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Overview
We use the term “wave” to describe the Igor object that contains an array of numbers. Wave is short for 
“waveform”. The main purpose of Igor is to store, analyze, transform, and display waves.

Chapter I-1, Introduction to Igor Pro, presents some fundamental ideas about waves. Chapter I-2, Guided 
Tour of Igor Pro, is designed to make you comfortable with these ideas. In this chapter, we assume that you 
have been introduced to them.

This chapter focuses on one-dimensional numeric waves. Waves can have up to four dimensions and can 
store text data. Multidimensional waves are covered in Chapter II-6, Multidimensional Waves. Text waves 
are discussed in this chapter.

The primary tools for dealing with waves are Igor’s built-in operations and functions and its waveform assign-
ment capability. The built-in operations and functions are described in detail in Chapter V-1, Igor Reference.

This chapter covers:
• waves in general
• operations for making, killing and managing waves
• setting and examining wave properties
• waveform assignment

and other topics.

Waveform Model of Data
A wave consists of a number of components and properties. The most important are:
• the wave name
• the X scaling property
• X units
• an array of data values
• data units

The waveform model of data is based on the premise that there is a straight-line mapping from a point 
number index to an X value or, stated another way, that the data is uniformly spaced in the X dimension. 
This is the case for data acquired from many types of scientific and engineering instruments and for math-
ematically synthesized data. If your data is not uniformly spaced, you can use two waves to form an XY 
pair. See XY Model of Data on page II-58.

A wave is similar to an array in a standard programming language like FORTRAN or C.

Index Value

array0 0 3.74

1 4.59

2 4.78

3 5.89

4 5.66

Point 
Number X value (s)

data value 
(V)

wave0 0 0 3.74

1 .001 4.59

2 .002 4.78

3 .003 5.89

4 .004 5.66

A waveAn array
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An array in a standard language has a name (array0 in this case) and a number of values. We can reference 
a particular value using an index.

A wave also has a name (wave0 in this case) and data values. It differs from the array in that it has two indi-
ces. The first is called the point number and is identical to an array index or row number. The second is 
called the X value and is in the natural X units of the data (e.g., seconds, meters). Like point numbers, X 
values are not stored in memory but rather are computed.

The X value is related to the point number by the wave’s X scaling, which is a property of the wave that you can 
set. The X scaling of a wave specifies how to compute an X value for a given point number using the formula:

x[p] = x0 + p*dx

where x[p] is the X value for point p. The two numbers x0 and dx constitute the wave’s X scaling property. 
x0 is the starting X value. dx is the difference in X value from one point to the next. X values are uniformly 
spaced along the data’s X dimension.

The SetScale operation (see page V-728) sets a wave’s X scaling. You can use the Change Wave Scaling 
dialog to generate SetScale commands.

Why does Igor use this model for representing data? We chose this model because it provides all of the 
information that needed to properly display, analyze and transform waveform data.

By setting your data’s X scaling, and X and data units in addition to its data values, you can make a proper 
graph in one step. You can execute the command

Display wave0

to produce a graph like this:

If your data is uniformly spaced on the X axis, it is critical that you understand and use X scaling.

The X scaling information is essential for operations such as integration, differentiation and Fourier trans-
forms and for functions such as the area function (see page V-34). It also simplifies waveform assignment 
by allowing you to reference a single value or range of values using natural units.

Igor waves can have up to four dimensions. We call these dimensions X, Y, Z and T. X scaling extends to 
dimension scaling. For each dimension, there is a starting index value (x0, y0, z0, t0) and a delta index value 
(dx, dy, dz, dt). See Chapter II-6, Multidimensional Waves, for more about multidimensional waves.

XY Model of Data
If your data is not uniformly spaced along its X dimension then it can not be represented with a single wave. 
You need to use two waves as an XY pair.

In an XY pair, the data values of one wave provide X values and the data values of the other wave provide 
Y values. The X scaling of both waves is irrelevant so we leave it in its default state in which the x0 and dx 
components are 0 and 1. This gives us

x[p] = 0 + 1·p

5.5

5.0

4.5

4.0

V

43210
ms
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This says that a given point’s X value is the same as its point number. We call this “point scaling”. Here is 
some sample data that has point scaling.

The X values serve no purpose in the XY model. Therefore, we change our thinking and look at an XY pair 
this way.

We can execute
Display yWave vs xWave

and it produces a graph like this.

Some operations, such as Fast Fourier Transforms and convolution, require equally spaced data. In these 
cases, it may be desirable for you to create a uniformly spaced version of your data by interpolation. See 
Converting XY Data to a Waveform on page III-104.

Some people who have uniformly spaced data still use the XY model because it is what they are accustomed 
to. This is a mistake. If your data is uniformly spaced, it will be well worth your while to learn and use the 
waveform model. It greatly simplifies graphing and analysis and makes it easier to write Igor procedures.

Point 
Number X value ()

data value 
(V)

yWave 0 0 3.74

1 1 4.59

2 2 4.78

3 3 5.89

4 4 5.66

Y wave

Point 
Number X value ()

data value 
(V)

xWave 0 0 0.0

1 1 .0013

2 2 .0021

3 3 .0029

4 4 .0042

X wave

Point 
Number Value (V)

yWave 0 3.74

1 4.59

2 4.78

3 5.89

4 5.66

Y wave

Point 
Number Value (s)

xWave 0 0.0

1 .0013

2 .0021

3 .0029

4 .0042

X wave

5.5

5.0

4.5

4.0

V

43210
ms
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Making Waves
You can make waves by:
• Loading data from a file
• Typing or pasting in a table
• Using the Make operation (via a dialog or directly from the command line)
• Using the Duplicate operation (via a dialog or directly from the command line)

Most people start by loading data from a file. Igor can load data from text files. In this case, Igor makes a 
wave for each column of text in the file. Igor can also load data from binary files or application-specific files 
created by other programs. For information on loading data from files, see Importing Data on page II-117.

You can enter data manually into a table. This is recommended only if you have a small amount of data. 
See Using a Table to Create New Waves on page II-174.

To synthesize data with a mathematical expression, you would start by making a wave using the Make 
operation (see page V-464). This operation is also often used inside an Igor procedure to make waves for 
temporary use.

The Duplicate operation (see page V-164) is an important and handy tool. Many built-in operations trans-
form data in place. Thus, if you want to keep your original data as well as the transformed copy of it, use 
Duplicate to make a clone of the original.

Wave Names
All waves in Igor have names so that you can reference them from commands. You also use a wave’s name 
to select it from a list or pop-up menu in Igor dialogs or to reference it in a waveform assignment statement.

You need to choose wave names when you use the Make, Duplicate or Rename operations via dialogs, 
directly from the command line, and when you use the Data Browser.

All names in Igor are case insensitive; wave0 and WAVE0 refer to the same wave.

The rules for the kind of characters that you can use to make a wave name fall into two categories: standard 
and liberal. Both standard and liberal names are limited to 31 bytes in length.

Standard names must start with an alphabetic character (A - Z or a-z) and may contain alphabetic and 
numeric characters and the underscore character only. Other characters, including spaces, dashes and peri-
ods, are not allowed. We put this restriction on standard names so that Igor can identify them unambigu-
ously in commands, including waveform assignment statements.

