
Chapter

III-8
III-8Curve Fitting

Overview..........................................................................................................................................................  152
Curve Fitting Terminology............................................................................................................................  152
Overview of Curve Fitting.............................................................................................................................  153

Iterative Fitting.........................................................................................................................................  153
Initial Guesses ...................................................................................................................................  154
Termination Criteria.........................................................................................................................  154
Errors in Curve Fitting.....................................................................................................................  154

Data for Curve Fitting .............................................................................................................................  154
Curve Fitting Using the Quick Fit Menu.....................................................................................................  155

Limitations of the Quick Fit Menu ........................................................................................................  155
Using the Curve Fitting Dialog.....................................................................................................................  155

A Simple Case — Fitting to a Built-In Function: Line Fit ..................................................................  156
Choosing the Function and Data....................................................................................................  157
Two Useful Additions: Holding a Coefficient and Generating Residuals...............................  158

Automatic Guesses Didn’t Work...........................................................................................................  161
Fits with Constants ..................................................................................................................................  163
Fitting to a User-Defined Function........................................................................................................  163

Creating the Function ......................................................................................................................  163
Coefficients Tab for a User-Defined Function..............................................................................  166
Making a User-Defined Function Always Available ..................................................................  167
Removing a User-Defined Fitting Function..................................................................................  167
User-Defined Fitting Function Details ..........................................................................................  167

Fitting to an External Function (XFUNC) ............................................................................................  167
The Coefficient Wave ..............................................................................................................................  168

Default................................................................................................................................................  168
Explicit Wave ....................................................................................................................................  168
New Wave .........................................................................................................................................  169
Errors ..................................................................................................................................................  169

The Destination Wave.............................................................................................................................  169
No Destination ..................................................................................................................................  169
Auto-Trace .........................................................................................................................................  169
Explicit Destination ..........................................................................................................................  170
New Wave .........................................................................................................................................  170

Fitting a Subset of the Data ....................................................................................................................  170
Selecting a Range to Fit....................................................................................................................  170
Using a Mask Wave..........................................................................................................................  172

Weighting..................................................................................................................................................  172
Proportional Weighting ..........................................................................................................................  173
Fitting to a Multivariate Function .........................................................................................................  174

Selecting a Multivariate Function ..................................................................................................  174
Selecting Fit Data for a Multivariate Function .............................................................................  174
Fitting a Subrange of the Data for a Multivariate Function .......................................................  175

Model Results for Multivariate Fitting .................................................................................................  175
Time Required to Update the Display..................................................................................................  176
Multivariate Fitting Examples ...............................................................................................................  176



Chapter III-8 — Curve Fitting

III-150

Example One — Remove Planar Trend Using Poly2D...............................................................  176
Example Two — User-Defined Simplified 2D Gaussian Fit ......................................................  177

Problems with the Curve Fitting Dialog ..............................................................................................  178
Built-in Curve Fitting Functions ...................................................................................................................  179
Inputs and Outputs for Built-In Fits.............................................................................................................  184
Curve Fitting Dialog Tabs..............................................................................................................................  185

Global Controls ........................................................................................................................................  186
Function and Data Tab............................................................................................................................  186
Data Options Tab .....................................................................................................................................  188
Coefficients Tab........................................................................................................................................  188
Output Options Tab ................................................................................................................................  188

Computing Residuals .....................................................................................................................................  189
Residuals Using Auto Trace...................................................................................................................  191

Removing the Residual Auto Trace ...............................................................................................  191
Residuals Using Auto Wave ..................................................................................................................  192
Residuals Using an Explicit Residual Wave ........................................................................................  192

Explicit Residual Wave Using New Wave....................................................................................  192
Calculating Residuals After the Fit .......................................................................................................  192

Estimates of Error............................................................................................................................................  193
Confidence Bands and Coefficient Confidence Intervals ..................................................................  193

Calculating Confidence Intervals After the Fit ............................................................................  195
Confidence Band Waves..................................................................................................................  195
Some Statistics...................................................................................................................................  195
Confidence Bands and Nonlinear Functions................................................................................  196

Covariance Matrix...........................................................................................................................................  196
Correlation Matrix ...................................................................................................................................  197
Identifiability Problems ..........................................................................................................................  197

Fitting with Constraints .................................................................................................................................  198
Constraints Using the Curve Fitting Dialog ........................................................................................  198
Complex Constraints Using a Constraints Wave................................................................................  199
Constraint Expressions ...........................................................................................................................  199
Equality Constraint..................................................................................................................................  199
Example Fit with Constraints.................................................................................................................  199
Constraint Matrix and Vector ................................................................................................................  201
Constrained Curve Fitting Pitfalls.........................................................................................................  202

NaNs and INFs in Curve Fits ........................................................................................................................  202
Special Variables for Curve Fitting...............................................................................................................  202

V_FitOptions ............................................................................................................................................  204
Bit 0: Controls X Scaling of Auto-Trace Wave..............................................................................  204
Bit 1: Robust Fitting ..........................................................................................................................  204
Bit 2: Suppresses Curve Fit Window .............................................................................................  204
Bit 3: Save Iterates.............................................................................................................................  204
Bit 4: Suppress Screen Updates ......................................................................................................  205
Bit 5: Errors Only ..............................................................................................................................  205

V_chisq ......................................................................................................................................................  205
V_q .............................................................................................................................................................  205
V_FitError and V_FitQuitReason ..........................................................................................................  205
V_FitIterStart ............................................................................................................................................  206
S_Info .........................................................................................................................................................  206

Errors in Variables: Orthogonal Distance Regression ...............................................................................  207
ODR Fitting is Not Threadsafe ..............................................................................................................  207
Weighting Waves for ODR Fitting ........................................................................................................  207
ODR Initial Guesses.................................................................................................................................  207
Holding Independent Variable Adjustments ......................................................................................  208
ODR Fit Results........................................................................................................................................  208
Constraints and ODR Fitting .................................................................................................................  208
Error Estimates from ODR Fitting.........................................................................................................  209



Chapter III-8 — Curve Fitting

III-151

ODR Fitting Examples ............................................................................................................................  209
Fitting Implicit Functions ..............................................................................................................................  212

Example: Fit to an Ellipse .......................................................................................................................  212
Fitting Sums of Fit Functions ........................................................................................................................  214

Linear Dependency: A Major Issue.......................................................................................................  215
Constraints Applied to Sums of Fit Functions ....................................................................................  215
Example: Summed Exponentials...........................................................................................................  216
Example: Function List in a String ........................................................................................................  217

Curve Fitting with Multiple Processors.......................................................................................................  218
Curve Fitting with Automatic Multithreading....................................................................................  218
Curve Fitting with Programmed Multithreading...............................................................................  218
Constraints and ThreadSafe Functions.................................................................................................  218

User-Defined Fitting Functions.....................................................................................................................  219
User-Defined Fitting Function Formats ...............................................................................................  219
Format of a Basic Fitting Function ........................................................................................................  220
Intermediate Results for Very Long Expressions................................................................................  220
Conditionals .............................................................................................................................................  221
The New Fit Function Dialog Adds Special Comments ....................................................................  221
Functions that the Fit Function Dialog Doesn’t Handle Well ...........................................................  223
Format of a Multivariate Fitting Function ...........................................................................................  223
All-At-Once Fitting Functions ..............................................................................................................  224
Multivariate All-At-Once Fitting Functions ........................................................................................  228
Structure Fit Functions............................................................................................................................  229

Basic Structure Fit Function Example............................................................................................  230
The WMFitInfoStruct Structure ................................................................................................  231
Multivariate Structure Fit Functions..............................................................................................  232

Curve Fitting Using Commands...................................................................................................................  232
Batch Fitting..............................................................................................................................................  232

Curve Fitting Examples..................................................................................................................................  233
Singularities in Curve Fitting ........................................................................................................................  233
Special Considerations for Polynomial Fits ................................................................................................  234
Errors Due to X Values with Large Offsets .................................................................................................  234
Curve Fitting Troubleshooting .....................................................................................................................  234

The Epsilon Wave ....................................................................................................................................  235
Curve Fitting References................................................................................................................................  236



Chapter III-8 — Curve Fitting

III-152

Overview
Igor Pro’s curve fitting capability is one of its strongest analysis features. Here are some of the highlights:
• Linear and general nonlinear curve fitting.
• Fit by ordinary least squares, or by least orthogonal distance for errors-in-variables models.
• Fit to implicit models.
• Built-in functions for common fits.
• Automatic initial guesses for built-in functions.
• Fitting to user-defined functions of any complexity.
• Fitting to functions of any number of independent variables, either gridded data or multicolumn data.
• Fitting to a sum of fit functions.
• Fitting to a subset of a waveform or XY pair.
• Produces estimates of error.
• Supports weighting.

The idea of curve fitting is to find a mathematical model that fits your data. We assume that you have the-
oretical reasons for picking a function of a certain form. The curve fit finds the specific coefficients which 
make that function match your data as closely as possible.

You cannot use curve fitting to find which of thousands of functions fit a data set.

People also use curve fitting to merely show a smooth curve through their data. This sometimes works but 
you should also consider using smoothing or interpolation, which are described in Chapter III-7, Analysis.

You can fit to three kinds of functions:
• Built-in functions.
• User-defined functions.
• External functions (XFUNCs).

The built-in fitting functions are line, polynomial, sine, exponential, double-exponential, Gaussian, Lorent-
zian, Hill equation, sigmoid, lognormal, Gauss2D (two-dimensional Gaussian peak) and Poly2D (two-
dimensional polynomial).

You create a user-defined function by entering the function in the New Fit Function dialog. Very compli-
cated functions may have to be entered in the Procedure window.

External functions, XFUNCs, are written in C or C++. To create an XFUNC, you need the optional Igor XOP 
Toolkit and a C/C++ compiler. You don’t need the toolkit to use an XFUNC that you get from WaveMetrics 
or from another user.

Curve fitting works with equations of the form ; although you can fit functions of any 
number of independent variables (the xn’s) most cases involve just one. For more details on multivariate 
fitting, see Fitting to a Multivariate Function on page III-174.

You can also fit to implicit functions; these have the form . See Fitting Implicit Functions 
on page III-212.

You can do curve fits with linear constraints (see Fitting with Constraints on page III-198).

Curve Fitting Terminology
Built-in fits are performed by the CurveFit operation. User-defined fits are performed by the FuncFit or 
FuncFitMD operation. We use the term “curve fit operation” to stand for CurveFit, FuncFit, or FuncFitMD, 
whichever is appropriate.

y f x1 x2 … xn, , ,( )=

f x1 x2 … xn, , ,( ) 0=



Chapter III-8 — Curve Fitting

III-153

Fitting to an external function works the same as fitting to a user-defined function (with some caveats con-
cerning the Curve Fitting dialog — see Fitting to an External Function (XFUNC) on page III-167).

If you use the Curve Fitting dialog, you don’t really need to know much about the distinction between built-
in and user-defined functions. You may need to know a bit about the distinction between external functions 
and other types. This will be discussed later.

We use the term “coefficients” for the numbers that the curve fit is to find. We use the term “parameters” 
to talk about the values that you pass to operations and functions.

Overview of Curve Fitting
In curve fitting we have raw data and a function with unknown coefficients. We want to find values for the 
coefficients such that the function matches the raw data as well as possible. The “best” values of the coeffi-
cients are the ones that minimize the value of Chi-square. Chi-square is defined as:

where y is a fitted value for a given point, yi is the measured data value for the point and σi is an estimate 
of the standard deviation for yi.

The simplest case is fitting to a straight line: . Suppose we have a theoretical reason to believe that 
our data should fall on a straight line. We want to find the coefficients a and b that best match our data.

For a straight line or polynomial function, we can find the best-fit coefficients in one step. This is nonitera-
tive curve fitting, which uses the singular value decomposition algorithm for polynomial fits.

Iterative Fitting
For the other built-in fitting functions and for user-defined functions, the operation is iterative as the fit tries 
various values for the unknown coefficients. For each try, it computes chi-square searching for the coeffi-
cient values that yield the minimum value of chi-square.

The Levenberg-Marquardt algorithm is used to search for the coefficient values that minimize chi-square. 
This is a form of nonlinear, least-squares fitting.

As the fit proceeds and better values are found, the chi-square value decreases. The fit is finished when the 
rate at which chi-square decreases is small enough.

During an iterative curve fit, you will see the Curve Fit progress window. This shows you the function 
being fit, the updated values of the coefficients, the value of chi-square, and the number of passes.

Normally you will let the fit proceed until completion when the Quit button is disabled and the OK button 
is enabled. When you click OK, the results of the fit are written in the history area.

y yi–

σi
------------ 
 

2

i


y ax b+=



Chapter III-8 — Curve Fitting

III-154

If the fit has gone far enough and you are satisfied, you can click the Quit button, which finishes the iteration 
currently under way and then puts the results in the history area as if the fit had completed on its own.

Sometimes you can see that the fit is not working, e.g., when chi-square is not decreasing or when some of 
the coefficients take on very large nonsense values. You can abort it by pressing the User Abort Key Com-
binations, which discards the results of the fit. You will need to adjust the fitting coefficients and try again.

Initial Guesses
The Levenberg-Marquardt algorithm is used to search for the minimum value of chi-square. Chi-square 
defines a surface in a multidimensional error space. The search process involves starting with an initial 
guess at the coefficient values. Starting from the initial guesses, the fit searches for the minimum value by 
travelling down hill from the starting point on the chi-square surface.

We want to find the deepest valley in the chi-square surface. This is a point on the surface where the coef-
ficient values of the fitting function minimize, in the least-squares sense, the difference between the exper-
imental data and fit data. Some fitting functions may have only one valley. In this case, when the bottom of 
the valley is found, the best fit has been found. Some functions, however, may have multiple valleys, places 
where the fit is better than surrounding values, but it may not be the best fit possible.

When the fit finds the bottom of a valley it concludes that the fit is complete even though there may be a 
deeper valley elsewhere on the surface. Which valley is found first depends on the initial guesses.

For built-in fitting functions, you can automatically set the initial guesses. If this produces unsatisfactory 
results, you can try manual guesses. For fitting to user-defined functions you must supply manual guesses.

Termination Criteria
A curve fit will terminate after 40 passes in searching for the best fit, but will quit if 9 passes in a row produce 
no decrease in chi-square. This can happen if the initial guesses are so good that the fit starts at the minimum 
chi-square. It can also happen if the initial guesses are way off or if the function does not fit the data at all.

You can change the 40-pass limit. See the discussion of V_FitMaxIters under Special Variables for Curve 
Fitting on page III-202. Usually needing more than 40 passes is a sign of trouble with the fit. See Identifiability 
Problems on page III-197.

Unless you know a great deal about the fitting function and the data, it is unwise to assume that a solution 
is a good one. In almost all cases you will want to see a graph of the solution to compare the solution with 
the data. You may also want to look at a graph of the residuals, the differences between the fitted model 
and the data. Igor makes it easy to do both in most cases.

Errors in Curve Fitting
In certain cases you may encounter a situation in which it is not possible to decide where to go next in searching 
for the minimum chi-square. This results in a “singular matrix” error. This is discussed under Singularities in 
Curve Fitting on page III-233. Curve Fitting Troubleshooting on page III-234 can help you find the solution 
to the problem.

Data for Curve Fitting
You must have measured values of both the dependent variable (usually called “y”) and the independent 
variables (usually called “x” especially if there is just one). These are sometimes called the “response vari-
able” and “explanatory variables.” You can do a curve fit to waveform data or to XY data. That is, you can 
fit data contained in a single wave, with the data values in the wave representing the Y data and the wave’s 
X scaling representing equally-spaced X data. Or you can fit data from two (or more) waves in which the 
data values in one wave represent the Y values and the data values in another wave represent the X data. 
In this case, the data do not need to be equally spaced. In fact, the X data can be in random order.

You can read more about waveform and XY data in Chapter II-5, Waves.



Chapter III-8 — Curve Fitting

III-155

Curve Fitting Using the Quick Fit Menu
The Quick Fit menu is the easiest, fastest way to do a curve fit.

The Quick Fit menu gives you quick access to curve fits using the built-
in fitting functions. The data to be fit are determined by examining the 
top graph; if a single trace is found, the graphed data is fit to the 
selected fitting function. If the graph contains more than one trace a 
dialog is presented to allow you to select which trace should be fit.

The graph contextual menu also gives access to the Quick Fit menu. If 
you Control-click (Macintosh) or right-click (Windows) on a trace in a 
graph, you will see a Quick Fit item at the bottom of the resulting con-
textual menu. When you access the Quick Fit menu this way, it auto-
matically fits to the trace you clicked on. This gives you a way to avoid 
the dialog that Quick Fit uses to select the correct trace when there is 
more than one trace on a graph.

When you use the Quick Fit menu, a command is generated to perform the fit and automatically add the 
model curve to the graph. By default, if the graph cursors are present, only the data between the cursors is 
fit. You can do the fit to the entire data set by selecting the Fit Between Cursors item in the Quick Fit menu 
in order to uncheck the item. When unchecked, fits are done disregarding the graph cursors.

If the trace you are fitting has error bars and the data for the error bars come from a wave, Quick Fit will 
use the wave as a weighting wave for the fit. Note that this assumes that your error bars represent one stan-
dard deviation. If your error wave represents more than one standard deviation, or if it represents a confi-
dence interval, you should not use it for weighting. You can select the Weight from Error Bar Wave item to 
unmark it, preventing Igor from using the error bar wave for weighting.

By default, a report of curve fit results is printed to the history. If you select Textbox Preferences, the Curve 
Fit Textbox Preferences dialog is displayed. It allows you to specify that a textbox be added to your graph 
containing most of the information that is printed in the history. You can select various components of the 
information by selecting items in the Dialog.

In the screen capture above, the poly2D and Gauss2D fit functions are not available because the top graph 
does not contain a contour plot or image plot, in which case the fitting functions would be available.

For a discussion of the built-in fit functions, see Built-in Curve Fitting Functions on page III-179.

Limitations of the Quick Fit Menu
The Quick Fit menu does not give you access to the full range of curve fitting options available to you. It 
does not give you access to user-defined fitting functions, automatic residual calculation, masking, or con-
fidence interval analysis. A Quick Fit always uses automatic guesses; if the automatic guesses don’t work, 
you must use the Curve Fitting dialog to enter manual guesses.

If your graph displays an image that uses auxiliary X and Y waves to set the image pixel sizes, Quick Fit 
will not be able to do the fit. This is because these waves for an image plot have an extra point that makes 
them unsuitable for fitting. A contour plot uses X and Y waves that set the centers of the data, and these can 
be used for fitting. Quick Fit will do the right thing with such a contour plot.

Using the Curve Fitting Dialog
If you want options that are not available via the Quick Fit menu, the next easiest way to do a fit is to choose 
Curve Fitting from the Analysis menu. This displays the Curve Fitting dialog, which presents an interface 
for selecting a fitting function and data waves, and for setting various curve fitting options. You can use the 
dialog to enter initial guesses if necessary. The Curve Fitting dialog can also be used to create a new user-
defined fitting function.



Chapter III-8 — Curve Fitting

III-156

Most curve fits can be accomplished using the Curve Fitting dialog. If you need to do many fits using the 
same fit function fitting to numerous data sets you will probably want to write a procedure in Igor’s pro-
gramming language to do the job.

The facility for creating a user-defined fitting function using the Curve Fitting dialog will handle most 
common cases, but is probably not the best way to create a very complex fitting function. In such cases, you 
will need to write a fitting function in a procedure window. This is described later under User-Defined 
Fitting Functions on page III-219.

Some very complicated user-defined fitting functions may not work well with the Curve Fitting dialog. In 
some cases, you may need to write the fitting function in the Procedure window, and then use the dialog to 
set up and execute the fit. In other cases it may be necessary to enter the operation manually using either a 
user procedure or by typing on the command line. These cases should be quite rare.

A Simple Case — Fitting to a Built-In Function: Line Fit
To get started, we will cover fitting to a simple built-in fit: a line fit. You may have a theoretical reason to 
believe that your data should be described by the function y = ax + b. You may simply have an empirical 
observation that the data appear to fall along a line and you now want to characterize this line. It’s better if 
you have a theoretical justification, but we’re not all that lucky.

The Curve Fitting dialog is organized into four tabs. Each tab contains controls for some aspect of the fitting 
operation. Simple fits to built-in functions using default options will require only the Function and Data tab.

We will go through the steps necessary to fit a line to data displayed in a graph. Other built-in functions 
work much the same way.

You might have data displayed in a graph like this:

Now you wish to find the best-fitting line for this data. The following commands will make a graph like this 
one. The SetRandomSeed command is used so that the “random” scatter produced by the enoise function 
will be the same as shown above. If you would like to perform the actions yourself as you read the manual, 
you can make the data shown here and the graph by typing these commands on the command line:
Make/N=20/D LineYData, LineXData
SetRandomSeed 0.5   // So the example always makes the same "random" numbers
LineXData = enoise(2)+2 // enoise makes random numbers
LineYData = LineXData*3+gnoise(1) // so does gnoise
Display LineYData vs LineXData
ModifyGraph mode=3,marker=8

10

8

6

4

2

3.53.02.52.01.51.00.5



Chapter III-8 — Curve Fitting

III-157

The first line makes two waves to receive our “data”. The second line sets the seed for Igor's pseudo-
random number generators, resulting in reproducible noise. The third line fills the X wave with uniformly-
distributed random numbers in the range of zero to four. The fourth line fills the Y wave with data that falls 
on a line having a slope of three and passing through the origin, with some normally-distributed noise 
added. The final two lines make the graph and set the display to markers mode with open circles as the 
marker.

Choosing the Function and Data
You display the Curve Fitting dialog by choosing Curve Fitting from the Analysis menu. If you have not 
used the dialog yet, it looks like this, with the Function and Data tab showing:

The first step in doing a curve fit is to choose a fit function. We are doing a simple 
line fit, so pop up the Function menu and choose “line”.

Select the Y data from the Y Data menu. If you have waveform data, be sure that the 
X data menu has “_Calculated_” selected.

If you have separate X and Y data waves, you must select the X wave in the X Data 
menu. Only waves having the same number of data points as the Y wave are shown in this menu. A mis-
match in the number of points is usually the problem if you don’t see your X wave in the menu.

For the line fit example, we select LineYData from the Y Data menu, and LineX-
Data from the X Data menu.

If you have a large number of waves in your experiment, it may be easier if you 
select the From Target checkbox. When it is selected only waves from the top 
graph or table are shown in the Y and X wave menus, and an attempt is made to 
select wave pairs used by a trace on the graph.



Chapter III-8 — Curve Fitting

III-158

At this point, everything is set up to do the fit. For this simple case it is not necessary to visit the other tabs 
in the dialog. When you click Do It, the fit proceeds. The line fit example graph winds up looking like this:

In addition to the model line shown on the graph, various kinds of information appears in the history area: 

•CurveFit line LineYData /X=LineXData /D
fit_LineYData= W_coef[0]+W_coef[1]*x
W_coef={-0.037971,2.9298}
V_chisq= 18.25; V_npnts= 20; V_numNaNs= 0; V_numINFs= 0;
V_startRow= 0;V_endRow= 19;V_q= 1;V_Rab= -0.879789;
V_Pr= 0.956769;V_r2= 0.915408;
W_sigma={0.474,0.21}
Coefficient values ± one standard deviation

a =-0.037971 ± 0.474
b =2.9298 ± 0.21

Two Useful Additions: Holding a Coefficient and Generating Residuals
Well, you’ve done the fit and looked at the graph and you decide that you have reason to believe that the 
line should go through the origin. Because of the scatter in the measured Y values, the fit line misses the 
origin. The solution is to do the fit again, but with the Y intercept coefficient held at a value of zero.

You might also want to display the residuals as a visual check of the fit.

Bring up the dialog again. The dialog remembers the settings you used last time, so the line fit function is 
already chosen in the Function menu, and your data waves are selected in the Y Data and X Data menus.

10

8

6

4

2

3.53.02.52.01.51.00.5

Command line generated by the dialog.

Fit coefficients as a wave.

This line can be copied and used to reevaluate 
the model curve.

Standard deviations of the Fit coefficients 
as a wave.

Coefficient values in a list using the names shown in 
the dialog.



Chapter III-8 — Curve Fitting

III-159

Select the Coefficients tab. Each of the coefficients has a row in the Coefficients list:

Click the checkbox in the column labeled “Hold?” to hold the value of that coefficient.

To specify a coefficient value, fill in the corresponding box in the Initial Guess column. Until you select the 
Hold box the initial guess box is not available because built-in fits don’t require initial guesses.

To fill in a value, click in the box. You can now type a value. When you have finished, press Enter (Windows) 
or Return (Macintosh) to exit editing mode for that box.



Chapter III-8 — Curve Fitting

III-160

Now we want to calculate the fit residuals and add them to the graph. Click the Output Options tab and 
choose _auto trace_ from the Residual menu:

There are a number of options for the residual. We chose _auto trace_ to calculate the residual and add it to 
the graph. You may not always want the residuals added to your graph; choose _auto wave_ to automatically 
calculate the residuals but not display them on your graph. Both _auto trace_ and _auto wave_ create a wave 
with the same name as your Y wave with “Res_” prefixed to the name. Choosing _New Wave_ generates com-
mands to make a new wave with your choice of name to fill with residuals. It is not added to your graph.



Chapter III-8 — Curve Fitting

III-161

Now when we click Do It, the fit is recalculated with a held at zero so that the line passes through the origin. 
Residuals are calculated and added to the graph:

Note that the line on the graph doesn’t cross the vertical axis at zero, because the horizontal axis doesn’t 
extend to zero.

Holding a at zero, the result of the fit printed in the history is:

•K0 = 0;
•CurveFit/H="10" line LineYData /X=LineXData /D /R

fit_LineYData= W_coef[0]+W_coef[1]*x
Res_LineYData= LineYData[p] - (W_coef[0]+W_coef[1]*LineXData[p])
W_coef={0,2.915}
V_chisq= 18.2565; V_npnts= 20; V_numNaNs= 0; V_numINFs= 0;
V_startRow= 0; V_endRow= 19; V_q= 1; V_Rab= 0; V_Pr= 0.956769;
V_r2= 0.906186;
W_sigma={0,0.0971}
Coefficient values ± one standard deviation

a = 0 ± 0
b = 2.915 ± 0.0971

Automatic Guesses Didn’t Work
Most built-in fits will work just like the line fit. You simply choose a function from the Function menu, 
choose your data wave (or waves if you have both X and Y waves) and select output options on the Output 
Options tab. For built-in fits you don’t need the Coefficients tab unless you want to hold a coefficient.

