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Chapter II-6 — Multidimensional Waves

Overview

Chapter II-5, Waves, concentrated on one-dimensional waves consisting of a number of rows. In Chapter
II-5, Waves, the rows were referred to as “points” and the symbol p stood for row number, which was called
“point number”. Scaled row numbers were called X values and were represented by the symbol x.

This chapter now extends the concepts from Chapter 1I-5, Waves, to waves of up to four dimensions by
adding the column, layer and chunk dimensions. The symbols g, r and s stand for column, layer and chunk
numbers. Scaled column, layer and chunk numbers are called Y, Z and T values and are represented by the
symbols y, z and t.

We call a two-dimensional wave a “matrix”; it consists of rows (the first dimension) and columns (the
second dimension). After two dimensions the terminology becomes a bit arbitrary. We call the next two
dimensions “layers” and “chunks”.

Here is a summary of the terminology:

Dimension Number 0 1 2 3
Dimension Name row column layer chunk
Dimension Index p q r s
Scaled Dimension Index X y z t

Each element of a 1D wave has one index, the row index, and one data value.
Each element of a 2D wave has two indices, the row index and the column index, and one data value.
Each element of a 3D wave has three indices (row, column, layer) and one data value.

Each element of a 4D wave has four indices (row, column, layer, chunk) and one data value.

Creating Multidimensional Waves

Multidimensional waves can be created using the Make operation:

Make/N= (numRows, numColumns, numLayers, numChunks) waveName

When making an N-dimensional wave, you provide N values to the /N flag. For example:
// Make a 1D wave with 20 rows (20 points total)
Make/N=20 wavel

// Make a matrix (2D) wave with 20 rows and 3 columns (60 elements total)
Make/N=(20,3) wave2

The Redimension operation’s /N flag works the same way.

// Change both wavel and wave2 so they have 10 rows and 4 columns
Redimension/N=(10,4) wavel, wave2

The operations InsertPoints and DeletePoints take a flag (/M=dimensionNumber) to specify the dimension
into which elements are inserted. For example:

InsertPoints/M=1 2,5,wave2 //M=1 means column dimension

This command inserts 5 new columns in front of column number 2. If the /M=1 had been omitted or if /M=0
had been used then 5 new rows would have been inserted in front of row number 2.

You can also create multidimensional waves using the Make operation with a list of data values. For exam-
ple:

// Create a 1D wave consisting of a single column of 3 rows
Make wavel = {1,2,3}
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Chapter II-6 — Multidimensional Waves

// Creates a 2D wave consisting of 3 rows and 2 columns
Make wave2 = {{1,2,3},{4,5,6}}

The Duplicate operation can create an exact copy of a multidimensional wave or, using the /R flag, extract
a subrange. Here is the syntax of the /R flag:

Duplicate/R=[startRow, endRow] [startCol, endCol] and so on...

You can use the character * for any end field to specify the last element in the given dimension or you can

just omit the end field. You can also specify just [] to include all of a given dimension. If the source wave
has more dimensions than you specify in the /R flag, then all of those dimensions are copied. For example:

// Make a 3D wave to play with
Make/N=(5,4,3) wave3A = p + 10*g + 100*r

// Duplicate rows 1 through 2, columns 2 through the end, and all layers
Duplicate/R=1[1,2][2,*] wave3A, wave3B // 2 rows, 2 columns, 3 layers

// Create a 3D wave consisting of all rows of column 2, layer 0
Duplicate/R=[]1[2,2] [0,0] wave3A, wave3C // 5 rows, 1 column, 1 layer

Igor considers wave3C to be 3 dimensional wave and not 1 dimensional, even though it consists of just one
column of data, because the number of columns and layers are greater than zero. This is a subtle distinction
and can cause confusion. For example, you may think you have extracted a 1D wave from a 3D object but
you will find that wave3C will not show up in dialogs where 1D waves are required.

You can turn the 3D wave wave3C into a 1D wave using the following command:
Redimension/N=(-1,0) wave3C

The -1 value does not to change the number of rows whereas the 0 value for the number of columns indi-
cates that there are no dimensions past rows (in other words, no columns, layers or chunks).

