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Overview
You can execute commands by typing them into the command line and pressing Return or Enter.

You can also use a notebook for entering commands. See Notebooks as Worksheets on page III-4.

You can type commands from scratch but often you will let Igor dialogs formulate and execute commands. You 
can view a record of what you have done in the history area of the command window and you can easily reenter, 
edit and reexecute commands stored there. See Command Window Shortcuts on page II-13 for details.

Multiple Commands
You can place multiple commands on one line if you separate them with semicolons. For example:
wave1= x; wave1= wave2/(wave1+1); Display wave1

You don’t need a semicolon after the last command but it doesn’t hurt.

Comments
Comments start with //, which end the executable part of a command line. The comment continues to the 
end of the line.

Maximum Length of a Command
The total length of the command line can not exceed 1000 bytes.

There is no line continuation character in the command line. However, it is nearly always possible to break 
a single command up into multiple lines using intermediate variables. For example:

Variable a = sin(x-x0)/b + cos(y-y0)/c

can be rewritten as:

Variable t1 = sin(x-x0)/b
Variable t2 = cos(y-y0)/c
Variable a = t1 + t2

Parameters
Every place in a command where Igor expects a numeric parameter you can use a numeric expression. Sim-
ilarly for a string parameter you can use a string expression. In an operation flag (e.g., /N=<number>), you 
must parenthesize expressions. See Expressions as Parameters on page IV-11 for details.

Liberal Object Names
In general, object names in Igor are limited to a restricted set of characters. Only letters, digits and the 
underscore character are allowed. Such names are called “standard names”. This restriction is necessary to 
identify where the name ends when you use it in a command.

For waves and data folders only, you can also use “liberal” names. Liberal names can include almost any 
character, including spaces and dots (see Liberal Object Names on page III-444 for details). However, to 
define where a liberal name ends, you must quote them using single quotes.

In the following example, the wave names are liberal because they include spaces and therefore they must 
be quoted:
'wave 1' = 'wave 2' // Right
wave 1 = wave 2 // Wrong - liberal names must be quoted

Note: Providing for liberal names requires extra effort and testing by Igor programmers (see 
Programming with Liberal Names on page IV-157) so you may occasionally experience 
problems using liberal names with user-defined procedures.
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Commands and Data Folders
Data folders provide a way to keep separate sets of data from interfering with each other. You can examine 
and create data folders using the Data Browser (Data menu). There is always a root data folder and this is 
the only data folder that many users will ever need. Advanced users may want to create additional data 
folders to organize their data.

You can refer to waves and variables either in the current data folder, in a specific data folder or in a data 
folder whose location is relative to the current data folder:
// wave1 is in the current data folder
wave1 = <expression>

// wave1 is in a specific data folder
root:'Background Curves':wave1 = <expression>

// wave1 is in a data folder inside the current data folder
:'Background Curves':wave1 = <expression>

In the first example, we use an object name by itself (wave1) and Igor looks for the object in the current data 
folder.

In the second example, we use a full data folder path (root:'Background Curves':) plus an object name. Igor 
looks for the object in the specified data folder.

In the third example, we use a relative data folder path (:'Background Curves':) plus an object name. Igor 
looks in the current data folder for a subdata folder named Background Curves and looks for the object 
within that data folder.

Important: The right-hand side of an assignment statement (described under Assignment Statements on 
page IV-4) is evaluated in the context of the data folder containing the destination object. For example:
root:'Background Curves':wave1 = wave2 + var1

For this to work, wave2 and var1 must be in the Background Curves data folder.

Examples in the rest of this chapter use object names alone and thus reference data in the current data 
folder. For more on data folders, see Chapter II-8, Data Folders.

Types of Commands
There are three fundamentally different types of commands that you can execute from the command line:
• assignment statements
• operation commands
• user-defined procedure commands

Here are examples of each:
wave1 = sin(2*pi*freq*x) // assignment statement

Display wave1,wave2 vs xwave // operation command

MyFunction(1.2,"hello") // user-defined procedure command

As Igor executes commands you have entered, it must determine which of the three basic types of com-
mands you have typed. If a command starts with a wave or variable name then Igor assumes it is an assign-
ment statement. If a command starts with the name of a built-in or external operation then the command is 
treated as an operation. If a command begins with the name of a user-defined macro, user-defined function 
or external function then the command is treated accordingly.
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Note that built-in functions can only appear in the right-hand side of an assignment statement, or as a 
parameter to an operation or function. Thus, the command:
sin(x)

is not allowed and you will see the error, “Expected wave name, variable name, or operation.” On the other 
hand, these commands are allowed:
Print sin(1.567) // sin is parameter of print operation
wave1 = 5*sin(x) // sin in right side of assigment

If, perhaps due to a misspelling, Igor can not determine what you want to do, it will display an error dialog 
and the error will be highlighted in the command line.

Assignment Statements
Assignment statement commands start with a wave or variable name. The command assigns a value to all 
or part of the named object. An assignment statement consists of three parts: a destination, an assignment 
operator, and an expression. For example:

This assigns 19 to every point in wave1.

The spaces in the above example are not required. You could write:
wave1=1+2*3^2

See Waveform Arithmetic and Assignments on page II-69 for details on wave assignment statements.