Liberal names, on the other hand, can contain any character except control characters (such as tab or car-
riage return) and the following four characters:

"      '      :      ;

Standard names can be used without quotation in commands and expressions but liberal names must be 
quoted. For example:
Make wave0; wave0 = p // wave0 is a standard name
Make 'wave 0'; 'wave 0' = p // 'wave 0' is a liberal name

Igor can not unambiguously identify liberal names in commands unless they are quoted. For example, in
wave0 = miles/hour

miles/hour could be a single wave or it could be the quotient of two waves.
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To make them unambiguous, you must enclose liberal names in single straight quotes whenever they are 
used in commands or waveform arithmetic expressions. For example:
wave0 = 'miles/hour'
Display 'run 98', 'run 99'

NOTE: Writing procedures that work with liberal names requires extra effort and testing on the part of 
Igor programmers (See Programming with Liberal Names on page IV-157). We recommend that 
you avoid using liberal names until you understand the potential problems and how to solve 
them.

See Object Names on page III-443 for a discussion of object names in general.

Number of Dimensions
Waves can consist of one to four dimensions. You determine this when you make a wave. You can change it 
using the Redimension operation (see page V-670). See Chapter II-6, Multidimensional Waves for details.

Wave Data Types
Each wave has data type that determines the kind of data that it stores.You set a wave’s data type when you 
create it. You can change it using the Data Browser, the Redimension operation (see page V-670) or the Red-
imension dialog.

There are three classes of wave data types:

• Numeric data types

• Text

• References (wave referencesand data folder references)

Each numeric data type can be either real or complex. Text and reference data types can not be complex.

Reference data types are used in programming only.

You can programmatically determine the data type of a wave using the WaveType function.

Numeric Wave Data Types
This table shows the numeric precisions available in Igor.

The 64-bit integer types were added in Igor Pro 7.00.

Precision Range Bytes per Point

Double-precision floating point 10-324 to 10+307 (~15 decimal digits) 8

Single-precision floating point 10-45 to 10+38 (~7 decimal digits) 4

Signed 64-bit integer -2^63 to 2^63 - 1 8

Signed 32-bit integer -2,147,483,647 to 2,147,483,648 4

Signed 16-bit integer -32,768 to 32,767 2

Signed 8-bit integer -128 to 127 1

Unsigned 64-bit integer 0 to 2^64 - 1 8

Unsigned 32-bit integer 0 to 4,294,967,295 4

Unsigned 16-bit integer 0 to 65,535 2

Unsigned 8-bit integer 0 to 255 1
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For most work, single precision waves are appropriate.

Single precision waves take up half the memory and disk space of double precision. With the exception of 
the FFT and some special purpose operations, Igor uses double precision for calculations regardless of the 
numeric precision of the source wave. However, the narrower dynamic range and smaller precision of 
single precision is not appropriate for all data. If you are not familiar with numeric errors due to limited 
range and precision, it is safer to use double precision for analysis.

Integer waves are intended for data acquisition purposes and are not intended for use in analysis. See 
Integer Waves on page II-77 for details.

Default Wave Properties
When you create a wave using the Make operation (see page V-464) operation with no optional flags, it has 
the following default properties.

These are the key wave properties. For a comprehensive list of properties, see Wave Properties on page 
II-80.

If you make a wave by loading it from a file or by typing in a table, it has the same default properties except 
for the number of points.

However you make waves, if they represent waveforms as opposed to XY pairs, you should use the Change 
Wave Scaling dialog to set their X scaling and units.

Make Operation
Most of the time you will probably make waves by loading data from a file (see Importing Data on page 
II-117), by entering it in a table (see Using a Table to Create New Waves on page II-174), or by duplicating 
existing waves (see Duplicate Operation on page II-65).

The Make operation is used for making new waves. See the Make operation (see page V-464) for additional 
details.

Here are some reasons to use Make:
• To make waves to play around with.
• For plotting mathematical functions.
• To hold the output of analysis operations.
• To hold miscellaneous data, such as the parameters used in a curve fit or temporary results within 

an Igor procedure.

The Make Waves dialog provides an interface to the Make operation. To use it, choose Make Waves from 
the Data menu.

Waves have a definite number of points. Unlike a spreadsheet program which automatically ignores blank 
cells at the end of a column, there is no such thing as an “unused point” in Igor. You can change the number 
of points in a wave using the Redimension Waves dialog or the Redimension operation (see page V-670).

Property Default

Number of points 128

Data type Real, single-precision floating point

X scaling x0=0, dx=1 (point scaling)

X units Blank

Data units Blank
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The “Overwrite existing waves” option is useful when you don’t know or care if there is a wave with the 
same name as the one you are about to make.

Make Operation Examples
Make coefs for use in curve fitting:
Make/O coefs = {1.5, 2e-3, .01}

Make a wave for plotting a math function:
Make/O/N=200 test; SetScale x 0, 2*PI, test; test = sin(x)

Make a 2D wave for image or contour plotting:
Make/O/N=(20,20) w2D; w2D = (p-10)*(q-10)

Make a text wave for a category plot:
Make/O/T quarters = {"Q1", "Q2", "Q3", "Q4"}

It is often useful to make a clone of an existing wave. Don’t use Make for this. Instead use the Duplicate 
operation (see page V-164).

Make/O does not preserve the contents of a wave and in fact will leave garbage in the wave if you change 
the number of points, numeric precision or numeric type. Therefore, after doing a Make/O you should not 
assume anything about the wave’s contents. If you know that a wave exists, you can use the Redimension 
operation instead of Make. Redimension does preserve the wave’s contents.

Waves and the Miscellaneous Settings Dialog
The state of the Type popup menu in the Make Waves dialog, the precision of waves created by typing in 
a table, and the way Igor Binary waves are loaded (whether they are copied or shared) are preset with the 
Miscellaneous Settings dialog using the Data Loading Settings category; see Miscellaneous Settings on 
page III-443.

Changing Dimension and Data Scaling
When you make a 1D wave, it has default X scaling, X units and data units. You should use the SetScale 
operation (see page V-728) to change these properties.

The Change Wave Scaling dialog provides an interface to the SetScale operation. To use it, choose Change 
Wave Scaling from the Data menu.

Scaled dimension indices can represent ordinary numbers, dates, times or date&time values. In the most 
common case, they represent ordinary numbers and you can leave the Units Type pop-up menu in the Set 
X Properties section of the dialog on its default value: Numeric.

If your data is waveform data, you should enter the appropriate Start and Delta X values. If your data is XY 
data, you should enter 0 for Start and 1 for Delta. This results in the default “point scaling” in which the X 
value for a point is the same as the point number.

Normally you should leave the Set X Properties and Set Data Properties checkboxes selected. Deselect one 
of them if you want the dialog to generate commands to set only X or only Data properties. When working 
with multidimensional data, the X of Set X Properties can be changed to Y, Z or T via the pop-up menu. See 
Chapter II-6, Multidimensional Waves.

If you want to observe the properties of a particular wave, double-click it in the list or select the wave and 
then click the From Wave button. This sets all of the dialog items according to that wave’s properties.
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Igor uses the dimension and data Units to automatically label axes in graphs. Igor can handle units consisting 
of 49 bytes or less. Typically, units should be short, standard abbreviations such as “m”, “s”, or “g”. If your 
data has more complex units, you can enter the complex units or you may prefer to leave the units blank.

Advanced Dimension and Data Scaling
If you click More Options, Igor displays some additional items in the dialog. They give you two additional 
ways to specify X scaling and allow you to set the wave’s “data full scale” values. These options are usually 
not needed but for completeness are described in this section.

