
IGOR XOP
TOOLKIT

REFERENCE MANUAL
Version 7.03

WaveMetrics, Inc.

Copyright
This manual and the Igor XOP Toolkit are copyrighted by WaveMetrics with all rights reserved. Under copyright laws
it is illegal for you to copy this manual or the software without written permission from WaveMetrics.
WaveMetrics gives you permission to make unlimited copies of the software on any number of machines but only for
your own personal use. You may not copy the software for any other reason. You must ensure that only one copy of the
software is in use at any given time.

Notice
All brand and product names are trademarks or registered trademarks of their respective companies.

Manual Revision: September 27, 2018 (7.03)

© Copyright 2018 WaveMetrics, Inc. All rights reserved.

WaveMetrics, Inc.
PO Box 2088
Lake Oswego, OR 97035
USA

Email: support@wavemetrics.com, sales@wavemetrics.com
Web: http://www.wavemetrics.com/

mailto:support@WaveMetrics.com
mailto:sales@WaveMetrics.com
http://www.wavemetrics.com/

Table of Contents

Chapter 1 - Introduction to XOPs
About This Manual .. 1
What is an XOP?.. 2
Who Can Write an XOP?... 2
A Brief History of Igor .. 2
XOP Toolkit 7.. 4
Choosing Which XOP Toolkit to Use ... 5
Macintosh and Windows XOPs... 6
Development Systems.. 6
Activating XOPs Using the Igor Extensions Folder .. 6
Installing the XOP Toolkit... 7
XOP Toolkit Overview.. 8
XOPSupport... 11
The Sample XOPs.. 11
How Igor Integrates XOPs... 13
The Basic Structure of an XOP.. 15
Preparing to Write an XOP.. 17
Technical Support .. 17

Chapter 2 - Guided Tour
Overview.. 19
Activating XOPs .. 19
What We Will Do .. 20
Installation ... 20
Building SimpleFit... 20
Testing SimpleFit64... 23
Creating a New Project .. 24
Building the New Project in Xcode ... 25
Building the New Project In Visual C++... 27
Changing the Help ... 28
Changing and Compiling the Code.. 29
Testing SimpleGaussFit ... 30
Touring the Code ... 32
Where To Go From Here ... 34

Chapter 3 - Development Systems
Overview.. 35
XOPs in Xcode .. 35
XOP Projects in Xcode .. 36

Xcode Project Settings... 38
Updating Xcode Projects for Xcode 10 ... 44
Debugging an XOP in Xcode .. 46
XOPs in Visual C++ .. 47
Visual C++ Compatibility Issues... 47
XOP Projects in Visual C++.. 48
Visual C++ Project Settings... 49
Debugging a Visual C++ XOP .. 51

Chapter 4 - Igor/XOP Interactions
Overview.. 53
XOP Resources .. 55
How Igor Calls an XOP ... 57
Basic XOP Messages ... 57
Messages for XOPs that Save and Load Settings .. 59
XOP Errors .. 61
XOPs and Preferences ... 65
XOPs and Experiments .. 65
The IORecHandle .. 66
Messages, Arguments and Results... 67
Handling Recursion ... 67
Data Sharing .. 69
Igor/XOP Compatibility Issues.. 69

Chapter 5 - Adding Operations
Overview.. 71
The XOPC 1100 Resource... 72
Choose a Distinctive Operation Name... 74
Operation Handler.. 74
Creating Starter Code... 74
Operation Parameters... 75
The Command Template ... 76
Optional Parameters... 77
Mnemonic Names .. 79
The Runtime Parameter Structure.. 79
Qualified Keywords ... 82
String Parameters ... 83
Name Parameters ... 84
Double Name Parameters .. 84
Wave Parameters ... 84
Wave Range Parameters .. 84

VarName Parameters ... 85
Data Folder Reference Parameters... 86
DataFolderAndName Parameters .. 86
Structure Parameters .. 89
Runtime Output Variables ... 94
Starter Code Details ... 94
Updating Starter Code ... 95
Thread-Safe External Operations... 95
External Operations and Macintosh Resources ... 97
Operation Handler Checklist ... 98

Chapter 6 - Adding Functions
Overview.. 99
External Function Examples .. 99
Adding an External Function to Igor ... 100
The XOPF 1100 Resource ... 100
Choose a Distinctive Function Name .. 102
Invoking an External Function .. 103
External Function Parameters and Results .. 103
Parameter and Result Types .. 104
Wave Parameters ... 105
Wave Results ... 106
Data Folder Reference Parameters... 106
Data Folder Reference Results .. 107
Data Folder Reference Example .. 107
Complex Parameters and Results .. 108
Strings Parameters and Results.. 108
Structure Parameters .. 111
Pass-By-Reference Parameters .. 114
Keep External Functions in Memory... 116
FUNCTION Message Versus Direct Methods .. 116
Thread-Safe External Functions .. 117
External Functions and Macintosh Resources ... 118
Error Checking and Reporting ... 118

Chapter 7 - Accessing Igor Data
Overview.. 121
Waves... 121
Numeric and String Variables.. 138
Dealing With Data Folders .. 141

Chapter 8 - Adding Menus and Menu Items
Overview.. 145
XOPSupport Menu Routines ... 145
Adding Menus and Menu Items... 147
Responding to Menu Selections .. 150
Enabling and Disabling Menu Items ... 152

Chapter 9 - Adding Windows
Overview.. 155
Guided Tour of WindowXOP1.. 156
The Architecture of XOP Windows... 159
Source Code Organization ... 161
Communication With the Operating System ... 162
Communication With Igor ... 162
XOPWindowProxy Class and WindowXOP1Window Class 163
XOPContainerProxy Class and WindowXOP1Container Class 163
Platform-Independent Source Files ... 163
Macintosh XOP Window Programming.. 165
Macintosh Source Files.. 165
Windows XOP Window Programming ... 166
Window Source Files... 166
Menu Handling for XOP Windows and Containers .. 166
Cursor Handling for XOP Windows and Containers... 167
Activating, Showing and Hiding Windows ... 168
Messages for XOP Windows... 168
Messages for XOP Containers ... 169
Igor Window Coordinates.. 169
Adding XOP Target Windows... 170
XOP Window Issues .. 171
XOP Subwindow Issues... 171
Changes to XOP Window Programming in Igor Pro 7 172
TU ("Text Utility") Windows .. 174
Recursion Problems ... 174

Chapter 10 - Multithreading
Multithreading With XOPs.. 175
Thread-safe External Operations and External Functions 175
Three Kinds of Threads ... 176
Two Kinds of Igor Preemptive Threads .. 176
Igor Messages and Threads.. 176
Writing Thread-safe Code ... 176

Igor Preemptive Thread Data Environment... 177
Waves Passed to Igor Threads as Parameters .. 177
Categories of XOPSupport Routines ... 178
Igor-Thread-Safe Callbacks ... 178
Thread-Safety of Callbacks from an Igor Preemptive Thread............................. 178
You Can Not Do Callbacks From Private Threads.. 179
Determining if You are Running in a Preemptive Thread................................... 180
Strategies For Threaded Data Acquisition... 180

Chapter 11 - 64-bit XOPs
Overview.. 187
Activating a 64-bit XOP .. 188
Updating Your Existing Project for 64-bit Development 188
Data Types For 64-bit Compatibility... 188
Programming For 64-bit Compatibility ... 189

Chapter 12 - Other Programming Topics
The XOPMain Function... 195
WM Memory XOPSupport Routines .. 195
Techniques for Cross-Platform Development ... 201
Text Encodings .. 201
Text Encodings in Source Files ... 202
File I/O... 204
File Path Conversions .. 205
Long Names and Paths in XOPs.. 206
Alerts and Message Boxes ... 206
Adding Dialogs .. 207
Adding Version Resources .. 207
Structure Alignment... 208
Using Igor Structures as Parameters .. 209
Calling User-Defined and External Functions... 212
Checking For Aborts.. 214
64-bit Integer Issues... 215
Writing XOPs in C++ .. 216
Windows DLL Dependencies .. 217

Chapter 13 - Providing Help
Overview.. 219
Igor Pro Help File .. 219
Help for External Operations and Functions ... 219
Programmatically Displaying a Help Topic .. 220

Chapter 14 - Debugging
Overview.. 221
Programming Problems ... 221
Debugging Techniques .. 232
Avoiding Common Pitfalls .. 233

Chapter 15 - XOPSupport Routines
About XOPSupport Routines... 238
Routines for Communicating with Igor ... 239
Operation Handler Routines .. 242
Routines for Accessing Waves .. 253
Routines for Accessing Variables.. 291
Routines for Accessing Data Folders... 300
Routines for XOPs with Menu Items... 316
Routines for XOPs that Have Dialogs ... 327
Routines for XOPs that Access Files ... 328
Routines for File-Loader XOPs ... 345
Routines for XOPs with Windows... 349
Routines for XOPs with Text Windows .. 350
Routines for Dealing with Resources .. 351
Routines for XOPs That Use FIFOs .. 353
Numeric Conversion Routines... 354
Routines for Dealing With Object Names ... 358
Color Table Routines ... 364
Command Window .. 366
Routines for Dealing With Igor Procedures .. 370
Multithreading Support Routines... 379
Windows-Specific Routines .. 382
Miscellaneous Routines ... 384
Programming Utilities.. 399
WM Memory Routines .. 410

Appendix A - XOP Toolkit 7 Upgrade Notes
Overview.. 415
Development Systems Supported by XOP Toolkit 7 .. 415
Create a Copy of Your Existing XOPs .. 415
Changes You Must Make .. 416
Removed Sample XOPs... 417
Changes from GBLoadWave to GBLoadWaveX.. 417
Memory Management Changes ... 417
Change to Wave Handles... 417

Changes to Igor Behavior .. 418
New Features ... 418
XOPStandardHeaders Changes ... 418
Organizational Changes ... 418
Text Encodings Used By XOPSupport Routines .. 418
Removed XOPSupport Routines ... 419
Changed XOPSupport Routines .. 419
New XOPSupport Routines ... 420
Fixes for Compiler Changes .. 421
Checking the Igor Version ... 421
XOP Menus in XOP Toolkit 7... 421
Help Resources in XOP Toolkit 7 ... 423
XOP Dialogs in XOP Toolkit 7 ... 423
XOP Windows in Igor Pro 7.. 424
TU ("Text Utility") Windows in Igor Pro 7... 424

Appendix B - Project Changes For XOP Toolkit 7
Overview.. 427
Xcode Project Changes For XOP Toolkit 7... 427
Converting Your Older Xcode Project for Xcode 9 .. 427
Converting Your Older Xcode Project for Xcode 10 .. 431
Visual C++ Project Changes For XOP Toolkit 7 .. 434
Converting Your Older Visual C++ Project .. 434
Text Encoding Issues ... 439

Appendix C - XOP Toolkit 7 Release History
Overview.. 441
Release 7.00 ... 441
Release 7.01 ... 441
Release 7.02 ... 443
Release 7.03 ... 443

Index

Chapter 1
I-1Introduction to XOPs

About This Manual
This manual describes XOP Toolkit 7.03. It focuses on development using Xcode 7 through Xcode 10 on
Macintosh and Visual C++ 2015 or Visual C++ 2017 on Windows. XOP Toolkit 7 creates XOPs that run with
Igor Pro 6.20 or later.

If you are are targeting Igor Pro 8.00 or later, and you are creating a new XOP or updating an XOP already
updated using XOP Toolkit 7.01 or later, you should use XOP Toolkit 8. See Choosing Which XOP Toolkit
to Use on page 5 for details.

If you are new to XOP programming, we recommend that you start by reading the first four chapters of this
manual.

This chapter provides an overview, orientation and background information.

Chapter 2 is a Guided Tour that takes you through the process of building and running an XOP.

Chapter 3 discusses the settings and techniques used with the Xcode and Visual C++ development systems.
You need to read only the section that pertains you your development system.

Chapter 4 explains the basics of how Igor and XOPs interact.

After reading the first four chapters, you can select which of the remaining chapters you need to read
depending on what your XOP is required to do.

Most XOP programmers will need to read Chapter 5, which explains how to add an external operation to
Igor, or Chapter 6, which explains how to add an external function.

Chapter 7 explains how to access Igor data (data folders, waves and variables).

Chapters 8 through 13 discuss various topics such as adding menus, dialogs, windows and help as well as
multithreading and 64-bit XOPs.

Chapter 14 discusses debugging and how to avoid bugs using solid coding practices.

Chapter 15 lists each of the XOP Toolkit routines available for you to call to interact with Igor or to perform
other tasks.

If you are upgrading an XOP that was created with XOP Toolkit 6, we recommend that you read this
chapter and then XOP Toolkit 7 Upgrade Notes on page 415. As explained there, we recommend that you
leave your existing XOP project folders as they are and create new copies of those folders for further devel-
opment using XOP Toolkit 7.

For a list of changes to XOP Toolkit 7 since release 7.00, see XOP Toolkit 7 Release History on page 441.

Chapter 1 — Introduction to XOPs

2

What is an XOP?
An XOP is a relatively small piece of C or C++ code that adds functionality to Igor Pro.

XOPs can be very simple or quite elaborate. A simple XOP might, for example, add an operation to Igor that
applies a transformation to a wave. An elaborate XOP can add multiple operations, functions, menu items,
dialogs and windows. It is even possible to build a data acquisition and analysis system on top of Igor.

“XOP” literally means “external operation”. Originally XOPs were intended only to allow adding opera-
tions to Igor. Now an XOP can add much more so “XOP” has the meaning “external module that extends
Igor”. We sometimes call XOPs “extensions” or “Igor extensions”.

Igor has two types of built-in routines: operations and functions. An operation (e.g., Display) has an effect
but no direct return value. A function (e.g., sin) has a direct return value and, usually, no side effects. An
XOP can add operations and/or functions to Igor Pro.

To create an XOP, you start by cloning a sample XOP project supplied by WaveMetrics. After modifying
the clone, you compile it to produce the executable XOP.

An XOP contains executable code, required resources, and optional resources. The required resources tell
Igor what operations and functions the XOP adds. The optional resources define things such as menu items,
menus, and error messages.

When Igor Pro starts up, it looks for XOPs, as well as aliases or shortcuts that point to XOPs, in the Igor
Extensions folder. For each XOP that it finds, it adds the operations, functions and menu items specified by
the XOP’s resources. When the user accesses an operation, function or menu item added by the XOP, Igor
then communicates with the XOP using a simple protocol. The XOP can access Igor data and functions
using a set of routines, called XOPSupport routines, provided with the XOP Toolkit.

Who Can Write an XOP?
In order to write an XOP you need to be very familiar with Igor concepts such as waves, command line
operations, procedures and experiments.

Writing a simple XOP that just adds an operation or function to Igor requires advanced-beginner to inter-
mediate programming skills. If you have less experience, you will need more patience.

Writing an elaborate XOP, especially one that adds windows and/or dialogs, requires intermediate pro-
gramming skills and some knowledge of graphical user interface programming.

A Brief History of Igor
Igor 1.0 was introduced in January of 1989 and ran on Macintosh computers which, at that time, used
Motorola 680x0 processors (68K). Igor 1.0 did not support XOPs.

WaveMetrics released Igor 1.1 in March of 1989. Igor 1.1 supported external operations but not external
functions. The first XOP Toolkit was also released at this time and supported development under MPW
(Macintosh Programmer's Workshop) and Symantec THINK C. Igor 1.2 shipped in May of 1990 and also
supported external operations but not external functions.

In March of 1994 WaveMetrics released Igor Pro 2.0, a major new version of Igor. This version added note-
books, control panels, drawing tools, and many other features, including user-defined functions. In April
of 1994 WaveMetrics released XOP Toolkit 2.0 which supported XOP development under MPW and
THINK C. It also supported external functions for the first time.

In May of 1995, WaveMetrics released Igor Pro 2.02, the first version optimized for Power Macintosh and
its PowerPC processor (PPC). A version of the XOP Toolkit was released which supported development of
PowerPC XOPs using MPW or the CodeWarrior development system from Metrowerks.

Chapter 1 — Introduction to XOPs

3

In February of 1996, WaveMetrics released Igor Pro 3.0. This version added multi-dimensional waves, text
waves and data folders. XOP Toolkit 3.0 supported 68K and PPC development using MPW, THINK C, and
CodeWarrior.

In November of 1997, WaveMetrics released Igor Pro 3.1. The main new thing in this version is that it ran
under Windows 95 and Window NT 4.0 on Intel x86 processors as well as on Macintosh. XOP Toolkit 3.1
was released which supported development using CodeWarrior for 68K, PPC, and x86 development or
Microsoft Visual C++ 5 for x86 development. Support for MPW and THINK C was dropped.

In September of 2000, WaveMetrics released Igor Pro 4.0. No new version of the XOP Toolkit was released.

In February of 2002, WaveMetrics released Igor Pro 4.05. This release included the Igor Pro Carbon appli-
cation, the first version to run native on MacOS. It was based on Apple’s Carbon API which supported soft-
ware running on both Mac OS 9 and MacOS. Igor Pro 4.05 also included the pre-Carbon version of the
application which ran on Mac OS 9 only.

In order to run native under MacOS, XOPs had to be revised to run under the Carbon API. In September of
2001, during the beta testing of Igor Pro Carbon, WaveMetrics released a Carbon XOP Toolkit which was
shipped as part of XOP Toolkit 3.12.

In November of 2003, WaveMetrics shipped Igor Pro 5.0. For Macintosh, this release included just the
Carbon version of Igor, not the pre-Carbon version. This meant that any Macintosh XOP that was to run
with Igor Pro 5 had to be revised to use Apple’s Carbon API. The Windows version of Igor Pro 5.0 required
Windows 98, Windows ME, Windows 2000 or Windows XP. Support for Windows 95 and Windows NT
was dropped.

From the XOP point of view, the major addition in Igor Pro 5 was a feature called “Operation Handler” –
code within Igor that simplified the implementation of external operations and made it possible to call them
directly from an Igor Pro user-defined function.

Igor Pro 5 was also the first version of Igor to support Mach-O XOPs. Mach-O is the binary format for an
executable on MacOS. Previously Macintosh XOPs used the OS 9 CFM format.

In January of 2004, WaveMetrics released XOP Toolkit 5. It supported Macintosh development in CodeWar-
rior and Xcode and Windows development using Visual C++ 6, 7 (2003) and 8 (2005). The main new feature
was Operation Handler support. It also supported pass-by-reference parameters with external functions.

Support for structure parameters was added in XOP Toolkit 5.04 in July, 2005.

In the spring of 2006, WaveMetrics released a beta version of Igor that ran native on Intel-based Macintosh
computers. At the same time, XOP Toolkit 5.07 was released, adding support for Intel-based Macintosh
XOPs.

In January of 2007, WaveMetrics released Igor Pro 6.0. No new version of the XOP Toolkit was released.
Igor Pro 6.0 ran on MacOS 10.3.9 or later and on Windows 2000, Windows XP and Windows VISTA.

In June of 2009, WaveMetrics released Igor Pro 6.1. No new version of the XOP Toolkit was released. Igor
Pro 6.1 ran on MacOS 10.4 or later and on Windows XP, Windows VISTA and Windows 7.

In August of 2010, WaveMetrics released Igor Pro 6.2 and XOP Toolkit 5.09. Igor Pro 6.2 ran on MacOS 10.4
or later and on Windows XP, Windows VISTA and Windows 7. In XOP Toolkit 5.09, documention related
to obsolete technologies (e.g., Mac OS 9, CodeWarrior and Visual C++ 6) was removed.

Also in October of 2010, WaveMetrics released XOP Toolkit 6.00. XOP Toolkit 6 supported the creation of
64-bit Windows XOPs to run with the 64-bit Windows version of Igor. It required Igor Pro 6.00 or later.
When running with Igor Pro 6.20 or later, an XOP created with XOP Toolkit 6 facilitated the creation of
multi-threaded external operations and functions by allowing callbacks to Igor from an external operation
or function called from an Igor thread, something that was not permitted before.

Chapter 1 — Introduction to XOPs

4

For XOP Toolkit 6, all sample source files were converted from C to C++. The programming techniques in
the sample XOPs are still C techniques. The XOPSupport library remains C.

In February of 2013, WaveMetrics released Igor 6.30 which ran on MacOS 10.4 or later and on Windows XP
or later. That same month XOP Toolkit 6.30 was released. Sample projects and documentation for Visual
C++ 2012 were added. All sample XOPs were updated for compatibility with Xcode 4.6 and the LLVM com-
piler which Apple chose to replace the GCC compiler. This required source code changes which in turn
require Igor Pro 6.20 or later.

In October of 2015, WaveMetrics released XOP Toolkit 6.40. This release added Xcode 6 and Visual C++ 2015
sample projects. It also added a new Igor7-compatible set of routines for supporting XOP menus. See
Changes To XOP Menu Support on page 486. In XOP Toolkit 6.40, documention related to older develop-
ment systems was removed.

In July of 2016, WaveMetrics released Igor Pro 7.00. Igor Pro 7 is a major overhaul of Igor Pro 6 and is built
on the Qt cross-platform framework. Igor Pro 7 is available in both 32 bits and 64 bits and is the first version
of Igor that runs in 64 bits on Macintosh.

Also in July of 2016, WaveMetrics released XOP Toolkit 7.00. XOP Toolkit 7.00 was the first toolkit that sup-
ported the creation of 64-bit Macintosh XOPs. XOPs created with XOP Toolkit 7 require Igor Pro 6.20 or
later. The cross-platform dialog support of XOP Toolkit 6 was removed. The GBLoadWaveX XOP was
added to show how to create a dialog using platform-specific code, replacing the old GBLoadWave XOP.
The protocol for creating an XOP window was completely changed. As relates to text encoding, the XOP
Toolkit 7 sample projects are optimized for use with Igor7, by virtue of using UTF-8 for source files.

Most pre-existing XOPs work with Igor7. XOPs that add menus or dialogs may need to be updated using
XOP Toolkit 7. XOPs that add windows must be updated using XOP Toolkit 7. To create a 64-bit Macintosh
XOP, you must use XOP Toolkit 7. See XOP Toolkit 7 Upgrade Notes on page 415 for details on updating
an existing XOP for XOP Toolkit 7.

In April of 2017, WaveMetrics released XOP Toolkit 7.01 which was tested in Xcode 7 and 8 and Visual C++
2015 and 2017. XOP Toolkit 7.01 introduced new memory management routines described under WM
Memory XOPSupport Routines on page 195. Use of these routines is required for compatibility with the
64-bit version of Igor Pro 8.

In May of 2018, WaveMetrics released Igor Pro 8.00. Igor8 supports object names up to 255 bytes in length.
Object names in earlier versions of Igor were limited to 31 bytes. Igor8 supports old XOPs compiled with
the 31-byte object name limit using XOP Toolkit 7 or before, but generates an error if passing a long object
name to the XOP is required. On Macintosh, Igor8 is available only in the 64-bit version, not in 32 bits. Con-
sequently, existing 32-bit Macintosh XOPs can not run with Igor8. On Windows, Igor8 is available in both
64-bit and 32-bit versions, but 64 bits is recommended.

In June of 2018, WaveMetrics released XOP Toolkit 8.00 which was tested in Xcode 9 and Visual C++ 2015
and 2017. XOP Toolkit 8.00 supports long object names. Consequently, XOPs compiled using XOP Toolkit
8 require Igor Pro 8.00 or later. See Choosing Which XOP Toolkit to Use on page 5 for details.

Support for Xcode 10 was added in XOP Toolkit 7.03 and XOP Toolkit 8.01 in September of 2018. Xcode 10
supports 64-bit development only, not 32-bit development.

XOP Toolkit 7
XOPs created with XOP Toolkit 7 require Igor Pro 6.20 or later. Some features require later versions of Igor.
This is noted in the documentation where applicable.

The section Igor/XOP Compatibility Issues on page 69 explains how you can check which version of Igor
you are running with.

Chapter 1 — Introduction to XOPs

5

In most cases you can easily support Igor6 (6.20 or later) and Igor7 with one XOP. An exception is if you
make frequent use of non-ASCII text. In that case, you may be better off maintaining separate Igor6 and
Igor7 versions of your XOP. See Text Encodings on page 201 for details.

Choosing Which XOP Toolkit to Use
As of this writing (2018), WaveMetrics is shipping two versions of the XOP Toolkit - version 7 and version 8.

Use XOP Toolkit 7 if your XOP must run with Igor Pro 6 or Igor Pro 7, or if you are updating an older XOP
that was never updated using XOP Toolkit 7.01 or later, or if you have not yet created a 64-bit version of
your XOP.

Use XOP Toolkit 8 if you are writing a new XOP to target Igor Pro 8 or later, or if you are updating an XOP
that was already updated using XOP Toolkit 7.01 or later to target Igor Pro 8 or later.

The next section explains the reason for these rules.

Main Issues
There are three main issues:

1. 64-bit XOPs
If you have not ported your existing XOP to 64 bits, use XOP Toolkit 7 to do that. Chapter 11 of the
XOP Toolkit 7 manual includes detailed instructions for porting to 64 bits. To reduce clutter, the
detailed instructions were removed from the XOP Toolkit 8 manual.

2. Memory Management Routines
To support blocks of memory larger than 2 GB, WaveMetrics changed Igor's internal memory man-
agement routines for Igor Pro 8. No change is required for 32-bit Macintosh XOPs or for 32-bit or 64-
bit Windows XOPs. However, to run with Igor Pro 8 or later, 64-bit Macintosh XOPs must be mod-
ified as explained under "WMMemory XOPSupport Routines" in Chapter 12 of the XOP Toolkit 7
manual.
Although it is not required to update 32-bit Macintosh XOPs and 32-bit or 64-bit Windows XOPs,
we recommend that you do so to keep your code up-to-date.

3. Long Object Names and Paths
Prior to Igor Pro 8, object names, such as the names of waves, variables, and data folders, were lim-
ited to 31 bytes. In Igor Pro 8.00, this limit was raised to 255 bytes, and other limits were also raised.
For compatibility with older XOPs, Igor Pro 8 and later can run with XOPs that do not support long
names and paths, but return errors if passing a long name or path to the XOP is required.
If your XOP uses any of the following constants then it uses object names and/or paths:

MAX_OBJ_NAME, MAX_WAVE_NAME, MAX_DIM_LABEL_BYTES
MAXCMDLEN, MAX_PATH_LEN

XOP Toolkit 7 supports short names and paths only. It can create XOPs that run with Igor Pro 6.20
or later, but they will return errors if used with long names or paths in Igor Pro 8.00 or later.
XOP Toolkit 8 supports long names and paths only. Long names and paths require Igor Pro 8.00 or
later. Consequently, you should use XOP Toolkit 8 only if you are willing to require Igor Pro 8.00 or
later. See “Long Names and Paths in XOPs” in Chapter 12 of the XOP Toolkit 8 manual for details.

Summary of Recommendations
If you are updating an XOP that was never updated using XOP Toolkit 7.01 or later, or if you have not yet
created a 64-bit version of your XOP, first update your XOP using XOP Toolkit 7. See Appendix A in the
XOP Toolkit 7 manual for details.

Once you have updated your XOP with XOP Toolkit 7, if you want to support long object names andpaths
and are willing to require Igor Pro 8.00 or later, update using XOP Toolkit 8. See Appendix A in the XOP
Toolkit 8 manual for details.

Chapter 1 — Introduction to XOPs

6

Here is a summary of the rules for determining which XOP Toolkit to use:

• If you are creating a new XOP and you want to run with Igor Pro 8.00 or later, use XOP Toolkit 8.
• If you are creating a new XOP and you want to run with Igor Pro 6.20 or later, use XOP Toolkit 7.
• If you are updating an XOP created with XOP Toolkit 7.00 or before, or if you have not yet created

a 64-bit version of your XOP, first update using XOP Toolkit 7. Then, if you want to run with Igor
Pro 8.00 or later, update using XOP Toolkit 8.

Macintosh and Windows XOPs
XOP Toolkit 7 supports development of 32-bit and 64-bit XOPs for both Macintosh and Windows.

Some XOPs, by their nature, are platform-independent. For example, the code for a number-crunching XOP
will be identical on all platforms. XOPs that have a user interface (menus, dialogs, windows) or deal with
files are partially platform-dependent. However, the XOP Toolkit provides routines for dealing with menus
and files. Using these routines, it is possible to write most XOPs in a mostly platform-independent way. But
XOPs still need to be compiled separately for each platform.

Development Systems
This table lists the development systems supported by XOP Toolkit 7.

Details on using each development system are provided in Chapter 3.

The sample projects will most-likely work with newer development system versions.

On Windows, the free Express Edition of Visual C++ is sufficient for most XOP development.

If you are an experienced programmer, you may be able to port the samples and the XOPSupport library to
other development systems. You will need to read Chapter 3 to understand how XOP projects are con-
structed.

Activating XOPs Using the Igor Extensions Folder
In order for Igor to recognize and load an XOP, it must be “activated”. You activate an XOP by putting it,
or an alias (Macintosh) or shortcut (Windows) pointing to it, in the “Igor Extensions” or “Igor Extensions (64-
bit)” folder.

There are Igor Extensions folders in the Igor Pro Folder but you should not use them to activate XOPs.
Instead use the Igor Extensions folders in the “Igor Pro User Files” folder. These folders are created by Igor
the first time you run the program.

The term “Igor Pro User Files” folder is generic. The actual folder name includes the Igor version, such as
“Igor Pro 6 User Files” or “Igor Pro 7 User Files”.

Development System XOPs Run On Dev Sys Files In Notes

Xcode 7 through Xcode 10 MacOS 10.6 or later <project>/Xcode

Visual C++ 2015 or 2017 Windows 7 or later <project>/VC Any edition is OK.

Chapter 1 — Introduction to XOPs

7

This table shows the default location of the Igor7 Igor Extensions folders on each operating system:

You can display the Igor Pro User Files folder on the desktop by choosing Help→Show Igor Pro User Files
while running Igor.

To activate an XOP, put the XOP, or an alias or shortcut pointing to it, in the “Igor Extensions” or “Igor
Extensions (64-bit)” folder inside the “Igor Pro User Files” folder.

If you are activating a WaveMetrics XOP that resides in “Igor Pro Folder/More Extensions” or “Igor Pro
Folder/More Extensions (64-bit)”, make an alias or shortcut for the XOP and put the alias or shortcut in
“Igor Pro User Files/Igor Extensions” or “Igor Pro User Files/Igor Extensions (64-bit)”.

If you are activating your own XOP or a third-party XOP, you can put it directly in “Igor Pro User Files/Igor
Extensions” or “Igor Pro User Files/Igor Extensions (64-bit)”, or you can use an alias or shortcut if you
prefer.

Installing the XOP Toolkit
The XOP Toolkit comes in a folder named “XOP Toolkit 7” which you can put anywhere on your hard disk.
If you have no other preference, a good place to put it is in your “Igor Pro User Files” folder. To find that
folder, run Igor and choose Help→Show Igor Pro User Files.

The XOP Toolkit is delivered via electronic download only. You receive download instructions from Wave-
Metrics when you purchase the toolkit.

After downloading the XOP Toolkit, double-click the XOPToolkit7.dmg (Macintosh) or XOPToolkit7.exe
(Windows) and install the “XOP Toolkit 7” folder on your hard disk.

All of the sample XOPs, the XOPSupport library and other support files are stored in a folder named
IgorXOPs7 inside the “XOP Toolkit 7” folder.

Testing the Macintosh Installation
These instructions apply to Xcode 7 through Xcode 10.

The instructions assume that you are running Igor7 or later and therefore show how to build and activate
the 64-bit version of the XOP and run it with the 64-bit version of Igor. If you are running Igor6, build and
activate the 32-bit version and run it with the 32-bit version of Igor.

1. In the Finder, open the IgorXOPs7/XFUNC1/Xcode folder.

2. Open the XFUNC1.xcodeproj project in Xcode.

If you are running Xcode 10 or later, Xcode will display a dialog saying "32-bit MacOS targets are no
longer supported". This is because Xcode 10 no longer supports 32-bit development. Click OK to dis-
miss the dialog.

3. Choose File→Project Settings.

4. Click the Advanced button.

5. Click the Legacy radio button.

6. Click Done to close the Advanced Project Settings dialog.

OS Path

MacOS /Users/<user>/Documents/WaveMetrics/Igor Pro 7 User Files/Igor Extensions

/Users/<user>/Documents/WaveMetrics/Igor Pro 7 User Files/Igor Extensions (64-bit)

Windows C:\Users\<user>\Documents\WaveMetrics\Igor Pro 7 User Files\Igor Extensions

C:\Users\<user>\Documents\WaveMetrics\Igor Pro 7 User Files\Igor Extensions (64-bit)

Chapter 1 — Introduction to XOPs

8

7. Click Done to close the Project Settings dialog.

8. Choose Product→Scheme→XFUNC1-64.

9. Choose Product→Build.

This creates the XFUNC1-64.xop package in the IgorXOPs7XFUNC1/Xcode/build/Debug. Don’t worry
if you got some warnings from the compiler during the build.

10. Make an alias from the XFUNC1-64.xop package and drag the alias into your “Igor Extensions (x64)”
folder.

11. Launch the 64-bit version of Igor.

12. Execute the following command:

Print XFUNC1Add(3,4)

13. Igor should print "7" in the history area.

If Igor displayed an error message, make sure that you activated XFUNC1-64.xop correctly. See Activating
XOPs Using the Igor Extensions Folder on page 6 for details. Also make sure that you ran the 64-bit version
of Igor.

Testing the Windows Installation
These instructions apply to Visual C++ 2015. They were also tested with Visual C++ 2017. You may get
compile or link errors with another version.

The instructions assume that you are running Igor7 or later and therefore show how to build and activate
the 64-bit version of the XOP and run it with the 64-bit version of Igor. If you are running Igor6, build and
activate the 32-bit version and run it with the 32-bit version of Igor.

1. In the Windows desktop, open the IgorXOPs7\XFUNC1\VC folder.

2. Open the XFUNC1.sln file in Visual C++.

3. From the platform popup menu in the standard toolbar (under the menu bar), choose x64.

4. Choose Build Solution from the Build menu. This creates the XFUNC1-64.xop file in the
IgorXOPs7\XFUNC1\VC folder. Don’t worry if you got some warnings from the compiler during the
build.

5. Make a shortcut from the XFUNC1-64.xop file and drag the shortcut into your “Igor Extensions (x64)”
folder.

6. Launch the 64-bit version of Igor.

7. Execute the following command:

Print XFUNC1Add(3,4)

8. Igor should print "7" in the history area.

If Igor displayed an error message, make sure that you activated XFUNC1-64.xop correctly. See Activating
XOPs Using the Igor Extensions Folder on page 6 for details. Also make sure that you ran the 64-bit version
of Igor.

XOP Toolkit Overview
The XOP Toolkit includes a number of files that you will need to implement your XOP. The files are orga-
nized into folders all of which are in the IgorXOPs7 folder.

The IgorXOPs7 folder contains one folder for each of the sample XOPs, and an additional folder for the
XOPSupport files, which are used by all XOPs.

Chapter 1 — Introduction to XOPs

9

The XOPSupport Folder
This XOPSupport folder contains

• Compiled XOPSupport libraries for the supported development systems.
• The C files and headers used to make those libraries.
• For Windows, the IGOR.lib and IGOR64.lib files which provides memory management and utility

routines.
• Some miscellaneous files.
The main files of interest are listed in the following table. Your interaction with them will be mostly through
including the XOPStandardHeaders.h file, linking with the library files, and calling the XOPSupport rou-
tines defined in the libraries. These routines are described in detail in Chapter 15.

libXOPSupport.a, XOPSupport.lib and IGOR.lib are used when building 32-bit XOPs only.

libXOPSupport64.a, XOPSupport64.lib and IGOR64.lib are used when building 64-bit XOPs only.

In addition, the XOPSupport folder contains various header files and C files that deal with data folders,
numeric conversions, menus, dialogs, windows, FIFOs, and file I/O.

File What It Contains

XOPSupport.c Utility and callback routines for communication with Igor.

XOPWaveAccess.c Utility and callback routines for dealing with waves.

XOPStandardHeaders.h Includes ANSI-C headers, Macintosh or Windows headers, and XOP
headers. All XOP C and C++ files need to include this file.

XOPSupport.h Declarations and prototypes for all XOPSupport routines. This file is
included in XOPStandardHeaders.h.

XOP.h #defines, data structures and global variable declarations used as part of
the Igor/XOP communication protocol. This file is included in
XOPStandardHeaders.h.

IgorXOP.h #defines for Igor menu items, numeric type codes, and other items
culled from Igor's own source code. This file is included in
XOPStandardHeaders.h.

IgorErrors.h #defines for Igor error codes. This file is included in
XOPStandardHeaders.h.

/Xcode/libXOPSupport.a

/Xcode/libXOPSupport64.a

The Xcode 6 XOPSupport libraries for MacOS XOPs. Requires MacOS
10.6 or later. Works with Xcode 7 and 8.

\VC\XOPSupport.lib

\VC\XOPSupport64.lib

The Visual C++ 2015 XOPSupport libraries for Windows XOPs.

IGOR.lib

IGOR64.lib

Allows a Windows XOP to call memory management and other utility
routines that are implemented in the Igor.exe file on Windows.

Chapter 1 — Introduction to XOPs

10

Sample XOP Folders
Each sample XOP folder contains files that are used by all development systems and files that are develop-
ment-system-specific. The development-system-specific files are grouped in their own folders. For exam-
ple, here is a view of the XFUNC1 folder:

Each sample XOP folder contains:

When you compile an XOP, the compiler generates executable code from the C++ files. It then creates
resources from the resource file. It writes the executable code and resources to the output executable XOP
file on Windows or to the package on Macintosh. The projects are configured to store the compiled XOP in
the development-system-specific folder (Xcode or VC).

File Example

A C++ file containing the code for the XOP. XFUNC1.cpp

A header file containing #defines and other declarations. XFUNC1.h

A resource file containing a text description of the XOP’s
resources.

XFUNC1.r (Macintosh) or
XFUNC1.rc (Windows)

A "custom" resource file containing a text description of XOP-
specific resources (Windows only)

XFUNC1WinCustom.rc

A resource header file containing defines used in the main
resource file (Windows only)

resource.h

A help file. This is an Igor Pro notebook that has been
formatted and opened in Igor Pro as a help file.

XFUNC1 Help.ihf

A “project”, and/or “solution” file.

In Visual C++, open the solution file (.sln) to work with the
project.

XFUNC1.xcodeproj (Xcode)

XFUNC1.sln (VC)
XFUNC1.vcxproj (VC)
XFUNC1.vcxproj.filters (VC)

Chapter 1 — Introduction to XOPs

11

XOPSupport
The XOPSupport folder contains the source code for the heart of the XOP Toolkit. These routines, described
in detail in Chapter 15, are used by all XOPs. Most XOPs will use just a small fraction of the available rou-
tines. The routines are made available to the XOP by including XOPStandardHeaders.h and by linking with
the XOPSupport library.

Callbacks are routines that execute code in Igor to perform services required by the XOP. There are callbacks
for creating and manipulating waves and variables and for many other purposes.

Utilities are routines in the XOPSupport library itself that provide useful services without calling Igor. There
are utilities for handling resources, files and other things.

Whether a particular XOPSupport routine is a callback or a utility is usually of no consequence to the XOP
programmer.

Most callback routines are defined in the XOPSupport C files. They transmit parameters from the XOP to
Igor and results from Igor back to the XOP. On Windows only, some callback routines call Igor directly.
These routines are made available to the XOP by linking with IGOR.lib or IGOR64.lib. The callbacks that go
directly to Igor have to do with Windows-specific functions (e.g., GetIgorClientHWND). Whether a partic-
ular callback goes through XOPSupport or goes directly to Igor is usually of no consequence to the XOP
programmer.

The Sample XOPs

XOP1
XOP1 is the archetypal XOP. It adds a single operation to Igor. The name of the operation is also XOP1. The
XOP1 operation expects the name of a single wave. It adds the number 1 to each point in the wave. The
wave must be either single or double-precision floating point.

XOP1 is a good starting point for very simple XOPs that add command line operations to Igor.

XFUNC1
XFUNC1 is a simple example of adding numeric functions to Igor Pro. It adds the XFUNC1Add(n1,n2) and
XFUNC1Div(n1,n2) functions.

XFUNC1 is a good starting point for simple XOPs that add numeric functions to Igor Pro.

XFUNC2
XFUNC2 is a more complex example of adding numeric functions to Igor Pro. It adds the logfit(w,x) and
plgndr(l,m,x) functions.

logfit is a function that can be used for curve fitting. It also illustrates passing a wave to an external function.

plgndr computes Legendre polynomials.

XFUNC3
XFUNC3 is a simple example of adding string functions to Igor Pro. It adds the xstrcat0(s1, s2) and
xstrcat1(s1, s2) functions.

XFUNC3 illustrates receiving string parameters from Igor and returning string results.

MenuXOP1
MenuXOP1 is a simple XOP that illustrates the various ways that an XOP can add menus and menu items
to Igor. It adds its own menu to Igor’s main menu bar. This menu contains several submenus. It also adds
a menu item to Igor’s Misc menu and a menu item with a submenu to Igor’s Analysis menu. MenuXOP1

Chapter 1 — Introduction to XOPs

12

also adds command line operations for enabling and disabling menu items and showing and hiding menus
to illustrate how this is done. These operations are documented in the MenuXOP1.cpp file.

SimpleLoadWave
SimpleLoadWave is a simple file loader. It loads data from tab-delimited text files into Igor waves and is a
good starting point for XOPs that import data into Igor. It adds one menu item and one operation to Igor.
The menu item, Load Simple Delimited File, appears in Igor’s Load Waves submenu. When the menu item
is chosen, the SimpleLoadWave XOP puts up an Open File dialog allowing the user to select a plain text file
to open. Then SimpleLoadWave opens the file, creates Igor waves and fills the waves with values from the
text file. The XOP also adds the SimpleLoadWave operation to Igor. The user can invoke this operation from
Igor’s command line or from an Igor procedure to load tab-delimited text files.

SimpleLoadWave uses the file I/O routines provided by the XOPSupport library to achieve platform-inde-
pendence.

GBLoadWaveX
GBLoadWaveX loads general binary files into Igor waves.

GBLoadWaveX is the descendent of the GBLoadWave XOP that was provided as a sample XOP in XOP
Toolkit 1 through XOP Toolkit 6. In Igor7, GBLoadWave was built into Igor itself, so, in XOP Toolkit 7, the
sample XOP was renamed GBLoadWaveX. See Changes from GBLoadWave to GBLoadWaveX on page
417 for a discussion of differences between GBLoadWaveX and GBLoadWave.

The GBLoadWaveX XOP adds the GBLoadWaveX command line operation to Igor and is a good starting
point for XOPs that import binary data. It also illustrates how to create an Igor-style dialog using platform-
dependent code.

SimpleFit
SimpleFit adds a simple curve-fitting function for fitting to a polynomial. The Guided Tour chapter of this
manual shows how to compile SimpleFit and how to change it to fit a different function.

WaveAccess
WaveAccess illustrates three methods of accessing numeric wave data. One of the methods is optimized for
speed but requires that you treat each numeric type separately. The other two methods are very easy to use
with any numeric type and provide sufficient speed for most applications. WaveAccess also illustrates
accessing Igor Pro text waves.

VDT2 (“Very Dumb Terminal”)
VDT2 is an elaborate XOP that adds a dumb terminal emulator and command line operations for serial I/O
to Igor as well as a submenu in Igor's Misc menu, a dialog and a window.

The VDT2 window is a text window implemented using the XOPSupport TU (“text utility”) routines. When
the user chooses VDT2 Settings from VDT2’s submenu, VDT2 displays a dialog that allows the user to select
the baud rate, serial port and other parameters. It stores these settings in Igor preferences and in experiment
files. VDT2 supports sending and receiving text files via a serial port. It also allows the user to send or
receive Igor waves and variables.

NIGPIB2
NIGPIB2 adds support for National Instruments GPIB cards to Igor. It adds no menu items, dialogs or
windows but does add several powerful command line operations for controlling the GPIB and for trans-
ferring ASCII and binary data. NIGPIB2 is a good starting point for an XOP that interfaces Igor to hardware.

To compile NIGPIB2, you need some files from National Instruments. This is described in the file "About
NIGPIB2.txt".

Chapter 1 — Introduction to XOPs

13

How Igor Integrates XOPs
When Igor Pro is launched, it searches the Igor Extensions folder and any sub-folders for XOPs and aliases
(Macintosh) or shortcuts (Windows) that point to XOPs.

Macintosh XOPs are identified by the “.xop” extension in the name of the XOP package folder. Windows
XOP files are identified by their “.xop” file name extension.

Igor first looks for an XOP’s ‘XOPI’ (“XOP Information”) resource which contains general information
about the XOP. If this is missing, Igor displays an error message.

Next Igor looks for optional resources to determine what menus, menu items, operations and functions the
XOP adds. Igor adds the menus to its main menu bar, adds menu items to its built-in menus, adds the oper-
ations to its list of operations, and adds the functions to its list of functions.

If an XOP adds functions, Igor loads the XOP into memory at launch time and keeps it there. If the XOP
adds no functions then Igor does not load it until it is needed.

The user can access an XOP by selecting one of its menu items or by invoking one of its operations or func-
tions. The XOP then communicates with Igor using the XOP protocol.

The XOP protocol is set up in a way that simplifies coding the XOP. At appropriate times, Igor sends a
message to the XOP by calling its XOPEntry function. The XOP performs the action dictated by the message
or ignores the message if it is not applicable.

The first time Igor calls the XOP, it calls the XOP’s XOPMain function and passes to it a handle containing
an IORec structure which holds all of the information that Igor and the XOP need to communicate. This
handle, called an IORecHandle, is stored in a global variable by the XOPInit XOPSupport routine.

Among other things, the IORecHandle contains a message field which tells the XOP what it needs to do.
You do not access the IORec structure directly. XOPSupport routines do this for you. The IORecHandle, like
all handles passed between Igor and the XOP, is a Macintosh-style handle, even when running on Win-
dows. (Macintosh-style handles are described under Data Sharing on page 69.)

XOP messages fall into several logical groups. The first message that every XOP receives is the INIT mes-
sage. If the user chooses an XOP’s menu item, Igor sends the MENUITEM message to the XOP. There is a
group of messages for XOPs that add windows to Igor. There is another group of messages for XOPs with
a text window. There are messages that allow the XOP to store its settings in the current Igor experiment
file or to load settings from the experiment file. Finally, when the XOP is about to be closed, Igor sends it
the CLEANUP message. The XOP can close its windows or do any other cleanup.

If your XOP is simple you can ignore most of these messages. An XOP that just adds an operation or func-
tion to Igor can ignore all messages except for INIT.

With three important exceptions, Igor always communicates with your XOP by passing a message to your
XOPEntry routine. The exceptions are:

Once the XOP has received an applicable message it needs to do something. This sometimes requires calling
Igor back to ask it to do something like create a wave or set the value of a variable. This is called a “callback”.
When the XOP does a callback, it passes the IORecHandle back to Igor. This time the handle contains a
message for Igor requesting a service. You don’t need to explicitly deal with the IORecHandle since the
XOPSupport routines do it for you.

Event How XOP Is Called

INIT message Igor sends the INIT message by calling your XOPMain function.

Call external operation Igor directly calls a C function that you designate (details in Chapter 5)

Call external function Igor directly calls a C function that you designate (details in Chapter 6)

Chapter 1 — Introduction to XOPs

14

On Windows only, a few callbacks, mostly pertaining to memory management, go directly to Igor and do
not use the IORecHandle.

Like XOP messages, callback messages fall into several categories. There are callbacks to access Igor waves
and variables. There are callbacks to open a text window and to handle all of the things the user might do
in the text window. There is a callback that allows an XOP to put a message (called a “notice”) in the history
area of Igor’s command window. There are also callbacks that allow an XOP to execute a standard Igor com-
mand.

A simple XOP may use just a few callbacks.

Chapter 1 — Introduction to XOPs

15

The Basic Structure of an XOP
In very rough terms, you can think of your XOP program as shown in the following sketch which is best
read from the bottom (high-level routines starting from XOPMain) to the top (low-level routines):

// Igor calls this directly for the corresponding external function

ExternalFunction()

{

Process parameters

Return result

}

// Igor calls this directly for the corresponding external operation

ExternalOperation()

{

Process parameters

Return result

}

XOPEntry() // Igor sends most messages here

{

Extract message from IORecHandle

switch (message)

Respond to message (often includes a callback to Igor)

}

}

XOPMain() // Igor sends the INIT message here

{

initialize

}

Here is a more detailed sketch of a basic XOP program. In this example, the XOP adds an external operation
and a menu item to Igor:

Chapter 1 — Introduction to XOPs

16

// XOP.cpp -- A sample Igor external operation

#include "XOPStandardHeaders.h" // Include ANSI-C, Mac or Win headers,XOP headers
#includes specific to your XOP go here

static int
RegisterOperation() // Register external operation with Igor
{
}

extern "C" int
ExecuteOperation() // Service external operation
{

Process parameters
Return result

}

static int
MenuItem() // Handle selection of XOP's menu items if any
{

Determine which menu item the user selected
switch (menuItem) {

Handle menu item
}

}

static void
XOPQuit()
{

Do any necessary cleanup before the XOP is closed.
}

extern "C" void
XOPEntry() // Called by Igor for all XOP messages after INIT.
{

switch (GetXOPMessage()) { // What message did we receive?
case MENUITEM: // The user selected the XOP's menu item

MenuItem();
break;

Other cases here as needed

case CLEANUP:
XOPQuit();
break;

}
}

HOST_IMPORT int
XOPMain(IORecHandle ioRecHandle) // First call from Igor goes here.
{

XOPInit(ioRecHandle); // Initialization common to all XOPs
SetXOPEntry(XOPEntry); // Set entry point for future messages

XOP specific initialization
RegisterOperation(); // Register external operation with Operation Handler

return EXIT_SUCCESS;
}

Chapter 1 — Introduction to XOPs

17

Notice that Igor passes a parameter of type IORecHandle to the XOPMain function. This handle contains
all of the information that Igor needs to communicate with the XOP.

The XOPInit(ioRecHandle) and SetXOPEntry(XOPEntry) calls in XOPMain are very important. Both of the
called routines are defined in XOPSupport.c.

XOPInit stores the ioRecHandle in a global variable for use by the other XOPSupport routines. This is the
last time that you have to deal with the ioRecHandle directly. From here on, the routines in XOPSupport
deal with it for you.

SetXOPEntry sets a field in the ioRecHandle that tells Igor the address of the function in the XOP to pass
future messages to. XOPEntry is the function in every XOP’s main C++ file that handles messages from Igor.

The RegisterOperation call tells Igor the address of the C function to be called for the external operation
added by the XOP.

Preparing to Write an XOP
Before you write your XOP:

• Read the source code for XOP1 or XFUNC1
• Do the Guided Tour in Chapter 2
• Read Chapter 3 to learn how to build a project in your development system
• Read Chapter 4 to learn how Igor and your XOP interact

You write an XOP by cloning one of the sample XOPs and gradually modifying it. The cloning process is
more than a simple folder duplication as illustrated in the guided tour.

Here are some other topics that you might need to know about after reading the chapters listed above.

Read Data Sharing on page 69 and WM Memory XOPSupport Routines on page 195 for information on
memory management techniques.

If your XOP adds operations, functions or menu items to Igor, it might need to display its own error mes-
sages. See the section XOP Errors on page 61.

If your XOP adds an operation to Igor, read Chapter 5, Adding Operations.

If your XOP adds a function to Igor, read Chapter 6, Adding Functions.

If your XOP needs to manipulate waves, variables or data folders, read Chapter 7, Accessing Igor Data.

If your XOP adds menus or menu items to Igor, read Chapter 8, Adding Menus and Menu Items.

If your XOP adds a window to Igor, read Chapter 9, Adding Windows.

If your menu items summon dialogs, read Adding Dialogs on page 207.

If your XOP saves its settings or documents as part of an Igor experiment, read XOPs and Experiments on
page 65.

To create a help file for your XOP, read Chapter 13, Providing Help.

Chapter 14, Debugging, discusses the most common sources of bugs, ways to find them, and ways to avoid
them in the first place. Reading this chapter will probably save you a lot of time and aggravation.

Technical Support
WaveMetrics provides technical support via email. Before contacting us, you might want to check the fol-
lowing sources of information:

Chapter 1 — Introduction to XOPs

18

• The list of common pitfalls in Chapter 14
• The sample XOPs

Email Support
You can send questions to us via email at support@wavemetrics.com.

For sales matters, please use sales@wavemetrics.com.

World-Wide Web
Our Web address is www.wavemetrics.com.

Igor Mailing List
There is a mailing list of Igor users on the Internet. This is the best way to keep up with the latest Igor news.
To join the list or search archives from the list, see:

http://www.wavemetrics.com/support/mlist.htm

IgorExchange
IgorExchange is a user-to-user support and collaboration site:

http://www.IgorExchange.com

If you create an XOP you might want to post it on IgorExchange for use by other Igor users.

http://www.wavemetrics.com
http://www.wavemetrics.com/support/mlist.htm
http://www.IgorExchange.com

Chapter 2
I-2Guided Tour

Overview
This manual describes version 7.03 of the Igor XOP Toolkit which supports development using Xcode 7
through Xcode 10 on Macintosh and Visual C++ 2015 and Visual C++ 2017 on Windows.

XOP Toolkit 7.03 creates XOPs that run with Igor Pro 6.20 or later.

If you are are targeting Igor Pro 8.00 or later, and you are creating a new XOP or updating an XOP already
updated using XOP Toolkit 7.01 or later, you should use XOP Toolkit 8. See Choosing Which XOP Toolkit
to Use on page 5 for details.

This guided tour gives a step-by-step example of creating a custom curve fitting external function using the
SimpleFit project as a starting point. The tour consists of explanation interspersed with numbered steps for
you to do.

The tour gives instructions for:

• Apple Xcode 7 through Xcode 10 on MacOS 10.9 or later
• Microsoft Visual C++ 2015 or 2017 (including the free “Community” edition)

Where the instructions are different for the different development systems, you will see steps identified as
follows.

1-Xcode.

<Step for Xcode 7 through Xcode 10>.

1-Visual C++.

<Step for Visual C++ 2015 or 2017>.

As explained under Visual C++ Compatibility Issues on page 47, you may get compile or link errors
with another version of Visual C++.

During the tour, you will be instructed to restart Igor Pro several times because this is necessary when you
recompile an XOP.

This guided tour assumes that you are using the 64-bit version of Igor7 or later. The instructions will work
with the 32-bit version of Igor6 or Igor7 if you remove “64” from file and folder names.

Activating XOPs
In the guided tour, you will be instructed to activate an XOP multiple times. To activate a 64-bit XOP put
an alias or shortcut pointing to the XOP in the “Igor Extensions (64-bit)” folder inside“Igor Pro 7 User Files”
folder. For details, see Activating XOPs Using the Igor Extensions Folder on page 6.

Chapter 2 — Guided Tour

20

What We Will Do
The SimpleFit project creates a single SimpleFit external function that can be used to fit to a polynomial. We
will convert SimpleFit into a function called SimpleGaussFit that fits to series of Gaussian peaks. In doing
this, you will see how to create an external function that fits to a function of your choice.

Installation
We assume you have already installed your development system, Igor Pro, and the XOP Toolkit.

Building SimpleFit
Before starting the modification of SimpleFit, we will build the original version to verify that the compiler
and XOP toolkit installations are correct.

The SimpleFit folder is inside the IgorXOPs7 folder and contains the following project files:

Building SimpleFit in Xcode
These steps work in Xcode 7 through Xcode 10.

1-Xcode.

Open the SimpleFit/Xcode/SimpleFit.xcodeproj project file in Xcode.

The SimpleFit project window is shown.

If you are using Xcode 10 or later, Xcode will display a dialog saying “32-bit MacOS targets are no lon-
ger supported”. Click OK.

Xcode may show a warning icon. If you click the warning icon, it may tell you about “updating to rec-
ommended settings”. Do not perform any updates as they may cause compile-time or run-time issues.

Xcode/SimpleFit.xcodeproj For Xcode 7 through Xcode 10.

The compiled XOP will run on MacOS 10.6 or later.

VC\SimpleFit.sln For Visual C++ 2015 or 2017 on Windows.

The compiled XOP will run on Windows 7 or later.

Chapter 2 — Guided Tour

21

2-Xcode

Choose File→Project Settings to display the Project Settings dialog:

Although this dialog is called “Project Settings”, Xcode stores these settings on a per-user basis. Conse-
quently they must be set separately by each user and can not be preset in the XOP Toolkit sample XOPs.

NOTE: If you open other sample XOP Xcode projects in the future, or open this project while running
as a different user, you need to remember to set these project settings.

Click the Advanced button to display the Advanced Project Settings dialog:

Click the Legacy radio button.

This causes the compiled XOP to be stored where we expect it, in the SimpleFit/Xcode/Debug folder.

NOTE: If you do not set the build location to Legacy your compiled XOP will be created in a strange
location such as ~Developer/Xcode/Derived Data. So remember to set this setting for each XOP
project you open in Xcode.

Chapter 2 — Guided Tour

22

Click Done to close the Advanced Project Settings dialog.

Click Done to close the Project Settings dialog.

3-Xcode.

Click the Project Navigator icon () and open the disclosure triangles in the project navigator pane
and select the SimpleFit.cpp file.

4-Xcode.

Choose Product→Scheme→SimpleFit64.

The project window should now look like this:

5-Xcode.

Choose Product→Build.

This is the same as choosing Product→Build For→Build For Running.

In a few seconds the compiler will finish and an XOP package named SimpleFit64.xop will be created
in your SimpleFit/Xcode/build/Debug folder. Note where this is located for use in a upcoming step.

Don’t worry if the compiler issues a few warnings.

6-Xcode.

Close the project window.

Building SimpleFit in Visual C++
1-Visual C++.

Open the solution file in SimpleFit\VC\SimpleFit.sln file in Visual C++.

The SimpleFit project window is shown.

Choose View→Solution Explorer and open the SimpleFit icon.

From the Solution Platforms popup menu, choose x64.

The window should now look like this:

Chapter 2 — Guided Tour

23

2-Visual C++.

Choose Build→Build Solution.

In a few seconds the compiler will finish and an XOP file named SimpleFit64.xop will be created in your
SimpleFit\VC folder. Note where this is located for use in a upcoming step.

Don’t worry if the compiler issues a few warnings.

3-Visual C++.

Choose File→Close Solution.

Testing SimpleFit64
Now that we have built the SimpleFit64 XOP, our next task is to test it.

In the next step, we activate the SimpleFit64 XOP so that Igor will load it. For a detailed explanation of acti-
vating, see Activating XOPs Using the Igor Extensions Folder on page 6.

1. On the desktop, make an alias (Macintosh) or shortcut (Windows) for the newly created
SimpleFit64.xop and drag the alias or shortcut into the “Igor Extensions (64-bit)” folder.

You could drag the XOP itself instead of the alias or shortcut. We prefer to leave the XOP in the project
folder while we are working on it.

2. Back in the SimpleFit folder, make an alias (Macintosh) or shortcut (Windows) for the “SimpleFit
Help.ihf” file and drag the alias or shortcut into the folder containing the just-compiled XOP. Make
sure the alias or shortcut has the exact same name as the help file itself.

Igor looks for the help file in the folder containing the XOP itself (SimpleFit64.xop in this case). Normal-
ly the help file and the XOP reside in the same folder but this is not true during development. Igor will
find the help file if you put an identically-named alias or shortcut to it in the same folder as the XOP.

3. Launch the 64-bit version of Igor Pro.

The 64-bit version is named Igor64.app on Macintosh, Igor64.exe on Windows.

You must restart Igor Pro after changing the contents of the “Igor Extensions (64-bit)”folder.

4. Choose Command Help from the Help menu.

The Igor Help Browser appears with the Command Help tab selected.

5. Find SimpleFit in the list of topics and select it.

The custom help for the SimpleFit external function is shown. This help is stored in the “SimpleFit
Help.ihf” file.

6. Follow the instructions in the help for exercising the function.

Chapter 2 — Guided Tour

24

This involves copying commands from the help and executing them in the Igor command line. You can
also execute commands from a help file by selecting the command text and pressing Control-Enter
(Macintosh) or Ctrl-Return (Windows) but this does not work in the Igor Help Browser.

7. Quit Igor without saving.

Creating a New Project
We now create a new project, SimpleGaussFit, by cloning the SimpleFit project. We will then change the
SimpleGaussFit project to fit a Gaussian.

Cloning a project entails cloning the project folder and its contents: source files, resource files, help files and
project files. In this case, here are the files:

We use the “Create New XOP Project” Igor experiment, which you can find at the top level of the IgorXOPs7
folder, to clone a project.

1. On the desktop, locate your IgorXOPs7 folder.

2. Open the “Create New XOP Project.pxp” file in Igor.

The experiment opens and the Create New XOP Project panel appears.

3. From the Source Project popup menu, choose SimpleFit.

4. In the New XOP Name textbox, enter SimpleGaussFit.

Double-check your spelling to make sure you have entered SimpleGaussFit exactly.

Click in the panel outside of the New XOP Name textbox to finalize the setting.

5. Verify that the Create Project In textbox contains the path to your IgorXOPs7 folder.

The panel should now look like this, though your path will be different. Note the text in the status area
which explains what will happen when you click Do It.

SimpleFit File SimpleGaussFit File Description

SimpleFit.cpp SimpleGaussFit.cpp C++ file containing XOP source code

SimpleFit.r SimpleGaussFit.r Macintosh resource file

SimpleFit.rc SimpleGaussFit.rc Windows resource file

SimpleFitWinCustom.rc SimpleGaussFitWinCustom.rc Windows resource file containing
XOP Toolkit-specific resources

resource.h resource.h Windows resource include file

SimpleFit Help.ihf SimpleGaussFit Help.ihf Igor help file

SimpleFit.xcodeproj SimpleGaussFit.xcodeproj Xcode project

SimpleFit.sln SimpleGaussFit.sln Visual C++ solution file

SimpleFit.vcxproj SimpleGaussFit.vcxproj Visual C++ project file

SimpleFit.vcproj.filters SimpleGaussFit.vcproj.filters Visual C++ project file

Chapter 2 — Guided Tour

25

6. Click the Do It button.

Create New XOP Project clones the SimpleFit folder, creating the SimpleGaussFit folder.

In the clone, “SimpleFit” in all file names is changed to “SimpleGaussFit” and the contents of all source
files, project files, text files, notebooks and help files are changed to replace “SimpleFit” with “Simple-
GaussFit”.

7. Quit Igor without saving.

8. On the desktop, open the SimpleGaussFit folder and familiarize yourself with its contents.

Building the New Project in Xcode
Before modifying the new project we will build it to verify that it was correctly created.

1-Xcode.

On the desktop, open the Xcode folder in the SimpleGaussFit folder.

This folder contains files specific to the Xcode development system.

2-Xcode.

Open the SimpleGaussFit.xcodeproj file in Xcode.

If you are using Xcode 10 or later, Xcode will display a dialog saying “32-bit MacOS targets are no lon-
ger supported”. Click OK.

This is what the project window looks like in Xcode after opening the disclosure triangles and selecting

Chapter 2 — Guided Tour

26

the SimpleGaussFit.cpp file:

Xcode may show a warning icon. If you click the warning icon, it may tell you about “updating to rec-
ommended settings”. Do not perform any updates as they may cause compile-time or run-time issues.

3-Xcode.

If the icons in the SimpleGaussFit list are not open as shown above, click the Project Navigator icon
() and the disclosure triangles to open the groups.

4-Xcode.

Choose File→Project Settings to display the Project Settings dialog.

5-Xcode.

Click the Advanced button to display the Advanced Project Settings dialog and then click the Leg-
acy button if it is not already selected.

NOTE: This step must be done any time you open a sample XOP project or your own XOP project if it
was not previously opened in Xcode on your machine or if you open it as a different user.

6-Xcode.

Click Done to close the Advanced Project Settings dialog.

7-Xcode.

Click Done to close the Project Settings dialog.

8-Xcode.

Choose Product→Scheme→SimpleGaussFit64.

9-Xcode.

Choose Product→Build.

This is the same as choosing Product→Build For→Build For Running.

Xcode will build the project. You may get some warnings. When Xcode is finished, it should display a
“Succeeded” message in the Activity Viewer section (top/center) of the Xcode main window.

10-Xcode.

On the desktop, verify that you have a package folder named SimpleGaussFit64.xop in
IgorXOPs7/SimpleGaussFit/Xcode/build/Debug.

Debug is the name of the Xcode configuration currently being built so the output goes into the

Chapter 2 — Guided Tour

27

/build/Debug directory.

The SimpleGaussFit64.xop package folder is your compiled 64-bit XOP. It should look like a file in the
Finder and you should have to Control-click it and choose Show Package Contents to see what it con-
tains. Inside the package you will find a file named SimpleGaussFit64. This is the executable file.

11-Xcode.

Make an alias for the SimpleGaussFit64.xop package folder and put the alias in your “Igor Exten-
sions (64-bit)” folder.

We now have a SimpleGaussFit64 XOP but it behaves just like the SimpleFit64 XOP. We will fix that in
the following sections.

Building the New Project In Visual C++
1-Visual C++.

On the desktop, open the VC folder in the SimpleGaussFit folder.

This folder contains files specific to the Visual C++ development system.

2-Visual C++.

Open the SimpleGaussFit.sln file in Visual C++.

The SimpleGaussFit project window is shown:

3-Visual C++.

If the icons in the Solution Explorer window are not open as shown above, click the icons to open
them.

4-Visual C++.

From the Solution Platforms popup menu, choose x64.

The SimpleGaussFit project window now looks like this:

Chapter 2 — Guided Tour

28

5-Visual C++.

Choose Build→Build Solution.

Visual C++ should build the XOP with no errors (though you may get some warnings), creating the file
SimpleGaussFit64.xop in your IgorXOPs7\SimpleGaussFit\VC folder.

The warnings about XOPSupport.lib, if any, are generated because you are linking a non-debug library
to the debug version of your XOP. This is not a problem.

6-Visual C++.

On the desktop, verify that you have a file named SimpleGaussFit64.xop in IgorXOPs7/Simple-
GaussFit/VC.

This is the compiled XOP file.

7-Visual C++.

Make a shortcut for the SimpleGaussFit64.xop file and put the shortcut in your “Igor Extensions (64-
bit)” folder.

We now have a SimpleGaussFit64 XOP but it behaves just like the SimpleFit64 XOP. We will fix that in
the following sections.

Changing the Help
In this section, we modify the help that will appear for SimpleGaussFit in Igor Pro’s Help Browser. This
process consists of editing the help text in the “SimpleGaussFit Help.ihf” file.

The “SimpleGaussFit Help.ihf” file was created when the Create New XOP Project experiment cloned the
“SimpleFit Help.ihf” file. The Create New XOP Project control panel replaced all occurrences in the help file
of “SimpleFit” with “SimpleGaussFit”. We now need to finish modifying “SimpleGaussFit Help.ihf”.

1. Launch the 64-bit version of Igor Pro.

2. Choose File→Open File→Notebook to display the Open File dialog.

We are opening the help file as a notebook so we can edit it.

3. Select All Files from the file type popup menu in the Open File dialog.

4. Open the “SimpleGaussFit Help.ihf” file in the SimpleGaussFit folder.

5. Change the body of the help text to describe the SimpleGaussFit function.

Here is some suggested body text:

SimpleGaussFit is a curve fitting function for multiple Gaussian peaks.
The number of peaks is set by the length of the coefficient wave w. If w

Chapter 2 — Guided Tour

29

contains four points then one peak will be generated as follows:

w[0] + w[1]*exp(-((x-w[2])/w[3])^2)

Add three additional coefficients for each additional peak by adding three
points to the coefficients wave.

If this were a “real” project, we would provide more help with an example of how to use the external
function.

6. Save the notebook by choosing File→Save Notebook.

5. Close the notebook window. When Igor asks if you want to kill or hide it, click Kill.

Now we will compile the help file so that SimpleGaussFit will provide help in Igor’s Help Browser.

8. Choose File→Open→Help File and open the “SimpleGaussFit Help.ihf” file as a help file.

Igor will display a dialog asking if you want to compile the help file.

Click the Yes button.

Next Igor will display a dialog saying that the help file has been compiled.

Click the OK button.

9. Kill the help file by pressing the option key (Macintosh) or the Alt key (Windows) while clicking the
help window's close box.

The help will appear in Igor's Help Browser after we have compiled and activated the SimpleGaussFit
XOP.

10. Quit Igor without saving.

Changing and Compiling the Code
The SimpleGaussFit.cpp file was created when the Create New XOP Project experiment cloned the Simple-
Fit.cpp file. Create New XOP Project replaced all occurrences in the help file of “SimpleFit” with “Simple-
GaussFit”.

If you were to compile the project right now you would create an external function named SimpleGaussFit
but it would still act like SimpleFit. In this section, we modify the code to fit a Gaussian rather than a poly-
nomial.

1. In your development system, open SimpleGaussFit.cpp for editing.

2. Find the SimpleGaussFit function and make the following changes:

Change

double r,x;

to

double r,x,t;

Then, in the NT_FP32 case statement, change:

i = np-1;

r = fp[i];

for(i=i-1; i>=0; i--)

r = fp[i] + r*x;

to

r = fp[0];

for(i=1; i<np; i+=3) {

t = (x-fp[i+1]) / fp[i+2];

Chapter 2 — Guided Tour

30

r += fp[i] * exp(-t*t);

}

Carefully proofread the changes.

Similarly, in the NT_FP64 case statement, change:

i = np-1;

r = dp[i];

for(i=i-1; i>=0; i--)

r = dp[i] + r*x;

to

r = dp[0];

for(i=1; i<np; i+=3) {

t = (x-dp[i+1]) / dp[i+2];

r += dp[i] * exp(-t*t);

}

Carefully proofread the changes.

3. Change the comments at the head of the function and at the top of the file such that they properly
reflect the new code.

You can skip this step but it is what you should do when creating a real XOP.

4. Save your changes to the SimpleGaussFit.cpp file.

5-Xcode.

Choose Product→Scheme→SimpleGaussFit64.

Compile the project by choosing Product→Build.

The compile and link should proceed without errors (although you may get some warnings), creating
SimpleGaussFit64.xop in the IgorXOPs7/SimpleGaussFit/Xcode/build/Debug folder. If you get errors,
carefully check the changes that you made to the source code.

5-Visual C++.

Choose x64 from the Solution Platforms popup menu.

Compile the project by choosing Build→Build Solution.

The compile and link should proceed without errors (although you may get some warnings), creating
SimpleGaussFit64.xop in the IgorXOPs7\SimpleGaussFit\VC folder. If you get errors, carefully check
the changes that you made to the source code.

Testing SimpleGaussFit
Your external function, SimpleGaussFit, should now be functional. Let’s test it.

1. If it is running, quit Igor Pro.

Igor Pro scans XOPs at launch time and loads XOPs that add external functions into memory. So you
must restart Igor when you change your XOP.

2. In the SimpleGaussFit folder, make an alias (Macintosh) or shortcut (Windows) for the “Simple-
GaussFit Help.ihf” file and drag the alias/shortcut into the folder containing the just-compiled XOP.

Make sure the alias or shortcut has the exact same name as the help file itself.

Igor looks for the help file in the folder containing the XOP itself (SimpleGaussFit64.xop in this case).
Normally the help file and the XOP reside in the same folder but this is not true during development.
Igor will find the help file if you put an identically-named alias or shortcut to it in the same folder as
the XOP.

Chapter 2 — Guided Tour

31

3. Restart the 64-bit version of Igor Pro.

Igor Pro will load the SimpleGaussFit function into memory.

4. Choose Help→Command Help.

5. Find SimpleGaussFit in the list and select it.

The custom help for this external function is shown in the Help Browser. Igor gets the help from the
“SimpleGaussFit Help.ihf” file which it looks for in the same folder as the SimpleGaussFit64 XOP. The
help file does not need to be open for Igor to get operation or function help from it.

If you don’t see SimpleGaussFit in the list of functions:

• Verify that you created an alias (Macintosh) or shortcut (Windows) from SimpleGaussFit64.xop and
placed the alias or shortcut in the “Igor Extensions (64-bit)” folder. See Activating XOPs Using the
Igor Extensions Folder on page 6 for details.

• Make sure that you are running the 64-bit version of Igor, not the 32-bit version.

• If you have multiple copies of Igor on your machine, make sure that you are running the copy you
intended to run by choosing Help→Show Igor Pro Folder.

If you do see SimpleGaussFit in the list of functions but get a message saying help is not available when
you select it:

• Verify that you created an alias (Macintosh) or shortcut (Windows) from the “SimpleGaussFit
Help.ihf” help file and placed the alias or shortcut in the folder containing the XOP. The alias or
shortcut must have the same name as the help file itself.

• Verify that you compiled the “SimpleGaussFit Help.ihf” file as directed in Changing the Help on
page 28.

6. Close the Help Browser.

7. Execute the following commands to exercise your external function with single-precision data:

Make data; SetScale x,-1,10,data

data = 0.1 + gnoise(0.05) // offset

data += 2*exp(-((x-2)/0.5)^2) // first peak

data += 3*exp(-((x-4)/1.0)^2) // second peak

Display data

ModifyGraph rgb=(0,0,50000), mode=2, lsize=3

Make coef = {0.1, 1.5, 2.2, 0.25, 3.8, 3.5, 0.5}

FuncFit SimpleGaussFit coef data /D

The result should look something like this:

Chapter 2 — Guided Tour

32

If the fit doesn’t converge or looks incorrect, carefully check the changes that you made to SimpleGauss-
Fit.cpp and the commands that you executed in Igor.

To avoid errors due to arithmetic truncation it is best to use double-precision for curve fitting so now
we will redimension to double-precision and redo the fit.

8. Execute the following commands to exercise your external function with double-precision data:

Redimension/D data, coef

coef = {0.1, 1.5, 2.2, 0.25, 3.8, 3.5, 0.5}

FuncFit SimpleGaussFit coef data /D

If the fit doesn’t converge or looks incorrect, carefully check the changes that you made to SimpleGauss-
Fit.cpp and the commands that you executed in Igor.

If you need to recompile the XOP, you will need to quit Igor Pro, recompile, and relaunch Igor Pro. This is
necessary because Igor Pro loads the external function code into memory at launch time.

Touring the Code
In this section we take a very brief tour of the code to give you a sense of how an XOP works.

The details are explained in subsequent chapters. For now just try to get the big picture.

1. In your development system, open the SimpleGaussFit.cpp file and scroll to the bottom until you
see the XOPMain function.

In most sample XOP source files, the lower-level code appears at the top and the higher-level code at
the bottom. It is usually easier to understand higher-level code, so we examine the higher-level code
first.

The XOPMain function for all XOPs is similar.

XOPInit allows the XOPSupport library to initialize itself.

SetXOPEntry tells Igor what function to call to pass messages to the XOP.

Next comes a check to make sure that the current Igor version is not too old. XOPs created in XOP Tool-
kit 7 or later require Igor Pro 6.20 or later so every XOP should contain this check.

SetXOPResult tells Igor the result of the call to the XOP’s XOPMain function. 0 means “success”.

The function result (EXIT_FAILURE or EXIT_SUCCESS) is currently not used by Igor but may be used
by a future version.

If you had additional initialization to do, you would add it after the check of the Igor version. In XOPs

3

2

1

0

-1

86420

Chapter 2 — Guided Tour

33

that add an external operation, you will see a call to RegisterOperation at this point. SimpleGaussFit
adds no external operations, just an external function.

2. Scroll up until you see the XOPEntry function.

The SetXOPEntry call in the XOPMain function told Igor to pass subsequent messages to the XOPEntry
function.

The XOPEntry routine receives messages such as MENUITEM, IDLE, CLEANUP and many others
from Igor. They are listed under Basic XOP Messages on page 57 but you don’t need to know about
that for now. XOPs can ignore messages that they don’t care about. Most XOPs respond to just a few
messages.

XOPEntry has no function parameters because the message and its parameters are passed in a global
handle. The function returns void because the XOP sends the result back to Igor via the same global
handle by calling SetXOPResult. You don’t access the global handle directly - the XOPSupport library
accesses it for you when you call XOPSupport routines like SetXOPEntry, GetXOPMessage and SetX-
OPResult.

Igor does not send messages to XOPEntry for external operation and external function calls but instead
calls an XOP-supplied function directly.

If the XOP defines an external function, as SimpleGaussFit does, during initialization Igor sends the
FUNCADDRESS message once for each external function. The XOP responds by returning the address
of the XOP function to call when that external function is invoked from an Igor command. In Simple-
GaussFit, this is done with a call to RegisterFunction, defined just above XOPEntry.

3. Scroll up until you see the SimpleGaussFit function.

This is the function that Igor calls when the SimpleGaussFit external function is invoked from an Igor
command. Parameters to the external function are passed via a structure. This is explained in Chapter
6, Adding Functions.

Next we will examine the resources that tell Igor what the XOP adds.

At launch time, Igor examines each XOP’s resources to determine what the XOP adds to Igor. Most
XOPs add one or more external operations or external functions, or both. Most XOPs add error messag-
es and some add menu items.

4-Xcode.

Open the SimpleGaussFit.r file.

The .r file on Macintosh contains standard Macintosh resources (e.g., vers, STR#) and XOP-specific re-
sources (e.g., XOPC, XOPF).

4-Visual C++.

Open the SimpleGaussFit.rc file for editing as a text file by right-clicking it in Solution Explorer and
choosing View Code.

The .rc file that appears in the Solution Explorer contains standard Windows resources (e.g.,
VERSION_INFO) only. XOP-specific resources (e.g., XOPC, XOPF) are stored in a separate .rc file that
is referenced from the main .rc file.

Scroll to the bottom of the SimpleGaussFit.rc file until you see this line:

#include "SimpleGaussFitWinCustom.rc"

SimpleGaussFitWinCustom.rc contains the XOP-specific resources. They are what we are interested in
at this point. We will now open SimpleGaussFitWinCustom.rc for editing as a text file.

Choose File→Open→File.

Navigate to the SimpleGaussFit folder.

Select SimpleGaussFitWinCustom.rc in the file list.

Click the down-arrow at the right edge of the Open button and choose Open With.

Select “Source Code (Text) Editor”.

Chapter 2 — Guided Tour

34

Click the OK button to open SimpleGaussFitWinCustom.rc for editing as text (not as a resource).

5. Scroll down until you see the XOPF resource.

This resource tells Igor what external functions the XOP adds to Igor. In the case of SimpleGaussFit, just
one external function is added. XOPs that add external operations would have an XOPC resource that
serves a similar purpose.

6. Scroll up until you see the XOPI resource.

This resource provides general information about the XOP to Igor. You do not need to change it.

7. Scroll up until you see the STR# 1100 resource.

XOPs can define their own error codes. This resource provides the error strings for XOP error codes.

More information about XOP resources is provided under XOP Resources on page 55.

Where To Go From Here
Read Chapter 3, Development Systems and Chapter 4, Igor/XOP Interactions in this manual.

If you plan to create an external operation, read Chapter 5, Adding Operations.

If you plan to create an external function, read Chapter 6, Adding Functions.

Find a sample XOP that would be a good starting point for your XOP and read that XOP's code.

Look at the chapter titles in the rest of this manual to see which chapters you will need to read.

Chapter 3
I-3Development Systems

Overview
XOP Toolkit 7 creates XOPs that run with Igor Pro 6.20 or later. It works with Xcode 7 through Xcode 10,
Visual C++ 2015, and Visual C++ 2017.

If you are are targeting Igor Pro 8.00 or later, and you are creating a new XOP or updating an XOP already
updated using XOP Toolkit 7.01 or later, you should use XOP Toolkit 8. See Choosing Which XOP Toolkit
to Use on page 5 for details.

XOP Toolkit 7 includes sample XOPs and supporting files for the following development systems:

On Windows, the free “Community Edition” of Visual C++ is sufficient for most XOP development.

The sample projects will most-likely work with newer development system versions.

If you use a newer version of Visual C++ on Windows, you may need to recompile the XOPSupport libraries
and any other libraries to which you statically link, as explained under Visual C++ Compatibility Issues
on page 47.

On Macintosh an XOP is a shared library. On Windows it is a dynamic link library (DLL). If you are an
advanced programmer, you can probably figure out how to use other development systems.

The latest version of the XOP Toolkit is available for download from the same URL from which you origi-
nally downloaded the toolkit.

XOPs in Xcode
On Macintosh, XOP Toolkit 7 supports development using Xcode 7 through Xcode 10. It will likely work
with later versions of Xcode.

Xcode 10 supports 64-bit development only, not 32-bit development. Xcode 9 and before support both 32-
bit and 64-bit development.

Each sample project contains an Xcode folder. The Xcode folder, e.g., WaveAccess/Xcode, contains the
Xcode project file, e.g., WaveAccess.xcodeproj.

For instructions on converting an XOP Toolkit 6 project for use with XOP Toolkit 7, see Xcode Project
Changes For XOP Toolkit 7 on page 427.

Development System XOP Runs On With Igor Version

Xcode 7 through Xcode 10 MacOS 10.6 or later Igor Pro 6.20 or later

Visual C++ 2015 and 2017 Windows 7 or later Igor Pro 6.20 or later

Chapter 3 — Development Systems

36

XOP Projects in Xcode
This section provides the background information needed to understand how to create XOP projects in
Xcode. For step-by-step instructions on creating a project, see Creating a New Project on page 24.

We will use the WaveAccess sample XOP as a case in point. The WaveAccess folder is inside the IgorXOPs7
folder and looks like this:

The Xcode project files are in the Xcode folder. The discussion assumes this arrangement and we recom-
mend that you use it. Compiled XOPs are built in Xcode/build/Debug.

WaveAccess.xcodeproj is the project file and contains the project settings. (Actually it is a package folder,
not a file.) The build folder contains data created by the compiler such as object code as well as the compiled
XOP. The Xcode project includes two targets: a 32-bit target named WaveAccess and a 64-bit target named
WaveAccess64.

WaveAccess.cpp contains the project source code while WaveAccess.h contains the project headers.

WaveAccess.r contains the XOP’s Macintosh resources. The use of this resource file is further explained
under XOP Resources on page 55. The files resource.h, WaveAccess.rc and WaveAccessWinCustom.rc are
used on Windows only.

The Exports.exp file is a plain text file that tells Xcode what routines the XOP needs to “export”. In order
for Igor to find a function in the XOP by name, it needs to be exported. The only function that needs to be
exported for an XOP is XOPMain.

WaveAccess.xop and WaveAccess64.xop appear to be a files but are really a “packages”. If you control-click
and choose Show Package Contents, you see what is inside:

Chapter 3 — Development Systems

37

The layout of the package is as defined by Apple for a “packaged bundle”. Here “bundle” is Apple’s term
for a plug-in.

The package is created automatically by Xcode when you compile the XOP. The actual executable code is
in the 32-bit file WaveAccess and the 64-bit file WaveAccess64. The other files contain data describing the
package and resources.

This Xcode screen shot of the project window shows the source files and libraries that are used in the proj-
ect:

The WaveAccess_Prefix.pch file is automatically created by Xcode and used to speed up compilation by
pre-compiling headers.

The Info.plist and Info64.plist files store “meta-information” such as version information and the name of
the executable file within the package folder.

The .framework files makes Apple APIs accessible to the XOP.

libXOPSupport.a is the 32-bit XOPSupport library.

libXOPSupport64.a is the 64-bit XOPSupport library.

Chapter 3 — Development Systems

38

Xcode Project Settings
In Xcode, settings can be made at the project, target or configuration level. If no value is set for a given set-
ting, it inherits the Xcode default value. For most settings it does not much matter whether they are set at
the project level or at the target level.

Xcode has two additional kinds of settings: “project settings” and “schemes”. Confusing though it is, project
settings are set via the File→Project Settings dialog while project build settings are set via the project navi-
gator.

Xcode Project Settings Dialog
You access the Xcode Project Settings dialog by choosing File→Project Settings:

If you click the Advanced button, you get the following subdialog:

Chapter 3 — Development Systems

39

The Build Location setting should be set to “Legacy”. This causes the compiled XOP to be stored where we
expect it, in the <project>/Xcode/Debug folder.

Xcode stores these settings on a per-user basis. Project settings set by one user are not accessible by another
user. Consequently they can not be preset by WaveMetrics and must be set separately by each user.

NOTE: If you do not set the build location to Legacy your compiled XOP will be created in a strange
location such as ~Developer/Xcode/Derived Data. So remember to set this setting for each XOP
project you open in Xcode.

NOTE: If you open any sample XOP Xcode project or open a project while running as a different user,
you need to remember to set these project settings.

Alternatively, you can set these settings using Xcode preferences in which case they will be applied to any
Xcode project that you open in Xcode for the first time as a given user. To do this, choose
Xcode→Preferences, click the Locations icon, click the Advanced button, and click the Legacy radio button.

Xcode Schemes
An Xcode scheme is a collection of settings that control things like which target (32-bit or 64-bit) to build,
which configuration (debug or release) to build, and which application to run when you ask to debug the
program. You choose which scheme to use through the Active Scheme popup menu in the top/left corner
of the Xcode main window. Here the scheme name is shown as WaveAccess64:

If you don’t see the Active Scheme popup menu, choose View→Show Toolbar.

Because of an Xcode bug, the Active Scheme popup menu may not appear, even with the toolbar showing.
As an alternative, you can use the Product→Scheme submenu.

The popup menu is really two popup menus in one. If you click “WaveAccess64”, you can select or edit the
scheme. If you click “My Mac” you can select the “destination”. For Igor XOPs the destination is always
“My Mac”.

If you click the popup menu and choose Edit Scheme, you see this:

Chapter 3 — Development Systems

40

Xcode Project Build Settings
To display project build settings in Xcode, choose View→Navigators→Show Project Navigator and click the
WaveAccess icon at the top of the project navigator. The project editor pane appears in the middle of the
main Xcode window.

If you don’t see the labels PROJECT and TARGETS, as shown below, click the Projects and Targets List
button. This is the mysterious little rectangular icon with the solid little vertical rectangle running down its
left side. In the screen dump below, we have added a red arrow pointing to this icon.

Click WaveAccess under the PROJECT heading. Click the Build Settings tab and the Basic and Combined
buttons:

Chapter 3 — Development Systems

41

Xcode 10 supports 64-bit development only, not 32-bit development. If you are running Xcode 10 or later,
you will need to adjust the following instructions accordingly.

Architectures: Set to “32-bit Intel”. We will override this for the 64-bit target.

Base SDK: Set to Latest MacOS.

C/C++ Compiler Version: Set to “Default compiler”. This selects the LLVM compiler.

MacOS Deployment Target: Set to 10.7 or later if 10.7 is not available.

By setting the base SDK to “Latest MacOS”, we guarantee that the project will compile if you open it in a
new Xcode version years from now. However this also lets you call Apple routines that are not available on
the OS version that you happen to be running on, in which case your XOP will crash. For most XOPs, this
is not a problem, because the XOPs use no Apple routines at all directly. However, if you are writing a plat-
form-specific XOP that uses relatively newApple routines, you may want to set the base SDK to the specific
OS version that your XOP requires.

Xcode Target Settings
To display target build settings in Xcode, choose View→Navigators→Show Project Navigator and click the
WaveAccess icon at the top of the project navigator. The project editor pane appears in the middle of the
main Xcode window.

If you don’t see the labels PROJECT and TARGETS, as shown below, click the Projects and Targets List
button. This is the mysterious little rectangular icon with the solid little vertical rectangle running down its
left side. In the screen dump below, we have added a red arrow pointing to this icon.

Click WaveAccess or WaveAccess64 under the TARGETS heading. Click the Build Settings tab and the
Basic and Combined buttons:

Chapter 3 — Development Systems

42

Xcode 10 supports 64-bit development only, not 32-bit development. If you are running Xcode 10 or later,
you will need to adjust the following instructions accordingly.

Architectures: Choose 32-bit Intel for the 32-bit target (WaveAccess) and 64-bit Intel for the 64-bit target
(WaveAccess64).

Exported Symbols Files: Specified as “./Exports.exp”, meaning that Xcode is to look for the file Exports.exp in
the project folder. Exports.exp declares the XOPMain function to be exported (i.e., visible to Igor Pro by
name). This file will is the same for all XOPs.

Info.plist File: Set to Info.plist for the 32-bit target (WaveAccess) and Info64.plist for the 64-bit target
(WaveAccess64).

Product Name: Set to WaveAccess for the 32-bit target (WaveAccess) and WaveAccess64 for the 64-bit target
(WaveAccess64).

Wrapper Extension: Specified as “xop”. Igor identifies Mach-O XOP packages by the .xop extension on the
package folder’s name.

Always Search User Paths: Set to “No”.

Header Search Paths: Set to “../../XOPSupport”. This allows #include statements to find the XOPSupport
header files. The path is relative to the folder containing the .xcodeproj project file.

Library Search Paths: Set to “../../XOPSupport/Xcode”. This allows the Xcode version of the XOPSupport
library to be found.

Prefix Header: This is automatically set by Xcode to “WaveAccess_Prefix.pch” when the project is created.
Xcode automatically creates this file. The file determines which header files are pre-compiled and stored in
binary form with the project data to speed up compilation.

Chapter 3 — Development Systems

43

Deprecated Functions: We turn this warning off. You can turn it on if you decide to update your code to use
all of the latest functions.

Other Warning Flags: Set to “-Wno-parentheses”. This turns off warnings for assigning the result of a func-
tion call to a variable in a conditional statement, such as:

if (err = SomeFunction())

OTHER_REZFLAGS: Set to “-i ../../XOPSupport”. This specifies flags to pass to the Rez compiler when the
.r file is compiled. It allows #include statements to find the XOPStandardHeaders.r file in the XOPSupport
folder.

Xcode Target Info
To display target info settings in Xcode, choose View→Navigators→Show Project Navigator and click the
WaveAccess icon at the top of the project navigator. The project editor pane appears in the middle of the
main Xcode window. Click WaveAccess or WaveAccess64 under the TARGETS heading. Click the Info tab:

Xcode 10 supports 64-bit development only, not 32-bit development. If you are running Xcode 10 or later,
you will need to adjust the following instructions accordingly.

These settings are written to the project’s Info.plist or Info64.plist file which is copied to the XOP package
folder when the XOP is compiled.

The values in Info.plist can be superceded by the InfoPlist.strings file. If values that you enter in the Prop-
erties tab do no take effect when the XOP is compiled, check if Xcode has propagated your changes to the
InfoPlist.strings file. If not, manually update the InfoPlist.strings file.

Executable File: Set to the name of the executable file in the XOP package. For the WaveAccess XOP, the
package name is WaveAccess.xop and the executable file, named WaveAccess, is located in the WaveAc-
cess.xop package at Contents/MacOS/WaveAccess. For the WaveAccess64 XOP, the package name is
WaveAccess64.xop and the executable file, named WaveAccess64, is located in the WaveAccess.xop
package at Contents/MacOS/WaveAccess64.

When Igor loads your XOP, if you get an error such as "Can't load the executable file in the XOP package",
you may have an inconsistency in your settings. The Executable File setting must match the target product
name setting under Packaging in the target build settings. This is explained further under Check Your
Info.plist File on page 234.

Bundle Identifier: The bundle identifier is a unique string associated with an executable. By convention it
uses Java package notation like com.wavemetrics.xop.waveaccess or com.wavemetrics.xop.waveaccess64.
For your own XOPs you can make up an identifier of your choice.

Chapter 3 — Development Systems

44

Bundle OS Type Code: Set to IXOP. This is necessary for the XOP package to be displayed in the Finder using
the correct icon for an XOP.

Bundle Creator OS Type Code: Set to IGR0. This associates the XOP with the Igor Pro application.

Bundle Version and Bundle Version String: Set the version for the XOP package. This is the version reported
by the Finder.

Xcode SDKs
An SDK (software development kit) is a set of libraries, header files and other components needed to build
an executable on MacOS. Apple releases a new SDK with each operating system release. The new SDK adds
support for new system routines and sometimes removes support for old system routines.

In each Xcode project you specify the SDK that you want to use via the Base SDK setting in the project build
settings.

As Apple ships new versions of Xcode, it removes SDKs from older OS versions. You can find the SDKs
included with your version of Xcode at:

/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs

If you choose “MacOS 10.9” as the base SDK for your project you will be able to use system routines defined
for MacOS 10.9 but not routines defined for MacOS 10.10 because these require the 10.10 SDK. However,
there is another problem. If you select, for example, “MacOS 10.9” as the base SDK for your project, in a
year or two, when you are using a new version of Xcode on a new version of MacOS, your Xcode will not
include the 10.9 SDK and your project will not compile.You can fix this by choosing a newer SDK.

In XOP Toolkit 7, we elected to set the Xcode projects up to use the “Latest MacOS” SDK. This prevents the
problem described above where the project ceases to compile. But it introduces a new problem. It allows
you to call MacOS routines added in the latest OS version when you are running on an older OS version.
This will cause a crash.

This is not a serious problem for most XOPs because most XOPs are platform-independent and do not use
any OS routines directly. However, if you are an advance programmer writing a platform-dependent XOP
that uses new OS routines, you need to think about this issue so you do not call a new routine on an old OS.

Missing SDK With Xcode
If you open an Xcode project that uses an SDK that is not included in your current Xcode, Xcode will display
a warning saying that the SDK is missing. To fix this, set the project SDK to Latest MacOS as explained
under Xcode Project Build Settings on page 40.

Converting to the LLVM Compiler
Prior to XOP Toolkit 6.30 the sample XOP projects were configured to use the GCC compiler. Apple drop-
ping support for the GCC compiler in favor of the LLVM compiler. Consequently in XOP Toolkit 6.30 all
sample projects were converted to use LLVM.

If you are updating an old project, you will need to set it to use the LLVM compile as explained under Xcode
Project Build Settings on page 40.

You also may need to convert your XOP to use XOPMain as its main function. See The XOPMain Function
on page 195 for details.

Updating Xcode Projects for Xcode 10
This section explains updating XOP Toolkit 7 projects for Xcode 10 compatibility. If you are updating an
XOP Toolkit 6 project, see Xcode Project Changes For XOP Toolkit 7 on page 427.

Chapter 3 — Development Systems

45

Xcode 10 does not support 32-bit development. If you need to maintain the 32-bit version of your Macintosh
XOP, you can not use Xcode 10. This section assumes that you do not want to maintain your 32-bit version.

Before starting, make a backup of your XOP projects.

If you have not already updated your project using XOP Toolkit 7.01 or later as explained under XOP
Toolkit 7 Upgrade Notes on page 415 and Xcode Project Changes For XOP Toolkit 7 on page 427, do that
before moving to Xcode 10.

1. Open your project in Xcode 10.

Xcode will display a dialog saying "32-bit MacOS targets are no longer supported".

2. Click OK.

Showing the Projects and Targets List
1. In Xcode, choose View→Navigators→Show Project Navigator.

2. Select the top icon (e.g., "XOP1") in the Project Navigator. This shows build settings in the Xcode win-
dow central pane.

You should see a pane, called the Projects and Targets list, with sections PROJECT and TARGETS to the
right of the Project Navigator pane. If you don't see the Projects and Targets list, click the square icon in the
top/left corner of the project settings pane.

Deleting the 32-bit Target
As noted above, it is assumed that you do not want to maintain the 32-bit version of your XOP. Xcode 10
does not support 32-bit development.

1. In Xcode, choose View→Navigators→Show Project Navigator.

Select the top icon (e.g., "XOP1") in the Project Navigator.

Select the 32-bit target (e.g., "XOP1") in the TARGETS list.

Click the minus symbol in the bottom/left corner of the project settings pane to delete the 32-bit target.

When prompted, click the Delete button.

2. Choose Product→Scheme→Manage Scheme.

Select the 32-bit scheme (e.g., XOP1) in the list.

Click the minus symbol in the bottom/left corner of the Manage Schemes window.

When prompted, click the Delete button.

Click Close.

3. In the Project Navigator pane, right-click the Info.plist icon and choose Delete. Do not delete
Info64.plist.

When prompted, click Move to Trash.

4. In the Project Navigator pane, right-click the libXOPSupport.a icon and choose Delete.

If prompted, click Remove Reference.

Updating to Recommended Project Settings
1. Choose View→Navigators→Show Issue Navigator.

You should see an item in the Issue Navigator pane that says "Update to recommended settings". Click
it. A window will open that lists settings to be updated.

2. Click Perform Changes.

Chapter 3 — Development Systems

46

Changing the Deployment Target
1. Choose View→Navigators→Show Project Navigator.

Select the top-level icon (e.g., XOP1).

Select the project (e.g., XOP1) under PROJECT.

2. In the center pane, click "Info"

Set MacOS Deployment Target to the earliest MacOS version that you want to support but it must be
10.9 or higher.

3. Click the 64-bit target (e.g., XOP1-64) under TARGETS and then click General.

In the Deployment Info section, make sure that the Deployment Target is set the same as you set it for
the project.

Changing the “Always Search User Paths” Setting
1. Select the project (e.g., XOP1) under PROJECT again.

Click Build Settings.

2. In the Search Paths section, set Always Search User Paths to No.

3. Click the 64-bit target (e.g., XOP1-64) under TARGETS. Make sure that the Always Search User Paths
is set to No.

Building the Project
Choose Project→Build. It should compile without errors though you may get warnings.

If you get an error that says “Could not decode input file using specified encoding”, in the Finder, overwrite
the project’s InfoPlist.string file with the same-named file from an XOP Toolkit project. Then, in Xcode,
replace the file’s contents with "// Localized strings go here". Then choose Project→Build again.

If you get other errors you will need to debug them. There is no generic advise for errors at this point of the
process.

Handling Warnings
You may get warnings that you did not get before. This is because the "Updating to Recommended Project
Settings" step turns on additional warnings. We recommend fixing warnings unless the fix is too compli-
cated. Most warnings can be fixed with an appropriate cast. For example, change:

int len = strlen(str);

to

int len = (int)strlen(str);

You may see an intermittent "Enable Base Internationalization" warning. We are not aware of a reliable way
to get rid of this warning.

Debugging an XOP in Xcode
You need to tell Xcode what program hosts your XOP. Here's how you would do this after opening the
WaveAccess sample project in Xcode:

1. Choose Product→Scheme→Edit Scheme.

2. From the popup menu in the top/left corner of the window, choose WaveAccess or WaveAccess64.

3. Click Run in the list of actions on the left.

4. Click the Info tab.

Chapter 3 — Development Systems

47

5. Choose Debug from the Build Configuration popup menu.

6. Click the Executable popup menu, choose Other to display the Choose File dialog.

7. Select your Igor Pro application file and click the Choose button.

For Igor7 or later, this will be Igor.app for 32 bits and Igor64.app for 64 bits.

The scheme editor window should now look like this:

6. Click Close.

7. Choose Product→Build.

This is the same as choosing Product→Build For→Build For Running.

When the project compilation is finished, go into the Finder and find the compiled XOP (e.g., /Wave-
Access/Xcode/build/Debug/WaveAccess64.xop).

8. On the desktop, make an alias for that XOP and activate it as described under Activating XOPs Using
the Igor Extensions Folder on page 6.

9. In Xcode, open the your main source file (e.g., WaveAccess.cpp) and set a breakpoint at the start of the
XOPMain function. Click in the left-hand gutter to set the breakpoint.

10. In Xcode choose Product→Run.

Xcode will launch Igor Pro.

11. If your XOP adds one or more external functions, Igor will launch it at this time, in which case you
should break into Xcode at the point in the XOPMain function where you set the breakpoint.

12. If your XOP does not add external functions, do something to cause Igor to launch it, such as invoking
your external operation from Igor's command line. You should break into Xcode at this point.

XOPs in Visual C++
On Windows, XOP Toolkit 7 supports development using Visual C++ 2015 and Visual C++ 2017. It will
likely work with later versions of Visual C++, but see the caveats in the next section.

The community (free) edition of Visual C++ is fine for most 32-bit and 64-bit XOP development.Each sample
project contains a VC folder. The VC folder, e.g., WaveAccess/VC, contains the Visual C++ solution file, e.g.,
WaveAccess.sln.

For instructions on converting an XOP Toolkit 6 project for use with XOP Toolkit 7, see Converting Your
Older Visual C++ Project on page 434.

Visual C++ Compatibility Issues
Microsoft’s “Breaking Changes in Visual C++ 2015” document (https://msdn.microsoft.com/en-
us/library/bb531344.aspx) warns against mixing code (applications and static or dynamic libraries that they
call) compiled with different versions of Visual C++. Mixing can cause arcane compilation and linking

https://msdn.microsoft.com/en-us/library/bb531344.aspx
https://msdn.microsoft.com/en-us/library/bb531344.aspx

Chapter 3 — Development Systems

48

errors as well as runtime errors. These compatibility requirements cause serious headaches when moving
to a new version of Visual C++.

However, Microsoft’s release notes for Visual C++ 2017 (https://www.visualstudio.com/en-us/news/relea-
senotes/vs2017-relnotes) say “No breaking changes between 2015 and 2017”. Based on this, and on our test-
ing, it is safe to link Visual C++ 2017 code with Visual C++ 2015 libraries.

The XOP Toolkit 7 XOPSupport libraries are compiled using Visual C++ 2015. Consequently, XOPs should
be compiled using Visual C++ 2015 or Visual C++ 2017.

If you must use a different version of Visual C++, you should recompile the XOPSupport libraries, as well
as any other libraries that you use, using your version of Visual C++. To recompile XOPSupport, open XOP-
Support.sln in Visual C++ and build the 32-bit and 64-bit release configurations to produce the XOPSup-
port.lib and XOPSupport64.lib libraries.

XOP Projects in Visual C++
This section provides the background information needed to understand how to create XOP projects in
Visual C++. For step-by-step instructions on creating a project, see Creating a New Project on page 24.

We will use the WaveAccess sample XOP as a case in point. The WaveAccess folder is inside the IgorXOPs7
folder and looks like this:

The Visual C++ project files are inside the VC folder, to keep them separate from the files for the other devel-
opment systems. The discussion assumes this arrangement and we recommend that you use it. Note that
the compiled XOPs are in the WaveAccess/VC folder.

WaveAccess.vcxproj is the Visual C++ project file and WaveAccess.sln is the Visual C++ “solution” file. To
open the project, open the solution file in Visual Studio. You may see other Visual C++-created folders and
files. They contain data created by Visual C++, such as compiled object code. Only the .vcxproj, .vcxproj.fil-
ters and .sln files are essential for recreating the project.

WaveAccess.cpp contains the project source code while WaveAccess.h contains the project headers.

WaveAccess.rc is the main Windows resource file. It #includes resource.h and WaveAccessWinCustom.rc.

WaveAccess.rc contains standard Windows resources such as the version resource and menu and dialog
resources, if any. Long ago, Visual C++ included a graphical resource editor which you used to create and
edit standard Windows resources. The graphical resource editor created and managed the resource.h file.
Then Microsoft removed the graphical resource editor from the free versions of Visual C++. Consequently,
if you use a free version, you must edit these files using a text editor.

https://msdn.microsoft.com/en-us/library/bb531344.aspx
https://www.visualstudio.com/en-us/news/releasenotes/vs2017-relnotes

Chapter 3 — Development Systems

49

WaveAccessWinCustom.rc contains XOP-specific resources that you edit as text. Igor examines these
custom resources to determine what operations, functions and menus the XOP adds, among other things.
The use of these resource files is further explained under XOP Resources on page 55.

WaveAccess.r contains the Macintosh resources and is not used on Windows.

This screen shot of the Visual C++ Solution Explorer window shows the source files and libraries that are
used in the project.

The project is set up to compile either a debug version or a release version of the XOP as a 32-bit or 64-bit
XOP. You select which will be built by choosing Build→ Configuration Manager or using the configuration
popup menus in the Visual C++ toolbar:

Both the debug and release 32-bit configurations create an XOP in the VC folder with the same name (e.g.,
WaveAccess.xop). During development, you will normally compile using the debug configuration. Once
your XOP is in final form, you should build the release configuration which may run significantly faster.

To compile the 64-bit version, choose x64 instead of Win32 from the platform popup menu and then
compile the project. This creates a 64-bit version (e.g., WaveAccess64.xop) in the VC folder. 64-bit XOPs are
discussed in detail under 64-bit XOPs on page 187.

Visual C++ Project Settings
If you choose View→Solution Explorer and then right-click the WaveAccess icon and then choose Proper-
ties, Visual C++ displays the project settings. Here is a discussion of the significant settings which need to
be changed from the default using WaveAccess as an example.

If you change a setting, you should change it for both the debug and release configurations and for the 32-
bit and 64-bit platforms unless otherwise noted.

General Properties

Output Directory: .\

This tells Visual C++ to put the compiled XOP in the VC folder.

Target Name: WaveAccess for 32-bits; WaveAccess64 for 64-bits

Target Extension: .xop

Character Set: Use Multi-Byte Character Set

Chapter 3 — Development Systems

50

Debugging Properties

Command: Enter the path to your Igor.exe application file for the 32-bit platform, Igor64.exe for the 64 bit
platform.

Visual C++ will launch Igor when you ask to debug your XOP.

C/C++ Properties / General Category

Additional Include Directories: Add ..\..\XOPSupport

This allows #include statements to find the XOPSupport header files. The path is relative to the folder con-
taining the .vcxproj project file.

The final setting will contain “..\..\XOPSupport;%(AdditionalIncludeDirectories)”. The latter part is auto-
matically added by Visual C++ by default.

C/C++ Properties / Preprocessor

Preprocessor Definitions: Add _CRT_SECURE_NO_WARNINGS

This setting must be added separately for the debug and release configurations for both the 32-bit and 64-
bit platforms because other preprocessor definitions are configuration-specific.

C/C++ Properties / Code Generation Category

Runtime Library: Multi-Threaded (/MTd) for the debug configuration; Multi-Threaded (/MT) for the release
configuration.

Do not use a DLL version of the runtime library as the DLL is not present on all systems.

An exception to this rule is that, if you have to link with a library compiled with a different version of Visual
C++, you may get link errors relating to missing C runtime routines. In this case you have no choice but to
use the DLL versions of the C runtime. Then anyone using your XOP will need to have the C runtime DLLs
for your Visual C++ version. For further information, search the web for “Visual C++ redistributable”.

Struct Member Alignment: Default

See Structure Alignment on page 208 for details.

C/C++ Properties / Command Line

Additional Options: Add /utf-8

This setting tells the compiler to compile literal strings as UTF-8. For background information, see Text
Encodings in Visual C++ on page 204.

Linker Properties / General Category

Output File: WaveAccess.xop for 32-bits; WaveAccess64.xop for 64-bits

The normal Visual C++ arrangement is to have the output file created in the Debug or Release folder created
by Visual C++ inside the project folder (WaveAccess\VC). However we set up both the Debug and Release
configurations to create the output file in the project folder so that a shortcut placed in the Igor extensions
folder will always refer to the last compiled version, regardless of configuration.

Linker Properties / Input Category

Additional Dependencies: Add version.lib.

The final setting will contain “version.lib;%(AdditionalDependencies)”. The latter part is automatically
added by Visual C++ by default.

Chapter 3 — Development Systems

51

Linker Properties / System Category

Enable Large Addresses: Yes (/LARGEADDRESSAWARE)

This allows the XOP to address up to 4 GB when running with the 32-bit version of Igor instead of the
default 2 GB.

Linker Properties / Advanced Category

Target Machine: MachineX86 for 32-bit XOPs; MachineX64 for 64-bit XOPs.

Resources Properties / General Category
Additional Include Directories: ..\..\XOPSupport

The final setting will contain “..\..\XOPSupport;%(AdditionalIncludeDirectories)”. The latter part is auto-
matically added by Visual C++ by default.

This allows #include statements to find the XOPResources.h file. The path is relative to the folder containing
the .vcxproj project file.

Debugging a Visual C++ XOP
Here are the steps that you can take to debug a Visual C++ XOP.

1. Open the solution (e.g., WaveAccess.sln) in Visual C++.

2. Use Build→ Configuration Manager or the configuration popup menus to activate the debug configu-
ration of the project.

3. In the Solution Explorer window, right-click the WaveAccess icon, choose Properties, click the Debug-
ging category, and set the Command setting for the debug configuration to the path to your Igor.exe or
Igor64.exe file.

4. Build the XOP by choosing Build→Build Solution.

5. On the desktop, make a shortcut for the XOP and activate it as described under Activating XOPs Using
the Igor Extensions Folder on page 6.

6. Back in Visual C++, open your main source file (e.g., WaveAccess.cpp), and set a breakpoint at the start
of the XOPMain function.

7. Press F5. The Visual C++ debugger will launch Igor Pro.

8. If your XOP adds one or more external functions, Igor will launch it at this time, in which case you
should break into Visual C++ at the point in the XOPMain function where you set the breakpoint.

9. If your XOP does not add external functions, do something to cause Igor to launch it, such as invoking
your external operation from Igor's command line. You should break into Visual C++ at this point.

Chapter 3 — Development Systems

52

Chapter 4
I-4Igor/XOP Interactions

Overview
The code on page 54 is a simplified sketch of XOP1, a simple XOP that adds a single command line opera-
tion to Igor. The underlined items are functions, constants or structures defined in the XOPSupport library
and headers. Read the code now but don’t worry about the details which we will explain next.

To get a feeling for how Igor and the XOP interact, we will follow a chain of events in chronological order.

1. When Igor is launched, it scans the Igor Extensions folder and any subfolders looking for XOPs identi-
fied by their “.xop” file name extension. When Igor finds an XOP, it first looks for its XOPI resource,
from which Igor determines various characteristics of the XOP.

2. Next Igor looks for resources that identify what things (external operations, external functions, menu
items, menus) the XOP adds. In the example below, the XOPC resource tells Igor that the XOP adds a
command line operation named XOP1. This resource is stored in the XOP’s resource fork and is defined
in the XOP1.r file on Macintosh and in the XOP1WinCustom.rc file on Windows.

3. The user invokes the XOP1 operation via Igor’s command line or via a procedure.

4. Igor loads the XOP into memory and calls the XOP’s XOPMain function, passing it an IORecHandle.
The XOPMain function does all of the XOP’s initialization including calling the following XOPSupport
routines.

5. Igor parses the command’s parameters, stores them in a structure, and calls ExecuteXOP1, passing the
structure to it.

6. The ExecuteXOP1 function does the necessary work and returns a result to Igor. The result is zero for
success or a non-zero error code.

7. If the result returned to Igor is non-zero, Igor displays an error alert.

Routine Description

XOPInit Stores the IORecHandle in a global variable which is used by all
subsequent XOPSupport calls.

SetXOPEntry Sets a field in the IORecHandle pointing to the XOP's XOPEntry routine.
Igor uses this routine for subsequent calls to the XOP except for external
operation and external function invocations.

RegisterOperation Tells Igor the syntax of the XOP1 external operation and the address of the
function (ExecuteXOP1) that Igor must call to execute the operation.

SetXOPResult Sets the result field in the IORecHandle to zero. This tells Igor that the
initialization succeeded.

Chapter 4 — Igor/XOP Interactions

54

// From XOP1.r for Macintosh.
resource 'XOPC' (1100) { // Describes operations the XOP adds to Igor.

{
"XOP1", // Name of operation.
XOPOp + utilOp + compilableOp, // Operation's category.

}
};

// From XOP1WinCustom.rc for Windows.
1100 XOPC // Describes operations the XOP adds to Igor.
BEGIN

"XOP1\0", // Name of operation.
XOPOp | utilOp | compilableOp, // Operation's category.
"\0" // NULL required to terminate resource.

END

// From XOP1.cpp for Macintosh and Windows.

extern "C" int
ExecuteXOP1(XOP1RuntimeParamsPtr p)
{

int result;
result = <XOP-specific code to implement command line operation>;
return result;

}

static int
RegisterXOP1(void)
{

char* cmdTemplate;
cmdTemplate = "XOP1 wave";
return RegisterOperation(cmdTemplate, . . ., (void*)ExecuteXOP1, . . .)

}

extern "C" void
XOPEntry(void)
{

XOPIORecResult result = 0;
switch (GetXOPMessage()) {

// Handle message
}
SetXOPResult(result);

}

HOST_IMPORT int
XOPMain(IORecHandle ioRecHandle) // The main function
{

XOPInit(ioRecHandle);
SetXOPEntry(XOPEntry);

if (igorVersion < 620) { // Requires Igor Pro 6.20 or later.
SetXOPResult(IGOR_OBSOLETE);
return EXIT_FAILURE;

}

RegisterXOP1();
SetXOPResult(0L);
return EXIT_SUCCESS;

}

Chapter 4 — Igor/XOP Interactions

55

When the user invokes an XOP’s external operation or external function, in most cases Igor directly calls a
function which was registered by the XOP for that operation or function. Chapter 5 and Chapter 6 discuss
the details of creating external operations and functions.

Except for calling an external operation or an external function, all communications from Igor to the XOP
go through the XOPEntry routine. For example, if the XOP adds a menu item to an Igor menu, when the
user chooses the menu item Igor calls XOPEntry, passing the MENUITEM message and parameters in fields
of the IORecHandle. The XOPEntry routine then calls GetXOPMessage to determine what message Igor is
sending and GetXOPItem to obtain parameters associated with the message.

The IORecHandle is managed completely by the XOPSupport library routines. Except for passing the
IORecHandle to the XOPInit function during initialization, you can completely ignore it.

In the example above, the XOPEntry and ExecuteXOP1 functions are declared extern "C". This is
required in C++ code because all calls between Igor and the XOP use C calling conventions. If you are coding
the XOP in C instead of C++, use static in place of extern "C".

XOP Resources
There are three types of resources that you can use in your XOP:

The XOP-specific resources describe your XOP to Igor. This section discusses the form and meaning of these
resources. This table lists all of the XOP-specific resources:

The STR# resource is a standard Apple resource format. The other listed resource types are custom XOP
resource formats. These resource types are used on both Macintosh and Windows.

All XOPs must have an XOPI resource. Igor will refuse to run your XOP if it lacks this. All of the other
resources are required only if the XOP uses the associated features.

Simple XOPs typically have an XOPI resource, an XOPC or XOPF resource, a STR#,1100 resource, and a
STR#,1101 resource.

Type of Resource Defined By Examples

XOP-specific WaveMetrics XOPI, XOPC, XOPF

Platform-specific Apple, Microsoft Menus, dialogs

Your own resources You Whatever you define

Resource What It Does Explained In

XOPI 1100 Describes XOP’s general properties to Igor. This chapter

XOPC 1100 Defines operations added by the XOP. Chapter 5

XOPF 1100 Defines functions added by the XOP. Chapter 6

STR# 1100 Defines error messages added by the XOP. Chapter 12

STR# 1101 Miscellaneous XOP strings that Igor needs to
know about.

Chapter 8

STR# 1160 Used by XOPs that add target windows. Chapter 9

XMN1 1100 Defines main menu bar menu added by XOP. Chapter 8

XMI1 1100 Defines menu items added to Igor menus. Chapter 8

XSM1 1100 Defines submenus used by XOP. Chapter 8

Chapter 4 — Igor/XOP Interactions

56

Creating Resources on Macintosh
You create Macintosh resources by editing a .r file as text and then letting Xcode compile the .r file. You
should start with a .r file from a WaveMetrics sample XOP.

Xcode includes a resource compiler that compiles any .r files in the project. The resulting resources are
stored in the .rsrc file in the XOP’s package folder.

The XOPTypes.r XOPSupport file defines the format of the custom WaveMetrics resource types such as
XOPI, XOPC and XOPF. XOPTypes.r is #included in your .r file so that the resource compiler can com-
pileXOP resources.

Creating Resources on Windows
On Windows, Visual C++ creates resources by compiling resource (.rc) files. You can create a resource file
either by entering text directly into the file or by using the development system's graphical resource editor.
However the free editions of Visual C++ do not support graphical resource editing so you must enter text
directly into the file using the source code editor.

The graphical resource editor allows you to graphically edit standard Windows resources such as icons,
menus and dialogs. The source code editor allows you to edit a resource file as plain text, which is better
for editing text-oriented resources such as XOP function declarations, operation declarations and error
strings.

To open a resource file for graphical editing, double-click its icon in the Solution Explorer. To open it for
text editing, right-click it and choose View Code.

On Windows, the XOP-specific resources are stored in a separate resource file which is edited as a text file.
For example, the XOP1 sample XOP has two resource files, an XOP1.rc file that stores standard Windows
resources (e.g., version and menu resources) and an XOP1WinCustom.rc file that stores WaveMetrics-
defined resources (e.g., XOPI, XOPC and XOPF resources).

Visual C++ allows you to add only one resource file to your project. Consequently, the main resource file
(XOP1.rc) contains an include statement which includes the XOP-specific resource file
(XOP1WinCustom.rc). You can see this by opening the XOP1.rc file using the source code editor. You will
see this line:

#include "XOP1WinCustom.rc"

The Visual C++ graphical resource editor generates a file named resource.h, which is also included by the
main resource file.

The XOPI 1100 Resource
There is one resource that must be present in every XOP. That is the XOPI 1100 resource. This resource tells
Igor a few things about your XOP. The form of the resource is as follows.

// Macintosh
#include "XOPStandardHeaders.r" // Defines XOP-specific types and symbols.
resource XOPI (1100) { // XOPI - Describes general XOP properties to Igor.

XOP_VERSION, // XOP protocol version.
DEV_SYS_CODE, // Code for development system used to make XOP.
XOP_FEATURE_FLAGS, // Tells Igor about XOP features
XOPI_RESERVED, // Reserved - must be zero.
XOP_TOOLKIT_VERSION, // Version of XOP Toolkit used to create XOP.

};

// Windows
#include "XOPResources.h" // Defines symbols used below.
1100 XOPI // XOPI - Describes general XOP properties to Igor.
BEGIN

XOP_VERSION, // XOP protocol version.

Chapter 4 — Igor/XOP Interactions

57

DEV_SYS_CODE, // Code for development system used to make XOP.
XOP_FEATURE_FLAGS, // Tells Igor about XOP features
XOPI_RESERVED, // Reserved - must be zero.
XOP_TOOLKIT_VERSION, // Version of XOP Toolkit used to create XOP.

END

If the XOPI 1100 resource is missing then Igor will not run the XOP.

The symbols XOP_VERSION, DEV_SYS_CODE and XOP_TOOLKIT_VERSION are defined in XOPRe-
sources.h which is included by XOPStandardHeaders.r. The values of these macros are automatically set;
you don’t need to change them.

The first field is used to make sure that the XOP is compatible with the XOP interface in the version of Igor
that is running. This is the version number of Igor’s XOP protocol at the time the XOP was compiled,
defined by the XOP_VERSION constant in the XOPResources.h file. See Igor/XOP Compatibility Issues on
page 69 for details.

The next field tells Igor what development system was used to compile the XOP, which previously affected
how Igor called the XOP. It is currently not used but must be present.

The next two fields are obsolete and must be set to zero.

The final field tells Igor what version of the XOP Toolkit was used to compile the XOP, which in some cases
determines aspects of how Igor calls the XOP.

How Igor Calls an XOP
Igor calls your XOP by calling one of four routines:

Calling external operations and functions is explained in chapters 5 and 6. The rest of this chapter explains
messages sent to your XOP by calling your XOPMain function or your XOPEntry routine.

Basic XOP Messages
Here are the basic messages that Igor can send to your XOP’s XOPEntry routine, or your XOPMain function
in the case of the INIT message. The constants (INIT, IDLE, CMD, etc.) are defined in XOP.h. When Igor
calls your XOPEntry routine, you call the GetXOPMessage XOPSupport routine to determine what
message is being sent. The arguments listed are arguments Igor is passing to you. You access them using
the GetXOPItem XOPSupport routine.

NOTE: You must get the message from Igor and get all of the arguments for the message before you do
any callbacks to Igor. For details see Avoiding Common Pitfalls on page 233.

A typical XOP will ignore most of these messages and respond to just a few of them.

As part of the response to a message from Igor, your XOP can pass a result code back to Igor using the Set-
XOPResult XOPSupport routine. The "Result" item in the following descriptions refers to this result code.

Event How XOP Is Called

INIT message Igor sends the INIT message by calling your XOPMain function.

Call external operation To invoke an external operation added by your XOP, Igor calls a function
that you designate directly at initialization time as explained in Chapter 5,
Adding Operations.

Call external function To invoke an external function added by your XOP, Igor calls a function
that you designate directly at initialization time as explained in Chapter 6,
Adding Functions.

All other messages Igor sends all other messages by calling your XOPEntry routine.

Chapter 4 — Igor/XOP Interactions

58

A result code of 0 indicate success while a non-zero result code indicates an error. See XOP Errors on page
61 for details on the error codes that you can return to Igor.

Some messages have arguments of type Rect* (pointer to Rect). This is a pointer to a Macintosh rectangle
structure, even when running on Windows.

INIT Tells your XOP that it needs to initialize itself.

Arguments: None.
Result: Error code from your initialization.

This is the first message received by every XOP when it is loaded. This
message is sent by calling your XOPMain function. Subsequent messages are
sent by calling your XOPEntry routine.

If your XOP returns a non-zero result via the SetXOPResult XOPSupport
routine, Igor will unload your XOP immediately. Therefore you should do
any necessary cleanup before returning a non-zero result.

IDLE Tells your XOP to do its idle processing.

Arguments: None.
Result: None.

Your XOP gets this message if it has set the IDLES bit using the SetXOPType
XOPSupport routine. You should do this if your XOP has tasks that it needs
to do periodically so that you’ll get the periodic IDLE message.

See Handling Recursion on page 67 for a discussion of recursion issues
involving IDLE messages.

MENUITEM Tells your XOP that its menu item has been selected.

Argument 0: Menu ID of menu user selected.
Argument 1: Item number of item user selected.
Result: Your result code from operation.

Your XOP must determine which of its menu items has been invoked and
respond accordingly. It should call SetXOPResult to pass zero or an error
code back to Igor.

See Chapter 8, Adding Menus and Menu Items, for details on how to
respond to this message.

MENUENABLE Tells your XOP to enable or disable its menu items.

Arguments: None.
Result: None.

If your XOP has one or more menu items, it receives this message when the
user clicks in the menu bar or presses a command-key equivalent (Macintosh)
or accelerator (Windows). This message gives your XOP a chance to enable,
disable or change its menu items as appropriate.

An XOP receives the MENUENABLE message if its window is the front
window even if the XOP adds no menu items to Igor. This allows the XOP to
enable or disable Igor menu items such as items in the Edit or File menu.

See Chapter 8, Adding Menus and Menu Items, for details on how to
respond to this message.

CLEANUP Tells your XOP that it is about to be closed and discarded from memory.

Chapter 4 — Igor/XOP Interactions

59

Arguments: None.
Result: None.

Your XOP should dispose any memory that it has allocated and do any other
necessary cleanup.

Igor6 sends the CLEANUP message before Igor kills all experiment data.
Igor7 and later send it after.

OBJINUSE Allows your XOP to tell Igor that it is using a particular object.

Argument 0: Object identifier.
Argument 1: Object type.
Result: Zero if your XOP is not using the object,

one if it is using the object.

Igor passes this message to your XOP when it is about to dispose of an object
(e.g., kill a wave) that your XOP may depend upon.

At present, the only use for this is to tell Igor that your XOP is using a
particular wave so that Igor will not let the user kill the wave. The object
identifier is the wave handle. The object type is WAVE_OBJECT. Object types
are defined in IgorXOP.h.

You need to respond to this message if your XOP depends on a particular
wave’s existence. Otherwise, ignore it.

The OBJINUSE message is sent only from the main Igor thread. A
complementary technique is available for preventing the deletion of waves
used in an Igor preemptive thread. See Wave Reference Counting on page
131 for details.

When a new experiment is loaded or Igor quits, all objects are killed, whether
they are in use or not. Therefore, if your XOP expects one or more Igor objects
to exist, the XOP must be prepared to stop using the objects when either of
these events occurs. Igor calls your XOP with the NEW message when a new
experiment is about to be opened and with the CLEANUP message when
Igor is about to quit.

See Preventing the Killing of a Wave on page 130 for further discussion of
the OBJINUSE message.

FUNCADDRS Asks your XOP for the address of one of its external functions.

Argument 0: Function index number starting from 0.
Result: Address of function or NULL.

See Chapter 6, Adding Functions, for details.

Messages for XOPs that Save and Load Settings
An elaborate XOP can save settings and/or documents as part of an Igor experiment and load those settings
and documents when the user reopens the experiment. To do this, your XOP needs to respond to the mes-
sages in this section.

NEW Tells your XOP that the user selected New Experiment from the File menu.

Arguments: None.

Result: None.

Chapter 4 — Igor/XOP Interactions

60

When the user creates a new experiment your XOP should set its settings to
their default state.

Igor7 and later send the NEW message when Igor is about to quit. Igor6 does
not send the NEW message at that time.

MODIFIED Asks your XOP if it has been modified since the last NEW, LOAD or SAVE
message and needs to save settings or documents.

Arguments: None.

Result: 0 if your XOP is not modified, 1 if modified.

You need to respond to this message if your XOP saves settings or documents
as part of an experiment. Otherwise, ignore it.

CLEAR_MODIFIED Igor sends this message during its initial startup, and after Igor generates a
new experiment (in response to the user choosing New Experiment), and
after Igor finishes loading an experiment (in response to the user choosing
Open Experiment or Revert Experiment), and after Igor finishes saving an
experiment (in response to the user choosing Save Experiment or Save
Experiment As). An XOP that saves data in experiment files can use this
message to clear its modified flag.

Arguments: None.
Result: None.

SAVE This message is obsolete. Igor Pro will not send it.

LOAD This message is obsolete. Igor Pro will not send it.

SAVESETTINGS Allows your XOP to save settings as part of an experiment.

Argument 0: Experiment type.
Argument 1: Save type.
Result: Handle to your XOP’s settings or NULL.

Your XOP can save its settings in the experiment file. If you want to do this,
return a handle to the settings data to be saved. Otherwise, ignore the
message. See Saving and Loading XOP Settings on page 65 for details.

If you return a handle, Igor stores the data in the experiment file and disposes
the handle. Don’t access the handle once you pass it to Igor.

The experiment type will one of the following which are defined in
IgorXOP.h:

EXP_PACKED
EXP_UNPACKED

The save type will be one of the following which are defined in IgorXOP.h:

SAVE_TYPE_SAVE
SAVE_TYPE_SAVEAS
SAVE_TYPE_SAVEACOPY
SAVE_TYPE_STATIONERY

LOADSETTINGS Allows your XOP to load settings it saved in an experiment.

Argument 0: Handle to data saved in experiment file or NULL.
Argument 1: Experiment type.
Argument 2: Load type.

Chapter 4 — Igor/XOP Interactions

61

Result: None.

If your XOP saved its settings in the experiment being opened you should
reload those settings from the handle. If your experiment did not save its
settings then the handle will be NULL and you should do nothing. See
Saving and Loading XOP Settings on page 65 for details.

The handle that Igor passes to you comes from the experiment file and will be
automatically disposed when Igor closes the experiment file so don’t access it
once you finish servicing the LOADSETTINGS message.

