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Overview
Analysis tasks in Igor range from simple experiments using no programming to extensive systems tailored 
for specific fields. Chapter I-2, Guided Tour of Igor Pro, shows examples of the former. WaveMetrics’ 
“Peak Measurement” technical note is an example of the latter.

The Signal Processing chapter covers basic analysis operations with emphasis on signal transformations.

Fourier Transforms
Igor uses the Fast Fourier Transform (FFT) algorithm to compute a Discrete Fourier Transform (DFT). The 
FFT is usually called from an Igor procedure as one step in a larger process, such as finding the magnitude 
and phase of a signal. Igor’s FFT uses a prime factor decomposition multidimensional algorithm. Prime 
factor decomposition allows the algorithm to work on nearly any number of data points. Previous versions 
of Igor were restricted to a power-of-two number of data points.

This section concentrates on the one-dimensional FFT. See Multidimensional Fourier Transform on page 
II-90 for information on multidimensional aspects of the FFT.

You can perform a Fourier transform on a wave by choosing Analysis→Fourier Transforms. This displays 
the Fourier Transforms dialog.

Select the type of transform by clicking the Forward or Reverse radio button. Select the wave that you want 
to transform from the Wave list. If you enable the From Target box under the Wave list, only appropriate 
waves in the target window will appear in the list.

Why Some Waves Aren’t Listed
What do we mean by “appropriate” waves?

The data can be either real or complex. If the data are real, the number of data points must be even. This is 
an artificial limitation that was introduced in order to guarantee that the inverse transform of a forward-
transformed wave is equal to the original wave. For multidimensional data, only the number of rows must 
be even. You can work around some of the restrictions of the inverse FFT with the command line.

The inverse FFT requires complex data. There are no restrictions on the number of data points. However, 
for historic and compatibility reasons, certain values for the number of points are treated differently as 
described in the next sections.

Changes in Wave Type and Number of Points
If the wave is a 1D real wave of N points (N must be even), the FFT operation results in a complex wave 
consisting of N/2+1 points containing the “one-sided spectrum”. The negative spectrum is not computed, 
since it is identical for real input waves.

If the wave is complex (even if the imaginary part is zero), its data type and number of points are unchanged 
by the forward FFT. The FFT result is a “two-sided spectrum”, which contains both the positive and the neg-
ative frequency spectra, which are different if the imaginary part of the complex input data is nonzero.

The diagram below shows the two-sided spectrum of 128-point data containing a zero imaginary compo-
nent.
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Magic Number of Points and the IFFT
When performing the inverse FFT, the input is always complex, but the result may be either real or complex.

Because versions of Igor prior to 3.0 only allowed an integral power of two (2n) to be forward-transformed, 
Igor could tell from the number of points in the forward-transformed wave what kind of result to create for 
the inverse transform. To ensure compatibility, Igor versions 3.0 and after continue to treat certain numbers 
of points as “magical.”

If the number of points in the wave is an integral power of two (2n), then the wave resulting from the IFFT 
is complex. If the number of points in the wave is one greater than an integral power of two (1+2n), then the 
wave resulting from the IFFT is real and of length (2n+1).

If the number of points is not one of the two magic values, then the result from the inverse transform is real 
unless the complex result is selected in the Fourier Transforms dialog.

Changes in X Scaling and Units
The FFT operation changes the X scaling of the transformed wave. If the X-units of the transformed wave 
are time (s), frequency (Hz), length (m), or reciprocal length (m-1), then the resulting wave units are set to 
the respective conjugate units. Other units are currently ignored. The X scaling’s X0 value is altered depend-
ing on whether the wave is real or complex, but dx is always set the same:

If the original wave is real, then after the FFT its minimum X value (X0) is zero and its maximum X value is:

If the original wave is complex, then after the FFT its maximum X value is XN/2 - dXFFT, its minimum X 
value is -XN/2, and the X value at point N/2 is zero.

The IFFT operation reverses the change in X scaling caused by the FFT operation except that the X value of 
point 0 will always be zero.
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FFT Amplitude Scaling
Various programs take different approaches to scaling the amplitude of an FFTed waveform. Different 
scaling methods are appropriate for different analyses and there is no general agreement on how this is 
done. Igor uses the method described in Numerical Recipes in C (see References on page III-269) which 
differs from many other references in this regard.

The DFT equation computed by the FFT for a complex waveorig with N points is:

waveorig and waveFFT refer to the same wave before and after the FFT operation.

The IDFT equation computed by the IFFT for a complex waveFFT with N points is:

To scale waveFFT to give the same results you would expect from the continuous Fourier Transform, you 
must divide the spectral values by N, the number of points in waveorig.

However, for the FFT of a real wave, only the positive spectrum (containing spectra for positive frequen-
cies) is computed. This means that to compare the Fourier and FFT amplitudes, you must account for the 
identical negative spectra (spectra for negative frequencies) by doubling the positive spectra (but not 
waveFFT[0], which has no negative spectral value).

For example, here we compute the one-sided spectrum of a real wave, and compare it to the expected 
Fourier Transform values:
Make/N=128 wave0
SetScale/P x 0,1e-3,"s",wave0 // dx=1ms,Nyquist frequency is 500Hz
wave0= 1 - cos(2*Pi*125*x) // signal frequency is 125Hz, amp. is -1
Display wave0;ModifyGraph zero(left)=3

FFT wave0

Igor computes the “one-sided” spectrum and updates the graph:
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k 0=

N 1–

=

waveIFT n[ ] 1
N
---- waveFFT k[ ] e 2– πi kn N⁄⋅ ,  where i 1–=⋅

k 0=

N 1–

⋅=

2.0

1.5

1.0

0.5

0.0

0.120.100.080.060.040.020.00
s



Chapter III-9 — Signal Processing

III-242

The Fourier Transform would predict a zero-frequency (“DC”) result of 1, which is what we get when we 
divide the FFT value of 128 by the number of input values which is also 128. In general, the Fourier Trans-
form value at zero frequency is:

The Fourier Transform would predict a spectral peak at -125Hz of amplitude (-0.5 + i0), and an identical 
peak in the positive spectrum at +125Hz. The sum of those expected peaks would be (-1+0·i).

(This example is contrived to keep the imaginary part 0; the real part is negative because the input signal 
contains -cos(…) instead of + cos(…).)

