
Chapter

III-10
III-10Analysis of Functions

Operations that Work on Functions... 272
Function Plotting... 272

Function Plotting Using Dependencies .. 273
Function Plotting Using Controls.. 273
Plotting a User-Defined Function.. 274

Solving Differential Equations .. 274
Terminology ... 274
ODE Inputs ... 275
ODE Outputs .. 275
The Derivative Function ... 276
A First-Order Equation ... 277
A System of Coupled First-Order Equations... 279
Optimizing the Derivative Function... 280
Higher Order Equations ... 280
Free-Run Mode... 282
Stiff Systems.. 283
Error Monitoring.. 284
Solution Methods... 286
Interrupting IntegrateODE... 286
Stopping and Restarting IntegrateODE.. 286
Stopping IntegrateODE on a Condition ... 287

Integrating a User Function... 288
Finding Function Roots.. 290

Roots of Polynomials with Real Coefficients... 290
Roots of a 1D Nonlinear Function... 291
Roots of a System of Multidimensional Nonlinear Functions .. 293
Caveats for Multidimensional Root Finding ... 295

Finding Minima and Maxima of Functions .. 295
Extreme Points of a 1D Nonlinear Function .. 296
Extrema of Multidimensional Nonlinear Functions... 298
Stopping Tolerances .. 299
Problems with Multidimensional Optimization ... 299

References .. 301

Chapter III-10 — Analysis of Functions

III-272

Operations that Work on Functions
Some Igor operations work on functions rather than data in waves. These operations take as input one or
more functions that you define in the Procedure window. The result is some calculation based on function
values produced when Igor evaluates your function.

Because the operations evaluate a function, they work on continuous data. That is, the functions are not
restricted to data values that you provide from measurements. They can be evaluated at any input values.
Of course, a computer works with discrete digital numbers, so even a “continuous” function is broken into
discrete values. Usually these discrete values are so close together that they are continuous for practical pur-
poses. Occasionally, however, the discrete nature of computer computations causes problems.

The following operations use functions as inputs:
• IntegrateODE computes numerical solutions to ordinary differential equations. The differential

equations are defined as user functions. The IntegrateODE operation is described under Solving
Differential Equations on page III-274.

• FindRoots computes solutions to f(x)=a, where a is a constant (often zero). The input x may
represent a vector of x values. A special form of FindRoots computes roots of polynomials. The
FindRoots operation is described in the section Finding Function Roots on page III-290.

• Optimize finds minima or maxima of a function, which may have one or more input variables. The
Optimize operation is described in the section Finding Minima and Maxima of Functions on page
III-295.

• Integrate1D integrates a function between two specified limits. Despite its name, it can also be used
for integrating in two or more dimensions. See Integrating a User Function on page III-288.

Function Plotting
Function plotting is very easy in Igor, assuming that you understand what a waveform is (see Waveform
Model of Data on page II-57) and how X scaling works. Here are the steps to plot a function.
1. Decide how many data points you want to plot.
2. Make a wave with that many points.
3. Use the SetScale operation to set the wave’s X scaling. This defines the domain over which you are

going to plot the function.
4. Display the wave in a graph.
5. Execute a waveform assignment statement to set the data values of the wave.
Here is an example.
Make/O/N=500 wave0
SetScale/I x, 0, 4*PI, wave0 // plot function from x=0 to x=4π
Display wave0
wave0 = 3*sin(x) + 1.5*sin(2*x + PI/6)

-4

-2

0

2

121086420

Chapter III-10 — Analysis of Functions

III-273

To evaluate the function over a different domain, you need to reexecute the SetScale command with differ-
ent parameters. This redefines “x” for the wave. Then you need to reexecute the waveform assignment
statement. For example,
SetScale/I x, 0, 2*PI, wave0 // plot function from x=0 to x=2π
wave0 = 3*sin(x) + 1.5*sin(2*x + PI/6)

Reexecuting commands is easy, using the shortcuts shown in History Area on page II-9.

Function Plotting Using Dependencies
If you get tired of reexecuting the waveform assignment statement each time you change the domain, you
can use a dependency to cause Igor to automatically reexecute it. To do this, use := instead of =.
wave0 := 3*sin(x) + 1.5*sin(2*x + PI/6)

See Chapter IV-9, Dependencies, for details.

You have made wave0 depend on “X”. The SetScale operation changes the meaning of “X” for the wave.
Now when you do a SetScale on wave0, Igor will automatically reexecute the assignment.

You can take this further by using global variables instead of literal numbers in the right-hand expression.
For example:
Variable/G amp1=3, amp2=1.5, freq1=1, freq2=2, phase1=0, phase2=PI/6
wave0 := amp1*sin(freq1*x + phase1) + amp2*sin(freq2*x + phase2)

Now, wave0 depends on these global variables. If you change them, Igor will automatically reexecute the
assignment.

Function Plotting Using Controls
For a slick presentation of function plotting, you can put controls in the graph to set the values of the global
variables. When you change the value in the control, the global variable changes, which reexecutes the
assignment. This changes the wave, which updates the graph. Here is what the graph would look like.

We’ve added two additional global variables and connected them to the Starting X and Ending X controls.
This allows us to set the domain. These controls are both linked to an action procedure that does a SetScale
on the wave.

Controls are explained in detail in Chapter III-14, Controls and Control Panels.

Chapter III-10 — Analysis of Functions

III-274

Plotting a User-Defined Function
In the preceding example we used the built-in sin function in the right-hand expression. We can also use a user-
defined function. Here is an example using a very simple function — the normal probability distribution func-
tion.
Function NormalProb(x)

Variable x

// the constant is 1/sqrt(2*pi) evaluated in double-precision
return 0.398942280401433*exp(-(0.5*x^2))

End

Make/N=100 wave0; SetScale/I x, 0, 3, wave0; wave0 = NormalProb(x)
Display wave0

Note that, although we are using the NormalProb function to fill a wave, the NormalProb function itself has
nothing to do with waves. It merely takes an input and returns a single output. We could also test the Nor-
malProb function at a single point by executing
Print NormalProb(0)

This would print the output of the function in the history area.

It is the act of using the NormalProb function in a wave assignment statement that fills the wave with data
values. As it executes the wave assignment, Igor calls the NormalProb function over and over again, 100
times in this case, passing it a different parameter each time and storing the output from the NormalProb
function in successive points of the destination wave.

For more information on Wave Assignments, see Waveform Arithmetic and Assignments on page II-69.
You may also find it helpful to read Chapter IV-1, Working with Commands.

WaveMetrics provides a procedure package that provides a convenient user interface to graph mathematical
expressions. To use it, choose Analysis→Packages→Function Grapher. This displays a graph with controls to
create and display a function. Click the Help button in the graph to learn how to use it.

Solving Differential Equations
Numerical solutions to initial-value problems involving ordinary differential equations can be calculated using
the IntegrateODE operation (see page V-392). You provide a user-defined function that implements a system of
differential equations. The solution to your differential equations are calculated by marching the solution
forward or backward from the initial conditions in a series of steps or increments in the independent variable.

Terminology
Referring to the independent variable and the dependent variables is very cumbersome, so we refer to these
as X and Y[i]. Of course, X may represent distance or time or anything else.

A system of differential equations will be written in terms of derivatives of the Y[i]s, or dy[i]/dx.

0.4

0.3

0.2

0.1

3.02.52.01.51.00.50.0

Chapter III-10 — Analysis of Functions

III-275

ODE Inputs
You provide to IntegrateODE a function to calculate the derivatives or right-hand-sides of your system of
differential equations.
You also provide one output wave for each equation in the system to receive the solution. The solution
waves will have a row for each output point you want.
You specify the independent variable either by setting the X scaling of the output waves, by specifying x0
and deltax using the /X={x0,deltax} flag, or by providing an explicit X wave using the /X=xWave flag.
For a system of four equations (fourth-order system), if you provide an X wave to specify where you want
values, you might have this situation:

Instead of multiple 1D output waves, you can provide a single 2D output wave:

Igor calculates a solution value for each element of the Y (output) waves.

Before executing IntegrateODE, you must load the initial conditions (the initial Y[i] values) into the first row
of the Y waves. Igor then calculates the solution starting from those values. The first solution value is stored
in the second element of the Y waves.

If you use the /R flag with IntegrateODE to start the integration at a point other than the beginning of the Y
wave, the initial conditions must be in the first row specified by the /R flag. See Stopping and Restarting
IntegrateODE on page III-286.

ODE Outputs
The algorithms Igor uses to integrate your ODE systems use adaptive step-size control. That is, the algorithms
advance the solution by the largest increment in X that result in errors at least as small as you require. If the
solution is changing rapidly, or the solution has some other difficulty, the step sizes may get very small.

X wave, four Y waves (A, B, C, and D).

First row contains initial conditions.