Programmer Notes

For historical reasons, you can treat the symbols x and p like global variables, meaning that you can store
into them as well as retrieve their values by referencing them. But this serves no purpose and is not recom-
mended.

Unlike x and p, y, z, t, q, r and s act like functions and you can’t store into them.

Here are some functions and operations that are useful in programming with multidimensional waves:

DimOffset, DimDelta, DimSize
FindDimLabel, SetDimLabel, GetDimLabel

Dimension Labels

A dimension label is a name associated with a dimension (rows, columns, layers or chunks) or with a spe-
cific dimension index (row number, column number, layer number or chunk number).

Dimension labels are primarily an aid to the Igor procedure programmer when dealing with waves in
which certain elements have distinct purposes. Dimension labels can be set when loading from a file, and
can be displayed, created or edited in a table (see Showing Dimension Labels on page II-170).

You can give names to individual dimension indices in multidimensional or 1D waves. For example, if you
have a 3 column wave, you can give column 0 the name “red”, column 1 the name “green” and column 2
the name “blue”. You can use the names in wave assignments in place of literal numbers. To do so, you use
the % symbol in front of the name. For example:

wave2D[] [$red] = wave2D|[p] [$green] //Set red column equal to green column

To create a label for a given index of a given dimension, use the SetDimLabel operation.
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For example:

SetDimLabel 1, 0, red, wave2D

1 is the dimension number (columns), 0 is the dimension index (column 0) and red is the label.

The function GetDimLabel returns a string containing the name associated with a given dimension and
index. For example:

Print GetDimLabel (wave2D,1,0)

prints “red” into the history area.

The FindDimLabel function returns the index value associated with the given label. It returns the special
value -2 if the label is not found. This function is useful in user-defined functions so that you can use a
numeric index instead of a dimension label when accessing a wave in a loop. Accessing wave data using a
numeric index is much faster than using a dimension label.

In addition to setting the name for individual dimension index values, you can set the name for an entire
dimension by using an index value of -1. For example:
SetDimLabel 1, -1, ColorComponents, wave2D

This sets the label for the columns dimension to “ColorComponents”. This label appears in a table if you
display dimension labels.

Dimension names can contain up to 31 bytes and may contain spaces and other normally illegal characters
if you surround the name in single quotes or if you use the $ operator to convert a string expression to a
name. For example:

wave [$'a name with spaces']
wave [$$"a name with spaces"]

Dimension names have the same characteristics as object names. See Object Names on page I11-443 for a
discussion of object names in general.

Graphing Multidimensional Waves

You can easily view two-dimensional waves as images and as contour plots using Igor’s built-in operations.
See Chapter II-14, Contour Plots, and Chapter II-15, Image Plots, for further information about these types
of graphs. You can also create waterfall plots where each column in the matrix wave corresponds to a sep-
arate trace in the waterfall plot. For more details, see Waterfall Plots on page II-255.

Additional facilities for displaying multi-dimensional waves in Igor Pro are provided by the Gizmo extension,
which create surface plots, slices through volumes and many other 3D plots. To get started with Gizmo, see
3D Graphics on page I1-317.

It is possible to graph a subset of a wave, including graphing rows or columns from a multidimensional
wave as traces. See Subrange Display on page II-250 for details.

Analysis on Multidimensional Waves

Igor Pro includes the following capabilities for analysis of multidimensional data:
* Multidimensional waveform arithmetic

* Matrix math operations

* Image processing

* Multidimensional Fast Fourier Transform

® The MatrixOp operation

There are many analysis operations for 1D data that we have not yet extended to support multiple dimensions.
Multidimensional waves do not appear in dialogs for these operations. If you invoke them on multidimensional

I1-86



Chapter II-6 — Multidimensional Waves

waves from the command line or from an Igor procedure, Igor treats the multidimensional waves as if they were
1D. For example, the Smooth operation treats a 2D wave consisting of n rows and m columns as if it were a 1D
wave with n*m rows. In some cases the operation will be useful. In other cases, it will make no sense.