Igor computed only the positive spectrum peak, so we double it to account for the negative frequency peak 
twin. Dividing the doubled peak of -128 by the number of input values results in (-1+i0), which agrees with 
the Fourier Transform prediction. In general, the Fourier Transform value at a nonzero frequency ƒ is:

The only exception to this is the Nyquist frequency value (the last value in the one-sided FFT result), whose 
value in the one-sided transform is the same as in the two-sided transform (because, unlike all the other fre-
quency values, the two-sided transform computes only one Nyquist frequency value). Therefore:

The frequency resolution dXFFT = 1/(Noriginal·dxoriginal), or 1/(128*1e-3) = 7.8125 Hz. This can be verified by 
executing:
Print deltax(wave0)

Which prints into the history area:
7.8125

You should be aware that if the input signal is not a multiple of the frequency resolution (our example was 
a multiple of 7.8125 Hz) that the energy in the signal will be divided among the two closest frequencies in 
the FFT result; this is different behavior than the continuous Fourier Transform exhibits.

Phase Polarity
There are two different definitions of the Fourier transform regarding the phase of the result. Igor uses a method 
that differs in sign from many other references. This is mainly of interest if you are comparing the result of an 
FFT in Igor to an FFT in another program. You can convert from one method to the other as follows:
FFT wave0; wave0=conj(wave0) // negate the phase angle by changing

// the sign of the imaginary component.

Effect of FFT and IFFT on Graphs
Igor displays complex waves in Lines between points mode by default. But, as demonstrated above, if you 
perform an FFT on a wave that is displayed in a graph and the display mode for that wave is lines between 

Fourier Transform Amplitude 0( ) 1
N
---- r2polar waveFFT 0( )( )( )real⋅=

Fourier Transform Amplitude f( ) 2
N
---- r2polar waveFFT f( )( )( )real⋅=

Fourier Transform Amplitude fNyquist( ) 1
N
---- r2polar waveFFT fNyquist( )( )( )real⋅=



Chapter III-9 — Signal Processing

III-243

points, then Igor changes its display mode to Sticks to zero. Also, if you perform an IFFT on a wave that is 
displayed in a graph and the display mode for that wave is Sticks to zero then Igor changes its display mode 
to Lines between points.

Effect of the Number of Points on the Speed of the FFT
Although the prime factor FFT algorithm does not require that the number of points be a power of two, the 
speed of the FFT can degrade dramatically when the number of points can not be factored into small prime 
numbers. The following graph shows the speed of the FFT on a complex vector of varying number of points. 
Note that the time (speed) axis is log. The results are from a Power Mac 9500/120.

The arrow is at N=4096, a power of two. For that number of points, the FFT time was less than 0.02 seconds 
while other nearby values exceed one second. The moral of the story is that you should avoid numbers of 
points that have large prime factors (4078 takes a long time- it has prime factors 2039 and 2). You should 
endeavor to use a number with small prime factors (4080 is reasonably fast — it has prime factors 
2*2*2*2*3*5*17). For best performance, the number of points should be a power of 2, like 4096.

Finding Magnitude and Phase
The FFT operation can create a complex, real, magnitude, magnitude squared, or phase result directly when 
you choose the desired output type in the Fourier Transforms dialog

If you choose to use the complex wave result of the FFT operation you can compute the magnitude and 
phase using the WaveTransform operation (see page V-938) (with keywords magnitude, magsqr, and 
phase), or with various procedures from the WaveMetrics Procedures folder (described in the next section).

If you want to unwrap the phase wave (to eliminate the phase jumps that occur between ±180 degrees), use 
the Unwrap operation or the Unwrap Waves dialog in the Data menu. See Unwrap on page V-909. In two 
dimensions you can use ImageUnwrapPhase operation (see page V-376).

Magnitude and Phase Using WaveMetrics Procedures
For backward compatibility you can compute FFT magnitude and phase using the WaveMetrics-provided 
procedures in the “WaveMetrics Procedures:Analysis:DSP (Fourier Etc)” folder.
You can access them using Igor’s “#include” mechanism. See The Include Statement on page IV-155 for 
instructions on including a procedure file.

The WM Procedures Index help file, which you can access from the Help→Help Windows menu, is a good 
way to find out what routines are available and how to access them.

FTMagPhase Functions
The FTMagPhase functions provide an easy interface to the FFT operation. FTMagPhase has the following 
features:
• Automatic display of the results.
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• Original data is untouched.
• Can display magnitude in decibels.
• Optional phase display in degrees or radians.
• Optional 1D phase unwrapping.
• Resolution enhancement.
• Supports non-power-of-two data with optional windowing.
Use #include <FTMagPhase> in your procedure file to access these functions.

FTMagPhaseThreshold Functions
The FTMagPhaseThreshold functions are the same as the FTMagPhase procedures, but with an extra feature:
• Phase values for low-amplitude signals may be ignored.
Use #include <FTMagPhaseThreshold> in your procedure file to access these functions.

DFTMagPhase Functions
The DFTMagPhase functions are similar to the FTMagPhase procedures, except that the slower Discrete 
Fourier Transform is used to perform the calculations:
• User-selectable frequency start and end.
• User-selectable number of frequency bands.
The procedures also include the DFTAtOneFrequency procedure, which computes the amplitude and 
phase at a single user-selectable frequency.

Use #include <DFTMagPhase> in your procedure file to access these functions.

CmplxToMagPhase Functions
The CmplxToMagPhase functions convert a complex wave, presumably the result of an FFT, into separate 
magnitude and phase waves. It has many of the features of FTMagPhase, but doesn’t do the FFT.

Use #include <CmplxToMagPhase> in your procedure file to access these functions.

Spectral Windowing
The FFT computation makes an assumption that the input data repeats over and over. This is important if 
the initial value and final value of your data are not the same. A simple example of the consequences of this 
repeating data assumption follows.

Suppose that your data is a sampled cosine wave containing 16 complete cycles:
Make/O/N=128 cosWave=cos(2*pi*p*16/128)
SetScale/P x, 0, 1, "s", cosWave
Display cosWave
ModifyGraph mode=4,marker=8
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Notice that if you copied the last several points of cosWave to the front, they would match up perfectly with 
the first several points of cosWave. In fact, let’s do that with the Rotate operation (see page V-690):
Rotate 3,cosWave // wrap last three values to front of wave
SetAxis bottom,-5,20 // look more closely there

The rotated points appear at x=-3, -2, and -1. This indicates that there is no discontinuity as far as the FFT is 
concerned.