In spite of the fact that there is only one way of calculating X values, there are three ways you can specify 
the x0 and dx values. The SetScale Mode pop-up menu changes the meaning of the scaling entries above. 
The simplest way is to simply specify x0 and dx directly. This is the Start and Delta mode in the dialog and 
is the only way of setting the scaling unless you click the More Options button. As an example, if you have 
data that was acquired by a digitizer that was set to sample at 1 MHz starting 150 µs after t=0, you would 
enter 150E-6 for Start and 1E-6 for Delta.

The other two ways of specifying X scaling are to set the starting and ending X values are and to calculate 
dx from the number of points. In the Start and End mode you specify the X value of the last data point. 
Using the Start and Right mode you specify the X at the end of the last interval. For example, assuming our 
digitizer (above) created a 100 point wave, we would enter 150E-6 as Start for either mode. If we selected 
the Start and End mode we would enter 249E-6 for End (150E-6 + 99*1E-6). If we selected Start and Right 
we would enter 250E-6 for Right.

The min and max entries allow you to set a property of a wave called its “data full scale”. This property 
doesn’t serve a critical purpose. Igor does not use it for any computation or graphing purposes. It is merely 
a way for you to document the conditions under which the wave data was acquired. For example, if your 
data comes from a digital oscilloscope and was acquired on the ±10v range, you could enter -10 for min and 
+10 for max. When you make waves, both of these will initially be set to zero. If your data has a meaningful 
data full scale, you can set them appropriately. Otherwise, leave them zero.

The data units, on the other hand are used for graphing purposes, just like the dimension units.

Date, Time, and Date&Time Units
The units “dat” are special, specifying that the scaled dimension indices or data values of a wave contain 
date, time, or date&time information.

If you have waveform data then set the X units of your waveform to "dat".

If you have XY data then set the data units of your X wave to "dat". In this case your X wave must be double-
precision floating point in order to have enough precision to represent dates accurately.

For example, if you have a waveform that contains some quantity measured once per day, you would set 
the X units for the wave to “dat”, set the starting X value to the date on which the first measurement was 
done, and set the Delta X value to one day. Choosing Date from the Units Type pop-up menu sets the X 
units to “dat”. You can enter the starting value as a date rather than as a number of seconds since 1/1/1904, 
which is how Igor represents dates internally. When Igor graphs the waveform, it will notice that the X units 
are “dat” and will display dates on the X axis.

If instead of a waveform, you have an XY pair, you would set the data units of the X wave to “dat”, by 
choosing Date from the Units Type pop-up menu in the Set Data Properties section of the dialog. When you 
graph the XY pair, Igor will notice that the X wave contains dates and will display dates on the X axis.

The Units Type pop-up menus do not correspond directly to any property of a wave. That is, a wave doesn’t 
have a units type property. Instead, these menus merely identify what kind of values you are dealing with 
so that the dialog can display the values in the appropriate format.

For further discussion of how Igor represents dates, see Date/Time Waves on page II-78.

For information on dates and times in tables, see Date/Time Formats on page II-191.
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For information on dates and times in graphs, see Date/Time Axes on page II-244.

Duplicate Operation
Duplicate is a handy and frequently-used operation. It can make new waves that are exact clones of existing 
waves. It can also clone a section of a wave and thus provides an easy way to break a big wave up into 
smaller waves.

Here are some reasons to use Duplicate:
• To hold the results of a transformation (e.g. integration, differentiation, FFT) while preserving the 

original data.
• To hold the “destination” of a curve fit.
• For holding temporary results within an Igor procedure.
• To extract a section of a wave.

The Duplicate Waves dialog provides an interface to the Duplicate operation (see page V-164). To use it, 
choose Duplicate Waves from the Data menu.

The cursors button is used in conjunction with a graph. You can make a graph of your template wave. Then 
put the cursors on the section of the template that you want to extract. Choose Duplicate Waves from the 
Data menu and click the cursors button. Then click Do It. This clones the section of the template wave iden-
tified by the cursors.

People sometimes make the mistake of using the Make operation when they should be using Duplicate. For 
example, the destination wave in a curve fit must have the same number of points, numeric type and 
numeric precision as the source wave. Duplicating the source wave insures that this will be true.

Duplicate Operation Examples
Clone a wave and then transform the clone:
Duplicate/O wave0, wave0_d1; Differentiate wave0_d1

Use Duplicate to inherit the properties of the template wave:
Make/N=200 wave0; SetScale x 0, 2*PI, wave0; wave0 = sin(x)
Duplicate wave0, wave1; wave1 = cos(x)

Make a destination wave for a curve fit:
Duplicate/O data1, data1_fit
CurveFit gauss data1 /D=data1_fit

Compare the first half of a wave to the second:
Duplicate/O/R=[0,99] data1, data1_1
Duplicate/O/R=[100,199] data1, data1_2
Display data1_1, data1_2

We often use the /O flag (overwrite) with Duplicate because we don’t know or care if a wave already exists 
with the new wave name.

Killing Waves
The KillWaves operation (see page V-411) removes waves from the current experiment. This releases the 
memory used by the waves. Waves that you no longer need clutter up lists and pop-up menus in dialogs. 
By killing them, you reduce this clutter.

Here are some situations in which you would use KillWaves:
• You are finished examining data that you loaded from a file.
• You are finished using a wave that you created for experimentation.
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• You no longer need a wave that you created for temporary use in an Igor procedure.

The Kill Waves dialog provides an interface to the KillWaves operation. To use it, choose Kill Waves from 
the Data menu.

Igor will not let you kill waves that are used in graphs, tables or user-defined functions so they do not 
appear in the list.

Note: Igor can not tell if a wave is referenced from a macro. Thus, Igor will let you kill a wave that is 
referenced from a macro but not used in any other way. The most common case of this is when 
you close a graph and save it as a recreation macro. Waves that were used in the graph are now 
used only in the macro and Igor will let you kill them. If you execute the graph recreation macro, 
it will be unable to recreate the graph.

KillWaves can delete the Igor Binary file from which a wave was loaded, called the “source file”. This is 
normally not necessary because the wave you are killing either has never been saved to disk or was saved 
as part of a packed experiment file and therefore was not loaded from a standalone file.

The “Kill all waves not in use” option is intended for those situations where you have created an Igor exper-
iment that contains procedures which load, graph and process a batch of waves. After you have processed 
one batch of waves, you can kill all graphs and tables and then kill all waves in the experiment in prepara-
tion for loading the next batch. This affects only those waves in the current data folder; waves in any other 
data folders will not be killed.

KillWaves Operation Examples
Here are some simple examples using KillWaves.
// Kills all target windows and all waves.
// Does not kill nontarget windows (procedure and help windows).
Function KillEverything()

String windowName

do
windowName = WinName(0, 1+2+4+16+64)// Get next target window
if (CmpStr(windowName, "") == 0) // If name is ""

break // we are done so break loop
endif
DoWindow/K $windowName // Kill this target window

while (1)

KillWaves/A // Kill all waves
End

// This illustrates killing a wave used temporarily in a procedure.
Function/D Median(w) // Returns median value of wave w

Wave w

Variable result

Duplicate/O w, temp // Make a clone of wave
Sort temp, temp // Sort clone
result = temp[numpnts(temp)/2]

KillWaves temp // Kill clone

return result
End

For more examples, see the “Kill Waves” procedure file in the “WaveMetrics Procedures” folder.
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Browsing Waves
The Data Browser (Data menu) lets you see what waves (as well as strings and variables) exist at any given 
time. It also lets you see what data folders exist and set the current data folder. The Data Browser is 
described in detail in Chapter II-8, Data Folders.

