns
	Subpatterns as Subroutines
	Regular Expressions References

	Working with Files
	Finding Files
	Other File– and Folder–Related Operations and Functions

	Writing to a Text File
	Open and Close Operations

	Wave Reference Functions
	Processing Lists of Waves
	Graphing a List of Waves
	Operating on the Traces in a Graph
	Using a Fixed-Length List
	Operating on Qualified Waves
	The ExecuteCmdOnList Function

	The Execute Operation
	Using a Macro From a User-Defined Function
	Calling an External Operation From a User-Defined Function
	Other Uses of Execute
	Deferred Execution Using the Operation Queue

	Procedures and Preferences
	Experiment Initialization Procedures
	Procedure Subtypes
	Memory Considerations
	Wave Reference Counting

	Creating Igor Extensions

	Debugging
	Debugging Procedures
	Debugging With Print Statements
	The Debugger
	Setting Breakpoints
	Debugging on Error
	Macro Execute Error: The Debug Button
	Stepping Through Your Code
	The Stack and Variables Lists
	The Variables List Columns
	Variables Pop-Up Menu
	Function Variables
	Macro Variables
	Wave, Structures, and Expressions Pane
	The Procedure Pane
	After You Find a Bug

	Debugger Shortcuts

	Dependencies
	Dependency Formulas
	Dependencies and the Object Status Dialog
	Numeric and String Variable Dependencies
	Wave Dependencies
	Cascading Dependencies
	Deleting a Dependency
	Broken Dependent Objects
	When Dependencies are Updated
	Programming with Dependencies
	Using Operations in Dependency Formulas
	Dependency Caveats

	Advanced Programming
	Regular Modules
	Regular Modules in Action Procedures and Hook Functions
	Regular Modules and User-Defined Menus

	Independent Modules
	Independent Modules - A Simple Example
	SetIgorOption IndependentModuleDev=1
	Independent Module Development Tips
	Independent Modules and #include
	Limitations of Independent Modules
	Independent Modules in Action Procedures and Hook Functions
	Independent Modules and User-Defined Menus
	Independent Modules and Popup Menus
	Regular Modules Within Independent Modules
	Calling Routines From Other Modules
	Using Execute Within an Independent Module
	Independent Modules and Dependencies
	Independent Modules and Pictures
	Making Regular Procedures Independent-Module-Compatible

	Sound
	Movies
	Playing Movies
	Creating Movies
	Extracting Movie Frames
	Movie Programming Examples

	Timing
	Ticks Counter
	Microsecond Timer

	Packages
	Creating a Package
	Lightweight Packages

	Managing Package Data
	Creating and Accessing the Package Data Folder
	Creating and Accessing the Package Per-Instance Data Folders

	Saving Package Preferences
	Saving Package Preferences in a Special-Format Binary File
	Saving Package Preferences in an Experiment File

	Creating Formatted Text
	Printf Operation
	sprintf Operation
	fprintf Operation
	wfprintf Operation
	Example Using fprintf and wfprintf

	Client/Server Overview
	Apple Events
	AppleScript
	Executing Unix Commands on Mac OS X
	ActiveX Automation

	Igor Command Line
	Igor.exe

	Igor as a WWW CGI-Bin Server
	Network Communications
	URLs
	Usernames and Passwords
	Supported Network Schemes
	Percent Encoding

	Safe Handling of Passwords
	Network Timeouts and Aborts
	Network Connections From Multiple Threads
	File Transfer Protocol (FTP)
	FTP Limitations
	Downloading a File
	Downloading a Directory
	Uploading a File
	Uploading a Directory
	Creating a Directory
	Deleting a Directory
	FTP Transfer Types
	FTP Troubleshooting

	Hypertext Transfer Protocol (HTTP)
	HTTP Limitations
	Downloading a Web Page Via HTTP
	Downloading a File Via HTTP
	Making a Query Via HTTP
	HTTP Troubleshooting