In a few cases, however, automatic guesses don’t work. Then you must use the Coefficient tab to set your 
own initial guesses. One important case in which this is true is if you are trying to fit a growing exponential, 

, where b is positive.

Here are commands to create an example for this section. Once again, you may wish to enter these com-
mands on the command line to follow along:
Make/N=20 RisingExponential
SetScale/I x 0,1,RisingExponential
RisingExponential = 2*exp(3*x)+gnoise(1)
Display RisingExponential
ModifyGraph mode=3,marker=8

10

8

6

4

2

3.53.02.52.01.51.00.5

2
1
0
-1
-2

The /H flag shows that one or more coefficients are held.

a is zero because it was held.

y aebx=



Chapter III-8 — Curve Fitting

III-162

These commands make a 20-point wave, set its X scaling to cover the range from 0 to 1, fill it with exponen-
tial values plus a bit of noise, and make a graph:

The first-cut trial to fitting an exponential function is to select exp from the Function menu and the Ris-
ingExponential wave in the Y Data menu (if you are continuing from the previous section, you may need 
to go to the Coefficients tab and un-hold the y0 coefficient, and to the Output Options tab and de-select 
_auto trace_ in the Residual menu). Automatic guesses assume that the exponential is well described by a 
negative coefficient in the exponential, so the fit doesn’t work:
•CurveFit exp RisingExponential /D
  Fit converged properly
  fit_RisingExponential= W_coef[0]+W_coef[1]*exp(-W_coef[2]*x)
  W_coef={109.92,-114.59,0.3282}
  V_chisq= 432.163; V_npnts= 20; V_numNaNs= 0; V_numINFs= 0;
  W_sigma={256,254,0.86}
  Coefficient values ± one standard deviation
  y0 = 109.92 ± 2.56e+04
  A = -114.59 ± 2.54e+04
  K = 0.3282 ± 86

The solution is to provide your own initial guesses. Click the Coefficients tab and choose Manual Guesses 
in the menu in the upper-right.

The Initial Guesses column in the Coefficients list is now available for you to type your own initial guesses, 
including a negative value for invTau. In this case, we might enter the following initial guesses:

y0 0
A 2
invTau- 3

In response, Igor generates some extra commands for setting the initial guesses and this time the fit works 
correctly:
•K0 = 0; K1 = 2; K2 = -3;
•CurveFit/G exp RisingExponential /D
  Fit converged properly
  fit_RisingExponential= W_coef[0]+W_coef[1]*exp(-W_coef[2]*x)
  W_coef={-0.93965,2.3035,-2.8849}
  V_chisq= 14.4714; V_npnts= 20; V_numNaNs= 0; V_numINFs= 0;
  W_sigma={0.764,0.391,0.163}
  Coefficient values ± one standard deviation
  y0 = -0.93965± 76.4

40

30

20

10

1.00.80.60.40.20.0

Assumes a decaying exponential and doesn’t fit the 
example data correctly.



Chapter III-8 — Curve Fitting

III-163

  A = 2.3035±  39.1
  K = -2.8849±  16.3

It may well be that finding a set of initial guesses from scratch is difficult. Automatic guesses might be a 
good starting point which will provide adequate initial guesses when modified. For this the dialog provides 
the Only Guess mode.

When Only Guess is selected, click Do It to create the automatic initial guesses, and then stop without trying 
to do the fit. Now, when you bring up the Curve Fitting dialog again, you can choose the coefficient wave 
created by the auto guess (W_coef if you chose _default_ in the Coefficient Wave menu). Choosing this 
wave will set the initial guesses to the automatic guess values. Now choose Manual Guesses and modify 
the initial guesses. The Graph Now button may help you find good initial guesses (see Coefficients Tab for 
a User-Defined Function on page III-166).

Fits with Constants
A few of the built-in fit functions include constants that are not varied during the fit. They enter only to pro-
vide, for instance, a constant X offset to improve numerical stability. One such built-in fit function is the 
exp_XOffset fit function. It fits this equation:

Here, y0, A and tau are fit coefficients - they are varied during iterative fitting, and their final values are the 
solution to the fit. On the other hand, x0 is a constant - it is not varied, rather you give it any value you wish 
as part of the fit setup. In the case of the exp_XOffset fit function, if you do not set it yourself, it will be set 
by default to the minimum X value in your input data. For fits to data far from the origin, this improves 
numerical stability. Naturally, it affects the value of A in the final solution.

In the Curve Fitting dialog, when you select a built-in fit function that uses a constant, an additional edit 
box appears below the fit function menu where you can set the value of the constant. Setting it to the default 
value Auto causes Igor to set the constant to some reasonable value based on your input data.

When you do a fit using a built-in fit function that uses a constant, the output includes the wave 
W_fitConstants. Each element of this wave holds the value of one constant for the equation. At present, the 
wave will have just one element because there are no built-in fit functions that use more than one constant.

See Built-in Curve Fitting Functions on page III-179 for details on the constants used with specific fit func-
tions.

Fitting to a User-Defined Function
Fitting to a user-defined function is much like fitting to a built-in function, with two main differences:
• You must define the fitting function.
• You must supply initial guesses.

To illustrate the creation of a user-defined fit function, we will create a function to fit a log function: 
.

Creating the Function
To create a user-defined fitting function, click the New Fit Function button in the Function and Data tab of 
the Curve Fitting Dialog. The New Fit Function dialog is displayed:

y0 A
x x0–

τ
----------- 
 exp+

y C1 C+ 2 x( )ln=



Chapter III-8 — Curve Fitting

III-164

You must fill in a name for your function, fill in the Fit Coefficients list with names for the coefficients, fill 
in the Independent Variables list with names for independent variables, and then enter a fit expression in 
the Fit Expression window.

The function name must conform to nonliberal naming rules. That means it must start with a letter, contain 
only letters, numbers or underscore characters, and it must be 31 or fewer bytes in length (see Object 
Names on page III-443). It must not be the same as the name of another object like a built-in function, user 
procedure, or wave name.

For the example log function, we enter “LogFit”:

Press Tab to move to the first entry in the Fit Coefficient list. There is always one blank entry in the list where 
you can add a new coefficient name; since we haven’t entered anything yet, there is only one blank entry.

Each time you enter a name, press Return (Macintosh) or Enter (Windows). Igor accepts that name and makes 
a new blank entry where you can enter the next name. We enter C1 and C2 as the names:

Click in the first blank entry in the Independent Variables list. Most fit functions will require just a single 
independent variable. We choose to name our independent variable x: 



Chapter III-8 — Curve Fitting

III-165

It is now time to enter the fit expression. You will notice that when you have entered a name in the Independent 
Variables list, some text is entered in the expression window. The return value of the fit function (the Y value in 
most cases) is marked with something like “f(x) = ”. If you had entered “temperature” as the independent vari-
able, it would say “f(temperature) = ”.

This “f() = “ text is required; otherwise the return value of the function will be unknown.

The fit expression is not an algebraic expression. It must be entered in the same form as a command on the 
command line. If you need help constructing a legal expression, you may wish to read Assignment State-
ments on page IV-4. The expression you need to type is simply the right-hand side of an assignment state-
ment. The log expression in our example will look like this:

Multiplication requires an explicit *.

The dialog will check the fit expression for simple errors. For instance, it will not make the Save Fit Function 
Now button available if any of the coefficients or independent variables are missing from the expression.

The dialog cannot check for correct expression syntax. If all the easily-checked items are correct, the Save 
Fit Function Now and Test Compile buttons are made available. Clicking either of them will enter a new 
function in the Procedure window and attempt to compile procedures. If you click the Save Fit Function 
Now button and compilation is successful, you are returned to the Curve Fitting dialog with the new func-
tion chosen in the Function menu.

If compile errors occur, the compiler’s error message is displayed in the status box, and the offending part of 
your expression is highlighted. A common error might be to misspell a coefficient name somewhere in your 
expression. For instance, if you had typed CC1 instead of C1 somewhere you might see something like this:

Note that C1 appears in the expression. Otherwise, the dialog would show that C1 is missing.
When everything is ready to go, click the Save Fit Function Now button to construct a function in the Pro-
cedure window. It includes comments in the function code that identify various kinds of information for 
the dialog. Our example function looks like this:
Function LogFit(w,x) : FitFunc

WAVE w
Variable x

//CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will
//CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog.
//CurveFitDialog/ Equation:
//CurveFitDialog/ f(x) = C1+C2*log(x)
//CurveFitDialog/ End of Equation
//CurveFitDialog/ Independent Variables 1
//CurveFitDialog/ x
//CurveFitDialog/ Coefficients 2



Chapter III-8 — Curve Fitting

III-166

//CurveFitDialog/ w[0] = C1
//CurveFitDialog/ w[1] = C2

return w[0]+w[1]*log(x)
End

You shouldn’t have to deal with the code in the Procedure window unless your function is so complex that 
the dialog simply can’t handle it. You can look at User-Defined Fitting Functions on page III-219 for details 
on how to write a fitting function in the Procedure window.

Having entered the fit expression correctly, click the Save Fit Function Now button, which returns you to 
the main Curve Fitting dialog. The Function menu will now have LogFit chosen as the fitting function.

Coefficients Tab for a User-Defined Function
To fit a user-defined function, you will need to enter initial guesses in the Coefficients tab.

Having created a user-defined fitting function (or simply having selected a preexisting one) you will find 
that the error message window at the bottom of the dialog now states: “You have selected a user-defined 
fit function so you must enter an initial guess for every fit coefficient. Go to the Coefficients Tab to do this.”

When you have selected a user-defined fitting function, the Initial Guess column of the Coefficients List is 
available. You must enter a number in each row. Some functions may be difficult to fit; in such a case the 
initial guess may have to be pretty close to the final solution.

To help you find good initial guesses, the Coefficients tab includes the Graph Now button. This button will add 
a trace to the top graph showing your fitting function using the initial guesses you have entered. For instance:

You can change the values in the initial guess column and click the Graph Now button as many times as 
you wish. The trace will be updated with the changes each time.

The Graph Now button makes a wave using the name of your Y data wave prefixed with “fit_”. The auto 
trace destination wave also uses a wave with the same name when you execute the fit.



Chapter III-8 — Curve Fitting

III-167

On the Coefficients tab you have the option of selecting an “epsilon” wave. An epsilon wave contains one 
epsilon value for each point in your coefficients wave. By default the Epsilon menu is set to _none_ indicat-
ing that the epsilon values are set to the default values.

Each epsilon value is used to calculate partial derivatives with respect to the fit coefficients. The partial 
derivatives are used to determine the search direction for coefficients that give the smallest chi-square.

In most cases the epsilon values are not critical. However, you can supply your own if you have reason to 
believe that the default epsilon values are not providing acceptable partial derivatives (sometimes a singu-
lar matrix error can be avoided by using custom epsilon values). To specify epsilon values, either select a 
pre-existing wave from the Epsilon Wave menu, or select _New Wave_. Only waves having a number of 
points equal to the number of fit coefficients are shown in the menu. Either choice causes the Epsilon 
column to be shown in the Coefficients list, where you can enter values for epsilon.

If you select a wave from the Epsilon menu, the values in that wave are entered in the list. If you select _New 
Wave_, the dialog generates commands to create an epsilon wave and fill it with the values in the Epsilon 
column.

For more information about the epsilon wave and what it does, see The Epsilon Wave on page III-235.

Making a User-Defined Function Always Available
Note that, because the fitting function is created in the Procedure window, it is stored as part of the exper-
iment file. That means that it will be available for fitting while you are working on the experiment in which 
it was created, but will not be available when you work on other experiment files.

You can make the fit function available whenever you start up Igor Pro. Make a new procedure window 
using the Procedure item under New in the Windows menu. Find the fit function in the Procedure window, 
select all the text from Function through End and choose Cut from the Edit menu. Paste the code into your 
new procedure window. Finally, choose Save Procedure Window from the File menu and save in"Igor Pro 
User Files/Igor Procedures" (see Igor Pro User Files on page II-31 for details). The next time you start Igor 
Pro you will find that the function is available in all your experiments.

Removing a User-Defined Fitting Function
To remove a user-defined fitting function that you don’t want any more, choose Procedure Window from 
the Windows menu. Find the function in the Procedure window (you can use Find from the Edit menu and 
search for the name of your function). Select all of the function definition text from the word “Function” 
through the word “End” and delete the text.

If you have followed the directions in the section above for making the function always available, find the 
procedure file in "Igor Pro User Files/Igor Procedures", remove it from the folder, and then restart.

User-Defined Fitting Function Details
The New Fit Function dialog is the easiest way to enter a user-defined fit function. But if your fit expression 
is very long, or it requires multiple lines with local variables or conditionals, the dialog can be cumbersome. 
Certain special situations may call for a format that is not supported by the dialog.

For a complete discussion of user-defined fit function formats and the uses for different formats, see User-
Defined Fitting Functions on page III-219.

Fitting to an External Function (XFUNC)
An external function, or XFUNC, is a function provided via an Igor extension or plug-in. A programmer 
uses the XOP Toolkit to build an XFUNC. You don’t need the toolkit to use one. An XFUNC must be 
installed before it can be used. See Igor Extensions on page III-450.

An XFUNC can speed up curve fitting greatly if your fitting function requires a great deal of computation. 
The speed of fitting is usually dominated by other kinds of overhead and the effort of writing an XFUNC 
is not justified.



Chapter III-8 — Curve Fitting

III-168

Fitting to an external function is just like fitting to a user-defined function, except that the Curve Fitting 
dialog has no way to find out how many fit coefficients are required. When you switch to the Coefficients 
tab, you will see an alert telling you of that fact. The solution to this problem is to select a coefficient wave 
with the correct number of points. You must create the wave before entering the Curve Fitting dialog.

When you select a coefficient wave the contents of the wave are used to build the Coefficients list. The wave 
values are entered in the Initial Guess column. If you change an initial guess, the dialog will generate the 
commands necessary to enter the new values in the wave.

The Coefficient Wave menu normally shows only those waves whose length is the same as the number of fit 
coefficients required by the fitting function. When you choose an XFUNC for fitting, the menu shows all waves. 
You have to know which one to select. We suggest using a wave name that identifies what the wave is for.

Igor doesn’t know about coefficient names for an XFUNC. Coefficient names will be derived from the name 
of the coefficient wave you select. That is, if your coefficient wave is called “coefs”, the coefficient names 
will be “coefs_0”, “coefs_1”, etc.

Of course, implementing your function in C or C++ is more time-consuming and requires both the XOP 
Toolkit from WaveMetrics, and a software development environment. See Creating Igor Extensions on 
page IV-195 for details on using the XOP Toolkit to create your own external function.

The Coefficient Wave
When you fit to a user-defined function, your initial guesses are transmitted to the curve fitting operation 
via a coefficient wave. The coefficients that result from the fit are output in a coefficient wave no matter 
what kind of function you select. For the most part, the Curve Fitting dialog hides this from you.

When you create a user-defined function, the dialog creates a function that takes a wave as the input con-
taining the fit coefficients. But through special comments in the function code, the dialog gives names to 
each of the coefficients. A built-in function has names for the coefficients stored internally. Using these 
names, the dialog is able to hide from you some of the complexities of using a coefficient wave.

In the history printout following a curve fit, the coefficient values are reported both in the form of a wave 
assignment, using the actual coefficients wave, and as a list using the coefficient names. For instance, here is 
the printout from the example user-defined fit earlier (Fitting to a User-Defined Function on page III-163):
•FuncFit LogFit W_coef logData /D
  Fit converged properly
  fit_logData= LogFit(W_coef,x)
  W_coef={1.0041,0.99922}
  V_chisq= 0.00282525; V_npnts= 30; V_numNaNs= 0; V_numINFs= 0;
  W_sigma={0.00491,0.00679}
  Coefficient values ± one standard deviation
  C1 = 1.0041± 0.491
  C2 = 0.99922± 0.679

The wave assignment version can be copied to the command line and executed, or it can be used as a 
command in a user procedure. The list version is easier to read.

You control how to handle the coefficients wave using the Coefficient Wave menu on the Coefficients tab. 
Here are the options.

Default
When _default_ is chosen it creates a wave called W_coef. For built-in fits this wave is used only for output. 
For user-defined fits it is also input. The dialog generates commands to put your initial guesses into the 
wave before the fit starts.

Explicit Wave
The Coefficient Wave menu lists any wave whose length matches the number of fit coefficients. If you select 
one of these waves, it is used for input and output from any fit.

Fit Coefficient values as a wave assignment.

Fit Coefficient sigmas as a wave assignment.

Fit Coefficient values and sigmas in a list using the coefficient names.



Chapter III-8 — Curve Fitting

III-169

When you choose a wave from the menu the data in the wave is used to fill in the Initial Guess column in 
the Coefficients list. This can be used as a convenient way to enter initial guesses. If you choose an explicit 
wave and then edit the initial guesses, the dialog generates commands to change the values in the selected 
coefficient wave before the fit starts. To avoid altering the contents of the wave, after selecting a wave with 
the initial guesses you want, you can choose _default_ or _New Wave_. The initial guesses will be put into 
the new or default coefficients wave.

New Wave
A variation on the explicit coefficients wave is _New Wave_. This works just like an explicit wave except 
that the dialog generates commands to make the wave before the fit starts, so you don’t have to remember 
to make it before entering the dialog. The wave is filled in with the values from the Initial Guess column.

The _New Wave_ option is convenient if you are doing a number of fits and you want to save the fit coef-
ficients from each fit. If you use _default_ the results of a fit will overwrite the results from any previous fit.

Errors
Estimates of fitting errors (the estimated standard deviation of the fit coefficients) are automatically stored 
in a wave named W_sigma. There is no user choice for this output.

The Destination Wave
When performing a curve fit, it will calculate the model curve corresponding to the fit coefficients. As with 
most results, the model curve is stored as an array of numbers in a wave. This wave is the “destination wave”.

The main purpose of the destination wave is to show what the fit function looks like with various coeffi-
cients during the fit operation and with the final fit coefficients when the operation is finished. You can 
choose no destination wave, an explicit destination wave or you can use the auto-trace feature.

You choose the destination wave option on the Output Options tab of the dialog. Here are the options.

No Destination
You would choose no destination wave if you don’t want graphic feedback during the fitting process and 
you don’t need to graphically compare your raw data to the fitting function. This might be the case if you 
are batch fitting a large number of data sets. Choose _none_ in the Destination menu.

Auto-Trace
In most cases, auto-trace is recommended; choose _auto_ from the Destination menu. When you choose 
this, it automatically creates a new wave, sets its X scaling appropriately, and appends it to the top graph if 
the Y data wave is displayed in it. The name of the new wave is generated by prepending “fit_” to the name 
of the Y data wave. If a wave of that name already exists, it is overwritten. If the name exceeds the 31 char-
acter maximum for a wave, the name is truncated.

The number of points in the destination wave depends on the number of independent variables. For the 
most common case of a univariate fit, the default is 200 points. The rest of this discussion assumes you are 
fitting univariate data.

If you want to fit more than one function to the same raw data using auto-trace, you should rename the 
auto-trace wave after the fit so that it will not be overwritten by a subsequent fit. You can rename it using 
the Rename item in the Data menu or by executing a Rename command directly from the command line. 
You may also want to save the W_coef and W_sigma waves using the same technique.

Usually the auto-trace wave is set up as a waveform even if you are fitting to XY data. The X scaling of the 
auto-trace wave is set to spread the 200 points evenly over the X range of the raw data. When preferences are 
on, the auto-trace wave appended to the graph has the preferred line style (color, size, etc.) except that the line 
mode is always set to “lines between points”, which is best suited to showing the curve fitting results.

Evenly-spaced data are not well suited to displaying a curve on a logarithmic axis. If your data are dis-
played using a log axis, the fit will create an XY pair of waves. The X wave will be named by prepending 
“fitX_” to the name of the Y data wave. This X wave is filled with exponentially-spaced X values spread out 



Chapter III-8 — Curve Fitting

III-170

over the X range of the fit data. Of course, if you subsequently change the axis to a linear axis, the point 
spacing will not look right.

With _auto_ chosen in the Destination menu, the dialog displays a box labelled Length. Use this to change the 
number of points in the destination wave. You can set this to any number greater than 3. The more points, the 
smoother the curve (up to a point). More points will also take longer to draw so the fit will be slower.

Explicit Destination
You can specify an explicit destination wave rather than using auto-trace. Use this if you want a model 
value at the X location of each of your input data points.

An explicit destination wave must have the same number of points as the Y data wave, so you should create 
it using the Duplicate operation. The Destination menu shows only waves that have the same number of 
points as the selected Y Data wave.

The explicit destination wave is not automatically appended to the top graph. Therefore, before executing 
the curve fit operation, you would normally execute commands like:
Duplicate/O yData, yDataFit
AppendToGraph yDataFit vs xData

If you are fitting waveform data rather than XY data, you would omit “vs xData” from the AppendToGraph 
command.

New Wave
As a convenience, the Curve Fitting dialog can create a destination wave for you if you choose _New Wave_ 
from the Destination menu. It does this by generating a Duplicate command to duplicate your Y data wave 
and then uses it just like any other explicit destination wave. The new wave is not automatically appended 
to your graph, so you will have to do that yourself after the fit is completed.

Fitting a Subset of the Data
A common problem is that you don’t want to include all of the points in your data set in a curve fit. There 
are two methods for restricting a fit to a subset of points. You will find these options on the Data Options 
tab of the Curve Fitting dialog.

Selecting a Range to Fit
You can select a contiguous range of points in the Range box. The values that you use to specify the range 
for a curve fit are in terms of point or row numbers of the Y data wave. Note that if you are fitting to an XY 
pair of waves and your X values are in random order, you will not be selecting a contiguous range as it 
appears on a graph.

To simplify selecting the range, you can use graph cursors to select the start and end of the range. To use 
cursors, display your raw data in a graph. Display the info panel in the graph by selecting ShowInfo from 
the Graph menu. Drag the cursors onto your raw data. Then use the Cursors button in the Curve Fitting 
dialog to generate a command to fit the cursor range.

Here is what a graph might look like after a fit over a subrange of a data set:



Chapter III-8 — Curve Fitting

III-171

In this example, we used auto-trace for the destination. Notice that the trace appears over the selected range 
only. If we want to show the destination over a wider range, we need to change the destination wave’s X 
scaling. These commands change the destination wave to show more points over a wider range:
Redimension/N=500 fit_data // change to 500 points
SetScale x 13, 20, fit_data // set domain from 13 to 20
fit_data= W_coef[0]+W_coef[1]/((x-W_coef[2])^2+W_coef[3])

The last line was copied from the history area, where it was displayed after the fit.

This produces the following graph:

If you use an explicit destination wave rather than auto-trace, it is helpful to set the destination wave to 
blanks (NaN) before performing the fit. As the fit progresses, it will store new values only in the destination 
wave range that corresponds to the range being fit. Also, it stores into the destination wave only at points 
where the source wave is not NaN or INF. If you don’t preset the destination wave to blanks, you will wind 
up with a combination of new and old data in the destination wave.



Chapter III-8 — Curve Fitting

III-172

These commands illustrate presetting the destination wave and then performing a curve fit to a range of an 
XY pair.
Duplicate/O yData, yDataFit // make destination
yDataFit = NaN // preset to blank (NaN)
AppendToGraph yDataFit vs xData
CurveFit lor yData(xcsr(A),xcsr(B)) /D=yDataFit

Another way to make the fit curve cover a wider range is to select the checkbox labelled X Range Full Width 
of Graph. You will find the checkbox on the Output Options tab of the Curve Fitting dialog.

Using a Mask Wave
Sometimes the points you want to exclude are not contiguous. This might be the case if you are fitting to a 
data set with occasional bad points. Or, in spectroscopic data you may want to fit regions of baseline and 
exclude points that are part of a spectroscopic peak. You can achieve the desired result using a mask wave.

The mask wave must have the same number of points as the Y Data wave. You fill in the mask wave with 
a NaN (Not-a-Number, blank cell) or zero corresponding to data points to exclude and nonzero for data 
points you want to include. You must create the mask wave before bringing up the Curve Fitting dialog. 
You may want to edit the mask wave in a table.

Enter a NaN in a table by typing “NaN” and pressing Return or Enter. Having entered on NaN, you can 
copy it to the clipboard to paste into other cells.
You can also use a wave assignment on the command line. If your data set has a bad data point at point 4, 
a suitable command to set point four in the mask wave would be:
BadPointMask[4] = NaN

When you have a suitable mask wave, you choose it from the Data Mask menu on the Data Options tab.

You can use a mask with NaN points to suppress display of the masked points in a graph if you select the 
mask wave as an f(z) wave in the Modify Trace Appearance dialog. You could also use the same wave with 
the ModifyGraph mask keyword.

Weighting
You may provide a weighting wave if you want to assign greater or lesser importance to certain data points. 
You would do so for one of two reasons:
• To get a better, more accurate fit.
• To get more accurate error estimates for the fit coefficients.

The weighting wave is used in the calculation of chi-square. chi-square is defined as

where y is a fitted value for a given point, yi is the original data value for the point and wi is the standard 
error for the point. The weighting wave provides the wi values. The values in the weighting wave can be 
either 1/σi or simply σi, where σi is the standard deviation for each data value. If necessary, Igor takes the 
inverse of the weighting value before using it to perform the weighting.

You specify the wave containing your weighting values by choosing it from the Weighting menu in the 
Data Options tab. In addition you must specify whether your wave has standard deviations or inverse stan-
dard deviations in it. You do this by selecting one of the buttons below the menu:

• Standard Deviations
• 1/Standard Deviations
Usually you would use standard deviations. Inverse standard deviations are permitted for historical reasons.

y yi–

wi
------------ 
 

2

i




Chapter III-8 — Curve Fitting

III-173

There are several ways in which you might obtain values for σi. For example, you might have a priori knowl-
edge about the measurement process. If your data points are average values derived from repeated mea-
surements, then the appropriate weight value is the standard error. That is the standard deviation of the 
repeated measurements divided by N1/2. This assumes that your measurement errors are normally distrib-
uted with zero mean.

If your data are the result of counting, such as a histogram or a multichannel detector, the appropriate 
weighting is . This formula, however, makes infinite weighting for zero values, which isn’t correct and 
will eliminate those points from the fit. It is common to substitute a value of 1 for the weights for zero points.

