
Chapter

IV-10
IV-10Advanced Topics

Regular Modules ... 222
Regular Modules in Action Procedures and Hook Functions .. 223
Regular Modules and User-Defined Menus .. 224

Independent Modules .. 224
Independent Modules - A Simple Example... 225
SetIgorOption IndependentModuleDev=1 .. 225
Independent Module Development Tips ... 225
Independent Modules and #include ... 226
Limitations of Independent Modules ... 226
Independent Modules in Action Procedures and Hook Functions.. 226
Independent Modules and User-Defined Menus ... 227
Independent Modules and Popup Menus ... 227
Regular Modules Within Independent Modules .. 228
Calling Routines From Other Modules .. 229
Using Execute Within an Independent Module.. 229
Independent Modules and Dependencies ... 229
Independent Modules and Pictures .. 230
Making Regular Procedures Independent-Module-Compatible.. 230

Sound .. 230
Movies .. 230

Playing Movies... 231
Creating Movies ... 231
Extracting Movie Frames.. 231
Movie Programming Examples ... 231

Timing... 232
Ticks Counter ... 232
Microsecond Timer.. 232

Packages ... 232
Creating a Package .. 232
Lightweight Packages ... 234

Managing Package Data .. 234
Creating and Accessing the Package Data Folder .. 235
Creating and Accessing the Package Per-Instance Data Folders.. 236

Saving Package Preferences .. 237
Saving Package Preferences in a Special-Format Binary File .. 237
Saving Package Preferences in an Experiment File .. 240

Creating Your Own Help File ... 241
Syntax of a Help File ... 242
Creating Links .. 242
Checking Links... 243

Creating Formatted Text .. 244
Printf Operation ... 245
sprintf Operation ... 245
fprintf Operation.. 246

Chapter IV-10 — Advanced Topics

IV-220

wfprintf Operation .. 246
Example Using fprintf and wfprintf ... 246

Client/Server Overview.. 246
Apple Events .. 247

Apple Event Capabilities... 247
Apple Events — Basic Scenario .. 247
Apple Events — Obtaining Results from Igor ... 247
Apple Event Details ... 248

AppleScript ... 249
Executing Unix Commands on Mac OS X ... 250
ActiveX Automation.. 250

Calling Igor from Scripts.. 251
Network Communication.. 252
URLs.. 252

Usernames and Passwords... 253
Supported Network Schemes .. 253
Percent Encoding ... 253

Safe Handling of Passwords.. 254
Network Timeouts and Aborts ... 255
Network Connections From Multiple Threads .. 255
File Transfer Protocol (FTP)... 257

FTP Limitations.. 257
Downloading a File ... 258
Downloading a Directory ... 258
Uploading a File... 259
Uploading a Directory .. 259
Creating a Directory .. 259
Deleting a Directory .. 260
FTP Transfer Types.. 260
FTP Troubleshooting... 260

Hypertext Transfer Protocol (HTTP) ... 261
HTTP Limitations .. 261
Downloading a Web Page Via HTTP ... 261
Downloading a File Via HTTP... 261
Making a Query Via HTTP... 262
HTTP Troubleshooting ... 263

Operation Queue... 263
User-Defined Hook Functions .. 264

AfterCompiledHook ... 266
AfterFileOpenHook... 266
BeforeDebuggerOpensHook.. 268
AfterMDIFrameSizedHook .. 269
AfterWindowCreatedHook.. 270
BeforeExperimentSaveHook .. 270
BeforeFileOpenHook... 271
IgorBeforeNewHook ... 273
IgorBeforeQuitHook.. 273
IgorMenuHook... 273
IgorQuitHook ... 274
IgorStartOrNewHook ... 275