	Operation Queue
	User-Defined Hook Functions
	AfterCompiledHook
	AfterFileOpenHook
	BeforeDebuggerOpensHook
	AfterMDIFrameSizedHook
	AfterWindowCreatedHook
	BeforeExperimentSaveHook
	BeforeFileOpenHook
	IgorBeforeNewHook
	IgorBeforeQuitHook
	IgorMenuHook
	IgorQuitHook
	IgorStartOrNewHook

	Static Hook Functions
	Window Hook Functions
	Window Hooks and Subwindows

	Named Window Hook Functions
	Named Window Hook Events
	WMWinHookStruct
	Setting the Mouse Cursor
	Panel Done Button Example
	Window Hook Deactivate, Kill, Show and Hide Events

	Unnamed Window Hook Functions
	Custom Marker Hook Functions
	WMMarkerHookStruct
	Marker Hook Example

	Data Acquisition
	FIFOs and Charts
	Summary
	Programming with FIFOs
	FIFO File Format
	Charts

	Background Tasks
	Background Task Example #1
	Background Task Exit Code
	Background Task Period
	Background Task Limitations
	Background Tasks and Errors
	Background Tasks and Dialogs
	Background Task Tips
	Background Task Example #2
	Background Task Example #3
	Old Background Task Techniques

	Automatic Parallel Processing with MultiThread
	Data Folder Reference MultiThread Example
	Wave Reference MultiThread Example
	Structure Array MultiThread Example

	ThreadSafe Functions and Multitasking
	Thread Data Environment
	Parallel Processing - Group-at-a-Time Method
	Parallel Processing - Thread-at-a-Time Method
	Input/Output Queues
	Parallel Processing With Large Datasets
	Preemptive Background Task
	More Multitasking Examples

	Cursors — Moving Cursor Calls Function
	The Old Easy Way
	The Hard Way
	Cursor Globals
	Creating the Cursor Globals
	Establishing a Dependency Between Cursor Globals and a User Function
	Example Cursor Global User Function
	The Result

	Profiling Igor Procedures

	Volume V Reference
	Igor Reference
	Built-In Operations by Category
	Graphs
	Contour and Image Plots
	Tables
	Layouts
	Subwindows
	Other Windows
	All Windows
	Wave Operations
	Analysis
	Matrix Operations
	Analysis of Functions
	Signal Processing
	Image Analysis
	Statistics
	Geometry
	Drawing
	Programming & Utilities
	Files & Paths
	Data Folders
	Movies & Sound
	Controls & Cursors
	FIFOs
	Printing

	Built-In Functions by Category
	Numbers
	Trig
	Exponential
	Complex
	Rounding
	Conversion
	Time and Date
	Matrix Analysis
	Wave Analysis
	About Waves
	Special
	Statistics
	Windows
	Strings
	Names
	Lists
	Programming
	Data Folders
	I/O (files, paths, and PICTs)

	Built-In Keywords
	Procedure Declarations
	Procedure Subtypes
	Object References
	Flow Control
	Other Programming Keywords