The experiment type will one of the following which are defined in
IgorXOP.h:

EXP_PACKED
EXP_UNPACKED

The load type will be one of the following which are defined in IgorXOP.h:

LOAD_TYPE_OPEN
LOAD_TYPE_REVERT
LOAD_TYPE_STATIONERY
LOAD_TYPE_MERGE

XOP Errors
The XOP protocol facilitates providing helpful error messages when something goes wrong in your XOP.
You return an error code to Igor in response to the INIT, CMD, FUNCTION and MENUITEM messages by
calling the SetXOPResult XOPSupport routine. Your direct external operations and direct external func-
tions return error codes through the return statement of those routines.

If you return 0, this signifies success - that is, no error occurred. If you return a non-zero value, Igor displays
an error dialog. Igor displays the dialog when your XOP returns, not immediately.

In some cases, you may need to display an error dialog other than in response to these messages. In this
case you need create your own error dialog routine or use the IgorError XOPSupport routine. See Display-
ing Your Own Error Alert on page 64 for details on how to do this.

The GetIgorErrorMessage XOPSupport routine returns an error message for a specified error code. This is
useful if you want to display an error message in your own window.

Error Codes
There are three kinds of errors that you can return to Igor:

You must not return Windows OS error codes to Igor because these codes conflict with Igor error codes.
Instead, you must translate Windows OS Error codes into Igor error codes. This is explained below.

Igor Error Codes
An Igor error code is a code for an error that Igor might generate itself. The file IgorErrors.h contains
#defines for each of the Igor error codes. Your XOP can return an Igor error code and Igor will display an

Type Range Description

Igor error code -1 to 9999 Error codes used by Igor itself. Defined in IgorErrors.h.

Mac OS error codes -32768 to -2 Defined by Macintosh Carbon API but used on
Macintosh and Windows.

XOP error codes 10000 to 10999 Defined by the XOP programmer.

Chapter 4 — Igor/XOP Interactions

62

appropriate error dialog. For example, if your XOP returns NOMEM, Igor displays an "out of memory"
error dialog and if your XOP returns NOWAV, Igor displays an "expected wave name" error dialog.

There is one special Igor error code: -1. It signifies an error for which an error dialog is not necessary. Return
-1 if the user aborts an operation or if you reported the cause of the error in some other way. This tells Igor
that an error occurred but Igor will not display an error dialog.

XOP Custom Error Codes
XOP custom error codes are defined by an XOP. #defines for these error codes should be created in the
XOP’s .h file and there must be a corresponding error message in the XOP’s STR# 1100 resource which is
described in Chapter 12. Custom error codes are numbered starting from FIRST_XOP_ERR which is
defined in XOP.h. The details of adding custom error messages are discussed under Adding Custom Errors
on page 63.

Mac OS Error Codes
A Mac OS error code is a code for an error generated by the Macintosh operating system. A Mac OS error
code is always negative. Igor provides meaningful error messages for the most common Mac OS error
codes. For other Mac OS errors, Igor displays a generic error message.

Handling Windows OS Error Codes
Windows OS error codes conflict with Igor error codes. For example, the error code 1 (NOMEM) means "out
of memory" in Igor. On Windows, it means "The function is invalid" (ERROR_ INVALID_FUNCTION).
Igor interprets error codes that you return to it as Igor error codes. If you return a Windows OS error code
to Igor, you will get an incorrect error message.

On Windows, Igor provides two functions to deal with this problem. WindowsErrorToIgorError translates
a Windows error code that you get from the Windows GetLastError function into an error code that Igor
understands. WMGetLastError is a WaveMetrics substitute for the Windows GetLastError function that
also returns error codes that Igor understands.

Here is an example illustrates how you might use WindowErrorToIgorError.

int
Test(void) // Returns 0 if OK or a non-zero error code.
{

int err;

if (SetCurrentDirectory("C:\\Test") == 0) {
err = GetLastError();
// You can add code to examine err here, if necessary.
err = WindowsErrorToIgorError(err);
return err; // Return code to Igor.

}
return 0;

}

This is the recommended technique if your own code needs to examine the specific error code returned by
GetLastError. Usually, the precise error code that GetLastError returns does not affect the flow of your
code. In such cases, we can rewrite the function using WMGetLastError, which itself calls GetLastError and
WindowsErrorToIgorError.

int
Test(void) // Returns 0 if OK or a non-zero error code.
{

int err;

if (SetCurrentDirectory("C:\\Test") == 0) {
err = WMGetLastError();

Chapter 4 — Igor/XOP Interactions

63

return err; // Return code to Igor.
}
return 0;

}

In addition to translating the error code, WMGetLastError is different from GetLastError in two regards.
First, it always returns a non-zero result. Second, it calls SetLastError(0) after it calls GetLastError. The fol-
lowing example illustrates why WMGetLastError does these things.

/* GetAResource(hModule, resID, resType)

Returns 0 if OK or non-zero error code.
*/
int
GetAResource(HMODULE hModule, int resID, const char* resType)
{

HRSRC hResourceInfo;

hResourceInfo=FindResource(hModule,MAKEINTRESOURCE(resID),resType);
if (hResourceInfo == NULL) { // hResourceInfo is NULL

err = GetLastError(); // but GetLastError returns 0.
return err; // So we return 0 but hResourceInfo is NULL.

}
.
.
.

}

The Windows documentation for FindResource says "If the function fails, the return value is NULL. To get
extended error information, call GetLastError.

However, empirical evidence indicates that, if the resource is not found, FindResource returns NULL, but
does not set the last error. Therefore, GetLastError returns a stale error code - whatever was set by some pre-
vious Windows API call. If this happens to be zero, then the function above will return zero and the calling
routine will think that it succeeded, with possibly disastrous results.

If you use WMGetLastError instead of GetLastError, you will always get a non-zero result, avoiding the
disaster. WMGetLastError calls GetLastError and, if GetLastError returns 0, WMGetLastError returns
WM_UNKNOWN_ERROR. Furthermore, since WMGetLastError calls SetLastError(0) after calling GetLas-
tError, you can be certain that we will not get a stale error code the next time we call it.

You should call GetLastError or WMGetLastError only when you have received another indication of
failure from a Windows API call. For example, FindResource signals a failure by returning NULL. You
should not call GetLastError or WMGetLastError if FindResource returns non-NULL. This is because
Windows API routines do not set the last error code if they succeed. They set it only if they fail, and some-
times not even then.

Adding Custom Errors
Each time your XOPEntry routine receives the INIT, CMD, FUNCTION or MENUITEM message, you must
return an error code to Igor using the SetXOPResult XOPSupport routine. Also, your direct external oper-
ations and direct external functions must return an error code as their function result.

If you return 0, this signifies success - that is, no error occurred. If the error code is non-zero, Igor will
display an error dialog when your XOP returns.

Custom XOP error codes are codes that you define for your XOP, typically in a .h file of your own. For each
code, you define a corresponding error message. You store the error messages in your STR# 1100 resource
in the resource fork of your XOP.

Chapter 4 — Igor/XOP Interactions

64

The custom error codes for your XOP must start from FIRST_XOP_ERR+1. FIRST_XOP_ERR is defined in
the XOP.h file. As an illustration, here are the custom error codes for the XFUNC3 sample XOP as defined
in XFUNC3.h.

#define OLD_IGOR 1 + FIRST_XOP_ERR
#define UNKNOWN_XFUNC 2 + FIRST_XOP_ERR
#define NO_INPUT_STRING 3 + FIRST_XOP_ERR

Here is XFUNC3’s STR# 1100 resource, which defines the error messages corresponding to these error
codes.

// Macintosh, in XFUNC3.r.
resource 'STR#' (1100) { // Custom error messages

{
"XFUNC3 requires Igor Pro 6.20 or later.",
"XFUNC3 XOP was called to execute an unknown function.",
"Input string is non-existent.",

}
};

// Windows, in XFUNC3WinCustom.rc.
1100 STR#
BEGIN

"XFUNC3 requires Igor Pro 6.20 or later.\0",
"XFUNC3 XOP was called to execute an unknown function.\0",
"Input string is non-existent.\0",
"\0" // NULL required to terminate the resource.

END

Displaying Your Own Error Alert
Igor displays an error alert if you return a non-zero error code in response to the INIT, CMD, FUNCTION
and MENUITEM messages or as the function result of a direct external operation or direct external function.
You can call the IgorError XOPSupport routine to display an alert at other times. IgorError accepts an Igor,
Mac OS, or XOP-defined error code and displays a dialog with the corresponding message.

You may want to display an error message in your own dialog or window. In this case, call GetIgorEr-
rorMessage. GetIgorErrorMessage accepts an Igor, Mac OS, or XOP-defined error code and returns a string
containing the corresponding message.

To display your own alert using a string that is not associated with an error code, you can use the
XOPOKAlert, XOPOKCancelAlert, XOPYesNoAlert, and XOPYesNoCancelAlert XOPSupport routines.

Eliminate Empty XOP Error Strings
In Igor Pro 6.20 the internal method for handling XOP error messages was changed to support external
operations and functions running in threads. In 6.20 or later, Igor copies all XOP error strings from the
XOP's STR# 1100 resource into Igor memory at launch time.

If you have an empty error string in your STR# 1100 resource, this will cause Igor to ignore any error strings
after the empty one. If you have an unused error message that is currently set to "" in your STR# 1100
resource, change it to something like "-unused-".

Also make sure that your XOP error codes, defined in your main .h file, are contiguous starting from
(FIRST_XOP_ERR + 1).

Chapter 4 — Igor/XOP Interactions

65

XOPs and Preferences
If you are writing an XOP that has a user interface, you may want to save certain bits of information so that
the user does not need to re-enter them each time he or she uses the XOP. For example, the GBLoadWaveX
XOP saves the state of many of its dialog items and restores them the next time the user invokes the dialog.

The SaveXOPPrefsHandle XOPSupport routine saves your XOP’s data in Igor preferences. You can later
retrieve this data by calling the GetXOPPrefsHandle XOPSupport routine. In Igor6, your data is stored in
the Igor preferences. In Igor7 and later, your data in a separate file in the XOPs folder of the Igor preferences
folder. In both cases, the file is maintained by Igor and you should access it only via the SaveXOPPrefsHan-
dle and GetXOPPrefsHandle functions.

Each time you call either of these routines, the Igor preferences file is opened and closed. Therefore it is best
to call each of them only once. One way to do this is to call GetXOPPrefsHandle when your XOP starts and
SaveXOPPrefsHandle when you receive the CLEANUP message.

The GetPrefsState callback provides a way for you to know if preferences are on or off. This allows an XOP
to behave like Igor in regard to when user preferences are used versus when factory default preferences are
used, as described in the Igor Pro manual.

The data that you store will often be in the form of a structure. As time goes by, you may want to add fields
to the structure. In that case, you have the problem of what happens if an old version of your XOP receives
the new structure. The easiest way to deal with this is to define an ample amount of reserved space in the
very first incarnation of your structure. Set all of the reserved space to zero. In future versions you can use
some of the reserved space for new fields with the value zero representing the default value. Old versions
of your XOP will ignore the new fields. Also, it is a good idea to make the first field of your structure a
version field.

XOPs and Experiments
If you develop an elaborate XOP, you might want it to store settings or documents as part of an Igor exper-
iment. Igor provides help in doing this.

When the user creates a new experiment or opens an existing experiment, Igor sends you a NEW message.
You should reset your XOP settings to their default state. When the user opens an experiment, Igor sends
the LOADSETTINGS message. When the user saves an experiment, Igor sends the SAVESETTINGS mes-
sage.

Saving and Loading XOP Settings
If your XOP has settings that it wants to save in each experiment then you need to respond to the SAVE-
SETTINGS and LOADSETTINGS messages. See the XOPSaveSettings and XOPLoadSettings routines in
VDT2:VDT.cpp for an example of responding to these messages.

When the user saves an experiment, Igor sends your XOP the SAVESETTINGS message. If you want to save
settings in the experiment, you need to create a handle containing the settings. Return this handle to Igor
using the SetXOPResult routine. Once you’ve passed this handle back to Igor, it belongs to Igor, so don’t
access, modify, or delete it.

Your data is stored in a record of a packed experiment or in the miscellaneous file inside the home folder
of an unpacked experiment. You should not attempt to access the data directly since the method by which
it is stored could be changed in future versions of Igor.

When the user opens an experiment, after sending the NEW message, Igor sends the LOADSETTINGS mes-
sage. The primary argument to this message, which you access using the GetXOPItem call, is the handle to
the settings that you saved in response to the SAVESETTINGS message or NULL if you saved no settings
in the experiment being opened. If the handle is NULL, set your XOP to its default state. If it is not NULL,

Chapter 4 — Igor/XOP Interactions

66

use this handle to restore your XOP to its previous state. The handle belongs to Igor and Igor will dispose
it when you return. If you need to, make a copy of the handle.

Igor sends the LOADSETTINGS message during the experiment recreation process before any of the exper-
iment’s objects, such as waves, variables and data folders, have been created. If your settings contain a ref-
erence to an Igor object, you will not be able to access the object until the experiment recreation process is
complete. For example, if your XOP receives IDLE messages, you can access the object on the first IDLE
message after the LOADSETTINGS message. You can also use the CLEAR_MODIFIED message for this
purpose.

If your XOP is to run cross-platform, you must take special measures so that you can use settings stored on
Macintosh when running on Windows and vice-versa. Unless you take precautions, structures that you
declare on one platform may not have the same layout as structures that you declare on the other platform,
because of different structure alignment methods. There may also be differences in structure alignment
between 32-bit and 64-bit code on the same platform.

To make sure that your structures have the same layout on all platforms and in 32 bits versus 64 bits, you
need to tell the compiler how you want structures laid out. The sample XOPs on both Macintosh and
Windows use two-byte alignment for all structures that are stored on disk or exchanged with Igor, thus sat-
isfying this condition. This is done using the pack pragma. For details on this, see Structure Alignment on
page 208.

The data that you store will often be in the form of a structure. As time goes by, you may want to add fields
to the structure. In that case, you have the problem of what happens if an old version of your XOP receives
the new structure. The easiest way to deal with this is to define an ample amount of reserved space in very
first incarnation of your structure. Set all of the reserved space to zero. In future versions you can use some
of the reserved space for new fields with the value zero representing the default value. Old versions of your
XOP will ignore the new fields. Also, it is a good idea to make the first field of your structure a version field.

The IORecHandle
The IORecHandle is a handle to an IORec data structure which contains all of the information that Igor and
the XOP need to share. Each XOP has a global variable of type IORecHandle named XOPRecHandle which
is defined in XOPSupport.c. The value of XOPRecHandle is set when your XOP’s XOPMain function calls
XOPInit.

You should never deal with the IORecHandle directly since the routines in XOPSupport.c do this for you.

Resident and Transient XOPs
The XOPType field of the IORecHandle indicates to Igor the capabilities or mode of the XOP. You can set
this field using the SetXOPType XOPSupport routine but this is not necessary for most XOPs. The value of
XOPType will be some combination of the following bit-mask constants which are defined in XOP.h.

The XOPType field is inititialized by Igor to RESIDENT. This means that the XOP will stay in memory
indefinitely. All XOPs that add operations or functions to Igor must be resident. XOPs that perform ongoing
services in the background, such as data acquisition XOPs, must also be resident. XOPs that are called very
frequently should be resident to avoid the need to repeatedly load and unload them.

Constant What It Means

RESIDENT XOP wants to remain in memory indefinitely.

TRANSIENT XOP wants to be closed and discarded.

IDLES XOP wants to receive periodic IDLE messages.

ADDS_TARGET_WINDOWS XOP adds a target window type to Igor.

Chapter 4 — Igor/XOP Interactions

67

In the distant past, when memory was a very scarce commodity, it was advantageous to make an XOP tran-
sient if possible. Now, because of the greater availability of memory and because XOPs that add operations
or functions are not allowed to be transient, it is no longer recommended.

For the rare case where it is wise to make an XOP transient, here is how you do it. Once your operation has
done its work, call SetXOPType(TRANSIENT). Shortly thereafter Igor will call your XOP with the
CLEANUP message and will then purge your XOP from memory.

Receiving IDLE Messages For Background Processing
If you want your XOP to receive periodic IDLE messages you need to call

SetXOPType(RESIDENT | IDLES)

Data acquisition XOPs and other XOPs that provide ongoing background services should make this call.

See Handling Recursion on page 67 for a discussion of recursion issues involving IDLE messages.

Messages, Arguments and Results
The XOPEntry field in the IORec structure contains the address of the routine that Igor calls to pass a
message to your XOP. The XOPMain function in your XOP must set this field so that it points to your
XOPEntry routine by calling the SetXOPEntry XOPSupport routine. All subsequent calls from Igor, except
for direct operation and direct function calls, go through your XOPEntry routine.

Igor calls your XOPEntry routine, passing no direct parameters. Instead, Igor stores a message code and any
arguments that the message requires in the your XOP's IORecHandle. You call the GetXOPMessage XOP-
Support routine to determine the message that Igor is sending you. Then, if the message has arguments,
you call the GetXOPItem XOPSupport routine to get them. GetXOPMessage and GetXOPItem use the
global XOPRecHandle that was set when you called XOPInit from your XOPMain function. This scheme
was devised in the previous millenium to circumvent the problem of different compilers using different
conventions for passing parameter.

Sometimes your response to a message from Igor involves making a call back to Igor to ask it for data or a
service. For example, the FetchWave callback asks Igor for a handle to a wave with a particular name and
the XOPNotice callback asks Igor to display some text in the history area. When you make a callback, the
XOPSupport routines that implement the callback use the same fields in the IORecHandle that Igor used
when it passed the original message to you. For this reason, it is imperative that you get the message and
any arguments that Igor is sending to you before doing any callbacks.

NOTE: When Igor passes a message to you, you must get the message, using GetXOPMessage, and get
all of the arguments, using GetXOPItem, before doing any callbacks. The reason for this is that the
act of doing the callback overwrites the message and arguments that Igor is passing to you.

Some messages from Igor require that you return a result. Depending on the particular message, the result
may be an error code, a pointer or a handle. You return the result by calling SetXOPResult. This XOPSup-
port routine stores the result in the result field of the IORecHandle.

When you do a callback to Igor, the XOPSupport routines may also use the result field to pass a result from
Igor back to your XOP. For this reason, when you are returning a result to Igor, you must call SetXOPResult
after doing any callbacks to Igor.

Handling Recursion
This section describes some problems that can occur due to recursion and how to handle them. Simple
XOPs will never encounter these problems. XOPs with windows or other elaborate XOPs are more likely to
encounter them.

Chapter 4 — Igor/XOP Interactions

68

There are some circumstances in which Igor will send a message to your XOP while it is servicing a callback
from your XOP. This is recursion and is illustrated in this diagram:

In this example, Igor sends the MENUITEM message to your XOP telling it that the user has invoked one
of its menu items. As part of your XOP’s response, it does an XOPCommand callback to get Igor to do some-
thing. As a side effect, the XOPCommand callback causes Igor to update any windows that need updating.
If your XOP has a window and it needs updating, Igor will send your XOP the kXOPWindowMessageUp-
date message while it is still working on the MENUITEM message. You receive a message at a possibly
unexpected time, while you are in the middle of doing something else.

This problem can happen when you call the XOPCommand, XOPSilentCommand, SpinProcess and
DoUpdate XOPSupport routines and similar routines.

Although this example involves the MENUITEM and kXOPWindowMessageUpdate, the problem is more
general. Any time you do a callback to Igor, there is a chance that this will trigger Igor to send another
message to you.

For example, if your XOP does IDLE processing, it is possible to receive a second IDLE message from Igor
while you are processing the first. One way for this to happen is if, as part of your IDLE processing, you use
XOPCommand to call a user-defined function that calls Igor’s DoXOPIdle operation. DoXOPIdle sends
IDLE messages to any XOP that has requested to receive them. There may be other circumstances that lead
to Igor sending you an IDLE message while you are processing an earlier IDLE message.

Recursion such as this can cause problems unless you write your XOP to handle it. The problems occur if,
in servicing the kXOPWindowMessageUpdate message from Igor, your XOP clobbers information that it
needs to finish servicing the MENUITEM message or if your XOP is in a delicate state when it receives the
XOP message. Fortunately, it is possible to avoid this.

There are two things that you must do to handle recursion:

1. When Igor calls you with a message, get the message and all of its arguments before doing any callbacks
to Igor.

2. Don’t use global variables to store things that will change from message to message, including the mes-
sage and its arguments.

It turns out that most XOPs meet these requirements without any conscious effort on your part.

The reason for the first requirement is that Igor stores its message and arguments in your XOP’s IORecHan-
dle. In the example above, when Igor sends the UPDATE message, it clobbers the message and arguments
for the MENUITEM message. This is no problem if, as shown in the sample XOPs, you use GetXOPMes-
sage and GetXOPItem before doing any callbacks to Igor and if you store their results in local variables.

The second requirement is easily met if you just avoid using global variables as much as possible. This is
good programming practice anyhow for reasons of modularity and insulation of routines from other rou-
tines.

If you use XOPCommand or XOPSilentCommand as part of your initialization, you must be aware that you
may receive the kXOPWindowMessageUpdate message before your initialization is complete. It is also pos-
sible to receive the kXOPWindowMessageUpdate message at other times when your XOP is in the process
of changing its state and can not service the update normally.

1. MENUITEM Message

2. XOPCommand Callback

3. UPDATE Message

IGOR XOP

Chapter 4 — Igor/XOP Interactions

69

The solution for this is to use a flag to defer the true update until your XOP is ready to handle it. You can
do this as follows:

1. Set a flag when you enter your XOPEntry routine.

2. If your XOPEntry routine is called again, while the flag is set, short-circuit the message from Igor (de-
tails below) and return.

3. Clear the flag when doing a normal exit from your XOPEntry routine.

Similarly, to prevent recursion involving IDLE messages, you would set a global when you receive an IDLE
message and clear it when you finish IDLE processing. If you receive another IDLE message while the
global is set, you ignore the subsequent IDLE message.

Data Sharing
Igor and your XOP need to share data. For example, your XOP may need to access and manipulate Igor
waves, data folders, numeric variables, and string variables. Your external function or external operation
may receive numeric and string parameters from Igor and return numeric and string results to it. When you
make a callback to Igor, you may pass numeric and string parameters to Igor and receive numeric and string
results from it.

When dealing with Igor objects, such as waves, data folders and variables, you must always use XOPSup-
port routines specific to the particular type of object. These routines are listed under Routines for Accessing
Waves on page 253, Routines for Accessing Data Folders on page 300, and Routines for Accessing Vari-
ables on page 291.

Simple numeric parameters and results are represented using standard C data types such as int and double.

String parameters and results are represented using Handles. The Handle data type has its roots in the orig-
inal Macintosh operating system and is still used in XOP programming for backward compatibility.
Handles and the routines used to manage them are described under WM Memory XOPSupport Routines
on page 195.

Igor/XOP Compatibility Issues
If you are are targeting Igor Pro 8.00 or later, and you are creating a new XOP or updating an XOP already
updated using XOP Toolkit 7.01 or later, you should use XOP Toolkit 8. See Choosing Which XOP Toolkit
to Use on page 5 for details.

With XOP Toolkit 7, in most cases you can easily support Igor6 (6.20 or later) and Igor7 or later with one
XOP. An exception is if you make frequent use of non-ASCII text. In that case, you may be better off main-
taining separate Igor6 and Igor7 versions of your XOP - see Text Encodings on page 201 for details.

As Igor evolves, WaveMetrics makes every attempt to maintain backward compatibility so that your XOP
will continue to work with new versions of Igor. However, you still need to make sure that your XOP is
compatible with the version of Igor that is running.

There are two situations that need to be handled:

• The running Igor is too old to work with your XOP.
• Your XOP is too old to work with the running Igor.

To avoid compatibility problems you must do two things:

• Check the version of Igor that is running.
• Set the fields of your XOPI resource correctly.

Chapter 4 — Igor/XOP Interactions

70

Checking Igor’s Version
It is very easy to make sure that the running Igor is not too old. The XOPInit routine in XOPSupport.c, which
your XOP calls from its XOPMain function, sets a global variable, igorVersion, to the version number of the
currently running Igor. For version 6.20, igorVersion will be 620.

All XOPs compiled by XOP Toolkit 7 require Igor Pro 6.20 or later. Consequently the XOPMain function in
each XOP must contain code like this:

if (igorVersion < 620) { // Requires Igor Pro 6.20 or later.
SetXOPResult(IGOR_OBSOLETE);
return EXIT_FAILURE;

}

This test must be placed after your call to XOPInit and SetXOPEntry.

For example, if your XOP uses features added to Igor in version 7.00, you must restrict your XOP to running
with Igor Pro 7.00 or later. Put the following in your XOP’s XOPMain function:

if (igorVersion < 700) { // Requires Igor Pro 7.00 or later.
SetXOPResult(IGOR_OBSOLETE);
return EXIT_FAILURE;

}

IGOR_OBSOLETE is an Igor error code, defined in IgorErrors.h. Your XOP’s help file should specify what
version of Igor your XOP requires.

XOP Protocol Version
The first field of an XOP’s XOPI resource stores the “XOP protocol version” and is set to the value
XOP_VERSION. When Igor examines XOPs at launch time, it checks this field. If the value in the field is too
low or too high, Igor concludes that the XOP is not compatible and does not load the XOP. This provides a
way for Igor to make sure that your XOP is sufficiently compatible that it is OK to call its XOPMain function
where the XOP can do further version checking.

Igor 1.24 through 1.28 worked with XOPs whose XOP protocol version was 2 or 3.

Igor Pro 2 through Igor Pro 7 work with XOPs whose XOP protocol version is 2, 3 or 4. The current value
of XOP_VERSION is 4.

Chapter 5
I-5Adding Operations

Overview
An external operation, like a built-in Igor operation, is a routine that performs an action but has no explicit
return value. An operation has the following syntax:

<Operation Name> [optional flags] <parameter list>

The optional flags generally take one of the following forms:

Flags can consist of one to four letters (/A, /AB, /ABC or /ABCD).

<parameter list> consists of one or more parameters or keywords. Here are some common forms:

A parameter must be separated from the next with a comma.

Form Description

/F A flag by itself. Turns an operation feature on.

/F=f A flag with a parameter.

/F=(f1, f2, . . .) A flag with a set of numeric parameters.

/F=[f1, f2, . . .] A flag with a set of numeric indices.

/F={f1, f2, . . .} A flag with a list of parameters of possibly different types.

Form Examples

Numeric expression 3

sin(K0/3)

3 + sin(K0/3)

String expression "Hello"

date()

"Today is" + date()

Wave list wave0, root:wave1, :wave2

Keyword=Value baud=9600

extension=".dat"

dayOfWeek=Monday

size={3.4,5.2}

Chapter 5 — Adding Operations

72

When you add an operation to Igor, you first need to decide the name of the operation and what flags and
parameters it will have. If possible, choose a syntax similar to an existing Igor operation.

The main steps in creating an external operation are:

• Creating the XOPC resource which tells Igor what operations your XOP adds
• Creating an operation template which tells Igor the syntax of your operation
• Writing an ExecuteOperation function which implements the operation
• Writing the code that registers the operation with Igor when your XOP is loaded

Direct Method Versus CMD Message Method
Igor Pro 5 added a feature called “Operation Handler” which greatly simplified the process of creating an
external operation. In addition, Operation Handler made it possible to call external operations directly from
Igor user-defined functions. Prior to Igor Pro 5, to call an external operation from a user-defined function
you had to use a kludge involving Igor’s Execute operation.

Using Operation Handler, you specify an ExecuteOperation function that Igor calls directly. This is called
the direct method. Prior to Operation Handler, you added an external operation to Igor by responding to
the CMD message. This is called the CMD message method.

The CMD message method is still supported by Igor for the benefit of very old XOPs but is not otherwise
used and is not documented in this version of the XOP Toolkit manual.

The Sequence of Events
When Igor starts up, it searches the “Igor Extensions” or “Igor Extensions (64-bit)” folder and subfolders,
looking for XOP files. When it finds an XOP file, Igor looks for an XOPC 1100 resource in the file. This
resource, if it exists, specifies the names of the operations that the XOP adds to Igor.

When the user invokes one of these operations from Igor’s command line or from a procedure, if the XOP
was not already loaded, Igor loads the XOP into memory and calls its XOPMain function. The XOP’s
XOPMain function calls RegisterOperation, an XOPSupport routine through which the XOP tells Igor the
syntax of the operation and the address of the XOP function, called the “ExecuteOperation function”, which
Igor should call to implement it.

Next, Igor parses the operation parameters and uses them to fill a structure called the “runtime parameter
structure”. It then calls the XOP’s ExecuteOperation function, passing the structure to it.

The XOP carries out the operation and returns a result code to Igor. If the result code is non-zero, Igor dis-
plays an error dialog with an appropriate error message.

The sequence of events is similar when an external operation is called from a user-defined function except
that Igor loads the XOP when the function is compiled in order to determine the operation’s syntax.

The XOPC 1100 Resource
As an illustration, here is the XOPC resource for the SimpleLoadWave sample XOP.

// Macintosh, in the SimpleLoadWave.r file.
resource 'XOPC' (1100) { // Operations added by XOP.

{
"SimpleLoadWave", // Name of operation.
XOPOp + utilOp + compilableOp, // Operation category specifier.

}
};

// Windows, in the SimpleLoadWaveWinCustom.rc file.
1100 XOPC // Operations added by XOP.
BEGIN

Chapter 5 — Adding Operations

73

"SimpleLoadWave\0", // Name of operation.
XOPOp | utilOp | compilableOp, // Operation category specifier.

"\0" // NOTE: NULL required to terminate the resource.
END

An XOP can add multiple operations to Igor. In this case, there will be additional name/category pairs in
the XOPC resource.

The compilableOp flag tells Igor that this is an Operation Handler-compatible external operation. If this flag
is missing, Igor will deal with the external operation using the old CMD message method documented in
the XOP Toolkit 3.1 manual. Since the CMD message method is obsolete, all new operations use Operation
Handler and therefore the compilableOp flag must be present in the operation category specifier for each
operation.

Operation Categories
The operation category specifier is some combination of the symbols shown in the following table. The
operation category controls when the operation will appear in Igor’s Help Browser Command Help list. For
example, if the category includes the XOPOp and dataOp bits, it will appear in the list when All, External
or Wave Analysis are selected in the Operations popup menu.

The compilableOp bit does not affect the Help Browser. It tells Igor that the external operation is imple-
mented using Operation Handler.

For most XOPs the category will include the XOPOp and compilableOp bits plus at least one other bit,
depending on the functionality of the operation. If in doubt, use utilOp.

If the operation is thread-safe, the XOPC entry for it must include the threadSafeOp flag.

Symbol Bit Value Operation Help Dialog Category

displayOp 1 Other Windows

waveOp 2 About Waves

dataOp 4 Wave Analysis

cursorOp 8 Controls and Cursors

utilOp 16 Programming & Utilities

XOPOp 32 External

compilableOp 64 Operation Handler-compatible

graphOp 128 Graphs

tableOp 256 Tables

layoutOp 512 Layouts

allWinOp 1024 All Windows

drawOp 2048 Drawing

ioOp 4096 I/O

printOp 8192 Printing

statsOp 16384 Statistics

threadSafeOp 32768 Thread-safe operation

Chapter 5 — Adding Operations

74

Choose a Distinctive Operation Name
NOTE: The names of an XOP’s operations must not conflict with the present or future names of Igor’s

built-in operations or functions or with the present or future names of any other XOP’s
operations or functions. Don’t use a vague or general name. If you choose a name that clearly
describes the operation’s action, chances are that it will not conflict.

The name that you choose for your operation becomes unavailable for use as a wave name, window name
or global variable name. For example, if you name your operation Test then you can not use the name Test
for any Igor object. If you have existing experiments that use Test, they will be in conflict with your XOP.
Therefore, pick a name that is unlikely to be useful for any other purpose. This is especially important if you plan
to share your XOP with other Igor users since they are probably not prepared to deal with errors when they
open existing experiments.

Operation Handler
Operation Handler is a part of Igor that makes it easy to create an external operation that can be executed
from the command line, from a macro or from a user-defined function.

Command line and macro operations are interpreted while user-defined function operations are compiled
and then later executed. Operation Handler simplifies implementation of an operation in all of these modes.

Here is an outline of what you need to do to use Operation Handler:

1. Define a command template - a string that describes the syntax and parameters of your operation.

2. Define a runtime parameter structure which contains fields for your operation's parameters arranged
in the prescribed order.

3. Write a routine that registers your operation with Igor. This is called your RegisterOperation function.

4. Write a routine that executes your operation, given a pointer to your runtime parameter structure. This
is called your ExecuteOperation function.

5. Set the compilableOp bit in the XOPC resource for the operation.

6. If your operation is thread-safe, set the threadSafeOp bit in the XOPC resource for the operation.

7. When your XOP is initialized, call your RegisterOperation function to register your operation.

The good news is that Operation Handler can do steps 2 and 3 for you and can get you started on step 4.
This is described in detail under Creating Starter Code in the next section.

When your operation is invoked from the command line, from a macro or from a user-defined function,
Igor will process any supplied parameters and then call your ExecuteOperation function, passing the
runtime parameter structure to you. You will use the parameters to perform the operation.

Operation Handler handles all of the details of compiling your operation in a user-defined function and of
parsing parameters when your operation is invoked from the command line or from a macro.

Before we get into the details, we will take a short side trip to see how Operation Handler generates starter
code for you.

Creating Starter Code
Operation Handler can automatically generate starter code for you, including a complete definition of your
runtime parameter structure, a mostly complete definition of your RegisterOperation function, and a skel-
eton for your ExecuteOperation function. To get your starter code, you execute a ParseOperationTemplate
command from within Igor. ParseOperationTemplate takes your command template, generates the starter
code and stores it in the clipboard. Anything previously in the clipboard is overwritten. You can then paste
the starter code into your source file.

Chapter 5 — Adding Operations

75

The best way to use this feature is to create an experiment to store the template for your external operation
and create a function within the experiment to create the starter code. For an example, see the experiment
“SimpleLoadWave Template.pxp”. You should create your own template experiment by duplicating that
file or a template file from another sample XOP.

“SimpleLoadWave Template.pxp” contains the following code:

Menu "Macros"
"CopySimpleLoadWaveCode"

End

Function CopySimpleLoadWaveCode() // Copies starter code to the clipboard.
String cmdTemplate = "SimpleLoadWave"
cmdTemplate += " " + "/A[=name:ABaseName]"
cmdTemplate += " " + "/D"
cmdTemplate += " " + "/I"
cmdTemplate += " " + "/N[=name:NBaseName]"
cmdTemplate += " " + "/O"
cmdTemplate += " " + "/P=name:pathName"
cmdTemplate += " " + "/Q"
cmdTemplate += " " + "/W"
cmdTemplate += " " + "[string:fileParamStr]"

ParseOperationTemplate/T/S=1/C=6 cmdTemplate
End

CopySimpleLoadWaveCode copies the starter code to the clipboard. After executing it, or your version of
it, you can paste from the clipboard into your source file. The generated code includes the following:

• A comment showing the operation template
• A complete runtime parameter structure
• A skeleton ExecuteOperation function that you need to fill out
• A mostly complete RegisterOperation function which you need to call from your XOPMain function

Before reading further, you may want to open the “SimpleLoadWave Template.pxp” experiment in Igor
and execute the CopySimpleLoadWaveCode function. Then paste the generated code into a text file and
take a look at it. Don’t worry about the details at this point. They are explained in the following sections.

Operation Parameters
Parameters come in two main kinds: flags and main parameters. Main parameters come in two types:
simple main parameters and keyword=value main parameters.

SampleOp /F=3 /K={A,3.2} wave0, wave1
| | |

flags simple main parameters

SampleOp /F=3 /K={A,3.2} waves={wave0,wave1}
| |

flags keyword=value main parameter

Flags and keywords can specify a single value (/A=1) or a set of values (/A={1,2,3}). A flag and its values, a
keyword and its values, or a simple parameter are each called a "parameter group". Each individual value
associated with a flag, keyword or simple parameter is called a "parameter".

Igor Pro 6.30 and later support "qualified" keywords. For example:

ModifyGraph mode = 3 // Unqualified: Set all traces to markers mode
ModifyGraph mode(wave0) = 3 // Qualified: Set wave0 only to markers mode

Chapter 5 — Adding Operations

76

Here wave0 is the "qualifier". It narrows the scope of the mode keyword. Qualified keywords are discussed
in detail under Qualified Keywords on page 82.

Your command template can specify any number of flag groups. As for main parameters, it can specify any
number of keyword groups or simple groups, but you can not mix keyword and simple groups as main
parameters in the same operation.

When the user invokes the operation, flags and keywords may appear in any order. Simple parameters, if
they appear at all, must appear in the order specified in the command template.

Parameters can be required or optional. Optional parameters are described under Optional Parameters on
page 77. Required parameters must be supplied when the operation is compiled or interpreted. If required
parameters are missing, Operation Handler generates the appropriate error message.

The Command Template
You must provide a command template when you call RegisterOperation. A command template is a plain
text string which describes the operation’s syntax. The format of the command template is:

<OperationName> <flag descriptions> <main parameter descriptions>

For example:

SampleOp /O /P=name:pName /Y={number:n1,number:n2} key1={number:n3,string:s1}

This says that the operation name is SampleOp, and that it accepts three flag groups and one keyword
group. In this example, the parameter groups are:

/O // A flag group with no parameters
/P=name:pName // A flag group with one parameter
/Y={number:n1,number:n2} // A flag group with two parameters
keyword1={number:n3,string:s1} // A keyword group with two parameters

The /P flag takes one parameter of type name. The parameter's mnemonic name is pName. The mnemonic
name is used as a field name in the runtime parameter structure that is passed to your ExecuteOperation
when your operation is invoked.

Similarly, the /Y flag takes two parameters of type number with mnemonic names n1 and n2. The keyword1
keyword takes two parameters, a number whose mnemonic name is n3 and a string whose mnemonic name
is s1. In real life you would choose more meaningful mnemonic names.

The name of the operation must appear in the template without any leading spaces. A space is required
before the start of the main parameters. Otherwise spaces are optional and can be added anywhere.

Flag and keyword parameter groups can use parentheses, brackets or braces to enclose a list of parameters.
Usually braces are used. The leading parenthesis, bracket or brace is called the "prefix" character and the
trailing parenthesis, bracket or brace is called the "suffix" character.

Parameters within a group are separated by commas.

In flag parameters, there is no separator between one group and the next:

SampleOp /A=number:n1 /B=string:s1

In main parameters, one group is separated from the next by a comma:

SampleOp number:n1, string:s1
SampleOp key1=number:n1, key2=string:s1

There are two exceptions to this. The keywords 'as' and ‘vs’ can be used in place of comma between one
simple main parameter and the next. These are special cases that supports syntax like this:

Chapter 5 — Adding Operations

77

Save wave:w1 as string:s1

Display wave:yWave vs wave:xWave

These special cases do not work if the first parameter is numeric.

The ‘as’ or ‘vs’ keyword must appear both in the command template and in the actual command.

The ‘vs’ keyword was added in Igor Pro 6.30. If you use this feature, you must check Igor’s version as
described under Checking Igor’s Version on page 70.

The recognized parameter type keywords are:

number
string
name
doubleName // Requires Igor Pro 6.00 or later
wave
waveRange
varName
dataFolderRef // Requires Igor Pro 6.20 or later
dataFolderAndName
structure // Requires Igor Pro 5.03 or later

Most operations will use number, string, name and wave parameters. The other types are less common.

The name parameter type is used to get the name of an object that is not part of Igor’s data hierarchy, such
as a symbolic path name or a picture name.

The doubleName parameter type is used to allow the user to specify a compound function name that
includes a module name (e.g., MyModule#MyFunction) or a compound picture name (e.g., Proc-
Global#MyPicture).

The wave type is used to get a reference (handle) to an existing wave.

The waveRange parameter type is used to allow the user to specify an input wave or a subset of a 1D input
wave, for example wave1(x1,x2) or wave1[p1,p2]. Igor's CurveFit operation is an example of an operation
that supports this syntax.

The varName parameter type is used when a parameter must be the name of a local or global variable or
NVAR or SVAR. This applies when an operation wants to return a value via a variable whose name is spec-
ified as a parameter. For example, Igor's Open operation takes a refNum parameter which is the name of a
numeric variable, and stores a file reference number in the specified variable. VarName should not be used
for normal input parameters – use number instead.

The dataFolderRef type is used to get a reference (handle) to an existing data folder. Support for dataFolder-
Ref parameters was added in Igor Pro 6.20. If you use this feature, you must check Igor’s version as
described under Checking Igor’s Version on page 70.

The dataFolderAndName parameter type is typically used for operations that create waves. For example,
Igor's Duplicate operation takes a destWave parameter. Since the destination wave may not exist when
Duplicate runs, the destWave parameter can not be of type wave. Using a dataFolderAndName parameter
allows the user to reference an object that does not yet exist.

The structure parameter type would be used by advanced programmers to pass pointers to structures
between an Igor user-defined function and an XOP.

Optional Parameters
Optional parameters are designated using brackets. There are three types of optional parameters, as the fol-
lowing examples illustrate:

Chapter 5 — Adding Operations

78

// Optional flag or keyword parameters
SampleOp /A[=<parameters>]
SampleOp key1[=<parameters>]
SampleOp key1[(<parameters>)]=<parameters>

// Normal optional parameters
SampleOp /A={number:n1 [,string:s1, wave:w1]}
SampleOp key1={number:n1 [,string:s1, wave:w1]}
SampleOp number:n1 [,string:s1, wave:w1]

// Array-style optional parameters
SampleOp /A={number:n1, string[3]:s1}
SampleOp key1={number:n1, string[3]:s1}
SampleOp number:n1, string[3]:s1

Using the optional flag or keyword syntax allows the user to supply or omit the equals sign and subsequent
parameters after a flag or keyword. With a qualified keyword, it also allows the user to supply or omit the
qualifier.

Using the normal optional parameter syntax allows you to designate that some parameters are required and
the rest are optional. Do not nest sets of brackets for this purpose. Just one set is allowed.

Using the array-style optional parameter syntax allows you to specify that zero or more parameters of a par-
ticular type appear at the end of a parameter group or at the end of the main parameter list.

When creating a Save Wave type of operation, you can combine the 'as' keyword and the array-style
optional parameters like this:

Save wave[100]:waves as string

In this case at least one wave must be specified in the command before the ‘as’ keyword.

Similarly when creating a Display type of operation, you can combine the 'vs' keyword and the array-style
optional parameters like this:

Display wave[100]:waves vs wave:xWave // vs requires Igor Pro 6.30 or later

In this case at least one wave must be specified in the command before the ‘vs’ keyword.

The ‘vs’ keyword was added in Igor Pro 6.30. If you use this feature, you must check Igor’s version as
described under Checking Igor’s Version on page 70.

Other than the usages shown above, no other use of brackets to indicate optional parameters is allowed. For
example, the brackets here are not needed or allowed:

SampleOp [/A /B=number:n1 /C=string:s1] // WRONG

All flag and keyword groups are always optional. In other words, the user can always omit any flag or
keyword and this fact is not to be indicated by brackets in the template.

As explained below, you can do a runtime check to see if a particular parameter group was supplied when
the operation was invoked. You can also do a runtime check to see if an optional parameter within a group
was supplied.

When the user invokes the operation, simple main parameters must appear in the order given by the
command template if they appear at all. Flag groups and keyword groups can appear in any order.

If a flag or keyword group takes a prefix character (parenthesis, bracket, brace) and all of the parameters
except the first are optional, Operation Handler will allow the user to invoke the group without the prefix
character and with just one parameter. This allows you to change the syntax of a group from:

/A=value or keyword=value

Chapter 5 — Adding Operations

79

to

/A={value1[, value2]} or keyword={value1[, value2]}

and yet to maintain backward compatibility. Old Igor procedure code that omits the prefix character will
still work and new code that uses the prefix character will also work. At runtime, you test to see if the
second parameter was provided.

Mnemonic Names
The mnemonic names that you provide in the template are used to automatically generate the source code
for your runtime parameter structure. See Creating Starter Code on page 74. Each mnemonic name
becomes the name of a field in the structure. Therefore mnemonic names in a given template must be dis-
tinct.

The Runtime Parameter Structure
When you create your starter code, Operation Handler defines a structure into which it will store parame-
ters and other values at runtime. When your operation is invoked, Igor passes this structure to you.

The format of the runtime parameter structure is best understood through a simple example. Assume that
your command template is:

SampleOp /A=number:aNum /B={string:bStrH,name:bName} /C=wave:cWaveH
key1={number:key1Num,string:key1StrH},
key2={name:key2Name,wave:key2WaveH}

To generate starter code you would pass this template to the ParseOperationTemplate operation:

ParseOperationTemplate /C=6 /S=1 /T "<template here>"

If your operation is thread-safe, include the /TS flag in the ParseOperationTemplate command.

This stores starter code in the clipboard. The runtime parameter structure part of the starter code looks like
this:

#pragma pack(2) // Igor structures are 2-byte-aligned.

struct SampleOpRuntimeParams {
// Flag parameters.

// Parameters for /A flag group.
int AFlagEncountered;
double aNum;
int AFlagParamsSet[1];

// Parameters for /B flag group.
int BFlagEncountered;
Handle bStrH;
char bName[MAX_OBJ_NAME+1];
int BFlagParamsSet[2];

// Parameters for /C flag group.
int CFlagEncountered;
waveHndl cWaveH;
int CFlagParamsSet[1];

// Main parameters.

// Parameters for key1 keyword group.

Chapter 5 — Adding Operations

80

int key1Encountered;
double key1Num;
Handle key1StrH;
int key1ParamsSet[2];

// Parameters for key2 keyword group.
int key2Encountered;
char key2Name[MAX_OBJ_NAME+1];
waveHndl key2WaveH;
int key2ParamsSet[2];

// These are postamble fields that Igor sets.
int calledFromFunction; // 1 if called from a user-defined function.
int calledFromMacro; // 1 if called from a macro.

};
typedef struct SampleOpRuntimeParams SampleOpRuntimeParams;
typedef struct SampleOpRuntimeParams* SampleOpRuntimeParamsPtr;

#pragma pack() // Reset structure alignment.

It is critical that the structure's fields match the command template that you pass to RegisterOperation. If
you change the command template and fail to change the structure or vice versa, a crash will likely occur.
Therefore it is best to use ParseOperationTemplate to regenerate the code for the structure after changing
the command template as this guarantees that the template and structure will be consistent.

All structures passed between Igor and an XOP use two-byte packing. You must use the pragmas shown
above to guarantee this.

You can use the calledFromFunction and calledFromMacro fields to determine how your operation was
called, although this is usually not necessary.

For each parameter group, there will be a field to indicate if the group was encountered in the command,
followed by a field for each parameter in the group, followed by an array that indicates which parameters
in the group actually appeared in the command. In the example above, the BFlagEncountered will be non-
zero if the command included a /B flag. The bStrH and bName fields contain the values specified for the
parameters to the /B flag. The BParamsSet array contains an element for each parameter in the group and
tells you if the corresponding parameter was present in the command.

For each parameter there is a corresponding field of the appropriate type in the runtime parameter struc-
ture:

Parameter Type Field Type

number double

string Handle

name char[MAX_OBJ_NAME+1]

doubleName char[MAX_LONG_NAME+1]

wave waveHndl

waveRange WaveRange structure

varName char[MAX_OBJ_NAME+1]

dataFolderRef DataFolderHandle

dataFolderAndName DataFolderAndName structure

structure pointer to structure

Chapter 5 — Adding Operations

81

NOTE: At runtime, the handles corresponding to string, wave and dataFolderRef parameters can be
NULL as can the pointer corresponding to a structure parameter. This can happen if the caller
passes an uninitialized reference or a reference whose initialization failed to you. It can also
happen if the caller passes * for the parameter which signifies “default”. Your code must test for
NULL parameters as described in the following sections.

These parameter fields are arranged in groups that correspond to parameter groups.

In the example above, BParamsSet[0] tells you if the string parameter to /B was specified and BParamsSet[1]
tells you if the name parameter to /B was specified. In this example, all of the parameters in the group are
required, so, if BFlagEncountered is non-zero then BParamsSet[0] and BParamsSet[1] are guaranteed to also
be non-zero and you don't need to test them. You would test the BParamsSet array elements if the /B flag
had optional parameters. The number of elements in the ParamSet array must match the total number of
parameters in the parameter group, including any optional parameters.

If your command template includes a flag or keyword with no parameters then there will be just one field
for that group - the field that tells you if the flag or keyword was encountered in the command. For example,
if the command template includes

/A

this is represented in the runtime parameter structure as:

// Parameters for /A flag group.
int AFlagEncountered;

When used in a flag or keyword group, a set of array-style optional parameters is represented as an array
in the structure. For example, if the command template contains

key3={string:key3StrH,number[2]:key3Num}

this is represented in the runtime parameter structure as:

int key3Encountered;
Handle key3StrH;
double key3Num[2]; // Optional parameter.
int key3ParamsSet[3];

When used as a simple main parameter, a set of array-style optional parameters is also represented as an
array in the structure. For example, if the command template ends with

string:strH, number[2]:num

this is represented in the runtime parameter structure as:

// Parameters for simple main group #0.
int strHEncountered;
Handle strH;
int strHParamsSet[1];

// Parameters for simple main group #1.
int numEncountered;
double num[2]; // Optional parameter.
int numParamsSet[2];

At runtime, Operation Handler sets the "Encountered" field for each parameter group to sequential values
starting from 1, indicating the order in which parameter groups were encountered. For most operations this
order is immaterial and all you care about is if the field is zero or non-zero.

Each flag parameter group can be set only once by a single command. Operation Handler returns an error
if a command tries to use a given flag group twice.

Chapter 5 — Adding Operations

82

Igor Pro 6.30 and later allow a command to use the same keyword multiple times if all keyword parameters
are array-style parameters. Previous versions of Igor treated this as an error. If all keyword parameters are
array-style parameters with n elements, a single command can use the keyword up to n times. Operation
Handler generates an error if the keyword is used more than n times.

For keyword parameter groups, if the same keyword is used more than once, the Encountered field will
reflect the first occurrence of the keyword and there will be gaps in the sequence.

Qualified Keywords
Igor Pro 6.30 and later support "qualified" keywords. For example:
ModifyGraph mode = 3 // Unqualified: Set all traces to markers mode
ModifyGraph mode(wave0) = 3 // Qualified: Set wave0 only to markers mode

Here wave0 is the "qualifier". It narrows the scope of the mode keyword.

If you use this feature, you must check Igor’s version as described under Checking Igor’s Version on page
70.

The qualifier can consist of any number of parameters of any type. It appears in parentheses immediately
after the keyword. You can not use brackets or braces to introduce the qualifier.

The entire qualifier can be optional. If the qualifier consists of more than one parameter, all parameters after
the first can be optional.

In the general case, the template for a qualified keyword looks like this:
SampleOp keyword[(<qualifier1>[,<qualifier2>])] [= {<value1>[,<value2>]]

Any pair of brackets can be omitted in which case the corresponding element will be required rather than
optional.

The first left bracket and its matching right bracket make the entire qualifier optional.

The second left bracket and its matching right bracket make the second parameter of the qualifier optional.

The third left bracket and its matching right bracket make the entire righthand side optional.

The fourth left bracket and its matching right bracket make the second righthand parameter optional.

You can make the entire qualifier optional but the first parameter of the qualifier can not be optional:
// OK - Entire qualifier optional
SampleOp key1[(number:num1,number:num2)]

// OK - Second qualifier parameter optional
SampleOp key1[(number:num1[,number:num2])]

// Bad - First qualifier parameter can not be optional
SampleOp key1[([number:num1,number:num2])]

In addition to normal optional parameters, you can use array-style optional parameters:
ModifyGraph mode[(name[10]:traceName)] = {number[10]:modeCode}

If the qualifier is required and the only qualifier parameter is an array-style optional parameter, as in this
template:
SampleOp key1(number[3]:array) // Array-style optional parameter

then you an invoke the operation with no parameters:
SampleOp key1 // Bad - qualifier required
SampleOp key1() // OK - no parameters
SampleOp key1(1) // OK - one parameter

Chapter 5 — Adding Operations

83

SampleOp key1(1,2) // OK - two parameters
SampleOp key1(1,2,3) // OK - three parameters

When all keyword parameters are array-style optional parameters, there are two ways to specify the qual-
ifier when invoking the operation. Using the ModifyGraph example:
ModifyGraph mode(wave0,wave1) = {3,4} // Set mode for two traces
ModifyGraph mode(wave0)=3, mode(wave1)=4 // Set mode for two traces

Both commands return the following via the runtime parameter structure:
traceName[0]: wave0
traceName[1]: wave1
traceNameParamsSet[0]=1, traceNameParamsSet[1]=1
modeCode[0]: 3
modeCode[1]: 4
modeCodeParamsSet[0]=1, modeCodeParamsSet[1]=1

All other elements of traceNameParamSet and modeCodeParamSet will be 0.

It is permitted to use the same keyword twice in a single command only if all keyword parameters are
array-style parameters.

The user may invoke the operation like this:

ModifyGraph mode(wave0,wave1) = 3

In this case, two elements of the traceName array in the runtime parameter structure will be set but just one
element of the modeCode array will be set. You can choose to treat this as if the user executed:

ModifyGraph mode(wave0)=3, mode(wave1)=3

or you can consider this an error and return an error code. Your code should not assume that the same
number of parameters were passed for both array-style parameters.

String Parameters
Each string parameter is passed to you in a handle. The handle for a string parameter can be NULL. This
would happen if, for example, the user used an SVAR reference to pass the contents of a global string vari-
able to you and the global string variable did not exist at runtime. You must always test a string handle. If
it is NULL, do not use it. If the string is required for the operation, return the USING_NULL_STRVAR error
code.

IMPORTANT

Do not dispose string parameter handles. Also do not access string parameter handles after your
ExecuteOperation function returns. Igor will dispose them automatically when your
ExecuteOperation function returns.

If you want to retain string data for later use, you must make your own copy of the string handle, using the
WMHandToHand function or copy the string to a C string using GetCStringFromHandle. In this regard,
external operations and external functions work differently. In an external operation, you must not dispose
string parameter handles. In an external function, you must dispose them.

String handles are not C strings and are not null-terminated. Use WMGetHandleSize to determine the
number of characters in the string. You can use the GetCStringFromHandle XOPSupport routine to move
the characters into a C string. See Understand the Difference Between a String in a Handle and a C String
on page 233 for further discussion.

Chapter 5 — Adding Operations

84

Name Parameters
Igor names consist of MAX_OBJ_NAME characters. An example of a name parameter is the name of an Igor
symbolic path in a /P=pathName flag. The user can specify a name parameter as $"", in which case the cor-
responding name field of the runtime parameter structure will be an empty string. Usually, an operation
treats this the same as if the parameter were not specified in the command.

Double Name Parameters
Double names are rarely used so most XOPs will not need to use this type of parameter.

Igor double names are used for combining a module name and a function or proc pict name in one com-
pound name, for example, MyModule#MyProcPict. They consist of up to MAX_LONG_NAME characters.
The user can specify a double name parameter as $"", in which case the corresponding name field of the
runtime parameter structure will be an empty string. Usually, an operation treats this the same as if the
parameter were not specified in the command.

When running in an independent module, if a simple name is specified for a doubleName parameter, Igor
automatically prepends the independent module name. For example, if a function is running in an indepen-
dent module named MyIndependentModule and it executes:

SampleOp functionName=MyFunction

you receive "MyIndependentModule#MyFunction" as the parameter.

Wave Parameters
Waves are passed to you as wave handles of type waveHndl. Wave handles always belong to Igor. You
must never dispose or directly modify a wave handle. You operate on a wave by passing its handle to an
XOPSupport routine.

The handle for a wave parameter can be NULL. This would happen, for example, if the user passed an
uninitialized wave reference (WAVE) or a wave reference whose initialization failed to your operation. You
must always test a wave handle. If it is NULL, do not use it. If the wave is required for the operation, return
a NULL_WAVE_OP error code.

The user can use * in place of a wave name when a wave parameter is expected. This will result in a null
wave handle in the runtime parameter structure. If the wave is required for the operation, return a NOWAV
error code. Otherwise, interpret this to mean that the user wants default behavior.

You must make sure that you can handle the data type of the wave. For example, if your operation requires
a numeric wave, you must return an error if passed a text wave. Also check the numeric type and dimen-
sionality if appropriate. See the WaveType and MDGetWaveDimensions functions.

Wave Range Parameters
Wave range parameters allow the user to specify a range of a 1D wave. They are passed to you as
WaveRange structures. This structure is defined in IgorXOP.h:

struct WaveRange {
waveHndl waveH;
double startCoord; // Start point number or x value

 double endCoord; // End point number or x value
 int rangeSpecified; // 1 if user specified range.

int isPoint; // 0: X values. 1: Points.
};

Chapter 5 — Adding Operations

85

The waveH field can be NULL. If it is, you should return NULL_WAVE_OP, unless you want to allow a
null wave. As with the wave parameter, the user can use * in place of the wave name in which case the
waveH field will be NULL. Also as with the wave parameter, you must check the wave's type to make sure
it is a type you can handle. See WaveType.

waveH is treated as 1D regardless of its actual dimensionality.

If the rangeSpecified field is zero, then the command did not specify a range of the wave. In this case, the
isPoint field will be non-zero, the startCoord field will contain zero and the endCoord field will contain the
number of the last point in the wave.

If the rangeSpecified field is non-zero then the command did specify a range. If isPoint is non-zero then
startCoord and endCoord will contain point numbers. If isPoint is zero then startCoord and endCoord will
contain X values.

Regardless of how the command was specified, you can use the CalcWaveRange routine to find the point
numbers of the range of interest like this. This example assumes that the runtime parameter structure con-
tains a WaveRange field named source.

IndexInt startPoint, endPoint;
int direction;

startPoint = p->source.startCoord;
endPoint = p->source.endCoord;
direction = 1;
if (p->source.rangeSpecified) {

WaveRangeRec wr;

MemClear(&wr,sizeof(WaveRangeRec));
wr.x1 = p->source.startCoord;
wr.x2 = p->source.endCoord;
wr.rangeMode = 3;
wr.isBracket = p->source.isPoint;
wr.gotRange = 1;
wr.waveHandle = p->source.waveH;
wr.minPoints = 2;
if (err = CalcWaveRange(&wr))

return err;

startPoint = wr.p1;
endPoint = wr.p2;
direction = wr.wasBackwards ? -1:1;

}

VarName Parameters
A varName parameter is used in rare situations when the parameter to an operation is the name of a
numeric or string variable into which the operation is to store a value. For example, an operation that opens
a file can return a file reference number via a varName parameter, as Igor’s Open operation does.

When invoking an operation with a varName parameter, the user can pass the name of a global variable,
the name of a local variable, or, when executing from a user-defined function, the name of an NVAR or
SVAR.

When called from the command line or from a macro, the varName field in the runtime parameter structure
contains an actual variable name. When called from a user-defined function, it actually contains binary data
that Igor uses to locate the local variable, NVAR or SVAR into which data is to be stored. Consequently you
should never use the value of the varName field except to pass it to XOPSupport routines designed to
handle it as described in this section.

Chapter 5 — Adding Operations

86

At runtime you can determine the type of the variable by calling VarNameToDataType which returns
numeric (NT_FP64), complex numeric (NT_FP64 | NT_CMPLX) or text (0).

To store a value in a variable referenced by a varName parameter, you must use the StoreNumericDataUs-
ingVarName or StoreStringDataUsingVarName XOPSupport functions. These call back to Igor which
knows how to store into global variables, local variables, NVARs and SVARs.

In Igor Pro 6.10, the ability to retrieve values from numeric and string variables was added through the
FetchNumericDataUsingVarName and FetchStringDataUsingVarName XOPSupport functions. These
can be used to implement external operation parameters that function both as inputs and outputs. For
example, you would use FetchNumericDataUsingVarName to retrieve the initial value of a numeric
parameter and StoreNumericDataUsingVarName to set its final value. For clarity however, in general it is
better to keep inputs and outputs separate.

Using a VarName parameter allows you to create a parameter whose type is not determined until runtime.
The user can pass either a numeric variable or a global variable for the parameter. However this technique
is obscure and should be avoided if at all possible.

You can call VarNameToDataType to determine which type was passed. This type flexibility is unique to
varName parameters and may be of use in rare cases.

VarName should not be used for normal input parameters – use number instead.

Data Folder Reference Parameters
Support for data folder reference parameters was added in Igor Pro 6.20. If you use this feature, you must
check Igor’s version as described under Checking Igor’s Version on page 70.

Data folder references are passed to you as data folder handles of type DataFolderHandle. The calling code
can pass a literal data folder path (root:MyFolder), a $ followed by a string containing a data folder path, or
a data folder reference variable (DFREF).

Data folder handles always belong to Igor. You must never dispose or directly modify a data folder handle.
You operate on a data folder by passing its handle to an XOPSupport routine.

The handle for a data folder reference parameter can be NULL. This would happen, for example if the user
passed an uninitialized data folder reference (DFREF) or a data folder reference whose initialization failed
to your operation. You must always test a data folder handle. If it is NULL, do not use it. If the data folder
reference is required for the operation, return a NULL_DATAFOLDER_OP error code.

The user can use * in place of a data folder reference when a data folder parameter is expected. This will
result in a null data folder handle in the runtime parameter structure. If the data folder is required for the
operation, return a NULL_DATAFOLDER_OP error code. Otherwise, interpret this to mean that the user
wants default behavior.

DataFolderAndName Parameters
A dataFolderAndName parameter is used when you need to get the name and location of a wave that may
not yet exist. For example, the Duplicate operation takes a source wave and a destination wave name. The
destination wave may or may not already exist when Duplicate is invoked.

A dataFolderAndName parameter can also be used to get the name of an existing data folder or the name
of a data folder to be created.

The runtime parameter structure contains a DataFolderAndName structure for a corresponding dataFol-
derAndName parameter. The DataFolderAndName structure is defined in IgorXOP.h:

struct DataFolderAndName {
DataFolderHandle dfH;

Chapter 5 — Adding Operations

87

char name[MAX_OBJ_NAME+1];
};

Typically the dfH and name fields of this structure would be passed to GetOperationDestWave to create a
destination wave as shown in the example below.

Destination Waves and Wave References
The DataFolderAndName type parameter is often used to allow the user to specify the name of the opera-
tion's destination wave through a /DEST=<destwave> flag. Traditionally, when an operation that allows
you to specify a destination wave is compiled into a user-defined function, if the user uses a simple name
for the destination wave, the Igor compiler automatically creates a wave reference in the function for that
wave. For example, if you write this:

Duplicate wave0, wave1

the Igor compiler automatically creates a wave reference for wave1, as if you wrote:

Duplicate wave0, wave1
Wave wave1

This automatic local wave reference is created only if the user uses a simple name, not if the user uses
$"<string>", a partial data folder path or a full data folder path.

The DataFolderAndName type parameter allows you to do the same thing, but you have to use special
syntax when writing the operation template. Consider this operation template:

SampleOp DataFolderAndName:{dest,real}

This template declares a DataFolderAndName parameter with a mnemonic name "dest" which, when com-
piled into a user-defined function, automatically creates a wave reference for the destination wave, if the
user uses a simple name. The "real" keyword specifies the type of the destination wave. Other options are
"complex", "text", “wave” and “dfref”. “wave” and “dfref” require Igor Pro 6.22 or later.

If a wave reference for the specified destination already exists when the operation is compiled, it will not
attempt to create a new wave reference. This allows the Igor programmer to indicate the actual type of the
destination wave for those operations, such as FFT, in which the destination wave can be of different types
depending on operation parameters.

See the documentation for Igor's DWT operation for an example of how to document this automatic cre-
ation of wave references.

If your operation can create a destination wave of different types depending on circumstances, you should
pick the most likely type. See the documentation for Igor's FFT operation for an example of how to docu-
ment this behavior.

Using the special syntax shown above causes Igor to create an automatic wave reference under the condi-
tions explained above. However, the automatic wave reference will be NULL until you set it by calling Set-
OperationWaveRef as shown in the example below.

The SetOperationWaveRef callback sets the automatically created wave reference to refer to a specific wave,
namely the wave that you created in response to the DataFolderAndName parameter. You must call it after
successfully creating the destination wave.

SetOperationWaveRef does nothing if no automatic wave reference exists.

DataFolderAndName Destination Wave Example
This section presents an example of an operation that has a destination wave parameter. It uses the GetOp-
erationDestWave callback to do most of the work. GetOperationDestWave handles all of the following:

Chapter 5 — Adding Operations

88

• Recognizing a wave reference passed as the destination wave (with Igor Pro 6.20 or later)
• Creating a new wave if the destination wave does not already exist
• Overwriting or changing the dimensions and data type of the destination wave if it already exists
In addition, the SetOperationWaveRef call in the sample code below sets the automatic output wave ref-
erence, if appropriate, when called from a user-defined function.

The example operation is defined by this Operation Handler template:

SampleOp /DEST=DataFolderAndName:{dest,real}

This results in an operation runtime parameter structure containing:

int DESTFlagEncountered;
DataFolderAndName dest;
int DESTFlagParamsSet[1];

In the following code, p is a pointer to the operation runtime parameter structure.

waveHndl destWaveH; // Destination wave handle.
int destWaveRefIdentifier; // Identifies a wave reference
char destWaveName[MAX_OBJ_NAME+1];
DataFolderHandle dfH;
int dataType;
CountInt dimensionSizes[MAX_DIMENSIONS+1];
int options;
int err;

destWaveH = NULL;
destWaveRefIdentifier = 0;

strcpy(destWaveName, "W_SampleOp"); // Default dest wave name
dfH = NULL; // Default is current data folder

dataType = NT_FP64;
MemClear(dimensionSizes, sizeof(dimensionSizes));
dimensionSizes[ROWS] = 100;

if (p->DESTFlagEncountered) {
strcpy(destWaveName, p->dest.name);
dfH = p->dest.dfH;
// If a wave reference was used, p->destParamsSet[0] contains
// information that GetOperationDestWave uses to find it.
destWaveRefIdentifier = p->DESTFlagParamsSet[0];

}

options = kOpDestWaveOverwriteOK | kOpDestWaveOverwriteExistingWave;

err = GetOperationDestWave(dfH, destWaveName, destWaveRefIdentifier,
options, dimensionSizes, dataType, &destWaveH, NULL);

if (err != 0)
return err;

<Store output data in dest wave using destWaveH>
WaveHandleModified(destWaveH);

// Set wave reference to refer to destination wave.
if (destWaveRefIdentifier != 0)

SetOperationWaveRef(tp, destWaveH, destWaveRefIdentifier);

The GetOperationDestWave callback creates the destination wave if it does not exist and overwrites it if it
does.

Chapter 5 — Adding Operations

89

The GetOperationDestWave callback was added in Igor Pro 6.20 and XOP Toolkit 5.09. When running with
an older version of Igor, the XOP Toolkit emulates the behavior of GetOperationDestWave so you can call
it with any version of Igor. However, the emulation can not honor wave references passed as the destination
wave parameter. Consequently when running with an old version of Igor, this user-defined function code:

Wave/Z w = root:MyDataFolder:jack
SampleOp /DEST=w

will write to a wave named w in the current data folder, not root:MyDataFolder:jack.

For further details, see GetOperationDestWave on page 249.

DataFolderAndName Data Folder Example
You can also use a DataFolderAndName parameter to get the name of a data folder rather than a wave. In
this case, the dfH field of the DataFolderAndName structure will contain the parent data folder handle and
the name field will contain the name of the child data folder which may or may not exist.

The root data folder is a special case. If the root is specified in the command then the dfH field will contain
the root data folder handle and the name field will be empty.

Here is code that gets a handle for an existing data folder and takes the special case into account:

dataFolderH = p->df.dfH;
if (dataFolderH == NULL)

return EXPECT_DATAFOLDER_NAME;
if (p->df.name[0] != 0) {

if (err = GetNamedDataFolder(dataFolderH, p->df.name, &dataFolderH))
return err;

}

Structure Parameters
An external operation can take a structure as a parameter. This is a technique for advanced programmers.

Structure parameters are passed as pointers to structures. These pointers always belong to Igor. You must
never dispose or resize a memory block using a structure pointer but you may read and write its fields.

Igor structures are always two-byte-aligned. As the example below shows, you must use the pack pragma
to make sure that your C structure is also two-byte-aligned. See Structure Alignment on page 208 for
details on structure alignment.

An instance of an Igor structure can be created only in a user-defined function and exists only while that
function is running. Therefore, when a structure must be passed to an external operation, the operation
must be called from a user-defined function, not from the command line or from a macro. An external oper-
ation that has an optional structure parameter can be called from the command line or from a macro if the
optional structure parameter is not used.

The pointer for a structure parameter can be NULL. This would happen if the user supplies * as the param-
eter or in the event of an internal error in Igor. Therefore you must always test a structure parameter to
make sure it is non-NULL before using it.

If you receive a NULL structure pointer as a parameter and the structure is required for the operation,
return an EXPECTED_STRUCT error code. Otherwise, interpret this to mean that the user wants default
behavior.

Here is an example of a command template that specifies a structure parameter:

DemoStructOp structure:{sp,DemoStruct}

In this example, “structure” is the parameter type, “sp” is the parameter name and “DemoStruct” is the
name of the type of structure expected. When Igor compiles a call to your operation, it will require that the

Chapter 5 — Adding Operations

90

structure passed as a parameter be of the specified type. Thus, users of this operation are forced to declare
a structure type named DemoStruct. Choose a structure type name that is distinctive and unlikely to be
used for any other purpose.

Although Igor requires that the structure passed to your operation is of the specified type, it does not guar-
antee that the programmer calling your operation has defined the structure properly. If the structure defi-
nition used by the Igor procedure programmer is inconsistent with the structure defined in your C code, a
crash is likely to occur. You can increase the likelihood that the structure will be correct by providing an
Igor procedure file that defines it. It is also a good idea to include a version field in your structure as illus-
trated in the next section.

In very rare cases, you might want to define an operation that takes any type of structure. For example, in
implementing a sophisticated curve fitting algorithm, you might define a structure to be passed to your
operation that starts with certain fields and contains other user-defined fields afterwards. Your operation
accesses the known fields and passes the entire structure to a user-defined function which accesses the
whole structure. If you specify void as the structure type (e.g., "void" instead of "DemoStruct"), Igor will
allow the user to pass any type of structure to your operation.

In some cases you might need to know the total size of a structure passed to your operation, for example,
if your operation writes a user-defined structure to a file. For this, use the extended form of the structure
parameter, described under Extended Structure Parameters on page 92.

Wave Handles In Structures
Usually a waveHndl field in a structure is used to pass a wave reference from Igor to your XOP. However,
it can also be used to pass a wave reference from your XOP to Igor.

In Igor Pro 6.20 or later, if you store a wave handle in a waveHndl field of a structure you need to inform
Igor by calling HoldWave on the structure field. By doing this, you maintain the integrity of Igor’s internal
wave reference count. For details see Wave Reference Counting on page 131.

Data Folder Handles In Structures
Usually a DataFolderHandle field in a structure is used to pass a data folder reference from Igor to your
XOP. However, it can also be used to pass a data folder reference from your XOP to Igor.

In Igor Pro 6.20 or later, if you store a data folder handle in a DataFolderHandle field of a structure you need
to inform Igor by calling HoldDataFolder on the structure field. By doing this, you maintain the integrity
of Igor’s internal data folder reference count. For details see Data Folder Reference Counting on page 143.

External Operation Structure Parameter Example
Here is Igor procedure code which passes a structure to an external operation.

Constant kDemoStructVersion = 1000

Structure DemoStruct // Structure of parameter to DemoStructOp.
uint32 version // Structure version.
double num
String str

EndStructure

Function TestDemoStructOp()
String tmp

STRUCT DemoStruct s

s.version = kDemoStructVersion
s.num = 1
s.str = "Testing structure parameter"

Chapter 5 — Adding Operations

91

DemoStructOp s
End

Here is C code that implements the external operation. Most of this code would be automatically generated
by Operation Handler when you execute this command within Igor:

ParseOperationTemplate/T/S=1/C=6 "DemoStructOp structure:{sp,DemoStruct}"

#pragma pack(2) // Igor structures are 2-byte-aligned.
#define kDemoStructVersion 1000 // 1000 means 1.000.
struct DemoStruct {

UInt32 version; // Structure version.
double num;
Handle strH;

};
typedef struct DemoStruct DemoStruct;
#pragma pack() // Reset structure alignment.

// Operation template: DemoStructOp structure:sp

// Runtime param structure for DemoStructOp operation.
#pragma pack(2) // Igor structures are 2-byte-aligned.
struct DemoStructOpRuntimeParams {

// Parameters for simple main group #0.
int spEncountered;
DemoStruct* sp;
int spParamsSet[1];

// These are postamble fields that Igor sets.
int calledFromFunction;
int calledFromMacro;

};
typedef struct DemoStructOpRuntimeParams DemoStructOpRuntimeParams;
typedef struct DemoStructOpRuntimeParams* DemoStructOpRuntimeParamsPtr;
#pragma pack() // Reset structure alignment.

extern "C" int
ExecuteDemoStructOp(DemoStructOpRuntimeParamsPtr p)
{

DemoStruct* sp;
char buf[256];
char str[128];
int err = 0;

sp = NULL;

// Flag parameters.

if (p->spEncountered)
sp = p->sp;

if (sp == NULL) {
strcpy(buf, "sp is NULL" CR_STR);

}
else {

if (sp->version != kDemoStructVersion) {
err = INCOMPATIBLE_STRUCT_VERSION;
goto done;

}
if (err = GetCStringFromHandle(sp->strH, str, sizeof(str)))

goto done;

Chapter 5 — Adding Operations

92

sprintf(buf, "sp->num = %g, sp->strH = \"%s\"", sp->num, str);
}
XOPNotice(buf);

done:
return err;

}

int
RegisterDemoStructOp(void)
{

char* cmdTemplate;
char* runtimeNumVarList;
char* runtimeStrVarList;

cmdTemplate = "DemoStructOp structure:{sp,DemoStruct}";
runtimeNumVarList = "";
runtimeStrVarList = "";
return RegisterOperation(cmdTemplate, runtimeNumVarList,

runtimeStrVarList, sizeof(DemoStructOpRuntimeParams),
(void*)ExecuteDemoStructOp, 0);

}

The Igor procedure code must declare a DemoStruct structure and the C code must declare a matching C
structure. The use of the version field is a convention for preventing a crash if the procedure version of the
structure and the C version get out-of-sync.

The Igor code declares the DemoStruct structure. It then creates and initializes an instance of it, named s. It
then passes s (actually a pointer to s) to the DemoStructOp external operation.

The DemoStructOp external operation first checks that a valid pointer has been passed. It then checks that
the version of the structure is compatible before accessing its fields. It can read, write or read and write any
of the fields.

An advanced programmer may want to use a more flexible versioning scheme by allocating reserved fields
in the structure and then using the version field to handle whatever version of the structure was passed
from the Igor procedure. If possible you should simplify your life by using the simplified versioning tech-
nique shown above. However, if you decide to save structure data to disk and later read it back, you will
have to deal with more complex versioning issues, as well as cross-platform byte-order issues. You will also
have to deal with versioning issues if your XOP will be used by many people and you can not force them
to update their Igor procedure code when you update your XOP.

For further important details see Using Igor Structures as Parameters on page 209.

Extended Structure Parameters
An extended form of the structure parameter allows you to determine the size and structure type name of
the structure passed to the XOP. The main reason for adding this feature was to make it possible to create
an operation that could accept any type of structure and write its contents to a file. This requires that we
know the size of the structure.

The extended form of the template is:

DemoStructOp structure:{s,void,1}

Here s is the mnemonic name for a structure parameter, void signifies that your operation accepts any type
of structure, and 1 signifies that you want this to be an extended structure parameter.

When this form is used, the runtime parameter structure passed to the your operation’s Execute routine
contains a field of type IgorStructInfo instead of a pointer to the actual parameter. The IgorStructInfo struc-

Chapter 5 — Adding Operations

93

ture contains fields that indicate the size of the structure parameter, the structure type name and a pointer
to the structure parameter itself.

You should use the extended form if you want the added robustness provided by comparing the size and
type name of the structure parameter passed to you to the expected size and type name. Another reason is
to accept a structure parameter of any type, for example so that you can write it to a file.

If the user supplies * as the parameter for an extended form structure, the structSize field of the IgorStruct-
Info structure will be zero and the structPtr field will be NULL. You must test for this.

Extended Structure Parameter Example
The code to implement the extended form structure parameter is the same as shown above except for the
differences listed here.

The command template is slightly different:

ParseOperationTemplate/T/S=1/C=6 "DemoStructOp structure:{s,DemoStruct,1}"

The runtime parameter structure will have an IgorStructInfo field:

struct DemoStructOpRuntimeParams {
// Parameters for simple main group #0.
int sEncountered;
IgorStructInfo s; // Contains info about the structure parameter
int sParamsSet[1];

The Execute operation will use the fields of the IgorInfoStruct:

extern "C" int
ExecuteDemoStructOp(DemoStructOpRuntimeParamsPtr p)
{

IgorStructInfo* isip;
DemoStruct* sp;
char buf[256];
char str[128];
int err = 0;

sp = NULL;

// Flag parameters.

if (p->sEncountered) {
isip = &p->s; // Point to IgorStructInfo field.
if (isip->structSize > 0) { // 0 means user passed * for param.

if (isip->structSize = sizeof(DemoStruct)) {
err = OH_BAD_STRUCT_SIZE;
goto done;

}

if (CmpStr(isip->structTypeName,"DemoStruct") != 0)) {
err = OH_BAD_STRUCT_TYPE_NAME;
goto done;

}

sp = p->sp;
}

}

. . . // The rest is the same as the previous example.

Chapter 5 — Adding Operations

94

In this case there is no point to testing the structTypeName field since we specified that only structures of
type DemoStruct could be passed to our operation. The structTypeName field may be of use in cases where
any type of structure can be passed as the parameter.

Runtime Output Variables
Some operations create numeric and/or string variables to pass information back to the calling routine. For
example, the CurveFit operation creates V_chisq and V_Pr, among others. When an operation is called from
a user-defined function the operation creates local variables (unless the obsolete rtGlobals=0 mode is in
effect). When invoked from macros, it creates local variables. When invoked from the command line, it
creates global variables.

If you want to create runtime output numeric variables, you need to pass a semicolon-separated list of vari-
able names as the runtimeNumVarList parameter to RegisterOperation. Numeric variable names must be
legal standard Igor names and must begin with "V_". When your operation executes, you must call SetOp-
erationNumVar to store a value in the variable. SetOperationNumVar takes care of determining if a local
or global variable is set.

Creating a runtime output string variable is the same except that you use the runtimeStrVarList parameter
to RegisterOperation, string variable names must start with "S_", and you use SetOperationStrVar to store
a value in the variable.

File-loader operations should set the standard output variables V_flag, S_fileName, S_path and
S_waveNames. These output variables must be declared when calling RegisterOperation. For example, the
RegisterOperation function for SimpleLoadWave contains these statements:

runtimeNumVarList = "V_flag;";
runtimeStrVarList = "S_path;S_fileName;S_waveNames;";

You can set the file-loader output variables by calling SetFileLoaderOutputVariables from your Execute-
Operation function.

Operations should not use the value of variables as inputs. All inputs should be specified through operation
parameters. There is no provision for an operation to test the value of a local variable at runtime.

Starter Code Details
As explained on page 74, the starter code that Operation Handler generates for you includes the following:

• A comment showing the operation template
• A complete runtime parameter structure
• A skeleton ExecuteOperation function that you need to fill out
• A mostly complete RegisterOperation function which you need to call from your XOPMain function
The ExecuteOperation should be declared extern "C" if you are writing a C++ XOP and static if you
are writing a C XOP. For example:

extern "C" int // C++ - Generated by ParseOperationTemplate /C=6
ExecuteXOP1(XOP1RuntimeParamsPtr p)

static int // C - Generated by ParseOperationTemplate /C=2
ExecuteXOP1(XOP1RuntimeParamsPtr p)

extern "C" is required in C++ code because all calls between Igor and the XOP use C calling conventions.
See C++ Code Called From C Code on page 217 for details. Although it is not technically correct, using
static in a C++ XOP also works with all of the C++ compilers that we have seen.

Chapter 5 — Adding Operations

95

When filling out the ExecuteOperation function, remember that you need to test string, wave and data
folder reference handle parameters to make sure they are not null. It is a good idea to examine a completed
ExecuteOperation function from a sample WaveMetrics XOP to see how NULL handles are handled.

The RegisterOperation function call generated by ParseOperationTemplate is complete except that you
may need to add runtime numeric or string output variables as described under Runtime Output Vari-
ables on page 94.

For a more elaborate example which generates templates for multiple external operations, see “VDT2 Tem-
plates.pxp”.

In the unlikely event that your command template exceeds 2048 characters, you will get an error in Visual
C++. This is because of a line length limitation in Visual C++. You will need to break your command tem-
plate up. See the NIGIPB2:NI488.cpp file for an example.

Updating Starter Code
If you change your operation syntax, for example to add a new parameter, you must regenerate your starter
code and transfer the new code to your source file. If you have started to fill out your ExecuteOperation
function, you can not merely overwrite your old starter code. You need to preserve any additions you have
made. Here is the recommended way to do this:

1. Open your template experiment and add the new parameter to your function.

2. Run your function to regenerate the starter code.

3. In your development system, paste the new starter code into a new window.

4. Copy the template comment and the runtime parameter structure, which you presumably have not
modified, in their entirety from the new starter code and paste into your source file, overwriting the
corresponding old code.

5. Copy the RegisterOperation from the new starter code and paste into your source file, overwriting the
old code, except that, if you have specified runtime output variables, you must preserve those state-
ments.

6. Find the section of the new ExecuteOperation function that deals with the new parameter and add that
section to your old ExecuteOperation function.

Thread-Safe External Operations
Multithreading makes it possible to utilize more than one processor on a multi-processor computer. Even
on a single processor machine it allows multiple processes to run independent of one another.

As of Igor Pro 6.02, Igor supports thread-safe external operations with certain restrictions discussed below.
This section tells you how to convert a normal external operation to a thread-safe operation using the XOP1
XOP as an example.

NOTE: Support for thread-safe external operations was greatly improved in Igor Pro 6.20. If your XOP
implements thread-safe external operations, you can greatly simplify matters by requiring Igor
Pro 6.20 or later.

Writing thread-safe code is trickier than writing regular code. For example, your operation can not write to
a global variable because two instances of your operation might write different values to the global and
interfere with each other's operation. Many web sites explain what "thread-safe" means and what you can
and can not do in thread-safe code.

Restrictions on Thread-Safe External Operations With Older Igor Versions
In addition to the inherent restrictions on thread-safe code, there is another major restriction for thread-safe
external operations when running with a version of Igor prior to 6.20: they can not do any callbacks to Igor.

Chapter 5 — Adding Operations

96

The reason for this is that the XOP callback mechanism was not thread-safe until Igor Pro 6.20. This restric-
tion greatly limits what you can do from a thread-safe external operation with old versions of Igor.

The following wave access functions can be called from thread-safe external operations because they do not
do callbacks when running with Igor Pro 6:

WaveType, WavePoints, WaveData, WaveModDate, WaveModState, WaveModCount
MDGetWaveDimensions, MDGetWaveScaling, MDAccessNumericWaveData
MDGetNumericWavePointValue, MDSetNumericWavePointValue
MDGetDPDataFromNumericWave, MDStoreDPDataInNumericWave

All other wave access functions do callbacks to Igor and thus can not be called from thread-safe code when
you are running with older versions of Igor.

The SetOperationNumVar, SetOperationStrVar and SetFileLoaderOperationOutputVariables routines are
callbacks and can not be used from thread-safe external operations when you are running with older ver-
sions of Igor. This prevents setting runtime output variables such as V_flag and S_path.

Most other XOPSupport routines also do callbacks to Igor and thus can not be used from thread-safe code
when you are running with older versions of Igor.

Changes for Thread-Safe External Operations
A few changes are needed to make an external operation thread-safe. In this section we illustrate these
changes using the XOP1 external operation as an example. For simplicity, we require Igor Pro 6.20 or later.

Here are the steps for making the XOP1 external operation thread-safe:

1. Open the "XOP1 Template.pxp" experiment. In the procedure window, add the /TS flag to the Parse-
OperationTemplate command. This tells ParseOperationTemplate that your external operation is
thread-safe.

2. Run the CreateXOP1StarterCode function to put new starter code in the clipboard. Go into your devel-
opment system and paste the starter code into an empty text window.

3. In the XOP1.cpp source file, replace the runtime parameter structure with the new version just gener-
ated. The only difference is that the new version has an extra field:

UserFunctionThreadInfoPtr tp;

 You do not have to do anything with this field but it must be there for a thread-safe external operation.

4. In the newly-generated starter code, find the call to RegisterOperation at the very bottom. Copy it to
the clipboard and paste it over the old call to RegisterOperation in XOP1.cpp. The only difference is that
the new code passes the kOperationIsThreadSafe flag as the last parameter when calling RegisterOper-
ation.

5. In the XOP1.cpp file, add a check in the XOPMain function to make sure that you are running with Igor
Pro 6.20 or later:

if (igorVersion < 620) {
SetXOPResult(IGOR_OBSOLETE);
return EXIT_FAILURE;

}

6. For Macintosh, in the XOP1.r file, add threadSafeOp to the operation category:

resource 'XOPC' (1100) {
{

"XOP1",
waveOP+XOPOp+compilableOp+threadSafeOp,

}
};

7. For Windows, in the XOP1WinCustom.rc file, add threadSafeOp to the operation category:

Chapter 5 — Adding Operations

97

1100 XOPC
BEGIN

"XOP1\0",
utilOp | XOPOp | compilableOp | threadSafeOp,

"\0"
END

When you make your own external operation thread-safe, check to make sure that it does not do anything
that is not thread-safe.

Assuming that you have compiled a thread-safe version of XOP1, here is an example of how you could call
it from within Igor 6.20 or later:

ThreadSafe Function AddOneToWave(w)
Wave w

XOP1 w // Add one to wave
End

Function TestXOPInThread()
// Create sample data
if (!WaveExists(wave0))

Make/O/N=10 wave0=p, wave1=p, wave2=p
endif

Variable numThreads = 3

Variable mt = ThreadGroupCreate(numThreads)
Variable i

for(i=0; i<numThreads;)
for(i=0; i<numThreads; i+=1)

String name
sprintf name, "wave%d", i
Wave w = $name
ThreadStart mt, i, AddOneToWave(w) // Start thread

endfor

// Wait for threads to finish
do

Variable tgs = ThreadGroupWait(mt,100)
while (tgs != 0)

endfor

Variable result = ThreadGroupRelease(mt)
return result

End

More on Multithreading
For additional discussion of multithreading in XOPs see Multithreading on page 175.

External Operations and Macintosh Resources
If your Macintosh external operation directly or indirectly calls GetResource, you must preserve the current
resource fork. Call CurResFile to save the current resource and UseResFile to set the current resource to
your resource fork. Do your call to GetResource. Finally, call UseResFile again to restore the current
resource to what it originally was.

Accessing Macintosh resources is not thread-safe.

Chapter 5 — Adding Operations

98

Operation Handler Checklist
If your operation crashes or otherwise behaves unexpectedly, here are some things to double-check:

• You have set the compilableOp bit in the XOPC resource for your operation. If you have multiple
operations, this bit must be set for each operation for which you want to use Operation Handler.
If your operation is thread-safe, make sure that you have used the threadSafeOp in the category field
of the XOPC resource and that you have passed the kOperationIsThreadSafe flag to RegisterOper-
ation and that your runtime parameter structure has a UserFunctionThreadInfoPtr field. Also make
sure that you do not do any non-thread-safe callbacks to Igor and that your code is written in a
thread-safe fashion.

• You do not have a call to SetXOPType(TRANSIENT) in your code.
• Your runtime parameter structure must be consistent with your command template. Reread the sec-

tion entitled The Runtime Parameter Structure on page 79. See Creating Starter Code on page 74
and Updating Starter Code on page 95.

• You must always check string, wave and data folder handles to make sure they are not null before
using them.

• You must not dispose string handles passed from Igor via your runtime parameter structure. You
also must not access such handles after your ExecuteOperation returns. If you want to keep the
string data for later use, make a copy using WMHandToHand or GetCStringFromHandle.

• String handles are not C strings. Use WMGetHandleSize to determine the number of characters in
the string. Use the GetCStringFromHandle XOPSupport routine to move the characters into a C
string. See Understand the Difference Between a String in a Handle and a C String on page 233
for further discussion.

• You must never dispose or directly modify a wave handle. Wave handles belong to Igor.
• You must never dispose or directly modify a data folder handle. Data folder handles belong to Igor.
• If you are updating a file loader XOP that calls SetFileLoaderOutputVariables, you need to change

it to call SetFileLoaderOperationOutputVariables instead. You also need to specify that your oper-
ation sets V_flag, S_fileName, S_path and S_waveNames when you call RegisterOperation.

For other debugging ideas, see Chapter 14.

Chapter 6
I-6Adding Functions

Overview
An XOP can add any number of external functions to Igor Pro.

An external function takes zero or more numeric, string, wave reference, data folder reference and structure
parameters and returns a numeric, string, wave reference or data folder reference result. An external func-
tion is similar to a user-defined function except that the external function is implemented by C or C++ code
in an XOP whereas the user-defined function is implemented by Igor code in Igor’s procedure window.

There are two reasons for creating external functions rather than user-defined functions. First, in many
cases they run significantly faster than user-defined functions. Second, you can do things, like sample an
I/O port, from an external function that you can’t do from a user-defined function.

Whereas an external operation has a variable number of parameters, an external function has a fixed
number of parameters. Igor parses these parameters automatically and then passes them to the external
function in a structure. Unlike user-defined functions, external functions can not have optional parameters.

External functions can be called anywhere Igor can call a built-in function, including from a user-defined
function, from a macro, from the command line, or in a curve-fitting operation.

External functions can be thread-safe.

To add a function to Igor, you must create an XOPF resource to specify the name of the function, the number
and type of its parameters, and the type of its result. Then you need to write the code that implements the
function. The implementation accesses the parameters through the structure that Igor passes to it. It returns
two kinds of results. One is the function result, returned to the calling user-defined function. The other is
an error code, which Igor uses to determine when a fatal error has occurred.

External Function Examples
The XFUNC1 sample XOP, shipped with the XOP Toolkit, is a very simple XOP that adds three trivial exter-
nal functions to Igor. The functions are XFUNC1Add(p1, p2), XFUNC1Div(p1, p2) and
XFUNC1ComplexConjugate(p1). You can use this as a starting point for your external function XOP.

The XFUNC2 sample XOP implements two non-trivial external functions: logfit and plgndr.

logfit(wave, x) takes a single or double-precision wave containing three coefficients, a, b, and c, and an X
value and returns a + b*log(c*x). This function is suitable for use in curve fitting. Its use is illustrated by the
XFUNC2 Demo.pxp example experiment shipped in the XFUNC2 folder.

plgndr(l, m, x) takes three numbers and returns the value of the Legendre polynomial at x. The use of
plgndr is also illustrated in the XFUNC2 Demo.pxp experiment. The Legendre polynomial and its param-
eters, l and m, are described in Numerical Recipes in C.

Chapter 6 — Adding Functions

100

The XFUNC3 sample XOP implements two trivial external string functions, xstrcat0(str1, str2) and
xstrcat1(str1, str2). Both simply return the concatenation of string expressions str1 and str2. The XFUNC3
Demo.pxp experiment contains tests that measure the speed of these functions.

The SimpleFit sample XOP illustrates implements a curve-fitting function and the Guided Tour on page 19
shows how to modify it to fit a different function.

Adding an External Function to Igor
When Igor Pro starts up, it examines each XOP file in the Igor Extensions folder or in its subfolders. It looks
for an XOPF 1100 resource. This resource, if it exists, defines the functions that the XOP adds to Igor.

If the XOP has an XOPF 1100 resource, Igor loads the XOP into memory at Igor’s startup time. It calls the
XOP’s XOPMain function, telling the XOP to initialize itself. The XOP stays in memory from launch time
until Igor quits.

The XOPF 1100 Resource
For each external function added by an XOP, Igor needs to know the name of the function, the type of the
function’s return value and the number and type of parameters that the function expects. These things are
defined in the XOPF 1100 resource which is defined in the XOP’s .r file (Macintosh) or .rc file (Windows). For
example, here is the XOPF resource for XFUNC1:

resource 'XOPF' (1100) { // Macintosh, in XFUNC1.r.
{

"XFUNC1Add", // Function name
F_UTIL | F_EXTERNAL, // Function category
NT_FP64, // Return type is double precision
{

NT_FP64, // Parameter types
NT_FP64,

},

"XFUNC1Div", // Function name
F_UTIL | F_EXTERNAL, // Function category
NT_FP64, // Return type is double precision
{

NT_FP64, // Parameter types
NT_FP64,

},

"XFUNC1ComplexConjugate", // Function name
F_CMPLX | F_EXTERNAL, // Function category
NT_FP64 | NT_CMPLX, // Return type is double complex
{

NT_FP64 | NT_CMPLX, // Double complex parameter
},

}
};

1100 XOPF // Windows, in XFUNC1WinCustom.rc.
BEGIN

"XFUNC1Add\0", // Function name
F_UTIL | F_EXTERNAL, // Function category
NT_FP64, // Return type is double precision

NT_FP64, // Parameter types
NT_FP64,
0, // 0 terminates list of parameter types.

Chapter 6 — Adding Functions

101

"XFUNC1Div\0", // Function name
F_UTIL | F_EXTERNAL, // Function category
NT_FP64, // Return type is double precision

NT_FP64, // Parameter types
NT_FP64,
0, // 0 terminates list of parameter types.

"XFUNC1ComplexConjugate\0", // Function name
F_CMPLX | F_EXTERNAL, // Function category
NT_FP64 | NT_CMPLX, // Return type is double complex

NT_FP64 | NT_CMPLX, // Double complex parameter
0, // 0 terminates list of parameter types.

0, // 0 terminates the resource.
END

Here are the symbols available to specify the type of the external function’s parameters and its return value.

Note that other Igor number types, such as NT_FP32, NT_I32 and NT_I64, are not allowed.

If you define an external function that returns a wave, your XOP will require Igor Pro 6.20 or later. See
Checking Igor’s Version on page 70.

If you define an external function that takes a data folder reference parameter or returns a data folder ref-
erence result, your XOP will require Igor Pro 6.20 or later. See Checking Igor’s Version on page 70.

If a parameter is a wave, the XOPF resource does not specify what kind of wave it is (floating point numeric,
integer numeric, text). Igor will allow the user to pass any kind of wave to your external function so you
must check the wave type at run time. See the logfit routine in XFUNC2Routines.cpp for an example.

There is one case in which you do need to use a numeric type in conjunction with a wave type - when you
are creating a curve fitting function. You must specify the first parameter type as WAVE_TYPE | NT_FP64.
This is explained under Parameter and Result Types on page 104.

Symbol Decimal Where Used Description

NT_FP64 4 Return type,
parameter type.

Double-precision floating point.

NT_FP64 | NT_CMPLX 5 Return type,
parameter type.

Complex.

HSTRING_TYPE 8192 Return type,
parameter type.

String handle.

WAVE_TYPE 16384 Return type,
parameter type.

Wave handle.

A wave return type requires Igor
Pro 6.20 or later.

DATAFOLDER_TYPE 256 Return type,
parameter type.

Data folder handle.

A data folder reference return or
parameter type requires Igor Pro
6.20 or later.

FV_REF_TYPE 4096 Parameter type only. Indicates pass-by-reference
parameter.

Requires Igor Pro 5.03 or later.

FV_STRUCT_TYPE 1024 Parameter type only. Structure. Always use with
FV_REF_TYPE.

Chapter 6 — Adding Functions

102

The FV_REF_TYPE flag is used in conjunction with one of the other parameter types to signify that a param-
eter is passed by reference. It is used with numeric or string parameters and has no meaning for wave or
data folder reference parameters. Pass-by-reference is described under Pass-By-Reference Parameters on
page 114.

FV_STRUCT_TYPE, which declares a structure parameter, must always be ORed with FV_REF_TYPE.
Structure parameters are passed as pointers to structures.

Function Categories
The function category specifier is some combination of the symbols shown in the following table. The func-
tion category controls when the function will appear in Igor’s Help Browser. For example, specifying the
function’s category as F_EXTERNAL | F_SPEC would make the function appear when All, External or
Special are selected in the Functions popup menu in the Command Help tab of the browser.

You must always set the F_EXTERNAL bit for all external functions.

If your XOP is thread-safe, you must set the F_THREADSAFE bit.

Choose a Distinctive Function Name
NOTE: The name of an external function must not conflict with the names of present or future built-in

operations or functions or with the names of present or future external operations or functions.
Don’t use a vague or general name. If you choose a name that clearly describes the function’s
purpose, chances are that it will not conflict.

The name that you choose for your function becomes unavailable for use as a wave name, window name
or global variable name. For example, if you name your function Test then you can not use the name Test
for any Igor object. If you have existing experiments that use Test, they will be in conflict with your function.
Therefore, pick a name that is unlikely to be useful for any other purpose. This is especially important if you plan

Symbol Bit Value Function Help Dialog Category

F_TRIG 1 Trig

F_EXP 2 Exponential

F_SPEC 4 Special

F_CMPLX 8 Complex

F_TIMEDATE 16 Time and Date

F_ROUND 32 Rounding

F_CONV 64 Conversion

F_WAVE 128 About Waves

F_UTIL 256 Programming & Utility

F_NUMB 512 Numbers

F_ANLYZWAVES 1024 Wave Analysis

F_IO 2048 I/O

F_WINDOWS 4096 Windows

F_EXTERNAL 8192 External

F_THREADSAFE 16384 Thread-safe

F_STR 32768 String

Chapter 6 — Adding Functions

103

to share your XOP with other Igor users since they are probably not prepared to deal with errors when they
open existing experiments.

Invoking an External Function
You can invoke an external function from Igor’s command line, from a macro or from a user-defined func-
tion just as you would invoke a user-defined function. For example, the XFUNC1Div function, defined by
the XOPF 1100 resource of the XFUNC1 XOP, can be invoked from Igor’s command line using the following
commands:

XFUNC1Div(3,4)
Print XFUNC1Div(3,4)
K0 = XFUNC1Div(K1, K2)
wave0 = XFUNC1Div(wave1, wave2)

The last example is a wave assignment statement. You may think that the waves wave1 and wave2 are
passed to the XFUNC1Div function. This is not the case. Instead, Igor calls XFUNC1Div one time for each
point in wave0, passing a single value from wave1 and another single value from wave2 each time. This is
because the parameter types for XFUNC1Div are NT_FP64. If the parameter types were WAVE_TYPE, Igor
would pass waves as illustrated by the logfit function in XFUNC2.

External Function Parameters and Results
The XFUNC1Div routine in XFUNC1.cpp illustrates how you access the function’s parameters and how
you return the result:

#pragma pack(2) // All Igor structures are two-byte-aligned.
struct XFUNC1DivParams {

double p2; // p2 is the second parameter to XFUNC1Div.
double p1; // p1 is the first parameter to XFUNC1Div.
double result;

};
typedef struct XFUNC1DivParams XFUNC1DivParams;
#pragma pack() // Reset structure alignment.

extern "C" int
XFUNC1Div(XFUNC1DivParams* p) // p is a pointer passed from Igor to XFUNC.
{

p->result = p->p1 / p->p2; // XFUNC result.

return 0; // XFUNC error code
}

The pragma statements insure that Igor and the XOP agree on the alignment of the parameter structure. See
Structure Alignment on page 208 for details.

The external function should be declared extern "C" if you are writing a C++ XOP and static if you are
writing a C XOP. For example:

extern "C" int // C++
XFUNC1Div(XFUNC1DivParams* p)

static int // C
XFUNC1Div(XFUNC1DivParams* p)

extern "C" is required in C++ code because all calls between Igor and the XOP use C calling conventions.
Although it is not technically correct, using static in a C++ XOP also works with all of the C++ compilers
that we have seen.

Chapter 6 — Adding Functions

104

External Function Parameters
The parameter passed from Igor to XFUNC1Div is p. p is a pointer to a structure. The structure contains the
parameters that the external function is to operate on. Parameters are passed by Igor to the external function
in reverse order. The first element in the structure is the last parameter to the XFUNC1Div function. The
last element in the structure is where the external function stores its result. This result field is the value that
Igor returns to the calling function.

Here is the correspondence between parameter types and field data types:

In the example above, the parameters are passed by value. Numeric and string parameters can also be
passed by reference, as described under Pass-By-Reference Parameters on page 114. In that case, the struc-
ture fields would be defined as double* or Handle* and the parameter specification in the XOPF resource
would be ORed with FV_REF_TYPE.

Igor can pass NULL for string, wave and DFREF handle parameters as well as structure pointer parameters.
This happens when there is a bug in the calling user-defined function. Therefore you must always test
theses types of parameters and return an error if they are NULL.

External Function Result and Error Code
In the XFUNC1Div example above, the function result, which is returned to the calling user-defined func-
tion, is set by this line:

p->result = p->p1 / p->p2; // XFUNC result.

The error code, returned to Igor as the C function result, is set by this line:

return 0; // XFUNC error code

The error code is zero if no error occurred or a built-in Igor error code (defined in IgorErrors.h) or an XOP-
defined error code (defined in the XOP’s .h file with corresponding error strings in the STR# 1100 resource
- see XOP Errors on page 61 for details).

In the case of XFUNC1Div, there is nothing to go wrong so the error code is always zero. If you return a
non-zero error code, Igor will abort procedure execution and display a dialog indicating the nature of the
error. You should do this only in the case of fatal errors.

Parameter and Result Types
The XFUNC2 XOP adds an external function, logfit, that takes a wave and a numeric value as its parameters
and returns a numeric value. The XOPF 1100 resource for this XOP looks like this:

Parameter Type XOPF Symbol Field Type Notes

Number NT_FP64 double

Complex number NT_FP64 |
NT_CMPLX

double[2]

String HSTRING_TYPE Handle Always test for null string handles.

Wave WAVE_TYPE waveHndl Always test for null wave handles.

DFREF DATAFOLDER_TYPE DataFolderHandle Requires Igor Pro 6.20 or later.

Always test for null data folder
handles.

Structure FV_STRUCT_TYPE |
FV_REF_TYPE

Pointer to structure Always test for null structure
pointers.

Chapter 6 — Adding Functions

105

resource 'XOPF' (1100) { // Macintosh, in XFUNC2.r.
{

// y = a + b*log(c*x)
"logfit", // Function name
F_EXP | F_EXTERNAL, // Function category
NT_FP64, // Return value type
{

WAVE_TYPE | NT_FP64, // Wave
NT_FP64, // Double-precision x

},

. . . // Other function definitions here.
}

}

1100 XOPF // Windows, in XFUNC2WinCustom.rc.
BEGIN

// y = a + b*log(c*x)
"logfit\0", // Function name
F_EXP | F_EXTERNAL, // Function category
NT_FP64, // Return value type

WAVE_TYPE | NT_FP64, // Wave
NT_FP64, // Double precision x
0, // 0 terminates list of parameter types.

. . . // Other function definitions here.

0, // NOTE: 0 required to terminate the resource.
END

This says that the logfit function returns a double-precision number (NT_FP64). WAVE_TYPE | NT_FP64
indicates that the first parameter to logfit is a wave; as explained below, the NT_FP64 part is needed only
to qualify this function as a curve-fitting function. The second parameter is a double-precision number.

The logfit function is written to handle single-precision or double-precision wave parameters. It checks the
type of the wave parameter and returns an error if the type is not one of these.

Wave Parameters
The XOPF resource of the XFUNC2 XOP declares the wave parameter like this:

WAVE_TYPE | NT_FP64, // Wave

Normally, you can use just WAVE_TYPE for wave function parameters. However, if the function is a curve-
fitting function, as in this example, you must use WAVE_TYPE | NT_FP64. The use of NT_FP64 here is
needed to satisfy the CurveFit and FuncFit operations but it does not mean that Igor will pass only double-
precision waves to the function. You must still check the wave type in the function.

NOTE: Igor can pass a NULL wave handle to your function. This happens during the execution of a user-
defined function if the caller passes an uninitialized wave reference or a wave reference whose
initialization failed.

Your function must check for a null wave handle as shown in this example from the logfit function in
XFUNC2:

// Check that wave handle is valid
if (p->waveHandle == NULL) {

SetNaN64(&p->result); // Return NaN if wave is not valid
return NULL_WAVE_OP; // Return error to Igor

}

Chapter 6 — Adding Functions

106

NULL_WAVE_OP is an Igor error coded defined in IgorErrors.h.

Wave Results
The ability to define an external function that returns a wave reference was added in Igor Pro 6.20. If you
use this feature, you must make sure that you are running with a recent-enough Igor version. See Checking
Igor’s Version on page 70.

To define an external function that returns a wave reference, you specify WAVE_TYPE as the result type in
the XOPF resource.

Here is code that shows how to return a wave reference. Given the name of a wave in the current data
folder, it returns a wave reference or NULL if no such wave exists.

#pragma pack(2) // All Igor structures are two-byte-aligned.
struct NameToWaveParams {

Handle nameH; // Name of wave in the current data folder.
waveHndl result;

};
typedef struct NameToWaveParams NameToWaveParams;
#pragma pack() // Reset structure alignment.

extern "C" int
NameToWave(NameToWaveParams* p)
{

Handle nameH;
waveHndl waveH;
char name[MAX_OBJ_NAME+1];
int result;

result = 0;
p->result = NULL;

nameH = p->nameH;
if (nameH == NULL)

return USING_NULL_STRVAR;
if (result = GetCStringFromHandle(nameH, name, sizeof(name)-1))

return result;

waveH = FetchWave(name); // NULL if the wave does not exist
p->result = waveH;

return result; // Error code returned to Igor
}

Data Folder Reference Parameters
The ability to define an external function that takes a data folder reference as a parameter was added in Igor
Pro 6.20. If you use this feature, you must make sure that you are running with a recent-enough Igor ver-
sion. See Checking Igor’s Version on page 70.

A data folder reference parameter is represented by DATAFOLDER_TYPE in the XOPF resource.

NOTE: Igor can pass a NULL data folder handle to your function. This happens during the execution of
a user-defined function if the caller passes an uninitialized data folder reference or a data folder
reference whose initialization failed.

Chapter 6 — Adding Functions

107

Your function must check for a null data folder handle as illustrated under Data Folder Reference Example
on page 107.

Data Folder Reference Results
The ability to define an external function that returns a data folder reference was added in Igor Pro 6.20. If
you use this feature, you must make sure that you are running with a recent-enough Igor version. See
Checking Igor’s Version on page 70.

To define an external function that returns a data folder referenc, you specify DATAFOLDER_TYPE as the
result type in the XOPF resource.

Data Folder Reference Example
Here is code that shows how to take a data folder reference parameter and return a data folder reference as
the function result. Given a data folder reference and an index, the GetChildDF function returns a data
folder reference for a child data folder or NULL if the index is out-of-bounds.

// Macintosh XOPF resource, in .r file.
resource 'XOPF' (1100) {

{
"GetChildDF", // Function name
F_UTIL | F_EXTERNAL, // Function category
DATAFOLDER_TYPE, // Return value type = Data folder reference
{

DATAFOLDER_TYPE, // Parameter 0: Data folder reference
NT_FP64, // Parameter 1: Numeric index

},
}

};

// Windows XOPF resource, in WinCustom.rc file.
1100 XOPF
BEGIN

"GetChildDF\0", // Function name
F_UTIL | F_EXTERNAL, // Function category
DATAFOLDER_TYPE, // Return value type = Data folder reference

DATAFOLDER_TYPE, // Parameter 0: Data folder reference
NT_FP64, // Parameter 1: Numeric index
0, // 0 terminates list of parameter types.

0, // 0 terminates the resource.
END

// C++ code in .cpp file.

#pragma pack(2) // All Igor structures are two-byte-aligned.
struct GetChildDFParams {

double index; // Index to child data folder
DataFolderHandle dfr; // Parent data folder
DataFolderHandle result;

};
typedef struct GetChildDFParams GetChildDFParams;
#pragma pack() // Reset structure alignment.

extern "C" int
GetChildDF(GetChildDFParams* p)
{

DataFolderHandle parentDFH;
DataFolderHandle childDFH;

Chapter 6 — Adding Functions

108

int index;
int result;

result = 0;
p->result = NULL;

parentDFH = p->dfr;
if (parentDFH == NULL)

return NULL_DATAFOLDER_OP;
index = p->index;

result = GetIndexedChildDataFolder(parentDFH, index, &childDFH);
p->result = childDFH;

return result; // Error code returned to Igor
}

NULL_DATAFOLDER_OP is an Igor error coded defined in IgorErrors.h.

Complex Parameters and Results
XFUNC1 adds a function that returns the complex conjugate of a complex parameter. The XOPF 1100
resource for a complex function looks like this:

// Macintosh, in XFUNC1.r.
resource 'XOPF' (1100) {

{
"XFUNC1ComplexConjugate", // Function name
F_CMPLX | F_EXTERNAL, // Function category
NT_FP64 | NT_CMPLX, // Return value type = DPC
{

NT_FP64 | NT_CMPLX, // Double-precision complex parameter
},

}
};

// Windows, in XFUNC1WinCustom.rc.
1100 XOPF
BEGIN

"XFUNC1ComplexConjugate\0", // Function name
F_CMPLX | F_EXTERNAL, // Function category
NT_FP64 | NT_CMPLX, // Return value type = DPC

NT_FP64 | NT_CMPLX, // Double-precision complex parameter
0, // 0 terminates list of parameter types.

0, // 0 terminates the resource.
END

The first use of NT_FP64 | NT_CMPLX specifies that the return value is double-precision, complex. The
second use of NT_FP64 | NT_CMPLX specifies that the parameter is double-precision, complex.

See XFUNC1ComplexConjugate in XFUNC1.cpp for the code that implements a complex function.

Strings Parameters and Results
The XFUNC3 XOP adds an external function that takes two string parameters and returns a string result.
The XOPF 1100 resource for this XOP looks like this:

// Macintosh, in XFUNC3.r.
resource 'XOPF' (1100) {

{

Chapter 6 — Adding Functions

109

// str1 = xstrcat0(str2, str3)
"xstrcat0", // Function name
F_STR | F_EXTERNAL, // Function category (string)
HSTRING_TYPE, // Return value type is string handle.
{

HSTRING_TYPE, // First parameter is string handle.
HSTRING_TYPE, // Second parameter is string handle.

},

// str1 = xstrcat1(str2, str3)
"xstrcat1", // Function name
F_STR | F_EXTERNAL, // Function category (string)
HSTRING_TYPE, // Return value type is string handle.
{

HSTRING_TYPE, // First parameter is string handle.
HSTRING_TYPE, // Second parameter is string handle.

},
}

};

// Windows, in XFUNC3WinCustom.rc.
1100 XOPF
BEGIN

// str1 = xstrcat0(str2, str3)
"xstrcat0\0", // Function name
F_STR | F_EXTERNAL, // Function category (string)

HSTRING_TYPE, // Return value type is string handle.
HSTRING_TYPE, // First parameter is string handle.
HSTRING_TYPE, // Second parameter is string handle.
0, // 0 terminates list of parameter types.

// str1 = xstrcat1(str2, str3)
"xstrcat1\0", // Function name
F_STR | F_EXTERNAL, // Function category (string)

HSTRING_TYPE, // Return value type is string handle.
HSTRING_TYPE, // First parameter is string handle.
HSTRING_TYPE, // Second parameter is string handle.
0, // 0 terminates list of parameter types.

0, // 0 terminates the resource.
END

This resource defines two string functions that do exactly the same thing. The function declarations are
identical except for the function name. The reason for having identical functions is to demonstrate two
methods by which Igor can call an external function. These methods are explained under FUNCTION
Message Versus Direct Methods on page 116.

The return value type of HSTRING_TYPE says that the function returns a string. The HSTRING_TYPEs
indicate both parameters are strings.

This function is invoked as follows:

String aString
aString = xstrcat0("Hello", " out there")

Both the xstrcat0 and xstrcat1 external functions wind up calling the xstrcat function in XFUNC3.cpp.
xstrcat is defined as follows:

#pragma pack(2) // All Igor structures are two-byte-aligned.
struct xstrcatParams {

Handle str3;

Chapter 6 — Adding Functions

110

Handle str2;
Handle result;

};
typedef struct xstrcatParams xstrcatParams;
#pragma pack() // Reset structure alignment.

extern "C" int
xstrcat(xstrcatParams* p)
{

Handle str1; // output handle
int len2, len3;
int err=0;

p->result = NULL; // Must be set to a valid handle or NULL

str1 = NULL; // If error occurs, result is NULL.
if (p->str2 == NULL) { // Error –– input string does not exist.

err = NO_INPUT_STRING;
goto done;

}
if (p->str3 == NULL) { // Error –– input string does not exist.

err = NO_INPUT_STRING;
goto done;

}

len2 = WMGetHandleSize(p->str2); // length of string 2
len3 = WMGetHandleSize(p->str3); // length of string 3
str1 = WMNewHandle(len2 + len3); // Get output handle.
if (str1 == NULL) {

err = NOMEM;
goto done; // out of memory

}

memcpy(*str1, *p->str2, len2);
memcpy(*str1+len2, *p->str3, len3);

done:
WMDisposeHandle(p->str2); // Get rid of input parameters. (OK if NULL)
WMDisposeHandle(p->str3); // Get rid of input parameters. (OK if NULL)
p->result = str1; // Must be a valid handle or NULL

return err;
}

The error code NO_INPUT_STRING is defined by the XOP whereas NOMEM is a standard Igor error code
defined in IgorErrors.h. You could also use the Igor USING_NULL_STRVAR error code in place of
NO_INPUT_STRING.

Strings in Igor are stored in plain Macintosh-style handles, even when running on Windows. The handle
contains the string’s text, with neither a count byte nor a trailing null byte. Use WMGetHandleSize to find
the number of characters in the string. To use C string functions on this text you need to copy it to a local
buffer and null-terminate it (using GetCStringFromHandle) or add a null terminator to the handle. If you
pass the handle back to Igor, you must remove the null terminator. See Understand the Difference
Between a String in a Handle and a C String on page 233 for further discussion of string handles.

An external string function returns a handle as its result. It can return NULL in the event of an error.

NOTE: Before your function returns, you must store a valid handle in the result field or set it to NULL.

NOTE: String parameter handles passed by Igor to an external function belong to the XOP. The XOP
must dispose or reuse the handle.

Chapter 6 — Adding Functions

111

Unlike a wave handle, a handle passed as a string parameter to an external function belongs to that func-
tion. The external function must dispose of the handle. Alternately, the external function can return the
handle as the function result after possibly modifying its contents.

NOTE: As for wave handles, it is possible for a string parameter to be passed as NULL because the string
does not exist during the execution of a compiled user-defined function. The external function
must check for this.

xstrcat checks its parameters. If either is NULL, it returns NULL as a result. Otherwise, it creates a new
handle and concatenates its input parameters into the new handle. This new handle is stored as the result
and the input handles are disposed. The result handle belongs to Igor. The external function must not
dispose of it or access it in any way once it returns to Igor.

Structure Parameters
Structure parameters are passed as pointers to structures. These pointers always belong to Igor. You must
never dispose or resize a memory block using a structure pointer but you may read and write its fields.

An instance of an Igor structure can be created only in a user-defined function and exists only while that
function is running. Therefore, external functions that have structure parameters can be called only from
user-defined functions, not from the command line or from macros.

The pointer for a structure parameter can be NULL. This would happen if the user supplies * as the param-
eter or in the event of an internal error in Igor. Therefore you must always test a structure parameter to
make sure it is non-NULL before using it.

If you receive a NULL structure pointer as a parameter and the structure is required for the operation,
return an EXPECTED_STRUCT error code. Otherwise, interpret this to mean that the user wants default
behavior.

Unlike the case of external operations, the Igor compiler has no way to know what type of structure your
external function expects. Therefore, Igor will allow any type of structure to be passed to an external func-
tion. When writing Igor procedures that call the external function, you must be careful to pass the right kind
of structure.

You must make sure that the definition of the structure in Igor matches the definition in the XOP. Otherwise
a crash is likely to occur.

Here is the XOPF resource declaration for an external function that takes one parameter which is a pointer
to a structure:

// Macintosh
resource 'XOPF' (1100) {

{
// result = XtestF1Struct(struct F1Struct* s)
"XTestF1Struct", // Function name
F_EXTERNAL, // Function category
NT_FP64, // Return value type
{

FV_STRUCT_TYPE | FV_REF_TYPE, // Pointer to F1Struct.
},

}
};

// Windows
1100 XOPF
BEGIN

// result = XTestF1Struct(struct F1Struct* s)
"XTestF1Struct\0", // Function name
F_EXTERNAL, // Function category

Chapter 6 — Adding Functions

112

NT_FP64, // Return value type
FV_STRUCT_TYPE | FV_REF_TYPE, // Pointer to F1Struct
0, // 0 terminates parameters.

0, // 0 terminates functions.
END

The use of FV_STRUCT_TYPE | FV_REF_TYPE says that the function takes a pointer to a structure as a
parameter.

External Function Structure Parameter Example
Here is Igor procedure code which invokes this external function.

Constant kF1StructVersion = 1000 // 1000 means 1.000

Structure F1Struct // Structure of parameter to XTestF1Struct.
uint32 version // Structure version.
double num
String strH
Wave waveH
double out

EndStructure

Function Test()
STRUCT F1Struct s

s.version = kF1StructVersion
s.num = 4321
s.strH = "This is a test."
Wave s.waveH = jack
s.out = 0

Variable result = XTestF1Struct(s)
End

Here is C code that implements the external function:

#pragma pack(2) // All Igor structures are two-byte-aligned.

#define kF1StructureVersion 1000 // 1000 means 1.000.

struct F1Struct { // Structure of parameter.
UInt32 version; // Structure version.
double num;
Handle strH;
waveHndl waveH;
double out;

};
typedef struct F1Struct F1Struct;

struct F1Param { // Parameter structure.
F1Struct* sp; // This param is pointer to struct.
double result;

};
typedef struct F1Param F1Param;

#pragma pack() // Reset structure alignment.

int
XTestF1Struct(struct F1Param* p)
{

Chapter 6 — Adding Functions

113

struct F1Struct* sp;
char buffer[256];
char str[128];
char nameOfWave[MAX_OBJ_NAME+1];
int err=0;

sp = p->sp;
if (sp == NULL) {

err = EXPECT_STRUCT;
goto done;

}

if (sp->version != kF1StructureVersion) {
err = INCOMPATIBLE_STRUCT_VERSION;
goto done;

}

sp->out = 1234;

if (sp->strH == NULL) {
err = USING_NULL_STRVAR; // Error: input string does not exist
goto done;

}

if (sp->waveH == NULL) {
err = NULL_WAVE_OP; // Error: expected wave
goto done;

}

if (err = GetCStringFromHandle(sp->strH, str, sizeof(str)-1))
goto done; // String too long.

WaveName(sp->waveH, nameOfWave);

sprintf(buffer, "num=%g, str=\"%s\", wave='%s'" CR_STR,
sp->num, sp->str, nameOfWave);

XOPNotice(buffer);

done:
p->result = err;
return err;

}

There are two structures involved in this example: the F1Param structure and the F1Struct structure.
F1Param defines the format of the parameter structure – the structure through which Igor passes any and all
parameters to the external function. F1Struct defines the format of the one structure parameter passed to this
function. p is a pointer to a parameter structure. sp is a pointer to a particular parameter which is a pointer
to an Igor structure whose format is defined by F1Struct.

The Igor procedure code must declare an F1Struct structure and the C code must declare a matching C
structure. The use of the version field is a convention for preventing a crash if the procedure version of the
structure and the C version get out-of-sync.

The Igor code declares the F1Struct structure. It then creates and initializes an instance of it, named s. It then
passes s (actually a pointer to s) to the XTestF1Struct external function.

The XTestF1Struct external function first checks that a valid pointer has been passed. It then checks that the
version of the structure is compatible before accessing its fields. It can read, write or read and write any of
the fields.

Chapter 6 — Adding Functions

114

An advanced programmer may want to use a more flexible versioning scheme by allocating reserved fields
in the structure and then using the version field to handle whatever version of the structure was passed
from the Igor procedure. If possible you should simplify your life by using the simplified versioning tech-
nique shown above. However, if you decide to save structure data to disk and later read it back, you will
have to deal with more complex versioning issues, as well as cross-platform byte-order issues. You will also
have to deal with versioning issues if your XOP will be used by many people and you can not force them
to update their Igor procedure code when you update your XOP.

The F1Struct structure contains a string handle field named strH. Unlike the case of a parameter string
handle, the external operation does not receive ownership of a string handle in a structure parameter and
must not dispose it.

For further important details see Using Igor Structures as Parameters on page 209.

Wave Handles In Structures
Usually a waveHndl field in a structure is used to pass a wave reference from Igor to your XOP. However,
it can also be used to pass a wave reference from your XOP to Igor.

In Igor Pro 6.20 or later, if you store a wave handle in a waveHndl field of a structure you need to inform
Igor by calling HoldWave on the structure field. By doing this, you maintain the integrity of Igor’s internal
wave reference count. For details see Wave Reference Counting on page 131.

Data Folder Handles In Structures
Usually a DataFolderHandle field in a structure is used to pass a data folder reference from Igor to your
XOP. However, it can also be used to pass a data folder reference from your XOP to Igor.

In Igor Pro 6.20 or later, if you store a data folder handle in a DataFolderHandle field of a structure you need
to inform Igor by calling HoldDataFolder on the structure field. By doing this, you maintain the integrity
of Igor’s internal data folder reference count. For details see Data Folder Reference Counting on page 143.

Pass-By-Reference Parameters
External functions can have pass-by-reference parameters. Only numeric, string and structure parameters
can be pass-by-reference. Wave and data folder reference parameters can not be pass-by-reference.

Normally function parameters are pass-by-value. This means that the called function (the external function
in this case) can not modify the value of the parameter as seen by the calling user-defined function.

With a pass-by-reference parameter, the called function can modify the parameter's value and the calling
user-defined function will receive the modified value on return. Pass-by-reference provides a way for an
external function to return multiple values to the calling function, in addition to the function result.

There are three differences in the implementation of a pass-by-reference parameter compared to a normal
pass-by-value parameter.

First, in the XOPF resource, when declaring the parameter type, you use the FV_REF_TYPE flag. Here is
an example of an XOPF that declares a function with three pass-by-reference parameters:

resource 'XOPF' (1100) {
{

// number = ExampleFunc(number,complexNumber,str)
"ExampleFunc", // Function name
F_UTIL | F_EXTERNAL, // Function category
NT_FP64, // Return value type
{ // Parameter types

NT_FP64 | FV_REF_TYPE,
NT_FP64 | NT_CMPLX | FV_REF_TYPE,
HSTRING_TYPE | FV_REF_TYPE,

Chapter 6 — Adding Functions

115

},
}

};

Second, in the parameter structure passed to the XFUNC, the fields corresponding to pass-by-reference
parameters must be pointers to doubles or pointers to Handles. For example:

#pragma pack(2) // All Igor structures are two-byte-aligned.
struct ExampleParams { // Fields are in reverse order.

Handle* strHPtr; // Parameter is pass-by-reference.
double* complexNumberPtr; // Parameter is pass-by-reference.
double* scalarNumberPtr; // Parameter is pass-by-reference.
double result; // Function result field.

};
typedef struct ExampleParams ExampleParams;
typedef ExampleParams* ExampleParamsPtr;
#pragma pack() // Reset structure alignment.

The third difference has to do with string handles. As with pass-by-value, when your XFUNC receives a
pass-by-reference string parameter, you own the handle pointed to by the Handle* field, strHPtr in this
case. The difference is that you must also return a handle via this field and Igor owns the handle that you
return. Often it is convenient to reuse the input handle as the output handle, as the example code below
shows, in which case ownership of the handle passes from the XOP back to Igor and you must not dispose
it. If you return a different handle then you must dispose the input handle.

As with pass-by-value, strings passed by reference can be NULL and you must check for this.

This example shows how to access and modify pass-by-reference parameters:

int
ExampleFunc(ExampleParamsPtr p)
{

char str[256];
char buffer[512];
int err;

err = 0;

// GetCStringFromHandle tolerates NULL handles.
GetCStringFromHandle(*p->strHPtr, str, sizeof(str)-1);
sprintf(buffer, "ExampleFunc received: %g, (%g,%g), %s" CR_STR,

*p->scalarNumberPtr,
p->complexNumberPtr[0], p->complexNumberPtr[1],
str);

XOPNotice(buffer);

*p->scalarNumberPtr *= 2;
p->complexNumberPtr[0] *= 2;
p->complexNumberPtr[1] *= 2;

// *p->strHPtr will be NULL if caller passes uninitialized string.
if (*p->strHPtr == NULL)

*p->strHPtr = WMNewHandle(0L);

if (*p->strHPtr != NULL) {
strcpy(str, "Output from ExampleFunc");
err = PutCStringInHandle(str, *p->strHPtr);

}

/* Do not dispose *p->strHPtr. Since it is a pass-by-reference parameter,
the calling function retains ownership of this handle.

Chapter 6 — Adding Functions

116

*/

p->result = 0;

return err;
}

Keep External Functions in Memory
All XOPs with external functions must remain resident all of the time. You can satisfy this by just not calling
the SetXOPType(TRANSIENT) XOPSupport routine.

FUNCTION Message Versus Direct Methods
When an external function is invoked, Igor calls code in the XOP that defined the function. There are two
methods for calling the code:

• The FUNCTION message method
• The direct-call method

The rationale for the FUNCTION message method no longer exists so the direct method is recommended
for all modern external functions.

The FUNCTION message method of calling the external function uses the same techniques for communi-
cation between Igor and the XOP as all other XOP Toolkit messages. Igor calls your XOP’s XOPEntry func-
tion, passing it the FUNCTION message. This message has two arguments. The first argument is an index
number starting from zero that identifies which of your external functions is being invoked. For the
XFUNC1 XOP, if the XFUNC1Add function is being invoked, the index is 0. If the XFUNC1Div function is
being invoked, the index is 1. The second argument is a pointer to a structure containing the parameters to
the function and a place to store the function result as described above.

The DoFunction routine in XFUNC1.cpp decides which of the external functions is being invoked. It then
calls that function, passing it the necessary pointer. It acts as a dispatcher.

When calling a direct function, Igor does not send a FUNCTION message to your XOPEntry routine but
instead calls your function code directly, passing to it a pointer to the structure containing the parameters
and a place to store the function result.

Here is how Igor decides which method to use when calling an external function. When Igor starts up it
examines each XOP’s XOPF 1100 resource to see if it adds external functions. If the XOP does add functions,
Igor loads the XOP into memory and sends it the INIT message (i.e., calls the XOP's XOPMain function).
Then it sends the XOP the FUNCADDRS message once for each external function that the XOP adds. The
FUNCADDRS message has one argument: the index number for an external function added by the XOP. If
the XOP returns NULL in response to this message then Igor will call that external function using the
FUNCTION message method. If the XOP returns other than NULL, this result is taken as the address of the
routine in the XOP for Igor to call directly when the external function is invoked.