You can use a value of zero to completely exclude a given point from the fit process, but it is better to use a 
data mask wave for this purpose.

If you do not provide a weighting wave, then unity weights are used in the fit and the covariance matrix is 
normalized based on the assumption that the fit function is a good description of the data. The reported 
errors for the coefficients are calculated as the square root of the diagonal elements of the covariance matrix 
and therefore the normalization process will provide valid error estimates only if all the data points have 
roughly equal errors and if the fit function is, in fact, appropriate to the data.

If you do provide a weighting wave then the covariance matrix is not normalized and the accuracy of the 
reported coefficient errors rests on the accuracy of your weighting values. For this reason you should not 
use arbitrary values for the weights.

Proportional Weighting
In some cases, it is desirable to use weighting but you know only proportional weights, not absolute mea-
surement errors. In this case, you can use weighting and after the fit is done, calculate reduced chi-square. 
The reduced chi-square can be used to adjust the reported error estimates for the fit coefficients. When you 
do this, the resulting reduced chi-square cannot be used to test goodness of fit.

For example, a data set having Gaussian errors that are proportional to X:
Make data = exp(-x/10) + gnoise((x+1)/1000)
Display data

Prepare a weighting wave that has weights proportional to X, but are not equal to the true measurement 
errors:
Duplicate data, data_wt
data_wt = x+1 // Right proportionality with X, but 1000 times too big

The fit has pretty meaningless coefficient errors because the weights provided were proportional to the true 
measurement errors, but 1000 times too big:
CurveFit/NTHR=0 exp data /W=data_wt /I=1 /D 
Fit converged properly
fit_data= W_coef[0]+W_coef[1]*exp(-W_coef[2]*x)
W_coef={0.0044805,0.99578,0.10063}
V_chisq= 0.000117533;V_npnts= 128;V_numNaNs= 0;V_numINFs= 0;
V_startRow= 0;V_endRow= 127;
W_sigma={5.78,5.74,1.15}
Coefficient values ± one standard deviation

y0    =0.0044805 ± 5.78
A     =0.99578 ± 5.74
invTau=0.10063 ± 1.15

So now we compute reduced errors based on reduced chi-square:

Variable reducedChiSquare = V_chisq/(V_npnts - numpnts(W_coef))
Duplicate W_sigma, reducedSigma
reducedSigma = W_sigma*sqrt(reducedChiSquare)

y( )



Chapter III-8 — Curve Fitting

III-174

The resulting errors are more reasonable:
Print reducedSigma
reducedSigma[0]= {0.00560293,0.0055649,0.00111907}

Note that, as with any non-linear fitting, Gaussian statistics like this are not really applicable. The results 
should be used with caution.

Fitting to a Multivariate Function
A multivariate function is a function having more than one independent variable. This might arise if you 
have measured data over some two-dimensional area. You might measure surface temperature at a variety 
of locations, resulting in temperature as a function of both X and Y. It might also arise if you are trying to 
find dependencies of a process output on the various inputs, perhaps initial concentrations of reagents, plus 
temperature and pressure. Such a case might have a large number of independent variables.

Fitting a multivariate function is pretty much like fitting to a function with a single independent variable. 
This discussion assumes that you have already read the instructions above for fitting a univariate function.

You can create a new multivariate user-defined function by clicking the New Fit Function button. In the 
Independent Variables list, you would enter more than one variable name. You can use as many indepen-
dent variables as you wish (within generous limits set by the length of a line in the procedure window).

A univariate function usually is written as y = f(x), and the Curve Fitting dialog reflects this in using “Y 
Data” and “X Data” to label the menus where you select the input data.

Multivariate data isn’t so convenient. Functions intended to fit spatial data are often written as z = f(x,y); 
volumetric data may be g = f(x,y,z). Functions of a large number of independent variables are often written 
as y = f(x1,x2,…). To avoid confusion, we just keep the Y Data and X Data labels and use them to mean depen-
dent variable and independent variables.

The principle difference between univariate and multivariate functions is in the selection of input data. If you 
have four or fewer independent variables, you can use a multidimensional wave to hold the Y values. This 
would be appropriate for data measured on a spatial grid, or any other data measured at regularly-spaced 
intervals in each of the independent variables. We refer to data in a multidimensional wave as “gridded data.”

Alternately, you can use a 1D wave to hold the Y values. The independent variables can then be in N 1D 
waves, one wave for each independent variable, or a single N-column matrix wave. The X wave or waves 
must have the same number of rows as the Y wave.

Selecting a Multivariate Function
When the Curve Fitting dialog is first used, multivariate functions are not listed in the Function menu. The 
first thing you must do is to turn on the listing of multivariate functions. You do this by choosing Show Mul-
tivariate Functions from the Function menu. This makes two built-in multivariate functions, poly2D and 
Gauss2D, as well as suitable user-defined functions, appear in the menu.

The Show Multivariate Functions setting is saved in the preferences. Unless you turn it off again, you never 
need select it again.

Now you can select your multivariate function from the menu.

Selecting Fit Data for a Multivariate Function
When you have selected a multivariate function, the Y Data menu is filled with 1D waves and any multidi-
mensional waves that match the number of independent variables required by the fit function.

Selecting X Data for a 1D Y Data Wave
If your Y data are in a 1D wave, you must select an X wave for each independent variable. There is no way to 
store X scaling data in the Y wave for more than one independent variable, so there is no _calculated_ item.

With a 1D wave selected in the Y Data menu, the X Data menu lists both 1D waves and 2D waves with N 
columns for a function with N independent variables.



Chapter III-8 — Curve Fitting

III-175

As you select X waves, the wave names are transferred to a list below the menu. When you have selected 
the right number of waves the X Data menu is disabled. The order in which you select the X waves is impor-
tant. The first selected wave gives values for the first independent variable, etc.

If you need to remove an X Data wave from the list, simply click the wave name and press Backspace (Win-
dows) or Delete (Macintosh). To change the order of X Data waves, select one or more waves in the list and 
drag them into the proper order.

Selecting X Data for Gridded Y Data
When you select a multidimensional Y wave, the independent variable values can come from the dimen-
sion scaling of the Y wave or from 1D waves containing values for the associated dimensions of the Y wave. 
That is, if you have a 2D matrix Y wave, you could select a wave to give values for the X dimension and a 
wave to give values for the Y dimension. The Independent Variable menus list only waves that match the 
given dimension of the Y wave.s

Fitting a Subrange of the Data for a Multivariate Function
Selecting a subrange of data for a 1D Y wave is just like selecting a subrange for a univariate function. 
Simply enter point numbers in the Start and End range boxes in the Data Options tab.

If you are fitting gridded Y data, the Data Options tab displays eight boxes to set start and end ranges for 
each dimension of a multidimensional wave. Enter row, column, layer or chunk numbers in these boxes:

If your Y wave is a matrix wave displayed in a graph as an image, you can use the cursors to select a subset 
of the data. With the graph as the target window, clicking the Cursors button will enter text in the range 
boxes to do this.

Using cursors with a contour plot is not straightforward, and the dialog does not support it.

You can also select data subranges using a data mask wave (see Using a Mask Wave on page III-172). The 
data mask wave must have the same number of points and dimensions as the Y Data wave.

Model Results for Multivariate Fitting
As with fitting to a function of one independent variable, Igor creates waves containing the model output 
and residuals automatically. This is done if you choose _auto_ for the destination and _auto trace_ for the 
residual on the Output Options tab. There are some differences in detail, however.

By default, the model curve for a univariate fit is a smooth curve having 200 points to display the model fit. 
This depends on being able to sensibly interpolate between successive values of the independent variable. 
Multicolumn independent variables, on the other hand, probably don’t have successive values of all the 
independent variables in sequential order, so it is not possible to do this. Consequently, it calculates a model 
point for each point in the dependent variable data wave. If the data wave is displayed as a simple 1D trace 
in the top graph window, the fit results will be appended to the graph.

Residuals are always calculated on a point-for-point basis, so calculating residuals for a multicolumn mul-
tivariate fit is just like a univariate fit.

Displaying results of fitting to a multidimensional wave is more problematic. If the dependent variable has 
three or more dimensions, it is not easy to display the results. The model and residual waves will be created 
and the results calculated but not displayed. You can make a variety of 3D plots using Gizmo: just choose 
the appropriate plot type from the Windows→New→3D Plots menu.

Fits to a 2D matrix wave are displayed on the top graph if the Y Data wave is displayed there as either an 
image or a contour. The model results are plotted as a contour regardless of whether the data are displayed 
as an image or a contour. Model results contoured on top of data displayed as an image can be a very pow-
erful visualization technique.

Residuals are displayed in the same manner as the data in a separate, automatically-created graph window. 
The window size will be the same as the window displaying the data.



Chapter III-8 — Curve Fitting

III-176

Time Required to Update the Display
Because contours and images can take quite a while to redraw, the time to update the display at every iter-
ation may cause fits to contour or image data to be very slow. To suppress the updates, click the Suppress 
Screen Updates checkbox on the Output Options tab.

Multivariate Fitting Examples
Here are two examples of fitting to a multivariate function — the first uses the built-in poly2D function to 
fit a plane to a gridded dataset to remove a planar trend from the data. The second defines a simplified 2D 
gaussian function and uses it to define the location of a peak in XY space using random XYZ data.

Example One — Remove Planar Trend Using Poly2D
Here is an example in which a matrix is filled with a two-dimensional sinusoid with a planar trend that 
overwhelms the sinusoid. The example shows how you might fit a plane to the data to remove the trend. 
First, make the data matrix, fill it with values, and display the matrix as an image:
Make/O/N=(20,20) MatrixWave
SetScale/I x 0,2*pi,MatrixWave
SetScale/I y 0,2*pi,MatrixWave
MatrixWave = sin(x) + sin(y) + 5*x + 10*y
Display;AppendImage MatrixWave

These commands make a graph displaying an image like the one that follows. Note the gradient from the 
lower left to the upper right:

We are ready to do the fit.
1. Choose Curve Fitting from the Analysis menu to bring up the Curve Fitting dialog.

2. If you have not already done so, choose Show Multivariate Functions from the Function menu.
3. Choose Poly2D from the Function menu.
4. Make sure the 2D Polynomial Order is set to 1.
5. Choose MatrixWave from the Y Data menu.
6. Click the Output Options tab.
7. Choose _auto trace_ from the Residual menu.
8. Click Do It.

The result is the original graph with a contour plot showing the fit to the data, and a new graph of the resid-
uals, showing the sinusoidal signal left over from the fit:

6

4

2

0

6543210

6

4

2

0

6543210

6

4

2

0

6543210

 80 
 70 

 60 

 50 

 40 
 30 

 20 
 10 

Original graph Residual graph showing sinusoidal signal



Chapter III-8 — Curve Fitting

III-177

Similarly, you can use the ImageRemoveBackground operation, which provides a one-step operation to do 
the same fit. With an image plot as the top window, you will find Remove Background in the Image menu.

Example Two — User-Defined Simplified 2D Gaussian Fit
In this example, we have data defining a spot which we wish to fit with a 2D Gaussian to find the center of 
the spot. For some reason this data is in the form of XYZ triplets with random X and Y coordinates. These 
commands will generate the example data:
Make/n=300 SpotXData, SpotYData, SpotZData
SpotXData = enoise(1)
SpotYData = enoise(1)
// make a gaussian centered at {0.55, -0.3}
SpotZData = 2*exp(-((SpotXData-.55)/.2)^2 -((SpotYData+.3)/.2)^2)+gnoise(.1)
Display; AppendXYZContour SpotZData vs {SpotXData,SpotYData}

Now bring up the Curve Fitting dialog and click the New Fit Function button so that you can enter your 
user-defined fit function. We have reason to believe that the spot is circular so the gaussian can use the same 
width in the X and Y directions, and there is no need for the cross-correlation term. Thus, the new function 
has a z0 coefficient for the baseline offset, A for amplitude, x0 and y0 for the X and Y location and w for 
width. Here is what it looks like in the New Fit Function dialog:

Click Save Fit Function Now to save the function in the Procedure window and return to the Curve Fitting 
dialog. The new function is selected in the Function menu automatically.

To perform the fit choose:
1. SpotZData in the Y Data menu.

2. SpotXData in the X Data menu.

1.0

0.5

0.0

-0.5

-1.0

1.00.50.0-0.5

 1.6 
 1.4 

 1.2 
 1 

 0.6 

 0.4 

 0.2 

 0.2 

 0.2 

 0 

 0 

 0 

 0  0 

 0 

 0  0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 -0.2 



Chapter III-8 — Curve Fitting

III-178

3. SpotYData in the X Data menu.

At this point, the data selection area of the Function and Data tab looks like this:

4. Click the Coefficients tab (the error box at the bottom shows that we must enter initial guesses).
5. Enter initial guesses: we set z0 to 0, A to 2, x0 to 0.5, y0 to -0.3, and width to 0.5.
6. For our problem, residuals and destination aren’t really important since we just want to know the coor-

dinates of the spot center. We click Do It and get this in history:
FuncFit SimpleGaussian W_coef SpotZData /X={SpotXData,SpotYData} /D
  Fit converged properly

fit_SpotZData= SimpleGaussian(W_coef,x,y)
Res_SpotZData= SpotZData[p] - SimpleGaussian(W_coef,SpotXData[p],SpotYData[p])
W_coef={2.0769,0.54697,-0.30557,0.19753,0.0035049}
V_chisq= 2.94333;V_npnts= 300;V_numNaNs= 0;V_numINFs= 0;
V_startRow= 0;V_endRow= 299;
W_sigma={0.0849,0.00529,0.00452,0.00487,0.00621}
Coefficient values ± one standard deviation
A =2.0769 ± 0.0849
x0 =0.54697 ± 0.00529
y0 =-0.30557 ± 0.00452
w =0.19753 ± 0.00487
z0 =0.0035049 ± 0.00621

The output shows that the fit has determined that the center of the spot is {0.54697, -0.30557}.

Problems with the Curve Fitting Dialog
Occasionally you may find that things don’t work the way you expect when using the Curve Fitting dialog. 
Common problems are:
• You can’t find your user-defined function in the Function menu.

This usually happens for one of two reasons: either your function is a multivariate function or it is 
an old-style function. The problem is solved by choosing Show Multivariate Functions or Show Old-
Style Functions from the Function menu on the Function and Data tab.
If you find that choosing Show Old-Style Functions makes your fit function appear, you may want 
to consider clicking the Edit Fit Function button, which makes the Edit Fit Function dialog appear. 
Part of the initialization for the dialog involves revising your fit function to make it conform to cur-
rent standards. While you’re there you can give your fit coefficients mnemonic names.

• You get a message that “Igor can’t determine the number of coefficients…”.
This happens when you click the Coefficients tab when you are using an external function or a user-
defined function that is so complicated that the dialog can’t parse the function code to determine 
how many coefficients are required.
The only way to get around this is to choose an explicit coefficient wave (The Coefficient Wave on 
page III-168). The dialog will then use the number of points in the coefficient wave to determine the 
number of coefficients.



Chapter III-8 — Curve Fitting

III-179

Built-in Curve Fitting Functions
For the most part you will get good results using automatic guesses. A few require additional input beyond 
what is summarized in the preceding sections. This section contains notes on the fitting functions that give 
a bit more detail where it may be helpful.

gauss
Fits a Gaussian peak.

Note that the width parameter is sqrt(2) times the standard deviation of the peak. This is different from the 
wi parameter in the Gauss function, which is simply the standard deviation.

lor
Fits a Lorentzian peak.

exp_XOffset
Fits a decaying exponential.

In this equation, x0 is a constant, not a fit coefficient. During generation of automatic guesses, x0 will be set 
to the first X value in your fit data. This eliminates problems caused by floating-point roundoff.

You can set the value of x0 using the /K flag with the CurveFit operation, but it is recommended that you 
accept the automatic value. Setting x0 to a value far from the initial X value in your input data is guaranteed 
to cause problems.

Note: The fit coefficient τ is the inverse of the equivalent coefficient in the exp function. It is actually the 
decay constant, not the inverse decay constant.

Automatic guesses don’t work for growing exponentials (negative τ). To fit a negative value of τ, use 
Manual Guess on the Coefficients tab, or CurveFit/G on the command line.

dblexp_XOffset
Fits a sum of two decaying exponentials.

y0 A
x x0–

width
-------------- 
 

2
–exp+

y0
A

x x0–( )2 B+
-------------------------------+

y0 A
x x0–

τ
----------- 
 exp+



Chapter III-8 — Curve Fitting

III-180

In this equation, x0 is a constant, not a fit coefficient. During generation of automatic guesses, x0 wall be set to the 
smallest X value in your fit data. This eliminates problems caused by floating-point roundoff.

You can set the value of x0 using the /K flag with the CurveFit operation, but it is recommended that you 
accept the automatic value. Setting x0 to a value far from the initial X value in your input data is guaranteed 
to cause problems.

Note: The fit coefficients τ1 and τ2 are the inverse of the equivalent coefficients in the dblexp function. 
They are actual decay constants, not inverse decay constants.

See the notes for exp_XOffset on page III-179 for growing exponentials. You will 
also need to use manual guesses if the amplitudes have opposite signs:

If the two decay constants (τ1 and τ2) are not quite distinct you may not get accu-
rate results.

exp
Fits a decaying exponential. Similar to exp_XOffset, but not as robust. Included for backward compatibility; 
in new work you should use exp_Xoffset.

Note that offsetting your data in the X direction will cause changes in A. Use exp_XOffset for a result that 
is independent of X position.

Note: The fit coefficient B is the inverse decay constant.

Automatic guesses don’t work for growing exponentials (negative B). To fit a negative value of B, use 
Manual Guess on the Coefficients tab, or CurveFit/G on the command line.

Floating-point arithmetic overflows will cause problems when fitting exponentials with large X offsets. This 
problem often arises when fitting decays in time as times are often large. The best solution is to use the 
exp_XOffset fit function. Otherwise, to fit such data, the X values must be offset back toward zero.

You could simply change your input X values, but it is usually best to work on a copy. Use the Duplicate 
command on the command line, or the Duplicate Waves item in the Data menu to copy your data.
For an XY pair, execute these commands on the command line (these commands assume that you have 
made a duplicate wave called myXWave_copy):
Variable xoffset = myXWave_copy[0]
myWave_copy[0] -= xoffset

Note that these commands assume that you are fitting data from the beginning of the wave. If you are fitting 
a subset, replace [0] with the point number of the first point you are fitting. If you are using graph cursors 
to select the points, substitute [pcsr(A)]. This assumes that the round cursor (cursor A) marks the begin-
ning of the data.

y0 A1
x x0–

τ1
----------- 
 exp A2

x x0–

τ2
----------- 
 exp+ +

y0 A Bx–( )exp+



Chapter III-8 — Curve Fitting

III-181

If you are fitting to waveform data (you selected _calculated_ in the X Data menu) then you need to set the 
x0 part of the wave scaling to offset the data. If you are fitting the entire wave, simply use the Change Wave 
Scaling dialog from the Data menu to set the x0 part of the scaling to zero. If you are fitting a subset selected 
by graph cursors, it is easier to change the scaling on the command line:
SetScale/P x leftx(myWave_copy)-xcsr(A), deltax(myWave_copy), myWave_copy

This command assumes that you have used the round cursor (cursor A) to mark the beginning of the data.

Subtracting an X offset will change the amplitude coefficient in the fit. Often the only coefficient of interest 
is the decay constant (invTau) and the change in the amplitude can be ignored. If that is not the case, you 
can calculate the correct amplitude after the fit is done:
W_coef[1] = W_coef[1]*exp(W_coef[2]*xoffset)

If you are fitting waveform data, the value of xoffset would be -leftx(myWave_copy).

dblexp
Fits a sum of decaying exponentials. Similar to dblexp_XOffset, but suffers from floating-point roundoff 
problems if the data do not start quite close to x=0. Included for backward compatibility; in new work you 
should use exp_Xoffset.

Note that offsetting your data in the X direction will cause changes in A1 and A2. Use dblexp_XOffset for a 
result that is independent of X position.

Note: The fit coefficients B1 and B2 are inverse decay constants.

See the notes for exp for growing exponentials. You will also need to use manual 
guesses if the amplitudes have opposite signs: 

If the two decay constants (B1 and B2) are not quite distinct you may not get accu-
rate results.

Fitting data with a large X offset will have the same sort of troubles as when fitting 
with exp. The best solution is to use the dblexp_XOffset fit function; you can also solve the problem using 
a procedure similar to the one outlined for exp on page III-180.

sin
Fits a sinusoid.

phi is in radians. To convert to degrees, multiply by 180/Pi.

A sinusoidal fit takes an additional parameter that sets the approximate frequency of the sinusoid. This is 
entered in terms of the approximate number of data points per cycle. When you choose sin from the Func-
tion menu, a box appears where you enter the expected number of points per cycle. 

y0 A1 B1x–( )exp A2 B2x–( )exp+ +

y0 A fx φ+( )sin+( )



Chapter III-8 — Curve Fitting

III-182

If you enter a number less than 6, the default value will be 7. It may be necessary to try various values to 
get good results. You may want to simply use manual guesses.

The nature of the sin function makes it impossible for a curve fit to distinguish phases that are different by 
2π. It is probably easier to subtract 2nπ than to try to get the fit to fall in the desired range.

line
Fit a straight line through the data.

Never requires manual guesses.

If you want to fit a line through the origin, in the Coefficients tab select the Hold box for coefficient a and 
set the Initial Guess value to zero.

poly n
Fits a polynomial with n terms, or order n-1.

A polynomial fit takes an additional parameter that sets the number of polynomial terms. When you choose 
poly from the Function menu, a box appears where you enter that value.

The minimum value is 3 corresponding to a quadratic polynomial.

A polynomial fit never requires manual guesses.

poly_XOffset n
Fits a polynomial with n terms, or order n-1. The constant x0 is not an adjustable fit coefficient; it allows you 
to place the polynomial anywhere along the X axis. This would be particularly useful for situations in which 
the X values are large, for instance when dealing with date/time data.

The poly_XOffset fit function takes additional parameters that set the number of polynomial terms and the 
value of x0. When you select poly_XOffset from the Function menu, boxes appear where you enter these 
values.

The minimum value for Polynomial Terms is 3 corresponding to a quadratic polynomial.

When Set Constant X0 is set to Auto, x0 is set to the minimum X value found in the data you are fitting. You 
can set x0 to any value you wish. Values far from the X values in your data set will cause numerical prob-
lems.

A polynomial fit never requires manual guesses.

a bx+( )

K0 K1x K2x
2 …+ + +( )

K0 K1 x x0–( ) K2 x x0–( )2 …+ + +( )



Chapter III-8 — Curve Fitting

III-183

HillEquation
Fits Hill’s Equation, a sigmoidal function.

The coefficient base sets the y value at small X, max sets the y value at large X, rate sets the rise rate and x1/2 
sets the X value at which Y is at (base + max)/2.

Note that X values must be greater than 0. Including a data point at X ≤ 0 will result in a singular matrix 
error and the message, “The fitting function returned NaN for at least one X value.”

You can reverse the values of base and max to fit a falling sigmoid.

sigmoid
Fits a sigmoidal function with a different shape than Hill’s equation.

The coefficient base sets the y value at small X, base+max sets the Y value at large X, x0 sets the X value at 
which Y is at (base + max)/2 and rate sets the rise rate. Smaller rate causes a faster rise.

power
Fits a power law.

May be difficult to fit, requiring good initial guesses, especially for pow > 1 or pow close to zero.

Note that X values must be greater than 0. Including a data point at  will result in a singular matrix 
error and the message, “The fitting function returned NaN for at least one X value.”

lognormal
Fits a lognormal peak shape. This function is gaussian when plotted on a log X axis.

Coefficient y0 sets the baseline, A sets the amplitude, x0 sets the peak position in X and width sets the peak width.

base max base–( )

1
x1 2⁄
x

---------- 
 +

rate
---------------------------------+

base max

1 x0 x–
rate
------------- 
 exp+

--------------------------------------+

y0 Axpow+( )

X 0≤

y0 A
x x0⁄( )ln
width

---------------------- 
 

2
–exp+



Chapter III-8 — Curve Fitting

III-184

Note that X values must be greater than 0. Including a data point at  will cause a singular matrix error 
and the message, “The fitting function returned NaN for at least one X value.”

gauss2D
Fits a Gaussian peak in two dimensions.

Coefficient cor is the cross-correlation term; it must be between -1 and 1 (the small illustration was done with 
cor equal to 0.5). A constraint automatically enforces this range. If you know that a value of zero for this term 
is appropriate, you can hold this coefficient. Holding cor at zero usually speeds up the fit quite a bit.

In contrast with the gauss fit function, xWidth and yWidth are standard deviations of the peak.

Note that the Gauss function lacks the cross-correlation parameter cor.

poly2D n
Fits a polynomial of order n in two dimensions.

A poly2D fit takes an additional parameter that specifies the order of the polynomial. When you choose 
poly2D from the Function menu, a box appears where you enter that value.

The minimum value is 1, corresponding to a first-order polynomial, a plane. The coefficient wave for 
poly2D has the constant term (C0) in point zero, and following points contain groups of increasing order. 
There are two first-order terms, C1*x and C2*y, then three second-order terms, etc. The total number of 
terms is (N+1)(N+2)/2, where N is the order.

Poly2d never requires manual guesses.

Inputs and Outputs for Built-In Fits
There are a number of variables and waves that provide various kinds of input and output to a curve fit. 
Usually you will use the Curve Fitting dialog and the dialog will make it clear what you need, and detailed 
descriptions are available in various places in this chapter. For a quick introduction, here is a table that lists 
the waves and variables used for fitting to a built-in function.

Wave or Variable Type What It Is Used For

Dependent 
variable data 
wave

Input Contains measured values of the dependent variable of the curve to 
fit. Often referred to as “Y data”.

Independent 
variable data wave

Input Contains measured values of the independent variable of the curve to 
fit. Often referred to as “X data”.

Destination wave Optional output For graphical feedback during and after the fit. The destination 
wave continually updates during the fit to show the fit function 
evaluated with the current coefficients.

Residual wave Optional output Difference between the data and the model.

X 0≤

z0 A
1–

2 1 cor2–( )
----------------------------

x x0–

xwidth
----------------- 
 

2 y y0–

ywidth
----------------- 
 

2 2cor x x0–( ) y y0–( )
xwidth ywidth⋅

--------------------------------------------------–+ 
 

exp+

C0 C1x C2y C3x
2 C4xy C5y

2 …+ + + + + +( )



Chapter III-8 — Curve Fitting

III-185

Curve Fitting Dialog Tabs
This section describes the controls on each tab and on the main pane of the Curve Fitting dialog.