In the following examples, str1 is a string variable, created by the String operation, var1 is a numeric vari-
able, created by the Variable operation, and wave1 is a wave, created by the Make operation.
str1 = "Today is " + date() // string assignment

str1 += ", and the time is " + time() // string concatenation

var1 = strlen(str1) // variable assignment

var1 = pnt2x(wave1,numpnts(wave1)/2) // variable assignment

wave1 = 1.2*exp(-0.2*(x-var1)^2) // wave assignment

wave1[3] = 5 // wave assignment

wave1[0,;3]= wave2[p/3] *exp(-0.2*x) // wave assignment

These all operate on objects in the current data folder. To operate on an object in another data folder, you 
need to use a data folder path:
root:'run 1':wave1[3] = 5 // wave assignment

See Chapter II-8, Data Folders, for further details.

If you use liberal wave names (see Object Names on page III-443), you must use quotes:
'wave 1' = 'wave 2' // Right

wave 1 = wave 2 // Wrong

Assignment operator

Destination Expression

wave1 = 1 + 2 * 3^2
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Assignment Operators
The assignment operator determines the way in which the expression is combined with the destination. 
Igor supports the following assignment operators: 

For example:
wave1 = 10

sets each Y value of the wave1 equal to 10, whereas:
wave1 += 10

adds 10 to each Y value of wave1. This is equivalent to:
wave1 = wave1 + 10

The assignment operators =, := and += work with string assignment statements but -=, *= and /= do not. For 
example:
String str1; str1 = "Today is "; str1 += date(); Print str1

prints something like “Today is Fri, Mar 31, 2000”.

For more information on the := operator, see Chapter IV-9, Dependencies.

Operators
Here is a complete list of the operators that Igor supports in the expression part of an assignment statement 
in order of precedence:

Comparison operators do not work with NaN parameters because, by definition, NaN compared to any-
thing, even another NaN, is false. Use numtype to test if a value is NaN.

Operator Assignment Action 
= Destination contents are set to the value of the expression.
+= Expression is added to the destination.
-= Expression is subtracted from the destination.
*= Destination is multiplied by the expression.
/= Destination is divided by the expression.
:= Destination is dynamically updated to the value of the expression whenever the value of 

any part of the expression changes. The := operator is said to establish a “dependency” of 
the destination on the expression.

Operator Effect

++ -- Prefix and postfix increment and decrement. Require Igor Pro 7 or 
later. Available only for local variables in user-defined functions.

^ << >> Exponentiation, bitwise left shift, bitwise right shift. Shifts require 
Igor Pro 7 or later.

- ! ~ Negation, logical complement, bitwise complement.
* / Multiplication, division.
+ - Addition or string concatenation, subtraction.
== != > < >= <= Comparison operators.

& | %^ Bitwise AND, bitwise OR, bitwise XOR.

&& || ? : Logical AND, logical OR, conditional operator.
$ Substitute following string expression as name.
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Comparison operators, bitwise AND, bitwise OR, bitwise XOR associate right to left. Therefore a==b>=c 
means (a==(b>=c)). For example, 2==1>= 0 evaluates to 0, not 1.

All other binary operators associate left to right.

Aside from the precedence of common operators that everyone intuitively knows, it is useful to include 
parentheses to avoid confusion. You may know the precedence and associativity but someone reading your 
code may not.

Unary negation changes the sign of its operand. Logical complementation changes nonzero operands to 
zero and zero operands to 1. Bitwise complementation converts its operand to an unsigned integer by trun-
cation and then changes it to its binary complement.

Exponentiation raises its left-hand operand to a power specified by its right-hand operand. That is, 32 is 
written as 3^2. In an expression a^b, if the result is assigned to a real variable or wave, then a must not be 
negative if b is not an integer. If the result is used in a complex expression, any combination of negative a, 
fractional b or complex a or b is allowed.

If the exponent is an integer, Igor evaluates the expression using only multiplication. There is no need to 
write a^2 as a*a to get efficient evaluation — Igor does the equivalent automatically. If, on the other hand, 
the exponent is not an integer then the evaluation is performed using logarithms, hence the restriction on 
negative a in a real expression.

Logical OR (||) and logical AND (&&) determine the truth or falseness of pairs of expressions. The AND 
operation returns true only when both expressions are true; OR will return true if either is true. As in C, true 
is any nonzero value, and false is zero. The operations are undefined for NaNs. These operators are not 
available in complex expressions.

The logical operators are evaluated from left to right, and an operand will not be evaluated if it is not nec-
essary. For the example:
if(MyFunc1() && MyFunc2())

when MyFunc1() returns false (zero), then MyFunc2() will not be evaluated because the entire expression 
is already false. This can produce unexpected consequences when the right-hand expression has side 
effects, such as creating waves or setting global values.

Bitwise AND (&), OR (|), and XOR (%^) convert their operands to an unsigned integer by truncation and 
then return their binary AND, OR or exclusive OR.

