
Chapter

III-15
III-15Platform-Related Issues

Platform-Related Issues ... 398
Windows-Specific Issues.. 398
Cross-Platform File Compatibility.. 398

Crossing Platforms .. 398
Transferring Files Using File Transfer Programs.. 398
File Name Extensions, File Types, and Creator Codes... 398
Experiments and Paths ... 399
Picture Compatibility .. 399
Page Setup Compatibility ... 400

File System Issues ... 400
File and Folder Names .. 400
Path Separators .. 401
UNC Paths .. 401
Unix Paths... 402

Keyboard and Mouse Usage ... 402
Command Window Input .. 402

Cross-Platform Text and Fonts ... 402
Text Encoding Compatibility ... 402
Carriage Returns and Linefeeds .. 402
Font Substitution.. 403

Cross-Platform Procedure Compatibility.. 404
File Paths ... 404
File Types and Extensions .. 404
Points Versus Pixels... 404
Window Position Coordinates... 405
Control Panel Resolution on Windows .. 405

Pictures in Notebooks .. 406

Chapter III-15 — Platform-Related Issues

III-398

Platform-Related Issues
Igor Pro runs on Macintosh and Windows. This chapter contains information that is platform-specific and
also information for people who use Igor on both platforms.

Windows-Specific Issues
On Windows, the name of the Igor program file must be “Igor64.exe” for the 64-bit version of Igor or
“Igor.exe” for the 32-bit version, exactly. If you change the name, Igor extensions will not work because they
will be unable to find Igor.

Cross-Platform File Compatibility
Version 3.1 was the first version of Igor Pro that ran on Windows as well as Macintosh.

Crossing Platforms
When crossing from one platform to another, page setups are only partially translated. Igor tries to preserve
the page orientation and margins.

When crossing platforms, Igor attempts to do font substitution where necessary. If Igor can not determine
an appropriate font it displays the font substitution dialog where you can choose the font.

Platform-specific picture formats are displayed as gray boxes when you attempt to display them on the
non-native platform. PDF pictures are supported on Macintosh only and appear as gray boxes on Windows.
Windows Metafile, Enhanced Metafile, and Windows bitmap (BMP) pictures are supported on Windows
only and appear as gray boxes on Macintosh. The EPS, PNG, JPEG, TIFF, and SVG formats are platform-
independent and are displayed on both platforms.

Transferring Files Using File Transfer Programs
Some transfer programs offer the option of translating file formats as they transfer the program from one
computer to another. This translation usually consists of replacing each carriage return character with a car-
riage return/linefeed pair (Macintosh to Windows) or vice-versa (Windows to Macintosh). This is called a
“text mode” transfer, as opposed to a “binary mode” transfer. This translation is appropriate for plain text
files only. In Igor, plain text notebooks, procedure files, and Igor Text data files are plain text. All other files
are not plain text and will be corrupted if you transfer in text mode. If you get flaky results after transferring
a file, transfer it again making sure text mode is off.

If you have a problem opening a binary file after doing a transfer, compare the number of bytes in the file
on both computers. If they are not the same, the transfer has corrupted the file.

File Name Extensions, File Types, and Creator Codes
This table shows the file name extension and corresponding Macintosh file type for Igor Pro files:

Extension File Type What’s in the File

.pxp IGsU Packed experiment file

.pxt IGsS Packed experiment template (stationery)

.uxp IGSU Unpacked experiment file

.uxt IGSS Unpacked experiment template (stationery)

.ifn WMT0 Igor formatted notebook (last character is zero)

.txt TEXT Igor plain notebook

.ihf WMT0 Igor help file

Chapter III-15 — Platform-Related Issues

III-399

The Macintosh creator code for Igor is 'IGR0' (last character is zero).

Experiments and Paths
An Igor experiment sometimes refers to wave, notebook, or procedure files that are stored separate from
the experiment file itself. This is discussed under References to Files and Folders on page II-22. In this case,
Igor creates a symbolic path that points to the folder containing the referenced file. It writes a NewPath
command in the experiment file to recreate the symbolic path when the experiment is opened. When you
move the experiment to another computer or to another platform, this path may not be valid. However, Igor
goes to great lengths to find the folder, if possible.