Igor Pro 6 had a Browse Waves dialog which you accessed via the Data→Browse Waves menu item. Because it 
provided the same functionality as the Data Browser, the dialog and menu item were removed in Igor Pro 7.00.

Renaming Waves
You can rename a wave using:
• The Data Browser
• The Rename dialog (Data menu)
• The Rename operation from the command line

The Rename operation (see page V-676) renames waves as well as other objects.

Here are some reasons for renaming waves:
• You have loaded a bunch of waves from a file and Igor auto-named the waves.
• You have decided on a naming convention for waves and you want to make existing waves follow 

the convention.
• You are about to load a set of waves whose names will be the same as existing waves and you want 

to get the existing waves out of the way but still keep them in memory. (You could also achieve this 
by moving them to a new data folder.)

To use the Rename operation, choose Rename from the Data menu. This brings up the Rename Objects dialog.

Redimensioning Waves
The Redimension operation can change the following properties of a wave:
• The number of dimensions in the wave
• The number of elements in each dimension
• The numeric precision (e.g., single to double)
• The numeric type (e.g., real to complex)

The Redimension Waves dialog provides an interface to the Redimension operation (see page V-670). To 
use it, choose Redimension Waves from the Data menu.

When Redimension adds new elements to a wave, it sets them to zero for a numeric wave and to blank for 
a text wave.

The following commands illustrate two ways of changing the numeric precision of a wave. Redimension 
preserves the contents of the wave whereas Make does not.
Make/N=5 wave0=x
Edit wave0
Redimension/D wave0 // This preserves the contents of wave0
Make/O/D/N=5 wave0 // This does not

See Vector (Waveform) to Matrix Conversion on page II-89 for information on converting a 1D wave into 
a 2D wave while retaining the data (i.e., reshaping).
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You cannot change a wave from numeric to text or vice versa. The following examples illustrate how you 
can make a text copy of a numeric wave and a numeric copy of a text wave:
Make/N=10 numWave = p
Make/T/N=(numpnts(numWave)) textWave = num2str(numWave)
Make/N=(numpnts(textWave)) numWave2 = str2num(textWave)

However, you can lose precision because num2str prints with only 6 digits of precision.

Inserting Points
There are two ways to insert new points in a wave. You can do this by:
• Using the InsertPoints operation
• Typing or pasting in a table

This section deals with the InsertPoints operation (see page V-385). For information on typing or pasting 
in a table, see Chapter II-11, Tables.

Using the InsertPoints operation, you can insert new data points at the start, in the middle or at the end of 
a 1D wave. You can also insert new elements in multidimensional waves. For example, you can insert new 
columns in a 2D matrix wave. The inserted values will be 0 for a numeric wave and "" for a text wave.

The Insert Points dialog provides an interface to the InsertPoints operation. To use it, choose Insert Points 
from the Data menu.

If the value that you enter for first point is greater than the number of elements in the selected dimension 
of a selected wave, the new points are added at the end of the dimension. InsertPoints can change the 
dimensionality of a wave. For example, if you insert a column in a 1D wave, you end up with at 2D wave.

If the top window is a table at the time that you select Insert Points, Igor will preset the dialog items based 
on the selection in the table.

Deleting Points
There are two ways to delete points from a wave. You can do this by:
• Using the DeletePoints operation
• Doing a cut in a table

This section deals with the DeletePoints operation (see page V-136). For information on cutting in a table, 
see Chapter II-11, Tables.

Using the DeletePoints operation, you can delete data points from the start, middle or end of a 1D wave. 
You can also delete elements from multidimensional waves. For example, you can delete columns from a 
2D matrix wave.

The Delete Points dialog provides an interface to the DeletePoints operation. To use it, choose Delete Points 
from the Data menu.

If the value that you enter for first point is greater than the number of elements in the selected dimension 
of a selected wave, DeletePoints will do nothing to that wave. If the number of elements is too large, Delete-
Points will delete from the specified first element to the end of the dimension.

Except for the case of removing all elements, which leaves the wave as 1D, DeletePoints does not change 
the dimensionality of a wave. Use Redimension for that.

If the top window is a table at the time that you choose Delete Points, Igor will preset the dialog items based 
on the selection in the table.
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Waveform Arithmetic and Assignments
Waveform arithmetic is a very flexible and powerful part of Igor’s analysis capability. You can write assign-
ment statements that work on an entire wave or on a subset of a wave, much as you would write an assign-
ment to a single variable in a standard programming language.

In a wave assignment statement, a wave appears on the left side and a mathematical expression appears on 
the right side. Here are some examples.
wave0 = sin(x)
wave0 = log(wave1/wave2)
wave0[0,99] = wave1[100 + p]

A wave on the left side is called the destination wave. A wave on the right side is called a source wave.

When Igor executes a wave assignment statement, it evaluates the expression on the right-hand side one 
time for each point in the destination wave. The result of each evaluation is stored in the corresponding 
point in the destination wave.

During execution, the symbol p has a value equal to the number of the point in the destination wave which 
is being set and the symbol x has a value equal to the X value at that point. The X value for a given point is 
determined by the number of the point and the X scaling for the wave. To see this, execute the following 
commands, one-at-a-time:
Make/N=5 wave0; SetScale/P x 0, .1, wave0; Edit wave0.xy
wave0 = p
wave0 = x

The first assignment statement sets the value of each point of wave0 to the point number. The second 
assignment statement sets the value of each point of wave0 to the X value for that point.

A source wave returns its data value at the point being evaluated. In the example
wave0 = log(wave1/wave2)

Igor evaluates the right-hand expression once for each point in wave0. During each evaluation of the 
expression, wave1 and wave2 return their data values at the point being evaluated. Consequently, these 
commands are equivalent:

wave0 = log(wave1/wave2)

wave0 = log(wave1[p]/wave2[p])

Understanding Wave Assignments
To understand wave assignments, it is critical to understand the meaning of p and x. To this end, it may be 
helpful to think of what happens inside Igor. A wave assignment statement causes a loop to run inside Igor.
p is the loop index of the internal loop and runs over the range of points being set in the destination wave. 
In the preceding example, p starts from 0 and is incremented each time through the internal loop, up to N-
1, where N is the number of points in wave0. For each value of p, the right-hand expression is evaluated 
and the result is stored in the corresponding point of wave0.
When you see wave1 or wave1[p] on the right-hand side of a waveform assignment statement, this returns 
the value of wave1 at point p, which is the point in the destination wave (wave0) that Igor is setting during 
the current iteration of the internal loop.
x is similar to p except that, instead of being the loop index of the internal Igor loop, it is calculated from 
the loop index using the X scaling of the destination wave:
x = x0 + p*dx
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Wave assignment is an important Igor feature and it will be worth your time to understand it. You may 
need to reread this material and do some experimentation on the command line. If you are new to Igor, you 
may prefer to return to this topic after you have gained experience.

Wave Assignment Example
This command sequence illustrates some of the ideas explained above.
Make/N=200 wave1, wave2 // Two waves, 200 points each
SetScale/P x, 0, .05, wave1, wave2 // Set X values from 0 to 10
Display wave1, wave2 // Create a graph of waves
wave1 = sin(x) // Assign values to wave1
wave2 = wave1 * exp(-x/5) // Assign values to wave2

Since wave1 has 200 points, the wave assignment statement wave1=sin(x) evaluates sin(x) 200 times, 
once for each point in wave1. The first point of wave1 is point number 0 and the last point of wave1 is point 
number 199. The symbol p, not used in this example, goes from 0 to 199. The symbol x steps through the 
200 X values for wave1 which start from 0 and step by .05, as specified by the SetScale command. The result 
of each evaluation is stored in the corresponding point in wave1, making wave1 about 1.5 cycles of a sine 
wave.