Bitwise shifts, << and >>, return the lefthand operand shifted by the specified number of bits. They require 
Igor Pro 7 or later. The lefthand operation is truncated to an integer before shifting.
The conditional operator (? : ) is a shorthand form of an if-else-endif expression. In the statement:
<expression> ? <TRUE> : <FALSE>

the first operand, <expression>, is the test condition; if it is nonzero then Igor evaluates the <TRUE> oper-
and; otherwise <FALSE> is evaluated. Only one operand is evaluated according to the test condition. This 
is the same as if you had written:
if( <expression> )

<TRUE>
else

<FALSE>
endif

The “:” character in the conditional operator must always be separated from the two adjacent operands 
with a space. If you omit either space, you will get an error (“No such data folder”) because the expression 
can also be interpreted as part of a data folder path. To be safe, always separate the operands from the oper-
ator symbols with a space.
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The operands must be numeric; for strings, use the SelectString function. When using complex expressions 
with the conditional operator, only the real portion is used when the operator evaluates the expression.

The conditional operator can easily cause confusion, so you should exercise caution when using it. For 
example, it is unclear from simple inspection what Igor may return for
1 ? 2 : 3 ? 4 : 5

(4 in this case), whereas
1 ? 2 : (3 ? 4 : 5)

will return 2. Always use parentheses to remove any ambiguity.

The comparison operators return 1 if the result of the comparison is true or 0 if it is false. For example, the == 
operator returns 1 if its operands are equal or 0 if they are not equal. The != operator returns the opposite. 
Because comparison operators return the values 1 or 0 they can be used in interesting ways. The assignment:
wave1 = sin(x)*(x<=50) + cos(x)*(x>50)

sets wave1 so that it is a sine wave below x=50 and a cosine wave above x=50. See also Example: Compari-
son Operators and Wave Synthesis on page II-74.

Note that the double equal sign, ==, is used to mean equality while the single equal sign, =, is used to indicate 
assignment.

Because of roundoff error, using == to test two numbers for equality may give incorrect results. It is safer to 
use <= and >= to see if a number falls in a narrow range. For example, imagine that you want to compare a 
variable to see if it is equal to one-third. The expression:
(v1 == 1/3)

is subject to failure because of roundoff. It is safer to use something like
((v1 > .33332) && (v1 < .33334))

If the numbers are integers then the use of == is safe because integers smaller than 253 (approximately 1016) 
are represented precisely in double-precision floating point numbers.

The previous discussion on operators has assumed numeric operands. The + operator is the only one that works 
with both numeric and string operands. For example, if str1 is a string variable then the assignment statement
str1 = "Today is " + "a nice day"

assigns the value “Today is a nice day” to str1. The other string operator, $ is discussed in String Substitu-
tion Using $ on page IV-17.

Unless specified otherwise by parentheses, unary negation or complementation are carried out first fol-
lowed by exponentiation then by multiplication or division followed by addition or subtraction then by 
comparison operators. The wave assignment:
wave1 = ((1 + 2) * 3) ^ 2

assigns the value 81 to every point in wave1, but
wave1 = 1 + 2 * 3 ^ 2

assigns the value 19.

-a^b is an exception to this rule and is evaluated as -(a^b).

The precedence of string substitution, substrings, and wave indexing is somewhat complex. When in doubt, 
use parenthesis to enforce the precedence you want.
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Obsolete Operators
As of Igor Pro 4.0, the old bitwise complement (%~), bitwise AND (%&), and bitwise OR (%|) operators 
have been replaced by new versions that omit the % character from the operator. These old bitwise opera-
tors can still be used interchangeably with the new versions but are not recommended for new code.

Operands
In addition to literal numbers like 3.141 or 27, operators can operate on variables and function values. In the 
assignment statement:
var1 = log(3.7) + var2

the operator + operates on the function value returned by log and on the variable var2. Functions and func-
tion values are discussed later in this chapter.

Numeric Type
In Igor, each numeric destination object (wave or variable) has its own numeric type. The numeric type con-
sists of the numeric precision (e.g., double precision floating point) and the number type (real or complex). 
Waves can be single or double precision floating point or various sizes of integer but variables are always 
double precision floating point.

The numeric precision of the destination does not affect the calculations. With the exception of a few oper-
ations that are done in place such as the FFT, all calculations are done in double precision.

Although waves can have integer numeric types, wave expressions are always evaluated in double preci-
sion floating point. The floating point values are converted to integers by rounding as the final step before 
storing the value in the wave. If the value to be stored exceeds the range of values that the given integer 
type can represent, the results are undefined.

Starting with Igor Pro 7, Igor supports integer local variables and 64-bit integer waves. When one of these 
is the destination of an assignment statement, Igor performs calculations using integer arithmetic. See 
Expression Evaluation on page IV-36 for details.

The number type of the destination determines the initial number type (real or complex) of the assignment 
expression. This is important because Igor can not deal with “surprise” or “runtime” changes in number 
type. An example would be taking the square root of a negative number requiring that all following arith-
metic be done using complex numbers.

Here are some examples:
Variable a, b, c, var1
Variable/C cvar1
Make wave1

var1= a*b
cvar1= c*cmplx(a+1,b-1)
wave1= var1 + real(cvar1)

The first expression is evaluated using the real number type. The second expression contains a mixture of 
two types. The multiplication of c with the result of the cmplx function is evaluated as complex while the 
arguments to the cmplx function are evaluated as real. The third example is evaluated as real except for the 
argument to the real function which is evaluated as complex.

Constant Type
You can define named numeric and string constants in Igor procedure files and use them in the body of 
user-defined functions.