Because of the absence of discontinuity, the FFT magnitude result matches the ideal expectation:
Ideal FFT amplitude = cosine amplitude * number of points/2 = 1 * 128 / 2 = 64

FFT /OUT=3 /DEST=cosWaveF cosWave
Display cosWaveF
ModifyGraph mode=8, marker=8

Notice that all other FFT magnitudes are zero. Now let us change the data so that there are 16.5 cosine cycles:
Make/O/N=128 cosWave = cos(2*pi*p*16.5/128)
SetScale/P x, 0, 1, "s", cosWave
SetAxis/A
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When we rotate this data as before, you can see what the FFT will perceive to be a discontinuity between 
the point 127 and point 0 of the unrotated data. In this next graph, the original point 127 has been rotated 
to x= -1 and point 0 is still at x=0.

Rotate 3, cosWave
SetAxis bottom, -5, 20

When the FFT of this data is computed, the discontinuity causes “leakage” of the main cosine peak into sur-
rounding magnitude values.

FFT /OUT=3 /DEST=cosWaveF cosWave
SetAxis/A

How does all this relate to spectral windowing? Spectral windowing reduces this leakage and gives more 
accurate FFT results. Specifically, windowing reduces the number of adjacent FFT values affected by leak-
age. A typical window accomplishes this by smoothly attenuating both ends of the data towards zero.

Hanning Window
Windowing the data before the FFT is computed can reduce the leakage demonstrated above. The Hanning 
window is a simple raised cosine function defined by the equation:

Let us apply the Hanning window to the 16.5 cycle cosine wave data:
Make/O/N=128 cosWave=cos(2*pi*p*16.5/128)
Hanning cosWave
Display cosWave
ModifyGraph mode=4, marker=8
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By smoothing the ends of the wave to zero, there is no discontinuity when wrapping around the ends.

In applying a window to the data, energy is lost. Depending on your application you may want to scale the 
output to account for coherent or incoherent gain. The coherent gain is sometimes expressed in terms of 
amplitude factor and it is equal to the sum of the coefficients of the window function over the interval. The 
incoherent gain is a power factor defined as the sum of the squares of the same coefficients. In the case that 
we are considering the correction factor is just the reciprocal of the coherent gain of the Hanning window 

so we can multiply the FFT amplitudes by 2 to correct for them:
cosWave *= 2 // Account for coherent gain
FFT /OUT=3 /DEST=cosWaveH cosWave
Display cosWaveH
ModifyGraph mode=4, marker=8

Note that frequency values in the neighborhood of the peak are less affected by the leakage, and that the 
amplitude is closer to the ideal of 64.

Other Windows
The Hanning window is not the ultimate window. Other windows that suppress more leakage tend to 
broaden the peaks. The FFT and WindowFunction operations have the following built-in windows: Han-
ning, Hamming, Bartlett, Blackman, Cosa(x), KaiserBessel, Parzen, Riemann, and Poisson.
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You can create other windows by writing a user-defined function or by executing a simple wave assign-
ment statement such as this one which applies a triangle window:

Use point indexing to avoid X scaling complications. You can determine the effect a window has by applying it 
to a perfect cosine wave, preferably a cosine wave at 1/4 of the sampling frequency (half the Nyquist frequency).

Other windows are provided in the WaveMetrics-supplied “DSP Window Functions” procedure file.

Multidimensional Windowing
When performing FFTs on images, artifacts are often produced because of the sharp boundaries of the 
image. As is the case for 1D waves, windowing of the image can help yield better results from the FFT.

To window images, you will need to use the ImageWindow operation, which implements the Hanning, 
Hamming, Bartlett, Blackman, and Kaiser windowing filters. See the ImageWindow operation on page 
V-378 for further details. For a windowing example, see Correlations on page III-315.

Power Spectra

Periodogram
The periodogram of a signal s(t) is an estimate of the power spectrum given by

,

where F(f) is the Fourier transform of s(t) computed by a Discrete Fourier Transform (DFT) and N is the nor-
malization (usually the number of data points).
You can compute the periodogram using the FFT but it is easier to use the DSPPeriodogram operation, 
which has the same built-in window functions but you can also select your own normalization to suppress 
the DC term or to have the results expressed in dB as:

20log10(F/F0)
or

10log10(P/P0)
where P0 is either the maximum value of P or a user-specified reference value.

DSPPeriodogram can also compute the cross-power spectrum, which is the product of the Fourier trans-
form of the first signal with the complex conjugate of the Fourier transform of the second signal:

where F(f) and G(f) are the DFTs of the two waves.

Power Spectral Density Functions
The PowerSpectralDensity routine supplied in the “Power Spectral Density” procedure file computes 
Power Spectral Density by averaging power spectra of segments of the input data. This is an early proce-
dure file that does not take advantage of the new built-in features of the FFT or DSPPeriodogram opera-
tions. The procedure is still supported for backwards compatibility.

data *= 1-abs(2*p/numpnts(data)-1)

P f( ) F f( ) 2

N
----------------=

P f( ) F f( )G* f( )
N

------------------------=
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The PowerSpectralDensity functions take a long data wave on input and calculate the power spectral 
density function. These procedures have the following features:
• Automatic display of the results.
• Original data is untouched.
• Pop-up list of windowing functions.
• User setable segment length.
Use #include <Power Spectral Density> in your procedure file to access these functions. See The 
Include Statement on page IV-155 for instructions on including a procedure file.

PSD Demo Experiment
The PSD Demo experiment (in the Examples:Analysis: folder) uses the PowerSpectralDensity procedure 
and explains how it works in great detail, including justification for the scaling applied to the result.

Hilbert Transform
The Hilbert transform of a function f(x) is defined by

.

The integral is evaluated as a Cauchy principal value. For numerical computation it is customary to express 
the integral as the convolution

.

Noting that the Fourier transform of (-1/πx) is i*sgn(x), we can evaluate the Hilbert transform using the convo-
lution theorem of Fourier transforms. The HilbertTransform operation (see page V-296) is a convenient short-
cut. In the next example we compute the Hilbert transform of a cosine function that gives us a sine function:
Make/N=512 cosWave=cos(2*pi*x*20/512)
HilbertTransform/Dest=hCosWave cosWave
Display cosWave,hCosWave
ModifyGraph rgb(hCosWave)=(0,0,65535)

Time Frequency Analysis
When you compute the Fourier spectrum of a signal you dispose of all the phase information contained in 
the Fourier transform. You can find out which frequencies a signal contains but you do not know when 
these frequencies appear in the signal. For example, consider the signal

.