Since wave2 also has 200 points, the wave assignment statement wave2=wave1*exp(-x/5) evaluates 
wave1*exp(-x/5) 200 times, once for each point in wave2. In this assignment, the right-hand expression 
contains a wave, wave1. As Igor executes the assignment, p goes from 0 to 199. Each of the 200 times the 
right side is evaluated, wave1 returns its data value for the corresponding point. The result of each evalu-
ation is stored in the corresponding point in wave2 making wave2 about 1.5 cycles of a damped sine wave.

The effect of a wave assignment statement is to set the data values of the destination wave. Igor does not 
remember the functional relationship implied by the assignment. In this example, if you changed wave1, 
wave2 would not change automatically. If you wanted wave2 to have the same functional relationship to 
wave1 as it had before you changed wave1, you would have to reexecute the wave2=wave1*exp(-x/5) 
assignment.

There is a special kind of wave assignment statement that does establish a functional relationship. It should 
be used sparingly. See Wave Dependency Formulas on page II-77 for details.

More Wave Assignment Features
Just as the symbol p returns the current element number in the rows dimension, the symbols q, r and s return 
the current element number in the columns, layers and chunks dimensions of multidimensional waves. The 
symbol x in the rows dimension has analogs y, z and t in the columns, layers and chunks dimensions. See 
Chapter II-6, Multidimensional Waves, for details.

You can use multiple processors to execute a waveform assignment statement that takes a long time. See 
Automatic Parallel Processing with MultiThread on page IV-303 for details.

The right-hand expression is evaluated in the context of the data folder containing the destination wave. 
See Data Folders and Assignment Statements on page II-103 for details.
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wave2 = wave1 * exp(-x/5)

wave1 = sin(x)
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Usually source waves have the same number of points and X scaling as the destination wave. In some cases, 
it is useful to write a wave assignment statement where this is not true. This is discussed under Mismatched 
Waves on page II-75.

Indexing and Subranges
Igor provides two ways to refer to a specific point or range of points in a 1D wave: X value indexing and 
point number indexing. Consider the following examples.
wave0[54] = 92 // Sets wave0 at point 54 to 92
wave0(54) = 92 // Sets wave0 at X=54 to 92
wave0[1,10] = 92 // Sets wave0 from point 1 to point 10 to 92
wave0(1,10) = 92 // Sets wave0 from X=1 to X=10 to 92

Brackets tell Igor that you are indexing the wave using point numbers. The number or numbers inside the 
brackets are interpreted as point numbers of the indexed wave.

Parentheses tell Igor that you are indexing the wave using X values. The number or numbers inside the paren-
theses are interpreted as X values of the indexed wave. When you use an X value as an index, Igor first finds 
the point number corresponding to that X value based on the indexed wave’s X scaling, and then uses that 
point number as the point index.

If the wave has point scaling then these two methods have identical effects. However, if you set the X scaling 
of the wave to other than point scaling then these commands behave differently. In both cases the range is 
inclusive.

You can specify not only a range but also a point number increment. For example:
wave0[0,98;2] = 1 // Sets even numbered points in wave0 to 1
wave0[1,99;2] = -1 // Sets odd numbered points in wave0 to -1

The number after the semicolon is the increment. Igor begins at the starting point number and goes up to 
and including the ending point number, skipping by the increment. At each resulting point number, it eval-
uates the right-hand side of the wave assignment statement and sets the destination point accordingly.

Increments can also be used when you specify a range in terms of X value but the increment is always in 
terms of point number. For example:
wave0(0,100;5) = PI // Sets wave0 at specified X values to PI

Here Igor starts from the point number corresponding to x = 0 and goes up to and including the point 
number that corresponds to x = 100. The point number is incremented by 5 at each iteration.

You can take some shortcuts in specifying the range of a destination wave. The subrange start and end 
values can both be omitted. When the start is omitted, point number zero is used. When the end is omitted, 
the last point of the wave is used. You can also use a * character or INF to specify the last point. An omitted 
increment value defaults to a single point.

Here are some examples that illustrate these shortcuts:
wave0[ ,50] = 13 // Sets wave0 from point 0 to point 50

wave0[51,] = 27 // Sets wave0 from point 51 to last point

wave0[51,*] = 27 // Sets wave0 from point 51 to last point

wave0[51,INF] = 27 // Sets wave0 from point 51 to last point

wave0[ , ;2] = 18.7 // Sets every even point of wave0

wave0[1,*;2] = 100 // Sets every odd point of wave0

A subrange of a destination wave may consist of a single point or a range of points but a subrange of a 
source wave must consist of a single point. In other words the wave assignment statement:
wave1(4,5) = wave2(5,6) // Illegal!
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is not legal. In this assignment, x ranges from 4 to 5. You can get the desired effect using:
wave1(4,5) = wave2(x+1) // OK!

By virtue of the range specified on the left hand side, x goes from 4 to 5. Therefore, x+1 goes from 5 to 6 and 
the right-hand expression returns the values of wave2 from 5 to 6.

Interpolation in Wave Assignments
If you specify a fractional point number or an X value that falls between two data points, Igor will return a 
linearly interpolated data value. For example, wave1[1.75] returns the value of wave1 three-quarters of the 
way from the data value of point 1 to the data value of point 2. This interpolation is done only for one-
dimensional waves. See Multidimensional Wave Assignment on page II-88, for information on assign-
ments with multidimensional data.

This is a powerful feature. Imagine that you have an evenly spaced calibration curve, called calibration, and 
you want to find the calibration values at a specific set of X coordinates as stored in a wave called xData. If 
you have set the X scaling of the calibration wave, you can do the following:
Duplicate xData, yData
yData = calibration(xData)

This uses the interpolation feature of Igor’s wave assignment statement to find a linearly-interpolated value 
in the calibration wave for each X coordinate in the xData wave.

Lists of Values
You can assign values to a wave or to a subrange of a wave using a list of values. For example:
wave0 = {1, 3, 5} // sets length of wave0 to three

// and sets Y values to 1, 3, 5
wave0[10]= {1, 3, 5} // sets points 10 through 12 to 1, 3, 5

In these examples, {1, 3, 5} is a list of values.

If, in the second example, wave0 had less than 10 points, it would have been automatically extended with 
zeros before setting points 10 through 12.

Wave Initialization
From Igor’s command line or in a procedure, you can make a wave and initialize it with a single command, 
as illustrated in the following examples:
Make wave0=sin(p/8) // wave0 has default number of points
Make coeffs={1,2,3} // coeffs has just three points

Example: Normalizing Waves
When comparing the shape of multiple waves you may want to normalize them so that the share a common 
range. For example:

// Create some sample data
Make waveA = 3*sin(x/8)
Make waveB = 2*sin(pi/16 + x/8)

// Display the waves
Display waveA, waveB
ModifyGraph rgb(waveB)=(0,0,65535)

// Normalize the waves
Variable aMin = WaveMin(waveA)
Variable bMin = WaveMin(waveB)
waveA -= aMin
waveB -= bMin
Variable aMax = WaveMax(waveA)



Chapter II-5 — Waves

II-73

Variable bMax = WaveMax(waveB)
waveA /= aMax
waveB /= bMax

Note the use of the temporary variables aMin and bMin. They are needed for two reasons. First, if we wrote 
waveA -= WaveMin(waveA), then WaveMin would be called once for each point in waveA, which would 
be a waste of time. Worse than that, the minimum value in waveA would change during the course of the 
waveform assignment statement, giving incorrect results.