Subsequent rows receive solution values.

X wave specifies where to report solutions.
In free-run mode, X wave receives X values for solution rows.

Chapter III-10 — Analysis of Functions

III-276

IntegrateODE has two schemes for returning solution results to you: you can specify X values where you
need solution values, or you can let the solution “free run”.

In the first mode, results are returned to you at values of x corresponding to the X scaling of your Y waves,
or at X values that you provide via an X wave or by providing X0 and deltaX and letting Igor calculate the
X values. The actual calculation may require X increments smaller than those you ask for. Igor returns
results only at the X values you ask for.

In free-run mode, IntegrateODE returns solution values for every step taken by the integration algorithm.
In some cases, this may give you extremely small steps. Free-run mode returns to you not only the Y[i]
values from the solution, but also values of x[i]. Free-run mode can be useful in that, to some degree, it will
return results closely spaced when the solution is changing rapidly and with larger spacing when the solu-
tion is changing slowly.

The Derivative Function
You must provide a user-defined function to calculate derivatives corresponding to the equations you want
to solve. All equations are solved as systems of first-order equations. Higher-order equations must be trans-
formed to multiple first-order equations (an example is shown later).

The derivative function has this form:
Function D(pw, xx, yw, dydx)

Wave pw // parameter wave (input)
Variable xx // x value at which to calculate derivatives
Wave yw // wave containing y[i] (input)
Wave dydx // wave to receive dy[i]/dx (output)

dydx[0] = <expression for one derivative>
dydx[1] = <expression for next derivative>
<etc.>

return 0
End

Note the return statement at the end of the function. The function result should normally be 0. If it is 1, Inte-
grateODE will stop. If the return statement is omitted, the function returns NaN which IntegrateODE treats
the same as 0. But it is best to explicitly return 0.

Because the function may produce a large number of outputs, the outputs are returned via a wave in the
parameter list.

The parameter wave is simply a wave containing possible adjustable constants. Using a wave for these makes
it convenient to change the constants and try a new integration. It also will make it more convenient to do a
curve fit to a differential equation. You must create the parameter wave before invoking IntegrateODE. The
contents of the parameter wave are of no concern to IntegrateODE and are not touched. In fact, you can change
the contents of the parameter wave inside your function and those changes will be permanent.

Other inputs are the value of x at which the derivatives are to be evaluated, and a wave (yw in this example)
containing current values of the y[i]’s. The value of X is determined when it calls your function, and the
waves yw and dydx are both created and passed to your function when Igor needs new values for the deriv-
atives. Both the input Y wave and the output dydx wave have as many elements as the number of derivative
equations in your system of ODEs.

Chapter III-10 — Analysis of Functions

III-277

The values in the yw wave correspond to a row of the table in the example above. That is:

The wave yw contains the present value, or estimated value, of Y[i] at X =xx. You may need this value to
calculate the derivatives.

Your derivative function is called many times during the course of a solution, and it will be called at values
of X that do not correspond to X values in the final solution. The reason for this is two-fold: First, the solu-
tion method steps from one value of X to another using estimates of the derivatives at several intermediate
X values. Second, the spacing between X values that you want may be larger than can be calculated accu-
rately, and Igor may need to find the solution at intermediate values. These intermediate values are not
reported to you unless you call the IntegrateODE operation (see page V-392) in free-run mode.

Because the derivative function is called at intermediate X values, the yw wave is not the same wave as the
Y wave you create and pass to IntegrateODE. Note that one row of your Y wave, or one value from each Y
wave, corresponds to the elements of the one-dimensional yw wave that is passed in to your derivative
function. While the illustration implies that values from your Y wave are passed to the derivative function,
in fact the values in the yw wave passed into the derivative function correspond to whatever Y values the
integrator needs at the moment. The correspondence to your Y wave or waves is only conceptual.

You should be aware that, with the exception of the parameter wave (pw above) the waves are not waves
that exist in your Igor experiment. Do not try to resize them with InsertPoints/DeletePoints and don’t do
anything to them with the Redimension operation. The yw wave is input-only; altering it will not change
anything. The dydx wave is output-only; the only thing you should do with it is to assign appropriate deriv-
ative (right-hand-side) values.

Some examples are presented in the following sections.

A First-Order Equation
Let’s say you want a numerical solution to a simple first-order differential equation:

First you need to create a function that calculates the derivative. Enter the following in the procedure window:
Function FirstOrder(pw, xx, yw, dydx)

Wave pw // pw[0] contains the value of the constant a
Variable xx // not actually used in this example
Wave yw // has just one element- there is just one equation
Wave dydx // has just one element- there is just one equation

Function D(pw, xx, yw, dydx)
Wave pw // parameter wave (input)
Variable xx // x value at which to calculate derivatives
Wave yw // wave containing y[i] (input)
Wave dydx // wave to receive dy[i]/dx (output)

dydx[0] = <expression for one derivative>
dydx[1] = <expression for next derivative>
<etc.>

return 0
End

0.943
0.943
0.0532
0.0033

xd
dy ay–=

Chapter III-10 — Analysis of Functions

III-278

// There's only one equation, so only one expression here.
// The constant a in the equation is passed in pw[0]
dydx[0] = -pw[0]*yw[0]

return 0
End

Paste the function into the procedure window and then execute these commands:
Make/D/O/N=101 YY // wave to receive results
YY[0] = 10 // initial condition- y0=10
Display YY // make a graph
Make/D/O PP={0.05} // set constant a to 0.05
IntegrateODE FirstOrder, PP, YY

This results in the following graph with the expected exponential decay:

The IntegrateODE command shown in the example is the simplest you can use. It names the derivative
function, FirstOrder, a parameter wave, PP, and a results wave, YY.

Because the IntegrateODE command does not explicitly set the X values, the output results are calculated
according to the X scaling of the results wave YY. You can change the spacing of the X values by changing
the X scaling of YY:
SetScale/P x 0,3,YY // now the results will be at an x interval of 3
IntegrateODE FirstOrder, PP, YY

The same thing can be achieved by using your specified x0 and deltax with the /X flag:
IntegrateODE/X={0,3} FirstOrder, PP, YY

We presume that you have your own reasons for using the /X={x0, deltax} form. Note that when you do this,
it doesn’t use the X scaling of your Y wave. If you graph the Y wave the values on the X axis may not match
the X values used during the calculation.
Finally, you don’t have to use a constant spacing in X if you provide an X wave. You might want to do this
to get closely-spaced values only where the solution changes rapidly. For instance:
Make/D/O/N=101 XX // same length as YY
XX = exp(p/20) // X values get farther apart as X increases
Display YY vs XX // make an XY graph
ModifyGraph mode=2 // plot with dots so you can see the points
IntegrateODE/X=XX FirstOrder, PP, YY

10

8

6

4

2

100806040200

10

8

6

4

2

0

250200150100500

Chapter III-10 — Analysis of Functions

III-279

Note that throughout these examples the initial value of YY has remained at 10.

A System of Coupled First-Order Equations
While many interesting systems are described by simple (possibly nonlinear) first-order equations, more
interesting behavior results from systems of coupled equations.

The next example comes from chemical kinetics. Suppose you mix two substances A and B together in a
solution and they react to form intermediate phase C. Over time C transforms into final product D:

Here, k1, k2, and k3 are rate constants for the reactions. The concentrations of the substances might be given
by the following coupled differential equations:

To solve these equations, first we need a derivative function:
Function ChemKinetic(pw, tt, yw, dydt)

Wave pw // pw[0] = k1, pw[1] = k2, pw[2] = k3
Variable tt // time value at which to calculate derivatives
Wave yw // yw[0]-yw[3] containing concentrations of A,B,C,D
Wave dydt // wave to receive dA/dt, dB/dt etc. (output)
dydt[0] = -pw[0]*yw[0]*yw[1] + pw[1]*yw[2]
dydt[1] = dydt[0] // first two equations are the same
dydt[2] = pw[0]*yw[0]*yw[1] - pw[1]*yw[2] - pw[2]*yw[2]
dydt[3] = pw[2]*yw[2]

return 0
End

We think that it is easiest to keep track of the results using a single multicolumn Y wave. These commands make
a four-column Y wave and use dimension labels to keep track of which column corresponds to which substance:
Make/D/O/N=(100,4) ChemKin
SetScale/P x 0,10,ChemKin // calculate concentrations every 10 s
SetDimLabel 1,0,A,ChemKin // set dimension labels to substance names
SetDimLabel 1,1,B,ChemKin // this can be done in a table if you make
SetDimLabel 1,2,C,ChemKin // the table using edit ChemKin.ld
SetDimLabel 1,3,D,ChemKin
ChemKin[0][%A] = 1 // initial conditions: concentration of A
ChemKin[0][%B] = 1 // and B is 1, C and D is 0
ChemKin[0][%C] = 0 // note indexing using dimension labels
ChemKin[0][%D] = 0
Make/D/O KK={0.002,0.0001,0.004} // rate constants

10

8

6

4

2

0

14012010080604020

�
�

��� � �

�
�

� � �

�
�

��

��
�

��

��
� ��

�
������

�
��

��

��
� �

�
������

�
����

�
��

��

��
� �

�
��

Chapter III-10 — Analysis of Functions

III-280

Display ChemKin[][%D] // graph concentration of the product
// Note graph made with subrange of wave

IntegrateODE/M=1 ChemKinetic, KK, ChemKin

Note that the waves yw and dydt in the derivative function have four elements corresponding to the four
equations in the system of ODEs. At a given value of X (or t) yw[0] and dydt[0] correspond to the first equa-
tion, yw[1] and dydt[1] to the second, etc.