The spectral representation of f(t) remains essentially unchanged if we interchange the two frequencies f1 
and f2. In other words, the Fourier spectrum is not the best analysis tool for signals whose spectra fluctuate 
in time. One solution to this problem is the so-called “short time Fourier Transform”, in which you can 
compute the Fourier spectra using a sliding temporal window. By adjusting the width of the window you 
can determine the time resolution of the resulting spectra.

Two alternative tools are the Wigner transform and the Continuous Wavelet Transform (CWT).

FH x( ) 1
π
--- f t( )

t x–
---------- td

∞–

∞

=

FH x( ) 1–
πx
------ 
  f x( )⊗=

f t( )
2πf1t( )sin 0 t t1<≤

2πf2t( )sin t1 t t2<≤



=
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Wigner Transform
The Wigner transform (also known as the Wigner Distribution Function or WDF) maps a 1D time signal U(t) into 
a 2D time-frequency representation. Conceptually, the WDF is analogous to a musical score where the time axis 
is horizontal and the frequencies (notes) are plotted on a vertical axis. The WDF is defined by the equation

Note that the WDF W(t,ν) is real (this can be seen from the fact that it is a Fourier transform of an Hermitian 
quantity). The WDF is also a 2D Fourier transform of the Ambiguity function.

The localized spectrum can be derived from the WDF by integrating it over a finite area dtdn. Using Gauss-
ian weight functions in both t and n, and choosing the minimum uncertainty condition dtdn=1, we obtain 
an estimate for the local spectrum

For an application of the WignerTransform operation (see page V-944), consider the two-frequency signal:
Make/N=500 signal
signal[0,350]=sin(2*pi*x*50/500)
signal[250,]+=sin(2*pi*x*100/500)
WignerTransform /GAUS=100 signal
DSPPeriodogram signal // Spectrum for comparison
Display signal

The signal used in this example consists of two “pure” frequencies that have small amount of temporal overlap:

Display; AppendImage M_Wigner

The temporal dependence is clearly seen in the Wigner transform. Note that the horizontal (time) transi-
tions are not sharp. This is mostly due to the application of the minimum uncertainty relation dtdn=1 but it 
is also due to computational edge effects. By comparison, the spectrum of the signal while clearly showing 
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the presence of two frequencies it provides no indication of the temporal variation of the signal’s frequency 
content. Furthermore, the different power in the two frequencies may be attributed to either a different 
duration or a different amplitude.

Continuous Wavelet Transform
The Continuous Wavelet Transform (CWT) is a time-frequency representation of signals that graphically 
has a superficial similarity to the Wigner transform.

A wavelet transform is a convolution of a signal s(t) with a set of functions which are generated by transla-
tions and dilations of a main function. The main function is known as the mother wavelet and the translated 
or dilated functions are called wavelets. Mathematically, the CWT is given by

.

Here b is the time translation and a is the dilation of the wavelet.

From a computational point of view it is natural to use the FFT to compute the convolution which suggests 
that the results are dependent on proper sampling of s(t).

When the mother wavelet is complex, the CWT is also a complex valued function. Otherwise the CWT is real. 
The squared magnitude of the CWT is equivalent to the power spectrum so that a typical display 
(image) of the CWT is a representation of the power spectrum as a function of time offset b. One should note 
however that the precise form of the CWT depends on the choice of mother wavelet y and therefore the extent of 
the equivalency between the squared magnitude of the CWT and the power spectrum is application dependent.

The CWT operation (see page V-116) is implemented using both the FFT and the direct sum approach. You 
can use either one to get a representation of the effective wavelet using a delta function as an input. When 
comparing two CWT results you should always check that both use exactly the same definition of the 
wavelet function, same normalization and same computation method. For example,
Make/N=1000 signal=sin(2*pi*x*50/1000)
CWT/OUT=4/SMP2=1/R2={1,1,40}/WBI1=Morlet/WPR1=5/FSCL signal
Rename M_CWT, M_CWT1
Display as "Morlet FFT"; AppendImage M_CWT1
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CWT /M=1/OUT=4/SMP2=1/R2={1,1,40}/WBI1=Morlet/FSCL /ENDM=2 signal
Rename M_CWT, M_CWT2
Display as "Morlet Direct Sum"; AppendImage M_CWT2

Using the complex Morlet wavelet in the direct sum method (/M=1) and displaying the squared magnitude 
we get:

CWT /M=1/OUT=4/SMP2=1/R2={1,1,40}/WBI1=MorletC/FSCL /ENDM=2 signal
Rename M_CWT, M_CWT3
Display as "Complex Morlet Direct Sum"; AppendImage M_CWT3

It is apparent that the last image has essentially the same results as the one generated using the FFT 
approach but in this case the edge effects are completely absent.

Discrete Wavelet Transform
The DWT is similar to the Fourier transform in that it is a decomposition of a signal in terms of a basis set 
of functions. In Fourier transforms the basis set consists of sines and cosines and the expansion has a single 
parameter. In wavelet transform the expansion has two parameters and the functions (wavelets) are gener-
ated from a single “mother” wavelet using dilation and offsets corresponding to the two parameters.
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,

where the two-parameter expansion coefficients are given by

and the wavelets obey the condition

.

Here Ψ is the mother wavelet, a is the dilation parameter and b is the offset parameter.

The two parameter representation can complicate things quickly as one goes from 1D signal to higher 
dimensions. In addition, because the number of coefficients in each scale varies as a power of 2, the DWT 
of a 1D signal is not conveniently represented as a 2D image (as is the case with the CWT). It is therefore 
customary to “pack” the results of the transform so that they have the same dimensionality of the input. For 
example, if the input is a 1D wave of 128 (=27) points, there are 7-1=6 significant scales arranged as follows:

An interesting consequence of the definition of the DWT is that you can find out the shape of the wavelet 
by transforming a suitable form of a delta function. For example:
Make/N=1024 delta=0
delta[22]=1
DWT/I delta
Display W_DWT // Daubechies 4 coefficient wavelet

Convolution
You can use convolution to compute the response of a linear system to an input signal. The linear system is 
defined by its impulse response. The convolution of the input signal and the impulse response is the output 
signal response. Convolution is also the time-domain equivalent of filtering in the frequency domain.
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Igor implements general convolution with the Convolve operation (see page V-85). (Smoothing is also a 
form of convolution; see Smoothing on page III-261.) To use the Convolve operation, you can choose Anal-
ysis→Convolve.