XFUNC3 illustrates both ways of registering a function. In response to the FUNCADDRESS message from
Igor, it registers the xstrcat0 function as direct by returning an address, and registers the xstrcat1 function
as message-based by returning NULL .

Direct External Functions and Macintosh Resources
If your direct Macintosh external function directly or indirectly calls GetResource, you must preserve the
current resource fork. Call CurResFile to save the current resource and UseResFile to set the current
resource to your resource fork. Do your call to GetResource. Finally, call UseResFile again to restore the
current resource to what it originally was.

Chapter 6 — Adding Functions

117

Thread-Safe External Functions
As of Igor Pro 6, Igor supports thread-safe user-defined functions. This makes it possible to utilize more
than one processor on a multi-processor computer.

Igor Pro 6 also supports thread-safe external functions with certain restrictions discussed below. This
section tells you how to convert a normal external function to a thread-safe function using the SimpleFit
XOP as an example.

Support for thread-safe external functions was greatly improved in Igor Pro 6.20. Since XOPs created with
XOP Toolkit 7 require Igor Pro 6.20 or later, this section assumes that you are running with Igor Pro 6.20 or
later.

Writing thread-safe code is trickier than writing regular code. For example, your function can not write to
a global variable because two instances of your function might write different values to the global and inter-
fere with each other's operation. Many web sites explain what "thread-safe" means and what you can and
can not do in thread-safe code.

If you mark an external function as thread-safe, Igor allows that function to be called from user-defined
functions marked as thread-safe. The user-defined function and your external function may then be called
from Igor’s main thread or from an Igor pre-emptive thread.

You can not call an XOPSupport routine when running in an Igor pre-emptive thread unless the routine is
marked as thread-safe. The documentation for each XOPSupport routine states whether it is thread-safe or
not.

You can call a thread-safe XOPSupport routine only from Igor’s main thread or from an Igor pre-emptive
thread, not from a private thread that you create on your own.

Changes for Thread-Safe External Functions
A few changes are needed to make an external function thread-safe. In this section we illustrate these
changes using the logfit external function from XFUNC2 as an example.

Here are the steps for making an external function thread-safe:

1. Make sure that your function uses the direct-call method as described under FUNCTION Message
Versus Direct Methods on page 116.

2. Add the F_THREADSAFE bit to the category field of your XOPF resource.

In the XFUNC2.r and XFUNC2.rc, change the category from:

F_EXP | F_EXTERNAL,

to

F_EXP | F_THREADSAFE | F_EXTERNAL,

3. Add a check in the XOPMain function to make sure that you are running with Igor Pro 6.20 or later:

if (igorVersion < 620) {
SetXOPResult(IGOR_OBSOLETE);
return EXIT_FAILURE

}

4. Add a "tp" field to your external function's parameter structure. The tp field is a pointer to private Igor
thread-related data that is not currently used but may be used in the future. It may be NULL. The tp
field must be added just before the result field, like this:

typedef struct FitParams {
double x;
waveHndl waveHandle;
UserFunctionThreadInfoPtr tp; // Pointer to Igor private data.

Chapter 6 — Adding Functions

118

double result;
} FitParams, *FitParamsPtr;

5. Check to make sure that your thread-safe external function does not do anything that is not thread-safe.

More on Multithreading
For additional discussion of multithreading in XOPs see Multithreading on page 175.

External Functions and Macintosh Resources
If your Macintosh external operation directly or indirectly calls GetResource, you must preserve the current
resource fork. Call CurResFile to save the current resource and UseResFile to set the current resource to
your resource fork. Do your call to GetResource. Finally, call UseResFile again to restore the current
resource to what it originally was.

Accessing Macintosh resources is not thread-safe.

Error Checking and Reporting
The logfit function in XFUNC2 illustrates error checking and reporting. The function is designed for use as
a curve-fitting function but it also can be invoked from an Igor procedure as follows:

K0 = logfit(wave0, x);

The value that will be stored in K0 is returned via the result field of the structure that Igor passes to the logfit
function. In addition to this result, the function has a C function result which Igor looks at to see if the func-
tion encountered a fatal error.

logfit is defined as follows:

#pragma pack(2) // All Igor structures are two-byte-aligned.
struct LogFitParams {

double x; // Independent variable.
waveHndl waveHandle; // Coefficient wave (contains a, b, c coefs).
double result;

};
typedef struct LogFitParams LogFitParams;
typedef struct LogFitParams *LogFitParamsPtr;
#pragma pack() // Reset structure alignment.

int
logfit(LogFitParamsPtr p) // y = a + b*log(c*x)
{

double* dPtr; // Pointer to double-precision wave data
float* fPtr; // Pointer to single-precision wave data
double a, b, c;

// Check that wave handle is valid
if (p->waveHandle == NULL) {

SetNaN64(&p->result); // Return NaN if wave not valid.
return NULL_WAVE_OP;

}

// Check coefficient wave’s numeric type.
switch (WaveType(p->waveHandle)) {

case NT_FP32:
fPtr = (float*)WaveData(p->waveHandle);
a = fPtr[0];
b = fPtr[1];

Chapter 6 — Adding Functions

119

c = fPtr[2];
break;

case NT_FP64:
dPtr = (double*)WaveData(p->waveHandle);
a = dPtr[0];
b = dPtr[1];
c = dPtr[2];
break;

default: // Can’t handle this data type.
p->result = nan(255); // Return NaN.
return REQUIRES_SP_OR_DP_WAVE;

}

p->result = a + b*log10(c*p->x);

return 0;
}

The LogFitParams structure is defined in XFUNC2.h.

The NULL_WAVE_OP error code is defined in IgorErrors.h. The REQUIRES_SP_OR_DP_WAVE error
code is defined in XFUNC2.h with a corresponding string in XFUNC2’s STR# 1100 resource.

Notice that logfit starts off by making sure that the wave parameter is not NULL. This is necessary because
the external function can be called from an Igor user-defined function. User-defined functions are compiled
by Igor and can refer to a wave that doesn’t exist at compile time. If, when the compiled function is exe-
cuted, the wave still does not exist, it will be passed to logfit as a NULL handle.

When Igor passes a wave to an external function, it does not do type conversion. The wave passed to logfit
could be single precision, double precision or integer. It could also be complex. It could even be a text wave,
a wave reference wave or a data folder reference wave. Logfit returns NaN if the wave passed to it is other
than single- or double-precision real.

Returning a non-zero value as the C function result from an external function causes Igor to abort procedure
execution and display an error alert. Therefore, you should do this only if the error is fatal - that is, if it is
likely to make any further processing meaningless. If we did not want passing the wrong type of wave to
logfit to be a fatal error, we would set p->result to NaN, as shown above, and then return zero to Igor,
instead of NULL_WAVE_OP or REQUIRES_SP_OR_DP_WAVE.

Chapter 6 — Adding Functions

120

Chapter 7
I-7Accessing Igor Data

Overview
This chapter explains how to access Igor data – waves, numeric variables, string variables and the data
folders that contain them.

Dealing with waves, string variables, and data folders involves the use of Macintosh-style handles, whether
your XOP is running on Macintosh or Windows. You need to understand Macintosh-style handles in order
to access and manipulate Igor data. See WM Memory XOPSupport Routines on page 195 for details.

Waves
A wave is stored in a block of memory in the heap, referenced by a handle. The first hundred or so bytes of
the block contains a structure that describes the wave. After that comes the main wave data followed by
optional wave data such as the wave note. You will often need to get a wave handle from Igor or pass a
wave handle to Igor to identify a particular wave to operate on.

You never need to and never should attempt to deal with the wave structure directly.

Instead, use the XOPSupport routines, provided in XOPWaveAccess.c and listed in Chapter 15, to get and
set wave data and properties.

You also must not treat a wave handle as a WM memory handle by passing it to normal handle routines such as
WMGetHandleSize or as a Macintosh native handle by passing it to a Macintosh native routine such as
GetHandleSize.

Instead, use the XOPSupport routines, provided in XOPWaveAccess.c and listed in Chapter 15. See Change
to Wave Handles on page 417 for details.

Routines for Accessing Waves
The XOPSupport routines for dealing with waves are described in detail under Routines for Accessing
Waves on page 253. Here is a summary of the commonly-used routines.

Getting a Handle to a Wave

In addition, you can create external operations and external functions that receive wave handles from Igor
as parameters.

Routine Description

MakeWave Makes 1D waves.

MDMakeWave Makes waves of dimension 1 through 4.

FetchWave Returns a handle to a wave in the current data folder given its name.

GetDataFolderObject Returns a handle to a wave given its name and data folder.

Chapter 7 — Accessing Igor Data

122

Getting Wave Properties

Setting Wave Properties

Reading Wave Data

Routine Description

WaveName Returns wave name given a handle.

WaveType Returns data type.

WavePoints Returns number of elements in all dimensions.

MDGetWaveDimensions Returns number of elements in each dimension.

WaveScaling Gets scaling for the row dimension only.

MDGetWaveScaling Gets scaling for the specified dimension.

WaveUnits Gets row dimension units, data units.

MDGetWaveUnits Gets units for the specified dimension or data units.

MDGetDimensionLabel Gets dimension label for specified dimension index.

GetWaveDimensionLabels Gets all dimension labels for entire wave.

WaveNoteCopy Gets the wave note.

WaveLock Returns the lock state of the wave.

Routine Description

SetWaveScaling Sets scaling for the row dimension only.

MDSetWaveScaling Sets wave scaling for the specified dimension.

SetWaveUnits Sets row dimension units, data units.

MDSetWaveUnits Sets units for the specified dimension or data units.

MDSetDimensionLabel Sets dimension label for specified dimension index.

SetWaveDimensionLabels Sets all dimension labels for entire wave.

SetWaveNote Sets the wave note.

SetWaveLock Sets the lock state of the wave.

Routine Description

WaveData Returns pointer to the start of wave’s data.

MDAccessNumericWaveData Returns the offset to the wave data.

MDGetNumericWavePointValue Returns the value of a single element of wave.

MDGetDPDataFromNumericWave Returns all wave data in a double-precision buffer.

MDGetTextWavePointValue Gets the value of a single element of text wave.

GetTextWaveData Gets the entire contents of a text wave.

Chapter 7 — Accessing Igor Data

123

Writing Wave Data

Wave Reference Counting

Obsolete Routines
In old XOP source code you may see the routines HLock, HUnlock, HGetState, HSetState, MoveHHi, Move-
LockHandle and SetWavesStates. These routines are obsolete and must be removed.

Example
Here is a simple example that illustrates creating a wave, filling it with values and setting a wave property.
The underlined items are data types, functions, constants or structures defined in the XOPSupport library
and headers.

static int
MakeWave0(void)
{

waveHndl waveH;
char waveName[MAX_OBJ_NAME+1];
DataFolderHandle dfH;
CountInt dimensionSizes[MAX_DIMENSIONS+1];
float* wp;
IndexInt p;
double offset, delta;
int err;

strcpy(waveName, "wave0");
dfH = NULL; // Put wave in the current data folder
MemClear(dimensionSizes, sizeof(dimensionSizes));
dimensionSizes[ROWS] = 100; // Make 1D wave with 100 points
if (err = MDMakeWave(&waveH, waveName, dfH, dimensionSizes, NT_FP32, 1))

return err;

wp = (float*)WaveData(waveH); // Get a pointer to the wave data
for(p = 0; p < 100; p++)

*wp++ = p; // Store point number in wave

offset = 0; delta = .001; // Set X scaling to .001/point
if (err = MDSetWaveScaling(waveH, ROWS, &delta, &offset))

return err;

Routine Description

WaveData Returns pointer to the start of wave’s data.

MDAccessNumericWaveData Returns the offset to wave data.

MDSetNumericWavePointValue Sets the value of a single element of wave.

MDStoreDPDataInNumericWave Sets all wave data from a double-precision buffer.

MDSetTextWavePointValue Sets the value of a single element of text wave.

SetTextWaveData Sets the entire contents of a text wave.

Routine Description

HoldWave Tells Igor that you are holding a wave handle until
further notice.

ReleaseWave Tells Igor that you are no longer holding a wave handle.

Chapter 7 — Accessing Igor Data

124

return 0;
}

This routine makes a 100 point, single-precision (NT_FP32) 1D wave. The letters “MD” in some of the XOP-
Support routine names indicate that the routine is capable of dealing with multi-dimensional as well as 1D
waves.

We get a pointer to the main wave data using the XOPSupport WaveData routine and use the pointer to
store a value in each element of the wave.

This code is capable of dealing with single-precision numeric data only. You will see below that waves can
contain one of 10 floating point and integer numeric data types, can be real or complex, and also can contain
text, wave references and data folder references. An XOP programmer can choose to support all of these
types or just some of them. XOPSupport routines described below provide ways to access wave data of any
type.

Wave Data Types
Waves can have one of the following data types:

Any of the numeric types can be ORed with NT_CMPLX to specify a complex data type. For example,
(NT_FP32 | NT_CMPLX) represents complex, single-precision floating point, has a decimal value of 2+1
and takes 2*4 bytes per element. Text, wave reference and data folder reference waves can not be complex.

Wave references and data folder references are handles. A handle is a form of pointer and therefore consists
of 4 bytes when running in 32 bits and 8 bytes when running in 64 bits.

The 64-bit integer types require Igor Pro 7.00 or later.

As illustrated in the following sections, you can write your XOP to handle any data type or to require spe-
cific data types.

Symbol
Decimal

Value
Bytes Per
Element Description

NT_FP64 4 8 Double-precision floating point (double).

NT_FP32 2 4 Single-precision floating point (float).

NT_I64 128 8 Signed 64-bit integer (SInt64).

Requires Igor7 or later.

NT_I32 32 4 Signed 32-bit integer (SInt32).

NT_I16 16 2 Signed 16-bit integer (short).

NT_I8 8 1 Signed 8-bit integer (char).

NT_I64 | NT_UNSIGNED 128+64 8 Unsigned 64-bit integer (UInt64).

Requires Igor7 or later.

NT_I32 | NT_UNSIGNED 32+64 4 Unsigned 32-bit integer (UInt32).

NT_I16 | NT_UNSIGNED 16+64 2 Unsigned 16-bit integer (short).

NT_I8 | NT_UNSIGNED 8+64 1 Unsigned 8-bit integer (char).

TEXT_WAVE_TYPE 0 variable Unsigned 8-bit integer (char).

WAVE_TYPE 16384 4 or 8 Wave reference (waveHndl)

DATAFOLDER_TYPE 256 4 or 8 Data folder reference (DataFolderHandle)

Chapter 7 — Accessing Igor Data

125

Accessing Numeric Wave Data
This section describes how Igor stores numeric wave data and how you can use the XOPSupport wave
access routines to access the data. The routines mentioned here are described in detail in Chapter 15. The
WaveAccess sample XOP illustrates how to use them.

The XOP Toolkit supports three different ways to access the numeric data in waves of dimension 1 through
4. The point access method is the easiest and the slowest. The direct access method is the hardest and the
fastest. The temporary storage method is not too hard and reasonably fast. This section discusses how to
choose which method to use.

The Point Access Method
The easiest method is to use the MDGetNumericWavePointValue and MDSetNumericWavePointValue
routines to access a single wave point at a time. For example:

IndexInt indices[MAX_DIMENSIONS];
double value[2]; // real part and imag part (if wave is complex)
int result;

MemClear(indices, sizeof(indices)); // Clear unused dimensions.
indices[0] = row;
indices[1] = column;
if (result = MDGetNumericWavePointValue(waveH, indices, value))

return result;
value[0] += 1; // Add one to real part
if (result = MDSetNumericWavePointValue(waveH, indices, value))

return result;

This example assumes that the wave has two dimensions and changes a value in a given row and column.

This method is simple because you deal with indices, not with pointers, and you don’t need to worry about
the numeric type of the data. The XOPSupport routines do any numeric conversions that are needed. It will
continue to work with future versions of Igor that support additional numeric types or use a different orga-
nization of data in memory. The downside of this method is that it is not as fast as possible. The reason for
this is that, each time you call either of the routines, it must calculate the address of the wave data specified
by the indices and then must convert the data to or from double-precision floating point (unless the wave
is already double precision).

When storing into an integer wave, MDSetNumericWavePointValue truncates the value that you are stor-
ing. If you want, you can do rounding before calling MDSetNumericWavePointValue.

Unless your application deals with large arrays and/or accesses the same data points over and over and
over again, the speed penalty will not be very noticeable and the point access method is a good one to
choose. This is also the recommended method if you are not comfortable dealing with pointers.

MDGetNumericWavePointValue and MDSetNumericWavePointValue use doubles which can not pre-
cisely represent integers of magnitude greater than 2^53. If you must use 64-bit integer waves and require
full precision for very large values, you must use The Direct Access Method (see page 126) or these rou-
tines which require Igor Pro 7.03 or later:

See 64-bit Integer Issues on page 215 for further discussion.

The Temporary Storage Access Method
In the temporary storage access method, you use MDGetDPDataFromNumericWave and MDStoreDP-
DataInNumericWave to transfer data between the wave and a temporary storage buffer that you create.
For example:

MDGetNumericWavePointValueSInt64 MDSetNumericWavePointValueSInt64

MDGetNumericWavePointValueUInt64 MDSetNumericWavePointValueUInt64

Chapter 7 — Accessing Igor Data

126

BCInt numBytes;
double* dPtr;
double* dp;
int result;

numBytes = WavePoints(waveH)*sizeof(double); // Bytes needed for copy
if (WaveType(waveH) & NT_CMPLX)// Complex data?

numBytes *= 2;
dPtr = (double*)WMNewPtr(numBytes);
if (dPtr==NULL)

return NOMEM;
if (result = MDGetDPDataFromNumericWave(waveH,dPtr)) {// Get copy.

WMDisposePtr((Ptr)dPtr);
return result;

}
dp = dPtr;
<Use dp to access wave data.>
result = MDStoreDPDataInNumericWave(waveH,dPtr); // Store data.
WMDisposePtr((Ptr)dPtr);

The data in the buffer is stored in row/column/layer/chunk order. This is explained in more detail Organi-
zation of Numeric Data in Memory on page 127.

Since the data in the buffer is always double-precision, regardless of the numeric type of the wave, this
method relieves you of having to deal with multiple data types and will continue to work with future ver-
sions of Igor that support additional numeric types. It will also work with future versions of Igor that use
a different organization of data in memory.

When storing into an integer wave, MDStoreDPDataInNumericWave truncates the value that you are stor-
ing. If you want, you can do rounding before calling MDStoreDPDataInNumericWave .

The disadvantage of this method is that it requires additional memory to hold the temporary copy of the
wave data. You also pay a small speed penalty for copying the data.

If you are comfortable with memory allocation and deallocation and with pointers to double-precision data
and if you are not willing to deal with the complexity of the direct access method (described below), then
the temporary storage method is recommended for you.

The temporary storage access method uses doubles which can not precisely represent integers of magni-
tude greater than 2^53. If you must use 64-bit integer waves and require full precision for very large val-
ues, you must use The Direct Access Method, described in the next section. See 64-bit Integer Issues on
page 215 for further discussion.

The Direct Access Method
The fastest and most difficult method is to use the MDAccessNumericWaveData routine to find the offset
from the start of the wave handle to the numeric data. For example:

BCInt dataOffset;
double* dp;
int result;

if (result=MDAccessNumericWaveData(waveH, kMDWaveAccessMode0, &dataOffset))
return result;

dp = (double*)((char*)(*waveH) + dataOffset);// DEREFERENCE

At this point, dp points to the numeric data in the wave. The data in the buffer is stored in row/col-
umn/layer/chunk order. This is explained in more detail under Organization of Numeric Data in Memory
on page 127. See Chapter 15 for an example illustrating the use of MDAccessNumericData.

There are three difficulties in using the direct access method.

Chapter 7 — Accessing Igor Data

127

The first and greatest difficulty is that you need to take into account the data type of the wave. Igor numeric
waves can be one of the 10 numeric types listed above. You need a different type of pointer to deal with
each of these data types. This is illustrated in the example for MDAccessNumericWaveData in the Wave-
Access sample XOP. If you are using C++, you can use a template to handle all of the data types.

The second difficulty is that, because you are pointing directly to the wave data, you need to know the
layout of the data in memory. If a future version of Igor changes this layout (not very likely), your XOP will
no longer work. Your XOP will not crash in that event, because the MDAccessNumericWaveData routine
will see that you have passed it “kMDWaveAccessMode0”. It will deduce from this that your XOP is treat-
ing the data in a way which, in the future version of Igor, is no longer appropriate. Thus, MDAccessNumer-
icWaveData will return a non-zero error code result which your XOP will return to Igor. You will see an
error alert in Igor telling you that your XOP is obsolete and needs to be updated. Using the WaveData XOP-
Support routine is functionally equivalent to using MDAccessNumericWaveData except that WaveData
does not provide this compatibility check.

The last difficulty involves resizing the wave which you do by calling ChangeWave, MDChangeWave or
MDChangeWave2. When you increase the size of a wave, the memory manager may be required to move
the block of memory holding the wave’s data in order to enlarge it. If that happens, any pointer to the wave
data that you previously acquired, such as the dp variable shown above, becomes a dangling pointer -
pointing to something that is no longer there. You must set the pointer again to make sure that it points to
the waves data. See Dangling Pointers on page 228 for further discussion.

Speed Comparisons
The WaveAccess sample XOP implements routines that fill a 3D wave using each of the wave access
methods described above. To try them, compile the WaveAccess XOP and install it in the Igor Extensions
folder. Launch Igor Pro and execute the following commands:

Make/N=(50,50,50) wave3D
Variable timerRefNum

// Enter the next three lines as one command line
timerRefNum = StartMSTimer
WAFill3DWaveDirectMethod(wave3D)
Print StopMSTimer(timerRefNum)/1e6

Repeat replacing WAFill3DWaveDirectMethod with WAFill3DWavePointMethod and
WAFill3DWaveStorageMethod.

The following times were recorded for filling a 200x200x200 double-precision wave using the release build
of WaveAccess. All tests were run on a 2010-vintage MacBook Pro with an Intel i7 laptop processor running
at 2.66GHz

Organization of Numeric Data in Memory
Using the direct or temporary storage wave access methods provides you with a pointer to wave data in
memory. You need to know how the data is organized so that you can access it in a meaningful way.

The pointer that you get using the direct access method is a pointer to the actual wave data in the block of
memory referenced by the wave handle. The pointer that you get using the temporary storage method is a
pointer to a copy of the data. Data is organized in the same way in each of these methods.

Operating System Direct Access Temp Storage Point Access

MacOS 10.6.3 0.018 s 0.086 s 0.214 s

Windows 7/64 0.031 0.103 0.176

Windows 7/64 Under VMWave Fusion 0.037 0.124 0.181

Chapter 7 — Accessing Igor Data

128

Numeric wave data is stored contiguously in one of the supported data types. To access a particular ele-
ment, you need to know the number of elements in each dimension. To find this, you must call MDGet-
WaveDimensions. This returns the number of used dimensions in the wave and an array of dimension
lengths. The dimension lengths are interpreted as follows:

The symbols ROWS, COLUMNS, LAYERS and CHUNKS are defined in IgorXOP.h as 0, 1, 2 and 3 respec-
tively.

For a wave of n dimensions, dimensionSizes[0..n-1] will be non-zero and dimensionSizes[n] will be zero.

The data is stored in row/column/layer/chunk order. This means that, as you step linearly through memory
one point at a time, you first pass the value for each row in the first column. At the end of the first column,
you reach the start of the second column. After you have passed the data for each column in the first layer,
you reach the data for the first column in the second layer. After you have passed the data for each layer,
you reach the data for the first layer of the second chunk. This ordering is called “column-major order”.

If the data is complex, the real and imaginary part of each data point are stored contiguously, with the real
part first.

Accessing Text Wave Data
This section describes how Igor stores text data and how you can use the XOPSupport wave access routines
to access the data. The routines mentioned here are described in detail in Chapter 15. The WaveAccess
sample XOP illustrates how to use them.

Each element of a text wave can contain any number of characters. There are no illegal characters. However,
if you store a binary 0 in a text wave element, Igor operations and functions, such as Print and sprintf, which
treat the element as a C string, will treat the 0 byte as the end of the string.

The organization of wave text data in memory is an implementation detail of Igor and you code can not
depend on it.

Igor6 stored all of the data for a text wave in the block of memory referenced by the wave handle, after the
wave structure information. The wave structure contained another handle in which Igor stores indices. The
indices told Igor where the text for any given element in the text wave began.

As of Igor7, Igor stores each text wave element in a separate block of memory referenced by a separate
pointer. This makes insertions and deletions much faster at the expense of greater memory usage.

You should not attempt to access the text data or the text indices directly. Instead, use the XOPSupport rou-
tines provide for getting and setting the contents of an element of a text wave. For example, here is a section
of the WAModifyTextWave routine in WaveAccess.cpp:

indices[1] = column;
for(row=0; row<numRows; row++) {

indices[0] = row;
if (result = MDGetTextWavePointValue(waveH, indices, textH))

goto done;
<Modify the text in textH>;
if (result = MDSetTextWavePointValue(waveH, indices, textH))

goto done;
}

Item Meaning

dimensionSizes[ROWS] Number of rows in a column.

dimensionSizes[COLUMNS] Number of columns in a layer. Zero for 1D waves.

dimensionSizes[LAYERS] Number of layers in a chunk. Zero for 1D and 2D waves.

dimensionSizes[CHUNKS] Number of chunks in the wave. Zero for 1D, 2D and 3D waves.

Chapter 7 — Accessing Igor Data

129

MDGetTextWavePointValue gets the contents of a particular element of the text wave which in this
example is a 2D wave. The contents are returned via the pre-existing textH handle. textH is allocated by and
belongs to the calling XOP, not to Igor.

textH contains just the characters in the specified element of the text wave. It does not contain a count byte,
a trailing null character or any other information. To find the number of characters in the element, use
WMGetHandleSize. If you want to treat the contents of the handle as a C string, you must null-terminate it
first. Remember to remove the null terminator if you pass this handle back to Igor. For further discussion
see Understand the Difference Between a String in a Handle and a C String on page 233.

If you can tolerate setting a maximum length for an element, you can use the XOPSupport GetCString-
FromHandle and PutCStringInHandle to move the text between the handle and a C string which is easier
to deal with. Using this technique, you don’t need to worry about adding or removing null terminators.

MDSetTextWavePointValue sets the specified element of the text wave. textH still belongs to the calling
XOP. Igor just copies the contents of textH into the wave.

For dealing with the entire contents of large text waves, MDGetTextWavePointValue and MDSetTextWave-
PointValue may be too slow. You can use the faster but more complicated GetTextWaveData and SetTex-
tWaveData routines which are described in Chapter 15.

Wave Scaling and Units
A wave has units and scaling for each dimension. In addition, it has units and full scale values for the data
stored in the wave. Consider the following example of a 1D wave which stores voltage versus time:

For a 1D wave, the row indices are also called point numbers. The X indices are calculated by Igor from the
row indices using the scaling information for dimension 0 of the wave. You can set this scaling using a "Set-
Scale x" command from within Igor and using the MDSetWaveScaling XOPSupport routine from an XOP.
You can set the X units using a "SetScale x" command from within Igor and using the MDSetWaveUnits
operation XOPSupport routine from an XOP.

You can set the data units and data full scale values using a "SetScale d" command from within Igor and
using the SetWaveUnits and SetWaveScaling XOPSupport routines from an XOP. The data full scale is not
analogous to the X scaling information. It merely is a record of the nominal full scale value for the data. For
example, if you acquired the data using a digital oscilloscope set to the +/- 10V range, you can record this
in the data full scale property of the wave. If this is not appropriate for your data, you can ignore the data
full scale.

Considering a 2D wave, we see that the concepts of row indices, X indices and X units are extended to 2
dimensions, yielding column indices, Y indices and Y units.

Row Index X Index
X Units

Data
Data Units

Data full scale = -10, 10

0

1

2

3

4

5

0.0 s

0.1 s

0.2 s

0.3 s

0.4 s

0.5 s

3.57 v

3.21 v

2.97 v

2.73 v

2.44 v

2.03 v

Chapter 7 — Accessing Igor Data

130

You can set both the X (row) and Y (column) units and scaling using a SetScale command from within Igor
and using the MDSetWaveUnits and MDSetWaveScaling XOPSupport routines from an XOP. If we
extend to three dimensions, we add Z (layer) units and scaling and still use the same routines to set them.

Note that, as you go from 1D to 2D, you still have only one data units string and one data full scale. This is
true no matter how many dimensions your wave has.

Killing Waves
You can kill a wave using the KillWave XOPSupport routine. Once you have killed a wave, you must not
use any wave handle referencing it.

Igor disallows the killing of a wave that is displayed in a graph or table or used in a dependency formula.
If you try to kill such a wave, you will receive an error.

Igor itself, the Igor user, a user-defined procedure or another XOP can also kill a wave. This can happen
while your XOP code is running only if you do a callback to Igor. Most callbacks will not kill any waves but
some, such as XOPCommand or CallFunction, can call user procedures which can do anything.

You can prevent the killing of a wave by responding to the OBJINUSE message, as described in the next
section.

If a wave is killed and you subsequently use a wave handle referencing the killed wave, a crash is likely to
occur.

Preventing the Killing of a Wave
As Igor disallows the killing of a wave displayed in a graph, which would undermine the graph, you may
want to disallow the killing of a wave that you are using over an indefinite period, such as a wave into
which you are acquiring data. You can do this by responding to the OBJINUSE message.

Before killing a wave, Igor sends the OBJINUSE message to each XOP. If the XOP reports that the wave is
in use, Igor refuses to kill it.

The OBJINUSE message is sent to XOPs only from the main Igor thread. It is not sent when an Igor preemp-
tive thread is executing because the XOP message protocol is not threadsafe.

Responding to the OBJINUSE message prevents a wave from being killed while another technique, wave
reference counting discussed on page 131, prevents it from being deleted. Wave reference counting is espe-
cially important if you are doing multithreading. It is discussed in the next section.

If your code may deal with waves from both the main Igor thread and a preemptive Igor thread, and if there
is any chance that the wave may be killed while you are holding a reference to it, you should use both the
OBJINUSE message and wave reference counting.

Row Index X Index
X Units

Data
Data Units

Data full scale = -10, 10

Data
Data Units

Data
Data Units

Column Index

Y Index and Units

0

1

2

3

4

5

0.0 s

0.1 s

0.2 s

0.3 s

0.4 s

0.5 s

3.57 v

3.21 v

2.97 v

2.73 v

2.44 v

2.03 v

8.24 v

8.44 v

8.76 v

8.94 v

9.31 v

9.45 v

0.14 v

0.26 v

0.33 v

0.47 v

0.52 v

0.55 v

0 1 2

0.0 m 2.5 m 5.0 m

Chapter 7 — Accessing Igor Data

131

When a new experiment is loaded or Igor quits, all objects are killed, whether they are in use or not. There-
fore, if your XOP holds a handle to a wave, it must clear that handle and cease accessing the wave when
Igor sends you the NEW or CLEANUP messages.

See page 59 for further discussion of the OBJINUSE message.

Wave Reference Counting
The information in this section is needed only for advanced XOPs.

Internally in Igor, a wave reference is a memory location that contains a waveHndl.

An Igor user can create a wave reference by executing a WAVE statement in a user-defined function, by
passing a wave as a parameter from one user-defined function to another, by setting a WAVE field in a
structure and by setting an element of a wave wave. (A wave wave is a wave containing wave references
created by Make/WAVE.)

An XOP holds a reference to a wave in a waveHndl variable.

If the underlying wave is deleted and Igor or an XOP subsequently attempts to use the waveHndl variable,
a crash results. A technique is needed to prevent such crashes.

Internally Igor uses reference counting to determine when there are no more references to a wave in which
case it is safe to delete it. The HoldWave and ReleaseWave XOPSupport routines allow XOPs to participate
in reference counting.

When a regular (non-free) wave is created, Igor links the wave into its data folder. This link consitutes a
reference to the wave, so Igor sets the wave’s reference count to 1.

By contrast, a free wave is not part of any data folder. Therefore its reference count at creation is 0.

HoldWave increments the reference count of a wave. ReleaseWave decrements it and, if the count goes to
zero or below, deletes the wave.

HoldWave and ReleaseWave were added in Igor Pro 6.20. If you call them with an earlier version of Igor,
they will return IGOR_OBSOLETE and do nothing.

Killing Versus Deleting a Wave
There is a subtle distinction between killing a wave and deleting it. "Killing" means unlinking a wave from
its data folder so that it no longer appears in the data hierarchy. "Deleting" means freeing the memory
holding the wave's structure and data. Though we usually think of deleting as an integral part of killing, a
wave can be killed without being immediately deleted.

Understanding this distinction helps to understand the purpose and mechanics of wave reference counting.
This example user-defined function may clarify the distinction:

Function Test()
String name = "jack"

// Igor creates wave jack and sets the reference count to 0.
// Igor then links jack into the current data folder.
// The link constitutes a reference to the wave so Igor
// increments the reference count to 1.
Make/O/N=10 $name = p

// We create another reference to the wave and the reference count
// is incremented to 2.
Wave w = $name

Print WaveExists(w), WaveType(w) // Verify that the wave is alive

// We create another reference to the wave and the reference count

Chapter 7 — Accessing Igor Data

132

// is incremented to 3.
Wave w2 = $name

// This statement unlinks the wave from the data folder AND clears w
// but w2 still references the wave. The unlinking and the clearing
// both decrement the reference count so it winds up at 1.
// Because it is not zero, the wave is not deleted.
KillWaves w

// This statement prints "0,0" because a killed wave is considered
// to not exist even though it has not yet been deleted.
Print WaveExists(w2), WaveType(w2)

End // w2 goes out of scope. Igor decrements the reference count to 0
// and the wave is deleted.

Reference counting prevents the untimely deletion of a wave but does not prevent it from being killed. The
OBJINUSE message, discussed under Preventing the Killing of a Wave on page 130, prevents a wave from
being killed.

If your code may deal with waves from both the main Igor thread and a preemptive Igor thread, and if there
is any chance that the wave may be killed or deleted while you are holding a reference to it, you should use
both the OBJINUSE message and wave reference counting.

XOPs and Wave Reference Counting
An XOP may "hold" a wave handle. "Hold" means that you are storing a waveHndl over a period of time
during which Igor could possibly delete it. HoldWave allows you to tell Igor that the wave should not be
deleted until you subsequently call ReleaseWave.

For example, a data acquisition XOP that stores data in a wave during IDLE messages would typically store
the wave handle in a global variable and write to that wave each time it receives an IDLE message. It is
important that Igor not delete the wave while the XOP is holding a reference to it.

This example illustrates the use of HoldWave/ReleaseWave in a simple data acquisition application:

static waveHndl gWaveH = NULL; // Global to hold data acq wave

int
StartAcq() // Called from your StartAcq operation or function
{

gWaveH = FetchWave("jack");
if (gWaveH == NULL)

return NOWAV;

// Tell Igor we are holding this wave handle
HoldWave(gWaveH);

. . .
}

int
DoAcq() // Called from IDLE message
{

if (gWaveH == NULL)
return NOWAV; // gWaveH should not be NULL during data acq

. . . // Acquire data into the wave
}

int
EndAcq() // Called from your EndAcq operation or function
{

if (gWaveH == NULL)

Chapter 7 — Accessing Igor Data

133

return DATA_ACQ_NOT_RUNNING;

// Tell Igor we are no longer holding a reference to the wave
ReleaseWave(&gWaveH); // NOTE: Sets gWaveH to NULL
. . .

}

Note that ReleaseWave sets your wave handle (gWaveH in this example) to NULL and it is no longer valid.

You also should call HoldWave and ReleaseWave if you are doing a callback to Igor and the callback could
possibly delete the wave - for example, if you are doing an XOPCommand callback or a CallFunction call-
back to run a user-defined function that could kill the wave. This is needed because you are holding a ref-
erence to the wave over a period of time in which it could be deleted.

If you are just using the wave handle temporarily during the execution of your external function or opera-
tion and you make no calls that could potentially delete the wave then you do not need to and should not
call HoldWave and ReleaseWave.

If you are not sure if the wave could be deleted while you are holding it, call HoldWave/ReleaseWave. The
extra pair of calls will do no harm besides the time they take.

Structure Parameters and Wave Reference Counting
Normally you will call both HoldWave and ReleaseWave yourself but there is an infrequently encountered
case where Igor will call ReleaseWave instead of you.

If you define an external function or operation with a structure parameter and the structure contains a
WAVE field and your XOP returns a wave handle to the calling user-defined function by setting the WAVE
field, you must call HoldWave on the wave because the WAVE field holds a new reference to the wave.

You then return to the calling user-defined function. When it finishes and the structure goes out of scope,
Igor calls ReleaseWave on the structure WAVE field. In this case, you are passing responsibility for refer-
ence counting to the calling user-defined function which is then responsible for matching your HoldWave
with its own ReleaseWave.

If the WAVE field previously held a wave reference then Igor will have previously called HoldWave on the
wave. By storing into the field, you are eliminating a reference to whatever wave was previously referenced
so you must release the previous wave reference first.

Putting it all together, your code would look like this:

// Structure of parameter to external operation or function.
struct WaveRefExampleStruct {

waveHndl waveH; // Input wave and output wave reference
};
typedef struct WaveRefExampleStruct WaveRefExampleStruct;

// Parameter structure sent from Igor to XOP
struct WaveRefExampleParam {

WaveRefExampleStruct* sp; // Pointer to a user-defined structure
double result;

};
typedef struct WaveRefExampleParam WaveRefExampleParam;

// Called from Igor by: result = WaveRefExample(<structure>)
int WaveRefExample(struct WaveRefExampleParam* p)
{

struct WaveRefExampleStruct* sp;
waveHndl newWaveH;
int err = 0;

sp = p->sp;

Chapter 7 — Accessing Igor Data

134

if (sp == NULL) {
err = EXPECT_STRUCT;
goto done;

}

newWaveH = FetchWave("jack"); // NULL if jack does not exist

if (sp->waveH != newWaveH) { // No release or hold needed if same
// We are going to store a wave handle in sp->waveH. This constitutes
// a new reference to that wave. But there may already be a wave handle
// in sp->waveH. In that case, storing into sp->waveH eliminates
// a reference to the original wave so we must release it.

// Sets sp->waveH to NULL. Does nothing if sp->waveH is already NULL.
ReleaseWave(&sp->waveH); // Release original wave if any

sp->waveH = newWaveH; // NULL if jack does not exist

// Structure field constitutes a new reference to wave jack
if (sp->waveH != NULL)

HoldWave(sp->waveH); // Hold wave referenced by structure field
}

done:
p->result = err;

// We now return to the calling user-defined function which is
// responsible for calling ReleaseWave on sp->waveH.

return err;
}

New Experiment and Wave Reference Counting
When an experiment is closed, either through New Experiment, opening another experiment or quitting
Igor, all waves are killed whether you are holding them or not. Consequently, you must do something like
this when your XOPEntry routine receives the NEW or CLEANUP message:

case NEW: // New experiment
case CLEANUP: // About to quit

// Wave about to be killed. Make sure global reference is NULL.
if (gWaveH != NULL)

ReleaseWave(&gWaveH); // Sets gWaveH to NULL

Wave Reference Waves
A wave reference wave is a wave that contains references to other waves in the form of waveHndls. Such a
wave can be used, for example, to pass a variable length list of waves to a user-defined function. Wave ref-
erence wave were added to Igor in Igor Pro 6.10. The contents of a given element of a wave reference wave
is a wave handle or NULL.

You can create a wave reference wave by passing WAVE_TYPE as the dataType parameter to MakeWave
and MDMakeWave.

Igor does not permit making complex wave reference waves.

Use the HoldWave callback routine after storing a wave handle in a wave reference wave element. To clear
an element, use ReleaseWave. Using HoldWave and ReleaseWave is necessary to maintain the integrity of
Igor’s internal reference counting mechanism.

Chapter 7 — Accessing Igor Data

135

Data Folder Reference Waves
A data folder reference wave is a wave that contains references to data folders in the form of DataFolder-
Handles. Such a wave can be used, for example, to pass a variable length list of data folders to a user-
defined function. Data folder reference waves were added to Igor in Igor Pro 6.10. The contents of a given
element of a data folder reference wave is a data folder handle or NULL.

You can create a data folder reference wave by passing DATAFOLDER_TYPE as the dataType parameter
to MakeWave and MDMakeWave.

Igor does not permit making complex data folder reference waves.

Use the HoldDataFolder callback routine after storing a data folder handle in a data folder reference wave
element. To clear an element, use ReleaseDataFolder. Using HoldDataFolder and ReleaseDataFolder is
necessary to maintain the integrity of Igor’s internal reference counting mechanism.

Free Waves
Free waves are temporary waves that are not part of Igor’s data hierarchy. They are created in user-defined
functions and cease to exist when the function returns. You should create a free wave when the user
requests it through a /FREE flag or some other parameter or when you need a wave for your own temporary
use.

Free waves were added in Igor Pro 6.10 but to make a free wave from an XOP requires Igor Pro 6.20 or later.

You can make a free wave using MDMakeWave but it is more common to make a free wave as a destination
wave using GetOperationDestWave. In either case, you must check that you are running with Igor Pro 6.20
before trying to create a free wave.

Free Waves and Wave Reference Counting
The lifetime of a free wave, like that of a regular (non-free) wave, is controlled by its reference count. See
Wave Reference Counting on page 131 for background information.

When a regular wave is created, Igor links the wave into its data folder. This link consitutes a reference to
the wave, so Igor sets the wave’s reference count to 1.

By contrast, a free wave is not part of any data folder. Therefore its reference count at creation is 0.

When you create a free wave, you must call HoldWave on it to increment the reference count, and then,
when you are finished with it, call ReleaseWave to decrement the reference count.

Igor deletes the wave (free or regular) when its reference count is decremented to 0 or below. The reference
count is decremented when you call ReleaseWave or KillWave. It can also be decremented by Igor, the user
or another XOP if they have access to the free wave’s handle.

Using reference counting, through HoldWave and ReleaseWave rather than KillWave, is the preferred
approach for free waves. However, KillWave does internally call ReleaseWave which decrements the
wave’s reference count and, if the count goes to zero or below, deletes it.

You can determine if a wave is a free wave by calling GetWavesDataFolder. If it returns a NULL data folder
handle then the wave is free.

Free Wave Reference Counting Examples
To help you think about free waves and reference counting, here are some examples. “wRefCount” is used
to represent Igor’s internal reference count for a wave.

In the first example, a user-defined function creates a free wave and passes it to an XOP which uses it only
during the external function call. The external function call does not do any callbacks to Igor that could
cause the reference count to be decremented. The XOP does not need to call HoldWave/ReleaseWave.

Chapter 7 — Accessing Igor Data

136

Function Example1()
// A free wave is created. wRefCount = 0.
// A reference to the wave is stored in w. wRefCount = 1.
Wave w = NewFreeWave(10,2)

// The free wave is passed to an XOP which uses it only momentarily.
XOPFunction1(w)

End // w goes out of scope, wRefCount is decremented to 0, wave is deleted.

Although there is no need for the XOP to call HoldWave/ReleaseWave, doing so would not cause a problem
other than taking some time.

In the next example, a user-defined function creates a free wave and passes it to an XOP which copies it to
a global variable and then returns to Igor. The XOP later accesses the wave through the global variable.
Because it is holding a wave reference over a period of time during which it could be deleted, the XOP must
call HoldWave.

Function Example2()
// A free wave is created. wRefCount = 0.
// A reference to the wave is stored in w. wRefCount = 1.
Wave w = NewFreeWave(10,2)

// The free wave is passed to an XOP which stores it in a global waveHndl.
// The XOP calls HoldWave on it. wRefCount = 2.
XOPFunction2(w)

End // w goes out of scope, wRefCount is decremented to 1.
// Since wRefCount > 0, the wave is not deleted.

... // Time passes during which the XOP receives IDLE messages.
// The XOP access the wave during these messages.

// The XOP, finished with the wave, calls ReleaseWave on the global waveHndl.
// wRefCount goes to 0 and the wave is deleted.

Storing the wave handle in the global variable constitutes holding a reference to the wave. Therefore the
XOP must call HoldWave. If it did not, when the Example2 user-defined function returned, the wave would
be deleted, leaving the XOP holding and invalid wave handle.

In the next example, the XOP creates a free wave for use during the invocation of an external function only.

// Create free wave with wRefCount = 0.
waveHndl freeWaveH;
MDMakeWave(&freeWaveH, "free", (DataFolderHandle)-1,

dimensionSizes, NT_FP64, 1);
HoldWave(freeWaveH); // wRefCount = 1.
<Use freeWaveH>
ReleaseWave(&freeWaveH); // wRefCount = 0 and wave is deleted.

If the XOP does nothing that could possibly delete the wave, the call to HoldWave is not strictly required
but it it is recommended since the code could later be changed such that the wave could be deleted.

If the XOP did not call ReleaseWave, the free wave would never be deleted and this would constitute a leak.

In the final example, the XOP creates a free wave and, using CallFunction, passes it to a user-defined func-
tion.

// Create free wave with wRefCount = 0.
waveHndl freeWaveH;
MDMakeWave(&freeWaveH, "free", (DataFolderHandle)-1, dims, NT_FP64, 1);
HoldWave(freeWaveH); // wRefCount = 1

<Pass freeWaveH to a user-defined function via CallFunction>

Chapter 7 — Accessing Igor Data

137

Function UserFunction(w)
Wave w // Creation of wave parameter. wRefCount = 2.
...

End // w goes out of scope. wRefCount = 1.

<XOP uses freeWaveH>

ReleaseWave(&freeWaveH); // wRefCount = 0 and wave is deleted.

In this case, if the XOP did not call HoldWave, wRefCount would go to 0 and the wave would be deleted
prematurely when the user-defined function returned.

Chapter 7 — Accessing Igor Data

138

Numeric and String Variables
This section decribes accessing variables other than an Operation Handler operation’s runtime output vari-
ables (e.g., V_flag). For information on setting runtime output variables see Runtime Output Variables on
page 94. Except for that technique, it is not possible for an XOP to set a function local variable. This section
pertains to global variables and macro local variables.

Unlike waves, global and macro local variables are not defined by handles. Instead, Igor maintains an inter-
nal table of variable names and values.

A numeric variable is always double-precision real (NT_FP64) or double-precision complex (NT_FP64 |
NT_CMPLX).

The content of a string variable is stored in a block of memory referenced by a handle but this is not the
same as a wave handle. In the case of the wave handle, the handle contains the wave structure as well as
the wave data. Consequently, the wave handle completely defines a wave. In the case of a string variable,
the handle contains just the variable’s data. It does not contain the string variable’s name or a reference to
its data folder.

A string handle contains the string’s text, with neither a count byte nor a trailing null byte. Use WMGetH-
andleSize to find the number of characters in the string. To use C string functions on this text you need to
copy it to a local buffer and null-terminate it or add a null terminator to the handle. If you pass the handle
back to Igor, you must remove the null terminator. For further discussion see Understand the Difference
Between a String in a Handle and a C String on page 233.

If you can tolerate setting a maximum length for a string, you can use the XOPSupport GetCString-
FromHandle and PutCStringInHandle to move the text between the handle and a C string which is easier
to deal with. Using this technique, you don’t need to worry about adding or removing null terminators.

The XOPSupport library provides routines to create variables, kill variables, get the value of variables and
set the value of variables. All of these routines require that you pass the variable name to Igor. Some rou-
tines also allow you to specify the data folder in which the variable is to be created or found. Those routines
that do not allow you to specify the data folder work in the current data folder.

Chapter 7 — Accessing Igor Data

139

Routines for Accessing Variables
The XOPSupport routines for dealing with variables are described under Routines for Accessing Variables
on page 291. Here is a summary of the commonly-used routines.

Creating Variables

Getting Variable Contents

Setting Variable Contents

Routine Description

Variable Creates an Igor numeric or string variable.

This routine is antiquated. The following routines are recommened.

SetIgorIntVar Creates if necessary and then sets a numeric variable to an integer value.

SetIgorFloatingVar Creates if necessary and then sets a numeric variable to a floating point
value.

SetIgorComplexVar Creates if necessary and then sets a numeric variable to a complex
floating point value.

SetIgorStringVar Creates if necessary and then sets a string variable.

Routine Description

FetchNumVar Gets the value of a numeric variable.

FetchStrVar Gets up to 255 characters from a string variable.

FetchStrHandle Gets any number of characters from a string variable.

GetDataFolderObject Gets the value of numeric or string variable.

Routine Description

StoreNumVar Sets the value of a numeric variable.

SetIgorIntVar Creates if necessary and then sets a numeric variable to
an integer value.

SetIgorFloatingVar Creates if necessary and then sets a numeric variable to
a floating point value.

SetIgorComplexVar Creates if necessary and then sets a numeric variable to
a complex floating point value.

SetIgorStringVar Creates if necessary and then sets a string variable.

SetFileLoaderOutputVariables Specialized for file-loader XOPs.

SetFileLoaderOperationOutputVariables Specialized for file-loader XOPs. Called from direct
external operations only.

SetDataFolderObject Sets the value of numeric or string variable.

Chapter 7 — Accessing Igor Data

140

Example
Here is a simple example that illustrates creating numeric and string variables and getting and setting their
values. The underlined items are functions, constants or structures defined in the XOPSupport library and
headers.

static int
MakeVariables(void)
{

char varName[MAX_OBJ_NAME+1];
double realVal, imagVal;
char strValue[256];
int err;

strcpy(varName, "numVar0");
realVal = 3.14159;
if (err= SetIgorFloatingVar(varName, &realVal, 1)) // Create and set

return err;
if (FetchNumVar(varName, &realVal, &imagVal)==-1) // Fetch value

return EXPECTED_VARNAME;

strcpy(varName, "strVar0");
strcpy(strValue, "This is a string variable.");
if (err= SetIgorStringVar(varName, strValue, 1)) // Create and set

return err;
if (err= FetchStrVar(varName, strValue)) // Fetch value

return err;

return 0;
}

The last parameter in the SetIgorFloatingVar and SetIgorStringVar routines requests that Igor make the
variables global. If this parameter were zero and if our routine were called during the execution of a macro,
Igor would make the variables local to the macro. You can not create a local variable in a user-defined func-
tion at runtime as these are created by Igor when the function is compiled.

For a discussion of creating output variables from an external operation, analogous to the V_ variables
created by many Igor operations, see Runtime Output Variables on page 94.

The string part of this example uses routines that take and return C strings. This is easier than dealing with
the actual string variable handle and is fine as long as the string variable contains 255 or fewer characters.

This example works in the current data folder. In most cases, this is the appropriate behavior.

Chapter 7 — Accessing Igor Data

141

Dealing With Data Folders
Data folders provide a way to store waves, numeric variables, string variables and other data folders in a
hierarchy. Data folders are analogous to file system folders. However, data folders are maintained entirely
by Igor.

If you save an Igor experiment in a packed experiment file, the entire data folder hierarchy is saved in the
packed file. If you save an experiment in an unpacked file, Igor creates file system folders to mirror the data
folder hierarchy. Because these file system folders are created only when you save an experiment unpacked,
you should not assume that a file system folder exists to mirror any given Igor data folder. You should think
of data folders as a hierarchy maintained by Igor in memory and saved to disk for storage purposes.

Igor stores information about a data folder in a DataFolderHandle. Each XOPSupport routine that deals
with data folders returns a DataFolderHandle to you and/or requires a DataFolderHandle from you. You
have no way of knowing and do not need to know the internal details of DataFolderHandles. They are black
boxes. You merely receive them from Igor and pass them back to Igor. DataFolderHandles belong to Igor
so you must not modify or dispose them.

When you get a DataFolderHandle from Igor, you typically use it momentarily and do not retain it. For
most applications, you should avoid storing it long-term because it will become invalid if the user kills the
data folder or opens a new experiment.

Chapter 7 — Accessing Igor Data

142

Routines for Accessing Data Folders
The XOPSupport routines for dealing with data folders are described in detail in Chapter 15. Most of them
exist for the benefit of the Igor Data Browser, which is an XOP, and for other sophisticated XOPs. Here are
the data folder routines that are most likely to be of use for a typical data-folder-aware XOP.

Getting a Handle to a Data Folder

Creating and Killing a Data Folder

Accessing Objects in a Data Folder

If you ignore the data-folder-related XOPSupport routines, your XOP will work in the current data folder.
This is the appropriate behavior for many applications. Also, no special effort is required to work with exist-
ing waves in any data folder. Once you have the wave handle, you can manipulate the wave without
knowing which data folder it resides in.

Routine Description

GetRootDataFolder Returns a handle to the root data folder.

GetCurrentDataFolder Returns a handle to the current data folder.

GetNamedDataFolder Returns a handle to a data folder, given its name or path.

GetWavesDataFolder Returns a handle to the data folder containing a particular wave.

GetParentDataFolder Returns a handle to the parent of the specified data folder.

GetNumChildDataFolders Returns the number of child data folders within a particular
data folder.

GetIndexedChildDataFolder Returns a handle to the specified data folder within a particular
data folder.

GetDataFolderByIDNumber Returns a handle to a data folder identified by an ID number
that you previously obtained from GetDataFolderIDNumber.

Routine Description

NewDataFolder Creates a new data folder.

DuplicateDataFolder Duplicates an existing data folder and its contents.

KillDataFolder Kills a data folder.

Routine Description

GetNumDataFolderObjects Returns the number of objects (waves, numeric variables, string
variables, data folders) in a particular data folder.

GetIndexedDataFolderObject Returns the name of a particular object.

GetDataFolderObject Returns information about a particular object.

SetDataFolderObject Sets information about a particular object.

KillDataFolderObject Kills a particular object.

DuplicateDataFolderObject Duplicates a particular object.

Chapter 7 — Accessing Igor Data

143

Data Folder Conventions
One of the points of using data folders is to reduce clutter. If your XOP requires a lot of private waves and/or
variables, you should create a data folder to contain your private storage. By convention, data folders for
this purpose are stored in another data folder named Packages which is in the root. This is discussed in the
programming section of the Igor Pro manual.

Here is some code that will create a data folder for your private storage inside the Packages data folder.

static int
GetPrivateDataFolderHandle(char* dataFolderName, DataFolderHandle* dfHPtr)
{

DataFolderHandle rootDFH, packagesDFH;
int err;

if (err = GetRootDataFolder(0, &rootDFH))
return err;

if (err = GetNamedDataFolder(rootDFH, "Packages", &packagesDFH)) {
// We need to create Packages.
if (err = NewDataFolder(rootDFH, "Packages", &packagesDFH))

return err;
}

if (err = GetNamedDataFolder(packagesDFH, dataFolderName, dfHPtr)) {
// We need to create our private data folder.
if (err = NewDataFolder(packagesDFH, dataFolderName, dfHPtr))

return err;
}

return 0;
}

You would call this routine like this:

DataFolderHandle privateStorageDFH;
if (err = GetPrivateDataFolderHandle("MyPrivateData", &privateStorageDFH))

return err;

Of course, you should choose a name for your data folder that will make it clear what it is for and is specific
enough to avoid conflicts with other packages.

Because the user can kill a data folder, intentionally or inadvertently, you should not store the data folder
handle but instead should obtain it from Igor, as shown above, each time you need to use it. Another option
is to use the GetDataFolderIDNumber and GetDataFolderByIDNumber routines, listed in Chapter 15.
Advanced programmers may want to use data folder reference counting, described in the next section.

Data Folder Reference Counting
An XOP may "hold" a data folder handle. "Hold" means that you are storing a DataFolderHandle over a
period of time during which Igor could possibly delete it.

Most XOPs have no need to hold data folders. The information in this section is needed only for advanced
XOPs.

Igor Pro 6 and later implement data folder reference counting. Igor keeps a reference count for each data
folder. This count is used to determine if a data folder is in use.

As of Igor Pro 6.20, XOPs can participate in data folder reference counting. If your XOP obtains a data folder
handle and holds it after the XOP returns to Igor, you should call HoldDataFolder to increment Igor's inter-
nal reference count for that data folder. When you no longer need to access the data folder, you must call

Chapter 7 — Accessing Igor Data

144

ReleaseDataFolder. ReleaseDataFolder decrements the data folder reference count and, if the count reaches
zero, deletes the data folder.

For example, a data acquisition XOP that stores data in a data folder during IDLE messages might store the
data folder handle in a global variable and write to that data folder each time it receives an IDLE message.
It is important that Igor not delete a data folder while the XOP is holding a reference to it. To prevent the
deletion, the XOP must call HoldDataFolder and then ReleaseDataFolder when you are finished with it.

You also should call HoldDataFolder and ReleaseDataFolder if you are doing a callback to Igor and the call-
back could possibly delete the data folder - for example, if you are doing an XOPCommand callback or a
CallFunction callback to run a user-defined function that could kill the data folder. This constitutes "hold-
ing the data folder" because you are holding a reference to the data folder over a period of time in which it
could be deleted. Therefore you should call HoldDataFolder to tell Igor you are using it and ReleaseData-
Folder when you are no longer using it.

If you are just using the data folder handle temporarily during the execution of your external function or
operation and you make no calls that could potentially delete the data folder then you do not need to and
should not call HoldDataFolder and ReleaseDataFolder.

The code for holding and releasing a data folder is very similar to the code for holding and releasing a wave.
See Wave Reference Counting on page 131 for sample code.

If you are running with an Igor version prior to 6.20, HoldDataFolder does nothing and returns
IGOR_OBSOLETE. If you must run with a version earlier than 6.20, you have no way to prevent the killing
of a data folder. Therefore you should use a different strategy. See GetDataFolderIDNumber and GetData-
FolderByIDNumber for further information.

Structure Parameters and Data Folder Reference Counting
Once you have called HoldDataFolder on a data folder, Igor will not delete it until ReleaseDataFolder has
been called on it.

Normally you will call ReleaseDataFolder yourself but there is an infrequently-encountered case where
Igor will call ReleaseDataFolder on it.

If you define an external function or operation with a structure parameter and the structure contains a
DFREF field and your XOP returns a data folder handle to the calling user-defined function by setting the
DFREF field, you must call HoldDataFolder on the data folder because the DFREF field holds a new refer-
ence to the data folder.

You then return to the calling user-defined function. When it finishes and the structure goes out of scope,
Igor calls ReleaseDataFolder on the structure DFREF field. In this case, you are passing responsibility for
reference counting to the calling user-defined function which is then responsible for matching your Hold-
DataFolder with its own ReleaseDataFolder.

If the DFREF field previously held a data folder reference then Igor will have previously called HoldData-
Folder on the data folder. By storing into the field, you are eliminating a reference to whatever data folder
was previously referenced so you must release the previous data folder reference first.

See Structure Parameters and Wave Reference Counting on page 133 for code showing how to put this all
together in the case of a wave reference structure field. The pattern is the same for a data folder reference
field.

New Experiment and Data Folder Reference Counting
When an experiment is closed, either through New Experiment, opening another experiment or quitting
Igor, all data folders are killed whether you are holding them or not. Consequently, you must release any
data folder that you are holding by calling ReleaseDataFolder when you receive the NEW or CLEANUP
messages from Igor.

Chapter 8
I-8Adding Menus and Menu Items

Overview
When Igor starts up, it examines each XOP file looking for resources that define menus, menu items and
submenus that the XOP adds to Igor.

An XOP may elect to add no menus or menu items to Igor. For example, an XOP that does no more than
add an operation or function to Igor does not need a menu or menu item. The XOP should contain none of
the resources discussed below. If you are writing an XOP of this kind, you don’t need to read this chapter.

A more elaborate XOP may need to add:

• A single menu item to a built-in Igor menu
For example, an XOP that adds a number-crunching operation to Igor might want to simply add one
menu item to Igor’s Analysis menu.

• A single menu item to multiple built-in Igor menus
For example, an XOP that allows Igor to load and save a particular file format might want to add
one menu item to Igor’s Load Waves menu and another menu item to Igor’s Save Waves menu.

• A menu item with an attached submenu
For example, an XOP that adds a family of number-crunching operations to Igor might want to add
a submenu to Igor’s Analysis menu.

• A menu in Igor’s main menu bar
For example, an XOP that adds significant functionality to Igor, such as a data acquisition system,
might want to add a main menu bar menu.

An XOP adds menu items, submenus and main menu bar menus by defining resources that describe what
is to be added and by responding to menu-related messages sent by Igor.

The MenuXOP1 sample XOP illustrates all of the scenarios listed above. It also shows how an XOP can
determine which of its menu items has been selected and how to access each menu item to enable or disable
it.

This chapter discusses many different ways for an XOP to use menus, submenus, and menu items. If your
XOP merely adds a single unchanging menu item to Igor, you can skip down to the section Adding Menu
Items to Igor Menus on page 148. This explains how to use an XMI1 resource to add a menu item. Then
add code to your XOPEntry routine to respond when Igor sends a MENUITEM message. That is all you
need to know to add a single menu item.

XOPSupport Menu Routines
This section gives a brief description of menu support routines provided by the XOPSupport library. You
need to know this only if your XOP adds, removes, or modifies menus or menu items.

Chapter 8 — Adding Menus and Menu Items

146

Most of these routines were added in XOP Toolkit 6.40 to replace ancient routines that were based on the
Macintosh Menu Manager. Although added in XOP Toolkit 6.40, they work with all versions of Igor with
minor exceptions.

If you are updating an existing XOP to use the routines added in XOP Toolkit 6.40, see XOP Menus in XOP
Toolkit 7 on page 421.

Summary of XOPSupport Menu Routines
Here are the XOPSupport menu routines:

Routine What It Does

ResourceToActualMenuID Given the ID of a MENU resource in the XOP's resource fork,
returns the actual menu ID of that menu in memory.

ActualToResourceMenuID Given the ID of a menu in memory, returns the resource ID of
the MENU resource in the XOP's resource fork.

ResourceToActualItem Given the ID of a built-in Igor menu and the number of a menu
item specification in the XMI1 resource in the XOP's resource
fork, returns the actual item number of that item in the Igor
menu.

ActualToResourceItem Given the ID of a built-in Igor menu and the actual number of a
menu item in the Igor menu, returns the number of the
specification in the XMI1 resource in the XOP's resource fork for
that item.

SetIgorMenuItem Enables or disables a built-in Igor menu item.

XOPActualMenuIDToMenuRef Given the actual menu ID of an XOP menu in memory, returns
a menu reference for the XOP menu.

XOPResourceMenuIDToMenuRef Given the ID of a MENU resource in the XOP's resource fork,
returns a menu reference for that menu.

XOPGetMenuInfo Returns information about a menu.

XOPCountMenuItems Returns the number of items in a menu.

XOPShowMainMenu Makes a menu appear in the menu bar if it was previously
hidden.

XOPHideMainMenu Removes the menu from the menu bar if it was previously
showing.

XOPGetMenuItemInfo Returns information about a menu item.

XOPGetMenuItemText Returns the text from an XOP menu item.

XOPSetMenuItemText Sets the text of an XOP menu item.

XOPAppendMenuItem Adds a menu item to the end of an XOP menu.

XOPInsertMenuItem Inserts a menu item in an XOP menu.

XOPDeleteMenuItem Removes a menu item from an XOP menu.

XOPDeleteMenuItemRange Removes a range of menu items from from an XOP menu.

XOPEnableMenuItem Enables a menu item.

XOPDisableMenuItem Disables a menu item.

XOPCheckMenuItem Checks or unchecks a menu item.

XOPFillMenu Inserts multiple items into an XOP menu.

Chapter 8 — Adding Menus and Menu Items

147

XOPMenuRefs
An XOPMenuRef is a pointer managed by Igor. Most XOPSupport menu routines take an XOPMenuRef as
a parameter to identify the menu of interest. You obtain an XOPMenuRef for a menu that your XOP added
to Igor by calling XOPResourceMenuIDToMenuRef.

When running with Igor Pro 6 on Macintosh an XOPMenuRef is a Macintosh Menu Manager MenuHandle.
When running with Igor Pro 6 on Windows an XOPMenuRef is a handle created internally by Igor that
emulates a Macintosh MenuHandle. When running with Igor Pro 7 an XOPMenuRef a pointer to an Igor
C++ object. Each version of Igor handles XOPMenuRefs in its own way and you do not need to be concerned
about the details.

Here is an example that illustrates the use of XOPMenuRefs:

XOPMenuRef menuRef;
menuRef = XOPResourceMenuIDToMenuRef(100); // Get XOP’s menu reference.
if (menuRef != NULL) { // Always test before using.

XOPDisableItem(menuRef, 1); // Disable the first item.
XOPSetMenuItemText(menuRef, 2, "Capture Image");// Set text of second item.

}

XOPResourceMenuIDToMenuRef is an XOPSupport routine and is described under Getting Your Menu
Reference on page 151.

As shown you should always test a menu reference for NULL before using it. This will prevent a crash in
the event of a bug in Igor or in your XOP or in the event of unforeseen changes in future versions of Igor.

Adding Menus and Menu Items
An XOP can add a main menu bar menu, any number of menu items to built-in Igor menus, and submenus
to any menu items. Most XOPs will use it just to add a single menu item, if at all.

Here are the XOP resources that determine what an XOP adds:

The MenuXOP1 sample XOP illustrates the use of these resources which are described in detail below. See
the MenuXOP1.r and MenuXOP1WinCustom.rc files in particular.

There are three limitations that you must be aware of.

First, the main menu bar can hold only a finite number of menus. It is possible for menus to be inaccessible
because XOPs have added too many of them. You need to decide if your XOP should take space on the main
menu bar or if it should merely add a submenu to a built-in Igor menu.

XOPFillMenuNoMeta Inserts multiple items into an XOP menu.

XOPFillWaveMenu Inserts multiple wave names into an XOP menu.

XOPFillPathMenu Inserts multiple symbolic path names into an XOP menu.

XOPFillWinMenu Inserts multiple window names into an XOP menu.

Resource What It Is Used For

XMN1 1100 Adds a menu to the main menu bar.

XSM1 1100 Adds submenus to XOP menu items.

XMI1 1100 Adds menu items to Igor menus.

Routine What It Does

Chapter 8 — Adding Menus and Menu Items

148

Second, there are 100 menu IDs reserved for all XOP main menus and 50 menu IDs reserved for all XOP
submenus. It is unlikely that either of these limits will be reached but, since there are a limited number, you
should use no more main menus or submenus than necessary in your XOP.

Finally, you must be careful when you create the resources in your XOP that describe your XOP’s menus to
Igor. It’s not difficult to cause a crash by specifying the wrong menu IDs.

The following sections explain how Igor determines what menus, submenus and menu items your XOP
adds.

Adding a Main Menu
Igor looks for an XMN1 1100 resource. XMN means “XOP menu”. This resource specifies the menu or
menus, if any that the XOP adds to the main menu bar.

Here is an example of an XMN1 resource:

// Macintosh
resource 'XMN1' (1100) {

{
100, // menuResID: Menu resource ID is 100.
1, // menuFlags: Show menu when Igor is launched.

}
};

// Windows
1100 XMN1
BEGIN

100, // menuResID: Menu resource ID is 100.
1, // menuFlags: Show menu when Igor is launched.
0, // 0 required to terminate the resource.

END

The first field, called menuResID, is the resource ID of the MENU resource in the XOP’s resource fork for
the menu to be added to Igor’s main menu bar.

The second field, called menuFlags, consists of bitwise flags defined in XOP.h as follows:

#define SHOW_MENU_AT_LAUNCH 1 // Bit 0
#define SHOW_MENU_WHEN_ACTIVE 2 // Bit 1

If bit 0 of the menuFlags field is set then the menu is appended to the main menu bar when Igor is launched.
This is appropriate for a menu that is to be a permanent fixture on the menu bar. If bit 0 is cleared then the
menu is not appended at this time.

If bit 1 of the menuFlags field is set then Igor automatically inserts the menu in the main menu bar when
your XOP’s window is active and removes it when your XOP’s window is deactivated.

If neither bit is set then your XOP can show and hide the menu on its own using XOPShowMainMenu and
XOPHideMainMenu. This is illustrated by the MenuXOP1 sample XOP.

The remaining bits are reserved and must be set to zero.

The resource shown adds one menu to Igor’s main menu bar. To add additional menus you would add
additional pairs of fields to the resource.

Adding Menu Items to Igor Menus
Igor looks for a resource of type XMI1 1100 that specifies menu items to be added to built-in Igor menus.
XMI means “XOP menu item”.

Here is an example of an XMI1 resource:

Chapter 8 — Adding Menus and Menu Items

149

resource 'XMI1' (1100) { // Macintosh, in MenuXOP1.r.
{

8, // menuID: Add item to menu with ID=8.
"MenuXOP1 Misc1", // itemText: This is text for added menu item.
0, // subMenuResID: This item has no submenu.
0, // itemFlags: Flags field.

}
};

1100 XMI1 // Windows, in MenuXOP1WinCustom.rc.
BEGIN

8, // menuID: Add item to menu with ID=8.
"MenuXOP1 Misc1\0", // itemText: This is text for added menu item.
0, // subMenuResID: This item has no submenu.
0, // itemFlags: Flags field.
0, // 0 required to terminate the resource.

END

The first field, called menuID, is the menu ID of the built-in Igor menu to which the menu item should be
attached. The file IgorXOP.h gives the menu ID’s of all Igor menus.

The second field, called itemText, is a string containing the text for the added menu item.

The third field, called subMenuResID, is the resource ID of the MENU resource in the XOP’s resource fork
for the submenu to be attached to the menu item or 0 for no submenu.

The fourth field, called itemFlags, consists of bitwise flags defined in XOP.h which tell Igor under what
conditions the menu item should be enabled or disabled. See Enabling and Disabling XOP Menu Items in
Igor Menus on page 152.

The resource shown adds one menu item to a built-in Igor menu. To add additional menu items you would
add additional sets of fields to the resource. See MenuXOP1.r and MenuXOP1WinCustom.rc for examples.

Adding Submenus
Igor looks for a resource of type XSM1 1100. XSM means “XOP submenu”. This resource specifies the
submenu or submenus that the XOP wants to attach to menu items in menus that belong to the XOP, not
built-in Igor menus.

Here is an example of an XSM1 resource:

resource 'XSM1' (1100) { // Macintosh, in MenuXOP1.r.
{

101, // subMenuResID: Add submenu with resource ID 101
100, // mainMenuResID: to menu with resource ID 100
1, // mainMenuItemNum: to item 1 of main menu

}
};

1100 XSM1 // Windows, in MenuXOP1WinCustom.rc.
BEGIN

101, // subMenuResID: Add submenu with resource ID 101
100, // mainMenuResID: to menu with resource ID 100
1, // mainMenuItemNum: to item 1 of menu
0, // 0 required to terminate the resource

END

The first field, called subMenuResID, is the resource ID of the MENU resource in the XOP’s resource fork
for the submenu to be attached to a menu item.

The second field, called mainMenuResID, is the resource ID of the MENU resource in the XOP’s resource
fork for the menu to which the submenu is to be attached.

Chapter 8 — Adding Menus and Menu Items

150

The third field, called mainMenuItemNum, is the item number in that menu to which the submenu is to be
attached.

The resource shown adds one submenu to an XOP menu. To add additional submenus you would add
additional sets of fields to the resource.

mainMenuResID and mainMenuItemNum normally will refer to a menu declared in the XMN1 resource
but can also refer to a menu declared in a previous record of the XSM1 resource. This allows submenus to
have submenus.

Menu IDs Versus Resource IDs
On Macintosh only, when adding a MENU resource to your XOP, make sure that the menu ID and the
resource ID are the same. The resource ID is used by the Macintosh Resource Manager but the Macintosh
Menu Manager cares about the menu ID, not the resource ID. Here is a correct Rez resource description:

// From VDT.r
resource 'MENU' (100) { // Resource ID is 100

100, // Menu ID is same as resource ID
textMenuProc,
0xffffffff,
enabled,
"VDT",
{

. . .
}

};

Responding to Menu Selections
When the user chooses an XOP’s menu item, Igor loads the XOP into memory, if it’s not already loaded,
and sends a MENUITEM message to the XOP, passing it a menu ID and an item number that specify which
item in which menu was chosen. The XOP responds by performing the appropriate action. It returns an
error code to Igor, using the SetXOPResult XOPSupport routine, which indicates any problems encoun-
tered. If an error did occur, Igor presents a dialog with an appropriate error message.

Igor sends the MENUITEM message to Windows XOPs as well as to Macintosh XOPs. Windows XOPs will
not receive a WM_COMMAND message from the Windows OS when the XOP's menu item is chosen.

How you interpret the menuID and itemNumber parameters that come with the MENUITEM message
depends on how your XOP is set up.

Determining Which Menu Was Chosen
If your XOP adds just one menu item to Igor then matters are simple. When you receive the MENUITEM
message, you know what the user chose without considering the menuID and itemNumber parameters.

Matters become more complex if your XOP adds more than one menu item. To understand this you need
to know a bit about menu IDs. A menu ID is a number associated with a particular menu in a program.

In a standalone application, a menu ID for a given menu is normally the same as the resource ID for the
resource from which the menu came. For example, Igor’s Misc menu has a menu ID of 8 and is defined by
a MENU resource with resource ID=8 in Igor’s resource fork.

There could be several XOPs with MENU resources with ID=100 in their resource forks. Obviously, when
all of these menus are loaded into memory, they can not all have menu IDs of 100. To get around this, Igor
assigns new menu IDs to each XOP menu. This occurs when Igor inspects each XOP’s resources at the time
Igor is launched.

The original resource ID of the XOP’s menu is called the “resource menu ID”. The ID assigned by Igor is
called the “actual menu ID”.

Chapter 8 — Adding Menus and Menu Items

151

When you write your XOP, you do not know the actual menu ID that your menu or menus will have when
your XOP is running. Therefore, you need a way to translate between the actual menu ID and the resource
menu ID. The XOP Toolkit provides two routines to handle this, ResourceToActualMenuID and Actual-
ToResourceMenuID:

int
ResourceToActualMenuID(resourceMenuID)
int resourceMenuID;

Given the ID of a MENU resource in the XOP’s resource fork, returns the actual menu ID of that resource
in memory.

Returns 0 if XOP did not add this menu to Igor menu.

int
ActualToResourceMenuID(menuID)
int menuID;

Given the actual ID of a menu in memory, returns the resource ID of the MENU resource in the XOP’s
resource fork.

Returns 0 if XOP did not add this menu to Igor menu.

Imagine that your XOP adds one menu to Igor. When you get the MENUITEM message from Igor, you
know that the menuID passed with that message is the actual menu ID for the XOP’s menu so you don’t
need to use the ActualToResourceMenuID routine.

On the other hand, if your XOP adds two menus to Igor then, when you get the MENUITEM message, you
do need to use the ActualToResourceMenuID routine to determine which of your two menus was selected.

In order to change your menu, for example, to disable one of its items, you need its menu reference. You
can get the menu reference by calling XOPResourceMenuIDToMenuRef as described in the next section.

Getting Your Menu Reference
To actually do anything with your menu, such as enable or disable an item, you need to get a menu refer-
ence. The simplest way to do this is to call XOPResourceMenuIDToMenuRef. You pass it the resource
menu ID for your menu and it returns the menu reference for the menu. This works for any menus that your
XOP adds to Igor, including main menu bar menus and submenus.

It is also possible to use XOPActualMenuIDToMenuRef instead of XOPResourceMenuIDToMenuRef. You
would first need to call ResourceToActualMenuID and then call XOPActualMenuIDToMenuRef.
However there is no reason to do this. Use XOPResourceMenuIDToMenuRef instead.

When you obtain a menu reference you should always test it for NULL before using it. This will prevent a
crash in the event of a bug in Igor or in your XOP or in the event of unforeseen changes in future versions
of Igor.

Determining Which Menu Item Was Chosen
When your XOP adds an item to a built-in Igor menu, you always know the menu ID for the menu since it
is defined in IgorXOP.h and is fixed for all time. However, since the menu item is appended to the end of
the menu, you will not know the item’s item number when you write the XOP. The ResourceToActualItem
and ActualToResourceItem routines translate between resource item numbers and actual item numbers.
Menu item numbers start from one.

int
ResourceToActualItem(igorMenuID, resourceItemNumber)
int igorMenuID;
int resourceItemNumber;

Given the ID of a built-in Igor menu and the one-based number of a menu item specification in the XMI1
resource in the XOP’s resource fork, returns the actual item number of that item in the Igor menu.

Chapter 8 — Adding Menus and Menu Items

152

Returns 0 if the XOP did not add this menu item to Igor menu.

int
ActualToResourceItem(igorMenuID, actualItemNumber)
int igorMenuID;
int actualItemNumber;

Given the ID of a built-in Igor menu and the actual number of a menu item in the Igor menu, returns the
one-based number of the specification in the XMI1 resource in the XOP’s resource fork for that item.

Returns 0 if the XOP did not add this menu item to Igor menu.

Enabling and Disabling Menu Items
When the user clicks in the menu bar or presses a keyboard equivalent, Igor allows all XOPs that are in
memory to enable or disable menu items by sending the MENUENABLE message.

If an XOP window is the active window, Igor Pro disables all built-in menu items that pertain to the active
window (e.g., Cut, Copy, Paste). It enables all menu items that can be invoked no matter what the active
window is (e.g., Miscellaneous Settings, Kill Waves, Curve Fitting). Then it sends the MENUENABLE
message to each loaded XOP that adds a menu or menu item to Igor. Igor sends the MENUENABLE
message to the XOP that created the active window even if that XOP added no menu items. Each XOP can
set its own menu items as it wishes. If its window is the active window, the XOP can also re-enable built-in
Igor menu items that apply to the active window.

Igor sends the MENUENABLE message to Windows XOPs as well as to Macintosh XOPs. Windows XOPs
will not receive a WM_INITMENU message from the Windows OS.

An XOP whose window is active can respond when the user selects a menu item. The menu item may be a
built-in Igor menu item or it may be a custom item, created by the XOP. If the user selects a built-in Igor
menu item and the XOP’s window is the active window then Igor sends the XOP a menu-item-specific mes-
sage. Examples are the kXOPWindowMessageCut, kXOPWindowMessageCopy, and kXOPWindowMes-
sagePaste messages. If the user selects an XOP’s custom menu item then Igor sends the MENUITEM
message.

Since the XOP can respond to built-in and XOP menu items, it needs a way to enable and disable these
items.

Enabling and Disabling XOP Menu Items in Igor Menus
When you receive the MENUENABLE message you can enable or disable menu items added to Igor menus
by your XOP using the XOPEnableMenuItem or XOPDisableMenuItem menu routines. These routines
require the menu reference for the menu, which you can obtain from XOPActualMenuIDToMenuRef.

There is another method which allows Igor to automatically enable and disable XOP menu items added to
built-in Igor menus. This method involves the itemFlags field of the XMI1 1100 resource. The XOPTypes.r
file defines the following bits for this field:

ITEM_REQUIRES_WAVES ITEM_REQUIRES_GRAPH
ITEM_REQUIRES_TABLE ITEM_REQUIRES_LAYOUT
ITEM_REQUIRES_GRAPH_OR_TABLE ITEM_REQUIRES_TARGET
ITEM_REQUIRES_PANEL ITEM_REQUIRES_NOTEBOOK
ITEM_REQUIRES_GRAPH_OR_PANEL ITEM_REQUIRES_DRAW_WIN
ITEM_REQUIRES_PROC_WIN

For example, if you set the ITEM_REQUIRES_WAVES bit in the itemFlags field of your XMI1 1100 resource,
Igor will automatically enable your item if one or more waves exists in the current data folder and automat-
ically disable it if no waves exist in the current data folder.

For another example, if the ITEM_REQUIRES_GRAPH bit is set, Igor will enable your menu item only if
the target window is a graph.

Chapter 8 — Adding Menus and Menu Items

153

Enabling and Disabling Igor Menu Items
If your XOP adds a window to Igor, you might want to enable and disable Igor menu items such as Cut and
Copy when your window is active. This section describes how to do this.

The SetIgorMenuItem XOPSupport routine allows the XOP to enable or disable a built-in Igor menu item
without referring to specific menu IDs or item numbers. Here is a description:

int
SetIgorMenuItem(message, enable, text, param)
int message; // an Igor message code
int enable; // 1 to enable the menu item, 0 to disable it
char* text; // pointer to a C string or NULL
int param; // normally not used and should be 0
For example, if the user selects the Copy menu item, Igor sends the XOP the kXOPWindowMessageCopy
message. If the XOP wants to enable the Copy menu item, it would call Igor as follows in response to the
MENUENABLE message:

if (IsIgorWindowActive((xopWindowRef)) // Is XOP window active?
SetIgorMenuItem(kXOPWindowMessageCopy, 1, NULL, 0);

The text parameter will normally be NULL. However, there are certain built-in Igor menus whose text can
change. An example of this is the Undo item. An XOP which owns the active window can set the Undo item
as follows:

if (IsIgorWindowActive((xopWindowRef)) // Is XOP window active?
SetIgorMenuItem(kXOPWindowMessageUndo, 1, "Undo XOP-Specific Action", 0);

Call SetIgorMenuItem only if your XOP window is the active window.

Igor will ignore the text parameter for menu items whose text is fixed, for example Copy. For menu items
whose text is variable, if the text parameter is not NULL, then Igor will set the text of the menu item to the
specified text.

There is currently only one case in which the param parameter is used. If the message is FIND, Igor needs
to know if you want to set Find, Find Same or Find Selected Text. It looks at the param parameter for this
which should be 1, 2 or 3, respectively. In all other cases, you must pass 0 for the param parameter.

SetIgorMenuItem returns 1 if there is a menu item corresponding to message or 0 if not. Normally you will
have no need for this return value.

Here is some code showing how to enable Igor menu items.

static void
XOPMenuEnable(void)
{

.

.
if (IsIgorWindowActive((xopWindowRef)) { // Is XOP window active?

SetIgorMenuItem(kXOPWindowMessageCopy, 1, NULL, 0);
SetIgorMenuItem(kXOPWindowMessageCut, 1, NULL, 0);

}
.
.

}

Chapter 8 — Adding Menus and Menu Items

154

Chapter 9
I-9Adding Windows

Overview
This chapter applies to Igor7 or later, not to Igor6.

The Igor7 XOP window protocol is completely different from the Igor6 protocol. Igor6 XOPs that create
windows do not work in Igor7 and vice versa. If you are porting an existing XOP to Igor7, see Changes to
XOP Window Programming in Igor Pro 7 on page 172 for an overview of the changes.

An XOP can add one or more windows to Igor. It can also add subwindows to built-in Igor window types.

Adding an XOP window to Igor is much more involved than adding an operation or a function. It involves
both platform-independent programming to communicate with Igor and platform-dependent program-
ming to implement the user interface. If you are writing a Macintosh XOP, you will need to be comfortable
with Objective-C++ and the Macintosh Cocoa API. If you are writing a Windows XOP, you will need to be
comfortable with the Windows API (formerly called the Win32 API).

Programming with windows raises many complex issues and debugging a program that creates a window
can be difficult. You should not try to add a window to Igor unless you are an experienced programmer. If
it is possible to achieve your objective using a built-in Igor window, this will be much easier than creating
an XOP window.

The integration of XOP windows into Igor requires coordination between the XOP, Igor, the Qt framework
on which Igor7 is based, and the operating system. These components do not always work harmoniously.
Consequently perfect behavior is not always possible, but it is possible to create a useable system. The main
known issues are listed under XOP Window Issues on page 171.

Over time, changes to Igor, the Qt framework or the operating system may require changes to your XOP.
You should not undertake XOP window programming unless you are prepared to deal with such changes.

In this chapter we use the term "window XOP" as shorthand for an XOP that adds one or more windows to
Igor. We use "XOP window protocol" to mean the set of rules by which an XOP adds a window to Igor.

The WindowXOP1 Sample XOP
The WindowXOP1 sample XOP illustrates XOP window programming.

NOTE: The WindowXOP1 sample XOP is not shipped with XOP Toolkit 7. If you want the source code
please contact WaveMetrics support.

To write your own window XOP, use the "Create New XOP Project.pxp" experiment to make a clone of the
WindowXOP1 project folder. Then modify the resulting project to implement the desired behavior.

Types of XOP Windows
An XOP can add a one-of-a-kind window, like Igor’s Data Browser, or a type of target window, like Igor’s
graph window type. The WindowXOP1 sample XOP illustrates both.

Chapter 9 — Adding Windows

156

An XOP target window can be embedded in a built-in Igor window, like adding an Igor graph subwindow
to an Igor panel. In this case the XOP window is a subwindow.

XOP Window Documentation
Very few XOP programmers have the need or capability to create a window XOP. Consequently, to reduce
clutter for the vast majority of XOP programmers, documentation for window-oriented XOPSupport rou-
tines is omitted from Chapter 15, XOPSupport Routines. The documentation for these routines can be
found in the following XOPSupport files:

XOPWindows.c
XOPContainers.c

Also the window-oriented messages that Igor sends to a window XOP are not listed in Chapter 4, Igor/XOP
Interactions. Instead they are listed in these XOPSupport files:

XOPWindows.h
XOPContainers.h

Guided Tour of WindowXOP1
The purpose of this section is to give you feel for XOP window programming and get you oriented in prep-
aration for writing your own XOP. Execute the steps below.

Setting the Project Up
1. Obtain the WindowXOP1 project folder from WaveMetrics support.

Send an email to support@wavemetrics.com requesting the WindowXOP1 sample XOP project. Please
include in your request a description of your planned XOP. Mention what operating systems you plan
to support.

2. Unzip the WindowXOP1.zip file into your IgorXOPs7 folder.

3. Open the WindowXOP1 folder in the Macintosh Finder or in Windows Explorer.

There are four kinds of source files.

The files in the WindowXOP1 folder whose names start with XOP are generic files that should work for
any XOP. You probably will not need to modify them.

The files in the WindowXOP1 folder whose names start with WindowXOP1 are application-specific
files that you will need to modify for your own application.

The files in the Mac folder are application-specific Objective-C++ files used on Macintosh only.

The files in the Windows folder are application-specific files used on Windows only.

4. Open the Macintosh or Windows project file in your development system.

5. If you are on Macintosh, set the project settings so that the compiled XOP will be written inside the
Xcode folder in your WindowXOP1 folder.

You can skip this step if you are an experienced Xcode programmer and you are comfortable with
where Xcode stores compiled output by default.

This is necessary because, ironically, Xcode does not store "project settings" in the project file so they
must be set by each XOP programmer.

Access the project settings by choosing File→Project settings. Click the Advanced button. In the result-
ing dialog, set the Build Location to "Legacy".

Click Done to leave the Advanced dialog and then click Done again to leave the Project Settings dialog.

6. Compile the 64-bit version of the XOP.

7. Activate the 64-bit version of the XOP.

Put an alias or shortcut for the WindowXOP1-64.xop file in the "Igor Extensions (64-bit)" folder of your

Chapter 9 — Adding Windows

157

"Igor Pro 7 User Files" folder.

8. Configure your Xcode or Visual C++ project to set your installed 64-bit version of Igor7 as the host
application for debugging.

See Development Systems on page 35 for details. Search for "Debugging" until you find the instruc-
tions relevant to your development system.

9. Start debugging the WindowXOP1 XOP.

See Development Systems on page 35 for details. Search for "Debugging" until you find the instruc-
tions relevant to your development system.

WindowXOP1 creates a window when Igor is launched. This is done in the XOPMain function. The
window created is a one-of-a-kind window (type XOPWIN), not a target window (type XOPTARG-
WIN).

The bottom of the WindowXOP1 window shows debugging information used by WaveMetrics.

Using the WindowXOP1 Window
1. Activate the window and click the Print button to the right of the Time readout.

WindowXOP1 prints the time in the history area.

2. Enter "Hello" in the edit control and click the associated Print button.

WindowXOP1 prints "Hello" in the history area.

3. Drag and resize the window.

It works like a normal window.

4. Click the close box to hide the window.

The XOP programmer can tell Igor whether the close box should hide or kill the window. In
WindowXOP1, the close box hides the one-of-a-kind window created at startup but kills target win-
dows (demonstrated below).

5. Choose Windows→Other Windows→WindowXOP1.

The window is made visible.

6. Choose Windows→Hide to hide the window again.

Creating a WindowXOP1 Target Window
The window that we played with in the preceding section is a one-of-a-kind window (type XOPWIN), anal-
ogous the Igor’s Data Browser. Now we will create a target window (type XOPTARGWIN), analogous to
an Igor graph or table.

1. Execute this command in Igor’s command line:

NewWindowXOP1Window

A new window is created. Unlike the original one-of-a-kind window created at launch time, this is a
target window, like a graph or table. You can create as many WindowXOP1 target windows as you
want.

Notice that a WindowXOP1 menu appeared in the menu bar. This is WindowXOP1’s "slot" menu and
is analogous to the Graph or Table menu that appears when an Igor graph or table window is active.

2. Click the Close box.

Igor displays the Close Window dialog.

3. Click the Save button.

The window is saved in the built-in procedure window as a window recreation macro and is killed.

4. Open the Procedure window, scroll up and read the window recreation macro.

5. Close the Procedure window.

Chapter 9 — Adding Windows

158

6. Choose Windows→Other Macros→WX0.

The window is recreated.

The next several steps are just to show that the WindowXOP1 window behaves mostly like any other
Igor window.

7. Click in the edit control and enter "Hello" without the quotes.

8. Choose Edit→Select All.

9. Choose Edit→Cut.

10. Choose Edit→Undo.

11. Move the WX0 window so that it is partially offscreen.

12. Choose Windows→Control→Retrieve Window.

13. Press the Shift key and choose Windows→Hide.

The WX0 window is hidden.

Creating a WindowXOP1 Subwindow
Just as you can embed, for example, a graph as a subwindow in a control panel, you can embed an XOP
window in a panel as subwindow. That’s what we will do next.

1. Execute this command in Igor’s command line:

NewPanel/W=(200,50,750,450)

2. Execute:

NewWindowXOP1Window/HOST=#

A new subwindow is created in the panel window. Its behavior is very similar to the behavior of a
graph subwindow.

3. Choose Panel→Show Tools.

4. Click the Drawing icon (second from top) in the tool palette.

5. Click the WindowXOP1 subwindow.

The subwindow is selected.

6. Click the selection frame on the periphery of the WindowXOP1 subwindow.

We are in subwindow layout mode.

7. Click one of the edges of the layout frame and drag the XOP subwindow so that it is centered in the
panel window.

Laying out an XOP subwindow works the same as laying out an Igor subwindow.

8. Press Cmd-T (Macintosh) or Ctrl-T (Windows) to hide the tool palette.

It does not work. This is one of those things where XOP subwindows don’t work exactly like Igor sub-
windows.

9. Click in the body of the panel window to leave subwindow layout mode.

10. Click in the body of the panel window again to deselect the XOP subwindow.

11. Press Cmd-T (Macintosh) or Ctrl-T (Windows) to hide the tool palette.

This time it works.

12. Click the panel Close box.

Igor displays the Close Window dialog.

13. Click the Save button.

Chapter 9 — Adding Windows

159

The window is saved in the built-in procedure window as a window recreation macro and is killed.

14. Open the Procedure window, scroll up and read the window recreation macro.

Note that the NewWindowXOP1Window command is included in the panel recreation macro.

15. Close the Procedure window.

16. Choose Windows→Panel Macros→Panel0.

The panel window is recreated, including the XOP subwindow.

This concludes the Guided Tour of WindowXOP1.

The Architecture of XOP Windows
An XOP window is an Igor window with an XOP container. To understand this you need to understand
what we mean by "container".

Consider this Igor panel with a graph subwindow:

The graph subwindow is an Igor container that is embedded in the window. More precisely, the graph sub-
window is an Igor container that is embedded in a panel container that is embedded in a window. Thus the
hierarchy is:

Igor window
Panel container

Graph container

A container is a visible area of a window backed by an internal Igor object which manages it.

Each Igor window has one root container. The window’s type and name are, by definition, the root con-
tainer’s type and name. This Igor window is considered a panel window because the root container is a
panel container.

A container is a subwindow if it is not the root container for its window.

Some types of containers can act as hosts for other containers. Panel, graph and page layout containers can
act as subwindow hosts. Tables, notebooks and XOP containers can not act as subwindow hosts. Any con-
tainer that is capable of acting as a host can host multiple subwindows. In fact they can host a hierarchy of
subwindows.

Relationship to Qt Widgets
Igor7 is implemented on top of the Qt framework.

Chapter 9 — Adding Windows

160

Qt has the concept of a widget, represented by the QWidget class. An Igor window is a Qt widget.

In SDI ("single document interface") mode on Macintosh a window is a top-level widget. In MDI ("multiple
document interface") mode on Windows, a window is a QMdiSubwindow widget which is a child widget
of the QMdiArea host window. A window widget in both SDI and MDI can host a hierarchy of child wid-
gets.

For historical reasons, most Igor containers are not Qt widgets. So in the picture shown above, the window
is a widget but the panel container and the graph container are not widgets. Rather they are drawn by Igor
in the window. However, for reasons explained below, XOP containers are widgets.

Each operating system has its own platform-specific container representing screen content. On Windows
this container is called a "window" and is referenced programmatically using a handle called an HWND.
On Macintosh the container is called a "view" and is referenced programmatically using a pointer to an
NSView object or an object derived from NSView. Both windows and views can be nested in a hierarchy.
For example, a button is a child window or view in a parent window or view.

Because of different and overlapping terminology, explaining the relationship of all of these objects is chal-
lenging. For economy, in the following discussion we use the term "OS container" to refer to a Windows
window or a Macintosh view. As you read it remember that "OS container" means "HWND on Windows
and NSView on Macintosh".

We also use the terms "Igor container" to refer to any Igor container and "XOP container" to refer to an Igor
container created and managed by an XOP. An Igor container is an Igor concept implemented by code in
Igor. It is not the same as an OS container which is a concept implemented by code in the OS.

A QWidget can have an associated OS container. Most Igor windows have QWidgets and therefore have
OS containers. With this in mind we can refine our schematic outline of the window pictured above as fol-
lows:

Igor window : QWidget(OS container)
Panel container

Graph container

This means that the Igor window is based on a QWidget and the widget has an OS container. The panel and
graph containers do not have their own widgets and consequently do not have their own OS containers.

Things are different with XOP containers. We wanted XOP programmers to be able to use platform-specific
code to implement XOP windows so that they could use pre-existing platform-specific code and platform-
specific libraries as well as platform-specific programming techniques which they may already know. In
order to acheive this, XOP containers must have associated OS containers which means that they must have
associated widgets. Stated more concisely, unlike most Igor containers, XOP containers have widgets which
have OS containers. Gizmo containers also must have OS containers because OpenGL requires it. So Gizmo
containers and XOP containers are similar in this regard.

XOP Window and Container Hierarchy
With that background established, we can now explain the hierarchy of XOP windows and containers. Con-
sider this XOP window:

Chapter 9 — Adding Windows

161

Here is the schematic outline:

Igor window : QWidget(OS container)
XOP container : QWidget(OS container)

In other words, the Igor window has an OS container and the XOP container has an OS container that is a
child of the window’s OS container.

But it is a bit more complicated than that. The OS container associated with the XOP container’s widget is
owned by Qt. Thus Qt creates and manages that OS container and receives all events for it. What we need
is an OS container that the XOP can manage. To achieve this, the XOP creates its own OS container and
embeds it as a child of the XOP container’s OS container. Thus the schematic becomes:

Igor window : QWidget(OS container)
XOP container : QWidget(OS container)

XOP OS container

The XOP OS container is created by the XOP and added by the XOP as a child of the XOP container’s OS
container. The XOP receives events for the XOP OS container from the OS and otherwise manages it. When
we use the term "XOP OS container" we are referring to this XOP-created OS container, not to the Qt-created
OS container.

As you can see, the architecture is rather complex. You may need to reread this section a few times before
it all sinks in. But the key point is that your XOP creates and manages a platform-specific container (HWND
on Windows, NSView on Macintosh) to receive events from the OS and to create your user interface.

By contrast, the interface to Igor is platform-independent, implemented via messages that Igor sends to
your XOPEntry routine and by callbacks that you make to Igor.

Source Code Organization
Open the WindowXOP1 folder in the Finder or Windows Explorer as we will refer to it in this section.

There is a subfolder for each development system containing the project files.

There is a Mac folder containing Macintosh-only source files and a Windows folder containing Windows-
only source files. The Macintosh files are .mm (Objective-C++) files while the Windows files are .cpp (C++)
files.

The main WindowXOP1 folder contains the platform-independent source code files. These fall into two cat-
egories. The files whose names start with "XOP" are intended to be application-independent. You will prob-
ably not have to modify them. The files whose names begin with "WindowXOP1" are application-specific.
You will have to modify them for your purposes.

Once you clone the WindowXOP1 project, "WindowXOP1" in the file names will be changed to the name
of your project. But for now we will inspect the WindowXOP1 files.

Chapter 9 — Adding Windows

162

The following sections refer to WindowXOP1 source code. Open the WindowXOP1 project in your devel-
opment system so you can look at specific code as needed to follow the discussion.

The Macintosh project includes the Windows files for ease of browsing and editing but the Windows files
are excluded from compilation on Macintosh. The reverse is true on Windows. Consequently you can view
all files in either project.

Communication With the Operating System
The operating system sends platform-specific events, such as click, key and paint events, to your XOP code.

On Macintosh the OS sends events by calling routines in WindowXOP1View.mm which implements the
WindowXOP1View class which is derived from the Cocoa NSView class. The WindowXOP1View class
overrides NSView methods such as mouseDown and keyDown. Some of these methods call SendContain-
erNSEventToIgor so that Igor can respond to events in order to implement Igor-specific behaviors.

On Windows, you create a standard window procedure for your OS container. This is in the
WindowXOP1HWND.cpp file and is named XOPWindowProc. The Windows OS sends messages like
WM_MOUSEDOWN and WM_KEYDOWN to XOPWindowProc. XOPWindowProc passes some of these
messages to Igor by calling SendContainerHWNDEventToIgor so that Igor can respond to events in order
to implement Igor-specific behaviors.

Communication With Igor
While communication with the operating system is platform-dependent, communication with Igor is plat-
form-independent.

Igor sends two types of messages specifically for window XOPs - window messages and container mes-
sages. Igor sends these messages to the XOP through the XOPEntry function, the same as it sends other mes-
sages.

Window messages apply to the window as a whole. Examples are kXOPWindowMessageActivate and
kXOPWindowMessageResized. The window messages are defined in XOPWindows.h which is in the XOP-
Support folder. Open that file and peruse the message definitions to get a sense of the type of window mes-
sages Igor sends to the XOP.

Container messages apply to an XOP container which may be a root container in an XOP window or a sub-
window container in an Igor window such as a panel. Examples are kXOPContainerMessageActivate and
kXOPContainerMessageResized. The container messages are defined in XOPContainers.h which is in the
XOPSupport folder. Open that file and peruse the message definitions to get a sense of the type of container
messages Igor sends to the XOP.

The XOPEntry routine calls HandleWindowMessage, in XOPWindowMessages.cpp, and HandleContain-
erMessage, in XOPContainerMessage.cpp. These functions then call the XOP routine needed to handle a
given message.

Notice that there is a kXOPContainerMessageMouseClick message. Earlier we said that click events are sent
by the operating system directly to the XOP. This is true as noted in the comment for kXOPContainerMes-
sageMouseClick in XOPContainerMessages.cpp. kXOPContainerMessageMouseClick is a message that
Igor would send to the XOP except for the fact that the OS sends it directly to the XOP, circumventing Igor.
There are other such messages as noted in the comments.

The HandleWindowMessage function and HandleContainerMessage function are generic and should work
for any application. They call methods of classes defined by the XOP, described in the next two sections, to
do the actual work. Consequently you should not need to deal directly with window or container messages
nor should you need to modify the XOPWindowMessages.cpp or XOPContainerMessage.cpp files.

Chapter 9 — Adding Windows

163

XOPWindowProxy Class and WindowXOP1Window Class
For each XOP window the XOP creates an object of class WindowXOP1Window, which is derived from
class XOPWindowProxy. The XOPWindowProxy class provides default behaviors that may be sufficient
for a given application. The WindowXOP1Window class overrides XOPWindowProxy methods where nec-
essary to provide application-specific behavior. You should not need to modify the XOPWindowProxy
class. Rather you should modify the WindowXOP1Window class as necessary.

For example, when Igor sends the kXOPWindowGetPreferredRect message, which is used in conjunction
with the Windows→Control→Move to Preferred Position menu command, the code in XOPWindowMes-
sages.cpp calls the getPreferredRect method. This method is defined in the XOPWindowProxy class but
overridden in the WindowXOP1Window class to provide application-specific behavior. Consequently,
WindowXOP1Window::getPreferredRect is called which returns the preferred rectangle.

To see the sequence of calls you can set a breakpoint in the getPreferredRect method in
WindowXOP1Window.cpp, run WindowXOP1 under the debugger, and choose Win-
dows→Control→Move to Preferred Position. Then examine the call stack in the debugger.

Most of the application-specific action is at the container level, not at the window level. Consequently most
of the window behavior is provided by the generic XOPWindowProxy class and few methods need be over-
ridden in the WindowXOP1Window class.

XOPContainerProxy Class and WindowXOP1Container Class
For each XOP container the XOP creates an object of class WindowXOP1Container, which is derived from
class XOPContainerProxy. The XOPContainerProxy class provides default behaviors that may be sufficient
for a given application. The WindowXOP1Container class overrides XOPContainerProxy methods where
necessary to provide application-specific behavior. You should not need to modify the XOPContainerProxy
class. Rather you should modify the WindowXOP1Container class as necessary.

For example, Igor sends the kXOPContainerUpdateEditMenu message when the user clicks the Edit menu
while an XOP container is active. The code in XOPContainerMessages.cpp calls the updateEditMenuItems
method. This method is defined in the XOPContainerProxy class but overridden in the
WindowXOP1Container class to provide application-specific behavior. Consequently,
WindowXOP1Window::updateEditMenuItems is called which enables items in the Edit menu as appropri-
ate.

To see the sequence of calls you can set a breakpoint in the updateEditMenuItems method in
WindowXOP1Container.cpp, run WindowXOP1 under the debugger, and click the Edit menu. Then
examine the call stack in the debugger.

Most of the methods defined in the XOPContainerProxy need to be overridden by the
WindowXOP1Container to provide application-specific behavior.

Platform-Independent Source Files
This section provides a brief discussion of the main platform-independent source files.

WindowXOP1.cpp
WindowXOP1.cpp contains the XOPs main function, named XOPMain. XOPMain creates the initial
WindowXOP1 window at launch time.

Other functionality includes:

• Dispatching messages from Igor via the XOPEntry function
• Handling window-indpendendent and container-indpendendent menu items

Chapter 9 — Adding Windows

164

WindowXOP1Window.cpp
WindowXOP1Window.cpp contains routines for creating and killing windows and also implements the
WindowXOP1Window class. This class derives from the XOPWindowProxy class and overrides few of its
methods.

The CreateWindowXOP1Window routine creates a new WindowXOP1 window and its root container. It
also creates the WindowXOP1Window class object that is associated with the new window. A pointer to
this object is registered with Igor. The XOP retrieves the pointer from Igor whenever it needs to access the
object.

The KillWindowXOP1Window routine calls back to Igor to kill the window. XOP code calls it if it wants to
initiate the killing of the window. Igor can also initiate the killing of a windows, such as when the user exe-
cutes a KillWindow command. However the killing is initiated, Igor sends the
kXOPWindowMessageWindowBeingKilled message to the XOP. At that time, the XOP kills the
WindowXOP1Window class object and any associated data. This complex process is explained in the com-
ments for KillXOPWindow in XOPSupport/XOPWindows.c. A good way to see how this works is to set a
breakpoint in the WindowXOP1Window destructor and then create and kill a WindowXOP1 window.

WindowXOP1Container.cpp
WindowXOP1Container.cpp contains routines for creating and killing XOP containers and also imple-
ments the WindowXOP1Container class. This class derives from the XOPContainerProxy class and over-
rides many of its methods.

The CreateWindowXOP1Container routine creates a new WindowXOP1 container. Indirectly, through the
platform-specific AddXOPNSView or AddXOPHWND routines, it creates the WindowXOP1Container
class object that is associated with the new container. A pointer to this object is registered with Igor. The
XOP retrieves the pointer from Igor whenever it needs to access the object.

The killing of an XOP container is always initiated by Igor. This occurs when the container’s parent is killed.
At that time Igor sends the kXOPContainerMessageContainerBeingKilled message to the XOP and the XOP
kills any data associated with the container. This process is explained in the comments for KillXOPCon-
tainer in XOPSupport/XOPContainers.c. A good way to see how this works is to set a breakpoint in the
WindowXOP1Container destructor and then create and kill a WindowXOP1 window.

WindowXOP1RecreationMacros.cpp
WindowXOP1RecreationMacros.cpp implements the generateXOPContainerRecreationMacroText method
of the WindowXOP1Window class. It is in a separate file because it tends to be long and complex and would
clutter up WindowXOP1Window.cpp. The generateXOPContainerRecreationMacroText method is called
when Igor generates a recreation macro for an XOP target window or for an Igor window with an XOP con-
tainer.

WindowXOP1Functions.cpp
WindowXOP1Functions.cpp implements external functions that WaveMetrics uses for testing purposes.
Your XOP does not need these functions.

WindowXOP1Operations.cpp
WindowXOP1Operations.cpp implements the NewWindowXOP1Window command line operation.

If your XOP will implement multiple operations we recommend creating one file per operation for easier
browsing and editing.

The ExecuteNewWindowXOP1Window function implements the typical flags and features of an Igor oper-
ation that creates a new window.

Chapter 9 — Adding Windows

165

Macintosh XOP Window Programming
On Macintosh all event handling, user interface creation and drawing for XOP containers is done in Cocoa
which uses Objective-C (.m files) or Objective-C++ (.mm files). WindowXOP1 uses Objective-C++.

In order to understand the Macintosh code you need to understand, at a bare minimum, the basics of Objec-
tive-C and Cocoa. If you have no experience with these technologies, you will have to bring yourself up-to-
speed. The learning curve is steep. Here are some resources for getting started:

Start Developing Mac Apps Today (Apple online tutorial)
Programming with Objective-C (Apple introduction to Objective-C)
Mac App Programming Guide

On Macintosh the XOP OS container is an object of class XOPView which is derived from the Cocoa
NSView class. The Cocoa system calls methods of the NSView class to send events to the program. The
XOPView class overrides these methods. For some method calls the method must call SendContainerNSEv-
entToIgor to allow Igor to respond to the event and implement Igor-specific behaviors.

Following the Cocoa custom, the XOPView object represents the visible aspects of the view while an
XOPViewController object handles the logic and interaction with other parts of the system. The XOPCon-
troller class handles the overall logic for the XOP as a whole including creation and destruction of the other
objects.

The WindowXOP1 code does not utilize Cocoa’s Automatic Reference Counting (ARC) because ARC is not
supported for 32-bit programs. Instead it implements the old-fashioned manual reference counting which
is tedious and error prone.

Most users will have no need to run the 32-bit version of Igor7 but instead will run the 64-bit version.
However some users may be forced to run the 32-bit version, for example, because they rely on an XOP that
is not available in 64 bits. This may occur because the XOP programmer who wrote the XOP is no longer
available or does not have time to port it to 64 bits. For these reason WaveMetrics continues to provide a
32-bit version of Igor7.

If you do not need to create a 32-bit version of your XOP then you can change the project to use ARC. See
Apple’s Transitioning to ARC Release Notes for details.

Macintosh Source Files
This section provides a brief discussion of the main Macintosh source files.

WindowXOP1Controller.mm
WindowXOP1Controller.mm implements the AddXOPNSView and KillXOPNSView functions.

The AddXOPNSView function is called from WindowXOP1CreateContainer. It loads the nib which causes
Cocoa to create the XOPViewController and XOPView objects. It then adds the XOP view as a child of the
XOP container view. This is a complex and confusing process which is documented in comments in the file.
Fortunately it should work with minor modifications for your XOP.

AddXOPNSView also creates the WindowXOP1Container object which represents the container in the XOP
code.

WindowXOP1ViewController.mm
The WindowXOP1ViewController.mm file implements the actions of the XOP view. Specifically it provides
action procedures for the buttons.

https://developer.apple.com/library/mac/referencelibrary/GettingStarted/RoadMapOSX/chapters/01_Introduction.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/General/Conceptual/MOSXAppProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/mac/releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/Introduction.html

Chapter 9 — Adding Windows

166

WindowXOP1View.mm
The WindowXOP1View.mm file implements the XOPView object which derives from the Cocoa NSView
class. XOPView overrides many NSView functions, such as mouseDown and keyDown. Cocoa calls these
methods to pass events to the view. The XOPView class also overrides the drawRect method which Cocoa
calls anytime the view needs to be repainted.

Windows XOP Window Programming
On Windows all event handling, user interface creation and drawing for XOP containers is done in using
the Windows API. The part of the API that deals with windows is documented at MSDN under Desktop
Technologies:

Windows and Messages
As for any Windows API window, the program must register a window class and then create an instance
of the class. It must provide a window procedure function to which Windows sends messsages when events
happen. For some messages the window procedure must call SendContainerHWNDEventToIgor to allow
Igor to respond to the event and implement Igor-specific behaviors.

Window Source Files
This section provides a brief discussion of the main Windows source files.

WindowXOP1HWND.cpp
WindowXOP1HWND.cpp contains the crux of the Windows implementation. The first time an XOP con-
tainer is created it registers the WindowXOP1 window class by calling RegisterClassEx. The file also con-
tains the XOPWindowProc function which is the window procedure function to which the Windows OS
sends messages.

The AddXOPHWND function is called from WindowXOP1CreateContainer. It creates the XOP OS con-
tainer and adds it to the XOP container as a child window. It also creates the WindowXOP1Container object
which represents the container in the XOP code.

WindowXOP1CommandsWin.cpp
WindowXOP1CommandsWin.cpp handles commands sent by Windows when the user clicks a button.
Such commands are sent to the XOPWindowProc function via WM_COMMAND messages.

WindowXOP1DrawingWin.cpp
WindowXOP1DrawingWin.cpp draws the XOP container visible contents. However child windows such
as buttons draw themselves.

Menu Handling for XOP Windows and Containers
Because Igor controls the main menu bar and all of its menus, all interaction with menus occurs via mes-
sages that Igor sends to the XOP, not through platform-specific techniques.

Enabling Menu Items
Igor sends different messages depending on the nature of the menus or menu items that need to be updated:

The XOPMENUENABLE message tells the XOP to update menu items that are independent of the active
window or container. These are menu items that the XOP added to Igor menus or to top-level XOP-created
menus. See UpdateIndependentXOPMenuItems in WindowXOP1.cpp.

Igor sends the kXOPWindowMessageUpdateFileMenu message when the File menu needs to be updated
and your XOP window is the active window. See the XOPWindowProxy::updateFileMenuItems method.

http://msdn.microsoft.com/en-us/library/windows/desktop/ms632586(v=vs.85).aspx

Chapter 9 — Adding Windows

167

Igor sends the kXOPWindowMessageUpdateEditMenu message when the Edit menu needs to be updated
and your XOP window is the active window. See the XOPWindowProxy::updateWindowEditMenuItems
method. It is unlikely that you will need to modify this because most of the items in the Edit menu are con-
tainer-oriented rather than window-oriented.

Igor sends the kXOPWindowMessageUpdateWindowsMenu message when the Windows menu needs to
be updated and your XOP window is the active window. See the XOPWindowProxy::updateWindows-
MenuItems method. It is unlikely that you will need to modify this because the default implementation is
sufficient.

Igor sends the kXOPContainerMessageUpdateEditMenu message when the Edit menu needs to be
updated and your XOP container is the active container. See the WindowXOP1Container::updateEdit-
MenuItems method. Most Edit menu items are enabled by this method.

Igor sends the kXOPContainerMessageUpdateSlotMenu message when the slot menu needs to be
updated and your XOP container's slot menu is visible. The slot menu is the menu that changes based on
the type of window that is active. When a graph is active, the Graph menu is the slot menu and when a table
is active, the Table menu is the slot menu. An XOP declares a slot menu using the STR# 1160 resource. See
WindowXOP1.r and WindowXOP1WinCustom.rc for examples. If an XOP declares a slot menu then Igor
displays it as appropriate and calls WindowXOP1Container::updateSlotMenuItems to update its items.

Igor7 sets the Windows→Close menu item to Close or Hide based on the XOP's response to the kXOPWin-
dowMessageCloseMeansHide message. If the XOP responds with true, Igor sets the menu item to "Hide".
Otherwise it sets it to "Close". In both cases Igor enables the menu item. The code in XOPWindowMes-
sages.cpp calls XOPWindowProxy::closeMeansHide which returns true for non-target windows and false
for target windows. If you want to change this, add a closeMeansHide method to the
WindowXOP1Window class.

Responding to Menu Selections
If the user chooses a built-in menu item that applies to the active window while your XOP window is active,
Igor sends a message specific to that menu item. The generic routines in XOPWindowMessages.cpp field
the message and call the appropriate WindowXOP1Window method.

For example, if the user chooses Windows→Control→Move to Preferred Position, the generic routines call
XOPWindowProxy::moveToPreferredPosition which implements the default behavior. If you wanted to
override the default behavior you would add a moveToPreferredPosition method to the
WindowXOP1Window class.

If the user chooses a built-in menu item that applies to the active container while your XOP container is
active, Igor sends a message specific to that menu item. The generic routines in XOPContainerMessages.cpp
field the message and call the appropriate WindowXOP1Container method.

For example, if the user chooses Edit→Cut, the generic routines call WindowXOP1Container::cut which
implements the cut operation.

If the user chooses a menu item added by the XOP, whether the item was added to an Igor menu or is part
of an XOP menu, Igor sends the MENUITEM message which is described under Responding to Menu
Selections on page 150. The XOPEntry routine calls XOPMenuItem in WindowXOP1.cpp.

Cursor Handling for XOP Windows and Containers
Cursor handling is different on Macintosh and Windows.

Macintosh Cursor Handling
The normal way to handle the cursor in Cocoa is for each NSView to control the cursor when the mouse is
over it. This is described in Apple's Cocoa Event Handling Guide under Using Tracking-Area Objects.

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/EventOverview/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/EventOverview/TrackingAreaObjects/TrackingAreaObjects.html#//apple_ref/doc/uid/10000060i-CH8-SW1

Chapter 9 — Adding Windows

168

Unfortunately Qt, on which Igor7 is based, interferes with this approach. Qt traps mouse moved events and
sets the cursor before the normal Cocoa mechanism kicks in. It also sets the cursor at other times, such as
when the window is activated. This defeats any cursor-setting implemented by an NSView.

After much investigation we concluded that there is no practical way to wrest control of the cursor from Qt
on Macintosh. Therefore the only solution is to tell Qt which cursor to use by calling the XOP Toolkit call-
backs ArrowCursor, IBeamCursor, WatchCursor, HandCursor or SetXOPContainerMouseCursor. On Mac-
intosh these routines tell the Qt widget in which the XOP NSView lives which cursor to use. Qt sets the
cursor when the mouse is moved over the widget.

The cursor codes for SetXOPContainerMouseCursor are listed in the IgorMouseCursorCode enum in
IgorXOP.h. To see what each cursor looks like, run the "Mouse Cursor Control.pxp" example experiment
that ships with Igor7.

When the user moves the mouse over an XOP container, Igor sends the kXOPContainerMessageMouse-
Move message to the XOP. This causes WindowXOP1Container::mouseMoved to be called. It calls the plat-
form-dependent HandleMouseMoved routine which calls SetXOPContainerMouseCursor.

Windows Cursor Handling
Unlike on Macintosh, the XOP is able to wrest control from Qt because the XOP window proc is called
instead of the Qt window proc. Therefore cursor handling on Windows is done using standard Windows
API practices in response to the WM_MOUSEMOVE message. You can use the XOPSupport routines
ArrowCursor, IBeamCursor, WatchCursor, HandCursor and SetXOPContainerMouseCursor or Windows
platform-dependent techniques instead. This is illustrated in the XOPWindowProc function in
WindowXOP1HWND.cpp.

On Windows ArrowCursor, IBeamCursor, WatchCursor, HandCursor and SetXOPContainerMouseCursor
call the Windows SetCursor function directly. Unlike Macintosh, on Windows
WindowXOP1Container::mouseMoved and HandleMouseMoved are not called.

The cursor codes for SetXOPContainerMouseCursor are listed in the IgorMouseCursorCode enum in
IgorXOP.h. To see what each cursor looks like, run the "Mouse Cursor Control.pxp" example experiment
that ships with Igor7.

Activating, Showing and Hiding Windows
Normally the showing and hiding of windows is left in the hands of the user. If you want to programmat-
ically show a window, call ShowIgorWindow or ShowAndActivateIgorWindow. If you want to program-
matically hide a window, call HideIgorWindow or HideAndDeactivateIgorWindow. These functions are
documented in XOPSupport/XOPWindows.cpp.

Messages for XOP Windows
The window-related messages that Igor sends to XOPs are defined in XOPSupport/XOPWindows.h. These
messages are entirely handled in the file XOPWindowMessages.cpp which is part of the WindowXOP1
XOP. That file includes detailed comments explaining the messages. However you never need to deal with
window messages directly as the routines in XOPWindowMessages.cpp handle them by calling the appro-
priate method of the XOPWindowProxy class or the WindowXOP1Window class.

NOTE: The window messages are documented in XOPWindowMessages.cpp, not in this manual.

You should not need to modify XOPWindowProxy.h or XOPWindowProxy.cpp. Instead, if you want to
customize the response to window messages, modify WindowXOP1Window.h and
WindowXOP1Window.cpp. This is where you override methods in the XOPWindowProxy class to provide
customized behavior.

Chapter 9 — Adding Windows

169

Messages for XOP Containers
The container-related messages that Igor sends to XOPs are defined in XOPSupport/XOPContainers.h.
These messages are entirely handled in the file XOPContainerMessages.cpp which is part of the
WindowXOP1 XOP. That file includes detailed comments explaining the messages. However you never
need to deal with container messages directly as the routines in XOPContainerMessages.cpp handle them
by calling the appropriate method of the XOPContainerProxy class or the WindowXOP1Container class.

NOTE: The container messages are documented in XOPContainerMessages.cpp, not in this manual.

You should not need to modify XOPContainerProxy.h or XOPContainerProxy.cpp. Instead, if you want to
customize the response to container messages, modify WindowXOP1Container.h and
WindowXOP1Container.cpp. This is where you override methods in the XOPContainerProxy class to
provide customized behavior.

Igor Window Coordinates
This section describes a platform-independent coordinate system called "Igor coordinates". Igor coordi-
nates are most-commonly used in command line operations such as:

Display/W=(10,45,410,245) jack

A command like this should have roughly the same effect on any platform. Consequently we need a plat-
form-independent coordinate system.

Some XOPSupport routines require Igor coordinates while others require system-dependent pixel coordi-
nates. The documentation for a given XOPSupport routine specifies which coordinate system it requires.

Igor’s coordinate system originated at the birth of Igor in the spring of 1987. It was based on the Mac OS
coordinate system of the time. The operating system was Mac OS 4.1. Igor still uses the same coordinate
system which has been adapted for Windows and for high-resolution screens.

Igor uses global coordinates in units of points, relative to the top/left corner of the main screen. On a
normal-resolution Macintosh a point is assumed to be equivalent to one pixel. On a Retina Macintosh a
point is assumed to be equivalent to two pixels both vertically and horizontally for a total of four square
pixels.

Because the Macintosh menu bar takes 20 points, the coordinate of the top edge of the desktop area, which
corresponds to the bottom edge of the menu bar, is 20.

When specifying a window size and position, you provide the top/left coordinate of of the window’s "con-
tent region". This is the area of the window exclusive of the title bar and frame. The following picture shows
a graph window created on Macintosh using the command

Display/W=(10,45,410,245) jack

(10,45)

 245 - 45

 410 - 10

(0,20)

Chapter 9 — Adding Windows

170

The vertical coordinate 45 takes the height of the menu bar and the heights of the window frame and title
bar into account.

For compatibility on Windows the vertical coordinate 20 is taken to be the top of the desktop, which corr-
sponds the bottom of the menu bar, as it does on Macintosh.

The following picture shows a graph window created on Windows using the command
Display/W=(10,45,410,245) jack

On Windows the correspondence between points and pixels is set by the Display control panel. Igor coor-
dinates are stored as floating point because, to accurately reposition a window, we need to use fractional
points in /W=(left,top,right,bottom) flags.

The TransformWindowCoordinates XOPSupport routine converts between native Macintosh or native
Windows coordinates and Igor coordinates.

To get your window's size and position in Igor coordinates, call the GetIgorWindowPositionAndState
XOPSupport routine. If your XOP stores window coordinates, store them using the results returned from
this routine. To restore the window to the same size and position, call the SetIgorWindowPositionAnd-
State XOPSupport routine. These routines work the same on Macintosh and Windows.

Window-related XOPSupport routines are documented in XOPSupport/XOPWindows.cpp.

Adding XOP Target Windows
A target window type is a class of windows that can be manipulated using commands from the command
line or from Igor procedures. Each target window has a name so that it can be referenced from commands
such as MoveWindow, GetWindow, SetWindow and KillWindow. The name of a window is by definition
the name of its top-level container.

Target windows are tied to the current experiment. Igor kills them when the experiment is closed via New
Experiment or Open Experiment. Non-target windows, like the command window and Data Browser, are
independent of the current experiment and persist across experiments.

A target window can be stored as a window recreation macro and recreated later by running the recreation
macro. When an experiment is saved Igor saves a window recreation macro for each target window. When
an experiment is opened Igor runs the window recreation macro to recreate the window. Igor does not
create recreation macros for non-target windows.

Igor Pro 6 supported five built-in target window types: graphs, tables, page layouts, notebooks, and control
panels. The Gizmo window type was added via an XOP. In Igor Pro 7 the Gizmo window was converted
from an XOP to a built-in type.

(10,45)

 245 - 45

 410 - 10

(0,20)

Chapter 9 — Adding Windows

171

An XOP can add a target window type to Igor. An XOP target window behaves substantially like a built-in
Igor Pro target window. XOP target windows must be saved as window recreation macros in the Igor Pro-
cedure window and in Igor experiment files.

An XOP target window can be embedded in an Igor window as a subwindow.

The WindowXOP1 XOP creates a target window when you execute the NewWindowXOP1Window com-
mand. It creates a subwindow when you execute NewWindowXOP1Window/HOST=<host-spec>. It does
this by using the kCreateXOPWindowAsTargetWindow option when calling CreateXOPWindow.

If you omit the kCreateXOPWindowAsTargetWindow option, CreateXOPWindow creates the window as
a non-target window.

Window Recreation Macros
Igor sends the kXOPContainerMessageRecreationText message when it generates a window recreation
macro for an XOP window or for an Igor window with an XOP container as a subwindow. Code in XOP-
ContainerMessages.cpp calls WindowXOP1Container::generatXOPContainerRecreationText which
returns the required recreation commands. Because recreation macro generation can require a lot of code,
to reduce clutter in WindowXOP1Container.cpp, WindowXOP1Container::generatXOPContainerRecre-
ationText is implemented in a separate file - WindowXOP1RecreationMacros.cpp.

Window Hook Functions
User-defined window hook functions, as described under "Window Hook Functions" in the Igor help, are
supported for XOP target windows except for the following messages:

XOP Window Issues
Here are the main known issues with XOP windows in Igor7:
• An XOP can define only one slot menu

Here are the main unimplemented features for XOP windows in Igor7:

• Edit→Duplicate Window does nothing for an XOP window.

XOP Subwindow Issues
You can add an XOP container as a subwindow to an Igor graph, page layout or panel.

Here are the main known issues with XOP subwindows in Igor7:

• XOP subwindows are always displayed on top of graph, table and notebook subwindows.

Event Code Event Name Notes

7 cursormoved Not applicable

8 modified Not supported - This would require a callback from the XOP
to Igor anytime the XOP content was modified which would
be time-consuming

14 subwindowKill Not applicable - XOP windows don't support subwindows

18 showTools Not applicable

19 hideTools Not applicable

20 showInfo Not applicable

21 hideInfo Not applicable

23 spinUpdate Not applicable

Chapter 9 — Adding Windows

172

• In subwindow layout mode (show the drawing tools, click the drawing icon, click the XOP subwin-
dow, click the thick frame around the subwindow), if you press Cmd-T or Ctrl-T, the tools are not
hidden.

• There is no way to export the XOP subwindow when exporting a graph or page layout window.
• There is no way to print the subwindow when printing a graph or page layout window.
• When you change the magnification of the graph, the magnification of the XOP subwindow does

not change.
Here are the main unimplemented features for XOP subwindows in Igor7:

• Subwindow frames are not supported.
• There is no way to add the name of a type of XOP subwindow to the New submenu that you get

when you right-click a host container in drawing mode.
• There is no support for drawing XOP subwindow at different resolutions. This is needed for several

purposes:
1. To draw an XOP subwindow in a layout at other than 100%.

2. To draw an XOP subwindow in a graph whose resolution is other than 100% (e.g., ModifyGraph
expand=2).

3. To draw an XOP subwindow in a panel whose resolution is other than 100% (e.g., SetIgorOption
PanelResolution=144).

4. To export a panel, graph or layout containing an XOP subwindow at a resolution other than 100%.

Changes to XOP Window Programming in Igor Pro 7
This section discusses changes required for existing XOPs that add windows to Igor. You need to read this
section only if you have an existing Igor6 window XOP and you want to port your XOP to Igor7. For an
overview of the process of adding windows see Adding Windows on page 155.

In Igor6 and before Igor was implemented on top of the Carbon Framework on Macintosh and on top of the
Windows API on Windows. Consequently the XOP window protocol was platform-specific, using the
Carbon or Windows API depending on the platform.

With Igor7 WaveMetrics re-implemented Igor based on Qt - a platform-independent framework for appli-
cation development. In order for XOP windows to integrate nicely into Igor7, WaveMetrics has created a
new XOP window protocol. The protocol is implemented by Igor7 and XOP Toolkit 7.

NOTE: Igor6 window XOPs are not compatible with Igor7. To run your window XOP with Igor7 you
must revise it using XOP Toolkit 7 to use the Igor7 window XOP protocol.

NOTE: Igor7 window XOPs are not compatible with Igor6. They require Igor7 or later.

The Igor7 window protocol is completely different from the Igor6 protocol. Because of this, to port an exist-
ing window XOP to Igor7 we recommend that you start with the WindowXOP1 sample XOP, clone it using
the "Create New XOP Project.pxp" experiment file, and then add your custom code from your previous
window XOP to the new one.

The main changes in the Igor7 XOP window protocol are:

• Igor creates the window instead of the XOP
• You use the type IgorWindowRef as a pointer to the window structure instead of

XOP_WINDOW_REF
• A new concept, the container, is introduced
• You can embed an XOP container in an Igor window as a subwindow

Chapter 9 — Adding Windows

173

• All of the old window-related messages (e.g., CLICK, KEY) from Igor are no longer supported,
replaced by new messages (e.g., kXOPContainerMessageMouseClick, kXOPContainerMessageKey-
Pressed)

IgorWindowRef Data Type Replaces XOP_WINDOW_REF
In Igor6 and XOP Toolkit 6 you used the type XOP_WINDOW_REF to refer to the structure describing an
XOP window. An XOP_WINDOW_REF is a Carbon WindowPtr on Macintosh and a Windows API HWND
on Windows.