Note also that we have used the /M=1 flag to request the Bulirsch-Stoer integration method. For well-
behaved systems, it is likely to be the fastest method, taking the largest steps in the solution.

Optimizing the Derivative Function
The Igor compiler does no optimization of your code. Because IntegrateODE may call your function thou-
sands (or millions!) of times, efficient code can significantly reduce the time it takes to calculate the solution.
For instance, the ChemKinetic example function above was written to parallel the chemical equations to
make the example clearer. There are three terms that appear multiple times. As written, these terms are cal-
culated again from scratch each time they are encountered. You can save some computation time by pre-
calculating these terms as in the following example:
Function ChemKinetic2(pw, tt, yw, dydt)

Wave pw // pw[0] = k1, pw[1] = k2, pw[2] = k3
Variable tt // time value at which to calculate derivatives
Wave yw // yw[0]-yw[3] containing concentrations of A,B,C,D
Wave dydt // wave to receive dA/dt, dB/dt etc. (output)

// Calculate common subexpressions
Variable t1mt2 = pw[0]*yw[0]*yw[1] - pw[1]*yw[2]
Variable t3 = pw[2]*yw[2]

dydt[0] = -t1mt2
dydt[1] = dydt[0] // first two equations are the same
dydt[2] = t1mt2 - t3
dydt[3] = t3

return 0
End

These changes reduced the time to compute the solution by about 13 per cent. Your mileage may vary. Larger
functions with subexpression repeated many times are prime candidates for this kind of optimization.

Note also that IntegrateODE updates the display every time 10 result values are calculated. Screen updates
can be very time-consuming, so IntegrateODE provides the /U flag to control how often the screen is
updated. For timing this example we used /U=1000000 which effectively turned off screen updating.

Higher Order Equations
Not all differential equations (in fact, not many) are expressed as systems of coupled first-order equations,
but IntegrateODE can only handle such systems. Fortunately, it is always possible to make substitutions to
transform an Nth-order differential equation into N first-order coupled equations.

0.5

0.4

0.3

0.2

0.1

0.0

8006004002000

Chapter III-10 — Analysis of Functions

III-281

You need one equation for each order. Here is the equation for a forced, damped harmonic oscillator (using y
for the displacement rather than x to avoid confusion with the independent variable, which is t in this case):

If we define a new variable v (which happens to be velocity in this case):

Then

Substituting into the original equation gives us two coupled first-order equations:

Of course, a real implementation of these equations will have to provide something for F(t). A derivative
function to implement these equations might look like this:
Function Harmonic(pw, tt, yy, dydt)

Wave pw // pw[0]=damping, pw[1]=undamped frequency
// pw[2]=Forcing amplitude, pw[3]=Forcing frequency

Variable tt
Wave yy // yy[0] = velocity, yy[1] = displacement
Wave dydt

// simple sinusoidal forcing
Variable Force = pw[2]*sin(pw[3]*tt)

dydt[0] = -2*pw[0]*yy[0] - pw[1]*pw[1]*yy[1]+Force
dydt[1] = yy[0]

return 0
End

And the commands to integrate the equations:
Make/D/O/N=(300,2) HarmonicOsc
SetDimLabel 1,0,Velocity,HarmonicOsc
SetDimLabel 1,1,Displacement,HarmonicOsc
HarmonicOsc[0][%Velocity] = 5 // initial velocity
HarmonicOsc[0][%Displacement] = 0 // initial displacement
Make/D/O HarmPW={.01,.5,.1,.45} // damping, freq, forcing amp and freq
Display HarmonicOsc[][%Displacement]
IntegrateODE Harmonic, HarmPW, HarmonicOsc

t2

2

d

d y 2λ td
dy ω2y+ + F t()=

v
td

dy=

t2

2

d

d y
td

dv=

td
dv 2λv– ω2y– F t()+=

td
dy v=

Chapter III-10 — Analysis of Functions

III-282

Free-Run Mode
Most of the examples shown so far use the Y wave’s X scaling to set the X values where a solution is desired.
In the section A First-Order Equation on page III-277, examples are also shown in which the /X flag is used to
specify the sequence of X values, either by setting X0 and deltaX or by supplying a wave filled with X values.

These methods have the advantage that you have complete control over the X values where the solution is
reported to you. They also are completely deterministic — you know before running IntegrateODE exactly
how many points will be calculated and how big your waves need to be.

They also have the potential drawback that you may force IntegrateODE to use smaller X increments than
required. If your ODE system is expensive to calculate, this may exact a considerable cost in computation time.

IntegrateODE also offers a “free-run” mode in which the solution is allowed to proceed using whatever X
increments are required to achieve the requested accuracy limit. This mode has two possible advantages —
it will use the minimum number of solution steps required and it may also produce a higher density of
points in areas where the solution changes rapidly (but watch out for stiff systems, see page III-283).

Free-run mode has the disadvantage that in certain cases the solution may require miniscule steps to tip toe
through difficult terrain, inundating you with huge numbers of points that you don’t really need. You also
don’t know ahead of time how many points will be required to cover a certain range in X.

To illustrate the use of free-run mode, we will return to the example used in the section A First-Order Equa-
tion on page III-277. (Make sure the FirstOrder function is compiled in the procedure window.) Because we
don’t know how many points will be produced, we will make the waves large:
Make/D/O/N=1000 FreeRunY // wave to receive results
FreeRunY = NaN
FreeRunY[0] = 10 // initial condition- y0=10

Free-run mode requires that you supply an X wave. Unlike the previous use of an X wave, in free-run mode
the X wave is filled by IntegrateODE with the X values at which solution values have been calculated. Like
the Y waves, you must provide an initial value in the first row of the X wave. As before, it must have the
same number of rows as the Y waves:
Make/O/D/N=1000 FreeRunX // same length as YY
FreeRunX = NaN // prevent display of extra points
FreeRunX[0] = 0 // initial value of X

In free-run mode, only the points that are required are altered. Thus, if you have some preexisting wave
contents, they will be seen on a graph. We prevent the resulting confusion by filling the X wave with NaN’s
(Not a Number, or blanks). Igor graphs do not display points that have NaN values.

Make a graph:
Display FreeRunY vs FreeRunX // make an XY graph
ModifyGraph mode=3, marker=19 // plot with dots to show the points

Make the parameter wave and set the value of the equation’s lone coefficient:
Make/D/O PP={0.05} // set constant a to 0.05

10

5

0

-5

300250200150100500

Chapter III-10 — Analysis of Functions

III-283

And finally do the integration in free-run mode. The /XRUN flag specifies a suggested first step size and
the maximum X value. When the solution passes the maximum X value (100 in this case) or when your
waves are filled, IntegrateODE will stop.
FreeRunX = NaN;FreeRunX[0] = 0
IntegrateODE/M=1/X=FreeRunX/XRUN={1,100} FirstOrder, PP, FreeRunY

In the earlier example, we (rather arbitrarily) chose 100 steps to make a reasonably smooth plot. In this case,
it took 6 steps to cover the same X range, and the steps are closest together at the beginning where the expo-
nential decay is most rapid:

Asking for more accuracy will cause smaller steps to be taken (9 when we executed the following command):
FreeRunX = NaN;FreeRunX[0] = 0
IntegrateODE/M=1/X=FreeRunX/XRUN={1,100}/E=1e-14 FirstOrder, PP, FreeRunY

After IntegrateODE has finished, you can use Redimension and the V_ODETotalSteps variable to adjust the
size of the waves to just the points actually calculated:
Redimension/N=(V_ODETotalSteps+1) FreeRunY, FreeRunX

Note that we added 1 to V_ODETotalSteps to account for the initial value in row zero.

Stiff Systems
Some systems of differential equations involve components having very different time (or decay) constants.
This can create what is called a “stiff” system; even though the short time constant decays rapidly and con-
tributes negligibly to the solution after a very short time, ordinary solution methods (/M = 0, 1, and 2) are
unstable because of the presence of the short time-constant component. IntegrateODE offers the Backward
Differentiation Formula method (BDF, flag /M=3) to handle stiff systems.