Igor stores the path to the folder containing the file as a relative path, relative to the experiment file, if pos-
sible. This means that Igor will be able to find the folder, even on another computer, if the folder’s relative
location in the disk hierarchy is the same on both computers. You can minimize problems by using the same
disk hierarchy on both computers.

If the folder is not on the same volume as the experiment file, then Igor can not use a relative path and must use
an absolute path. Absolute paths cause problems because, although your disk hierarchy may be the same on
both computers, often the name of the root volume will be different. For example, on the Macintosh your hard
disk may be named “hd” while on Windows it may be named “C:”.

If Igor can not locate a folder or file needed to recreate an experiment, it displays a dialog asking you to
locate it.

Picture Compatibility
Igor displays pictures in graphs, page layouts, control panels and notebooks. The pictures are stored in the
Pictures collection (Misc→Pictures) and in notebooks. Graphs, page layouts and control panels reference
pictures stored in the Pictures collection while notebooks store private copies of pictures.

This table shows the graphic formats that Igor can use to store pictures:

Formats that are not supported on the current platform are drawn as gray boxes.

.ibw IGBW Igor binary data file

Format How To Create Notes

PDF Paste or use Misc→Pictures Macintosh only

EMF (Enhanced
Metafile)

Paste or use Misc→Pictures Windows only

See Graphics Technology on Windows on page III-445
for information about different types of EMF pictures.

BMP (bitmap) Use Misc→Pictures Windows Only.

BMP also called DIB (device-independent bitmap).

PNG (Portable
Network Graphics)

Use Misc→Pictures Cross-platform bitmap format

JPEG Use Misc→Pictures Cross-platform bitmap format

TIFF (Tagged Image
File Format)

Use Misc→Pictures Cross-platform bitmap format

EPS (Encapsulated
PostScript)

Use Misc→Pictures High resolution vector format. EPS is largely obsolete.
Use PDF instead.

SVG (Scalable Vector
Graphics)

Use Misc→Pictures Cross-platform high resolution vector format.

Extension File Type What’s in the File

Chapter III-15 — Platform-Related Issues

III-400

Although Igor does not display non-native graphic formats, it does preserve them. For example, you can
create an experiment on Macintosh and paste a Macintosh PDF into a page layout, graph, or notebook
window. If you save the experiment and open it on Windows, the PDF will be displayed as a gray box. You
can now paste a Windows metafile into the page layout, graph, or notebook window. If you save the exper-
iment and open it on Macintosh, the Windows metafile will be displayed as a gray box but the PDF will be
displayed correctly. If you now save and open the experiment on Windows again, the Windows metafile
will be displayed correctly.

If you want platform-specific pictures to be displayed correctly on both platforms, you must convert the
pictures to PNG. To convert to PNG, use the Pictures dialog (Misc menu) for pictures in graphs and page
layouts, or for pictures in notebooks, use the Special submenu in the Notebook menu.

Converting a picture to PNG makes it a bitmap format and may degrade resolution. This is fine for graphics
intended to be viewed on the screen but not for graphics intended to be printed at high resolution. You can
convert to a high resolution PNG without losing much picture quality.

Page Setup Compatibility
Page setup records store information regarding the size and orientation of the page. Prior to Igor Pro 7, page
setups contained platform-depedent and printer-depedent data. This is no longer the case, but as a conse-
quence, only minimal information is stored.

In each experiment file, Igor stores a separate page setup for each page layout, notebook, and procedure
window, and stores a single page setup for all graphs and a single page setup for all tables.

File System Issues
This section discusses file system issues that you need to take into account if you use Igor on both Macintosh
and Windows.

File and Folder Names
On Windows, the following characters are illegal in file and folder names: backslash (\), forward slash (/),
colon (:), asterisk (*), question mark (?), double-quote ("), left angle bracket (<), right angle bracket (>), ver-
tical bar (|). On Macintosh, the only illegal character is colon.

This means, for example, that you can not create a file with a name like “Data 1/23/98” on Windows. You
can create a file with this name on Macintosh. If you write an Igor procedure that generates a file name like
this, it will run on Macintosh but fail on Windows.

Therefore, if you are concerned about cross-platform compatibility, you must not use any of the Windows
illegal characters in a file or folder name, even if you are running on Macintosh. Also, don’t use period
except before a file name extension.