There are sometimes faster ways to do waveform arithmetic. For large waves, the FastOp and MatrixOp 
operations provide increased speed:

waveA -= aMin // FastOp does not support wave-variable
FastOp waveA = (1/aMax) * waveA

MatrixOp/O waveA = waveA - aMin
MatrixOp/O waveA = waveA / aMax

Example: Converting XY Data to Waveform Data
There are some times when it is desirable to convert XY data to uniformly spaced waveform data. For exam-
ple, the Fast Fourier Transform requires uniformly spaced data. If you have measured XY data in the time 
domain, you would need to do this conversion before doing an FFT on it.

We can make some sample XY data as follows:
Make/N=1024 xWave, yWave
xWave = 2*PI*x/1024 + gnoise(.001)
yWave = sin(xwave)

xWave has values from 0 to 2π with a bit of noise in them. Our data is not uniformly spaced in the x dimen-
sion but it is monotonic — always increasing, in this case. If it were not monotonic we could sort the XY pair.

We can create a waveform representing our XY data as follows:
Duplicate ywave, wave0
SetScale x 0, 2*PI, wave0
wave0 = interp(x, xwave, ywave)

The SetScale command sets the scaling of wave0 so that its X values run from 0 to 2π. Its data values are 
generated by picking a value off the curve represented by ywave versus xwave at each of these X values 
using linear interpolation.

See Converting XY Data to a Waveform on page III-104 for a discussion of other interpolation techniques.

Example: Concatenating Waves
Concatenating waves can be done much more easily using the Concatenate operation (see page V-68). This 
simple example serves mainly to illustrate a use of wave assignment statements.

Suppose we have three waves of 100 points each: wave1, wave2 and wave3. We want to create a fourth wave, 
wave4, which is the concatenation of the three original waves. Here is the sequence of commands to do this.
Make/N=300 wave4
wave4[0,99] = wave1[p] // Set first third of wave4
wave4[100,199] = wave2[p-100] // Set second third of wave4
wave4[200,299] = wave3[p-200] // Set last third of wave4

In this example, we use a subrange of wave4 as the destination of our wave assignment statements. The 
right-hand expressions index the appropriate values of wave1, wave2 and wave3. Remember that p ranges 
over the points being evaluated in the destination. So, p ranges from 0 to 99 in the first assignment, from 
100 to 199 in the second assignment and from 200 to 299 in the third assignment. In each of the assignments, 
the wave on the right-hand side has only 100 points, from point 0 to point 99. Therefore we must offset p 
on the right-hand side to pick out the 100 values of the source wave.
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Example: Decomposing Waves
Suppose we have a 300 point wave, wave4, that we want to decompose into three waves of 100 points each: 
wave1, wave2 and wave3. Here is the sequence of commands to do this.
Make/N=100 wave1,wave2,wave3
wave1 = wave4[p] // Get first third of wave4
wave2 = wave4[p+100] // Get second third of wave4
wave3 = wave4[p+200] // Get last third of wave4

In this example, we use a subrange of wave4 as the source of our data. We index the desired segment of 
wave4 using point number indexing. Since wave1, wave2 and wave3 each have 100 points, p ranges from 
0 to 99. In the first assignment, we access points 0 to 99 of wave4. In the second assignment, we access points 
100 to 199 of wave4. In the third assignment, we access points 200 to 299 of wave4.

You could also use the Duplicate operation (see page V-164) to make a wave from a section of another wave.

Example: Complex Wave Calculations
Igor includes a number of built-in functions for manipulating complex numbers and complex waves. These 
are illustrated in the following examples.

Here, we make a time domain waveform and do an FFT on it to generate a complex wave. The examples 
show how to pick out the real and imaginary part of the complex wave, how to find the sum of squares and 
how to convert from rectangular to polar representation. For more information on frequency domain pro-
cessing, see Chapter III-9, Signal Processing.
// Make a time domain waveform
Make/O/N=1024 wave0
SetScale x 0, 1, "s", wave0 // goes from 0 to 1 second
wave0=sin(2*PI*x)+sin(6*PI*x)/3+sin(10*PI*x)/5+sin(14*PI*x)/7
Display wave0 as "Time Domain"

// Do FFT
Duplicate/O wave0, cwave0 // get copy to do FFT on
FFT cwave0 // cwave0 is now complex
cwave0 /= 512;cwave0[0] /= 2 // normalize amplitude
Display cwave0 as "Frequency Domain";SetAxis bottom, 0, 25

// Calculate magnitude and phase
Make/O/N=513 mag0, phase0, power0 // these are real waves
CopyScales cwave0, mag0, phase0, power0
mag0 = real(r2polar(cwave0))
phase0 = imag(r2polar(cwave0))
phase0 *= 180/PI // convert to degrees
Display mag0 as "Magnitude and Phase";AppendToGraph/R phase0
SetAxis bottom, 0, 25
Label left, "Magnitude";Label right, "Phase"

// Calculate power spectrum
power0 = magsqr(cwave0)
Display power0 as "Power Spectrum";SetAxis bottom, 0, 25

Example: Comparison Operators and Wave Synthesis
The comparison operators ==, >=, >, <= and < can be useful in synthesizing waves. Imagine that you want to 
set a wave so that its data values equal -π for x<0 and +π for x>=0. The following wave assignment statement 
accomplishes this:
wave1 = -pi*(x<0) + pi*(x>=0)
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This works because the conditional statements return 1 when the condition is true and 0 when it is false, 
and then the multiplication proceeds.
You can also make such assignments using the conditional operator:
wave0 = (x>0) ? pi : -pi

A series of impulses can be made using the mod function and ==. This wave equation will assign 5 to every 
tenth point starting with point 0, and 0 to all the other points:
wave1 = (mod(p,10)==0) * 5

Example: Wave Assignment and Indexing Using Labels 
Dimension labels can be used to refer to wave values by a meaningful name. Thus, for example, you can create 
a wave to store coefficient values and directly refer to these values by the name of the coefficient (e.g., coef[%Fric-
tion]) instead of a potentially confusing and less meaningful numeric index (e.g., coef[1]). You can also view the 
wave values and labels in a table.

You create wave labels using the SetDimLabel operation (see page V-715); for details see Dimension 
Labels on page II-85. Label names may be up to 31 bytes in length; if you use liberal names, such as those 
containing spaces, make certain to enclose these names within single quotation marks.

In this example we create a wave and use the FindPeak operation (see page V-212) to get peak parameters 
of the wave. Next we create an output parameter wave with appropriate labels and then assign the Find-
Peak results to the output wave using the labels.