The built-in Convolve operation computes the convolution of two waves named “source” and “destination” and 
overwrites the destination wave with the results. The operation can also convolve a single source wave with 
multiple destination waves (overwriting the corresponding destination wave with the results in each case). The 
Convolve dialog allows for more flexibility by preduplicating the second waves into new destination waves.

If the source wave is real-valued, each destination wave must be real-valued and if source wave is complex, 
each destination wave must be complex, too. Double and single precision waves may be freely intermixed; 
the calculations are performed in the higher precision.

Convolve combines neighboring points before and after the point being convolved, and at the ends of the 
waves not enough neighboring points exist. This is a general problem in any convolution operation; the 
smoothing operations use the End Effect pop-up to determine what to do. The Convolve dialog presents 
three algorithms in the Algorithm group to deal with these missing points.

The Linear algorithm is similar to the Smooth operation’s Zero end effect method; zeros are substituted for 
the values of missing neighboring points.

The Circular algorithm is similar to the Wrap end effect method; this algorithm is appropriate for data 
which is assumed to endlessly repeat.

The acausal algorithm is a special case of Linear which eliminates the time delay that Linear introduces.

Depending on the algorithm chosen, the number of points in the destination waves may increase by the 
number of points in the source wave, less one. For linear and acausal convolution, the destination wave is 
first zero-padded by one less than the number of points in the source wave. This prevents the “wrap-
around” effect that occurs in circular convolution. The zero-padded points are removed after acausal con-
volution, and retained after linear convolution.

Use linear convolution when the source wave contains an impulse response (or filter coefficients) where the 
first point of srcWave corresponds to no delay (t = 0).

Use Circular convolution for the case where the data in the source wave and the destination waves are con-
sidered to endlessly repeat (or “wrap around” from the end back to the start), which means no zero padding 
is needed.
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Use acausal convolution when the source wave contains an impulse response where the middle point of the 
source wave corresponds to no delay (t = 0).

Correlation
You can use correlation to compare the similarity of two sets of data. Correlation computes a measure of 
similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum 
at the time when the two signals match best. If the two signals are identical, this maximum is reached at t = 
0 (no delay). If the two signals have similar shapes but one is delayed in time and possibly has noise added 
to it then correlation is a good method to measure that delay.
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Igor implements correlation with the Correlate operation (see page V-91). The Correlate dialog in the Anal-
ysis menu works similarly to the Convolve dialog. The source wave may also be a destination wave, in 
which case afterward it will contain the “auto-correlation” of the wave. If the source and destination are 
different, this is called “cross-correlation”.

The same considerations about combining differing types of source and destination waves applies to cor-
relation as to convolution. Correlation must also deal with end effects, and these are dealt with by the cir-
cular and linear correlation algorithm selections. See Convolution on page III-253.

Level Detection
Level detection is the process of locating the X coordinate at which your data passes through or reaches a given 
Y value. This is sometimes called “inverse interpolation”. Stated another way, level detection answers the ques-
tion: “given a Y level, what is the corresponding X value?” Igor provides two kinds of answers to that question.

One answer assumes your Y data is a list of unique Y values that increases or decreases monotonically. In this 
case there is only one X value that corresponds to a Y value. Since search position and direction don’t matter, a 
binary search is most appropriate. For this kind of data, use the BinarySearch or BinarySearchInterp functions.

The other answer assumes that your Y data varies irregularly, as it would with acquired data. In this case, 
there may be multiple X values that cross the Y level; the X value returned depends on where the search 
starts and the search direction through the data. The FindLevel, FindLevels, EdgeStats, and PulseStats oper-
ations deal with this kind of data.
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A related, but different question is “given a function y = f(x), find x where y is zero (or some other value)”. 
This question is answered by the FindRoots operation. See Finding Function Roots on page III-290, and the 
FindRoots operation on page V-213.

The following sections pertain to detecting level crossings in data that varies irregularly. The operations 
discussed are not designed to detect peaks; see Peak Measurement on page III-259.

Finding a Level in Waveform Data
You can use the FindLevel operation (see page V-209) to find a single level crossing, or the FindLevels oper-
ation (see page V-210) to find multiple level crossings in waveform data. Both of these operations can option-
ally smooth the waves they search to reduce the effects of noise. A subrange of the data can be searched, by 
either ascending or descending X values, depending on the startX and endX values you supply to the opera-
tion’s /R flag.

FindLevel locates the first level crossing encountered in the search range, starting at startX and proceeding 
toward endX until a level crossing is found. The search is performed sequentially. The outputs of FindLevel 
are two special numeric variables: V_Flag and V_LevelX. V_Flag indicates the success or failure of the 
search (0 is success), and V_LevelX contains the X coordinate of the level crossing.

For example, given the following data:

the command:
FindLevel/R=(-0.5,0.5) signal,0.30

prints this level crossing information into the history area:
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V_Flag=0; V_LevelX=-0.37497; V_rising=1;

Finding a Level in XY Data
You can find a level crossing in XY data by searching the Y wave and then figuring out where in the X wave 
that X value can be found. This requires that the values in the X wave be sorted in ascending or descending 
order. To ensure this, the command:
Sort xWave,xWave,yWave

sorts the waves so that the values in xWave are ascending, and the XY correspondence is preserved.

The following procedure finds the X location where a Y level is crossed within an X range, and stores the 
result in the output variable V_LevelX:
Function FindLevelXY()

String swy,swx // strings contain the NAMES of waves
Variable startX=-inf,endX=inf // startX,endX correspond to VALUEs in wx, not any X 

scaling
Variable level
// Put up a dialog to get info from user
Prompt swy,"Y Wave",popup WaveList("*",";","")
Prompt swx,"X Wave",popup WaveList("*",";","")
Prompt startX, "starting X value"
Prompt endX, "ending X value"
Prompt level, "level to find"
DoPrompt "Find Level XY", swy,swx,startX, endX, level

WAVE wx = $swx
WAVE wy = $swy

// Here's where the interesting stuff begins
Variable startP,endP //compute point range covering startX,endX
startP=BinarySearch(wx,startX)
endP=BinarySearch(wx,endX)
FindLevel/Q/R=[startP,endP] wy,level // search Y wave, assume success
Variable p1,m
p1=x2pnt(wy,V_LevelX-deltaX(wy)/2) //x2pnt rounds; circumvent it
// Linearly interpolate between two points in wx
// that bracket V_levelX in wy
m=(V_LevelX-pnt2x(wy,p1))/(pnt2x(wy,p1+1)-pnt2x(wy,p1)) // slope
V_LevelX=wx[p1] + m * (wx[p1+1] -wx[p1] ) //point-slope equation

End

This function does not handle a level crossing that isn’t found; all that is missing is a test of V_Flag after 
searching the Y wave with FindLevel.