In Igor7 and XOP Toolkit 7 you use the type IgorWindowRef instead of XOP_WINDOW_REF. An IgorWin-
dowRef is a pointer to a WaveMetrics object that describes an Igor window. You obtain an IgorWindowRef
via a callback to Igor. The details of what an IgorWindowRef points to are private and may change from
one version of Igor to the next. You use callbacks to operate on the window.

TellIgorWindowStatus Removed
Igor Pro 6 added features intended to make it easier to deal with large numbers of windows. These features,
accessible through the Windows menu, include mass showing of windows, mass hiding of windows, and
a Recent Windows submenu for retrieving recently activated windows.

In Igor Pro 6, to participate in these features, an XOP had to call the TellIgorWindowStatus callback. In Igor
Pro 7, this is handled internally by Igor. Consequently the TellIgorWindowStatus callback was removed
from XOP Toolkit 7. If you are porting an XOP to XOP Toolkit 7, remove all calls to TellIgorWindowStatus.

Removed Window-Related XOPSupport Routines
The section list window-related routines removed from XOP Toolkit 7 and replacement routines, if any.

The replacement routines are documented in XOPSupport/XOPWindows.c, not in this manual.

Removed Routine Replacement Routine

GetXOPWindow None

GetActiveWindowRef GetActiveIgorWindow

IsXOPWindowActive IsIgorWindowActive

ShowXOPWindow ShowIgorWindow

HideXOPWindow HideIgorWindow

ShowAndActivateXOPWindow ShowAndActivateIgorWindow

HideAndDeactivateXOPWindow HideAndDeactivateIgorWindow

SetXOPWindowTitle SetIgorWindowTitle

GetXOPWindowPositionAndState GetIgorWindowPositionAndState

SetXOPWindowPositionAndState SetIgorWindowPositionAndState

GetXOPWindowIgorPositionAndState GetIgorWindowIgorPositionAndState

SetXOPWindowIgorPositionAndState SetIgorWindowIgorPositionAndState

TellIgorWindowStatus None

IBeamCursor SetXOPContainerMouseCursor

HandCursor SetXOPContainerMouseCursor

SpinCursor SpinProcess

Chapter 9 — Adding Windows

174

TU ("Text Utility") Windows
A TU window is a "text utility" window - a simple plain text editing window. The VDT2 sample XOP illus-
trate the use of a TU window.

Changed Text Utility Window Callbacks
The Text Utility Window callbacks are documented in XOPSupport/XOPTextUtilityWindow.c, not in this
manual. This section lists Text Utility Window routines that changed in XOP Toolkit 7.

The TUNew2 callback now takes an IgorWindowRef* parameter.

The meaning of the second parameter to the TUFind callback has changed.

The TUClick callback now takes a WMMouseEventRecord* parameter.

The TUNull callback now takes a WMMouseEventRecord* parameter.

The TUKey callback now takes a WMKeyboardEventRecord* parameter.

The TUSFWriteFile routine allFlag parameter is ignored by Igor7 which always writes the entire file, even
if allFlag is 0.

The TUSetStatusArea function ignores the statusAreaWidth parameter when running with Igor7 or later.

Recursion Problems
If you add a window to Igor, your XOP may be called recursively. This happens if Igor calls your XOP, your
XOP does a callback to Igor, and the callback causes Igor to call your XOP again. For details on when this
can happen and how to handle it, see Handling Recursion on page 67.

Chapter 10

I-10Multithreading

Multithreading With XOPs
Multithreading allows a program to do more than one thing at a time. On a single-processor machine this
works by giving a slice of time to each thread, giving the illusion of simultaneity. On a multiprocessor
machine, multiple threads can execute at the same time on different processors, giving real simultaneity.

Multithreading is useful for two purposes:

• To allow a task to run without blocking other tasks
For example, you can perform data acquisition in a thread while you analyze previously-acquired
data in the main thread. The main thread will not block the data acquisition thread.

• To achieve greater throughput by utilizing multiple processors
For example, you can run an analysis procedure on multiple data sets at one time using a thread for
each data set.

Multithreading brings complications to programming. New rules must be followed to coordinate threads
and keep them from interfering with one another. Programs that follow these rules are said to be "thread-
safe".

Thread-safe programming is a vast topic which this manual will not cover except as it relates specifically to
XOPs. We will assume that you understand the basics of thread-safe programming. If not, now would be a
good time to familiarize yourself with it. A web search for “thread-safe programming” will get you started.

Multithreading is recommended only for experienced programmers. Whether you are experienced or not,
you should verify that your XOP works correctly from the main thread before attempting multithreading.

Thread-safe External Operations and External Functions
For an external operation or function to be callable from a thread it must first be marked as thread-safe.

You mark an external operation as thread-safe using the XOPC resource that declares your operation and
using the RegisterOperation callback that registers your operation with Igor. This is described under
Thread-Safe External Operations on page 95.

You mark an external function as thread-safe using the XOPF resource that declares your function. This is
described under Thread-Safe External Functions on page 117.

Once your external operation or external function is properly marked as thread-safe, Igor will allow you to
call it from an Igor thread-safe user-defined function or to use it in a multithreaded computation (e.g., in a
multithreaded curve fit). But marking it as thread-safe does not make it thread-safe - you must also write
your operation or function in a thread-safe way. That is the subject of the following sections.

Chapter 10 — Multithreading

176

Three Kinds of Threads
We need to make a distinction between three kinds of threads:
• The main thread
• Igor preemptive threads
• Your own private internal preemptive threads that you create in your XOP
The main thread is created by the operating system when Igor is launched. Igor's outer loop and all user-
interface activity run in the main thread. User-defined functions run in the main thread unless you explic-
itly create additional threads using Igor's ThreadGroupCreate and ThreadStart operations.

Igor preemptive threads are created by automatically multithreaded Igor operations like ImageInterpolate,
when the MultiThread keyword is used to introduce a waveform assignment statement, and when an Igor
user-defined function calls the ThreadGroupCreate operation.

You can use your own private internal preemptive threads in your XOP so long as Igor knows nothing about
them. This means that you can not do a callback to Igor from one of your private internal threads.

NOTE: You can not do a callback to Igor from a private internal thread. You can do callbacks only from
Igor’s main thread and from Igor preemptive threads if the callback is designated as Igor-thread-
safe.

Two Kinds of Igor Preemptive Threads
Igor preemptive threads can be classified as:

• Igor computation threads
• Igor user-defined function threads
An Igor computation thread is a thread created by an automatically multithreaded Igor operation such as
ImageInterpolate or by a multithreaded waveform assignment statement using the MultiThread keyword.

An Igor user-defined function thread is created when a procedure calls the ThreadGroupCreate operation. The
newly-created thread sleeps until you call the ThreadStart operation. ThreadStart starts a user-defined
function, called a "worker function", running in an Igor preemptive thread created by ThreadGroupCreate.

The following sections focus on creating thread-safe external operations and functions to be called from
Igor user-defined function threads but the considerations discussed also apply to Igor computation threads.

Igor Messages and Threads
Igor can call your XOP in three ways:
• Igor sends a message to your XOP by calling its XOPEntry routine from the main thread
• Igor calls your XOP's external operation from some thread
• Igor calls your XOP's direct external function from some thread
When we say that Igor sends a message to your XOP, we are speaking of the first of these three events. The
mechanism by which Igor sends a message to an XOP is not thread-safe. Consequently, Igor will send a
message to your XOP from the main thread only.

Writing Thread-safe Code
The topic of writing thread-safe code is vast and complex. In general, data that may be written by more than
one thread, or written by one thread and read by another, requires special handling to prevent threads from
interfering with each other. Your XOP's global variables are accessible by any thread and therefore create
potential problems in a multithreaded environment. Globals that you set once at startup in the main thread

Chapter 10 — Multithreading

177

and only read from preemptive threads are OK. Globals that you read and write from the main thread
and/or preemptive threads are problematic.

If your external operation or function uses only data (waves, numbers, strings, structures) passed to it
through parameters and its own local variables, and does not use any read/write global variables, then your
code will be thread-safe and you don't need to know any more about it. For example, a curve fitting function
typically takes a parameter wave and an X value as an input and computes a numeric result by simply
doing number crunching on the parameters. Such a function is thread-safe.

On the other hand, an external operation or function that stores state information in global variables is not
thread-safe. It can be made thread-safe using multithreaded programming techniques such as mutexes and
semaphores. This is for advanced programmers only who have studied the details of thread-safe program-
ming and even then is tricky. You can greatly simplify matters by eliminating global variables as much as
possible. Eliminating them altogether is ideal.

Igor Preemptive Thread Data Environment
When Igor creates a new preemptive thread it also creates a new data hierarchy for use by that thread and
that thread only.

This means that each Igor preemptive thread has its own root data folder possibly containing waves and
variables and sub-data folders. This simplifies thread-safe programming because you can modify waves
and Igor variables in your data hierarchy without worrying that other threads are also reading or writing
them.

When you do a callback such as FetchWaveFromDataFolder, which returns a handle to a named wave in a
specific data folder, you are looking for a wave in your thread's data hierarchy, not in the main Igor data
hierarchy. When you call MDMakeWave, you are making a wave in your thread's data hierarchy, not in the
main Igor data hierarchy. The same is true for Igor global variables.

Waves Passed to Igor Threads as Parameters
In addition to data in the Igor thread's data hierarchy, an Igor preemptive thread can also access waves from
the data hierarchy of the calling Igor thread (typically the main thread) that are passed as parameters to the
thread's worker function. In the case of an Igor user-defined function thread, the worker function is the
function specified in the ThreadStart command.

For example, here is a thread worker function that passes a wave from the calling thread to an external oper-
ation:

ThreadSafe Function ThreadWorker(threadInputWave)
Wave threadInputWave // Lives in calling thread’s data hierarchy

ExternalOperation threadInputWave
End

There are severe limits on what you are allowed to do with a thread parameter wave. It is the responsibility
of the Igor user-function programmer to abide by these limits since the XOP programmer has no way to
know if a given wave is a thread parameter wave.

Here is what you can do with a thread parameter wave:

• If the wave is numeric, you can read and/or write its data in the calling thread and in the receiving
thread

• If the wave is text, you can read its data in the calling thread and in the receiving thread

If you write the wave’s data in both threads, the contents of the wave will be unpredictable so you should
not do that.

Chapter 10 — Multithreading

178

If you read the wave’s data in one thread while the other thread is writing it, you may read some spurious
data. This would occur if the reading thread does a read while a write is partially complete. If you are just
displaying the wave in a graph or table, a transitory spurious read is not fatal. However, if your application
can not tolerate a transitory spurious read, you must make some arrangement to coordinate the reading and
writing threads.

Here is what you can not do with a thread parameter wave:

• You can not redimension the wave or change other wave properties
• You can not kill the wave

Igor returns an error if you attempt these forbidden operations on a thread parameter wave.

In addition:

• If the wave is text, you can not write to it

Igor returns an error if you attempt to write to a thread parameter text wave using MDSetTextWavePoint-
Value.

Igor Pro 6.23 or later returns an error if you attempt to write to a thread parameter text wave using SetTex-
tWaveData. Prior to Igor Pro 6.23, SetTextWaveData did not return an error in this circumstance. This could
cause a crash if another thread was simultaneously reading the text wave.

The restrictions on a thread wave parameter end when the receiving thread’s worker function returns.

Categories of XOPSupport Routines
XOPSupport routines can be categorized as either callback routines (e.g., MDMakeWave), which call back
to Igor, and utility routines (e.g., GetCStringFromHandle), which do not call back to Igor.

In the following discussion, "callback routine" means an XOP Toolkit routine that calls back to Igor, "utility
routine" means an XOP Toolkit routine that does not call back to Igor and "XOPSupport routine" means any
XOP Toolkit routine (a callback or a utility).

Igor-Thread-Safe Callbacks
The thread-safety of each routine is listed in Chapter 15, XOPSupport Routines. Many of the routines are
described as “Igor-thread-safe”. This means that you can call them from Igor’s main thread and from Igor
preemptive threads when running with Igor Pro 6.20 or later. But you can not call such routines from your
own private internal threads.

Thread-Safety of Callbacks from an Igor Preemptive Thread
With Igor Pro 6.20 or later, your XOP can do a callback to Igor from an Igor preemptive thread if the callback
is designated as Igor-thread-safe. The documentation for each routine, in Chapter 15, XOPSupport Rou-
tines, tells you if the routine is Igor-thread-safe or not.

If you want to create a thread-safe external operation or external function that does callbacks to Igor, you
must make sure that you are running with Igor Pro 6.20 or later. You can do this using the normal version
check in your XOPMain function as described under Checking Igor’s Version on page 70.

Even when running with Igor Pro 6.20 or later, not all XOPSupport routines are thread-safe. This is because
some of the routines run code that is not written to be thread-safe. For example, the XOPCommand call-
back, which executes a command in Igor's command line, is not thread-safe.

Each XOPSupport routine that is not thread-safe checks to see if it is running in a thread other than the main
thread. If so it:

Chapter 10 — Multithreading

179

• Displays a dialog alerting you to the fact that you are calling a thread-unsafe routine from a thread
• Returns a result that indicates that an error occurred, if the routine return value is not void
If this happens, your XOP has a bug that you need to correct.

Routines that return an error code return NOT_IN_THREADSAFE in this situation. Routines that return a
handle, such as a wave handle or menu handle, return NULL.

It is important that you check the return value from every routine that returns a value and that you handle
abnormal returns correctly. For example, if you inadvertently call a non-thread-safe routine from a thread
and that routine normally returns a wave handle, it will return NULL. If you detect and deal with this cor-
rectly (e.g., by returning a NOWAV error to Igor), you will eventually get a reasonable error message. If
you do not detect it, you will use the NULL handle and your XOP will crash. Debugging an error message
is much easier than debugging a crash, so make sure to test and correctly handle all return values.

XOPSupport routines that deal with user interface - including menus, dialogs and windows - are not
thread-safe.

In general, XOPSupport routines that read or write data folders, waves and variables are thread-safe when
you are running with Igor Pro 6.20 or later.

You Can Not Do Callbacks From Private Threads
A private thread is a thread that your XOP creates as opposed to a thread that Igor creates. Only very
advanced XOPs will need to use private threads.

You can not do any callbacks from private threads.

The rest of this section explains the reason for this restriction.

Each Igor thread has its own data hierarchy consisting of a root data folder, child data folders, and waves
and variables stored in those data folders. Normally each thread accesses its own data hierarchy only. (The
exception is that a thread can access waves passed to it as parameters from a another thread - see Waves
Passed to Igor Threads as Parameters on page 177.)

This arrangement means that thread-safe user-defined functions, external operations and external func-
tions do not need to worry about coordinating data access with other threads. They can access waves and
variables in their own data hierarchy without the use of mutexes or other thread-safety techniques. This
greatly simplifies Igor programming with threads.

Internally Igor maintains a data structure for each Igor thread that points to the thread's data hierarchy. To
guarantee that a given thread accesses its data hierarchy only, Igor internally passes a pointer to this struc-
ture to any internal routine that needs to access data. For the purposes of this discussion, we will call this
pointer an “Igor thread data pointer” or an ITDP for short. Just to be clear, an ITDP is a conceptual term for
a pointer to a structure used internally by Igor to reference an Igor thread's data hierarchy.

When you do a callback from your XOP to Igor, Igor may need to access the current thread's data hierarchy
and therefore needs an ITDP for the current thread. Igor obtains this from thread-local storage in which it
stored the thread's ITDP when the thread was created. If you do a callback from an Igor thread, either the
main thread or an Igor preemptive thread, Igor gets a valid ITDP from thread-local storage.

When you do a callback, Igor assumes that you are calling it from an Igor thread. If you do a callback from
your private thread, Igor will attempt to get an ITDP and will get garbage. If the callback uses the ITDP, Igor
will crash.

Another problem with doing callbacks from private threads is that there is no way to prevent a private
thread and an Igor thread from changing Igor data (waves, variables and data folders) simultaneously.

Consequently, it is up to you to make sure that you refrain from doing callbacks to Igor from any private
threads you create.

Chapter 10 — Multithreading

180

Determining if You are Running in a Preemptive Thread
Sometimes you might want to know if you are running in a preemptive thread so that you can do something
one way if called from a thread or another way if called from the main thread. You can use the Running-
InMainThread utility routine for this purpose.

For example, you may create an external operation that is thread-safe when running with Igor Pro 6.20 or
later but not thread-safe when running with earlier versions of Igor. You would include the following test
in your code:

if (igorVersion < 620) {
if (!RunningInMainThread())

return NOT_IN_THREADSAFE;
}

NOT_IN_THREADSAFE is a built-in Igor error code.

If you have code that should never run in a preemptive thread, you can use CheckRunningInMainThread
to inform yourself that, contrary to your expectations, it is being called from a thread:

if (!CheckRunningInMainThread("SomeRoutineName"))
return NOT_IN_THREADSAFE;

Replace “SomeRoutineName” with the name of your routine. This displays a dialog informing you of the
error.

CheckRunningInMainThread should be used only to inform yourself that your thread-safety checks have
failed to do the job and that code that is never supposed to execute from a thread is doing so. The XOP
Toolkit uses it to inform you that you are calling a non-thread-safe XOPSupport routine from a thread.

If CheckRunningInMainThread returns 0 you know you are running in a preemptive thread but it does
not tell you if you are running in an Igor preemptive thread or in your own private internal thread. If you
use private threads, it is up to you to keep track of this distinction.

Strategies For Threaded Data Acquisition
In this section we assume that you are running with Igor Pro 6.20 or later and want to acquire data in an
Igor preemptive thread or in a private preemptive thread created by your XOP so that you can use Igor for
other purposes while data is being acquired. This is recommended for experienced programmers only.

In order to display data in a graph or table or to pass it to non-thread-safe Igor operations, it needs to be in
the data hierarchy of Igor’s main thread. There are four methods to achieve this. In two of the methods, the

Chapter 10 — Multithreading

181

data is acquired in an Igor preemptive thread. In the other two, it is acquired in a private thread that your
XOP creates. The first method has two variations:

The first two methods are clean but require more work on your part. The last two methods are quick and
dirty. The last method is not recommended for XOPs that need to be bulletproof.

If you are comfortable creating your own threads and coordinating between threads then method 2 is pre-
ferred. Otherwise method 1A or 1B are preferred. Method 3 is the easiest to implement.

The following sections describe each of the methods. They assume that you are familiar with thread-safe
programming in Igor itself. If not, you can come up to speed by:

• Reading the “ThreadSafe Functions and Multitasking” section of Igor’s help. This is also available
in the “Advanced Programming” chapter of the Igor Pro manual.

• Examining the “Slow Data Acq” example experiment. You can open it by choosing File→Example
Experiments→Programming→Slow Data Acq.

The Slow Data Acq example experiment can be used as a starting point for your own Igor data acquisition
project.

The following sections also assume that you have created an external operation to acquire data but an exter-
nal function would also work.

Method Data Acquired In Data Acquired To Data Transfer to Main Thread

Method 1A

(page 182)

Igor Thread Igor thread's data
hierarchy

The Igor thread worker function, running in the
preemptive thread, sends data to Igor’s thread
output queue.

An Igor named background task, running in the
main thread, reads data from the thread output
queue.

Method 1B

(page 183)

Igor Thread Igor thread's data
hierarchy

The external operation or external function,
running in the preemptive thread, sends data to
Igor’s thread output queue.

The XOP, running in the main thread, transfers
data from the output queue to the main thread’s
data hierarchy when Igor sends the IDLE
message to the XOP or when an external
operation or external function created for that
purpose is called.

This method requires Igor Pro 6.23 or later.

Method 2

(page 184)

Private Thread XOP private data
buffer

The XOP, running in the main thread, transfers
data from its private buffer to the main thread's
data hierarchy when Igor sends the IDLE
message to the XOP or when an external
operation or external function created for that
purpose is called.

Method 3

(page 184)

Igor Thread Main thread
numeric waves

No transfer required

Method 4

(page 185)

Private Thread Main thread
numeric waves

No transfer required

Chapter 10 — Multithreading

182

Method 1A: Acquiring Data in an Igor Thread
In this variant of method 1, data is acquired in an Igor preemptive thread. It is transferred to Igor’s thread
output queue by the thread worker function. It is transferred from the thread output queue to the main
thread’s data hierarchy by a named background task.

Here is a schematic view of this method:

Igor creates a separate data hierarchy for each Igor thread. This means that your thread worker function
and your external operation can create data folders, waves and variables and can read and write waves
without worrying about interference from other threads.

The tricky part is getting the data from the Igor preemptive thread into Igor’s main thread so you can
display it. Prior to Igor Pro 6.23, this could be done only from within Igor itself. Furthermore, it requires the
participation of two threads: your preemptive thread and Igor’s main thread.

Your thread worker function starts data acquisition by creating a data folder into which data will be
acquired and then calling your external operation which runs until it has acquired the data. When your
external operation returns, your thread worker function calls Igor’s ThreadGroupPutDF operation to trans-
fer the data folder to Igor’s thread output queue. Your thread worker function can then call your external
operation again or it can simply return if data acquisition is finished.

In the mean time, a user-defined function running in Igor’s main thread calls ThreadGroupGetDFR to
retrieve the data from Igor’s thread output queue. To avoid monopolizing the main thread, this user-
defined function must be a named background task. See “Background Tasks” in the Igor help or in the
“Advanced Programming” chapter of the Igor manual for details.

After the data has been transferred, the background task function can process and/or display it by directly
calling Igor operations or other user-defined functions.

The Slow Data Acq sample experiment simulates this entire process. It uses a user-defined function rather
than an external operation to do the data acquisition. Carefully read the documentation and code included
in that experiment. You can then use it as a starting point for your own XOP-based threaded data acquisi-
tion.

Igor Main Thread Igor Preemptive Thread

A user-defined function creates a thread group
(ThreadGroupCreate) and starts a thread worker
function (ThreadStart)

The user-defined function starts a named
background task (CtrlNamedBackground) which
periodically looks for data from the Igor
preemptive thread (ThreadGroupGetDFR)

The thread worker function creates a data folder in
the thread’s private data hierarchy, sets it as the
thread’s current data folder, and calls the external
operation

The user-defined function returns and the main
thread is now free for interactive use

The external operation acquires data into the
thread’s current data folder, creating waves,
variables and sub-data folders

The external operation returns to the thread worker
function

The thread worker function sends data to the thread
output queue (ThreadGroupPutDF)

The named background task receives data from the
thread output queue and transfers it to the main
thread (ThreadGroupGetDFR)

If more data is to be acquired, the thread worker
function repeats the process

The thread worker function returns and the Igor
preemptive thread stops

Chapter 10 — Multithreading

183

Method 1B: Acquiring Data in an Igor Thread
This variant of method 1 is the same as method 1A except that data is transferred to and from the Igor pre-
emptive thread group’s output queue by the XOP instead of by user-defined functions. This requires Igor
Pro 6.23 or later because the ThreadGroupPutDF and ThreadGroupGetDF callbacks were added in that
Igor version. If it is acceptable to require Igor Pro 6.23, this variant simplifies matters by eliminating the
named background task, assuming there are not other reasons to use a background task.

If you use this variant, check the Igor version as shown under Checking Igor’s Version on page 70, but use
623 instead of 620.

In this variant of method 1, data is acquired in an Igor preemptive thread. It is transferred to Igor’s thread
output queue by the external operation running in the preemptive thread. It is transferred from the thread
output queue to the main thread’s data hierarchy by the external operation running in the main thread.

Here is a schematic view of this method:

Igor creates a separate data hierarchy for each Igor thread. This means that your thread worker function
and your external operation can create data folders, waves and variables and can read and write waves
without worrying about interference from other threads.

The tricky part is getting the data from the Igor preemptive thread into Igor’s main thread so you can
display it. This requires the participation of two threads: your preemptive thread and Igor’s main thread.
Prior to Igor Pro 6.23, this could be done only from within Igor itself. Because the ThreadGroupPutDF and
ThreadGroupGetDF callbacks were added in that Igor version, it can now be done entirely in the XOP.

Your thread worker function calls your external operation to starts data acquisition. The external operation
acquires the data, storing it in a data folder in the Igor thread’s private data hierarchy. The external opera-
tion then calls the ThreadGroupPutDF callback to transfer the data folder to Igor’s thread output queue.

In the mean time, Igor’s sends IDLE message to your XOP from the main thread. Your XOP calls the
ThreadGroupGetDF callback to transfer a data folder from Igor’s thread output queue to the main thread’s

Igor Main Thread Igor Preemptive Thread

A user-defined function creates a thread group
(ThreadGroupCreate) and starts a thread worker
function (ThreadStart)

The user-defined function returns and the main
thread is now free for interactive use

The thread worker function calls the external
operation to start data acquisition

The external operation creates a data folder in the
thread’s private data hierarchy, sets it as the
thread’s current data folder, and acquires data into
it, creating waves, variables and sub-data folders

The external operation calls the
ThreadGroupPutDF callback to transfer the data
folder to the thread group’s output queue

The external operation returns to the thread worker
function

Igor sends the IDLE message to the XOP

The XOP calls ThreadGroupGetDF to see if data
from the preemptive thread is available and to
transfer it to the main thread’s data hierarchy

If more data is to be acquired, the thread worker
function repeats the process

The thread worker function returns and the Igor
preemptive thread stops

Chapter 10 — Multithreading

184

data hierarchy if one is available. Your XOP may then invoke Igor operations or a user-defined function via
a callback such as XOPCommand2 to display or further process the data.

Igor sends the IDLE message periodically when nothing else is going on - that is when no user-defined func-
tion or Igor operation is running in the main thread. You can force Igor to send an IDLE message to all XOPs
by calling the DoXOPIdle operation from a user-defined function running in the main thread.

You can also create an external operation that causes your XOP to transfer data to the main thread, as if Igor
had sent the IDLE message. You would call this external operation from the main thread only. This is more
efficient than calling DoXOPIdle because DoXOPIdle sends IDLE messages to all XOPs.

Method 2: Acquiring Data in a Private Thread
In this method, data is acquired into your private buffer in a private thread that you create in your XOP.
When your XOP receives an IDLE message from Igor, which occurs only in the main thread, it transfers data
from the private buffer to Igor’s main thread.

Here is a schematic view of this method:

Igor sends the IDLE message periodically when nothing else is going on - that is when no user-defined func-
tion or Igor operation is running in the main thread. You can force Igor to send an IDLE message to all XOPs
by calling the DoXOPIdle operation from a user-defined function running in the main thread.

You can also create an external operation that causes your XOP to transfer data to the main thread, as if Igor
had sent the IDLE message. You would call this external operation from the main thread only. This is more
efficient than calling DoXOPIdle because DoXOPIdle sends IDLE messages to all XOPs.

Since your private buffer and any related control and status variables are shared by your private preemp-
tive thread and your code running in the main thread, you need to use thread-safe programming tech-
niques, such as mutexes, to coordinate thread activity.

Method 3: Acquiring Data in an Igor Thread Directly To Main Thread Waves
This method is simpler but has some significant limitations. You write an Igor user-defined function that
creates a thread group and starts a thread worker function. You pass waves created in the main thread as
parameters to your thread worker function. Your thread worker function calls your external operation
which stores data in the waves.

Igor Main Thread XOP Private Thread

A user-defined function calls an external operation
to start data acquisition

The external operation creates a private buffer into
which data will be acquired and starts a private
thread

The private thread acquires data into the private
buffer

The user-defined function returns and the main
thread is now free for interactive use

Igor sends the IDLE message to the XOP

If data is ready, the XOP transfers data from the
private buffer to waves in the main thread

If data acquisition is finished, the XOP stops the
private thread

Chapter 10 — Multithreading

185

Here is a schematic view of this method:

Your thread worker function passes its parameter waves, which were created in the main thread, to your
external operation. Your external operation stores data in the parameter waves and calls WaveHandleM-
odified to tell Igor that the waves’ data was changed. If the waves are displayed in a graph or table, Igor
will update them in its main loop. You could call WaveHandleModified periodically to get periodic
updates.

Waves passed as parameters from one thread to another are marked by Igor as in use by more than one
thread and Igor returns an error if you attempt to change the waves, for example, by redimensioning them.
However, you are allowed to change the data of numeric waves only. The restrictions on such waves are
further discussed under Waves Passed to Igor Threads as Parameters on page 177.

The restrictions on a thread wave parameter end when the receiving thread terminates which is normally
when the thread worker function returns.

Because you can not redimension thread parameter waves, you have to know how big to make them when
data acquisition starts.

Method 4: Acquiring Data in a Private Thread Directly To Main Thread Waves
This method does not require any Igor preemptive threads but comes with even more restrictions than the
preceding method. You call your external operation from Igor’s main thread, passing waves to it as param-
eters. Your external operation obtains the addresses of the parameter waves’ data by calling WaveData or
MDAccessNumericWaveData. It then creates a private internal thread and passes the wave data addresses
to it. Your external operation then returns, allowing Igor’s main thread to continue. Your private internal
thread writes directly to the waves using the technique described under The Direct Access Method on page
126.

Here is a schematic view of this method:

Igor Main Thread Igor Preemptive Thread

A user-defined function creates waves to receive
the acquired data

The user-defined function creates a thread group
(ThreadGroupCreate) and starts a thread worker
function (ThreadStart), passing waves to the thread
worker function

The user-defined function returns and the main
thread is now free for interactive use

The thread worker function calls the external
operation, passing the waves as parameters

The external operation acquires data into the waves
and marks them as modified
(WaveHandleModified)

The external operation returns to the thread worker
function

The thread worker function returns and the Igor
preemptive thread stops

Igor Main Thread XOP Private Thread

A user-defined function creates waves to receive
the acquired data

The user-defined function calls an external
operation to start data acquisition, passing the
waves to it

Chapter 10 — Multithreading

186

All of the restrictions discussed under Waves Passed to Igor Threads as Parameters on page 177 apply to
this method. From a private thread, all you can do is read or write the data of numeric parameter waves. In
addition, you can not do any callbacks to Igor from a private thread.

This last restriction means that you can not tell Igor that a wave is modified by calling WaveHandleModi-
fied from a private thread. You can do this when your XOP receives the IDLE message in the main thread
or from an external operation running in the main thread. In order to know when to call WaveHandleMod-
ified, you will need to devise some coordination between your private thread and the main thread.

In addition, you must meet these requirements:

• To prevent a crash, the main thread must not kill, redimension or otherwise modify the parameter
waves while the private thread is accessing them

• To prevent data corruption, the main thread must not write to the parameter waves while the pri-
vate thread is accessing them

• To prevent a crash, if you receive the NEW or CLEANUP messages, signifying that waves are about
to be killed, you must terminate your private threads

Because of the possibility of a crash, this method is not recommended for XOPs that must be bulletproof.

Finally, the caveats about spurious data in the preceding section apply to this method also.

The external operation starts a private thread and
returns

The private thread acquires data into the waves

The user-defined function returns and the main
thread is now free for interactive use

The XOP receives IDLE messages from Igor and
checks if data acquisition is finished

When data acquisition is finished, the private
thread terminates

The XOP, detecting that data acquisition is finished,
marks the waves as modified
(WaveHandleModified)

Igor Main Thread XOP Private Thread

Chapter 11
I-1164-bit XOPs

Overview
XOP Toolkit 7 supports development of 32-bit and 64-bit XOPs for both Macintosh and Windows. The XOP-
Support library and all of the sample XOPs are provided in both 32 bits and 64 bits.

As of Igor7, Igor is available as both 32-bit and 64-bit executables on both Macintosh and Windows. In Igor6,
the 64-bit version was available on Windows only.

We refer to the 64-bit version as IGOR64. The 32-bit version is called IGOR32.

IGOR32 can theoretically address up to 4 GB of virtual memory. In practice that actual limit is somewhere
between 2 GB and 4 GB depending on your hardware, OS, and application. Most users will never come any-
where close to this limit.

IGOR64 allows you to access very large amounts of data at one time. IGOR64 can theoretically address 2^64
bytes of virtual memory, or roughly 17 billion GB. However, the operating system may impose further
limits.

On Macintosh each process can theoretically access the full 17 billion GB. In 64-bit Windows operating sys-
tems, the limit depends on the operating system version as explained at:

http://msdn.microsoft.com/en-us/library/aa366778(VS.85).aspx

The maximum practical amount of data that you can access is determined by how much physical RAM you
have in your system, your application, and how much patience you have. Even if you have plenty of phys-
ical RAM, processing gigabytes of data takes a long time.

Although most applications will never need the address space provided by IGOR64, 64-bits has become the
defacto standard. Therefore, with Igor7 or later, we recommend that you use IGOR64. The only reason to
use IGOR32 is if you use an XOP that has not yet been ported to 32 bits.

IGOR32 can use 32-bit XOPs only. IGOR64 can use 64-bit XOPs only. It is not possible to run a 32-bit XOP
with a 64-bit Igor or vice versa. Consequently, if you have a 32-bit XOP that you want to use with IGOR64
then you will have to port your XOP to 64 bits. The following sections explain how to do that.

IGOR64 loads only XOPs whose names end with "64" (e.g., WaveAccess64.xop). If your XOP’s name ends
with a digit (e.g., VDT2.xop), append "-64" (e.g., VDT2-64.xop).

IGOR32 loads only XOPs whose names do not end with "64" (e.g., WaveAccess.xop or VDT2.xop).

http://msdn.microsoft.com/en-us/library/aa366778(VS.85).aspx

Chapter 11 — 64-bit XOPs

188

Activating a 64-bit XOP
You activate a 64-bit XOP by putting the XOP or a shortcut pointing to it in the “Igor Extensions (64-bit)”
folder whch you can find in your “Igor Pro User Files” folder. See Activating XOPs Using the Igor Exten-
sions Folder on page 6 for details.

Updating Your Existing Project for 64-bit Development
If you have an existing XOP project that you want to use to create a 64-bit version of your XOP, you must
first update your project to add a 64-bit target.

To update an Xcode project, see Xcode Project Changes For XOP Toolkit 7 on page 427.

To update an Visual C++project, see Visual C++ Project Changes For XOP Toolkit 7 on page 434.

Most code written for 32 bits will need some modification in order to successfully compile and run in 64
bits. The remaining sections of this chapter address the relevant issues.

Data Types For 64-bit Compatibility
When compiling a 64-bit executable, the long data type is 32 bits on Windows but 64 bits on Macintosh.
Consequently the type long is problematic when compiling for 64 bits. Therefore in XOP Toolkit 6, all longs
were changed to ints, if a signed 32 bit value was sufficient, or to the appropriate WaveMetrics data type.

Sometimes we need a value to be 32 bits when running a 32-bit XOP with IGOR32 but 64 bits when running
a 64-bit XOP with IGOR64. Examples of such values are pointers, byte counts and wave point numbers.

In other cases we need a value to be the same size whether running in 32 or 64 bits. This is the case, for exam-
ple, when reading or writing a field of a structure that is written to disk and read by both versions of an
XOP.

The following data types are defined in XOPSupport/WMTypes.h which is #included as by XOPStandard-
Headers.h. These data types are used to write code that works correctly with both 32-bit and 64-bit compil-
ers on both Macintosh and Windows.

Types that are the same for 32-bit and 64-bit XOPs
These data types are the same in 32-bit and 64-bit XOPs.

Type Description

SInt8 signed char (8 bits)

UInt8 unsigned char (8 bits)

SInt16 signed short (16 bits)

UInt16 unsigned char (16 bits)

SInt32 signed short (32 bits)

UInt32 unsigned char (32 bits)

TickCountInt Tick count integer (32 bits)

Used to hold a 32-bit unsigned tick count

A tick is approximately 1/60th of a second

SInt64 signed 64-bit value

UInt64 unsigned 64-bit value

Chapter 11 — 64-bit XOPs

189

Types that are the different for 32-bit and 64-bit XOPs
These data types have different sizes in 32-bit and 64-bit XOPs.

Programming For 64-bit Compatibility
This section discusses some issues that you need to be aware of when writing a 64-bit compatible XOP.

If you are porting an old XOP to 64 bits, you will need to modify your code as explained below. If you are
working on a new XOP based on an XOP Toolkit 7 sample, the issues were already handled in the sample
XOP.

Background Information
It is a good idea to familiarize yourself with 64-bit porting issues before writing 64-bit code.

Here is Microsoft's 64-bit porting guide:

http://msdn.microsoft.com/en-us/library/bb427430(VS.85).aspx

Here is Apple's 64-bit porting guide:

https://developer.apple.com/library/mac/documentation/Darwin/Conceptual/64bitPorting

64-bit Compiler Warnings
It is likely that you will get compiler warnings when compiling for 64 bits that you did not get when com-
piling for 32 bits. In many cases, you will need to use a cast to stop the compiler warning. For example, this
line:

int len = strlen(name);

will give you a compiler warning because strlen returns a 64-bit integer and we are assigning it to a 32-bit
variable. You can fix it with a cast:

int len = (int)strlen(name);

Type Description

PSInt Pointer-sized integer

32 bits in 32-bit code, 64 bits in 64-bit code

Used for integers that may hold pointers and for other situations where
an integer should hold 32 bits in 32-bit code and 64 bits in 64-bit code

BCInt Byte-count integer

32 bits in 32-bit code, 64 bits in 64-bit code

Used to hold a byte count that needs to be 32 bits in 32-bit code and 64
bits in 64-bit code

IndexInt Index integer

32 bits in 32-bit code, 64 bits in 64-bit code

Used to hold a value used to index a pointer

Also used to hold wave point numbers

CountInt Count integer

32 bits in 32-bit code, 64 bits in 64-bit code

Used to hold an item count that needs to be 32 bits in 32-bit code and 64
bits in 64-bit code such as the size of a wave dimension

https://developer.apple.com/library/mac/documentation/Darwin/Conceptual/64bitPorting
http://msdn.microsoft.com/en-us/library/bb427430(VS.85).aspx

Chapter 11 — 64-bit XOPs

190

This cast is OK because we know that the length of the name string will fit in 32 bits.

Another example:

int len = WMGetHandleSize(waveH);

In this case, the value being stored in len could exceed 32 bits so this warning should be fixed like this:

BCInt len = WMGetHandleSize(waveH);

BCInt is a data type defined by the XOP Toolkit to hold byte counts. It is a 32-bit value when compiling for
32 bits and a 64-bit value when compiling for 64 bits. You could also use the standard C size_t data type.

If you know that the handle size can not exceed 32 bits then it is OK to store it in an int and to cast the result
from WMGetHandleSize to an int:

int len = (int)WMGetHandleSize(fileNameH);

The long Data Type
On Windows in 64 bits, a long is a 32-bit integer as it was in 32 bits. However, on Macintosh and on Unix
systems, a long is 64 bits. Because of this dichotomy, if you want to write cross-platform 64-bit code, you
must get rid of longs in your code.

Unfortunately there is no single data type to represent a 64-bit integer on both Macintosh and Windows.
Xcode uses "long long" while Visual C++ uses "__int64".

To deal with this and other issues, the XOP Toolkit provides portable data types in WMTypes.h.
WMTypes.h is #included by XOPStandardHeaders.h. WMTypes.h defines SInt64 as a signed 64-bit integer
regardless of platform. It also defines several other useful cross-platform data types - see Data Types For
64-bit Compatibility on page 188 for the complete list.

There are four situations with regard to longs:

• 32 bits is sufficient

Example: A general purpose flag or count that will always fit in 32 bits

Resolution: Change the long to an int

• 32 bits is always required

Example: A field in a structure that must always be exactly 32 bits

Resolution: Change the long to an SInt32

• 64 bits is always required

Example: A field in a structure that must always be exactly 64 bits

Resolution: Change the long to an SInt64

• 32 bits is required when running in 32 bits, 64 bits is required when running in 64 bits

Example: A pointer or a count or index that can be arbitrarily large

Resolution: Change the long to a BCInt, CountInt, IndexInt or PSInt

BCInt is used to store byte counts. CountInt is used to store other counts, such as the number of elements
in a dimension of an Igor wave. IndexInt is used to store array indices including wave point numbers. PSInt
(pointer-sized int) is used for integers that are used to store a pointer. These types are differentiated only to
make the code better express the intent of the programmer.

Your job is to examine each long in your program and change it to the appropriate data type. We did this
during the creation of IGOR64 and it resulted in thousands of changes. Fortunately most XOPs are much
simpler and will require few changes.

Chapter 11 — 64-bit XOPs

191

Replacing longs in XOPEntry, RegisterFunction and SetXOPResult Calls
When Igor sends a message to your XOP, you often return a result using the SetXOPResult XOPSupport
routine. In the case of the FUNCTION message, where Igor is asking for the address of your external func-
tion, the result is a pointer, specifically a pointer to your function. In many other cases the result is an int.

In IGOR32, pointers and ints are the same size but in IGOR64 pointers are 64 bits and ints are 32 bits. Con-
sequently the data type returned to Igor via SetXOPResult had to be changed so that it is capable of holding
a pointer. XOP Toolkit 6 introduced a type for this purpose: XOPIORecResult. XOPIORecResult is a typedef
for SInt32 in IGOR32 and SInt64 in IGOR64.

If you are porting an old XOP to XOP Toolkit 7, you must change your XOPEntry routine to return XOPI-
ORecResult. For example, in the SimpleFit sample XOP we changed this:

extern "C" void
XOPEntry(void)
{

long result = 0;

switch (GetXOPMessage()) {
case FUNCADDRS:

result = RegisterFunction();
break;

}
SetXOPResult(result);

}

to this:

extern "C" void
XOPEntry(void)
{

XOPIORecResult result = 0;

switch (GetXOPMessage()) {
case FUNCADDRS:

result = RegisterFunction();
break;

}
SetXOPResult(result);

}

You must also change your RegisterFunction routine, if you have one, to return XOPIORecResult. For
example, in the SimpleFit sample XOP we changed this:

static long
RegisterFunction()
{

int funcIndex;

funcIndex = GetXOPItem(0);
switch (funcIndex) {

case 0:
return (long)SimpleFit;
break;

}
return NULL;

}

to this:

Chapter 11 — 64-bit XOPs

192

static XOPIORecResult
RegisterFunction()
{

int funcIndex;

funcIndex = (int)GetXOPItem(0);
switch (funcIndex) {

case 0:
return (XOPIORecResult)SimpleFit;
break;

}
return 0;

}

GetXOPMessage and GetXOPItem Calls
Igor sends your XOP a message by calling your XOPEntry routine which calls GetXOPMessage to get the
message. In XOP Toolkit 6, the result type of GetXOPMessage was changed from long to int. So, if you are
porting an old XOP to XOP Toolkit 7, you need to change your calls to GetXOPMessage routine from:

long message = GetXOPMessage();

to:

int message = GetXOPMessage();

When Igor sends you a message, you sometimes need to call GetXOPItem to get additional information.
Sometimes the additional information is in the form of a pointer. Thus, the result type of GetXOPItem must
be big enough to hold a pointer.

In XOP Toolkit 6, the result type of GetXOPItem was changed from long to XOPIORecParam. XOPIORec-
Param is defined as SInt32 in IGOR32 and SInt64 in IGOR64.

This does not cause a problem except that, when compiling for 64 bits, the compiler will issue a warning on
a statement like this:

int funcIndex = GetXOPItem(0);

The warning will tell you that the 64-bit value returned by GetXOPItem is being stored in a 32-bit variable
(funcIndex) which can possibly cause data truncation. In this case, you know that truncation is not an issue
because a funcIndex is a small integer. To prevent the warning, you must change this code to:

int funcIndex = (int)GetXOPItem(0);

This tells the compiler that you know what you are doing when you assign a 64-bit value to a 32-bit variable.

If you already have a cast to another type, leave it as is. For example, this code from WindowXOP1 must
not be changed:

XOP_WINDOW_REF windowRef;
windowRef = (XOP_WINDOW_REF)GetXOPItem(0);

printf and sprintf Issues
Functions in the printf family are problematic. They take a variable number of parameters and determine
the type of the parameters using the first parameter which is a format string. If the type specified in the
format string does not match the type of the actual parameter passed to the function, a crash can result.

When porting to 64 bits, you must examine every use of printf and sprintf and make sure that the format
string and the actual parameters match. For example, suppose your old code looks like this:

Chapter 11 — 64-bit XOPs

193

long numPoints = WavePoints(waveH);
char buf[64];
sprintf(buf, "Number of points: %ld", numPoints);

Now, for 64-bit compatibility, you change it to:

IndexInt numPoints = WavePoints(waveH);
char buf[64];
sprintf(buf, "Number of points: %ld", numPoints); // BUG

This creates a bug. The "%ld" format is correct when compiling as 32 bits because IndexInt is a typedef for
long. But it is incorrect when compiling for 64 bits because IndexInt is a typedef for long long (a 64-bit
signed integer). This kind of bug will produce incorrect results and can very easily cause a crash.

Here is one way to fix this so that it works on both 32 bits and 64 bits:

IndexInt numPoints = WavePoints(waveH);
char buf[64];
sprintf(buf, "Number of points: %lld", (SInt64)numPoints);

This technique insures that the value passed to sprintf is 64 bits whether you are compiling as 32 bits or 64
bits. It passes the correct format string, "%lld", to sprintf for a 64-bit integer value.

Be sure to inspect every call to printf and sprintf and make sure that they are correct for both 32 bits and 64
bit compilations.

Command Help for 64-bit XOPs
You provide command help (help for external operations and functions) by providing a suitably-named
Igor help file. Igor looks for a help file in the same directory as the XOP whose name is specified by your
STR#,1101 resource. If you don't have a STR#,1101 resource, Igor generates a default help file name based
on the XOP name. For example, if your XOP is named MyXOP.xop, Igor would look for a file named
"MyXOP Help.ihf". This is described under Help for External Operations and Functions on page 219.

If you have a 32-bit and a 64-bit version of an XOP, you need to provide only one help file. To support using
just one help file, Igor makes several attempts to find the help file associated with the XOP.

Assume you have the following arrangement on your hard disk:

MyXOP.xop
MyXOP64.xop
MyXOP Help.ihf

In this case, you would put an alias or shortcut for MyXOP.xop in the "Igor Extensions" folder and an alias
or shortcut for MyXOP64.xop in the "Igor Extensions (64-bit)" folder.

If the XOP contains an STR#,1101 resource specifying the help file name, "MyXOP Help.ihf", Igor will use
this name and find the help file.

If there is no STR#,1101 resource or Igor does not find the help file specified by the resource, when looking
for command help for MyXOP64.xop, Igor will first look for a help file named "MyXOP64 Help.ihf" but will
not find it. It will then look for "MyXOP Help.ihf", will find it, and will extract the command help from that
file.

Now assume you have put your XOPs in the "Igor Pro User Files" folder, arranged like this:

Igor Pro User Files
Igor Extensions

MyXOP.xop
MyXOP Help.ihf

Igor Extensions (64-bits)
MyXOP64.xop

Chapter 11 — 64-bit XOPs

194

If the XOP contains an STR#,1101 resource specifying the help file name, "MyXOP Help.ihf", Igor will use
this name and find the help file. When running MyXOP64.xop, Igor will first look for the help file in "Igor
Extensions (64-bits)" and will then look for it in "Igor Extensions".

If there is no STR#,1101 resource or Igor does not find the help file specified by the resource, when looking
for command help for MyXOP64.xop, Igor will first look for a help file named "MyXOP64 Help.ihf" in "Igor
Extensions (64-bits)" and will not find it. It will then look for "MyXOP Help.ihf" in "Igor Extensions (64-bits)"
and again will not find the file. It will then look in "Igor Extensions" instead of "Igor Extensions (64-bits)",
first looking for "MyXOP64 Help.ihf" and then looking for "MyXOP Help.ihf". This last attempt will succeed
and Igor will extract the command help from that file.

Stated generally, if Igor fails to find the help file in the folder containing the XOP, and if the XOP name
exclusive of the extension ends with "64" or "-64", Igor tries again after removing the "64" or "-64". If this
fails, and if the name of the folder containing the XOP ends with " (64-bit)", Igor tries again after removing
the " (64-bit)" from the folder name.

The reverse is not true. When looking for command help for a 32-bit XOP (e.g., MyXOP.xop), Igor does not
search the 64-bit folder.

Chapter 12
I-12Other Programming Topics

The XOPMain Function
When Igor launches an XOP it calls the XOP’s main function which is named XOPMain.

Originally the main function of an XOP looked like this:

HOST_IMPORT int
main(IORecHandle ioRecHandle)

This form was chosen because, back in the dark ages, some compilers required a main function and Igor
needed to pass the ioRecHandle to the XOP to facilitate subsequent communications.

Modern compilers consider this form of main to be an error.

To cope with this change, as of Igor Pro 6.20, Igor looks for either of the following main functions:

// Old main - Does not work with GCC 4.3 or later or LLVM
HOST_IMPORT int
main(IORecHandle ioRecHandle)

// New XOPMain - Requires Igor Pro 6.20 or later
HOST_IMPORT int
XOPMain(IORecHandle ioRecHandle)

main and XOPMain behave identically.

Because of compiler requirements, all new XOPs and all XOPs that are being updated must use XOPMain,
not main. This means that these XOP will require Igor Pro 6.20 or later. Consequently, you must include a
check of Igor’s version in your XOPMain function as illustrated under Checking Igor’s Version on page 70.

WM Memory XOPSupport Routines
The WM memory XOPSupport routines provide a mechanism by which Igor and XOPs can exchange data
in a compatible way.

WM memory XOPSupport routines use two data types, Ptr and Handle. They both provide access to a block
of memory allocated in the heap. Ptr is rarely used while Handle is commonly used.

Handles are used by Igor to pass variable-length data to XOPs and to receive variable-length data from
them. For example, Igor uses a Handle to pass a string parameter to an external function which returns a
string result to Igor via a Handle.

The XOP Toolkit provides routines for dealing with Handles, such as WMNewHandle, WMGetHandleSize,
and WMDisposeHandle. These routines evolved from the Macintosh Memory Manager which dates back
to the 1980’s. Igor and the XOP Toolkit still use Handles for backward compatibility.

Chapter 12 — Other Programming Topics

196

Wave handles and data folder handles use different memory management techniques. Consequently the
routines described in this section must not be used on wave handles or on data folder handles. Instead use
the specific XOPSupport routines listed under Routines for Accessing Waves on page 253 and Routines
for Accessing Data Folders on page 300.

For storing your own private data, you can use WM memory XOPSupport routines or standard C/C++
memory management routines. For data exchanged with Igor, you must use WM memory XOPSupport
routines.

As explained under Updating Old Code to Use WM Memory XOPSupport Routines on page 199, 64-bit
Macintosh XOPs created with XOP Toolkit 7.00 must be modified and recompiled to work with Igor Pro 8
and later on Macintosh.

Handle Example
Before we get into details, let’s start with a simple example using a Handle. This example sets the note prop-
erty of a wave using the SetWaveNote callback routine.

int
DemoSetWaveNote()
{

int err = 0;

waveHndl waveH = FetchWave("wave0");
if (waveH == NULL)

return NOWAV; // Wave does not exist

char noteText[256];
strcpy(noteText, "This is a test");
int len = (int)strlen(noteText);

Handle noteH = WMNewHandle(len);
if (noteH == NULL)

return NOMEM;

err = PutCStringInHandle(noteH, noteText);
if (err != 0) {

WMDisposeHandle(noteH);
return err;

}

err = SetWaveNote(waveH, noteH); // Igor now owns the noteH Handle

return err;
}

This routine uses WMNewHandle to create a Handle, PutCStringInHandle to set the contents of the
Handle, and WMDisposeHandle to free the handle.

The next section explains why the XOP does not dispose noteH after passing it to SetWaveNote.

Ownership of Handles
When a Handle is passed between Igor and an XOP, in some cases the caller retains ownership of the handle
and is responsible for disposing it. In other cases, the callee takes ownership of the handle and is responsible
for disposing it. In the preceding example, once the call to SetWaveNote is made, Igor owns the handle so
the XOP does not dispose it. The XOP Toolkit documentation for each XOPSupport routine that uses a
Handle states the ownership rules for that routine.

Chapter 12 — Other Programming Topics

197

Commonly-Used WM Memory XOPSupport Routines
This table lists the WM memory XOPSupport routines that are commonly used in XOP programming.
These routines, as well as some less commonly used routines, are described in detail in the section WM
Memory Routines on page 410.

Understanding Handles
The WMNewHandle function allocates a block of memory on the heap and returns a Handle which refer-
ences that block. Unlike a pointer, which points directly to a block of memory, a Handle points indirectly
to the allocated memory block.

Specifically, a Handle points to a pointer to the block. The handle contains the address of a master pointer
which contains the address of the block of memory in the heap. This illustration shows the relationship of
a Handle and the block of memory that it refers to:

Because a handle refers to a block of memory indirectly, you must "dereference" the handle before you can
access the block. For example, if h is a handle returned by WMNewHandle, then *h is a pointer to the block
of memory that h refers to.

In this example, we call WMNewHandle to allocate a two-byte block of memory. We set the first byte to 0
and the second byte to 1. We then dispose the Handle.

Handle h = WMNewHandle(2);
if (h == NULL)

return NOMEM;
char* p = (char*)*h; // DEREFERENCE
*p = 0;

Routine What It Does

Handle WMNewHandle(BCInt size); Allocates a block of memory in the heap and
returns a handle to it.

BCInt WMGetHandleSize(Handle h); Returns the number of bytes in the block of memory
referred to by the handle.

void WMSetHandleSize(Handle h, BCInt size); Sets the number of bytes in the block of memory
referred to by the handle.

void WMDisposeHandle(Handle h); Frees the block of memory pointed to by the handle.

The Heap

Master pointer for h

Relocatable block of memory

Handle h;
h = WMNewHandle(100);

Chapter 12 — Other Programming Topics

198

*(p+1) = 1;
WMDisposeHandle(h);

Handles were invented for the original Macintosh OS to provide a way for the operating system to defrag-
ment memory in a heap shared by all applications. The OS would move relocatable blocks if needed to
satisfy a new memory allocation request. There were two situations in which the block of memory for a
given handle could be moved:

• To compact memory so that another block of memory could be allocated or resized
• To find room to increase the size of the given handle’s block when it is resized

The block of memory referenced by a Handle is no longer relocated to compact memory but it still can be
relocated when that handle’s block is resized to a larger size.

Using Handles
In the snippet above, once h is dereferenced, p points to the block of memory in the heap. In the original
Macintosh OS, the OS could relocate the block of memory to satisfy an allocation request for a different
handle or pointer, leaving p pointing to the previous location of the block. In this event p was said to be a
“dangling pointer”.

Writing to memory referenced by a dangling pointer is a disaster. It creates intermittent bugs that some-
times cause crashes well after the bad write. Finding the cause of such a bug is very difficult and time-con-
suming.

The problem of dangling pointers is greatly reduced because, unlike in times of old, blocks of memory are
no longer relocated to satisfy memory allocation requests involving other blocks.

Resizing Handles
The problem of dangling pointers is not completely gone. If you increase the size of a handle by calling
WMSetHandleSize, it may not be possible to increase the size of the referenced heap block in place. This
occurs if the memory following the heap block is in use. In this situation, WMSetHandleSize relocates the
heap block and adjusts the handle’s master pointer accordingly. This means that, any time you increase the
size of a handle, you must re-dereference it.

You also need to re-dereference a handle if you decrease its size. WMSetHandleSize ultimately calls the C
realloc function or its equivalent. realloc can relocate a block of memory any time it is called. Although it is
relatively rare, some implementations may relocate memory when a block’s size is decreased to reduce
memory fragmentation.

NOTE: Any time you increase or decrease the size of a handle, you must re-dereference it.

For example:

int err = 0;

Handle h = WMNewHandle(2);
if (h == NULL)

return NOMEM;
char* p = (char*)*h; // DEREFERENCE
*p = 0;
*(p+1) = 1;

err = WMSetHandleSize(h,4); // Increase size of handle
if (err == 0) { // Make sure resize succeeded

p = *h; // RE-DEREFERENCE
*(p+2) = 2;
*(p+3) = 3;

}

Chapter 12 — Other Programming Topics

199

WMDisposeHandle(h);
return err;

For further discussion of this issue, see Dangling Pointers on page 228.

Updating Old Code to Use WM Memory XOPSupport Routines
This section explains a compatibility issue that affects Macintosh 64-bit XOPs running with Igor Pro 8 (in
development as of this writing in May of 2017) or later. The bottom line is:

• 64-bit Macintosh XOPs created with XOP Toolkit 7.00 must be modified and recompiled with XOP
Toolkit 7.01 or later to run with Igor Pro 8

• Other XOPs (32-bit Macintosh XOPs and 32-bit and 64-bit Windows XOPs) do not need to be modified,
but we recommend that you modify them when you next update such XOPs

Details of the required modifications are provided below. First, here is background information to help you
understand the issue.

Historically on Macintosh, Igor and XOPs always used native Macintosh Handles and consequently used
native Mac OS routines such as NewHandle, GetHandleSize, SetHandleSize, and DisposeHandle. On Win-
dows, they always used WaveMetrics emulation routines with the same names, implemented in Igor and
exported to XOPs through the IGOR.lib and IGOR64.lib files.

Native Macintosh Handles are limited by Mac OS to roughly 2 GB. This is unfortunately true even when
running a 64-bit application. WaveMetrics emulation of Macintosh Handles never had this limitation.

Igor Pro 7 was the first version of Igor that ran in 64 bits on Macintosh and XOP Toolkit 7.00 was the first
version of the XOP Toolkit that supported compilation of 64-bit Macintosh XOPs.

Working with the 64-bit version of MacIgor7 over time, we noticed that the Mac OS 2 GB limitation some-
times caused problems. To overcome this limit, starting with Igor8, the Macintosh 64-bit version of Igor also
uses emulation of Handles. This table summarizes Igor's use of Handles:

As the table shows, the only change is that, as of Igor Pro 8, Igor uses its own emulation of Handles instead
of Mac OS native Handles when running on Macintosh in 64 bits.

For Handles passed between Igor and XOPs, such as for string parameters and string result, Igor and XOPs
must use the same implementation of Handles. For example, if Igor allocates such a Handle to pass a
parameter to an XOP, the XOP needs to call a function to determine the number of bytes associated with
the Handle. The Mac OS native GetHandleSize function works only with Handles allocated by the Mac OS
native NewHandle function. It does not work with Handles allocated by WaveMetrics' emulation of
NewHandle. The converse is also true. So, when it comes to Handles, Igor and XOPs must use the same set
of functions. Either both must use native Mac OS functions or both must use WaveMetrics emulation func-
tions.

To make this possible, in XOP Toolkit 7.01, we introduced new routines named WMNewHandle,
WMGetHandleSize, and so on. XOPs that use these WaveMetrics routines call the correct functions regard-
less of Igor version and operating system. See WM Memory XOPSupport Routines on page 195 for back-
ground information.

Because of the change to Handles in MacIgor64, when running in 64 bits on Macintosh, Igor8 and later
report an error if you attempt to load an XOP created with XOP Toolkit 7.00. You must modify such XOPs

Igor Pro 7 and before Igor Pro 8 and later

Macintosh 32 Bit Native Macintosh Native Macintosh

Macintosh 64 Bit Native Macintosh WaveMetrics Emulation

Windows 32 Bit WaveMetrics Emulation WaveMetrics Emulation

Windows 64 Bit WaveMetrics Emulation WaveMetrics Emulation

Chapter 12 — Other Programming Topics

200

to use WaveMetrics memory XOPSupport routines instead of Mac OS native routines and recompile them
using XOP Toolkit 7.01 or later. Existing Macintosh 32-bit XOPs and existing Windows 32-bit and 64-bit
XOPs continue to work as before.

Windows-only XOPs can be compiled without changes in XOP Toolkit 7.01. However, for consistency we
recommend that you update even Windows-only XOPs.

To update your XOP to use WM memory XOPSupport routines with XOP Toolkit 7.01 and later, follow
these steps:

1. Replace all NewHandle calls with WMNewHandle.
2. Replace all GetHandleSize calls with WMGetHandleSize.
3. Replace all SetHandleSize calls with WMSetHandleSize.
4. Replace all HandToHand calls with WMHandToHand.
5. Replace all HandAndHand calls with WMHandAndHand.
6. Replace all DisposeHandle calls with WMDisposeHandle.
7. Replace all NewPtr calls with WMNewPtr.
8. Replace all GetPtrSize calls with WMGetPtrSize.
9. Replace all SetPtrSize calls with WMSetPtrSize.
10. Replace all PtrToHand calls with WMPtrToHand.
11. Replace all PtrAndHand calls with WMPtrAndHand.
12. Replace all DisposePtr calls with WMDisposePtr.
13. Remove all calls to MemError (details below).
14. Recompile your XOP.
Most XOPs call only a few of these routines so the number of changes required will typically be small.

Check your changes carefully. If you fail to replace, for example, NewHandle with WMNewHandle, you
will get a link error when you build on Macintosh. The error occurs because of #defines in XOPMacSup-
port.h designed to make you aware if you forget to replace a Mac OS native call with the corresponding
WM memory XOPSupport routine call.

The resulting XOP will continue to work correctly with versions of Igor6 or Igor7 that it previously worked
with. The only difference is that it will now also work correctly with Igor8 in 64 bits on Macintosh.

There are some differences between the WM memory XOPSupport routines and the corresponding Macin-
tosh routines:

1. WMSetHandleSize and WMSetPtrSize return an error code while the corresponding native Macintosh
routines do not.

2. There is no WMMemError function corresponding to the native Macintosh MemError function. If you
have a call to MemError, replace it like this:

3. WMDisposeHandle and WMDisposePtr do nothing if passed a NULL parameter while the correspond-
ing native Macintosh routines treat this as an error (nilHandleErr) which MemError returns.

It is unlikely that you call any native Mac OS routines that return Handles. However if you do, you must
treat such native Mac OS Handles differently. You must use native Mac OS functions, not WaveMetrics
memory XOPSupport routines, on native Mac OS Handles. In this case, you must #define
ALLOW_MAC_OS_NATIVE_MEMORY_ROUTINES as otherwise the #defines in XOPWinMacSupport.h
will prevent you from using native Mac OS functions.

Old New

SetHandleSize(h, newSize);
err = MemError();

err = WMSetHandleSize(h, newSize);

Chapter 12 — Other Programming Topics

201

If you find it necessary to define ALLOW_MAC_OS_NATIVE_MEMORY_ROUTINES, be very careful. If
you pass a Mac OS native Handle to Igor, or if you pass a WM handle to Mac OS, you are likely to corrupt
memory, causing a crash that is very hard to track down.

Techniques for Cross-Platform Development
It is best to maintain one set of source code for both the Macintosh and Windows versions of your XOP.
Much of the source code, such as routines for number crunching or interfacing with Igor, will be completely
platform-independent. Menu-related and file-related routines can also be platform-independent because of
the support provided by the XOPSupport library.

Most XOPs can be written in a mostly platform-independent way. The MenuXOP1, NIGPIB2, SimpleFit,
SimpleLoadWave, WaveAccess, XFUNC1, XFUNC2, XFUNC3, XOP1, and XOP2 sample XOPs have no
platform-specific C source files and few platform-related ifdefs. Routines for number crunching or interfac-
ing with Igor are inherently platform-independent.

XOPs that add dialogs, such as GBLoadWaveX, require platform-specific files. See Adding Dialogs on page
207 for details.

Routines for creating windows, handling user interaction with windows, and drawing in windows will be
mostly platform-dependent. Platform-dependent functionality can be handled by conditional compilation
within a common source file or by creating parallel source files for each platforms. The WindowXOP1
sample XOP illustrates both of these techniques. See Adding Windows on page 155 for details.

Text Encodings
A text encoding is a mapping from a set of numbers to a set of characters. For example, in the ASCII text
encoding the number 0x41 (decimal 65) maps to the character Upper Case Letter A. The text encodings that
are commonly used with Igor6 are MacRoman, Windows-1252 (also called "Western") and Shift JIS (Japa-
nese). Igor Pro 7 and later use UTF-8. For further background information, execute this in Igor7 or later:

DisplayHelpTopic "Text Encodings"

In Igor Pro 6 and earlier, Igor used the "system text encoding" to represent text.

On Macintosh you set the system text encoding by setting the preferred language in the Languages&Region
control panel. For most Macintosh Igor users the system text encoding is MacRoman or Shift JIS.

On Windows the system text encoding is called the "system locale" or "language for non-Unicode pro-
grams". You set it in the Administrative tab of the Region control panel. For most Windows Igor users the
system text encoding is Windows-1252 or Shift JIS.

Starting with Igor Pro 7, Igor uses Unicode instead of the system text encoding. Specifically Igor7 uses UTF-
8 — a Unicode encoding form that represents a given character using one, two, three or four bytes. Unicode
allows you to access any character, rather than a limited set, and works the same on Macintosh, Windows,
and any other platform.

Like most text encodings, UTF-8 uses the same one-byte codes as ASCII to represent the ASCII characters
(represented by codes from 0x00 to 0x7F). Consequently, if you use ASCII characters only, you do not need
to be concerned with text encoding issues. Non-ASCII characters, including accented characters, special
symbols, Greek letters, and Asian characters, are represented using two, three or four bytes and are differ-
ent in UTF-8 than in other text encodings.

Except as otherwise specified in the documentation for a given Igor message or XOPSupport routine, all
string parameters are assumed to be encoded using system text encoding when running with Igor6 and as
UTF-8 when running with Igor7 or later.

In most cases text that you pass to an XOPSupport routine originates in Igor and therefore uses the appro-
priate text encoding for the Igor version that you are running, so you don’t need to worry about text encod-

Chapter 12 — Other Programming Topics

202

ings. However if the text that you pass to an XOPSupport routine does not originate in Igor then you must
make sure that it uses the right text encoding for the version of Igor that you are running.

One example of text that does originate in Igor is literal text in your program, such as a string that you might
print in Igor’s history area using the XOPNotice callback. This is discussed below under Text Encodings in
Source Files on page 202.

For another example, if you are running with Igor7, and you read text from a file containing non-ASCII
characters encoded as Windows-1252, and you store that text in an Igor text wave (using a callback such as
MDSetTextWavePointValue), you must convert from Windows-1252 to UTF-8 and pass the UTF-8 text to
the callback. Otherwise you will store text in the wave that is not valid UTF-8 text for the non-ASCII char-
acters. This will lead to incorrectly rendered text later when the user displays the text and may cause errors
when manipulating it. You can use the ConvertTextEncoding callback to do the conversion.

Since ASCII text (codes from 0x00 to 0x7F) is the same in nearly all text encodings that might be used on
personal computers, text encoding is an issue only for non-ASCII text such as accented characters, special
symbols, Greek letters, and Asian characters.

In the MDSetTextWavePointValue example, if you know that the file contains only ASCII text then you
don’t need to do any conversion because UTF-8 uses the same codes as ASCII for ASCII characters.
However if the file might contain non-ASCII text, such as accented characters, if you fail to convert to UTF-
8 you will store a byte sequence in the Igor text wave that is illegal in UTF-8. This will cause incorrect ren-
dering or errors later.

Here are XOPSupport routines that relate to text encoding issues. They all require Igor Pro 7.00 or later:

Igor Pro 7 Text Encoding Codes
The routines listed above use Igor-specific codes to represent text encodings. These codes are defined by
the WMTextEncodingCode enum which is defined in IgorXOP.h. The codes most commonly used with Igor
are:

Text Encodings in Source Files
The material in this section is relevant if your XOP uses non-ASCII text.

XOP Toolkit 7 projects are configured to use UTF-8 text encoding so that programmers can enter literal
strings using any character in a cross-platform manner. This affects Igor6 and Igor7 differently:

1. Literal text in UTF-8 source files is compatible with Igor7 or later.
2. Literal text containing non-ASCII characters in UTF-8 source files is not compatible with Igor6.

Routine Description

ConvertTextEncoding Converts text from one text encoding to another.

WaveTextEncoding Returns the text encoding code for an element of a
wave. Most XOPs will not need to use this routine.

WMTextEncodingCode Enum Description

kWMTextEncodingUTF8 UTF-8.

kWMTextEncodingMacRoman Used for western text on Macintosh.

kWMTextEncodingWindows1252 Used for western text on Windows.

kWMTextEncodingJIS Shift JIS, used for Japanese text.

kWMTextEncodingBinary This is not a real text encoding. Rather it is used to mark
the text data of a text wave that really contains binary
data.

Chapter 12 — Other Programming Topics

203

If you enter a literal string containing non-ASCII text in a source file configured as UTF-8, it will be correct
for use with Igor7. For example:

XOPNotice("This is a bullet character: •" CR_STR);

This will produce the correct bullet character with Igor7 or later on any platforms.

It will produce an incorrect character with Igor6 on all platforms.

If producing incorrect characters in Igor6 is not acceptable, you need to include code to support multiple
text encodings. For example, the XOPNotice statement above can be rewritten like this:

char message[256];
*message = 0;
if (igorVersion < 700) {

#ifdef MACIGOR
// 0xA5 is bullet in MacRoman
strcpy(message, "This is a bullet character: " "\xA5" CR_STR);

#endif
#ifdef WINIGOR

// 0x95 is bullet in Windows-1252
strcpy(message, "This is a bullet character: " "\x95" CR_STR);

#endif
}
else {

// \xE2\x80\xA2 is bullet in UTF-8
strcpy(message, "This is a bullet character: " "\xE2\x80\xA2" CR_STR);

}
XOPNotice(message);

This will work correctly for western Macintosh and Windows users in Igor6 and Igor7.

(If Igor6 is running with a Japanese font for the history area, this code will produce incorrect results because
it does not take Shift JIS into account. There is no general way to handle this because you have no way to
know what font the history area is using.)

So much code for something seemingly so simple is clearly unappealing. Here are some other strategies that
you can consider, in order of increasing difficulty:

1. Eliminate non-ASCII characters.
This is by far the simplest solution. It side-steps all text encoding issues.

2. Live with incorrect text in Igor6.
With Igor6 you will see incorrect characters, but Igor6 will eventually be ancient history.

3. Freeze your Igor6 code and continue development for Igor7 only in a new branch.
Use system text encoding (MacRoman on Macintosh and Windows-1252 on Windows) in the Igor6
branch of your project and UTF-8 in the Igor7 branch.

As relates to text encoding, this manual and the XOP Toolkit 7 sample projects are optimized for use with
Igor7 and later.

Text Encodings in Xcode
In Xcode you can use the File Inspector text encoding setting to set the text encoding for a given source file
to MacRoman, UTF-8 or any other text encoding. This per-file setting is stored in the project file. Conse-
quently, it sticks if you share the project file with another programmer.

Xcode does not automatically set the text encoding of a file based on its contents, even if the file contains
UTF-8 text, and even if the file starts with a UTF-8 byte order mark. It always treats the file using the encod-
ing stored for the file in the project, as set by the Text Encoding popup menu in the File Inspector pane.

Chapter 12 — Other Programming Topics

204

The XOP Toolkit 7 Xcode projects are configured to use UTF-8 for source files except for resource files (.r
files and XOPResources.h). Resource files are configured as MacRoman because the Rez resource compiler
used by Xcode does not support UTF-8.

Line endings are set in the Xcode projects to use CRLF for compatibility with Windows editors.

Unlike Visual Studio, Xcode does not provide a way to add a UTF-8 byte order mark to a source file. As
explained below, in Visual Studio, files must include a UTF-8 byte order mark to guarantee that Visual
Studio treats them as UTF-8. If you share files between Xcode and Visual Studio, you can add byte order
marks as described in the next section or you can use the “Text Encoding Utilities.pxp” experiment, shipped
in IgorXOPs7/Extra. This has already been done for the XOP Toolkit 7 sample projects.

The XOPResources.h file has no byte order mark because Apple’s Rez compiler does not support it.

Text Encodings in Visual C++
In Visual Studio 2015 and 2017, you can set the text encoding for a given file by opening the file, choosing
File→Save As, clicking the triangle next to the Save button, and choosing Save With Encoding. This dis-
plays the Advanced Save Options dialog. Once you choose the desired text encoding, you can proceed to
finish the Save As operation.

The text encoding setting, as set in the Advanced Save Options dialog, is not saved in the project but merely
remembered while the file is open in the editor pane. If you close and reopen the file, or close and reopen
the project, the text encoding setting for the file reverts to the default system text encoding, usually
Windows-1252.

If you set the file text encoding to “UTF-8 with signature”, Visual Studio adds a UTF-8 byte order mark to
the file. (“signature” is Microsoft terminology for “byte order mark”.) If you then save the file, close it and
reopen it, Visual Studio recognizes the UTF-8 byte order mark and treats the file as UTF-8. You can also add
byte order marks using the “Text Encoding Utilities.pxp” experiment, shipped in IgorXOPs7/Extra.

We want to use UTF-8 when running with Igor7 or later, so all of the .c, .cpp, and .h source files included
with the XOP Toolkit have been set to include the UTF-8 byte order mark. Resource files (.rc and resource.h)
are configured as Windows-1252 because the Windows resource compiler does not support UTF-8.

In addition to making the Visual Studio editor use UTF-8, we need to make the Visual C++ compiler use it.
To do that, we include the /utf-8 flag in the Command Line section of the C/C++ section of the property
pages for all configurations of the project. The /utf-8 flag is discussed at https://msdn.microsoft.com/en-
us/library/mt708821.aspx. As explained at support.microsoft.com/en-us/kb/980263, this setting requires
Visual Studio 2015 Update 2 or later. The /utf-8 flag affects the compiler only - it does not force the editor
to treat the file as UTF-8.

File I/O
The XOP Toolkit provides the following platform-independent routines for creating, deleting, reading,
writing, and otherwise dealing with files:

FullPathPointsToFile FullPathPointsToFolder

XOPCreateFile XOPDeleteFile

XOPOpenFile XOPCloseFile

XOPReadFile XOPReadFile2 XOPReadLine

XOPWriteFile

XOPGetFilePosition XOPGetFilePosition2

XOPSetFilePosition XOPSetFilePosition2

https://msdn.microsoft.com/en-us/library/mt708821.aspx
https://msdn.microsoft.com/en-us/library/mt708821.aspx
https://msdn.microsoft.com/en-us/library/mt708823.aspx
https://msdn.microsoft.com/en-us/library/mt708823.aspx

Chapter 12 — Other Programming Topics

205

These routines are defined in XOPFiles.c, XOPFilesMac.c and XOPFilesWin.c. Some of them (e.g.,
XOPOpenFile) use full paths to identify files. The full paths must be “native”. That is, on Macintosh, they
must be HFS paths using colons as path separators and on Windows they must use backslashes. Do not use
POSIX paths (with forward slashes).

When running with Igor6, file name and path parameters that you pass to these routines must be encoded
using system text encoding. When running with Igor7, they must be encoded as UTF-8. If the file name or
path is ASCII then this requirement is satisfied. Otherwise, if you receive the file name or path from Igor as
a parameter to an external function or operation then this requirement is satisfied.

The XOP Toolkit provides symbols to use when allocating buffers for volume names, folder names, file
names and paths. For example:

char volumeName[MAX_VOLUMENAME_LEN+1];
char volumeName[MAX_DIRNAME_LEN+1];
char volumeName[MAX_FILENAME_LEN+1];
char volumeName[MAX_PATH_LEN+1];

These statements allocate the appropriate size buffers on all platforms. The "+1" adds room for the null ter-
minator. The MAX_ symbols shown above are defined in IgorXOP.h.

The XOP Toolkit also provides the XOPOpenFileDialog and XOPSaveFileDialog routines which allow the
user to choose a file to open or to specify where to save a file. Other XOPSupport routines provide the means
to obtain a full path to a file based on parameters from a command-line command. The file-loader XOPs
SimpleLoadWave and GBLoadWaveX illustrate the use of these routines.

If your XOP requires Igor7 or later, you can use the newer XOPOpenFileDialog2 and XOPSaveFileDialog2
routines which are are platform-independent rather than the older routines which are have different
parameters on Macintosh and Windows.

File Path Conversions
The Macintosh and Windows operating systems use different syntax for creating a path to a file. Here are
some examples.

On MacOS, POSIX paths with forward slashes are often used. However, Igor and the XOP Toolkit, for his-
torical reasons, use Macintosh HFS (hierarchical file system) paths with colon separators. When we speak
of “Macintosh paths”, we are talking about HFS colon-separated paths.

Igor commands can refer to files using paths. HFS paths are recommended but Windows paths are also
accepted. So that an Igor programmer can write procedures that work on any platform, commands must
work regardless of which platform they are executing on. For example, the commands:

LoadWave/J/P=Igor ":Examples:Programming:AutoGraph Data:Data0"
LoadWave/J/P=Igor ".\\Examples\\Programming\\AutoGraph Data\\Data0"

must work on both Macintosh and Windows. (Note that in a literal string in an Igor command, you must
use "\\" to represent a single backslash because backslash is an escape character in Igor.)

XOPNumberOfBytesInFile XOPNumberOfBytesInFile2

XOPAtEndOfFile

Macintosh Windows Path Type

hd:Folder1:Folder2:File C:\Folder1\Folder2\File Full path

:Folder2:File .\Folder2\File Partial path

Chapter 12 — Other Programming Topics

206

This requirement means that an XOP that deals with a file path must accept the path in either Macintosh
HFS or Windows format. The technique used by the sample XOPs is to convert all paths to the native format
as soon as the path is received from the command. "Native" means that the path uses Macintosh HFS syntax
when running on Macintosh and Windows syntax when running on Windows. For example, SimpleLoad-
WaveOperation.cpp calls the GetNativePath routine to convert its input parameter.

GetNativePath is an XOPSupport routine that converts a path to the conventions of the platform on which
the XOP is running. On Macintosh, it converts to Macintosh HFS conventions and on Windows, it converts
to Windows conventions. If the path already uses the correct conventions, GetNativePath does nothing.
GetNativePath calls other XOPSupport routines, MacToWinPath and WinToMacPath. If you use the tech-
nique of converting all paths to native format as soon as possible, then you will not need to use MacToW-
inPath and WinToMacPath directly but can use just GetNativePath.

Other cross-platform path-related XOPSupport routines include ConcatenatePaths, GetDirectoryAndFile-
NameFromFullPath, FullPathPointsToFile, and FullPathPointsToFolder.

On MacOS you may need to convert an HFS path that you receive as a parameter to a POSIX path in order
to call an operating system routine or a standard file library I/O routine. You can do this using the HFS-
ToPosixPath XOPSupport routine.

Long Names and Paths in XOPs
In Igor Pro 8.00 and later, Igor supports long object names and long file system paths.

Object names, as well as dimension labels, which were previously limited to 31 bytes, can now be up to 255
bytes.

File system paths, which were previously limited to 511 bytes on Macintosh and 259 bytes on Windows, can
now be up to 2000 bytes, subject to operating system limits.

Igor commands, which were previously limited to 1000 bytes, can now be up to 2500 bytes.

Igor Pro 8 still supports existing XOPs, created with XOP Toolkit 7 and before, with the original name and
path length limitations so long as the user does not pass long names or paths to the XOP. If the user attempts
to pass a long name or path to an existing XOP, or if the XOP tries to access an object with a long name, Igor
generates an error.

If you are are targeting Igor Pro 8.00 or later, and you are creating a new XOP or updating an XOP already
updated using XOP Toolkit 7.01 or later, you should use XOP Toolkit 8. See Choosing Which XOP Toolkit
to Use on page 5 for details.

Once you are ready to update your XOP using XOP Toolkit 8, see “Long Names and Paths in XOPs” in
Chapter 12 of the XOP Toolkit 8 manual for further details.

Alerts and Message Boxes
The following routines provide a cross-platform way to display simple alert dialogs.

Routine What It Does

XOPOKAlert Displays a message with an OK button.

XOPOKCancelAlert Displays a message with OK and Cancel buttons.

XOPYesNoAlert Displays a message with Yes and No buttons.

XOPYesNoCancelAlert Displays a message with Yes, No, and Cancel buttons.

Chapter 12 — Other Programming Topics

207

Open and Save File Dialogs
These routines provide a cross-platform way to implement Open File and Save File dialogs.

Adding Dialogs
When the user selects your XOP’s menu item you may want to put up a dialog. The GBLoadWaveX sample
XOP does this and provides a good starting point for your XOP dialog.

Prior to XOP Toolkit 7, the XOPSupport library included cross-platform dialog support routines. Because
the programming techniques used for these routines are obsolete on Macintosh, they were removed from
the XOP Toolkit 7 XOPSupport library on both Macintosh and Windows. Now you must implement dialogs
separately for Macintosh and Windows.

The XOP Toolkit includes an Extras folder containing files that are not part of the XOPSupport library but
which may be of use. The GBLoadWaveX and VDT2 XOPs, which create dialogs, use the DialogUtilities
files from the Extras folder to support dialog creation and management. On Windows, the DialogUtilities-
Win.c file provides most of the routines that were removed from the XOPSupport library itself. These rou-
tines enable you to create a Windows dialog in XOP Toolkit 7 using nearly the same code as used in XOP
Toolkit 6. On Macintosh, the DialogUtilitiesMac.c file provides a small subset. This is because dialog cre-
ation on Macintosh changed radically with the advent of Cocoa so the old routines are no longer of use.

On Macintosh, you implement a dialog using Apple’s Cocoa framework. The GBLoadWaveX sample XOP
provides a good starting point. If you are unfamiliar with Cocoa, you will need to familiarize yourself with
it.

On Windows, you can write your dialog using standard Windows programming techniques. The GBLoad-
WaveX sample XOP provides a good starting point.

If you are updating old XOP dialog code, see XOP Dialogs in XOP Toolkit 7.

Adding Version Resources
If you plan to distribute your XOP to other people, it is a good idea to add version resources. The only use
for the version resources is to identify your XOP to a person doing a Get Info in the Macintosh Finder or
viewing properties in the Windows desktop. All of the sample XOPs have version resources.

Macintosh Version Resources
You create Macintosh version resources by editing your XOP's .r file. The ‘vers, 1’ resource identifies your
XOP’s version number. You can use any version number that you like. The ‘vers, 2’ resource identifies the
version of Igor with which your XOP is intended to run.

Here is an example:

resource 'vers' (1) { // Version of XOP
0x01, 0x00, release, 0x00, 0, // Version bytes and country code
"1.00",
"1.00, © 2012 WaveMetrics, Inc., all rights reserved."

};

Routine What It Does

XOPOpenFileDialog Displays a standard Open File dialog.

XOPOpenFileDialog2 Displays a standard Open File dialog. Requires Igor7 or later.

XOPSaveFileDialog Displays a standard Save File dialog.

XOPSaveFileDialog2 Displays a standard Save File dialog. Requires Igor7 or later.

Chapter 12 — Other Programming Topics

208

resource 'vers' (2) { // Version of Igor
0x06, 0x00, release, 0x00, 0, // Version bytes and country code
"6.00",
"(for Igor Pro 6.20 or later)"

};

Windows Version Resources
You create a version resource by editing the VERSIONINFO resource in your XOP’s main .rc file.

Structure Alignment
Structure alignment controls whether fields in structures are aligned on two, four, eight or sixteen-byte
boundaries and how padding between fields is used to achieve this alignment. The C and C++ languages
do not define structure alignment so it is compiler-dependent.

There are two ways to set structure alignment. First, you can use a project setting to set the project-default
structure alignment. Second, you can use pragma statements when defining specific structures to override
the default alignment. In XOP Toolkit 7 we use pragma statements.

Shared Structure Alignment
Structure alignment is critical when an executable passes a structure to a separately-compiled executable,
such as when Igor calls an XOP or vice versa. If they don’t agree on structure alignment, they can not cor-
rectly access structure fields. This can cause bizarre crashes that are difficult to debug.

Agreement is needed only for structures passed between separately-compiled executables, such as Igor and
an XOP. We call these “shared” structures.

In the XOP Toolkit, shared structures are defined with two-byte alignment. This includes structures defined
in XOPSupport header files as well as structures defined in the XOP itself, namely the structures used to
pass parameters to an XOP’s external operations and functions. Two-byte alignment is a legacy from Igor’s
early days when it was the Macintosh standard alignment.

XOPSupport structures are defined in XOPSupport header files such as XOP.h and IgorXOP.h. These files
contain statements to insure two-byte alignment. For example:

#pragma pack(2) // All Igor structures are two-byte aligned

<Structures defined here>

#pragma pack() // Reset structure alignment

In addition to the shared structures defined in XOPSupport header files, individual XOPs must also define
shared structures for external operation and function parameters which they receive from Igor. Such shared
parameter structures must be two-byte aligned and so must use the pragma statements shown above. Thus
you will see these statements in all of the sample XOP projects.Failure to use two-byte alignment for shared
structures will cause crashes that are sometimes difficult to diagnose.

File Structure Alignment
You also need to be careful about structure alignment if you store a structure in a file. Once you define the
file structure, you must use the same structure and alignment in all future versions of your XOP.

If your XOP is to run cross-platform, you must use the same structure and alignment on all platforms.

WaveMetrics uses two-byte alignment for structures stored on disk.

Chapter 12 — Other Programming Topics

209

Using Igor Structures as Parameters
You can create external functions and external operations that take structure parameters.

Structure parameters are passed as pointers to structures. These pointers always belong to Igor. You must
never dispose or resize a structure pointer but you may read and write its fields.

An instance of an Igor structure can be created only in a user-defined function and exists only while that
function is running. Therefore, when a structure must be passed to an external operation or function, the
operation or function must be called from a user-defined function, not from the command line or from a
macro. An external operation that has an optional structure parameter can be called from the command line
or from a macro if the optional structure parameter is not used.

The pointer for a structure parameter can be NULL. This would happen in an external operation or function
if the user supplies * as the parameter or in the event of an internal error in Igor. Therefore you must always
test a structure parameter to make sure it is non-NULL before using it.

If you receive a NULL structure pointer as a parameter and the parameter is required, return an
EXPECTED_STRUCT error code. Otherwise, interpret this to mean that the user wants default behavior.

You must make sure that the definition of the structure in Igor and in the XOP are consistent and you must
use two-byte packing for the structure. Otherwise a crash is likely to occur.

For examples, see External Operation Structure Parameter Example on page 90 and External Function
Structure Parameter Example on page 112.

Structure Fields
This table shows the correspondence between Igor structure field types and C structure field types.

Igor Field Type C Field Type Notes

Variable double

Variable/C double[2]

String Handle See Strings In Structures on page 210.

WAVE waveHndl Always check for NULL.

NVAR NVARRec Use with GetNVAR and SetNVAR.

SVAR SVARRec Use with GetSVAR and SetSVAR.

DFREF DataFolderHandle Always check for NULL.

FUNCREF void* Use with GetFunctionInfoFromFuncRef.

STRUCT struct Embedded substructure.

char char

uchar unsigned char

int16 short

uint16 unsigned short

int32 SInt32

uint32 UInt32

int64 SInt64 Requires Igor7 or later

uint64 UInt64 Requires Igor7 or later

Chapter 12 — Other Programming Topics

210

If the calling Igor procedure attempts to access a non-existent wave, the corresponding waveHndl structure
field will be NULL. Thus the external function must always check for NULL before using a waveHndl field.

Likewise, always check for NULL before using a DataFolderHandle field.

Do not access NVARRec and SVARRec fields directly but use the GetNVAR, SetNVAR, GetSVAR and
SetSVAR XOPSupport routines instead as explained under NVARs and SVARs In Structures on page 211.
If the calling Igor procedure attempts to access a non-existent global numeric variable or global string vari-
able, the those routines will return an appropriate error code.

The FUNCREF field type can be used to call an Igor user-defined function or an external function that is
referenced by a field in an Igor Pro structure. See Calling User-Defined and External Functions on page
212 for details.

Strings In Structures
Strings in Igor structures behave just like string parameters passed directly to an external operation imple-
mented with Operation Handler. They also behave like string parameters passed directly to an external
function with one important exception. In the case of a string passed as a simple external function string
parameter, the XOP owns the string handle and must dispose it. In the case of a string field in a structure,
Igor owns the handle and the external function must not dispose it.

A string field handle can be NULL. The XOP must check for NULL before using the field. A NULL string
handle indicates an error in the calling user-defined function and should be treated as an error.

As with simple string parameters, strings referenced by structure fields are stored in plain Macintosh-style
handles, even when running on Windows. The handle contains the string’s text, with neither a count byte
nor a trailing null byte. Use WMGetHandleSize to find the number of characters in the string. To use C
string functions on this text you need to copy it to a local buffer and null-terminate (using GetCString-
FromHandle) it or add a null terminator to the handle. In the latter case, you must remove the null termi-
nator when you are finished using it as a C string. See Understand the Difference Between a String in a
Handle and a C String on page 233 for details.

Wave Handles In Structures
Usually a waveHndl field in a structure is used to pass a wave reference from Igor to your XOP. However,
it can also be used to pass a wave reference from your XOP to Igor.

A waveHndl field will be NULL if it is uninitialized or if its initialization failed. Always test a waveHndl
field before using it. If it is NULL you can return the NULL_WAVE_OP Igor error code.

In Igor Pro 6.20 or later, if you store a wave handle in a waveHndl field of a structure you need to inform
Igor by calling HoldWave on the structure field. By doing this, you maintain the integrity of Igor’s internal
wave reference count. For details see Wave Reference Counting on page 131.

Data Folder Handles In Structures
Usually a DataFolderHandle field in a structure is used to pass a data folder reference from Igor to your
XOP. However, it can also be used to pass a data folder reference from your XOP to Igor.

A DataFolderHandle field will be NULL if it is unitialized or if its initialization failed. Always test a Data-
FolderHandle field before using it. If it is NULL you can return the NULL_DATAFOLDER_OP Igor error
code.

float float

double double

Igor Field Type C Field Type Notes

Chapter 12 — Other Programming Topics

211

In Igor Pro 6.20 or later, if you store a data folder handle in a DataFolderHandle field of a structure you need
to inform Igor by calling HoldDataFolder on the structure field. By doing this, you maintain the integrity
of Igor’s internal data folder reference count. For details see Data Folder Reference Counting on page 143.

NVARs and SVARs In Structures
This example illustrates handling Igor structures containing NVARs, which reference global numeric vari-
ables, and SVARs which reference global string variables.

#pragma pack(2) // All Igor structures are two-byte aligned

#define kF2StructureVersion 1000 // 1000 means 1.000.
struct F2Struct { // Format of structure parameter.

UInt32 version;
NVARRec nv; // Corresponds to NVAR field in Igor structure.
SVARRec sv; // Corresponds to SVAR field in Igor structure.

};
typedef struct F2Struct F2Struct;

struct F2Param { // Parameter structure.
F2Struct* sp;
double result;

};
typedef struct F2Param F2Param;

#pragma pack() // Reset structure alignment

int
XTestF2Struct(struct F2Param* p)
{

struct F2Struct* sp;
NVARRec* nvp;
double realPart, imagPart;
SVARRec* svp;
Handle igorStrH, ourStrH;
char buffer[256];
int numType, err=0;

ourStrH = NULL;
sp = p->sp;
if (sp == NULL) {

err = EXPECT_STRUCT;
goto done;

}
if (sp->version != kF2StructureVersion) {

err = INCOMPATIBLE_STRUCT_VERSION;
goto done;

}

nvp = &sp->nv; // Handle the NVAR.
if (err = GetNVAR(nvp, &realPart, &imagPart, &numType))

goto done; // Probably referencing non-existent global.
realPart *= 2; imagPart *= 2;
if (err = SetNVAR(nvp, &realPart, &imagPart))

goto done;

svp = &sp->sv; // Handle the SVAR.
if (err = GetSVAR(svp, &igorStrH))// igorStrH can be NULL. Igor owns it.

goto done; // Probably referencing non-existent global.
if (err = GetCStringFromHandle(igorStrH, buffer, sizeof(buffer)-1))

goto done; // String too long.

Chapter 12 — Other Programming Topics

212

ourStrH = WMNewHandle(0L); // We own this handle.
if (ourStrH == NULL) {

err = NOMEM;
goto done;

}
if (err = PutCStringInHandle("Hello", ourStrH))

goto done;
if (err = SetSVAR(svp, ourStrH))

goto done;

done:
WMDisposeHandle(ourStrH); // OK if NULL
p->result = err;
return err;

}

Calling User-Defined and External Functions
An XOP can call an Igor Pro user-defined function or an external function defined in another XOP. You
might want to do this, for example, to implement your own user-defined curve fitting algorithm. This is an
advanced feature that most XOP programmers will not need.

There are two ways to identify the function to be called: by the function name or using a FUNCREF field in
an Igor Pro structure.

From an XOP’s point of view, an Igor user-defined function and an external function defined in another
XOP appear to be the same.

There are several difficulties involved in calling a user-defined function:

• You must make sure Igor’s procedures are in a compiled state.
• You need some way to refer to the function that Igor and your XOP agree upon.
• You must make sure that the function’s parameters and return type are appropriate for your XOP’s

purposes.
The XOPSupport GetFunctionInfo, GetFunctionInfoFromFuncRef, CheckFunctionForm and CallFunc-
tion routines work together with your XOP to address these difficulties. The details of each of these routines
are described in Chapter 15.

GetFunctionInfo takes a function name, which you might have received as a parameter to your external
operation, and returns information about the function’s compilation state, its parameters and its return
type. At this time you can call CheckFunctionForm to make sure that the function is appropriate for your
purposes.

GetFunctionInfoFromFuncRef works the same as GetFunctionInfo except that, instead of passing the name
of a function, you pass the contents of a FUNCREF field in an Igor Pro structure that you have received as
a parameter.

Once you have obtained the function information, the rest of the process is the same, whether you used Get-
FunctionInfo or GetFunctionInfoFromFuncRef.

Since the function may be recompiled or deleted at any time, you must call CheckFunctionForm again
shortly before you attempt to call the function.

Once you have successfully called GetFunctionInfo or GetFunctionInfoFromFuncRef and CheckFunction-
Form, you can call CallFunction to call the function.

Chapter 12 — Other Programming Topics

213

CallFunction and Igor Preemptive Threads
You can call a thread-safe user-defined function or external function while you are running in an Igor pre-
emptive thread. You can tell if you are running in a preemptive thread by calling RunningInMainThread.

When you call GetFunctionInfo, you receive information about the function in a FunctionInfo structure. The
FunctionInfo structure contains an isThreadSafe field. If you are running in a preemptive thread, you must
check the isThreadSafe field to make sure the function you are calling is threadsafe.

If you try to call a non-threadsafe function from a preemptive thread using CallFunction, Igor will return
an error, typically the ONLY_THREADSAFE ("Function must be ThreadSafe") error.

CallFunction and Igor Independent Modules
Independent modules allow advanced programmers to create separately-compiled Igor procedure code
modules. A procedure that is defined outside of any independent module exists by default in the built-in
ProcGlobal module. See the Igor Pro manual for details.

When you call GetFunctionInfo with a simple function name, such as "MyFunction", the information
returned describes the named function in the currently-executing independent module or in ProcGlobal. If
you call GetFunctionInfo with a fully-qualified name, such as "ProcGlobal#MyFunction" or "MyMod-
ule#MyFunction", the information returned describes the named function in the named module. So if you
want to call from one independent module to another using CallFunction, you must use fully-qualified
names when calling GetFunctionInfo. If you want to call a function in ProcGlobal, it is a good idea to specify
it in the function name, as illustrated in the example below.

GetFunctionInfoFromFuncRef does not support cross-independent-module calls. It assumes that the
FUNCREF passed to it was created in the module that is currently running. There is currently no way to
use a FUNCREF to make cross-module calls. Use GetFunctionInfo with a qualified name instead.

Example of Calling a User-Defined or External Function
In this example, we have written our own curve fitting routine, analogous to Igor's FuncFit operation, as an
external operation. We want to call a user or external function from our external operation.

The function that we want to call has this form:

Function FitFunc(w, x)
Wave w
Variable x

To simplify the example, we assume that we know the name of the function that we want to execute.

// Define the parameter structure.
// These are parameters we will pass to user or external function.

#pragma pack(2) // All Igor structures are two-byte aligned
struct OurParams { // Used to pass parameters to the function.

waveHndl waveH; // For the first function parameter.
double x; // For the second function parameter.

};
typedef struct OurParams OurParams;
typedef struct OurParams* OurParamsPtr;
#pragma pack() // Reset structure alignment

int
DoOurOperation(waveHndl coefsWaveH)
{

FunctionInfo fi;
OurParams parameters;
int badParameterNumber;
int requiredParameterTypes[2];

Chapter 12 — Other Programming Topics

214

double result;
int i;
double values[5];
int err;

// Make sure the function exists and get information about it.
if (err = GetFunctionInfo("ProcGlobal#TestFitFunc", &fi))

return err;

// Make sure the function has the right form.
requiredParameterTypes[0]=WAVE_TYPE; // First parameter is wave
requiredParameterTypes[1]=NT_FP64; // Second parameter is a numeric
if (err = CheckFunctionForm(&fi, 2, requiredParameterTypes,

&badParameterNumber, NT_FP64))
return err;

// We have a valid function. Let's call it.

parameters.x = 0;
parameters.waveH = coefsWaveH;
for(i=0; i<5; i+=1) {

parameters.x = i;
if (err = CallFunction(&fi, (void*)¶meters, &result))

return err;
values[i] = result;

}

return 0;
}

Checking For Aborts
If your external operation or external function might take a long time to finish you will probably want to
allow the user to abort it. There are two XOPSupport routines to help with this, SpinProcess and Check-
Abort.

SpinProcess is so-named because originally it spun the beachball cursor during a lengthy calculation on
Macintosh. Now the operating system spins the beachball if the program stops responding to events. How-
ever, in Igor7 or later, SpinProcess still spins the beachball in the bottom/right corner of the status area.

SpinProcess returns non-zero if an abort has occurred because:

• The user pressed cmd-dot (Macintosh) or Ctrl-Break (Windows)
• The user clicked the Abort button in the status area
• A procedure called the Abort operation

Otherwise SpinProcess returns zero.

You can call SpinProcess from a lengthy loop like this:

int err = 0;
for(i=0; i<1E9; i+=1) { // This will take a long time

<do one iteration of your calculation>
if ((i % 100) == 0) { // Do this every 100 iterations

if (SpinProcess() != 0) {
err = -1; // -1 signals an cancel or abort
break;

}
}

Chapter 12 — Other Programming Topics

215

}
return err;

SpinProcess does a callback to Igor which can take some time. That’s why we call SpinProcess every 100
iterations instead of every iteration. You can adjust the number 100 to suit your situation. To achieve rea-
sonable responsiveness, SpinProcess should be called at least a few times per second if practical.

SpinProcess is thread-safe only if you are running with Igor Pro 6.20 or later.

NOTE: Calling SpinProcess, or any other callback, may cause recursion. This can cause your XOP to
crash if you do not handle it properly. See Handling Recursion on page 67 for details.

CheckAbort checks for the user pressing the abort key combinations at the moment you call it and does not
check for the other abort conditions listed above. CheckAbort does not do a callback to Igor and is therefore
faster than SpinProcess and does not introduce the possibility of recursion. Also CheckAbort is thread-safe
with any version of Igor.

On Macintosh CheckAbort may not work correctly on non-English keyboards. It checks the key that is the
dot key on an English keyboard. This is the key that is two keys to the left of the righthand shift key. On a
French keyboard, for example, that is the colon key so you must press cmd-colon instead of cmd-dot.

If this is a problem, use SpinProcess instead of CheckAbort.

64-bit Integer Issues
Igor Pro 7 added the ability to create signed and unsigned 64-bit integer waves. The XOP Toolkit supports
such waves, but there are many issues.

For almost all applications, you should use double waves rather than 64-bit integer waves.

Doubles (64-bit floating point) can represent integers precisely if the integer fits in 53 bits. Thus, the largest
integer that is precisely represented by a double is 2^53-1 which equals 9,007,199,254,740,991 which is
roughly 9 quadrillion.

Doubles represent integers larger than 9 quadrillion approximately. This means that any time Igor, your
XOP, or Igor procedure code stores a very large integer in a double, precision is lost. This is usually not a
problem because it is very rare for programs to need to represent integers larger than 9 quadrillion.

Internally, Igor uses doubles for most calculations. Consequently, if you use 64-bit integer waves in calcu-
lations, it takes time to do this conversion and you lose precision to boot. Furthermore, the conversion of
very larger integers from 64-bit integer to double may cause internal overflow errors giving incorrect
results.

Here is an example showing an overflow error:

Function Demo()
Make/O/D/N=2 FP64
Make/O/L/N=2 SInt64
Edit FP64, SInt64
ModifyTable format(FP64)=1, width(FP64)=150
ModifyTable format(SInt64)=1, width(SInt64)=150

FP64[0] = 9007199254740991 // Represented precisely
FP64[1] = 9223372036854775807 // Represented approximately
SInt64[0] = FP64[0] // Correct
SInt64[1] = FP64[1] // Incorrect due to overflow

End

Chapter 12 — Other Programming Topics

216

This produces the following table:

The statement:

FP64[1] = 9223372036854775807

gave us a value of 9223372036854775808 for FP64[1] because 9223372036854775807 can not be precisely
represented in a double.

The value of SInt64[1] is wrong. This statement

SInt64[1] = FP64[1]

has to convert from double-precision floating point to signed 64-bit integer. In this case, the value repre-
sented by FP64[1] is too big to fit in a signed 64-bit integer. Overflow occurs and we get an incorrect result.

In principal it is possible for the conversion from double to signed 64-bit integer to include clipping so that
we would get 9223372036854775807 from the statement. However, clipping is time consuming, and to find
and fix every place in Igor where clipping is needed is practically impossible and would likely introduce
bugs.

Tables in Igor7 use doubles internally and thus do not properly handle the entry or display of very large
integers. In Igor8, tables properly handle very large 64-bit integers.

The point of this section is that the use of 64-bit integers comes with pitfalls. This is why, for nearly all
applications, you should use double rather than 64-bit integers.

Using 64-bit integer waves is appropriate if you are dealing with a data source that produces 64-bit integer
data and if there is a chance that such data may exceed 9 quadrillion in magnitude. In this case, you can
use 64-bit integer waves, but you should be aware of the issues raised in this section.

To retrieve or store 64-bit integer data from 64-bit integer waves, you must use The Direct Access Method
(see page 126) or one of these routines which require Igor Pro 7.03 or later:

Writing XOPs in C++
Writing an XOP in C++ is not significantly different from writing it in C.

Calling C Code from C++ Code
In general, your C++ XOP code will use XOPSupport routines or other functions that obey the C calling con-
vention. To use a C routine in your C++ code, you must use the extern "C" declaration when declaring C
routines. For example, if the C function foo is declared in its original C file as:

void foo(int i);

you need to add to any C++ file that contains a call to the function the following declaration:

extern "C" void foo(int i);

To simplify the process, header files for most libraries, including the XOPSupport headers, have the follow-
ing structure:

#ifdef __cplusplus
extern "C" {

FP64 SInt64

0 9007199254740991 9007199254740991

1 9223372036854775808 -9223372036854775808

MDGetNumericWavePointValueSInt64 MDSetNumericWavePointValueSInt64

MDGetNumericWavePointValueUInt64 MDSetNumericWavePointValueUInt64

Chapter 12 — Other Programming Topics

217

#endif

...

file definitions, declarations and prototypes

...

#ifdef __cplusplus
}
#endif

This structure ensures that when the header file is included in a C++ module, it automatically contains
proper extern declarations for all of its C functions. Because the XOPSupport headers have this structure,
you don't need to worry about extern "C" declarations when you use XOPSupport routines in your C++
files.

C++ Code Called From C Code
Since Igor must work with both C and C++ XOPs, it uses C calling conventions when calling an XOP func-
tion. Thus your XOPMain function, XOPEntry function, and any external operation or external function
execute routines in C++ source files must be declared extern "C". For example:

HOST_IMPORT int // HOST_IMPORT includes extern "C” in C++ code
XOPMain(IORecHandle ioRecHandle)

extern "C" void // XOPEntry routine
XOPEntry(void)

extern "C" int // External operation execute routine
ExecuteXOP1(XOP1RuntimeParamsPtr p)

extern "C" int // External function execute routine
XFUNC1Div(XFUNC1DivParams* p)

Using C++ Exceptions
If your C++ code uses C++ exceptions, all exceptions thrown from within your XOP must be caught inside
your XOP. This includes exceptions thrown by C++ library routines that you call. Otherwise the exception
will cause Igor to crash.

Windows DLL Dependencies
In Igor Pro 6.20 or later, Igor loads Windows XOPs using the Windows OS LoadLibraryEx routine with the
LOAD_WITH_ALTERED_SEARCH_PATH flag. This means that the OS will look for DLLs required by the
XOP in the folder containing the XOP before looking elsewhere. You can ship a DLL that your XOP depends
on in the same folder as the DLL and no further installation is required of the end user. This technique is
explained at:

http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx

With earlier versions of Igor, the DLL has to be in placed in the folder containing Igor.exe or in a folder listed
in the path environment variable.

http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx

Chapter 12 — Other Programming Topics

218

Chapter 13
I-13Providing Help

Overview
If your XOP will be used by other people, you should provide help. This chapter explains how to do that.

Previous XOP Toolkits supported Macintosh balloon help and Windows menu help. These are now obso-
lete. If you are updating an old XOP, see Help Resources in XOP Toolkit 7 on page 423 for details.

Igor Pro Help File
If your XOP is to be used by people other than you, you should create an Igor Pro help file. Igor uses this
help file to display help in the Igor Help Browser Command Help tab and to provide templates in Igor pro-
cedure windows. You can also ask Igor to display this file when the user clicks the Help button in your
dialog or window. The user can open the help file at any time by double-clicking it or using the File→Open
File→Help File menu item.

Igor Pro help files work on both Macintosh and Windows. You can edit the file on one platform and use it
on both. The help file name must have a ".ihf" extension. After editing the file as an Igor formatted notebook,
the next time you open it as a help file, Igor will “compile” it.

The help compiler generates a list of topics and subtopics and their locations in the help file. Its output is
stored in the help file itself. You can compile your help file on either platform and it will work on both.

Your help file should include an overview, installation instructions, examples of using your XOP, and a
description of each operation and function that your XOP adds to Igor.

It is usually best to start with a help file for one of the sample XOPs and modify it to suit your purposes. For
details on creating an Igor Pro help file, see the Igor Pro User’s Manual.

When Igor needs to find an XOP’s help file, to display help in the Help Browser, for example, it looks in the
folder containing the executable XOP itself. The sample XOPs use a folder organization, described in
Chapter 3, which puts the executable XOP in a development system-specific subfolder. The help file is at
the top of the sample XOP folder hierarchy, usually one level up from the executable XOP. You can make
Igor find the help file by putting an alias (Macintosh) or shortcut (Windows) for it in the same folder as the
executable XOP. The alias or shortcut must have the exact same name as the help file itself.

If you create a 32-bit and a 64-bit version of your XOP, you can create one help file for both versions. For
details, see Command Help for 64-bit XOPs on page 193.

Help for External Operations and Functions
Igor Pro provides help for built-in operations and functions via the Command Help tab of the Igor Help
Browser and also via the Templates popup menu in the procedure window. Your XOP can supply this kind
of help for its own operations and functions.

Chapter 13 — Providing Help

220

When Igor Pro builds the list in the Command Help tab and when it builds the Templates popup menu, it
automatically includes any external operations declared in your XOP’s XOPC resource and any external
functions declared in your XOP’s XOPF resource.

When the user chooses an external operation or function that your XOP provides, Igor Pro looks in the
folder containing the executable XOP for your XOP's help file. If it finds it, it looks in the help file for a sub-
topic that matches the operation or function. If it finds this, it displays the help in the Help Browser or dis-
plays the template in the procedure window.

By default Igor looks for an XOP help file in the same folder as the XOP file itself with the same name as the
XOP file but with " Help.ihf" appended. If the XOP file name is "GBLoadWaveX.xop", Igor looks for
"GBLoadWaveX Help.ihf". This is what we call the "default help file name". In most case, the default name
is fine so this technique will work.

You may want to override the default help file name. For example, you might have an XOP named
"GBLoadWaveX Release" and another XOP named "GBLoadWaveX Debug", and you want both XOPs to
use a single help file named "GBLoadWaveX Help.ihf". To override the default help file name, you must
put a STR# 1101 resource in your XOP's resource fork. Igor takes item number 3 in this resource, if it exists,
as the help file name. Here is an example from GBLoadWaveX.

// Macintosh, in GBLoadWaveX.r.
resource 'STR#' (1101) { // Misc strings that Igor looks for.

{
"-1",
"---",
"GBLoadWaveX Help", // Name of XOP's help file.

}
};

// Windows, GBLoadWaveXWinCustom.rc.
1101 STR# // Misc strings that Igor looks for.
BEGIN

"-1\0",
"---\0",
"GBLoadWaveX Help\0", // Name of XOP's help file.

"\0" // 0 required to terminate the resource.
END

The first two items in the STR# 1101 resource are not used by modern XOPs. The first item must be -1. It is
the third item that defines the custom XOP help file name. Note that the ".ihf" extension is not included in
the resource string but is included in the help file name.

If Igor finds the help file using your custom help file name from STR# 1101 or the default help file name, it
then looks in the help file for a subtopic whose name is the same as the name of the operation or function
for which the user has requested help. If it finds such a subtopic, it displays the subtopic text in the dialog.
Note that subtopics must be governed by a ruler whose name is "Subtopic" or starts with the letters "Sub-
topic". The best way to create your help file is to start with a WaveMetrics help file and modify it.

As explained under Command Help for 64-bit XOPs on page 193, when running a 64-bit XOP, such as
GBLoadWaveX64.xop, Igor will look for a help file named using 32-bit conventions, such as “GBLoadWave
Help.ihf”.

Programmatically Displaying a Help Topic
You may want to display a help topic from your help file when the user clicks a Help button in a dialog or
at some other time. You can do this by calling XOPDisplayHelpTopic XOPSupport routine.

Chapter 14
I-14Debugging

Overview
In this chapter we present tips and techniques learned through years of XOP programming that may save
you valuable time.

Most bugs can be avoided by careful programming. You can dramatically reduce the amount of time that
you spend debugging by using good programming practices. These include

• Breaking your program up into appropriate modules
• Using clear and descriptive variable and function names
• Always checking for errors returned by functions that you call
• Keeping the use of global variables to a bare minimum
• Carefully proofreading your code immediately after writing it
The best time to find a bug is when you create it. When you write a routine, take a few minutes to carefully
proofread it. Be on the lookout for the common errors listed below that can take hours to find later if you
don’t catch them early.

Most of the problems that people run into in writing XOPs are standard programming problems. We
discuss several of them in the next section. The middle part of the chapter discusses debugging techniques.
The chapter ends with a discussion of pitfalls that are specific to XOP programming.

Programming Problems
Here are some of the common programming problems that you should be on the lookout for as you proof-
read your code.

Excessive Use of Global Variables
Global variables are bad because any routine in your program can change them and any routine can depend
on them. This can lead to complex and unexpected dependencies which in turn leads to intermittent bugs
that are very difficult to fix. A given routine may change a global variable, having an unforeseen impact on
another routine that uses the global. This creates a bug that may manifest itself at unpredictable times.

By contrast, a routine that accesses no global variables depends only on its inputs and can not impact rou-
tines other than the one that called it. This makes it easy to verify that the routine works properly and
reduces the likelihood of unforeseen effects when you change the routine.

You can avoid using globals by passing all of the necessary information from your higher level routines to
you lower level routines using parameters. This does lead to routines with a lot of parameters but this is a
small price to pay for robustness.

It is alright to use global variables for things that you can set once at the beginning of your program and
then never need to change. For example, the XOPSupport routines use a global variable, XOPRecHandle,
to store the handle that Igor uses to communicate with your XOP. This global is set once when your XOP

Chapter 14 — Debugging

222

calls XOPInit and then is never changed. Because it is never changed, it can’t introduce complex dependen-
cies.

Uninitialized Variables
The use of uninitialized variables can be difficult to find. Often an uninitialized variable problem shows up
only if your code takes a certain execution path. Here is an example.

int numBytes;
double* dp;

if (<condition1>)
numBytes = 100;

else
if (<condition2>)

numBytes = 200;

dp = (double*)WMNewPtr(numBytes); // Possible bug
<Fill block with data>;

If neither <condition1> nor <condition2> is true, then numBytes will be uninitialized. This may happen only
in rare cases so your code may seem to run fine, but once in a while it crashes or behaves erratically.

Even if numBytes is uninitialized, your code may run fine some times because numBytes just happens to
have a value that is sufficient. This makes it even harder to find the problem because it will be very inter-
mittent.

If this bug is symptomatic, the symptom will most likely be a crash. However, the crash may occur some
time after this routine executes successfully. The reason is that this routine will clobber the block of memory
that falls after the block allocated by WMNewPtr. You will not actually crash until something tries to use
the clobbered block.

To avoid this problem, proofread your code and pay special attention to conditional code, making sure that
all variables are initialized regardless of what path execution takes through the code.

Overwriting Arrays
It is not too difficult to clobber data on the stack or in the heap by overwriting an array. Here is an example.

int
Test(char* inputName)
{

char name[MAX_OBJ_NAME+1];
Handle aHandle;

aHandle = WMNewHandle(100);
if (aHandle == NULL)

return NOMEM;
strcpy(name, inputName);
strcat(name, "_N"); // Possible bug
.
.
.

}

This code will work fine as long as the inputName parameter is less than or equal to MAX_OBJ_NAME-2
characters long. This is likely to be the case most of the time. Once in a while, it may be longer. This will
cause the strcat function to overwrite the name array. The effect of this will depend on what follows the
name array in the local stack frame.

With most compilers, the aHandle variable will follow the name array on the local stack. Thus, this bug will
clobber the aHandle variable. This will most likely cause a crash when the aHandle variable is used or when

Chapter 14 — Debugging

223

it is disposed. It could be worse though. It may corrupt the heap when aHandle is used but not cause a crash
until later, making it very difficult to track down.

Here is a very insidious case in which the bug may be asymptomatic most of the time. Imagine that the
inputName parameter is MAX_OBJ_NAME-1 characters long. Then, the strcat function will use just one
more byte than is allocated for the name array. It will write the terminating null character for the name vari-
able in the first byte of the aHandle variable. If the first byte of aHandle was already 0, this will be asymp-
tomatic. If it was not 0, it will likely cause a crash when aHandle is used or disposed. The crash will be
intermittent, making it difficult to fix.

To avoid this problem, proofread your code and pay special attention to array and string operations, keeping
in mind the possibility of overwriting. Read through the code assuming a worst case scenario (e.g., input-
Name is as long as it possibly could be).

Off By One Errors
It is very easy and common to do something one time too many or one time too few. For example.

int
RotateValuesLeft(float* values, int numValues)
{

float value0;
int i;

value0 = values[0];
for(i = 0; i < numValues; i++)

values[i] = values[i+1]; // Bug
values[numValues] = value0; // Bug

}

We assume that values parameter points to an array of numValues floats. There are two problems here.
First, when i reaches its maximum value (numValues-1), values[i+1] accesses a value that is past the end of
the array. Second, and more destructive, the last statement clobbers whatever happens to be stored after the
values array. If the values array is in the heap, this may cause heap corruption and a crash at some later
time. If the values array is on the stack, it may or may not cause a problem, depending on what is stored
after the values array and how it is used.

To avoid this problem, proofread your code and pay special attention to what happens the first and last times
through a loop. In this example, assume that numValues is some specific number (3, for example) and work
through the loop, paying special attention to the last iteration. Also verify that the last element of an array
is being set and that no element beyond the last element is being touched. Remember that, for an array of n
elements, the first valid index is zero and the last valid index is n-1.

Failure To Check Error Codes
Always check error codes returned from XOPSupport routines (and any other routines, for that matter) and
handle errors gracefully. Failure to check error codes can turn a simple problem into a devilish, irreproduc-
ible crash. Here is an example.

void
BadCode(void)
{

char* waveData;
CountInt dims[MAX_DIMENSION_SIZES+1];

MemClear(dims, sizeof(dims));
dims[ROWS] = 100;
dims[COLUMNS] = 100;
MDMakeWave(&waveH, "wave0", NULL, dims, NT_FP32, 1);
waveData = (char*)WaveData(waveH);

Chapter 14 — Debugging

224

MemClear(waveData, 100*100*sizeof(float));
}

MDMakeWave returns an error code, but this routine ignores it. If memory is low, MDMakeWave may fail,
return NOMEM as the error code, and leave waveH undefined. The XOP will crash when it calls WaveData
or MemClear. Since this will happen under low memory conditions only, it will happen irreproducibly and
the cause will be hard to find.

The code should be written like this.

int
GoodCode(void)
{

char* waveData;
CountInt dims[MAX_DIMENSION_SIZES+1];
int err;

MemClear(dims, sizeof(dims));
dims[ROWS] = 100;
dims[COLUMNS] = 100;
if (err = MDMakeWave(&waveH, "wave0", NULL, dims, NT_FP32, 1))

return err;
waveData = (char*)WaveData(waveH);
MemClear(waveData, 100*100*sizeof(float));
return 0;

}

Misconceptions About Pointers
People who program infrequently in C sometimes forget that a pointer has to point to something. Here is
an example of a common error.

void
F1(int* ip)
{

*ip = 0;
}

void
F2_BAD(void)
{

int* ip1;

F1(ip1); // Bug
}

The variable ip1 is a pointer to an int so the compiler is happy with this code. At runtime, however, it may
cause a crash. The problem is that ip1 is an uninitialized variable. It contains a random value that could
point to any location in memory. When F2_BAD calls F1, F1 sets the value pointed to by ip1 to zero. This
sets a random 32-bit section of memory to zero. It could be completely asymptomatic or it could cause an
immediate crash or it could cause a crash at a later time. It could cause just about anything. It depends on
what value happens to be stored in ip1.

This example shows two correct ways to call F1.

void
F2_GOOD(void)
{

int int1;
int ip1;

F1(&int1);

Chapter 14 — Debugging

225

ip1 = (int*)WMNewPtr(sizeof(int));
if (ip1 != NULL) {

F1(ip1);
WMDisposePtr((Ptr)ip1);

}
}

In the first call to F1, we pass the address of the local variable int1 which we have allocated on the local
stack. In the second call to F1, we pass the address of a block of memory in the heap that we have allocated
using WMNewPtr.

To avoid problem with pointers, keep in mind that a pointer variable is just a variable that holds the address
of some place in memory and that you must set the value of the pointer to make it point to memory that
you have allocated before you use it. When you use a pointer, give some thought to whether it points to
some space on the local stack (&int1 in F2_GOOD) or to some space in the heap (ip1 in F2_GOOD). This will
help you avoid uninitialized pointers.

Using Memory Blocks That You Have Not Allocated
This is really another case of an uninitialized variable. We make a special case of this because it is a common
one with dire consequences. Here is an example.

int
Test(int v1, int v2)
{

Handle h;
BCInt size;
int err = 0;

size = v1 * v2;
if (size > 0) {

h = WMNewHandle(size);
<Do something with the handle>;

}

WMDisposeHandle(h); // Possible bug
return err;

}

We dispose the handle even in the case where size <= 0. In that case, we will not have allocated the handle.
This may or may not be symptomatic, depending on what value happens to be stored in the handle. If it
happens to be 0 (NULL), then is will be asymptomatic. Otherwise, it is likely to crash.

This problem is usually a lot more subtle than this example illustrates. The function may have all sorts of
conditionals, loops and switches and there may be certain paths of execution in which the handle is not allo-
cated. Often the best solution for this is to use the handle itself as a flag indicating whether or not it has been
allocated. For example:

int
Test(int v1, int v2)
{

Handle h;
BCInt size;
int err = 0;

h = NULL; // Flag that handle has not been allocated
size = v1 * v2;
if (size > 0) {

h = WMNewHandle(size);
<Do something with the handle>;

}

Chapter 14 — Debugging

226

if (h != NULL) // Test flag
WMDisposeHandle(h);

return err;
}

In this particular case, the test for h being NULL is not needed as WMDisposeHandle does nothing if its
parameter is NULL.

Using Memory Blocks That You Have Disposed

Disposing Memory Blocks More Than Once
These problems are similar to the preceding one in that they generally occur in a complex function that has
many potential execution paths. They can also happen if you use global variables. For example:

static Handle gH; // A global handle variable.

void
InitializePart1(void)
{

BCInt size;

size = WMGetHandleSize(gH);// Uses global before it is initialized.
memset(**gH, 0, size);

}

void
InitializePart2(void)
{

gH = WMNewHandle(100); // Initializes global handle.
}

void
XOPMain(void)
{

InitializePart1();
InitializePart2();

}

The problem here is confusion as to which routine is responsible for what. InitializePart1 assumes that gH
has already been allocated but it has not. So it is using a garbage handle with unpredictable results but most
likely a spectacular crash. This illustrates one of the fundamental problems with global variables - it is dif-
ficult to remember when they are valid and what routines have the right to use them.

To avoid this problem, pay special attention to the allocation and deallocation of memory blocks during
coding and proofreading. Make sure that each is allocated once and disposed once. It is good practice to
initialize pointers and handles to NULL and test for NULL before allocating or disposing the memory to
which they refer. After disposing, reset the pointer or handle to NULL.

Failure to Dispose Memory Blocks
This problem is commonly called a “memory leak”. It occurs when you forget to deallocate a block that you
have allocated. This is usually not fatal - it just consumes memory unnecessarily.

One way to avoid this problem is to proofread your code carefully, paying special attention to all memory
allocations.

Make sure that you know, when you receive a handle from Igor, whether the handle belongs to Igor or is
yours to dispose. The XOP Toolkit documentation tells you which of these is the case. For example, when
your external function receives a handle containing a string parameter, the handle belongs to you and you

Chapter 14 — Debugging

227

must dispose it. However, when your external operation receives a string handle, it belongs to Igor and you
must not dispose it. These issues are discussed in Chapter 5 and Chapter 6.

You can check for leaks by writing a loop that calls your XOP over and over while monitoring memory
usage. On MacOS, you can use Activity Monitor or MallocDebug or Xcode’s Leaks performance tool. On
Windows you can use the Task Manager. Third-party leak detection tools are also available.

Keep in mind that some fluctuation in memory allocation is normal. For example, the first time you call
your external operation or function, Igor or your XOP may allocate some memory that needs to be allocated
only once. But if memory usage continues to grow without explanation as you call your XOP over and over
then you may have a leak.

If you find a memory leak you will also discover that it can be very difficult to track down. It is much better
to code carefully in the first place than to spend your time chasing leaks. Coding carefully in this case means
having a clear idea of when memory is allocated and when it is deallocated, avoiding complicated schemes
and carefully proofreading your code after you write it.

Disposing Memory Blocks That Don’t Belong to You
Wave and data folder handles belong to Igor, not you. Thus you should never dispose them directly, i.e.,
using WMDisposeHandle.

String handles that Igor passes to you sometimes remain owned by Igor and sometimes become owned by
you. For example, string handles passed as parameters to your external function are owned by you and you
must dispose them. But string handles passed as parameters to your external operations remain owned by
Igor and you must not dispose them. Consult the XOP Toolkit documentation for the feature or XOPSup-
port routine you are using. It tells you when a handle belongs to Igor and when it is yours to dispose.

A similar situation arises with libraries that you might use. Whenever you receive a pointer or handle from
a library, you must be certain about who is responsible for eventually deleting it. Check the documentation
and understand who owns each memory resource.

Failure to Check Memory Allocations
If your XOP works fine most of the time but crashes under low memory conditions, it is possible that you
have failed to check memory allocations. Here is an example:

void
Test()
{

Handle h;
h = WMNewHandle(10000);
memset(*h, 0, 10000); // Possible bug

}

Under sufficiently low memory, the WMNewHandle call will fail and h will contain 0. The memset function
will attempt to clear the first 10000 bytes starting at address 0 and will cause an access violation exception.
The routine should be rewritten like this:

int
Test()
{

Handle h;
h = WMNewHandle(10000);
if (h == NULL)

return NOMEM;
memset(*h, 0, 10000);
return 0;

}

Chapter 14 — Debugging

228

Now that Test detects low memory, it will no longer cause an exception. However, the routine that called
Test will need to know that an error has occurred and must be able to stop whatever it was doing and return
an error also. In fact, all of the routines in the calling chain that led to Test need to be able to cope with an
error. For a program to be robust, it must be able to gracefully back out of any operation in the event of an
error.

Virtual memory operating systems make it hard to test how your XOP behaves under low memory condi-
tions because memory allocation calls will almost never fail on such systems. In other words, virtual
memory may camaflouge bad programming practices. Good code still always checks memory allocations
and handles failed allocations gracefully.

Dangling Pointers
A dangling pointer is a pointer that used to point to a block of memory in the heap but no longer points to
a valid block because the block has been freed. For example:

int
Bad()
{

char* p = (char*)malloc(100);
if (p == NULL)

return NOMEM;
memset(p, 0, 100);
. . .
free(p); // Free the block pointed to by p
. . .
memset(p, 1, 100); // BUG: p is a dangling pointer
. . .
return 0;

}

In this example the bug is obvious. But in a lengthy and complex function it is often not obvious. And if you
store the pointer in a global and use it from several different functions, it becomes much harder to keep
track of when it is valid.

This bug may cause an immediate crash or may cause a crash later or may be asymptomatic. It depends on
what happens to be at the memory location referenced by p after the block is freed. This can create irrepro-
ducible bugs that are nasty to debug. So it is well worth your while to use good coding practices and to care-
fully proofread your code to avoid this kind of problem in the first place.

A useful technique is to use the pointer itself as a flag to determine if it is valid or not:

int
Good()
{

char* p = (char*)malloc(100);
if (p == NULL)

return NOMEM;
memset(p, 0, 100);
. . .
free(p); // Free the block pointed to by p
p = NULL; // Set to NULL to signify no longer valid
. . .
if (p == NULL) { // Test pointer before using

p = (char*)malloc(100);
if (p == NULL)

return NOMEM;
}
memset(p, 1, 100);

Chapter 14 — Debugging

229

. . .
free(p);
p = NULL; // Set to NULL to signify no longer valid
return 0;

}

The last p=NULL statement is unnecessary because p is a local variable in this example and will cease to exist
when the function returns. In a complex real-world function, it may not be so obvious so it is a good idea
to consistently clear the pointer when the block it references is freed. If the pointer is a global variable, con-
sistently clearing it is even more important.

Handles and Dangling Pointers
As explained under Understanding Handles on page 197, a Handle is a variable that refers to a block of
memory in the heap. Unlike a pointer, which points directly to a block of memory, a Handle points to the
block indirectly. Specifically, it points to a pointer, called a master pointer, to the block of memory.

Igor uses Handles mostly for passing variable-length data, typically strings, to an XOP, and for receiving
variable-length data from it. You use routines described under WM Memory XOPSupport Routines on
page 195 to deal with Handles.

As the following sections explain, you must be careful when using a Handle to avoid using a dangling
pointer to its heap block.

Dereferencing the Handle
To read or write data stored in a block of memory, we need a pointer to it. We obtain the pointer by “deref-
erencing” the handle, using the C * operator.

The Heap

Master pointer for h

Relocatable block of memory

Handle h;
h = WMNewHandle(100);

Chapter 14 — Debugging

230

The pointer p now points to the block in memory and we can access the data using it.

The problem is that, if the memory manager moves the block in the heap in order to satisfy a request to
increase the size of the block, then p will point to a place in the heap where the data no longer resides. This
place may now contain a free block or it may contain the data for a different object. If we use p to read data,
we will read garbage. If we use p to write data, we may trash a different block, causing a problem that will
show up later.