Multidimensional Wave Indexing

You can use multidimensional waves in wave expressions and assignment statements just as you do with 1D
waves (see Indexing and Subranges on page 1I-71). To specify a particular element of a 4D wave, use the
syntax:

wave [rowIndex] [columnIndex] [layerIndex] [chunkIndex]

Similarly, to specify an element of a 4D wave using scaled dimension indices, use the syntax:

wave (xIndex) (yIndex) (zIndex) (tIndex)
To index a 3D wave, omit the chunk index. To index a 2D wave, omit the layer and chunk indices.

rowlndex is the number, starting from zero, of the row of interest. It is an unscaled index. xIndex is simply
the row index, offset and scaled by the wave’s X scaling property, which you set using the SetScale opera-
tion (Change Wave Scaling in Data menu).

Using scaled indices you can access the wave’s data using its natural units. You can use unscaled or scaled
indices, whichever is more convenient. column/Y, layer/Z and chunk/T indices are analogous to row/X indi-
ces.

Using bracket notation tells Igor that the index you are supplying is an unscaled dimension index. Using paren-
thesis notation tells Igor that you are supplying a scaled dimension index. You can even mix the bracket notation
with parenthesis notation.
Here are some examples:

Make/N=(5,4,3) wave3D = p + 10*g + 100*r

SetScale/I x, 0, 1, "", wave3D
SetScale/I vy, -1, 1, "", wave3D
SetScale/I z, 10, 20, "", wave3D

Print wave3D[0] [1] [2]
Print wave3D(0.5) [2] (15)

The first Print command prints 210, the value in row 0, column 1 and layer 2. The second Print command
prints 122, the value in row 2 (where x=0.5), column 2 and layer 1 (where z=15).

Since wave3D has three dimensions, we do not, and must not, specify a chunk index.

There is one important difference between wave access using 1D waves versus multidimensional waves.
For 1D waves alone, Igor performs linear interpolation when the specified index value, whether scaled or
unscaled, falls between two points. For multidimensional waves, Igor returns the value of the element
whose indices are closest to the specified indices.

When a multidimensional wave is the destination of a wave assignment statement, you can specify a sub-
range for each dimension. You can specify an entire dimension by using []. For example:

wave3D[2] [] [1,2] = 3
This sets row 2 of all columns and layers 1 and 2 to the value 3.

Note that indexing of the form [] (entire dimension) or [1,2] (range of a dimension) can be used on the left-
hand side only. This is because the indexing on the left side determines which elements of the destination
are to be set whereas indexing on the right side identifies a particular element in the source which is to con-
tribute to a particular value in the destination.
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Multidimensional Wave Assignment

As with one-dimensional waves, you can assign a value to a multidimensional wave using a wave assign-
ment statement. For example:

Make/O/N=(3,3) wave0 2D, wavel 2D, wave2 2D
wavel 2D = 1.0; wave2 2D = 2.0
wave0 2D = wavel 2D / wave2 2D

The last command sets all elements of wave0_2D equal to the quotient of the corresponding elements of
wavel 2D and wave2_2D.

Important: Wave assignments as shown in the above example where waves on the right-hand side do not
include explicit indexing are defined only when all waves involved have the same dimensionality. The
result of the following assignment is undefined and may produce surprising results.

Make/O/N=(3,3) wave33
Make/O/N=(2,2) wave22
wave33d = wavel2

Whenever waves of mismatched dimensionality are used you should specify explicit indexing as described next.

In a wave assignment, Igor evaluates the right-hand side one time for each element specified by the left-
hand side. During this evaluation, the symbols p, g, r and s take on the value of the row, column, layer and
chunk, respectively, of the element in the destination for which a value is being calculated. For example:

Make/O/N=(5,4,3) wave3D = 0
Make/O/N=(5,4) wave2D = 999
wave3D[] [] [0] = wave2D[p] [g]

This stores the contents of wave2D in layer 0 of wave3D. In this case, the destination (wave3D) has three
dimensions, so p, q and r are defined and s is undefined. The following discussion explains this assignment
and presents a way of thinking about wave assignments in general.