Edge Statistics
The EdgeStats operation (see page V-167) produces simple statistics (measurements, really) on a region of 
a wave that is expected to contain a single edge as shown below. If more than one edge exists, EdgeStats 
works on the first edge it finds. The edge statistics are stored in special variables which are described in the 
EdgeStats reference. The statistics are edge levels, X or point positions of various found “points”, and the 
distances between them. These found points are actually the locations of level crossings, and are usually 
located between actual waveform points (they are interpolation locations).
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EdgeStats is based on the same principles as FindLevel. EdgeStats does not work on an XY pair. See Con-
verting XY Data to a Waveform on page III-104.

Pulse Statistics
The PulseStats operation (see page V-665) produces simple statistics (measurements) on a region of a wave 
that is expected to contain three edges as shown below. If more than three edges exist, PulseStats works on 
the first three edges it finds. PulseStats handles two other cases in which there are only one or two edges. 
The pulse statistics are stored in special variables which are described in the PulseStats reference.

PulseStats is based on the same principles as EdgeStats. PulseStats does not work on an XY pair. See Con-
verting XY Data to a Waveform on page III-104.

Peak Measurement
The building block for peak measurement is the FindPeak operation. You can use it to build your own peak 
measurement procedures or you can use procedures provided by WaveMetrics.

We have created several peak finding and peak fitting Technical Notes. They are described in a summary Igor 
Technical Note, TN020s-Choosing a Right One.ifn in the Technical Notes folder. There is also an example 
experiment, called Multi-peak Fit, that does fitting to multiple Gaussian, Lorentzian and Voigt peaks. Multi-
peak Fit is less comprehensive but easier to use than Tech Note 20.

The FindPeak operation (see page V-212) searches a wave for a minimum or maximum by analyzing the 
smoothed first and second derivatives of the wave. The smoothing and differentiation is done on a copy of 
the input wave (so that the input wave is not modified). The peak maximum is detected at the smoothed 
first derivative zero-crossing, where the smoothed second derivative is negative. The position of the 
minimum or maximum is returned in the special variable V_PeakLoc. This and other special variables set 
by FindPeak are described in the operation reference.

The following describes the process that FindPeak goes through when it executes a command like this:
FindPeak/M=0.5/B=5 peakData // 5 point smoothing, min level = 0.5

The box smoothing is performed first:
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Then two central-difference differentiations are performed to find the first and second derivatives:

If you use the /M=minLevel flag, FindPeak ignores peaks that are lower than minLevel (i.e., the Y value of a 
found peak must exceed minLevel). The minLevel value is compared to the smoothed data, so peaks that appear 
to be large enough in the raw data may not be found if they are very near minLevel. If /N is also specified 
(search for minimum or “negative peak”), FindPeak ignores peaks whose amplitude is greater than minLevel 
(i.e., the Y value of a found peak will be less than minLevel). For negative peaks, the peak minimum is at the 
smoothed first derivative zero-crossing, where the smoothed second derivative is positive.

This command shows an example of finding a negative peak:
FindPeak/N/M=0.5/B=5 negPeakData // 5 point smoothing, max level=0.5

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

0.60.40.20.0

minLevel

Raw peak data

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

0.60.40.20.0

V_PeakLoc

Smoothed peak data

40

30

20

10

0

-10

0.60.50.40.30.20.10.0

V_PeakLoc

Smoothed and Differentiated 2000

1000

0

-1000

-2000

0.60.40.20.0

V_PeakLoc

Smoothed and Twice Differentiated



Chapter III-9 — Signal Processing

III-261

To find multiple peaks, write a procedure that calls FindPeak from within a loop. After a peak is found, 
restrict the range of the search with /R so that the just-found peak is excluded, and search again. Exit the 
loop when V_Flag indicates a peak wasn’t found.

The FindPeak operation does not work on an XY pair. See Converting XY Data to a Waveform on page III-104.

Smoothing
Smoothing is a filtering operation used to reduce the variability of data. It is sometimes used to reduce noise.

This section discusses smoothing 1-dimensional waveform data with the Smooth, FilterFIR, and Loess 
operations. Also see the FilterIIR and Resample operations.

Smoothing XY data can also be handled by the Loess operation and the Median.ipf procedure file (see 
Median Smoothing on page III-265).

The MatrixFilter, MatrixConvolve, and ImageFilter operations smooth image and 3D data.

Igor has several built-in 1D smoothing algorithms. In addition, you can supply your own smoothing coefficients.

Choose Analysis→Smooth to see the Smoothing dialog.
Depending on the smoothing algorithm chosen, there may be additional parameters to specify in the dialog.

1.0

0.5

0.0

0.70.60.50.40.30.20.10.0

minLevel

V_PeakLoc

Negative peak example
using FindPeak /N with /M=minLevel

4

3

2

1

0

6040200

 data
 smoothed data (binomial 5 passes)

 



Chapter III-9 — Signal Processing

III-262

Built-in Smoothing Algorithms
Igor has numerous built-in smoothing algorithms for 1-dimensional waveforms, and one that works with 
the XY Model of Data on page II-58:

The first four algorithms precompute or apply one set of smoothing coefficients according to the smoothing 
parameters, and then replaces each data wave with the convolution of the wave with the coefficients.

You can determine what coefficients have been computed by smoothing a wave containing an impulse. For 
instance:
Make/O/N=32 wave0=0; wave0[15]=1; Smooth 5,wave0 // Smooth an impulse
Display wave0; ModifyGraph mode=8,marker=8 // Observe coefficients

Compute the FFT of the coefficients with magnitude output to view the frequency response. See Finding 
Magnitude and Phase on page III-243.

The last two algorithms (the Smooth/M and Loess operations) are not based on creating a fixed set of 
smoothing coefficients and convolution, so this technique is not applicable.

Smoothing Demo
For a demo of various smoothing techniques, choose Files→Example Experiments→Feature 
Demos→Smooth Curve Through Noise.

Binomial Smoothing
The Binomial smoothing operation is a Gaussian filter. It convolves your data with normalized coefficients 
derived from Pascal’s triangle at a level equal to the Smoothing parameter. The algorithm is derived from 
an article by Marchand and Marmet (1983).