A rather artificial example is the system (see “Numerical Recipes in C”, edition 2, page 734; see References
on page III-301)
du/dt = 998u + 1998v
dv/dt = -999u - 1999v

Here is the derivative function that implements this system:
Function StiffODE(pw, tt, yy, dydt)

Wave pw // not actually used because the coefficients
// are hard-coded to give a stiff system

Variable tt

10

8

6

4

2

0

140120100806040200

10

8

6

4

2

0

120100806040200

Chapter III-10 — Analysis of Functions

III-284

Wave yy
Wave dydt

dydt[0] = 998*yy[0] + 1998*yy[1]
dydt[1] = -999*yy[0] - 1999*yy[1]

return 0
End

Commands to set up the wave required and to make a suitable graph:
Make/D/O/N=(3000,2) StiffSystemY
Make/O/N=0 dummy // dummy coefficient wave
StiffSystemY = 0
StiffSystemY[0][0] = 1 // initial condition for u component
make/D/O/N=3000 StiffSystemX
Display StiffSystemY[][0] vs StiffSystemX
AppendToGraph/L=vComponentAxis StiffSystemY[][1] vs StiffSystemX

// make a nice-looking graph with dots to show where the solution points are
ModifyGraph axisEnab(left)={0,0.48},axisEnab(vComponentAxis)={0.52,1}
DelayUpdate
ModifyGraph freePos(vComponentAxis)={0,kwFraction}
ModifyGraph mode=2,lsize=2,rgb=(0,0,65535)

These commands solve this system using the Bulirsch-Stoer method using free run mode to minimize the
number of solution steps computed:
StiffSystemX = nan // hide unused solution points
StiffSystemX[0] = 0 // initial X value
IntegrateODE/M=1/X=StiffSystemX/XRUN={1e-6, 2} StiffODE, dummy, StiffSystemY
Print "Required ",V_ODETotalSteps, " steps to solve using Bulirsch-Stoer"

which results in this message in the history area:
 Required 401 steps to solve using Bulirsch-Stoer

These commands solve this system using the BDF method:
StiffSystemX = nan // hide unused solution points
StiffSystemX[0] = 0 // initial X value
IntegrateODE/M=3/X=StiffSystemX/XRUN={1e-6, 2} StiffODE, dummy, StiffSystemY
Print "Required ",V_ODETotalSteps, " steps to solve using BDF"

This results in this message in the history area:
 Required 133 steps to solve using BDF

The difference between 401 steps and 133 is significant! Be aware, however, that the BDF method is not the
most efficient for nonstiff problems.

Error Monitoring
To achieve the fastest possible solution to your differential equations, Igor uses algorithms with adaptive
step sizing. As each step is calculated, an estimate of the truncation error is also calculated and compared
to a criterion that you specify. If the error is too large, a smaller step size is used. If the error is small com-
pared to what you asked for, a larger step size is used for the next step.

Igor monitors the errors by scaling the error by some (hopefully meaningful) number and comparing to an
error level.

The Runge-Kutta and Bulirsch-Stoers methods (IntegrateODE flag /M=0 or /M=1) estimates the errors for
each of your differential equations and the largest is used for the adjustments:

Max
Errori
Scalei

 eps<

Chapter III-10 — Analysis of Functions

III-285

The Adams-Moulton and BDF methods (IntegrateODE flag /M=2 or /M=3) estimate the errors and use the
root mean square of the error vector:

.

Igor sets eps to 10-6 by default. If you want a different error level, use the /E=eps flag to set a different value
of eps. Using the harmonic oscillator example, we now set a more relaxed error criterion than the default:
IntegrateODE/E=1e-3 Harmonic, HarmPW, HarmonicOsc

The error scaling can be composed of several parts, each optional:

By default Igor uses constant scaling, setting h=1 and Ci=1, and does not use the yi and dyi/dx terms making
Scalei = 1. In that case, eps represents an absolute error level: the error in the calculated values should be less
than eps. An absolute error specification is often acceptable, but it may not be appropriate if the output
values are of very different magnitudes.

You can provide your own customized values for Ci using the /S=scaleWave flag. You must first create a
wave having one point for each differential equation. Fill it with your desired scaling values, and add the
/S flag to the IntegrateODE operation:
Make/O/D errScale={1,5}
IntegrateODE/S=errScale Harmonic, HarmPW, HarmonicOsc

Typically, the constant values should be selected to be near the maximum values for each component of
your system of equations.

Finally, you can control what Igor includes in Scalei using the /F=errMethod flag. The argument to /F is a
bitwise value with a bit for each component of the equation above:

Use errMethod = 2 if you want the errors to be a fraction of the current value of Y. That might be appropriate for
solutions that asymptotically approach zero when you need smaller errors as the solution approaches zero.

The Scale numbers can never equal zero, and usually it isn’t appropriate for Scalei to get very small. Thus,
it isn’t usually a good idea to use errMethod = 2 with solutions that pass through zero. A good way to avoid
this problem can be to add the values of the derivatives (errMethod = (2+4)), or to add a small constant:
Make/D errScale=1e-6
IntegrateODE/S=errScale/F=(2+1) …

Finally, in some cases you need the much more stringent requirement that the errors be less than some
global value. Since the solutions are the result of adding up myriad sequential solutions, any truncation
error has the potential to add up catastrophically if the errors happen to be all of the same sign. If you are
using Runge-Kutta and Bulirsch-Stoers methods (IntegrateODE flag /M=0 or /M=1), you can achieve global
error limits by setting bit 3 of errMethod (/F=8) to multiply the error by the current step size (h in the equation
above). If you are using Adams-Moulton and BDF methods (IntegrateODE flag /M=2 or /M=3) bit 3 does
nothing; in that case, a conservative value of eps would be needed.

Higher accuracy will make the solvers use smaller steps, requiring more computation time. The trade-off
for smaller step size is computation time. If you get too greedy, the step size can get so small that the X incre-

errMethod What It Does
1 Add a constant Ci from scaleWave (or 1’s if no scaleWave).
2 Add the current value of yi’s, the calculated result.
4 Add the current value of the derivatives, dyi/dx.
8 Multiply by h, the current step size

1
N

Errori
Scalei

2

1 2⁄

eps<

Scalei h Ci yi dyi dx⁄+ +()⋅=

Chapter III-10 — Analysis of Functions

III-286

ments are smaller than the computer’s digital resolution. If this happens Igor will stop the calculation and
complain.

Solution Methods
Igor makes four solution methods available, Runge-Kutta-Fehlberg, Bulirsch-Stoers with Richardson
extrapolation, Adams-Moulton and Backward Differentiation Formula.

Runge-Kutta-Fehlberg is a robust method capable of surviving solutions or derivatives that aren’t smooth,
or even have discontinuous derivatives. Bulirsch-Stoers, for well-behaved systems, will take larger steps
than Runge-Kutta-Fehlberg, so it may be considerably faster. Step size for a given problem is larger so you
get greater accuracy. Of course, if you ask for values closer together than the achievable step size, you get
no advantage from this.

Details of these methods can be found in the second edition of Numerical Recipes(see References on page III-301).

The Adams-Moulton and Backward Differentiation Formula (BDF) methods are adapted from the CVODE
package developed at Lawrence Livermore National Laboratory. In our very limited experience, for well-
behaved nonstiff systems the Bulirsch-Stoers method is much more efficient than either the Runge-Kutta-Fehl-
berg method or the Adams-Moulton method, in that it requires significantly fewer steps for a given problem.

As shown above, stiff systems benefit greatly by the use of the BDF method. However, for nonstiff methods,
it is not as efficient as the other methods.

See IntegrateODE on page V-392 for references on these methods.

Interrupting IntegrateODE
Numerical solutions to differential equations can require considerable computation and, therefore, time. If
you find that a solution is taking too long you can abort the operation by clicking the Abort button in the
status bar. You may need to press and hold to make sure IntegrateODE notices.

When you abort an integration, IntegrateODE returns whatever results have been calculated. If those
results are useful, you can restart the calculation from that point, using the last calculated result row as the
initial conditions. Use the /R=(startX) flag to specify where you want to start.