Constants are defined in procedure files using following syntax:
Constant <name1> = <literal number> [, <name2> = <literal number>]
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StrConstant <name1> = <literal string> [, <name2> = <literal string>]

You can use the static prefix to limit the scope to the given source file. For debugging, you can use the Over-
ride keyword as with functions.

These declarations can be used in the following ways:
Constant kFoo=1,kBar=2
StrConstant ksFoo="hello",ksBar="there"

static Constant kFoo=1,kBar=2
static StrConstant ksFoo="hello",ksBar="there"

Override Constant kFoo=1,kBar=2
Override StrConstant ksFoo="hello",ksBar="there"

Programmers may find that using the “k” and “ks” prefixes will make their code easier to read.

Names for numeric and string constants can conflict with all other names. Duplicate constants of a given 
type are not allowed except for static constants in different files and when used with Override. The only 
true conflict is with variable names and with certain built-in functions that do not take parameters such as 
pi. Variable names override constants, but constants override functions such as pi.

Dependency Assignment Statements
You can set up global variables and waves so that they automatically recalculate their contents when other 
global objects change. See Chapter IV-9, Dependencies, for details.

Operation Commands
An operation is a built-in or external routine that performs an action but, unlike a function, does not directly 
return a value. Here are some examples:
Make/N=512 wave1
Display wave1
Smooth 5, wave1

Operation commands perform the majority of the work in Igor and are automatically generated and exe-
cuted as you work with Igor using dialogs.

You can use these dialogs to experiment with operations of interest to you. As you click in a dialog, Igor 
composes a command. This provides a handy way for you to check the syntax of the operation or to gener-
ate a command for use in a user-defined procedure. See Chapter V-1, Igor Reference, for a complete list of 
all built-in operations. Another way to learn their syntax is to use the Igor Help Browser’s Command Help 
tab.

The syntax of operation commands is highly variable but in general consists of the operation name, fol-
lowed by a list of flags (e.g., /N=512), followed by a parameter list. The operation name specifies the main 
action of the operation and determines the syntax of the rest of the command. The list of flags specifies vari-
ations on the default behavior of the operation. If the default behavior of the operation is satisfactory then 
no flags are required. The parameter list identifies the objects on which the operation is to operate. Some 
commands take no parameters. For example, in the command:

Make/D/N=512 wave1, wave2, wave3

the operation name is “Make”. The list of flags is “/D/N=512”. The parameter list is “wave1, wave2, 
wave3”.
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You can use numeric expressions in the parameter list of an operation where Igor expects a numeric param-
eter, but in an operation flag you need to parenthesize the expression. For example:
Variable val = 1.0
Make/N=(val) wave0, wave1
Make/N=(numpnts(wave0)) wave2

The most common types of parameters are literal numbers or numeric expressions, literal strings or string 
expressions, names, and waves. In the example above, wave1 is a name parameter when passed to the Make 
operation. It is a wave parameter when passed to the Display and Smooth operations. A name parameter can 
refer to a wave that may or may not already exist whereas a wave parameter must refer to an existing wave.

See Parameter Lists on page IV-11 for general information that applies to all commands.

User-Defined Procedure Commands
User-defined procedure commands start with a procedure name and take a list of parameters in parenthe-
ses. Here are a few examples:
MyFunction1(5.6, wave0, "igneous")

Macro and Function Parameters
You can invoke macros, but not functions, with one or more of the input parameters missing. When you do 
this, Igor displays a dialog to allow you to enter the missing parameters.

You can add similar capabilities to user-defined functions using the Prompt (see page V-664)  and 
DoPrompt (see page V-146)  keywords.

Macros provide very limited programming features so, with rare exceptions, you should program using 
functions.

Function Commands
A function is a routine that directly returns a numeric or string value. There are three classes of functions 
available to Igor users:
• Built-in
• External (XFUNCs)
• User-defined

Built-in numeric functions enjoy one advantage over external or user-defined functions: a few come in real 
and complex number types and Igor automatically picks the appropriate version depending on the current 
number type in an expression. External and user-defined functions must have different names when differ-
ent types are needed. Generally, only real user and external functions need be provided.

For example, in the wave assignment:
wave1 = enoise(1)

if wave1 is real then the function enoise returns a real value. If wave1 is complex then enoise returns a 
complex value.

You can use a function as a parameter to another function, to an operation, to a macro or in an arithmetic or string 
expression so long as the data type returned by the function makes sense in the context in which you use it.

User-defined and external functions can also be used as commands by themselves. Use this to write a user 
function that has some purpose other than calculating a numeric value, such as displaying a graph or 
making new waves. Built-in functions cannot be used this way. For instance:
MyDisplayFunction(wave0)
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External and user-defined functions can be used just like built-in functions. In addition, numeric functions 
can be used in curve fitting. See Chapter IV-3, User-Defined Functions and Fitting to a User-Defined 
Function on page III-163.

Most functions consist of a function name followed by a left parenthesis followed by a parameter list and 
followed by a right parenthesis. In the wave assignment shown at the beginning of this section, the function 
name is enoise. The parameter is 1. The parameter is enclosed by parentheses. In this example, the result 
from the function is assigned to a wave. It can also be assigned to a variable or printed:
K0 = enoise(1)
Print enoise(1)

User and external functions, but not built-in functions, can be executed on the command line or in other 
functions or macros without having to assign or print the result. This is useful when the point of the func-
tion is not its explicit result but rather its side effects.

