
Chapter

IV-9
IV-9Dependencies

Dependency Formulas ... 214
Dependencies and the Object Status Dialog ... 214
Numeric and String Variable Dependencies .. 215
Wave Dependencies ... 216
Cascading Dependencies ... 216
Deleting a Dependency .. 216
Broken Dependent Objects .. 217
When Dependencies are Updated.. 217
Programming with Dependencies.. 217
Using Operations in Dependency Formulas... 218
Dependency Caveats .. 218

Chapter IV-9 — Dependencies

IV-214

Dependency Formulas
Igor Pro supports “dependent objects”. A dependent object can be a wave, a global numeric variable or a
global string variable that has been linked to an expression. The expression to which an object is linked is
called the object’s “dependency formula” or “formula” for short.

The value of a dependent object is updated whenever any other global object involved in the formula is
modified, even if its value stays the same. We say that the dependent object depends on these other global
objects through the formula.

You might expect that an assignment such as:
Variable var0 = 1
Make wave0
wave0 = sin(var0*x/16)

meant that wave0 would be updated whenever var0 changed. It doesn’t. Values are computed for wave0
only once, and the relationship between wave0 and var0 is forgotten.

However, if the equal sign in the above assignment is replaced by a colon followed by an equal sign:
wave0 := sin(var0*x/16)

then Igor does create just such a dependency. Now whenever var0 changes, Igor reevaluates the assignment
statement and updates wave0. In this example, wave0 is a dependent object. It depends on var0, and
“sin(var0*x/16)” is wave0’s dependency formula.

You can also establish a dependency using the SetFormula operation, like this:
SetFormula wave0, "sin(var0*x/16)"

Wave1 depends on var0 because var0 is a changeable variable. Wave1 also depends on the function x which
returns the X scaling of the destination wave (wave0). When the X scaling of wave0 changes, the values that
the x function returns change, so this dependency assignment is reevaluated. The remaining terms (sin and
16) are not changeable, so wave0 does not depend on them.

From the command line, you can use either a dependency assignment statement or SetFormula to establish
a dependency. In a user-defined function, you must use SetFormula.

Like other assignment statements, the data folder context for the right-hand side is that of the destination
object. Therefore, in the following example, wave2 and var1 must be in the data folder named foo, var2
must be in root, and var3 must be in root:bar.
root:foo:wave0 := wave2*var1 + ::var2 + root:bar:var3

Data Folders are described in Chapter II-8, Data Folders.

A dependency assignment is often used in conjunction with SetVariable controls and ValDisplay controls.

Here’s a simple example. Execute these commands on the command line:
Variable/G var0 = 1
Make/O wave0:=sin(var0*x/16)
Display /W=(4,53,399,261) wave0
ControlBar 23
SetVariable setvar0,size={60,15},value=var0

Click the SetVariable control’s up and down arrows to adjust var0 and observe that wave0 is automatically
updated.

Dependencies and the Object Status Dialog
You can use the Object Status dialog, which you can access via the the Misc menu, to check dependencies.
After executing the commands in the preceding section, the dialog looks like this:

Chapter IV-9 — Dependencies

IV-215

The Status area indicates any dependency status:
• “No dependency” means that the current object does not depend on anything.
• “Dependency is OK” means that the dependency formula successfully updated the current object.
• “Update failed” means that the dependency formula used to compute the current object’s value

failed.
An update may fail because there is a syntax error in the formula or one of the objects referenced in the
formula does not exist or has been renamed. If the formula includes a call to a user-defined function then
the update will fail if the function does not exist or if procedures are not compiled.

If an update fails, then the objects that depend on that update are broken. See Broken Dependent Objects
on page IV-217 for details.

You can create a new dependency formula with the New Formula button, which appears only if the current
object is not the target of a dependency formula.

You can delete a dependency formula using the Delete Formula button.

You can change an existing dependency formula by typing in the Dependency Formula window, and click-
ing the Change Formula button.

For further details on the Object Status dialog, click the Help button in the dialog.

Numeric and String Variable Dependencies
Dependencies can also be created for global user-defined numeric and string variables. You can not create
a dependency that uses a local variable on either side of the dependency assignment statement.
Here is a user-defined function that creates a dependency. The global variable recalculateThis is made
to depend on the global variable dependsOnThis:
Function TestRecalculation()

Variable/G recalculateThis
Variable/G dependsOnThis = 1

// Create dependency on global variable
SetFormula recalculateThis, "dependsOnThis"

Print recalculateThis // Prints original value

dependsOnThis = 2 // Changes something recalculateThis

Chapter IV-9 — Dependencies

IV-216

DoUpdate // Make Igor recalculate formulae

Print recalculateThis // Prints updated value
End

Running this function prints the following to the history area:
•TestRecalculation()

1
2

The call to DoUpdate is needed because Igor recalculates dependency formulas only when no user-defined
functions are running or when DoUpdate is called.

This function uses SetFormula to create the dependency because the := operator is not allowed in user-
defined functions.

