
Chapter

IV-8
IV-8Debugging

Debugging Procedures ..................................................................................................................................  198
Debugging With Print Statements................................................................................................................  198
The Debugger ..................................................................................................................................................  198

Setting Breakpoints..................................................................................................................................  199
Debugging on Error.................................................................................................................................  199
Macro Execute Error: The Debug Button .............................................................................................  200
Stepping Through Your Code................................................................................................................  201
The Stack and Variables Lists ................................................................................................................  202
The Variables List Columns ...................................................................................................................  203
Variables Pop-Up Menu .........................................................................................................................  204
Macro Variables .......................................................................................................................................  204
Function Variables ...................................................................................................................................  205
Function Structures .................................................................................................................................  207
The Current Data Folder.........................................................................................................................  208
Graph, Table, String, and Expressions Inspectors ..............................................................................  208

Expressions Inspector ......................................................................................................................  209
Inspecting Waves.....................................................................................................................................  209

Inspecting Waves in a Table ...........................................................................................................  210
Inspecting Waves in a Graph..........................................................................................................  210

Inspecting Strings ....................................................................................................................................  210
The Procedure Pane.................................................................................................................................  210
After You Find a Bug...............................................................................................................................  210

Debugger Shortcuts ........................................................................................................................................  211



Chapter IV-8 — Debugging

IV-198

Debugging Procedures 
There are two techniques for debugging procedures in Igor:
• Using print statements
• Using the symbolic debugger

For most situations, the symbolic debugger is the most effective tool. In some cases, a strategically placed 
print statement is sufficient.

Debugging With Print Statements
This technique involves putting print statements at a certain point in a procedure to display debugging 
messages in Igor’s history area. In this example, we use Printf to display the value of parameters to a func-
tion and then Print to display the function result.
Function Test(w, num, str)

Wave w
Variable num
String str

Printf "Wave=%s, num=%g, str=%s\r", NameOfWave(w), num, str

<body of function>

Print result
return result

End

See Creating Formatted Text on page IV-244 for details on the Printf operation.

The Debugger
When a procedure doesn’t produce the results you want, you can use Igor’s built-in debugger to observe 
the execution of macros and user-defined functions while single-stepping through the lines of code.

The debugger is normally disabled. Select Enable Debugger in either the Procedure menu or the contextual 
menu shown by control-clicking (Macintosh) or by right-clicking (Windows) in any procedure window.
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Igor displays the debugger window when one of the following events occurs:
1. A breakpoint that you previously set is hit
2. An error occurs, and you have enabled debugging on that kind of error
3. An error dialog is presented, and you click the Debug button
4. The Debugger command is executed

Setting Breakpoints
When you want to observe a particular routine in action, set a breakpoint on the line where you want the 
debugger to appear. To do this, open the procedure window which contains the routine, and click in the left 
“breakpoint margin”. The breakpoint margin appears only if the debugger has been enabled. These graph-
ics show the procedure windowwith the debugger disabled (left) and enabled (right):

The red dot denotes a breakpoint that you have set.

When a line of code marked with a breakpoint is about to execute, Igor displays the debugger window.

Click the red dot again to clear the breakpoint. Control-click (Macintosh) or right-click (Windows) and use the pop-
up menu to clear all breakpoints or disable a breakpoint on the currently selected line of the procedure window.

Debugging on Error
You can automatically open the debugger window when an error occurs. There are two categories of errors 
to choose from:

We recommend that Igor programmers turn both of these options on to get timely information about errors.

Use the Procedure or contextual menus to enable or disable both error categories. If the selected error 
occurs, Igor displays the debugger with an error message in its status area. The error message was gener-
ated by the command indicated by a round yellow icon, in this example the Print str command:

Debug On Error Any runtime error except failed NVAR, SVAR, or WAVE references.

NVAR SVAR WAVE Checking Failed NVAR, SVAR, or WAVE references.
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Sometimes you do something that you know may cause an error and you want to handle the error yourself, 
without breaking into the debugger. One such case is attempting to access a wave or variable that may or 
may not exist. You want to test its existence without breaking into the debugger.
You can use the /Z flag to prevent the Debug on Error feature from kicking in when an NVAR, SVAR, or 
WAVE reference fails. For example:
WAVE/Z w = <path to possibly missing wave>
if (WaveExists(w))

<do something with w>
endif

In other cases where an error may occur and you want to handle it yourself, you need to temporarily disable 
the debugger and use GetRTError to get and clear the error. For example:
Function DemoDisablingDebugger()

DebuggerOptions // Sets V_enable to 1 if debugger is enabled
Variable debuggerEnabled=V_enable
DebuggerOptions enable=0 // Disable debugger

String name = ";" // This is an illegal wave name
Make/O $name // So this will generate and error

DebuggerOptions enable=debuggerEnabled // Restore

Variable err = GetRTError(1) // Clear error
if (err != 0)

Printf "Error %d\r", err
else

Print "No error"
endif

End

Macro Execute Error: The Debug Button
When the debugger is enabled and an error occurs in a macro, Igor presents an error dialog with, in most 
cases, a Debug button. Click the Debug button to open the debugger window.
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Errors in macros (or procs) are reported immediately after they occur.