File and folder names in Windows can theoretically be up to 255 characters in length. Because of some lim-
itations in Windows and also in Igor, you will encounter errors if you use file names that long. However,
both Igor and Windows are capable of dealing with file names up to about 250 characters in length. It is
unlikely that you will approach this limit.

An exception to this is that Igor limits names of XOP files to 31 characters, plus the “.xop” extension. Igor
will not recognize an XOP file with a longer name.

Paths in Windows are limited to 259 characters in length. Neither Windows nor Igor can deal with a path
that exceeds this limit. For example, if you create a directory with a 250 character name and try to create a
file with a 15 character name, neither Windows nor Igor will permit this.

This boils down to the following: Feel free to use long file and directory names, but expect to see errors if
you use outrageously long names or if you have directories so deeply nested that paths approach the theo-
retical limit.

Chapter III-15 — Platform-Related Issues

III-401

Path Separators
The Macintosh HFS file system uses a colon to separate elements in a file path. For example:
hd:Igor Pro 7 Folder:Examples:Sample Graphs:Contour Demo.pxp

The Windows file system uses a backslash to separate elements in a file path. For example:
C:\Igor Pro 7 Folder\Examples\Sample Graphs:Contour Demo.pxp

Some Igor operations (e.g., LoadWave) allow you to enter file paths. Igor accepts Macintosh-style or
Windows-style paths regardless of the platform on which you are running.

Note: Igor uses the backslash character as an escape character in literal strings. This can cause problems
when using Windows-style paths.

For example, the following command creates a textbox with two lines of text. “\r” is an escape code inserts
a carriage return character:
Textbox "This is line 1.\rThis is line 2."

Because Igor interprets a backslash as an escape character, the following command will not execute properly:
LoadWave "C:\Data Files\really good data.ibw"

Instead of loading a file named “really good data.ibw”, Igor would try to load a file named “Data
Files<CR>eally good data.ibw”, where <CR> represents the carriage return character. This happens because
Igor interprets “\r” in literal strings to mean carriage return.

To solve this problem, you must use “\\” instead of “\” in a file path. Igor will correctly execute the following:
LoadWave "C:\\Data Files\\really good data.ibw"

This works because Igor interprets “\\” as an escape sequence that means “insert a backslash character here”.
Another solution to this problem is to use a Macintosh HFS-style path, even on Windows:
LoadWave "C:Data Files:really good data.ibw"

Igor converts the Macintosh HFS-style path to a Windows-style path before using it. This avoids the back-
slash issue.

For a complete list of escape sequences, see Escape Sequences in Strings on page IV-13.

If you are writing procedures that need to extract sections of file paths or otherwise manipulate file paths,
the ParseFilePath function on page V-621 may come in handy.

UNC Paths
“UNC” stands for “Universal Naming Convention”. This is a Windows convention for identifying resources
on a network. One type of network resource is a shared directory. Consequently, when running under Win-
dows, in order to reference a network directory from an Igor command, you need to use a UNC path.

The format of a UNC path that points to a file in a folder on a shared server volume or directory is:
"\\server\share\directory\filename"

“server” is the name of the file server and “share” is the name of the top-level shared volume or directory
on that server.

Because Igor treats a backslash as an escape character, in order to reference this from an Igor command, you
would have to write:

"\\\\server\\share\\directory\\filename"

As described in the preceding section, you could also use Macintosh HFS path syntax by using a colon in
place of two backslashes. However, you can not do this for the “\\server\share” part of the path. Thus,
using Macintosh HFS syntax, you would write:

"\\\\server\\share:directory:filename"

Chapter III-15 — Platform-Related Issues

III-402

Unix Paths
Unix paths use the forward slash character as a path separator. Igor does not recognize Unix paths. Use
Macintosh HFS paths instead.

Keyboard and Mouse Usage
This section describes how keyboard and mouse usage differs on Macintosh versus Windows. It is intended
to help Igor users more easily adapt when switching platforms.

There are three main differences between Macintosh and Windows input mechanisms:
1. The Macintosh mouse may have one button and the Windows mouse has two.
2. The Macintosh keyboard has four modifier keys (Shift, Command, Option, Control) while the Win-

dows keyboard has three (Shift, Ctrl, Alt).
3. The Macintosh keyboard has Return and an Enter keys while the Windows keyboard (usually) has

two Enter keys.