// Make a wave and get peak parameters
Make test=sin(x/30)
FindPeak/Q test

// Create a wave with appropriate row labels
Make/N=6 PeakResult
SetDimLabel 0,0,'Peak Found', PeakResult
SetDimLabel 0,1,PeakLoc, PeakResult
SetDimLabel 0,2,PeakVal, PeakResult
SetDimLabel 0,3,LeadingEdgePos, PeakResult
SetDimLabel 0,4,TrailingEdgePos, PeakResult
SetDimLabel 0,5,'Peak Width', PeakResult

// Fill PeakResult wave with FindPeak output variables
PeakResult[%'Peak Found']   =V_flag
PeakResult[%PeakLoc]        =V_PeakLoc
PeakResult[%PeakVal]        =V_PeakVal
PeakResult[%LeadingEdgePos] =V_LeadingEdgeLoc
PeakResult[%TrailingEdgePos]=V_TrailingEdgeLoc
PeakResult[%'Peak Width']   =V_PeakWidth

// Display the PeakResult values and labels in a table
Edit PeakResult.ld

In addition to the method illustrated above, you can also create and edit dimension labels by displaying the 
wave in a table and showing the dimension labels with the data. See Showing Dimension Labels on page 
II-170 for further details on using tables with labels.

Mismatched Waves
For most applications you will not need to mix waves of different lengths. In fact, doing this is more often 
the result of a mistake than it is intentional. However, if your application requires mixing you will need to 
know how Igor handles this.

Let’s consider the case of assigning the value of one wave to another with a command such as
wave1 = wave2
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In this assignment, there is no explicit indexing, so Igor evaluates the expression as if you had written:
wave1 = wave2[p]

If wave2 has more points than wave1, the extra points have no effect on the assignment since p ranges from 
0 to n-1, where n is the number of points in wave1.

If wave2 has fewer points than wave1 then Igor will try to evaluate wave2[p] for values of p greater than 
the length of wave2. In this case, it returns the value of the last point in wave2 during the wave assignment 
statement but also raises an “index out of range” error. Previous versions of Igor did not raise this error.

It may be that you actually want the values in wave1 to span the values in wave2 by interpolating between 
values in wave2. To get Igor to do this, you must explicitly index the appropriate X values on the right side. 
For instance, if you have two waves of different lengths, you can do this:
big = small[p*(numpnts(small)-1)/(numpnts(big)-1)]

NaNs, INFs and Missing Values
The data value of a point in a floating point numeric wave is normally a finite number but can also be a NaN 
or an INF. NaN means “not a number”. An expression returns the value NaN when it makes no sense math-
ematically. For example, log(-1) returns the value NaN. You can also set a point to NaN, using a table or 
a wave assignment statement, to represent a missing value. An expression returns the value INF when it 
makes sense mathematically but has no finite value. log(0) returns the value -INF.

The IEEE floating point standard defines the representation and behavior of NaN values. There is no way 
to represent a NaN in an integer wave. If you attempt to store NaN in an integer wave, you will store a 
garbage value.

Comparison operators do not work with NaN parameters because, by definition, NaN compared to any-
thing, even another NaN, is false. Use numtype to test if a value is NaN.

Igor ignores NaNs and INFs in curve fit and wave statistics operations. NaNs and INFs have no effect on 
the scaling of a graph. When plotting, Igor handles NaNs and INFs properly, as missing and infinite values 
respectively.

Igor does not ignore NaNs and INFs in many other operations, especially those that are DSP related such 
as FFT. In general, any operation that numerically combines all or most of the data points from a wave will 
give meaningless results if one or more points is a NaN or INF. Notable examples include the area and 
mean functions and the Integrate and FFT operations. Some operations that only mix a few points such as 
Smooth and Differentiate will “contaminate” only those points in the vicinity of the NaN or INF. You can 
use the Interpolate operation (Analysis menu) to create a NaN-free version of a wave.

If you get NaNs from functions such as area or mean or operations such as Convolve or any other functions 
or operations that sum points in waves, it indicates that some of the points in the wave are NaN. If you get 
NaNs from curve-fitting results, it indicates that Igor’s curve fitting has failed. See Curve Fitting Trouble-
shooting on page III-234 for troubleshooting tips.

See Dealing with Missing Values on page III-107 for techniques for dealing with NaNs.

Don’t Use the Destination Wave as a Source Wave
You may get unexpected results if the destination of a wave assignment statement also appears in the right-
hand expression. Consider these examples:
wave1 -= wave1(5)
wave1 -= vcsr(A) // where cursor A is on wave1

Each of these examples is an attempt to subtract the value of wave1 at a particular point from every point 
in wave1. This will not work as expected because the value of wave1 at that particular point is altered 
during the assignment. At some point in the assignment, wave1(5) or vcsr(A) will return 0 since the value 
at that point in wave1 will have been subtracted from itself.
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You can get the desired result by using a variable to store the value of wave1 at the particular point.
Variable tmp
tmp = wave1(5); wave1 -= tmp
tmp = vcsr(A); wave1 -= tmp

Wave Dependency Formulas
You can cause a wave assignment statement to “stick” to the wave by substituting “:=” for “=” in the state-
ment. This causes the wave to become dependent upon the objects referenced in the expression. For exam-
ple:
Variable/G gAngularFrequency = 5
wave1 := sin(gAngularFrequency*x) // Note ":="
Display wave1

If you now execute “gAngularFrequency = 8” you will see the wave automatically update. Similarly if you 
change the wave’s X scaling using the SetScale operation (see page V-728), the wave will be automatically 
recalculated for the new range of X values.

Dependencies should be used sparingly if at all. Overuse creates a web of interactions that are difficult to 
understand and difficult to debug. It is better to explicitly update the target when necessary.

See Chapter IV-9, Dependencies, for further discussion.

Using the Wave Note
One of the properties of a wave is the wave note. This is just some plain text that Igor stores with each wave. 
The note is empty when you create a wave. There is no limit on its length.

You can inspect and edit a wave note using the Data Browser. You can set or get the contents of a wave note 
from an Igor procedure using the Note operation (see page V-583) or the note function (see page V-583).

Originally we thought of the wave note as a place for an experimenter to store informal comments about a 
wave and it is fine for that purpose. However, over time both we and many Igor users have found that the 
wave note is also a handy place to store additional, user-defined properties of a wave in a structured way. 
These additional properties are editable using the Data Browser but they can also be used and manipulated 
by procedures.

To do this, you store keyword-value pairs in the wave note. For example, a note might look like this:
CELLTYPE:rat hippocampal neuron
PATTERN:1VN21
TREATMENT:PLACEBO

You could then write Igor functions to set the CELLTYPE, PATTERN and TREATMENT properties of a 
wave. You can retrieve such properties using the StringByKey function.

Integer Waves
Igor provides support for integer waves primarily to aid in data acquisition projects. They allow people 
who are interfacing with hardware to write/read directly into integer waves. This allows for slightly quicker 
live display and also saves the programmer from having to convert integers to floating point.

Integer waves are also appropriate for storing images.

Aside from memory considerations there is no other reason to use integer waves. You might expect that 
wave assignment statements would evaluate more quickly when an integer wave is the destination. This is 
not the case, however, because Igor still uses floating point for the assignment and only converts to integer 
for storage.
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Date/Time Waves
Dates are represented in Igor date format - as the number of seconds since midnight, January 1, 1904. Dates 
before that are represented by negative values. There is no practical limit to the range of dates that can be 
represented.

A date can not be accurately stored in the data values of a single precision or integer wave. Make sure to 
use double precision to store dates and times.

You must set the data units of a wave containing date or date/time data to "dat". This tells Igor that the wave 
contains date/time data and affects the default display of axes in graphs and columns in tables.

The following example illustrates the use of date/time data. First we create some date/time data and view 
it in a table:

Make/D/N=10/O testDate = date2secs(2011,4,p+1)
SetScale d 0, 0, "dat", testDate // Tell Igor this wave stores date/time data

We used SetScale d to set the data units of the wave to "dat".