Weighting wave Optional input Used to control how much individual Y data points contribute to 
the search for the output coefficients.

System variables 
K0, K1, K2 …

Input and 
output 

Built-in fit functions only.

Optionally takes initial guesses from the system variables and 
updates them at the end of the fit.

Coefficients wave

By default, 
W_coef.

Input and 
Output

Takes initial guesses from the coefficients wave, updates it during 
the fit and leaves final coefficients in it.

See the reference for CurveFit and FuncFit for additional options.

Epsilon wave Optional input User-defined fit functions only.

Used by the curve fitting algorithm to calculate partial derivatives 
with respect to the coefficients.

W_sigma Output Creates this wave and stores the estimates of error for the 
coefficients in it.

W_fitConstants Output Created when you do a fit using a built-in fit function containing a 
constant. Igor creates this wave and stores the values of any 
constants used by the fit equation. For details, see Fits with 
Constants on page III-163. For notes on constants used in specific fit 
functions, see Built-in Curve Fitting Functions on page III-179.

V_<xxx> Input There are a number of special variables, such as V_FitOptions, that 
you can set to tweak the behavior of the curve fitting algorithms.

V_<xxx> Output Creates and sets a number of variables such as V_chisq and 
V_npnts. These contain various statistics found by the curve fit.

M_Covar Output Optionally creates a matrix wave containing the “covariance 
matrix”. It can be used to generate advanced statistics.

Other waves Optional input 
and output

User-supplied or automatically generated waves for displaying 
confidence and prediction bands, and for specifying constraints on 
coefficient values.

Wave or Variable Type What It Is Used For



Chapter III-8 — Curve Fitting

III-186

Global Controls
The controls at the bottom of the dialog are always available:

If you click the Commands radio button, Igor displays the commands generated by the dialog instead of 
the equation.

Function and Data Tab
The Function and Data tab has a variety of appearances depending on the function chosen in the Function 
menu. Here is what it looks like when the built-in sin function is chosen:

Function menu: The main purpose is to choose a function to fit.

The menu also has two items that control what functions are displayed in the menu.

Choose Show Multivariate functions to include functions of more than one independent variable.

Choose Show Old-Style Functions to display functions that lack the FitFunc keyword. See User-Defined 
Fitting Functions on page III-219 for details on the FitFunc keyword. You may need to choose this item if 
you have fitting functions from a version of Igor Pro older than version 4.

Some of the fit functions require additional information that is collected by customized items that appear 
when you select the function.



Chapter III-8 — Curve Fitting

III-187

Polynomial Terms: Appears when you choose the poly function to fit a polynomial. Note that the number 
of terms is one greater than the degree — set this to three for a quadratic polynomial.

Set Constant X0: Appears when you select the exp_XOffset , dblexp_XOffset or poly_XOffset function. X0 
is a constant subtracted from the X values to move the X range for fitting closer to zero. This eliminates 
numerical problems that arise when evaluating exponentials over X ranges even moderately far from zero. 
Setting X0 to Auto causes it to be set to the minimum X value in your input data. Setting to a number over-
rides this default behavior.

Expected Points/Cycle: Appears when you choose the sin function. Use it to set the approximate number 
of data points in one cycle of the sin function. Helps the automatic initial guess come up with good guesses. 
If it is set to less than four, Igor will use the default of seven.

2D Polynomial Order: Appears when you choose the Poly2D function to fit a two-dimensional polynomial 
(a multivariate function — only appears in the menu when you have chosen Show Multivariate Functions). 
Sets the order of the polynomial, not the number of terms. Because a given order includes a term for X and 
a term for Y plus cross terms, the number of terms is (N+1)(N+2)/2 where N is the order.

New Fit Function: Click this button to bring up a dialog in which you can define your own fitting function.

Edit Fit Function: This button is available when you have chosen a user-defined function from the Function 
menu. Brings up a dialog in which you can edit your user-defined function.

Y Data: Select a wave containing the dependent variable data to fit. When a multivariate function is chosen 
in the Function menu, the Y Data menu shows1D waves and waves with dimensions matching the number 
of independent variables used by the function.

X Data: This area changes depending on the function and Y Data wave chosen.

With a univariate function, just the X data menu is shown. Choose _calculated_ if you have just a Y wave; 
the X values will come from the Y wave’s X scaling. The X Data menu shows only waves with the same 
number of points as the Y wave.

When a multivariate function and a 1D Y wave are selected, it adds a list box below the X wave menu. You 
must select one X wave for each independent variable used by the fit function, or a single multicolumn wave 
with the correct number of columns. As you select X waves, they are added to the list. The order of waves in 
the list is important — it determines which is identified with each of the function’s independent variables.

Remove waves from the list by highlighting a wave and pressing Delete (Macintosh) or Backspace (Windows).

With a multivariate function and a multidimensional Y wave selected, it displays four independent vari-
able wave menus, one for each dimension that a wave can have. Each menu displays waves of length 
matching the corresponding dimension of the Y Data wave. Choose “_calculated_” if the independent vari-
able values will come from the Y wave’s dimension scaling.

From Target: When From Target is selected, the Y Data and X Data menus show only waves that are dis-
played in the top table or graph. Makes it easier to find waves in the menus when you are working on an 
experiment with many waves. When you click the From Target checkbox, it will attempt to select appropri-
ate waves for the X and Y data.

Use Multiple Processors: If you are running on a computer with multiple processors, this checkbox is on 
by default. In certain cases, it causes the curve fit code to break some computations into more than one 
thread that can run simultaneously. See Curve Fitting with Multiple Processors on page III-218.



Chapter III-8 — Curve Fitting

III-188

Data Options Tab

Range: Enter point numbers for starting and ending points when fitting to a subset of the Y data.

Historical Note: These boxes used to require X values, they now require point numbers.

Cursors: Available when the top window is a graph displaying the Y data and the graph has the graph 
cursors on the Y data trace. Click this button to enter text in the Start and End range boxes that will restrict 
fitting to the data between the graph cursors.

Note: If the data use both a Y wave and an X wave, and the X values are in random order, you won’t 
get the expected result.

Clear: Click this button to remove text from the Start and End range boxes.

The range box changes if you have selected a multivariate function and multidimensional Y wave. The 
dialog presents Start and End range boxes for each dimension of the Y wave.

Weighting: select a wave that contains weighting values. Only waves that match the Y wave in number of 
points and dimensions are shown in this menu. See Weighting on page III-172 for details.

Wave Contains: select Standard Deviation if the weighting wave contains values of standard deviation for 
each Y data point. A larger value decreases the influence of a point on the fit.

Select 1/Standard Deviation if your weighting wave contains values of the reciprocal of the standard devi-
ation. A larger value increases the influence of the point on the fit.

Data Mask: select a wave that contains ones and zeroes or NaN’s indicating which Y Data points should be 
included in the fit. Only waves that match the Y wave in number of points and dimensions are shown in 
this menu. A one indicates a data point that should be included, a zero or NaN (Not a Number or blank in 
a table) indicates a point that should be excluded.

Coefficients Tab
The coefficients tab is quite complex. It is completely explained in the various sections on how to do a fit. 
See Two Useful Additions: Holding a Coefficient and Generating Residuals on page III-158, Automatic 
Guesses Didn’t Work on page III-161, Coefficients Tab for a User-Defined Function on page III-166, and 
The Coefficient Wave on page III-168.

Output Options Tab
The output options tab has settings that control the reporting and display of fit results:



Chapter III-8 — Curve Fitting

III-189

Destination: Select a wave to receive model values from the fit, or select _auto_ to have Igor create an 
evenly-spaced auto-destination wave for the model values. Updated on each iteration so you can follow the 
fit progress by the graph display. See The Destination Wave on page III-169 for details on the Destination 
menu, the Length box shown above and on the New Wave box that isn’t shown above.

X Range Full Width of Graph: If you have restricted the range of the fit using graph cursors, the auto des-
tination wave will cover only the range selected. Select this checkbox to make the auto destination cover the 
full width of the graph.

Residual: Select a wave to receive calculated values of residuals, or the differences between the model and 
the data. See Computing Residuals on page III-189 for details on residuals and on the various selections 
you can make from this menu.

Error Analysis: Selects various kinds of statistical error analysis. See Confidence Bands and Coefficient 
Confidence Intervals on page III-193 for details.

Add Textbox to Graph: When selected, a textbox with information about the fit will be added to the graph 
containing the Y data. Click the Textbox Preferences button to display a dialog in which you can select 
various bits of information to be included in the text box.

Create Covariance Matrix: When this is selected, the dialog generates the command to create a covariance 
matrix for the fit. See Covariance Matrix on page III-196 for details on the covariance matrix.

Suppress Screen Updates: When this is selected, graphs and tables are not updated while the fit progresses. 
This can greatly speed up the fitting process, especially if the fit involves a contour or image plot, but 
reduces the feedback you get during the fit.

Computing Residuals
A residual is what is left when you subtract your fitting function model from your raw data.

Ideally, your raw data is equal to some known function plus random noise. If you subtract the function from 
your data, what’s left should be noise. If this is not the case, then the function doesn’t properly fit your raw data.

The graphs below illustrate some exponential raw data fitted to an exponential function and to a quadratic (3 
term polynomial). The residuals from the exponential fit are random whereas the residuals from the quadratic 
display a trend overlaid on the random scatter. This indicates that the quadratic is not a good fit for the data.



Chapter III-8 — Curve Fitting

III-190

The easiest way to make a graph such as these is to let it proceed automatically using the Residual pop-up 
menu in the Output Options tab of the Curve Fitting dialog. The graphs above were made this way with 
some minor tweaks to improve the display.

The residuals are recalculated at every iteration of a fit. If the residuals are displayed on a graph, you can 
watch the residuals change as the fit proceeds.

In addition to providing an easy way to compute residuals and add the residual plot to a graph, it prints 
the wave assignment used to create the residuals into the history area as part of the curve fitting process. 
For instance, this is the result of a line fit to waveform data:
•CurveFit line LineYData /X=LineXData /D /R
  fit_LineYData= W_coef[0]+W_coef[1]*x
  Res_LineYData= LineYData - (W_coef[0]+W_coef[1]*LineXData)
  W_coef={0.73804,2.4492}
  V_chisq= 15.6414; V_npnts= 20; V_numNaNs= 0; V_numINFs= 0;
  V_q= 1; V_Rab= -0.337408; V_Pr= 0.934854;
  W_sigma={0.482,0.219}
  Coefficient values ± one standard deviation
  a = 0.73804 ± 48.2
  b = 2.4492 ± 21.9

1000

500

0

1.00.80.60.40.20.0

-60
0

60

Residuals from exponential fit

Raw data with exponential fit

1000

500

0

1.00.80.60.40.20.0

60
0

-60
Residuals from quadratic fit

Raw data with quadratic fit



Chapter III-8 — Curve Fitting

III-191

In this case, a wave called “LineYData” was fit with a straight line model. _auto trace_ was selected for both 
the destination (/D flag) and the residual (/R flag), so the waves fit_LineYData and Res_LineYData were cre-
ated. The third line above gives the equation for calculating the residuals. You can copy this line if you wish 
to recalculate the residuals at a later time. You can edit the line if you want to calculate the residuals in a 
different way. See Calculating Residuals After the Fit on page III-192.

Residuals Using Auto Trace
If you choose _auto trace_ from the Residual menu, it will automatically create a wave for residual values 
and, if the Y data are displayed in the top graph, it will append the residual wave to the graph.

The automatically-created residual wave is named by prepending “Res_” to the name of the Y data wave. 
If the resulting name is too long, it will be truncated. If a wave with that name already exists, it will be 
reused, overwriting the values already in the wave. The residual wave is made with the same number of 
points as the data wave, with one residual value calculated for each data point.

If you fit to a subrange of the data, residual values are calculated only for the points within the subrange. 
Thus, you can use the auto-residual option with a piece-wise fit to build up the residuals by several curve 
fitting operations.

If you fit the same data again, the same residual wave will be used. Thus, to preserve a previous result, you 
must rename the residual wave. This can be done using the Rename item in the Data menu, or the Rename 
command on the command line.

Residuals are displayed on a stacked graph like those above. This is done by shortening the axis used to 
display the Y data, and positioning a new free axis above the axis used for the Y data. The residual plot occu-
pies the space made by shortening the data axis. The axis that Igor creates is given a name derived from the 
axis used to display the Y data, either “Res_Left” or “Res_Right” if the Y data are displayed on the standard 
axes. If the data axis is a named free axis, the automatically-generated axis is given a name created by 
prepending “Res_” to the name of the data axis.

Igor tries hard to make the appended residual plot look nice by copying the formatting of the Y data trace and 
making the residual trace identical so that you can identify which residual trace goes with a given Y data trace. 
The axis formatting for the residual axis is copied from the vertical axis used for the data trace, and the residual 
axis is positioned directly above the data axis. Any other vertical axes that might be in the way are also short-
ened to make room. Here are two examples of graphs that have been modified by the auto-trace residuals:

It is likely that the automatic formatting won’t be quite what you want, but it will probably be close enough 
that you can use the Modify Axis and Modify Trace Appearance dialogs to tweak the formatting. For details 
see Chapter II-12, Graphs, especially the sections Creating Graphs with Multiple Axes on page II-253 and 
Creating Stacked Plots on page II-253.

Removing the Residual Auto Trace
When an auto-trace residual plot is added to a graph, it modifies the axis used to plot the original Y data. If 
you remove the auto-trace residual from the graph, the residual axis is removed and in most cases the Y 
data axis is restored to its previous state.

5

4

3

2

1

0

-1.0 -0.5 0.0 0.5 1.0

120

100

80

60

40

20

0

12080400

-0.4

0.0

0.4

0

4

2

0

-1.0 -0.5 0.0 0.5 1.0

0.8

0.4

0.0

120100806040200

0.0

0



Chapter III-8 — Curve Fitting

III-192

In some complicated graphs the restoration of the data axis isn’t done correctly. To restore the graph, 
double-click the Y data axis to bring up the Modify Axes dialog and select the Axis tab. You will find two 
settings labeled “Draw between … and … % of normal”. Typically, the correct settings will be 0 and 100.

Residuals Using Auto Wave
Because the changes to the graph formatting are substantial, you may want the automatic residual wave 
created and filled in but not appended to the graph. To accomplish this, simply choose _Auto Wave_ from 
the Residual pop-up menu in the Curve Fitting dialog. Once the wave is made by the curve fitting process, 
you can append it to a graph, or use it in any other way you wish.

Residuals Using an Explicit Residual Wave
You can choose a wave from the Residual pop-up menu and that wave will be filled with residual values. 
In this case, it does not append the wave to the top graph. You can use this technique to make graphs with 
the formatting completely under your own control, or to use the residuals for some other purpose.

Only waves having the same number of points as the Y data wave are listed in the menu. If you don’t want 
to let the dialog create the wave, you would first create a suitable wave by duplicating the Y data wave 
using the Duplicate Waves item in the Data menu, or using the Duplicate command:
Duplicate yData, residuals_poly3

It is often a good idea to set the wave to NaN, especially when fitting to a subrange of the data:
residuals_poly3=NaN

After the wave is duplicated, it would typically be appended to a graph or table before it is used in curve fitting.

Explicit Residual Wave Using New Wave
The easiest way to make an explicit residual wave is to let the Curve Fitting dialog do it for you. You do this 
by choosing _New Wave_ in the Residual menu. A box appears allowing you to enter a name for the new 
wave. The dialog will then generate the required commands to make the wave before the curve fit starts. The 
wave made this way will not be added to a graph. You will need to do that yourself after the fit is finished.

Calculating Residuals After the Fit
You may wish to avoid the overhead of calculating residuals during the fitting process. This section 
describes ways to calculate the residuals after a curve fit without depending on automatic wave creation.

Graphs similar to the ones at the top of this section can be made by appending a residuals wave using a free 
left axis. Then, under the Axis tab of the Modify Axes dialog, the distance for the free axis was set to zero 
and the axis was set to draw between 80 and 100% of normal. The normal left axis was set to draw between 
0 and 70% and axis standoff was turned off for both left and bottom axes.

Here are representative commands used to accomplish this.
// Make sample data
Make/N=500 xData, yData
xData = x/500 + gnoise(1/1000)
yData = 100 + 1000*exp(-.005*x) + gnoise(20)

// Do exponential fit with auto-trace
CurveFit exp yData /X=xData /D
Rename fit_yData, fit_yData_exp

// Calculate exponential residuals using interpolation in
// the auto trace wave to get model values
Duplicate yData, residuals_exp
residuals_exp = yData - fit_yData_exp(xData)

// Do polynomial fit with auto-trace



Chapter III-8 — Curve Fitting

III-193

CurveFit poly 3, yData /X=xData /D
Rename fit_yData fit_yData_poly3

// Find polynomial residuals
Duplicate yData, residuals_poly3
residuals_poly3 = yData - fit_yData_poly3(xData)

Calculating model values by interpolating in the auto trace wave may not be sufficiently accurate. Instead, 
you can calculate the exact value using the actual fitting expression. When the fit finishes, it prints the equa-
tion for the fit in the history. With a little bit of editing you can create a wave assignment for calculating 
residuals. Here are the assignments from the history for the above fits:
fit_yData= poly(W_coef,x)
fit_yData= W_coef[0]+W_coef[1]*exp(-W_coef[2]*x)

We can convert these into residuals calculations like this:
residuals_poly3 = yData - poly(W_coef,xData)
residuals_exp = yData - (W_coef[0]+W_coef[1]*exp(-W_coef[2]*xData))

Note that we replaced “x” with “xData” because we have tabulated x values. If we had been fitting equally 
spaced data then we would not have had a wave of tabulated x values and would have left the “x” alone.

This technique for calculating residuals can also be used if you create and use an explicit destination wave. 
In this case the residuals are simply the difference between the data and the destination wave. For example, 
we could have done the exp fit and residual calculations as follows:
Duplicate yData, yDataExpFit,residuals_exp
// explicit destination wave using /D=wave
CurveFit exp yData /X=xData /D=yDataExpFit
residuals_exp = yData - yDataExpFit

Estimates of Error
Igor automatically calculates the estimated error (standard deviation) for each of the coefficients in a curve 
fit. When you perform a curve fit, it creates a wave called W_sigma. Each point of W_sigma is set to the 
estimated error of the corresponding coefficients in the fit. The estimated errors are also indicated in the 
history area, along with the other results from the fit. If you don’t provide a weighting wave, the sigma 
values are estimated from the residuals. This implicitly assumes that the errors are normally distributed 
with zero mean and constant variance and that the fit function is a good description of the data.

The coefficients and their sigma values are estimates (usually remarkably good estimates) of what you 
would get if you performed the same fit an infinite number of times on the same underlying data (but with 
different noise each time) and then calculated the mean and standard deviation for each coefficient.

Confidence Bands and Coefficient Confidence Intervals
You can graphically display the uncertainty of a model fit to data by adding confidence bands or prediction 
bands to your graph. These are curves that show the region within which your model or measured data are 
expected to fall with a certain level of probability. A confidence band shows the region within which the 
model is expected to fall while a prediction band shows the region within which random samples from that 
model plus random errors are expected to fall.

You can also calculate a confidence interval for the fit coefficients. A confidence interval estimates the inter-
val within which the real coefficient will fall with a certain probability.

Note: Confidence and prediction bands are not available for multivariate curve fits.

You control the display of confidence and prediction bands and the calculation of coefficient confidence 
intervals using the Error Analysis section of the Output Options tab of the Curve Fitting dialog:



Chapter III-8 — Curve Fitting

III-194

Using the line fit example at the beginning of this chapter (see A Simple Case — Fitting to a Built-In Func-
tion: Line Fit on page III-156), we set the confidence level to 95% and selected all three error analysis options 
to generate this output and graph:

•CurveFit line LineYData /X=LineXData /D /F={0.950000, 7}
fit_LineYData= W_coef[0]+W_coef[1]*x
W_coef={-0.037971,2.9298}
V_chisq= 18.25; V_npnts= 20; V_numNaNs= 0; V_numINFs= 0;
V_startRow= 0; V_endRow= 19; V_q= 1; V_Rab= -0.879789;
V_Pr= 0.956769;V_r2= 0.915408;
W_sigma={0.474,0.21}
Fit coefficient confidence intervals at 95.00% confidence level:
W_ParamConfidenceInterval={0.995,0.441,0.95}
Coefficient values ± 95.00% Confidence Interval

  a = -0.037971 ± 0.995
  b = 2.9298 ± 0.441

You can do this with nonlinear functions also, but be aware that it is only an approximation for nonlinear 
functions:
Make/O/N=100 GDataX, GDataY // waves for data
GDataX = enoise(10) // Random X values
GDataY = 3*exp(-((GDataX-2)/2)^2) + gnoise(0.3) // Gaussian plus noise
Display GDataY vs GDataX // graph the data
ModifyGraph mode=2,lsize=2 // as dots
CurveFit Gauss GDataY /X=GDataX /D/F={.99, 3}

Dialog has added the /F with parameters to 
select error analysis options.

Coefficient confidence intervals are stored in the wave 
W_ParamConfidenceInterval. Note that the last point in the 
wave contains the confidence level used in the calculation.When confidence intervals are available they are 

listed here instead of the standard deviation.

12

10

8

6

4

2

0

3.53.02.52.01.51.00.5

Confidence band

Prediction band

Line fit to data

Prediction band

Confidence band

95% of measured 
points should fall within 
the prediction band.

If you could repeat the 
experiment numerous times, 95% 
of the time the fit line should fall 
within the confidence band.



Chapter III-8 — Curve Fitting

III-195

The dialog supports only automatically-generated waves for confidence bands. The CurveFit and FuncFit oper-
ations support several other options including an error bar-style display. See CurveFit on page V-105 for details.

Calculating Confidence Intervals After the Fit
You can use the values from the W_sigma wave to calculate a confidence interval for the fit coefficients after 
the fit is finished. Use the StudentT function to do this. The following information was printed into the 
history following a curve fit:

Fit converged properly
fit_junk= f(coeffs,x)
coeffs={4.3039,1.9014}
V_chisq= 101695; V_npnts= 128; V_numNaNs= 0; V_numINFs= 0;
W_sigma={4.99,0.0679}

To calculate the 95 per cent confidence interval for fit coefficients and deposit the values into another wave, 
you could execute the following lines: 
Duplicate W_sigma, ConfInterval
ConfInterval = W_sigma[p]*StudentT(0.95, V_npnts-numpnts(coeffs))

Naturally, you could simply type “126” instead of “V_npnts-numpnts(coeffs)”, but as written the line will 
work unaltered for any fit. When we did this following the fit in the example, these were the results:
ConfInterval = {9.86734,0.134469}

Clearly, coeffs[0] is not significantly different from zero.

Confidence Band Waves
New waves containing values required to display confidence and prediction bands are created by the curve 
fit if you have selected these options. The number of waves and the names depend on which options are 
selected and the style of display. For a contour band, such as shown above, there are two waves: one for the 
upper contour and one for the lower contour. Only one wave is required to display error bars. For details, 
see the CurveFit operation on page V-105.

Some Statistics
Calculation of the confidence and prediction bands involve some statistical assumptions. First, of course, 
the measurement errors are assumed to be normally distributed. Departures from normality usually have 
to be fairly substantial to cause real problems.

If you don’t supply a weighting wave, the distribution of errors is estimated from the residuals. In making 
this estimate, the distribution is assumed to be not only normal, but also uniform with mean of zero. That 
is, the error distribution is centered on the model and the standard deviation of the errors is the same for 
all values of the independent variable. The assumption of zero mean requires that the model be correct; that 
is, it assumes that the measured data truly represent the model plus random normal errors.

3

2

1

0

-5 0 5



Chapter III-8 — Curve Fitting

III-196

Some data sets are not well characterized by the assumption that the errors are uniform. In that case, you 
should specify the error distribution by supplying a weighting wave (see Weighting on page III-172). If you 
do this, your error estimates are used for determining the uncertainties in the fit coefficients, and, therefore, 
also in calculating the confidence band.

The confidence band relies only on the model coefficients and the estimated uncertainties in the coefficients, 
and will always be calculated taking into account error estimates provided by a weighting wave. The pre-
diction band, on the other hand, also depends on the distribution of measurement errors at each point. 
These errors are not taken into account, however, and only the uniform measurement error estimated from 
the residuals are used.

The calculation of the confidence and prediction bands is based on an estimate of the variance of a predicted 
model value:

Here,  is the predicted value of the model at a given value of the independent variable X,  is the vector 
of partial derivatives of the model with respect to the coefficients evaluated at the given value of the inde-
pendent variable, and  is the covariance matrix. Often you see the  term multiplied by , the 
sample variance, but this is included in the covariance matrix. The confidence interval and prediction inter-
val are calculated as:

 and .

The quantities calculated by these equations are the magnitudes of the intervals. These are the values used 
for error bars. These values are added to the model values ( ) to generate the waves used to display the 
bands as contours. The function  is the point on a Student’s t distribution having probabil-
ity , and  is the sample variance. In the calculation of the prediction interval, the value used for 

is the uniform value estimated from the residuals. This is not correct if you have supplied a weighting 
wave with nonuniform values because there is no information on the correct values of the sample variance 
for arbitrary values of the independent variable. You can calculate the correct prediction interval using the 
StudentT function. You will need a value of the derivatives of your fitting function with respect to the 
fitting coefficients. You can either differentiate your function and write another function to provide deriv-
atives, or you can use a numerical approximation. Igor uses a numerical approximation.

Confidence Bands and Nonlinear Functions
Strictly speaking, the discussion and equations above are only correct for functions that are linear in the fitting 
coefficients. In that case, the vector a is simply a vector of the basis functions. For a polynomial fit, that means 
1, x, x2, etc. When the fitting function is nonlinear, the equation results from an approximation that uses only 
the linear term of a Taylor expansion. Thus, the confidence bands and prediction bands are only approximate. 
It is impossible to say how bad the approximation is, as it depends heavily on the function.

Covariance Matrix
If you select the Create Covariance Matrix checkbox in the Output Options tab of the Curve Fitting dialog, 
it generates a covariance matrix for the curve fitting coefficients. This is available for all of the fits except the 
straight-line fit. Instead, a straight-line fit generates the special output variable V_rab giving the covariance 
between the slope and Y intercept.