For the most part, Igor maps between Macintosh and Windows input as follows:

In notebooks, procedure windows and help windows, pressing Control-Return or Control-Enter executes
the selected text or, if there is no selection, to execute the line of text containing the caret.

Command Window Input
This table compares command window mouse actions:

Cross-Platform Text and Fonts
Text Encoding Compatibility
Prior to Igor7, Igor used system text encoding. On Macintosh, this was usually MacRoman. On Windows, it
was usually Windows-1252. On Japanese systems, it was Shift JIS on both platforms.

As of Igor7, Igor uses UTF-8 text encoding internally on both Macintosh and Windows.

When opening old files, Igor must convert from the file’s text encoding to UTF-8 for storage in memory.

Dealing with various text encodings is a complex issue. See Text Encodings on page III-409 for details.

Carriage Returns and Linefeeds
The character or character pattern that marks the end of a line of text in a plain text file is called the “line
terminator”. There are three common line terminators, carriage return (CR, ASCII 13, used on old Macin-

Macintosh Windows Macintosh Windows

Shift Shift Return Enter

Command Ctrl Enter Enter

Option Alt Control-click Right-click

Control <not mapped>

Action Macintosh Windows

Copy history selection to command line Option-click Alt+click

Copy history to command and start execution Command-Option-click Ctrl+Alt+click

Invoke contextual menu Control-click Right-click

Chapter III-15 — Platform-Related Issues

III-403

tosh systems), linefeed (LF, ASCII 10, used on Unix) and carriage return plus linefeed (CRLF, used on Win-
dows).

When Igor Pro opens a text file (procedure file, plain text notebook or plain text data file), it accepts CR, LF
or CRLF as the line terminator.

If you create a new procedure file or plain text notebook, Igor writes LF on Mac OS and CRLF on Windows.
If you open an existing plain text file, edit it and then save it, Igor preserves the original terminator as deter-
mined by examining the first line in the file.

By default, the FReadLine operation treats CR, LF, or CRLF as terminators. Use this to write a procedure
that can read lines from a text file without caring whether it is a Macintosh, Windows, or Unix file.

Font Substitution
When a font specified in a command or document is not installed, Igor applies font substitution to choose
an installed font to use in place of the missing font. Dealing with these missing fonts often occurs when
transferring a Windows-originated document to Macintosh or vice versa.

Igor employs two levels of font substitution: user-level editable substitution and built-in uneditable substitution.

The first level is an optional user-level font substitution facility that you will usually encounter for the first
time when Igor displays the Substitute Font Dialog while opening an experiment or file. Use the dialog to
choose a temporary or permanent replacement for the missing font:

The second level is Igor’s built-in substitution table which substitutes between fonts normally installed on
various Macintosh and Windows operating systems. For example, it substitutes Arial (a standard Windows
font) for Geneva (a standard Macintosh font) if Geneva is not installed (which it usually isn’t on a Windows
computer).

The user-level substitutions have priority over the built-in substitutions.

The Substitute Font dialog appears when neither level of font substitution specifies a replacement for the
missing font. You can prevent this dialog from appearing by selecting the Don’t Prompt for Missing Fonts
checkbox in the Substitute Font dialog.

You can manage font substitutions without waiting for a missing font situation to occur by choosing Misc-
Edit Font Substitutions.

The user-level font substitution table is maintained in the “Igor Font Substitutions.txt” text file in Igor’s
preferences folder. The file format is:
<name of missing font to replace> = <name of font to use instead>

one entry per line. For example:

Chapter III-15 — Platform-Related Issues

III-404

Palatino=New Times Roman

spaces or tabs are allowed around the equals sign.

When a missing font is replaced, Igor uses the name of the replacement font instead of the name of the font
in the command.

The name of the missing font is replaced only in the sense that the altered or created object (window, con-
trol, etc.) uses and remembers only the name of the replacement font. Recreation macros, including exper-
iment recreation procedures, use the name of the replacement font when the experiment is saved. The
command, however, is unaltered and still contains the name of the missing font.