For Igor programmers, the V_ODEStepCompleted variable will be set to the last result. It is probably a good
idea to restart a step or two before that:
IntegrateODE/R=(V_ODEStepCompleted-1) …

Stopping and Restarting IntegrateODE
Any result can be used as initial conditions for a new solution. Thus, you can use the /R flag to calculate just
a part of the solution, then finish later using the /R flag to pick up where you left off. For instance, using the
harmonic oscillator example:
Make/D/O/N=(500,2) HarmonicOsc = 0
SetDimLabel 1,0,Velocity,HarmonicOsc
SetDimLabel 1,1,Displacement,HarmonicOsc
HarmonicOsc[0][%Velocity] = 5 // initial velocity
HarmonicOsc[0][%Displacement] = 0 // initial displacement
Make/D/O HarmPW={.01,.5,.1,.45} // damping, freq, forcing amp and freq
Display HarmonicOsc[][%Displacement]

IntegrateODE/M=1/R=[,300] Harmonic, HarmPW, HarmonicOsc

Chapter III-10 — Analysis of Functions

III-287

The calculation has been done for points 0-300. Note the comma in /R=[,300], which sets 300 as the end point,
not the start point. Now you can restart at 300 and continue to the 400th point:
IntegrateODE/M=1/R=[300,400] Harmonic, HarmPW, HarmonicOsc

or finish the entire 500 points. Perhaps you need to start from an earlier point:
IntegrateODE/M=1/R=[350] Harmonic, HarmPW, HarmonicOsc

Stopping IntegrateODE on a Condition
Sometimes it is useful to be able to stop the calculation based on output values from the integration, rather
than stopping when a certain value of the independent variable is reached. For instance, a common way to
simulate a neuron firing is to solve the relevant system of equations until the output reaches a certain value.
At that point, the solution should be stopped and the initial conditions reset to values appropriate to the
triggered condition. Then the calculation can be re-started from that point.

The ability to stop and re-start the calculation is a general solution to the problem of discontinuities in the
system you are solving. Integrate the system up to the point of the discontinuity, stop and re-start using a
derivative function that reflects the system after the discontinuity.

There are two ways to stop the integration depending on the solution values.

The first way is to use the /STOP={stopWave, mode} flag, supplying a stopWave containing stopping condi-
tions. StopWave must have one column for each equation in your system. Each column can specify stopping

10

5

0

-5

5004003002001000

10

5

0

-5

5004003002001000

10

5

0

-5

5004003002001000

Chapter III-10 — Analysis of Functions

III-288

on a value of the solution for the equation corresponding to the column, or stopping on a value of the deriv-
ative corresponding to that equation, or both. Each row has different significance:

In the chemical kinetics example above (see A System of Coupled First-Order Equations on page III-279)
the system has four equations so you need a stop wave with four columns. This wave:

will stop the integration when the concentration of species C (column 2) is less than 0.15, or when the con-
centration of species D (column 3) is greater than 0.4, or when the derivative of the concentration of species
C is less than zero.

When you have multiple stopping criteria, as in this example, you can specify either OR stopping mode or
AND stopping mode using the mode parameter of the /STOP flag. If mode is 0, OR mode is applied — any
of the conditions with a non-zero flag will stop the integration. If mode is 1, AND mode is applied — all con-
ditions with a non-zero flag must be satisfied in order for the integration to be stopped.

The second way to stop the integration is by returning a value of 1 from the derivative function. You can
apply any condition you like in the function so it is possible to make much more complex stopping condi-
tions this way than using the /STOP flag. However, the derivative function is called for a many intermediate
points during a single step, some of which aren't necessarily even on the eventual solution trajectory. That
means that you could be applying your stopping criterion to values that are not meaningful to the final solu-
tion. That may be particularly true at a time when the internal step size is contracting — the derivative func-
tion may be called for points beyond the eventual solution point as the solver tries a step size that doesn't
succeed.

Integrating a User Function
You can use the Integrate1D function to numerically integrate a user function. For example, if you want to
evaluate the integral

,

you need to start by defining the user function
Function userFunc(v)

Variable v

Row Meaning

0 Stop flag for solution value

0: Ignore condition on solution for this equation
1: Stop when solution value is greater than the value in row 1
-1: Stop when solution value is less than the value in row 1

1 Value of solution at which to stop

2 Stop flag for derivative

0: Ignore condition on derivative for this equation
1: Stop when derivative value is greater than the value in row 3
-1: Stop when derivative value is less than the value in row 3

3 Value of derivative at which to stop

Row ChemKin_Stop[][0] ChemKin_Stop[][1] ChemKin_Stop[][2] ChemKin_Stop[][3]

0 0 0 -1 1

1 0 0 0.15 0.4

2 0 0 -1 0

3 0 0 0 0

I a b,() x3 2π x2⁄()sin–[]exp xd
a

b

=

Chapter III-10 — Analysis of Functions

III-289

return exp(-v^3*sin(2*pi/v^2))
End

The Integrate1D function supports three integration methods: Trapezoidal, Romberg and Gaussian Quadrature.
Printf "%.10f\r" Integrate1D(userfunc,0.1,0.5,0) // default trapezoidal
0.3990547412
Printf "%.10f\r" Integrate1D(userfunc,0.1,0.5,1) // Romberg
0.3996269165
Printf "%.10f\r" Integrate1D(userfunc,0.1,0.5,2,100) // Gaussian Q.
0.3990546953

For comparison, you can also execute:
Make/O/N=1000 tmp
Setscale/I x,.1,.5,"" tmp
tmp=userfunc(x)
Printf "%.10f\r" area(tmp,-inf,inf)
0.3990545084

Integrate1D can also handle complex valued functions. For example, if you want to evaluate the integral

‘

a possible user function could be
Function/C cUserFunc(v)

Variable v
Variable/C arg=cmplx(0,v*sin(v))
return exp(arg)

End

Note that the user function is declared with a /C flag and that Integrate1D must be assigned to a complex
number in order for it to accept a complex user function.
Variable/C complexResult=Integrate1D(cUserFunc,0.1,0.2,1)
print complexResult
(0.0999693,0.00232272)

Also note that if you just try to print the result without using a complex variable as shown above, you need
to use the /C flag with print:
Print/C Integrate1D(cUserFunc,0.1,0.2,1)

in order to force the function to integrate a complex valued expression.

You can also evaluate multidimensional integrals with the help of Integrate1D. The trick is in recognizing the
fact that the user function can itself return a 1D integral of another function which in turn can return a 1D inte-
gral of a third function and so on. Here is an example of integrating a 2D function: f(x,y) = 2x + 3y +xy.
Function do2dIntegration(xmin,xmax,ymin,ymax)

Variable xmin,xmax,ymin,ymax
Variable/G globalXmin=xmin
Variable/G globalXmax=xmax
Variable/G globalY
return Integrate1D(userFunction2,ymin,ymax,1)

End

Function userFunction1(inX)
Variable inX
NVAR globalY=globalY
return (3*inX+2*globalY+inX*globalY)

End

I a b,() ix xsin{ }exp xd
a

b

=

Chapter III-10 — Analysis of Functions

III-290

Function userFunction2(inY)
Variable inY
NVAR globalY=globalY
globalY=inY
NVAR globalXmin=globalXmin
NVAR globalXmax=globalXmax
return Integrate1D(userFunction1,globalXmin,globalXmax,1)

End

Finding Function Roots
The FindRoots operation finds roots or zeros of a nonlinear function, a system of nonlinear functions, or of a
polynomial with real coefficients.

Here we discuss how the operation works, and give some examples. The discussion falls naturally into
three sections:

• Polynomial roots
• Roots of 1D nonlinear functions
• Roots of systems of multidimensional nonlinear functions

Igor’s FindRoots operation finds function zeroes. Naturally, you can find other solutions as well. If you
have a function f(x) and you want to find the X values that result in f(x) = 1, you would find roots of the
function g(x) = f(x)-1. The FindRoots operation provides the /Z flag to make this more convenient.

A related problem is to find places in a curve defined by data points where the data pass through zero or
another value. In this case, you don’t have an analytical expression of the function. For this, use either the
FindLevel operation (see page V-209) or the FindLevels operation (see page V-210); applications of these
operations are discussed under Level Detection on page III-256.

Roots of Polynomials with Real Coefficients
The FindRoots operation can find all the complex roots of a polynomial with real coefficients. As an exam-
ple, we will find the roots of

x4 -3.75x2 - 1.25x + 1.5

We just happen to know that this polynomial can be factored as (x+1)(x-2)(x+1.5)(x-0.5) so we already know
what the roots are. But let’s use Igor to do the work.

First, we need to make a wave with the polynomial coefficients. The wave must have N+1 points, where N
is the degree of the polynomial. Point zero is the coefficient for the constant term, the last point is the coef-
ficient for the highest-order term:
Make/D/O PolyCoefs = {1.5, -1.25, -3.75, 0, 1}

This wave can be used with the poly function to generate polynomial values. For instance:
Make/D/O PWave // a wave with 128 points
SetScale/I x -2.5,2.5,PWave // give it an X range of (-2.5, 2.5)
PWave = Poly(PolyCoefs, x) // fill it with polynomial values

Display PWave // and make a graph of it
ModifyGraph zero(left)=1 // add a zero line to show the roots

These commands make the following graph:

Chapter III-10 — Analysis of Functions

III-291

Now use FindRoots to find the roots:
FindRoots/P=PolyCoefs // roots are now in W_polyRoots
Print W_polyRoots

This prints:
W_polyRoots[0] = {cmplx(0.5,0), cmplx(-1,0), cmplx(-1.5,0), cmplx(2,0)}

Note that the imaginary part of the roots are zero, because this polynomial was constructed from real fac-
tors. In general, this won’t be the case.