By default (if you are using the Curve Fitting dialog) it generates a matrix wave having N rows and col-
umns, where N is the number of coefficients. The name of the wave is M_Covar. This wave can be used in 
matrix operations. If you are using the CurveFit, FuncFit or FuncFitMD operations from the command line 
or in a user procedure, use the /M=2 flag to generate a matrix wave.

V Ŷ( ) aTCa=

a δF δp x⁄=

Ŷ a

C aTCa σ2

CI t n p 1 α 2⁄–,–( ) V Ŷ( )[ ]1 2/= PI t n p– 1 α 2⁄–( , ) σ2 V Ŷ( )+[ ]1 2/=

Ŷ
t n p 1 α 2⁄–,–( )

1 α 2⁄– σ2

σ2



Chapter III-8 — Curve Fitting

III-197

Originally, curve fits created one 1D wave for each fit coefficient. The waves taken all together made up the 
covariance matrix. For compatibility with previous versions, the /M=1 flag still produces multiple 1D waves 
with names W_Covarn. Please don’t do this on purpose.

The diagonal elements of the matrix, M_Covar[i][i], are the variances for parameter i. The variance is the 
square of sigma, the standard deviation of the estimated error for that parameter.

The covariance matrix is described in detail in Numerical Recipes in C, page 531 and section 14.5. Also see the 
discussion under Weighting on page III-172.

Correlation Matrix
Use the following commands to calculate a correlation matrix from the covariance matrix produced during 
a curve fit:
Duplicate M_Covar, CorMat // You can use any name instead of CorMat
CorMat = M_Covar[p][q]/sqrt(M_Covar[p][p]*M_Covar[q][q])

A correlation matrix is a normalized form of the covariance matrix. Each element shows the correlation 
between two fit coefficients as a number between -1 and 1. The correlation between two coefficients is 
perfect if the corresponding element is 1, it is a perfect inverse correlation if the element is -1, and there is 
no correlation if it is 0.

Curve fits in which an element of the correlation matrix is very close to 1 or -1 may signal “identifiability” 
problems. That is, the fit doesn’t distinguish between two of the parameters very well, and so the fit isn’t 
very well constrained. Sometimes a fit can be rewritten with new parameters that are combinations of the 
old ones to get around this problem.

Identifiability Problems
In addition to off-diagonal elements of the correlation matrix that are near 1 or -1, symptoms of identifiabil-
ity problems include fits that require a large number of iterations to converge, or fits in which the estimated 
coefficient errors (W_sigma wave) are unreasonably large.

The phrase "identifiability problems" describes a situation in which two or more of the fit coefficients trade 
off in a way that makes it nearly impossible to solve for the values of both at once. They are correlated in a 
way that if you adjust one coefficient, you can find a value of the other that makes a fit that is nearly as good.

When the correlation is too strong, the fitting algorithm doesn't know where to go and therefore wanders 
around in a coefficient space in which a broad range of values all seem about as good. That is, broad regions 
in chi-square space provide very little variation in chi-square. The usual result is apparent convergence but 
with large estimated values in W_sigma, or a singular matrix error. 

The error estimates are based on the curvature of the chi-square surface around the solution point. A flat-
bottomed chi-square surface, such as results from having many solutions that are nearly as good, results in 
large errors. The flat bottom of the chi-square surface also results in small derivatives with respect to the 
coefficients that don't give a good indication of where the fit should go next, so iterations wander around, 
giving rise to fits that require many iterations to converge.

If you see a fit with unreasonably large error estimates, or that take many iterations to converge, compute 
the correlation matrix and look for off-diagonal values near 1 or -1. In our experience, values about 0.9 are 
probably OK. Values near 0.99 are suspicious but can be acceptable. Values around 0.999 are almost cer-
tainly an indication of problems.

Unfortunately, there is little you can do about identifiability problems. It is a mathematical characteristic of 
your fitting function. Sometimes a model has regions in coefficient space where two coefficients have 
similar effects on a fit, and expanding the range of the independent variable can alleviate the problem. Occa-
sionally some feature controlled by a coefficient might be very narrow and you can fix the problem with 
higher sampling density.



Chapter III-8 — Curve Fitting

III-198

Fitting with Constraints
It is sometimes desirable to restrict values of the coefficients to a fitting function. Sometimes fitting func-
tions may allow coefficient values that, while fine mathematically, are not physically reasonable. At other 
times, some ranges of coefficient values may cause mathematical problems such as singularities in the func-
tion values, or function values that are so large that they overflow the computer representation. In such 
cases it is often desirable to apply constraints to keep the solution out of the problem areas. It could be that 
the final solution doesn’t involve any active constraints, but the constraints prevent termination of the fit 
on an error caused by wandering into bad regions on the way to the solution.

Curve fitting supports constraints on the values of any linear combination of the fit coefficients. The Curve 
Fitting dialog supports constraints on the value of individual coefficients.

The algorithm used to apply constraints is quite forgiving. Your initial guesses do not have to be within the 
constraint region (that is, initial guesses can violate the constraints). In most cases, it will simply move the 
parameters onto a boundary of the constraint region and proceed with the fit. Constraints can even be contra-
dictory (“infeasible” in curve fitting jargon) so long as the violations aren’t too severe, and the fit will simply 
“split the difference” to give you coefficients that are a compromise amongst the infeasible constraints.

Constraints are not available for the built-in line, poly and poly2D fit functions. To apply constraints to 
these fit functions you must create a user-defined fit function.

Constraints Using the Curve Fitting Dialog
The Coefficients Tab of the Curve Fitting dialog includes a menu to enable fitting with constraints. When 
you select the checkbox, the constraints section of the Coefficients list becomes available:

Filling in a value in the Lower Constraint column causes the dialog to generate a command to constrain the cor-
responding coefficient to values greater than the value you enter. Filling in a value in the Upper Constraint 
column constrains the corresponding coefficient to values less than the value you enter. A box that is left empty 
does not generate any constraint.

The figure above was made with the gauss function chosen. The following commands are generated by the 
dialog:

More complicated constraints are possible, but cannot be entered in the Curve Fitting dialog. This requires 
that you make a constraints wave before you enter the dialog. Then choose the wave from the Constraints 
menu. See the following sections to learn how to construct the constraints wave.

Make/O/T/N=2 T_Constraints
T_Constraints[0] = {"K2 > 40","K2 < 60"}
CurveFit gauss aa /D /C=T_Constraints

A Make command to make a text wave to 
contain constraint expressions.

A wave assignment to put constraint 
expressions into the wave.

/C parameter added to CurveFit command line to request a constrained fit.



Chapter III-8 — Curve Fitting

III-199

Complex Constraints Using a Constraints Wave
You can constrain the values of linear combinations of coefficients, but the Curve Fitting dialog provides 
support only for simple constraints. You can construct an appropriate text wave with constraints before 
entering the Curve Fitting dialog. Select the wave from the Constraints menu in the Coefficients tab. You 
can also use the CurveFit or FuncFit commands on the command line with a constraints wave.

Each element of the text wave holds one constraint expression. Using a text wave makes it easy to edit the expres-
sions in a table. Otherwise, you must use a command line like the second line in the example shown above.

Constraint Expressions
Constraint expressions can be arbitrarily complex, and can involve any or all of the fit coefficients. Each 
expression must have an inequality symbol (“<”, “<=”, “>”, or “>=”). In the expressions the symbol Kn (K0, 
K1, etc.) is used to represent the nth fitting coefficient. This is like the Kn system variables, but they are 
merely symbolic place holders in constraint expressions. Expressions can involve sums of any combination 
of the Kn’s and factors that multiply or divide the Kn’s. Factors may be arbitrarily complex, even nonlinear, 
as long as they do not involve any of the Kn’s. The Kn’s cannot be used in a call to a function, and cannot 
be involved in a nonlinear expression. Here are some legal constraint expressions:
K0 > 5
K1+K2 < numVar^2+2 // numVar is a global numeric variable
K0/5 < 2*K1
(numVar+3)*K3 > K1+K2/(numVar-2)
log(numVar)*K3 > 5 // nonlinear factor doesn’t involve K3

These are not legal:
K0*K1 > 5 // K0*K1 is nonlinear
1/K1 < 4 // This is nonlinear: division by K1
ln(K0) < 1 // K0 not allowed as parameter to a function

When constraint expressions are parsed, the factors that multiply or divide the Kn’s are extracted as literal 
strings and evaluated separately. Thus, if you have <expression>*K0 or K0/<expression>, <expression> must 
be executable on its own.

You cannot use a text wave with constraint expressions for fitting from a threadsafe function. You must use 
the method described in Constraint Matrix and Vector on page III-201.

Equality Constraint
You may wish to constrain the value of a fit coefficient to be equal to a particular value. The constraint algo-
rithm does not have a provision for equality constraints. One way to fake this is to use two constraints that 
require a coefficient to be both greater than and less than a value. For instance, “K1 > 5” and “K1 < 5” will 
require K1 to be equal to 5.

If it is a single parameter that is to be held equal to a value, this isn’t the best method. You are much better off 
holding a parameter. In the Curve Fitting dialog, simply select the Hold box in the Coefficients list on the Coef-
ficients tab and enter a value in the Initial Guess column. If you are using a command line to do the fit,
FuncFit/H="01"…

will hold K1 at a particular value. Note that you have to set that value before starting the fit.

Example Fit with Constraints
The examples here are available in the Curve Fitting help file where they can be conveniently executed 
directly from the help window.

This example fits to a sum of two exponentials, while constraining the sum of the exponential amplitudes 
to be less than some limit that might be imposed by theoretical knowledge. We use the command line 
because the constraint is too complicated to enter into the Curve Fitting dialog.



Chapter III-8 — Curve Fitting

III-200

First, make the data and graph it:
Make/O/N=50 expData= 3*exp(-0.2*x) + 3*exp(-0.03*x) + gnoise(.1)
Display expData
ModifyGraph mode=3,marker=8

Do a fit without constraints:
CurveFit dblExp expData /D/R

The following command makes a text wave with a single element containing the string “K1 + K3 < 5” which 
implements a restriction on the sum of the individual exponential amplitudes.
Make/O/T CTextWave={"K1 + K3 < 5"}

The wave is made using commands so that it could be written into this help file. It may be easier to use the 
Make Waves item from the Data menu to make the wave, and then display the wave in a table to edit the 
expressions. Make sure you make Text wave. Do not leave any blank lines in the wave.

Now do the fit again with constraints:
CurveFit dblExp expData /D/R/C=CTextWave

In this case, the difference is slight; in the graph of the fit with constraints, notice that the fit line is slightly 
lower at the left end and slightly higher at the right end than in the standard curve fit, and that difference 
is reflected in the residual values at the ends:

The output from a curve fit with constraints includes these lines reporting on the fact that constraints were 
used, and that the constraint was active in the solution:
  --Curve fit with constraints--

Active Constraint: Desired:  K1+K3<5  Achieved:  K1+K3=5

5
4
3
2
1

403020100

0.10
-0.10

Standard Curve Fit

5
4
3
2
1

403020100

-0.2
0.0
0.2

Curve Fit with Constraints



Chapter III-8 — Curve Fitting

III-201

In most cases you will see a message similar to this one. If you have conflicting constraints, it is likely that 
one or more constraints will be violated. In that case, you will get a report of that fact. The following com-
mands add two more constraints to the example. The new constraints require values for the individual 
amplitudes that sum to a number greater than 5, while still requiring that the sum be less than 5 (so these 
are “infeasible constraints”):
Make/O/T CTextWave={"K1 + K3 < 5", "K1 > 3.3", "K3 > 2.2"}
CurveFit dblExp expData /D/R/C=CTextWave

In most cases, you would have added the new constraints by editing the constraint wave 
in a table.

The curve fit report shows that all three constraints were violated to achieve a solution:
--Curve fit with constraints--

Constraint VIOLATED: Desired: K1>3.3 Achieved: K1=3.06604
Constraint VIOLATED: Desired: K3>2.2 Achieved: K3=1.93381

Constraint Matrix and Vector
When you do a constrained fit, it parses the constraint expressions and builds a matrix and a vector that 
describe the constraints.

Each constraint expression is parsed to form a simple expression like , where the Ki’s 
are the fit coefficients, and the Ci’s and D are constants. The constraints can be expressed as the matrix oper-
ation CK ≤ D, where C is a matrix of constants, K is the fit coefficient vector, and D is a vector of limits. The 
matrix has dimensions N by M where N is the number of constraint expressions and M is the number of fit 
coefficients. In most cases, almost all the elements of the matrix are zeroes. In the previous example, the C 
matrix and D vector are:

This is the form used internally by the curve-fitting code. If you wish, you can build a matrix wave and one-
dimensional wave containing the C and D constants. Instead of using /C=textwave to request a fit with con-
straints, use /C={matrix, 1Dwave}.
In general, it is confusing and error-prone to create the right waves for a given set of constraints. However, 
it is not allowed to use the textwave method for curve fitting from a threadsafe function (see Constraints 
and ThreadSafe Functions on page III-218). Fortunately, Igor can create the necessary waves when it parses 
the expressions in a text wave.
You can create waves containing the C matrix and D vector using the /C flag (note that this flag goes right 
after the CurveFit command name, not at the end). If you have executed the examples above, you can now 
execute the following commands to build the waves and display them in a table:
CurveFit/C dblExp expData /D/R/C=CTextWave
Edit M_FitConstraint, W_FitConstraint

The C matrix is named M_FitConstraint and the D vector is named W_FitConstraint (by convention, matrix 
names start with “M_”, and 1D wave names start with “W_”).

In addition to their usefulness for specifying constraints in a threadsafe function, you can use these waves 
later to check the constraints. The following commands multiply the generated fit coefficient wave 
(W_coefs) by the constraint matrix and appends the result to the table made previously:
MatrixMultiply M_FitConstraint, W_coef
AppendToTable M_Product

C matrix D vector

0 1 0 1 0 5

0 -1 0 0 0 -3.3

0 0 0 -1 0 -2.2

C0K0 C1K1 … D≤+ +



Chapter III-8 — Curve Fitting

III-202

The result of the MatrixMultiply operation is the matrix wave 
M_Product. Note that the values of M_Product[1] and 
M_Product[2] are larger than the corresponding values in 
W_FitConstraint because the constraints were infeasible and 
resulted in constraint violations.

Constrained Curve Fitting Pitfalls
Bad Values on the Constraint Boundary
The most likely problem with constrained curve fitting is a value on a constraint boundary that produces a 
singular matrix error during the curve fit. For instance, it would be reasonable in many applications to 
require a pre-exponential multiplier to be positive, in this case K1>0:

It would be natural to write a constraint expression “K1 > 0”, but this can lead to problems. If some iteration 
tries a negative value of K1, the constraints will set K1 to be exactly zero. But when K1 is zero, the function 
has no dependence on K2 and a singular matrix error results. The solution is to use a constraint that requires 
K1 to be greater than some small positive number: “K1 > 0.1”, for instance. The value of the limit must be 
tailored to your application. If you expect the constraint to be inactive when the solution is found, and the 
fit reports that the constraint was active, you can decrease the limit and do the fit again.

Severe Constraint Conflict
Although the method used for applying the constraints can find a solution even when constraints conflict 
with each other (are infeasible), it is possible to have a conflict that is so bad that the method fails. This will 
result in a singular matrix error.

Constraint Region is a Poor Fit
It is possible that the region of coefficient space allowed by the constraints is such a bad fit to the data that 
a singular matrix error results.

Initial Guesses Far Outside the Constraint Region
Usually if the initial guesses for a fit lie outside the region allowed by the constraints, the fit coefficients will 
shift into the constraint region on the first iteration. It is possible, however, for initial guesses to be so far from 
the constraint region that the solution to the constraints fails. This will cause the usual singular matrix error.

Constraints Conflict with a Held Parameter
You cannot hold a parameter and apply a constraint to the same parameter. Thus, this is not allowed:
Make/T CWave="K1 > 5"
FuncFit/H="01" myFunc, myCoefs, myData /C=CWave 

NaNs and INFs in Curve Fits
Curve fits ignore NaNs and INFs in the input data. This is a convenient way to eliminate individual data 
values from a fit. A better way is to use a data mask wave (see Using a Mask Wave on page III-172).

Special Variables for Curve Fitting
There are a number of special variables used for curve fitting input (to provide additional control of the fit) 
and for output (to provide additional statistics). Knowledgeable users can use the input variables to tweak 
the fitting process. However, this is usually not needed. Some output variables help users knowledgeable 
in statistics to evaluate the quality of a curve fit.

To use an input variable interactively, create it from the command line using the Variable operation before 
performing the fit.

y K0 K1e
K2x+=



Chapter III-8 — Curve Fitting

III-203

Most of the output variables are automatically created by the CurveFit or FuncFit operations. Some, as indi-
cated below, are not automatically created; you must create them yourself if you want the information they 
provide.

If you are fitting using a procedure, both the input and output variables can be local or global. It is best to 
make them local. See Accessing Variables Used by Igor Operations on page IV-115 for information on how 
to use local variables. In procedures, output-only variables are always as local variables.

If you perform a curve fit interactively via the command line or via the Curve Fitting dialog, the variables 
will be global. If you use multiple data folders (described in Chapter II-8, Data Folders), you need to 
remember that input and output variables are searched for or created in the current data folder.

The following table lists all of the input and output special variables. Some variables are discussed in more 
detail in sections following the table.

Variable I/O Meaning

V_FitOptions Input Miscellaneous options for curve fit.

V_FitTol Input Normally, an iterative fit terminates when the fractional decrease of chi-
square from one iteration to the next is less than 0.001. If you create a 
global variable named V_FitTol and set it to a value between 0.1 and 
0.00001 then that value will be used as the termination tolerance. Values 
outside that range will have no effect.

V_tol Input (poly fit only) The “singular value threshold”. See Special Considerations 
for Polynomial Fits on page III-234.

V_chisq Output A measure of the goodness of fit. It has absolute meaning only if you’ve 
specified a weighting wave containing the reciprocal of the standard error 
for each data point.

V_q Output (line fit only) A measure of the believability of chi-square. Valid only if 
you specified a weighting wave.

V_siga, V_sigb Output (line fit only) The probable uncertainties of the intercept (K0 = a) and slope 
(K1 = b) coefficients for a straight-line fit (to y = a + bx).

V_Rab Output (line fit only) The coefficient of correlation between the uncertainty in a 
(the intercept, K0) and the uncertainty in b (the slope, K1).

V_Pr Output (line fit only) The linear correlation coefficient r (also called Pearson’s r). 
Values of +1 or -1 indicate complete correlation while values near zero 
indicate no correlation.

V_r2 Output (line fit only) The coefficient of determination, usually called simply "r-
squared".

V_npnts Output The number of points that were fitted. If you specified a weighting wave 
then points whose weighting was zero are not included in this count. Also 
not included are points whose values are NaN or INF.

V_nterms Output The number of coefficients in the fit.

V_nheld Output The number of coefficients held constant during the fit.

V_numNaNs Output The number of NaN values in the fit data. NaNs are ignored during a 
curve fit.

V_numINFs Output The number of INF values in the fit data. INFs are ignored during a curve 
fit.

V_FitError Input/
Output

Used from a procedure to attempt to recover from errors during the fit.



Chapter III-8 — Curve Fitting

III-204

V_FitOptions
There are a number of options that you can invoke for the fitting process by creating a variable named 
V_FitOptions and setting various bits in it. Set V_FitOptions to 1 to set Bit 0, to 2 to set Bit 1, etc.

Bit 0: Controls X Scaling of Auto-Trace Wave
If V_FitOptions exists and has bit 0 set (Variable V_fitOptions=1) and if the Y data wave is on the top 
graph then the X scaling of the auto-trace destination wave is set to match the appropriate x axis on the 
graph. This is useful when you want to extrapolate the curve outside the range of x data being fit.

A better way to do this is with the /X flag (not parameter- this flag goes immediately after the CurveFit or 
FuncFit operation and before the fit function name). See CurveFit for details.

Bit 1: Robust Fitting
You can get a form of robust fitting where the sum of the absolute deviations is minimized rather than the 
squares of the deviations, which tends to deemphasize outlier values. To do this, create V_FitOptions and 
set bit 1 (Variable V_fitOptions=2).

Warning 1: No attempt to adjust the results returned for the estimated errors or for the correlation matrix 
has been made. You are on your own.

Warning 2: Don’t set this bit and then forget about it.

Warning 3: Setting Bit 1 has no effect on line, poly or poly2D fits.

Bit 2: Suppresses Curve Fit Window
Normally, an iterative fit puts up an informative window while the fit is in progress. If you don’t want this 
window to appear, create V_FitOptions and set bit 2 (Variable V_fitOptions=4). This may speed 
things up a bit if you are performing batch fitting on a large number of data sets.

A better way to do this is via the /W=2 flag. See CurveFit for details.

Bit 3: Save Iterates
It is sometimes useful to know the path taken by a curve fit getting to a solution (or failing to). To save his 
information, create V_FitOptions and set bit 3 (Variable V_FitOptions=8). This creates a matrix wave 

V_FitQuitReason Output Provides additional information about why a nonlinear fit stopped 
iterating.

You must create this variable; it is not automatically created.

V_FitIterStart Output Use of V_FitIterStart is obsolete; use all-at-once fit functions instead. See 
All-At-Once Fitting Functions on page III-224 for details.

Set to 1 when an iteration starts. Identifies when the user-defined fitting 
function is called for the first time for a particular iteration.

You must create this variable; it is not automatically created.

V_FitMaxIters Input Controls the maximum number of passes without convergence before 
stopping the fit. By default this is 40. You can set V_FitMaxIters to any 
value greater than 0. If V_FitMaxIters is less than 1 the default value of 40 
is used.

V_FitNumIters Output Number of iterations.

You must create this variable; it is not automatically created.

S_Info Output Keyword-value pairs giving certain kinds of information about the fit.

You must create this variable; it is not automatically created.

Variable I/O Meaning



Chapter III-8 — Curve Fitting

III-205

called M_iterates, which contains the values of the fit coefficients at each iteration. The matrix has a row for 
each iteration and a column for each fit coefficient. The last column contains the value of chi square for each 
iteration.

Bit 4: Suppress Screen Updates
Works just like setting the /N=1 flag. See CurveFit for details.

Added in Igor Pro 7.00.

Bit 5: Errors Only
When set, just like setting /O flag (Guess only) but for FuncFit also computes the W_sigma wave and option-
ally the covariance matrix (/M flag) for your set of coefficients. There is the possibility that setting this bit 
can generate a singular matrix error.

Added in Igor Pro 7.00.

V_chisq
V_chisq is a measure of the goodness of fit. It has absolute meaning only if you’ve specified a weighting 
wave. See the discussion in the section Weighting on page III-172.

V_q
V_q (straight-line fit only) is a measure of the believability of chi-square. It is valid only if you specified a 
weighting wave. It represents the quantity q which is computed as follows:
q = gammq((N-2)/2, chisq/2)

where gammq is the incomplete gamma function 1-P(a,x) and N is number of points. A q of 0.1 or higher indi-
cates that the goodness of fit is believable. A q of 0.001 indicates that the goodness of fit may be believable. A 
q of less than 0.001 indicates systematic errors in your data or that you are fitting to the wrong function.

V_FitError and V_FitQuitReason
When an error occurs during a curve fit, it normally causes any running user-defined procedure to abort.

This makes it impossible for you to write a procedure that attempts to recover from errors. However, you 
can prevent an abort in the case of certain types of errors that arise from  unpredictable mathematical cir-
cumstances. Do this creating a variable named V_FitError and setting it to zero before performing a fit. If 
an error occurs during the fit, it will set bit 0 of V_FitError. Certain errors will also cause other bits to be set 
in V_FitError:

Reentrant curve fitting means that somehow a second curve fit started execution when there was already 
one running. That could happen if your user-defined fit function tried to do a curve fit, or if a button action 
procedure that does a fit responded too soon to another click.

There is more than one reason for a fit to stop iterating without an error. To obtain more information about 
the reason that a nonlinear fit stopped iterating, create a variable named V_FitQuitReason. After the fit, 

Error Bit Set

Any error 0

Singular matrix 1

Out of memory 2

Function returned NaN or INF 3

Fit function requested stop 4

Reentrant curve fitting 5



Chapter III-8 — Curve Fitting

III-206

V_FitQuitReason is zero if the fit terminated normally, 1 if the iteration limit was reached, 2 if the user 
stopped the fit, or 3 if the limit of passes without decreasing chi-square was reached.

Other types of errors, such as missing waves or too few data points for the fit, are likely to be programmer 
errors. V_FitError does not catch those errors, but you can still prevent an abort if you wish, using the 
special function AbortOnRTE and Igor's try-catch-endtry construct. Here is an example function that 
attempts to do a curve fit to a data set that may contain nothing but NaNs:

Function PreventCurveFitAbort()
Make/O test = NaN
try

CurveFit/N/Q line, test; AbortOnRTE
catch

if (V_AbortCode == -4)
Print "Error during curve fit:"
Variable CFerror = GetRTError(1) // 1 to clear the error
Print GetErrMessage(CFerror)

endif
endtry

End

If you run this function, the output is:

  Error during curve fit:
  You must have at least as many data points as fit parameters.

No error alert is presented because of the call to GetRTError. The error is reported to the user by getting the 
error message using GetRTErrMessage and then printing the  message to the history area.

V_FitIterStart
V_FitIterStart provides a way for a user-defined function to know when the fitting routines are about to 
start a new iteration. The original, obsolete purpose of this is to allow for possible efficient computation of 
user-defined fit functions that involve convolution. Such functions should now use all-at-once fit functions. 
See All-At-Once Fitting Functions on page III-224 for details.

S_Info
If you create a string variable in a function that calls CurveFit or Funcfit, Igor will fill it with keyword-value 
pairs giving information about the fit:

Use StringByKey to get the information from the string. You should set keySepStr to "=" and listSepStr to 
";".

Keyword Information Following Keyword

DATE The date of the fit.

TIME The time of day of the fit.

FUNCTION The name of the fitting function.

AUTODESTWAVE If you used the /D parameter flag to request an autodestination wave, this 
keyword gives the name of the wave.

YDATA The name of the Y data wave.

XDATA A comma-separated list of X data waves, or "_calculated_" if there were no 
X waves. In most cases there is just one X wave.