Cross-Platform Procedure Compatibility
Igor procedures are about 99.5% platform-independent. For the other 0.5%, you need to test which platform
you are running on and act accordingly. You can use ifdefs to achieve this. For example:

Function Demo()
#ifdef MACINTOSH

Print "We are running on Macintosh"
#else

#ifdef WINDOWS
Print "We are running on Windows"

#else
Print "Unknown OS"

#endif
#endif

End

File Paths
As described under Path Separators on page III-401, Igor accepts paths with either colons or backslashes
on either platform.

The use of backslashes is complicated by the fact that Igor uses the backslash character as an escape character
in literal strings. This is also described in detail under Path Separators on page III-401. The simplest solution
to this problem is to use a colon to separate path elements, even when you are running on Windows.

If you are writing procedures that need to extract sections of file paths or otherwise manipulate file paths,
the ParseFilePath function on page V-621 may come in handy.

File Types and Extensions
On Mac OS 9, all files had a file type property. This property is a four letter code that is stored with the file
by the Macintosh file system. For example, plain text files have the file type TEXT. Igor binary wave files
have the file type IGBW. The file type property controlled the icon displayed for the file and which pro-
grams could open the file.

The file type property is no longer used on Macintosh. On Mac OS X, as well as on Windows, the file type
is indicated by the file name extension.

For backward compatibility, some Igor operations and functions, such as IndexedFile, still accept Macin-
tosh file types. New code should use extensions instead.

Points Versus Pixels
A pixel is the area taken up by the smallest displayable dot on an output device such as a display screen or
a printer. The physical width and height of a pixel depend on the device.

Chapter III-15 — Platform-Related Issues

III-405

In Igor, most measurements of length are in terms of points. A point is roughly 1/72 of an inch. 72 points
make up 1 “logical inch”. Because of hardware differences and system software adjustments, the actual size
of a logical inch varies from screen to screen and system to system.

Window Position Coordinates
With one exception, Igor stores and interprets window position coordinates in units of points. For example
the command
Display/W=(5, 42, 405, 242)

specifies the left, top, right, and bottom coordinates of the window in points relative to a reference point
which is, roughly speaking, the top/left corner of the menu bar. Other Igor operations that use window
position coordinates in points include Edit, Layout, NewNotebook, NewGizmo and MoveWindow.

The exception is the control panel window when running on a standard resolution screen. This is explained
under Control Panel Resolution on Windows on page III-405.

Most users do not need to worry about the exact meaning of these coordinates. However, for the benefit of
programmers, here is a discussion of how Igor interprets them.

On Macintosh, the reference point, (0, 0), is the top/left corner of the menu bar on the main screen. On Win-
dows, the reference point is 20 points above the bottom/left corner of the main Igor menu bar. This differ-
ence is designed so that a particular set of coordinates will produce approximately the same effect on both
platforms, so that experiments and procedures can be transported from one platform to another.

The coordinates specify the location of the content region, in Macintosh terminology, or the client area, in
Windows terminology, of the window. They do not specify the location of the window frame or border.

On Macintosh, a point is always interpreted to be one pixel except on Retina displays where it is two.

On Windows, the correspondence between a point and a pixel can be controlled by the user using system
settings. Since Igor stores window positions in units of points, if the user changes the number of pixels per
point, the size of Igor windows in pixels will change.

Control Panel Resolution on Windows
In the past, by default, Windows screens ran at 96 DPI (dots-per-inch) resolution. In recent years, high-res-
olution displays, also called UltraHD displays and 4K displays, have become common.

In Igor6 and before, commands that create control panels and controls use screen pixel units to specify sizes
and coordinates. This results in tiny controls on high-resolution displays.

In Igor7 and later, control panels and control sizes and coordinates can be specified in units of points instead
of pixels. Since a point is a resolution-independent unit, this results in controls that are the same logical size
regardless of the physical resolution of the screen.

By default, panels are drawn using pixels if the screen resolution is 96 DPI but using points for higher-DPI
settings. This gives backward compatibility on standard screens and reasonably-sized controls on high-res-
olution screens.