Wave Dependencies
The assignment statement:
dependentWaveName := formula

creates a dependency and links the dependency formula to the dependent wave. Whenever any change is
made to any object in the formula, the contents of the dependent wave are updated.

The command
SetFormula dependentWaveName, "formula"

establishes the same dependency.

From the command line, you can use either a dependency assignment statement or SetFormula to establish
a dependency. In a user-defined function, you must use SetFormula.

Cascading Dependencies
“Cascading dependencies” refers to the situation that arises when an object depends on a second object,
which in turn depends on a third object, etc. When an object changes, all objects that directly depend on that
object are updated, and objects that depend directly on those updated objects are updated until no more
updates are needed.

You can use the Object Status dialog to investigate cascading dependencies.

Deleting a Dependency
A dependency is deleted when the dependent object is assigned a value using the = operator:
recalculateThis := dependsOnThis // Creates a dependency
recalculateThis = 0 // Deletes the dependency

This method of deleting a dependency does not work in user-defined functions. You must use the SetFor-
mula operation.

For example:
Execute "recalculateThis = 0"

will delete the dependency even in a user-defined function.

You can also delete this dependency using the SetFormula operation.
SetFormula recalculateThis, ""

Chapter IV-9 — Dependencies

IV-217

Wave dependencies are also deleted by operations that overwrite the values of their wave parameters.
Some of these operations are:
FFT Convolve Correlate Smooth GraphWaveEdit

Hanning Differentiate Integrate UnWrap

Dependencies can also be deleted using the Object Status dialog.

Broken Dependent Objects
Igor compiles the text of a dependency formula to low-level code and stores both the original text and the
low-level code with the dependent object. At various times, Igor may need to recompile the dependency
formula text. At that time, a compilation error will occur if:

• The dependency formula contains an error
• An object used in the dependency formula has been deleted, renamed, or moved
• The dependency formula references a user-defined function that is missing
• The dependency formula references a user-defined function and procedures are not compiled

When this happens, the dependent object will no longer update but will retain its last value. We call such
an object “broken”.

To inspect broken objects, invoke the Object Status dialog. Choose Broken Objects from the pop-up menu
above the status area. If there are any broken objects, they will appear in the Current Object pop-up. Select
an object from the Current Object pop-up to inspect it.

When Dependencies are Updated
Dependency updates take place at the same time that graphs are updated. This happens after each line in a
macro is executed, or when DoUpdate is called from a macro or user function, or continuously if a macro
or function is not running.

Dependency formulas used as input to the SetBackground and ValDisplay operations, and in some other
contexts, can alternately be specified as a literal string of characters using the following syntax:
#"text_of_the_dependency_expression"

Note that what follows the # char must be a literal string — not a string expression.

This sets the dependency formula without compiling it or checking it for validity. If you need to set the
dependency formula of an object to something that is not currently valid but will be in the future, then use
this alternate method.

Programming with Dependencies
You cannot use := to create dependencies in user-defined functions. Instead you must use the SetFormula
operation (see page V-723).
Function TestFunc()

Variable/G varNum=-666
Make wave0
SetFormula wave0, "varNum" // Equivalent to wave0 := varNum

End

Chapter IV-9 — Dependencies

IV-218

Using Operations in Dependency Formulas
The dependency formula must be a single expression — and you can not use operations, such as FFT’s, or other
command type operations. However, you can invoke user-defined functions which invoke operations. For
example:
Function MakeDependencyUsingOperation()

Make/O/N=128 data = p // A ramp from 0 to 127
Variable/G power

SetFormula power, "RMS(data)" // Dependency on function and wave
Print power

data = p * 2 // Changes something power depends
DoUpdate // Make Igor recalc formulae
Print power

EndMacro

Function RMS(w)
Wave w

WaveStats/Q w // An operation! One output is V_rms
return V_rms

End

When MakeDependencyUsingOperation is executed, it prints the following in the history area:
•MakeDependencyUsingOperation()

73.4677
146.935

Dependency Caveats
The extensive use of dependencies can create a confusing tangle that can be difficult to manage. Although
you can use the Object Status dialog to explore the dependency hierarchy, you can still become very con-
fused very quickly, especially when the dependencies are highly cascaded. You should use dependencies
only where they are needed. Use conventional assignments for the majority of your calculations.

Dependency formulas are generally not recalculated when a user-defined function is running unless you explic-
itly call the DoUpdate operation. However, they can run at other unpredictable times so you should not make
any assumptions as to the timing or the current data folder when they run.

The text of the dependency formula that is saved for a dependent object is the original literal text. The
dependency formula needs to be recompiled from time to time, for example when procedures are compiled.
Therefore, any objects used in the formula must persist until the formula is deleted.

We recommend that you never use $ expressions in a dependency formula.

	Dependencies
	Dependency Formulas
	Dependencies and the Object Status Dialog
	Numeric and String Variable Dependencies
	Wave Dependencies
	Cascading Dependencies
	Deleting a Dependency
	Broken Dependent Objects
	When Dependencies are Updated
	Programming with Dependencies
	Using Operations in Dependency Formulas
	Dependency Caveats