Using a pointer obtained by dereferencing a Handle after the block of data has been moved by the memory
manager is a “dangling pointer” bug.

The memory manager will not move the block of memory capriciously. It will only move the block if you
try to increase its size using WMSetHandleSize either directly or indirectly. Thus you can avoid a dangling
pointer bug by re-dereferencing the handle after resizing it. For example:

Handle h;
char* p;
int err = 0;

h1= WMNewHandle(100);
p = *h; // Dereference h to point to data.
memset(p, 0, 100);
. . .
err = WMSetHandleSize(h, 200); // Increase size of heap block
if (err != 0)

return err;
p = *h; // Re-dereference h to point to data.

<Use p to access data>;

We need to dereference h the second time because the second call to WMSetHandleSize may cause the
memory manager to relocate the block of memory that h refers to.

Dereferencing Wave Handles
A wave handle is like a Handle but you must always use wave-specific XOPSupport routines, described
under Routines for Accessing Waves on page 253, to access it. Never use generic WM memory routines to
access waves.

Here is a less obvious example of a dangling pointer, this time involving a wave handle:

The Heap

Master pointer for h

Relocatable block of memory

Handle h;
h = WMNewHandle(100);

char* p;
p = *h; // DEREFERENCE

Chapter 14 — Debugging

231

waveHndl waveH;
double* dp;
waveH = FetchWave("wave0");
if (waveH == NULL)

return NOWAV;
<Check wave data type and number of points here>
dp = (double*)WaveData(waveH); // Dereference wave handle
. . .
XOPCommand(<some command>); // Call Igor to execute a command
. . .
dp[0] = 0; // Possible BUG

The bug here is that the XOPCommand call to Igor could possibly increase the size of the wave, for example,
by executing Redimension on the wave. If that happened the wave’s heap data could be relocated. Then dp
would be a dangling pointer and the assignment statement using it could cause a crash either immediately
or later.

The problem would be even more difficult to recognize if the XOPCommand call were in a subroutine
called by the code above.

This bug would be asymptomatic if the wave were not resized by the Igor command or if the system was
able to resize the heap block without relocating it because the memory following the heap block happened
to be free. Once in a while, however, relocation would occur, with unpredictable results. In other words,
this bug would cause a highly intermittent and irreproducible symptom and would be nasty to track down.

The solution is to redereference the wave handle after any call that conceivably could resize the wave. To
do this, add another call to WaveData:

XOPCommand(<some command>); // Call Igor to execute a command
dp = (double*)WaveData(waveH); // Re-dereference wave handle
. . .
dp[0] = 0;

Dereferencing a Handle Without Using a Pointer Variable
To avoid having a dangling pointer, it is usually best to dereference the handle and use it in the same state-
ment, if possible. This is most applicable when the handle refers to a block that contains a structure. For
example, instead of:

StructHandle h; // A handle to a block containing some structure.
StructPtr p; // A pointer to a block containing the structure.
h = <Get Handle>;
p = *h; // Dereference.
p->field1 = 123;
p->field2 = 321;

we use:

StructHandle h; // A handle to a block containing some structure.
h = <Get Handle>;
(*h)->field1 = 123;
(*h)->field2 = 321;

The benefit of this is that there is no pointer to dangle.

This technique can not be used with wave handles because you must use the WaveData or MDAccessNu-
mericWaveData function to dereference them.

Recommendations for Using Handles
Now that we know the potential problems in using handles, how can we avoid them? There is no simple
answer to this but here are some guidelines.

Chapter 14 — Debugging

232

Avoid storing a pointer to a relocatable block in a variable. Instead, use the “Dereferencing the Handle
Without Using a Pointer Variable” technique described above.

If you must store a pointer, as in the case of dereferencing a wave handle, re-dereference the pointer after
calling any subroutine that could conceivably resize the block.

Debugging Techniques
This section discusses several methods for debugging an XOP:

• Using a symbolic debugger
• Using XOPNotice (equivalent to a Print statement)
• Using a crash log
• Other debugging tricks
This section does not cover the most effective debugging method: carefully proofreading your code. Before you
spend time debugging, a simple careful reading of your code is the most effective way to find bugs. If that
fails, the techniques discussed here are useful for narrowing down the suspect area of your code.

Debugging a problem that you can reproduce at will is usually not too difficult.

If you have an intermittent problem, it is useful to look for a simple set of steps that you can take to make
the problem happen. If you can make the problem happen, even one time in ten, with a simple set of steps,
this allows you to rule out a lot of potential causes and eventually zero-in on the problem.

Recompiling Your XOP
During the debugging process, you often need to recompile your XOP and try it again. You must quit Igor
to recompile your XOP.

It is generally best to leave your executable XOP file in your project folder during development. Make an
alias (Macintosh) or shortcut (Windows) for your XOP file and drag the alias or shortcut into the Igor Exten-
sions folder to activate your XOP. This saves you the trouble of dragging the XOP file into the Igor Exten-
sions folder each time you recompile the XOP.

Symbolic Debugging
Usually, the debugging method of choice is to use the symbolic debugger that comes with your develop-
ment system. Chapter 3 includes a discussion on using the symbolic debuggers of various development sys-
tems.

Sometimes symbolic debugging does not work because the problem does not manifest itself when running
under the debugger or because the bug crashes the debugger. For these cases, the following debugging
techniques are available.

Debugging Using XOPNotice
The simplest tool for debugging an XOP is the XOPNotice XOPSupport routine. This lets you print a
message in Igor’s history area so that you can examine intermediate results and see how far your XOP is
getting. For example:

char temp[256];
sprintf(temp, "Wave type = %d" CR_STR, WaveType(waveH));
XOPNotice(temp);

NOTE: When Igor passes a message to you, you must get the message, using GetXOPMessage, and get
all of the arguments, using GetXOPItem, before doing any callbacks, including XOPNotice. The
reason for this is that the act of doing the callback overwrites the message and arguments that
Igor is passing to you.

Chapter 14 — Debugging

233

If you call XOPNotice from an Igor preemptive thread, Igor buffers the message and prints it in the history
at a later time from the main thread. This means that messages from different threads may appear in the
history in an unpredictable order.

Other Debugging Tricks
In rare cases, you may want to know how your external operation or function was called.

In Igor Pro 6 or later, a simple way to do this is to invoke Igor's debugger, like this:

XOPSilentCommand("Debugger");

If debugging is enabled (via the Procedure menu), Igor will break into the debugger after executing the
current user-defined function statement – that is, after your external function or operation returns.

If no procedure is running in Igor, this statement does nothing.

You can also invoke Igor's DebuggerOptions operation using XOPSilentCommand.

You can determine the function or chain of functions that called your external function or operation using
the GetIgorCallerInfo or GetIgorRTStackInfo callbacks.

Avoiding Common Pitfalls
This section lists some common problems that are specific to XOP programming.

Check Your Project Setup
See Chapter 3 for instructions on setting up Xcode and Visual C++ projects.

When in doubt, compare each of the settings in your project to the settings of an XOP Toolkit sample project.

If you are getting link errors, check the libraries in your project and compare them to the sample projects.

Get the Message and Parameters from Igor
When Igor passes a message to you, you must get the message, using GetXOPMessage, and get all of the
arguments, using GetXOPItem, before doing any callbacks. The reason for this is that the act of doing the
callback overwrites the message and arguments that Igor is passing to you.

This problem often occurs when you put an XOPNotice call in your XOP for debugging purposes. XOPNo-
tice is a callback and therefore clobbers the arguments that Igor is sending to your XOP. Don’t call XOPNo-
tice or any other callback until you have gotten the message and all parameters from Igor.

Understand the Difference Between a String in a Handle and a C String
When dealing with strings, which are not limited in length, Igor uses a handle to contain the string's char-
acters. Igor passes a string parameter to external operations and functions in a handle. There are other times
when you receive a string in a handle from Igor. A string in a handle contains no null terminator. To find
the number of characters in the string, use WMGetHandleSize.

A C string requires a null terminator. Thus, you can not use a string in a handle as a C string. Instead, you
must copy the contents of the handle to a buffer and then null-terminate the buffer. The XOPSupport func-
tions GetCStringFromHandle and PutCStringInHandle may be of use in cases where you can set an upper
limit to the length of the string. Make sure that your buffer is large enough for the characters in the handle
plus the null terminator.

Another approach is to append a null character to the handle, use it as a C string, and remove the null char-
acter. This is useful for cases where you can not set an upper limit on the length of the string. For example:

Handle h;
int len;

Chapter 14 — Debugging

234

char* p;
int err = 0;

h = <A routine that returns a string in a handle>;
if (h != NULL) {

len = WMGetHandleSize(h);
err = WMSetHandleSize(h, len+1); // Make room for null terminator.
if (err != 0)

return err;
*(*h+len) = 0; // Null terminate the text.
p = *h;
<Use p as a C string>;
WMSetHandleSize(h, len); // Remove null terminator.

}

There are some times when you are required to pass a string in a handle back to Igor. Again, the handle
must contain just the characters in the string, without a null terminator. On the other hand, if you are
passing a C string to Igor, the string must be null-terminated.

Understand Who Owns a Handle
In some cases Igor is the owner of a handle and is responsible for disposing it. In other cases, you own it
and are responsible for disposing it. The XOP Toolkit documentation will tell you which is which.

For example, when your external operation receives a string parameter in a handle, Igor owns it and you
must not dispose of it. By contrast, when your external function receives a string parameter in a handle, you
own it and must dispose of it or pass it back to Igor as a string result in which case Igor receives ownership
of it.

In the case of wave handles and data folder handles, Igor always owns these. You must never dispose of
them or otherwise directly modify them using WM memory XOPSupport routines. Instead, always use the
specific routines for a given type of object. These routines are listed under Routines for Accessing Waves
on page 121 and Routines for Accessing Data Folders on page 300.

Choose Distinctive Names
If your XOP adds an operation or function to Igor you should be careful to choose a name that is unlikely
to conflict with any built-in Igor names or user-defined names. See Choose a Distinctive Operation Name
on page 74 and Choose a Distinctive Function Name on page 102 for details.

Watch Out for Recursion
If your XOP adds a window to Igor, the DoUpdate, XOPCommand, XOPSilentCommand, and SpinProcess
XOPSupport routines can cause Igor to call your XOP while your XOP is already running. See Handling
Recursion on page 67 for details.

Structure Alignment
Make sure that all structures that might be shared with Igor are 2-byte-aligned. See Structure Alignment
on page 208 for details.

Check Your Info.plist File
As explained under XOP Projects in Xcode on page 36, Macintosh XOP is a “package”. That is, it is not a
simple file but rather a folder with a particular structure. To see the contents of the package folder, right-
click it and choose Show Package Contents. You will see something like this:

Chapter 14 — Debugging

235

In order for the XOP to load, the package name (e.g., WaveAccess.xop) must agree with the executable
name (e.g., Contents/MacOS/WaveAccess) which must agree with the value of the CFBundleExecutable
key in the Info.plist file (Contents/Info.plist). If any of these names are incorrect, Igor will be unable to load
the XOP and usually will report “Can't load the executable file in the XOP package”.

The package’s Info.plist file is an XML file that provides information about the package to the operating
system. You can view it in Xcode. One of the keys in the XML file is named CFBundleExecutable. In Xcode
the CFBundleExecutable key is usually shown using its friendly name - “Executable file”.

When the XOP is compiled, Xcode copies the Info.plist file from the project to Contents/Info.plist in the
package. Thus, you should always edit the Info.plist file in the project, not the one in the package.

For a 64-bit XOP, Contents/Info.plist in the package folder is copied from the project’s Info64.plist file. Thus,
you must set the CFBundleExecutable key in the project’s Info64.plist file (e.g., WaveAccess64.xop) to the
appropriate 64-bit name (e.g., WaveAccess64).

Chapter 14 — Debugging

236

Chapter 15
I-15XOPSupport Routines

Table of Contents
About XOPSupport Routines... 238
Routines for Communicating with Igor ... 239
Operation Handler Routines .. 242
Routines for Accessing Waves .. 253
Routines for Accessing Variables.. 291
Routines for Accessing Data Folders... 300
Routines for XOPs with Menu Items... 316
Routines for XOPs that Have Dialogs ... 327
Routines for XOPs that Access Files ... 328
Routines for File-Loader XOPs ... 345
Routines for XOPs with Windows... 349
Routines for XOPs with Text Windows .. 350
Routines for Dealing with Resources .. 351
Routines for XOPs That Use FIFOs .. 353
Numeric Conversion Routines... 354
Routines for Dealing With Object Names ... 358
Color Table Routines ... 364
Command Window .. 366
Routines for Dealing With Igor Procedures .. 370
Multithreading Support Routines... 379
Windows-Specific Routines .. 382
Miscellaneous Routines ... 384
Programming Utilities.. 399
WM Memory Routines .. 410

Chapter 15 — XOPSupport Routines

238

About XOPSupport Routines
The files in the XOPSupport folder define a large number of routines that communicate with Igor or provide
a utility. Most XOPs will use only a small fraction of these routines. These routines are described in detail
in this chapter. The chapter presents the routines in functional groups.

Some routines work only with certain versions of Igor Pro. See Igor/XOP Compatibility Issues on page 69
for further information on compatibility.

Chapter 15 — XOPSupport Routines Communicating with Igor

239

Routines for Communicating with Igor
These routines provide communication between your XOP and Igor.

XOPInit
void
XOPInit(ioRecHandle)
IORecHandle ioRecHandle; // Used to pass info between Igor and XOP

The XOP must call XOPInit from its XOPMain function before calling any other callbacks.

XOPInit stores the ioRecHandle in the global variable XOPRecHandle. All XOPSupport routines that com-
municate with Igor use this global variable. You do not need to access it directly.

Thread Safety

XOPInit is not thread-safe.

SetXOPType
void
SetXOPType(type)
int type; // Defines capabilities and mode of XOP

type is some combination of TRANSIENT, RESIDENT, IDLES, and ADDS_TARGET_WINDOWS which
are bitwise flags defined in XOP.h.

By default, your XOP is resident, meaning that Igor will leave it in memory once it is invoked. Except in
very rare cases, you should leave your XOP as resident.

You can call SetXOPType(TRANSIENT) when your XOP is finished and you want Igor to close it. At one
time this was recommended as a memory saving device. Now, however, memory is more plentiful and
making your XOP transient is likely to cause more trouble than it prevents. XOPs that define external
operations or functions must not be transient because they need to remain memory-resident. Igor Pro 5
and later ignores this call if your XOP adds an external operation or function.

Call SetXOPType(RESIDENT | IDLES) if you want to get periodic IDLE messages from Igor. This is
appropriate, for example, in data acquisition XOPs.

The ADDS_TARGET_WINDOWS bit has to do with XOP target windows. Most XOPs will not need to set
this bit. See Adding XOP Target Windows on page 170 for further information.

See The IORecHandle on page 66 for details.

Thread Safety

SetXOPType is not thread-safe.

SetXOPEntry
void
SetXOPEntry(entryPoint)
ProcPtr entryPoint; // Routine to handle all messages after INIT

Identifies to Igor the routine in your XOP which services all messages after INIT.

You must call this from your XOPMain function, passing it the address of your XOPEntry routine.

Thread Safety

SetXOPEntry is not thread-safe.

Chapter 15 — XOPSupport Routines Communicating with Igor

240

SetXOPResult
void
SetXOPResult(result)
int result; // Result of XOP operation

Sets the result field of your XOP’s IORecHandle.

Igor looks at the result field when your XOP returns. The result is usually an error code in response to the
CMD, FUNCTION or MENUITEM messages from Igor. For other messages from Igor, the result may be
some other value.

Do not use SetXOPResult to return errors from a direct external operation or function. For a direct opera-
tion or function, the CMD or FUNCTION message is not sent to your XOPEntry routine. “Direct” means
that your function is called directly from Igor, not through your XOPEntry routine. Such functions return
result codes as the function result.

As of Igor Pro 5, most new external operations and functions will be direct.

See XOP Errors on page 61 for details on error codes.

Thread Safety

SetXOPResult is not thread-safe.

GetXOPResult
XOPIORecResult
GetXOPResult(void)

Returns the contents of the result field of your XOP’s IORecHandle.

This is used by XOPSupport routines to get the result of a callback to Igor. You should not call it yourself.

Thread Safety

GetXOPResult is not thread-safe.

SetXOPMessage
void
SetXOPMessage(message)
int message; // Message to pass to Igor during callback

Sets the message field of your XOP’s IORecHandle.

This is used by XOPSupport routines during callbacks to Igor. You should not call it yourself.

Thread Safety

SetXOPMessage is not thread-safe.

GetXOPMessage
int
GetXOPMessage(void)

Returns the message field of your XOP’s IORecHandle.

The message field contains the message that Igor is sending to your XOP. Your XOPEntry routine must
call GetXOPMessage to find out what message Igor is sending.

NOTE: The message field is reused each time Igor calls your XOPEntry routine with a message or you
call Igor back. Therefore, you must call GetXOPMessage before you do any callbacks to Igor. An
easy mistake to make is to do an XOPNotice callback for debugging before you get the message.
See Messages, Arguments and Results on page 67 for details.

Chapter 15 — XOPSupport Routines Communicating with Igor

241

Thread Safety

GetXOPMessage is not thread-safe.

GetXOPStatus
int
GetXOPStatus(void)

NOTE: This routine is obsolete and may be removed in a future version of the XOP Toolkit.

Returns the status field of your XOP’s IORecHandle.

This is infrequently-used. It can tell you if Igor is in the background (not the active application).

See the discussion of status field under The IORecHandle on page 66.

Thread Safety

GetXOPStatus is not thread-safe.

GetXOPItem
XOPIORecParam
GetXOPItem(itemNumber)
int itemNumber;

Returns an item from the item list of XOP’s IORec.

itemNumber is zero-based.

If itemNumber is greater than the number of items passed by Igor less one, GetXOPItem returns zero.

This is used by an XOP to get arguments associated with a message from Igor.

NOTE: The item list is reused each time Igor calls your XOPEntry routine with a message or you call Igor
back. Therefore, if you need to get an item in response to a message from Igor, get it before you do
any callbacks to Igor. An easy mistake to make is to do an XOPNotice callback for debugging
before you get all of the arguments. See Messages, Arguments and Results on page 67 for details.

Thread Safety

GetXOPItem is not thread-safe.

Chapter 15 — XOPSupport Routines Operation Handler

242

Operation Handler Routines
XOPs implement external operations using Igor’s Operation Handler as described in Chapter 5, Adding
Operations. This section documents XOPSupport routines used in conjunction with Operation Handler.

RegisterOperation
int
RegisterOperation(cmdTemplate, runtimeNumVarList, runtimeStrVarList,

runtimeParamStructSize, runtimeAddress, options)
const char* cmdTemplate; // Specifies operation’s syntax
const char* runtimeNumVarList; // List of numeric output variables
const char* runtimeStrVarList; // List of string output variables
int runtimeParamStructSize; // Size of runtime parameter structure
void* runtimeAddress; // Address of operation Execute routine
int options; // Flags

Registers an XOP operation with Operation Handler.

cmdTemplate specifies the operation name and syntax.

runtimeNumVarList is a semicolon-separated list of numeric variables that the operation sets at runtime
or NULL if it sets no numeric variables.

runtimeStrVarList is a semicolon-separated list of string variables that the operation sets at runtime or
NULL if it sets no string variables.

runtimeParamStructSize is the size of the runtime parameter structure for the operation.

runtimeAddress is the address of the ExecuteOperation function for this operation.

The options parameter is kOperationIsThreadSafe for a thread-safe operation or 0 otherwise.

Returns 0 or an error code.

Example

char* cmdTemplate; // From SimpleLoadWaveOperation.cpp
char* runtimeNumVarList;
char* runtimeStrVarList;

cmdTemplate = "SimpleLoadWave /A[=name:baseName] /D /I /N[=name:baseName] /O
/P=name:pathName /Q /W [string:fileParamStr]";

runtimeNumVarList = "V_flag;";
runtimeStrVarList = "S_path;S_fileName;S_waveNames;";
return RegisterOperation(cmdTemplate, runtimeNumVarList, runtimeStrVarList,

sizeof(SimpleLoadWaveRuntimeParams), (void*)ExecuteSimpleLoadWave, 0);

Thread Safety

RegisterOperation is not thread-safe.

SetOperationNumVar
int
SetOperationNumVar(varName, dval)
const char* varName; // C string containing name of variable
double dval; // Value to store in variable

SetOperationNumVar is used only to implement an operation using Operation Handler. It is used to store
a value in an external operation output numeric variable such as V_flag.

varName must be the name of a numeric variable that you specified via the runtimeNumVarList parame-
ter to RegisterOperation.

Chapter 15 — XOPSupport Routines Operation Handler

243

dval is the value to be stored in the named variable.

If your operation was invoked from the command line, SetOperationNumVar sets a global variable in the
current data folder, creating it if necessary.

If your operation was invoked from a macro, SetOperationNumVar sets a macro local variable.

If your operation was invoked from a user function, SetOperationNumVar sets a function local variable.

Returns 0 or an error code.

Example

SetOperationNumVar("V_VDT", number); // From VDTOperations.cpp

Thread Safety

SetOperationNumVar is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created
by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page
178 for details.

SetOperationStrVar
int
SetOperationStrVar(varName, str)
const char* varName; // C string containing name of variable
const char* str; // Value to store in variable

SetOperationStrVar is used only to implement an operation using Operation Handler. It is used to store a
value in an external operation output string variable such as S_fileName.

varName must be the name of a string variable that you specified via the runtimeStrVarList parameter to
RegisterOperation.

str is a null-terminated C string and points to the value to be stored in the named variable.

Use SetOperationStrVar2 if your data is binary (may contain bytes whose value is zero other than the null
terminator).

If your operation was invoked from the command line, SetOperationStrVar sets a global variable in the
current data folder, creating it if necessary.

If your operation was invoked from a macro, SetOperationStrVar sets a macro local variable.

If your operation was invoked from a user function, SetOperationStrVar sets a local variable.

Returns 0 or an error code.

Thread Safety

SetOperationStrVar is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

SetOperationStrVar2
int
SetOperationStrVar2(varName, data, dataLength)
const char* varName; // C string containing name of variable
const char* data; // Value to store in variable
int dataLength; // Length of data in bytes

SetOperationStrVar2 is just like SetOperationStrVar except for the dataLength parameter. Use
SetOperationStrVar2 if the data is binary and may contain null bytes (bytes whose value is zero).

Added for Igor Pro 6.10B02. If you call this with an earlier version of Igor, it will return IGOR_OBSOLETE
and do nothing.

Chapter 15 — XOPSupport Routines Operation Handler

244

Thread Safety

SetOperationStrVar2 is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

VarNameToDataType
int
VarNameToDataType(varName, dataTypePtr)
const char* varName; // Pointer to varName field in runtime param struct
int* dataTypePtr; // Output: Data type of variable

This is used only to implement an operation using Operation Handler. It must be called only from your
ExecuteOperation function.

This function is used only for operations which take the name of a variable as a parameter and then get or
set the value of that variable. An example is Igor's Open operation which takes a "refNum" parameter and
stores a value in the referenced variable.

After calling VarNameToDataType you would then call FetchNumericDataUsingVarName, StoreNu-
mericDataUsingVarName, FetchStringDataUsingVarName or StoreStringDataUsingVarName.

varName must be a pointer to a varName field in your operation's runtime parameter structure when a
pointer to this structure has been passed by Igor to your ExecuteOperation function. Igor relies on the var-
Name field being set correctly (i.e., as Igor set it before calling your ExecuteOperation function). If your
operation was called from a user function, the varName field will actually contain binary data used by
Igor to access function local variables, NVARs and SVARs.

On output, *dataTypePtr will contain one of the following:

0 Means varName refers to a string variable or SVAR.

NT_FP64 Means varName refers to a scalar local variable or NVAR.

NT_FP64 | NT_CMPLX Means varName refers to a complex local variable or NVAR.

Returns 0 or an error code.

See VarName Parameters on page 85 for further information.

Example

See VDTReadBinary.cpp.

Thread Safety

VarNameToDataType is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created
by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page
178 for details.

FetchNumericDataUsingVarName
int
FetchNumericDataUsingVarName(varName, realPartPtr, imagPartPtr)
const char* varName; // Pointer to varName field in runtime param struct
double* realPartPtr;
double* imagPartPtr;

Retrieves data from a numeric variable which may be local or global.

This is used only to implement an operation using Operation Handler. It must be called only from your
ExecuteOperation function.

This function is used only for operations which take the name of a numeric variable as a parameter and
then get the value of that variable.

Chapter 15 — XOPSupport Routines Operation Handler

245

varName must be a pointer to a varName field in your operation's runtime parameter structure when a
pointer to this structure has been passed by Igor to your ExecuteOperation function. Igor relies on the var-
Name field being set correctly (i.e., as Igor set it before calling your ExecuteOperation function). If your
operation was called from a user function, the varName field will actually contain binary data used by
Igor to access function local variables, NVARs and SVARs.

You should call this routine only after you have determined that varName refers to a numeric variable or
NVAR. This will be the case if VarNameToDataType returns a non-zero number as the data type.

Returns 0 or an error code.

See VarName Parameters on page 85 for further information.

Added for Igor Pro 6.10. If you call this with an earlier version of Igor, it will return IGOR_OBSOLETE and
do nothing.

Thread Safety

FetchNumericDataUsingVarName is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a
thread created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Call-
backs on page 178 for details.

StoreNumericDataUsingVarName
int
StoreNumericDataUsingVarName(varName, realPart, imagPart)
const char* varName; // Pointer to varName field in runtime param struct
double realPart;
double imagPart;

Stores data in a numeric variable which may be local or global.

This is used only to implement an operation using Operation Handler. It must be called only from your
ExecuteOperation function.

This function is used only for operations which take the name of a numeric variable as a parameter and
then set the value of that variable. An example is Igor's Open operation which takes a "refNum" parame-
ter.

varName must be a pointer to a varName field in your operation's runtime parameter structure when a
pointer to this structure has been passed by Igor to your ExecuteOperation function. Igor relies on the var-
Name field being set correctly (i.e., as Igor set it before calling your ExecuteOperation function). If your
operation was called from a user function, the varName field will actually contain binary data used by
Igor to access function local variables, NVARs and SVARs.

You should call this routine only after you have determined that varName refers to a numeric variable or
NVAR. This will be the case if VarNameToDataType returns a non-zero number as the data type.

Returns 0 or an error code.

See VarName Parameters on page 85 for further information.

Example

See VDTReadBinary.cpp.

Thread Safety

StoreNumericDataUsingVarName is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a
thread created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Call-
backs on page 178 for details.

Chapter 15 — XOPSupport Routines Operation Handler

246

FetchStringDataUsingVarName
int
FetchStringDataUsingVarName(varName, hPtr)
const char* varName; // Pointer to varName field in runtime param struct
Handle* hPtr; // Receives new handle containing string data

Retrieves data from a string variable which may be local or global.

Returns the string data via a new handle and stores the handle in *hPtr. On return, if *hPtr is not NULL
then you own the new handle and must dispose it.

This is used only to implement an operation using Operation Handler. It must be called only from your
ExecuteOperation function.

This function is used only for operations which take the name of a string variable as a parameter and then
set the value of that variable.

varName must be a pointer to a varName field in your operation's runtime parameter structure when a
pointer to this structure has been passed by Igor to your ExecuteOperation function. Igor relies on the var-
Name field being set correctly (i.e., as Igor set it before calling your ExecuteOperation function). If your
operation was called from a user function, the varName field will actually contain binary data used by
Igor to access function local variables, NVARs and SVARs.

You should call this routine only after you have determined that varName refers to a string variable or
SVAR. This will be the case if VarNameToDataType returns a zero as the data type.

Returns 0 or an error code.

See VarName Parameters on page 85 for further information.

Added for Igor Pro 6.10. If you call this with an earlier version of Igor, it will return IGOR_OBSOLETE and
do nothing.

Thread Safety

FetchStringDataUsingVarName is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread
created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks
on page 178 for details.

StoreStringDataUsingVarName
int
StoreStringDataUsingVarName(varName, buf, len)
const char* varName; // Pointer to varName field in runtime param struct
const char* buf; // String contents
BCInt len; // Length of string

Stores data in a string variable which may be local or global.

This is used only to implement an operation using Operation Handler. It must be called only from your
ExecuteOperation function.

This function is used only for operations which take the name of a string variable as a parameter and then
set the value of that variable. An example is Igor's FReadLine operation which takes a "stringVarName"
parameter.

varName must be a pointer to a varName field in your operation's runtime parameter structure when a
pointer to this structure has been passed by Igor to your ExecuteOperation function. Igor relies on the var-
Name field being set correctly (i.e., as Igor set it before calling your ExecuteOperation function). If your
operation was called from a user function, the varName field will actually contain binary data used by
Igor to access function local variables, NVARs and SVARs.

You should call this routine only after you have determined that varName refers to a string variable or
SVAR. This will be the case if VarNameToDataType returns a zero as the data type.

Chapter 15 — XOPSupport Routines Operation Handler

247

Returns 0 or an error code.

See VarName Parameters on page 85 for further information.

Example

See VDTReadBinary.cpp.

Thread Safety

StoreStringDataUsingVarName is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread
created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks
on page 178 for details.

SetOperationWaveRef
int
SetOperationWaveRef(waveH, waveRefIndentifier)
waveHndl waveH; // The destination wave you created.
int waveRefIndentifier; // Tells Igor where local wave ref is stored.

Sets a wave reference in an Igor user-defined function to refer to a destination wave that your operation
created.

This is used only to implement an operation using Igor's Operation Handler. It must be called only from
your ExecuteOperation function.

This function is used only for operations which use a DataFolderAndName parameter (see DataFol-
derAndName Parameters on page 86) and declare it as a destination wave parameter using this kind of
syntax in the operation template:

SampleOp DataFolderAndName:{dest,real} // or complex or text

When you use this syntax and your operation is compiled in a user-defined function, the Igor function
compiler may automatically create a wave reference in the function for the destination wave. However the
automatically created wave reference will be NULL until you set it by calling SetOperationWaveRef.

The SetOperationWaveRef callback sets the automatically created wave reference to refer to a specific
wave, namely the wave that you created in response to the DataFolderAndName parameter. You must call
it after successfully creating the destination wave.

Igor will create an automatic wave reference only if the operation is called from a user-defined function
and only if the destination wave is specified using a simple name (e.g., wave0 but not root:wave0 or $dest-
Wave). You have no way to know whether an automatic wave reference was created so you must call Set-
OperationWaveRef in all cases. SetOperationWaveRef will do nothing if no automatic wave reference
exists.

The waveRefIndentifier parameter allows Igor to determine where in memory the wave reference is
stored. This information is passed to your XOP in the "ParamSet" field of your ExecuteOperation structure.
Your code should look something like this:

// In your RuntimeParams structure
DataFolderAndName dest;
int destParamsSet[1];

// In your ExecuteOperation function
waveH = NULL;
err = MDMakeWave(&waveH,p->dest.name,p->dest.dfH,dimSizes,type,overwrite);
if (waveH != NULL) {

int waveRefIndentifier = p->destParamsSet[0];
err = SetOperationWaveRef(waveH, waveRefIndentifier);

}

See DataFolderAndName Destination Wave Example on page 87 for a more complete example of using a
DataFolderAndName parameter for an operation that creates a destination wave.

Chapter 15 — XOPSupport Routines Operation Handler

248

Returns 0 or an error code.

Thread Safety

StoreStringDataUsingVarName is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread
created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks
on page 178 for details.

GetOperationWaveRef
int
GetOperationWaveRef(dfH, name, waveRefIdentifier, destWaveHPtr)
DataFolderHandle dfH; // dfH field from DataFolderAndName structure
const char* name; // name field from DataFolderAndName structure
int waveRefIdentifier; // Value from destParamsSet field
waveHndl destWaveHPtr; // Output wave reference is stored here

Returns via destWaveHPtr a reference to the destination wave if it was specified using a wave reference or
NULL otherwise.

NOTE: Except in rare cases, you should not call this function. Use GetOperationDestWave instead.

The GetOperationWaveRef routine supports the /DEST flag for an operation.

If the destination wave was specified by passing a wave reference to /DEST, this routine returns the wave
handle via destWaveHPtr.

If the destination wave was not specified via a wave reference, this routine returns NULL via dest-
WaveHPtr and you must create the destination wave yourself.

The rule is: If a simple name or the name of a structure wave field are passed to /DEST, the specified wave
is returned via destWaveHPtr. If $<string> or a path are passed to /DEST, NULL is returned.

Here are typical cases where a wave reference specifies the destination wave:

SampleOp /DEST=jack
Wave w = root:jack
SampleOp /DEST=w

In these cases, GetOperationWaveRef would return a handle to wave jack via destWaveHPtr. In the first
command, Operation Handler creates an automatic wave reference in the calling user-defined function if
you are running Igor Pro 6.20 or later.

Here are typical cases where a wave reference is not used to specify the destination wave:

String name = "jack"
SampleOp /DEST=$name // Dest specified by $<string>
SampleOp /DEST=root:jack // Dest specified by path
SampleOp /DEST=:jack // Dest specified by path

In these cases, there is no wave reference for the destination wave and GetOperationWaveRef would
return NULL via destWaveHPtr.

The user can specify that a wave reference be created by appending /WAVE after the /DEST flag, like this:

String name = "jack"

SampleOp /DEST=$name/WAVE=wDest
SampleOp /DEST=root:jack/WAVE=wDest
SampleOp /DEST=:jack/WAVE=wDest

"/WAVE=wDest" is an "inline WAVE reference statement". An inline WAVE reference does not determine
which wave is the destination wave but merely provides a place for the operation to return a reference to
the destination wave.

Chapter 15 — XOPSupport Routines Operation Handler

249

If a wave reference for the destination wave exists, it must be set to refer to the destination wave once that
wave has been determined or created. You set the wave reference by calling SetOperationWaveRef later
in the process.

See GetOperationDestWave for an example.

Added for Igor Pro 6.20. If you call this with an earlier version of Igor, it will return IGOR_OBSOLETE and
do nothing.

Thread Safety

GetOperationWaveRef is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created
by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page
178 for details.

GetOperationDestWave
int
GetOperationDestWave(dfH, name, destWaveRefIdentifier, options,

dimensionSizes, dataType, destWaveHPtr, destWaveCreatedPtr)
DataFolderHandle dfH; // dfH field from DataFolderAndName structure
const char* name; // name field from DataFolderAndName structure
int destWaveRefIdentifier; // Value from destParamsSet field
int options; // Bit flags defined below
CountInt dimensionSizes[]; // Array of desired dest wave dimension sizes
int dataType; // Desired dest wave data type
waveHndl destWaveHPtr; // Output: Wave reference is stored here
int* destWaveCreatedPtr; // Output: Set to 1 if dest wave was created

Returns via destWaveHPtr a reference to the destination wave specified by the /DEST flag in an operation.
GetOperationDestWave optionally creates the wave if it does not already exist. If the wave does exist, Get-
OperationDestWave changes it as specified by the options parameter.

GetOperationDestWave is typically called to support the /DEST flag for an operation. It determines which
wave is to be the destination wave, optionally creates it if it does not already exist, optionally overwrites it
or sets its dimensions and data type if it does already exist, and returns the wave handle via dest-
WaveHPtr.

In Igor Pro 6.20 or later, GetOperationDestWave respects wave references passed as the destination wave
when called from a user-defined function.

If GetOperationDestWave succeeds, it returns 0 as the function result and a non-NULL wave handle via
destWaveHPtr. If it fails it returns a non-zero error code as the function result and NULL via dest-
WaveHPtr. Possible errors include NOMEM, NO_TEXTNUMERIC_WAVE_OVERWRITE, and
NAME_WAV_CONFLICT (the destination wave already exists and overwrite is not specified).

destWaveRefIdentifier is used by GetOperationDestWave to access a user-defined function local wave ref-
erence for the destination wave, if such a wave reference was specified with the /DEST flag. The example
below shows how to obtain destWaveRefIdentifier from the operation's runtime parameter structure.

The options parameter is a bitwise combination of the following flags:

Flag Description

kOpDestWaveOverwriteOK Permits returning a pre-existing wave.

If kOpDestWaveOverwriteOK is omitted and the wave
specified by /DEST already exists, GetOperationDestWave
returns an error.

kOpDestWaveChangeExistingWave If the destination wave already exists its dimensions and data
type are changed based on the dimensionSizes and dataType
parameters but other properties (units, dimension scaling,
dimension labels, wave note) are left unchanged.

Chapter 15 — XOPSupport Routines Operation Handler

250

The choice between kOpDestWaveChangeExistingWave and kOpDestWaveOverwriteExistingWave must
be made on a case-by-case basis. If you are converting an existing operation to use GetOperationDestWave
you should choose between kOpDestWaveChangeExistingWave and kOpDestWaveOverwriteExisting-
Wave so that the behavior of your operation will not change. For most new applications, kOpDestWaveO-
verwriteExistingWave is preferrable since it makes the output of the operation independent of pre-existing
conditions.

If kOpDestWaveChangeExistingWave and kOpDestWaveOverwriteExistingWave are both cleared, then
GetOperationDestWave will not change the dimensions and data type of a pre-existing destination wave.
In this case, it is up to you to make sure that the dimensions and data type of the returned wave are appro-
priate and change them if necessary.

If kOpDestWaveChangeExistingWave and kOpDestWaveOverwriteExistingWave are both set, this is a
programmer error and an error is returned.

If your operation has a /FREE flag, signifying that the destination wave should be a free wave, set the kOp-
DestWaveMakeFreeWave bit. If kOpDestWaveMakeFreeWave is set, GetOperationDestWave makes a
new free wave as the destination wave and returns it via destWaveHPtr and all other option flag are
ignored. This requires Igor Pro 6.20 or later. See Free Waves on page 135 for further details on free waves.

If kOpDestWaveMakeFreeWave is not set, this procedure is followed: If the destination wave was speci-
fied via a wave reference by the calling user-defined function, GetOperationDestWave returns that wave
via destWaveHPtr. Otherwise it looks for an existing wave specified by dfH and name. If there is an exist-
ing wave, GetOperationDestWave reuses it. Otherwise it creates a new wave using dfH and name. The
rules for obtaining the destination wave via a wave reference are explained in the documentation for Get-
OperationWaveRef.

If kOpDestWaveMustAlreadyExist is set, then, if the destination wave does not already exist, the NOWAV
("expected wave name") error is returned. You may want to test for NOWAV and return a more specific
error code. If you set kOpDestWaveMustAlreadyExist you must also set kOpDestWaveOverwriteOK
because if kOpDestWaveOverwriteOK is cleared GetOperationDestWave returns an error if the destina-
tion wave exists.

If you want to return an existing wave only without overwriting or changing it, pass (kOpDestWaveMus-
tAlreadyExist | kOpDestWaveOverwriteOK) and leave all other bits cleared.

dimensionSizes is an array of wave dimension sizes as shown in the example below. If kOpDestWaveMus-
tAlreadyExist is set and kOpDestWaveChangeExistingWave, kOpDestWaveOverwriteExistingWave and
kOpDestWaveMakeFreeWave are cleared then dimensionSizes is not used and you can pass NULL.

dataType is normally a standard Igor data type (e.g., NT_FP64, (NT_FP32 | NT_CMPLX),
TEXT_WAVE_TYPE). However, if you pass NULL for dimensionSizes, you must pass -1 for dataType
indicating that you do not want to change the data type.

If destWaveCreatedPtr is not NULL, *destWaveCreatedPtr is set to 1 if GetOperationDestWave created a
new wave or to 0 if GetOperationDestWave reused an existing wave.

In the following example, the operation is defined by this Operation Handler syntax:

kOpDestWaveOverwriteExistingWave If the destination wave already exists it is overwritten using the
specified dimension sizes and data type. The overwritten wave's
properties (units, dimension scaling, dimension labels, wave
note) are set to default values. Its data is left as is and you should
treat it as uninitialized.

kOpDestWaveMakeFreeWave Destination wave will be a new free wave.

Requires Igor Pro 6.20 or later.

kOpDestWaveMustAlreadyExist Destination wave must already exist. Otherwise an error is
returned.

Flag Description

Chapter 15 — XOPSupport Routines Operation Handler

251

SampleOp /DEST=DataFolderAndName:{dest,real}

This results in an operation runtime parameter structure containing:

int DESTFlagEncountered;
DataFolderAndName dest;
int DESTFlagParamsSet[1];

Here is typical usage for an operation with a /DEST flag. In this example, p is a pointer to the operation
runtime parameter structure:

waveHndl destWaveH; // Destination wave handle.
int destWaveRefIdentifier;
char destWaveName[MAX_OBJ_NAME+1];
DataFolderHandle dfH;
int dataType;
CountInt dimensionSizes[MAX_DIMENSIONS+1];
int destWaveCreated;
int options;
int err;

destWaveH = NULL;
destWaveRefIdentifier = 0;

strcpy(destWaveName, "W_SampleOp"); // Default dest wave name
dfH = NULL; // Default is current data folder
dataType = NT_FP64;
MemClear(dimensionSizes, sizeof(dimensionSizes));
dimensionSizes[ROWS] = 100;
if (p->DESTFlagEncountered) {

strcpy(destWaveName, p->dest.name);
dfH = p->dest.dfH;
// If a wave reference was used, p->destParamsSet[0] contains info that
// GetOperationDestWave uses to find the address of the wave reference.
destWaveRefIdentifier = p->DESTFlagParamsSet[0];

}

options = kOpDestWaveOverwriteOK | kOpDestWaveOverwriteExistingWave;
err = GetOperationDestWave(dfH, destWaveName, destWaveRefIdentifier,

options, dimensionSizes, dataType, &destWaveH, &destWaveCreated);
if (err != 0)

return err;

<Store output data in dest wave>
WaveHandleModified(destWaveH);

// Set wave reference to refer to destination wave.
if (destWaveRefIdentifier != 0)

SetOperationWaveRef(destWaveH, destWaveRefIdentifier);

The call to SetOperationWaveRef sets the automatic destination wave reference created by Operation Han-
dler when you use the DataFolderAndName syntax shown above in your operation template.

GetOperationDestWave was added for Igor Pro 6.20. If you call this with an earlier version of Igor, it will
still return a destination wave but without recognizing any wave referenced passed via the /DEST flag. For
example:

Wave w = root:wave0
SampleOp /O /DEST=w

Chapter 15 — XOPSupport Routines Operation Handler

252

In Igor Pro 6.20 and later, this overwrites a wave named wave0 in the root data folder. However, prior to
Igor Pro 6.20, it creates a wave named w in the current data folder. This is how destination waves worked
in XOPs prior to Igor Pro 6.20.

If kOpDestWaveMakeFreeWave is set in the options parameter and you are running with a version of Igor
prior to 6.20, GetOperationDestWave returns IGOR_OBSOLETE.

Thread Safety

GetOperationDestWave is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created
by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page
178 for details.

Chapter 15 — XOPSupport Routines Waves

253

Routines for Accessing Waves
These routines allow you to create, change, kill or access information about waves. Some require that you
pass the wave’s name. Others require that you pass a handle to the wave’s data structure (a waveHndl).
You receive this handle as a parameter to an external operation or function or get it using the FetchWave,
MakeWave, MDMakeWave, GetDataFolderObject or FetchWaveFromDataFolder callbacks.

So that your XOP will work with current and future versions of Igor, it must not access the contents of wave
handles directly but instead must use the routines in this section. Also, wave handles belong to Igor and
your XOP must not delete or directly modify them.

Igor Pro 3.0 added multi-dimensional waves, up to four dimensions, as well as waves containing text rather
than numbers. To support this, we added a number of XOPSupport routines to the XOP Toolkit. The added
routines have names that start with "MD" (e.g., MDMakeWave). These routines have several purposes:

• To get and set multi-dimensional wave properties such as units, scaling and dimension labels.
• To get and set multi-dimensional wave data values, text as well as numeric.
• To provide faster access to wave information than previous XOPSupport routines provided.

All of the old wave access routines will continue to work with all supported versions of Igor. However, for
new programming, we recommend that you use the new wave access routines.

The symbols ROWS, COLUMNS, LAYERS and CHUNKS are defined in IgorXOP.h as 0, 1, 2 and 3 respec-
tively. These symbols are often used to index into an array of dimension sizes or wave element indices.

All of the wave access routines are defined in the file XOPWaveAccess.c.

The WaveAccess sample XOP contains examples that illustrate most of the wave access techniques.

In the following list of wave access routines, the older routines are listed first, followed by the newer, multi-
dimensional-aware routines.

MakeWave
int
MakeWave(waveHandlePtr, waveName, numPoints, type, overwrite)
waveHndl* waveHandlePtr; // Place to put waveHndl for new wave
char* waveName; // C string containing name of Igor wave
CountInt numPoints; // Desired length of wave
int type; // Numeric type (e.g., NT_FP32, NT_FP64)
int overwrite; // If non-zero, overwrites existing wave

Creates a 1D wave with the specified name, number of points, and numeric type.

NOTE: For historical reasons, if numPoints is zero, MakeWave creates a 128-point wave. To create a zero-
point wave, use MDMakeWave.

If successful, it returns 0 as the function result and puts a waveHndl for the new wave in *waveHandlePtr.

If unsuccessful, it returns an Igor error code as the function result.

Prior to XOP Toolkit 6, if the numPoints parameter was zero, the wave was created with 128 points. This
behavior was a relic of a time when Igor required that a wave contain at least two points (prior to Igor Pro
3.0). Now when numPoints is zero, a zero-point wave is created.

type is one of the following:

Type Wave Element Contains

NT_FP32 32 bit floating-point

NT_FP64 64 bit floating-point

Chapter 15 — XOPSupport Routines Waves

254

To make a complex numeric wave, OR with NT_CMPLX, for example (NT_FP64 | NT_CMPLX). Any
numeric wave can be complex. Text waves, wave reference waves and data folder reference waves can not
be complex.

Igor can not overwrite a text wave with a numeric wave or vice-versa and you will receive an error if you
attempt to do this.

It is recommended that you use the integer types only to store raw data that you have acquired and when
economical storage is a high priority, such as when storing images or other large data sets. The reason for
this is that Igor needs to translate integer wave data into floating point for display, analysis or just about
any other purpose.

NOTE: The block of memory referenced by the wave handle can be relocated if you increase the size of
an existing wave. To avoid dangling pointer bugs, see the discussion of dangling pointers under
The Direct Access Method on page 126.

Thread Safety

MakeWave is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under Waves
Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but not
from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for details.

ChangeWave
int
ChangeWave(waveHandle, numPoints, type)
waveHndl waveHandle; // WaveHndl for wave to change
CountInt numPoints; // Desired new length of wave
int type; // Data type (e.g., NT_FP32, NT_FP64)

Changes the 1D wave to the desired length and data type.

Igor can not change a text wave into a numeric wave or vice-versa and you will receive an error if you
attempt to do this.

The function result is 0 if successful or an Igor error code otherwise.

NOTE: The block of memory referenced by the wave handle can be relocated if you increase the size of
the wave. To avoid dangling pointer bugs, see the discussion of dangling pointers under The
Direct Access Method on page 126.

NT_I8 8 bit signed integer

NT_I16 16 bit signed integer

NT_I32 32 bit signed integer

NT_I64 64 bit signed integer - requires Igor Pro 7.00 or later

NT_I8 | NT_UNSIGNED 8 bit unsigned integer

NT_I16 | NT_UNSIGNED 16 bit unsigned integer

NT_I32 | NT_UNSIGNED 32 bit unsigned integer

NT_I64 | NT_UNSIGNED 64 bit unsigned integer - requires Igor Pro 7.00 or later

TEXT_WAVE_TYPE Text (string data)

WAVE_TYPE Wave handle or NULL - requires Igor Pro 6.10 or later

DATAFOLDER_TYPE Data folder handle or NULL -requires Igor Pro 6.10 or later

Type Wave Element Contains

Chapter 15 — XOPSupport Routines Waves

255

Thread Safety

ChangeWave is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under Waves
Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but not
from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for details.

KillWave
int
KillWave(waveHandle)
waveHndl waveHandle; // waveHndl for wave to kill

Kills the specified wave.

The function result is 0 if successful or an Igor error code otherwise.

A wave is in use and can’t be killed if it is used in a graph, table or dependency formula. An XOP can also
prevent a wave used in the main Igor thread from being killed by responding to the OBJINUSE message.

For information on a related technique useful in preemptive Igor threads, see Wave Reference Counting
on page 131.

Thread Safety

KillWave is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under Waves
Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but not
from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for details.

FetchWave
waveHndl
FetchWave(waveName)
char* waveName; // C string containing name of Igor wave

Returns a handle to the data structure for the named wave in the current data folder or NULL if the wave
does not exist.

Be sure to check the wave’s type, using WaveType, and return an error if you receive a wave as a parame-
ter whose type you can’t handle. You may also want to check the dimensionality of the wave using
MDGetWaveDimensions.

To support data folders, modern XOPs must use FetchWaveFromDataFolder instead of FetchWave.

Thread Safety

FetchWave is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

FetchWaveFromDataFolder
waveHndl
FetchWaveFromDataFolder(dataFolderH, waveName)
DataFolderHandle dataFolderH;
char* waveName;

FetchWaveFromDataFolder returns a handle to the specified wave in the specified data folder or NULL if
the wave does not exist.

If dataFolderH is NULL, it uses the current data folder.

Be sure to check the wave’s type, using WaveType, and return an error if you receive a wave as a parame-
ter whose type you can’t handle. You may also want to check the dimensionality of the wave using
MDGetWaveDimensions.

Chapter 15 — XOPSupport Routines Waves

256

Thread Safety

FetchWaveFromDataFolder is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread cre-
ated by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on
page 178 for details.

WaveType
int
WaveType(waveHandle)
waveHndl waveHandle; // Handle to wave's data structure

Returns the wave’s data type.

The returned value is one of the following except that, if the wave is complex, the NT_CMPLX bit will be
set:

NOTE: Future versions of Igor may support other data types. You should make sure that you can handle
the type of wave you receive as a parameter in an operation or function and generate an error if
you receive a wave type you can’t handle.

Thread Safety

WaveType is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under Waves
Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but not
from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for details.

WavePoints
CountInt
WavePoints(waveHandle)
waveHndl waveHandle; // Handle to wave's data structure

Returns the number of points in the wave.

If the wave is multi-dimensional, this is the number of elements in all dimensions. To find the number of
elements in each dimension separately, use MDGetWaveDimensions.

Type Wave Element Contains

NT_FP32 32 bit floating-point

NT_FP64 64 bit floating-point

NT_I8 8 bit signed integer

NT_I16 16 bit signed integer

NT_I32 32 bit signed integer

NT_I64 64 bit signed integer - Igor Pro 7.00 or later

NT_I8 | NT_UNSIGNED 8 bit unsigned integer

NT_I16 | NT_UNSIGNED 16 bit unsigned integer

NT_I32 | NT_UNSIGNED 32 bit unsigned integer

NT_I64 | NT_UNSIGNED 64 bit unsigned integer - Igor Pro 7.00 or later

TEXT_WAVE_TYPE Text (string data)

WAVE_TYPE Wave handle or NULL - Igor Pro 6.10 or later

DATAFOLDER_TYPE Data folder handle or NULL - Igor Pro 6.10 or later

Chapter 15 — XOPSupport Routines Waves

257

Thread Safety

WavePoints is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under Waves
Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but not
from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for details.

WaveModDate
TickCountInt
WaveModDate(waveHandle)
waveHndl waveHandle; // Handle to wave's data structure

Returns wave modification date. This is an unsigned 32-bit number in Igor date/time format, namely the
number of seconds since midnight, January 1, 1904.

The mod date has a resolution of one second.

Modification date tracking was added to Igor in Igor 1.2. If a wave is loaded from a file created by an older
version of Igor, the mod date field will be zero and this routine will return zero.

Thread Safety

WaveModDate is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

WaveModCount
int
WaveModCount(waveHandle)
waveHndl waveHandle; // Handle to wave's data structure

Returns a value that can be used to tell if a wave has been changed between one call to WaveModCount
and another.

The exact value returned by WaveModCount has no significance. The only valid use for it is to compare
the values returned by two calls to WaveModCount. If they are the different, the wave was changed in the
interim.

Example

waveModCount1 = WaveModCount(waveH);
. . .
waveModCount2 = WaveModCount(waveH);
if (waveModCount2 != waveModCount1)

// Wave has changed.

Thread Safety

WaveModCount is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

WaveModState
int
WaveModState(waveHandle)
waveHndl waveHandle; // Handle to wave's data structure

Returns the truth that the wave has been modified since the last save to disk.

Chapter 15 — XOPSupport Routines Waves

258

Thread Safety

WaveModState is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

WaveLock
int
WaveLock(waveHandle)
waveHndl waveHandle; // Handle to wave's data structure

Returns the lock state of the wave.

A return value of 0 signifies that the wave is not locked.

A return value of 1 signifies that the wave is locked. In that case, you should not kill the wave or modify it
in any way.

Thread Safety

WaveLock is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under Waves
Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but not
from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for details.

SetWaveLock
int
SetWaveLock(waveHandle, lockState)
waveHndl waveHandle; // Handle to wave's data structure
int lockState; // 0 or 1

Sets wave's lock state. If lockState is 0, the wave will be unlocked. If it is 1, the wave will be locked. All
other bits are reserved.

Returns the previous state of the wave lock setting.

Thread Safety

SetWaveLock is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

WaveScaling
void
WaveScaling(waveHandle, dxPtr, x0Ptr, topPtr, botPtr)
waveHndl waveHandle; // Handle to wave's data structure
double *dxPtr, *x0Ptr, *topPtr, *botPtr;

Returns the wave’s X and data scaling information.

Igor calculates the X value for point p of the wave as:

X value = x0 + dx*p

top and bottom are the values user entered for the wave’s data full scale.

If both are zero then there is no data full scale for this wave.

New XOPs should use MDGetWaveScaling instead of WaveScaling so that they can access scaling for
higher dimensions.

Chapter 15 — XOPSupport Routines Waves

259

Thread Safety

WaveScaling is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under Waves
Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but not
from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for details.

SetWaveScaling
void
SetWaveScaling(waveHandle, dxPtr, x0Ptr, topPtr, botPtr)
waveHndl waveHandle; // Handle to wave's data structure
double *dxPtr, *x0Ptr, *topPtr, *botPtr;

Sets the X scaling and data full scale for the specified wave.

If either dxPtr or x0Ptr is NULL, the X scaling is not set. Otherwise, Igor sets the X scaling of the wave. This
is the same setting as is set by the “SetScale/P x” operation from within Igor. Igor calculates the X value for
point p of the wave as:

X value = x0 + dx*p

If either topPtr or botPtr is NULL, the data full-scale is not set. Otherwise, Igor sets the data full scale of the
wave. This is the same setting as is set by the “SetScale d” operation from within Igor. This setting is used
only for documentation purposes. For example, if data was acquired on a -10 to 10 volt range, you would
set the data full scale to (-10, 10).

New XOPs should use MDSetWaveScaling instead of SetWaveScaling so that they can access scaling for
higher dimensions.

Thread Safety

SetWaveScaling is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

WaveUnits
void
WaveUnits(waveHandle, xUnits, yUnits)
waveHndl waveHandle; // Handle to wave's data structure
char* xUnits; // C string defining wave's X units
char* dataUnits; // C string defining wave's data units

Returns the wave’s X and data units.

The units are strings like “kg”, “m”, or “s”, or “” for no units.

In Igor Pro 3.0, the number of characters allowed was increased from 3 to 49 (MAX_UNIT_CHARS). For
backward compatibility, WaveUnits will return no more than 3 characters (plus the null terminator). To
get the full units and to access units for higher dimensions, new XOPs should use MDGetWaveUnits
instead of WaveUnits.

Thread Safety

WaveUnits is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under Waves
Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but not
from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for details.

Chapter 15 — XOPSupport Routines Waves

260

SetWaveUnits
void
SetWaveUnits(waveHandle, xUnits, yUnits)
waveHndl waveHandle; // Handle to wave's data structure
char* xUnits; // C string defining wave's X units
char* dataUnits; // C string defining wave's data units

Sets the wave’s X and data units.

The units are strings like “kg”, “m”, or “s”, or “” for no units.

If xUnits is NULL the X units are not set.

If dataUnits is NULL, the data units are not set.

Units can be up to 49 (MAX_UNIT_CHARS) characters long.

New XOPs should use MDSetWaveUnits instead of SetWaveUnits so that they can access units for higher
dimensions.

Thread Safety

SetWaveUnits is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

WaveNoteCopy
Handle
WaveNoteCopy(waveHandle)
waveHndl waveHandle; // Handle to wave's data structure

Returns a handle containing the wave’s note text or NULL if the wave has no wave note.

The returned handle is a copy of Igor's internal wave note handle. You own the returned handle and, if it
is not NULL, you must dispose it using WMDisposeHandle.

Note that the text in the handle is not null terminated. Use WMGetHandleSize to find the number of bytes
in the handle. To use C string functions on this text you need to copy it to a local buffer and null-terminate
it or add a null terminator to the handle and remove the null terminator when you are done. See Under-
stand the Difference Between a String in a Handle and a C String on page 233.

If you want to change the wave’s note, use the SetWaveNote callback.

WaveNoteCopy is a replacement for the WaveNote routine from XOP Toolkit 6 and before. If you used
WaveNote, change the call to WaveNoteCopy and, if the returned handle is not NULL, dispose the handle
when you are finished using it.

Added in Igor Pro 7.00 but works with any version.

Thread Safety

WaveNoteCopy is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

Chapter 15 — XOPSupport Routines Waves

261

SetWaveNote
void
SetWaveNote(waveHandle, noteHandle)
waveHndl waveHandle; // Handle to wave's data structure
Handle noteHandle; // Handle to the text for the wave's note

Sets the wave’s note.

noteHandle is a handle to plain text with lines separated by carriage returns (ASCII 13) and with no null
termination at the end. Once you pass the noteHandle to Igor it belongs to Igor so don’t modify or dispose
of it. This should be a handle that you created in your XOP using the WMNewHandle or WMHandTo-
Hand, not a handle you got from Igor.

If noteHandle is NULL the note is set to empty.

Thread Safety

SetWaveNote is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

WaveName
void
WaveName(waveHandle, name)
waveHndl waveHandle; // Handle to wave's data structure
char name[MAX_OBJ_NAME+1]; // C string to receive name

Puts the wave’s name in the string identified by namePtr.

Thread Safety

WaveName is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under Waves
Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but not
from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for details.

WaveTextEncoding
int
WaveTextEncoding(waveH, element, getEffectiveTextEncoding, tecPtr)
waveHndl waveH;
int element;
int getEffectiveTextEncoding;
int* tecPtr;

Returns via tecPtr a WMTextEncodingCode that identifies the text encoding of the stored text associated
with the part of a wave identified by element.

WMTextEncodingCode is an enum defined in IgorXOP.h.

element is one of the following:

Value Wave Element

1 Wave name

2 Wave units

4 Wave note

8 Wave dimension labels

16 Text wave contents

Chapter 15 — XOPSupport Routines Waves

262

If getEffectiveTextEncoding is 1, WaveTextEncoding returns the effective wave text encoding. Otherwise it
returns the raw wave text encoding. See the help for the built-in Igor7 WaveTextEncoding function for an
explanation of this distinction.

The values returned via tecPtr are described in the documentation for the built-in Igor WaveTextEncoding
function in Igor Pro 7. The most common values are:

kWMTextEncodingBinary is not a real text encoding code but rather indicates that the wave contains
binary data rather than text data.

Because nearly all XOPSupport routines, when running with Igor7, require text parameters to be UTF-8
and return output text as UTF-8, most XOPs will not need to use this routine.

See the Text Encodings on page 201 and the documentation for the built-in Igor7 WaveTextEncoding
function for further information.

Added for Igor Pro 7.00. If you call this with an earlier version of Igor, it will return IGOR_OBSOLETE and
do nothing.

Thread Safety

WaveTextEncoding is Igor-thread-safe with XOP Toolkit 7 and Igor Pro 7.00 or later with certain excep-
tions explained under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a
thread created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Call-
backs on page 178 for details.

WaveData
void*
WaveData(waveHandle)
waveHndl waveHandle; // Handle to wave's data structure

Returns pointer to the start of wave’s data.

NOTE: The pointer is only valid if the block of memory containing the wave’s data is not resized. To
avoid dangling pointer bugs, see the discussion of dangling pointers under The Direct Access
Method on page 126.

See Chapter 7 for detailed instructions on accessing wave data.

Thread Safety

WaveData is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under Waves
Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but not
from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for details.

WMTextEncodingCode Description

kWMTextEncodingUTF8 UTF-8

kWMTextEncodingMacRoman MacRoman (Macintosh western European)

kWMTextEncodingWindows1252 Windows-1252 (Windows western European)

kWMTextEncodingJIS Shift-JIS (Japanese)

kWMTextEncodingBinary

Chapter 15 — XOPSupport Routines Waves

263

WaveMemorySize
void*
WaveMemorySize(waveH, which)
waveHndl waveH; // Wave handle
int which; // Code for what information you want

Most XOPs will not need to use this routine.

In Igor Pro 6 and before, wave handles were regular handles. Although there was little reason to do so,
you could call WMGetHandleSize on them and get a correct answer.

In Igor Pro 7, to support 64 bits on Macintosh, WaveMetrics had to change the way a wave's data was allo-
cated. As a result, a wave handle is no longer a regular handle. Calling WMGetHandleSize on it will return
the wrong result or crash.

This routine provides a way to get information about the memory used by a wave that will work in Igor
Pro 7 as well as in earlier versions.

which is defined as follows:

which=2, 3 and 4 include the size of numeric data for numeric a wave and the size of text data for a text
wave.

which=4 returns the most accurate assessment of the total memory usage of the wave. This is because, in
Igor Pro 7 and later, it includes wave property data and also because, in some cases as explained below,
the data for text waves is stored in separate objects, not in the wave handle itself.

In Igor Pro 7, the size of the wave handle itself may not accurately reflect the amount of memory required
by a text wave. This is because, in most cases, Igor Pro 7 stores the text data for each element in a separate
text element object and stores pointers to the text element objects in the wave handle itself. Thus the size of
the wave handle itself reflects the storage needed for the pointers, not the storage needed for the actual
text.

In Igor Pro 7 and later, determining the size of text data for a large text wave, using which=2, which=3 or
which=4, can be time-consuming. This is because, in most cases, Igor Pro 7 stores the data for each element
of the wave in a separate text element object and stores pointers to the text element objects in the wave
handle itself. Thus Igor must determine the sum of the sizes of each of the objects.

Added in XOP Toolkit 6.40. Works with Igor Pro 3 or later.

Thread Safety

WaveMemorySize is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

Value Information Returned

0 The size in bytes of the wave handle itself.

1 The size in bytes of the wave header (a structure located at the start
of the wave handle).

2 The size in bytes of the wave numeric or text data.

3 The size in bytes of the wave handle and the numeric or text data.

4 In Igor Pro 7 or later, the total number of bytes required to store all
wave data. This includes memory used to store wave properties
such as the wave note, units and dimension labels.

In Igor Pro 6 or before which=4 returns the same value as which=3 -
the size in bytes of the wave handle and the numeric or text data.

Chapter 15 — XOPSupport Routines Waves

264

CalcWaveRange
int*
CalcWaveRange(wrp)
WaveRangeRecPtr wrp;

Given coordinates expressed in point numbers or X values, CalcWaveRange returns the corresponding
range of point numbers within the wave.

wrp is a pointer to a WaveRangeRec structure defined in IgorXOP.h.

See Wave Range Parameters on page 84 for an example.

Returns 0 if OK or a non-zero error code.

Thread Safety

CalcWaveRange is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

WaveHandleModified
void
WaveHandleModified(waveHandle)
waveHndl waveHandle; // Handle to wave's data structure

Informs Igor that your XOP modified the specified wave.

At the time of the next update, Igor will update any windows that display the wave.

Thread Safety

WaveHandleModified is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained
under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

WaveModified
void
WaveModified(waveName)
char* waveName; // C string containing wave's name

NOTE: This routine is obsolete and may be removed in a future version of the XOP Toolkit. Use
WaveHandleModified instead.

Informs Igor that your XOP modified the wave referred to by waveName in the current data folder.

So that your XOP will not depend on the current data folder, you should use WaveHandleModified
instead of WaveModified.

Thread Safety

WaveModified is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

Chapter 15 — XOPSupport Routines Waves

265

MDMakeWave
int
MDMakeWave(waveHPtr,waveName,dataFolderH,dimensionSizes,type,overwrite)
waveHndl* waveHPtr; // Place to put waveHndl for new wave
char* waveName; // C string containing name of Igor wave
DataFolderHandle dataFolderH; // Handle to data folder or NULL.
CountInt dimensionSizes[MAX_DIMENSIONS+1]; // Array of dimension sizes
int type; // Data type for new wave
int overwrite; // If non-zero, overwrites existing wave

Makes a wave with the specified name, type and dimension sizes in the specified data folder.

If dataFolderH is NULL, it uses the current folder.

type is one of the following:

To make a complex numeric wave, OR with NT_CMPLX, for example (NT_FP64 | NT_CMPLX). Any
numeric wave can be complex. Text waves, wave reference waves and data folder reference waves can not
be complex.

If overwrite is non-zero, an existing wave with the same name will be overwritten.

Igor can not overwrite a text wave with a numeric wave or vice-versa and you will receive an error if you
attempt to do this.

If overwrite is zero and a wave of the specified name exists, MDMakeWave will return a non-zero error
code result.

For each dimension, dimensionSizes[i] specifies the number of elements in that dimension. For a wave of
dimension n, i goes from 0 to n-1.

NOTE: dimensionSizes[n] must be zero. This is how Igor determines how many dimensions the wave is
to have.

Igor supports a maximum of four dimensions. Therefore, dimSizes[n] must be zero, where n is less than or
equal to four. MAX_DIMENSIONS is larger than 4 to allow XOPs to continue to work in the event that a
future version of Igor supports more than four dimensions.

Type Wave Element Contains

NT_FP32 32 bit floating-point

NT_FP64 64 bit floating-point

NT_I8 8 bit signed integer

NT_I16 16 bit signed integer

NT_I32 32 bit signed integer

NT_I64 64 bit signed integer - requires Igor Pro 7.00 or later

NT_I8 | NT_UNSIGNED 8 bit unsigned integer

NT_I16 | NT_UNSIGNED 16 bit unsigned integer

NT_I32 | NT_UNSIGNED 32 bit unsigned integer

NT_I64 | NT_UNSIGNED 64 bit unsigned integer - requires Igor Pro 7.00 or later

TEXT_WAVE_TYPE Text (string data)

WAVE_TYPE Wave handle or NULL - requires Igor Pro 6.10 or later

DATAFOLDER_TYPE Data folder handle or NULL - requires Igor Pro 6.10 or later

Chapter 15 — XOPSupport Routines Waves

266

If you are running with Igor Pro 6.20 or later, you can pass -1 for dataFolderH to create a free wave. This
would be appropriate if, for example, your external function were called from a user-defined function
with a flag parameter indicating that the user wants to create a free wave. You must be sure that you are
running with Igor Pro 6.20 or a later. If you are running with an earlier version, this will cause a crash. For
example:

if (igorVersion < 620)
return IGOR_OBSOLETE; // Can't create free wave in old Igor

result = MDMakeWave(&waveH, "freejack", (DataFolderHandle)-1,
dimensionSizes, type, overwrite);

When making a free wave, the overwrite parameter is irrelevant and is ignored.

You can also create a free wave using GetOperationDestWave.

See Free Waves on page 135 for further details on free waves.

Returns error code or 0 if wave was made.

NOTE: The block of memory referenced by the wave handle can be relocated if you increase the size of
an existing wave. To avoid dangling pointer bugs, see the discussion of dangling pointers under
The Direct Access Method on page 126.

Example

waveHndl waveH;
char waveName[MAX_OBJ_NAME+1];
CountInt dimensionSizes[MAX_DIMENSIONS+1];
int result;

strcpy(waveName, "Wave3D");
dimensionSizes[0] = 10; // 10 rows
dimensionSizes[1] = 10; // 10 columns
dimensionSizes[2] = 10; // 10 layers
dimensionSizes[3] = 0; // 0 marks first unused dimension
if (result = MDMakeWave(&waveH, waveName, NULL, dimensionSizes, NT_FP64, 1))

return result;

Thread Safety

MDMakeWave is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

MDGetWaveDimensions
int
MDGetWaveDimensions(waveH, numDimensionsPtr, dimensionSizes)
waveHndl waveH; // Handle to the wave of interest
int* numDimensionsPtr; // Number of dimensions in the wave
CountInt dimensionSizes[MAX_DIMENSIONS+1]; // Array of dimension sizes

Returns the number of used dimensions in wave via numDimensionsPtr and the number of points in each
used dimension via dimensionSizes.

If you only want to know the number of dimensions, you can pass NULL for dimensionSizes.

NOTE: dimensionSizes (if not NULL) should have room for MAX_DIMENSIONS+1 values.

For an n dimensional wave, MDGetWaveDimensions sets dimensionSizes[0..n-1] to the number of ele-
ments in the corresponding dimension and sets dimensionSizes[n..MAX_DIMENSIONS] to zero, indicat-
ing that they are unused dimensions. This guarantees that there will always be an element containing zero
in the dimensionSizes array.

Chapter 15 — XOPSupport Routines Waves

267

The function result is 0 or an Igor error code.

Example

int numDimensions;
CountInt dimensionSizes[MAX_DIMENSIONS+1];
int result;

if (result = MDGetWaveDimensions(waveH, &numDimensions, dimensionSizes))
return result;

Thread Safety

MDGetWaveDimensions is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained
under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

MDChangeWave
int
MDChangeWave(waveH, dataType, dimensionSizes)
waveHndl waveH; // Handle to the wave of interest
int dataType; // New numeric type or -1 for no change
CountInt dimensionSizes[MAX_DIMENSIONS+1]; // Array of new dimension sizes

Changes one or more of the following:

The wave’s data type

The number of dimensions in the wave

The number of points in one or more dimensions

dataType is one of the following:

-1 for no change in data type

One of the data types listed for the MakeWave XOPSupport routine

For numeric waves, the data types may be ORed with NT_COMPLEX to make the wave complex. Text
waves, wave reference waves and data folder reference waves can not be complex.

Igor can not convert a text wave to a numeric wave or vice-versa and you will receive an error if you
attempt to do this.

dimensionSizes[i] contains the desired number of points for dimension i.

For a wave with n dimensions, dimensionSizes[n] must be zero. Then the size of each dimension is set by
dimensionSizes[0..n-1]. If dimensionSizes[i] == -1, then the size of dimension i will be unchanged.

Igor supports a maximum of four dimensions. Therefore, dimSizes[n] must be zero, where n is less than or
equal to four. MAX_DIMENSIONS is larger than 4 to allow XOPs to continue to work in the event that a
future version of Igor supports more than four dimensions.

The function result is 0 or an error code.

NOTE: The block of memory referenced by the wave handle can be relocated if you increase the size of
the wave. To avoid dangling pointer bugs, see the discussion of dangling pointers under The
Direct Access Method on page 126.

Example

int dataType;
CountInt dimensionSizes[MAX_DIMENSIONS+1];
int result;

Chapter 15 — XOPSupport Routines Waves

268

// Clear all dimensions sizes to avoid undefined values.
MemClear(dimensionSizes, sizeof(dimensionSizes));
dimensionSizes[0] = 10; // 10 rows
dimensionSizes[1] = 10; // 10 columns
dimensionSizes[2] = 10; // 10 layers
dimensionSizes[3] = 0; // 0 marks first unused dimension
dataType = NT_FP64 | NT_CMPLX; // complex, double-precision
if (result = MDChangeWave(waveH, dataType, dimensionSizes))

return result;

Thread Safety

MDChangeWave is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

MDChangeWave2
int
MDChangeWave2(waveH, dataType, dimensionSizes, mode)
waveHndl waveH; // Handle to the wave of interest
int dataType; // New numeric type or -1 for no change
CountInt dimensionSizes[MAX_DIMENSIONS+1]; // Array of new dimension sizes
int mode;

This is the same as MDChangeWave except for the added mode parameter.

Returns 0 or an error code.

See MDChangeWave for further discussion.

NOTE: The block of memory referenced by the wave handle can be relocated if you increase the size of
the wave. To avoid dangling pointer bugs, see the discussion of dangling pointers under The
Direct Access Method on page 126.

Thread Safety

MDChangeWave2 is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

Mode Data Format

Mode=0 Does a normal redimension.

Mode=1 Changes the wave's dimensions without changing the wave data.

This is useful, for example, when you have a 2D wave consisting of 5 rows and
3 columns which you want to treat as a 2D wave consisting of 3 rows and 5
columns or if you have loaded floating point data into an unsigned byte wave.

Mode=2 Changes the wave data from big-endian to little-endian or vice versa.

This is useful when you have loaded data from a file that uses a byte ordering
different from that of the platform on which you are running.

Chapter 15 — XOPSupport Routines Waves

269

MDGetWaveScaling
int
MDGetWaveScaling(waveH, dimension, sfAPtr, sfBPtr)
waveHndl waveH; // Handle to the wave of interest
int dimension;
double* sfAPtr; // Delta value goes here
double* sfBPtr; // Offset value goes here

Returns the dimension scaling values or the data full scale values for the wave via sfAPtr and sfBPtr. If
dimension is -1, it returns the data full scale values. Otherwise, it returns the dimension scaling for the
specified dimension.

For dimension i (i=0 to 3), the scaled index for element e is:

<scaled index> = sfA[i]*e + sfB[i]

If dimension is -1, this gets the wave’s data full scale setting instead of dimension scaling. *sfAPtr points to
the top full scale value and *sfBPtr points to the bottom full scale value.

See Wave Scaling and Units on page 129 for a discussion of the distinction between dimension scaling
and data full scale.

The function result is 0 or an Igor error code.

Example

double sfA;
double sfB;
int result;

if (result = MDGetWaveScaling(waveH, ROWS, &sfA, &sfB)) // Get X scaling
return result;

if (result = MDGetWaveScaling(waveH, COLUMNS, &sfA, &sfB)) // Get Y scaling
return result;

Thread Safety

MDGetWaveScaling is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

MDSetWaveScaling
int
MDSetWaveScaling(waveH, dimension, sfAPtr, sfBPtr)
waveHndl waveH; // Handle to the wave of interest
int dimension;
double* sfAPtr; // Points to new delta value
double* sfBPtr; // Points to new offset value

Sets the dimension scaling values or the data full scale values for the wave via sfAPtr and sfBPtr. If dimen-
sion is -1, it sets the data full scale values. Otherwise, it sets the dimension scaling for the specified dimen-
sion.

For dimension i (i=0 to 3), the scaled index of element e is:

<scaled index> = sfA[i]*e + sfB[i]

If dimension is -1, this sets the wave’s data full scale setting instead of dimension scaling. *sfAPtr points to
the top full scale value and *sfBPtr points to the bottom full scale value.

See Wave Scaling and Units on page 129 for a discussion of the distinction between dimension scaling
and data full scale.

Chapter 15 — XOPSupport Routines Waves

270

The function result is 0 or an Igor error code.

Example

This example sets the scaling of the row and column dimensions to the default (scaled value == row/col-
umn number) without affecting the scaling of any other dimensions that might exist in the wave.

double sfA;
double sfB;
int result;

sfA = 1.0; sfB = 0.0;
if (result= MDSetWaveScaling(waveH, ROWS, &sfA, &sfB)) // Set X scaling

return result;
sfA = 1.0; sfB = 0.0;
if (result= MDSetWaveScaling(waveH, COLUMNS, &sfA, &sfB))// Set Y scaling

return result;

Thread Safety

MDSetWaveScaling is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

MDGetWaveUnits
int
MDGetWaveUnits(waveH, dimension, units)
waveHndl waveH; // Handle to the wave of interest
int dimension;
char units[MAX_UNIT_CHARS+1]; // C string

Returns the units string for a dimension in the wave or for the wave’s data via units. If dimension is -1, it
gets the data units. Otherwise, it gets the dimension units for the specified dimension (ROWS, COLUMNS,
LAYERS, CHUNKS).

The function result is 0 or an Igor error code.

Units may be up to 49 (MAX_UNIT_CHARS) characters. You should allocate MAX_UNIT_CHARS+1
bytes for units.

See Wave Scaling and Units on page 129 for a discussion of the distinction between dimension units and
data units.

Example

int numDimensions;
int dimension;
char units[MAX_UNIT_CHARS+1];
char buf[256];
int result;

if (result = MDGetWaveDimensions(waveH, &numDimensions, NULL))
return result;

for (dimension=0; dimension<numDimensions; dimension++) {
if (result = MDGetWaveUnits(waveH, dimension, units))

return result;
sprintf(buf, "Units for dimension %d: \"%s\"" CR_STR, dimension, units);
XOPNotice(buf);

}

Chapter 15 — XOPSupport Routines Waves

271

Thread Safety

MDGetWaveUnits is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

MDSetWaveUnits
int
MDSetWaveUnits(waveH, dimension, units)
waveHndl waveH; // Handle to the wave of interest
int dimension;
char units[MAX_UNIT_CHARS+1]; // C string

Sets the units string for a dimension in the wave or for the wave’s data via units. If dimension is -1, it sets
the data units. Otherwise, it sets the dimension units for the specified dimension (ROWS, COLUMNS,
LAYERS, CHUNKS).

The function result is 0 or an Igor error code.

Units may be up to 49 (MAX_UNIT_CHARS) characters. If the string you pass is too long, Igor will store a
truncated version of it.

See Wave Scaling and Units on page 129 for a discussion of the distinction between dimension units and
data units.

Example

char units[MAX_UNIT_CHARS+1];
int result;

if (result = MDSetWaveUnits(waveH, 0, "s")) // Set X units to seconds
return result;

if (result = MDSetWaveUnits(waveH, -1, "v")) // Set data units to volts
return result;

Thread Safety

MDSetWaveUnits is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

MDGetDimensionLabel
int
MDGetDimensionLabel(waveH, dimension, element, dimLabel)
waveHndl waveH; // Handle to the wave of interest
int dimension; // The dimension of interest.
IndexInt element; // The element whose label is to be gotten.
char* dimLabel; // Label returned here.

Returns the label for the specified element of the specified dimension as a C string via dimLabel.

You must allocate dimLabel as follows:

char dimLabel[MAX_DIM_LABEL_BYTES+1];

If element is -1, this specifies a label for the entire dimension. If element is between 0 and n-1, where n is
the size of the dimension, then element specifies a label for that element of the dimension only. You will
receive an error if dimension or element is less than -1 or greater than n-1.

A dimension label may be empty ("").

Chapter 15 — XOPSupport Routines Waves

272

The function result is 0 or an Igor error code.

See the WaveAccess sample XOP for an example.

Thread Safety

MDGetDimensionLabel is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained
under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

MDSetDimensionLabel
int
MDSetDimensionLabel(waveH, dimension, element, dimLabel)
waveHndl waveH; // Handle to the wave of interest
int dimension; // The dimension of interest
IndexInt element; // The element whose label is to be gotten.
const char* dimLabel; // You pass value here

Sets the label for the specified element of the specified dimension.

If element is -1, this specifies a label for the entire dimension. If element is between 0 and n-1, where n is
the size of the dimension, then element specifies a label for that element of the dimension only. You will
receive an error if dimension or element is less than -1 or greater than n-1.

The function result is 0 or an Igor error code.

See the WaveAccess sample XOP for an example.

Thread Safety

MDSetDimensionLabel is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained
under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

GetWaveDimensionLabels
int
GetWaveDimensionLabels(waveH, dimLabelsHArray)
waveHndl waveH; // Handle to the wave of interest
Handle dimLabelsHArray[MAX_DIMENSIONS]; // Labels returned via this array

dimLabelsHArray points to an array of MAX_DIMENSIONS handles. GetWaveDimensionLabels sets
each element of this array to a handle containing dimension labels or to NULL.

On output, if the function result is 0 (no error), dimLabelsHArray[i] will be a handle containing dimension
labels for dimension i or NULL if dimension i has no dimension labels.

If the function result is non-zero then all handles in dimLabelsHArray will be NULL.

Any non-NULL output handles belong to you. Dispose of them with WMDisposeHandle when you are
finished with them.

For each dimension, the corresponding dimension label handle consists of an array of N+1 C strings, each
in a field of (MAX_DIM_LABEL_BYTES+1) bytes.

The first label is the overall dimension label for that dimension.

Label i+1 is the dimension label for element i of the dimension.

N is the smallest number such that the last non-empty dimension label for a given dimension and all
dimension labels before it, whether empty or not, can be stored in the handle.

Chapter 15 — XOPSupport Routines Waves

273

For example, if a 5 point 1D wave has dimension labels for rows 0 and 2 with all other dimension labels
being empty then dimLabelsHArray[0] will contain four dimension labels, one for the overall dimension
and three for rows 0 through 2. dimLabelsHArray[0] will not contain any storage for any point after row 2
because the remaining dimension labels for that dimension are empty.

Returns 0 or an error code.

For an example using this routine, see TestGetAndSetWaveDimensionLabels in XOPWaveAccess.c.

Thread Safety

GetWaveDimensionLabels is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained
under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

SetWaveDimensionLabels
int
SetWaveDimensionLabels(waveH, dimLabelsHArray)
waveHndl waveH; // Handle to the wave of interest
Handle dimLabelsHArray[MAX_DIMENSIONS]; // Labels passed in this array

dimLabelsHArray points to an array of MAX_DIMENSIONS handles. SetWaveDimensionLabels sets the
dimension labels for each existing dimension of waveH based on the corresponding handle in dimLa-
belsHArray.

The handles in dimLabelsHArray belong to you. Dispose of them with WMDisposeHandle when you are
finished with them.

See the documentation for GetWaveDimensionLabels for a discussion of how the dimension labels are
stored in the handles.

Returns 0 or an error code.

For an example using this routine, see TestGetAndSetWaveDimensionLabels in XOPWaveAccess.c.

Thread Safety

SetWaveDimensionLabels is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained
under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

MDAccessNumericWaveData
int
MDAccessNumericWaveData(waveH, accessMode, dataOffsetPtr)
waveHndl waveH; // Handle to the wave of interest
int accessMode;
BCInt* dataOffsetPtr;

MDAccessNumericWaveData provides one of several methods of access to the data for numeric waves.
MDAccessNumericWaveData is the fastest of the access methods but also is the most difficult to use. See
Accessing Numeric Wave Data on page 125 for a comparison of the various methods.

waveH is the wave handle containing the data you want to access.

accessMode is a code that tells Igor how you plan to access the wave data and is used for a future compat-
ibility check. At present, there is only one accessMode. You should use the symbol
kMDWaveAccessMode0 for the accessMode parameter.

Chapter 15 — XOPSupport Routines Waves

274

On output, if there is no error, *dataOffsetPtr contains the offset in bytes from the start of the wave handle
to the data. You can use this offset to point to the start of the wave data in the wave handle. See Accessing
Numeric Wave Data on page 125 for a discussion of how wave data is layed out in memory.

The function result is 0 or an error code.

If it returns a non-zero error code, you should not attempt to access the wave data but merely return the
error code to Igor as the result of your function or operation. At present, there is only one case in which
MDAccessNumericWaveData will return an error code – if the wave is a text wave.

Numeric wave data is stored contiguously in the wave handle in one of the supported data types (NT_I8,
NT_I16, NT_I32, NT_I64, NT_FP32, NT_FP64). These types will be ORed with NT_CMPLX if the wave is
complex and ORed with NT_UNSIGNED if the wave is unsigned integer. 64-bit integer waves (NT_I64)
were added in Igor Pro 7.00.

It is possible, though unlikely, that a future version of Igor Pro will store wave data in a different way,
such that the current method of accessing wave data will no longer work. If your XOP ever runs with such
a future Igor, MDAccessNumericWaveData will return an error code indicating the incompatibility. Your
XOP will refrain from attempting to access the wave data and return the error code to Igor. This will pre-
vent a crash and indicate the nature of the problem to the user.

Although they are not truly numeric waves, MDAccessNumericWaveData also allows you to access wave
reference waves (WAVE_TYPE) and data folder reference waves (DATAFOLDER_TYPE) which store
waveHndls and DataFolderHandles respectively.

To access the a particular point, you need to know the number of data points in each dimension. To find
this, you must call MDGetWaveDimensions. This returns the number of used dimensions in the wave and
an array of dimension lengths. The dimension lengths are interpreted as follows:

The data is stored in row/column/layer/chunk order. This means that, as you step linearly through mem-
ory one point at a time, you first pass the value for each row in the first column. At the end of the first col-
umn, you reach the start of the second column. After you have passed the data for each column in the first
layer, you reach the data for the first column in the second layer. After you have passed the data for each
layer, you reach the data for the first layer of the second chunk. And so on.

Example

This example adds one to each element of a wave of two dimensions. It illustrates the difficulty in using
MDAccessNumericWaveData - you need to take into account the data type of the wave that you are
accessing. The other access methods, described in Chapter 7, don’t require this.

int numDimensions;
CountInt dimensionSizes[MAX_DIMENSIONS+1];
CountInt numRows, numColumns;
IndexInt row, column;
BCInt dataOffset;
int type, type2, isComplex;
int result;

type = WaveType(waveH);
type2 = type & ~NT_CMPLX; // Type without the complex bit set
isComplex = type & NT_CMPLX;
if (type2 == TEXT_WAVE_TYPE)

return NUMERIC_ACCESS_ON_TEXT_WAVE;
if (result = MDGetWaveDimensions(waveH, &numDimensions, dimensionSizes))

return result;

dimSizes[0] Number of rows in a column

dimSizes[1] Number of columns in a layer

dimSizes[2] Number of layers in a chunk

dimSizes[3] Number of chunks in the wave

Chapter 15 — XOPSupport Routines Waves

275

if (numDimensions != 2)
return REQUIRES_2D_WAVE; // An error code defined by your XOP

numRows = dimensionSizes[ROWS];
numColumns = dimensionSizes[COLUMNS];
if (result=MDAccessNumericWaveData(waveH,kMDWaveAccessMode0,&dataOffset))

return result;

double* dp = (double*)((char*)(*waveH) + dataOffset);
float* fp =(float*)dp;
SInt64* SInt64p = (SInt64*)dp;
SInt32* SInt32p = (SInt32*)dp;
short* sp =(short*)dp;
char* cp =(char*)dp;
UInt64* UInt64p = (UInt64*)dp;
UInt32* UInt32p = (UInt32*)dp;
unsigned short* usp =(unsigned short*)dp;
unsigned char* ucp = (unsigned char*)dp;

for(column=0; column<numColumns; column++) {
for(row=0; row<numRows; row++) {

switch(type2) {
case NT_FP64:

*dp++ += 1; if (isComplex) *dp++ += 1; break;
case NT_FP32:

*fp++ += 1; if (isComplex) *fp++ += 1; break;
case NT_I64:

*SInt64p++ += 1; if (isComplex) *SInt64p++ += 1; break;
case NT_I32:

*SInt32p++ += 1; if (isComplex) *SInt32p++ += 1; break;
case NT_I16:

*sp++ += 1; if (isComplex) *sp++ += 1; break;
case NT_I8:

*cp++ += 1; if (isComplex) *cp++ += 1; break;
case NT_I64 | NT_UNSIGNED:

*UInt64p++ += 1; if (isComplex) *UInt64p++ += 1; break;
case NT_I32 | NT_UNSIGNED:

*UInt32p++ += 1; if (isComplex) *UInt32p++ += 1; break;
case NT_I16 | NT_UNSIGNED:

*usp++ += 1; if (isComplex) *usp++ += 1; break;
case NT_I8 | NT_UNSIGNED:

*ucp++ += 1; if (isComplex) *ucp++ += 1; break;
default: // Unknown data type - possible in a future Igor.

return NT_FNOT_AVAIL; // Func not supported on this type.
}

}
}

Thread Safety

MDAccessNumericWaveData is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions
explained under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread
created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks
on page 178 for details.

Chapter 15 — XOPSupport Routines Waves

276

MDGetNumericWavePointValue
int
MDGetNumericWavePointValue(waveH, indices, value)
waveHndl waveH; // Handle to the wave of interest
IndexInt indices[MAX_DIMENSIONS]; // Identifies the point of interest
double value[2]; // Value returned here

Returns via value the value of a particular element in the specified numeric wave. The value returned is
always double precision floating point, regardless of the precision of the wave.

Values returned for signed and unsigned 64-bit integer waves will be imprecise if the value exceeds 2^53
in magnitude because double-precision floating point can not precisely represent integers larger than
2^53. See 64-bit Integer Issues on page 215 for further discussion. If you must use 64-bit integer waves at
full precision, use MDGetNumericWavePointValueSInt64 or MDGetNumericWavePointValueUInt64
instead.

indices is an array of dimension indices. For example, for a 3D wave:

indices[0] contains the row number

indices[1] contains the column number

indices[2] contains the layer number

This routine ignores indices for dimensions that do not exist in the wave.

The real part of the value of specified point is returned in value[0]. If the wave is complex, the imaginary
part of the value of specified point is returned in value[1]. If the wave is not complex, value[1] is unde-
fined.

The function result is 0 or an error code.

Currently the only error code returned is MD_WAVE_BAD_INDEX, indicating that you have passed one
or more invalid indices. An index for a particular dimension is invalid if it is less than zero or greater than
or equal to the number of points in the dimension. Future versions of Igor may return other error codes. If
you receive an error, just return it to Igor so that it will be reported to the user.

See the example for MDSetNumericWavePointValue.

Thread Safety

MDGetNumericWavePointValue is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions
explained under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread
created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks
on page 178 for details.

MDSetNumericWavePointValue
int
MDSetNumericWavePointValue(waveH, indices, value)
waveHndl waveH; // Handle to the wave of interest
IndexInt indices[MAX_DIMENSIONS]; // Identifies the point of interest
double value[2]; // Value passed here

Sets the value of a particular point in the specified numeric wave. The value that you supply is always
double precision floating point, regardless of the precision of the wave.

Values stored in signed and unsigned 64-bit integer waves will be imprecise if the value exceeds 2^53 in
magnitude because double-precision floating point can not precisely represent integers larger than 2^53.
See 64-bit Integer Issues on page 215 for further discussion. If you must use 64-bit integer waves at full
precision, use MDSetNumericWavePointValueSInt64 or MDSetNumericWavePointValueUInt64
instead.

indices is an array of dimension indices. For example, for a 3D wave:

Chapter 15 — XOPSupport Routines Waves

277

indices[0] contains the row number

indices[1] contains the column number

indices[2] contains the layer number

This routine ignores indices for dimensions that do not exist in the wave.

You pass in value[0] the real part of the value. If the wave is complex, you pass the imaginary part in
value[1]. If the wave is not complex, MDSetNumericWavePointValue ignores value[1].

When storing into an integer wave, MDSetNumericWavePointValue truncates the value that you are stor-
ing. If you want, you can do rounding before calling MDSetNumericWavePointValue.

The function result is 0 or an error code.

Currently the only error code returned is MD_WAVE_BAD_INDEX, indicating that you have passed one
or more invalid indices. An index for a particular dimension is invalid if it is less than zero or greater than
or equal to the number of points in the dimension. Future versions of Igor may return other error codes. If
you receive an error, just return it to Igor so that it will be reported to the user.

Example

This example adds one to each element of a wave of two dimensions. It illustrates the ease in using
MDGetNumericWavePointValue and MDSetNumericWavePointValue – you don’t need to user pointers
and you don’t need to take into account the data type of the wave that you are accessing. However, it is
somewhat slower than the other methods. See Chapter 7 for speed comparisons.

int numDimensions;
CountInt dimensionSizes[MAX_DIMENSIONS+1];
CountInt numRows, numColumns;
IndexInt row, column;
IndexInt indices[MAX_DIMENSIONS];
int isComplex;
double value[2];
int result;

isComplex = WaveType(waveH) & NT_CMPLX;

if (result = MDGetWaveDimensions(waveH, &numDimensions, dimensionSizes))
return result;

if (numDimensions != 2)
return REQUIRES_2D_WAVE; // An error code defined by your XOP

numRows = dimensionSizes[0];
numColumns = dimensionSizes[1];

MemClear(indices, sizeof(indices)); // Must be 0 for unused dimensions.
for(column=0; column<numColumns; column++) {

indices[1] = column;
for(row=0; row<numRows; row++) {

indices[0] = row;
if (result = MDGetNumericWavePointValue(waveH, indices, value))

return result;
value[0] += 1; // Real part
if (isComplex)

value[1] += 1; // Imag part
if (result = MDSetNumericWavePointValue(waveH, indices, value))

return result;
}

}

Thread Safety

MDSetNumericWavePointValue is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions
explained under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread

Chapter 15 — XOPSupport Routines Waves

278

created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks
on page 178 for details.

MDGetNumericWavePointValueSInt64
int
MDGetNumericWavePointValueSInt64(waveH, indices, value)
waveHndl waveH; // Handle to the wave of interest
IndexInt indices[MAX_DIMENSIONS]; // Identifies the point of interest
SInt64 value[2]; // Value returned here

Returns via value the value of a particular element in the specified numeric wave. The value returned is
always signed 64-bit integer, regardless of the data type of the wave.

This routine can be called for any numeric wave but is intended for use with signed 64-bit integer (NT_I64)
waves. For most applications, use MDGetNumericWavePointValue instead.

Values returned for floating point waves are truncated to integers. Values returned will be incorrect if the
wave value is outside the range of signed 64-bit integers (-9223372036854775808 to 9223372036854775807).
These issues do not apply if the data type of the specified wave is NT_I64. See 64-bit Integer Issues on
page 215for further discussion.

indices is an array of dimension indices. For example, for a 3D wave:

indices[0] contains the row number

indices[1] contains the column number

indices[2] contains the layer number

This routine ignores indices for dimensions that do not exist in the wave.

The real part of the value of specified point is returned in value[0]. If the wave is complex, the imaginary
part of the value of specified point is returned in value[1]. If the wave is not complex, value[1] is unde-
fined.

The function result is 0 or an error code.

MDGetNumericWavePointValueSInt64 was added in Igor Pro 7.03. If you call this with an earlier version
of Igor, it will return IGOR_OBSOLETE and do nothing.

Thread Safety

MDGetNumericWavePointValueSInt64 is Igor-thread-safe with Igor Pro 7.03 or later with certain excep-
tions explained under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a
thread created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Call-
backs on page 178 for details.

MDSetNumericWavePointValueSInt64
int
MDSetNumericWavePointValueSInt64(waveH, indices, value)
waveHndl waveH; // Handle to the wave of interest
IndexInt indices[MAX_DIMENSIONS]; // Identifies the point of interest
SInt64 value[2]; // Value passed here

Sets the value of a particular point in the specified numeric wave. The value that you supply is always
signed 64-bit integer, regardless of the data type of the wave.

This routine can be called for any numeric wave but is intended for use with signed 64-bit integer (NT_I64)
waves. For most applications, use MDSetNumericWavePointValue instead.

Values stored in floating point waves will be imprecise if the value exceeds the range of integers that can
be represented precisely in the wave's data type. Values stored in integer waves will be incorrect if value is

Chapter 15 — XOPSupport Routines Waves

279

outside the range that can be represented by the wave's data type. These issues do not apply if the data
type of the specified wave is NT_I64. See 64-bit Integer Issues on page 215 for further discussion.

indices is an array of dimension indices. For example, for a 3D wave:

indices[0] contains the row number

indices[1] contains the column number

indices[2] contains the layer number

This routine ignores indices for dimensions that do not exist in the wave.

You pass in value[0] the real part of the value. If the wave is complex, you pass the imaginary part in
value[1]. If the wave is not complex, MDSetNumericWavePointValueSInt64 ignores value[1].

The function result is 0 or an error code.

MDSetNumericWavePointValueSInt64 was added in Igor Pro 7.03. If you call this with an earlier version
of Igor, it will return IGOR_OBSOLETE and do nothing.

Thread Safety

MDSetNumericWavePointValueSInt64 is Igor-thread-safe with Igor Pro 7.03 or later with certain excep-
tions explained under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a
thread created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Call-
backs on page 178 for details.

MDGetNumericWavePointValueUInt64
int
MDGetNumericWavePointValueUInt64(waveH, indices, value)
waveHndl waveH; // Handle to the wave of interest
IndexInt indices[MAX_DIMENSIONS]; // Identifies the point of interest
UInt64 value[2]; // Value returned here

Returns via value the value of a particular element in the specified numeric wave. The value returned is
always unsigned 64-bit integer, regardless of the data type of the wave.

This routine can be called for any numeric wave but is intended for use with unsigned 64-bit integer
(NT_I64 | NT_UNSIGNED) waves. For most applications, use MDGetNumericWavePointValue instead.

Values returned for floating point waves are truncated to integers. Values returned will be incorrect if the
wave value is outside the range of unsigned 64-bit integers (0 to 18446744073709551615). These issues do
not apply if the data type of the specified wave is NT_I64 | NT_UNSIGNED. See 64-bit Integer Issues on
page 215for further discussion.

indices is an array of dimension indices. For example, for a 3D wave:

indices[0] contains the row number

indices[1] contains the column number

indices[2] contains the layer number

This routine ignores indices for dimensions that do not exist in the wave.

The real part of the value of specified point is returned in value[0]. If the wave is complex, the imaginary
part of the value of specified point is returned in value[1]. If the wave is not complex, value[1] is unde-
fined.

The function result is 0 or an error code.

MDGetNumericWavePointValueUInt64 was added in Igor Pro 7.03. If you call this with an earlier version
of Igor, it will return IGOR_OBSOLETE and do nothing.

Chapter 15 — XOPSupport Routines Waves

280

Thread Safety

MDGetNumericWavePointValueUInt64 is Igor-thread-safe with Igor Pro 7.03 or later with certain excep-
tions explained under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a
thread created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Call-
backs on page 178 for details.

MDSetNumericWavePointValueUInt64
int
MDSetNumericWavePointValueUInt64(waveH, indices, value)
waveHndl waveH; // Handle to the wave of interest
IndexInt indices[MAX_DIMENSIONS]; // Identifies the point of interest
UInt64 value[2]; // Value passed here

Sets the value of a particular point in the specified numeric wave. The value that you supply is always
unsigned 64-bit integer, regardless of the data type of the wave.

This routine can be called for any numeric wave but is intended for use with unsigned 64-bit integer
(NT_I64 | NT_UNSIGNED) waves. For most applications, use MDSetNumericWavePointValue instead.

Values stored in floating point waves will be imprecise if the value exceeds the range of integers that can
be represented precisely in the wave's data type. Values stored in integer waves will be incorrect if value is
outside the range that can be represented by the wave's data type. These issues do not apply if the data
type of the specified wave is NT_I64 | NT_UNSIGNED. See 64-bit Integer Issues on page 215 for further
discussion.

indices is an array of dimension indices. For example, for a 3D wave:

indices[0] contains the row number

indices[1] contains the column number

indices[2] contains the layer number

This routine ignores indices for dimensions that do not exist in the wave.

You pass in value[0] the real part of the value. If the wave is complex, you pass the imaginary part in
value[1]. If the wave is not complex, MDSetNumericWavePointValueUInt64 ignores value[1].

The function result is 0 or an error code.

MDSetNumericWavePointValueUInt64 was added in Igor Pro 7.03. If you call this with an earlier version
of Igor, it will return IGOR_OBSOLETE and do nothing.

Thread Safety

MDSetNumericWavePointValueUInt64 is Igor-thread-safe with Igor Pro 7.03 or later with certain excep-
tions explained under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a
thread created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Call-
backs on page 178 for details.

MDGetDPDataFromNumericWave
int
MDGetDPDataFromNumericWave(waveH, dPtr)
waveHndl waveH; // Handle to the wave of interest
double* dPtr; // Where to put the data

MDGetDPDataFromNumericWave stores a double-precision copy of the specified numeric wave’s data in
the memory pointed to by dPtr. dPtr must point to a block of memory that you have allocated and which
must be at least (WavePoints(waveH)*sizeof(double)) bytes or twice that for a complex wave.

Values returned for signed and unsigned 64-bit integer waves will be imprecise if the value exceeds 2^53
in magnitude because double-precision floating point can not precisely represent integers larger than

Chapter 15 — XOPSupport Routines Waves

281

2^53. If you must use 64-bit integer waves and require full precision for very large values, you must use
MDGetNumericWavePointValueSInt64, MDGetNumericWavePointValueUInt64, or the direct access
method as described under The Direct Access Method on page 126. See 64-bit Integer Issues on page 215
for further discussion.

This routine is a companion to MDStoreDPDataInNumericWave.

The function result is zero or an error code.

See the example for MDStoreDPDataInNumericWave.

Thread Safety

MDGetDPDataFromNumericWave is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions
explained under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread
created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks
on page 178 for details.

MDStoreDPDataInNumericWave
int
MDStoreDPDataInNumericWave(waveH, dPtr)
waveHndl waveH; // Handle to the wave of interest
double* dPtr; // Pointer to the data to store

MDStoreDPDataInNumericWave stores the data pointed to by dPtr in the specified numeric wave. During
the transfer, it converts the data from double precision to the numeric type of the wave. The conversion is
done on-the-fly and the data pointed to by dPtr is not changed.

When storing into an integer wave, MDStoreDPDataInNumericWave truncates the value that you are
storing. If you want, you can do rounding before calling MDStoreDPDataInNumericWave.

Values stored for signed and unsigned 64-bit integer waves will be imprecise if the value exceeds 2^53 in
magnitude because double-precision floating point can not precisely represent integers larger than 2^53. If
you must use 64-bit integer waves and require full precision for very large values, you must use
MDSetNumericWavePointValueSInt64, MDSetNumericWavePointValueUInt64, or the direct access
method as described under The Direct Access Method on page 126. See 64-bit Integer Issues on page 215
for further discussion.

This routine is a companion to MDGetNumericWavePointValue.

The function result is zero or an error code.

Numeric wave data is stored contiguously in the wave handle in one of the supported data types (see the
MakeWave routine). To access the a particular point, you need to know the number of data points in each
dimension. To find this, you must call MDGetWaveDimensions. This returns the number of used dimen-
sions in the wave and an array of dimension lengths. The dimension lengths are interpreted as follows:

ROWS, COLUMNS, LAYERS and CHUNKS are defined in IgorXOP.h as 0, 1, 2 and 3.

The data is stored in row/column/layer/chunk order. This means that, as you step linearly through mem-
ory one point at a time, you first pass the value for each row in the first column. At the end of the first col-
umn, you reach the start of the second column. After you have passed the data for each column in the first
layer, you reach the data for the first column in the second layer. After you have passed the data for each
layer, you reach the data for the first layer of the second chunk. And so on.

dimensionSizes[ROWS] Number of rows in a column

dimensionSizes[COLUMNS] Number of columns in a layer

dimensionSizes[LAYERS] Number of layers in a chunk

dimensionSizes[CHUNKS] Number of chunks in the wave

Chapter 15 — XOPSupport Routines Waves

282

Example

This example adds one to each element of a wave of two dimensions. It illustrates the ease in using
MDGetDPDataFromNumericWave and MDStoreDPDataInNumericWave – you don’t need to take into
account the data type of the wave that you are accessing. However, it requires that you make a copy of the
wave data which requires more memory than the other methods.

int numDimensions;
CountInt dimensionSizes[MAX_DIMENSIONS+1];
CountInt numRows, numColumns;
BCInt numBytes;
IndexInt row, column;
int isComplex;
double* dPtr;
double* dp;
int result;

isComplex = WaveType(waveH) & NT_CMPLX;

if (result = MDGetWaveDimensions(waveH, &numDimensions, dimensionSizes))
return result;

if (numDimensions != 2)
return REQUIRES_2D_WAVE; // An error code defined by your XOP

numRows = dimensionSizes[0];
numColumns = dimensionSizes[1];

numBytes = WavePoints(waveH) * sizeof(double); // Bytes needed for copy
if (isComplex)

numBytes *= 2;
dPtr = (double*)WMNewPtr(numBytes);
if (dPtr==NULL)

return NOMEM;

if (result = MDGetDPDataFromNumericWave(waveH, dPtr)) {
WMDisposePtr((Ptr)dPtr);
return result;

}

dp = dPtr;
for(column=0; column<numColumns; column++) {

for(row=0; row<numRows; row++) {
*dp++ += 1; // real part
if (isComplex)

*dp++ += 1; // imag part
}

}

if (result = MDStoreDPDataInNumericWave(waveH, dPtr)) {
WMDisposePtr((Ptr)dPtr);
return result;

}

WMDisposePtr((Ptr)dPtr);

Thread Safety

MDStoreDPDataInNumericWave is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions
explained under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread
created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks
on page 178 for details.

Chapter 15 — XOPSupport Routines Waves

283

FetchNumericValue
int
FetchNumericValue(type, dataStartPtr, index, value)
int type; // Igor numeric data type
char* dataStartPtr; // Pointer to start of wave data
IndexInt index; // Point number index
double value[2]; // Point value is returned here

Returns the value of one element of data of the specified type. The returned value is always double preci-
sion floating point.

type is an Igor numeric type (see the MakeWave routine).

dataStartPtr points to the start of the numeric data.

index is an index in point numbers from dataStartPtr to the point of interest.

The real part of the value of specified point is returned in value[0].

If the data is complex, the imaginary part of the value of specified point is returned in value[1]. If the data
is not complex, value[1] is undefined.

FetchNumericValue is a low-level routine used by MDGetNumericWavePointValue. It treats the wave as
a linear array, ignoring its dimensionality. Normally, you will have no need to use it directly. However,
advanced users may find it useful. It has the ability to convert from any Igor numeric data type to double
precision.

Scaling of signed and unsigned 64-bit integer values is subject to inaccuracies for values exceeding 2^53 in
magnitude because calculations are done in double-precision and double-precision can not precisely rep-
resent the full range of 64-integer values. Values returned for signed and unsigned 64-bit integer data will
be imprecise if the value exceeds 2^53 in magnitude because double-precision floating point can not pre-
cisely represent integers larger than 2^53. See 64-bit Integer Issues on page 215 for further discussion.

The function result is zero or an error code.

Thread Safety

FetchNumericValue is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

StoreNumericValue
int
StoreNumericValue(type, dataStartPtr, index, value)
int type; // Igor numeric data type
char* dataStartPtr; // Pointer to start of wave data
IndexInt index; // Point number index
double value[2]; // Point value to be stored

Stores the specified value using the specified numeric type.

type is an Igor numeric type (see the MakeWave routine).

dataStartPtr points to the start of the numeric data.

index is an index in point numbers from dataStartPtr to the point of interest.

You should pass in value[0] the real part of the value.

If the data is complex, you should pass the complex part in value[1]. If the data is not complex, StoreNu-
mericValue ignores value[1].

Chapter 15 — XOPSupport Routines Waves

284

Values stored for signed and unsigned 64-bit integer data will be imprecise if the value exceeds 2^53 in
magnitude because double-precision floating point can not precisely represent integers larger than 2^53.
See 64-bit Integer Issues on page 215 for further discussion.

StoreNumericValue is a low-level routine used by MDSetNumericWavePointValue. It treats the wave as
a linear array, ignoring its dimensionality. Normally, you will have no need to use it directly. However,
advanced users may find it useful. It has the ability to convert from any Igor numeric data type to double
precision.

The function result is zero or an error code.

Thread Safety

StoreNumericValue is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

MDGetTextWavePointValue
int
MDGetTextWavePointValue(waveH, indices, textH)
waveHndl waveH; // Handle to the wave of interest
IndexInt indices[MAX_DIMENSIONS]; // Identifies the point of interest
Handle textH; // Value returned here

Returns via textH the value of a particular element in the specified wave.

The value is returned in the textH handle, which you must allocate before calling MDGetTextWavePoint-
Value. Any previous contents of textH are overwritten. textH is yours to dispose when you are finished
with it.

If the wave is not a text wave, returns an error code and does not alter textH.

indices is an array of dimension indices. For example, for a 3D wave:

indices[0] should contain the row number

indices[1] should contain the column number

indices[2] should contain the layer number

This routine ignores indices for dimensions that do not exist in the wave.

The function result is 0 or an error code.

On output, if there is no error, textH contains a copy of the characters in the specified wave element. An
element in an Igor text wave can contain any number of characters, including zero. Therefore, the handle
can contain any number of characters. Igor text waves can contain any characters, including control char-
acters. No characters codes are considered illegal.

Note that the text in the handle is not null terminated. Use WMGetHandleSize to find the number of bytes
in the handle. To use C string functions on this text you need to copy it to a local buffer and null-terminate
it or add a null terminator to the handle. If you pass the handle back to Igor, you must remove the null ter-
minator. See Understand the Difference Between a String in a Handle and a C String on page 233.

See the example below for MDSetTextWavePointValue.

Thread Safety

MDGetTextWavePointValue is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions
explained under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread
created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks
on page 178 for details.

Chapter 15 — XOPSupport Routines Waves

285

MDSetTextWavePointValue
int
MDSetTextWavePointValue(waveH, indices, textH)
waveHndl waveH; // Handle to the wave of interest
IndexInt indices[MAX_DIMENSIONS]; // Identifies the point of interest
Handle textH; // Value to store in wave

Transfers the characters in textH to the specified point in the specified wave. The contents of textH is not
altered.

If the wave is not a text wave, returns an error code.

indices is an array of dimension indices. For example, for a 3D wave:

indices[0] should contain the row number

indices[1] should contain the column number

indices[2] should contain the layer number

This routine ignores indices for dimensions that do not exist in the wave.

A point in an Igor text wave can contain any number of characters, including zero. Therefore, the handle
can contain any number of characters. Igor text waves can contain any characters, including control char-
acters. No characters codes are considered illegal.

The text in the handle must not be null terminated. If you have added a null terminator to the handle,
remove it before calling MDSetTextWavePointValue.

After calling MDSetTextWavePointValue, the handle is still yours so you should dispose it when you no
longer need it.

The function result is 0 or an error code.

Example

This example adds an asterisk to each element of a wave of two dimensions. It illustrates the ease of using
MDGetTextWavePointValue and MDSetTextWavePointValue. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

int numDimensions;
IndexInt dimensionSizes[MAX_DIMENSIONS+1];
CountInt numRows, numColumns;
IndexInt row, column;
IndexInt indices[MAX_DIMENSIONS];
Handle textH;
int result;

if (result = MDGetWaveDimensions(waveH, &numDimensions, dimensionSizes))
return result;

if (numDimensions != 2)
return REQUIRES_2D_WAVE; // An error code defined by your XOP

numRows = dimensionSizes[ROWS];
numColumns = dimensionSizes[COLUMNS];
textH = WMNewHandle(0L);
if (textH == NULL)

return NOMEM;

MemClear(indices, sizeof(indices));
for(column=0; column<numColumns; column++) {

indices[1] = column;
for(row=0; row<numRows; row++) {

indices[0] = row;
if (result = MDGetTextWavePointValue(waveH, indices, textH))

Chapter 15 — XOPSupport Routines Waves

286

break;
if (WMPtrAndHand("*", textH, 1)) { // Append an asterisk to handle

result = NOMEM;
break;

}
if (result = MDSetTextWavePointValue(waveH, indices, textH))

break;
}

}

WMDisposeHandle(textH);

Thread Safety

MDSetTextWavePointValue is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions
explained under Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread
created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks
on page 178 for details.

GetTextWaveData
int
GetTextWaveData(waveH, mode, textDataHPtr)
waveHndl waveH; // Handle to the wave of interest
int mode; // Determines format of returned data
Handle* textDataHPtr; // Data is returned here

Returns all of the text for the specified text wave via textDataHPtr.

NOTE: This routine is for advanced programmers who are comfortable with pointer arithmetic and
handles. Less experienced programmers should use MDGetTextWavePointValue to get the
wave text values one at a time.

If the function result is 0 then *textDataHPtr is a handle that you own. When you are finished, dispose of it
using WMDisposeHandle.

In the event of an error, the function result will be non-zero and *textDataHPtr will be NULL.

The returned handle will contain the text for all of the wave's elements in one of several formats explained
below. The format depends on the mode parameter.

Chapter 15 — XOPSupport Routines Waves

287

Modes 0 and 1 use a null byte to mark the end of a string and thus will not work if 0 is considered to be a
legal character value.

Using modes 1 and 2, you can determine the length of element i by subtracting offset i from offset i+1.

You can convert the offsets into pointers to strings by adding **textDataHPtr to each of the offsets.

For the purposes of GetTextWaveData, the wave is treated as a 1D wave regardless of its true dimension-
ality. If waveH a 2D text wave, the data returned via textDataHPtr is in column-major order. This means
that the data for each row of the first column appears first in memory, followed by the data for the each
row of the next column, and so on.

As explained under WM Memory XOPSupport Routines on page 195, on Macintosh the Handle data
types are limited to 2 GB. If the wave text data requires more than 2 GB, GetTextWaveData will fail and
return an error, even when running IGOR64.

Returns 0 or an error code.

For an example using this routine, see TestGetAndSetTextWaveData in XOPWaveAccess.c.

Mode Data Format

Mode=0 The returned handle contains one null-terminated C string for each element of
the wave.

Example:

"Zero"<null>
"One"<null>
"Two"<null>

Mode=1 The returned handle contains a list of offsets to strings followed by the string
data. There is one extra offset which is the offset to where the string would be
for the next element if the wave had one more element.

The offsets are 32 bits in IGOR32 and 64 bits in IGOR64.

The text for each element in the wave is represented by a null-terminated C
string.

Example:

<Offset to "Zero">
<Offset to "One">
<Offset to "Two">
<Extra offset>
"Zero"<null>
"One"<null>
"Two"<null>

Mode=2 The returned handle contains a list of offsets to strings followed by the string
data.

The offsets are 32 bits in IGOR32 and 64 bits in IGOR64.

The text for each element in the wave is not null-terminated.

Example:

<Offset to "Zero">
<Offset to "One">
<Offset to "Two">
<Extra offset>
"Zero"
"One"
"Two"

Chapter 15 — XOPSupport Routines Waves

288

Thread Safety

GetTextWaveData is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

SetTextWaveData
int
SetTextWaveData(waveH, mode, textDataHPtr)
waveHndl waveH; // Handle to the wave of interest
int mode; // Determines format of returned data
Handle textDataH; // Data is passed to Igor here

Sets all of the text for the specified text wave according to textDataH.

NOTE: This routine is for advanced programmers who are comfortable with pointer arithmetic and
handles. Less experienced programmers should use MDSetTextWavePointValue to get the
wave text values one at a time.

WARNING: If you pass inconsistent data in textDataH you will cause Igor to crash.

SetTextWaveData can not change the number of points in the text wave. Therefore the data in textDataH
must be consistent with the number of points in waveH. Otherwise a crash will occur.

Also, when using modes 1 or 2, the offsets must be correct. Otherwise a crash will occur. The offsets are 32
bits in IGOR32 and 64 bits in IGOR64.

Crashes caused by inconsistent data may occur at unpredictable times making it hard to trace it to the
problem. So triple-check your code.

You own the textDataH handle. When you are finished with it, dispose of it using WMDisposeHandle.

The format of textDataH depends on the mode parameter. See the documentation for GetTextWaveData
for a description of these formats.

Modes 0 and 1 use a null byte to mark the end of a string and thus will not work if 0 is considered to be a
legal character value.

As explained under WM Memory XOPSupport Routines on page 195, on Macintosh the Handle data
types are limited to 2 GB. If the wave text data requires more than 2 GB, you can not use SetTextWave-
Data, even when running IGOR64.

Returns 0 or an error code.

For an example using this routine, see TestGetAndSetTextWaveData in XOPWaveAccess.c.

In Igor Pro 6.23, the SetTextWaveData routine was changed to return an error if the wave is locked or if the
wave was passed to a thread as a parameter to the thread worker function. This change is in Igor, not in
the XOP Toolkit.

Thread Safety

SetTextWaveData is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under
Waves Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

Chapter 15 — XOPSupport Routines Waves

289

HoldWave
int
HoldWave(waveH)
waveHndl waveH;

waveH is a wave handle that you have obtained from Igor.

As of XOP Toolkit 6.30, if waveH is NULL, HoldWave does nothing and returns 0.

HoldWave tells Igor that you are holding a handle referencing the wave and that it should not be deleted
until you release it by calling ReleaseWave. This prevents a crash that would occur if Igor deleted a wave
to which you held a handle and you later used that handle.

In most XOP programming, such as a straight-forward external operation or external function, you do not
need to call HoldWave/ReleaseWave. If you are just using the wave handle temporarily during the execu-
tion of your external function or operation and you make no calls that could potentially delete the wave
then you do not need to and should not call HoldWave and ReleaseWave.

You need to call HoldWave/ReleaseWave only if you are storing a wave handle over a period during
which Igor could delete the wave. For example, you might indefinitely store a wave handle in a global
variable or you might do a callback, such as XOPCommand or CallFunction, that could cause the wave to
be deleted. In such cases, call HoldWave to prevent Igor from deleting the wave until you are finished
with it. Then call ReleaseWave to permit Igor to delete the wave.

HoldWave returns 0 or IGOR_OBSOLETE as the function result.

See Wave Reference Counting on page 131 for background information and further details.

HoldWave returns an error code as the function result, typically 0 for success or IGOR_OBSOLETE.

HoldWave was added in Igor Pro 6.20. If you call this with an earlier version of Igor, HoldWave will
return IGOR_OBSOLETE and do nothing.

Prior to XOP Toolkit 6.30, HoldWave had a second parameter. That parameter was removed in XOP Tool-
kit 6.30. This change does not affect XOPs compiled with earlier versions of the XOP Toolkit. It will cause a
compile error that you will have to correct if you used HoldWave and compile with XOP Toolkit 6.30 or
later.

Thread Safety

HoldWave is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under Waves
Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but not
from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for details.

ReleaseWave
int
ReleaseWave(waveRefPtr)
waveHndl* waveRefPtr;

Tells Igor that you are no longer holding a wave.

waveRefPtr contains the address of your waveHndl variable that refers to a wave. ReleaseWave sets
*waveRefPtr to NULL so your waveHndl variable is not valid after you call ReleaseWave.

If *waveRefPtr is NULL on input then ReleaseWave does nothing and returns 0.

See Wave Reference Counting on page 131 for details.

ReleaseWave returns an error code as the function result, typically 0 for success or IGOR_OBSOLETE.

ReleaseWave was added in Igor Pro 6.20. If you call this with an earlier version of Igor, ReleaseWave will
return IGOR_OBSOLETE and do nothing.

Chapter 15 — XOPSupport Routines Waves

290

Thread Safety

ReleaseWave is Igor-thread-safe with Igor Pro 6.20 or later with certain exceptions explained under Waves
Passed to Igor Threads as Parameters on page 177. You can call it from a thread created by Igor but not
from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for details.

Chapter 15 — XOPSupport Routines Variables

291

Routines for Accessing Variables
These routines allow you to create or get or set the value of Igor numeric and string variables.

Most of the routines listed in this section deal with global variables in the current data folder. The excep-
tions are GetNVAR, SetNVAR, GetSVAR and SetSVAR which are used in conjunction with fields in Igor
Pro structures to access global variables referenced by NVAR and SVAR variables in user-defined func-
tions.

In addition to the routines in this section, you can use GetDataFolderObject and SetDataFolderObject to
access global variables.

These routines do not permit you to access local variables in user-defined functions.

The routines in this section can also be used to create, set and read macro-local variables. Since macro pro-
gramming is deprecated, we recommend that you use these routines to deal with global variables only.
Some of the routines have a parameter that allows you to specify that you want to deal with global vari-
ables.

Routines that deal with variables used by Operation Handler-based external operations are described
under Operation Handler Routines on page 242.

To set file loader output variables, see Routines for File-Loader XOPs on page 345.

Variable
int
Variable(varName, varType)
char* varName; // C string containing name of variable
int varType; // Data type of variable

NOTE: We recommend that you use SetIgorIntVar, SetIgorFloatingVar, SetIgorComplexVar or
SetIgorStringVar instead of Variable as they are easier to use.

When called from the command line or from a user-defined function, Variable creates a global numeric or
string variable in the current data folder.

When called from a macro, if the VAR_GLOBAL bit is set in the varType parameter, Variable creates a
global numeric or string variable in the current data folder. If VAR_GLOBAL is cleared Variable creates a
macro-local variable. To give consistent behavior it is recommended that you always set the
VAR_GLOBAL bit.

You can not create a local variable in a user-defined function except through Operation Handler (see page
74).

When your XOP is called from the command line or from a user-defined function, the varType parameter
is defined as follows:

If you omit VAR_GLOBAL and you were called from a macro then a macro-local variable is created.

The function result is 0 if Variable was able to create the variable or an Igor error code if not.

varType Action

0 or VAR_GLOBAL Creates global string variable

NT_FP64 or
(NT_FP64 | VAR_GLOBAL)

Creates global numeric variable

(NT_FP64 | NT_CMPLX) or
(NT_FP64 | NT_CMPLX | VAR_GLOBAL)

Creates global complex numeric variable

Chapter 15 — XOPSupport Routines Variables

292

Prior to Igor Pro 5, Variable was used to create output variables from external operations, analogous to
V_flag or S_fileName. When programming for Igor Pro 5 or later, you should use Operation Handler (see
page 74) to implement your external operation. Operation Handler will create output variables for you so
you should not use Variable for that purpose.

Prior to Igor Pro 7, Variable allowed you to create a variable with a liberal name. This caused problems
later because Igor does not support liberal names for variables. With Igor Pro 7 or later, Variable returns
an error if the name is not a valid standard Igor name.

Example

static int
Test(void)
{

// These will always create global variables even if called from a macro.
Variable("globalNumericVar", NT_FP64 | VAR_GLOBAL);
Variable("globalStringVar", 0 | VAR_GLOBAL);

}

Thread Safety

Variable is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor but not
from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for details.

FetchNumVar
int
FetchNumVar(varName, doublePtr1, doublePtr2)
char* varName; // C string containing name of variable
double* doublePtr1; // Receives contents of real part of variable
double* doublePtr2; // Receives contents of imag part of variable

Returns the value of the named Igor numeric variable.

When called from the command line or from a user-defined function, FetchNumVar looks for a global
variable in the current data folder.

When called from a macro, FetchNumVar first looks for a macro-local variable with the specified name. If
none is found, it looks for a global variable in the current data folder.

You can not fetch a local variable in a user-defined function except through Operation Handler (see page
74).

Returns -1 if the variable does not exist or the numeric type of the variable if it does.

The returned numeric type will be either NT_FP64 (double-precision) or (NT_FP64 | NT_CMPLX) (dou-
ble-precision, complex).

If the variable is not complex, the value returned through doublePtr2 is undefined but you still must pass
in a pointer to a valid double because some versions of Igor will access it even if the Igor variable is not
complex.

Thread Safety

FetchNumVar is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

Chapter 15 — XOPSupport Routines Variables

293

StoreNumVar
int
StoreNumVar(varName, doublePtr1, doublePtr2)
char* varName; // C string containing name of variable
double* doublePtr1; // Points to value to store in real part
double* doublePtr2; // Points to value to store in imag

NOTE: We recommend that you use SetIgorIntVar, SetIgorFloatingVar or SetIgorComplexVar instead
of StoreNumVar as they are easier to use.

Sets the value of the named Igor variable.

When called from the command line or from a user-defined function, StoreNumVar looks for a global
variable in the current data folder.

When called from a macro, StoreNumVar first looks for a macro-local variable with the specified name. If
none is found, it looks for a global variable in the current data folder.

You can not set a local variable in a user-defined function except through Operation Handler (see page
74).

Returns -1 if the variable does not exist or the numeric type of the variable if it does.

The numeric type will be either NT_FP64 (double-precision) or (NT_FP64 | NT_CMPLX) (double-preci-
sion, complex).

If the variable is not complex, the value pointed to by doublePtr2 does not matter but it must point to a
valid double variable because some versions of Igor will access it even if the Igor variable is not complex.

Thread Safety

StoreNumVar is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

FetchStrVar
int
FetchStrVar(varName, stringPtr)
char* varName; // C string containing name of string
char stringPtr[256]; // Receives contents of string

Fetches the contents of the named Igor string variable.

When called from the command line or from a user-defined function, FetchStrVar looks for a global vari-
able in the current data folder.

When called from a macro, FetchStrVar first looks for a macro-local variable with the specified name. If
none is found, it looks for a global variable in the current data folder.

You can not fetch a local variable in a user-defined function except through Operation Handler (see page
74).

The function result is 0 if it was able to fetch the string or an Igor error code if the string variable does not
exist.

stringPtr must point to an array of 256 characters.

On output, stringPtr contains a null-terminated C string.

FetchStrVar will never return more than 255 characters. If you want to access any characters beyond the
first 255, use FetchStrHandle instead of FetchStrVar.

Chapter 15 — XOPSupport Routines Variables

294

Thread Safety

FetchStrVar is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

StoreStrVar
int
StoreStrVar(varName, stringPtr)
char* varName; // C string containing name of string
char* stringPtr; // C string to store in string variable

NOTE: We recommend that you use SetIgorStringVar instead of StoreStrVar as it is easier to use.

Sets the contents of the named Igor string variable.

When called from the command line or from a user-defined function, StoreStrVar looks for a global vari-
able in the current data folder.

When called from a macro, StoreStrVar first looks for a macro-local variable with the specified name. If
none is found, it looks for a global variable in the current data folder.

You can not set a local variable in a user-defined function except through Operation Handler (see page
74).

The function result is 0 if it was able to store the string or an Igor error code if the string variable does not
exist.

stringPtr is a null-terminated C string.

There is no limit to the length of the C string pointed to by stringPtr.

Thread Safety

StoreStrVar is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

FetchStrHandle
Handle
FetchStrHandle(varName)
char* varName; // C string containing name of string

Returns the handle containing the text for the named Igor string variable.

Returns NULL if there is no such string variable.

When called from the command line or from a user-defined function, FetchStrHandle looks for a global
variable in the current data folder.

When called from a macro, FetchStrHandle first looks for a macro-local variable with the specified name.
If none is found, it looks for a global variable in the current data folder.

You can not fetch a local variable in a user-defined function except through Operation Handler (see page
74).

Note that the text in the handle is not null terminated. Use WMGetHandleSize to find the number of bytes
in the handle. To use C string functions on this text you need to copy it to a local buffer and null-terminate
it or add a null terminator to the handle. You must remove the null terminator before control returns to
Igor. See Understand the Difference Between a String in a Handle and a C String on page 233.

NOTE: The returned handle belongs to Igor. You must not dispose of or otherwise modify this handle.

Chapter 15 — XOPSupport Routines Variables

295

You must use the handle immediately and then not refer to it again since Igor will dispose it if the user
kills the string variable.

Thread Safety

FetchStrHandle is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

SetIgorIntVar
int
SetIgorIntVar(numVarName, value, forceGlobal)
char* numVarName; // Name of the Igor numeric variable to set
int value; // Value to set it to
int forceGlobal; // Non-zero to create a global variable

Creates an Igor numeric variable if it does not already exist. Sets the variable to an integer value.

When called from the command line or from a user-defined function, SetIgorIntVar always creates and/or
sets a global variable in the current data folder.

When called from a macro, SetIgorIntVar creates and/or sets a global variable in the current data folder if
forceGlobal is non-zero and creates and/or sets a macro-local variable if forceGlobal is 0. To get consistent
behavior regardless of how you are called, pass 1 for forceGlobal.