Chapter III-8 — Curve Fitting

III-207

Errors in Variables: Orthogonal Distance Regression
When you fit a model to data, it is usually assumed that all errors are in the dependent variable, and that 
independent variables are known perfectly (that is, X is set perfectly and Y is measured with error). This 
assumption is often not far from true, and as long as the errors in the dependent variable are much larger 
than those for the independent variable, it will not usually cause much difference to the curve fit.

When the errors are normally distributed with zero mean and constant variance, and the model is exact, 
then the standard least-squares fit gives the maximum-likelihood solution. This is the technique described 
earlier (see Overview of Curve Fitting on page III-153).

In some cases, however, the errors in both dependent and independent variables may be comparable. This 
situation has a variety of names including errors in variables, measurement error models or random regres-
sor models. An example of a model that can result in similar errors in dependent and independent variables 
is fitting the track of an object along a surface; the variables involved would be measurements of cartesian 
coordinates of the object’s location at various instants in time. Presumably the measurement errors would 
be similar because both involve spatial measurement.

Fitting such data using standard or ordinary least squares can lead to bias in the solution. To solve this prob-
lem, we offer Orthogonal Distance Regression (ODR). Rather than minimizing the sum of squared errors in 
the dependent variable, ODR minimizes the orthogonal distance from the data to the fitted curve by adjust-
ing both the model coefficients and an adjustment to the values of the independent variable. This is also 
sometimes called “total least squares”.

For ODR curve fitting, Igor Pro uses the freely available ODRPACK95. The CurveFit, FuncFit, and 
FuncFitMD operations can all do ODR fitting using the /ODR flag (see the documentation for the CurveFit 
operation on page V-105 for details on the /ODR flag, and the Curve Fitting References on page III-236 for 
information about the ODRPACK95 implementation of ODR fitting).

ODR Fitting is Not Threadsafe
The ODRPACK95 code is not threadsafe, so ODR fitting cannot be used in a threadsafe user function even 
though CurveFit, FuncFit and FuncFitMD are threadsafe. Since the selection of ODR fitting is made at run-
time, ODR fitting will compile in a threadsafe user function but will issue a runtime error.

Weighting Waves for ODR Fitting
Just as with ordinary least-squares fitting, you can provide a weighting wave to indicate the expected mag-
nitude of errors for ODR fitting. But in ODR fitting, there are errors in both the dependent and independent 
variables, so ODR fits accept weighting waves for both. You use the /XW flag to specify weighting waves 
for the independent variable.

If you do not supply a weighting wave, it is assumed the errors have a variance of 1.0. This may be accept-
able if the errors in the dependent and independent variables truly have similar magnitudes. But if the 
dependent and independent variables are of very different magnitudes, the chances are good that the errors 
are also of very different magnitudes, and weighting is essential for a proper fit. Unlike the case for ordinary 
least squares, where there is only a single weighting wave, ODR fitting depends on both the magnitude of 
the weights as well as the relative magnitudes of the X and Y weights.

ODR Initial Guesses
An ordinary least squares fit that is linear in the coefficients can be solved directly. No initial guess is 
required. The built-in line, poly, and poly2D curve fit functions are linear in the coefficients and do not 
require initial guesses.

An ordinary least-squares fit to a function that is nonlinear in the coefficients is an iterative process that 
requires a starting point. That means that you must provide an initial guess for the fit coefficients. The accu-
racy required of your initial guess depends greatly on the function you are fitting and the quality of your 
data. The built-in fit functions also attempt to calculate a good set of initial guesses, but for user-defined fits 
you must supply your own initial guesses.



Chapter III-8 — Curve Fitting

III-208

An ODR fit introduces a nonlinearity into the fitting equations that requires iterative fitting and initial 
guesses even for fit functions that have linear fit coefficients. In the case of line, poly, and poly2D fit func-
tions, ODR fitting uses an ordinary least squares fit to get an initial guess. For nonlinear built-in fit func-
tions, the same initial guesses are used regardless of fitting method.

Because the independent variable is adjusted during the fit, an initial guess is also required for the adjust-
ments to the independent variable. The initial guess is transmitted via one or more waves (one for each 
independent variable) specified with the /XR flag. The X residual wave is also an output- see the ODR Fit 
Results on page III-208.

In the absence of the /XR flag, initial guesses for the adjustments to the independent variable values are set 
to zero. This is usually appropriate; in areas where the fitting function is largely vertical, you may need 
nonzero guesses to fit successfully. One example of such a situation would be the region near a singularity.

Holding Independent Variable Adjustments
In some cases you may have reason to believe that you know some input values of the independent vari-
ables are exact (or nearly so) and should not be adjusted. To specify which values should not be adjusted, 
you supply X hold waves, one for each independent variable, via the /XHLD flag. These waves should be 
filled with zeroes corresponding to values that should be adjusted, or ones for values that should be held.

This is similar to the /H flag to hold fit coefficients at a set value during fitting. However, in the case of ODR 
fitting and the independent variable values, holds are specified by a wave instead of a string of ones and 
zeroes. This was done because of the potential for huge numbers of ones and zeroes being required. To save 
memory, you can use a byte wave for the holds. In the Make Waves dialog, you select Byte 8 Bit from the 
Type menu. Use the /B flag with the Make operation on page V-464.

ODR Fit Results
An ordinary least-squares fit adjusts the fit coefficients and calculates model values for the dependent vari-
able. You can optionally have the fit calculate the residuals — the differences between the model and the 
dependent variable data.

ODR fitting adjusts both the fit coefficients and the independent variable values when seeking the least 
orthogonal distance fit. In addition to the residuals in the dependent variable, it can calculate and return to 
you a wave or waves containing the residuals in the independent variables, as well as a wave containing 
the adjusted values of the independent variable.

Residuals in the independent variable are returned via waves specified by the /XR flag. Note that the con-
tents of these waves are inputs for initial guesses at the adjustments to the independent variables, so you 
must be careful — in most cases you will want to set the waves to zero before fitting.

The adjusted independent variable values are placed into waves you specify via the /XD flag.

Note that if you ask for an auto-destination wave (/D flag; seeThe Destination Wave on page III-169) the 
result is a wave containing model values at a set of evenly-spaced values of the independent variables. This 
wave will also be generated in response to the /D flag for ODR fitting.

You can also specify a specific wave to receive the model values (/D=wave). The values are calculated at the 
values of the independent variables that you supply as input to the fit. In the case of ODR fitting, to make a 
graph of the model, the appropriate X wave would be the output from the /XD flag, not the input X values.

Constraints and ODR Fitting
When fitting with the ordinary least-squares method (/ODR=0) you can provide a text wave containing con-
straint expressions that will keep the fit coefficients within bounds. These expressions can be used to apply 
simple bound constraints (keeping the value of a fit coefficient greater than or less than some value) or to 
apply bounds on linear combinations of the fit coefficients (constrain a+b>1, for instance).

When fitting using ODR (/ODR=1 or more) only simple bound constraints are supported.



Chapter III-8 — Curve Fitting

III-209

Error Estimates from ODR Fitting
In a curve fit, the output includes an estimate of the errors in the fit coefficients. These estimates are com-
puted from the linearized quadratic approximation to the chi-square surface at the solution. For a linear fit 
(line, poly, and poly2D fit functions) done by ordinary least squares, the chi-square surface is actually qua-
dratic and the estimates are exact if the measurement errors are normally distributed with zero mean and 
constant variance. If the fitting function is nonlinear in the fit coefficients, then the error estimates are an 
approximation. The quality of the approximation will depend on the nature of the nonlinearity.

In an ODR fit, even when the fitting function is linear in the coefficients, the fitting equations themselves 
introduce a nonlinearity. Consequently, the error estimates from an ODR fit are always an approximation. 
See the Curve Fitting References on page III-236 for detailed information.

ODR Fitting Examples
A simple example: a line fit with no weighting. If you run these commands, the call to SetRandomSeed will 
make your “measurement error” (provided by gnoise function on page V-279) the same as the example 
shown here:
SetRandomSeed 0.5 // so that the "random" data will always be the same...
Make/N=10 YLineData, YLineXData
YLineXData = p+gnoise(1) // gnoise simulates error in X values
YLineData = p+gnoise(1) // gnoise simulates error in Y values
// make a nice graph with errors bars showing standard deviation errors
Display YLineData vs YLineXData
ModifyGraph mode=3,marker=8
ErrorBars YLineData XY,const=1,const=1

Now we’re ready to perform a line fit to the data. First, a standard curve fit:
CurveFit line, YLineData/X=YLineXData/D

This command results in the following history report:
fit_YLineData= W_coef[0]+W_coef[1]*x
W_coef={1.3711,0.78289}
V_chisq= 15.413; V_npnts= 10; V_numNaNs= 0; V_numINFs= 0;
V_startRow= 0; V_endRow= 9; V_q= 1; V_Rab= -0.797202; V_Pr= 0.889708;
V_r2= 0.791581;
W_sigma={0.727,0.142}
Coefficient values ± one standard deviation

a = 1.3711 ± 0.727
b = 0.78289 ± 0.142

Next, we will use /ODR=2 to request orthogonal distance fitting:
CurveFit/ODR=2 line, YLineData/X=YLineXData/D

which gives this result:
Fit converged properly
fit_YLineData= W_coef[0]+W_coef[1]*x
W_coef={1.0311,0.86618}
V_chisq= 9.18468; V_npnts= 10; V_numNaNs= 0; V_numINFs= 0;
V_startRow= 0; V_endRow= 9;
W_sigma={0.753,0.148}
Coefficient values ± one standard deviation

a = 1.0311 ± 0.753
b = 0.86618 ± 0.148

Add output of the X adjustments and Y residuals:
Duplicate/O YLineData, YLineDataXRes, YLineDataYRes
CurveFit/ODR=2 line, YLineData/X=YLineXData/D/XR=YLineDataXRes/R=YLineDataYRes

And a graph that uses error bars to show the residuals:
Display YLineData vs YLineXData
ModifyGraph mode=3,marker=8
AppendToGraph fit_YLineData
ModifyGraph rgb(YLineData)=(0,0,65535)
ErrorBars YLineData BOX,wave=(YLineDataXRes,YLineDataXRes), 
wave=(YLineDataYRes,YLineDataYRes)



Chapter III-8 — Curve Fitting

III-210

The boxes on this graph do not show error estimates, they show the residuals from the fit. That is, the differ-
ences between the data and the fit model. Because this is an ODR fit, there are residuals in both X and Y; error 
bars are the most convenient way to show this. Note that one corner of each box touches the model line.

In the next example, we do an exponential fit in which the Y values and errors are small compared to the X 
values and errors. The curve fit history report has been edited to include just the output of the solution. 
First, fake data and a graph:
SetRandomSeed 0.5 // so that the "random" data will always be the same…
Make/D/O/N=20 expYdata, expXdata
expYdata = 1e-6*exp(-p/2)+gnoise(1e-7)
expXdata = p+gnoise(1)
display expYdata vs expXdata
ModifyGraph mode=3,marker=8

A regular exponential fit:
CurveFit exp, expYdata/X=expXdata/D

Coefficient values ± one standard deviation
y0 =-1.0805e-08 ± 4.04e-08
A =7.0438e-07 ± 9.37e-08
invTau =0.38692 ± 0.116

An ODR fit with no weighting, with X and Y residuals:
Duplicate/O expYdata, expYdataResY, expYdataResX
expYdataResY=0
expYdataResX=0
CurveFit/ODR=2 exp, expYdata/X=expXdata/D/R=expYdataResY/XR=expYdataResX

Coefficient values ± one standard deviation
y0 =-1.0541e-08 ± 4.03e-08
A =7.0443e-07 ± 9.37e-08
invTau =0.38832 ± 0.116

And a graph:
Display /W=(137,197,532,405) expYdata vs expXdata
AppendToGraph fit_expYdata
ModifyGraph mode(expYdata)=3
ModifyGraph marker(expYdata)=8
ModifyGraph lSize(expYdata)=2
ModifyGraph rgb(expYdata)=(0,0,65535)
ErrorBars expYdata 
BOX,wave=(expYdataResX,expYdataResX),wave=(expYdataResY,expYdataResY)

8

6

4

2

0

86420-2



Chapter III-8 — Curve Fitting

III-211

Because the Y values are very small compared to the X values, and we didn’t use weighting to reflect 
smaller errors in Y, the residual boxes are tall and skinny. If the vertical graph scale were the same as the 
horizontal scale, the boxes would be approximately square. The data line would be very nearly a horizonal 
line. One way to understand this is to remember that the ODR method is essentially geometric. In this exam-
ple, the vertical scale on the graph has been expanded very greatly, but the ODR method works in an unex-
panded scale where the perpendicular lines to the fit curve are very nearly exactly vertical.

Now we can add appropriate weighting. It’s easy to decide on the correct weighting since we added “mea-
surement error” using gnoise():
Duplicate/O expYdata, expYdataWY
expYdataWY=1e-7
Duplicate/O expYdata, expYdataWX
expYdataWX=1
// Caution: Next command wrapped to fit on page.
CurveFit/ODR=2 exp, expYdata/X=expXdata/D/R=expYdataResY/XR =expYdataResX/W=expYdataWY 
/XW=expYdataWX/I=1

Coefficient values ± one standard deviation
y0 =-9.8498e-09 ± 3e-08
A =1.0859e-06 ± 5.39e-07
invTau =0.57731 ± 0.248

One way to think about the weighting waves for ODR fitting is that they provide geometric scaling. In this 
example, the vertical dimension is about 107 times smaller than the horizontal dimension. When the vertical 
dimension is scaled by the weighting waves, the dimensions are similar and the perpendicular distances 
from the fit curve to the data points are no longer merely vertical.

800

600

400

200

0

x1
0-9

 

151050

1.0

0.8

0.6

0.4

0.2

0.0

x1
0-6

 

151050



Chapter III-8 — Curve Fitting

III-212

Fitting Implicit Functions
Occasionally you may need to fit data to a model that doesn’t have a form that can be expressed as y=f(x). 
An example would be fitting a circle or ellipse using an equation like

Because this equation can’t be expressed as y=f(x), you can’t write a standard user-defined fitting function for it.

This problem is related to the errors in variables problem in which data has measurement errors in both the 
dependent and independent variables. You have two inputs, or independent variables (x and y), both with 
(probably) similar measurement errors. It differs from errors in variables fitting in that the function output 
is zero instead of being a dependent variable.

The ODRPACK95 package also supports fitting to implicit functions, which you can do with the /ODR=3 
flag. You create a fitting function with multiple independent variables (in the case of the ellipse above, two 
for x and y). The fitting process will attempt to find x and y residuals and fit coefficients to minimize the 
distance from the data to the zero contour of the function.

It may be a good idea at this point to read the section about errors in variables fitting; see Errors in Vari-
ables: Orthogonal Distance Regression on page III-207; much of it applies also to implicit fits.

There are a few differences between regular fitting and implicit fitting. For implicit fits, there is no autodes-
tination, and the report printed in the history does not include the wave assignment showing how to get 
values of the fitted model (doing that is actually not at all easy).

Because of the details of the way ODRPACK95 operates, when you do an implicit fit, the curve fit progress 
window does not update, and it appears that the fit takes just one iteration. That is because all the action 
takes place inside the call to ODRPACK95.

The fit function must be written to return zero when the function solution is found. So if you have an equa-
tion of the form f(xi) = 0, you are ready to go; you simply create a fit function that implements f(xi). If it is in 
the form f(xi) = constant, you must move the constant to the other side of the equation: f(xi)-constant = 0. If 
it is a form like f(xi) = g(xi), you must write your fitting function to return f(xi) - g(xi).

Example: Fit to an Ellipse
In this example we will show how to fit an equation like the one above. In the example the center of the 
ellipse will be allowed to be at nonzero x0, y0.

First, we must define a fitting function. The function includes special comments to get mnemonic names for 
the fit coefficients (see The New Fit Function Dialog Adds Special Comments on page III-221). To try the 
example, you will need to copy this function and paste it into the Procedure window:
Function FitEllipse(w,x,y) : FitFunc

Wave w
Variable x
Variable y

//CurveFitDialog/
//CurveFitDialog/ Coefficients 4
//CurveFitDialog/ w[0] = a
//CurveFitDialog/ w[1] = b
//CurveFitDialog/ w[2] = x0
//CurveFitDialog/ w[3] = y0

return ((x-w[2])/w[0])^2 + ((y-w[3])/w[1])^2 - 1
End

An implicit fit seeks adjustments to the input data and fit coefficients that cause the fit function to return 
zero. To implement the ellipse function above, it is necessary to subtract 1.0 to account for “= 1” on the right 
in the equation above.

x2

a2
----- y2

b2
-----+ 1=



Chapter III-8 — Curve Fitting

III-213

The hard part of creating an example is creating fake data that falls on an ellipse. We will use the standard 
parametric equations to do the job (y = a*cos(theta), x=b*sin(theta)). So far, we will not add “measurement 
error” to the data so that you can see the ellipse clearly on a graph:
Make/N=20 theta,ellipseY,ellipseX
theta = 2*pi*p/20
ellipseY = 2*cos(theta)+2
ellipseX=3*sin(theta)+1

A graph of the data (you could use the Windows→New Graph menu, and then the Modify Trace Appear-
ance dialog):
Display ellipseY vs ellipseX
ModifyGraph mode=3,marker=8
ModifyGraph width={perUnit,72,bottom},height={perUnit,72,left}

The last command line sets the width and height modes of the graph so that the ellipse is shown in its true 
aspect ratio. Now add some “measurement error” to the data:
SetRandomSeed 0.5 // so that the "random" data will always be the same…
ellipseY += gnoise(.3)
ellipseX += gnoise(.3)

Now you can see why we didn’t do that before — it’s a pretty lousy ellipse!

Now, finally, do the fit. That requires making a coefficient wave and filling it with the initial guesses, and 
making a pair of waves to receive estimated values of X and Y at the fit:
Duplicate ellipseY, ellipseYFit, ellipseXFit
Make/D/O ellipseCoefs={3,2,1,2} // a, b, x0, y0
FuncFit/ODR=3 FitEllipse, ellipseCoefs /X={ellipseX, ellipseY} /XD={ellipseXFit,ellipseYFit}

The call to the FuncFit operation has no Y wave specified (it would ordinarily go right after the coefficient 
wave, ellipseCoefs) because this is an implicit fit.

The results:
Fit converged properly
  ellipseCoefs={3.1398,1.9045,0.92088,1.9971}
  V_chisq= 1.74088; V_npnts= 20; V_numNaNs= 0; V_numINFs= 0; 
  W_sigma={0.158,0.118,0.128,0.0906}
  Coefficient values ± one standard deviation
  a =3.1398 ± 0.158
  b =1.9045 ± 0.118
  x0 =0.92088 ± 0.128
  y0 =1.9971 ± 0.0906

And add the destination waves (the ones specified with the /XD flag) to the graph:
AppendToGraph ellipseYFit vs ellipseXFit
ModifyGraph mode=3,marker(ellipseYFit)=1
ModifyGraph rgb=(1,4,52428)



Chapter III-8 — Curve Fitting

III-214

It is difficult to compute the model representing the solution, as it requires finding roots of the implicit func-
tion. A quick way to add a smooth model curve to a graph is to fill a matrix with values of the fit function 
at a range of X and Y and then add a contour plot of the matrix to your graph. Then modify the contour plot 
to show only the zero contour.

Here are commands to add a contour of the example function to the graph above:
Make/N=(100,100) ellipseContour
SetScale/I x -3,4.5,ellipseContour
SetScale/I y -.2, 5, ellipseContour
ellipseContour = FitEllipse(ellipseCoefs, x, y)
AppendMatrixContour ellipseContour
ModifyContour ellipseContour labels=0,autoLevels={*,*,0},moreLevels=0,moreLevels={0}
ModifyContour ellipseContour rgbLines=(0,0,0)

Fitting Sums of Fit Functions
Sometimes the appropriate model is a combination, typically a sum, of simpler models. It might be a sum 
of exponential decay functions, or a sum of several different peaks at various locations. Peak fitting can 

3

2

1

0

43210-1-2

3

2

1

0

43210-1-2



Chapter III-8 — Curve Fitting

III-215

include a baseline function implemented as a separate user-defined fit function. With standard curve fit-
ting, you have to write a user-defined function that implements the sum.

Instead, you can use an alternate syntax for the FuncFit operation to fit to a list of fit functions that are 
summed automatically. The results for each fit function are returned via separate coefficient waves, making 
it easy to keep the results of each term in the sum separate. The syntax is described in the FuncFit operation 
on page V-234.

The sum-of-fit-functions feature can mix any kind of fit function — built-in, or any of the variants described 
in User-Defined Fitting Functions on page III-219. However, even if you use only built-in fit functions you 
must provide initial guesses because our initial-guess generating code cannot discern how the various fea-
tures of the data are partitioned amongst the list of fit functions.

Linear Dependency: A Major Issue
When you fit a list of fit functions you must be careful not to introduce linear dependencies between the 
coefficients of the list of functions. The most likely such dependency will arise from a constant Y offset used 
with all of the built-in fit functions, and commonly included in user functions. This Y offset accounts for 
any offset error that is common when making real-world measurements. For instance, the equation for the 
built-in exp function is:

If you sum two terms, you get two y0’s (primes used for the second copy of the function):

As long as B and B' are distinct, the two exponential terms will not be a problem. But y0 and y'0 are linearly depen-
dent — they cannot be distinguished mathematically. If you increase one and decrease the other the same 
amount, the result is exactly the same. This is sure to cause a singular matrix error when you try to do the fit.

The solution is to hold one of the y0 coefficients. Because each fit function in the list has its own coefficient 
wave, and you can specify a hold string for each function, this is easy (see Example: Summed Exponentials 
on page III-216).

There are many ways to introduce linear dependence. They are not always so easy to spot!

Constraints Applied to Sums of Fit Functions
The sums of fit functions feature does not include a keyword for specifying constraints on a function-by-
function basis. But you can use the normal constraint specifications - you just have to translate the con-
straint expressions to take account of the list of functions. (If you are interested in using constraints, but 
don't know about the syntax for constraints, see Fitting with Constraints on page III-198.)

Constraint expressions use Kn to designate fit coefficients where n is simply the sequential number of the 
fit coefficient within the list of coefficients. n starts with zero. In order to reference fit coefficients for a fit 
function in a list of summed fit functions, you must account for all the fit coefficients in all the fit functions 
in the list before the fit function you are trying to constrain. For example, this is part of a command that will 
fit a sum of three exponential terms:

FuncFit {{exp,expTerm1},{exp,expTerm2,hold="1"},{exp,expTerm3,hold="1"}} ...

In order to constrain coefficients of the second exponential term, you must know first that the built-in exp 
fit function has three fit coefficients. Here is the equation of the exp fit function:

f(x) = y0 + A*exp(-x*invTau)

The vertical offset (y0) of the first summed exp term is represented in a constraint expression as "K0", the 
amplitude as "K1", and invTau as "K2". Constraint expressions for the second exp term continue the count 
starting with "K3" for y0 (but see the section Linear Dependency: A Major Issue on page III-215 and note 

y0 A Bx–( )exp+

y0 A Bx–( )exp y0′ A′ B′x–( )exp+ + +



Chapter III-8 — Curve Fitting

III-216

that you are not allowed to hold and constrain a fit coefficient simultaneously), and use "K4" for the ampli-
tude and "K5" for invTau.

Example: Summed Exponentials
This example fits a sum of three exponentials using the built-in exp fit function. For real work, we recom-
mend the exp_XOffset function; it handles data that’s not at X=0 better, and the decay constant fit coefficient 
is actually the decay constant. The exp fit function gives you the inverse of the decay constant.

First, make some fake data and graph it:
Make/D/N=1000 expSumData
SetScale/I x 0,1,expSumData
expSumData = 1 + exp(-x/0.5) + 1.5*exp(-x/.1) + 2*exp(-x/.01)+gnoise(.03)
Display expSumData
ModifyGraph mode=2,rgb=(1,4,52428)

The fake data was purposely made with a Y offset of 1.0 in order to illustrate how to handle the vertical 
offset terms in the fit function.

Next, we need to make a coefficient wave for each of the fit functions. In spite of the linear dependence 
between the vertical offset in each copy of the function, you must include all the fit coefficients in the coef-
ficient waves. Otherwise when the function is evaluated the fit won’t have all the needed information.
Make/D/O expTerm1 = {1, 1, 2}
Make/D/O expTerm2 = {0, 1.5, 10}
Make/D/O expTerm3 = {0, 2, 100}

Each of these lines makes one coefficient wave with three elements. The first element is y0, the second is 
amplitude, and the third is the inverse of the decay constant. Since the data is fake, we have a pretty good 
idea of the initial guesses!

To reflect the baseline offset of 1.0, the y0 coefficient for only the first exponential coefficient wave was set 
to 1. If y0 were set to 1.0 for all three, the offset would be 3.0.

Now we can do the fit. A FuncFit command with a list of fit functions and coefficient waves can be pretty long:
FuncFit {{exp, expTerm1},{exp, expTerm2, hold="1"},{exp, expTerm3, hold="1"}} 
expSumData/D

The entire list of functions is enclosed in braces and each fit function specification in the list is enclosed in 
braces as well. At a minimum you must provide a fit function and a coefficient wave for each function in 
the list, as was done here for the first exponential term.

The specification for each function can also contain various keywords; the second and third terms here 
contain the hold keyword in order to include a hold string. The string used will cause the fit to hold the y0 
coefficient for the second and third terms at zero. That prevents problems caused by linear dependence 

5

4

3

2

1.00.80.60.40.20.0



Chapter III-8 — Curve Fitting

III-217

between the three fit functions. Since the coefficient waves for the second and third terms set their respec-
tive y0 to zero, this puts all the vertical offset into the one coefficient for the first term.

In this example the hold strings are literal quoted strings. They can be any string expression but see below 
for restrictions if you use a function list contained in a string:

String holdStr = "1"
FuncFit {{exp,expTerm1},{exp,expTerm2,hold=holdStr},

{exp,expTerm3,hold="1"}} expSumData/D // All on one line

The history report for a sum of fit functions is enhanced to show all the functions:
Fit converged properly
fit_expSumData= Sum of Functions(,x)
expTerm1={1.027,1.045,2.2288}
expTerm2={0,1.4446,10.416}
expTerm3={0,2.0156,102.28}
V_chisq= 0.864844; V_npnts= 1000; V_numNaNs= 0; V_numINFs= 0;
V_startRow= 0; V_endRow= 999; V_startCol= 0; V_endCol= 0;
V_startLayer= 0; V_endLayer= 0; V_startChunk= 0; V_endChunk= 0;
W_sigma={0.0184,0.0484,0.185,0,0.052,0.495,0,0.0239,2.34}
For function 1: exp:
Coefficient values ± one standard deviation

y0 = 1.027 ± 0.0184
A = 1.045 ± 0.0484
invTau = 2.2288 ± 0.185

For function 2: exp:
Coefficient values ± one standard deviation

y0 = 0 ± 0
A = 1.4446 ± 0.052
invTau = 10.416 ± 0.495

For function 3: exp:
Coefficient values ± one standard deviation

y0 = 0 ± 0
A = 2.0156 ± 0.0239
invTau = 102.28 ± 2.34

Example: Function List in a String
The list of functions in the FuncFit command in the first example is moderately long, but it could be much 
longer. If you wanted to sum 20 peak functions and a baseline function, the list could easily exceed the limit 
of 1000 bytes in a command line.