	Built-in Structures
	Hook Functions
	Alphabetic Listing of Functions, Operations and Keywords
	Reference Syntax Guide
	#define
	#if-#elif-#endif
	#if-#endif
	#ifdef-#endif
	#ifndef-#endif
	#include
	#pragma
	#undef
	Abort
	AbortOnRTE
	AbortOnValue
	abs
	acos
	acosh
	AddFIFOData
	AddFIFOVectData
	AddListItem
	AddMovieAudio
	AddMovieFrame
	AdoptFiles
	airyA
	airyAD
	airyB
	airyBD
	alog
	AnnotationInfo
	AnnotationList
	APMath
	Append
	AppendImage
	AppendLayoutObject
	AppendMatrixContour
	AppendText
	AppendToGraph
	AppendToLayout
	AppendToTable
	AppendXYZContour
	area
	areaXY
	asin
	asinh
	atan
	atan2
	atanh
	AutoPositionWindow
	AxisInfo
	AxisList
	AxisValFromPixel
	BackgroundInfo
	Beep
	Besseli
	Besselj
	Besselk
	Bessely
	bessI
	bessJ
	bessK
	bessY
	beta
	betai
	BinarySearch
	BinarySearchInterp
	binomial
	binomialln
	binomialNoise
	BoundingBall
	break
	BrowseURL
	BuildMenu
	Button
	ButtonControl
	cabs
	CaptureHistory
	CaptureHistoryStart
	catch
	cd
	ceil
	cequal
	char2num
	Chart
	chebyshev
	chebyshevU
	CheckBox
	CheckBoxControl
	CheckDisplayed
	CheckName
	ChildWindowList
	ChooseColor
	CleanupName
	Close
	CloseMovie
	CloseProc
	cmplx
	cmpstr
	ColorScale
	ColorTab2Wave
	Concatenate
	conj
	Constant
	continue
	ContourInfo
	ContourNameList
	ContourNameToWaveRef
	ContourZ
	ControlBar
	ControlInfo
	ControlNameList
	ControlUpdate
	ConvexHull
	Convolve
	CopyFile
	CopyFolder
	CopyScales
	Correlate
	cos
	cosh
	cot
	coth
	CountObjects
	CountObjectsDFR
	cpowi
	CreateAliasShortcut
	CreationDate
	Cross
	csc
	CsrInfo
	CsrWave
	CsrWaveRef
	CsrXWave
	CsrXWaveRef
	CTabList
	CtrlBackground
	CtrlNamedBackground
	CtrlFIFO
	Cursor
	CursorStyle
	CurveFit
	CustomControl
	CWT
	DataFolderDir
	DataFolderExists
	DataFolderRefsEqual
	DataFolderRefStatus
	dateToJulian
	date
	date2secs
	DateTime
	dawson
	DDEExecute
	DDEInitiate
	DDEPokeString
	DDEPokeWave
	DDERequestString
	DDERequestWave
	DDEStatus
	DDETerminate
	Debugger
	DebuggerOptions
	default
	DefaultFont
	DefaultGUIControls
	DefaultGUIFont
	defined
	DefineGuide
	DelayUpdate
	DeleteFile
	DeleteFolder
	DeletePoints
	deltax
	DFREF
	Differentiate
	digamma
	DimDelta
	DimOffset
	DimSize
	Dir
	Display
	DisplayHelpTopic
	DisplayProcedure
	do-while
	DoAlert
	DoIgorMenu
	DoPrompt
	DoUpdate
	DoWindow
	DoWindow/T
	DoWindow/S
	DoXOPIdle
	DrawAction
	DrawArc
	DrawBezier
	DrawLine
	DrawOval
	DrawPICT
	DrawPoly
	DrawRect
	DrawRRect
	DrawText
	DSPDetrend
	DSPPeriodogram
	Duplicate
	DuplicateDataFolder
	DWT
	e
	EdgeStats
	Edit
	ei
	End
	EndMacro
	EndStructure
	endtry
	enoise
	EqualWaves
	erf
	erfc
	erfcw
	ErrorBars
	Execute
	Execute/P
	ExecuteScriptText
	exists
	exp
	ExperimentModified
	expInt
	expnoise