When an error occurs in a user-defined function, Igor displays an error dialog long after the error actually 
occurred. The Debug On Error option is for programmers and displays errors in functions when they occur.

Stepping Through Your Code
Single-stepping through code is useful when you are not sure what path it is taking or how variables wound 
up containing their values.

Begin by enabling the debugger and setting a breakpoint on the line of code you are interested in, or begin 
when the debugger automatically opens because of an error. Use the buttons at the top of the debugger 
window to step through your code:

The Stop Button

The Stop button ceases execution of the running function or macro before it completes. This is 
equivalent to clicking Igor’s Abort button while the procedure is running.

Keyboard shortcuts: (none)

Pressing Command-period on a Macintosh while the debugger window is showing is equivalent 
to clicking the Go button, not the Stop button.

The Step Button

The Step button executes the next line. If the line contains a call to one or more subroutines, 
execution continues until the subroutines return or until an error or breakpoint is encountered. 
Upon return, execution halts until you click a different button.

Keyboard shortcuts: Enter, keypad Enter, or Return 

The Step Into Button

The Step Into button executes the next line. If that line contains a call to one or more subroutines, 
execution halts when the first subroutine is entered. The Stack list of currently executing routines 
shows the most recently entered routine as the last item in the list.

Keyboard shortcuts: +, =, or keyPad + 

The Step Out Button

The Step Out button executes until the current subroutine is exited, or an error or breakpoint is 
encountered.

Keyboard shortcuts: -, _ (underscore) or keypad - 

The Go Button

The Go button resumes program execution. The debugger window remains open until execution 
completes or an error or breakpoint is encountered.
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The Stack and Variables Lists
The Stack List shows the routine that is currently executing and the chain of routines that called it. The top item 
in the list is the routine that began execution and the bottom item is the routine which is currently executing.

In this example, the routine that started execution is PeakHookProc, which most recently called Update-
PeakFromXY, which then called the currently executing mygauss user function.

The Variables List, to the right of the Stack List, shows that the function parameters w and x have the values 
coef (a wave) and 0 (a number). The pop-up menu controls which variables are displayed in the list; the 
example shows only user-defined local variables.

You can examine the variables associated with any routine in the Stack List by simply selecting the routine:

Keyboard shortcuts: Esc
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Here we’ve selected UpdatePeakFromXY, the routine that called mygauss (see the light blue arrow). Notice 
that the Variables List is showing the variables that are local to UpdatePeakFromXY.

For illustration purposes, the Variables List has been resized by dragging the dividing line, and the pop-up 
menu has been set to show local and global variables and type information.

The Variables List Columns
The Variables List shows either two or three columns, depending on whether the "show variable types" item 
in the Variable pop-up menu is checked.

Double-clicking a column's header resizes the column to fit the contents. Double-clicking again resizes the 
column to a default width.

The first column is the name of the local variable. The name of an NVAR, SVAR, or WAVE reference is a 
name local to the macro or function that refers to a global object in a data folder.

The second column is the value of the local variable. Double-click the second column to edit numbers in-
place, double-click anywhere on the row to "inspect" waves, strings, SVARS, or char arrays in structures in 
the appropriate Inspector.

In the case of a wave, the size and precision of the wave are shown here. The "->" characters mean "refers 
to". In our example wcoef is a local name that refers to a (global) wave named coef, which is one-dimen-
sional, has 4 points, and is single precision.

To determine the value of a particular wave element, use an inspector as described under Inspecting 
Waves.
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The optional third column shows what the type of the variable is, whether Variable, String, NVAR, SVAR, 
WAVE, etc. For global references, the full data folder path to the global is shown.

Variables Pop-Up Menu
The Variables pop-up menu controls which information is displayed in the Variables List. When debugging 
a function, it looks like this:

When debugging a macro, proc or window macro, the first two items in the popup menu are unavailable.

Macro Variables
The ExampleMacro below illustrates how variables in Macros, Procs or Window procedures are classified 
as locals or globals:

Local variables in macros include all items passed as parameters (numerator in this example) and local vari-
ables and local strings (oldDF) whose definitions have been executed, and Igor-created local variables 
created by operations such as WaveStats after the operation has been executed. Note that localStr isn't 
listed, because the command has not yet executed. 