The left-hand side of the assignment specifies that Igor is to store a value into all rows (the first []) and all

columns (the second []) of layer zero (the [0]) of wave3D. For each of these elements, Igor will evaluate the
right-hand side. During the evaluation, the symbol p will return the row number of the element in wave3D
that Igor is about to set and the symbol q will return the column number. The symbol r will have the value
0 during the entire process. Thus, the expression wave2D[p][q] will return a value from wave2D at the cor-
responding row and column in wave3D.

As the preceding example shows, wave assignments provide a way of transferring data between waves.
With the proper indexing, you can build a 2D wave from multiple 1D waves or a 3D wave from multiple
2D waves. Conversely, you can extract a layer of a 3D wave into a 2D wave or extract a column from a 2D
wave into a 1D wave. Here are some examples that illustrate these operations.

// Build a 2D wave from multiple 1D waves (waveforms)

Make/O/N=5, waveO=p, wavel=p+l, wave2=p+2 // 1D waveforms
Make/O/N=(5,3) wave0_ 2D

wave0O_2D[] [0] = waveO [p] // Store into all rows, column O
waveO _2D[] [1] = wavel [p] // Store into all rows, column 1
wave0O 2D[] [2] = wave2[p] // Store into all rows, column 2

// Build a 3D wave from multiple 2D waves

Duplicate/O wave(0_ 2D, wavel 2D; wavel 2D *= -1

Make/O/N=(5,3,2) wave0O_ 3D

waveO 3D[] []1 [0]= waveO _2D[p]l [g] // Store into all rows/cols, layer O
waveO 3D[] [] [1]= wavel 2D[p] [g] // Store into all rows/cols, layer 1

// Extract a layer of a 3D wave into a 2D wave
wave0 2D = waveO_3D[p] [q] [0] // Extract layer 0 into 2D wave
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// Extract a column of a 2D wave into a 1D wave
wave0 = waveO_ 2D[p] [0] // Extract column 0 into 1D wave

To understand assignments like these, first figure out, by looking at the indexing on the left-hand side,
which elements of the destination wave are going to be set. (If there is no indexing on the left then all ele-
ments are going to be set.) Then think about the range of values that p, g, r and s will take on as Igor eval-
uates the right-hand side to get a value for each destination element. Finally, think about how these values,
used as indices on the right-hand side, select the desired source element.

To create such an assignment, first determine the indexing needed on the left-hand side to set the elements of
the destination that you want to set. Then think about the values that p, g, r and s will take on. Then use p, g,
r and s as indices to select a source element to be used when computing a particular destination element.

Here are some more examples:

// Extract a row of a 2D wave into a 1D wave
Make/O/N=3 rowl
rowl = waveO_2D[1] [p] // Extract row 1 of the 2D wave

In this example, the row index (p) for the destination is used to select the source column while the source row
is always 1.

// Extract a horizontal slice of a 3D wave into a 2D wave
Make/O/N=(2,3) slice R2 // Slice consisting of all of row 2
slice R2 = waveO 3D[2] [g] [p] // Extract row 2, all columns/layers

In this example, the row data for slice_R2 comes from the layers of wave0_3D because the p symbol (row
index) is used to select the layer in the source. The column data for slice_R2 comes from the columns of
wave0_3D because the q symbol (column index) is used to select the column in the source. All data comes
from row 2 in the source because the row index is fixed at 2.

You can store into a range of elements in a particular dimension by using a range index on the left-hand
side. As an example, here are some commands that shift the horizontal slices of wave0_3D.

Duplicate/O waveO 3D, tmp wave0O_ 3D

waveO 3D[0] []1[] = tmp waveO_ 3D[4] [g] [r]
waveO 3D[1,4] [1[] = tmp waveO 3D[p-1] [q] [r]
KillWaves tmp waveO_ 3D

The first assignment transfers the slice consisting of all elements in row 4 to row zero. The second assign-
ment transfers slice n-1 to slice n. To understand this, realize that as p goes from 1 to 4, p-1 indexes into the
preceding row of the source.