The FindRoots operation uses the Jenkins-Traub algorithm for finding roots of polynomials:
Jenkins, M.A., “Algorithm 493, Zeros of a Real Polynomial”, ACM Transactions on Mathematical Software, 1,

178-189, 1975, used by permission of ACM (1998).

Roots of a 1D Nonlinear Function
Unlike the case with polynomials, there is no general method for finding all the roots of a nonlinear func-
tion. Igor searches for a root of the function using Brent’s method, and, depending on circumstances will
find one or two roots in one shot.

You must write a user-defined function to define the function whose roots you want to find. Igor calls your
function with values of X in the process of searching for a root. The format of the function is as follows:
Function myFunc(w,x)

Wave w
Variable x

return <an arithmetic expression>
End

The wave w is a coefficient wave — it specifies constant coefficients that you may need to include in the
function. It provides a convenient way to alter the coefficients so that you can find roots of members of a
function family without having to edit your function code every time. Igor does not alter the values in w.

As an example we will find roots of the function y = a+b*sinc(c*(x-x0)). Here is a user-defined function to
implement this:
Function mySinc(w, x)

Wave w
Variable x

return w[0]+w[1]*sinc(w[2]*(x-w[3]))
End

Enter this code into the Procedure window and then close the window.

Make a graph of the function:
Make/D/O SincCoefs={0, 1, 2, .5} // a sinc function offset by 0.5
Make/D/O SincWave // a wave with 128 points

20

15

10

5

0

-2 -1 0 1 2

Chapter III-10 — Analysis of Functions

III-292

SetScale/I x -10,10,SincWave // give it an X range of (-2, 2)
SincWave = mySinc(SincCoefs, x) // fill it with function values

Display SincWave // and make a graph of it
ModifyGraph zero(left)=1 // add a zero line to show the roots
ModifyGraph minor(bottom)=1 // add minor ticks to the graph

Now we’re ready to find roots.
The algorithm for finding roots requires that the roots first be bracketed, that is, you need to know two X
values that are on either side of the root (that is, that give Y values of opposite sign). Making a graph of the
function as we did here is a good way to figure out bracketing values. For instance, inspection of the graph
above shows that there is a root between x=1 and x=3. The FindRoots command line to find a root in this
range is
FindRoots/L=1/H=3 mySinc, SincCoefs

The /L flag sets the lower bracket and the /H flag sets the upper bracket. Igor then finds the root between
these values, and prints the results in the history:
Possible root found at 2.0708
Y value there is -1.46076e-09

Igor reports to you both the root (in this case 2.0708) and the Y value at the root, which should be very close
to zero (in this case it is -1.46x10-9). Some pathological functions can fool Igor into thinking it has found a
root when it hasn’t. The Y value at the supposed root should identify if this has happened.

The bracketing values don’t actually have to be at points of opposite sign. If the bracket encloses an extreme
point, Igor will find it and then find two roots. Thus, you might use this command:
FindRoots/L=0/H=5 mySinc, SincCoefs

The Y values at X=0 and X=5 are both positive. Igor finds the minimum point at about X=2.7 and then uses
that with the original bracketing values as the starting points for finding two roots. The result, printed in
the history:
Looking for two roots...

Results for first root:
Possible root found at 2.0708
Y value there is -2.99484e-11

Results for second root:
Possible root found at 3.64159
Y value there is 3.43031e-11

Finally, it isn’t always necessary to provide bracketing values. If the /L and /H flags are absent, Igor assigns
them the values 0 and 1. In this case, there is no root between X=0 and X=1, and there is no extreme point.
So Igor searches outward in a series of expanding jumps looking for values that will bracket a root (that is,
for X values having Y values of opposite sign). Thus, in this case, the following simple command works:

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-10 -5 0 5 10

Chapter III-10 — Analysis of Functions

III-293

FindRoots mySinc, SincCoefs

Igor finds the first of the roots we found previously:
Possible root found at 2.0708
Y value there is 2.748e-13

You may have noticed by now that FindRoots is reporting Y values that are merely small instead of zero. It
isn’t usually possible to find exact roots with a computer. And asking for very high accuracy requires more
iterations of the search algorithm. If function evaluation is time-consuming and you don’t need much accu-
racy, you may not want to find the root with high accuracy. Consequently, you can use the /T flag to alter
the acceptable accuracy:
FindRoots/T=1e-3 mySinc, SincCoefs // low accuracy
Possible root found at 2.07088

Y value there is -5.5659e-05
Print/D V_root, V_YatRoot

2.07088376061435 -5.56589998578327e-05

FindRoots/T=1e-15 mySinc, SincCoefs // high accuracy
Possible root found at 2.0708

Y value there is 0
Print/D V_root, V_YatRoot

2.0707963267949 0

This also illustrates another point: the results of FindRoots are stored in variables. We used these variables
in this case to print the results to higher accuracy than the six digits used by the report printed by FindRoots.

Roots of a System of Multidimensional Nonlinear Functions
Finding roots of a system of multidimensional nonlinear functions works very similarly to finding roots of
a 1D nonlinear function. You provide user-defined functions that define your functions. These functions
have nearly the same form as a 1D function, but they have a parameter for each independent variable. For
instance, if you are going to find roots of a pair of 2D functions, the functions will look like this:
Function myFunc1(w, x1, x2)

Wave w
Variable x1, x2

return <an arithmetic expression>
End

Function myFunc2(w, x1, x2)
Wave w
Variable x1, x2

return <an arithmetic expression>
End

These function look just like the 1D function mySinc we wrote in the previous section, but they have two
input X variables, one for each dimension. The number of functions must match the number of dimensions.

We will use the functions
f1= w[0]*sin((x-3)/w[1])*cos(y/w[2])

and
f2 = w[0]*cos(x/w[1])*tan((y+5)/w[2])

Enter this code into your procedure window:
Function myf1(w, xx, yy)

Wave w
Variable xx,yy

Chapter III-10 — Analysis of Functions

III-294

return w[0]*sin(xx/w[1])*cos(yy/w[2])
End

Function myf2(w, xx, yy)
Wave w
Variable xx,yy

return w[0]*cos(xx/w[1])*tan(yy/w[2])
End

Before starting, let’s make a contour plot to see what we’re up against. Here are some commands to make
a convenient one:
Make/D/O params2D={1,5,4} // nice set of parameters for both f1 and f2
Make/D/O/N=(50,50) f1Wave, f2Wave // matrix waves for contouring
SetScale/I x -20,20,f1Wave, f2Wave // nice range of X values
SetScale/I y -20,20,f1Wave, f2Wave // and Y values
f1Wave = myf1(params2D, x, y) // fill f1Wave with values from f1(x,y)
f2Wave = myf2(params2D, x, y) // fill f2Wave with values from f2(x,y)
Display /W=(5,42,399,396) // graph window for contour plot
AppendMatrixContour f1Wave
AppendMatrixContour f2Wave
ModifyContour f2Wave labels=0 // suppress contour labels
ModifyContour f1Wave labels=0
ModifyContour f1Wave rgbLines=(65535,0,0) // make f1 red
ModifyContour f2Wave rgbLines=(0,0,65535) // make f2 blue
ModifyGraph lsize('f2Wave=0')=2 // make zero contours heavy
ModifyGraph lsize('f1Wave=0')=2

Places where the zero contours for the two functions cross are the roots we are looking for. In the contour
plot you can see several, for instance the points (0,0) and (7.8, 6.4) are approximate roots.

The algorithm that searches for roots needs a starting point. You can specify this in the FindRoots command
with the /X flag, or if you don’t use /X, Igor starts by default at the origin, Xn = 0. You must also specify both
functions and a coefficient wave for each function. In this case we will use the same coefficient wave for
each. The functions and coefficient waves are specified in pairs. Since we are looking for roots of two 2D
functions, we have two function-wave pairs:
FindRoots myf1,params2D, myf2,params2D

Igor finds a root at the origin, and prints the results. The X,Y coordinates of the root are stored in the wave W_Root:
Root found after 4 function evaluations.

W_Root={0,0}
Function values at root:

W_YatRoot={0,0}

The wave W_YatRoot holds the values of each of the functions evaluated at the root.
If that’s not the root you want to find, use /X to specify a different starting point:

FindRoots/X={7.7,6.3} myf1,params2D, myf2,params2D
Root found after 47 function evaluations.