You can change the way control panel coordinates and sizes are interpreted using this using:
SetIgorOption PanelResolution = <resolution>

Chapter III-15 — Platform-Related Issues

III-406

<resolution> controls how Igor interprets coordinates and sizes in control panels. It must be one of these
values:

This setting is not remembered across Igor sessions.

The resolution for a panel is set when the panel is created so changing the panel resolution does not affect
already-existing control panels.

Programmers are encouraged to test their control panels at various resolution settings.

For the most part, Igor6 control panels will work fine in Igor7 and later. However, if you have panels that
rearrange their components depending on the window size, you probably have some code that uses the
ratio of 72 and ScreenResolution. For example, here is a snippet from the WaveMetrics procedure Axis
Slider.ipf:

case "Resize":
GetWindow kwTopWin,gsize // Returns points

// Controls are positioned in pixels
grfName= WinName(0, 1)
V_left *= ScreenResolution / 72 // Convert points to pixels
V_right *= ScreenResolution / 72
Slider WMAxSlSl,size={V_right-V_left-kSliderLMargin,16}
break

To make this work properly at variable resolution, we use the PanelResolution function, added in Igor Pro
7.00:

case "Resize":
GetWindow kwTopWin,gsize // Returns points
grfName= WinName(0, 1)
V_left *= ScreenResolution / PanelResolution(grfName) // Variable
V_right *= ScreenResolution / PanelResolution(grfName) // resolution
Slider WMAxSlSl,size={V_right-V_left-kSliderLMargin,16}
break

The PanelResolution function, when called with "" as the parameter returns the current screen resolution
or, if in Igor6 mode, 72. When called with the name of a control panel or graph, it returns the resolution that
was in effect when the panel or graph was created.

If you want your procedures to work with Igor6, you should insert this into each procedure file that needs
the PanelResolution function:

#if Exists("PanelResolution") != 3
Static Function PanelResolution(wName) // For compatibility with Igor7

String wName
return 72

End
#endif

To find other examples, use the Help Browser to search procedure files for PanelResolution.

Pictures in Notebooks
If you want to display notebook pictures on both platforms, they must be in one of these cross-platform for-
mats: PNG, JPEG, TIFF, SVG.

0: Coordinates and sizes are treated as points regardless of the screen resolution.

1: Coordinates and sizes are treated as pixels if the screen resolution is 96 DPI, points otherwise. This is
the default setting in effect when Igor starts.

72: Coordinates and sizes are treated as pixels regardless of the screen resolution (Igor6 mode).

Chapter III-15 — Platform-Related Issues

III-407

If you have pictures in other formats and you want them to be viewable on both platforms, you should
convert them to PNG. Igor uses PNGs for Igor help files which need to be platform-independent.

There are two ways to create a PNG picture in an Igor notebook. You can load it from a file using Misc→Pic-
tures and then place it in a notebook or you can convert a picture that you have pasted into a notebook using
Notebook→Special→Convert to PNG.

The Convert to PNG command in the Notebook→Special menu converts the selected picture or pictures into
PNG. It skips selected pictures that are already PNG or that are foreign (not native to the platform on which you
are running). You can determine the type of a picture in a notebook by clicking in it and looking at the notebook
status line.

The Convert to PNG dialog allows you to choose the desired resolution. Usually 4x or 8x is best.

When you create a PNG file from within Igor, from a graph window for example, you can create it at screen
resolution or at higher resolution. For good quality when viewed at higher magnifications and when
printed, use 4x or 8x.

Chapter III-15 — Platform-Related Issues

III-408

	Platform-Related Issues
	Platform-Related Issues
	Windows-Specific Issues
	Cross-Platform File Compatibility
	Crossing Platforms
	Transferring Files Using File Transfer Programs
	File Name Extensions, File Types, and Creator Codes
	Experiments and Paths
	Picture Compatibility
	Page Setup Compatibility

	File System Issues
	File and Folder Names
	Path Separators
	UNC Paths
	Unix Paths

	Keyboard and Mouse Usage
	Command Window Input

	Cross-Platform Text and Fonts
	Text Encoding Compatibility
	Carriage Returns and Linefeeds
	Font Substitution

	Cross-Platform Procedure Compatibility
	File Paths
	File Types and Extensions
	Points Versus Pixels
	Window Position Coordinates
	Control Panel Resolution on Windows

	Pictures in Notebooks