Window User Data ... 275
Window Hook Functions... 276

Window Hooks and Subwindows .. 277
Named Window Hook Functions .. 277

Named Window Hook Events... 277
WMWinHookStruct... 279

Chapter IV-10 — Advanced Topics

IV-221

Mouse Events ... 280
Keyboard Events.. 281
Keyboard Events Example ... 281
Setting the Mouse Cursor ... 282
Panel Done Button Example .. 283
Window Hook Deactivate and Kill Events .. 283
Window Hook Show and Hide Events .. 284
Hook Functions for Exterior Subwindows .. 285

Unnamed Window Hook Functions .. 286
Custom Marker Hook Functions .. 289

WMMarkerHookStruct ... 289
Marker Hook Example.. 290

Data Acquisition.. 290
FIFOs and Charts .. 291

FIFO Overview... 291
Chart Recorder Overview... 292
Programming with FIFOs... 293
FIFO File Format .. 295
FIFO and Chart Demos ... 296

Using Chart Recorder Controls... 296
Chart Reorder Control Basics... 296
Operating a Chart Recorder ... 296
Chart Recorder Control Demos ... 298

Background Tasks... 298
Background Task Example #1.. 298
Background Task Exit Code... 299
Background Task Period... 299
Background Task Limitations .. 300
Background Tasks and Errors.. 300
Background Tasks and Dialogs ... 300
Background Task Tips... 300
Background Task Example #2.. 301
Background Task Example #3.. 302
Old Background Task Techniques .. 302

Automatic Parallel Processing with TBB... 302
Automatic Parallel Processing with MultiThread.. 303

Data Folder Reference MultiThread Example ... 304
Wave Reference MultiThread Example.. 306
Structure Array MultiThread Example .. 307

ThreadSafe Functions and Multitasking ... 308
Thread Data Environment.. 309
Parallel Processing - Group-at-a-Time Method... 310
Parallel Processing - Thread-at-a-Time Method.. 311
Input/Output Queues.. 312
Parallel Processing With Large Datasets .. 314
Preemptive Background Task.. 314
More Multitasking Examples... 316

Cursors — Moving Cursor Calls Function.. 316
Graph-Specific Cursor Moved Hook .. 316
Global Cursor Moved Hook... 316
Cursor Globals.. 317

Profiling Igor Procedures... 317
Crashes ... 317

Crash Logs on Mac OS X .. 318
Crashes On Windows.. 318

Chapter IV-10 — Advanced Topics

IV-222

This chapter contains material on topics of interest to advanced Igor users.

Regular Modules
Regular modules, or "modules" for short, provide a way to avoid name conflicts between procedure files.
Regular modules are distinct from "independent modules" which are discussed in the next section.

Igor’s module concept provides a way to group related procedure files and to prevent name conflicts
between procedure packages.

By default, a procedure file is in the built-in ProcGlobal module. A procedure file that does not contain a
#pragma ModuleName statement (or a #pragma IndependentModule statement - discussed below) is in
ProcGlobal. Neither #pragma ModuleName nor #pragma IndependentModule are allowed in the built-in
procedure window which is always in ProcGlobal.

When you execute a function from the command line or use the Execute operation, you are operating in the
ProcGlobal context.

Functions in ProcGlobal are either public, or, if they are declared using the static keyword, private. For
example:

// In a procedure file with no #pragma ModuleName or #pragma IndependentModule

static Function Test() // Private to its procedure file
Print "Test in ProcGlobal"

End

Function TestInProcGlobal() // Public
Print "TestInProcGlobal in ProcGlobal"

End

Because it is declared static, the Test function is private to its procedure file. Each procedure file can have
its own static Test function without causing a name conflict. The TestInProcGlobal function is public so
there can be only one public function with this name.

In this example the static Test function is accessible only from the procedure file in which it is defined.
Sometimes you have a need to avoid name conflicts but still want to be able to call functions from other
procedure files, from control action procedures or from the command line. This is where a regular module
is useful.