Global variables in macros include all items in the current data folder, whether they are used in the macro 
or not. If the data folder changes because of a SetDataFolder operation, the list of global variables also 
changes. Note that there are no NVAR, SVAR, WAVE or STRUCT references in a macro.
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Function Variables
The SlowSumWaveFunction example below illustrates how different kinds of variables in functions are 
classified:

User-defined variables in functions include all items passed as parameters (numerator in this example) and 
any local strings and variables.

Local variables exist while a procedure is running, and cease to exist when the procedure returns; they 
never exist in a data folder like globals do.
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NVAR, SVAR, WAVE, Variable/G and String/G references point to global variables, and therefore, aren’t 
listed as user-defined (local) variables.

Use “Igor-created variables” to show local variables that Igor creates for functions when they call an oper-
ation or function that returns results in specially-named variables. The WaveStats operation (see page 
V-934), for example, defines V_adev, V_avg, and other variables to contain the statistics results:

The “user- and Igor-created” menu item shows both kinds of local variables.

The “local and global variables” item shows user-created local variables, most Igor-created local variables, 
and references to global variables and waves through NVAR, SVAR, and WAVE references:
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Function Structures
The elements of a structure (see Structures in Functions on page IV-91) are displayed in tree form in the 
Variables "list". Click the triangles to expand or collapse a node in the structure, or double-click the row:

Double-clicking a WAVE element (such as top.wv) will send it to the Wave Inspector (either a table or graph 
depending on what is checked in the Inspector popup): 

Double-clicking a String element or char array (such as top.short) will send it to the String Inspector:



Chapter IV-8 — Debugging

IV-208

The Current Data Folder
The "Current DF" displays the path to the current data folder. You can select and copy the data folder path. 
See Data Folders on page II-99 for more information about data folders.

Graph, Table, String, and Expressions Inspectors
One of the Wave, String, or Expressions Inspectors is visible to right side of the variables list. This pane is 
hidden when the divider between the pane and the variables list is dragged all the way to the right. Drag 
the divider to the left to show the pane. You may need to widen the window to make room.

Use the popup to select the Inspector you want.

The pop-up menu controls what is shown in the pane:

Pop-up Menu Selection Pane Contents

Local WAVEs, SVARs, and 
Strings

A list of these things in the selected function. References to free waves are 
also listed here, as are elements in a STRUCT that are "inspectable", 
including char arrays which can be viewed as if they were Strings.

Local Strings A list of Strings local to the selected function, macro or proc.

Expressions Numeric or string expressions which are evaluated in the context of the 
selected function or macro.

Global Waves A popup wave selector to display any wave in a global data folder. Free 
waves are not listed here.

Show Waves in Table
Show Waves in Graph

Waves will be displayed in a table or graph, depending on which one of 
these two is checked.
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Expressions Inspector
Selecting "Expressions" from the inspector popup shows a list of Expressions and their values:

Replace the "(dbl-click to enter expression)" invitation by clicking it, typing a numeric or string expression, 
and pressing Return.

Adding an expression adds a blank row at the end of the list that can be double-clicked to enter another 
expression. You can edit any of the expressions by double-clicking and typing.

The expression can be removed by selecting it and pressing Delete or Backspace.

The result of the expression is recomputed when stepping through procedures. The expressions are evalu-
ated in the context of the currently selected procedure.

Global expressions are evaluated in the context of the current data folder, though you can specify the data 
folder explicitly as in the example below.

If an expression is invalid the result is shown as “?” and the expression is changed to red:

The expressions are discarded when a new Igor experiment is opened or when Igor quits.

Inspecting Waves
You can "inspect" (view) the contents of a wave in either a table or a graph. They aren't full-featured tables 
or graphs, as there are no supporting dialogs for them. You can change their properties using contextual 
menus.

Select the Wave to be inspected by one of three methods:
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1. Choose "Global Waves", and then choose a wave from the popup wave browser.
2. Choose "Local WAVEs, SVARs, and Strings", and then choose a wave from among the objects listed.
3. Double-click any WAVE reference in the Variables list.

Inspecting Waves in a Table
You can edit the values in a wave using the table, just like a regular table. With the contextual menu you 
can alter the column format, among other things.

Inspecting Waves in a Graph
You can view waves in a Graph. With the contextual menu, you can choose to show or hide the axes and 
change display modes.

Two-dimensional waves are displayed as an image plot.

Inspecting Strings
Select a String or char array to be inspected by two methods:

1. Choose "Local WAVEs, SVARs, and Strings", and then choose a String, SVAR or char array  from 
among the objects listed.