Fortunately, you can build the function specification in a string variable and use the string keyword. Doing 
this on the command line for the first example looks like this:
String myFunctions="{exp, expTerm1}"
myFunctions+="{exp, expTerm2, hold=\"1\"}"
myFunctions+="{exp, expTerm3, hold=\"1\"}"
FuncFit {string = myFunctions} expSumData/D

These commands build the list of functions one function specification at a time. The second and third lines 
use the += assignment operator to add additional functions to the list. Each function specification includes 
its pair of braces.

Notice the treatment of the hold strings — in order to include quotation marks in a quoted string expression, 
you must escape the quotation marks. Otherwise the command line parser thinks that the first quote around 
the hold string is the closing quote.

The function list string is parsed at run-time outside the context in which FuncFit is running. Consequently, 
you cannot reference local variables in a user-defined function. The hold string may be either a quoted literal 
string, as shown here, or it can be a reference to a global variable, including the full data folder path:



Chapter III-8 — Curve Fitting

III-218

String/G root:myDataFolder:holdStr="1"
String myFunctions="{exp, expTerm1}"
myFunctions+="{exp, expTerm2, hold=root:myDataFolder:holdStr}"
myFunctions+="{exp, expTerm3, hold=root:myDataFolder:holdStr}"
FuncFit {string = myFunctions} expSumData/D 

Curve Fitting with Multiple Processors
If you are using a computer with multiple processors, you no doubt want to take advantage of them. Curve 
fitting can take advantage of multiple processors in two ways:

• Automatic multithreading
• Programmed multithreading

Curve Fitting with Automatic Multithreading
If you use the built-in fit functions or thread-safe user-defined fit functions in the basic or all-at-once for-
mats, Igor automatically uses multiple processors if your data set is “large enough”. The number of points 
required to be large enough is set by the MultiThreadingControl operation.

There are two keywords used by MultiThreadingControl for curve fitting. The CurveFit1 keyword con-
trols automatic multithreading with built-in and basic format user-defined fit functions. The 
CurveFitAllAtOnce keyword controls automatic multithreading with user-defined fit functions in the 
all-at-once format. The appropriate setting of these limits depends on the complexity of the fitting function 
and the nature of your problem. It can be best determined only by experimentation. 

The automatic multithreading added in Igor7 makes the CurveFit /NTHR flag obsolete. The automatic mul-
tithreading is more effective than the threading available in Igor6.

Curve Fitting with Programmed Multithreading
The CurveFit, FuncFit, and FuncFitMD operations are threadsafe. Consequently another way to use multi-
ple processors is to do more than one curve fit simultaneously, with each fit using a different processor. This 
requires threadsafe programming, as described under ThreadSafe Functions and Multitasking on page 
IV-308, and requires at least intermediate-level Igor programming skills.

The fitting function can be either a built-in fit function or a threadsafe user-defined fit function.

For an example, choose File→Example Experiments→Curve Fitting→MultipleFitsInThreads.

Constraints and ThreadSafe Functions
The usual way to specify constraints to a curve fit is via expressions in a text wave (see Fitting with Con-
straints on page III-198). As part of the process of parsing these expressions and getting ready to use them 
in a curve fit involves evaluating part of the expressions. That, in turn, requires sending them to Igor’s 
command-line interpreter, in a process very similar to the way the Execute operation works. Unfortunately, 
this is not threadsafe.

Instead, you must use the method described in Constraint Matrix and Vector on page III-201. Unfortu-
nately, it is hard to understand, inconvenient to set up, and easy to make mistakes. The best way to do it is 
to set up your constraint expressions using the normal text wave method (see Constraint Expressions on 
page III-199) and use the /C flag with a trial fit. Igor will generate the matrix and vector required.

In most cases, the basic expressions will not change from one fit to another, just the limits of the constraints 
will change. If that is the case, you can use the matrix provided by Igor, and alter the numbers in the vector 
to change the constraint limits.



Chapter III-8 — Curve Fitting

III-219

User-Defined Fitting Functions
When you use the New Fit Function dialog to create a user-defined function, the dialog uses the information 
you enter to create code for your function in the Procedure window. Using the New Fit Function dialog is 
the easiest way to create a user-defined fitting function, but it is possible also to write the function directly 
in the Procedure window.

Certain kinds of complexities will require that you write the function yourself. It may be that the easiest way 
to create such a function is to create a skeleton of the function using the dialog, and then modify it by editing 
in the procedure window.

This section describes the format of user-defined fitting functions so that you can understand the output of 
the New Fit Function dialog, and so that you can write one yourself.

You can use a variety of formats for user-defined fit functions tailored to different situations, and involving 
varying degrees of complexity to write and use. The following section describes the simplest format, which 
is also the format created by the New Fit Function dialog.

User-Defined Fitting Function Formats
You can use three formats for user-defined fitting functions: the Basic format discussed above, the All-At-
Once format, and Structure Fit Functions, which use a structure as the only input parameter. Additionally, 
Structure Fit Functions come in basic and all-at-once variants. Each of these formats address particular sit-
uations.

The basic format (see Format of a Basic Fitting Function on page III-220) was the original format. It returns 
just one model value at a time.

The all-at-once format (see All-At-Once Fitting Functions on page III-224) addresses problems in which the 
operations involved, such as convolution, integration, or FFT, naturally calculate all the model values at 
once. Because of reduced function-call overhead, it is somewhat faster than the basic format for large data 
sets.

The structure-based format (see Structure Fit Functions on page III-229) uses a structure as the only func-
tion parameter, allowing arbitrary information to be transmitted to the function during fitting. This makes 
it very flexible, but also makes it necessary that FuncFit be called from a user-defined function.

Basic Fit Function All-At-Once Function Structure Function

Can be selected, created, and edited 
within the Curve Fitting dialog.

Can be selected, but not created or 
edited, within the Curve Fitting 
dialog.

Cannot be used from the Curve 
Fitting dialog.

With appropriate comments, 
mnemonic coefficient names.

No mnemonic coefficient names. Must be used with FuncFit called 
from a user-defined function.

Straight-forward programming: 
one X value, one return value.

Programming requires a good 
understanding of wave 
assignment; there are some issues 
that can be difficult to avoid.

Hardest to program: requires 
both an understanding of 
structures and writing a driver 
function that calls FuncFit.

Not an efficient way to write a fit 
function that uses convolution, 
integration, FFT, or any operation 
that uses all the data values in a 
single operation.

Most efficient for problems 
involving operations like 
convolution, integration, or FFT. 
Often much faster than the Basic 
format, even for problems that 
don’t require it.

Very flexible: any arbitrary 
information can be transmitted to 
the fit function. More information 
about the fit progress transmitted 
via the structure.

See Format of a Basic Fitting 
Function on page III-220.

See All-At-Once Fitting 
Functions on page III-224.

See Structure Fit Functions on 
page III-229.



Chapter III-8 — Curve Fitting

III-220

Format of a Basic Fitting Function
A basic user-defined fitting function has the following form:
Function F(w, x) : FitFunc

WAVE w; Variable x

<body of function>
<return statement>

End

You can choose a more descriptive name for your function.

The function must have exactly two parameters in the univariate case shown above. The first parameter is the 
coefficients wave, conventionally called w. The second parameter is the independent variable, conventionally 
called x. If your function has this form, it will be recognized as a curve fitting function and will allow you to 
use it with the FuncFit operation.

The FitFunc keyword marks the function as being intended for curve fitting. Functions with the FitFunc 
keyword that have the correct format are included in the Function menu in the Curve Fitting dialog.

The FitFunc keyword is not required. The FuncFit operation will allow any function that has a wave and a 
variable as the parameters. In the Curve Fitting dialog you can choose Show Old-Style Functions from the 
Function menu to display a function that lacks the FitFunc keyword, but you may also see functions that 
just happen to match the correct format but aren’t fitting functions.

Note that the function does not know anything about curve fitting. All it knows is how to compute a return 
value from its input parameters. The function is called during a curve fit when it needs the value for a 
certain X and a certain set of fit coefficients.

Here is an example of a user-defined function to fit a log function. This might be useful since log is not one 
of the functions provided as a built-in fit function.
Function LogFit(w,x) : FitFunc

WAVE w
Variable x

return w[0]+w[1]*log(x)
End

In this example, two fit coefficients are used. Note that the first is in the zero element of the coefficient wave. 
You cannot leave out an index of the coefficient wave. Igor uses the size of your coefficient wave to deter-
mine how many coefficients need to be fit. Consequently an unused element of the wave results in a singu-
lar matrix error.

Intermediate Results for Very Long Expressions
The body of the function is usually fairly simple but can be arbitrarily complex. If necessary, you can use 
local variables to build up the result, piece-by-piece. You can also call other functions or operations and use 
loops and conditionals.

If your function has many terms, you might find it convenient to use a local variable to store intermediate 
results rather than trying to put the entire function on one line. For example, instead of:
return w[0] + w[1]*x + w[2]*x^2

you could write:
Variable val // local variable to accumulate result value
val = w[0]
val += w[1]*x
val += w[2]*x^2
return val



Chapter III-8 — Curve Fitting

III-221

We often get fitting functions from our customers that use extremely long expressions derived by Mathe-
matica. These expressions are hard to read and understand, and highly resistant to debugging and modifi-
cation. It is well worth some effort to break them down using assignments to intermediate results.

Conditionals
Flow control statements including if statements are allowed in fit functions. You could use this to fit a 
piece-wise function, or to control the return value in the case of a singularity in the function.

Here is an example of a function that fits two lines to different sections of the data. It uses one of the param-
eters to decide where to switch from one line to the other:
Function PieceWiseLineFit(w,x) : FitFunc

WAVE w
Variable x

Variable result
if (x < w[4])

result = w[0]+w[1]*x
else

result = w[2]+w[3]*x
endif
return result

End

This function can be entered into the New Fit Function dialog. Here is what the dialog looked like when we 
created the function above:

The New Fit Function Dialog Adds Special Comments
In the example above of a piece-wise linear fit function, the New Fit Function dialog uses coefficient names 
instead of indexing a coefficient wave, but there isn’t any way to name coefficients in a fit function. The New 
Fit Function dialog adds special comments to a fit function that contain extra information. For instance, the 
PieceWiseLineFit function as created by the dialog looks like this:



Chapter III-8 — Curve Fitting

III-222

Function PieceWiseLineFit(w,x) : FitFunc
WAVE w
Variable x

//CurveFitDialog/ These comments were created by the Curve Fitting dialog. Alteri
//CurveFitDialog/ make the function less convenient to work with in the Curve Fit
//CurveFitDialog/ Equation:
//CurveFitDialog/ variable result
//CurveFitDialog/ if (x < breakX)
//CurveFitDialog/  result = a1+b1*x
//CurveFitDialog/ else
//CurveFitDialog/  result = a2+b2*x
//CurveFitDialog/ endif
//CurveFitDialog/ f(x) = result
//CurveFitDialog/ End of Equation
//CurveFitDialog/ Independent Variables 1
//CurveFitDialog/ x
//CurveFitDialog/ Coefficients 5
//CurveFitDialog/ w[0] = a1
//CurveFitDialog/ w[1] = b1
//CurveFitDialog/ w[2] = a2
//CurveFitDialog/ w[3] = b2
//CurveFitDialog/ w[4] = breakX

variable result
if (x < w[4])
 result = w[0]+w[1]*x
else
 result = w[2]+w[3]*x
endif
return result

End

If you click the Edit Fit Function button, the function code is analyzed to determine the number of coeffi-
cients. If the comments that name the coefficients are present, the dialog uses those names. If they are not 
present, the coefficient wave name is used with the index number appended to it as the coefficient name.

Having mnemonic names for the fit coefficients is very helpful when you look at the curve fit report in the 
history area. The minimum set of comments required to have names appear in the dialog and in the history 
is a lead-in comment line, plus the Coefficients comment lines. For instance, the following version of the 
function above will allow the Curve Fitting dialog and history report to use coefficient names:
Function PieceWiseLineFit(w,x) : FitFunc

WAVE w
Variable x

//CurveFitDialog/
//CurveFitDialog/ Coefficients 5
//CurveFitDialog/ w[0] = a1
//CurveFitDialog/ w[1] = b1
//CurveFitDialog/ w[2] = a2
//CurveFitDialog/ w[3] = b2
//CurveFitDialog/ w[4] = breakX

Variable result
if (x < w[4])
 result = w[0]+w[1]*x
else
 result = w[2]+w[3]*x
endif
return result

End

The blank comment before the line with the number of coefficients on it is required- the parser that looks at 
these comments needs one lead-in line to throw away. That line can contain anything as long as it includes 
the lead-in “//CurveFitDialog/”.

Special comments give the Curve Fitting dialog 
extra information about the fit function.

The function code as it appears in the text 
window of the New Fit Function dialog.

Independent variable name (or 
names, for a multivariate function).

Coefficient names.

This prefix in the comment identifies the comment 
as belonging to the curve fitting dialog.

The actual function code.



Chapter III-8 — Curve Fitting

III-223

Functions that the Fit Function Dialog Doesn’t Handle Well
In the example functions it is quite clear by looking at the function code how many fit coefficients a function 
requires, because the coefficient wave is indexed with a literal number. The number of coefficients is simply 
one more than the largest index used in the function.

Occasionally a fit function uses constructions other than a literal number for indexing the coefficient wave. 
This will make it impossible for the Curve Fitting dialog to figure out how many coefficients are required. In 
this case, the Coefficients tab can’t be constructed until you specify how many coefficients are needed. You do 
this by choosing a coefficient wave having the right number of points from the Coefficient Wave menu.

You cannot edit such a function by clicking the Edit Fit Function button. You must write and edit the func-
tion in the Procedure window.

Here is an example function that can fit an arbitrary number of Gaussian peaks. It uses the length of the 
coefficient wave to determine how many peaks are to be fit. Consequently, it uses a variable (cfi) rather 
than a literal number to access the coefficients:
Function FitManyGaussian(w, x) : FitFunc

WAVE w
Variable x

Variable returnValue = w[0]
Variable i
Variable numPeaks = floor((numpnts(w)-1)/3)
Variable cfi

for (i = 0; i < numPeaks; i += 1)
cfi = 3*i+1
returnValue += w[cfi]*exp(-((x-w[cfi+1])/w[cfi+2])^2)

endfor
return returnValue

End

Format of a Multivariate Fitting Function
A multivariate fitting function has the same form as a univariate function, but has more than one indepen-
dent variable:
Function F(w, x1, x2, ...) : FitFunc

WAVE w;
Variable x1
Variable x2
Variable ...

<body of function>
<return statement>

End

A function to fit a planar trend to a data set could look like this:
Function Plane(w, x1, x2) : FitFunc

WAVE w
Variable x1, x2

return w[0] + w[1]*x1 + w[2]*x2
End

There is no limit on the number of independent variables, with the exception that the entire Function dec-
laration line must fit within a single command line of 1000 bytes. Thus, if you use a three-character function 
name, a one-character name for the coefficients wave parameter, and two-character names for the indepen-
dent variable parameters, you could write a fitting function with 128 independent variables.

The first coefficient is a baseline offset.

Each peak takes three coefficients: 
amplitude, x position and width.

Loop over the peaks, 
calculating them one at a time.

Calculate index of amplitude for this peak.

Expression of a single Gaussian peak.

Each peak is added to the result.



Chapter III-8 — Curve Fitting

III-224

The New Fit Function dialog will add the same comments to a multivariate fit function as it does to a basic 
fit function. The Plane() function above might look like this (we have truncated the first two special 
comment lines to make them fit):
Function Plane(w,x1,x2) : FitFunc

WAVE w
Variable x1
Variable x2

//CurveFitDialog/ These comments were created by the Curve...
//CurveFitDialog/ make the function less convenient to work...
//CurveFitDialog/ Equation:
//CurveFitDialog/ f(x1,x2) = A + B*x1 + C*x2
//CurveFitDialog/ End of Equation
//CurveFitDialog/ Independent Variables 2
//CurveFitDialog/ x1
//CurveFitDialog/ x2
//CurveFitDialog/ Coefficients 3
//CurveFitDialog/ w[0] = A
//CurveFitDialog/ w[1] = B
//CurveFitDialog/ w[2] = C

return w[0] + w[1]*x1 + w[2]*x2
End

All-At-Once Fitting Functions 
The scheme of calculating one Y value at a time doesn’t work well for some fitting functions. This is true of 
functions that involve a convolution such as might arise if you are trying to fit a theoretical signal convolved 
with an instrument response. Fitting to a solution to a differential equation might be another example.

For this case, you can create an “all at once” fit function. Such a function provides you with an X and Y 
wave. The X wave is input to the function; it contains all the X values for which your function must calculate 
Y values. The Y wave is for output — you put all your Y values into the Y wave.

Because an all-at-once function is called only once for a given set of fit coefficients, it will be called many 
fewer times than a basic fit function. Because of the saving in function-call overhead, all-at-once functions 
can be faster even for problems that don’t require an all-at-once function.

Here is the format of an all-at-once fit function:
Function myFitFunc(pw, yw, xw) : FitFunc

WAVE pw, yw, xw

yw = <expression involving pw and xw>
End

Note that there is no return statement because the function result is put into the wave yw. Even if you 
include a return statement the return value is ignored during a curve fit.

The X wave contains all the X values for your fit, whether you provided an X wave to the curve fit or not. If you 
did not provide an X wave, xw simply contains equally-spaced values derived from your Y wave’s X scaling.

There are some restrictions on all-at-once fitting functions: 
1) You can’t create or edit an all-at-once function using the Curve Fitting dialog. You must create it by 

editing in the Procedure window. All-at-once functions are, however, listed in the Function menu 
in the Curve Fitting dialog.

2) There is no such thing as an “old-style” all-at-once function. It must have the FitFunc keyword.
3) You don’t get mnemonic coefficient names.



Chapter III-8 — Curve Fitting

III-225

Here is an example that fits an exponential decay using an all-at-once function. This example is silly — there 
is no reason to make this an all-at-once function. It is simply an example showing how a real function works 
without the computational complexities. Here it is, as an all-at-once function:
Function allatonce(pw, yw, xw) : FitFunc

WAVE pw, yw, xw

// a wave assignment does the work
yw = pw[0] + pw[1]*exp(-xw/pw[2])

End

This is the same function written as a standard user fitting function:
Function notallatonce(pw, x) : FitFunc

WAVE pw
Variable x

return pw[0] + pw[1]*exp(-x/pw[2])
End

In the all-at-once function, the argument of exp() includes xw, a wave. The basic format uses the input 
parameter x, which is a variable containing a single value. The use of xw in the all-at-once version of the 
function uses the implied point number feature of wave assignments (see Waveform Arithmetic and 
Assignments on page II-69).

There are some things to watch out for when creating an all-at-once fitting function:

1. You must not change the yw wave except for assigning values to it. You must not resize it. This will get 
you into trouble:

Function allatonce(pw, yw, xw) : FitFunc
WAVE pw, yw, xw

Redimension/N=2000 yw // BAD!
yw = pw[0] + pw[1]*exp(-xw/pw[2])

End

2. You may not get the same number of points in yw and xw as you have in the waves you provide as the 
input data. If you fit to a restricted range, if there are NaNs in the input data, or if you use a mask wave 
to select a subset of the input data, you will get a wave with a reduced number of points. Your fitting 
function must be written to handle that situation or you must not use those features.

3. It is tricky, but not impossible, to write an all-at-once fitting function that works correctly with the auto-des-
tination feature (that is, _auto_ in the Destination menu, or /D by itself in a FuncFit command).

4. The xw and yw waves are not your data waves. They are created by Igor during the execution of Cur-
veFit, FuncFit or FuncFitMD and filled with data from your input waves. They will be destroyed when 
fitting is finished. For debugging, you can use Duplicate to save a copy of the waves. Altering the con-
tents of the xw wave will have no effect.

The example above uses xw as an argument to the exp function, and it uses the special features of a wave 
assignment statement to satisfy point 2.

The next example fits a convolution of a Gaussian peak with an exponential decay. It fits a baseline offset, 
amplitude and width of the Gaussian peak and the decay constant for the exponential. This might model an 
instrument with an exponentially decaying impulse response to recover the width of an impulsive signal.
Function convfunc(pw, yw, xw) : FitFunc

WAVE pw, yw, xw

// pw[0] = gaussian baseline offset
// pw[1] = gaussian amplitude
// pw[2] = gaussian position
// pw[3] = gaussian width



Chapter III-8 — Curve Fitting

III-226

// pw[4] = exponential decay constant of instrument response

// Make a wave to contain an exponential with decay
// constant pw[4]. The wave needs enough points to allow
// any reasonable decay constant to get really close to zero.
// The scaling is made symmetric about zero to avoid an X
// offset from Convolve/A
Variable dT = deltax(yw)
Make/D/O/N=201 expwave // Long enough to allow decay to zero
SetScale/P x -dT*100,dT,expwave

// Fill expwave with exponential decay
expwave = (x>=0)*pw[4]*dT*exp(-pw[4]*x)

// Normalize exponential so that convolution doesn't change
// the amplitude of the result
Variable sumexp
sumexp = sum(expwave)
expwave /= sumexp

// Put a Gaussian peak into the output wave
yw = pw[1]*exp(-((x-pw[2])/pw[3])^2)

// Convolve with the exponential. NOTE /A.
Convolve/A expwave, yw

// Add the vertical offset AFTER the convolution to avoid end effects
yw += pw[0]

End

Some things to be aware of with regard to this function:
1. A wave is created inside the function to store the exponential decay. Making a wave can be a time-

consuming operation; it is less convenient for the user of the function, but can save computation 
time if you make a suitable wave ahead of time and then simply reference it inside the function.

2. The wave containing the exponential decay is passed to the convolve operation. The use of the /A 
flag prevents the convolve operation from changing the length of the output wave yw. You may 
wish to read the section on Convolution on page III-253.

3. The output wave yw is used as a parameter to the convolve operation. Because the convolve oper-
ation assumes that the data are evenly-space, this use of yw means that the function does not satisfy 
points 2) or 3) above. If you use input data to the fit that has missing points or unevenly-spaced X 
values, this function will fail.

You may also find the section Waveform Arithmetic and Assignments on page II-69 helpful.

Here is a much more complicated version of the fitting function that solves these problems, and also is more 
robust in terms of accuracy. The comments in the code explain how the function works.

Note that this function makes at least two different waves using the Make operation, and that we have used 
Make/D to make the waves double-precision. This can be crucial. To improve performance and reduce 
clutter in your Igor experiment file, we create the intermediate waves as free waves
Function convfunc(pw, yw, xw) : FitFunc

WAVE pw, yw, xw

// pw[0] = gaussian baseline offset
// pw[1] = gaussian amplitude
// pw[2] = gaussian position
// pw[3] = gaussian width
// pw[4] = exponential decay constant of instrument response

// Make a wave to contain an exponential with decay



Chapter III-8 — Curve Fitting

III-227

// constant pw[4]. The wave needs enough points to allow
// any reasonable decay constant to get really close to zero.
// The scaling is made symmetric about zero to avoid an X
// offset from Convolve/A.

// resolutionFactor sets the degree to which the exponential
// will be over-sampled with regard to the problem's parameters.
// Increasing this number increases the number of time
// constants included in the calculation. It also decreases
// the point spacing relative to the problem's time constants.
// Increasing will also increase the time required to compute

Variable resolutionFactor = 10
// dt contains information on important time constants.
// We wish to set the point spacing for model calculations 
// much smaller than the exponential time constant or gaussian width.
// Use absolute values to prevent failures if an iteration strays
// into unmeaningful but mathematically allowed negative territory.

Variable absDecayConstant = abs(pw[4])
Variable absGaussWidth = abs(pw[3])
Variable dT = min(absDecayConstant/resolutionFactor, absGaussWidth/resolutionFactor)

// Calculate suitable number points for the exponential. Length
// of exponential wave is 10 time constants; doubled so
// exponential can start in the middle; +1 to make it odd so
// exponential starts at t=0, and t=0 is exactly the middle 
// point. That is better for the convolution.

Variable nExpWavePnts = round((10*absDecayConstant)/dT)*2 + 1

// Important: Make double-precision waves.
// We make free waves to improve performance and so that
// the intermediate waves clean themselves up at the end of
// function execution.

Make/D/FREE/O/N=(nExpWavePnts) expwave// Double-precision free wave

// In this version of the function, we make a y output wave
// ourselves, so that we can control the resolution and 
// accuracy of the calculation. It also will allow us to use
// a wave assignment later to solve the problem of variable
// X spacing or missing points.

Variable nYPnts = max(resolutionFactor*numpnts(yw), nExpWavePnts)
Make/D/FREE/O/N=(nYPnts) yWave // Double-precision free wave

// This wave scaling is set such that the exponential will 
// start at the middle of the wave
SetScale/P x -dT*(nExpWavePnts/2),dT,expwave

// Set the wave scaling of the intermediate output wave to have
// the resolution calculated above, and to start at the first
// X value.
SetScale/P x xw[0],dT, yWave

// Fill expwave with exponential decay, starting with X=0
expwave = (x>=0)*dT/pw[4]*exp(-x/pw[4])

// Normalize exponential so that convolution doesn't change
// the amplitude of the result



Chapter III-8 — Curve Fitting

III-228

Variable sumexp
sumexp = sum(expwave)
expwave /= sumexp

// Put a Gaussian peak into the intermediate output wave. We use
// our own wave (yWave) because the convolution requires a wave
// with even spacing in X, whereas we may get X values input that
// are not evenly spaced.
// Also, we do not add the vertical offset here - it will cause problems
// with the convolution. Before the convolution Igor zero-pads the
// wave, so the baseline here must be zero. Otherwise there is
// a step function at the start of the convolution.
yWave = pw[1]*exp(-((x-pw[2])/pw[3])^2)

// Now convolve with the exponential. NOTE /A.
Convolve/A expwave, yWave

// Move appropriate values corresponding to input X data into 
// the output Y wave. We use a wave assignment involving the
// input X wave. This will extract the appropriate values from
// the intermediate wave, interpolating values where the
// intermediate wave doesn't have a value precisely at an X
// value that is required by the input X wave. This wave
// assignment also solves the problem with auto-destination:
// The function can be called with an X wave that sets any X
// spacing, so it doesn't matter what X values are required.
// This is the appropriate place to add the vertical offset.
yw = yWave(xw[p]) + pw[0]

End

Note that all the waves created in this function are double-precision. If you don't use the /D flag with the Make 
operation, Igor makes single-precision waves. Curve fitting computations can be very sensitive to floating-point 
roundoff errors. We have solved many user problems by simply making intermediate waves double precision.