You specify that a procedure file is in a different module (other than ProcGlobal) using the ModuleName
pragma. For example:

#pragma ModuleName = ModuleA // The following procedures are in ModuleA

static Function Test() // Semi-private
Print "Test in ModuleA"

End

Function TestModuleA() // Public
Print "Test in ModuleA"

End

Because it is declared static, this Test function does not conflict with Test functions in other procedure files.
But because it is in a named regular module (ModuleA), it can be called from other procedure files using a
qualified name:

ModuleA#Test() // Call Test from ModuleA

Chapter IV-10 — Advanced Topics

IV-223

This qualified name syntax overrides the static nature of Test and tells Igor that you want to execute the
Test function defined in ModuleA. The only way to access a static function from another procedure file is
to put it in a regular module and use a qualified name.

If you are writing a non-trivial set of procedures, it is a good idea to use a module and to declare your func-
tions static, especially if other people will be using your code. This prevents name conflicts with other pro-
cedures that you or other programmers write. Make sure to choose a distinctive module name.

Regular Modules in Action Procedures and Hook Functions
Control action procedures and hook functions are called by Igor at certain times. They are executed in the
ProcGlobal context. This means that a static function can not be used as an action procedure or a hook func-
tion without using a qualified name. For example:

// In a procedure file with no #pragma ModuleName or #pragma IndependentModule

static Function ButtonProc(ba) : ButtonControl
STRUCT WMButtonAction &ba

switch (ba.eventCode)
case 2: // mouse up

Print "Running ProcGlobal#ButtonProc"
break

endswitch

return 0
End

Function CreatePanel()
NewPanel /W=(375,148,677,228)
// This will not work because ButtonProc is private to the procedure file
Button button0,pos={106,23},size={98,20},title="Click Me"
Button button0,proc=ButtonProc

End

When you click the Click Me button, Igor tries to run the ButtonProc action procedure. However, because
it is static, it is not accessible from outside the procedure file so Igor displays an error.

There are two possible solutions for this problem:

1. Make ButtonProc global by removing the static keyword
2. Use a regular module

If you make ButtonProc global, you run the risk of a name conflict with some other programmer's Button-
Proc function. You can prevent this by changing ButtonProc to a very distinctive name, like AcmeDataAc-
qButtonProc, but this becomes tedious.

Here is the solution using a module:

#pragma ModuleName = RegularModuleA

static Function ButtonProc(ba) : ButtonControl
STRUCT WMButtonAction &ba

switch (ba.eventCode)
case 2: // mouse up

Print "Running RegularModuleA#ButtonProc"
break

endswitch

return 0
End

Chapter IV-10 — Advanced Topics

IV-224

static Function CreatePanel()
NewPanel /W=(375,148,677,228)
Button button0,pos={106,23},size={98,20},title="Click Me"
Button button0,proc=RegularModuleA#ButtonProc

End

RegularModuleA is the name we have chosen for the regular module for demonstration purposes. You
should choose a more descriptive module name.

The use of a qualified name, RegularModuleA#ButtonProc, allows Igor to find and execute the static But-
tonProc function in the RegularModuleA module even though ButtonProc is running in the ProcGlobal
context.

To protect the CreatePanel function from name conflicts we also made it static. To create the panel, execute:

RegularModuleA#CreatePanel()

Regular Modules and User-Defined Menus
Menu item execution text also runs in the ProcGlobal context. If you want to call a routine in a regular
module you must use a qualified name.

Continuing the example from the preceding section, here is how you would write a menu definition:

#pragma ModuleName = RegularModuleA

Menu "Macros"
"Create Panel", RegularModuleA#CreatePanel()

End

See also Independent Modules below, Controls and Control Panels on page III-365, User-Defined Hook
Functions on page IV-264 and User-Defined Menus on page IV-117.

Independent Modules
An independent module is a set of procedure files that are compiled separately from all other procedures.
Because it is compiled separately, an independent module can run when other procedures are in an uncom-
piled state because the user is editing them or because an error occurred in the last compile. This allows the
independent module's control panels and menus to continue to work regardless of user programming
errors.