Next we view the wave in a table:

Edit testDate
ModifyTable width(testDate)=120 // Make column wider

The data is displayed as dates but it is stored as numbers - specifically the number of seconds since January 
1, 1904. We can see this by changing the column format:

ModifyTable format=1 // Display as integer

Now we return to date format:

ModifyTable format(testDate)=6 // Display as date again

Next we create some time data. This wave will not store dates and therefore does not need to be double-
precision:

Make/N=10/O testTime = 3600*p // Data is stored in seconds
AppendToTable testTime

Now we create a date/time wave by adding the time data to the date data. Since this wave will store dates 
it must be double-precision and must have "dat" data units. We accomplish this by using the Duplicate 
operation to duplicate the original date wave:

Duplicate/O testDate, testDateTime
AppendToTable testDateTime
ModifyTable width(testDateTime)=120 // Make wider

Igor displays the date/time wave in date format because it has "dat" units and all of the time values are 
00:00:00. We now change the column format to date/time:

ModifyTable format(testDateTime)=8 // Set column to date/time format

Finally, we add the time:

testDateTime = testDateTime + testTime // Add time to date

To check the data type of your waves, use the info pane in the Data Browser. The data type shown for 
date/time waves should be “Double Float 64 bit”. If not, use Data→Redimension Waves to redimension as 
double-precision.

So far we have looked at storing dates in the data of a wave. Typically such a date wave is used to supply 
the X wave of an XY pair. If your data is waveform in nature, you would store date data in the X values of 
a wave treated as a waveform. For example:
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Make/N=100 wave0 = sin(p/8)
SetScale/P x date2secs(2011,4,1), 60*60*24, "dat", wave0
Display wave0
Edit wave0.id; ModifyTable format(wave0.x)=6

Here the SetScale command is used to set the X scaling and units of the wave, not the data units as before. 
In this case, the wave does not need to be double-precision because Igor always calculates X values using 
double-precision regardless of the wave's data type.

Text Waves
Text waves are just like numeric waves except they contain text rather than numbers. Like numeric waves, 
text waves can have one to four dimensions.

To create a text wave:
• Type anything but a number into the first unused cell of a table.
• Import data from a delimited text file that contains nonnumeric columns.
• Use the Make operation with the /T flag.

You can use the Make Waves dialog to generate text waves by choosing Text from the Type pop-up menu. 
Most often you will create text waves by entering text in a table. See Using a Table to Create New Waves 
on page II-174 for more information.

You can store anything in an element of a text wave. There is no length limit. You can edit text waves in a 
table or assign values to the elements of a text wave using a wave assignment statement.

You can use text waves in category plots, to automatically label individual data points in a graph (use 
markers mode and choose a text wave via the marker pop-up menu) and for storing notes in a table. Pro-
grammers may find that text waves are handy for storing a collection of diverse data, such as inputs to or 
outputs from a complex Igor procedure.

Here is how you can create and initialize text waves on the command line:
Make/T textWave= {"First element","Second and last element"}

To see the text wave, create a table:
Edit textWave

Now you can try some wave assignment statements and see the result in the table:
textWave[2] = {"Third element"} // Create new row
textWave += "*" // Append asterisk to each point
textWave = "*" + textWave // Prepend asterisk to each point

Text Wave Text Encodings
This section is of concern only if you store non-ASCII data in a text wave.

Igor interprets the bytes stored in a text wave in light of the wave’s text content text encoding setting. This 
setting will be UTF-8 for waves created in Igor7 or later and, typically, MacRoman or Windows-1252 for 
waves created in previous versions.

Igor7 and later use Unicode, in the form of UTF-8, as the working text encoding. When you access the cont 
ents of a text wave element or store text in a text wave element, Igor does whatever text encoding conver-
sion is required. For example, assume that macRomanTextWave is a wave created in Igor6 on Macintosh. 
Then:

String str = macRomanTextWave[0] // Igor converts from MacRoman to UTF-8
str = "Area = 2πr" // π is a non-ASCII character
macRomanTextWave[0] = str // Igor converts from UTF-8 to MacRoman
Make/O/T utf8TextWave // New waves use UTF-8 text encoding
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utf8TextWave = macRomanTextWave // Igor converts from MacRoman to UTF-8
macRomanTextWave = utf8TextWave // Igor converts from UTF-8 to MacRoman

For further discussion, see Text Encodings on page III-409 and Wave Text Encodings on page III-422.

Using Text Waves to Store Binary Data
While a numeric wave stores a fixed number of bytes in each element, a text wave has the ability to store a 
different number of bytes in each point. This makes text waves handy for storing a variable number of vari-
able-length blobs. This is something that an advanced Igor programmer might do in a sophisticated 
package of procedures.

If you do this, you need to mark the text wave as containing binary data. Otherwise Igor will try to interpret 
it as text, leading to errors. For details on this issue, see Text Waves Containing Binary Data on page 
III-424.

Wave Text Encoding Properties
Igor Pro 7 uses Unicode internally. Older versions of Igor used non-Unicode text encodings such as Mac-
Roman, Windows-1252 and Shift JIS.

Igor Pro 7 must convert from the old text encodings to Unicode when opening old files. It is not always pos-
sible to get this conversion right. You may get incorrect characters or receive errors when opening files con-
taining non-ASCII text.

For a discussion of these issues, see Text Encodings on page III-409 and Wave Text Encodings on page 
III-422.

Wave Properties
Here is a complete list of the properties that Igor stores for each wave.

Property Comment

Name Used to reference the wave from commands and dialogs.
1 to 31 bytes. Standard names start with a letter. May contain letters, numbers 
or underscores.
Liberal names may contain almost any character but must be enclosed in 
single quotes. See Wave Names on page II-60.
The name is assigned when you create a wave. You can use the Rename 
operation (see page V-676) to change it.

Data type A numeric, text or reference data type. See Wave Data Types on page II-61.
Set when you create a wave.
Use the Redimension operation (see page V-670) to change it.

Length Number of data points in the wave. Also, size of each dimension for 
multidimensional waves.
Set when you create a wave.
Use the Redimension operation (see page V-670) to change it.

X scaling (x0 and dx) Used to compute X values from point numbers. Also Y, Z and T scaling for 
multidimensional waves.
The X value for point p is computed as X = x0 + p*dx.
Set by SetScale operation (see page V-728).

X units Used to auto-label axes. Also Y, Z and T units for multidimensional waves.
Set by SetScale operation (see page V-728).
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Data units Used to auto-label axes.
Set by SetScale operation (see page V-728).

Data full scale For documentation purposes only. Not used.
Set by SetScale operation (see page V-728).

Note Holds arbitrary text related to wave.
Set by Note operation (see page V-583) or via the Data Browser.
Readable via note function (see page V-583).

Dimension labels Holds short (31 bytes max) label for each dimension index and for each 
dimension. See Dimension Labels on page II-85.

Dependency formula Holds right-hand expression if wave is dependent.
Set when you execute a dependency assignment using := or the SetFormula 
operation (see page V-723).
Cleared when you do an assignment using plain =.

Creation date/time Date & time when wave was created.

Modification date/time Date & time when wave was last modified.

Lock Wave lock state. A locked wave can not be modified.
Set by SetWaveLock operation (see page V-733).

Source folder Identifies folder containing wave’s source file, if any.

File name Name of wave’s source file, if any.

Text encodings See Wave Text Encodings on page III-422.

Property Comment
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