None of the computations involve the wave yw. That was done so that the computations could be done at finer 
resolution than the resolution of the fitted data. By making a separate wave, it is not necessary to modify yw.

The actual return values are picked out of yWave and stored in yw using the special X-scale-based indexing 
available for one-dimensional waves in a wave assignment. This allows any arbitrary X values in the xw 
input wave, so long as the intermediate computations are done over the full X range included in xw.

Multivariate All-At-Once Fitting Functions
A multivariate all-at-once fitting function accepts more than one independent variable. To make one, 
simply add additional waves after the xw wave:

Function MultivariateAllAtOnce(pw, yw, xw1, xw2) : FitFunc
WAVE pw, yw, xw1, xw2

yw = <expression involving pw and all the xw waves>
End

This example accepts two independent variables, xw1 and xw2. If you have more, add additional X wave 
parameters.

All the X waves are 1D waves with the same number of points as the Y wave, yw, even if your input data 
is in the form of a matrix wave. If you use FuncFitMD to fit an N row by M column matrix, Igor unrolls the 
matrix to form a 1D Y wave containing NxM points. This is passed to your function as the Y wave param-
eter. The X wave parameters are 1D waves containing NxM points with values that repeat for each column.

If you know that the input data fall into a fully-formed matrix wave, you may be able to temporarily re-fold 
the yw wave into a matrix using the Redimension operation:



Chapter III-8 — Curve Fitting

III-229

Function MultivariateAllAtOnce(pw, yw, xw1, xw2) : FitFunc
WAVE pw, yw, xw1, xw2

Redimension/N=(rows, columns) yw
MatrixOP yw = <matrix math expression>
Redimension/N=(rows*columns) yw

yw = <expression involving pw and all the xw waves>
End

Use this technique with great caution, though. In order to know the appropriate rows and columns for the 
Redimension command, you must make assumptions about the size of the original data set. If there are 
missing values (NaNs) in the original input matrix, these values will be missing from the Y wave, resulting 
in fewer points than you would expect.

If you use this technique, you will not be able to use the auto-destination feature (the /D flag with no desti-
nation wave) because the auto-destination wave is pretty much guaranteed to be a different size than you 
expect.

Similarly to the second example all-at-once function above, you can create an intermediate matrix wave and 
then use wave assignment to get values from the matrix to assign to the yw wave. It may be tricky to figure 
out how to extract the correct values from your intermediate matrix.

Structure Fit Functions
Sometimes you may need to transmit extra information to a fitting function. This might include constants 
that need to be set to reflect conditions in a run, but should not be fit; or a wave containing a look-up table 
or a measured standard sample that is needed for comparison. Perhaps your fit function is very complex 
and needs some sort of book-keeping data.

If you use a basic fit function or an all-at-once function, such information must be transmitted via global 
variables and waves. That, in turn, requires that this global information be looked up inside the fit function. 
The global data requirement makes it difficult to be flexible: the fit function is tied to certain global variables 
and waves that must be present for the function to work. In addition to adding complexity and difficulty to 
management of global information, it adds a possible time-consuming operation: looking up the global 
information requires examining a list of waves or variables, and comparing the names to the desired name.

Structure fit functions are ideal for such problems because they take a single parameter that is a structure of your 
own design. The first few members of the structure must conform to certain requirements, but the rest is up to 
you. You can include any kind of data in the structure. An added bonus is that you can include members in the 
structure that identify for the fit function which fit coefficient is being perturbed when calculating numerical 
derivatives, that signal when the fit function is being called to fill in the auto-destination wave, and identify 
when a new fit iteration is starting. You can pass back a flag to have FuncFit abandon fitting.

To use a structure fit function, you must do three things:
1. Define a structure containing certain standard items at the top.

2. Write a fitting function that uses that structure as its only parameter.
3. Write a wrapper function for FuncFit that creates an instance of your structure, initializes it and invokes 

FuncFit with the /STRC parameter flag.

You should familiarize yourself with the use of structures before attempting to write a structure fit function 
(see Structures in Functions on page IV-91).

Structure fit functions come in basic and all-at-once variants; the difference is determined by the members 
at the beginning of the structure. The format for the structure for a basic structure fit function is:
Structure myBasicFitStruct

Wave coefw
Variable x



Chapter III-8 — Curve Fitting

III-230

…
EndStructure

The name of the structure can be anything you like that conforms to Igor’s naming rules; all that is required 
is that the first two fields be a wave and a variable. By convention we name the wave coefw and the variable 
x to match the use of those members. These members of the structure are equivalent to wave and variable 
parameters required of a basic fit function.

You may wish to use an all-at-once structure fit function for the same reason you might use a regular all-at-once 
fit function. The same concerns apply to all-at-once structure fit functions; you should read and understand All-
At-Once Fitting Functions on page III-224 before attempting to write an all-at-once structure fit function.

The structure for an all-at-once structure fit function is:
Structure myAllAtOnceFitStruct

Wave coefw
Wave yw
Wave xw
…

EndStructure

The first three members of the structure are equivalent to the pw, yw, and xw parameters required in a 
regular all-at-once fit function.

A simple example of fitting with a structure fit function follows. More examples are available in the File 
menu: select appropriate examples from Examples→Curve Fitting.

Basic Structure Fit Function Example
As an example of a basic structure fit function, we will write a fit function that fits an exponential decay 
using an X offset to compensate for numerical problems that can occur when the X range of an exponential 
function is small compared to the X values. The X offset must not be a fit coefficient because it is not math-
ematically distinguishable from the decay amplitude. We will write a structure that carries this constant as 
a custom member of a structure. This function will duplicate the built-in exp_XOffset function (see Built-
in Curve Fitting Functions on page III-179).

First, we create fake data by executing these commands:
Make/D/O/N=100 expData,expDataX
expDataX = enoise(0.5)+100.5
expData = 1.5+2*exp(-(expDataX-100)/0.2) + gnoise(.05)
Display expData vs expDataX
ModifyGraph mode=3,marker=8

Now the code. Copy this code and paste it into your Procedure window:
// The structure definition
Structure expFitStruct

Wave coefw // required coefficient wave
Variable x // required X value input
Variable x0 // constant

EndStructure

// The fitting function
Function fitExpUsingStruct(s) : FitFunc

Struct expFitStruct &s

return s.coefw[0] + s.coefw[1]*exp(-(s.x-s.x0)/s.coefw[2])
End

// The driver function that calls FuncFit:
Function expStructFitDriver(pw, yw, xw, xOff)

Wave pw // coefficient wave- pre-load it with initial guess
Wave yw



Chapter III-8 — Curve Fitting

III-231

Wave xw
Variable xOff
Variable doODR

// An instance of the structure. We initialize the x0 constant only,
// Igor (FuncFit) will initialize coefw and x as required.
STRUCT expFitStruct fs
fs.x0 = xOff // set the value of the X offset in the structure

FuncFit fitExpUsingStruct, pw, yw /X=xw /D /STRC=fs

// no history report for structure fit functions. We print our own
// simple report here:
print pw
Wave W_sigma
print W_sigma

End

Finally, make a coefficient wave loaded with initial guesses and invoke our driver function:

Make/D/O expStructCoefs = {1.5, 2, .2}
expStructFitDriver(expStructCoefs, expData, expDataX, 100)

This is a very simple example, intended to show only the most basic aspects of fitting with a structure fit 
function. An advanced programmer could add a control panel user interface, plus code to automatically 
calculate initial guesses and provide a default value of the x0 constant.

The WMFitInfoStruct Structure
In addition to the required structure members, you can include a WMFitInfoStruct structure member 
immediately after the required members. The WMFitInfoStruct structure, if present, will be filled in by 
FuncFit with information about the progress of fitting, and includes a member allowing you to stop fitting 
if your fit function detects a problem.

Adding a WMFitInfoStruct member to the structure in the example above:
Structure expFitStruct

Wave coefw // Required coefficient wave.
Variable x // Required X value input.
STRUCT WMFitInfoStruct fi // Optional WMFitInfoStruct.
Variable x0 // Constant.

EndStructure

And the members of the WMFitInfoStruct:

The IterStarted and ParamPerturbed members may be useful in some obscure cases to short-cut 
lengthy computations. The DoingDestWave member may be useful in an all-at-once structure fit function.

WMFitInfoStruct Structure Members
Member Description
char IterStarted Nonzero on the first call of an iteration.

char DoingDestWave Nonzero when called to evaluate the autodestination wave.

char StopNow Fit function sets this to nonzero to indicate that a problem has 
occurred and fitting should stop.

Int32 IterNumber Number of iterations completed.
Int32 ParamPerturbed Index of the fit coefficient being perturbed for the calculation of 

numerical derivatives. Set to -1 when evaluating a solution 
point with no perturbed coefficients.



Chapter III-8 — Curve Fitting

III-232

Multivariate Structure Fit Functions
To fit multivariate functions (those having more than one dimension or independent variable) you simply 
use an array for the X member of the structure. For instance, for a basic 2D structure fit function:
Structure My2DFitStruct

Wave coefw
Variable x[2]
…

EndStructure

Or a 2D all-at-once structure fit function:
Structure My2DAllAtOnceFitStruct

Wave coefw
Wave yw
Wave xw[2]
…

EndStructure 

Curve Fitting Using Commands
A few curve fitting features are not completely supported by the Curve Fitting dialog, such as constraints 
involving combinations of fit coefficients, or user-defined fit functions involving more complex construc-
tions. Also, you might sometimes want to batch-fit to a number of data sets without interacting with the 
dialog for each data set. These circumstances will require that you use command lines to do fits.

The easiest way to do this is to use the Curve Fitting dialog to generate command lines that do almost what you 
want. If you simply want to add a more complex feature, such as a more complicated constraint expression, click 
the To Cmd Line button, then edit the commands generated by the dialog to add the features you want.

If you are writing a user procedure that does curve fitting, you can click the To Clip button to copy the com-
mands generated by the dialog. Then paste the commands into the Procedure window. Edit them as needed 
by your application.

Curve fitting is done by three operations — CurveFit, FuncFit, and FuncFitMD. You will find details on 
these operations in Chapter V-1, Igor Reference.

Batch Fitting
If you are doing batch fitting, you probably want to call a curve fitting operation inside a loop. In that case, 
you probably don’t want a history report for every fit- it could possible make a very large amount of text in 
the history. You probably don’t want the progress window during the fits- it slows down the fit and will 
make a flashing window as it appears and disappears. Finally, you probably don’t want graphs and tables 
updating during the fits, as this can slow down computation considerably.

Here is an example function that will do all of this, plus it checks for an error during the fit. If the use of the 
$ operator is unfamiliar you will want to consult Accessing Waves in Functions on page IV-76.

Function FitExpToListOfWaves(theList)
String theList

Variable i=0
string aWaveName = ""
Variable V_fitOptions = 4 // suppress progress window
Variable V_FitError = 0 // prevent abort on error
do

aWaveName = StringFromList(i, theList)
WAVE/Z aWave = $aWaveName
if (!WaveExists(aWave))

break
endif



Chapter III-8 — Curve Fitting

III-233

// /N suppresses screen updates during fitting
// /Q suppresses history output during fitting
CurveFit/N/Q exp aWave /D/R
WAVE W_coef

// save the coefficients
Duplicate/O W_coef $("cf_"+aWaveName)
// save errors
Duplicate/O W_sigma, $("sig_"+aWaveName)
if (V_FitError != 0)

// Mark the results as being bad
WAVE w = $("cf_"+aWaveName)
w = NaN
WAVE w = $("sig_"+aWaveName)
w = NaN
WAVE w = $("fit_"+aWaveName)
w = NaN
WAVE w = $("Res_"+aWaveName)
w = NaN
V_FitError = 0

endif
i += 1

while(1)
End

This function is very limited. It simply does fits to a number of waves in a list. Igor includes a package that 
adds a great deal of sophistication to batch fitting, and provides a user interface. For a demonstration, 
choose File→Example Experiments→Curve Fitting→Batch Curve Fitting Demo.

Curve Fitting Examples
The Igor Pro 7 Folder includes a number of example experiments that demonstrate the capabilities of curve 
fitting. These examples cover fitting with constraints, multivariate fitting, multipeak fitting, global fitting, 
fitting a line between cursors, and fitting to a user-defined function. All of these experiments can be found 
in Igor Pro 7 Folder:Examples:Curve Fitting.

Singularities in Curve Fitting
You may occasionally run across a situation where you see a “singular matrix” error. This means that the 
system of equations being solved to perform the fit has no unique solution. This generally happens when 
the fitted curve contains degeneracies, such as if all Y values are equal.

In a fit to a user-defined function, a singular matrix results if one or more of the coefficients has no effect on 
the function’s return value. Your coefficients wave must have the exact same number of points as the number 
of coefficients that you actually use in your function or else you must hold constant unused coefficients.

Certain functions may have combinations of coefficients that result in one or more of the coefficients having 
no effect on the fit. Consider the Gaussian function:

If K1 is set to zero, then the following exponential has no effect on the function value. The fit will report 
which coefficients have no effect. In this example, it will report that K2 and K3 have no effect on the fit. How-
ever, as this example shows, it is often not the reported coefficients that are at fault.

K0 K1 x K2–( ) K3⁄( )2exp+



Chapter III-8 — Curve Fitting

III-234

Special Considerations for Polynomial Fits
Polynomial fits use the singular value decomposition technique. If you encounter singular values and some 
of the coefficients of the fit have been zeroed, you are probably asking for more terms than can be supported 
by your data. You should use the smallest number of terms that gives a “reasonable” fit. If your data does 
not support higher-order terms then you can actually get a poorer fit by including them.

If you really think your data should fit with the number of terms you specified, you can try adjusting the 
singular value threshold. You do this by creating a special variable called V_tol and setting it to a value 
smaller than the default value of 1e-10. You might try 1e-15.

Another way to run into trouble during polynomial fitting is to use a range of X values that are very much 
offset from zero. The solution is to temporarily offset your X values, do the fit and then restore the original 
X values. This is done for you by the poly_XOffset fit function; see Built-in Curve Fitting Functions on page 
III-179 for details.

Errors Due to X Values with Large Offsets
The single and double exponential fits can be thrown off if you try to fit to a range of X values that are very 
much offset from zero. In general, any function, which, when extrapolated to zero, returns huge or infinite 
values, can create problems. The solution is to temporarily offset your x values, perform the fit and then 
restore the original x values. You may need to perform a bit of algebra to fix up the coefficients.

As an example consider a fit to an exponential where the x values range from 100 to 101. We temporarily 
offset the x values by 100, perform the fit and then restore the x values by adding 100. When we did the fit, 
rather than fitting to k0+k1*exp(-k2*x) we really did the fit to c0+c1*exp(-c2*(x-100)). A little rearrangement 
and we have c0+c1*exp(-c2*x)*exp(c2*100). Comparing these expressions, we see that k0= c0, 
k1= c1*exp(c2*100) and k2= c2.

A better solution to the problem of fitting exponentials with large X offsets is to use the built-in exp_XOffset 
and dblexp_XOffset fit functions. These fit functions automatically incorporate the X shifting; see Built-in 
Curve Fitting Functions on page III-179 for details.

The same problem can occur when fitting to high-degree polynomials. In this case, the algebra required to 
transform the solution coefficients back to unoffset X values is nontrivial. It would be better to simply rede-
fine your problem in terms of offset X value.

Curve Fitting Troubleshooting
If you are getting unsatisfactory results from curve fitting you should try the following before giving up.

Make sure your data is valid. It should not be all one value. It should bear some resemblance to the function 
that you’re trying to fit it to.

If the fit is iterative try different initial guesses. Some fit functions require initial guesses that are very close 
to the correct solution.

If you are fitting to a user-defined function, check the following:
• Your coefficients wave must have exactly the same number of points as the number of coefficients 

that you actually use in your function unless you hold constant the unused coefficients.
• Your initial guesses should not be zero unless the expected range is near 1.0 or you have specified 

an epsilon wave. See The Epsilon Wave on page III-235 for details.
• Ensure that your function is working properly. Try plotting it over a representative domain.
• Examine your function to ensure all your coefficients are distinguishable. For example in the frag-

ment (k0+k1)*x, k0 and k1 are indistinguishable. If this situation is detected, the history will contain 
the message: “Warning: These parameters may be linearly dependent:” followed by a line listing the 
two parameters that were detected as being indistinguishable.



Chapter III-8 — Curve Fitting

III-235

• Because the derivatives for a user-defined fit function are calculated numerically, if the function depends 
only weakly on a coefficient, the derivatives may appear to be zero. The solution is to create an epsilon 
wave and set its values large enough to give a nonzero difference in the function output. See The Epsi-
lon Wave on page III-235 for details.

• A variation the previous problem is a function that changes in a step-wise fashion, or is “noisy” 
because an approximation is used that is good to only a limited precision. Again, create an epsilon 
wave and set the values large enough to give nonzero differences that are of consistent sign.

• Verify that each of your coefficients has an effect on the function. In some cases, a coefficient may 
have an effect over a limited range of X values. If your data do not sample that range adequately the 
fit may not work well, or may give a singular matrix error.

• Make sure that the optimal value of your coefficients is not infinity (it takes a long time to increment 
to infinity).

• Check to see if your function could possibly return NaN or INF for any value of the coefficients. You 
might be able to add constraints to prevent this from happening. You will see warnings if a singular 
matrix error resulted from NaN or INF values returned by the fitting function.

• Use a double-precision coefficient wave. Curve fitting is numerically demanding and usually works 
best if all computations are done using double precision numbers. Using a single-precision coeffi-
cient wave often causes failures due to numeric truncation. Because the Make operation defaults to 
single precision, you must use the /D flag when creating your coefficient wave.

• If you use intermediate waves in your user-defined fit function, make sure they are all double pre-
cision. Because the Make operation defaults to single precision, you must use the /D flag when cre-
ating your coefficient wave.

The Epsilon Wave
Curve fitting uses partial derivatives of your fit function with respect to the fit coefficients in order to find 
the gradient of the chi-square surface. It then solves a linearized estimate of the chi-square surface to find 
the next estimate of the solution (the minimum in the chi-square surface).

Since Igor doesn't know the mathematical equation for your fit function, it must approximate derivatives 
numerically using finite differences. That is, a model value is calculated at the present estimate of the fit 
coefficients, then each coefficient is perturbed by a small amount, and the derivative is calculated from the 
difference. This small perturbation, which is different for each coefficient, is called “epsilon”.

You can specify the epsilon value for each coefficient by providing an epsilon wave to the CurveFit or 
FuncFit operations using the /E flag. If you do not provide an epsilon wave, Igor determines epsilon for 
each coefficient using these rules:

If your coefficient wave is single precision (which is not recommended), 
if coef[i] == 0

eps[i] = 1e-4
else

eps[i] = 1e-4*coef[i]

If your coefficient wave is double precision,
if coef[i] == 0

eps[i] = 1e-10
else

eps[i] = 1e-10*coef[i]

In the Curve Fitting dialog, when you are using a user-defined fitting function, you can select an epsilon 
wave from the Epsilon Wave menu. When you select _New Wave_, or if you select an existing wave from 
the menu, Igor adds a column to the Coefficients list where you can edit the epsilon values.

There are a couple of reasons for explicitly setting epsilon. One is if your fit function is insensitive to a coef-
ficient. That is, perturbing the coefficient makes a very small change in the model value. Sometimes the 
dependence of the model is so small that floating-point truncation results in no change in the model value. 



Chapter III-8 — Curve Fitting

III-236

You have to set epsilon to a sufficiently large value that the model actually changes when the perturbation 
is applied.

You also need to set epsilon is when the model is discrete or noisy. This can happen if the model involves 
a table look-up or a series solution of some sort. In the case of table look-up, epsilon needs to be large 
enough to make sure that you get two distinct values out of the table.

In the case of a series solution, you have to stop summing terms in the series at some point. If the truncation 
of the series results in less than full floating-point resolution of the series, you need to make sure epsilon is 
large enough that the change in the model is larger than the resolution of the series. A series might include 
something like a numerical solution of an ODE, using the IntegrateODE operation. It could also involve 
FindRoots or Optimize, each of which gives you an approximate result. Since these operations run faster 
if you don't demand high precision, there may be a strong incentive to decrease the accuracy of the compu-
tation, and that may in turn lead to a need for an epsilon wave.

Curve Fitting References
An explanation of the Levenberg-Marquardt nonlinear least squares optimization can be found in Chapter 
14.4 of:
Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C, 2nd ed., 994 pp., 

Cambridge University Press, New York, 1992.

The algorithm used for applying constraints is given in:
Shrager, Richard, Quadratic Programming for Nonlinear Regression, Communications of the ACM, 15, 41-45, 1972.

The method is described in gory mathematical detail in:
Shrager, Richard, Nonlinear Regression With Linear Constraints: An Extension of the Magnified Diagonal 

Method, Journal of the Association for Computing Machinery, 17, 446-452, 1970.

References for the ODRPACK95 package used for orthogonal distance regression:
Boggs, P.T., R.H. Byrd, and R.B. Schnabel, A Stable and Efficient Algorithm for Nonlinear Orthogonal Dis-

tance Regression, SIAM Journal of Scientific and Statistical Computing, 8, 052-1078, 1987.

Boggs, P.T., R.H. Byrd, J.R. Donaldson, and R.B. Schnabel, Algorithm 676 - ODRPACK: Software for Weighted 
Orthogonal Distance Regression, ACM Transactions on Mathematical Software, 15, 348-364, 1989

Boggs, P.T., J.R. Donaldson, R.B. Schnabel and C.H. Spiegelman, A Computational Examination of Orthog-
onal Distance Regression, Journal of Econometrics, 38, 69-201, 1988.

An exhaustive, but difficult to read source for nonlinear curve fitting:
Seber, G.A.F, and C.J. Wild, Nonlinear Regression, John Wiley & Sons, 1989.

A discussion of the assumptions and approximations involved in calculating confidence bands for nonlin-
ear functions can be found in the beginning sections of Chapter 5.

General books on curve fitting and statistics:
Draper, N., and H. Smith, Applied Regression Analysis, John Wiley & Sons, 1966.

Box, G.E.P., W.G. Hunter, and J.S. Hunter, Statistics for Experimenters, John Wiley & Sons, 1978.


	Curve Fitting
	Overview
	Curve Fitting Terminology
	Overview of Curve Fitting
	Iterative Fitting
	Data for Curve Fitting

	Curve Fitting Using the Quick Fit Menu
	Limitations of the Quick Fit Menu

	Using the Curve Fitting Dialog
	A Simple Case — Fitting to a Built-In Function: Line Fit
	Automatic Guesses Didn’t Work
	Fits with Constants
	Fitting to a User-Defined Function
	Fitting to an External Function (XFUNC)
	The Coefficient Wave
	The Destination Wave
	Fitting a Subset of the Data
	Weighting
	Proportional Weighting
	Fitting to a Multivariate Function
	Model Results for Multivariate Fitting
	Time Required to Update the Display
	Multivariate Fitting Examples
	Problems with the Curve Fitting Dialog

	Built-in Curve Fitting Functions
	Inputs and Outputs for Built-In Fits
	Curve Fitting Dialog Tabs
	Global Controls
	Function and Data Tab
	Data Options Tab
	Coefficients Tab
	Output Options Tab

	Computing Residuals
	Residuals Using Auto Trace
	Residuals Using Auto Wave
	Residuals Using an Explicit Residual Wave
	Calculating Residuals After the Fit

	Estimates of Error
	Confidence Bands and Coefficient Confidence Intervals

	Covariance Matrix
	Correlation Matrix
	Identifiability Problems

	Fitting with Constraints
	Constraints Using the Curve Fitting Dialog
	Complex Constraints Using a Constraints Wave
	Constraint Expressions
	Equality Constraint
	Example Fit with Constraints
	Constraint Matrix and Vector
	Constrained Curve Fitting Pitfalls

	NaNs and INFs in Curve Fits
	Special Variables for Curve Fitting
	V_FitOptions
	V_chisq
	V_q
	V_FitError and V_FitQuitReason
	V_FitIterStart
	S_Info

	Errors in Variables: Orthogonal Distance Regression
	ODR Fitting is Not Threadsafe
	Weighting Waves for ODR Fitting
	ODR Initial Guesses
	Holding Independent Variable Adjustments
	ODR Fit Results
	Constraints and ODR Fitting
	Error Estimates from ODR Fitting
	ODR Fitting Examples

	Fitting Implicit Functions
	Example: Fit to an Ellipse

	Fitting Sums of Fit Functions
	Linear Dependency: A Major Issue
	Constraints Applied to Sums of Fit Functions
	Example: Summed Exponentials
	Example: Function List in a String

	Curve Fitting with Multiple Processors
	Curve Fitting with Automatic Multithreading
	Curve Fitting with Programmed Multithreading
	Constraints and ThreadSafe Functions

	User-Defined Fitting Functions
	User-Defined Fitting Function Formats
	Format of a Basic Fitting Function
	Intermediate Results for Very Long Expressions
	Conditionals
	The New Fit Function Dialog Adds Special Comments
	Functions that the Fit Function Dialog Doesn’t Handle Well
	Format of a Multivariate Fitting Function
	All-At-Once Fitting Functions
	Multivariate All-At-Once Fitting Functions
	Structure Fit Functions

	Curve Fitting Using Commands
	Batch Fitting

	Curve Fitting Examples
	Singularities in Curve Fitting
	Special Considerations for Polynomial Fits
	Errors Due to X Values with Large Offsets
	Curve Fitting Troubleshooting
	The Epsilon Wave

	Curve Fitting References