Nearly all functions require parentheses even if the parameter list is empty. For example the function date() 
has no parameters but requires parentheses anyway. There are a few exceptions. For example the function 
Pi returns π and is used with no parentheses or parameters.

Igor’s built-in functions are described in detail in Chapter V-1, Igor Reference.

Parameter Lists
Parameter lists are used for operations, functions, and macros and consist of one or more numbers, strings, 
keywords or names of Igor objects. The parameters in a parameter list must be separated with commas.

Expressions as Parameters
In an operation, function, or macro parameter list which has a numeric parameter you can always use a 
numeric expression instead of a literal number. A numeric expression is a legal combination of literal num-
bers, numeric variables, numeric functions, and numeric operators. For example, consider the command
SetScale x, 0, 6.283185, "v", wave1

which sets the X scaling for wave1. You could also write this as
SetScale x, 0, 2*PI, "v", wave1

Literal numbers include hexadecimal literals introduced by “0x”. For example:
Printf "The largest unsigned 16-bit number is: %d\r", 0xFFFF

Parentheses Required for /N=(<expression>)
Many operations accept flags of the form “/A=n” where A is some letter and n is some number. You can use 
a numeric expression for n but you must parenthesize the expression.

For example, both:
Make/N=512 wave1
Make/N=(2^9) wave1

are legal but this isn’t:
Make/N=2^9 wave1

A variable name is a form of numeric expression. Thus, assuming v1 is the name of a variable:
Make/N=(v1)

is legal, but
Make/N=v1

is not. This parenthesization is required only when you use a numeric expression in an operation flag.
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String Expressions
A string expression can be used where Igor expects a string parameter. A string expression is a legal combi-
nation of literal strings, string variables, string functions, UTF-16 literals, and the string operator + which con-
catenates strings.

A UTF-16 literal represents a Unicode code value and consists of “U+” followed by four hexadecimal digits. 
For example:
Print "This is a bullet character: “ + U+2022

Setting Bit Parameters
A number of commands require that you specify a bit value to set certain parameters. In these instances you 
set a certain bit number by using a specific bit value in the command. The bit value is 2n, where n is the bit 
number. So, to set bit 0 use a bit value of 1, to set bit 1 use a bit value of 2, etc.

For the example of the TraceNameList function the last parameter is a bit setting. To select normal traces 
you must set bit 0:
TraceNameList("",";",1)

and to select contour traces set bit 1:
TraceNameList("",";",2)

Most importantly, you can set multiple bits at one time by adding the bit values together. Thus, for Trace-
NameList you can select both normal (bit 0) and contour (bit 1) traces by using:
TraceNameList("",";",3)

See also Using Bitwise Operators on page IV-39.

Working With Strings
Igor has a rich repertoire of string handling capabilities. See Strings on page V-11 for a complete list of Igor 
string functions. Many of the techniques described in this section will be of interest only to programmers.

Many Igor operations require string parameters. For example, to label a graph axis, you can use the Label 
operation:
Label left, "Volts"

Other Igor operations, such as Make, require names as parameters:
Make wave1

Using the string substitution technique, described in String Substitution Using $ on page IV-17, you can 
generate a name parameter by making a string containing the name and using the $ operator:
String stringContainingName = "wave1"
Make $stringContainingName

String Expressions
Wherever Igor requires a string parameter, you can use a string expression. A string expression can be:
• A literal string ("Today is")
• The output of a string function (date())
• An element of a text wave (textWave0[3])
• A UTF-16 literal (U+2022)
• Some combination of string expressions ("Today is" + date())

In addition, you can derive a string expression by indexing into another string expression. For example,
Print ("Today is" + date())[0,4]
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prints “Today”.

A string variable can store the result of a string expression. For example:
String str1 = "Today is" + date()

A string variable can also be part of a string expression, as in:
Print "Hello. " + str1

Strings in Text Waves
A text wave contains an array of text strings. Each element of the wave can be treated using all of the avail-
able string manipulation techniques. In addition, text waves are commonly used to create category axes in 
bar charts. See Text Waves on page II-79 for further information.

String Properties
Strings in Igor can contain up to roughly two billion bytes.

Igor strings are usually used to store text data but you can also use them to store binary data.

When you treat a string as text data, for example if you print it to the history area of the command window 
or display its contents in an annotation or control, internal Igor routines treat a null byte as meaning “end-
of-string”. Consequently, if you treat a binary string as if it were text, you may get unexpected results.

When you treat a string as text, Igor assumes that the text is encoded using the UTF-8 text encoding. For 
further discussion, see String Variable Text Encodings on page III-428.

Unicode Literal Characters
A Unicode literal represents a character using its UTF-16 code value. It consists of “U+” followed by four 
hexadecimal digits. For example:
Print "This is a bullet character: “ + U+2022

The list of Unicode character codes is maintained at http://www.unicode.org/charts.