W_Root={-1.10261e-14,12.5664}
Function values at root:

W_YatRoot={2.20522e-15,-1.89882e-15}

Chapter III-10 — Analysis of Functions

III-295

Caveats for Multidimensional Root Finding
Finding roots of multidimensional nonlinear
functions is not straightforward. There is no gen-
eral, foolproof way to do it. The method Igor uses
is to search for minima in the sum of the squares
of the functions. Since the squared values must
be positive, the only places where this sum can be
zero is at points where all the functions are zero
at the same time. That point is a root, and it is also
a minimum in the summed squares of the func-
tions.

To find the zero points, Igor searches for local
minima by travelling downhill from the start-
ing point. Unfortunately, a local minimum
doesn’t have to be a root, it just has to be some-
place where the sum of squares of the functions
is less than surrounding points.

The adjacent graph shows how this can
happen.
The two heavy lines are the zero contours for
two functions (they happen to be fifth-order
2D polynomials). Where these zero contours
cross are the roots for the system of the two functions.

The thin lines are contours of f1(x,y)2+f2(x,y)2, with dotted lines for high values; minima are surrounded by thin,
solid contours. You can see that every intersection between the heavy zero contours is surrounded by thin con-
tours showing that these are minima in the sum of the squared functions. One such point is labeled “Root”.

There is at least one point, labelled “False Root”, where there is a minimum but the zero contours don’t
cross. That is not a root, but FindRoots may find it anyway. For instance, a real root:
FindRoots /x={3,6} MyPoly2d, nn1coefs, MyPoly2d, nn2coefs

Root found after 11 function evaluations.
W_Root={5.4623,7.28975}
Function values at root:
W_YatRoot={-4.15845e-13,1.08297e-12}

This point is the point marked “Root”. However:
FindRoots/x={9,10} MyPoly2d, nn1coefs, MyPoly2d, nn2coefs

Root found after 52 function evaluations.
W_Root={8.38701,9.10129}
Function values at root:
W_YatRoot={0.0686792,0.0129881}

You can see from the values in W_YatRoot that this is not a root. This point is marked “False root” on the
figure above.

The polynomials used in this example have too many coefficients to be conveniently shown here. To see
this example and others in action, try out the demo experiment. It is called “MD Root Finder Demo” and
you will find it in your Igor Pro 7 folder, in the Examples:Analysis: folder.

Finding Minima and Maxima of Functions
The Optimize operation finds extreme values (maxima or minima) of a nonlinear function.

20

15

10

5

0
20151050

Possible
False Root

Zero contour
for f2(x,y)

Zero contour
for f1(x,y)

Root

Chapter III-10 — Analysis of Functions

III-296

Here we discuss how the operation works, and give some examples. The discussion falls naturally into two
sections:

• Extrema of 1D nonlinear functions
• Extrema of multidimensional nonlinear functions

A related problem is to find peaks or troughs in a curve defined by data points. In this case, you don’t have
an analytical expression of the function. To do this with one dimensional data, use the FindPeak operation
(see page V-212).

Extreme Points of a 1D Nonlinear Function
The Optimize operation finds local maxima or minima of functions. That is, if a function has some X value
where the nearby Y values are all higher than at that X value, it is deemed to be a minimum. Finding the
point where a functions value is lower or higher than any other point anywhere is a much more difficult
problem that is not addressed by the Optimize operation.

You must write a user-defined function to define the function for which the extreme points are calculated.
Igor will call your function with values of X in the process of searching for a root. The format of the function
is as follows:
Function myFunc(w,x)

Wave w
Variable x

return f(x) // an expression...
End

The wave w is a coefficient wave — it specifies constant coefficients that you may need to include in the func-
tion. It provides a convenient way to alter the coefficients so that you can find extreme points of members of
a function family without having to edit your function code every time. Igor does not alter the values in w.

Although the coefficient wave must be present in the Function declaration, it does not have to be referenced
in the function body. This may save computation time, arriving at the solution faster. You will have to create
a dummy wave to list in the FindRoots command.

As an example we will find extreme points of the equation
y = a+b*sinc(c*(x-x0))

A suitable user-defined function might look like this:
Function mySinc(w, x)

Wave w
Variable x

return w[0]+w[1]*sinc(w[2]*(x-w[3]))
End

Enter this code into the Procedure window and then close the window.

Make a graph of the function:
Make/D/O SincCoefs={0, 1, 2, .5} // a sinc function offset by 0.5
Make/D/O SincWave // a wave with 128 points
SetScale/I x -10,10,SincWave // give it an X range of [-10, 10]
SincWave = mySinc(SincCoefs, x) // fill it with function values

Display SincWave // and make a graph of it
ModifyGraph minor(bottom)=1 // add minor ticks to the graph

Chapter III-10 — Analysis of Functions

III-297

Now we’re ready to find extreme points.
The algorithm for finding extreme points requires that the extreme points first be bracketed, that is, you
need to know two X values that are on either side of the extreme point (that is, two points that have a lower
or higher point between). Making a graph of the function as we did here is a good way to figure out brack-
eting values. For instance, inspection of the graph above shows that there is a minimum between x=1 and
x=4. The Optimize command line to find a minimum in this range is
Optimize/L=1/H=4 mySinc, SincCoefs

The /L flag sets the lower bracket and the /H flag sets the upper bracket. Igor then finds the minimum
between these values, and prints the results in the history:
Optimize probably found a minimum. Optimize stopped because
the Optimize operation found a minimum within the specified tolerance.
Current best solution: 2.7467
Function value at solution: -0.217234
 13 iterations, 14 function calls
V_minloc = 2.7467, V_min = -0.217234, V_OptNumIters = 13, V_OptNumFunctionCalls = 14

Igor reports to you both the X value that minimizes the function (in this case 2.7467) and the Y value at the
minimum.

The bracketing values don’t necessarily have to bracket the solution. Igor first tries to find the desired extre-
mum between the bracketing values. If it fails, the bracketing interval is expanded searching for a suitable
bracketing interval. If you don’t use /L and /H, Igor sets the bracketing interval to [0,1]. In the case of the
mySinc function, that doesn’t include a minimum. Here is what happens in that case:
Optimize mySinc, SincCoefs

Optimize probably found a minimum. Optimize stopped because
the Optimize operation found a minimum within the specified tolerance.
Current best solution: 2.74671
Function value at solution: -0.217234
 16 iterations, 47 function calls
V_minloc = 2.74671, V_min = -0.217234, V_OptNumIters = 16, V_OptNumFunctionCalls = 47

Note that Igor found the same minimum that it found before.

The mySinc function makes it easy to find bracketing values because of the oscillatory nature of the func-
tion. Other functions may be more difficult if they contain just one extreme point, or if they have local
extreme points but are unbounded elsewhere. Even in an easy case like mySinc, you can’t be sure which
extreme point Igor will find, so it is always better to supply a good bracket if you possibly can.

You may wish to find maximum points instead of minima. Use the /A flag to specify this:
Optimize/A/L=0/H=2 mySinc, SincCoefs

Optimize probably found a maximum. Optimize stopped because
the Optimize operation found a maximum within the specified tolerance.
Current best solution: 0.499999
Function value at solution: 1
 16 iterations, 17 function calls
V_maxloc = 0.499999, V_max = 1, V_OptNumIters = 16, V_OptNumFunctionCalls = 17

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-10 -5 0 5 10

Chapter III-10 — Analysis of Functions

III-298

The results of the Optimize operation are stored in variables. Note that the report that Optimize prints in
the history includes only six digits of the values. You can print the results to greater precision using the
printf operation and the variables:
Printf "The max is at %.15g. The Y value there is %.15g\r", V_maxloc, V_max

yields this in the history:
The max is at 0.499999480759779. The Y value there is 0.99999999999982

Extrema of Multidimensional Nonlinear Functions
Finding extreme points of multidimensional nonlinear functions works very similarly to finding extreme
points of a 1D nonlinear function. You provide a user-defined function having almost the same format as
for 1D functions. A 2D function will look like this:
Function myFunc1(w, x1, x2)

Wave w
Variable x1, x2

return f1(x1, x2) // an expression...
End

This function looks just like the 1D function mySinc we wrote in the previous section, but it has two input
X variables, one for each dimension.