Vector (Waveform) to Matrix Conversion

Occasionally you will may need to convert between a vector form of data and a matrix form of the same
data values. For example, you may have a vector of 16 data values stored in a waveform named sixteenVals
that you want to treat as a matrix of 8 rows and 2 columns.

Though the Redimension operation normally doesn’t move data from one dimension to another, in the
special case of converting to or from a 1D wave Redimension will leave the data in place while changing
the dimensionality of the wave. You can use the command:

Make/0O/N=16 sixteenVals // 1D
Redimension/N=(8,2) sixteenVals // Now 2D, no data lost

to accomplish the conversion. When redimensioning from a 1D wave, columns are filled first, then layers,
followed by chunks. Redimensioning from a multidimensional wave to a 1D wave doesn’t lose data, either.
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Matrix to Matrix Conversion

To convert a matrix from one matrix form to another, don’t directly redimension it to the desired form. For
instance, if you have a 6x6 matrix wave, and you would like it to be 3x12, you might try:
Make/O/N=(6,6) thirtySixVals // 2D

Redimension/N=(3,12) thirtySixVals // This loses the last three rows

But Igor will first shrink the number of rows to 3, discarding the data for the last three rows, and then add
6 columns of zeroes.

The simplest way to work around this is to convert the matrix to a 1D vector, and then convert it to the new
matrix form:

Make/O/N=(6,6) thirtySixVals // 2D
Redimension/N=36 thirtySixVals // 1D vector preserves the data
Redimension/N=(3,12) thirtySixVals // Data preserved

Multidimensional Fourier Transform

Igor’s FFT and IFFT routines are mixed-radix and multidimensional. Mixed-radix means you do not need
a power of two number of data points (or dimension size).

There is only one restriction on the dimensions of a wave: when performing a forward FFT on real data, the
number of rows must be even. Note, however, that if a given dimension size is a prime number or contains
a large prime in its factorization, the speed will be reduced to that of a normal Discrete Fourier Transform
(i.e., the number of operations will be on the order of N? rather than N*log(N)).

For more information about the FFT, see Fourier Transforms on page 11I-239 and the FFT operation on page
V-190.

Treating Multidimensional Waves as 1D

Sometimes it is useful to treat a multidimensional wave as if it were 1D. For example, if you want to know
the number of NaNs in a 2D wave, you can pass the wave to WaveStats, even though WaveStats treats its
input as 1D.

In other cases, you need to understand the layout of data in memory in order to treat a multidimensional
wave as 1D.

A 2D wave consists of some number of columns. In memory, the data is laid out column-by-column. This
is called "column-major order". In column-major order, consecutive elements of a given column are contig-
uous in memory.

For example, execute:

Make/N=(2,2) mat = p + 2*q
Edit mat

The wave mat consists of two columns. The first column contains the values 0 and 1. The second column
contains the values 2 and 3.

You can pass this wave to an operation or function that is not multidimensional-aware and it will treat the
wave as if it were one column containing 0, 1, 2, 3. For an example:

Print WaveMax (mat) // Prints 3
Here is an example of using the knowledge of how a multidimensional wave is laid out in memory:

Function DemoMDAs1D ()
// Make a 2D wave
Make/O/N=(5,3) mat = p + 10*Qg
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Variable numRows = DimSize (mat, 0)

// Find the sum of each column
Variable numColumns = DimSize (mat,1)
Make/O/N= (numColumns) Sums
Sums = sum(mat, p*numRows, (p+1l)*numRows-1)
Edit mat, Sums

End

The statement
Sums = sum(mat, p* numRows, (p+1l)* numRows-1)

passes the 2D wave mat to the sum function which is not multidimensional-aware. Because sum is not mul-
tidimensional-aware, it requires that we formulate the startX and endX parameters treating mat as if it were
a 1D wave with the data arranged in column-major order.

You can also treat 3D and 4D waves as 1D. In a 3D wave, the data for layer n+1 follows the data for layer n.
In a 4D wave, the data for chunk n+1 follows the data for chunk n.
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