Escape Sequences in Strings
Igor treats the backslash character in a special way when reading literal (quoted) strings in a command line. 
The backslash is used to introduce an “escape sequence”. This just means that the backslash plus the next 
character or next few characters are treated like a different character — one you could not otherwise include 
in a quoted string. The escape sequences are:

\t Represents a tab character
\r Represents a return character (CR)
\n Represents a linefeed character (LF)
\' Represents a ' character (single-quote)
\" Represents a " character (double-quote)
\\ Represents a \ character (backslash)
\ddd Represents an arbitrary byte code

ddd is a 3 digit octal number
\xdd Represents an arbitrary byte code

dd is a 2 digit hex number
Requires Igor Pro 7.00 or later

http://www.unicode.org/charts
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For example, if you have a string variable called “fileName”, you could print it in the history area using:
fileName = "Test"
Printf "The file name is \"%s\"\r", fileName

which prints
The file name is "Test"

In the Printf command line, \" embeds a double-quote character in the format string. If you omitted the back-
slash, the " would end the format string. The \r specifies that you want a carriage return in the format string.

Unicode Escape Sequences in Strings
Igor Pro 7 represents text internally in UTF-8 format. UTF-8 is a byte-oriented encoding format for Unicode. 
In this section we see how to use the \u, \U and \x escape sequences to represent Unicode characters in literal 
strings.

The use of UTF-8 and these escape sequences requires Igor Pro 7.00 or later. If you use them, your will get 
incorrect data or errors in Igor Pro 6.x.

In the first set of examples, we use the hexadecimal code 0041. This is hexadecimal for the Unicode code point 
representing CAPITAL LETTER A.

String str
str = "\x41" // Specify code point using UTF-8 escape sequence
Print str
str = "\u0041" // Specify code point using UTF-16 escape sequence
Print str
str = "\U0000041" // Specify code point using UTF-32 escape sequence
Print str

When you use \xdd, Igor replaces the escape sequence with the byte specified by dd. Therefore you must 
specify byte values representing a valid UTF-8 character. 41 is hexadecimal for the UTF-8 encoding for 
CAPITAL LETTER A. If the code point that you specify is not a valid UTF-16 or UTF-32 code point, Igor 
replaces the escape sequence with the Unicode replacement character.

When you use \udddd or \Udddddddd, Igor replaces the escape sequence with the UTF-8 bytes for the cor-
responding Unicode code point as represented in UTF-16 or UTF-32 format.

Now we specify the characters for "Toyota" in Japanese Kanji:

str = "\xE8\xB1\x8A\xE7\x94\xB0" // UTF-8
Print str
str = "\u8C4A\u7530" // UTF-16
Print str
str = "\U00008C4A\U00007530" // UTF-32
Print str

In order to see the correct characters you must be using a font that includes Japanese characters.

\U is mainly of use to enter rare Unicode characters that are not in the Basic Multilingual Plane. Such charac-
ters can not be specified with single 16-bit UTF-16. Here is an example:

\udddd Represents a UTF-16 code point
dddd is a 4 digit hex number
Requires Igor Pro 7.00 or later

\Udddddddd Represents a UTF-32 code point
dddddddd is an 8 digit hex number
Requires Igor Pro 7.00 or later
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str = "\U00010300" // UTF-32 for OLD ITALIC LETTER A
Print str
str = "\xF0\x90\x8C\x80" // UTF-8 for OLD ITALIC LETTER A
Print str

OLD ITALIC LETTER A is located in the Unicode Supplementary Multilingual Plane (plane 1).

See Also
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-16
http://en.wikipedia.org/wiki/UTF-8

Embedded Nulls in Literal Strings
A null in a byte-oriented string is a byte with the value 0.

Unlike Igor Pro 6, in Igor Pro 7 it is possible to embed an null byte in a string:

String test = "A\x00B" // OK in Igor Pro 7
Print strlen(text) // Prints 3
Print char2num(test[0]),char2num(test[1]),char2num(test[2]) // Prints 65 0 66

Here Igor converts the escape sequence \x00 to a null byte.

You typically have no need to embed a null in an Igor string because strings are usually used to store read-
able text and null does not represent a readable character. The need might arise, however, if you are using 
the string to store binary rather than text data. For example, if you need to send a small amount of binary 
data to an instrument, you can do so using \x escape sequences to represent the data in a literal string.

Although Igor Pro 7 allows you to embed nulls in literal strings, other parts of Igor are not prepared to 
handle them. For example:

Print test // Prints "A", not "A<null>B"

In C null is taken to mean "end-of-string". Because of the use of C strings and C library routines in Igor, 
many parts of Igor will treat an embedded null as end-of-string. That is why the Print statement above 
prints just "A".

The bottom line is: You can store binary data, including nulls, in an Igor string but most parts of Igor that 
expect readable text will treat a null as end-of-string.