Algorithm Operation Data

Binomial Smooth 1D waveform

Savitzky-Golay Smooth/S 1D waveform

Box (Average) Smooth/B 1D waveform

Custom Smoothing FilterFIR 1D waveform

Median Smooth/M 1D waveform

Percentile, Min, Max Smooth/M/MPCT 1D waveform

Loess Loess 1D waveform, XY 1D waves, false-color images*, matrix 
surfaces*, and multivariate data*.

* The Loess operation supports these data formats, but the Smooth dialog does not provide an interface to
select them.
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This graph shows the frequency response of the binomial smoothing algorithm expressed as a percentage 
of the sampling frequency. For example, if your data is sampled at 1000 Hz and you use 5 passes, the signal 
at 200 Hz (20% of the sampling frequency) will be approximately 0.1.

Savitzky-Golay Smoothing
Savitzky-Golay smoothing uses a different set of precomputed coefficients popular in the field of chemistry. 
It is a type of Least Squares Polynomial smoothing. The amount of smoothing is controlled by two param-
eters: the polynomial order and the number of points used to compute each smoothed output value. This 
algorithm was first proposed by A. Savitzky and M.J.E. Golay in 1964. The coefficients were subsequently 
corrected by others in 1972 and 1978; Igor uses the corrected coefficients.

The maximum Points value is 32767; the minimum is either 5 (2nd order) or 7 (4th order). Note that 2nd and 
3rd order coefficients are the same, so we list only the 2nd order choice. Similarly, 4th and 5th order coeffi-
cients are identical.

Even though Savitzky-Golay smoothing has been widely used, there are advantages to the binomial 
smoothing as described by Marchand and Marmet in their article.

The following graphs show the frequency response of the Savitzky-Golay algorithm for 2nd order and 4th order 
smoothing. The large responses in the higher frequencies show why binomial smoothing is often a better choice.
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Box Smoothing
Box smoothing is similar to a moving average, except that an equal number of points before and after the 
smoothed value are averaged together with the smoothed value. The Points parameter is the total number 
of values averaged together. It must be an odd value, since it includes the points before, the center point, 
and the points after. For instance, a value of 5 averages two points before and after the center point, and the 
center point itself:
Make/O/N=32 wave0=0; wave0[15]=1; Smooth/B 5,wave0 //Smooth impulse
Display wave0; ModifyGraph mode=8,marker=8 // Observe coefficients

The following graph shows the frequency response of the box smoothing algorithm.
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Median Smoothing
Median smoothing does not use convolution with a set of coefficients. Instead, for each point it computes 
the median of the values over the specified range of neighboring values centered about the point. NaN 
values in the waveform data are allowed and are excluded from the median calculations.

For simple XY data median smoothing, include the Median.ipf procedure file:
#include <Median>

and use the Analysis→Packages→Median XY Smoothing menu item. Currently this procedure file does not 
handle NaNs in the data and only implements method 1 as described below.

For image (2D matrix) median smoothing, use the MatrixFilter or ImageFilter operation with the median 
method. ImageFilter can smooth 3D matrix data.

There are several ways to use median smoothing (Smooth/M) on 1D waveform data:
1. Replace all values with the median of neighboring values.
2. Replace each value with the median if the value itself is NaN. See Replace Missing Data Using 

Median Smoothing on page III-109.
3. Replace each value with the median if the value differs from the median by a the specified threshold 

amount.
4. Instead of replacing the value with the computed median, replace it with a specified number, 

including 0, NaN, +inf, or -inf.
Median smoothing can be used to replace “outliers” in data. Outliers are data that seem “out of line” from 
the other data. One measure of this “out of line” is excessive deviation from the median of neighboring 
values. The Threshold parameter defines what is considered “excessive deviation”.
// Example uses integer wave to simplify checking the results
Make/O/N=20/I dataWithOutliers= 4*p+gnoise(1.5) // simple line with noise
dataWithOutliers[7] *=2 // make an outlier at point 7
Display dataWithOutliers
Duplicate/O dataWithOutliers,dataWithOutliers_smth
Smooth/M=10 5, dataWithOutliers_smth // threshold=10, 5 point median
AppendToGraph  dataWithOutliers_smth

Percentile, Min, and Max Smoothing
Median smoothing is actually a specialization of Percentile smoothing, as are Min and Max.
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Percentile smoothing returns the smallest value in the smoothing window that is greater than the smallest 
percentile % of the values:

As an example, assume that percentile = 25, the number of points in the smoothing window is 7, and for one 
input point the values in the window after sorting are:

{0, 1, 8, 9, 10, 11, 30}

The 25th percentile is found by computing the rank R:

R = (percentile /100)*(num +1)

In this example, R evaluates to 2 so the second item in the sorted list, 1 in this example, is the percentile value 
for the input point.

The percentile algorithm uses an interpolated rank to compute the value of percentiles other than 0 and 100. 
See the Smooth operation for details.

Loess Smoothing
The Loess operation smooths data using locally-weighted regression smoothing. This algorithm is some-
times classified as a “nonparametric regression” procedure.

The regression can be constant, linear, or quadratic. A robust option that ignores outliers is available. In 
addition, for small data sets Loess can generate confidence intervals.

See the Loess operation on page V-454 help for a discussion of the basic and robust algorithms, examples, 
and references.

This implementation works with waveforms, XY pairs of waves, false-color images, matrix surfaces, and 
multivariate data (one dependent data wave with multiple independent variable data waves). Loess dis-
cards NaN input values.

The Smooth Dialog, however, provides an interface for only waveforms and XY pairs of waves (see XY Model 
of Data on page II-58), and does not provide an interface for confidence intervals or other less common options.