You can not set a local variable in a user-defined function except through Operation Handler (see page
74).

The function result is 0 or an error code.

In the event of a name conflict with a wave or string variable in the same scope, SetIgorIntVar will return
an error.

Prior to Igor Pro 5, SetIgorIntVar was used to create output variables from external operations, analogous
to V_flag. When programming for Igor Pro 5 or later, you should use Operation Handler (see page 74) to
implement your external operation. Operation Handler will create output variables for you so you should
not use SetIgorIntVar for that purpose.

Prior to Igor Pro 7, SetIgorIntVar allowed you to create a variable with a liberal name. This caused
problems later because Igor does not support liberal names for variables. With Igor Pro 7 or later,
SetIgorIntVar returns an error if the name is not a valid standard Igor name.

Thread Safety

SetIgorIntVar is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

SetIgorFloatingVar
int
SetIgorFloatingVar(numVarName, valuePtr, forceGlobal)
char* numVarName; // Name of the Igor numeric variable to set
double* valuePtr; // Pointer to double value to set it to
int forceGlobal; // Non-zero to create a global variable

Creates an Igor numeric variable if it does not already exist. Sets the variable to a floating-point value.

When called from the command line or from a user-defined function, SetIgorFloatingVar always creates
and/or sets a global variable in the current data folder.

Chapter 15 — XOPSupport Routines Variables

296

When called from a macro, SetIgorFloatingVar creates and/or sets a global variable in the current data
folder if forceGlobal is non-zero and creates and/or sets a macro-local variable if forceGlobal is 0. To get
consistent behavior regardless of how you are called, pass 1 for forceGlobal.

You can not set a local variable in a user-defined function except through Operation Handler (see page
74).

The function result is 0 or an error code.

In the event of a name conflict with a wave or string variable in the same scope, SetIgorFloatingVar will
return an error.

Prior to Igor Pro 5, SetIgorFloatingVar was used to create output variables from external operations, anal-
ogous to V_flag. When programming for Igor Pro 5 or later, you should use Operation Handler (see page
74) to implement your external operation. Operation Handler will create output variables for you so you
should not use SetIgorFloatingVar for that purpose.

Prior to Igor Pro 7, SetIgorFloatingVar allowed you to create a variable with a liberal name. This caused
problems later because Igor does not support liberal names for variables. With Igor Pro 7 or later, SetIgor-
FloatingVar returns an error if the name is not a valid standard Igor name.

Thread Safety

SetIgorFloatingVar is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

SetIgorComplexVar
int
SetIgorComplexVar(numVarName, realPtr, imagPtr, forceGlobal)
char* numVarName; // Name of the Igor complex numeric variable to set
double* realPtr; // Pointer to real part of value to set it to
double* imagPtr; // Pointer to imaginary part of value to set it to
int forceGlobal; // Non-zero to create a global variable

Creates an Igor complex numeric variable if it does not already exist. Sets the variable to a complex float-
ing-point value.

When called from the command line or from a user-defined function, SetIgorComplexVar always creates
and/or sets a global variable in the current data folder.

When called from a macro, SetIgorComplexVar creates and/or sets a global variable in the current data
folder if forceGlobal is non-zero and creates and/or sets a macro-local variable if forceGlobal is 0. To get
consistent behavior regardless of how you are called, pass 1 for forceGlobal.

You can not set a local variable in a user-defined function except through Operation Handler (see page
74).

The function result is 0 or an error code.

In the event of a name conflict with a wave or string variable in the same scope, SetIgorComplexVar will
return an error.

Prior to Igor Pro 5, SetIgorComplexVar was used to create output variables from external operations, anal-
ogous to V_flag. When programming for Igor Pro 5 or later, you should use Operation Handler (see page
74) to implement your external operation. Operation Handler will create output variables for you so you
should not use SetIgorComplexVar for that purpose.

Prior to Igor Pro 7, SetIgorComplexVar allowed you to create a variable with a liberal name. This caused
problems later because Igor does not support liberal names for variables. With Igor Pro 7 or later, SetIgor-
ComplexVar returns an error if the name is not a valid standard Igor name.

Chapter 15 — XOPSupport Routines Variables

297

Thread Safety

SetIgorComplexVar is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

SetIgorStringVar
int
SetIgorStringVar(stringVarName, stringVarValue, forceGlobal)
char* stringVarName; // Name of the Igor string variable to set
char* stringVarValue; // C string value to store in string variable
int forceGlobal; // Non-zero to create a global string

Creates an Igor string variable if it does not already exist. Stores the specified string in the variable.

When called from the command line or from a user-defined function, SetIgorStringVar always creates
and/or sets a global variable in the current data folder.

When called from a macro, SetIgorStringVar creates and/or sets a global variable in the current data folder
if forceGlobal is non-zero and creates and/or sets a macro-local variable if forceGlobal is 0. To get consis-
tent behavior regardless of how you are called, pass 1 for forceGlobal.

You can not set a local variable in a user-defined function except through Operation Handler (see page
74).

stringVarValue is a null-terminated C string of any length.

The function result is 0 or an error code.

In the event of a name conflict with a wave or numeric variable in the same scope, SetIgorStringVar will
return an error.

Prior to Igor Pro 5, the SetIgorStringVar function was used to create output variables from external opera-
tions, analogous to S_fileName. When programming for Igor Pro 5 or later, you should use Operation
Handler (see page 74) to implement your external operation. Operation Handler will create output vari-
ables for you so you should not use SetIgorStringVar for that purpose.

Thread Safety

SetIgorStringVar is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

GetNVAR
int
GetNVAR(nvp, realPartPtr, imagPartPtr, numTypePtr)
NVARRec* nvp; // Pointer to an NVARRec field in a structure
double* realPartPtr; // Real part of variable returned here
double* imagPartPtr; // Imaginary part of variable returned here
int* numTypePtr; // Numeric type of variable returned here

Retrieves the data and type of a global numeric variable referenced by an NVAR field in an Igor Pro struc-
ture.

nvp is a pointer to an NVAR field in an Igor structure. The Igor structure pointer would be passed into the
XOP as a parameter to an external operation or external function.

If GetNVAR returns 0 then *realPartPtr will be the contents of the real part of the global variable and
*imagPartPtr will be the contents of the imaginary part of the global variable, if it is complex.

realPartPtr and imagPartPtr must each point to storage for a double whether the global variable is com-
plex or not.

Chapter 15 — XOPSupport Routines Variables

298

*numTypePtr is set to the numeric type of the global. This will be either NT_FP64 or (NT_FP64 |
NT_CMPLX).

Returns 0 or an error code.

See also NVARs and SVARs In Structures on page 211.

Thread Safety

GetNVAR is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

SetNVAR
int
SetNVAR(nvp, realPartPtr, imagPartPtr)
NVARRec* nvp; // Pointer to an NVARRec field in a structure
double* realPartPtr; // Real part of variable supplied here
double* imagPartPtr; // Imaginary part of variable supplied here

Sets the value of a global numeric variable referenced by an NVAR field in an Igor Pro structure.

nvp is a pointer to an NVAR field in an Igor structure. The Igor structure pointer would be passed into the
XOP as a parameter to an external operation or external function.

*realPartPtr is the value to store in the real part of the global variable and *imagPartPtr is the value to store
in the imaginary part of the global variable, if it is complex.

realPartPtr and imagPartPtr must each point to storage for a double whether the global variable is com-
plex or not.

Returns 0 or an error code.

See also NVARs and SVARs In Structures on page 211.

Thread Safety

SetNVAR is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

GetSVAR
int
GetSVAR(nvp, strHPtr)
NVARRec* nvp; // Pointer to an NVARRec field in a structure
Handle* strHPtr; // Handle for string variable returned here

Retrieves the handle for a global string variable referenced by an SVAR field in an Igor Pro structure.

svp is a pointer to an SVAR field in an Igor structure. The Igor structure pointer would be passed into the
XOP as a parameter to an external operation or external function.

If GetSVAR returns 0 then *strHPtr will be the handle for an Igor global string variable.

NOTE: *strHPtr can be NULL if the global string variable contains no characters. You must test for this
case before using *strHPtr.

NOTE: *strHPtr belongs to Igor. Do not dispose it or alter it. Use this function only to read the contents
of the string.

Note that the text in the handle is not null terminated. Use WMGetHandleSize to find the number of bytes
in the handle. To use C string functions on this text you need to copy it to a local buffer and null-terminate
it or add a null terminator to the handle. You must remove the null terminator before control returns to
Igor. See Understand the Difference Between a String in a Handle and a C String on page 233.

Chapter 15 — XOPSupport Routines Variables

299

Returns 0 or an error code.

See also NVARs and SVARs In Structures on page 211.

Thread Safety

GetSVAR is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

SetSVAR
int
SetSVAR(nvp, strH)
NVARRec* nvp; // Pointer to an NVARRec field in a structure
Handle* strH; // Handle containing text for string variable

Sets the value of a global string variable referenced by an SVAR field in an Igor Pro structure.

svp is a pointer to an SVAR field in an Igor structure. The Igor structure pointer would be passed into the
XOP as a parameter to an external operation or external function.

strH is a handle that you own. It can be NULL to set the global string variable to empty.

NOTE: Igor copies the contents of strH. You retain ownership of it and must dispose it.

Note that the text in the handle is not null terminated. See Understand the Difference Between a String in
a Handle and a C String on page 233.

Returns 0 or an error code.

See also NVARs and SVARs In Structures on page 211.

Thread Safety

SetSVAR is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

Chapter 15 — XOPSupport Routines Data Folders

300

Routines for Accessing Data Folders
Data folders provide hierarchical data storage for Igor data. Most simple XOPs have no need to deal with
them. For some advanced applications, being data-folder-aware will make your XOP more powerful. See
Dealing With Data Folders on page 141 for an orientation to data folder use in XOPs.

Many of these routines require that you pass a data folder handle to Igor. You obtain a data folder handle
from Igor via a DataFolderAndName operation parameter or by calling one of these routines:

Data folder handles belong to Igor and your XOP must not delete or directly modify them.

GetDataFolderNameOrPath
int
GetDataFolderNameOrPath(dataFolderH, flags, dataFolderPathOrName)
DataFolderHandle dataFolderH;
int flags;
char dataFolderPathOrName[MAXCMDLEN+1];

Given a handle to a data folder, returns the name of the data folder if bit 0 of flags is zero or a full path to
the data folder, including a trailing colon, if bit 0 of flags is set.

If bit 1 of flags is set, Igor returns the dataFolderPathOrName with single quotes if they would be needed
to use the name or path in Igor’s command line. If bit 1 of flags is zero, dataFolderPathOr-Name will have
no quotes.

Set bit 1 of flags if you are going to use the path or name in a command that you submit to Igor via the
XOPCommand or XOPSilentCommand callbacks. Clear bit 1 of flags for other purpose if you want an
unquoted path or name.

All other bits of the flags parameter are reserved; you must set them to zero.

If dataFolderH is NULL, GetDataFolderNameOrPath uses the current data folder.

A data folder name can be up to MAX_OBJ_NAME characters while a full or partial path can be up to
MAXCMDLEN characters. To be safe, allocate MAXCMDLEN+1 characters for dataFolderPathOrName.

The function result is 0 or error code.

Thread Safety

GetDataFolderNameOrPath is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread
created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks
on page 178 for details.

GetDataFolderIDNumber
int
GetDataFolderIDNumber(dataFolderH, IDNumberPtr)
DataFolderHandle dataFolderH;
int* IDNumberPtr;

Returns the unique ID number for the data folder via IDNumberPtr.

If dataFolderH is NULL, GetDataFolderIDNumber uses the current data folder.

GetRootDataFolder GetCurrentDataFolder GetNamedDataFolder

GetDataFolderByIDNumber GetParentDataFolder GetIndexedChildDataFolder

GetDataFolderObject GetWavesDataFolder NewDataFolder

Chapter 15 — XOPSupport Routines Data Folders

301

Each data folder has a unique ID number that stays the same as long as the data folder exists, even if it is
renamed or moved. If you need to reference a data folder over a period of time during which it could be
killed, then you should store the data folder’s ID number.

Given the ID number, you can call GetDataFolderByIDNumber to check if the data folder still exists and
to get a handle to it.

The ID number is valid until the user creates a new Igor experiment or quits Igor. ID numbers are not
remembered from one running of Igor to the next.

The function result is 0 or error code.

Thread Safety

GetDataFolderIDNumber is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread cre-
ated by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on
page 178 for details.

GetDataFolderProperties
int
GetDataFolderProperties(dataFolderH, propertiesPtr)
DataFolderHandle dataFolderH;
int* propertiesPtr;

Returns the bit-flag properties of the specified data folder.

If dataFolderH is NULL, it uses the current data folder.

At present, Igor does not support any properties and this routine will always return 0 in *propertiesPtr. In
the future, it might support properties such as “locked”.

The function result is 0 or error code.

Thread Safety

GetDataFolderProperties is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread cre-
ated by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on
page 178 for details.

SetDataFolderProperties
int
SetDataFolderProperties(dataFolderH, properties)
DataFolderHandle dataFolderH;
int properties;

Sets the bit-flag properties of the specified data folder.

If dataFolderH is NULL, it uses the current data folder.

At present, Igor does not support any properties and this routine does nothing. In the future, it might sup-
port properties such as “locked”.

The function result is 0 or error code.

Thread Safety

SetDataFolderProperties is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread cre-
ated by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on
page 178 for details.

Chapter 15 — XOPSupport Routines Data Folders

302

GetDataFolderListing
int
GetDataFolderListing(dataFolderH, optionsFlag, listingH)
DataFolderHandle dataFolderH;
int optionsFlag; // Specifies what is to be listed
Handle listingH; // Listing text is stored in handle.

Returns via listingH a listing of the contents of the specified data folder.

You must create listingH and dispose it when you no longer need it. Any contents in listingH are replaced
by the listing.

Note that the text in the handle is not null terminated. Use WMGetHandleSize to find the number of bytes
in the handle. To use C string functions on this text you need to copy it to a local buffer and null-terminate
it or add a null terminator to the handle and lock the handle. See Understand the Difference Between a
String in a Handle and a C String on page 233.

If dataFolderH is NULL, GetDataFolderListing uses the current data folder.

optionsFlag determines what is in the listing.

If bit 0 of optionsFlag is set, a list of subfolders is included:

"FOLDERS:<subFolder0>,<subFolder1>...,<subFolderN>;<CR>"

If bit 1 of optionsFlag is set, a list of waves is included:

"WAVES:<waveName0>,<waveName1>...,<waveNameN>;<CR>"

If bit 2 of optionsFlag is set, a list of numeric variables is included:

"VARIABLES:<varName0>,<varName1>...,<varNameN>;<CR>"

If bit 3 of optionsFlag is set, a list of string variables is included:

"STRINGS:<strVarName0>,<strVarName1>...,<strVarNameN>;<CR>"

All other bits are reserved and should be set to zero.

Names in the listing of waves, variables and strings are quoted with single quotes if this is necessary to
make them suitable for use in the Igor command line.

The function result is 0 or error code.

Example

DataFolderHandle dataFolderH;
Handle listingH;
int result;

listingH = WMNewHandle(0L);
if (listingH == NULL)

return NOMEM;
if (result = GetRootDataFolder(0, &dataFolderH)

return result;
if (result = GetDataFolderListing(dataFolderH, 15, &listingH))

return result;
<Use contents of listingH>
WMDisposeHandle(listingH);

Thread Safety

GetDataFolderListing is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created
by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page
178 for details.

Chapter 15 — XOPSupport Routines Data Folders

303

GetRootDataFolder
int
GetRootDataFolder(refNum, rootDataFolderHPtr)
int refNum; // Not used - always pass zero.
DataFolderHandle* rootDataFolderHPtr; // Root returned here.

Returns a handle to the root data folder in *rootDataFolderHPtr.

Data folder handles belong to Igor so you should not modify or dispose them.

The function result is 0 or error code.

Thread Safety

GetRootDataFolder is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

GetCurrentDataFolder
int
GetCurrentDataFolder(currentDataFolderHPtr)
DataFolderHandle* currentDataFolderHPtr; // Current returned here.

Returns a handle to the current data folder in *currentFolderHPtr.

Data folder handles belong to Igor so you should not modify or dispose them.

The function result is 0 or error code.

Thread Safety

GetCurrentDataFolder is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created
by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page
178 for details.

SetCurrentDataFolder
int
SetCurrentDataFolder(dataFolderH)
DataFolderHandle dataFolderH;

Sets the current data folder to the data folder referenced by dataFolderH.

The function result is 0 or error code.

Thread Safety

SetCurrentDataFolder is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created
by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page
178 for details.

GetNamedDataFolder
int
GetNamedDataFolder(startingDataFolderH, dataFolderPath, dataFolderHPtr)
DataFolderHandle startingDataFolderH;
char dataFolderPath[MAXCMDLEN+1];
DataFolderHandle* dataFolderHPtr;

Returns in *dataFolderHPtr the data folder specified by startingDataFolderH and dataFolderPath or
NULL if there is no such data folder.

Data folder handles belong to Igor so you should not modify or dispose them.

Chapter 15 — XOPSupport Routines Data Folders

304

dataFolderPath can be an absolute path (e.g., "root:FolderA:FolderB:"), a relative path (e.g., ":FolderA:Fol-
derB:") or a data folder name (e.g., "FolderA"). It can also be just ":", a form of relative path that refers to the
starting data folder.

If dataFolderPath is an absolute path then startingDataFolderH is immaterial - you can pass any data
folder handle or NULL. An absolute path must always start with "root:".

If dataFolderPath is a relative path or a data folder name then dataFolderPath is relative to startingData-
FolderH. However, if startingDataFolderH is NULL then dataFolderPath is relative to the current folder.

Absolute and relative paths may include the trailing colon or not, except for the case of root.

Passing "root" as dataFolderPath will not find the root data folder because "root" is a data folder name, not
a path. Igor will try to find a data folder named "root" relative to the current data folder. The actual root
data folder is never relative to any data folder so it can not be found this way. Use "root:" instead.

Liberal names in dataFolderPath can be quoted or not. Both "root:Folder.1" and "root:'Folder.1'" are accept-
able.

The function result is 0 or error code.

Example

DataFolderHandle rootH, dataFolderH;
int result;

if (result = GetRootDataFolder(0, &rootH))
return result;

if (result = GetNamedDataFolder(rootH, ":Packages:", &dataFolderH))
return result;

Thread Safety

GetNamedDataFolder is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created
by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page
178 for details.

GetDataFolderByIDNumber
int
GetDataFolderByIDNumber(IDNumber, dataFolderHPtr)
int IDNumber;
DataFolderHandle* dataFolderHPtr;

Returns via *dataFolderHPtr the data folder handle associated with the specified ID number or NULL if
there is no such data folder.

Data folder handles belong to Igor so you should not modify or dispose them.

The function result is 0 if OK or a non-zero error code if the data folder doesn’t exist, which would be the
case if the data folder were killed since you got its ID number.

Each data folder has a unique ID number that stays the same as long as the data folder exists. You can get
the ID number for a data folder using GetDataFolderIDNumber.

If you need to reference a data folder over a period of time during which it could be killed, then you
should store the data folder’s ID number. Given the ID number, GetDataFolderByIDNumber tells you if
the data folder still exists and, if it does, gives you the data folder handle.

The ID number is valid until the user creates a new Igor experiment or quits Igor. ID numbers are not
remembered from one running of Igor to the next.

The function result is 0 or error code.

Chapter 15 — XOPSupport Routines Data Folders

305

Thread Safety

GetDataFolderByIDNumber is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread
created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks
on page 178 for details.

GetParentDataFolder
int
GetParentDataFolder(dataFolderH, parentFolderHPtr)
DataFolderHandle dataFolderH;
DataFolderHandle* parentFolderHPtr;

Returns the parent of the specified data folder via *parentFolderHPtr.

Data folder handles belong to Igor so you should not modify or dispose them.

If dataFolderH is NULL, GetParentDataFolder uses the current data folder.

Passing the root data folder as dataFolderH is an error. In this case GetParentDataFolder returns
NO_PARENT_DATAFOLDER.

If dataFolderH references a free data folder then GetParentDataFolder returns
NO_PARENT_DATAFOLDER.

The function result is 0 or error code.

Example

// This example shows how to determine if a data folder is free
int dataFolderIsFree = 0; // Assume not free
if (dfH != GetRootDataFolder()) {

DataFolderHandle parentDFH;
if (GetParentDataFolder(dfH,&parentDFH) == NO_PARENT_DATAFOLDER)

dataFolderIsFree = 1; // It’s free
}

Thread Safety

GetParentDataFolder is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

GetNumChildDataFolders
int
GetNumChildDataFolders(parentDataFolderH, numChildDataFolderPtr)
DataFolderHandle parentFolderH;
int* numChildDataFolderPtr;

Returns the number of child data folders in the specified parent data folder.

If parentDataFolderH is NULL, GetNumChildDataFolders uses the current data folder.

The function result is 0 or error code.

Thread Safety

GetNumChildDataFolders is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread cre-
ated by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on
page 178 for details.

Chapter 15 — XOPSupport Routines Data Folders

306

GetIndexedChildDataFolder
int
GetIndexedChildDataFolder(parentDataFolderH, index, childDataFolderHPtr)
DataFolderHandle parentFolderH;
int index; // 0-based index.
DataFolderHandle* childDataFolderHPtr;

Returns via childDataFolderHPtr a handle to the child data folder specified by the index.

Data folder handles belong to Igor so you should not modify or dispose them.

index starts from 0.

If parentDataFolderH is NULL, GetIndexedChildDataFolder uses the current data folder.

The function result is 0 or error code.

Thread Safety

GetIndexedChildDataFolder is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread
created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks
on page 178 for details.

GetWavesDataFolder
int
GetWavesDataFolder(waveH, dataFolderHPtr)
waveHndl waveH;
DataFolderHandle* dataFolderHPtr;

Returns via dataFolderHPtr the handle to the data folder containing the specified wave. This will be
NULL if the wave is a free wave.

Data folder handles belong to Igor so you should not modify or dispose them.

The function result is 0 or error code.

Thread Safety

GetWavesDataFolder is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created
by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page
178 for details.

NewDataFolder
int
NewDataFolder(parentFolderH, newDataFolderName, newDataFolderHPtr)
DataFolderHandle parentFolderH;
char newDataFolderName[MAX_OBJ_NAME+1];
DataFolderHandle* newDataFolderHPtr;

Creates a new data folder in the data folder specified by parentFolderH.

parentFolderH can be a handle to an Igor data folder or NULL to use the current data folder.

On output, *newDataFolderHPtr will contain a handle to the new data folder or NULL if an error
occurred.

Data folder handles belong to Igor so you should not modify or dispose them.

NewDataFolder does not change the current data folder. If you want to make the new folder the current
folder, call SetCurrentDataFolder after NewDataFolder.

The function result is 0 or error code.

Chapter 15 — XOPSupport Routines Data Folders

307

Thread Safety

NewDataFolder is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

KillDataFolder
int
KillDataFolder(dataFolderH)
DataFolderHandle dataFolderH;

Kills an existing data folder, removing it and its contents, including any child data folders, from memory.

dataFolderH is a handle to an existing Igor data folder or NULL to use the current data folder.

You will receive an error and the data folder will not be killed if it contains waves or variables that are in
use (e.g., displayed in tables or graphs or used in dependency formulas).

If you kill the current data folder or a data folder that contains the current data folder, Igor will set the cur-
rent data folder to the parent of the killed data folder.

If you kill the root data folder, its contents will be killed but not the root data folder itself.

NOTE: Once a data folder is successfully killed, dataFolderH is no longer valid. You must not use it again
for any purpose.

The function result is 0 or error code.

Thread Safety

KillDataFolder is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

DuplicateDataFolder
int
DuplicateDataFolder(sourceDataFolderH,parentDataFolderH,newDataFolderName)
DataFolderHandle sourceDataFolderH;
DataFolderHandle parentDataFolderH;
char newDataFolderName[MAX_OBJ_NAME+1];

Creates a clone of the source data folder. The contents of the destination will be clones of the contents of
the source.

sourceDataFolderH is a handle to the data folder to be duplicated or NULL to use the current data folder.

parentDataFolderH is a handle to the data folder in which the new data folder is to be created or NULL to
use the current data folder.

newDataFolderName is the name to be given to the new data folder.

The function result is 0 or error code.

Thread Safety

DuplicateDataFolder is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

Chapter 15 — XOPSupport Routines Data Folders

308

MoveDataFolder
int
MoveDataFolder(sourceDataFolderH, newParentDataFolderH)
DataFolderHandle sourceDataFolderH;
DataFolderHandle newParentDataFolderH;

Moves the source data folder into a new location in the hierarchy.

It is an error to attempt to move a parent folder into itself or one of its children.

sourceDataFolderH is a handle to the data folder to be moved or NULL to use the current data folder.

newParentDataFolderH is a handle to the data folder in which the source data folder is to be moved or
NULL to use the current data folder.

The function result is 0 or error code.

Thread Safety

MoveDataFolder is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

RenameDataFolder
int
RenameDataFolder(dataFolderH, newName)
DataFolderHandle dataFolderH;
char newName[MAX_OBJ_NAME+1];

Renames the data folder.

dataFolderH is a handle to the data folder to be renamed or NULL to use the current data folder.

The function result is 0 or error code.

Thread Safety

RenameDataFolder is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

GetNumDataFolderObjects
int
GetNumDataFolderObjects(dataFolderH, objectType, numObjectsPtr)
DataFolderHandle dataFolderH;
int objectType;
int* numObjectsPtr;

Returns via numObjectsPtr the number of objects of the specified type in the specified data folder.

If dataFolderH is NULL, GetNumDataFolderObjects uses the current data folder.

objectType is one of the following:

To find the number of data folders within the data folder, use GetNumChildDataFolders.

WAVE_OBJECT Waves

VAR_OBJECT Numeric variables

STR_OBJECT String variables

Chapter 15 — XOPSupport Routines Data Folders

309

Thread Safety

GetNumDataFolderObjects is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread cre-
ated by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on
page 178 for details.

GetIndexedDataFolderObject
int
GetIndexedDataFolderObject(dataFolderH,objectType,index,objectName,vp)
DataFolderHandle dataFolderH;
int objectType;
int index;
char objectName[MAX_OBJ_NAME+1];
DataObjectValuePtr vp;

Returns information that allows you to access an object of the specified type in the specified data folder.

index starts from 0.

If dataFolderH is NULL, GetIndexedDataFolderObject uses the current data folder.

objectType is one of the following:

For information on a data folder, use GetIndexedChildDataFolder.

You can pass NULL for objectName if you don’t need to know the name of the object.

If you do not want to get the value of the object, pass NULL for vp.

If vp is not NULL, then it is a pointer to a DataObjectValue union, defined in IgorXOP.h. GetIndexedData-
FolderObject sets fields depending on the object’s type:

Prior to XOP Toolkit 6 the waveH field of the DataObjectValue structure was named wavH.

The handles returned via the waveH and strH fields belong to Igor. Do not modify or dispose them.

Note that the text in a string handle is not null terminated. Use WMGetHandleSize to find the number of
bytes in the handle. To use C string functions on this text you need to copy it to a local buffer and null-ter-
minate it or add a null terminator to the handle. You must remove the null terminator before control
returns to Igor. See Understand the Difference Between a String in a Handle and a C String on page 233.

The function result is 0 or error code.

Thread Safety

GetIndexedDataFolderObject is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread
created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks
on page 178 for details.

WAVE_OBJECT Waves

VAR_OBJECT Numeric variables

STR_OBJECT String variables

WAVE_OBJECT Sets vp->waveH field to wave’s handle.

VAR_OBJECT Stores numeric variable’s value in vp->nv field.

STR_OBJECT Sets vp->strH field to strings’s handle.

Chapter 15 — XOPSupport Routines Data Folders

310

GetDataFolderObject
int
GetDataFolderObject(dataFolderH, objectName, objectTypePtr, vp)
DataFolderHandle dataFolderH;
char objectName[MAX_OBJ_NAME+1];
int* objectTypePtr;
DataObjectValuePtr vp;

Returns information about the named object in the specified data folder.

The main utility of this routine will be for getting access to a numeric or string variable in a specific data
folder.

If dataFolderH is NULL, GetDataFolderObject uses the current data folder.

On output, if the specified object exists, *objectTypePtr will be one of the following:

If you do not want to get the value of the object, pass NULL for vp.

If vp is not NULL, then it is a pointer to a DataObjectValue union, defined in IgorXOP.h. GetIndexedData-
FolderObject sets fields depending on the object’s type:

Prior to XOP Toolkit 6 the waveH field of the DataObjectValue structure was named wavH.

The handles returned via the waveH, strH and dfH fields belong to Igor. Do not modify or dispose them.

Use these handles immediately and do not store them. Once you return to Igor, Igor can kill the underly-
ing objects.

Note that the text in a string handle is not null terminated. Use WMGetHandleSize to find the number of
bytes in the handle. To use C string functions on this text you need to copy it to a local buffer and null-ter-
minate it or add a null terminator to the handle. You must remove the null terminator before control
returns to Igor. See Understand the Difference Between a String in a Handle and a C String on page 233.

The function result is 0 or error code if there is no object with the specified name.

Example

DataObjectValue v;
int objectType;
waveHndl waveH;
Handle strH;
double numVarValue;
DataFolderHandle dfH;
int err;

if (err = GetDataFolderObject(dfH, "AnObject", &objectType, &v))
return err;

WAVE_OBJECT Object is a wave.

VAR_OBJECT Object is a numeric variable.

STR_OBJECT Object is a string variable.

DATAFOLDER_OBJECT Object is a data folder.

WAVE_OBJECT Sets vp->waveH field to wave’s handle.

VAR_OBJECT Stores numeric variable’s value in vp->nv field.

STR_OBJECT Sets vp->strH field to string variable’s handle.

DATAFOLDER_OBJECT Sets vp->dfH field to data folder’s handle.

Chapter 15 — XOPSupport Routines Data Folders

311

switch(objectType) {
case WAVE_OBJECT:

waveH = v.waveH;
<Do something with waveH>;
break;

case VAR_OBJECT:
numVarValue = v.nv.realValue;
<Do something with numVarValue>;
break;

case STR_OBJECT:
strH = v.strH;
<Do something with strH>;
break;

case DATAFOLDER_OBJECT:
dfH = v.dfH;
<Do something with dfH>;
break;

}

Thread Safety

GetDataFolderObject is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

SetDataFolderObject
int
SetDataFolderObject(dataFolderH, objectName, objectType, vp)
DataFolderHandle dataFolderH;
char objectName[MAX_OBJ_NAME+1];
int objectType;
DataObjectValuePtr vp;

Sets the value of the named object in the specified data folder.

The main utility of this routine will be for setting the value of a numeric or string variable in a specific data
folder.

If dataFolderH is NULL, SetDataFolderObject uses the current data folder.

objectType must be one of the following:

vp is a pointer to a DataObjectValue union, defined in IgorXOP.h. The action of SetDataFolderObject
depends on the object’s type:

WAVE_OBJECT Wave

VAR_OBJECT Numeric variable

STR_OBJECT String variable

DATAFOLDER_OBJECT Data folder

WAVE_OBJECT Does nothing.

VAR_OBJECT Sets numeric variable to the value in vp->nv field.

STR_OBJECT Sets the string variable to contain the characters in vp->strH.

Chapter 15 — XOPSupport Routines Data Folders

312

When setting the value of a string variable, Igor just copies the data from the handle. The handle is yours
to dispose (if you created it).

Note that the text in a string handle is not null terminated. Use WMSetHandleSize to set the number of
bytes in the handle. To store a C string in a handle, use PutCStringInHandle. See Understand the Differ-
ence Between a String in a Handle and a C String on page 233.

The function result is 0 or error code if there is no object with the specified name.

Example

DataObjectValue v;
int objectType;
Handle strH = NULL;
double numVarValue;
DataFolderHandle dfH = NULL;
int err;

if (err = GetDataFolderObject(dfH, "AnObject", &objectType, &v))
return err;

switch(objectType) {
case WAVE_OBJECT:

break;
case VAR_OBJECT:

v.realPart += 1; // Increment the numeric variable
break;

case STR_OBJECT:
strH = v.strH; // This handle belongs to Igor.
if (WMHandToHand(&strH))// Make our own copy.

return NOMEM;
if (WMPtrAndHand("***", strH, 3)) {// Append *** to string

WMDisposeHandle(strH);
return NOMEM;

}
v.strH = strH; // Used by SetDataFolderObject.
break;

case DATAFOLDER_OBJECT:
break;

}
// Note: SetDataFolderObject does nothing for waves or data folders.
err = SetDataFolderObject(dfH, "AnObject", objectType, &v);
WMDisposeHandle(strH); // Dispose our copy of handle. (OK if NULL)
return err;

Thread Safety

SetDataFolderObject is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

KillDataFolderObject
int
KillDataFolderObject(dataFolderH, objectType, objectName)
DataFolderHandle dataFolderH;
int objectType;
char objectName[MAX_OBJ_NAME+1];

Kills the named object of the specified type in the specified data folder.

If dataFolderH is NULL, KillDataFolderObject uses the current data folder.

DATAFOLDER_OBJECT Does nothing.

Chapter 15 — XOPSupport Routines Data Folders

313

objectType is one of the following:

NOTE: If you attempt to kill a wave that is in use (e.g., in a graph, table or dependency formula) the wave
will not be killed and you will receive a non-zero result code.

Igor does not check if numeric and string variables are in use. You can kill a numeric or string variable at
any time without receiving an error.

The function result is 0 or error code.

Thread Safety

KillDataFolderObject is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

DuplicateDataFolderObject
int
DuplicateDataFolderObject(dataFolderH, objectType, objectName,

destFolderH, newObjectName, overwrite)
DataFolderHandle dataFolderH;
int objectType;
char objectName[MAX_OBJ_NAME+1];
DataFolderHandle destFolderH;
char newObjectName[MAX_OBJ_NAME+1];
int overwrite;

Duplicates the named object of the specified type.

If dataFolderH and/or destFolderH is NULL, DuplicateDataFolderObject uses the current data folder.

objectType is one of the following:

If the new name is illegal you will receive a non-zero result code.

If the new name is in use and overwrite is false, you will receive a non-zero result code.

If the new name is in use for a different kind of object, you will receive a non-zero result code.

To avoid these errors, you can check and if necessary fix the new name using CheckName, CleanupName
and UniqueName2 or the higher-level CreateValidDataObjectName routine.

The function result is 0 or error code.

Thread Safety

DuplicateDataFolderObject is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread cre-
ated by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on
page 178 for details.

WAVE_OBJECT Wave

VAR_OBJECT Numeric variable

STR_OBJECT String variable

DATAFOLDER_OBJECT Data folder

WAVE_OBJECT Wave

VAR_OBJECT Numeric variable

STR_OBJECT String variable

DATAFOLDER_OBJECT Data folder

Chapter 15 — XOPSupport Routines Data Folders

314

MoveDataFolderObject
int
MoveDataFolderObject(sourceDataFolderH, objectType, objectName,

destDataFolderH)
DataFolderHandle sourceDataFolderH;
int objectType;
char objectName[MAX_OBJ_NAME+1];
DataFolderHandle destDataFolderH;

Moves the named object of the specified type from the source data folder to the destination data folder.

If sourceDataFolderH is NULL, MoveDataFolderObject uses the current data folder.

If destDataFolderH is NULL, MoveDataFolderObject uses the current data folder.

objectType is one of the following:

NOTE: If an object with the same name exists in the destination data folder, the object will not be moved
and you will receive a non-zero result code.

The function result is 0 or error code.

Thread Safety

MoveDataFolderObject is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created
by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page
178 for details.

RenameDataFolderObject
int
RenameDataFolderObject(dataFolderH, objectType, objectName, newObjectName)
DataFolderHandle dataFolderH;
int objectType;
char objectName[MAX_OBJ_NAME+1];
char newObjectName[MAX_OBJ_NAME+1];

Renames the named object of the specified type in the specified data folder.

If dataFolderH is NULL, RenameDataFolderObject uses the current data folder.

objectType is one of the following:

NOTE: If the new name is illegal or in use the object will not be renamed and you will receive a non-zero
result code.

NOTE: Prior to Igor Pro 6.23 this function returned an error if objectType was DATAFOLDER_OBJECT.
If you want to rename a data folder in Igor Pro 6.22 or earlier you must use RenameDataFolder.

WAVE_OBJECT Wave

VAR_OBJECT Numeric variable

STR_OBJECT String variable

DATAFOLDER_OBJECT Data folder

WAVE_OBJECT Wave

VAR_OBJECT Numeric variable

STR_OBJECT String variable

DATAFOLDER_OBJECT Data folder

Chapter 15 — XOPSupport Routines Data Folders

315

The function result is 0 or error code.

Thread Safety

RenameDataFolderObject is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread cre-
ated by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on
page 178 for details.

HoldDataFolder
int
HoldDataFolder(dfH)
DataFolderHandle dfH;

Tells Igor that you are holding a reference to a data folder and that the data folder should not be deleted
until you call ReleaseDataFolder.

dfH is a data folder handle that you have obtained from Igor.

As of XOP Toolkit 6.30, if dfH is NULL, HoldDataFolder does nothing and returns 0.

See Data Folder Reference Counting on page 143 for details.

HoldDataFolder returns an error code as the function result, typically 0 for success or IGOR_OBSOLETE.

HoldDataFolder was added in Igor Pro 6.20. If you call this with an earlier version of Igor, HoldData-
Folder will return IGOR_OBSOLETE and do nothing.

Prior to XOP Toolkit 6.30, HoldDataFolder had a second parameter. That parameter was removed in XOP
Toolkit 6.30. This change does not affect XOPs compiled with earlier versions of the XOP Toolkit. It will
cause a compile error that you will have to correct if you used HoldDataFolder and compile with XOP
Toolkit 6.30 or later.

Thread Safety

HoldDataFolder is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

ReleaseDataFolder
int
ReleaseDataFolder(dfRefPtr)
DataFolderHandle* dfRefPtr;

Tells Igor that you are no longer holding a data folder.

dfRefPtr contains the address of your DataFolderHandle variable that refers to a data folder. ReleaseData-
Folder sets *dfRefPtr to NULL so your DataFolderHandle variable is not valid after you call ReleaseData-
Folder.

If *dfRefPtr is NULL on input then ReleaseDataFolder does nothing and returns 0.

See Data Folder Reference Counting on page 143 for details.

ReleaseDataFolder returns an error code as the function result, typically 0 for success or
IGOR_OBSOLETE.

ReleaseDataFolder was added in Igor Pro 6.20. If you call this with an earlier version of Igor, ReleaseData-
Folder will return IGOR_OBSOLETE and do nothing.

Thread Safety

ReleaseDataFolder is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

Chapter 15 — XOPSupport Routines XOPSupport Routines — Menus

316

Routines for XOPs with Menu Items
If your XOP adds one or more menu items to Igor then it must enable and disable them or change them
according to circumstances. It must also respond properly when its menu item is selected. These routines
allow you to manage your menu items.

See Chapter 8, Adding Menus and Menu Items, for an overview.

Most of these routines were added in XOP Toolkit 6.40 to replace ancient routines that were based on the
Macintosh Menu Manager. Although these routines were added in XOP Toolkit 6.40, they work with all
versions of Igor with minor exceptions.

The old routines were removed from XOP Toolkit 7. If you are updating an existing XOP see XOP Menus
in XOP Toolkit 7 on page 421.

ResourceToActualMenuID
int
ResourceToActualMenuID(resourceMenuID)
int resourceMenuID;

Given the ID of a MENU resource in the XOP’s resource fork, ResourceToActualMenuID returns the
actual menu ID of that resource in memory.

ResourceToActualMenuID returns 0 if the XOP did not add this menu to Igor.

See Determining Which Menu Was Chosen on page 150 for a discussion of resource IDs versus actual
IDs.

Thread Safety

ResourceToActualMenuID is not thread-safe.

ActualToResourceMenuID
int
ActualToResourceMenuID(menuID)
int menuID;

Given the ID of a menu in memory, ActualToResourceMenuID returns the resource ID of the MENU
resource in the XOP’s resource fork.

ActualToResourceMenuID returns 0 if the XOP did not add this menu to Igor.

See Determining Which Menu Was Chosen on page 150 for a discussion of resource IDs versus actual
IDs.

Thread Safety

ActualToResourceMenuID is not thread-safe.

ResourceToActualItem
int
ResourceToActualItem(igorMenuID, resourceItemNumber)
int igorMenuID;
int resourceItemNumber;

Given the ID of a built-in Igor menu and the number of a menu item specification in the XMI1 resource in
the XOP’s resource fork, ResourceToActualItem returns the actual item number of that item in the Igor
menu.

Both menu item specification numbers and menu item numbers start from one.

Chapter 15 — XOPSupport Routines XOPSupport Routines — Menus

317

ResourceToActualItem returns 0 if the XOP did not add this menu item to Igor.

See Determining Which Menu Was Chosen on page 150 for a discussion of resource items versus actual
items.

Thread Safety

ResourceToActualItem is not thread-safe.

ActualToResourceItem
int
ActualToResourceItem(igorMenuID, actualItemNumber)
int igorMenuID;
int actualItemNumber;

Given the ID of a built-in Igor menu and the actual number of a menu item in the Igor menu, ActualToRe-
sourceItem returns the number of the menu item specification in the XMI1 resource in the XOP’s resource
fork for that item.

Both menu item specification numbers and menu item numbers start from one.

ActualToResourceItem returns 0 if the XOP did not add this menu item to Igor.

See Determining Which Menu Was Chosen on page 150 for a discussion of resource items versus actual
items.

Thread Safety

ActualToResourceItem is not thread-safe.

SetIgorMenuItem
int
SetIgorMenuItem(message, enable, text, param)
int message; // An Igor message code
int enable; // 1 to enable the menu item, 0 to disable it
char* text; // Pointer to a C string or NULL
int param; // Normally not used and should be 0

Enables or disables the built-in Igor menu item associated with message.

Call SetIgorMenuItem only if your XOP window is the active window. You would call it in reponse to a
MENUENABLE message from Igor.

For example, if the XOP wants to enable the Copy menu item, it would call Igor as follows:

if (IsIgorWindowActive((xopWindowRef)) // Is XOP window active?
SetIgorMenuItem(kXOPWindowMessageCopy, 1, NULL, 0);

kXOPWindowMessageCopy is the event message code that would be sent by Igor if the user chose the
Copy item in the Edit menu. Event message codes are defined in XOP.h.

The text parameter will normally be NULL. However, there are certain built-in Igor menus whose text can
change. An example of this is the Undo item. An XOP which owns the active window can set the Undo
item as follows:

if (IsIgorWindowActive((xopWindowRef)) // Is XOP window active?
SetIgorMenuItem(kXOPWindowMessageUndo, 1, "Undo XOP-Specific Action", 0);

Igor will ignore the text parameter for menu items whose text is fixed, for example Copy. For menu items
whose text is variable, if the text parameter is not NULL, then Igor will set the text of the menu item to the
specified text.

The param parameter is currently unused - pass 0 for it.

Chapter 15 — XOPSupport Routines XOPSupport Routines — Menus

318

SetIgorMenuItem returns 1 if there is a menu item corresponding to message or 0 if not. Normally you will
have no need for this return value.

Thread Safety

SetIgorMenuItem is not thread-safe.

XOPActualMenuIDToMenuRef
XOPMenuRef
XOPActualMenuIDToMenuRef(int actualMenuID)
int actualMenuID; // The menu ID of a menu that your XOP added to Igor

Returns the menu reference for the specified menu.

Use XOPActualMenuIDToMenuRef to get an menu reference for an Igor menu. This is needed to enable or
disable an XOP menu item in an Igor menu.

If you are trying to get a menu reference for a menu added to Igor by your XOP use XOPResourceMenu-
IDToMenuRef instead of XOPActualMenuIDToMenuRef.

Always check the returned menuRef for NULL before using it.

NOTE: XOPActualMenuIDToMenuRef returns NULL if actualMenuID is not valid.

NOTE: When running with Igor Pro 6 XOPActualMenuIDToMenuRef returns NULL for main menubar
menus that are hidden (e.g., via XOPHideMainMenu). With Igor Pro 7 it returns the menu
reference whether the menu is hidden or not.

XOPResourceMenuIDToMenuRef returns your menu reference whether it is hidden or not.

See MenuXOP1.cpp for an example.

Added in Igor Pro 6.40 but works with any version.

Thread Safety

XOPActualMenuIDToMenuRef is not thread-safe.

XOPResourceMenuIDToMenuRef
XOPMenuRef
XOPResourceMenuIDToMenuRef(int resourceMenuID)
int resourceMenuID;

Given the ID of a MENU resource in the XOP’s resource fork, XOPResourceMenuIDToMenuRef returns a
reference to the menu. You can use this reference with other XOP menu routines to modify the menu.

Always check the returned menu reference for NULL before using it.

NOTE: XOPResourceMenuIDToMenuRef returns NULL if XOP did not add this menu.

Unlike XOPActualMenuIDToMenuRef, XOPResourceMenuIDToMenuRef returns the menu reference
even if it is a hidden main menubar menu.

Added in Igor Pro 6.40 but works with any version.

Thread Safety

XOPResourceMenuIDToMenuRef is not thread-safe.

Chapter 15 — XOPSupport Routines XOPSupport Routines — Menus

319

XOPGetMenuInfo
int
XOPGetMenuInfo(menuRef, actualMenuID, menuTitle, isVisible, reserved1, reserved2)
XOPMenuRef menuRef;
int* actualMenuID; // Output
char* menuTitle; // Output
int* isVisible; // Output
void* reserved1; // Reserved for future use - pass NULL
void* reserved2; // Reserved for future use - pass NULL

Returns information about the menu specified by menuRef.

*actualMenuID is set to the actual menu ID of the menu. You can pass NULL if you don't care about this
value.

menuTitle is a pointer to a 256 byte array of chars. You can pass NULL if you don't care about this value.
This feature requires Igor Pro 6.40 or later. When running with earlier versions *menuTitle is set to 0.

*isVisible is set to the truth that the menu is visible in the menu bar. This returns 0 for hidden main
menubar menus and 1 for visible main menubar menus. You can pass NULL if you don't care about this
value. This feature requires Igor Pro 6.40 or later. When running with earlier versions *isVisible is set to -1.

reserved1 and reserved2 are reserved for future use. Pass NULL for these parameters.

The function result is 0 for success or an error code.

See MenuXOP1.cpp for an example.

Added in Igor Pro 6.40. When running with earlier versions only the actualMenuID parameter is sup-
ported.

Thread Safety

XOPGetMenuInfo is not thread-safe.

XOPCountMenuItems
int
XOPCountMenuItems(menuRef)
XOPMenuRef menuRef;

Returns the number of items in the menu.

See MenuXOP1.cpp for an example.

Added in Igor Pro 6.40 but works with any version.

Thread Safety

XOPCountMenuItems is not thread-safe.

XOPShowMainMenu
int
XOPShowMainMenu(menuRef, beforeMenuID)
XOPMenuRef menuRef;
int beforeMenuID; // The menu ID of a menu in the menubar or 0

menuRef is a reference to an XOP main menubar menu. XOPShowMainMenu makes the menu appear in
the menubar if it was previously hidden.

beforeMenuID is the actual menu ID of a menu in the menubar or 0 to show the specified menu at the end
of the menubar. In most cases you should pass 0.

Returns 0 for success or an error code.

Chapter 15 — XOPSupport Routines XOPSupport Routines — Menus

320

See MenuXOP1.cpp for an example.

Added in Igor Pro 6.40 but works with any version.

Thread Safety

XOPShowMainMenu is not thread-safe.

XOPHideMainMenu
int
XOPHideMainMenu(menuRef)
XOPMenuRef menuRef;

menuRef is a reference to an XOP main menubar menu. XOPHideMainMenu removes the menu from the
menubar if it was previously showing.

Returns 0 for success or an error code.

See MenuXOP1.cpp for an example.

Added in Igor Pro 6.40 but works with any version.

Thread Safety

XOPHideMainMenu is not thread-safe.

XOPGetMenuItemInfo
int
XOPGetMenuItemInfo(menuRef, itemNumber, enabled, checked, reserved1, reserved2)
XOPMenuRef menuRef;
int itemNumber; // A 1-based item number
int* enabled; // Output - set to 1 if item is enabled, 0 otherwise
int* checked; // Output - set to 1 if item is checked, 0 otherwise
void* reserved1; // Reserved for future use - pass NULL
void* reserved2; // Reserved for future use - pass NULL

XOPGetMenuItemInfo returns information about the menu item specified by menuRef and itemNumber.

menuRef is a reference to an XOP menu.

itemNumber is a 1-based item number.

*enabled is set to the truth that the menu item is enabled. You can pass NULL if you don't want to know if
the menu item is enabled.

*checked is set to the truth that the menu item is checked. You can pass NULL if you don't want to know if
the menu item is checked.

reserved1 and reserved2 are reserved for future use. Pass NULL for these parameters.

Returns 0 for success or an error code.

See MenuXOP1.cpp for an example.

Added in Igor Pro 6.40.

This function requires Igor Pro 6.40 or later. With earlier versions it returns NOT_IMPLEMENTED and
*enabled and *checked are set to -1.

Thread Safety

XOPGetMenuItemInfo is not thread-safe.

Chapter 15 — XOPSupport Routines XOPSupport Routines — Menus

321

XOPGetMenuItemText
int
XOPGetMenuItemText(menuRef, itemNumber, text)
XOPMenuRef menuRef;
int itemNumber; // A 1-based item number
char text[256]; // Item text is returned here

XOPGetMenuItemText returns the text from an XOP menu item specified by menuRef and itemNumber.

menuRef is a reference to an XOP menu.

itemNumber is a 1-based item number.

text must be able to hold 255 characters plus the null terminator.

Returns 0 for success or an error code.

See MenuXOP1.cpp for an example.

Added in Igor Pro 6.40 but works with any version.

Thread Safety

XOPGetMenuItemText is not thread-safe.

XOPSetMenuItemText
int
XOPSetMenuItemText(menuRef, itemNumber, text)
XOPMenuRef menuRef;
int itemNumber; // A 1-based item number
const char* text; // The text for the item

XOPSetMenuItemText sets the text of an XOP menu item specified by menuRef and itemNumber.

menuRef is a reference to an XOP menu.

itemNumber is a 1-based item number.

text is C string (null-terminated) of 255 characters or less.

Returns 0 for success or an error code.

See MenuXOP1.cpp for an example.

Added in Igor Pro 6.40 but works with any version.

Thread Safety

XOPSetMenuItemText is not thread-safe.

XOPAppendMenuItem
int
XOPAppendMenuItem(menuRef, text)
XOPMenuRef menuRef;
const char* text; // The text for the item

XOPAppendMenuItem adds a menu item to the end of the XOP menu item specified by menuRef.

menuRef is a reference to an XOP menu.

text is C string (null-terminated) of 255 characters or less.

Returns 0 for success or an error code.

See MenuXOP1.cpp for an example.

Added in Igor Pro 6.40 but works with any version.

Chapter 15 — XOPSupport Routines XOPSupport Routines — Menus

322

Thread Safety

XOPAppendMenuItem is not thread-safe.

XOPInsertMenuItem
int
XOPInsertMenuItem(menuRef, afterItemNumber, text)
XOPMenuRef menuRef;
int afterItemNumber; // A 1-based item number
const char* text; // The text for the item

XOPInsertMenuItem inserts a menu item in the XOP menu specified by menuRef.

menuRef is a reference to an XOP menu.

afterItemNumber is a 1-based item number. Pass 0 to insert the menu item at the beginning of the menu.
Pass n to insert the item after existing item n of the menu.

text is C string (null-terminated) of 255 characters or less.

Returns 0 for success or an error code.

See MenuXOP1.cpp for an example.

Added in Igor Pro 6.40 but works with any version.

Thread Safety

XOPInsertMenuItem is not thread-safe.

XOPDeleteMenuItem
int
XOPDeleteMenuItem(xxx, xxx)
XOPMenuRef menuRef;
int itemNumber; // A 1-based item number

XOPDeleteMenuItem removes the menu item specified by menuRef and itemNumber from an XOP menu.

menuRef is a reference to an XOP menu.

itemNumber is a 1-based item number.

Returns 0 for success or an error code.

See MenuXOP1.cpp for an example.

Added in Igor Pro 6.40 but works with any version.

Thread Safety

XOPDeleteMenuItem is not thread-safe.

XOPDeleteMenuItemRange
int
XOPDeleteMenuItemRange(menuRef, firstMenuItemNumber, lastMenuItemNumber)
XOPMenuRef menuRef;
int firstMenuItemNumber; // A 1-based item number
int lastMenuItemNumber; // A 1-based item number

XOPDeleteMenuItemRange removes a range of menu items from an XOP menu.

menuRef is a reference to an XOP menu.

Chapter 15 — XOPSupport Routines XOPSupport Routines — Menus

323

firstMenuItemNumber and lastMenuItemNumber are 1-based item numbers. They are clipped to the
range of valid item numbers so you can pass 1 for firstMenuItemNumber and 10000 for lastMenuItem-
Number to delete all items from the menu.

Returns 0 for success or an error code.

See MenuXOP1.cpp for an example.

Added in Igor Pro 6.40 but works with any version.

Thread Safety

XOPDeleteMenuItemRange is not thread-safe.

XOPEnableMenuItem
int
XOPEnableMenuItem(menuRef, itemNumber)
XOPMenuRef menuRef;
int itemNumber; // A 1-based item number

XOPEnableMenuItem enables the specified item.

menuRef is a reference to an XOP menu or an Igor menu.

itemNumber is a 1-based item number.

Returns 0 for success or an error code.

See MenuXOP1.cpp for an example.

Added in Igor Pro 6.40 but works with any version.

Thread Safety

XOPEnableMenuItem is not thread-safe.

XOPDisableMenuItem
int
XOPDisableMenuItem(menuRef, itemNumber)
XOPMenuRef menuRef;
int itemNumber; // A 1-based item number

XOPDisableMenuItem disables the specified item.

menuRef is a reference to an XOP menu or an Igor menu.

itemNumber is a 1-based item number.

Returns 0 for success or an error code.

See MenuXOP1.cpp for an example.

Added in Igor Pro 6.40 but works with any version.

Thread Safety

XOPDisableMenuItem is not thread-safe.

Chapter 15 — XOPSupport Routines XOPSupport Routines — Menus

324

XOPCheckMenuItem
int
XOPCheckMenuItem(menuRef, itemNumber, state)
XOPMenuRef menuRef;
int itemNumber; // A 1-based item number
int state; // 1 for check, 0 for uncheck

XOPCheckMenuItem adds or removes a checkmark from a menu item.

menuRef is a reference to an XOP menu or an Igor menu.

itemNumber is a 1-based item number.

Returns 0 for success or an error code.

See MenuXOP1.cpp for an example.

Added in Igor Pro 6.40 but works with any version.

Thread Safety

XOPCheckMenuItem is not thread-safe.

XOPFillMenu
void
XOPFillMenu(menuRef, afterItemNumber, itemList)
XOPMenuRef menuRef; // A reference to an XOP menu
int afterItemNumber; // A 1-based item number of an item in the menu
const char* itemList; // Semicolon separated list of items to add to menu

itemList is C string (null-terminated) containing a semicolon separated list of items to be put into the
menu.

afterItemNumber specifies where the items in itemList are to appear in the menu.

XOPFillMenu supports Macintosh menu manager meta-characters in menu items. For example, if a "("
character appears in the item list, it will not be displayed in the corresponding menu item but instead will
cause the item to be disabled. Use XOPFillMenuNoMeta if you don’t want this behavior.

Returns 0 or an error code.

Added in Igor Pro 6.40 but works with any version.

Thread Safety

XOPFillMenu is not thread-safe.

XOPFillMenuNoMeta
void
XOPFillMenuNoMeta(menuRef, afterItemNumber, itemList)
XOPMenuRef menuRef; // A reference to an XOP menu
int afterItemNumber; // A 1-based item number of an item in the menu
const char* itemList; // Semicolon separated list of items to add to menu

XOPFillMenuNoMeta works exactly like XOPFillMenu except that it does not honor meta-characters.

afterItemNumber = 0 New items appear at beginning of menu

afterItemNumber = 10000 New items appear at end of menu

afterItemNumber = item number New items appear after specified existing item number

Chapter 15 — XOPSupport Routines XOPSupport Routines — Menus

325

itemList is C string (null-terminated) containing a semicolon separated list of items to be put into the
menu.

afterItemNumber specifies where the items in itemList are to appear in the menu.

Returns 0 or an error code.

Added in Igor Pro 6.40 but works with any version.

Thread Safety

XOPFillMenuNoMeta is not thread-safe.

XOPFillWaveMenu
int
XOPFillWaveMenu(menuRef, match, options, afterItemNumber)
XOPMenuRef menuRef; // A reference to an XOP menu
char* match; // "*" for all waves or match pattern
char* options; // Options for further selection of wave
int afterItemNumber; // A 1-based item number of an item in the menu

Fills the menu with wave names selected based on match and options.

The added items are added after the item specified by afterItemNumber or, if afterItemNumber is 0, at the
beginning of the menu.

The meaning of the match, and options parameters is the same as for the built-in Igor WaveList function.

XOPFillWaveMenu does not treat any characters as meta-characters.

Returns 0 or an error code.

Added in Igor Pro 6.40 but works with any version.

Thread Safety

XOPFillWaveMenu is not thread-safe.

XOPFillPathMenu
int
XOPFillPathMenu(menuRef, match, options, afterItemNumber)
XOPMenuRef menuRef; // A reference to an XOP menu
char* match; // "*" for all paths or match pattern
char* options; // Options for further selection of path
int afterItemNumber; // A 1-based item number of an item in the menu

Fills the menu with path names selected based on match.

The added items are added after the item specified by afterItemNumber or, if afterItemNumber is 0, at the
beginning of the menu.

The meaning of the match parameter is the same as for the built-in Igor PathList function.

options must be "".

Returns 0 or an error code.

XOPFillPathMenu does not treat any characters as meta-characters.

Added in Igor Pro 6.40 but works with any version.

afterItemNumber = 0 New items appear at beginning of menu

afterItemNumber = 10000 New items appear at end of menu

afterItemNumber = item number New items appear after specified existing item number

Chapter 15 — XOPSupport Routines XOPSupport Routines — Menus

326

Thread Safety

XOPFillPathMenu is not thread-safe.

XOPFillWinMenu
int
XOPFillWinMenu(menuRef, match, options, afterItemNumber)
XOPMenuRef menuRef; // A reference to an XOP menu
char* match; // "*" for all windows or match pattern
char* options; // Options for further selection of windows
int afterItemNumber; // A 1-based item number of an item in the menu

Fills the menu with Igor target window names selected based on match and options.

The added items are added after the item specified by afterItemNumber or, if afterItemNumber is 0, at the
beginning of the menu.

The meaning of the match parameter is the same as for the built-in Igor WinList function.

If options is "" then all windows are selected.

If options is "WIN:" then just the target window is selected.

If options is "WIN:typeMask" then windows of the specified types are selected.

The window type masks are defined in IgorXOP.h. For example, "WIN:1" selects graph windows only.
"WIN:3" selects graphs and tables.

Returns 0 or an error code.

XOPFillWinMenu does not treat any characters as meta-characters.

Added in Igor Pro 6.40 but works with any version.

Thread Safety

XOPFillWinMenu is not thread-safe.

Chapter 15 — XOPSupport Routines Dialogs

327

Routines for XOPs that Have Dialogs
Most dialog-related XOPSupport routines were removed in XOP Toolkit 7. If you are porting an old XOP
that implements a dialog to XOP Toolkit 7 or later, see XOP Dialogs in XOP Toolkit 7 on page 423 for
details.

For background information on adding dialogs in an XOP, see Adding Dialogs on page 207.

FinishDialogCmd
void
FinishDialogCmd(cmd, mode)
char* cmd; // C string containing command
int mode;

You call FinishDialogCmd at end of an Igor-style dialog.

cmd is a null-terminated C string containing the command generated by the Igor-style dialog.

If mode is 1, FinishDialogCmd puts the command in Igor’s command line and starts execution.

If mode is 2, FinishDialogCmd puts the command in Igor’s command line but does not start execution.

If mode is 3, FinishDialogCmd puts the command in the clipboard.

Liberal names of waves and data folders must be quoted before using them in the Igor command line. Use
PossiblyQuoteName when preparing the command to be executed so that your XOP works with liberal
names.

Thread Safety

FinishDialogCmd is not thread-safe.

Chapter 15 — XOPSupport Routines Files

328

Routines for XOPs that Access Files
These routines assist an XOP in opening and saving files and in reading data from and writing data to files
in a platform-independent way. For an overview, see File I/O on page 204.

Some of these routines use full paths to identify files. The full paths must be “native”.

On Macintosh, “native” means “HFS” (Hierarchical File System) which means that the path separator is a
colon. Do not use POSIX paths (with forward slashes) because the Carbon routines called by the XOPSup-
port routines do not support forward slashes.

On Windows, “native” means that the path separator is a backslash.

MacToWinPath
int
MacToWinPath(path)
char path[MAX_PATH_LEN+1];

MacToWinPath handles file path format conversion for cross-platform XOPs. See File Path Conversions
on page 205 for background information.

MacToWinPath converts a Macintosh HFS path into a Windows path by replacing 'X:' with 'X:\' at the
start of a full path and replacing ':' with '\' elsewhere. Also, leading colons are changed to periods. How-
ever, it does not change a UNC volume name. Here are examples of the conversion performed by Mac-
ToWinPath.

C:A:B:C -> C:\A\B\C
\\server\share:A:B:C -> \\server\share\A\B\C
"::FolderA:FileB" -> "..\FolderA\FileB"

In the first example, the volume name is "C". In the second example, using a UNC path, the volume name
is "\\server\share".

If the path is already a Windows path, MacToWinPath does nothing.

The following characters are illegal in Windows file names and are considered illegal by Igor. For cross-
platform compatibility, you should not use them:

\ / : * ? " < > | <All control characters>

Control characters are characters whose ASCII codes are less than 32 decimal (20 hexadecimal).

NOTE: The path may be longer on output than in was on input ('C:' changed to 'C:\' or ':' changed to '.\').
The buffer is assumed to be MAX_PATH_LEN+1 characters long. MacToWin-Path will not
overwrite the buffer. It will generate an error if the output path can not fit in MAX_PATH_LEN
characters.

When running on an Asian language system, MacToWinPath is double-byte-character-aware and assumes
that the system default character encoding governs the path.

The function result is 0 if OK or an error code, such as PATH_TOO_LONG.

Thread Safety

MacToWinPath is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

Chapter 15 — XOPSupport Routines Files

329

WinToMacPath
int
WinToMacPath(path)
char path[MAX_PATH_LEN+1];

WinToMacPath handles file path format conversion for cross-platform XOPs. See File Path Conversions
on page 205 for background information.

WinToMacPath converts a Windows path into a Macintosh HFS path by replacing ':\' with ':' at the start of
a full path and replacing '\' with ':' elsewhere. Also, leading periods are changed to colons. However, it
does not change a UNC volume name. Here are examples of the conversion performed by WinToMacPath.

C:\A\B\C -> C:A:B:C
\\server\share\A\B\C -> \\server\share:A:B:C
"..\FolderA\FileB" -> "::FolderA:FileB"

In the first example, the volume name is "C". In the second example, using a UNC path, it is
"\\server\share".

If the path is already a Macintosh HFS path, MacToWinPath does nothing.

The following characters are illegal in Windows file names and are considered illegal by Igor. For cross-
platform compatibility, you should not use them:

\ / : * ? " < > | <All control characters>

Control characters are characters whose ASCII codes are less than 32 decimal (20 hexadecimal).

NOTE: The path may be shorter on output than in was on input (':\' or '.\' changed to ':').

When running on an Asian language system, WinToMacPath is double-byte-character-aware and assumes
that the system default character encoding governs the path.

The function result is 0 if OK or an error code.

Thread Safety

WinToMacPath is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

HFSToPosixPath
int
HFSToPosixPath(hfsPath, posixPath[MAX_PATH_LEN+1], isDirectory)
const char* hfsPath;
char posixPath[MAX_PATH_LEN+1];
int isDirectory;

Converts an HFS (colon-separated) path into a POSIX (Unix-style) path. This is available only on MacOS
and only to convert paths into POSIX paths so that we can pass them to the standard file fopen routine or
to OS routines that require POSIX paths.

From the point of view of the Igor user, all paths should be HFS paths although Windows paths are
accepted and converted when necessary. POSIX paths are not valid paths in Igor procedures.

It is allowed for hfsPath and posixPath to point to the same memory.

When running with Igor Pro 6, hfsPath is assumed to be encoded as system text encoding as set by the pre-
ferred language in the Languages&Text control panel.

When running with Igor Pro 7 or later, hfsPath is assumed to be encoded as UTF-8.

posixPath is always encoded as UTF-8.

Returns 0 if OK or an error code. If an error is returned, *posixPath is undefined.

Chapter 15 — XOPSupport Routines Files

330

Thread Safety

HFSToPosixPath is thread-safe. It can be called from any thread.

GetNativePath
int
GetNativePath(filePathIn, filePathOut)
char filePathIn[MAX_PATH_LEN+1];
char filePathOut[MAX_PATH_LEN+1];

GetNativePath handles file path format conversion for cross-platform XOPs. See File Path Conversions on
page 205 for background information.

GetNativePath copies filePathIn to filePathOut and then calls WinToMacPath when running on Macin-
tosh and MacToWinPath when running on Windows. If filePathIn does not use the conventions of the
current platform, it converts filePathOut to use those conventions.

filePathOut can point to the same memory as filePathIn or it can point to different memory.

When running on an Asian language system, GetNativePath is double-byte-character-aware and assumes
that the system default character encoding governs the path.

The function result is 0 if OK or an error code.

Thread Safety

GetNativePath is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

ConcatenatePaths
int
ConcatenatePaths(pathIn1, nameOrPathIn2, pathOut)
const char* pathIn1;
const char* nameOrPathIn2;
char pathOut[MAX_PATH_LEN+1];

Concatenates pathIn1 and nameOrPathIn2 into pathOut.

pathOut will be a native path. The input paths may use Macintosh or Windows conventions. See File Path
Conversions on page 205 for background information.

pathIn1 is a full path to a directory. It can end with zero or one separator.

nameOrPathIn2 is either a file name, a folder name or a partial path to a file or folder. It can end with zero
or one separator.

pathOut can point to the same memory as either of the input parameters.

The target file or folder does not need to already exist.

For pathIn1, any of the following are legal.

"hd:FolderA:FolderB" "hd:FolderA:FolderB:"
"C:\FolderA\FolderB" "C:\FolderA\FolderB\"

For nameOrPathIn2, any of the following are legal.

"FileA" "FolderC"
":FolderC" "\FolderC"
".FolderC" // Legal in a Windows path only
"::FolderC" "\\FolderC"
"..FolderC" // Legal in a Windows path only

Chapter 15 — XOPSupport Routines Files

331

"FolderC:FileA" "FolderC\FileA"
"\FolderC:FileA" "\FolderC\FileA"

Here are some examples of concatenation.

"hd:FolderA:FolderB:" + "FolderC" -> "hd:FolderA:FolderB:FolderC"
"hd:FolderA:FolderB:" + ":FolderC" -> "hd:FolderA:FolderB:FolderC"
"hd:FolderA:FolderB:" + "::FolderC" -> "hd:FolderA:FolderC"
"C:\FolderA\FolderB\" + "FolderC" -> "C:\FolderA\FolderB\FolderC"
"C:\FolderA\FolderB\" + "\FolderC" -> "C:\FolderA\FolderB\FolderC"
"C:\FolderA\FolderB\" + "\\FolderC" -> "C:\FolderA\FolderC"

Multiple colons or backslashes in nameOrPathIn2 mean that we want to back up, starting from the folder
specified by pathIn1.

When running on an Asian language system, ConcatenatePaths is double-byte-character-aware and
assumes that the system default character encoding governs the paths.

The function result is 0 or error code. In case of error, the contents of pathOut is undefined.

Thread Safety

ConcatenatePaths is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

GetDirectoryAndFileNameFromFullPath
int
GetDirectoryAndFileNameFromFullPath(fullFilePath, dirPath, fileName)
const char* fullFilePath;
char dirPath[MAX_PATH_LEN+1];
char fileName[MAX_FILENAME_LEN+1];

fullFilePath is a full path to a file. It may be a Macintosh HFS path (using colons) or a Windows path (using
backslashes).

On output, dirPath is the full native path to the folder containing the file. This path includes a trailing
colon (Macintosh) or backslash (Windows).

On output, fileName contains just the name of the file.

The function result is 0 if OK or an error code.

GetDirectoryAndFileNameFromFullPath does not know or care if the file exists or if the directories refer-
enced in the input path exist. It merely separates the file name part from the full path.

A simple implementation of this routine would merely search for colon or backslash characters. However,
this simple approach causes problems on Asian systems that use two-byte characters. The problem is that
the second byte of a two-byte character may have the same code as a colon or backslash, causing the sim-
ple implementation to mistakenly take it for a path separator.

GetDirectoryAndFileNameFromFullPath takes a more complex approach to avoid this problem. To
achieve this, the routine has to know the character encoding governing the fullFilePath parameter. GetDi-
rectoryAndFileNameFromFullPath assumes that the system default character encoding governs the full-
FilePath parameter.

Thread Safety

GetDirectoryAndFileNameFromFullPath is Igor-thread-safe with Igor Pro 6.20 or later. You can call it
from a thread created by Igor but not from a private thread that you created yourself. See Igor-Thread-
Safe Callbacks on page 178 for details.

Chapter 15 — XOPSupport Routines Files

332

FullPathPointsToFile
int
FullPathPointsToFile(fullPath)
const char* fullPath;

Returns 1 if the path points to an existing file, 0 if it points to a folder or does not point to anything.

fullPath may be a Macintosh or a Windows path.

When running on an Asian language system, FullPathPointsToFile is double-byte-character-aware and
assumes that the system default character encoding governs the path.

Thread Safety

FullPathPointsToFile is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

FullPathPointsToFolder
int
FullPathPointsToFolder(fullPath)
const char* fullPath;

Returns 1 if the path points to an existing folder, 0 if it points to a file or does not point to anything.

fullPath may be a Macintosh or a Windows path.

When running on an Asian language system, FullPathPointsToFolder is double-byte-character-aware and
assumes that the system default character encoding governs the path.

Thread Safety

FullPathPointsToFolder is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created
by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page
178 for details.

GetLeafName
int
GetLeafName(filePath, leafName)
const char* filePath;
char leafName[MAX_FILENAME_LEN+1];

filePath is either "", a valid file name or a valid path to a file.

leafName must be able to hold MAX_FILENAME_LEN+1 bytes.

GetLeafName returns via leafName the leaf part of the path if it is a path or the contents of filePath if is not
a path.

Returns 0 if OK or an error code.

Thread Safety

GetLeafName is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

Chapter 15 — XOPSupport Routines Files

333

ParseFilePath
int
ParseFilePath(mode, pathIn, separator, whichEnd, whichElement, pathOut)
int mode;
const char* pathIn;
const char* separator;
int whichEnd, whichElement;
char pathOut[MAX_PATH_LEN+1];

The ParseFilePath function provides the ability to manipulate file paths and to extract sections of file
paths.

This XOPSupport routine works the same as the Igor built-in ParseFilePath function.

For further explanation, see the documentation for ParseFilePath in the Igor Reference help file.

The output is returned via the pathOut parameter which must be able to hold MAX_PATH_LEN+1 bytes.

The function result is 0 for success or an Igor error code.

Added in Igor Pro 6.20B03. If you call this when running with an earlier version, it will return
IGOR_OBSOLETE.

Thread Safety

ParseFilePath is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

SpecialDirPath
int
SpecialDirPath(pathID, domain, flags, createDir, pathOut)
const char* pathID;
int domain, flags, createDir;
char pathOut[MAX_PATH_LEN+1];

The SpecialDirPath function returns a full path to a file system directory specified by pathID and domain.
It provides a programmer with a way to access directories of special interest, such as the preferences direc-
tory, the Igor Pro User Files directory and the desktop directory.

This XOPSupport routine works the same as the Igor built-in SpecialDirPath function.

For further explanation, see the documentation for SpecialDirPath in the Igor Reference help file.

The output is returned via the pathOut parameter which must be able to hold MAX_PATH_LEN+1 bytes.

The function result is 0 for success or an Igor error code.

Added in Igor Pro 6.20B03. If you call this when running with an earlier version, it will return
IGOR_OBSOLETE.

Thread Safety

SpecialDirPath is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

Chapter 15 — XOPSupport Routines Files

334

XOPCreateFile
int
XOPCreateFile(fullFilePath, overwrite, macCreator, macFileType)
const char* fullFilePath;
int overwrite;
int macCreator;
int macFileType;

Creates a file with the location and name specified by fullFilePath.

fullFilePath must be an HFS path (using colon separators) on Macintosh and a Windows path (using back-
slashes) on Windows.

If overwrite is true and a file by that name already exists, it first deletes the conflicting file. If overwrite is
false and a file by that name exists, it returns an error.

macFileType is ignored on Windows. On Macintosh, it is used to set the new file's type. For example, use
'TEXT' for a text file.

macCreator is ignored on Windows. On Macintosh, it is used to set the new file's creator code. For exam-
ple, use 'IGR0' (last character is zero) for an file.

Returns 0 if OK or an error code.

Thread Safety

XOPCreateFile is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

XOPDeleteFile
int
XOPDeleteFile(fullFilePath)
const char* fullFilePath;

Deletes the specified file.

fullFilePath must be an HFS path (using colon separators) on Macintosh and a Windows path (using back-
slashes) on Windows.

Returns 0 if OK or an error code.

Thread Safety

XOPDeleteFile is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

XOPOpenFile
int
XOPOpenFile(fullFilePath, readOrWrite, fileRefPtr)
const char* fullFilePath;
int readOrWrite;
XOP_FILE_REF* fileRefPtr;

If readOrWrite is zero, opens an existing file for reading and returns a file reference via fileRefPtr.

If readOrWrite is non-zero, opens an existing file for writing or creates a new file if none exists and returns
a file reference via fileRefPtr.

fullFilePath must be an HFS path (using colon separators) on Macintosh and a Windows path (using back-
slashes) on Windows.

Chapter 15 — XOPSupport Routines Files

335

The function result is 0 if OK or an error code.

Thread Safety

XOPOpenFile is thread-safe. It can be called from any thread.

XOPCloseFile
int
XOPCloseFile(XOP_FILE_REF fileRef)
XOP_FILE_REF fileRef; // Reference returned by XOPOpenFile

Closes the referenced file.

XOPCloseFile returns 0 if OK or an error code.

Thread Safety

XOPCloseFile is thread-safe. It can be called from any thread.

XOPReadFile
int
XOPReadFile(fileRef, count, buffer, numBytesReadPtr)
XOP_FILE_REF fileRef; // Reference returned by XOPOpenFile
UInt32 count; // Count of bytes to read
void* buffer; // Where bytes are stored
UInt32* numBytesReadPtr; // Output: number of bytes read

Reads count bytes from the referenced file into the buffer.

If numBytesReadPtr is not NULL, XOPReadFile stores the number of bytes read in *numBytesReadPtr.

The function result is 0 if OK or an error code.

If bytes remain to be read in the file and you ask to read more bytes than remain, the remaining bytes are
returned and the function result is zero. If no bytes remain to be read in the file and you ask to read bytes,
no bytes are returned and the function result is FILE_EOF_ERROR.

XOPReadFile is appropriate when you are reading data of variable size, in which case you do not want to
consider it an error if the end of file is reached before reading all of the bytes that you requested. If you are
reading a record of fixed size, use use XOPReadFile2 instead of XOPReadFile.

Thread Safety

XOPReadFile is thread-safe. It can be called from any thread.

XOPReadFile2
int
XOPReadFile2(fileRef, count, buffer, numBytesReadPtr)
XOP_FILE_REF fileRef; // Reference returned by XOPOpenFile
UInt32 count; // Count of bytes to read
void* buffer; // Where bytes are stored
UInt32* numBytesReadPtr; // Output: number of bytes read

Reads count bytes from the referenced file into the buffer.

If numBytesReadPtr is not NULL, XOPReadFile2 stores the number of bytes read in *numBytesReadPtr.

The function result is 0 if OK or an error code.

If bytes remain to be read in the file and you ask to read more bytes than remain, the remaining bytes are
returned and the function result is FILE_EOF_ERROR.

Chapter 15 — XOPSupport Routines Files

336

XOPReadFile2 is appropriate when you are reading a record of fixed size, in which case you want to con-
sider it an error if the end of file is reached before reading all of the bytes in the record. If you are reading a
record of variable size then you should use XOPReadFile instead of XOPReadFile2.

Thread Safety

XOPReadFile2 is thread-safe. It can be called from any thread.

XOPReadFile64
int
XOPReadFile64(fileRef, count, buffer, numBytesReadPtr)
XOP_FILE_REF fileRef; // Reference returned by XOPOpenFile
SInt64 count; // Count of bytes to read
void* buffer; // Where bytes are stored
SInt64* numBytesReadPtr; // Output: number of bytes read

Reads count bytes from the referenced file into the buffer.

Use XOPReadFile64 when you need to read potentially greater than 4GB in one read call. When called
from a 32-bit XOP, XOPReadFile64 is limited to 4GB and returns an error if count is greater than 4GB.

If numBytesReadPtr is not NULL, XOPReadFile64 stores the number of bytes read in *numBytesReadPtr.

The function result is 0 if OK or an error code.

If bytes remain to be read in the file and you ask to read more bytes than remain, the remaining bytes are
returned and the function result is FILE_EOF_ERROR.

Thread Safety

XOPReadFile64 is thread-safe. It can be called from any thread.

XOPReadLine
int
XOPReadLine(fileRef, buffer, bufferLength, numBytesReadPtr)
XOP_FILE_REF fileRef; // Reference returned by XOPOpenFile
char* buffer; // Where bytes are stored
UInt32 bufferLength; // Size of the buffer in bytes
UInt32* numBytesReadPtr; // Output: number of bytes read

Reads a line of text from the file into the buffer.

buffer points to a buffer into which the line of data is to be read. bufferLength is the size of the buffer. The
buffer can hold bufferLength-1 characters, plus the terminating null character.

A line in the file may end with:

<end-of-file>
CR
LF
CRLF

XOPReadLine reads the next line of text into the buffer and null-terminates it. The terminating CR, LF, or
CRLF is not stored in the buffer.

If numBytesReadPtr is not NULL, XOPReadLine stores the number of bytes read in *numBytesReadPtr.

The function result will be LINE_TOO_LONG_IN_FILE if there is not enough room in the buffer to read
the entire line. It will be FILE_EOF_ERROR if we hit the end-of-file before reading any characters. It will
be zero if we read any characters (even just a CR or LF) before hitting the end of the file.

XOPReadLine was designed for simplicity of use. For applications that require blazing speed (e.g., reading
files containing tens of thousands of lines or more), a more complex buffering scheme can improve perfor-
mance considerably.

Chapter 15 — XOPSupport Routines Files

337

Thread Safety

XOPReadLine is thread-safe. It can be called from any thread.

XOPWriteFile
int
XOPWriteFile(fileRef, count, buffer, numBytesWrittenPtr)
XOP_FILE_REF fileRef; // Reference returned by XOPOpenFile
UInt32 count; // Count of bytes to write
const void* buffer; // Pointer to data to write
UInt32* numBytesWrittenPtr; // Output: number of bytes written

Writes count bytes from the buffer to the referenced file.

If numBytesWrittenPtr is not NULL, XOPWriteFile stores the number of bytes written in *numBytesWrit-
tenPtr.

The function result is 0 if OK or an error code.

Thread Safety

XOPWriteFile is thread-safe. It can be called from any thread.

XOPWriteFile64
int
XOPWriteFile64(fileRef, count, buffer, numBytesWrittenPtr)
XOP_FILE_REF fileRef; // Reference returned by XOPOpenFile
SInt64 count; // Count of bytes to write
const void* buffer; // Pointer to data to write
SInt64* numBytesWrittenPtr; // Output: number of bytes written

Writes count bytes from the buffer to the referenced file.

Use XOPWriteFile64 when you need to write potentially greater than 4GB in one write call. When called
from a 32-bit XOP, XOPWriteFile64 is limited to 4GB and returns an error if count is greater than 4GB.

If numBytesWrittenPtr is not NULL, XOPWriteFile64 stores the number of bytes written in
*numBytesWrittenPtr.

The function result is 0 if OK or an error code.

Thread Safety

XOPWriteFile64 is thread-safe. It can be called from any thread.

XOPGetFilePosition
int
XOPGetFilePosition(fileRef, filePosPtr)
XOP_FILE_REF fileRef; // Reference returned by XOPOpenFile
UInt32* filePosPtr;

Returns via filePosPtr the current file position of the referenced file.

The function result is 0 if OK or an error code.

If the file size may exceed 2 GB, use XOPGetFilePosition2 instead of XOPGetFilePosition.

Thread Safety

XOPGetFilePosition is thread-safe. It can be called from any thread.

Chapter 15 — XOPSupport Routines Files

338

XOPGetFilePosition2
int
XOPGetFilePosition2(fileRef, dFilePosPtr)
XOP_FILE_REF fileRef; // Reference returned by XOPOpenFile
SInt64* filePosPtr;

Returns via filePosPtr the current file position of the referenced file.

XOPGetFilePosition2 is the same as XOPGetFilePosition except that the file position parameter is an
SInt64* rather than a UInt32* and it works with files larger than 2 GB.

The function result is 0 if OK or an error code.

Thread Safety

XOPGetFilePosition2 is thread-safe. It can be called from any thread.

XOPSetFilePosition
int
XOPSetFilePosition(fileRef, filePos, mode)
XOP_FILE_REF fileRef; // Reference returned by XOPOpenFile
SInt32 filePos;
int mode;

Sets the current file position in the referenced file.

If mode is -1, then filePos is relative to the start of the file. If mode is 0, then filePos is relative to the current
file position. If mode is 1, then filePos is relative to the end of the file.

The function result is 0 if OK or an error code.

If the file size may exceed 2 GB, use XOPSetFilePosition2 instead of XOPSetFilePosition.

Thread Safety

XOPSetFilePosition is thread-safe. It can be called from any thread.

XOPSetFilePosition2
int
XOPSetFilePosition2(fileRef, dFilePos)
XOP_FILE_REF fileRef; // Reference returned by XOPOpenFile
SInt64 filePos;

Sets the current file position in the referenced file.

filePos is relative to the start of the file.

XOPSetFilePosition2 is the same as XOPSetFilePosition except that the file position parameter is an SInt64
rather than an SInt32 and it works with files larger than 2 GB and also it is lacking the mode parameter.

The function result is 0 if OK or an error code.

Thread Safety

XOPSetFilePosition2 is thread-safe. It can be called from any thread.

XOPAtEndOfFile
int
XOPAtEndOfFile(fileRef)
XOP_FILE_REF fileRef; // Reference returned by XOPOpenFile

Returns 1 if the current file position is at the end of file, 0 if not.

Chapter 15 — XOPSupport Routines Files

339

Thread Safety

XOPAtEndOfFile is thread-safe. It can be called from any thread.

XOPNumberOfBytesInFile
int
XOPNumberOfBytesInFile(fileRef, numBytesPtr)
XOP_FILE_REF fileRef; // Reference returned by XOPOpenFile
UInt32* numBytesPtr;

Returns via numBytesPtr the total number of bytes in the referenced file.

The function result is 0 if OK or an error code.

If the file size may exceed 4 GB, use XOPNumberOfBytesInFile2 instead of XOPNumberOfBytesInFile.

Thread Safety

XOPNumberOfBytesInFile is thread-safe. It can be called from any thread.

XOPNumberOfBytesInFile2
int
XOPNumberOfBytesInFile2(fileRef, dNumBytesPtr)
XOP_FILE_REF fileRef; // Reference returned by XOPOpenFile
SInt64* numBytesPtr;

Returns via numBytesPtr the total number of bytes in the referenced file.

XOPNumberOfBytesInFile2 is the same as XOPNumberOfBytesInFile except that the numBytesPtr param-
eter is an SInt64* rather than a UInt32* and it works with files larger than 4 GB.

The function result is 0 if OK or an error code.

Thread Safety

XOPNumberOfBytesInFile2 is thread-safe. It can be called from any thread.

XOPOpenFileDialog
int
XOPOpenFileDialog(prompt, fileFilterStr, indexPtr, initDir, fullFilePath)
const char* prompt; // Message displayed in dialog
const char* fileFilterStr; // Controls types of files shown
int* indexPtr; // Controls initial type of file shown
const char* initDir; // Sets initial directory
char fullFilePath[MAX_PATH_LEN+1]; // Output path returned here

If your XOP requires Igor Pro 7.00 or later, use XOPOpenFileDialog2 instead of XOPOpenFileDialog.

Displays the Open File dialog.

XOPOpenFileDialog returns 0 if the user chooses a file or -1 if the user cancels or another non-zero number
in the event of an error.

XOPOpenFileDialog returns the full path to the file via fullFilePath. In the event of a cancel, fullFilePath is
unmodified.

fullFilePath is a native path (using colons on Macintosh, backslashes on Windows).

prompt sets the dialog window title.

If fileFilterStr is "", then the open file dialog displays all types of files, both on Macintosh and Windows. If
fileFilterStr is not "", it identifies the type of files to display.

Chapter 15 — XOPSupport Routines Files

340

fileFilterStr on Macintosh

fileFilterStr provides control over the Enable popup menu which the Macintosh Navigation Manager dis-
plays in the Open File dialog. For example, the string:

"Text Files:TEXT,IGTX:.txt,.itx;All Files:****:;"

results in two items in the Enable popup menu.

The two section sections of this fileFilterString are:

"Text Files:TEXT,IGTX:.txt,.itx;"
"All Files:****:;"

Each section causes the creation of one item in the Enable popup menu.

Each section consists of three components: a menu item string to be displayed in the Enable popup menu,
a list of zero or more Macintosh file types (e.g., TEXT,IGTX), and a list of extensions (e.g., .txt,.itx).

In this example, the first menu item would be "Text Files". When the user selects this menu item, the Open
File dialog would show any file whose Macintosh file type is TEXT or IGTX and any file whose extension
is .txt, or .itx.

Note that a colon marks the end of the menu item string, another colon marks the end of the list of Macin-
tosh file types, and a semicolon marks the end of the list of extensions.

The **** file type used in the second section is special. It means that the Open File dialog should display all
files. In this section, no extensions are specified because there are no characters between the colon and the
semicolon.

The syntax of the fileFilterString is unforgiving. You must not use any extraneous spaces or any other
extraneous characters. You must include the colons and semicolons as shown above. The trailing semico-
lon is required. If there is a syntax error, the entire fileFilterString will be treated as if it were empty, which
will display all files.

fileFilterStr on Windows

On Windows, fileFilterStr is constructed as for the lpstrFilter field of the OPENFILENAME structure for
the Windows GetOpenFileName routine. For example, to allow the user to select text files and Igor Text
files, use:

"Text Files (*.txt)\0*.txt\0Igor Text Files (*.itx)\0*.itx\0
All Files (*.*)\0*.*\0\0"

This would all be on one line in an actual program. Note that the string ends with two null characters
(\0\0).

On Windows you can specify multiple extensions for a single type of file by listing the extensions with a
semicolon between them. For example:
"Excel Files (*.xls,*.xlsx)\0*.xls;*.xlsx\0All Files (*.*)\0*.*\0\0");

fileIndexPtr is ignored if it is NULL. If it is not NULL, then *fileIndexPtr is the one-based index of the file
type filter to be initially selected. In the example given above, setting *fileIndexPtr to 2 would select the
Igor Text file filter on entry to the dialog. On exit from the dialog, *fileIndexPtr is set to the index of the file
filter string that the user last selected.

initialDir can be "" or it can point to a full path to a directory. It determines the directory that will be ini-
tially displayed in the Open File or Save File dialogs. If it is "", the directory will be the last directory that
was seen in the open or save file dialogs. If initialDir points to a valid path to a directory, then this direc-
tory will be initially displayed in the dialog. initialDir is a native path (using colons on Macintosh, back-
slashes on Windows).

XOPOpenFileDialog returns via fullFilePath the full path to the file that the user chose. It is unchanged if
the user cancels. The path is native path (using colons on Macintosh, backslashes on Windows). fullFile-
Path must point to a buffer of at least MAX_PATH_LEN+1 bytes.

Chapter 15 — XOPSupport Routines Files

341

On Windows, the initial value of fullFilePath sets the initial contents of the File Name edit control in the
Open File dialog. The following values are valid:

""
A file name
A full Macintosh or Windows path to a file

On Macintosh, the initial value of fullFilePath is not currently used. It should be set the same as for Win-
dows because it may be used in the future.

In the event of an error other than a cancel, XOPOpenFileDialog displays an error dialog. This should
never or rarely happen.

Thread Safety

XOPOpenFileDialog is not thread-safe.

XOPOpenFileDialog2
int
XOPOpenFileDialog2(flagsIn, prompt, fileFilterStr, fileFilterIndexPtr,

initialDir, initialFile, flagsOutPtr, fullPathOut)
int flagsIn; // Currently unused - must be 0
const char* prompt; // Prompt displayed in dialog
const char* fileFilterStr;
int* fileFilterIndexPtr; // May be NULL
const char* initialDir; // Full native path
const char* initialFile;
char fullPathOut[MAX_PATH_LEN+1]; // Set to a full native path

Displays the Open File dialog.

XOPOpenFileDialog2 requires Igor Pro 7.00 or later. With earlier versions, it returns an error.

XOPOpenFileDialog2 returns 0 if the user chooses a file, or -1 if the user cancels, or another non-zero num-
ber in the event of an error.

It returns the full path to the chosen file via fullPathOut. This is a native path, using colons on Macintosh,
backslashes on Windows.

In the event of a cancel, fullPathOut is unmodified.

flagsIn is currently unused. Pass 0 for this parameter.

prompt sets the dialog window title.

fileFilterStr controls the filters in the file filter popup menu that appears in the Open File dialog. The con-
struction of this string is the same as documented in the Igor help for the Open operation /F flag. For exam-
ple, this populate the filter popup menu with three filters:

const char* fileFilters = "Data Files (*.txt,*.dat,*.csv):.txt,.dat,.csv;" \
"HTML Files (*.htm,*.html):.htm,.html;" \
"All Files:.*;";

fileFilterIndexPtr is ignored if it is NULL. If it is not NULL, then *fileFilterIndexPtr is the 1-based index of
the file type filter to be initially selected. In the example given above, setting *fileFilterIndexPtr to 2 would
select the "HTML Files" file filter on entry to the dialog. On exit from the dialog, *fileFilterIndexPtr is set to
the 1-based index of the file filter string that the user last selected.

initialDir can be "" or it can point to a full native path to a directory, with or without the trailing path sepa-
rator. It determines the directory that will be initially displayed in the Open File dialog. If "", the directory
will be the last directory that was seen in the open or save file dialogs. initialDir is a native path using
colons on Macintosh, backslashes on Windows.

Chapter 15 — XOPSupport Routines Files

342

initialFile can be "" or it can be the name to which the File Name edit control in the Save File dialog is to be
initialized. initialFile works on Windows only because the Macintosh Open File dialog has no File Name
edit control.

flagsOutPtr is currently unused. Pass NULL for this parameter.

XOPOpenFileDialog2 returns, via fullPathOut, the full path to the file that the user chose. If the user can-
cels, fullPathOut is unchanged. fullPathOut is a native path using colons on Macintosh, backslashes on
Windows.

Thread Safety

XOPOpenFileDialog2 is not thread-safe.

XOPSaveFileDialog
int
XOPSaveFileDialog(prompt, fileFilterStr, fileIndexPtr, initDir,

defaultExtensionStr, fullFilePath)
const char* prompt; // Message displayed in dialog
const char* fileFilterStr; // Controls types of files shown
int* fileIndexPtr; // Controls initial type of file shown
const char* initDir; // Sets initial directory
const char* defaultExtensionStr; // Default file extension or NULL
char fullFilePath[MAX_PATH_LEN+1]; // Output path returned here

If your XOP requires Igor Pro 7.00 or later, use XOPSaveFileDialog2 instead of XOPSaveFileDialog.

Displays the save file dialog.

XOPSaveFileDialog returns 0 if the user provides a file name or -1 if the user cancels or another non-zero
number in the event of an error.

XOPSaveFileDialog returns the full path to the file via fullFilePath. fullFilePath is both an input and an
output as explained below. In the event of a cancel, fullFilePath is unmodified.

fullFilePath is a native path (using colons on Macintosh, backslashes on Windows).

prompt sets the dialog window title.

fileFilterStr on Macintosh

If there is only one format in which you can save the file, pass "" for fileFilterStr. This will cause the Format
menu to be hidden. If you can save the file in more than one format, pass a string like this:

"Plain Text:TEXT:.txt;Igor Text:IGTX:.itx;"

This would give you a Format menu like this:

Plain Text
Igor Text

fileFilterStr consists of sections terminated by a semicolon. For example, here is one section:

"Data Files:TEXT:.dat;"

Each section consists of three components: a menu item string (e.g., Data Files) to be displayed in the For-
mat popup menu, a Macintosh file type (e.g., TEXT), and an extension (e.g., .dat).

At present, only the menu item string and extension are used.

The Macintosh file type is currently not used. If there is no meaningful Macintosh file type, leave the file
type component empty.

If there is no meaningful extension, leave the extension component empty.

Chapter 15 — XOPSupport Routines Files

343

The Format popup menu in the Save File dialog allows the user to tell you in what format the file should
be saved. Unlike the Enable popup menu in the Open File dialog, the Format menu has no filtering func-
tion. You find out which item the user chose via the fileIndexPtr parameter.

The syntax of the fileFilterStr is unforgiving. You must not use any extraneous spaces or any other extrane-
ous characters. You must include the colons and semicolons as shown above. The trailing semicolon is
required. If there is a syntax error, the entire fileFilterStr will be treated as if it were empty and you will get
no Format menu.

fileFilterStr on Windows

On Windows, fileFilterStr identifies the types of files to display and the types of files that can be created. It
is constructed as for the lpstrFilter field of the OPENFILENAME structure for the Windows GetSaveFile-
Name routine. For example, to allow the user to save as a text file or as an Igor Text file, use:

"Text Files (*.txt)\0*.txt\0Igor Text Files (*.itx)\0*.itx\0\0"

Note that the string ends with two null characters (\0\0). If fileFilterStr is "", this behaves the same as
"Text Files (*.txt)\0*.txt\0\0".

fileIndexPtr is ignored if it is NULL. If it is not NULL, then *fileIndexPtr is the one-based index of the file
type filter to be initially selected. In the example given above, setting *fileIndexPtr to 2 would select the
Igor Text file type on entry to the dialog. On exit from the dialog, *fileIndexPtr is set to the index of the file
type string that the user last selected.

initialDir can be "" or it can point to a full path to a directory. It determines the directory that will be ini-
tially displayed in the save file dialog. If it is "", the directory will be the last directory that was seen in the
Open File or Save File dialogs. If initialDir points to a valid path to a directory, then this directory will be
initially displayed in the dialog. initialDir is a native path (using colons on Macintosh, backslashes on
Windows).

defaultExtensionStr points to the extension to be added to the file name if the user does not enter an exten-
sion. For example, pass "txt" to have ".txt" appended if the user does not enter an extension. If you don't
want any extension to be added in this case, pass NULL. Prior to XOP Toolkit 6, defaultExtensionStr was
ignored on Macintosh.

XOPSaveFileDialog returns via fullFilePath the full path to the file that the user chose or "" if the user can-
celled. The path is a native path (using colons on Macintosh, backslashes on Windows). fullFilePath must
point to a buffer of at least MAX_PATH_LEN+1 bytes.

On both Windows and Macintosh, the initial value of fullFilePath sets the initial contents of the File Name
edit control in the save file dialog. The following values are valid:

""
A file name
A full Macintosh or Windows path to a file

In the event of an error other than a cancel, XOPSaveFileDialog displays an error dialog. This should never
or rarely happen.

Thread Safety

XOPSaveFileDialog is not thread-safe.

Chapter 15 — XOPSupport Routines Files

344

XOPSaveFileDialog2
int
XOPSaveFileDialog2(flagsIn, prompt, fileFilterStr, fileFilterIndexPtr,

initialDir, initialFile, flagsOutPtr, fullPathOut)
int flagsIn; // Currently unused - must be 0
const char* prompt; // Prompt displayed in dialog
const char* fileFilterStr;
int* fileFilterIndexPtr; // May be NULL
const char* initialDir; // Full native path
const char* initialFile;
char fullPathOut[MAX_PATH_LEN+1]; // Set to a full native path

Displays the Save File dialog.

XOPSaveFileDialog2 requires Igor Pro 7.00 or later. With earlier versions, it returns an error.

XOPSaveFileDialog2 returns 0 if the user chooses a file, or -1 if the user cancels, or another non-zero num-
ber in the event of an error.

flagsIn is currently unused. Pass 0 for this parameter.

prompt sets the dialog window title.

fileFilterStr controls the filters in the file filter popup menu that appears in the Save File dialog. The con-
struction of this string is the same as documented in the Igor help for the Open operation /F flag. For exam-
ple, this populate the filter popup menu with three filters:

const char* fileFilters = "Data Files (*.txt,*.dat,*.csv):.txt,.dat,.csv;" \
"HTML Files (*.htm,*.html):.htm,.html;" \
"All Files:.*;";

fileFilterIndexPtr is ignored if it is NULL. If it is not NULL, then *fileFilterIndexPtr is the 1-based index of
the file type filter to be initially selected. In the example given above, setting *fileFilterIndexPtr to 2 would
select the "HTML Files" file filter on entry to the dialog. On exit from the dialog, *fileFilterIndexPtr is set to
the 1-based index of the file filter string that the user last selected.

initialDir can be "" or it can point to a full native path to a directory, with or without the trailing path sepa-
rator. It determines the directory that will be initially displayed in the Save File dialog. If "", the directory
will be the last directory that was seen in the Open File or Save File dialogs. initialDir is a native path using
colons on Macintosh, backslashes on Windows.

initialFile can be "" or it can be the name to which the File Name edit control in the Save File dialog is to be
initialized.

flagsOutPtr is currently unused. Pass NULL for this parameter.

XOPSaveFileDialog2 returns, via fullPathOut, the full path to the file that the user chose. fullPathOut is a
native path using colons on Macintosh, backslashes on Windows.

Thread Safety

XOPSaveFileDialog2 is not thread-safe.

Chapter 15 — XOPSupport Routines File Loaders

345

Routines for File-Loader XOPs
These routines are specialized for file-loader XOPs — XOPs that load data from files into Igor waves.

GetFullPathFromSymbolicPathAndFilePath
int
GetFullPathFromSymbolicPathAndFilePath(pathName,filePath,fullFilePath)
const char* pathName; // Igor symbolic path name
char filePath[MAX_PATH_LEN+1]; // Path to file
char fullFilePath[MAX_PATH_LEN+1]; // Output full path

pathName is the name of an Igor symbolic path or "" if no symbolic path is to be used.

filePath is either a full path, a partial path, or a simple file name. It may be a Macintosh HFS path (using
colons) or a Windows path (using backslashes).

fullFilePath is an output and will contain the full native path (using colons on Macintosh, backslashes on
Windows) to the file referenced by the symbolic path and the file path. It must be big enough to hold
MAX_PATH_LEN+1 bytes.

This routine is used by file loader XOPs to get a full native path to a file based on the typical inputs to a file
loader, namely an optional Igor symbolic path and an optional full or partial file path or file name.

The three most common cases are:

LoadWave <full path to file>
LoadWave/P=<symbolic path name> <partial path to file>
LoadWave/P=<symbolic path name> <file name>

where <file name> connotes a simple file name.

In this case GetFullPathFromSymbolicPathAndFilePath ignores the symbolic path:

LoadWave/P=<symbolic path name> <full path to file>

In the following cases, the full path to the file can not be determined, so GetFullPathFromSymbolic-
PathAndFilePath returns an error. This would cause a file loader to display an open file dialog:

LoadWave <file name>
LoadWave <partial path to file>

filePath and fullFilePath may point to the same storage, in which case the output string will overwrite the
input string.

This routine does not check that the output path is valid or points to an existing file. This makes the rou-
tine useable for applications in which you are creating the file as well as applications in which you are
reading the file. If you want to verify that the output path points to an existing file, use the FullPathPoint-
sToFile routine.

The function result is 0 if it was able to create the full path or an error code if not.

Thread Safety

GetFullPathFromSymbolicPathAndFilePath is not thread-safe because it calls GetPathInfo2 which is not
thread-safe.

Chapter 15 — XOPSupport Routines File Loaders

346

FileLoaderMakeWave
int
FileLoaderMakeWave(column, waveName, numPoints, fileLoaderFlags, whp)
int column; // Number of column for this wave
char* waveName; // Name for this wave
CountInt numPoints; // Number of points in wave
int fileLoaderFlags; // Standard file-loader flags
waveHndl* waveHPtr; // Place to store handle for new wave

This routine is intended for use in simple file-loader XOPs such as SimpleLoadWave. It makes a wave with
numPoints points and with the numeric type as specified by fileLoaderFlags.

The function result is 0 or an error code.

It returns a handle to the wave via waveHPtr or NULL in the event of an error.

fileLoaderFlags is interpreted using the standard file-loader flag bit definitions in XOP.h.

If (fileLoaderFlags & FILE_LOADER_OVERWRITE) is non-zero, FileLoaderMakeWaves overwrites any
pre-existing wave in the current data folder with the specified name.

If (fileLoaderFlags & FILE_LOADER_DOUBLE_PRECISION) is non-zero, FileLoaderMakeWaves creates
a double-precision floating point wave. Otherwise, it creates a single-precision floating point wave.

If (fileLoaderFlags & FILE_LOADER_COMPLEX) is non-zero, FileLoaderMakeWaves creates a complex
wave. Otherwise, it creates a real point wave.

column should be the number of the column being loaded or the number of the wave in a set of waves or
zero if this does not apply to your XOP.

NOTE: In the event of a name conflict, FileLoaderMakeWave will change the contents of waveName.
waveName must be big enough to hold MAX_OBJ_NAME+1 bytes.

Prior to XOP Toolkit 6, if the numPoints parameter was zero, the wave was created with 128 points. This
behavior was a relic of a time when Igor required that a wave contain at least two points (prior to Igor Pro
3.0). Now when numPoints is zero, a zero-point wave is created.

If you find that you need more flexibility, use MakeWave, MDMakeWave or GetOperationDestWave
instead of FileLoaderMakeWave.

Thread Safety

FileLoaderMakeWave is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created
by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page
178 for details.

SetFileLoaderOutputVariables
int
SetFileLoaderOutputVariables(fileNameOrPath, numWavesLoaded, waveNames)
char* fileNameOrPath; // Name of or full path to the file just loaded
int numWavesLoaded; // Number of waves loaded
char* waveNames; // Semicolon-separated list of wave names

If your external operation uses Operation Handler, use SetFileLoaderOperationOutputVariables instead
of this routine.

Chapter 15 — XOPSupport Routines File Loaders

347

Call SetFileLoaderOutputVariables at the end of a file load operation to set the standard file loader output
globals:

fileNameOrPath can be either just the file name (e.g., "Data File") or a full path including a file name (e.g.,
"hd:Data Folder:Data File"). Passing a full path is recommended. If it is a full path, it can be a Macintosh
HFS path (using colons) or a Windows path (using backslashes).

If fileNameOrPath is a full path, SetFileLoaderOutputVariables stores the path to the folder containing the
file in S_path and stores the simple file name in S_fileName. In this case, the stored path uses Macintosh
HFS path syntax and includes a trailing colon.

If fileNameOrPath is a simple file name, SetFileLoaderOutputVariables does not set or create S_path and
stores the simple file name in S_fileName. You should pass a full path so that S_path will be set.

SetFileLoaderOutputVariables returns 0 or an error code.

Thread Safety

SetFileLoaderOutputVariables is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread
created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks
on page 178 for details.

SetFileLoaderOperationOutputVariables
int
SetFileLoaderOperationOutputVariables(runningInUserFunction, fileNameOrPath,

numWavesLoaded, waveNames)
int runningInUserFunction; // Truth that operation was called from function
const char* fileNameOrPath;// Name of or full path to the file just loaded
int numWavesLoaded; // Number of waves created
const char* waveNames; // Semicolon-separated list of wave names

Call SetFileLoaderOperationOutputVariables at the end of an Operation Handler file load operation to set
the standard file loader output globals.

When called from the command line it creates global variables.

When called from a user-defined function or from a macro it creates local variables.

You obtain the value to pass for the runningInUserFunction parameter from the calledFromFunction field
of your operation’s runtime parameter structure.

When you register your operation via RegisterOperation, you must specify that your operation sets the
numeric variable V_flag and the string variables S_fileName, S_path, and S_waveNames. See SimpleLoad-
WaveOperation.cpp for an example.

SetFileLoaderOperationOutputVariables sets the following standard file loader output globals:

Variable Contents

S_fileName The name of the file loaded

S_path The full path to the folder containing the file (see description below)

V_flag The number of waves loaded

S_waveNames Semicolon-separate list of wave names (e.g. "wave0;wave1;")

Variable Contents

S_fileName The name of the file loaded.

S_path The full path to the folder containing the file. See description below.

Chapter 15 — XOPSupport Routines File Loaders

348

fileNameOrPath can be either just the file name (e.g., "Data File") or a full path including a file name (e.g.,
"hd:Data Folder:Data File"). Passing a full path is recommended. If it is a full path, it can be a Macintosh
HFS path (using colons) or a Windows path (using backslashes).

If fileNameOrPath is a full path, SetFileLoaderOperationOutputVariables stores the path to the folder con-
taining the file in S_path and stores the simple file name in S_fileName. In this case, the stored path uses
Macintosh HFS path syntax and includes a trailing colon.

If fileNameOrPath is a simple file name, SetFileLoaderOperationOutputVariables does not set S_path and
stores the simple file name in S_fileName. You should pass a full path so that S_path will be set.

SetFileLoaderOperationOutputVariables returns 0 or error code.

Thread Safety

SetFileLoaderOperationOutputVariables is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from
a thread created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe
Callbacks on page 178 for details.

V_flag The number of waves loaded.

S_waveNames Semicolon-separate list of wave names (e.g. "wave0;wave1;").

Variable Contents

Chapter 15 — XOPSupport Routines Windows

349

Routines for XOPs with Windows
Documentation for routines supporting XOP windows can be found in the following XOPSupport files:

XOPWindows.c
XOPContainers.c

See Chapter 9, Adding Windows, for further information.

Chapter 15 — XOPSupport Routines Text Windows

350

Routines for XOPs with Text Windows
Igor provides a group of routines, called TU ("Text Utility") routines, that allow an XOP to implement a fully
functional text window, like Igor’s built-in procedure window. Documentation for routines supporting text
windows can be found in the following XOPSupport file:

XOPTextUtilityWindows.c
See TU ("Text Utility") Windows on page 174, for further information.

Chapter 15 — XOPSupport Routines Resources

351

Routines for Dealing with Resources
These callbacks are useful for accessing resources from within an XOP. Most XOPs will not need to deal
directly with resources and so will not need to use these routines.

XOPRefNum
int
XOPRefNum(void)

This routine is supported on Macintosh only. There is no Windows equivalent.

Returns the file reference number for the XOP’s own resource fork.

Thread Safety

XOPRefNum is thread-safe but there is little if anything you can do with the returned reference number
that is thread-safe.

GetXOPResource
Handle
GetXOPResource(resType, resID)
int resType; // Resource type, e.g., 'DLOG'
int resID; // Resource ID number

This routine is supported on Macintosh only. There is no Windows equivalent.

GetXOPResource returns a handle to the specified resource in the XOP’s resource fork or NULL if there is
no such resource.

This routine does not search any other resource forks.

Thread Safety

GetXOPResource is not thread-safe.

GetXOPNamedResource
Handle
GetXOPNamedResource(resType, name)
int resType; // Resource type, e.g., 'DLOG'
char* name; // C string containing resource name

This routine is supported on Macintosh only. There is no Windows equivalent.

GetXOPNamedResource returns a handle to the specified resource in the XOP’s resource fork or NULL if
there is no such resource.

This routine does not search any other resource forks.

Thread Safety

GetXOPNamedResource is not thread-safe.

Chapter 15 — XOPSupport Routines Resources

352

GetXOPIndString
void
GetXOPIndString(text, strID, item)
char* text; // C string to hold up to 256 characters
int strID; // ID of STR# resource in XOP's resource fork
int item; // String number within resource starting from one

Returns the specified string from the specified STR# resource in the XOP’s resource fork via the text
parameter. This routine does not search any other resource forks.

This routine can be used on both Macintosh and Windows.

Thread Safety

GetXOPIndString is not thread-safe.

Chapter 15 — XOPSupport Routines FIFOs

353

Routines for XOPs That Use FIFOs
Igor Pro provides First-In-First-Out (FIFO) objects for use in data acquisition tasks where a continuous
stream of data is generated and where you want to monitor the data in real-time with a visual chart
recorder-like display. If you have a continuous stream of data but you don’t want to use a chart display to
monitor it, then you can do your own thing and you do not need to involve FIFOs.

There are two ways to get acquired data from an XOP into a FIFO.

If the data rate is slow, say less than 10 values/second, then you could set up an Igor Pro background task
to call your XOP to get data. In this case your XOP does not need to use the FIFO routines. There are prob-
lems associated with this technique but it is much easier than directly writing into FIFOs. See the Igor Pro
manual for a discussion of background tasks.

If the data is coming in quickly, then you will need to directly write data into an Igor Pro FIFO object. You
can get a feel for the FIFO technique by examining the Sound Chart Demo example experiment ("Igor Pro
Folder:Examples:Movies & Audio:Sound Input").

To use the FIFO technique, you will need to set up an idle routine in your XOP that gets the handle to a
given FIFO object, writes data to it and then notifies Igor Pro of that fact. Since idle routines are only called
when Igor Pro “gets a chance”, you will have to define your own buffer to store data until the next time
your idle routine is called. Under some conditions, it can be many seconds between idle calls. Your buffer
has to be large enough to handle this amount of data.

There is additional documentation for FIFOs in the Igor Pro help; see the “FIFOs and Charts” help topic.
XOP support for FIFOs consists of the following routines plus the NamedFIFO.h file in the XOPSupport
folder.

GetNamedFIFO
struct NamedFIFO **
GetNamedFIFO(name)
char name[MAX_OBJ_NAME+1]; // C string to receive name

Returns the named FIFO handle or NULL if none of that name exists.

FIFO handles belong to Igor so you should not dispose them.

Thread Safety

GetNamedFIFO is not thread-safe.

MarkFIFOUpdated
void
MarkFIFOUpdated(fifo)
struct NamedFIFO **fifo; // Handle to an existing FIFO

Tells Igor Pro that you have modified the data in a FIFO.

Call this after putting data in a named FIFO so that Igor Pro will refresh chart gadgets.

Thread Safety

MarkFIFOUpdated is not thread-safe.

Chapter 15 — XOPSupport Routines Numeric Conversion

354

Numeric Conversion Routines
These XOPSupport routines convert between various numeric formats and are useful for importing or
exporting data as well as for other purposes. They are defined in the file XOPNumericConversion.c.

Some of the routines take a pointer to some input data and a pointer to a place to put the converted output
data. Numbers can be converted in place. That is, the pointer to the input data and the pointer to the output
data can point to the same array in memory. Make sure that the array is big enough to hold the data in the
output format.

These routines are used in the GBLoadWaveX, VDT2 and NIGPIB2 sample XOPs.

XOP Toolkit routines use two different ways to specify a number type:

• XOP Toolkit number format code plus a count of bytes per number.
• Igor number type code.

This table shows how these two methods relate:

Originally, Igor supported only single-precision (NT_FP32) and double-precision (NT_FP64) floating point.
Thus, to describe other types, the XOP Toolkit codes were invented.

ConvertData
int
ConvertData(src,dest,numValues,srcBytes,srcFormat,destBytes,destFormat)
void* src; // Input data in format specified by srcFormat
void* dest; // Output data in format specified by destFormat
CountInt numValues; // Number of values to convert
int srcBytes; // Number of bytes in a point of input (1, 2, 4, or 8)
int srcFormat; // XOP Toolkit code for input data format
int destBytes; // Number of bytes in a point of output (1, 2, 4, or 8)
int destFormat; // XOP Toolkit code for output data format

This routine calls the appropriate conversion routine based on the srcBytes, srcFormat, destBytes and dest-
Format parameters.

ConvertData can handle any combination of the legal Igor numeric data types. It takes the description of
source and destination data types in the form of an XOP Toolkit numeric format code, defined in XOPSup-
port.h, and a number of bytes. Both the source and destination can be any of the following:

Number Type XOP Toolkit Code/Count Igor Code

Double-precision floating point IEEE_FLOAT, 8 NT_FP64

Single-precision floating point IEEE_FLOAT, 4 NT_FP32

SInt64 (64 bits) SIGNED_INT, 8 NT_I64

SInt32 (32 bits) SIGNED_INT, 4 NT_I32

Short integer (16 bits) SIGNED_INT, 2 NT_I16

Byte integer (8 bits) SIGNED_INT, 1 NT_I8

UInt64 (64 bits) UNSIGNED_INT, 8 NT_I64 | NT_UNSIGNED

UInt32 (32 bits) UNSIGNED_INT, 4 NT_I32 | NT_UNSIGNED

Unsigned short integer (16 bits) UNSIGNED_INT, 2 NT_I16 | NT_UNSIGNED

Unsigned byte integer (8 bits) UNSIGNED_INT, 1 NT_I8 | NT_UNSIGNED

Chapter 15 — XOPSupport Routines Numeric Conversion

355

format = IEEE_FLOAT, numBytes = 8 // Double-precision IEEE float
format = IEEE_FLOAT, numBytes = 4 // Single-precision IEEE float
format = SIGNED_INT, numBytes = 8 // 64 bit signed integer
format = SIGNED_INT, numBytes = 4 // 32 bit signed integer
format = SIGNED_INT, numBytes = 2 // 16 bit signed integer
format = SIGNED_INT, numBytes = 1 // 8 bit signed integer
format = UNSIGNED_INT, numBytes = 8 // 64 bit unsigned integer
format = UNSIGNED_INT, numBytes = 4 // 32 bit unsigned integer
format = UNSIGNED_INT, numBytes = 2 // 16 bit unsigned integer
format = UNSIGNED_INT, numBytes = 1 // 8 bit unsigned integer

Returns zero if everything is OK, 1 if the conversion is not supported (e.g., converting to 2 byte floating
point), -1 if no conversion is needed (source format == dest format).

ConvertData relies on a large number of low-level conversion routines with names of the form <Source
Type>To<Dest Type> where both <Source Type> and <Dest Type> can be any of the following:

Double, Float, SInt64, SInt32, Short, Byte, UInt64, UInt32, UnsignedShort, UnsignedByte

For most uses, you should use the higher level ConvertData routine.

Thread Safety

ConvertData is thread-safe. It can be called from any thread.

ConvertData2
int
ConvertData2(src, dest, numValues, srcDataType, destDataType)
void* src; // Input data in format specified by srcDataType
void* dest; // Output data in format specified by destDataType
CountInt numValues; // # of values to convert
int srcDataType; // Igor code for input data format
int destDataType; // Igor code for output data format

This routine calls the appropriate conversion routine based on the srcDataType and destDataType param-
eters.

ConvertData2 can handle any combination of the legal Igor numeric data types. It takes the description of
source and destination data types in the form Igor number type codes, defined in IgorXOP.h. Both the src-
DataType and destDataType can be any of the following:

NT_FP64 // Double-precision IEEE float
NT_FP32 // Single-precision IEEE float
NT_I64 // 64 bit signed integer
NT_I32 // 32 bit signed integer
NT_I16 // 16 bit signed integer
NT_I8 // 8 bit signed integer
NT_I64 | NT_UNSIGNED // 64 bit unsigned integer
NT_I32 | NT_UNSIGNED // 32 bit unsigned integer
NT_I16 | NT_UNSIGNED // 16 bit unsigned integer
NT_I8 | NT_UNSIGNED // 8 bit unsigned integer

The number type should not include NT_CMPLX. If the data is complex, the numValues parameter should
reflect that.

Returns zero if everything is OK, 1 if the conversion is not supported (e.g., converting to 2 byte floating
point), -1 if no conversion is needed (source format == dest format).

Thread Safety

ConvertData2 is thread-safe. It can be called from any thread.

Chapter 15 — XOPSupport Routines Numeric Conversion

356

NumTypeToNumBytesAndFormat
int
NumTypeToNumBytesAndFormat(numType, numBytesPerValuePtr, dataFormatPtr,
isComplexPtr)
int numType; // Igor number type code.
int* numBytesPerValuePtr; // Output: number of bytes per value.
int* dataFormatPtr; // Output: XOP Toolkit data format code.
int* isComplexPtr; // Output: True if complex.

This routine converts standard Igor number type codes (e.g., NT_FP64), which are defined in IgorXOP.h,
into the XOP Toolkit number format codes (IEEE_FLOAT, SIGNED_INT, and UNSIGNED_INT), defined
in XOPSupport.h.

The value returned via numBytesPerValuePtr is the number of bytes per value, not the number of bytes
per point. In other words, if a point of a wave is complex, it will take twice as many bytes as returned via
numBytesPerValuePtr .

Thread Safety

NumTypeToNumBytesAndFormat is thread-safe. It can be called from any thread.

NumBytesAndFormatToNumType
int
NumBytesAndFormatToNumType(numBytesPerValue, dataFormat, numTypePtr)
int numBytesPerValue; // Number of bytes per value.
int dataFormat; // XOP Toolkit data format code.
int* numTypePtr; // Output: Igor number type code.

This routine is converts XOP Toolkit data format codes (IEEE_FLOAT, SIGNED_INT, and
UNSIGNED_INT), defined in XOPSupport.h, into standard Igor number type codes (e.g., NT_FP64),
defined in IgorXOP.h.

Thread Safety

NumBytesAndFormatToNumType is thread-safe. It can be called from any thread.

ScaleData
void
ScaleData(dataType, dataPtr, offsetPtr, multiplierPtr, numValues)
int dataType; // Code for input data format
void* dataPtr; // Pointer to data to be scaled
double* offsetPtr; // Pointer to the offset value
double* multiplierPtr; // Pointer to the multiplier value
CountInt numValues; // Code for output data format

Scales the data pointed to by dataPtr by adding the offset and multiplying by the multiplier.

dataType is one of the Igor numeric type codes defined in IgorXOP.h (same as for ConvertData2).

The NT_CMPLX bit must not be set. If the data is complex, this must be reflected in the numValues param-
eter.

All calculations are done in double precision.

Scaling of signed and unsigned 64-bit integer values is subject to inaccuracies for values exceeding 2^53 in
magnitude because calculations are done in double-precision and double-precision can not precisely rep-
resent the full range of 64-integer values. In evaluating the result, if any value exceeds 2^53 in magnitude,
the result is undefined. See 64-bit Integer Issues on page 215 for further discussion.

Chapter 15 — XOPSupport Routines Numeric Conversion

357

Thread Safety

ScaleData is thread-safe. It can be called from any thread.

ScaleClipAndRoundData
void
ScaleClipAndRoundData(dataType, dataPtr, numValues, offset, multiplier, dMin,
dMax, doRound)
int dataType; // Code for input data format
void* dataPtr; // Pointer to data to be scaled
CountInt numValues; // Code for output data format
double offset; // Offset value
double multiplier; // Multiplier value
double dMin; // Min value for clipping
double dMax; // Max value for clipping
int doRound; // If non-zero, rounding is performed

Scales the data pointed to by dataPtr by adding the offset and multiplying by the multiplier. If offset is 0.0
and multiplier is 1.0, no scaling is done.

Clips to the specified min and max. If min is -INF and max is +INF, no clipping is done.

If min and max are both zero, integer data is clipped to the minimum and maximum values that can be
represented by the data type except for signed and unsigned 64-bit integer. The largest integer value that
can be precisely represented in double-precision floating point is 2^53 = 9007199254740992. For signed 64-
bit integer (NT_I64), the minimum is -9007199254740992 and the maximum is 9007199254740992. For
unsigned 64-bit integer (NT_I64 | NT_UNSIGNED), the minimum is 0 and the maximum is
9007199254740992.

If doRound is non-zero, the data is rounded to the nearest integer.

All calculations are done in double precision.

Scaling of signed and unsigned 64-bit integer values is subject to inaccuracies for values exceeding 2^53 in
magnitude because calculations are done in double-precision and double-precision can not precisely rep-
resent the full range of 64-integer values. In evaluating the result, if any value exceeds 2^53 in magnitude,
the result is undefined. See 64-bit Integer Issues on page 215 for further discussion.

dataType is one of the Igor numeric type codes defined in IgorXOP.h (same as for ConvertData2).

The NT_CMPLX bit must not be set. If the data is complex, this must be reflected in the numValues param-
eter.

Thread Safety

ScaleClipAndRoundData is thread-safe. It can be called from any thread.

FixByteOrder
void
FixByteOrder(p, bytesPerPoint, numValues)
void* p; // Pointer to input data of any type
int bytesPerPoint; // Bytes in one point of input format
CountInt numValues; // Number of values to fix

The routine converts data from Motorola (high byte first) to Intel (low byte first) format or vice-versa.

Thread Safety

FixByteOrder is thread-safe. It can be called from any thread.

Chapter 15 — XOPSupport Routines Object Names

358

Routines for Dealing With Object Names
If your XOP creates a new data object (a wave, variable or data folder) you need to provide a legal name.
The name must also be unique, unless you are overwriting an existing object. The CreateValidDataObject-
Name routine, described below, is appropriate for most uses and does all necessary legality and conflict
checking.

If you pass a string to Igor for execution as a command, using XOPCommand, XOPCommand2,
XOPCommand3, XOPSilentCommand or FinishDialogCmd you must quote liberal object names. Use
PossiblyQuoteName and CatPossiblyQuotedName for this purpose. See the Igor Pro manual for general
information on liberal names.

UniqueName
int
UniqueName(baseName, finalName)
const char* baseName; // C string containing base name
char finalName[MAX_OBJ_NAME+1]; // C string containing new, unique name

New XOPs should use CreateValidDataObjectName or UniqueName2 instead of UniqueName.

UniqueName generates a name that does not conflict with an existing name.

This is used by operations that want to create waves and auto-name them (like LoadWaves/A).

The finalName is derived by appending one or more digits to the baseName. finalName must be able to
hold MAX_OBJ_NAME+1 bytes.

Make sure that the baseName is not too long. Otherwise, the finalName could be too long to be a legal
name.

The function result is the number that was appended to the baseName to make the finalName.

Thread Safety

UniqueName is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

UniqueName2
int
UniqueName2(nameSpaceCode, baseName, finalName, suffixNumPtr)
int nameSpaceCode; // Usually MAIN_NAME_SPACE. See IgorXOP.h
const char* baseName; // Base name to use for creating unique name
char finalName[MAX_OBJ_NAME+1]; // Receives unique name
int suffixNumPtr; // Keeps track of last suffix used

If your goal is to generate a valid object name that you can use to create a data object, consider using Cre-
ateValidDataObjectName instead of this routine.

UniqueName2 generates a name that does not conflict with an existing name.

The function result is 0 if OK, -1 for a bad nameSpaceCode or some other error code.

This is an improved version of UniqueName. Given a base name (like "wave") UniqueName2 returns a
name (like "wave3") via finalName that does not conflict with any existing names. finalName must be able
to hold MAX_OBJ_NAME+1 bytes.

*suffixNumPtr is both an input and an output. Its purpose is to speed up the search for unique names
when creating a batch of names in a loop. The number appended to make the name unique will be *suffix-
NumPtr or greater. Igor sets *suffixNumPtr to the number Igor used to make the name unique. Typically,
you should set *suffixNumPtr to zero before your first call to UniqueName2.

Chapter 15 — XOPSupport Routines Object Names

359

nameSpaceCode is MAIN_NAME_SPACE for Igor’s main name space (waves, variables, windows).

nameSpaceCode is DATA_FOLDER_NAME_SPACE for data folders.

See IgorXOP.h for other less frequently-used name space codes.

Thread Safety

UniqueName2 is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

SanitizeWaveName
int
SanitizeWaveName(waveName, column)
char waveName[MAX_OBJ_NAME+1]; // Input and output wave name
int column; // Number of column being loaded or zero

This routine is obsolete. Use CleanupName, CheckName and CreateValidDataObjectName instead of
SanitizeWaveName.

SanitizeWaveName is intended mainly for use in file-loader XOPs such as SimpleLoadWave but may have
other uses.

Given a pointer to a C string containing a proposed wave name, SanitizeWaveName changes it to make it
a valid wave name if necessary. It returns 1 if it had to make a change, 0 if name was OK to begin with.
waveName must be able to hold MAX_OBJ_NAME+1 bytes.

First SanitizeWaveName truncates the proposed name if it is too long. Then it makes sure that the first
character is alphabetic. Then it replaces any subsequent characters that are not alphanumeric with under-
score.

column should be the number of the column being loaded or the number of the wave in a set of waves or
zero if this does not apply to your XOP.

Thread Safety

SanitizeWaveName is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

CleanupName
int
CleanupName(beLiberal, name, maxNameBytes)
int beLiberal;
char* name;
int maxNameBytes;

If your goal is to generate a valid object name that you can use to create a data object, consider using Cre-
ateValidDataObjectName instead of CleanupName.

CleanupName changes the name, if necessary, to make it a legal Igor object name.

On input, name may be longer than maxNameBytes bytes. On output, it is truncated if necessary.

For most uses, pass MAX_OBJ_NAME for the maxNameBytes parameter. name must be able to hold max-
NameBytes+1 bytes.

Wave and data folder names can contain characters, such as space and dot. We call this “liberal” name
rules.

If beLiberal is non-zero, CleanupName uses liberal name rules. Liberal rules are allowed for wave and
data folder names but are not allowed for string and numeric variable names so pass zero for beLiberal for
these objects.

Chapter 15 — XOPSupport Routines Object Names

360

If you are going to use the name in Igor’s command line (via the Execute operation or via the XOPCom-
mand or XOPSilentCommand callbacks), and if the name uses liberal rules, the name needs to be single-
quoted. In these cases, you should call PossiblyQuoteName after calling CleanupName.

Thread Safety

CleanupName is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

CheckName
int
CheckName(dataFolderH, objectType, name)
DataFolderHandle dataFolderH;
int objectType;
char name[MAX_OBJ_NAME+1];

If your goal is to generate a valid object name that you can use to create a data object, consider using Cre-
ateValidDataObjectName instead of this routine.

CheckName checks the name for legality and uniqueness.

If dataFolderH is NULL, it looks for conflicts with objects in the current data folder. If it is not NULL, it
looks for conflicts in the folder specified by dataFolderH.

objectType is one of the following (defined in IgorXOP.h):

WAVE_OBJECT, VAR_OBJECT (numeric variable), STR_OBJECT (string variable)
GRAPH_OBJECT, TABLE_OBJECT, LAYOUT_OBJECT
PANEL_OBJECT, NOTEBOOK_OBJECT
DATAFOLDER_OBJECT, PATH_OBJECT, PICT_OBJECT

The function result is 0 if the name is legal and is not in conflict with an existing object.