	Extract
	factorial
	FakeData
	FastGaussTransform
	FastOp
	faverage
	faverageXY
	FBinRead
	FBinWrite
	FetchURL
	FFT
	FIFO2Wave
	FIFOStatus
	FilterFIR
	FilterIIR
	FindDimLabel
	FindLevel
	FindLevels
	FindListItem
	FindPeak
	FindPointsInPoly
	FindRoots
	FindSequence
	FindValue
	FitFunc
	floor
	FontList
	FontSizeHeight
	FontSizeStringWidth
	for-endfor
	FPClustering
	fprintf
	FReadLine
	fresnelCos
	fresnelCS
	fresnelSin
	FSetPos
	FStatus
	FTPCreateDirectory
	FTPDelete
	FTPDownload
	FTPUpload
	FuncFit
	FuncFitMD
	FUNCREF
	FuncRefInfo
	Function
	FunctionInfo
	FunctionList
	FunctionPath
	GalleryGlobal
	gamma
	gammaInc
	gammaNoise
	gammln
	gammp
	gammq
	Gauss
	Gauss1D
	Gauss2D
	gcd
	GetAxis
	GetDataFolder
	GetDataFolderDFR
	GetDefaultFont
	GetDefaultFontSize
	GetDefaultFontStyle
	GetDimLabel
	GetFileFolderInfo
	GetErrMessage
	GetFormula
	GetIndependentModuleName
	GetIndexedObjName
	GetIndexedObjNameDFR
	GetKeyState
	GetLastUserMenuInfo
	GetMarquee
	GetMouse
	GetRTError
	GetRTErrMessage
	GetRTLocation
	GetRTLocInfo
	GetRTStackInfo
	GetScrapText
	GetSelection
	GetUserData
	GetWavesDataFolder
	GetWavesDataFolderDFR
	GetWindow
	gnoise
	Graph
	GraphMarquee
	GraphNormal
	GraphStyle
	GraphWaveDraw
	GraphWaveEdit
	Grep
	GrepList
	GrepString
	GridStyle
	GroupBox
	GuideInfo
	GuideNameList
	Hanning
	Hash
	hcsr
	hermite
	hermiteGauss
	hide
	HideIgorMenus
	HideInfo
	HideProcedures
	HideTools
	HilbertTransform
	Histogram
	hyperG0F1
	hyperG1F1
	hyperG2F1
	hyperGNoise
	hyperGPFQ
	i
	if-elseif-endif
	if-endif
	IFFT
	IgorInfo
	IgorVersion
	IgorVersion
	ilim
	imag
	ImageAnalyzeParticles
	ImageBlend
	ImageBoundaryToMask
	ImageEdgeDetection
	ImageFileInfo
	ImageFilter
	ImageFocus
	ImageFromXYZ
	ImageGenerateROIMask
	ImageHistModification
	ImageHistogram
	ImageInfo
	ImageInterpolate
	ImageLineProfile
	ImageLoad
	ImageMorphology
	ImageNameList
	ImageNameToWaveRef
	ImageRegistration
	ImageRemoveBackground
	ImageRestore
	ImageRotate
	ImageSave
	ImageSeedFill
	ImageSnake
	ImageStats
	ImageThreshold
	ImageTransform
	ImageUnwrapPhase
	ImageWindow
	IndependentModule
	IndependentModuleList
	IndexedDir
	IndexedFile
	IndexSort
	Inf
	InsertPoints
	Integrate
	Integrate1D
	IntegrateODE
	interp
	Interp2D
	Interp3D
	Interp3DPath
	Interpolate3D
	inverseErf
	inverseErfc
	ItemsInList
	j
	jlim
	JulianToDate
	KillBackground
	KillControl
	KillDataFolder
	KillFIFO
	KillFreeAxis
	KillPath
	KillPICTs
	KillStrings
	KillVariables
	KillWaves
	KillWindow
	KMeans
	Label
	laguerre
	laguerreA
	laguerreGauss
	Layout
	Layout
	LayoutInfo
	LayoutMarquee
	LayoutStyle
	leftx
	Legend
	legendreA
	limit
	LinearFeedbackShiftRegister
	ListBox
	ListBoxControl
	ListMatch
	ln
	LoadData