Here’s an example from the Loess operation help of interpolating (smoothing) an XY pair and creating an 
interpolated 1D waveform (Y vs. X scaling). Note: the Make commands below are wrapped to fit the page:
// 3.  1-D Y vs X wave data interpolated to waveform (Y vs X scaling)
//     with 99% confidence interval outputs (cp and cm)
// NOx = f(EquivRatio)
// Y wave
Make/O/D NOx = {4.818, 2.849, 3.275, 4.691, 4.255, 5.064, 2.118, 4.602, 2.286, 0.97, 
3.965, 5.344, 3.834, 1.99, 5.199, 5.283, 3.752, 0.537, 1.64, 5.055, 4.937, 1.561};

// X wave (Note that the X wave is not sorted)
Make/O/D EquivRatio = {0.831, 1.045, 1.021, 0.97, 0.825, 0.891, 0.71, 0.801,  1.074, 
1.148, 1, 0.928, 0.767, 0.701, 0.807, 0.902,   0.997, 1.224, 1.089, 0.973, 0.98, 0.665};

// Graph the input data
Display NOx vs EquivRatio; ModifyGraph mode=3,marker=19

// Interpolate to dense waveform over X range
Make/O/D/N=100 fittedNOx
WaveStats/Q EquivRatio

Percentile Type Description

0 Min The smoothed value is the minimum value in the smoothing window. 0 is the 
minimum value for percentile.

50 Median The smoothed value is the median of the values in the smoothing window.

100 Max The smoothed value is the maximum value in the smoothing window. 100 is the 
maximum value for percentile.
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SetScale/I x, V_Min, V_max, "", fittedNOx
Loess/CONF={0.99,cp,cm}/DEST=fittedNOx/DFCT/SMTH=(2/3) srcWave=NOx,factors={EquivRatio}

// Display the fit (smoothed results) and confidence intervals
AppendtoGraph fittedNOx, cp,cm
ModifyGraph rgb(fittedNOx)=(0,0,65535)
ModifyGraph mode(fittedNOx)=2,lsize(fittedNOx)=2
Legend

Loess is memory intensive, especially when generating confidence intervals. Read the Memory Details 
section of the Loess operation (see page V-454) if you use confidence intervals.

Custom Smoothing Coefficients
You can smooth data with your own set of smoothing coefficients by selecting the Custom Coefs algorithm. 
Use this option when you have low-pass filter (smoothing) coefficients created by another program or by 
the Igor Filter Design Laboratory.

Choose the wave that contains your coefficients from the pop-up menu that appears. Igor will convolve 
these coefficients with the input wave using the FilterFIR operation (see page V-197). You should use Fil-
terFIR when convolving a short wave with a much longer one. Use the Convolve operation (see page V-85) 
when convolving two waves with similar number of points; it’s faster.

All the values in the coefficients wave are used. FilterFIR presumes that the middle point of the coefficient 
wave corresponds to the delay = 0 point. This is usually the case when the coefficient wave contains the two-
sided impulse response of a filter, which has an odd number of points. (For a coefficient wave with an even 
number of points, the “middle” point is numpnts(coefs)/2-1, but this introduces a usually unwanted 
delay in the smoothed data).

In the following example, the coefs wave smooths the data by a simple 7 point Bartlett (triangle) window 
(omitting the first and last Bartlett window values which are 0):

// This example shows a unit step signal smoothed
//   by a 7-point Bartlett window
Make/O/N=10 beforeWave = (p>=5) // unit step at p == 5
Make/O coefs={1/3,2/3,1,2/3,1/3} // 7 point Bartlett window
WaveStats/Q coefs
coefs/= V_Sum
Duplicate/O beforeWave,afterWave
FilterFIR/E=3/COEF=coefs afterWave
Display beforeWave,afterWave

5

4

3

2

1

0

1.21.11.00.90.80.7

 NOx vs EquivRatio Original Y vs X
 fittedNOx Smoothed waveform result
 cp +99% confidence interval
 cm -99% confidence interval
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End Effects
The first four smoothing algorithms compute the output value for a given point using the point’s neighbors. 
Each algorithm combines an equal number of neighboring points before and after the point being 
smoothed. At the start or end of a wave some points will not have enough neighbors, so a method for fab-
ricating neighbor values must be implemented.

You choose how to fabricate those values with the End Effect pop-up menu in the Smoothing dialog. In the 
descriptions that follow, i is a small positive integer, and wave[n] is the last value in the wave to be smoothed.

The Bounce method uses wave[i] in place of the missing wave[-i] values and wave[n-i] in place of the 
missing wave[n+i] values. This works best if the data is assumed to be symmetrical about both the start and 
the end of the wave. If you don’t specify the end effect method, Bounce is used.

The Wrap method uses wave[n-i] in place of the missing wave[-i] values and vice-versa. This works best if 
the wave is assumed to endlessly repeat.

The Zero method uses 0 for any missing value. This works best if the wave starts and ends with zero.

The Repeat method uses wave[0] in place of the missing wave[-i] values and wave[n] in place of the missing 
wave[n+i] values. This works best for data representing a single event.

When in doubt, use Repeat.

Rotate Operation
The Rotate operation (see page V-690) rotates the data values of the selected waves by a specified number 
of points. Choose Data→Rotate Waves to display the Rotate dialog.

Think of the data values of a wave as a column of numbers. If the specified number of points is positive the 
points in the wave are rotated downward. If the specified number of points is negative the points in the 
wave are rotated upward. Values that are rotated off one end of the column wrap to the other end.

The rotate operation shifts the X scaling of the rotated wave so that, except for the points which wrap 
around, the X value of a given point is not changed by the rotation. To observe this, display the X scaling 
and data values of the wave in a table and notice the effect of Rotate on the X values.

This change in X scaling may or may not be what you want. It is usually not what you want if you are rotat-
ing an XY pair. In this case, you should undo the X scaling change using the SetScale operation:
SetScale/P x,0,1,"",waveName // replace waveName with name of your wave

Also see the example of rotation in Spectral Windowing on page III-244.

For multi-dimensional wave rotation, see the MatrixOp rotateRows, rotateCols, rotateLayers, and rotateC-
hunks functions.

1.0
0.8
0.6
0.4
0.2
0.0

9876543210

 beforeWave
 afterWave

coefs zero-
delay 

coefficient

coefs two-point 
delay coefficient

0.30

0.20

0.10

0.00

43210



Chapter III-9 — Signal Processing

III-269

Unwrap Operation
The Unwrap operation (see page V-909) scans through each specified wave trying to undo the effect of a 
modulus operation. For example, if you perform an FFT on a wave, the result is a complex wave in rectangular 
coordinates. You can create a real wave which contains the phase of the result of the FFT with the command:
wave2 = imag(r2polar(wave1))

However the rectangular-to-polar conversion leaves the phase information modulo 2π. You can restore the 
continuous phase information with the command:
Unwrap 2*Pi, wave2

The Unwrap operation is designed for 1D waves only. Unwrapping 2D data is considerably more difficult. 
See the ImageUnwrapPhase operation on page V-376 for more information

Choose Analysis→Unwrap to display the Unwrap Waves dialog.
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