We will make a 2D function based on the sinc function. Copy this code into your procedure window:
Function Sinc2D(w, xx, yy)

Wave w
Variable xx,yy

return w[0]*sinc(xx/w[1])*sinc(yy/w[2])
End

Before starting, let’s make a contour plot to see what we’re up against. Here are some commands to make
a convenient one:
Make/D/O params2D={1,3,2} // nice set of parameters
Make/D/O/N=(50,50) Sinc2DWave // matrix wave for contouring
SetScale/I x -20,20,Sinc2DWave // nice range of X values for these functions
SetScale/I y -20,20,Sinc2DWave // and Y values
Sinc2DWave = Sinc2D(params2D, x, y) // fill f1Wave with values from f1(x,y)
Display /W=(5,42,399,396) // graph window for contour plot
AppendMatrixContour Sinc2DWave
ModifyContour Sinc2DWave labels=0// suppress contour labels to reduce clutter

-20

-10

0

10

20

-20 -10 0 10 20

Minima

Maxima

Chapter III-10 — Analysis of Functions

III-299

The algorithm that searches for extreme points needs a starting guess which you provide using the /X flag.
Here is a command to find a minimum point:
Optimize/X={1,5} Sinc2D,params2D

This command results in the following report in the history:
Optimize probably found a minimum. Optimize stopped because
the gradient is nearly zero.
Current best solution:

W_Extremum={-0.000147116,8.98677}
Function gradient:

W_OptGradient={-4.65661e-08,1.11923e-08}
Function value at solution: -0.217234
11 iterations, 36 function calls
V_min = -0.217234, V_OptTermCode = 1, V_OptNumIters = 11, V_OptNumFunctionCalls = 36

Note that the minimum is reported via a wave called W_extremum. Had you specified a wave using the /X
flag, that wave would have been used instead. Another wave, W_OptGradient, receives the function gra-
dient at the solution point.

There are quite a few options available to modify the workings of the Optimize operation. See Optimize
operation on page V-613 for details, including references to reading material.

Stopping Tolerances
The Optimize operation stops refining the solution when certain criteria are met. The most desirable result
is that it stops because the function gradient is very close to zero, since that is (almost) diagnostic of an
extreme point. The algorithm also will take very small steps near an extreme point, so this is also a stopping
criterion. You can set the values for the stopping criteria using the /T={gradTol, stepTol} flag.

Optimize stops when these conditions are met:

or

Note that these conditions use values of the gradient (gi) and step size (Δxi) that are scaled by a measure of
the magnitude of values encountered in the problem. In these equations, xi is the value of a component of
the solution and f is the value of the function at the solution; typXi is a “typical” value of the X component
that is set by you using the /R flag and f is a typical function value magnitude which you set using the /Y
flag. The values of typXi and f are one if the /R and /F flags are not present.

The default values for gradTol and stepTol are {8.53618x10-6, 7.28664x10-11}. These are the values recom-
mended by Dennis and Schnabel (see the references in Optimize operation on page V-613) for well-
behaved functions when the function values have full double precision resolution. These values are
(6.022x10-16)1/3 and (6.022x10-16)2/3 as suggested by Dennis and Schnabel (see the references in Optimize
operation on page V-613), where 6.022x10-16 is the smallest double precision floating point number that,
when added to 1, is different from 1. Usually the default is pretty good.

Due to floating point truncation errors, it is possible to set gradTol and stepTol to values that can never be
achieved. In that case you may get a message about “no solution was found that is better than the last iteration”.

Problems with Multidimensional Optimization
Finding minima of multidimensional functions is by no means foolproof. The methods used by the Opti-
mize operation are “globally convergent” which means that under suitable circumstances Optimize will be
able to find some extreme point from just about any starting guess.

max
1 i n≤ ≤

gi
max xi typXi,()
max f funcSize(,)
---⋅

gradTol≤

max
1 i n≤ ≤

Δxi
max xi typXi(,)

stepTol≤

Chapter III-10 — Analysis of Functions

III-300

If the gradient of your function is zero, or very nearly so at the starting guess, Optimize has no information
on which way to go to find an extreme point. Note that the Sinc2D function has a maximum exactly at (0,0).
Here is what happens if you try to find a minimum starting at the origin:
Optimize/X={0,0} Sinc2D,params2D

==== The Optimize operation failed to find a minimum. ====
Optimize stopped because
The function gradient at your starting guess is too near zero, suggesting that
it is a critical point.
A different starting guess usually solves this problem.
Current best solution:

W_Extremum={0,0}
Function gradient:

W_OptGradient={0,0}
Function value at solution: 1
0 iterations, 3 function calls
V_min = 1, V_OptTermCode = 6, V_OptNumIters = 0, V_OptNumFunctionCalls = 3

In this example the function gradient is zero at the origin because there is a function maximum there. A gra-
dient of zero could also be a minimum or a saddle point.

The algorithms used by the Optimize operation assume that your function is smooth, that is, that the first
and second derivatives are continuous. Optimize may work with functions that violate this assumption, but
it is not guaranteed.

Although Optimize tends to look downhill to the nearest minimum (or uphill to the nearest maximum), it is
not guaranteed to find any particular minimum, especially if your starting guess is near a point where the gra-
dient is small. Sometimes using a different method (/M=(stepMethod, hessianMethod) will result in a different
answer. You can limit the maximum step size to keep progress more or less local (/S=maxStep). If you set the
maximum step size too small, however, Optimize may stop early because the maximum step size is exceeded
too many times. Here is an example using the Sinc2D function. If the starting guess is near the origin, the gra-
dient is small and the solution shoots off into the hinterlands (only a portion of the history report is shown):
Optimize/X={1,1} Sinc2D,params2D

W_Extremum={-61.1192,298.438}
Function gradient:

W_OptGradient={-1.04095e-08,-1.19703e-08}

Use /S to limit the step size, and find a minimum nearer to the starting guess:
Optimize/X={1,1}/S=10 Sinc2D,params2D

W_Extremum={-0.00014911,8.9868}
Function gradient:

W_OptGradient={9.31323e-09,5.92775e-08}

But if the maximum step is too small, it doesn’t work:
Optimize/X={1,1}/S=1 Sinc2D,params2D

==== The Optimize operation failed to find a minimum. ====
Optimize stopped because
the maximum step size was exceeded in five consecutive iterations.
This can happen if the function is unbounded (there is no minimum),
or the function approaches the minimum asymptotically. It may also be that the
maximum step size (1) is too small.

Another way to get a solution near by is to set the initial trust region to a small value. This works if you
select double dogleg or More Hebdon as the step selection method. It does not apply to the default line
search method. Here is an example (note that the double dogleg method is selected using /M={1,0}):
Optimize/X={1,1}/M={1,0}/F=1 Sinc2D,params2D

W_Extremum={-0.000619834,8.9872}
Function gradient:

W_OptGradient={1.09896e-07,2.9017e-08}

Chapter III-10 — Analysis of Functions

III-301

References
The IntegrateODE operation is based on routines in Numerical Recipes, and are used by permission:
Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C, 2nd ed., 994 pp.,

Cambridge University Press, New York, 1992.

The Adams-Moulton and BDF methods are based on the CVODE package developed at Lawrence Liver-
more National Laboratory:
Cohen, Scott D., and Alan C. Hindmarsh, CVODE User Guide, LLNL Report UCRL-MA-118618, September 1994.

The CVODE package was derived in part from the VODE package. The parts used in Igor are described in
this paper:
Brown, P.N., G. D. Byrne, and A. C. Hindmarsh, VODE, a Variable-Coefficient ODE Solver, SIAM J. Sci. Stat.

Comput., 10, 1038-1051, 1989.

The Optimize operation uses Brent’s method for univariate functions. Numerical Recipes has an excellent dis-
cussion in section 10.2 of this method (but we didn’t use their code).

For multivariate functions Optimize uses code based on Dennis and Schnabel. To truly understand what
Optimize does, read their book:
Dennis, J. E., Jr., and Robert B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear

Methods, 378 pp., Society for Industrial and Applied Mathematics, Philadelphia, 1996.

The FindRoots operation uses the Jenkins-Traub algorithm for finding roots of polynomials:
Jenkins, M.A., “Algorithm 493, Zeros of a Real Polynomial”, ACM Transactions on Mathematical Software, 1,

178-189, 1975..

Chapter III-10 — Analysis of Functions

III-302

	Analysis of Functions
	Operations that Work on Functions
	Function Plotting
	Function Plotting Using Dependencies
	Function Plotting Using Controls
	Plotting a User-Defined Function

	Solving Differential Equations
	Terminology
	ODE Inputs
	ODE Outputs
	The Derivative Function
	A First-Order Equation
	A System of Coupled First-Order Equations
	Optimizing the Derivative Function
	Higher Order Equations
	Free-Run Mode
	Stiff Systems
	Error Monitoring
	Solution Methods
	Interrupting IntegrateODE
	Stopping and Restarting IntegrateODE
	Stopping IntegrateODE on a Condition

	Integrating a User Function
	Finding Function Roots
	Roots of Polynomials with Real Coefficients
	Roots of a 1D Nonlinear Function
	Roots of a System of Multidimensional Nonlinear Functions
	Caveats for Multidimensional Root Finding

	Finding Minima and Maxima of Functions
	Extreme Points of a 1D Nonlinear Function
	Extrema of Multidimensional Nonlinear Functions
	Stopping Tolerances
	Problems with Multidimensional Optimization

	References