	LoadPackagePreferences
	LoadPICT
	LoadWave
	Loess
	log
	logNormalNoise
	LombPeriodogram
	lorentzianNoise
	LowerStr
	Macro
	MacroList
	magsqr
	Make
	MakeIndex
	MandelbrotPoint
	MarcumQ
	MarkPerfTestTime
	MatrixConvolve
	MatrixCorr
	MatrixDet
	MatrixDot
	MatrixEigenV
	MatrixFilter
	MatrixGaussJ
	MatrixInverse
	MatrixLinearSolve
	MatrixLinearSolveTD
	MatrixLLS
	MatrixLUBkSub
	MatrixLUD
	MatrixMultiply
	MatrixOp
	MatrixRank
	MatrixSchur
	MatrixSolve
	MatrixSVBkSub
	MatrixSVD
	MatrixTrace
	MatrixTranspose
	max
	mean
	MeasureStyledText
	Menu
	min
	mod
	modDate
	Modify
	ModifyContour
	ModifyControl
	ModifyControlList
	ModifyFreeAxis
	ModifyGraph (general)
	ModifyGraph (traces)
	ModifyGraph (axes)
	ModifyGraph (colors)
	ModifyImage
	ModifyLayout
	ModifyPanel
	ModifyTable
	ModifyWaterfall
	ModuleName
	MoveDataFolder
	MoveFile
	MoveFolder
	MoveString
	MoveSubwindow
	MoveVariable
	MoveWave
	MoveWindow
	MultiThread
	NameOfWave
	NaN
	NeuralNetworkRun
	NeuralNetworkTrain
	NewDataFolder
	NewFIFO
	NewFIFOChan
	NewFreeAxis
	NewFreeDataFolder
	NewFreeWave
	NewImage
	NewLayout
	NewMovie
	NewNotebook
	NewPanel
	NewPath
	NewWaterfall
	norm
	note
	Note
	Notebook
	Notebook (Document Properties)
	Notebook (Headers and Footers)
	Notebook (Miscellaneous)
	Notebook (Paragraph Properties)
	Notebook (Selection)
	Notebook (Text Properties)
	Notebook (Writing Graphics)
	Notebook (Writing Special Characters)
	Notebook (Accessing Contents)
	Notebook (Writing Text)
	NotebookAction
	num2char
	num2istr
	num2str
	NumberByKey
	numpnts
	numtype
	NumVarOrDefault
	NVAR
	NVAR_Exists
	Open
	OpenNotebook
	OpenProc
	OperationList
	Optimize
	Override
	p
	p2rect
	PadString
	Panel
	ParamIsDefault
	ParseFilePath
	ParseOperationTemplate
	PathInfo
	PathList
	PauseForUser
	PauseUpdate
	PCA
	pcsr
	Pi
	PICTInfo
	PICTList
	Picture
	PixelFromAxisVal
	PlayMovie
	PlayMovieAction
	PlaySnd
	PlaySound
	pnt2x
	Point
	poissonNoise
	poly
	poly2D
	PolygonArea
	popup
	PopupContextualMenu
	PopupMenu
	PopupMenuControl
	PossiblyQuoteName
	Preferences
	PrimeFactors
	Print
	printf
	PrintGraphs
	PrintLayout
	PrintNotebook
	PrintSettings
	PrintTable
	Proc
	ProcedureText
	ProcGlobal
	Project
	Prompt
	PulseStats
	PutScrapText
	pwd
	q
	qcsr
	Quit
	r
	r2polar
	RatioFromNumber
	Rect
	ReadVariables
	real
	Redimension
	Remove
	RemoveByKey
	RemoveContour
	RemoveEnding
	RemoveFromGraph
	RemoveFromLayout
	RemoveFromList
	RemoveFromTable
	RemoveImage
	RemoveLayoutObjects
	RemoveListItem
	RemovePath
	Rename
	RenameDataFolder
	RenamePath
	RenamePICT
	RenameWindow
	ReorderImages
	ReorderTraces
	ReplaceNumberByKey
	ReplaceString
	ReplaceStringByKey
	ReplaceText
	ReplaceWave
	Resample
	ResumeUpdate
	return