2. Double-click any String, SVAR or char array in the Variables list.

The Procedure Pane
The procedure pane contains a copy of the procedure window of the routine selected in the Stack List. You 
can set and clear breakpoints in this pane just as you do in a procedure window, using the breakpoint 
margin and the Control-click (Macintosh) or right-click (Windows) menu.

A very useful feature of the debugger is the automatic text expression evaluator that shows the value of a 
variable or expression under the cursor. The value is displayed as a tooltip. This is often faster than scrolling 
through the Variables List or entering an expression in the Expressions List to determine the value of a vari-
able, wave, or structure member reference.

The value of a variable can be displayed whether or not the variable name is selected. To evaluate an expres-
sion such as "wave[ii]+3", the expression must be selected and the cursor must be over the selection.

The debugger won't evaluate expressions that include calls to user-defined functions; this prevents unin-
tended side effects (a function could overwrite a wave's contents, for example). You can remove this limi-
tation by creating the global variable root:V_debugDangerously and setting it to 1.

After You Find a Bug
Editing in the debugger window is disabled because the code is currently executing. Tracking down the 
routine after you've exited the debugger is easy if you follow these steps:

1. Scroll the debugger text pane back to the name of the routine you want to modify, and select it.
2. Control-click (Macintosh) or Right-click (Windows) the name, and choose "Go to <routineName>" from 

the pop-up menu.
3. Exit the debugger by clicking the "Go" button or by pressing Escape.
Now the selected routine will be visible in the top procedure window, where you can edit it.
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Debugger Shortcuts
Action Shortcut

To enable debugger Choose Enable Debugger from the Procedure menu or choose Enable 
Debugger from the procedure window’s pop-up menu after Control-
clicking (Macintosh) or right-clicking (Windows).

To automatically enter the 
debugger when an error occurs

Choose Debug on Error from the Procedure menu or choose Enable 
Debugger from a procedure window’s pop-up menu after Control-
clicking (Macintosh) or right-clicking (Windows).

To set or clear a breakpoint Click in the left margin of the procedure window or click anywhere on the 
procedure window line where you want to set or clear the breakpoint and 
choose Set Breakpoint or Clear Breakpoint from a procedure window’s pop-
up menu after Control-clicking (Macintosh) or right-clicking (Windows).

To enable or disable a breakpoint Shift-click a breakpoint in the left margin of the procedure window.

Click anywhere on the procedure window line where you want to enable 
or disable the breakpoint and choose Enable Breakpoint or Disable 
Breakpoint procedure window’s pop-up menu after Control-clicking 
(Macintosh) or right-clicking (Windows).

To execute the next command On Macintosh press Enter, keypad Enter, or Return. For Windows, if no 
button has the focus, press Enter or Return. Otherwise, click the yellow 
arrow button.

To step into a subroutine Press the +, =, or keypad + keys, or click the blue descending arrow button.

To step out of a subroutine to the 
calling routine

Press the -, _ (underscore) or keypad - keys, or click the blue ascending 
arrow button.

To resume executing normally Press Escape (Esc), or click the green arrow button.

To cancel execution Click the red stop sign button.

To edit the value of a macro or 
function variable

Double-click the second column of the variables list, edit the value, and 
press Return or Enter.

To set the value of a function’s 
string to null

Double-click the second column of the variables list, type “<null>” 
(without the quotes), and press Return or Enter.

To view the current value of a 
macro or function variable

Move the cursor to the procedure text of the variable name and wait. On 
Macintosh, the value appears to the right of the debugger buttons. On 
Windows, the value appears in a tooltip window.

To view the current value of an 
expression

Select the expression text with the cursor, position the cursor over the 
selection, and wait.

(Expressions involving user-defined functions will not be evaluated 
unless V_debugDangerously is set to 1.)

To view global values in the 
current data folder

Choose “local and global variables” from the debugger pop-up menu.

To view type information about 
variables

Choose “show variable types” from the debugger pop-up menu.

To resize the columns in the 
variables list

Drag a divider in the list to the left or right.

To show or hide the Waves, 
Structs, and Expressions pane

Drag the divider on the right side of the Variables list left or right. 



Chapter IV-8 — Debugging

IV-212


	Debugging
	Debugging Procedures
	Debugging With Print Statements
	The Debugger
	Setting Breakpoints
	Debugging on Error
	Macro Execute Error: The Debug Button
	Stepping Through Your Code
	The Stack and Variables Lists
	The Variables List Columns
	Variables Pop-Up Menu
	Macro Variables
	Function Variables
	Function Structures
	The Current Data Folder
	Graph, Table, String, and Expressions Inspectors
	Inspecting Waves
	Inspecting Strings
	The Procedure Pane
	After You Find a Bug

	Debugger Shortcuts