String Indexing
Indexing can extract a part of a string. This is done using a string expression followed by one or two 
numbers in brackets. The numbers are byte positions. Zero is the byte position of the first byte; n-1 is the 
byte position of the last byte of an n byte string value. For example, assume we create a string variable called 
s1 and assign a value to it as follows:
String s1="hello there"

Then,
Print s1[0,4] prints hello
Print s1[0,0] prints h
Print s1[0] prints h
Print s1[1]+s1[2]+s1[3] prints ell
Print (s1+" jack")[6,15] prints there jack

h e l l o   t h e r e

0 1 2 3 4 5 6 7 8 9 10

http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/UTF-16
http://en.wikipedia.org/wiki/UTF-8
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A string indexed with one index, such as s1[p], is a string with one byte in it if p is in range (i.e. 0 ≤ p ≤ n-
1). s1[p] is a string with no bytes in it if p is not in range. For example:
Print s1[0] prints h
Print s1[-1] prints (nothing)
Print s1[10] prints e
Print s1[11] prints (nothing)

A string indexed with two indices, such as s1[p1,p2], contains all of the bytes from s1[p1] to s1[p2]. For 
example:
Print s1[0,10] prints hello there
Print s1[-1,11] prints hello there
Print s1[-2,-1] prints (nothing)
Print s1[11,12] prints (nothing)
Print s1[10,0] prints (nothing)

The indices in these examples are byte positions, not character positions. See Characters Versus Bytes on 
page III-433 for a discussion of this distinction. See Character-by-Character Operations on page IV-162 for 
an example of stepping through characters using user-defined functions.

Because the syntax for string indexing is identical to the syntax for wave indexing, you have to be careful 
when using text waves. For example:
Make/T textWave0 = {"Red", "Green", "Blue"}

Print textWave0[1] prints Green
Print textWave0[1][1] prints Green
Print textWave0[1][1][1] prints Green
Print textWave0[1][1][1][1] prints Green
Print textWave0[1][1][1][1][1]prints r

The first four examples print row 1 of column 0. Since waves may have up to four dimensions, the first four 
[1]’s act as dimension indices. The column, layer, and chunk indices were out of range and were clipped to 
a value of 0. Finally in the last example, we ran out of dimensions and got string indexing. Do not count on 
this behavior because future versions of Igor may support more than four dimensions.

The way to avoid the ambiguity between wave and string indexing is to use parentheses like so:
Print (textWave0[1])[1] prints r

The way to avoid the ambiguity between wave and string indexing is to use parentheses like so:

String tmp = textWave0[1]
Print tmp[1] prints r

String Assignment
You can assign values to string variables using string assignment. We have already seen the simplest case 
of this, assigning a literal string value to a string variable. You can also assign values to a subrange of a 
string variable, using string indexing. Once again, assume we create a string variable called s1 and assign 
a value to it as follows:
String s1="hello there"

Then,
s1[0,4]="hi"; Print s1 prints hi there
s1[0,4]="greetings"; Print s1 prints greetings there
s1[0,0]="j"; Print s1 prints jello there
s1[0]="well "; Print s1 prints well hello there
s1[100000]=" jack"; Print s1 prints hello there jack
s1[-100]="well ";print s1 prints well hello there
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When the s1[p1,p2]= syntax is used, the right-hand side of the string assignment replaces the subrange of the 
string variable identified by the left-hand side, after p1 and p2 are clipped to 0 to n, where n is the number 
of bytes in the destination.

When the s1[p]= syntax is used, the right-hand side of the string assignment is inserted before the byte iden-
tified by p after p is clipped to 0 to n.

The subrange assignment just described for string variables is not supported when a text wave is the desti-
nation. To assign a value to a range of a text wave element, you will need to create a temporary string vari-
able. For example:
Make/O/T tw = {"Red", "Green", "Blue"}
String stmp= tw[1]
stmp[1,2]="XX"
tw[1]= stmp;

Print tw[0],tw[1],tw[2] prints Red GXXen Blue

The indices in these examples are byte positions, not character positions. See Characters Versus Bytes on 
page III-433 for a discussion of this distinction.

String Substitution Using $
Wherever Igor expects the literal name of an operand, such as the name of a wave, you can instead provide 
a string expression preceded by the $ character. The $ operator evaluates the string expression and returns 
the value as a name.

For example, the Make operation expects the name of the wave to be created. Assume we want to create a 
wave named wave0:

Make wave0 // OK: wave0 is a literal name.

Make $"wave0" // OK: $"wave0" evaluates to wave0.

String str = "wave0"
Make str // WRONG: This makes a wave named str.
Make $str // OK: $str evaluates to wave0.

$ is often used when you write a function which receives the name of a wave to be created as a parameter. 
Here is a trivial example:
Function MakeWave(w)

String wName // name of the wave

Make $wName
End

We would invoke this function as follows:
MakeWave("wave0")

We use $ because we need a wave name but we have a string containing a wave name. If we omitted the $ 
and wrote:
Make wName

Igor would make a wave whose name is wName, not on a wave whose name is wave0.

String substitution is capable of converting a string expression to a single name. It can not handle multiple 
names. For example, the following will not work:
String list = “wave0;wave1;wave2”
Display $list

See Processing Lists of Waves on page IV-187 for ways to accomplish this.
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$ Precedence Issues In Commands
There is one case in which string substitution does not work as you might expect. Consider this example:
String str1 = “wave1”
wave2 = $str1 + 3

You might expect that this would cause Igor to set wave2 equal to the sum of wave1 and 3. Instead, it gen-
erates an “expected string expression” error. The reason is that Igor tries to concatenate str1 and 3 before 
doing the substitution implied by $. The + operator is also used to concatenate two string expressions, and 
it has higher precedence than the $ operator. Since str1 is a string but 3 is not, Igor cannot do the concate-
nation.