	Reverse
	RGBColor
	rightx
	root
	Rotate
	round
	rtGlobals
	s
	Save
	SaveData
	SaveExperiment
	SaveGraphCopy
	SaveNotebook
	SavePackagePreferences
	SavePICT
	SaveTableCopy
	sawtooth
	ScreenResolution
	sec
	Secs2Date
	Secs2Time
	SelectNumber
	SelectString
	SetActiveSubwindow
	SetAxis
	SetBackground
	SetDashPattern
	SetDataFolder
	SetDimLabel
	SetDrawEnv
	SetDrawLayer
	SetFileFolderInfo
	SetFormula
	SetIgorHook
	SetIgorMenuMode
	SetIgorOption
	SetMarquee
	SetProcessSleep
	SetRandomSeed
	SetScale
	SetVariable
	SetVariableControl
	SetWaveLock
	SetWindow
	ShowIgorMenus
	ShowInfo
	ShowTools
	sign
	Silent
	sin
	sinc
	sinh
	Sleep
	Slider
	Slow
	Smooth
	SmoothCustom
	Sort
	SortList
	SoundInRecord
	SoundInSet
	SoundInStartChart
	SoundInStatus
	SoundInStopChart
	SpecialCharacterInfo
	SpecialCharacterList
	SpecialDirPath
	sphericalBessJ
	sphericalBessJD
	sphericalBessY
	sphericalBessYD
	sphericalHarmonics
	SphericalInterpolate
	SphericalTriangulate
	SplitString
	sprintf
	sqrt
	sscanf
	Stack
	StackWindows
	startMSTimer
	Static
	StatsAngularDistanceTest
	StatsANOVA1Test
	StatsANOVA2NRTest
	StatsANOVA2RMTest
	StatsANOVA2Test
	StatsBetaCDF
	StatsBetaPDF
	StatsBinomialCDF
	StatsBinomialPDF
	StatsCauchyCDF
	StatsCauchyPDF
	StatsChiCDF
	StatsChiPDF
	StatsChiTest
	StatsCircularCorrelationTest
	StatsCircularMeans
	StatsCircularMoments
	StatsCircularTwoSampleTest
	StatsCMSSDCDF
	StatsCochranTest
	StatsContingencyTable
	StatsCorrelation
	StatsDExpCDF
	StatsDExpPDF
	StatsDIPTest
	StatsDunnettTest
	StatsErlangCDF
	StatsErlangPDF
	StatsErrorPDF
	StatsEValueCDF
	StatsEValuePDF
	StatsExpCDF
	StatsExpPDF
	StatsFCDF
	StatsFPDF
	StatsFriedmanCDF
	StatsFriedmanTest
	StatsFTest
	StatsGammaCDF
	StatsGammaPDF
	StatsGeometricCDF
	StatsGeometricPDF
	StatsHodgesAjneTest
	StatsHyperGCDF
	StatsHyperGPDF
	StatsInvBetaCDF
	StatsInvBinomialCDF
	StatsInvCauchyCDF
	StatsInvChiCDF
	StatsInvCMSSDCDF
	StatsInvDExpCDF
	StatsInvEValueCDF
	StatsInvExpCDF
	StatsInvFCDF
	StatsInvFriedmanCDF
	StatsInvGammaCDF
	StatsInvGeometricCDF
	StatsInvKuiperCDF
	StatsInvLogisticCDF
	StatsInvLogNormalCDF
	StatsInvMaxwellCDF
	StatsInvMooreCDF
	StatsInvNBinomialCDF
	StatsInvNCChiCDF
	StatsInvNCFCDF
	StatsInvNormalCDF
	StatsInvParetoCDF
	StatsInvPoissonCDF
	StatsInvPowerCDF
	StatsInvQCDF
	StatsInvQpCDF
	StatsInvRayleighCDF
	StatsInvRectangularCDF
	StatsInvSpearmanCDF
	StatsInvStudentCDF
	StatsInvTopDownCDF
	StatsInvTriangularCDF
	StatsInvUSquaredCDF
	StatsInvVonMisesCDF
	StatsInvWeibullCDF
	StatsJBTest
	StatsKendallTauTest
	StatsKSTest
	StatsKuiperCDF
	StatsKWTest
	StatsLinearCorrelationTest
	StatsLinearRegression
	StatsLogisticCDF
	StatsLogisticPDF
	StatsLogNormalCDF
	StatsLogNormalPDF