Returns an Igor error code otherwise.

Thread Safety

CheckName is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

CreateValidDataObjectName
int
CreateValidDataObjectName(
DataFolderHandle dataFolderH, // Handle to data folder or NULL
const char* inName, // Input: Proposed name
char outName[MAX_OBJ_NAME+1], // Output: Valid name
int* suffixNumPtr, // Used to make name unique
int objectType, // Type code from IgorXOP.h
int beLiberal, // 1 to allow liberal names
int allowOverwrite, // 1 if it is OK to overwrite object
int inNameIsBaseName, // 1 if inName needs digits appended
int printMessage, // 1 to print message about conflict
int* nameChangedPtr, // Output: 1 if name changed
int* doOverwritePtr) // Output: 1 if need to overwrite object

This routine is designed to do all of the nasty work needed to get a legal name for a given object. It cleans
up illegal names and resolves name conflicts.

Chapter 15 — XOPSupport Routines Object Names

361

It returns in outName a name that can be safely used to create a data object of a given type (wave, string
variable, numeric variable, data folder).

inName is the proposed name for the object or a base name to which one or more digits is to be added.

outName is the name after possible cleanup and uniquification. outName must be able to hold
MAX_OBJ_NAME+1 bytes.

*suffixNumPtr is both an input and an output. Its purpose is to speed up the search for unique names
when creating a batch of names in a loop. The number appended to make the name unique will be *suffix-
NumPtr or greater. Igor sets *suffixNumPtr to the number Igor used to make the name unique. Typically,
you should set *suffixNumPtr to zero before your first call to CreateValidDataObjectName.

dataFolderH is a handle to a data folder or NULL to use the current data folder.

objectType is one of the following:

WAVE_OBJECT, VAR_OBJECT, STR_OBJECT, DATAFOLDER_OBJECT

beLiberal is 1 if you want to allow liberal names or 0 if not. If the object type is VAR_OBJECT or
STR_OBJECT, the name will not be liberal, even if beLiberal is 1. Igor allows only wave and data folder
names to be liberal.

allowOverwrite is 1 if it is OK for outName to be the name of an existing object of the same type.

inNameIsBaseName should be 1 if inName is a base name (e.g., "wave") to which a suffix (e.g., "0") must
always be added to produce the actual name (e.g., "wave0"). If inNameIsBaseName is 0 then no suffix will
be added to inName unless it is needed to make the name unique.

printMessage is 1 if you want CreateValidDataObjectName to print a message in Igor’s history area if an
unexpected name conflict occurs. A message is printed if you are not using a base name and not allowing
overwriting and there is a name conflict. A message is also printed if a conflict with an object of a different
type prevents the normal name from being used.

CreateValidDataObjectName sets *nameChangedPtr to the truth that outName is different from inName.

It sets *doOverwritePtr to the truth that outName is the name of an existing object of the same type and
allowOverwrite is 1.

inName and outName can point to the same array if you don’t want to preserve the original name. Both
must be big enough to hold MAX_OBJ_NAME+1 bytes.

The function result is 0 if OK or an error code.

Example

This is a simplified section of code from GBLoadWaveX which uses CreateValidDataObjectName. lpp is a
pointer to a structure containing parameters for the load operation. ciHandle is a locked handle containing
an array of records, one for each wave to be created.

IndexInt column;
int suffixNum;
char base[MAX_OBJ_NAME+1];
int nameChanged, doOverwrite;
int result;

strcpy(base, "wave"); // Base name for waves.
suffixNum = 0;
for (column = 0; column < lpp->numArrays; column++) {

ciPtr = *ciHandle + column;
ciPtr->points = lpp->arrayPoints;
strcpy(ciPtr->waveName, base);

// Take care of illegal or conflicting names.
result = CreateValidDataObjectName(NULL, ciPtr->waveName,

ciPtr->waveName, &suffixNum, WAVE_OBJECT, 1,
lpp->flags & OVERWRITE, 1, 1, &nameChanged, &doOverwrite);

Chapter 15 — XOPSupport Routines Object Names

362

ciPtr->wavePreExisted = doOverwrite;

if (result == 0)
result = MakeAWave(ciPtr->waveName, lpp->flags, &ciPtr->waveHandle,

lpp->arrayPoints, lpp->outputDataType);

if (result) { // Couldn't make wave (probably low memory) ?
<Clean up>;
return result;

}
}

Thread Safety

CreateValidDataObjectName is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread
created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks
on page 178 for details.

PossiblyQuoteName
int
PossiblyQuoteName(name)
char name[MAX_OBJ_NAME+2+1];

PossiblyQuoteName puts single quotes around the Igor object name if they would be needed to use the
name in Igor’s command line.

A wave or data folder name can be either a “standard” name or a “liberal” name. Standard names start
with a letter and contain letters, digits and underscore characters only. Liberal names can contain spaces
and punctuation.

When a liberal name is used in Igor’s command line it must be enclosed in single quotes. This includes
using it in the Execute operation or in the XOPCommand, XOPCommand2, XOPCommand3, XOPSilent-
Command or FinishDialogCmd XOPSupport routines. Thus, if you are going to use a wave or data folder
name for this purpose, you should call PossiblyQuoteName to add the quotes if needed.

NOTE: name must be able to hold MAX_OBJ_NAME plus two additional bytes plus the null terminator.
Thus you should declare name as shown above.

NOTE: Liberal rules are not allowed for string and numeric variable names.

PossiblyQuoteName returns 0 if the name is not liberal, 1 if it is liberal.

Thread Safety

PossiblyQuoteName is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

CatPossiblyQuotedName
int
CatPossiblyQuotedName(str, name)
char* str;
char name[MAX_OBJ_NAME+2+1];

Adds the specified Igor object name to the end of the string. If necessary, puts single quotes around the
name so that it can be used in the Igor command line.

Use this to concatenate a wave name to the end of a command string when the wave name may be a liberal
name that needs to be quoted to be used in the command line.

Chapter 15 — XOPSupport Routines Color Tables

363

The memory pointed to by str must be big enough to hold an additional MAX_OBJ_NAME+2 bytes, plus
the null terminator.

See PossiblyQuoteName for details on liberal names.

Remember that the quoted name will take an extra two bytes. str must be big enough to hold it.

CatPossiblyQuotedName returns 0 if the name is not liberal, 1 if it is liberal.

Example

char waveName[MAX_OBJ_NAME+1]; // This contains a wave name.
char cmd[MAX_OBJ_NAME+2+32+1];
strcpy(cmd, "Display ");
CatPossiblyQuotedName(cmd, waveName);
XOPSilentCommand(cmd);

Thread Safety

CatPossiblyQuotedName is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread cre-
ated by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on
page 178 for details.

Chapter 15 — XOPSupport Routines Color Tables

364

Color Table Routines
These routines were added to the XOP Toolkit for use by advanced programmers who want to present a
user interface with the same color tables as Igor itself presents.

GetIndexedIgorColorTableName
int
GetIndexedIgorColorTableName(index, name)
int index; // Zero-based index of a color table
char name[MAX_OBJ_NAME+1]; // Output: name of that color table

Returns via name the name of a color table indicated by the index or "" if the index is invalid.

Valid indices start from zero. You can find the maximum valid index by calling this routine with increas-
ing indices until it returns an error.

The function result is 0 if OK or a non-zero error code if the index is invalid.

Thread Safety

GetIndexedIgorColorTableName is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a
thread created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Call-
backs on page 178 for details.

GetNamedIgorColorTableHandle
int
GetNamedIgorColorTableHandle(name, ictHPtr)
const char* name; // Name of a color table
IgorColorTableHandle* ictHPtr; // Handle to color table info

Returns via *ictHPtr a handle to an Igor color table or NULL in case of error.

The returned handle belongs to Igor. Do not modify or delete it.

The name parameter is case insensitive.

Igor Pro 4 contained the following color tables: Rainbow, Grays, YellowHot, BlueHot, BlueRedGreen, Red-
WhiteBlue, PlanetEarth, Terrain. Igor Pro 5 added many more color tables. You can find the names of all
color tables using GetIndexedIgorColorTableName.

The function result is 0 if OK or a non-zero error code.

Thread Safety

GetNamedIgorColorTableHandle is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a
thread created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Call-
backs on page 178 for details.

GetIgorColorTableInfo
int
GetIgorColorTableInfo(ictH, name, numColorsPtr)
IgorColorTableHandle ictH; // Handle from GetNamedIgorColorTableHandle
char name[MAX_OBJ_NAME+1]; // Output: name of color table
int* numColorsPtr; // Output: number of colors in table

Provides access to the name and the number of colors in the Igor color table specified by ictH.

ictH is a handle that you got by calling GetNamedIgorColorTableHandle.

If you don't want to know the name, pass NULL for name. If you don't want to know the number of colors,
pass NULL for numColorsPtr.

Chapter 15 — XOPSupport Routines Color Tables

365

The function result is 0 if OK or a non-zero error code.

Thread Safety

GetIgorColorTableInfo is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created
by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page
178 for details.

GetIgorColorTableValues
int
GetIgorColorTableValues(ictH, startIndex, endIndex, updateVals, csPtr)
IgorColorTableHandle ictH; // Handle from GetNamedIgorColorTableHandle
int startIndex; // Index of first color of interest
int endIndex; // Index of last color of interest
int updateVals;
IgorColorSpec* csPtr; // Output: Color values go here

Returns via csPtr a description of the colors associated with the Igor color table specified by ictH.

ictH is a handle that you got by calling GetNamedIgorColorTableHandle.

startIndex and endIndex specify the indices of the colors for which you want to get a description. startIn-
dex must be between 0 and the number of colors in the table minus one. endIndex must be between
startIndex and the number of colors in the table minus one. You can find the number of colors in the table
using GetIgorColorTableInfo.

The IgorColorSpec structure contains an RGBColor field which identifies the RGB color for a color table
entry with a particular index. These structures are defined in IgorXOP.h.

The value field of the IgorColorSpec structure tells you the pixel value that would need to be written to
video RAM to get the associated color to appear on the screen when the monitor is in 16 or 256 color mode.
It is typically used by advanced programmers who are writing directly to offscreen bitmap memory.

However, when a monitor is running in 16 or 256 color mode, this value is invalidated whenever the sys-
tem changes the hardware color lookup table, which can happen at any time. If you pass non-zero for the
updateVals parameter, then Igor will update the value field for each color before returning it to you and it
will be accurate until the next time the system changes the hardware color lookup table. If you pass zero
for the updateVals parameter, then Igor will not update the value field and it is likely to be stale.

Updating the value fields takes time so you should pass non-zero for the updateVals parameter only if you
really need accurate pixel values. For example, if you just want to know what RGB colors appear in a par-
ticular color table then you don't need the pixel values and should pass 0 for the updateVals parameter.
On the other hand, if you are writing into an offscreen bitmap in preparation for blasting it to the screen,
then you need accurate pixel values and you should pass 1 for updateVals.

The function result is 0 if OK or a non-zero error code.

Thread Safety

GetIgorColorTableValues is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread cre-
ated by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on
page 178 for details.

Chapter 15 — XOPSupport Routines Command Window

366

Command Window
These routines support interacting with the command window.

HistoryDisplaySelection
void
HistoryDisplaySelection(void)

Scrolls the current selection in the history area into view.

Added for Igor Pro 6.00B10. Does nothing in earlier versions of Igor.

Thread Safety

HistoryDisplaySelection is not thread-safe.

HistoryInsert
void
HistoryInsert(dataPtr, dataLen)
char* dataPtr; // Pointer to text to insert
int dataLen; // Number of characters to insert

Inserts the specified text into the history area, replacing the current selection, if any.

If you just want to append text to the history, call XOPNotice, XOPNotice2 or XOPNotice3 instead of His-
toryInsert.

Except in very rare cases you should not modify the history, except to append to it.

Added for Igor Pro 6.00B10. Does nothing in earlier versions of Igor.

Thread Safety

HistoryInsert is not thread-safe.

HistoryDelete
void
HistoryDelete(void)

Deletes the currently selected text in the history area.

Except in very rare cases you should not modify the history, except to append to it.

Added for Igor Pro 6.00B10. Does nothing in earlier versions of Igor.

Thread Safety

HistoryDelete is not thread-safe.

HistoryLines
int
HistoryLines(void)

Returns the total number of lines of text in the history area.

Added for Igor Pro 6.00B10. Returns -1 in pre-Igor Pro 6 versions of Igor.

Thread Safety

HistoryLines is not thread-safe.

Chapter 15 — XOPSupport Routines Command Window

367

HistoryGetSelLocs
int
HistoryGetSelLocs(startLocPtr, endLocPtr)
TULocPtr startLocPtr; // Receives location of start of selection
TULocPtr endLocPtr; // Receives location of end of selection

Sets *startLocPtr and *endLocPtr to describe the selected text in the history area.

The TULoc structure is defined in IgorXOPs.h. A text location consists of a paragraph number, starting
from zero, and a character position starting from zero.

Returns 0 if OK or an Igor error code.

Added for Igor Pro 6.00B10. Returns IGOR_OBSOLETE in earlier versions of Igor.

Thread Safety

HistoryGetSelLocs is not thread-safe.

HistorySetSelLocs
int
HistorySetSelLocs(startLocPtr, endLocPtr, flags)
TULocPtr startLocPtr; // Contains location of start of selection
TULocPtr endLocPtr; // Contains location of end of selection
int flags; // Miscellaneous flags

Sets the selection in the history area.

If startLocPtr is NULL, the start location is taken to be the start of history area.

If endLocPtr is NULL, the end location is taken to be the end of history area.

If flags is 1, displays the selection if it is out of view.

Other bits in flags must be set to 0 as they may be used for other purposes in the future.

Returns 0 if OK or an Igor error code.

Returns an error if the start or end locations are out of bounds or if the start location is after the end loca-
tion.

For the TULoc structure to be valid, its paragraph field must be between 0 and p-1 where p is the number
of paragraphs in the history area as reported by HistoryLines. The character position field must be
between 0 and c where c is the number of characters in the paragraph as reported by HistoryFetchPara-
graphText. In a paragraph with c characters, the location before the first character corresponds to a posi-
tion of zero, the location before the last character corresponds to a position of c-1 and the location after the
last character corresponds to a position of c.

Added for Igor Pro 6.00B10. Returns IGOR_OBSOLETE in earlier versions of Igor.

Thread Safety

HistorySetSelLocs is not thread-safe.

HistoryFetchParagraphText
int
HistoryFetchParagraphText(paragraph, textPtrPtr, lengthPtr)
int paragraph; // Number of paragraph to fetch starting from 0
char* textPtrPtr; // Receives pointer to text
int* lengthPtr; // Receives number of characters in paragraph

This routine fetches all of the text in the specified paragraph.

If textPtrPtr is not NULL, it returns via textPtrPtr a pointer to the text in the specified paragraph.

Chapter 15 — XOPSupport Routines Command Window

368

Sets *lengthPtr to the number of characters in the paragraph whether textPtrPtr is NULL or not.

textPtrPtr is a pointer to your char* variable. If it is not NULL, Igor allocates a pointer, using WMNewPtr,
and sets *textPtrPtr to point to the allocated memory. You must dispose this when you no longer need it
using WMDisposePtr.

Note that the text returned via textPtrPtr is not null terminated.

The function result is 0 if OK, an error code if the paragraph is out of range or if an error occurs fetching
the text or if the version of Igor that is running does not support this callback.

Added for Igor Pro 6.00B10. Returns IGOR_OBSOLETE in earlier versions of Igor.

Example

char* p;
int paragraph, length;
int result;

paragraph = 0;
if (result = HistoryFetchParagraphText(paragraph, &p, &length))

return result;
<Deal with the text pointed to by p>
WMDisposePtr((Ptr)p);

Thread Safety

HistoryFetchParagraphText is not thread-safe.

HistoryFetchText
int
HistoryFetchText(startLocPtr, endLocPtr, textHPtr)
TULocPtr startLocPtr; // Identifies start of text to fetch
TULocPtr endLocPtr; // Identifies end of text to fetch
Handle* textHPtr; // Receives handle containing text

Returns the history area text from the specified start location to the specified end location.

If startLocPtr is NULL, the start location is taken to be the start of history area.

If endLocPtr is NULL, the end location is taken to be the end of history area.

On return, if there is an error, *textHPtr will be NULL. If there is no error, *textHPtr will point to a handle
containing the text. *textHPtr belongs to you so dispose it when you are finished with it using WMDis-
poseHandle.

Note that the text in the handle is not null terminated. See Understand the Difference Between a String in
a Handle and a C String on page 233.

The function result is 0 if OK, an error code if an error occurs fetching the text.

Added for Igor Pro 6.00B10. Returns IGOR_OBSOLETE in earlier versions of Igor.

Example

Handle h = NULL;
int result;

if (result = HistoryFetchSelectedText(NULL, NULL, &h))
return result;

<Deal with the text in handle>
WMDisposeHandle(h);

Thread Safety

HistoryFetchSelectedText is not thread-safe.

Chapter 15 — XOPSupport Routines Command Window

369

Chapter 15 — XOPSupport Routines Procedures

370

Routines for Dealing With Igor Procedures
These routines allow an XOP to get and set procedures in the Igor procedure window. Most XOPs will not
need these routines.

GetIgorProcedureList
int
GetIgorProcedureList(Handle* hPtr, flags)
Handle* hPtr;
int flags;

The main use for this routine is to check if a particular macro or function exists in the Igor procedure win-
dows.

GetIgorProcedureList returns via *hPtr a handle to a semicolon-separated list of procedure names.
Depending on the flags parameter, the list may contain names of macros, names of user-defined functions,
or names of both macros and user-defined functions.

Note that the text in the handle is not null terminated. Use WMGetHandleSize to find the number of bytes
in the handle. To use C string functions on this text you need to copy it to a local buffer and null-terminate
it or add a null terminator to the handle and lock the handle. See Understand the Difference Between a
String in a Handle and a C String on page 233.

This handle belongs to you, so call WMDisposeHandle to dispose it when you no longer need it.

If Igor can not build the list, it returns a non-zero error code and sets *hPtr to NULL.

The flags parameter is defined as follows:

Igor will be unable to build the list if a syntactical error in the procedure files prevents Igor from success-
fully scanning them. In this case, GetIgorProcedureList will return NEED_COMPILE.

GetIgorProcedureList can also return NOMEM if it runs out of memory. This is unlikely.

Future versions of GetIgorProcedureList may return other error codes so your XOP should not crash or
otherwise grossly misbehave if it receives some other error code.

Thread Safety

GetIgorProcedureList is not thread-safe.

GetIgorProcedure
int
GetIgorProcedure(procedureName, hPtr, flags)
const char* procedureName;
Handle* hPtr;
int flags;

The main use for this routine is to check if a particular macro or function exists in the Igor procedure win-
dows.

Bit Meaning

Bit 0 If set, GetIgorProcedureList will list all macros. If cleared, it will
ignore all macros.

Bit 1 If set, GetIgorProcedure will list all user-defined functions. If
cleared, it will ignore all user-defined functions.

All other bits Reserved for future use and must be set to 0.

Chapter 15 — XOPSupport Routines Procedures

371

If Igor can find the procedure (macro or function) specified by procedureName, GetIgorProcedure returns
via *hPtr a handle to the text for the procedure and returns a result of 0. The handle will contain the text for
the specified procedure with a carriage return at the end of each line.

Note that the text in the handle is not null terminated. Use WMGetHandleSize to find the number of bytes
in the handle. To use C string functions on this text you need to copy it to a local buffer and null-terminate
it or add a null terminator to the handle and lock the handle. See Understand the Difference Between a
String in a Handle and a C String on page 233. If you pass the handle back to Igor, you must remove the
null terminator and unlock the handle.

This handle belongs to you, so call WMDisposeHandle to dispose it when you no longer need it.

If Igor can not find the procedure, it returns a non-zero error code and sets *hPtr to NULL.

The flags parameter is defined as follows:

Igor will be unable to find the procedure if there is no such procedure. In this case, GetIgorProcedure will
return NO_MACRO_OR_FUNCTION.

Igor will be unable to find the procedure if a syntactical error in the procedure files prevents Igor from suc-
cessfully scanning them. In this case, GetIgorProcedure will return NEED_COMPILE.

GetIgorProcedure can also return NOMEM if it runs out of memory. This is unlikely.

Future versions of GetIgorProcedure may return other error codes so your XOP should not crash or other-
wise grossly misbehave if it receives some other error code.

Thread Safety

GetIgorProcedure is not thread-safe.

SetIgorProcedure
int
SetIgorProcedure(procedureName, h, flags)
const char* procedureName;
Handle h;
int flags;

This routine is used by very advanced XOPs that add a target window type to Igor.

The handle h belongs to Igor. Once you pass it to SetIgorProcedure, you must not modify it, access it, or
dispose of it.

See Adding XOP Target Windows on page 170 for further information.

Thread Safety

SetIgorProcedure is not thread-safe.

Bit Meaning

Bit 0 If set, GetIgorProcedure will look for macros with the specified
name. If cleared, it will ignore all macros.

Bit 1 If set, GetIgorProcedure will look for user-defined functions with
the specified name. If cleared, it will ignore all user-defined
functions.

All other bits Reserved for future use and must be set to 0.

Chapter 15 — XOPSupport Routines Procedures

372

DoWindowRecreationDialog
enum CloseWinAction
DoWindowRecreationDialog(procedureName)
char procedureName[MAX_OBJ_NAME+1];

This routine is used by very advanced XOPs that add a target window type to Igor. See Adding XOP Tar-
get Windows on page 170 for further information.

Thread Safety

DoWindowRecreationDialog is not thread-safe.

GetFunctionInfo
int
GetFunctionInfo(name, fip)
const char* name;
FunctionInfoPtr fip;

Returns information that you need in order to call an Igor user function or an external function from an
XOP. You might want to do this, for example, to implement your own user-defined curve fitting algo-
rithm. This is an advanced feature that most XOP programmers will not need.

For an overview see Calling User-Defined and External Functions on page 212.

name is the name of an existing user or external function. If there is no such function, GetFunctionInfo
returns an error. If the function is a user function and procedures are not in a compiled state, GetFunction-
Info returns an error. If everything is OK, GetFunctionInfo returns zero.

When you call GetFunctionInfo with a simple function name, such as "MyFunction", the information
returned describes the named function in the currently-executing independent module. If you call Get-
FunctionInfo with a fully-qualified name, such as "ProcGlobal#MyFunction" or "MyModule#MyFunction",
the information returned describes the named function in the named module. So if you want to call from
one independent module to another using CallFunction, you must use fully-qualified names when calling
GetFunctionInfo. If you want to call a function in the built-in ProcGlobal module, it is a good idea to spec-
ify it in the function name. See CallFunction and Igor Independent Modules on page 213 for an example.

The information returned by GetFunctionInfo should be used and then discarded. If the user does any-
thing to cause procedures to be compiled then the values returned by GetFunctionInfo are no longer valid.

GetFunctionInfo returns via fip->compilationIndex a value that you will pass to CallFunction. This
value is used to make sure that procedures have not been changed between the time you call GetFunction-
Info and the time you call CallFunction.

GetFunctionInfo returns via fip->functionID a value which you will pass to CallFunction to specify
which user function you want to execute.

GetFunctionInfo returns via fip->subType a code that identifies certain special purpose functions. The
value returned currently has no use but may be used in the future.

GetFunctionInfo returns via fip->isExternalFunction a value that is non-zero for external functions
and zero for user functions. This field is for your information only. Your code will be the same for external
and user functions.

GetFunctionInfo returns via fip->returnType one of the following codes:

NT_FP64: Return value is a double-precision number
NT_FP64 | NT_CMPLX: Return value is a complex double-precision number
HSTRING_TYPE: Return value is a string
WAVE_TYPE: Return value is a wave reference
DATAFOLDER_TYPE: Return value is a DFREF

Wave reference and DFREF return types are supported in Igor Pro 6.10 or later. A bug that prevented
them from working was fixed in Igor Pro 7.01.

Chapter 15 — XOPSupport Routines Procedures

373

GetFunctionInfo returns via fip->numOptionalParameters, fip->numRequiredParameters and
fip->totalNumParameters the number of optional, required and total parameters for the function.
Currently, an XOP can call a user function that has optional parameters but the XOP can not pass optional
parameters to the function. In other words, it must pass the required parameters only.

GetFunctionInfo returns via fip->parameterTypes an array of parameter types. GetFunctionInfo
stores a parameter type value in elements 0 through fip->totalNumParameters-1. Elements fip-
>totalNumParameters and higher are undefined so you must not use them.

You must use the CheckFunctionForm XOPSupport routine to make sure that the function is of the form
you want. You normally don't need to examine the parameter type values directly, but in case you are
curious, see the comments for GetFunctionInfo in XOPSupport.c.

Parameter type values for numeric, complex numeric and string parameters may be ORed with
FV_REF_TYPE. This indicates that the corresponding parameter is "pass-by-reference", meaning that the
function can change the value of that parameter.

Thread Safety

GetFunctionInfo is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

The FunctionInfo structure contains an isThreadSafe field which tells you if the function in question is
threadsafe.

GetFunctionInfoFromFuncRef
int
GetFunctionInfoFromFuncRef(fRef, fip)
FUNCREF fRef;
FunctionInfoPtr fip;

Returns information that you need in order to call an Igor user function or an external function from an
XOP. You might want to do this, for example, to implement your own user-defined curve fitting algo-
rithm. This is an advanced feature that most XOP programmers will not need.

For an overview see Calling User-Defined and External Functions on page 212.

fRef is the value of a FUNCREF field in an Igor Pro structure passed to your XOP as a parameter.

GetFunctionInfoFromFuncRef does not support cross-independent-module calls. It assumes that the FUN-
CREF passed to it was created in the module that is currently running. There is currently no way to use a
FUNCREF to make cross-independent-module calls. Use GetFunctionInfo with a qualified name instead.

GetFunctionInfoFromFuncRef will return an error if the function is a user function and procedures are not
in a compiled state. If everything is OK, GetFunctionInfoFromFuncRef returns zero.

GetFunctionInfoFromFuncRef works just like GetFunctionInfo except that you pass in a FUNCREF
instead of the name of the function. See the documentation for GetFunctionInfo for further details.

Thread Safety

GetFunctionInfoFromFuncRef is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread
created by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks
on page 178 for details.

The FunctionInfo structure contains an isThreadSafe field which tells you if the function in question is
threadsafe.

Chapter 15 — XOPSupport Routines Procedures

374

CheckFunctionForm
int
CheckFunctionForm(fip, requiredNumParameters, requiredParameterTypes,

badParameterNumberPtr, returnType)
FunctionInfoPtr fip;
int requiredNumParameters;
int requiredParameterTypes[];
int* badParameterNumberPtr;
int returnType;

Checks the form (number of parameters, types of parameters and return type) of an Igor user-defined or
external function against the required form. This is an advanced feature that most XOP programmers will
not need.

For an overview see Calling User-Defined and External Functions on page 212.

You must call CheckFunctionForm before calling CallFunction to make sure that the function you are call-
ing has the form you expect. Otherwise you may cause a crash.

fip is pointer to a structure set by calling GetFunctionInfo.

requiredNumParameters is the number of parameters you expect the function to have.

requiredParameterTypes is an array in which you have set each value to one of the following:

NT_FP64 The parameter must be scalar numeric
NT_FP64 | NT_CMPLX The parameter must be complex numeric
HSTRING_TYPE The parameter must be a string
WAVE_TYPE The parameter must be a scalar numeric wave
WAVE_TYPE | NT_CMPLX The parameter must be a complex numeric wave
TEXT_WAVE_TYPE The parameter must be a text wave
DATAFOLDER_TYPE The parameter must be a DFREF
FV_FUNC_TYPE The parameter must be a function reference
FV_STRUCT_TYPE | FV_REF_TYPE The parameter must be a structure

Wave reference and DFREF parameters are supported in Igor Pro 6.10 or later. A bug that prevented them
from working was fixed in Igor Pro 7.01.

The number of elements in requiredParameterTypes must be at least equal to requiredNumParameters.

If the parameter must be pass-by-reference, use FV_REF_TYPE in addition to the values above. For exam-
ple:

NT_FP64 | FV_REF_TYPE
NT_FP64 | NT_CMPLX | FV_REF_TYPE
HSTRING_TYPE | FV_REF_TYPE
FV_STRUCT_TYPE | FV_REF_TYPE

Pass-by-reference is applicable to numeric, string and structure parameters only. Numeric and string
parameters can be passed by value or passed by reference but structure parameters are always passed by
reference.

If you do not want CheckFunctionForm to check a particular parameter, pass -1 in the corresponding ele-
ment of the requiredParameterTypes array.

For background information see Structure Parameters on page 89.

When dealing with a structure parameter, CheckFunctionForm can not guarantee that your XOP and the
function you are calling are using the same definition of the structure. See Structure Parameters on page
89 for some suggestions for dealing with this problem.

If the function is an external function which takes a wave parameter, there is no way to know if the exter-
nal function expects a numeric wave or a text wave. Consequently, CheckFunctionForm does not distin-
guish between numeric and text waves for external functions. The external function itself is supposed to
check the type of the wave passed in at runtime and return an error if it is the wrong type.

Chapter 15 — XOPSupport Routines Procedures

375

returnType is the required return type of the function which must be one of the following:

NT_FP64
NT_FP64 | NT_CMPLX
HSTRING_TYPE
WAVE_TYPE
DATAFOLDER_TYPE

Wave reference and DFREF return types are supported in Igor Pro 6.10 or later.

If you do not want CheckFunctionForm to check the return type, pass -1 as the returnType parameter.

CheckFunctionForm sets *badParameterNumberPtr to the zero-based index of the first parameter that
does not match the required type or to -1 if all parameters match the required type.

It returns 0 if the form matches the requirements or an error code if not.

If a function parameter type does not match the required parameter type, the error code returned will indi-
cate the type of parameter required but not which parameter type was bad. If you want to inform the user
more specifically, use the value returned via badParameterNumberPtr to select your own more specific
error code. If the error was a parameter type mismatch, *badParameterNumberPtr will contain the zero-
based index of the bad parameter. Otherwise, *badParameterNumberPtr will contain -1.

Thread Safety

CheckFunctionForm is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

CallFunction
int
CallFunction(fip, parameters, resultPtr)
FunctionInfoPtr fip;
void* parameters;
void* resultPtr;

Calls the Igor user-defined or external function identified by fip. This is an advanced feature that most
XOP programmers will not need.

For an overview see Calling User-Defined and External Functions on page 212.

fip is a pointer to a FunctionInfo structure whose values were set by calling GetFunctionInfo.

fip->compilationIndex is used by CallFunction to make sure that procedures were not recompiled after
you called GetFunctionInfo. If procedures were recompiled, then the information in the structure may be
invalid so CallFunction returns BAD_COMPILATION_INDEX.

parameters is a pointer to a structure containing the values that you want to pass to the function. These
values must agree in type with the function's parameter list, as indicated by the parameter information
that you obtain via GetFunctionInfo. To guarantee this, you must call CheckFunctionForm before calling
CallFunction.

NOTE: The parameters structure must use standard XOP structure packing, namely, two-byte packing.
If you don't set the structure packing correctly, a crash is likely. See Structure Alignment on page
208.

Parameter type values are discussed in detail in the comments for the GetFunctionInfo function in XOP-
Support.c. Here is the basic correspondence between function parameter types and the respective struc-
ture field:

if (parameterType == NT_FP64)
structure field is double

if (parameterType == (NT_FP64 | NT_CMPLX))

Chapter 15 — XOPSupport Routines Procedures

376

structure field is double[2]

if (parameterType == HSTRING_TYPE)
structure field is Handle

if (WAVE_TYPE bit is set)
structure field is waveHndl

if (DATAFOLDER_TYPE bit is set) // Igor Pro 6.10 or later
structure field is DataFolderHandle

if (FV_FUNC_TYPE bit is set)
structure field is PSInt

NOTE: For pass-by-value strings parameters, ownership of a handle stored in the parameter structure is
passed to the function when you call CallFunction. The function will dispose the handle and
CallFunction will set the field to NULL. You must not dispose it or otherwise reference it after
calling CallFunction.

NOTE: For pass-by-reference string parameters, the handle stored in the parameter structure field may
be reused or disposed by the called function. When CallFunction returns, you own the handle
which may be the same handle you passed or a different handle. You own this handle and you
must dispose it when you no longer need it. If the field is NULL, which could occur in the event
of an error, you must not dispose of it or otherwise access it.

CallFunction stores the function result at the location indicated by resultPtr. Here is the correspondence
between the function result type and the variable pointed to by resultPtr:

NT_FP64 double
NT_FP64 | NT_CMPLX double[2]
HSTRING_TYPE Handle
WAVE_TYPE waveHndl
DATAFOLDER_TYPE DataFolderHandle

Wave reference and DFREF return types are supported in Igor Pro 6.10 or later. A bug that prevented
them from working was fixed in Igor Pro 7.01.

NOTE: A function that returns a string, wave or DataFolderHandle can return NULL instead of a valid
handle. You must test the returned value to make sure it is not NULL before using it. If the
returned handle is not NULL, you own it and you must dispose it when you no longer need it.

NOTE: For string return values, if the returned handle is not NULL, you own it and you must dispose it
when you no longer need it.

CallFunction returns 0 as the function result if the function executed. If the function could not be executed,
it returns a non-zero error code.

Thread Safety

CallFunction is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor
but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

You can call a thread-safe user-defined function or external function while you are running an an Igor pre-
emptive thread. You can tell if you are running in a thread by calling RunningInMainThread.

When you call GetFunctionInfo, you receive information about the function in a FunctionInfo structure.
The FunctionInfo structure contains an isThreadSafe field. If you are running in a thread, you can check the
isThreadSafe field to make sure the function you are calling is threadsafe.

If you try to call a non-threadsafe function from a thread using CallFunction, Igor will return an error, typ-
ically the ONLY_THREADSAFE ("Function must be ThreadSafe") error.

Chapter 15 — XOPSupport Routines Procedures

377

GetIgorCallerInfo
int
GetIgorCallerInfo(pathOrTitle, linePtr, routineName, callStackHPtr)
char pathOrTitle[MAX_PATH_LEN+1];
int* linePtr;
char routineName[256];
Handle* callStackHPtr;

Returns information about the Igor procedure that is currently running. This may be useful for debugging
purposes in complex Igor projects.

If the currently running procedure is stored in a standalone file then the full path to the procedure file is
returned in Macintosh HFS format (using colon separators) via pathOrTitle.

If the currently running procedure is in the built-in procedure window or in a packed procedure file or in
a new procedure file not yet saved to disk then the window's title is returned via pathOrTitle preceded by
a colon (e.g., ":Procedure").

If no procedure is running then pathOrTitle is set to an empty string ("").

If a procedure is running then *linePtr is set to the zero-based line number within the file.

When a macro is running this returns the line number of the macro declaration.

When a user-defined function is running it returns the line number of the statement which is currently
executing.

If no procedure is running then *linePtr is set to -1.

If a procedure is running then the name of the procedure is returned via routineName. Otherwise routine-
Name is set an empty string ("").

If GetIgorCallerInfo returns zero then the function has succeeded and you own the handle referenced by
callStackHPtr, and you must dispose it.

If GetIgorCallerInfo returns a non-zero error code then *stackInfoHPtr is undefined and you must not do
anything with it.

If a procedure is running, *callStackHPtr is set to a handle containing a stack crawl.

If no procedure is running, *callStackHPtr is set to NULL. You should always test *callStackHPtr - do not
use it if it is NULL. If *callStackHPtr is not NULL then this handle belongs to you and you must dispose it
when you no longer need it.

If *callStackHPtr is not NULL it contains a list of Igor procedures separated by semicolons. *callStackHPtr
is not null terminated. Use WMGetHandleSize to determine the size of the stack crawl text.

In some cases the currently running procedure can not be determined, for example because because Igor
procedures need to be compiled. If so then GetIgorCallerInfo acts as if no procedure is running.

Added for Igor Pro 6.00B09. If you call this with an earlier version of Igor, it will return IGOR_OBSOLETE
and do nothing.

Thread Safety

GetIgorCallerInfo is not thread-safe.

GetIgorRTStackInfo
int
GetIgorRTStackInfo(code, stackInfoHPtr)
Int code;
Handle* stackInfoHPtr;

Returns information about the chain of Igor procedure that are currently running. This may be useful for
debugging purposes in complex Igor projects.

Chapter 15 — XOPSupport Routines Procedures

378

If GetIgorRTStackInfo returns zero then the function has succeeded and you own the handle referenced by
stackInfoHPtr, and you must dispose it.

If GetIgorRTStackInfo returns a non-zero error code then *stackInfoHPtr is undefined and you must not
do anything with it.

The contents of the string returned by GetIgorRTStackInfo is the same as the contents of the string
returned by the built-in Igor function GetRTStackInfo. See the documentation for GetRTStackInfo for
details.

The string stored in *stackInfoHPtr is not null terminated. Use WMGetHandleSize on *stackInfoHPtr to
determine the size of the text.

Added for Igor Pro 6.02B01. If you call this with an earlier version of Igor, it will return IGOR_OBSOLETE
and do nothing.

Thread Safety

GetIgorRTStackInfo is not thread-safe.

Chapter 15 — XOPSupport Routines Multithreading Support

379

Multithreading Support Routines
These routines support multithreading.

RunningInMainThread
int
RunningInMainThread(void)

Returns 1 if you are running in the main thread, 0 if you are running in another thread.

If you are not running in the main thread then certain calls are illegal. For example, an external operation
or function can not do a callback to Igor if it is running with an Igor Pro version prior to 6.20. Here is code
that enforces this:

if (igorVersion < 620) {
if (!RunningInMainThread())

return NOT_IN_THREADSAFE; // NOT_IN_THREADSAFE is an Igor error code.
}

For general information on multithreaded XOPs, see Chapter 10, Multithreading.

Thread Safety

RunningInMainThread is thread-safe. It can be called from any thread.

CheckRunningInMainThread
int
CheckRunningInMainThread(routineName)
const char* routineName; // Name of the calling routine.

CheckRunningInMainThread is called by non-thread-safe XOPSupport routines to provide the XOP pro-
grammer with feedback if the XOP calls a non-threadsafe XOPSupport routine from a thread other than
the main thread. In this event, it displays an error dialog.

To avoid a cascade of such dialogs, the dialog is presented only once per minute.

The return value is the truth that you are running in the main thread.

You can call CheckRunningInMainThread from your own code to provide feedback if your non-thread-
safe routine is called from a pre-emptive thread. It is typically used as follows:

if (!CheckRunningInMainThread("SomeRoutineName"))
return NOT_IN_THREADSAFE; // NOT_IN_THREADSAFE is an Igor error code.

}

For general information on multithreaded XOPs, see Chapter 10, Multithreading.

Thread Safety

CheckRunningInMainThread is not thread-safe but can be used to alert the XOP programmer if a non-
threadsafe function is mistakenly called from a preemptive thread.

Chapter 15 — XOPSupport Routines Multithreading Support

380

ThreadGroupPutDF
int
ThreadGroupPutDF(threadGroupID, dataFolderH)
int threadGroupID;
DataFolderHandle dataFolderH;

ThreadGroupPutDF is used to pass data folders between Igor threads by way of an Igor-maintained
queue. It snips the specified data folder from the data hierarchy of the calling thread and posts it to a
queue from which it can be retrieved by calling ThreadGroupGetDF from a different thread.

When called from the main thread, ThreadGroupPutDF removes the specified data folder from the main
thread's data hierarchy and posts it to the input queue of the Igor thread group specified by thread-
GroupID. You would do this to pass a data folder to an Igor preemptive thread for processing.

When called from an Igor preemptive thread, ThreadGroupPutDF removes the specified data folder from
the running thread's data hierarchy and posts it to the output queue of the thread group. You would do
this to pass data from an Igor preemptive thread to the main thread. In this case, threadGroupID is
ignored and you can pass 0 for it.

threadGroupID is a thread group ID passed to you from a calling user-defined function or 0 as described
above. See the Igor documentation for ThreadGroupCreate for further discussion of thread group IDs.

dataFolderH is a handle to the data folder to be removed from the currently-running Igor thread's data
hierarchy and transferred to the thread group's input queue or output queue as described above.

dataFolderH must be a valid data folder handle. It must not be NULL.

If ThreadGroupPutDF succeeds, the specified data folder handle is no longer valid and must not be fur-
ther used.

See the Igor documentation for the ThreadGroupPutDF operation for further details and warnings.

For general information on multithreaded XOPs, see Chapter 10, Multithreading.

Added for Igor Pro 6.23. If you call this with an earlier version of Igor, it will return IGOR_OBSOLETE and
do nothing.

Thread Safety

ThreadGroupPutDF is Igor-thread-safe with Igor Pro 6.23 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

ThreadGroupGetDF
int
ThreadGroupGetDF(threadGroupID, waitMilliseconds, dataFolderHPtr)
int threadGroupID;
int waitMilliseconds; // Milliseconds to wait for data folder
DataFolderHandle* dataFolderHPtr;

ThreadGroupGetDF is used to pass data folders between Igor threads by way of an Igor-maintained
queue. It removes a data folder from the queue, if one is available, and stitches it into the data hierarchy of
the currently running Igor thread.

When called from the main thread, ThreadGroupGetDF returns a data folder from the output queue of the
thread group specified by threadGroupID or NULL if there are no data folders in the queue. If a data
folder is available, it is stitched into the main thread's data hierarchy. You would do this to move results
from an Igor preemptive thread into the main thread for display and further processing.

When called from an Igor preemptive thread, ThreadGroupGetDF returns a data folder from the input
queue of the currently running Igor thread's thread group or NULL if there are no data folders in the
queue. You would do this to get input from the main thread into the Igor premptive thread. If a data folder

Chapter 15 — XOPSupport Routines Multithreading Support

381

is available, it is stitched into the currently-running Igor thread's data hierarchy. In this case, thread-
GroupID is ignored and you can pass 0 for it.

threadGroupID is a thread group ID passed to you from a calling user-defined function or 0 as described
above. See the Igor documentation for ThreadGroupCreate for further discussion of thread group IDs.

waitMilliseconds is the number of milliseconds to wait to see if a data folder becomes available in the
queue. Pass 0 to test if a data folder is available immediately. The value for waitMilliseconds must be
between 0 and 2147483647 (2^31-1 milliseconds - about 25 days).

*dataFolderHPtr is set to NULL if no data folders are available or to a handle to the data folder that was
retrieved from the queue. Igor changes the name of the data folder if that is necessary to make it unique
within its parent data folder.

On return, check the function result from ThreadGroupGetDF and *dataFolderHPtr. If the function result
is 0 and *dataFolderHPtr is not NULL then *dataFolderHPtr is a valid data folder handle in the currently-
running thread's data hierarchy.

See the Igor documentation for the ThreadGroupGetDF operation for further details and warnings.

For general information on multithreaded XOPs, see Chapter 10, Multithreading.

Added for Igor Pro 6.23. If you call this with an earlier version of Igor, it will return IGOR_OBSOLETE and
do nothing.

Thread Safety

ThreadGroupGetDF is Igor-thread-safe with Igor Pro 6.23 or later. You can call it from a thread created by
Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178
for details.

Chapter 15 — XOPSupport Routines Windows-Specific

382

Windows-Specific Routines
These routines are available and applicable to XOPs running under the Windows OS only.

XOPModule
HMODULE
XOPModule(void)

This routine is supported on Windows only.

XOPModule returns the XOP's module handle.

You will need this HMODULE if your XOP needs to get resources from its own executable file using the
Win32 FindResource and LoadResource routines. It is also needed for other Win32 API routines.

Thread Safety

XOPModule is thread-safe. It can be called from any thread.

IgorModule
HMODULE
IgorModule(void)

This routine is supported on Windows only.

IgorModule returns Igor's module handle.

There is probably no reason for an XOP to call this routine.

Thread Safety

IgorModule is thread-safe. It can be called from any thread.

IgorClientHWND
HWND
IgorClientHWND(void)

This routine is supported on Windows only.

IgorClientHWND returns Igor's MDI client window HWND.

Some Win32 API calls require that you pass an HWND to identify the owner of a new window or dialog.
An example is MessageBox. You must pass IgorClientHWND() for this purpose.

Thread Safety

IgorClientHWND is thread-safe. It can be called from any thread.

WMGetLastError
int
WMGetLastError(void)

This routine is supported on Windows only.

WMGetLastError does the same as the Win32 GetLastError routine except for three things. First, it trans-
lates Windows OS error codes into codes that mean something to Igor. Second, it always returns a non-
zero result whereas GetLastError can sometimes return 0. Third, it calls SetLastError(0).

For a detailed explanation, see Handling Windows OS Error Codes on page 62.

Chapter 15 — XOPSupport Routines Windows-Specific

383

Thread Safety

WMGetLastError is thread-safe. It can be called from any thread. It relies on the Windows GetLastError
function which uses per-thread storage to store an error code for each thread.

WindowsErrorToIgorError
int
WindowsErrorToIgorError(int winErr)
int winErr; // Windows OS error code

This routine is supported on Windows only.

WindowsErrorToIgorError takes a Windows OS error code and returns an error code that means some-
thing to Igor.

For a detailed explanation, see Handling Windows OS Error Codes on page 62.

Thread Safety

WindowsErrorToIgorError is thread-safe. It can be called from any thread.

Chapter 15 — XOPSupport Routines Miscellaneous

384

Miscellaneous Routines
These routines don’t fit in any particular category.

XOPCommand
int
XOPCommand(cmdPtr)
char* cmdPtr; // C string containing an Igor command

Submits a command to Igor for execution.

The function result is 0 if OK or an error code.

Use this to access Igor features for which there is no direct XOP interface.

cmdPtr is a null-terminated C string. The string must consist of one line of text not longer than MAXCM-
DLEN and with no carriage return characters.

A side-effect of XOPCommand is that it causes Igor to do an update. See DoUpdate for a definition of
“update”.

XOPCommand displays the command in Igor’s command line while it is executing. If you don’t want the
command to be shown in the command line, which is usually the case, use XOPCommand2,
XOPCommand3 or XOPSilentCommand instead of XOPCommand.

XOPCommand does not send the executed command to the history area.

Liberal names of waves and data folders must be quoted before using them in the Igor command line. Use
PossiblyQuoteName when preparing the command to be executed so that your XOP works with liberal
names.

NOTE: If your XOP adds a window to Igor or if the command that you are executing directly or
indirectly calls your XOP again, this callback will cause recursion. This can cause your XOP to
crash if you do not handle it properly. See Handling Recursion on page 67 for details.

Thread Safety

XOPCommand is not thread-safe.

XOPCommand2
int
XOPCommand2(cmdPtr, silent, sendToHistory)
char* cmdPtr; // C string containing an Igor command
int silent; // True to not show cmd in command line
int sendToHistory; // True to send cmd to history area

Submits a command to Igor for execution.

The function result is 0 if OK or an error code.

Use this to access Igor features for which there is no direct XOP interface.

cmdPtr is a null-terminated C string. The string must consist of one line of text not longer than MAXCM-
DLEN and with no carriage return characters.

If silent is non-zero, the command is displayed in Igor’s command line while it executes.

If sendToHistory is non-zero and the command generates no error, the command is sent to the history area
after execution.

A side-effect of XOPCommand2 is that it causes Igor to do an update. See DoUpdate below for a definition
of “update”.

Chapter 15 — XOPSupport Routines Miscellaneous

385

Liberal names of waves and data folders must be quoted before using them in the Igor command line. Use
PossiblyQuoteName when preparing the command to be executed so that your XOP works with liberal
names.

NOTE: If your XOP adds a window to Igor or if the command that you are executing directly or
indirectly calls your XOP again, this callback will cause recursion. This can cause your XOP to
crash if you do not handle it properly. See Handling Recursion on page 67 for details.

Thread Safety

XOPCommand2 is not thread-safe.

XOPCommand3
int
XOPCommand3(cmdPtr, silent, sendToHistory, historyTextHPtr)
char* cmdPtr; // C string containing an Igor command
int silent; // True to not show cmd in command line
int sendToHistory; // True to send cmd to history area
Handle* historyTextHPtr; // Receives history text generated by command.

This is just like XOPCommand2 except that it returns via historyTextHPtr a handle containing any text
added to the history by the command. In the event of an error, *historyTextHPtr is set to NULL. If no error
occurs, *historyTextHPtr is set to a new handle which you own and must dispose using WMDisposeHan-
dle. *historyTextHPtr is not null terminated.

The function result is 0 if OK or an error code.

Added in Igor Pro 6.00B10. If you call this when running with an earlier version, it will return
IGOR_OBSOLETE.

Thread Safety

XOPCommand3 is not thread-safe.

XOPSilentCommand
int
XOPSilentCommand(cmdPtr)
char* cmdPtr; // C string containing an Igor command

Submits a command to Igor for execution.

The function result is 0 if OK or an error code.

Use this to access Igor features for which there is no direct XOP interface.

A side-effect of XOPSilentCommand is that it causes Igor to do an update. See DoUpdate for a definition
of “update”.

This is just like XOPCommand except that it does not display the command in Igor’s command line as it is
executing.

XOPCommand does not send the executed command to the history area.

Liberal names of waves and data folders must be quoted before using them in the Igor command line. Use
PossiblyQuoteName when preparing the command to be executed so that your XOP works with liberal
names.

NOTE: If your XOP adds a window to Igor or if the command that you are executing directly or
indirectly calls your XOP again, this callback will cause recursion. This can cause your XOP to
crash if you do not handle it properly. See Handling Recursion on page 67 for details.

Thread Safety

XOPSilentCommand is not thread-safe.

Chapter 15 — XOPSupport Routines Miscellaneous

386

DoUpdate
void
DoUpdate(void)

Causes Igor to do an immediate update.

An update consists of:

• Redrawing any windows that have been uncovered
• Re-evaluating any dependency formulas (e.g., wave0 := K0 when K0 changes)
• Redrawing windows displaying waves that have changed
Igor does updates automatically in its outer loop. You should call DoUpdate only if you want Igor to do an
update before your XOP returns to Igor.

NOTE: If your XOP adds a window to Igor or if the update of an Igor window indirectly calls your XOP
again, this callback will cause recursion. This can cause your XOP to crash if you do not handle
it properly. See Handling Recursion on page 67 for details.

Thread Safety

DoUpdate is not thread-safe.

PauseUpdate
void
PauseUpdate(savePtr)
int* savePtr; // Place to save current state of PauseUpdate

Tells Igor not to update graphs and tables until your XOP calls ResumeUpdate.

Make sure to balance this with a ResumeUpdate call.

Thread Safety

PauseUpdate is not thread-safe.

ResumeUpdate
void
ResumeUpdate(savePtr)
int* savePtr; // Previous state from PauseUpdate call

Undoes effect of previous PauseUpdate.

Make sure this is balanced with a previous PauseUpdate call.

Thread Safety

ResumeUpdate is not thread-safe.

XOPNotice
void
XOPNotice(noticePtr)
char* noticePtr; // Message for Igor's history area

Displays the C string pointed to by noticePtr in Igor’s history.

This is used mostly for debugging or to display the results of an operation.

XOPNotice prints only the first MAXCMDLEN-2 (currently 398) bytes of the specified message.

NOTE: When Igor passes a message to you, you must get the message, using GetXOPMessage, and get
all of the arguments, using GetXOPItem, before doing any callbacks, including XOPNotice. The

Chapter 15 — XOPSupport Routines Miscellaneous

387

reason for this is that the act of doing the callback overwrites the message and arguments that
Igor is passing to you.

Thread Safety

XOPNotice is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

Igor queues text sent to the history area from a preemptive thread and sends the text to the history area in
the main thread. Consequently text from different threads will appear in the history in unpredictable
order.

XOPNotice2
void
XOPNotice2(noticePtr, options)
char* noticePtr; // Message for Igor's history area
UInt32 options;

Displays the C string pointed to by noticePtr in Igor’s history.

This is used mostly for debugging or to display the results of an operation.

XOPNotice2 is the same as XOPNotice except that it allows you to prevent marking the current experi-
ment to be marked as modified.

options is defined as follows:

XOPNotice2 prints only the first MAXCMDLEN-2 (currently 398) bytes of the specified message.

NOTE: When Igor passes a message to you, you must get the message, using GetXOPMessage, and get
all of the arguments, using GetXOPItem, before doing any callbacks, including XOPNotice2. The
reason for this is that the act of doing the callback overwrites the message and arguments that
Igor is passing to you.

Thread Safety

XOPNotice2 is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

Igor queues text sent to the history area from a preemptive thread and sends the text to the history area in
the main thread. Consequently text from different threads will appear in the history in unpredictable
order.

Bit Meaning

Bit 0 If cleared, the modification state of the history area is not modified.
Use this if you want to display a notice but don't want that to cause
the current experiment to be modified.

If set, the history area is marked as modified after the notice is
displayed.

All other bits Reserved. You must pass zero for these bits.

Chapter 15 — XOPSupport Routines Miscellaneous

388

XOPNotice3
void
XOPNotice3(noticePtr, rulerName, options)
char* noticePtr; // Message for Igor's history area
char* rulerName; // Name of ruler in history carbon copy
int options;

Displays the C string pointed to by noticePtr in Igor’s history.

Through the rulerName and options parameters, XOPNotice3 provides control over the formatting of the
text in the History Carbon Copy notebook. If you are not using the History Carbon Copy feature (added in
Igor Pro 6.10B04), use XOPNotice instead of XOPNotice3.

noticePtr is a null-terminated C string. Typically notices should be terminated by carriage return (use
CR_STR at end of string as shown below).

rulerName is the name of a ruler in the History Carbon Copy notebook. XOPNotice3 applies the ruler to
the current selection in the History Carbon Copy notebook before inserting the text. If rulerName is "" then
the ruler is not changed.

options is defined as follows:

Typically you would call this to use a ruler that you previously created in the history carbon copy note-
book to control formatting for specific kinds of notices. For example, if you created a ruler named Warn-
ing, you would send a warning to the history like this:

XOPNotice3("You have been warned!" CR_STR, "Warning", 1);

Bit 0 of options should be set except in the case when you expect to make many calls to XOPNotice3 in a
row. In this case, you can make it run slightly faster like this:

XOPNotice3("Starting", "Progress", 0); // Starting a long process
XOPNotice3(" .", "", 0); // Add a dot to indicate progress
. . .
XOPNotice3(" .", "", 0); // Add a dot to indicate progress
XOPNotice3("Done!" CR_STR, "", 0); // The long process is done
XOPNotice3("", "Normal", 0); // Restore to normal ruler

In this example, we set the history carbon copy ruler to "Progress" which is the name of a ruler that we cre-
ated for paragraphs containing progress messages. We then called XOPNotice3 repeatedly to add a dot to
the progress message. In these calls, we specified no ruler so the ruler is not changed. At the end, we add a
carriage return (CR_STR) to make sure we are on a new paragraph and then set the ruler to Normal so that
normal history carbon copy processing will occur in the future.

XOPNotice3 prints only the first MAXCMDLEN-2 (currently 398) bytes of the specified message.

Added in Igor Pro 6.10B04. If you call this when running with an earlier version, nothing will be sent to the
history.

NOTE: When Igor passes a message to you, you must get the message, using GetXOPMessage, and get
all of the arguments, using GetXOPItem, before doing any callbacks, including XOPNotice3. The
reason for this is that the act of doing the callback overwrites the message and arguments that
Igor is passing to you.

Bit Meaning

Bit 0 If set, the history carbon copy ruler is restored after the text is
inserted.

If cleared, the history carbon copy ruler is not restored.

All other bits Reserved. You must pass zero for these bits.

Chapter 15 — XOPSupport Routines Miscellaneous

389

Thread Safety

XOPNotice3 is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

Igor queues text sent to the history area from a preemptive thread and sends the text to the history area in
the main thread. Consequently text from different threads will appear in the history in unpredictable
order.

XOPResNotice
void
XOPResNotice(strListID, index)
int strListID; // Resource ID to get string from
int index; // String number in that resource

NOTE: XOPResNotice is antiquated. Use XOPNotice or XOPNotice2 instead.

Gets a string from an STR# resource in the XOP’s resource fork and displays it in Igor’s history.

The resource must be of type 'STR#'. The resource ID should be between 1100 and 1199.

These resource IDs are reserved for XOPs.

strListID is the resource ID of the STR# containing the string.

index is the number of the string in the STR# resource.

XOPResNotice prints only the first MAXCMDLEN-2 (currently 398) bytes of the specified message.

Thread Safety

XOPResNotice is not thread-safe.

WaveList
int
WaveList(listHandle, match, sep, options)
Handle listHandle; // Handle to contain list of waves
char* match; // "*" for all waves or match pattern
char* sep; // Separator character, normally ";"
char* options; // Options for further selection of wave

Puts a list of waves from the current data folder that match the parameters into listHandle.

The function result is 0 if OK or an error code if the parameters were not legal or another problem (such as
out of memory) occurred.

On input, listHandle is a handle to 0 bytes which you have allocated, typically with WMNewHandle.

Note that the text in the handle is not null terminated. Use WMGetHandleSize to find the number of bytes
in the handle. To use C string functions on this text you need to copy it to a local buffer and null-terminate
it or add a null terminator to the handle and lock the handle. See Understand the Difference Between a
String in a Handle and a C String on page 233. If you pass the handle back to Igor, you must remove the
null terminator and unlock the handle.

The meaning of the match, sep and options parameters is the same as for the built-in Igor WaveList func-
tion.

The handle must be allocated and disposed by the calling XOP.

Thread Safety

WaveList is not thread-safe.

Chapter 15 — XOPSupport Routines Miscellaneous

390

WinList
int
WinList(listHandle, match, sep, options)
Handle listHandle; // Handle to contain list of windows
char* match; // "*" for all windows or match pattern
char* sep; // Separator character, normally ";"
char* options; // Options for further selection of windows

Puts a list of windows that match the parameters into listHandle.

The function result is 0 if OK or an error code if the parameters were not legal or another problem (such as
out of memory) occurred.

The meaning of the match parameter is the same as for the built-in Igor WinList function.

If options is "" then all windows are selected.

If options is "WIN:" then just the target window is selected.

If options is "WIN:typeMask" then windows of the specified types are selected.

The window type masks are defined in IgorXOP.h.

On input, listHandle is a handle to 0 bytes which you have allocated using WMNewHandle.

Note that the text in the handle is not null terminated. Use WMGetHandleSize to find the number of bytes
in the handle. To use C string functions on this text you need to copy it to a local buffer and null-terminate
it or add a null terminator to the handle and lock the handle. See Understand the Difference Between a
String in a Handle and a C String on page 233. If you pass the handle back to Igor, you must remove the
null terminator and unlock the handle.

The handle must be allocated and disposed by the calling XOP.

Thread Safety

WinList is not thread-safe.

PathList
int
PathList(listHandle, match, sep, options)
Handle listHandle; // Handle to contain list of paths
char* match; // "*" for all paths or match pattern
char* sep; // Separator character, normally ";"
char* options; // Must be ""

Puts a list of symbolic paths that match the parameters into listHandle.

The function result is 0 if OK or an error code if the parameters were not legal or another problem (such as
out of memory) occurred.

The meaning of the match parameter is the same as for the built-in Igor PathList function.

options must be "".

On input, listHandle is a handle to 0 bytes which you have allocated using WMNewHandle.

Note that the text in the handle is not null terminated. Use WMGetHandleSize to find the number of bytes
in the handle. To use C string functions on this text you need to copy it to a local buffer and null-terminate
it or add a null terminator to the handle and lock the handle. See Understand the Difference Between a
String in a Handle and a C String on page 233. If you pass the handle back to Igor, you must remove the
null terminator and unlock the handle.

The handle must be allocated and disposed by the calling XOP.

Chapter 15 — XOPSupport Routines Miscellaneous

391

Thread Safety

PathList is not thread-safe.

GetPathInfo2
int
GetPathInfo2(pathName, fullDirPath)
const char* pathName; // Input
char* fullDirPath[MAX_PATH_LEN+1]; // Output

pathName is the name of an Igor symbolic path.

Returns via fullDirPath the full native path to the directory referenced by pathName. The returned path
includes a trailing colon on Macintosh and a trailing backslash on Windows.

The function result is 0 if OK or an error code if the pathName is not the name of an existing Igor symbolic
path.

Thread Safety

GetPathInfo2 is thread-safe only when running with Igor Pro 8.00 or later.

VariableList
int
VariableList(listHandle, match, sep, varTypeCode)
Handle listHandle; // Receives list of variable names
char* match; // "*" for all variables or match pattern
char* sep; // Separator character, normally ";"
char* varTypeCode; // Select which variable types to list

Puts a list of Igor global numeric variable names from the current data folder that match the parameters
into listHandle.

The function result is 0 if OK or an error code if the parameters were not legal or another problem (such as
out of memory) occurred.

match and sep are as for the WaveList callback.

varTypeCode is some combination of NT_FP32, NT_FP64 and NT_CMPLX. Use (NT_FP32 | NT_FP64 |
NT_CMPLX) to get all variables. All numeric global variables are double precision.

On input, listHandle is a handle to 0 bytes which you have allocated using WMNewHandle. VariableList
fills the handle with text.s

Note that the text in the handle is not null terminated. Use WMGetHandleSize to find the number of bytes
in the handle. To use C string functions on this text you need to copy it to a local buffer and null-terminate
it or add a null terminator to the handle and lock the handle. See Understand the Difference Between a
String in a Handle and a C String on page 233. If you pass the handle back to Igor, you must remove the
null terminator and unlock the handle.

The handle must be allocated and disposed by the calling XOP.

Thread Safety

VariableList is not thread-safe.

Chapter 15 — XOPSupport Routines Miscellaneous

392

StringList
int
StringList(listHandle, match, sep)
Handle listHandle; // Receives list of string variable names
char* match; // "*" for all strings or match pattern
char* sep; // Separator character, normally ";"

Puts a list of Igor global string variable names from the current data folder that match the parameters into
listHandle.

The function result is 0 if OK or an error code if the parameters were not legal or another problem (such as
out of memory) occurred.

match and sep are as for the WaveList callback.

On input, listHandle is a handle to 0 bytes which you have allocated using WMNewHandle. StringList
fills the handle with text.

Note that the text in the handle is not null terminated. Use WMGetHandleSize to find the number of bytes
in the handle. To use C string functions on this text you need to copy it to a local buffer and null-terminate
it or add a null terminator to the handle and lock the handle. See Understand the Difference Between a
String in a Handle and a C String on page 233. If you pass the handle back to Igor, you must remove the
null terminator and unlock the handle.

The handle must be allocated and disposed by the calling XOP.

Thread Safety

StringList is not thread-safe.

CheckAbort
int
CheckAbort(timeoutTicks)
TickCountInt timeoutTicks; // Ticks at which timeout occurs

Use this to check if it’s time to stop an operation or if user is pressing cmd-dot (Macintosh) or Ctrl-Break
(Windows) to abort it.

Returns -1 if user is now pressing cmd-dot (Macintosh) or Ctrl-Break (Windows).

Returns 1 if timeoutTicks is not zero and TickCount > timeoutTicks. TickCount is the Macintosh tick coun-
ter. It increments approximately 60 times per second. The TickCount function is emulated by Igor when
running on Windows.

Returns 0 otherwise.

CheckAbort this does a check only every .1 second no matter how often you call it.

CheckAbort only checks if the abort key combinations listed above are pressed. It does not check if an abort
occurs in Igor which would happen if the user presses the abort keys or clicks the Abort button in the sta-
tus bar on Windows or if a procedure calls the Abort operation. For most purposes, use SpinProcess,
which checks for all types of aborts, instead of CheckAbort. Use CheckAbort if SpinProcess, which calls
back to Igor, would be too slow, or if you are running in a preemptive thread with a version of Igor prior
to 6.20 in which case SpinProcess is not thread-safe.

On Macintosh this routine may not work correctly on non-English keyboards. It checks the key that is the
dot key on an English keyboard. This is the key that is two keys to the left of the righthand shift key. On a
French keyboard, for example, that is the colon key so you must press cmd-colon instead of cmd-dot.

If this is a problem, you may prefer to use the CheckEventQueueForUserCancel function from the Carbon
library instead of CheckAbort. However CheckEventQueueForUserCancel checks for the escape key in
addition to cmd-dot. It also removes events from the event queue which may prevent Igor from detecting
that you want to abort procedure execution.

Chapter 15 — XOPSupport Routines Miscellaneous

393

See Checking For Aborts on page 214 for further discussion.

Thread Safety

CheckAbort is thread-safe. It can be called from any thread.

IgorError
void
IgorError(title, errCode)
char* title; // Short title for error alert
int errCode; // Error code

Displays an error alert appropriate for the specified error code.

Title is a short string that identifies what generated the error.

errCode may be an Igor error code (defined in IgorXOP.h), an XOP-defined error code, or, when running
on Macintosh, a Mac OS error code. To display a message for a Windows OS error, convert the code to an
Igor code by calling WindowsErrorToIgorError.

Use this routine when an error occurs in an XOP but not during the execution of a command line opera-
tion, function or menu item routine. See XOP Errors on page 61 for details.

Thread Safety

IgorError is not thread-safe.

GetIgorErrorMessage
int
GetIgorErrorMessage(errCode, errorMessage)
int errCode; // Error code
char errorMessage[256]; // Output string goes here

Returns via errorMessage the message corresponding to the specified error code.

errCode may be an Igor error code (defined in IgorXOP.h), an XOP-defined error code, or, when running
on Macintosh, a Mac OS error code. To obtain a message for a Windows OS error, convert the code to an
Igor code by calling WindowsErrorToIgorError before calling GetIgorErrorMessage.

Do not pass 0 for errCode. There is no error message corresponding to 0.

errorMessage must be large enough to hold 255 bytes plus a trailing null.

The function result is 0 if OK, or a non-zero error code if the errCode parameter is invalid. If GetIgorEr-
rorMessage fails to get a message, it sets *errorMessage to 0.

This routine is of use when you want to display an error message in your own window rather than in a
dialog. See XOP Errors on page 61 for details.

Thread Safety

GetIgorErrorMessage is not thread-safe.

SpinProcess
int
SpinProcess(void)

When running in the main thread, SpinProcess spins the beach ball cursor, updates progress windows and
does other tasks that need to be done periodically.

Whether called from the main thread or from an Igor preemptive thread, SpinProcess returns the truth
that your external operation or function should abort because:

The user has requested an abort

Chapter 15 — XOPSupport Routines Miscellaneous

394

A user-defined function called the Abort operation

An error has occurred that requires an abort

NOTE: If your XOP adds a window to Igor or if the update of an Igor window indirectly calls your XOP
again, this callback will cause recursion. This can cause your XOP to crash if you do not handle
it properly. See Handling Recursion on page 67 for details.

See Checking For Aborts on page 214 for further discussion.

Thread Safety

SpinProcess is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor but
not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for
details.

PutCmdLine
void
PutCmdLine(cmd, mode)
char* cmd;
int mode;

This is a lower level call than the FinishDialogCmd call which should be used in most cases.

Puts the text in the C string cmd into Igor’s command line using the specified mode.

Liberal names of waves and data folders must be quoted before using them in the Igor command line. Use
PossiblyQuoteName when preparing the command to be executed so that your XOP works with liberal
names.

Modes are:

The intended use for PutCmdLine is to put a command generated by an XOP dialog into Igor’s command
line. For this, use the FIRSTCMD mode to just put the command in the command line or the FIRSTCMD-
CRHIT mode to put the command in the command line and start execution of the command buffer. crHit
is a variable within Igor itself which enables execution of commands in the command buffer. Execution of
commands occurs in Igor’s idle loop.

If you just want to submit a command to Igor for immediate execution, use XOPCommand,
XOPCommand2, XOPCommand3 or XOPSilentCommand instead.

Thread Safety

PutCmdLine is not thread-safe.

Mode Meaning

INSERTCMD Inserts text at current insertion point.

FIRSTCMD Inserts text in front of command buffer.

FIRSTCMDCRHIT Inserts text in front of command buffer, set crHit.

REPLACEFIRSTCMD Replaces first line of command buffer with text.

REPLACEALLCMDSCRHIT Replaces all lines and set crHit.

REPLACEALLCMDS Replaces all lines of command buffer with text.

Chapter 15 — XOPSupport Routines Miscellaneous

395

XOPDisplayHelpTopic
int
XOPDisplayHelpTopic(title, topicStr, flags)
const char* title; // Title for help window
const char* topicStr; // The help topic to be displayed
int flags;

Displays help from an Igor help file for the specified topic. See Igor Pro Help File on page 219 for back-
ground information.

The title parameter is used only for modal help and supplies the title for a modal dialog containing the
help. Modal help is described below.

topicStr is a help topic string that matches a help topic or subtopic in an Igor help file. Igor first searches
open help files for the topic. If it is not found, Igor then searches all Igor help files in the folder containing
the XOP file and subfolders. If it is still not found Igor then searches all Igor help files in the Igor Pro folder
and subfolders.

The help file must be compiled in order for Igor to find the topic. Each time you open a file as a help file,
Igor checks to see if it is compiled and if not asks if you want to compile it.

topicStr may have one of the following formats:

If the topic that you want to display is a subtopic, you should use the last form since it minimizes the
chance that Igor will find another help file with the same subtopic name. Also, you must choose descrip-
tive topic and subtopic names to minimize the chance of a conflict between two help files.

Note that once you reference a help topic or subtopic from your executable code, you must be careful to
avoid changing the name of the topic or subtopic.

The flags parameter is interpreted bitwise as follows:

You must set bit 0 if you call XOPDisplayHelpTopic from a modal dialog. This causes Igor do display a
dialog containing help on top of your dialog. If you fail to set bit zero when calling XOPDisplayHelpTopic
from a modal dialog, Igor may behave erratically. Unfortunately, links in help files don't work during
modal help.

If you are calling XOPDisplayHelpTopic in a non-modal situation, it is appropriate to clear bit zero, but
not required. If you clear bit zero, Igor displays a normal Igor help file. If you set bit zero, Igor displays a
modal help dialog.

Format Example

<topic name> "SimpleLoadWave XOP"

<subtopic name> "SimpleLoadWave"

<topic name>[<subtopic name>] "SimpleLoadWave XOP[SimpleLoadWave]"

Bit Meaning

Bit 0 If cleared, Igor displays non-modal help. If set, Igor displays modal
help.

Bit 1 If cleared, during modal help Igor displays the entire help file (if it is
not too big) in the modal help dialog, with the specified topic
initially in view. If set, during modal help Igor displays just the
specified topic.

Bit 2 If cleared, if the topic can not be found Igor displays an error dialog.
If set, if the topic can not be found Igor does not display an error
dialog.

All other bits Reserved. You must pass zero for these bits.

Chapter 15 — XOPSupport Routines Miscellaneous

396

You must set all other bits to zero.

As of this writing, there is a problem in calling XOPDisplayHelpTopic from a Macintosh Cocoa XOP
modal dialog running with Igor7. When the user dismisses the modal help dialog, the Cocoa XOP dialog is
also dismissed. We currently have no solution for this problem.

Function result is 0 if OK or a non-zero code if the topic can not be found or some other error occurs.

Thread Safety

XOPDisplayHelpTopic is not thread-safe.

XOPSetContextualHelpMessage
int
XOPSetContextualHelpMessage(xopWindowRef, msg, r)
IgorWindowRef xopWindowRef;
const char* message; // The tip.
const Rect* r; // Hot rectangle.

message is a C string containing the message to display.

The function result is 0 if OK or IGOR_OBSOLETE.

Igor7 or later

Displays a message in the status bar.

On Macintosh, the status bar appears at the bottom of the command window. On Windows, it appears at
the bottom of the MDI frame window.

The message is displayed until Igor is asked to display some other message, either by you via another call
to XOPSetContextualHelpMessage, or by another XOP, or by an internal Igor routine.

The parameter r is ignored and can be NULL.

Igor6

Displays a message in the Igor Tips help window on Macintosh or in the status bar on Windows. Call this
when your window is active and the user moves the cursor over an icon or other area of the window about
which you have something to say.

r is a pointer to a Macintosh rectangle, even on Windows, that indicates the area of the window that the
icon occupies. When the user moves the cursor out of this rectangle, Igor will remove the message. On
Macintosh, this rectangle is in the local coordinates of the window containing the control or icon. On Win-
dows, it is in client coordinates of the window containing the control or icon. On Windows, use WinRect-
ToMacRect to translate the Windows RECT into a Macintosh Rect.

Thread Safety

XOPSetContextualHelpMessage is not thread-safe.

WinInfo
int
WinInfo(index, typeMask, name, winPtr)
int index; // Index number of window
int typeMask; // Code for type of window of interest
char name[MAX_OBJ_NAME+1]; // C string to receive name
IgorWindowRef* windowRefPtr; // Pointer to IgorWindowRef

Returns information about an Igor target window (graph, table, layout, notebook or control panel).

index and typeMask are inputs.

name and windowRefPtr and the function result are outputs.

Chapter 15 — XOPSupport Routines Miscellaneous

397

index is an index starting from 0 for the top window, 1 for the next window and so on.

typeMask is a combination of GRAF_MASK , SS_MASK, PL_MASK, MW_MASK and PANEL_MASK for
graphs, tables, page layouts, notebooks and control panels. Window types and type masks are defined in
IgorXOP.h.

WinInfo returns the Igor window type of the specified window or 0 if no such window exists. If 0 is
returned then the name and *windowRefPtr are undefined.

Thread Safety

WinInfo is not thread-safe.

SaveXOPPrefsHandle
int
SaveXOPPrefsHandle(prefsHandle)
Handle prefsHandle; // Handle containing prefs data.

Saves the handle in Igor's preferences file. You can retrieve the handle using GetXOPPrefsHandle.

Igor makes a copy of the data in the handle, so the handle is still yours after you call this. Keep or dispose
of it as you wish.

If you pass NULL for the prefsHandle parameter, Igor removes any existing XOP preferences from the
Igor preferences file.

Igor uses the name of your XOP's file to distinguish your preferences from the preferences of other XOPs.

Each time you call this routine, the Igor preferences file is opened and closed. Therefore, it is best to call
each of it only once. One way to do this is to call GetXOPPrefsHandle when your XOPs starts and SaveX-
OPPrefsHandle when you receive the CLEANUP message.

The function result is 0 if OK or a non-zero error code.

As of this writing, XOP preference handles are stored in the Igor preferences file but this may change in
the future.

Thread Safety

SaveXOPPrefsHandle is not thread-safe.

GetXOPPrefsHandle
int
GetXOPPrefsHandle(Handle* prefsHandlePtr)
Handle* prefsHandlePtr;

Retrieves your XOP's preference handle from the Igor preferences file, if you have previously stored it
there using SaveXOPPrefsHandle. In this case, on return, *prefsHandlePtr will be your preferences han-
dle and the function result will be 0. This handle is allocated by Igor but belongs to you to keep or dispose
as you wish.

If the Igor preferences file does not contain your preferences, on return, *prefsHandlePtr will be NULL
and the function result will be 0.

Igor uses the name of your XOP's file to distinguish your preferences from the preferences of other XOPs.

Each time you call this routine, the Igor preferences file is opened and closed. Therefore, it is best to call
each of it only once. One way to do this is to call GetXOPPrefsHandle when your XOPs starts and SaveX-
OPPrefsHandle when you receive the CLEANUP message.

The function result is 0 if OK or a non-zero error code.

If the result is zero and *prefHandlePtr is not NULL then *prefsHandlePtr contains a handle to your pref-
erences.

Chapter 15 — XOPSupport Routines Programming Utilities

398

If the result is zero and *prefHandlePtr is NULL then there was no preferences data for your XOP. You
should use default settings.

If the result is non-zero then an error occurred while trying to access preferences. *prefHandlePtr will be
NULL and you should use default settings.

As of this writing, XOP preference handles are stored in the Igor preferences file but this may change in
the future.

Thread Safety

GetXOPPrefsHandle is not thread-safe.

GetPrefsState
int
GetPrefsState(prefsStatePtr)
int* prefsStatePtr; // Receives preferences state flag.

Returns via bit 0 of prefsStatePtr the truth that preferences are on. Other bits are reserved for future use.

See the Igor Pro manual for information about the preferences on/off state.

The function result is 0 if OK or an error code.

Thread Safety

GetPrefsState is not thread-safe.

Chapter 15 — XOPSupport Routines Programming Utilities

399

Programming Utilities

MemClear
int
MemClear(void *p, numBytes)
void* p; // Pointer to memory to be cleared.
BCInt numBytes; // Number of bytes to be cleared.

Sets the specified number of bytes at the memory location pointed to by p to zero.

Thread Safety

MemClear is thread-safe. It can be called from any thread.

GetCStringFromHandle
int
GetCStringFromHandle(h, str, maxChars)
Handle h; // Handle containing text
char* str; // Output C string goes here
int maxChars; // Max number of characters before null

h is a handle containing a string.

str is a null-terminated C string.

maxChars is the maximum number of bytes that str can hold, excluding the null terminator byte.

GetCStringFromHandle transfers the characters from h to str and null-terminates str.

If h is NULL, GetCStringFromHandle returns USING_NULL_STRVAR. This is typically a programmer
error.

If the characters in h will not fit in str, GetCStringFromHandle returns STR_TOO_LONG.

If the characters fit, it returns 0.

For a discussion of C strings versus text handles, see Understand the Difference Between a String in a
Handle and a C String on page 233.

Thread Safety

GetCStringFromHandle is thread-safe. It can be called from any thread.

PutCStringInHandle
int
PutCStringInHandle(str, h)
const char* str; // Input C string
Handle h; // Handle to hold text

str is a null-terminated C string.

h is a handle in which the C string data is to be stored.

PutCStringInHandle transfers the characters from str to h. Note that the trailing null from the C string is
not stored in the handle.

If h is NULL, it returns USING_NULL_STRVAR. This is typically a programmer error.

If an out-of-memory occurs when resizing the handle, it returns NOMEM. If the operation succeeds, it
returns 0.

For a discussion of C strings versus text handles, see Understand the Difference Between a String in a
Handle and a C String on page 233.

Chapter 15 — XOPSupport Routines Programming Utilities

400

Thread Safety

PutCStringInHandle is thread-safe. It can be called from any thread.

CmpStr
int
CmpStr(char *str1, char *str2)
char* str1; // C string
char* str2; // C string

Does case-insensitive comparison.

Returns 0 if the strings are the same except for case. Returns -1 if str1 is alphabetically before str2 or 1 if
str1 is alphabetically after str2.

Thread Safety

CmpStr is thread-safe. It can be called from any thread.

strchr2
int
strchr2(const char* str, int ch)
const char* str; // C string to be searched
int ch; // Single-byte character to search for

strchr2 is like the standard C strchr function except that it is Asian-language-aware and assumes that the
system default character encoding governs the path.

It returns a pointer to the first occurrence of ch in the null-terminated string str or NULL if there is no such
occurrence. ch is a single-byte character.

On a system that uses an Asian script system as the default script, strchr2 knows about two-byte charac-
ters. For example, if you are searching for a backslash in a full path and if the path contains Asian charac-
ters, and if the second byte of an Asian character has the same code as the backslash character, strchr will
mistakenly find this second byte while strchr2 will not.

On a system that does not use an Asian script system as the default script, strchr2 is just like strchr.

Thread Safety

strchr2 is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor but not
from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for details.

strrchr2
int
strrchr2(const char* str, int ch)
const char* str; // C string to be searched
int ch; // Single-byte character to search for

strrchr2 is like the standard C strrchr function except that it is Asian-language-aware and assumes that the
system default character encoding governs the path.

Returns a pointer to the last occurrence of ch in the null-terminated string str or NULL if there is no such
occurrence. ch is a single-byte character.

On a system that uses an Asian script system as the default script, strrchr2 knows about two-byte charac-
ters. For example, if you are searching for a backslash in a full path and if the path contains Asian charac-
ters, and if the second byte of an Asian character has the same code as the backslash character, strrchr will
mistakenly find this second byte while strrchr2 will not.

On a system that does not use an Asian script system as the default script, strrchr2 is just like strrchr.

Chapter 15 — XOPSupport Routines Programming Utilities

401

Thread Safety

strrchr2 is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread created by Igor but not
from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on page 178 for details.

EscapeSpecialCharacters
int
EscapeSpecialCharacters(input, inputLength, output, bufSize, numCharsOutPtr)
const char* input; // Text to be escaped
int inputLength; // Number of characters to escape
char* buffer; // Output buffer
int bufSize; // Size of output buffer in characters
int* numCharsOutPtr; // Output: Number of characters written

Converts CR, LF, tab, double-quote and backslash to escape sequences. This is used mostly when you are
generating a command to be executed on Igor's command line via XOPCommand, XOPCommand2,
XOPCommand3 or XOPSilentCommand or through Igor’s Execute operation. Conversion is necessary
because Igor interprets backslash as an escape character.

For example, if you are generating a file loading command and the file uses a Windows UNC path of the
form \\server\share, the backslashes in the command must be escaped to give \\\\server\\share
because Igor interprets \\ as an escape sequence that evaluates to a single backslash.

input is a pointer to a string to be escaped. Input may be null-terminated or not.

inputLength is the number of characters to be escaped.

NOTE: If input is null-terminated and you want output to also be null-terminated, then inputLength
must include the null terminator character.

output is a pointer to a buffer in which escaped output text is returned.

outputBufferSize is the total size of the output buffer.

numCharsOutPtr is set to the number of characters stored in output. This includes the null-terminator if it
was included in inputLength.

input and output can point to the same memory.

Returns 0 if OK or an error code.

Example

char str[32];
int length;
// Assume str is set to contain a C string containing characters
// that may need to be escaped.
length = strlen(str) + 1; // Include null-terminator
err = EscapeSpecialCharacters(str, length, str, sizeof(str), &length);

Thread Safety

EscapeSpecialCharacters is thread-safe. It can be called from any thread.

Chapter 15 — XOPSupport Routines Programming Utilities

402

UnEscapeSpecialCharacters
int
UnEscapeSpecialCharacters(input, inputLength, output, outputBufferSize,
numCharsOutPtr)
const char* input; // Text to be unescaped
int inputLength; // Number of characters to unescaped
char* buffer; // Output buffer
int outputBufferSize; // Size of output buffer in characters
int* numCharsOutPtr; // Output: Number of characters written

Converts escape sequences for CR, LF, tab, double-quote and backslash to CR, LF, tab, double-quote and
backslash. You would call this if you receive text that you know is escaped. See EscapeSpecialCharacters
for a discussion of why text might be escaped.

input is a pointer to a string to be unescaped. Input may be null-terminated or not.

inputLength is the number of characters to be unescaped.

NOTE: If input is null-terminated and you want output to also be null-terminated, then inputLength
must include the null terminator character.

output is a pointer to a buffer in which unescaped output text is returned.

outputBufferSize is the total size of the output buffer.

numCharsOutPtr is set to the number of characters stored in output. This includes the null-terminator if it
was included in inputLength.

input and output can point to the same memory.

Returns 0 if OK or an error code.

Example

char str[32];
int length;
// Assume str is set to contain a C string containing escape sequences.
length = strlen(str) + 1; // Include null-terminator
err = UnEscapeSpecialCharacters(str, length, str, sizeof(str), &length);

Thread Safety

UnEscapeSpecialCharacters is thread-safe. It can be called from any thread.

ConvertTextEncoding
int
ConvertTextEncoding(source, numSourceBytes, sourceTextEncoding, dest,
destBufSizeInBytes, destTextEncoding, errorMode, numOutputBytesPtr, options)
const char* source; // Text to be converted
int numSourceBytes; // Number of bytes in source text
WMTextEncodingCode sourceTextEncoding; // Defined in IgorXOP.h
char* dest; // Output buffer
int destBufSizeInBytes; // Size of output buffer
WMTextEncodingCode destTextEncoding; // Defined in IgorXOP.h
WMTextEncodingConversionErrorMode errorMode; // Defined in IgorXOP.h
WMTextEncodingConversionOptions options; // Bitwise options
int* numOutputBytesPtr; // Number of output bytes written

Converts text from one text encoding to another.

See Text Encodings on page 201 for background information about text encodings and how they are han-
dled in Igor.

Chapter 15 — XOPSupport Routines Programming Utilities

403

This routine uses ints for numSourceBytes and destBufSizeInBytes and thus the input text and the output
buffer size must not exceed roughly 2 billion bytes.

source points to the input text for the conversion.

numSourceBytes is the number of bytes of source text.

sourceTextEncoding is a value of type WMTextEncodingCode - an enum defined in IgorXOP.h.

dest is the output buffer where converted data is stored. dest and source must not point to the same mem-
ory.

destBufSizeInBytes is the size of the output buffer in bytes. The number of bytes required depends on
sourceTextEncoding and destTextEncoding. If destTextEncoding is kWMTextEncodingUTF8 then the out-
put buffer, in the worst case, needs to be 6*numSourceBytes if errorMode is kWMTextEncodingConver-
sionErrorModeEscape or 4*numSourceBytes otherwise. This is because a single input character requires,
in the worst case, up to 4 bytes in UTF-8. Also if errorMode is kWMTextEncodingConversionErrorMode-
Escape then the conversion will replace an unmappable input character with an escape sequence consist-
ing of up to 6 bytes. The simplest solution is to always allocate an output buffer of size 6*numSourceBytes.
If you are converting very large chunks of source text you should use a smaller output buffer size chosen
based on sourceTextEncoding and destTextEncoding.

destTextEncoding is a value of type WMTextEncodingCode - an enum defined in IgorXOP.h.

errorMode is a value defined by the WMTextEncodingConversionErrorMode type - an enum defined in
IgorXOP.h. errorMode determines what happens if the source text can not be mapped to text in the text
encoding specified by destTextEncoding. See the WMTextEncodingConversionErrorMode definition for
details. For most purposes you should pass kWMTextEncodingConversionErrorModeFail for errorMode.
This causes ConvertTextEncoding to return an error if the source text can not be mapped to the destination
text encoding.

The number of bytes in the converted output text is stored in *numOutputBytesPtr.

options is a bitwise combination of WMTextEncodingConversionOptionFlag values as defined in
IgorXOP.h. Typically you should form this parameter like this:

WMTextEncodingConversionOptions tecOptions = kTECOptionFlagDontAllowNulls;
tecOptions |= kTECOptionFlagDoConversionEvenIfEncodingsAreTheSame;

kTECOptionFlagDontAllowNulls causes ConvertTextEncoding to return an error if the input text contains
nulls. Normally you don't want nulls in text but if for some reason you do, pass kTECOptionFlagAl-
lowNulls instead of kTECOptionFlagDontAllowNulls.

kTECOptionFlagDoConversionEvenIfEncodingsAreTheSame forces ConvertTextEncoding to do the con-
version even if sourceTextEncoding and destTextEncoding are the same. This is useful to validate that the
source text is in fact valid text in the specified source text encoding.

If you know that the source text is valid, you can omit kTECOptionFlagDoConversionEvenIfEncoding-
sAreTheSame. In this case, if sourceTextEncoding and destTextEncoding are the same, ConvertTextEncod-
ing merely copies the source text to the destination buffer without doing any validation.

The function result is 0 if OK or a non-zero error code.

Added in Igor Pro 7.00. If you call this when running with an earlier version it will return
IGOR_OBSOLETE and do nothing.

Thread Safety

ConvertTextEncoding is Igor-thread-safe with XOP Toolkit 7 and Igor Pro 7.00 or later. You can call it
from a thread created by Igor but not from a private thread that you created yourself.

Chapter 15 — XOPSupport Routines Programming Utilities

404

IsINF32
int
IsINF32(floatPtr)
float* floatPtr; // The number to test

Returns 1 if the number pointed to by floatPtr is +infinity or –infinity, 0 otherwise.

Thread Safety

IsINF32 is thread-safe. It can be called from any thread.

IsINF64
int
IsINF64(doublePtr)
double* doublePtr; // The number to test

Returns 1 if the number pointed to by doublePtr is +infinity or –infinity, 0 otherwise.

Thread Safety

IsINF64 is thread-safe. It can be called from any thread.

IsNaN32
int
IsNaN32(floatPtr)
float* floatPtr; // The number to test

Returns 1 if the number pointed to by floatPtr is a NaN (not-a-number) or 0 otherwise.

Thread Safety

IsNaN32 is thread-safe. It can be called from any thread.

IsNaN64
int
IsNaN64(doublePtr)
double* doublePtr; // The number to test

Returns 1 if the number pointed to by doublePtr is a NaN (not-a-number) or 0 otherwise.

Thread Safety

IsNaN64 is thread-safe. It can be called from any thread.

SetNaN32
void
SetNaN32(floatPtr)
float* floatPtr;

Sets the float pointed to by the parameter to NaN (not-a-number).

Thread Safety

SetNaN32 is thread-safe. It can be called from any thread.

Chapter 15 — XOPSupport Routines Programming Utilities

405

SetNaN64
void
SetNaN64(doublePtr)
double* doublePtr;

Sets the double pointed to by the parameter to NaN (not-a-number).

Thread Safety

SetNaN64 is thread-safe. It can be called from any thread.

TickCount
TickCountInt
TickCount(void)

TickCount returns a count of the number of ticks that have elapsed since Igor started up.

A tick is approximately one sixtieth of a second. TickCount is a simple way to determine the amount of
time that has elapsed from one point in the program to another.

Thread Safety

TickCount is thread-safe. It can be called from any thread.

DateToIgorDateInSeconds
int
DateToIgorDateInSeconds(numValues, year, month, dayOfMonth, secs)
int numValues; // Number of dates to convert
short* year; // e.g., 2004
short* month; // 1=January, 2=February, . . .
short* dayOfMonth;
double* secs; // Output in Igor date format

Converts dates into Igor date format (seconds since 1/1/1904).

numValues is the number of dates to convert.

year, month and dayOfMonth and secs are arrays allocated by the calling routine. The size of each array is
specified by numValues.

On input, year, month and dayOfMonth hold the input values. On return, secs holds the output values.

The function result is zero or an error code.

Thread Safety

DateToIgorDateInSeconds is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread cre-
ated by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on
page 178 for details.

IgorDateInSecondsToDate
int
IgorDateInSecondsToDate(numValues, secs, dates)
int numValues; // Number of dates to convert
double* secs; // Input in Igor date format
short* dates; // Output goes here

Converts dates in Igor date format (seconds since 1/1/1904) into date records.

numValues is the number of Igor dates to convert.

secs is an array of dates in Igor date format. Its size is specified by numValues.

Chapter 15 — XOPSupport Routines Programming Utilities

406

dates is an array of shorts. It must hold 7*numValues shorts. For each input value, 7 values are written to
the dates array, in the following order:

year, month, dayOfMonth, hour, minute, second, dayOfWeek

The function result is zero or an error code.

For example:

double secs[2];
short dates[2*7];
int err;

secs[0] = 0; // Represents January 1, 1904, midnight.
secs[1] = 24*60*60; // Represents January 2, 1904, midnight.
err = IgorDateInSecondsToDate(2, secs, dates);

This routine requires Igor Pro 5 or later. Earlier versions will return IGOR_OBSOLETE.

Thread Safety

IgorDateInSecondsToDate is Igor-thread-safe with Igor Pro 6.20 or later. You can call it from a thread cre-
ated by Igor but not from a private thread that you created yourself. See Igor-Thread-Safe Callbacks on
page 178 for details.

XOPBeep
void
XOPBeep(void)

Emits a beep.

Thread Safety

XOPBeep is not thread-safe.

XOPOKAlert
void
XOPOKAlert(title, message)
const char* title; // Dialog title.
const char* message; // Message to be displayed.

Displays an alert (also known as "message box") and waits for the user to click OK.

Thread Safety

XOPOKAlert is not thread-safe.

XOPOKCancelAlert
int
XOPOKCancelAlert(title, message)
const char* title; // Dialog title.
const char* message; // Message to be displayed.

Displays an alert (also known as "message box") and waits for the user to click OK or Cancel.

Returns 1 for OK, -1 for cancel.

Thread Safety

XOPOKCancelAlert is not thread-safe.

Chapter 15 — XOPSupport Routines Programming Utilities

407

XOPYesNoAlert
int
XOPYesNoAlert(title, message)
const char* title; // Dialog title.
const char* message; // Message to be displayed.

Displays an alert (also known as "message box") and waits for the user to click Yes or No.

Returns 1 for yes, 2 for no.

Thread Safety

XOPYesNoAlert is not thread-safe.

XOPYesNoCancelAlert
int
XOPYesNoCancelAlert(title, message)
const char* title; // Dialog title.
const char* message; // Message to be displayed.

Displays an alert (also known as "message box") and waits for the user to click Yes or No or Cancel.

Returns 1 for yes, 2 for no, -1 for cancel.

Thread Safety

XOPYesNoCancelAlert is not thread-safe.

MacRectToWinRect
void
MacRectToWinRect(mr, wr)
const Rect* mr; // Macintosh rectangle
RECT* wr; // Windows rectangle

Igor sometimes passes a Macintosh rectangle to your XOP as a message argument. Use MacRectToWin-
Rect when you receive a Macintosh rectangle but you need a Windows rectangle.

Thread Safety

MacRectToWinRect is thread-safe. It can be called from any thread.

WinRectToMacRect
void
WinRectToMacRect(wr, mr)
const RECT* wr; // Windows rectangle
Rect* mr; // Macintosh rectangle

Some XOPSupport routines take a Macintosh rectangle as a parameter. Use WinRectToMacRect when an
XOPSupport routine requires a Macintosh rectangle but you have a Windows rectangle.

Thread Safety

WinRectToMacRect is thread-safe. It can be called from any thread.

Chapter 15 — XOPSupport Routines Programming Utilities

408

XOPGetClipboardData
int
XOPGetClipboardData(dataType, options, hPtr, lengthPtr)
OSType dataType;
int options;
Handle* hPtr;
BCInt* lengthPtr;

XOPGetClipboardData returns data from the clipboard in a handle via hPtr.

It returns the length of the data via lengthPtr.

dataType indicates the type of data you want to receive. The following values are supported:

options is for possible future use. Pass 0.

The output data is returned via hPtr. In the event of an error, *hPtr is set to NULL.

If *hPtr is not NULL then it belongs to you and you must dispose it via WMDisposeHandle.

The length of the output data is returned via lengthPtr. This will be the same as WMGetHandleSize(*hPtr);

If you just want to tell if a given type of data is available on the clipboard and don't want to actually get
that data, pass NULL for hPtr. In this case, XOPGetClipboardData sets *lengthPtr to the length of the data
of the specified type or to zero if there is no such data.

XOPGetClipboardData returns 0 in the event of success or a non-zero Igor error code.

XOPGetClipboardData was added in Igor Pro 7.00. If you call it while running an earlier version of Igor, it
returns IGOR_OBSOLETE and does nothing.

Thread Safety

XOPGetClipboardData is not thread-safe.

XOPSetClipboardData
int
XOPGetClipboardData(dataType, options, data, length)
OSType dataType;
int options;
void* data;
BCInt length;

XOPSetClipboardData stores data in the clipboard.

dataType indicates the type of data you are storing. The following values are supported:

'TEXT' 'UTF-8 text

'DIB ' 'Windows only. The last character is a space.

'EMF ' 'Windows only. The last character is a space.

'JPEG'

'PDF ' The last character is a space.

'PNGf'

'SVG ' The last character is a space.

'TIFF'

'TEXT' 'UTF-8 text

'DIB ' 'Windows only. The last character is a space.

Chapter 15 — XOPSupport Routines Programming Utilities

409

options is a bitwise parameter defined as follows:

In most cases, you should pass 0 for options. This causes XOPSetClipboardData to clear the clipboard and
then store your data in it. If bit 0 is set, XOPSetClipboardData does not clear the clipboard and you may
wind up with multiple types of data in the clipboard.

data points to the data to be stored in the clipboard.

length is the number of bytes to be stored in the clipboard.

XOPSetClipboardData returns 0 in the event of success or a non-zero Igor error code.

On Windows, setting the clipboard via multiple successive calls can cause errors because programs that
monitor the clipboard open it to inspect its contents each time it is changed. This causes Windows to
return an error when Igor tries to open the clipboard. Repeatedly calling XOPSetClipboardData to store
multiple formats on the clipboard may trigger this problem on some systems on some systems and is not
recommended.

XOPSetClipboardData was added in Igor Pro 7.00. If you call it while running an earlier version of Igor, it
returns IGOR_OBSOLETE and does nothing.

Thread Safety

XOPSetClipboardData is not thread-safe.

'EMF ' 'Windows only. The last character is a space.

'JPEG'

'PDF ' The last character is a space.

'PNGf'

'SVG ' The last character is a space.

'TIFF'

Bit Meaning

Bit 0 If cleared, XOPSetClipboardData clears the clipboard before storing
data.

If set, it does not clear the clipboard.

All other bits Reserved for future use and must be cleared.

Chapter 15 — XOPSupport Routines WM Memory Routines

410

WM Memory Routines
The WM memory XOPSupport routines provide a mechanism by which Igor and XOPs can exchange data
in a compatible way.

WM memory XOPSupport routines use two data types, Ptr and Handle. They both provide access to a block
of memory allocated in the heap. Ptr is rarely used while Handle is commonly used, most often for holding
variable-length string data.

See WM Memory XOPSupport Routines on page 195 for background information.

WMNewHandle
Handle
WMNewHandle(size)
BCInt size;

WMNewHandle allocates a block of size bytes in the heap and returns a reference to that block.

In the event of an error, WMNewHandle returns NULL. This corresponds to a NOMEM error. For exam-
ple:

Handle h;
h = WMNewHandle(100);
if (h == NULL)

return NOMEM;

You must call WMDisposeHandle to free the block of memory allocated by WMNewHandle

Thread Safety

WMNewHandle is thread-safe. It can be called from any thread.

WMGetHandleSize
BCInt
WMGetHandleSize(h)
Handle h;

h is a handle referencing a block of memory in the heap.

WMGetHandleSize returns the number of bytes in the block of memory that h references.

NOTE: In Igor Pro 7 and later wave handles are not regular handles. In the unlikely event that you need
to know the size of a wave handle, use WaveMemorySize, not WMGetHandleSize.

Thread Safety

WMGetHandleSize is thread-safe. It can be called from any thread.

WMSetHandleSize
int
WMSetHandleSize(h, size)
Handle h;
BCInt size

h is a handle referencing a block of memory in the heap.

WMSetHandleSize resizes the block of memory that h references to the number of bytes specified by size.

After increasing the size of a handle, you must re-dereference it. See Resizing Handles on page 198 for
details.

WMSetHandleSize returns 0 if it succeeds or a non-zero error code if it fails.

Chapter 15 — XOPSupport Routines WM Memory Routines

411

Example

Handle h;
Ptr p;
int err = 0;

h = WMNewHandle(100); // Allocate handle
if (h == NULL)

return NOMEM;
p = *h; // Dereference handle
. . . // Work with handle data using p
err = WMSetHandleSize(h, 200);// This may relocate handle data in memory
if (err != 0) {

WMDisposeHandle(h);
return err;

}
p = *h; // Re-dereference handle
. . . // Work with handle data using p
WMDisposeHandle(h); // All done

Thread Safety

WMSetHandleSize is thread-safe. It can be called from any thread.

WMHandToHand
int
WMHandToHand(destHandlePtr)
Handle* destHandlePtr;

WMHandToHand creates a new block of memory that contains the same data as an existing block of mem-
ory.

It returns 0 if the allocation succeded or an error code.

In this example, we assume that h1 is an existing handle to a block of memory.

Handle h2;
int err;
h2 = h1; // h2 now refers to the same block of memory as h1.
if (err = WMHandToHand(&h2))

return err;
<Use h2> // h2 now refers to a new block of memory.
WMDisposeHandle(h2);

Thread Safety

WMHandToHand is thread-safe. It can be called from any thread.

WMHandAndHand
int
WMHandAndHand(h1, h2)
Handle h1;
Handle h2;

h1 and h2 are handles created by WMNewHandle.

WMHandAndHand appends the contents of the block of memory referenced by h1 to the block of mem-
ory referenced by h2. In the process, it resizes the block referenced by h2.

It returns 0 if the allocation succeded or an error code.

Chapter 15 — XOPSupport Routines WM Memory Routines

412

Thread Safety

WMHandAndHand is thread-safe. It can be called from any thread.

WMDisposeHandle
void
WMDisposeHandle(h)
Handle h;

h is a handle referencing a block of memory in the heap.

WMDisposeHandle frees the block of memory that h references. After calling WMDisposeHandle, h is no
longer a valid reference.

Thread Safety

WMDisposeHandle is thread-safe. It can be called from any thread.

WMNewPtr
Ptr
WMNewPtr(size)
BCInt size;

WMNewPtr allocates a block of size bytes in the heap and returns a pointer to that block.

In the event of an error, WMNewPtr returns NULL. This corresponds to a NOMEM error. For example:

Ptr p;
p = (Ptr)WMNewPtr(100);
if (p == NULL)

return NOMEM;

You must call WMDisposePtr to free the block of memory allocated by WMNewPtr.

Thread Safety

WMNewPtr is thread-safe. It can be called from any thread.

WMGetPtrSize
BCInt
WMGetPtrSize(p)
Ptr p;

p is a pointer to a block of memory allocated by WMNewPtr.

WMGetPtrSize returns the size in bytes of that block of memory.

Thread Safety

WMGetPtrSize is thread-safe. It can be called from any thread.

WMSetPtrSize
int
WMSetPtrSize(p, size)
Ptr p;
BCInt size;

p is a pointer to a block of memory allocated by WMNewPtr.

WMSetPtrSize resizes the block to the number of bytes specified by the size parameter.

WMSetPtrSize returns 0 if it succeeds or a non-zero error code if it fails.

Chapter 15 — XOPSupport Routines WM Memory Routines

413

Thread Safety

WMSetPtrSize is thread-safe.

WMPtrToHand
int
WMPtrToHand(srcPtr, destHandlePtr, size)
Ptr srcPtr;
Handle* destHandlePtr;
BCInt size;

WMPtrToHand allocates a new block of memory in the heap and then copies size bytes from srcPtr to the
new block. It returns a handle referencing the new block via destHandlePtr.

It returns 0 if the allocation succeded or an error code.

Thread Safety

WMPtrToHand is thread-safe. It can be called from any thread.

WMPtrAndHand
int
WMPtrAndHand(p, h, size)
Ptr* p;
Handle h;
BCInt size;

h is a handle referencing a block of memory in the heap.

WMPtrAndHand resizes the block and then appends size bytes of data to the block by copying from the
pointer p.

After increasing the size of a handle you must re-dereference it. See Resizing Handles on page 198 for
details.

WMPtrAndHand returns 0 if the allocation succeded or an error code.

Thread Safety

WMPtrAndHand is thread-safe. It can be called from any thread.

WMDisposePtr
void
WMDisposePtr(p)
Ptr p;

p is a pointer to a block of memory allocated by WMNewPtr.

WMDisposePtr frees the block of memory. After calling WMDisposePtr, you must not access the memory.

Thread Safety

WMDisposePtr is thread-safe. It can be called from any thread.

Chapter 15 — XOPSupport Routines WM Memory Routines

414

Appendix A
I-AXOP Toolkit 7 Upgrade Notes

Overview
These notes are for XOP programmers transitioning from XOP Toolkit 6 to XOP Toolkit 7.

If you are are targeting Igor Pro 8.00 or later, and you are creating a new XOP or updating an XOP already
updated using XOP Toolkit 7.01 or later, you should use XOP Toolkit 8. See Choosing Which XOP Toolkit
to Use on page 5 for details.

Here are the main new aspects of XOP Toolkit 7:

• XOP Toolkit 7 supports Igor Pro 6.20 or later (with some exceptions) and Igor Pro 7
• Macintosh 64-bit XOPs must be modified and recompiled in order to work with Igor Pro 8
• XOP Toolkit 7 adds a new and cleaner interface for dealing with XOP menus
• Major changes were made in the protocol for XOPs adding windows to Igor requiring significant

changes in such XOPs
• The XOP Toolkit 6 support for adding dialogs was removed from XOP Toolkit 7
• As relates to text encoding, this manual and the XOP Toolkit 7 sample projects are optimized for use

with Igor7.

These and many other changes are explained below in this chapter.

XOP Toolkit 7 can, in general, create XOPs compatible with Igor Pro 6.20.

XOPs that add dialogs will require significant changes.

XOPs that add windows will require major changes and will not be compatible with Igor Pro 6.

If you are updating an existing XOP, please familiarize yourself with the entirety of this appendix. Most of
the changes will not affect you but you should know what they are just in case.

Development Systems Supported by XOP Toolkit 7
XOP Toolkit 7 provides support and samples for creating XOPs using these development systems:

For MacOS XOPs: Apple's Xcode 7 through Xcode 10

For Windows XOPs: Microsoft's Visual C++ 2015 and 2017

Newer development systems will likely be able to open these projects without problems.

Create a Copy of Your Existing XOPs
The support and sample files for XOP Toolkit 7 come in a folder named IgorXOPs7.

Appendix A — XOP Toolkit 7 Upgrade Notes

416

If you have existing XOP projects, copy them into the IgorXOPs7 folder. Leave your old projects as they are
and do all new development in the new folder.

In most cases you can easily support Igor6 (6.20 or later) and Igor7 with one XOP. An exception is if you
make frequent use of non-ASCII text. In that case, you may be better off maintaining separate Igor6 and
Igor7 versions of your XOP - see Text Encodings on page 201 for details.

Changes You Must Make
If you have XOPs developed with XOP Toolkit 6, here are the changes that you must make in order to use
XOP Toolkit 7. We recommend that you familiarize yourself with this entire appendix first and then come
back to this section and perform each of these steps.

Some changes are required in your Xcode projects. See Xcode Project Changes For XOP Toolkit 7 on page
427 for details.

Some changes are required in your Visual C++ projects. See Visual C++ Project Changes For XOP Toolkit
7 on page 434 for details.

If your Macintosh XOP project is very old it may use the GCC compiler. You need to change it to use the
LLVM compiler. This is explained under Converting to the LLVM Compiler on page 44.

If you use obsolete memory management calls, remove them. See Memory Management Changes on page
417 for details.

If your XOP treats wave handles as regular handles, you must not do this. See Change to Wave Handles
on page 417 for details.

Macintosh 64-bit XOPs must be modified and recompiled in order to work with Igor Pro 8 (in development
as of this writing in May of 2017). Even if your existing XOP is Windows-only or 32-bit only, we recommend
that you modify and recompile it. See WM Memory XOPSupport Routines on page 195 for details.

Obsolete XOPSupport routines have been removed from XOP Toolkit 7. See the section Removed XOPSup-
port Routines on page 419 for the list of removed routines. In most cases only very old XOPs use these rou-
tines. If you use them and do not want to modify your XOP's source code then you should continue to use
XOP Toolkit 6.

Some changes to your source code may be required because of compiler changes. See Fixes for Compiler
Changes on page 421.

XOP Toolkit 7 requires Igor Pro 6.20 or later. Make sure that your main function checks the version of Igor
it is running with. See Checking the Igor Version on page 421 for details.

If your XOP uses the WaveNote XOPSupport routine you need to change it to use WaveNoteCopy. Care-
fully read the documentation for WaveNoteCopy before making this change.

If your XOP uses the XOPOpenFileDialog or XOPSaveFileDialog routines, see Changed XOPSupport Rou-
tines on page 419 for important information.

If your XOP adds menus to Igor it may require changes. See XOP Menus in XOP Toolkit 7 for details.

Macintosh balloon help and Windows menu help are obsolete. See Help Resources in XOP Toolkit 7 for
details.

If your XOP adds dialogs to Igor it will require substantial changes. See XOP Dialogs in XOP Toolkit 7 on
page 423 for details.

If your XOP adds windows to Igor it will require substantial changes. See XOP Windows in Igor Pro 7 on
page 424 for details.

Appendix A — XOP Toolkit 7 Upgrade Notes

417

Build and test your XOP with XOP Toolkit 7. Examine all compiler warnings and determine if they are
harmless or indicate a real problem. Eliminate compiler warnings where possible.

To allow your XOP to run with the 64-bit version of Igor, see 64-bit XOPs on page 187.

Igor Pro 7 uses UTF-8 text encoding to store text data. If your XOP exchanges non-ASCII text with Igor it
may require changes. See Text Encodings Used By XOPSupport Routines for details.

Removed Sample XOPs
Because they are complex and used by very few XOP programmers, the WindowXOP1 and TUDemo
sample XOPs which were shipped with XOP Toolkit 6 have been removed from XOP Toolkit 7.

If you are an advanced programmer and want to add a text utility window to your XOP, send a note to
WaveMetrics support requesting the Igor7-compatible TUDemo sample XOP for XOP Toolkit 7.

If you are an advanced programmer and want to create windows in your XOP, see XOP Windows in Igor
Pro 7 on page 424.

Changes from GBLoadWave to GBLoadWaveX
GBLoadWaveX is the descendent of the GBLoadWave XOP that was provided as a sample XOP in XOP
Toolkit 1 through XOP Toolkit 6. In Igor7, GBLoadWave was built into Igor itself, so the sample XOP was
renamed GBLoadWaveX.

The GBLoadWaveX XOP requires Igor7 or later because it uses a callback, XOPOpenFileDialog2, which
was added in Igor Pro 7.

In GBLoadWaveX, the /I flag turns on interactive mode, which displays an Open File dialog, and also allows
you to specify platform-specific Open File dialog filter strings. In GBLoadWaveX it just turns on interactive
mode.

GBLoadWaveX adds the /FILT flag for specifying Open File dialog fiter strings.

The obsolete /D, /F and /L flags from GBLoadWave were removed in GBLoadWaveX. Use /T to specify the
input and output data types instead.

Memory Management Changes
If your XOP uses any of the following routines, remove calls to them:

HLock, HUnlock, HGetState, HSetState, MoveHHi, MoveLockHandle, SetWaveStates

Change to Wave Handles
In Igor Pro 6 and before wave handles were implemented as regular handles. On Macintosh, regular
handles can reference no more than 2 GB. In Igor Pro 7, to support 64 bits on Macintosh, WaveMetrics
changed the implementation of wave handles so they are no longer regular handles.

It is unlikely that your XOP passes a wave handle to a regular handle routine like WMGetHandleSize. But
if you do that, you need to change it to use XOPSupport routines only for managing wave handles, as
described under Routines for Accessing Waves on page 253.

For example, if you usedWMGetHandleSize to determine the size of a wave handle, change your code to
use WaveMemorySize instead.

Appendix A — XOP Toolkit 7 Upgrade Notes

418

Changes to Igor Behavior
Igor6 sends the CLEANUP message before Igor kills all experiment data. Igor7 and later send it after.

Igor7 and later send the NEW message when Igor is about to quit. Igor6 does not send the NEW message
at that time.

New Features
XOP Toolkit 7 provides a new, cleaner interface for adding menus to Igor. See XOP Menus in XOP Toolkit
7 for details.

XOP Toolkit 7 provides a new protocol for supporting XOP windows. See XOP Windows in Igor Pro 7 on
page 424 for details.

XOP Toolkit 7 provides support for the signed and unsigned 64-bit integer data types. In Igor Pro 7.00 or
later, Igor can create waves with these types. The constants NT_I64 was added to IgorXOP.h. It can be used
with the MakeWave, MDMakeWave, and ConvertData2 XOPSupport routines and can be returned by the
WaveType XOPSupport routine.

XOPStandardHeaders Changes
XOPStandardHeaders.h now creates the following preprocessor macros which can be used for conditional
compilation:

The XOP_WINDOW_REF #define was replaced with XOPWindowRef. See XOP Windows in Igor Pro 7 on
page 424 for details.

All window-related messages were changed. See XOP Windows in Igor Pro 7 on page 424 for details.

Organizational Changes
The XOPFiles.c file has been split into three files: XOPFiles.c, XOPFilesMac.c and XOPFilesWin.c.

The definitions of messages sent to windows were moved from XOP.h to XOPWindows.h. These defini-
tions are needed only by XOPs that add windows to Igor.

Igor error codes were moved from IgorXOP.h to a new file, IgorErrors.h, in the XOPSupport folder. IgorE-
rrors.h is #included in XOPStandardHeaders.h so if you #include XOPStandardHeaders.h you do not need
to #include IgorErrors.h.

Text Encodings Used By XOPSupport Routines
Unlike previous versions, Igor7 uses UTF-8, a form of Unicode, to represent text.

If your XOP does not exchange text data with Igor then this change will not affect you.

Since UTF-8 is a superset of ASCII, if your XOP exchanges only ASCII text with Igor then this change will
not affect you.

Macro Description

MACIGOR Defined if compiling for Macintosh.

WINIGOR Defined if compiling for Windows.

IGOR32 Defined if compiling a 32-bit executable.

IGOR64 Defined if compiling a 64-bit executable.

Appendix A — XOP Toolkit 7 Upgrade Notes

419

If your XOP obtains non-ASCII text from an external source (e.g., a file) and sends it to Igor, you may need
to convert the text from whatever text encoding it uses to UTF-8 before sending it.

If your XOP obtains non-ASCII text from Igor and sends it to an external destination (e.g., a file), you may
need to convert the text from UTF-8 to the destination text encoding before sending it to the external desti-
nation.

If your XOP searches for non-ASCII characters in text obtained from Igor, you may need to change it.

In most cases you can easily support Igor6 (6.20 or later) and Igor7 with one XOP. An exception is if you
make frequent use of non-ASCII text. In that case, you may be better off maintaining separate Igor6 and
Igor7 versions of your XOP - see Text Encodings on page 201 for details.

Removed XOPSupport Routines
The following table lists routines removed from XOP Toolkit 7 and replacement routines, if any.

In addition many old menu-related routines were removed. See XOP Menus in XOP Toolkit 7.

Also many old window-related routines were removed. See Removed Window-Related XOPSupport
Routines on page 173.

In addition, all dialog support routines were removed. See XOP Dialogs in XOP Toolkit 7 on page 423 for
details.

Changed XOPSupport Routines
The behavior of these routines has changed in XOP Toolkit 7 or with Igor7:

Also some Text Utility Window routines were changed. See Changed Text Utility Window Callbacks on
page 174.

Removed Routine Replacement Routine

WaveNote WaveNoteCopy

IBeamCursor SetXOPContainerMouseCursor

HandCursor SetXOPContainerMouseCursor

SpinCursor SpinProcess

SendWinMessageToIgor None

New Routine Description

TransformWindowCoordinates Requires Igor7 or later.

WinInfo In XOP Toolkit 7, this function takes a new IgorWindowRef*
parameter.

ArrowCursor Does nothing when running with Igor7 or later.

This function is no longer needed because, if your operation takes a
long time, the operating system will spin the beachball.

WatchCursor Does nothing when running with Igor7 or later.

This function is no longer needed because, if your operation takes a
long time, the operating system will spin the beachball.

Appendix A — XOP Toolkit 7 Upgrade Notes

420

New XOPSupport Routines
The following sections list new routines added in XOP Toolkit 7.:

See also XOP Menus in XOP Toolkit 7 on page 421.

Many new routines were added for XOPs that create windows. See XOP Windows in Igor Pro 7 on page
424 for details.

Using XOPOpenFileDialog2 Instead of XOPOpenFileDialog
XOPOpenFileDialog2 is a successor to the XOPOpenFileDialog routine. Unlike XOPOpenFileDialog,
XOPOpenFileDialog2 works in a platform-independent way.

XOPOpenFileDialog2 was added in Igor Pro 7.00 so, if you use it, your XOP will require Igor Pro 7. If you
are writing an XOP that requires Igor Pro 7, use XOPOpenFileDialog2. If your XOP must run with Igor Pro
6, use XOPOpenFileDialog.
XOPOpenFileDialog2 has three additional parameters, relative to XOPOpenFileDialog, which you must
add: flagsIn, initialFile, and flagsOutPtr. Also the fileFilterStr parameter, which previously used platform-
specific syntax, now uses the same platform-independent syntax as the Igor Open/D/R operation. See
XOPOpenFileDialog2 on page 341 for details.

Using XOPSaveFileDialog2 instead of XOPSaveFileDialog
XOPSaveFileDialog2 is a successor to the XOPSaveFileDialog routine. Unlike XOPSaveFileDialog,
XOPSaveFileDialog2 works in a platform-independent way.

XOPSaveFileDialog2 was added in Igor Pro 7.00 so, if you use it, your XOP will require Igor Pro 7. If you
are writing an XOP that requires Igor Pro 7, use XOPSaveFileDialog2. If your XOP must run with Igor Pro
6, use XOPSaveFileDialog.
XOPSaveFileDialog2 has three additional parameters, relative to XOPSaveFileDialog, which you must add:
flagsIn, initialFile, and flagsOutPtr. Also the fileFilterStr parameter, which previously used platform-spe-
cific syntax, now uses the same platform-independent syntax as the Igor Open/D/R operation. See
XOPSaveFileDialog2 on page 344 for details.

New Routine Description

ConvertTextEncoding Converts text from one text encoding to another.

WaveTextEncoding Returns the text encoding code for an element of a wave. Most XOPs
will not need to use this routine.

WaveNoteCopy Returns a handle containing a copy of the wave’s note text. Replaces
WaveNote routine.

XOPOpenFileDialog2 See Using XOPOpenFileDialog2 Instead of XOPOpenFileDialog
on page 420.

XOPSaveFileDialog2 See Using XOPSaveFileDialog2 instead of XOPSaveFileDialog on
page 420.

XOPGetClipboardData Retrieves data from the clipboard.

XOPSetClipboardData Stores data in the clipboard.

Appendix A — XOP Toolkit 7 Upgrade Notes

421

Fixes for Compiler Changes
In Visual C++ 2015, Microsoft changed the C++ compiler to require a space between a literal string and a
macro following it. See "String literals followed by macros" at https://msdn.microsoft.com/en-
us/library/Bb531344.aspx.

This affects the use of the CR_STR macro in the XOP Toolkit. For example, this:

XOPNotice("Test"CR_STR);

must be changed to this:

XOPNotice("Test" CR_STR);

to prevent errors when compiling with VC2015.

Search for all occurrences of CR_STR in your XOP source code and add a space before the CR_STR macro.

Checking the Igor Version
XOP Toolkit 7 requires Igor Pro 6.20 or later. To prevent it from running with earlier versions of Igor, you
must put a test in your main function, like this:

if (igorVersion < 620) {
SetXOPResult(IGOR_OBSOLETE);
return EXIT_FAILURE;

}

IGOR_OBSOLETE is a built-in Igor error code that generates an error alert that says "XOP requires a later
version of Igor".

XOP Menus in XOP Toolkit 7
Most XOPs either add no menus or menu items to Igor, or add just a single menu item to an existing Igor
menu. Such XOPs do not need to use any XOP Toolkit menu support routines. Consequently for most
XOPs, the issues discussed in this section are not relevant.

If your XOP Toolkit 6 XOP adds menus to Igor's main menu bar, shows and hides menus, adds and removes
menu items, changes the text of menu items, enables and disables menu items, or checks and unchecks
menu items, then you need to understand this material and modify your XOP accordingly. These changes
provide compatibility with Igor Pro 7 and XOP Toolkit 7.

In Igor Pro 6 and before, support for XOP menus and menu items is based on the Mac OS 9 Menu Manager
API and emulation of it provided on Windows by the IGOR.lib file.

In Igor Pro 7, the internal implementation of menus is completely changed. For compatibility with Igor7 a
new set of menu XOPSupport routines was added to XOP Toolkit 6.40. The new routines, listed in the fol-
lowing table, are also supported by XOP Toolkit 7 and work with Igor Pro 6.00 and later. This means that
an XOP written using the new routines is compatible with Igor6 and Igor7.

The new routines use a new type, XOPMenuRef, instead of MenuHandle.

The old routines have been removed from XOP Toolkit 7. If you are porting an XOP to XOP Toolkit 7, you
need to replace calls to the old routines.

See the MenuXOP1 sample XOP for examples using the new routines.

If you run an old XOP - i.e., one that has not been updated to use the new menu XOPSupport routines added
in XOP Toolkit 6.40 - and the old XOP adds menus or menu items, it will not work correctly with Igor7. This
is because the MenuHandle used by old XOPs is not the menu handle used by Igor7. When you pass a
MenuHandle to Igor as a parameter to a callback, Igor7 attempts to verify that you are passing a valid Igor7

https://msdn.microsoft.com/en-us/library/Bb531344.aspx

Appendix A — XOP Toolkit 7 Upgrade Notes

422

menu handle. This verification should prevent old XOPs that pass old MenuHandles back to Igor from
crashing. But, to get the expected behavior from Igor7, you must update your XOP.

Here are the new routines:

The old calls use MenuHandles while the new calls use XOPMenuRefs.

A MenuHandle is a Mac OS type that is emulated on Windows by IGOR.lib. When running with Igor Pro
6 an XOPMenuRef is a MenuHandle but when running with Igor Pro 7 it is a different type defined inter-
nally in Igor7. Consequently your code must treat XOPMenuRef as an opaque type and must not assume
that it is equivalent to a MenuHandle. Therefore you must not pass an XOPMenuRef to a Mac OS call or to
an IGOR.lib call that emulates a Mac OS call and you must not pass a MenuHandle that you received from
Mac OS to Igor as if it were a XOPMenuRef.

To guarantee that you observe these rules, change your code to use the new XOP menu API listed above
and do not use any OS menu routines. Here is a procedure for converting an XOP to use the new API:

1. Change all occurrences of MenuHandle to XOPMenuRef.
2. Compile. Each use of a XOPMenuRef in an old call will generate an error.
3. Replace the old call with the corresponding new call.

New Routine Replaces

XOPActualMenuIDToMenuRef GetMenuHandle

XOPResourceMenuIDToMenuRef ResourceMenuIDToMenuHandle

XOPGetMenuInfo GetMenuID

XOPCountMenuItems CountMItems

XOPShowMainMenu WMInsertMenu followed by WMDrawMenuBar

XOPHideMainMenu WMDeleteMenu followed by WMDrawMenuBar

XOPGetMenuItemInfo Nothing - requires Igor Pro 6.32 or later

XOPGetMenuItemText getmenuitemtext

XOPSetMenuItemText setmenuitemtext

XOPAppendMenuItem appendmenu

XOPInsertMenuItem insertmenuitem

XOPDeleteMenuItem DeleteMenuItem

XOPDeleteMenuItemRange WMDeleteMenuItems

XOPEnableMenuItem EnableItem

XOPDisableMenuItem DisableItem

XOPCheckMenuItem CheckItem

XOPFillMenu FillMenu

XOPFillMenuNoMeta FillMenuNoMeta

XOPFillWaveMenu FillWaveMenu

XOPFillPathMenu FillPathMenu

XOPFillWinMenu FillWinMenu

Appendix A — XOP Toolkit 7 Upgrade Notes

423

Help Resources in XOP Toolkit 7
Macintosh balloon help is obsolete. You should remove the following balloon help resources from your .r
file:

Windows status line help for menu items is obsolete. You should remove the following balloon help
resources from your WinCustom.rc file:

XOP Dialogs in XOP Toolkit 7
Prior to XOP Toolkit 7, the XOPSupport library included cross-platform dialog support routines. These rou-
tines were used to implement dialogs such as the Load General Binary dialog in the GBLoadWave sample
XOP.

On Macintosh, this dialog support was based on the Dialog Manager, which was part of the original Mac-
intosh API in 1984. When Apple moved to MacOS, it continued to support the Dialog Manager via the
Carbon library, so the XOP dialog support routines continued to work.

Although parts of Carbon still work, Apple has mostly deprecated or abandoned it in favor of the Cocoa
API. Many parts of Carbon work in 32 bits only, not in 64 bits. As a result, the old XOP dialog support has
hit the end of the road and was removed from the Macintosh and Windows XOPSupport libraries in XOP
Toolkit 7.

As of 2015, in the era of MacOS 10.10 and Windows 10, XOPs that use the old XOP Toolkit dialog routines
continue to work in 32 bits on Macintosh and in 32 and 64 bits on Windows. They do not work in 64 bits on
Macintosh.

If you are updating an old XOP that uses the old XOP Toolkit dialog routines, one option is for you to stick
with XOP Toolkit 6. The main downside to this is that there is no way to run in 64 bits on Macintosh. If you
want to run in 64 bits on Macintosh, or if you must port to XOP Toolkit 7 for some other reason, you will
need to rewrite your dialog code. How you do this depends on the platform you are targeting.

On Macintosh, you need to rewrite your dialog using Cocoa. The GBLoadWaveX sample XOP does this and
provides a good starting point. You will, however, need to have some familiarity with Cocoa, which has a
fairly steep learning curve for uninitiated programmers.

On Windows, you can rewrite your dialog using standard Windows programming techniques. Alterna-
tively, you can continue to use your old code by adding the DialogUtilitiesWin.c and DialogUtilitiesWin.h
files from the Extras/Win folder to your project. These files contain the old XOP dialog support code with a
few minor changes. To use them, you must make the following changes:

Include the DialogUtilitiesWin.h file in your dialog source file (e.g., GBLoadWaveDialogWin.cpp).

In your dialog source file:

Replace all occurrences of XOP_DIALOG_REF with XOPDialogRef.
Replace all occurrences of GetRadBut with GetRadioButton.
Replace all occurrences of SetRadBut with SetRadioButton.
Change the last parameter of all calls to SetDDouble from a pointer to a double to a double.

hmnu hdlg STR# resources containing menu help strings

HMNU MENUHELP STR# resources containing menu help strings

Appendix A — XOP Toolkit 7 Upgrade Notes

424

XOP Windows in Igor Pro 7
If you have an existing Igor Pro 6 XOP that adds a window to Igor and you want to port it to Igor Pro 7, see
Adding Windows on page 155.

TU ("Text Utility") Windows in Igor Pro 7
This section discusses changes required for existing XOPs that add text utility windows to Igor. You need
to read this section only if you have an existing Igor6 window XOP and you want to port your XOP to Igor7.
For further details on windows see TU ("Text Utility") Windows on page 174.

A TU window is a "text utility" window - a simple plain text editing window. The TUDemo sample XOP
(not shipped with XOP Toolkit 7 but available on request) and VDT2 sample XOP illustrate the use of TU
windows.

The ACTIVATE, UPDATE, CLICK, KEY, GROW, SETGROW and NULLEVENT window messages sent by
Igor to the XOP have been replaced with new messages in Igor7. Here are the Igor7 window messages and
the corresponding TU callbacks which you must call on receiving the message:

Igor7 Message Callback / Notes

kXOPWindowMessageActivate TUActivate(TUStuffHandle TU, int flag)

In Igor6 the second parameter to the TUActivate callback is was
defined as the value of the modifiers field of the Macintosh
EventRecord. In Igor7 it is 1 for an activate event and 0 for a
deactivate event.

kXOPWindowMessageUpdate TUUpdate(TUStuffHandle TU)

kXOPWindowMessageMouseClick TUClick(TUStuffHandle TU, WMMouseEventRecord* merP)

In Igor6 the second parameter to the TUClick callback is a pointer to
a Macintosh EventRecord. In Igor7 it is a pointer to a
WMMouseEventRecord.

kXOPWindowMessageMouseMove TUNull(TUStuffHandle TU, WMMouseEventRecord* merP)

In Igor6 the second parameter to the TUNull callback is a pointer to
a Macintosh EventRecord. In Igor7 it is a pointer to a
WMMouseEventRecord.

kXOPWindowMessageKey TUKey(TUStuffHandle TU, WMKeyboardEventRecord* eventPtr)

In Igor6 the second parameter to the TUKey callback is a pointer to
a Macintosh EventRecord. In Igor7 it is a pointer to a
WMKeyboardEventRecord.

kXOPWindowMessageResized TUGrow(TUStuffHandle TU, int size)

kXOPWindowMessageSetSizeLimits <none>

kXOPWindowMessageFind TUFind(TUStuffHandle TU, int messageCode)

In Igor6 the second parameter to the TUFind callback is 1 for find, 2
for find same and 3 for find selection.