You can fix this by changing this wave assignment to one of the following:
wave2 = 3 + $str1
wave2 = ($str1) + 3

Both of these accomplish the desired effect of setting wave2 equal to the sum of wave1 and 3. Similarly,
wave2 = $str1 + $str2 // Igor sees "$(str1 + $str2)"

generates the same “expected string expression” error. The reason is that Igor is trying to concatenate str1 
and $str2. $str2 is a name, not a string. The solution is:
wave2 = ($str1) + ($str2) // sets wave2 to sum of two named waves

Another situation arises when using the $ operator and [. The [ symbol can be used for either point indexing 
into a wave, or byte indexing into a string. The commands
String wvName = "wave0"
$wvName[1,2] = wave1[p] // sets two values in wave named "wave0"

are interpreted to mean that points 1 and 2 of wave0 are set values from wave1.

If you intended “$wvName[1,2] = wave1” to mean that a wave whose name comes from bytes 1 and 2 of 
the wvName string (“av”) has all of its values set from wave1, you must use parenthesis:
$(wvName[1,2]) = wave1 // sets all values of wave named "av"

String Utility Functions
WaveMetrics provides a number of utility functions for dealing with strings. To see a list of the built-in 
string functions:

1. Open the Igor Help Browser Command Help tab.
2. Open the Advanced Filtering control.
3. Uncheck all checkboxes except for Functions.
4. Choose String from the Functions pop-up menu.

See Character-by-Character Operations on page IV-162 for an example of stepping through characters 
using user-defined functions.

Special Cases
This section documents some techniques that were devised to handle certain specialized situations that 
arise with respect to Igor’s command language.
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Instance Notation
There is a problem that occurs when you have multiple instances of the same wave in a graph or multiple 
instances of the same object in a layout. For example, assume you want to graph yWave versus xWave0, 
xWave1, and xWave2. To do this, you need to execute:
Display yWave vs xWave0
AppendToGraph yWave vs xWave1
AppendToGraph yWave vs xWave2

The result is a graph in which yWave occurs three times. Now, if you try to remove or modify yWave using:
RemoveFromGraph yWave

or
ModifyGraph lsize(yWave)=2

Igor will always remove or modify the first instance of yWave.

Instance notation provides a way for you to specify a particular instance of a particular wave. In our exam-
ple, the command
RemoveFromGraph yWave#2

will remove instance number 2 of yWave and
ModifyGraph lsize(yWave#2)=2

will modify instance number 2 of yWave. Instance numbers start from zero so “yWave” is equivalent to 
“yWave#0”. Instance number 2 is the instance of yWave plotted versus xWave2 in our example.

Where necessary to avoid ambiguity, Igor operation dialogs (e.g., Modify Trace Appearance) automatically 
use instance notation. Operations that accept trace names (e.g., ModifyGraph) or layout object names (e.g., 
ModifyObject) accept instance notation.

A graph can also display multiple waves with the same name if the waves reside in different datafolders. 
Instance notation applies to the this case also.

Instance Notation and $
The $ operator can be used with instance notation. The # symbol may be either inside the string operand or 
may be outside. For example $"wave0#1" or $"wave0"#1. However, because the # symbol may be inside 
the string, the string must be parsed by Igor. Consequently, unlike other uses of $, the wave name portion 
must be surrounded by single quotes if liberal names are used. For example, suppose you have a wave with 
the liberal name of 'ww#1' plotted twice. The first instance would be $"'ww#1'" and the second 
$"'ww#1'#1" whereas $"ww#1" would reference the second instance of the wave ww.

Object Indexing
The ModifyGraph, ModifyTable and ModifyLayout operations, used to modify graphs, tables and page layouts, 
each support another method of identifying the object to modify. This method, object indexing, is used to gen-
erate style macros (see Graph Style Macros on page II-262). You may also find it handy in other situations.

Normally, you need to know the name of the object that you want to modify. For example, assume that we 
have a graph with three traces in it and we want to set the traces’ markers from a procedure. We can write:
ModifyGraph marker(wave0)=1, marker(wave1)=2, marker(wave2)=3

Because it uses the names of particular traces, this command is specific to a particular graph. What do we 
do if we want to write a command that will set the markers of three traces in any graph, regardless of the 
names of the traces? This is where object indexing comes in.

Using object indexing, we can write:
ModifyGraph marker[0]=1, marker[1]=2, marker[2]=3

This command sets the markers for the first three traces in a graph, no matter what their names are.
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Indexes start from zero. For graphs, the object index refers to traces starting from the first trace placed in 
the graph. For tables the index refers to columns from left to right. For page layouts, the index refers to 
objects starting from the first object placed in the layout.

/Z Flag
The ModifyGraph marker command above works fine if you know that there are three waves in the graph. 
It will, however, generate an error if you use it on a graph with fewer than 3 waves. The ModifyGraph oper-
ation supports a flag that can be used to handle this:
ModifyGraph/Z marker[0]=1, marker[1]=2, marker[2]=3

The /Z flag ignores errors if the command tries to modify an object that doesn’t exist. The /Z flag works with 
the SetAxis and Label operations as well as with the ModifyGraph, ModifyTable and ModifyLayout oper-
ations. Like object indexing, the /Z flag is primarily of use in creating style macros, which is done automat-
ically, but it may come in handy for other uses.
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