	StatsMaxwellCDF
	StatsMaxwellPDF
	StatsMedian
	StatsMooreCDF
	StatsMultiCorrelationTest
	StatsNBinomialCDF
	StatsNBinomialPDF
	StatsNCChiCDF
	StatsNCChiPDF
	StatsNCFCDF
	StatsNCFPDF
	StatsNCTCDF
	StatsNCTPDF
	StatsNormalCDF
	StatsNormalPDF
	StatsNPMCTest
	StatsNPNominalSRTest
	StatsParetoCDF
	StatsParetoPDF
	StatsPermute
	StatsPoissonCDF
	StatsPoissonPDF
	StatsPowerCDF
	StatsPowerNoise
	StatsPowerPDF
	StatsQCDF
	StatsQpCDF
	StatsQuantiles
	StatsRankCorrelationTest
	StatsRayleighCDF
	StatsRayleighPDF
	StatsRectangularCDF
	StatsRectangularPDF
	StatsResample
	StatsSample
	StatsRunsCDF
	StatsScheffeTest
	StatsSignTest
	StatsSpearmanRhoCDF
	StatsSRTest
	StatsStudentCDF
	StatsStudentPDF
	StatsTopDownCDF
	StatsTriangularCDF
	StatsTriangularPDF
	StatsTrimmedMean
	StatsTTest
	StatsTukeyTest
	StatsUSquaredCDF
	StatsVariancesTest
	StatsVonMisesCDF
	StatsVonMisesNoise
	StatsVonMisesPDF
	StatsWaldCDF
	StatsWaldPDF
	StatsWatsonUSquaredTest
	StatsWatsonWilliamsTest
	StatsWeibullCDF
	StatsWeibullPDF
	StatsWheelerWatsonTest
	StatsWilcoxonRankTest
	StatsWRCorrelationTest
	stopMSTimer
	str2num
	Strconstant
	String
	StringByKey
	StringCRC
	StringFromList
	StringList
	StringMatch
	strlen
	strsearch
	strswitch-case-endswitch
	STRUCT
	StructGet
	StructPut
	Structure
	StrVarOrDefault
	StudentA
	StudentT
	Submenu
	sum
	SVAR
	SVAR_Exists
	switch-case-endswitch
	t
	TabControl
	Table
	TableStyle
	TableInfo
	Tag
	TagVal
	TagWaveRef
	tan
	tanh
	TextBox
	TextFile
	ThreadGroupCreate
	ThreadGroupGetDF
	ThreadGroupGetDFR
	ThreadGroupPutDF
	ThreadGroupRelease
	ThreadGroupWait
	ThreadProcessorCount
	ThreadReturnValue
	ThreadSafe
	ThreadStart
	ticks
	Tile
	TileWindows
	time
	TitleBox
	ToCommandLine
	ToolsGrid
	TraceFromPixel
	TraceInfo
	TraceNameList
	TraceNameToWaveRef
	Triangulate3D
	trunc
	try-catch-endtry
	UniqueName
	UnPadString
	Unwrap
	UpperStr
	URLDecode
	URLEncode
	ValDisplay
	Variable
	Variance
	VariableList
	vcsr
	version
	WAVE
	WAVEClear
	WaveCRC
	WaveDims
	WaveExists
	WaveInfo
	WaveList
	WaveMax
	WaveMeanStdv
	WaveMin
	WaveName
	WaveRefsEqual
	WaveRefIndexed
	WaveRefIndexedDFR
	WaveStats
	WaveTransform
	WaveType
	WaveUnits
	wfprintf
	WhichListItem
	WignerTransform
	Window
	WindowFunction
	WinList
	WinName
	WinRecreation
	WinType
	WMAxisHookStruct
	WMBackgroundStruct
	WMButtonAction
	WMCheckboxAction
	WMCustomControlAction
	WMFitInfoStruct
	WMGizmoHookStruct
	WMListboxAction
	WMMarkerHookStruct
	WMPopupAction
	WMSetVariableAction
	WMSliderAction
	WMTabControlAction
	WMWinHookStruct
	wnoise
	x
	x2pnt
	xcsr
	XWaveName
	XWaveRefFromTrace
	y
	z
	zcsr
	ZernikeR

	Index
	Symbols
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