In Igor7 it is kXOPWindowMessageFind,
kXOPWindowMessageFindSame,
kXOPWindowMessageFindSameBackwards,
kXOPWindowMessageFindSelection,
kXOPWindowMessageFindSelectionBackwards,
kXOPWindowMessageFindMultiple or
kXOPWindowMessageUseSelectionForFind.

Appendix A — XOP Toolkit 7 Upgrade Notes

425

In Igor Pro 6 and before these window messages were handled internally by Igor on Windows. On Macin-
tosh the XOP had to call back to the corresponding XOPSupport callback routine. As of Igor Pro 7 these mes-
sages are handled the same all platforms. The XOP receives the message and makes the callback shown
above.

Appendix A — XOP Toolkit 7 Upgrade Notes

426

Appendix B
I-BProject Changes For XOP Toolkit 7

Overview
This appendix describes change you need to make to your Xcode and Visual C++ projects when upgrading
from XOP Toolkit 6 to XOP Toolkit 7.

If you are are targeting Igor Pro 8.00 or later, and you are creating a new XOP or updating an XOP already
updated using XOP Toolkit 7.01 or later, you should use XOP Toolkit 8. See Choosing Which XOP Toolkit
to Use on page 5 for details.

Xcode Project Changes For XOP Toolkit 7
XOP Toolkit 7 has been tested with Xcode 6 through Xcode 10.

Xcode 10 and later support 64-bit development only, not 32-bit development. Consequently it is quite dif-
ferent from Xcode 9. For that reason, Xcode 9 and Xcode 10 are handled in separate sections:

Converting Your Older Xcode Project for Xcode 9 in the next section

Converting Your Older Xcode Project for Xcode 10 on page 431

Converting Your Older Xcode Project for Xcode 9
In this section we show how to update an Xcode 3, Xcode 4 or Xcode 6 project from XOP Toolkit 6 to an
Xcode 9 project for use with XOP Toolkit 7. Make sure to back up your Xcode projects before starting this
process.

We use XOP1 as an example. The XOP1 project that we are starting with is from XOP Toolkit 6.30. To
convert your project, substitute its name for “XOP1” in the following instructions.

1. If you have not already done it, copy the project folder, XOP1, from your IgorXOPs6 folder to your
IgorXOPs7 folder.
All of the steps below are to be done on the copy in IgorXOPs7.

2. Open the XOP1 folder.
3. If you see multiple folders whose names begin with Xcode (e.g., Xcode, Xcode4, Xcode6), delete all but

the highest numbered folder and rename the remaining folder as Xcode.
At this point, you should have just one Xcode folder in the XOP1 folder.

4. Open XOP1/Xcode/XOP1.xcodeproj in Xcode 9.

Updating the 32-bit Xcode Target
1. Choose File→Project Settings.

Click the Advanced button.

Appendix B — Project Changes For XOP Toolkit 7

428

For Build Location, choose Legacy.
Click Done.
Click Done again.

2. Choose View→Navigators→Show Project Navigator. The Project Navigator pane appears on the left.
Open all of the group icons in the Project Navigator so you can see all icons representing files.
Click the XOP1 icon at the top of the Project Navigator pane. The project settings appear in the cen-
ter pane.
In the top/left corner of the center pane there is a small icon that looks like a rectangle with a vertical
bar running down its left edge. Under it you should see the words PROJECT and TARGETS. If you
don't see them, click the small icon to reveal the "Project and Targets List".
You should now see the word PROJECT with an XOP1 icon beneath it and TARGETS with another
XOP1 icon beneath it in the left column of the center pane. This column is the Project and Targets
List.

3. Click the XOP1 icon under the word PROJECT in the Project and Targets List.
Click the Info tab in the center pane.
From the "Mac OS Deployment Target" popup menu, select the earliest version of Mac OS that you
want to support but it must be 10.9 or later.

4. Click the Build Settings tab.
Click the All and Combined buttons.
Under Architectures/Architectures, select 32-bit Intel.
Under Architectures/Base SDK, select Latest MacOS.
Under Build Options/Compiler for C/C++/Objective-C, select Default Compiler.

5. Click the XOP1 icon under the word TARGETS in the Project and Targets List.
Under Architectures/Architectures, select 32-bit Intel.
Under Architectures/Base SDK, select Latest MacOS.
Under Build Options/Compiler for C/C++/Objective-C, select Default Compiler.
Under Search Paths/Header Search Paths, enter "../../XOPSupport" (without the quotes).
Under Search Paths/Library Search Paths, enter "../../XOPSupport/Xcode" (without the quotes).
Under Apple LLVM Custom Compiler Flags, in the Other Warning Flags section, add

-Wno-parentheses
6. In the Project Navigator, select the libXOPSupport.a icon.

Choose View→Utilities→Show File Inspector to show the File Inspector pane on the right.
In the Identity and Type section, from the Location popup menu, choose Relative to Project.
Click the folder icon below the Location popup menu to display the Choose File dialog.
Navigate to the IgorXOPs7/XOPSupport/Xcode folder and select the libXOPSupport.a file.
Click the Choose button.
In the Target Membership section, make sure that XOP1 is checked.

7. Click the XOP1 icon at the top of the Project Navigator pane.

8. Click the External Frameworks and Libraries icon in the Project Navigator and choose File→Add Files
to XOP1.
In the resulting Open File dialog, navigate to /System/Library/Frameworks and select AudioTool-
box.framework (needed for the XOPBeep XOPSupport function).
Click the Add button.
Select the AudioToolbox.framework icon in the Project Navigator.
In the Target Membership section of the File Inspector pane, make sure that XOP1 is checked.

Appendix B — Project Changes For XOP Toolkit 7

429

9. Click the External Frameworks and Libraries icon in the Project Navigator and choose File→Add Files
to XOP1.
In the resulting Open File dialog, navigate to /System/Library/Frameworks and select Cocoa.frame-
work (needed for the XOPOKAlert and similar XOPSupport functions).
Click the Add button.
Select the Cocoa.framework icon in the Project Navigator.
In the Target Membership section of the File Inspector pane, make sure that XOP1 is checked.

10. In the Project Navigator pane, select the XOP1.cpp file to display it in the main editor pane.
Scroll to the bottom of XOP1.cpp and look for the main or XOPMain function.
If you have an XOPMain function, skip to the next step.
You need to change your main function to XOPMain as this is required by the LLVM compiler now
used by Xcode.
Change this:
HOST_IMPORT void
main(IORecHandle ioRecHandle)

to this:
HOST_IMPORT int
XOPMain(IORecHandle ioRecHandle)

Your XOP will require Igor Pro 6.20 or later. Update the code in the XOPMain function that checks
the Igor version accordingly.
Save XOP1.cpp.
Select the XOP1.h icon.
Change this:
HOST_IMPORT void main(IORecHandle ioRecHandle);

to this:
HOST_IMPORT int XOPMain(IORecHandle ioRecHandle);

Save XOP1.h.
Open the Exports.exp file in the Xcode folder andchange this:
_main

to this:
_XOPMain

Save Exports.exp.
11. Choose Product→Build. The XOP should be successfully built.

The compiled XOP, XOP1.xop, should appear in the IgorXOPs7/XOP1/Xcode/Debug folder.
You can also locate the compiled XOP by right-clicking XOP1.xop in the Products group of the Proj-
ect Navigator pane and choosing Show In Finder.

12. Activate XOP1.xop as described under Activating XOPs Using the Igor Extensions Folder on page 6.

Debugging the 32-bit Xcode XOP
1. Choose Product→Scheme→Edit Scheme.

Click the Run icon in the list on the left.
Click the Info tab.
From the Executable popup menu, choose Other. In the resulting Open File dialog, navigate to your
Igor Pro 32-bit application, select it, and click Choose.
Click Close.

Appendix B — Project Changes For XOP Toolkit 7

430

2. To start the debugger and launch Igor, choose Product→Run.

Creating the 64-bit Xcode Target
Now we will add a 64-bit target to the project. On Macintosh, 64-bit XOPs require Igor Pro 7.00 or later.
1. Click the XOP1 icon at the top of the Project Navigator pane.

Click the XOP1 icon under the word TARGETS in the Project and Targets List.
Choose Edit→Duplicate. This creates a target named "XOP1 copy".

Choose Product→Scheme→Manage Schemes. In the resulting dialog, rename "XOP1 copy" as
XOP1-64. (To rename the item you first have to click the name to select it. Then click again to enter
rename mode. Edit the name and press Enter.)
(When you convert your own project, note that the name of 64-bit version of the XOP should con-
tain a dash only if the original name ends with a digit. Thus the 64-bit version of XOP1 is XOP1-64,
with a dash, but the 64-bit version of GBLoadWaveX is GBLoadWaveX64, without a dash.)
Click Close to exit the Manage Schemes dialog.

1. Click the "XOP1 copy" icon under the word TARGETS in the Project and Targets List.
Rename the target as XOP1-64.

2. Click the XOP1-64 icon under the word TARGETS in the Project and Targets List.
In the Build Settings tab, in Architectures/Architecture, select "64-bit Intel".
For Packaging/Info.plist File, enter Info64.plist.
For Packaging/Product Name, enter XOP1-64.

3. In the Project Navigator, rename the “XOP1 copy-Info.plist” icon, at the bottom of the navigator, as
“Info64.plist”.
Drag the Info64.plist icon into the Resources group.
In the Project Navigator pane, select the Info64.plist icon. In the Identity and Type section of the
File Inspector, from the Location popup menu, choose Relative to Group.
In the Target Membership section of the File Inspector pane, make sure that XOP1 and XOP1-64 are
unchecked.

4. Click the XOP1 icon at the top of the Project Navigator pane and click XOP1-64 under TARGETS in the
Project and Targets List.
From the list of tabs click Info (just to the left of Build Settings).
In the center pane, change the Executable File setting to XOP1-64.
In the center pane, change the Bundle identifier from com.wavemetrics.xop.xop1 to com.wavemet-
rics.xop.xop1-64.

5. In the Project Navigator pane, click the External Frameworks and Libraries icon and choose File→Add
Files to XOP1.
Navigate to the IgorXOPs7/XOPSupport/Xcode folder and select the libXOPSupport64.a file.
Click the Add button.

6. In the Project Navigator pane, click the libXOPSupport64.a icon.
In the Identity and Type section of the File Inspector pane, from the Location popup menu, choose
Relative to Project.
Make sure that only XOP1-64 is checked in the Target Membership section.

7. In the Project Navigator pane, click the libXOPSupport.a icon.
In the Identity and Type section of the File Inspector pane, from the Location popup menu, choose
Relative to Project.
Make sure that only XOP1 is checked in the Target Membership section.

8. Click the XOP1 icon at the top of the Project Navigator pane.

9. Choose Product→Scheme→XOP1-64 to make it the active scheme.

Appendix B — Project Changes For XOP Toolkit 7

431

(Because of a bug in Xcode, if you now look at the Product→Scheme submenu, it will still say
XOP1, not XOP1-64. The scheme popup menu near the top/left corner of the Xcode window should
say “XOP-64 > My Mac”. If you don’t see the scheme popup menu, choose View→Show Toolbar.)

10. Choose Product→Build. The XOP should be successfully built.
The compiled XOP, XOP1-64.xop, should appear in the IgorXOPs7/XOP1/Xcode/Debug folder.
You can also locate the compiled XOP by right-clicking XOP1-64.xop in the Products group of the
Project Navigator pane and choosing Show In Finder.

11. Activate XOP1-64.xop as described under Activating XOPs Using the Igor Extensions Folder on page
6.

Debugging the 64-bit Xcode XOP
1. Choose Product→Scheme→Edit Scheme.

Select the XOP1-64 scheme from the Active Scheme popup menu in the Edit Scheme window.
Click the Run row in the list on the left.
Click the Info tab.
From the Executable popup menu, choose Other.
In the resulting Open File dialog, navigate to your Igor Pro 64-bit application, select it, and click
Choose.
Click Close.

2. To start the debugger, choose Product→Run.

Converting Your Older Xcode Project for Xcode 10
In this section we show how to update an Xcode 3, Xcode 4 or Xcode 6 project from XOP Toolkit 6 to an
Xcode 10 project for use with XOP Toolkit 7. Make sure to back up your Xcode projects before starting this
process.

Xcode 10 and later support 64-bit development only, not 32-bit development. If you need to maintain the
32-bit version of your XOP, you can not use Xcode 10.

We use XOP1 as an example. The XOP1 project that we are starting with is from XOP Toolkit 6.30. To
convert your project, substitute its name for “XOP1” in the following instructions.

1. If you have not already done it, copy the project folder, XOP1, from your IgorXOPs6 folder to your
IgorXOPs7 folder.
All of the steps below are to be done on the copy in IgorXOPs7.

2. Open the XOP1 folder.
3. If you see multiple folders whose names begin with Xcode (e.g., Xcode, Xcode4, Xcode6), delete all but

the highest numbered folder and rename the remaining folder as Xcode.
At this point, you should have just one Xcode folder in the XOP1 folder.

4. Open XOP1/Xcode/XOP1.xcodeproj in Xcode 10.
Xcode will display a dialog saying “32-bit MacOS targets are no longer supported”. Click OK.

Converting the 32-bit Xcode Target to 64-bit
1. Choose File→Project Settings.

Click the Advanced button.
For Build Location, choose Legacy.
Click Done.
Click Done again.

Appendix B — Project Changes For XOP Toolkit 7

432

2. Choose View→Navigators→Show Project Navigator. The Project Navigator pane appears on the left.
Open all of the group icons in the Project Navigator so you can see all icons representing files.
Click the XOP1 icon at the top of the Project Navigator pane. The project settings appear in the cen-
ter pane.
In the top/left corner of the center pane there is a small icon that looks like a rectangle with a vertical
bar running down its left edge. Under it you should see the words PROJECT and TARGETS. If you
don't see them, click the small icon to reveal the "Project and Targets List".
You should now see the word PROJECT with an XOP1 icon beneath it and TARGETS with another
XOP1 icon beneath it in the left column of the center pane. This column is the Project and Targets
List.

3. Choose Product→Scheme→Manage Schemes.
Rename the XOP1 scheme as XOP1-64. (To rename the item you first have to click the name to select
it. Then click again to enter rename mode. Edit the name and press Enter.)
(When you convert your own project, note that the name of 64-bit version of the XOP should con-
tain a dash only if the original name ends with a digit. Thus the 64-bit version of XOP1 is XOP1-64,
with a dash, but the 64-bit version of GBLoadWaveX is GBLoadWaveX64, without a dash.)
Click the Close button.

4. Click the XOP1 icon under the word TARGET in the Project and Targets List.
Rename the target as XOP1-64.

5. Click the XOP1 icon under the word PROJECT in the Project and Targets List.
Click the Info tab in the center pane.
From the "Mac OS Deployment Target" popup menu, select the earliest version of Mac OS that you
want to support but it must be 10.11 or later.

6. Click XOP1 under the word TARGETS.
Click General (to the left of Info) to show the General tab.
Make sure that the Deployment Target for the XOP1 target is the same as what you set for the XOP1
project.

7. Click the XOP1 icon under the word PROJECT in the Project and Targets List.
Click the Build Settings tab.
Click the All and Combined buttons.
Under Architectures/Architectures, select “Standard Architectures (64-bit Intel)”.
Under Architectures/Base SDK, select MacOS.
Under Build Options/Compiler for C/C++/Objective-C, select Default Compiler.
Under Search Paths, set Always Search User Paths to No.

8. Click the XOP1 icon under the word TARGETS in the Project and Targets List.
Under Architectures/Architectures, select “Standard Architectures (64-bit Intel)”.
Under Architectures/Base SDK, select MacOS.
Under Build Options/Compiler for C/C++/Objective-C, select Default Compiler.
For Packaging/Info.plist File, enter Info64.plist.
For Packaging/Product Name, enter XOP1-64.
Under Search Paths/Header Search Paths, enter "../../XOPSupport" (without the quotes).
Under Search Paths/Library Search Paths, enter "../../XOPSupport/Xcode" (without the quotes).
Under Search Paths, set Always Search User Paths to No.
Under Apple Clang Custom Compiler Flags, in the Other Warning Flags section, add

-Wno-parentheses
9. In the Project Navigator, rename the “Info.plist” icon as “Info64.plist”.

Appendix B — Project Changes For XOP Toolkit 7

433

10. Click the XOP1 icon in the Project Navigator and then click the XOP1 icon under the word TARGET in
the Project and Targets List.
From the list of tabs click Info (just to the left of Build Settings).
In the center pane, change the Bundle identifier from com.wavemetrics.xop.xop1 to com.wavemet-
rics.xop.xop1-64.
In the center pane, change the Executable File setting to XOP1-64.

11. In the Project Navigator pane, right-click the libXOPSupport.a icon and choose Delete.
If Xcode displays a dialog asking what you want to delete, click Delete Reference.

12. In the Project Navigator pane, click the External Frameworks and Libraries icon and choose File→Add
Files to XOP1.
Navigate to the IgorXOPs7/XOPSupport/Xcode folder and select the libXOPSupport64.a file.
Click the Add button.

13. Choose View→Inspectors→Show File Inspector to show the File Inspector pane on the right.
14. In the Project Navigator pane, click the libXOPSupport64.a icon.

In the Identity and Type section of the File Inspector pane, from the Location popup menu, choose
Relative to Project.
Make sure that XOP1-64 is checked in the Target Membership section.

15. Click the XOP1 icon at the top of the Project Navigator pane.

16. Click the External Frameworks and Libraries icon in the Project Navigator and choose File→Add Files
to XOP1.
In the resulting Open File dialog, navigate to /System/Library/Frameworks and select AudioTool-
box.framework (needed for the XOPBeep XOPSupport function).
Click the Add button.
Select the AudioToolbox.framework icon in the Project Navigator.
In the Target Membership section of the File Inspector pane, make sure that XOP1-64 is checked.

17. Click the External Frameworks and Libraries icon in the Project Navigator and choose File→Add Files
to XOP1.
In the resulting Open File dialog, navigate to /System/Library/Frameworks and select Cocoa.frame-
work (needed for the XOPOKAlert and similar XOPSupport functions).
Click the Add button.
Select the Cocoa.framework icon in the Project Navigator.
In the Target Membership section of the File Inspector pane, make sure that XOP1-64 is checked.

18. Choose View→Navigators→Show Issue Navigator.
You should see an item in the Issue Navigator pane that says "Update to recommended settings".
Click it. A window will open that lists settings to be updated.
Click Perform Changes.

19. Choose View→Navigators→Show Project Navigator.
In the Project Navigator pane, select the XOP1.cpp file to display it in the main editor pane.
Scroll to the bottom of XOP1.cpp and look for the main or XOPMain function.
If you have an XOPMain function, skip to the next step.
You need to change your main function to XOPMain as this is required by the LLVM compiler now
used by Xcode.
Change this:
HOST_IMPORT void
main(IORecHandle ioRecHandle)

to this:

Appendix B — Project Changes For XOP Toolkit 7

434

HOST_IMPORT int
XOPMain(IORecHandle ioRecHandle)

Your XOP will require Igor Pro 7.00 or later because there is no 64-bit version of Igor6. Update the
code in the XOPMain function that checks the Igor version accordingly.
Save XOP1.cpp.
Select the XOP1.h icon.
Change this:
HOST_IMPORT void main(IORecHandle ioRecHandle);

to this:
HOST_IMPORT int XOPMain(IORecHandle ioRecHandle);

Save XOP1.h.
Open the Exports.exp file in the Xcode folder andchange this:
_main

to this:
_XOPMain

Save Exports.exp.
20. Choose Product→Build. The XOP should be successfully built.

The compiled XOP, XOP1-64.xop, should appear in the IgorXOPs7/XOP1/Xcode/Debug folder.
You can also locate the compiled XOP by right-clicking XOP1-64.xop in the Products group of the
Project Navigator pane and choosing Show In Finder.

21. Activate XOP1-64.xop as described under Activating XOPs Using the Igor Extensions Folder on page
6.

Debugging the 64-bit Xcode XOP
1. Choose Product→Scheme→Edit Scheme.

Click the Run row in the list on the left.
Click the Info tab.
From the Executable popup menu, choose Other.
In the resulting Open File dialog, navigate to your Igor Pro 64-bit application, select it, and click
Choose.
Click Close.

2. To start the debugger, choose Product→Run.

Visual C++ Project Changes For XOP Toolkit 7
XOP Toolkit 7 was created with Visual C++ 2015 and has also been tested with Visual C++ 2017. It will most-
likely work with later versions of Visual C++ and may work with earlier versions. However, because of
compatibility issues, described under Visual C++ Compatibility Issues on page 47, you may run into prob-
lems mixing Visual C++ versions. If you use a different version of Visual C++, you must recompile the XOP
Toolkit with your Visual C++ version.

Converting Your Older Visual C++ Project
In this section we show how to update a Visual C++ project from XOP Toolkit 6 to a Visual C++ 2015 project
for use with XOP Toolkit 7.

Appendix B — Project Changes For XOP Toolkit 7

435

We use XOP1 as an example. The XOP1 project that we are starting with is from XOP Toolkit 6.30. To
convert your project, substitute its name for “XOP1” in the following instructions.

1. If you have not already done it, copy the project folder, XOP1, from your IgorXOPs6 folder to your
IgorXOPs7 folder.
All of the steps below are to be done on the copy in IgorXOPs7.

2. Open the XOP1 folder.
3. If you see multiple folders whose names begin with VC (e.g., VC9, VC10, VC2012), delete all but the

highest numbered folder and rename the remaining folder as VC.
At this point, you should have just one VC folder in the XOP1 folder.

4. Open XOP1/VC/XOP1.sln in Visual C++ 2015.

Updating the 32-bit Visual C++ Target
1. Choose View→Solution Explorer.
2. Right-click the XOP1 icon and choose Properties to display the XOP1 Property Pages dialog.

From the Configuration popup menu, choose All Configurations.
From the Platform popup menu, choose Win32.

3. Under Configuration Properties, select General and enter the following settings:
Output Directory: .\
Target Name: XOP1
Target Extension: .xop
Character Set: Use Multi-Byte Character Set
Click Apply.

4. Under Configuration Properties, select Debugging and enter the following settings:
Command: <path to your Igor.exe application>
Click Apply.

5. Under C/C++, select General and enter the following settings:
Additional Include Directories: ..\..\XOPSupport;%(AdditionalIncludeDirectories)
Debug Information Format: Program Database (/Zi)
Click Apply.

6. Under C/C++, select Command Line and add the following setting:
Additonal Options: /utf-8
Click Apply.

7. Under C/C++, select Preprocessor.
From the Configuration popup menu, choose Debug.
Verify that _CRT_SECURE_NO_WARNINGS is included as a preprocessor definition. If not, add
it.
Click Apply.
From the Configuration popup menu, choose Release.
Verify that _CRT_SECURE_NO_WARNINGS is included as a preprocessor definition. If not, add
it.
Click Apply.

8. Under C/C++, select Code Generation.
From the Configuration popup menu, choose Debug and enter the following settings:
Runtime Library: Multi-Threaded Debug (/MTd)
From the Configuration popup menu, choose Release and enter the following settings:

Appendix B — Project Changes For XOP Toolkit 7

436

Runtime Library: Multi-Threaded (/MT)
From the Configuration popup menu, choose All Configurations and enter the following settings:
Struct Member Alignment: Default
Click Apply.

9. Under Linker, select General and enter the following settings:
Output File: XOP1.xop
Click Apply.

10. Under Linker, select Input and enter the following settings:
Additional Dependencies: version.lib;%(AdditionalDependencies)
Click Apply.

11. Under Linker, select System and enter the following settings:
Enable Large Addresses: Yes (/LARGEADDRESSAWARE)
Click Apply.

12. Under Linker, select Advanced and enter the following settings:
Target Machine: MachineX86
Click Apply.

13. Under Resources, select General and enter the following settings:
Additional Include Directories: ..\..\XOPSupport;%(AdditionalIncludeDirectories)
Click Apply.

14. Click OK to close the Property Pages dialog.
15. In the Solution Explorer, select the XOPSupport.lib icon.

Choose View→Properties Window.
In the Properties window, set Relative Path to: ..\..\XOPSupport\VC\XOPSupport.lib
Press Enter to enter the setting.
Close the Properties window.

16. Choose File→Save All.

17. Choose Build→Build Solution.
The project should successfully compile and link, producing XOP1.xop. You may get some warn-
ings.

Adding the 64-bit Visual C++ Target
1. Choose View→Solution Explorer.

In the Solution Explorer window, select the XOP1 icon.
Right-click the XOP1 icon and choose Properties to open the XOP1 Property Pages dialog.

2. Click the Configuration Manager button to open the Configuration Manager dialog.
Click the Active Solution Platform popup menu.
If you see x64 listed, your project already has a 64-bit platform. If so, close the Configuration Man-
ager dialog and the XOP1 Property Pages dialog and skip to Updating the 64-bit Visual C++ Target
on page 437.

3. Click the menu under Active Solution Platform and choose New to display the New Solution Platform
dialog.
Enter x64 in the “Type or Select the New Platform” edit box.
From the Copy Settings From popup menu, choose Win32.
Check the Create New Project Platforms checkbox.
Click OK to close the New Solution Platform dialog.

Appendix B — Project Changes For XOP Toolkit 7

437

Click Close to close the Configuration Manager dialog.
Click OK to close the XOP1 Property Pages dialog.

Choose File→Save All.

4. In the Solution Explorer window, select the XOP1 icon.

Choose Project→Add Existing Item.
The Open File dialog is displayed.
Navigate to the IgorXOPs7\XOPSupport directory.
Choose All Files from the Files of Type menu at the bottom of the Open File dialog.
Select the IGOR64.lib icon and click Add.

5. In the Solution Explorer window, select the XOP1 icon.

Choose Project→Add Existing Item.
The Open File dialog is displayed.
Navigate to the IgorXOPs7\XOPSupport\VC directory.
Choose All Files from the Files of Type menu at the bottom of the Open File dialog.
Select the XOPSupport64.lib icon and click Add.

6. In the Solution Explorer window, select the IGOR64.lib and XOPSupport64.lib icons.
Make sure that only IGOR64.lib and XOPSupport64.lib are selected.
Right-click one of the selected icons and choose Properties.
The Properties window opens.
Select All Configurations from the Configuration menu.
Select Win32 from the Platform menu.
In the General category, set Excluded From Build to Yes.
Click the Apply button.
Click OK.

7. In the Solution Explorer window, select the IGOR.lib and XOPSupport.lib icons.
Make sure that only IGOR.lib and XOPSupport.lib are selected.
Right-click one of the selected icons and choose Properties.
The Properties window opens.
Select All Configurations from the Configuration menu.
Select x64 from the Platform menu.
In the General category, set Excluded From Build to Yes.
Click the Apply button.
Click OK.

8. Choose File→Save All.
The project is now configured for 64-bit as well as 32-bit compilation.

Updating the 64-bit Visual C++ Target
1. Choose View→Solution Explorer.
2. Right-click the XOP1 icon and choose Properties to display the XOP1 Property Pages dialog.

From the Configuration popup menu, choose All Configurations.
From the Platform popup menu, choose x64.

3. Under Configuration Properties, select General and enter the following settings:
Output Directory: .\
Target Name: XOP1-64

Appendix B — Project Changes For XOP Toolkit 7

438

Target Extension: .xop
Character Set: Use Multi-Byte Character Set
Click Apply.

4. Under Configuration Properties, select Debugging and enter the following settings:
Command: <path to your Igor64.exe application>
Click Apply.

5. Under C/C++, select General and enter the following settings:
Additional Include Directories: ..\..\XOPSupport;%(AdditionalIncludeDirectories)
Debug Information Format: Program Database (/Zi)
Click Apply.

6. Under C/C++, select Command Line and add the following setting:
Additonal Options: /utf-8

7. Under C/C++, select Preprocessor.
From the Configuration popup menu, choose Debug.
Verify that _CRT_SECURE_NO_WARNINGS is included as a preprocessor definition. If not, add
it.
Click Apply.
From the Configuration popup menu, choose Release.
Verify that _CRT_SECURE_NO_WARNINGS is included as a preprocessor definition. If not, add
it.
Click Apply.

8. Under C/C++, select Code Generation.
From the Configuration popup menu, choose Debug and enter the following settings:
Runtime Library: Multi-Threaded Debug (/MTd)
From the Configuration popup menu, choose Release and enter the following settings:
Runtime Library: Multi-Threaded (/MT)
From the Configuration popup menu, choose All Configurations and enter the following settings:
Struct Member Alignment: Default
Click Apply.

9. Under Linker, select General and enter the following settings:
Output File: XOP1-64.xop
Click Apply.

10. Under Linker, select Input and enter the following settings:
Additional Dependencies: version.lib;%(AdditionalDependencies)
Click Apply.

11. Under Linker, select System and enter the following settings:
Enable Large Addresses: Yes (/LARGEADDRESSAWARE)
Click Apply.

12. Under Linker, select Advanced and enter the following settings:
Target Machine: MachineX64
Click Apply.

13. Under Resources, select General and enter the following settings:
Additional Include Directories: ..\..\XOPSupport;%(AdditionalIncludeDirectories)
Click Apply.

14. Click OK to close the Property Pages dialog.

Appendix B — Project Changes For XOP Toolkit 7

439

15. In the Solution Explorer, select the XOPSupport64.lib icon.

Choose View→Properties Window.
In the Properties window, set Relative Path to: ..\..\XOPSupport\VC\XOPSupport64.lib
Press Enter to enter the setting.
Close the Properties window.

16. Choose File→Save All.
17. From the Solution Platforms popup menu in the toolbar, choose x64.

Choose Build→Build Solution.
The project should successfully compile and link, producing XOP1-64.xop. You may get some
warnings.

Text Encoding Issues
In XOP Toolkit 7, we use UTF-8 text encoding for all C and C++ source files. This matters only if your XOP
uses non-ASCII literal strings. See Text Encodings on page 201 for details.

Appendix B — Project Changes For XOP Toolkit 7

440

Appendix C
I-CXOP Toolkit 7 Release History

Overview
This appendix describes changes in each new release of XOP Toolkit 7.

For a discussion of what is new in XOP Toolkit 7 relative to XOP Toolkit 6, see XOP Toolkit 7 Upgrade
Notes on page 415.

If you are are targeting Igor Pro 8.00 or later, and you are creating a new XOP or updating an XOP already
updated using XOP Toolkit 7.01 or later, you should use XOP Toolkit 8. See Choosing Which XOP Toolkit
to Use on page 5 for details.

Release 7.00

July 25, 2016
First release of XOP Toolkit 7.

Release 7.01

May 5, 2017
XOP Toolkit 7.01 has been tested with Xcode 7, Xcode 8, Visual C++ 2015, and Visual C++ 2017.

Added WM memory XOPSupport routines to provide compatibility with Igor Pro 8 (in development as of
this writing) and later. See WM Memory XOPSupport Routines on page 195 for details.

On Windows, in XOP Toolkit 7.00, the XOPStandardHeaders.h file included this:

#pragma execution_character_set(“utf-8”)

This tells the Visual C++ compiler to compile literal strings as UTF-8, as needed for Igor7 or later.

In Visual Studio 2015 Update 2, this pragma is deprecated in favor of using the new /utf-8 project setting
and was removed from XOPStandardHeaders.h. If you are compiling with Visual C++, make sure that you
are using Visual Studio 2015 Update 2 or later, and add the /utf-8 setting to your project. To do that, add
the /utf-8 flag in the Command Line section of the C/C++ section of the property pages for all configurations
of the project. For background information, see Text Encodings in Visual C++ on page 204.

Fixed a bug in the ThreadGroupGetDF XOPSupport routine.

Fixed section Converting Your Older Xcode Project for Xcode 9 on page 427 to include changing
Exports.exp file in the Xcode folder from _main to _XOPMain.

Changed the Visual C++ “Program Database File Name” setting in the XOPSupport project to "$(Out-
Dir)($TargetName).pdb. This gives each version of the XOPSupport library a unique .pdb file name and

Appendix C — XOP Toolkit 7 Release History

442

puts it in the same folder as the library itself. XOP Toolkit 7.01 includes these XOPSupport .pdb files in order
to eliminate LNK4099 warnings when compiling an XOP.

Changed the Visual C++ “Linker/Debugging/Generate Program Database File” setting in all projects from
"$(IntDir)$(TargetName).pdb" to "$(OutDir)$(TargetName).pdb". This is consistent with the value of that
setting in new VC 2015 projects.

For clarity, changed the version field of the IORec structure to XOPProtocolVersion and changed system
field in XOPStuff structure to developmentSystem. These changes should have no impact on existing XOPs.

Changed the symbol MAX_DIM_LABEL_CHARS, defined in IgorXOP.h, to MAX_DIM_LABEL_BYTES.

Changed all sprintf calls in XOPSupport to snprintf.

The XOPI resources of all sample XOPs were changed to use the new XOP_FEATURE_FLAGS and
XOPI_RESERVED macros. It is recommended but not required that you update your XOP resource files.

On Macintosh, the new XOPI resource definition is:

resource 'XOPI' (1100) {
XOP_VERSION, // XOP protocol version.
DEV_SYS_CODE, // Code for development system used to make XOP
XOP_FEATURE_FLAGS, // Tells Igor about XOP features
XOPI_RESERVED, // Reserved - must be zero.
XOP_TOOLKIT_VERSION, // XOP Toolkit version.

};

On Windows, the new XOPI resource definition is:

1100 XOPI // XOPI - Describes general XOP properties to IGOR.
BEGIN

XOP_VERSION, // Version number of host XOP system.
DEV_SYS_CODE, // Code for development system used to make XOP.
XOP_FEATURE_FLAGS, // Tells Igor about XOP features
XOPI_RESERVED, // Reserved - must be zero.
XOP_TOOLKIT_VERSION // XOP Toolkit version.

END

Removed the PrepareLoadIgorData, LoadIgorData, EndLoadIgorData, and SaveIgorData callbacks. These
callbacks were used only by the Data Browser XOP with Igor6 and earlier. As of Igor7, the Data Browser is
built into Igor. Data structures used with these callbacks have changed and are no longer compatible with
the old Data Browser XOP.

64-bit Integer Support
Added additional support for 64-bit integers. Before using 64-bit integer waves, read 64-bit Integer Issues
on page 215.

The following XOPSupport routines now support signed 64-bit integers (NT_I64) and unsigned 64-bit inte-
gers (NT_I64 | NT_UNSIGNED):

ScaleData, ScaleClipAndRoundData, FetchNumericValue, StoreNumericValue, MDGetTextWave-
PointValue, MDSetTextWavePointValue, MDGetDPDataFromNumericWave, MDStoreDPDataInNu-
mericWave

Added new XOPSupport routines MDGetNumericWavePointValueSInt64,
MDSetNumericWavePointValueSInt64, MDGetNumericWavePointValueUInt64, and
MDSetNumericWavePointValueUInt64.

Appendix C — XOP Toolkit 7 Release History

443

Changes to NamedFIFO.h
The following changes were made to the NamedFIFO.h file. These changes affect programmers using FIFOs
from XOPs only. They do not affect runtime behavior. They may cause a compile error when you recompile
your XOP if it uses Igor FIFOs.

Changed the name field in the NamedFIFO structure to fifoName. Changed the size of this field from
MAX_OBJ_NAME to MAX_FIFO_NAME but it is 31 in both cases.

Changed the name field in the ChartChanInfo structure to fifoChannelName. Changed the size of this field
from MAX_OBJ_NAME to MAX_FIFO_CHANNEL_NAME but it is 31 in both cases.

Release 7.02

June 4, 2018
XOP Toolkit 7.02 has been tested with Xcode 7 through Xcode 9, Visual C++ 2015, and Visual C++ 2017.

Added an explanation of when to use XOP Toolkit 8 versus XOP Toolkit 7. If you are are targeting Igor Pro
8.00 or later, and you are creating a new XOP or updating an XOP already updated using XOP Toolkit 7.01 or later,
you should use XOP Toolkit 8. See Choosing Which XOP Toolkit to Use on page 5 for details.

Added an explanation of how Igor Pro 8.00 and later handle long object names when calling an XOP com-
piled with XOP Toolkit 7 or before. See Long Names and Paths in XOPs on page 206 for details.

Fixed an asymptomatic bug in GBLoadWaveX, SimpleLoadWave and VDT by changing this:

static int fileFilterIndex = 0;

to this:

static int fileFilterIndex = 1;

This is appropriate because the XOPOpenFileDialog2 and XOPSaveFileDialog2 fileFilterIndex parameters
are 1-based.

Fixed a bug in Igor that caused the ConvertTextEncoding callback to return an error for any error mode
other than kTECNoMapErrorModeFail.

Fixed a crash in XOPEmergencyAlert when called from other than the main thread. That occurs if you call
a non-threadsafe XOPSupport routine from a preemptive thread.

GetPathInfo2 is thread-safe only when running with Igor Pro 8.00 or later. That means that, in Igor Pro 8.00
or later, you can use /P=<path name> when calling an XOP file loader from an Igor preemptive thread. You
need to recompile your XOP with XOP Toolkit 7.02 or later to use this feature.

rom MAX_OBJ_NAME to MAX_FIFO_CHANNEL_NAME but it is 31 in both cases.

Release 7.03
September 28, 2018
XOP Toolkit 7.03 adds Xcode 10 compatibility. Xcode 10 supports 64-bit development only and requires
MacOS 10.13.6 or later.

For instructions on updating an XOP Toolkit 6 XOP for Xcode 10, see Xcode Project Changes For XOP
Toolkit 7 on page 427.

For instructions on updating an XOP Toolkit 7 XOP for Xcode 10, see Updating Xcode Projects for Xcode
10 on page 44.

Appendix C — XOP Toolkit 7 Release History

444

Index 1

Symbols
#defines

XOP Toolkit 7 418
-Wno-parentheses 43
_CRT_SECURE_NO_WARNINGS 50
.c files 10
.exp files

Xcode 36, 42
.ihf extension 219
.r files 10

compiled by Rez 56
.rc files 10, 56

Visual C++ 48
.sln files 48
.vcxproj files 48
.xop extension 13, 53

Numbers
64-bit integers 215
64-bit XOPs 187

command help 193
data types 188–189
long data type 188, 190
printf and sprintf issues 192
programming issues 189
virtual memory 187
Windows 187

A
aborting 214

CheckAbort 392
accessing data folders

XOPSupport routines 300–315
accessing variables

XOPSupport routines 291–299
accessing waves

XOPSupport routines 253–290
activating XOPs 6
Active Scheme

Xcode 39, 430–431
Activity Monitor

leaks 227
ActualToResourceItem 152, 317
ActualToResourceMenuID 151, 316
adding commands 71–98
adding dialogs 207
adding functions 99–119
adding menus and menu items 145–153
adding operations 71–98
alerts

custom error alert 64

XOPOKAlert 406
XOPOKCancelAlert 406
XOPYesNoAlert 407
XOPYesNoCancelAlert 407

aliases 13
ALLOW_MAC_OS_NATIVE_MEMORY_ROUTI

NES 200
allWinOp 73
architectures

Xcode 42
ArrowCursor 419
as keyword 76

optional parameters 78
ASCII 201
Asian text

ConcatenatePaths 330
FullPathPointsToFile 332
FullPathPointsToFolder 332
GetDirectoryAndFileNameFromFullPath 331
GetNativePath 330
HFSToPosixPath 329
MacToWinPath 328
strchr2 400
strrchr2 400
WinToMacPath 329

automatic WAVE references 87
GetOperationDestWave 251
SetOperationWaveRef 247

B
background processing

SpinProcess 393
backslashes

EscapeSpecialCharacters 401
UnEscapeSpecialCharacters 402

balloon help 219
base SDK

in Xcode 41
BCInt data type 189
big-endian

MDChangeWave2 268
bugs 221–232
build location

Xcode 39
bundles

Xcode 37
byte order

MDChangeWave2 268

C
C strings 110, 138

Index

C++ complex numbers

Index 2

C++
called from C code 217
calling C code 216
catch 217
exceptions 217
templates 127
try 217
writing XOPs in 216

CalcWaveRange 85, 264
callbacks 11, 13

IGOR.lib 11
not allowed from private threads 179
threads 178

CallFunction 212, 375
from an Igor thread 213
from an independent module 213
ProcGlobal module 213

cancelling
CheckAbort 392

Can’t load the executable error 43
Can’t run Intel XOP error 43
Carbon

history 3
paths 205
XOP Toolkit 6 4

catch
in C++ 217

categories
for functions 102
of operations 73

CatPossiblyQuotedName 362
CFBundleExecutable 234
CFM 3
ChangeWave 254

may move wave in memory 127
chart displays

XOPSupport routines 353
CheckAbort 214, 392
CheckFunctionForm 212, 374
CheckName 360
CheckRunningInMainThread 180, 379
child data folder 305–306
CHUNKS 128, 253, 281
CLEANUP message 58

data folder reference counting 144
wave reference counting 134

CleanupName 359
CLEAR_MODIFIED message 60, 66
clipboard

XOPGetClipboardData 408
CMD message 72

error codes 61
CmpStr 400
Cocoa 155, 165
colons 205

color tables
GetIgorColorTableInfo 364
GetIgorColorTableValues 365
GetIndexedIgorColorTableName 364
GetNamedIgorColorTableHandle 364
XOPSupport routines 364–365

column-major order 128
COLUMNS 128, 253, 281
command help

64-bit XOPs 193
command template 75
command templates 76

length limit 95
command window

HistoryDelete 366
HistoryDisplaySelection 366
HistoryFetchParagraphText 367
HistoryFetchText 368
HistoryGetSelLocs 367
HistoryInsert 366
HistoryLines 366
HistorySetSelLocs 367
XOPSupport routines 366–369

commands
adding 71–98
length limits 206
PauseUpdate 386
PutCmdLine 394
ResumeUpdate 386
XOPCommand 384
XOPCommand2 384
XOPCommand3 385
XOPSilentCommand 385

commas
in operations 71

communicating with Igor
XOPSupport routines 239–241

compatibility 69–70
external operations 98
Igor 1.2 70
Igor Pro 70
of XOPs with Igor versions 4
operations 72
XOPI resource 57

compilableOp 73
compilableOp operation category 73
compiler version

LLVM 4
Xcode 41

compiling
help files 219

complex conjugate
example external function 99

complex conjugate example 108
complex numbers

external function example 99

complex numbers data types

Index 3

parameters in external functions 108
results in external functions 108
storage in waves 128

compound names 84
computation threads 176
ConcatenatePaths 330
configurations

Visual C++ 49
ConvertData 354
ConvertData2 355
ConvertTextEncoding 402
CountInt data type 189
CR_STR macro 421
Create New XOP Project 24
CreateValidDataObjectName 360
creating a project 24
cross-platform development 201

files 204
current data folder 303
cursorOp 73
curve fitting

function parameters 105
SimpleFit sample XOP 12, 20
SimpleGaussFit sample XOP 20
WAVE_TYPE 105

custom errors 63–64

D
dangling pointers 198, 228–229

waves 127
data acquisition

DoXOPIdle operation 184
from threads 180–186
IDLE message 184
mutexes 184
WaveHandleModified 185

data folder reference counting
CLEANUP message 144
NEW message 144
structure parameters 144

data folder reference parameters
external operations 86

data folder reference waves 135
data folder references

external function example 107
in structure parameters 209
parameters in external functions 106
results in external functions 107

data folders 141–144
accessing

XOPSupport routines 300–315
child 305–306
commonly used XOPSupport routines 142
conventions 143
current 303

DataFolderAndName example 89
DuplicateDataFolder 307
DuplicateDataFolderObject 313
FetchWaveFromDataFolder 255
free 305
GetCurrentDataFolder 303
GetDataFolderByIDNumber 304
GetDataFolderIDNumber 300
GetDataFolderListing 302
GetDataFolderNameOrPath 300
GetDataFolderObject 310
GetDataFolderProperties 301
GetIndexedChildDataFolder 306
GetIndexedDataFolderObject 309
GetNamedDataFolder 303
GetNumChildDataFolders 305
GetNumDataFoldersObjects 308
GetParentDataFolder 305
GetRootDataFolder 303
GetWavesDataFolder 306
HoldDataFolder 315
ID numbers 300, 304
KillDataFolder 307
KillDataFolderObject 312
listing 302
MoveDataFolder 308
MoveDataFolderObject 314
NewDataFolder 306
Packages data folder 143
parent 305
reference counting 143
ReleaseDataFolder 315
RenameDataFolder 308
RenameDataFolderObject 314
root 303
SetCurrentDataFolder 303
SetDataFolderObject 311
SetDataFolderProperties 301
ThreadGroupGetDF 380
ThreadGroupPutDF 380
threads 177
variables 291
waves 306

data full-scale 258–259
MDGetWaveScaling 269
MDSetWaveScaling 269

data sharing 69
data types

64-bit XOPs 188
BCInt 189
CountInt 189
IndexInt 189
PSInt 189
SInt16 188
SInt32 188
SInt64 188

data types DuplicateDataFolderObject

Index 4

SInt8 188
TickCountInt 188
UInt16 188
UInt32 188
UInt64 188
UInt8 188
XOPIORecParam 192
XOPIORecResult 191

DATAFOLDER_OBJECT
CheckName 360
CreateValidDataObjectName 360

DATAFOLDER_TYPE 124
data folder reference parameters 106
in XOPF resource 101
result in external functions 107

dataFolderAndName keyword
Operation Handler 77

DataFolderAndName parameters
example 87, 89
external operations 86
WAVE references 87

DataFolderHandles 141
dataFolderRef keyword

Operation Handler 77
DataObjectValuePtr

GetDataFolderObject 310
SetDataFolderObject 311

dataOp 73
dates 405
DateToIgorDateInSeconds 405
debug configuration

Visual C++ 49
debugging 232–233

in Visual C++ 51
symbolic debugging 232
tricks 233
Xcode 46
XOPNotice 232

default help file name 220
deleting waves

versus killing 131
deployment target

in Xcode 41
dereferencing a handle 229
dereferencing a wave handle 230
dereferencing handles 197
destination waves 86–87

SetOperationWaveRef 247
DEV_SYS_CODE 56–57
development system 57

supported systems 35
development systems

supported systems 6, 415
DFREFs 86

data folder reference counting 144
in structure parameters 209

dialogs
adding 207
DialogUtilities files 207
IgorError 393
XOPDisplayHelpTopic 395
XOPOpenFileDialog 339
XOPOpenFileDialog2 341
XOPSaveFileDialog 342
XOPSaveFileDialog2 344
XOPSupport routines 327

DialogUtilities files 207
dimension labels

GetWaveDimensionLabels 272
MDGetDimensionLabel 271
MDSetDimensionLabel 272
name length limits 206
SetWaveDimensionLabels 273

dimension scaling
for waves 129
MDGetWaveScaling 269
MDSetWaveScaling 269

dimensions
MDChangeWave 267
MDChangeWave2 268
MDGetWaveDimensions 266
MDMakeWave 265
ROWS, COLUMNS, LAYERS, CHUNKS 128,

253
direct access method 126
direct functions 116

resources 116, 118
direct method for external functions 116
direct method for external operations 72
direct operations

resources 97
disabling menu items 152–153
displayOp 73
DisposeHandle 199–200
DisposePtr 200
DLLs

using in XOPs 217
DoFunction routine 116
double name parameters

external operations 84
independent modules 84

doubleName keyword
Operation Handler 77

DoUpdate 386
recursion 68

DoWindowRecreationDialog 372
DoXOPIdle operation 68, 184

data acquisition 184
drawOp 73
DuplicateDataFolder 307
DuplicateDataFolderObject 313

email external functions

Index 5

E
email 18
enabling menu items 152–153
endian

MDChangeWave2 268
EndLoadIgorData 442
error codes 61

from operations 72
errors 61–64

custom error alert 64
custom errors 63–64
custom XOP error codes 62
error codes 61
external functions 104
FIRST_XOP_ERR 64
GetIgorErrorMessage 61, 64, 393
Igor error codes 61
IgorError 61, 64, 393
in external functions 118
Mac OS error codes 62
STR# 1100 resource 63
Windows OS error codes 62
WindowsErrorToIgorError 382–383
XOPOKAlert 64
XOPOKCancelAlert 64
XOPYesNoAlert 64
XOPYesNoCancelAlert 64

escape sequences
EscapeSpecialCharacters 401
UnEscapeSpecialCharacters 402

EscapeSpecialCharacters 401
exceptions

in C++ 217
ExecuteOperation 74

extern "C" declaration 94
NULL handles 95

EXP_xxx 60–61
experiment settings 59–61
experiment type argument 60–61
experiments 65–66

CLEAR_MODIFIED message 60
EXP_xxx 60–61
LOAD message 60
LOAD_TYPE_xxx 61
loading settings 65
LOADSETTINGS message 60
MODIFIED message 60
NEW message 59
SAVE message 60
SAVE_TYPE_xxx 60
SAVESETTINGS message 60
saving settings 65

extended structure parameters 92
example in external operation 93

extensions
help files 219
help files for 64-bit XOPs 193

extern "C" declaration
calling C from C++ 216
ExecuteOperation 94
external functions 103
in C++ called from C 217
with routines called by Igor 55

external functions 99–119
adding 100
calling from an XOP 212
complex parameters 108
complex results 108
data folder reference parameters 106
data folder reference results 107
direct functions 116
direct method 116
DoFunction routine 116
error codes 104, 118
examples 99
extern "C" declaration 103
FUNCADDRS message 59, 116
function categories 102
FUNCTION message 116
FV_REF_TYPE 114
guided tour 20
invoking from Igor 103
keep RESIDENT 116
logfit example 118
message method 116
names of 100, 102
optional parameters 99
parameter types 100, 104
parameters 99, 103
pass-by-reference 114
pass-by-value 114
resources 116, 118
result types 100, 104
results 104
returning results 103
SimpleFit sample XOP 12
string parameters 108–109, 111, 115
string results 108–109
structure alignment 103
structure parameter example 112
structure parameters 111–112
thread-safe 117
tp pointer 117
versus user functions 99
wave assignment statements 103
wave parameters 105, 119
wave results 106
WaveAccess sample XOP 12
XFUNC1 sample XOP 11
XFUNC2 sample XOP 11

external functions files

Index 6

XFUNC3 sample XOP 11
external operations 71–98

as keyword 76
command template 75
command templates 76
compatibility 98
compatibility with Igor Pro 4 72
compilableOp 73
compilableOp operation category 73
data folder reference parameters 86
DataFolderAndName parameters 86
double name parameters 84
extended structure parameter example 93
extended structure parameters 92
flags 71, 75
GBLoadWaveX sample XOP 12
GetOperationWaveRef 248
keywords 75
kOperationIsThreadSafe 96
MenuXOP1 sample XOP 11
mnemonic names 76
name parameters 84
names of 74
NIGPIB2 sample XOP 12
Operation Handler 74–98
Operation Handler XOPSupport routines 242
optional parameters 77, 81
output variables 94
parameters 71, 75
RegisterOperation 242
resources 97
runtime parameter structure 79
SimpleLoadWave sample XOP 12
starter code 74
string parameters 83
structure parameter example 90
structure parameters 89
template 75
templates 76
thread-safe 95
tp pointer 96
variables 242–246, 347
VarName parameters 85
VDT2 sample XOP 12
vs keyword 76
wave parameters 84
wave references 247–248
WaveRange parameters 84
XOP1 sample XOP 11
XOPOp operation category 73

F
F_ANLYZWAVES 102
F_CMPLX 102
F_CONV 102

F_EXP 102
F_EXTERNAL 102
F_EXTERNAL function category 102
F_IO 102
F_NUMB 102
F_ROUND 102
F_SPEC 102
F_STR 102
F_THREADSAFE 102, 117
F_TIMEDATE 102
F_TRIG 102
F_UTIL 102
F_WAVE 102
F_WINDOWS 102
FetchNumericDataUsingVarName 86, 244
FetchNumericValue 283
FetchNumVar 292

example 140
FetchStrHandle 294
FetchStringDataUsingVarName 86, 246
FetchStrVar 293

example 140
FetchWave 255
FetchWaveFromDataFolder 255
fields

of structure parameters 209
FIFOs

GetNamedFIFO 353
MarkFIFOUpdated 353
XOPSupport routines 353

file loaders
FileLoaderMakeWave 346
GBLoadWave sample XOP 12
GetFullPathFromSymbolicPathAndFilePath

345
Load Waves submenu 12
output variables 94
SanitizeWaveName 359
SetFileLoaderOperationOutputVariables 94,

347
SetFileLoaderOutputVariables 94, 346
SimpleLoadWave sample XOP 12
XOPOpenFileDialog 339
XOPOpenFileDialog2 341
XOPSaveFileDialog 342
XOPSaveFileDialog2 344
XOPSupport routines 345–348

FILE_LOADER flags 346
FileLoaderMakeWave 346
filenames

illegal characters 328–329
files

accessing
XOPSupport routines 328–344

ConcatenatePaths 330
cross-platform routines 204

files GetDataFolderObject

Index 7

FullPathPointsToFile 332
FullPathPointsToFolder 332
GetDirectoryAndFileNameFromFullPath 331
GetLeafName 332
GetNativePath 330
HFSToPosixPath 329
MacToWinPath 328
MAX_DIRNAME_LEN 205
MAX_FILENAME_LEN 205
MAX_PATH_LEN 205
MAX_VOLUMENAME_LEN 205
ParseFilePath 333
path conversions 205
path length limits 206
path separator characters 205
platform independence 12
SpecialDirPath 333
WinToMacPath 329
XOPAtEndOfFile 338
XOPCloseFile 335
XOPCreateFile 334
XOPDeleteFile 334
XOPGetFilePosition 337
XOPGetFilePosition2 338
XOPNumberOfBytesInFile 339
XOPNumberOfBytesInFile2 339
XOPOpenFile 334
XOPReadFile 335
XOPReadFile2 335
XOPReadFile64 336
XOPReadLine 336
XOPSetFilePosition 338
XOPSetFilePosition2 338
XOPWriteFile 337
XOPWriteFile64 337

find
menu item 317

FIRST_XOP_ERR 62, 64
FIRSTCMD 394
FIRSTCMDCRHIT 394
FixByteOrder 357
flags 71, 75

optional parameters 77
prefix characters 76

forward slashes 205
frameworks

Xcode 37
free data folders

GetParentDataFolder 305
free waves 135

GetOperationDestWave 250
HoldWave 135
KillWave 135
MDMakeWave 266
reference counting 135
reference counting examples 135

ReleaseWave 135
FullPathPointsToFile 332
FullPathPointsToFolder 332
FUNCADDRS message 59, 116
FUNCREFs

CallFunction from an independent module 213
in structure parameters 209
using from an XOP 212

function categories 102
F_ANLYZWAVES 102
F_CMPLX 102
F_CONV 102
F_EXP 102
F_EXTERNAL 102
F_IO 102
F_NUMB 102
F_ROUND 102
F_SPEC 102
F_STR 102
F_THREADSAFE 102
F_TIMEDATE 102
F_TRIG 102
F_UTIL 102
F_WAVE 102
F_WINDOWS 102

function index 116
FUNCTION message 116

error codes 61
functions

adding 99–119
CallFunction 212
calling from an XOP 212
CheckFunctionForm 212, 374
GetFunctionInfo 212, 372, 375
GetFunctionInfoFromFuncRef 212, 373
GetIgorCallerInfo 377
GetIgorRTStackInfo 377

FV_REF_TYPE 114
in XOPF resource 101

FV_STRUCT_TYPE 112
in XOPF resource 101–102

G
GBLoadWave

relation to GBLoadWaveX 417
GBLoadWave sample XOP 12
GBLoadWaveX

relation to GBLoadWave 417
GetCStringFromHandle 129, 138, 399
GetCurrentDataFolder 303
GetDataFolderByIDNumber 304
GetDataFolderIDNumber 300
GetDataFolderListing 302
GetDataFolderNameOrPath 300
GetDataFolderObject 310

GetDataFolderProperties help

Index 8

GetDataFolderProperties 301
GetDirectoryAndFileNameFromFullPath 331
GetFullPathFromSymbolicPathAndFilePath 345
GetFunctionInfo 212, 372
GetFunctionInfoFromFuncRef 212, 373
GetHandleSize 199–200
GetIgorCallerInfo 377
GetIgorColorTableInfo 364
GetIgorColorTableValues 365
GetIgorErrorMessage 61, 64, 393
GetIgorProcedure 370
GetIgorProcedureList 370
GetIgorRTStackInfo 377
GetIndexedChildDataFolder 306
GetIndexedDataFolderObject 309
GetIndexedIgorColorTableName 364
GetLeafName 332
GetMenuHandle 151
GetNamedDataFolder 303

example 143
GetNamedFIFO 353
GetNamedIgorColorTableHandle 364
GetNativePath 206, 330
GetNumChildDataFolders 305
GetNumDataFoldersObjects 308
GetNVAR 210, 297

example 211
GetOperationDestWave

example 87
GetParentDataFolder 305
GetPathInfo2 391
GetPrefsState 65, 398
GetPtrSize 200
GetRootDataFolder 303

example 143
GetSVAR 210, 298

example 211
GetTextWaveData 129, 286
GetWaveDimensionLabels 272
GetWavesDataFolder 306
GetXOPIndString 352
GetXOPItem 55, 57, 241

items field in IORecHandle 67
pitfalls 233
replace long data type 192

GetXOPMessage 55, 57, 240
message field in IORecHandle 67
pitfalls 233
replace long data type 192

GetXOPNamedResource 351
GetXOPPrefsHandle 65, 397
GetXOPResource 351
GetXOPResult 240
GetXOPStatus 241
global variables 221

threads 176

GPIB communications
NIGPIB2 sample XOP 12

GRAF_MASK 397
graphOp 73

H
HandAndHand 200
HandCursor 419
Handles

disposing 83
GetCStringFromHandle 129, 138
PutCStringInHandle 129, 138
WaveMemorySize 263

handles 195, 197–199
containing strings 233
dangling pointers 229
dereferencing 197, 229
DisposeHandle 199–200
GetHandleSize 199–200
GetPtrSize 200
HandAndHand 200
HandToHand 200
locking 198
Macintosh 199
master pointers 197
NewHandle 199–200
ownership rules 196
recommended practices 231
resizing 198
SetHandleSize 199–200
treating as C strings 110, 138
usage 198
WMDisposeHandle 200
WMGetHandleSize 200
WMHandAndHand 200
WMHandToHand 200
WMNewHandle 200
WMSetHandleSize 200

HandToHand 200
hdlg resources 423
header files 9

changes in XOP Toolkit 7 418
IgorErrors.h 418
XOPWindows..h 418

heap 197
fragmentation 198
overwriting 222

help 219–220
balloon help 219
command help 31
for 64-bit XOPs 193
for operations and functions 219–220
function categories 102
help file name 220
Igor Help Browser 219

help IgorError

Index 9

operation categories 73
searching for help files 395
STR# 1101 resource 220
technical support 17
tips 396
topics and subtopics 395
XOPDisplayHelpTopic 220, 395
XOPSetContextualHelpMessage 396

Help Browser 31
help files

compiling 219
extensions 219
for 64-bit XOPs 193
location of 219

HFS
paths 205, 328

HFSToPosixPath 206, 329
HGetState 198
history

cistory carbon copy 388
XOPNotice 386
XOPNotice2 387
XOPNotice3 388
XOPResNotice 389

history area
HistoryDelete 366
HistoryDisplaySelection 366
HistoryFetchParagraphText 367
HistoryFetchText 368
HistoryGetSelLocs 367
HistoryInsert 366
HistoryLines 366
HistorySetSelLocs 367

HistoryDelete 366
HistoryDisplaySelection 366
HistoryFetchParagraphText 367
HistoryFetchText 368
HistoryGetSelLocs 367
HistoryInsert 366
HistoryLines 366
HistorySetSelLocs 367
HLock 198
HMNU resources 423
hmnu resources 423
HMODULE 382
HoldDataFolder 143, 315
HoldWave 132, 289

free waves 135
wave reference waves 134

HSetState 198
HSTRING_TYPE 109, 115

in XOPF resource 101
HUnlock 198
HWND

IgorClientHWND 382

I
IBeamCursor 419
ID numbers for data folders 300, 304
IDLE message 58

data acquisition 184
recursion 68–69

IDLE messages
DoXOPIdle operation 68, 184

IDLES bit 58, 67
SetXOPType 239

idling 66
IEEE_FLOAT 354
Igor 1.2

compatibility 70
Igor commands 384–385, 394
Igor Extensions folder 6, 13, 72, 100
Igor Help Browser 219
Igor mailing list 18
Igor number type codes 354, 356
Igor Pro

compatibility 70, 195
first Windows version 3
Igor Extensions folder 6
Igor Pro 3.1 3
Igor Pro 4 3
Igor Pro 5 Windows compatibility 3
Igor Pro 6 3
Igor Pro 6.1 3
Igor Pro 6.2 3
Igor Pro 6.20 195
Igor Pro 6.3 4
Igor User Files folder 6

Igor Pro 4
external operations 72

Igor Pro User Files
SpecialDirPath 333

Igor Tips
XOPSetContextualHelpMessage 396

Igor User Files folder 6
Igor-thread-safe 178
IGOR_OBSOLETE 70, 421
IGOR.lib

callback routines 11
handles 199
link with 233
memory management 199
XOPSupport 9

IGOR32 187
IGOR32 #define 418
IGOR64 187
IGOR64 #define 418
IgorClientHWND 382
IgorColorSpec 365
IgorDateInSecondsToDate 405
IgorError 61, 64, 393

IgorErrors.h long data type

Index 10

IgorErrors.h 418
IgorExchange 18
IgorModule 382
IgorVersion 395
igorVersion 70
igorVersion global 70
IgorXOP.h 9
IgorXOPs 7 folder

copy existing XOPs to 415
IgorXOPs6 folder

contents of 8
creating 7

IGR0 XOP file creator 13, 53
Xcode 43

illegal characters 328–329
independent modules

CallFunction 213
double name parameters 84

IndexInt data type 189
Info.plist

Xcode 37, 42
Info.plist file 43, 234
Info64.plist 234
InfoPlist.strings file 43
INFs 404
INIT message 13, 58

error codes 61
initialization 13, 58, 239
INSERTCMD 394
installing XOP Toolkit 7
integers

64 bit versus doubles 215
Intel 3

compiling in Xcode 25
initial support of 3

internal threads 176
callbacks not allowed 179
data acquisition 184–185

ioOp 73
IORecHandle 13, 53, 55, 66–67

passed to main 17
recursion 68

IsINF32 404
IsINF64 404
IsNaN32 404
IsNaN64 404
ITEM_REQUIRES bits 152
itemFlags field 152
IXOP XOP file type 13, 53

Xcode 43

K
keywords 75

in operations 71
optional parameters 77

prefix characters 76
KillDataFolder 307
KillDataFolderObject 312
killing waves 130

preventing killing 130
versus deleting 131

KillWave 255
free waves 135

kMDWaveAccessMode0 127, 273
kOpDestWaveChangeExistingWave 249
kOpDestWaveMakeFreeWave 250
kOpDestWaveMustAlreadyExist 250
kOpDestWaveOverwriteExistingWave 250
kOpDestWaveOverwriteOK 249
kOperationIsThreadSafe 96
kXOPWindowMessageUpdate

recursion 68
kXOPWindowMessageUpdate message

recursion 68

L
LAYERS 128, 253, 281
layoutOp 73
leaks 227
Legendre polynomials 11, 99
liberal names 358

CatPossiblyQuoteName 362
CleanupName 359
CreateValidDataObjectName 360
PossiblyQuoteName 362

libraries
link errors 233
XOPSupport 9

libXOPSupport.a 37
libXOPSupport64.a 37
linking

errors 233
little-endian

MDChangeWave2 268
LLVM compiler 4

main function issue 195
LOAD message 60
Load Waves submenu 12
LOAD_TYPE_xxx 61
LoadIgorData 442
loading settings 65
LOADSETTINGS message 60, 65
lock state

waves 258
locking handles 198
logfit

example external function 11, 99, 118
long data type

64-bit XOPs 188, 190
replacing 191–192

Mach-O menus

Index 11

M
Mach-O 3

creating projects in Xcode 36
MACIGOR #define 418
Macintosh

paths 205
supported OS versions 4
XOP Toolkit 6 requirements 4

Macintosh menu manager routines 145
MacOS

first Igor version 3
MacRectToWinRect 407
MacRoman 201
MacToWinPath 206, 328
mailing list 18
main 13

called by Igor 53
LLVM compatibility 195
receives INIT message 58
receives IORecHandle 17
version checking 70
XOPMain 195

main function 13
changed in XOP Toolkit 6 421

main thread 176
MAIN_NAME_SPACE 358
MakeWave 253
MallocDebug

leaks 227
MarkFIFOUpdated 353
master pointers 197
MAX_DIM_LABEL_BYTES 5, 442
MAX_DIM_LABEL_CHARS 271–273, 442
MAX_DIMENSIONS 265, 267
MAX_DIRNAME_LEN 205
MAX_FILENAME_LEN 205
MAX_OBJ_NAME 5
MAX_PATH_LEN 5, 205
MAX_UNIT_CHARS 259–260, 270–271
MAX_VOLUMENAME_LEN 205
MAX_WAVE_NAME 5
MAXCMDLEN 5
MDAccessNumericWaveData 126, 273
MDChangeWave 267

may move wave in memory 127
MDChangeWave2 268

may move wave in memory 127
MDGetDimensionLabel 271
MDGetDPDataFromNumericWave 125, 280
MDGetNumericWavePointValue 125, 276
MDGetNumericWavePointValueSInt64 278
MDGetNumericWavePointValueUInt64 279
MDGetTextWavePointValue 284

example 129
MDGetWaveDimensions 128, 266

MDGetWaveScaling 269
MDGetWaveUnits 270
MDI

getting Igor client HWND 382
MDMakeWave 265

example 123
MDSetDimensionLabel 272
MDSetNumericWavePointValue 125, 276
MDSetNumericWavePointValueSInt64 278
MDSetNumericWavePointValueUInt64 280
MDSetTextWavePointValue 285

example 129
MDSetWaveScaling 129, 269

example 123
MDSetWaveUnits 129, 271
MDStoreDPDataInNumericWave 125, 281
MemClear 399
MemError 200
memory

64-bit XOPs 187
checking allocations 227
dangling pointers 228–229
data sharing 69
disposing 226–227
handles 197–199
heap 197
leaks 226–227
pointers 197
relocatable block 198
using unallocated blocks 225
WMDisposeHandle 412
WMDisposePtr 413
WMGetHandleSize 410
WMGetPtrSize 412
WMHandAndHand 411
WMHandToHand 411
WMNewHandle 410
WMNewPtr 412
WMPtrAndHand 413
WMPtrToHand 413
WMSetHandleSize 410
WMSetPtrSize 412

memory management
Macintosh handles 199

memory management routines 410–413
menu handles 151
menu IDs 150–151
menu manager routines 145
MENUENABLE message 58, 152
MENUHELP resources 423
MENUITEM message 58

error codes 61
recursion 68

menus
ActualToResourceItem 152, 317
ActualToResourceMenuID 151, 316

menus names

Index 12

adding 145–153
adding a main menu 148
disabling 152–153
enabling 152–153
enabling Igor items 153
Find item 317
getting menu handles 151
limitations 147
menu IDs 150–151
menu manager routines 145
MENUENABLE message 58
MENUITEM message 58
MenuXOP1 sample XOP 11, 145, 147
resource IDs 150
resources 147–150
ResourceToActualItem 151, 316
ResourceToActualMenuID 151, 316
SetIgorMenuItem 317
SHOW_MENU_AT_LAUNCH 148
SHOW_MENU_WHEN_ACTIVE 148
Undo item 317
WM_COMMAND message 150
WM_INITMENU message 152
XMI1 1100 resource 147
XMN1 1100 resource 147–148
XOPActualMenuIDToMenuRef 318
XOPAppendMenuItem 321
XOPCheckMenuItem 324
XOPCountMenuItems 319
XOPDeleteMenuItem 322
XOPDeleteMenuItemRange 322
XOPDisableMenuItem 323
XOPEnableMenuItem 323
XOPFillMenu 317
XOPFillMenuNoMeta 324
XOPFillPathMenu 325
XOPFillWaveMenu 325
XOPFillWinMenu 326
XOPGetMenuInfo 319
XOPGetMenuItemInfo 320
XOPGetMenuItemText 321
XOPHIdeMainMenu 320
XOPInsertMenuItem 322
XOPMenuRef 147
XOPResourceMenuIDToMenuRef 318
XOPSetMenuItemText 321
XOPShowMainMenu 319
XOPSupport routines 316–326
XSM1 1100 resource 147

MenuXOP1 sample XOP 11
MenuXOP1 XOP 145, 147
message method for external functions 116
messages

basic 57–59
between Igor and XOP 67
CLEANUP message 58

CLEAR_MODIFIED message 60
from Igor to XOP 13
FUNCADDRS message 59, 116
IDLE message 58
INIT message 13, 58
LOAD message 60
LOADSETTINGS message 60, 65
MENUENABLE message 58
MENUITEM message 58
MODIFIED message 60
NEW message 59, 65
OBJINUSE 130
OBJINUSE message 59
recursion 68
SAVE message 60
SAVESETTINGS message 60, 65
saving and loading settings 59–61
threads 176
XOPEntry routine 13

meta-characters 326
XOPFillMenu 317
XOPFillMenuNoMeta 324

Microsoft 3
miscellaneous XOPSupport routines 384–398
mnemonic names 76
modification count

waves 257
modification date

waves 257
modification state

waves 257
MODIFIED message 60
MoveDataFolder 308
MoveDataFolderObject 314
MoveLockHandle 198
Multitasking

see threads
Multithreading 175

see also threads
mutexes 177

data acquisition 184
MW_MASK 397
My Mac 32-bit 39
My Mac 64-bit 39

N
name keyword

Operation Handler 77
name parameters

external operations 84
names

CatPossiblyQuotedName 362
CheckName 360
CleanupName 359
CreateValidDataObjectName 360

names output variables

Index 13

liberal 359–360, 362
object name length limits 206
of external functions 102
of external operations 74
PossiblyQuoteName 362
SanitizeWaveName 359
standard 362
UniqueName 358
UniqueName2 358
WaveName 261

NaNs 404–405
National Instruments

NIGPIB2 sample XOP 12
native paths 206
NEW message 59, 65

data folder reference counting 144
wave reference counting 134

NewDataFolder 306
example 143

NewHandle 199–200
NewPtr 200
NIGPIB2 sample XOP 12
NT_CMPLX 108

in XOPF resource 101
number type for waves 124

NT_FP32 124, 253, 354
number type for waves 124

NT_FP64 124, 253, 354
in XOPF resource 101
number type for waves 124

NT_I16 124, 253, 354
number type for waves 124

NT_I32 124, 253, 354
number type for waves 124

NT_I64 124
NT_I8 124, 253, 354

number type for waves 124
NT_UNSIGNED 124, 253, 354

number type for waves 124
number keyword

Operation Handler 77
number type codes 354, 356
number types

for waves 124
GBLoadWave example 12

NumBytesAndFormatToNumType 356
numeric conversion

ConvertData 354
ConvertData2 355
FixByteOrder 357
NumBytesAndFormatToNumType 356
NumTypeToNumBytesAndFormat 356
ScaleClipAndRoundData 357
ScaleData 356

numeric conversion routines 354–357
GBLoadWave example 12

numeric expressions
in operations 71

numeric precision
in external functions 104

NumTypeToNumBytesAndFormat 356
NVAR 85
NVARs

GetNVAR 297
in structure parameters 209, 211
SetNVAR 298

O
object names

length limits 206
XOPSupport routines 358–363

object types
WAVE_OBJECT 59

Objective-C++ 156, 165
objects

counting in data folders 308
duplicating in data folders 313
getting in data folders 309–310
killing in data folders 312, 314
renaming in data folders 314
setting in data folders 311

OBJINUSE message 59, 130
OLD_IGOR 421
operation categories 73

allWinOp 73
compilableOp 73
cursorOp 73
dataOp 73
displayOp 73
drawOp 73
graphOp 73
ioOp 73
layoutOp 73
printOp 73
statsOp 73
tableOp 73
threadSafeOp 73
utilOp 73
waveOp 73
XOPOp 73

Operation Handler 74–98
introduced in Igor Pro 5 3
RegisterOperation 242
XOPSupport routines 242

operations
adding 71–98

optional parameters 77, 81
as keyword 78
in external functions 99
vs keyword 78

output variables 94

packages private threads

Index 14

P
packages

Xcode 36
Packages data folder 143
PANEL_MASK 397
parameter types

in external functions 104
numeric precision 104

parameters 75
as keyword 76
checking string parameters in external

functions 111
commas between parameters 71
complex in external functions 108
data folder reference in external functions 106
data folder reference parameters 86
DataFolderAndName parameters 86
disposing string parameters in external

functions 111
double name parameters 84
external functions 103
FV_REF_TYPE 114
in external functions 99–100
in operations 71
name parameters 84
optional 77
optional parameters 81
pass-by-reference 114
pass-by-value 114
runtime parameter structure 79
string in external functions 108–109, 115
string parameters 83
structures 209
structures in external functions 111–112
structures in external operations 89
threads 177
type checking in external functions 101
VarName parameters 85
vs keyword 76
wave in external functions 105, 119
wave parameters 84
WaveRange parameters 84

parent data folder 305
ParseFilePath 333
ParseOperationTemplate 74
parsing commands

GetFullPathFromSymbolicPathAndFilePath
345

pass-by-reference 114
FV_REF_TYPE 114

pass-by-value 114
path separator characters 205
PathList 390
paths

Carbon 205

ConcatenatePaths 330
escape characters 205
file path length limits 206
FullPathPointsToFile 332
FullPathPointsToFolder 332
GetDirectoryAndFileNameFromFullPath 331
GetFullPathFromSymbolicPathAndFilePath

345
GetLeafName 332
GetNativePath 206, 330
HFS 205, 328
HFSToPosixPath 329
illegal characters 328–329
Mac/Win conversion 205
Macintosh 205
MacToWinPath 206, 328
native paths 205
ParseFilePath 333
POSIX 205, 328
Posix 206
POSIX paths 205
separator 328
SpecialDirPath 333
WinToMacPath 206, 329

PauseUpdate 386
pitfalls 233–235
PL_MASK 397
platform-independence 6
plgndr

example external function 11, 99
point access method 125
pointers 197

dangling pointers 228–229
misconceptions 224

POSIX 205
paths 205, 328

Posix 206
PossiblyQuoteName 362
predefined macros

XOP Toolkit 7 418
preferences 65

GetPrefsState 398
GetXOPPrefsHandle 397
SaveXOPPrefsHandle 397
SpecialDirPath 333
structures 65

prefix characters 76
prefix files

Xcode 37, 42
PrepareLoadIgorData 442
printf

64-bit XOPs 192
printOp 73
private threads 176

callbacks not allowed 179
data acquisition 184–185

problems resources

Index 15

problems 17
procedures

CallFunction 212
calling from an XOP 212
CheckFunctionForm 212, 374
DoWindowRecreationDialog 372
GetFunctionInfo 212, 372, 375
GetFunctionInfoFromFuncRef 212, 373
GetIgorCallerInfo 377
GetIgorProcedure 370
GetIgorProcedureList 370
GetIgorRTStackInfo 377
SetIgorProcedure 371
XOPSupport routines 370–378

ProcGlobal
CallFunction 213

programming utilities
TickCount 405

programming utility routines 399–409
project files 10

Visual C++ 48
project settings

Visual C++ 49
Xcode 40

Project Settings dialog
Xcode 38

projects
Create New XOP Project 24
creating in guided tour 24
creating in Visual C++ 48
creating in Xcode 36
debug and release configurations 49

Property List Editor 234
PSInt data type 189
PtrAndHand 200
PtrToHand 200
PutCmdLine 394
PutCStringInHandle 129, 138, 399

Q
qualified keywords 82
queues

thread output queue 182–183
quotes

CatPossiblyQuoteName 362
PossiblyQuoteName 362

R
rectangles 407
recursion 67–69

DoUpdate side-effect 386
IDLE messages 68–69
XOPCommand side-effect 384
XOPCommand2 side-effect 384
XOPCommand3 side-effect 385

XOPSilentCommand side-effect 385
reference counting

data folder reference waves 135
data folders 143
free wave examples 135
free waves 135
wave reference waves 134
waves 131

RegisterFunction
replace long data type 191

RegisterOperation 17, 72, 74, 242
example 53

release configuration
Visual C++ 49

ReleaseDataFolder 143, 315
data folder reference waves 135

ReleaseWave 132, 289
free waves 135
wave reference waves 134

relocatable block of memory 197–198
RenameDataFolder 308
RenameDataFolderObject 314
REPLACEALLCMDS 394
REPLACEALLCMDSCRHIT 394
REPLACEFIRSTCMD 394
RESIDENT bit 66

SetXOPType 239
resident XOPs

external functions 116
XOPType field in IORec 66

resource files 10
Visual C++ 48

resource.h 48
resource.h file

creation of 56
menu resource IDs 148

resources 55–57
creating 56
creating on Windows 56
for menus 147–150
GetXOPIndString 352
GetXOPNamedResource 351
GetXOPResource 351
in direct external functions 116, 118
in direct external operations 97
initialization 13
resource.h file 56, 148
STR# 1100 resource 55, 62–63
STR# 1101 resource 55, 220
STR# 1160 resource 55
version resources 207
XMI1 1100 147
XMI1 1100 resource 55
XMN1 1100 147–148
XMN1 1100 resource 55
XOP-specific 55

resources SetXOPResult

Index 16

XOPC 1100 resource 55, 72
XOPF 1100 resource 55, 100
XOPI 1100 resource 55–56
XOPRefNum 351
XOPSupport routines 351–352
XOPTypes.r 56
XPRF resources 397
XSM1 1100 147
XSM1 1100 resource 55

ResourceToActualItem 151, 316
ResourceToActualMenuID 151, 316
result codes 61
result types

in external functions 104
results

external functions 103–104
string in external functions 108–109

ResumeUpdate 386
Rez

compiling .r files 56
RGBColor 365
root data folder 303

threads 177
ROWS 128, 253, 281
RS232

VDT2 sample XOP 12
RunningInMainThread 180, 379
runtime library

Visual C++ 50
runtime parameter structure 79

S
S_ variables

in external operations 94
S_fileName 346–347

SetFileLoaderOperationOutputVariables 347
S_path 346–347

SetFileLoaderOperationOutputVariables 347
S_waveNames 346–347

SetFileLoaderOperationOutputVariables 347
sample XOPs 10–12
SanitizeWaveName 359
SAVE message 60
SAVE_TYPE_xxx 60
SaveIgorData 442
SAVESETTINGS message 60, 65
SaveXOPPrefsHandle 65, 397
saving settings 65
ScaleClipAndRoundData 357
ScaleData 356
scaling

waves 129
scheme

Xcode 39, 430–431

schemes
Xcode 39

SDK
in Xcode 41

SendWinMessageToIgor 419
serial port

VDT2 sample XOP 12
SetCurrentDataFolder 303
SetDataFolderObject 311
SetDataFolderProperties 301
SetFileLoaderOperationOutputVariables 94, 347
SetFileLoaderOutputVariables 94, 346
SetHandleSize 199–200
SetIgorComplexVar 296
SetIgorFloatingVar 295

example 140
SetIgorIntVar 295
SetIgorMenuItem 153, 317
SetIgorProcedure 371
SetIgorStringVar 297

example 140
SetNaN32 404
SetNaN64 405
SetNVAR 210, 298

example 211
SetOperationNumVar 242
SetOperationStrVar 243
SetOperationStrVar2 243
SetOperationWaveRef 87, 247
SetPtrSize 200
SetSVAR 210, 299

example 211
SetTextWaveData 129, 288
settings

GetPrefsState 398
GetXOPPrefsHandle 397
loading 65
messages for saving and loading settings 59–61
SaveXOPPrefsHandle 397
saving 65
saving and loading 65
structure alignment 66
structures 66

SetWaveDimensionLabels 273
SetWaveLock 258
SetWaveNote 261
SetWaveScaling 259
SetWaveUnits 260
SetXOPEntry 17, 239

example 53
XOPEntry field in IORecHandle 67

SetXOPMessage 240
SetXOPResult 61, 240

example 53
replace long data type 191
result field in IORecHandle 67

SetXOPResult structures

Index 17

returning custom errors 63
SAVESETTINGS message 65

SetXOPType 239
IDLE message 58
in external functions 116
XOPType field in IORec 66

Shift-JIS 201
shortcuts 13
SHOW_MENU_AT_LAUNCH 148
SHOW_MENU_WHEN_ACTIVE 148
SIGNED_INT 354
SimpleFit sample XOP 12, 20
SimpleGaussFit

compiling 29
testing 30

SimpleGaussFit sample XOP 20
SimpleLoadWave sample XOP 12
SInt16 data type 188
SInt32 data type 188
SInt64 data type 188
SInt8 data type 188
Slow Data Acq example 182
solution files 48
SpecialDirPath 333
SpinCursor 419
SpinProcess 214, 393

recursion 68
sprintf

64-bit XOPs 192
SS_MASK 397
stack

overwriting 222
standard names 362
starter code 74

details 94
updating 95

statsOp 73
status line

XOPSetContextualHelpMessage 396
StoreNumericDataUsingVarName 86, 245
StoreNumericValue 283
StoreNumVar 293
StoreStringDataUsingVarName 86, 246
StoreStrVar 294
STR# 1100 resource 55, 62–63
STR# 1101 resource 55, 220

XOP help file name 220
STR# 1160 resource 55
STR_OBJECT

CheckName 360
CreateValidDataObjectName 360

strchr2 400
String

in structure parameters 209
string expressions

in operations 71

string keyword
Operation Handler 77

string parameters
external operations 83

string variables
accessing

XOPSupport routines 291–299
content stored in handles 138
FetchStrHandle 294
FetchStringDataUsingVarName 246
FetchStrVar 293
GetSVAR 298
SetFileLoaderOperationOutputVariables 347
SetIgorStringVar 297
SetOperationStrVar 243
SetOperationStrVar2 243
SetSVAR 299
StoreStringDataUsingVarName 246
StoreStrVar 294
StringList 392
Variable 291
VarNameToDataType 244

StringList 392
strings

disposing 83
GetCStringFromHandle 129, 138
in handles 233
in Igor 110, 138
in structure parameters 210
pitfalls 233
PutCStringInHandle 129, 138
WMGetHandleSize 233
WMSetHandleSize 233

strrchr2 400
structure alignment 79, 208

in external functions 103
settings structures 66

structure keyword
Operation Handler 77

structure parameters 209
CheckFunctionForm 374
data folder reference counting 144
example in external function 112
example in external operation 90
extended 92
extended example in external operation 93
fields 209
in external functions 111
in external operations 89
NVARs 211
strings 210
SVARs 211
wave reference counting 133

structures
expandable 65–66
GetNVAR 297

structures threads

Index 18

GetSVAR 298
in XOPF resource 101–102
SetNVAR 298
SetSVAR 299
versioning 92, 114
wave reference counting 90, 114, 210

submenus
XSM1 1100 resource 149

SVAR 85
SVARs

GetSVAR 298
in structure parameters 209, 211
SetSVAR 299

symbolic debugging 232
symbolic paths

GetFullPathFromSymbolicPathAndFilePath
345

GetPathInfo2 391
PathList 390
XOPFillPathMenu 325

system text encoding 201

T
tableOp 73
target extension

Visual C++ 49
target machine

Visual C++ 51
target name

Visual C++ 49
Task Manager

leaks 227
technical support 17

email 18
mailing list 18

template 75
templates 76

access waves 127
for operations and functions 219
length limit 95

temporary storage access method 125
text encodings 201

ConvertTextEncoding 402
in Visual C++ 204
in Xcode 203
WaveTextEncoding 261

text utility routines 350
text waves

accessing text data 128–129
faster access 129
GetTextWaveData 286
MDGetTextWavePointValue 284
MDSetTextWavePointValue 285
SetTextWaveData 288
text wave type 124

TEXT_WAVE_TYPE 124, 253
type for waves 124

thread groups 183–184
thread output queue 182–183
thread-safe

external functions 117
external operations 95
Igor-thread-safe 178
programming 175–176

ThreadGroupGetDF 183, 380
ThreadGroupGetDFR operation 182
ThreadGroupPutDF 183, 380
ThreadGroupPutDF operation 182
threading

Visual C++ 49
threads 175

callbacks 178
not allowed from private threads 179

CallFunction 213
CheckRunningInMainThread 180, 379
computation threads 176
data acquisition 180–186
data folders 177
DoXOPIdle operation 184
external operations 95
global variables 176
IDLE message 184
Igor-thread-safe 178
internal 176

callbacks not allowed 179
internal threads 184–185
main 176
messages from Igor 176
mutexes 177

data acquisition 184
parameters 177
private 176

callbacks not allowed 179
private threads 184–185
root data folder 177
RunningInMainThread 180, 379
Slow Data Acq example 182
thread groups 183–184
thread output queue 182–183
ThreadGroupGetDF 380
ThreadGroupGetDF callback 183
ThreadGroupGetDFR operation 182
ThreadGroupPutDF 380
ThreadGroupPutDF callback 183
ThreadGroupPutDF operation 182
ThreadStart operation 177
tp pointer 96, 117
types of 176
user-defined function threads 176–177
UserFunctionThreadInfoPtr 96, 117
WaveHandleModified 185

threads variables

Index 19

waves 177
XOPNotice 233
XOPSupport routines 379–381

threadSafeOp 73, 96
ThreadStart operation 177
TickCount 405
TickCountInt data type 188
tp pointer 96, 117
TransformWindowCoordinates 419
TRANSIENT bit 66

SetXOPType 239
transient XOPs

XOPType field in IORec 66
troubleshooting 17
try

in C++ 217
TU windows

in Igor Pro 7 424

U
UInt16 data type 188
UInt32 data type 188
UInt64 data type 188
UInt8 data type 188
UNC

volume names 328–329
undo

menu item 317
UnEscapeSpecialCharacters 402
Unicode 201

ConvertTextEncoding 402
uninitialized variables 222
UniqueName 358
UniqueName2 358
units 259–260

for waves 129
MDGetWaveUnits 270
MDSetWaveUnits 271
waves 129

UNSIGNED_INT 354
update

DoUpdate 386
XOPCommand side-effect 384
XOPCommand2 side-effect 384
XOPCommand3 side-effect 385
XOPSilentCommand side-effect 385

updates for XOP Toolkit 35
user functions

versus external functions 99
user-defined function threads 176–177
user-defined functions

calling from an XOP 212
UserFunctionThreadInfoPtr 96, 117
UTF-8 201

in Visual C++ 204

in Xcode 203
utility routines 11, 399

CheckRunningInMainThread 379
CmpStr 400
ConvertTextEncoding 402
DateToIgorDateInSeconds 405
EscapeSpecialCharacters 401
GetCStringFromHandle 399
IgorDateInSecondsToDate 405
IsINF32 404
IsINF64 404
IsNaN32 404
IsNaN64 404
MacRectToWinRect 407
MemClear 399
PutCStringInHandle 399
RunningInMainThread 379
SetNaN32 404
SetNaN64 405
strchr2 400
strrchr2 400
UnEscapeSpecialCharacters 402
WinInfo 396
WinRectToMacRect 407
XOPOKAlert 406
XOPOKCancelAlert 406
XOPYesNoAlert 407
XOPYesNoCancelAlert 407

utilOp 73

V
V_ variables

in external operations 94
V_Flag

SetFileLoaderOperationOutputVariables 347
V_flag 346–347
VAR_GLOBAL 291
VAR_OBJECT

CheckName 360
CreateValidDataObjectName 360

Variable 291
in structure parameters 209

VariableList 391
variables

accessing
XOPSupport routines 291–299

accessing data in 138–140
commonly used XOPSupport routines 139
data folders 291
example of making 140
FetchNumericDataUsingVarName 244
FetchNumVar 292
FetchStrHandle 294
FetchStringDataUsingVarName 246
FetchStrVar 293

variables wave references

Index 20

GetNVAR 297
GetSVAR 298
getting in external operations 244, 246
local versus global 291
making global 140
precision of 291
SetFileLoaderOperationOutputVariables 347
SetIgorComplexVar 296
SetIgorFloatingVar 295
SetIgorIntVar 295
SetIgorStringVar 297
SetNVAR 298
SetOperationNumVar 242
SetOperationStrVar 243
SetOperationStrVar2 243
SetSVAR 299
setting in external operations 242–246, 347
StoreNumericDataUsingVarName 245
StoreNumVar 293
StoreStringDataUsingVarName 246
StoreStrVar 294
StringList 392
uninitialized 222
VAR_GLOBAL 291
Variable 291
VariableList 391
VarNameToDataType 244

varName keyword
Operation Handler 77

VarName parameters
external operations 85

VarNameToDataType 86, 244
VDT2 sample XOP 12
version

of Igor 70
version checking 70
version resources 207
versions 69–70

checking Igor version 421
compatibility 4
of Igor 4, 72
of structures 92, 114
XOP Toolkit 7 Upgrade 415

virtual memory
64-bit XOPs 187

Visual C++ 47–51
.rc files 48
.sln files 48
.vcxproj files 48
configurations 49
CR_STR macro 421
creating a new project 48
debug configuration 49
debugging 51
first XOP support 3
modifying project for XOP Toolkit 7 434

project files 48
project settings 49
release configuration 49
resource files 48
resource.h 48
resources 56
runtime library 50
solution files 48
structure alignment 208
support for 415
supported versions 6, 35, 47
target extension 49
target machine 51
target name 49
testing installation 8
text encodings 204
threading 49
worksheet files 10
XOPSupport project files 9

Visual C++ 2012
building SimpleFit 22

Visual C++ 9
building SimpleFit 22
testing installation 8

Visual C++UTF-8 204
volume names

UNC 328–329
vs keyword 76

optional parameters 78

W
warnings

-Wno-parentheses 43
WatchCursor 419
wave assignment statements 103
wave handles

dereferencing 230
wave keyword

Operation Handler 77
wave parameters

external operations 84
wave reference counting 131

CLEANUP message 134
NEW message 134
structure parameters 90, 114, 133, 210

wave reference waves 134
WAVE references

data folder reference counting 133
DataFolderAndName parameters 87
destination wave example 87
in external operations 247–248
in structure parameters 209
SetOperationWaveRef 87

wave references
automatic 87

wave references waves

Index 21

GetOperationDestWave 251
SetOperationWaveRef 247

wave scaling 129
wave units 129
WAVE_OBJECT

CheckName 360
CreateValidDataObjectName 360

WAVE_OBJECT object type 59
WAVE_TYPE 105, 124

curve fitting 105
in XOPF resource 101
result in external functions 106
wave reference parameters 105

WaveAccess sample XOP 12, 127
WaveData 262

dangling pointers 230
example 123

WaveHandleModified 264
threads 185

WaveList 389
WaveLock 258
WaveMemorySize 263
WaveModCount 257
WaveModDate 257
WaveModified 264
WaveModState 257
WaveName 261
WaveNote 419
WaveNoteCopy 260
waveOp 73
WavePoints 256
waveRange keyword

Operation Handler 77
WaveRange parameters

external operations 84
waves

accessing
XOPSupport routines 253–290

accessing data in 121–137
accessing numeric data 125–128
accessing text data 128–129
accessing with C++ templates 127
CalcWaveRange 264
ChangeWave 254
commonly used XOPSupport routines 121
containing data folder references 135
containing wave references 134
data folders 306
data scaling 129
destination wave

SetOperationWaveRefs 247
destination waves 87
dimension scaling 129
direct access method 126
example making 123
FetchNumericValue 283

FetchWave 255
FetchWaveFromDataFolder 255
FileLoaderMakeWave 346
free 135

GetOperationDestWave 250
MDMakeWave 266

GetOperationWaveRef 248
GetTextWaveData 286
GetWaveDimensionLabels 272
HoldWave 289
killing 130
killing versus deleting 131
KillWave 255
lock state 258
MakeWave 253
MDAccessNumericWaveData 273
MDChangeWave 267
MDChangeWave2 268
MDGetDimensionLabel 271
MDGetDPDataFromNumericWave 280
MDGetNumericWavePointValue 276
MDGetNumericWavePointValueSInt64 278
MDGetNumericWavePointValueUInt64 279
MDGetTextWavePointValue 284
MDGetWaveDimensions 266
MDGetWaveScaling 269
MDGetWaveUnits 270
MDMakeWave 265
MDSetDimensionLabel 272
MDSetNumericWavePointValue 276
MDSetNumericWavePointValueSInt64 278
MDSetNumericWavePointValueUInt64 280
MDSetTextWavePointValue 285
MDSetWaveScaling 269
MDSetWaveUnits 271
MDStoreDPDataInNumericWave 281
name length limits 206
number types 124
OBJINUSE message 59
organization of numeric data 127
parameters in external functions 105
point access method 125
preventing killing 130
ranges of 84
reference counting 131
ReleaseWave 289
results in external functions 106
SanitizeWaveName 359
scaling 129
SetFileLoaderOutputVariables 346
SetOperationWaveRef 247
SetTextWaveData 288
SetWaveDimensionLabels 273
SetWaveLock 258
SetWaveNote 261
SetWaveScaling 259

waves World-Wide Web

Index 22

SetWaveUnits 260
speed of accessing numeric data 127
StoreNumericValue 283
temporary storage access method 125
text wave type 124
threads 177
units 129
WaveAccess example 12
WaveData 262
WaveHandleModified 264
WaveList 389
WaveLock 258
WaveMemorySize 263
WaveModCount 257
WaveModDate 257
WaveModified 264
WaveModState 257
WaveName 261
WaveNoteCopy 260
WavePoints 256
WaveScaling 258
WaveTextEncoding 261
WaveType 256
WaveUnits 259
XOPFillWaveMenu 325
XOPWaveAccess.c 9

WaveScaling 258
WaveTextEncoding 261
WaveType 256
WaveUnits 259
Windows

DLLs 217
windows

getting Igor client HWND 382
text

XOPSupport routines 350
WinList 390
XOPFillWinMenu 326
XOPSetContextualHelpMessage 396
XOPSupport routines 349

Windows OS
IgorClientHWND 382
IgorModule 382
WindowsErrorToIgorError 383
WMGetLastError 382
XOPModule 382

Windows OS error codes 62
Windows platform

compatibility with Igor Pro 5 3
first Igor release 3
supported OS versions 6
XOPSupport routines 382–383

Windows-1252 201
WindowsErrorToIgorError 383
WINIGOR #define 418
WinInfo 396

WinList 390
WinRectToMacRect 407
WinToMacPath 206, 329
WM memory routines 410–413

WMDisposeHandle 412
WMDisposePtr 413
WMGetHandleSize 410
WMGetPtrSize 412
WMHandAndHand 411
WMHandToHand 411
WMNewHandle 410
WMNewPtr 412
WMPtrAndHand 413
WMPtrToHand 413
WMSetHandleSize 410
WMSetPtrSize 412

WM memory XOPSupport Routines
updating old code 199

WM memory XOPSupport routines 195–201
WMDisposeHandle 200
WMDisposePtr 200
WMGetHandleSize 200
WMGetPtrSize 200
WMHandAndHand 200
WMHandToHand 200
WMNewHandle 200
WMNewPtr 200
WMPtrAndHand 200
WMPtrToHand 200
WMSetHandleSize 200
WMSetPtrSize 200

WM_COMMAND message 150
WM_INITMENU message 152
WMDisposeHandle 200, 412
WMDisposePtr 200, 413
WMGetHandleSize 110, 138, 200, 410

don’t use on wave handles 263
use with strings 233

WMGetLastError 382
WMGetPtrSize 200, 412
WMHandAndHand 200, 411
WMHandToHand 200, 411
WMNewHandle 197, 200, 410

example 197
WMNewPtr 200, 412
WMPtrAndHand 200, 413
WMPtrToHand 200, 413
WMSetHandleSize 198, 200, 410

dangling pointers 230
use with strings 233

WMSetPtrSize 200, 412
WMTypes.h 190
WMTypes.h file 188
worksheet files 10
World-Wide Web 18

X scaling XOP Toolkit 7

Index 23

X
X scaling 258–259

MDGetWaveScaling 269
MDSetWaveScaling 269

x86 3
Xcode 35

.exp files 36, 42

.Info.plist 42
architectures 42
base SDK 41
build location 39
bundles 37
compiler version 41
compiling for Intel 25
creating a new project 36
creating project in guided tour 25
debugging 46
deployment target 41
executable name 43
frameworks 37
IGR0 XOP file creator 43
Info.plist 37
Info.plist file 43
InfoPlist.strings file 43
IXOP XOP file type 43
LLVM compiler 4
Mach-O 36
packages 36
prefix files 37, 42
project settings 38, 40
Project Settings dialog 38
scheme 39, 430–431
schemes 39
SDK 41
support for 415
supported operating systems 6
supported versions 6, 35
testing installation 7
text encodings 203
updating projects for XOP Toolkit 7 427
UTF-8 203
XOPSupport project files 9

Xcode 10 4
updating projects for 44, 431

Xcode 4
building SimpleFit 20
compiler versionr 4
LLVM 4

Xcode 9
updating projects for 427

XFUNC1 sample XOP 11
XFUNC1 XOP

description 99
direct functions 116
XOPF 1100 resource example 100

XFUNC1Add
example external function 99

XFUNC1ComplexConjugate
example external function 99, 108

XFUNC1Div
example external function 99
invoking 103
parameter types 104
parameters and result 103

XFUNC2 sample XOP 11
XFUNC2 XOP

description 99
direct functions 116
XOPF 1100 resource 104

XFUNC3 sample XOP 11
XFUNC3 XOP

description 100
XOPF 1100 resource 108

XMI1 1100 resource 55, 147–148
itemFlags field 152

XMN1 1100 resource 55, 147–148
XOP errors 62
XOP files 13
XOP protocol 13–14

compatibility 69
GetXOPItem 241
GetXOPMessage 240
GetXOPResult 240
GetXOPStatus 241
SetXOPEntry 239
SetXOPMessage 240
SetXOPResult 240
SetXOPType 239
version 57
XOPInit 239

XOP protocol version 70
XOP resources 55–57
XOP Toolkit

installing 7
overview 8–10
sample XOPs 10
updates 35
version 57
version 6 4
version 7 upgrade 415

XOP Toolkit 6 3
64-bit XOPs 187
changes to main function 421
programming for 64-bit XOPs 189
supported Igor versions 421

XOP Toolkit 6.3 4
XOP Toolkit 7

changed XOPSupport routines 419
header file changes 418
miscellaneous changes 421
new XOPSupport routines 420

XOP Toolkit 7 XOPStandardHeaders.h

Index 24

porting existing XOPs to 416
removed XOPSupport routines 419
text encoding 418
updating Visual C++ project 434
updating Xcode project 427

XOP Toolkit number type codes 354, 356
XOP windows

Cocoa 155, 165
Objective-C++ 156, 165

XOP_FEATURE_FLAGS 56, 442
XOP_TOOLKIT_VERSION 56–57
XOP_VERSION 56–57, 70
XOP.h 9
XOP1 sample XOP 11
XOPActualMenuIDToMenuRef 318
XOPAppendMenuItem 321
XOPAtEndOfFile 338
XOPC 1100 resource 53, 55, 72
XOPCheckMenuItem 324
XOPCloseFile 335
XOPCommand 384

recursion 68
XOPCommand2 384
XOPCommand3 385
XOPCountMenuItems 319
XOPCreateFile 334
XOPDeleteFile 334
XOPDeleteMenuItem 322
XOPDeleteMenuItemRange 322
XOPDisableMenuItem 323
XOPDisplayHelpTopic 220, 395
XOPEnableMenuItem 323
XOPEntry 13, 17, 55, 57, 67

extern "C" declaration 55
FUNCTION message 116
messages 13
replace long data type 191

XOPF 1100 resource 55, 116
complex parameters 108
data folder reference parameters 106
defined 100
inspected by Igor Pro 100
string parameters 108
wave parameters 105
XFUNC2 XOP example 104

XOPFillMenu 317
XOPFillMenuNoMeta 324
XOPFillPathMenu 325
XOPFillWaveMenu 325
XOPFillWinMenu 326
XOPGetClipboardData 408
XOPGetFilePosition 337
XOPGetFilePosition2 338
XOPGetMenuInfo 319
XOPGetMenuItemInfo 320
XOPGetMenuItemText 321

XOPHideMainMenu 320
XOPI 1100 resource 53, 55–56

XOP protocol version 70
XOPI_RESERVED 56, 442
XOPInit 17, 239

example 53
XOPRecHandle global 66

XOPInsertMenuItem 322
XOPIORecParam data type 192
XOPIORecResult data type 191
XOPMain 195

receives IORecHandle 17
XOPMenuRef 147
XOPModule 382
XOPNotice 386

for debugging 232
from a thread 233
pitfalls 233

XOPNotice2 387
XOPNotice3 388
XOPNumberOfBytesInFile 339
XOPNumberOfBytesInFile2 339
XOPOKAlert 64, 406
XOPOKCancelAlert 64, 406
XOPOp

operation categories
XOPOp 73

XOPOp operation category 73
XOPOpenFile 334
XOPOpenFileDialog 207, 339

using XOPOpenFileDialog2 instead 420
XOPOpenFileDialog2 341

using instead of XOPOpenFileDialog 420
XOPReadFile 335
XOPReadFile2 335
XOPReadFile64 336
XOPReadLine 336
XOPRecHandle global 66
XOPRefNum 351
XOPResNotice 389
XOPResourceMenuIDToMenuRef 318
XOPs

activating 6
XOPS 1100 resource 65
XOPSaveFileDialog 207, 342

changes in XOP Toolkit 7 420
XOPSaveFileDialog2 344
XOPSetContextualHelpMessage 396
XOPSetFilePosition 338
XOPSetFilePosition2 338
XOPSetMenuItemText 321
XOPShowMainMenu 319
XOPSilentCommand 385

recursion 68
XOPStandardHeaders.h 9

changes in XOP Toolkit 7 418

XOPStructureAlignmentTwoByte.h xstrcat1 external function

Index 25

XOPStructureAlignmentTwoByte.h 79
XOPSupport

callbacks 11, 13
header file changes 418
new routines 420
removed routines 419
supported Igor versions 421
utility routines 11
XOPSupport folder 11

XOPSupport 7
changed routines 419
text encoding 418

XOPSupport folder 9, 11
XOPSupport project files 9
XOPSupport routines 238–413

color table routines 364–365
command window 366–369
for accessing data folders 300–315
for accessing files 328–344
for accessing variables 291–299
for accessing waves 253–290
for communicating with Igor 239–241
for dialogs 327
for FIFOs 353
for file loaders 345–348
for menus 316–326
for text windows 350

for windows 349
miscellaneous 384–398
multithreading support routines 379–381
numeric conversion 354–357
object names 358–363
Operation Handler 242
procedures 370–378
programming utilities 399–409
resources 351–352
Windows-specific routines 382–383

XOPSupport.c 9
XOPSupport.h 9
XOPTypes.r 56
XOPWaveAccess.c 9
XOPWindows..h 418
XOPWriteFile 337
XOPWriteFile64 337
XOPYesNoAlert 64, 407
XOPYesNoCancelAlert 64, 407
XPRF resources 397
XSM1 1100 resource 55, 147
xstrcat

example external function 100, 109
XOPF 1100 resource 108

xstrcat0 external function 11
xstrcat1 external function 11

xstrcat0 external function xstrcat1 external function

Index 26

	Table of Contents
	Introduction to XOPs
	About This Manual
	What is an XOP?
	Who Can Write an XOP?
	A Brief History of Igor
	XOP Toolkit 7
	Choosing Which XOP Toolkit to Use
	Main Issues
	Summary of Recommendations

	Macintosh and Windows XOPs
	Development Systems
	Activating XOPs Using the Igor Extensions Folder
	Installing the XOP Toolkit
	Testing the Macintosh Installation
	Testing the Windows Installation

	XOP Toolkit Overview
	The XOPSupport Folder
	Sample XOP Folders

	XOPSupport
	The Sample XOPs
	XOP1
	XFUNC1
	XFUNC2
	XFUNC3
	MenuXOP1
	SimpleLoadWave
	GBLoadWaveX
	SimpleFit
	WaveAccess
	VDT2 (“Very Dumb Terminal”)
	NIGPIB2

	How Igor Integrates XOPs
	The Basic Structure of an XOP
	Preparing to Write an XOP
	Technical Support
	Email Support
	World-Wide Web
	Igor Mailing List
	IgorExchange

	Guided Tour
	Overview
	Activating XOPs
	What We Will Do
	Installation
	Building SimpleFit
	Building SimpleFit in Xcode
	Building SimpleFit in Visual C++

	Testing SimpleFit64
	Creating a New Project
	Building the New Project in Xcode
	Building the New Project In Visual C++
	Changing the Help
	Changing and Compiling the Code
	Testing SimpleGaussFit
	Touring the Code
	Where To Go From Here

	Development Systems
	Overview
	XOPs in Xcode
	XOP Projects in Xcode
	Xcode Project Settings
	Xcode Project Settings Dialog
	Xcode Schemes
	Xcode Project Build Settings
	Xcode Target Settings
	Xcode Target Info
	Xcode SDKs
	Missing SDK With Xcode
	Converting to the LLVM Compiler

	Updating Xcode Projects for Xcode 10
	Showing the Projects and Targets List
	Deleting the 32-bit Target
	Updating to Recommended Project Settings
	Changing the Deployment Target
	Changing the “Always Search User Paths” Setting
	Building the Project
	Handling Warnings

	Debugging an XOP in Xcode
	XOPs in Visual C++
	Visual C++ Compatibility Issues
	XOP Projects in Visual C++
	Visual C++ Project Settings
	Debugging a Visual C++ XOP

	Igor/XOP Interactions
	Overview
	XOP Resources
	Creating Resources on Macintosh
	Creating Resources on Windows
	The XOPI 1100 Resource

	How Igor Calls an XOP
	Basic XOP Messages
	Messages for XOPs that Save and Load Settings
	XOP Errors
	Error Codes
	Igor Error Codes
	XOP Custom Error Codes
	Mac OS Error Codes
	Handling Windows OS Error Codes
	Adding Custom Errors
	Displaying Your Own Error Alert
	Eliminate Empty XOP Error Strings

	XOPs and Preferences
	XOPs and Experiments
	Saving and Loading XOP Settings

	The IORecHandle
	Resident and Transient XOPs
	Receiving IDLE Messages For Background Processing

	Messages, Arguments and Results
	Handling Recursion
	Data Sharing
	Igor/XOP Compatibility Issues
	Checking Igor’s Version
	XOP Protocol Version

	Adding Operations
	Overview
	Direct Method Versus CMD Message Method
	The Sequence of Events

	The XOPC 1100 Resource
	Operation Categories

	Choose a Distinctive Operation Name
	Operation Handler
	Creating Starter Code
	Operation Parameters
	The Command Template
	Optional Parameters
	Mnemonic Names
	The Runtime Parameter Structure
	Qualified Keywords
	String Parameters
	Name Parameters
	Double Name Parameters
	Wave Parameters
	Wave Range Parameters
	VarName Parameters
	Data Folder Reference Parameters
	DataFolderAndName Parameters
	Destination Waves and Wave References
	DataFolderAndName Destination Wave Example
	DataFolderAndName Data Folder Example

	Structure Parameters
	Wave Handles In Structures
	Data Folder Handles In Structures
	External Operation Structure Parameter Example
	Extended Structure Parameters
	Extended Structure Parameter Example

	Runtime Output Variables
	Starter Code Details
	Updating Starter Code
	Thread-Safe External Operations
	Restrictions on Thread-Safe External Operations With Older Igor Versions
	Changes for Thread-Safe External Operations
	More on Multithreading

	External Operations and Macintosh Resources
	Operation Handler Checklist

	Adding Functions
	Overview
	External Function Examples
	Adding an External Function to Igor
	The XOPF 1100 Resource
	Function Categories

	Choose a Distinctive Function Name
	Invoking an External Function
	External Function Parameters and Results
	External Function Parameters
	External Function Result and Error Code

	Parameter and Result Types
	Wave Parameters
	Wave Results
	Data Folder Reference Parameters
	Data Folder Reference Results
	Data Folder Reference Example
	Complex Parameters and Results
	Strings Parameters and Results
	Structure Parameters
	External Function Structure Parameter Example
	Wave Handles In Structures
	Data Folder Handles In Structures

	Pass-By-Reference Parameters
	Keep External Functions in Memory
	FUNCTION Message Versus Direct Methods
	Direct External Functions and Macintosh Resources

	Thread-Safe External Functions
	Changes for Thread-Safe External Functions
	More on Multithreading

	External Functions and Macintosh Resources
	Error Checking and Reporting

	Accessing Igor Data
	Overview
	Waves
	Routines for Accessing Waves
	Example
	Wave Data Types
	Accessing Numeric Wave Data
	Accessing Text Wave Data
	Wave Scaling and Units
	Killing Waves
	Preventing the Killing of a Wave
	Wave Reference Counting
	Wave Reference Waves
	Data Folder Reference Waves
	Free Waves

	Numeric and String Variables
	Routines for Accessing Variables
	Example

	Dealing With Data Folders
	Routines for Accessing Data Folders
	Data Folder Conventions
	Data Folder Reference Counting

	Adding Menus and Menu Items
	Overview
	XOPSupport Menu Routines
	Summary of XOPSupport Menu Routines
	XOPMenuRefs

	Adding Menus and Menu Items
	Adding a Main Menu
	Adding Menu Items to Igor Menus
	Adding Submenus
	Menu IDs Versus Resource IDs

	Responding to Menu Selections
	Determining Which Menu Was Chosen
	Getting Your Menu Reference
	Determining Which Menu Item Was Chosen

	Enabling and Disabling Menu Items
	Enabling and Disabling XOP Menu Items in Igor Menus
	Enabling and Disabling Igor Menu Items

	Adding Windows
	Overview
	The WindowXOP1 Sample XOP
	Types of XOP Windows
	XOP Window Documentation

	Guided Tour of WindowXOP1
	Setting the Project Up
	Using the WindowXOP1 Window
	Creating a WindowXOP1 Target Window
	Creating a WindowXOP1 Subwindow

	The Architecture of XOP Windows
	Relationship to Qt Widgets
	XOP Window and Container Hierarchy

	Source Code Organization
	Communication With the Operating System
	Communication With Igor
	XOPWindowProxy Class and WindowXOP1Window Class
	XOPContainerProxy Class and WindowXOP1Container Class
	Platform-Independent Source Files
	WindowXOP1.cpp
	WindowXOP1Window.cpp
	WindowXOP1Container.cpp
	WindowXOP1RecreationMacros.cpp
	WindowXOP1Functions.cpp
	WindowXOP1Operations.cpp

	Macintosh XOP Window Programming
	Macintosh Source Files
	WindowXOP1Controller.mm
	WindowXOP1ViewController.mm
	WindowXOP1View.mm

	Windows XOP Window Programming
	Window Source Files
	WindowXOP1HWND.cpp
	WindowXOP1CommandsWin.cpp
	WindowXOP1DrawingWin.cpp

	Menu Handling for XOP Windows and Containers
	Enabling Menu Items
	Responding to Menu Selections

	Cursor Handling for XOP Windows and Containers
	Macintosh Cursor Handling
	Windows Cursor Handling

	Activating, Showing and Hiding Windows
	Messages for XOP Windows
	Messages for XOP Containers
	Igor Window Coordinates
	Adding XOP Target Windows
	Window Recreation Macros
	Window Hook Functions

	XOP Window Issues
	XOP Subwindow Issues
	Changes to XOP Window Programming in Igor Pro 7
	IgorWindowRef Data Type Replaces XOP_WINDOW_REF
	TellIgorWindowStatus Removed
	Removed Window-Related XOPSupport Routines

	TU ("Text Utility") Windows
	Changed Text Utility Window Callbacks

	Recursion Problems

	Multithreading
	Multithreading With XOPs
	Thread-safe External Operations and External Functions
	Three Kinds of Threads
	Two Kinds of Igor Preemptive Threads
	Igor Messages and Threads
	Writing Thread-safe Code
	Igor Preemptive Thread Data Environment
	Waves Passed to Igor Threads as Parameters
	Categories of XOPSupport Routines
	Igor-Thread-Safe Callbacks
	Thread-Safety of Callbacks from an Igor Preemptive Thread
	You Can Not Do Callbacks From Private Threads
	Determining if You are Running in a Preemptive Thread
	Strategies For Threaded Data Acquisition
	Method 1A: Acquiring Data in an Igor Thread
	Method 1B: Acquiring Data in an Igor Thread
	Method 2: Acquiring Data in a Private Thread
	Method 3: Acquiring Data in an Igor Thread Directly To Main Thread Waves
	Method 4: Acquiring Data in a Private Thread Directly To Main Thread Waves

	64-bit XOPs
	Overview
	Activating a 64-bit XOP
	Updating Your Existing Project for 64-bit Development
	Data Types For 64-bit Compatibility
	Types that are the same for 32-bit and 64-bit XOPs
	Types that are the different for 32-bit and 64-bit XOPs

	Programming For 64-bit Compatibility
	Background Information
	64-bit Compiler Warnings
	The long Data Type
	Replacing longs in XOPEntry, RegisterFunction and SetXOPResult Calls
	GetXOPMessage and GetXOPItem Calls
	printf and sprintf Issues
	Command Help for 64-bit XOPs

	Other Programming Topics
	The XOPMain Function
	WM Memory XOPSupport Routines
	Handle Example
	Ownership of Handles
	Commonly-Used WM Memory XOPSupport Routines
	Understanding Handles
	Using Handles
	Resizing Handles
	Updating Old Code to Use WM Memory XOPSupport Routines

	Techniques for Cross-Platform Development
	Text Encodings
	Igor Pro 7 Text Encoding Codes

	Text Encodings in Source Files
	Text Encodings in Xcode
	Text Encodings in Visual C++

	File I/O
	File Path Conversions
	Long Names and Paths in XOPs
	Alerts and Message Boxes
	Open and Save File Dialogs

	Adding Dialogs
	Adding Version Resources
	Macintosh Version Resources
	Windows Version Resources

	Structure Alignment
	Shared Structure Alignment
	File Structure Alignment

	Using Igor Structures as Parameters
	Structure Fields
	Strings In Structures
	Wave Handles In Structures
	Data Folder Handles In Structures
	NVARs and SVARs In Structures

	Calling User-Defined and External Functions
	CallFunction and Igor Preemptive Threads
	CallFunction and Igor Independent Modules
	Example of Calling a User-Defined or External Function

	Checking For Aborts
	64-bit Integer Issues
	Writing XOPs in C++
	Calling C Code from C++ Code
	C++ Code Called From C Code
	Using C++ Exceptions

	Windows DLL Dependencies

	Providing Help
	Overview
	Igor Pro Help File
	Help for External Operations and Functions
	Programmatically Displaying a Help Topic

	Debugging
	Overview
	Programming Problems
	Excessive Use of Global Variables
	Uninitialized Variables
	Overwriting Arrays
	Off By One Errors
	Failure To Check Error Codes
	Misconceptions About Pointers
	Using Memory Blocks That You Have Not Allocated
	Using Memory Blocks That You Have Disposed
	Disposing Memory Blocks More Than Once
	Failure to Dispose Memory Blocks
	Disposing Memory Blocks That Don’t Belong to You
	Failure to Check Memory Allocations
	Dangling Pointers
	Handles and Dangling Pointers

	Debugging Techniques
	Recompiling Your XOP
	Symbolic Debugging
	Debugging Using XOPNotice
	Other Debugging Tricks

	Avoiding Common Pitfalls
	Check Your Project Setup
	Get the Message and Parameters from Igor
	Understand the Difference Between a String in a Handle and a C String
	Understand Who Owns a Handle
	Choose Distinctive Names
	Watch Out for Recursion
	Structure Alignment
	Check Your Info.plist File

	XOPSupport Routines
	About XOPSupport Routines
	Routines for Communicating with Igor
	XOPInit
	SetXOPType
	SetXOPEntry
	SetXOPResult
	GetXOPResult
	SetXOPMessage
	GetXOPMessage
	GetXOPStatus
	GetXOPItem

	Operation Handler Routines
	RegisterOperation
	SetOperationNumVar
	SetOperationStrVar
	SetOperationStrVar2
	VarNameToDataType
	FetchNumericDataUsingVarName
	StoreNumericDataUsingVarName
	FetchStringDataUsingVarName
	StoreStringDataUsingVarName
	SetOperationWaveRef
	GetOperationWaveRef
	GetOperationDestWave

	Routines for Accessing Waves
	MakeWave
	ChangeWave
	KillWave
	FetchWave
	FetchWaveFromDataFolder
	WaveType
	WavePoints
	WaveModDate
	WaveModCount
	WaveModState
	WaveLock
	SetWaveLock
	WaveScaling
	SetWaveScaling
	WaveUnits
	SetWaveUnits
	WaveNoteCopy
	SetWaveNote
	WaveName
	WaveTextEncoding
	WaveData
	WaveMemorySize
	CalcWaveRange
	WaveHandleModified
	WaveModified
	MDMakeWave
	MDGetWaveDimensions
	MDChangeWave
	MDChangeWave2
	MDGetWaveScaling
	MDSetWaveScaling
	MDGetWaveUnits
	MDSetWaveUnits
	MDGetDimensionLabel
	MDSetDimensionLabel
	GetWaveDimensionLabels
	SetWaveDimensionLabels
	MDAccessNumericWaveData
	MDGetNumericWavePointValue
	MDSetNumericWavePointValue
	MDGetNumericWavePointValueSInt64
	MDSetNumericWavePointValueSInt64
	MDGetNumericWavePointValueUInt64
	MDSetNumericWavePointValueUInt64
	MDGetDPDataFromNumericWave
	MDStoreDPDataInNumericWave
	FetchNumericValue
	StoreNumericValue
	MDGetTextWavePointValue
	MDSetTextWavePointValue
	GetTextWaveData
	SetTextWaveData
	HoldWave
	ReleaseWave

	Routines for Accessing Variables
	Variable
	FetchNumVar
	StoreNumVar
	FetchStrVar
	StoreStrVar
	FetchStrHandle
	SetIgorIntVar
	SetIgorFloatingVar
	SetIgorComplexVar
	SetIgorStringVar
	GetNVAR
	SetNVAR
	GetSVAR
	SetSVAR

	Routines for Accessing Data Folders
	GetDataFolderNameOrPath
	GetDataFolderIDNumber
	GetDataFolderProperties
	SetDataFolderProperties
	GetDataFolderListing
	GetRootDataFolder
	GetCurrentDataFolder
	SetCurrentDataFolder
	GetNamedDataFolder
	GetDataFolderByIDNumber
	GetParentDataFolder
	GetNumChildDataFolders
	GetIndexedChildDataFolder
	GetWavesDataFolder
	NewDataFolder
	KillDataFolder
	DuplicateDataFolder
	MoveDataFolder
	RenameDataFolder
	GetNumDataFolderObjects
	GetIndexedDataFolderObject
	GetDataFolderObject
	SetDataFolderObject
	KillDataFolderObject
	DuplicateDataFolderObject
	MoveDataFolderObject
	RenameDataFolderObject
	HoldDataFolder
	ReleaseDataFolder

	Routines for XOPs with Menu Items
	ResourceToActualMenuID
	ActualToResourceMenuID
	ResourceToActualItem
	ActualToResourceItem
	SetIgorMenuItem
	XOPActualMenuIDToMenuRef
	XOPResourceMenuIDToMenuRef
	XOPGetMenuInfo
	XOPCountMenuItems
	XOPShowMainMenu
	XOPHideMainMenu
	XOPGetMenuItemInfo
	XOPGetMenuItemText
	XOPSetMenuItemText
	XOPAppendMenuItem
	XOPInsertMenuItem
	XOPDeleteMenuItem
	XOPDeleteMenuItemRange
	XOPEnableMenuItem
	XOPDisableMenuItem
	XOPCheckMenuItem
	XOPFillMenu
	XOPFillMenuNoMeta
	XOPFillWaveMenu
	XOPFillPathMenu
	XOPFillWinMenu

	Routines for XOPs that Have Dialogs
	FinishDialogCmd

	Routines for XOPs that Access Files
	MacToWinPath
	WinToMacPath
	HFSToPosixPath
	GetNativePath
	ConcatenatePaths
	GetDirectoryAndFileNameFromFullPath
	FullPathPointsToFile
	FullPathPointsToFolder
	GetLeafName
	ParseFilePath
	SpecialDirPath
	XOPCreateFile
	XOPDeleteFile
	XOPOpenFile
	XOPCloseFile
	XOPReadFile
	XOPReadFile2
	XOPReadFile64
	XOPReadLine
	XOPWriteFile
	XOPWriteFile64
	XOPGetFilePosition
	XOPGetFilePosition2
	XOPSetFilePosition
	XOPSetFilePosition2
	XOPAtEndOfFile
	XOPNumberOfBytesInFile
	XOPNumberOfBytesInFile2
	XOPOpenFileDialog
	XOPOpenFileDialog2
	XOPSaveFileDialog
	XOPSaveFileDialog2

	Routines for File-Loader XOPs
	GetFullPathFromSymbolicPathAndFilePath
	FileLoaderMakeWave
	SetFileLoaderOutputVariables
	SetFileLoaderOperationOutputVariables

	Routines for XOPs with Windows
	Routines for XOPs with Text Windows
	Routines for Dealing with Resources
	XOPRefNum
	GetXOPResource
	GetXOPNamedResource
	GetXOPIndString

	Routines for XOPs That Use FIFOs
	GetNamedFIFO
	MarkFIFOUpdated

	Numeric Conversion Routines
	ConvertData
	ConvertData2
	NumTypeToNumBytesAndFormat
	NumBytesAndFormatToNumType
	ScaleData
	ScaleClipAndRoundData
	FixByteOrder

	Routines for Dealing With Object Names
	UniqueName
	UniqueName2
	SanitizeWaveName
	CleanupName
	CheckName
	CreateValidDataObjectName
	PossiblyQuoteName
	CatPossiblyQuotedName

	Color Table Routines
	GetIndexedIgorColorTableName
	GetNamedIgorColorTableHandle
	GetIgorColorTableInfo
	GetIgorColorTableValues

	Command Window
	HistoryDisplaySelection
	HistoryInsert
	HistoryDelete
	HistoryLines
	HistoryGetSelLocs
	HistorySetSelLocs
	HistoryFetchParagraphText
	HistoryFetchText

	Routines for Dealing With Igor Procedures
	GetIgorProcedureList
	GetIgorProcedure
	SetIgorProcedure
	DoWindowRecreationDialog
	GetFunctionInfo
	GetFunctionInfoFromFuncRef
	CheckFunctionForm
	CallFunction
	GetIgorCallerInfo
	GetIgorRTStackInfo

	Multithreading Support Routines
	RunningInMainThread
	CheckRunningInMainThread
	ThreadGroupPutDF
	ThreadGroupGetDF

	Windows-Specific Routines
	XOPModule
	IgorModule
	IgorClientHWND
	WMGetLastError
	WindowsErrorToIgorError

	Miscellaneous Routines
	XOPCommand
	XOPCommand2
	XOPCommand3
	XOPSilentCommand
	DoUpdate
	PauseUpdate
	ResumeUpdate
	XOPNotice
	XOPNotice2
	XOPNotice3
	XOPResNotice
	WaveList
	WinList
	PathList
	GetPathInfo2
	VariableList
	StringList
	CheckAbort
	IgorError
	GetIgorErrorMessage
	SpinProcess
	PutCmdLine
	XOPDisplayHelpTopic
	XOPSetContextualHelpMessage
	WinInfo
	SaveXOPPrefsHandle
	GetXOPPrefsHandle
	GetPrefsState

	Programming Utilities
	MemClear
	GetCStringFromHandle
	PutCStringInHandle
	CmpStr
	strchr2
	strrchr2
	EscapeSpecialCharacters
	UnEscapeSpecialCharacters
	ConvertTextEncoding
	IsINF32
	IsINF64
	IsNaN32
	IsNaN64
	SetNaN32
	SetNaN64
	TickCount
	DateToIgorDateInSeconds
	IgorDateInSecondsToDate
	XOPBeep
	XOPOKAlert
	XOPOKCancelAlert
	XOPYesNoAlert
	XOPYesNoCancelAlert
	MacRectToWinRect
	WinRectToMacRect
	XOPGetClipboardData
	XOPSetClipboardData

	WM Memory Routines
	WMNewHandle
	WMGetHandleSize
	WMSetHandleSize
	WMHandToHand
	WMHandAndHand
	WMDisposeHandle
	WMNewPtr
	WMGetPtrSize
	WMSetPtrSize
	WMPtrToHand
	WMPtrAndHand
	WMDisposePtr

	XOP Toolkit 7 Upgrade Notes
	Overview
	Development Systems Supported by XOP Toolkit 7
	Create a Copy of Your Existing XOPs
	Changes You Must Make
	Removed Sample XOPs
	Changes from GBLoadWave to GBLoadWaveX
	Memory Management Changes
	Change to Wave Handles
	Changes to Igor Behavior
	New Features
	XOPStandardHeaders Changes
	Organizational Changes
	Text Encodings Used By XOPSupport Routines
	Removed XOPSupport Routines
	Changed XOPSupport Routines
	New XOPSupport Routines
	Using XOPOpenFileDialog2 Instead of XOPOpenFileDialog
	Using XOPSaveFileDialog2 instead of XOPSaveFileDialog

	Fixes for Compiler Changes
	Checking the Igor Version
	XOP Menus in XOP Toolkit 7
	Help Resources in XOP Toolkit 7
	XOP Dialogs in XOP Toolkit 7
	XOP Windows in Igor Pro 7
	TU ("Text Utility") Windows in Igor Pro 7

	Project Changes For XOP Toolkit 7
	Overview
	Xcode Project Changes For XOP Toolkit 7
	Converting Your Older Xcode Project for Xcode 9
	Updating the 32-bit Xcode Target
	Debugging the 32-bit Xcode XOP
	Creating the 64-bit Xcode Target
	Debugging the 64-bit Xcode XOP

	Converting Your Older Xcode Project for Xcode 10
	Converting the 32-bit Xcode Target to 64-bit
	Debugging the 64-bit Xcode XOP

	Visual C++ Project Changes For XOP Toolkit 7
	Converting Your Older Visual C++ Project
	Updating the 32-bit Visual C++ Target
	Adding the 64-bit Visual C++ Target
	Updating the 64-bit Visual C++ Target

	Text Encoding Issues

	XOP Toolkit 7 Release History
	Overview
	Release 7.00
	July 25, 2016

	Release 7.01
	May 5, 2017

	Release 7.02
	June 4, 2018

	Release 7.03
	September 28, 2018

	Index
	Symbols
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