Creating an independent module adds complexity and requires a solid understanding of Igor program-
ming. You should use an independent module if it is important that your procedures be runnable at all
times. For example, if you have created a data acquisition package that must run regardless of what the user
is doing, that would be a good candidate for an independent module.

A file is designated as being part of an independent module using the IndependentModule pragma:

#pragma IndependentModule = imName

Make sure to use a distinctive name for your independent module.

The IndependentModule pragma is not allowed in the built-in procedure window which is always in the
ProcGlobal module.

An independent module creates an independent namespace. Function names in an independent module do
not conflict with the same names used in other modules. To call an independent module function from
another module, including the default ProcGlobal module, the function must be public (non-static) and you
must use a qualified name as illustrated in the next section.

Chapter IV-10 — Advanced Topics

IV-225

Independent Modules - A Simple Example
Here is a simple example using an independent module. This code must be in its own procedure file and
not in the built-in procedure file:

#pragma IndependentModule = IndependentModuleA

static Function Test() // static means private to file
Print "Test in IndependentModuleA"

End

// This must be non-static to call from command line (ProcGlobal context)
Function CallTestInIndependentModuleA()

Test()
End

From the command line (the ProcGlobal context):

CallTestInIndependentModuleA() // Error

IndependentModuleA#CallTestInIndependentModuleA() // OK

IndependentModuleA#Test() // Error

The first command does not work because the functions in the independent module are accessible only
using a qualified name. The second command does work because it uses a qualified name and because the
function is public (non-static). The third command does not work because the function is private (static) and
therefore is accessible only from the file in which it is defined. A static function in an independent module
is not accessible from outside the procedure file in which it is defined unless it is in an enclosed regular
module as described under Regular Modules Within Independent Modules on page IV-228.

SetIgorOption IndependentModuleDev=1
By default, the debugger is disabled for independent modules. It can be enabled using:

SetIgorOption IndependentModuleDev=1

Also by default, independent module procedure windows are not listed in the Windows→Procedure
Windows submenu unless you use SetIgorOption IndependentModuleDev=1.

When SetIgorOption IndependentModuleDev=1 is in effect, the Windows→Procedure Windows
submenu shows all procedure windows, and those that belong to an independent module are listed with
the independent module name in brackets. For example:

DemoLoader.ipf [WMDemoLoader]

This bracket syntax is used in the WinList, FunctionList, DisplayProcedure, and ProcedureText functions
and operations.

To get the user experience, as opposed to the programmer experience, return to normal operation by exe-
cuting:

SetIgorOption IndependentModuleDev=0

Independent Module Development Tips
Development of an independent module may be easier if it is first done as for normal code. Add the module
declaration

#pragma IndependentModule = moduleName

only after the code has been fully debugged and is working properly.

Chapter IV-10 — Advanced Topics

IV-226

A procedure file that is designed to be #included should ideally work inside or outside of an independent
module. Read the sections on independent modules below to learn what the issues are.

When developing an independent module, you will usually want to execute:

SetIgorOption IndependentModuleDev=1

Independent Modules and #include
If you #include a procedure file from an independent module, Igor copies the #included file into memory
and makes it part of the independent module by inserting a #pragma IndependentModule statement at the
start of the copy. If the same file is included several times, there will be several copies, each with a different
independent module name.

Warning: Do not edit the procedure windows created by #including into an independent module because
they are temporary and your changes will not be saved. You would not want to save them
anyway because Igor has modified them.

Warning: Do not #include files that already contain a #pragma IndependentModule statement unless the
independent module name is the same.

Limitations of Independent Modules
Independent modules are not for every-day programming and are more difficult to create than normal
modules because of the following limitations:

1. Macros and Procs are not supported.
2. Button and control dialogs do not list functions in an independent module.
3. Functions in an independent module can not call functions in other modules except through the Execute

operation.

Independent Modules in Action Procedures and Hook Functions
Normally you must use a qualified name to invoke a function defined in an independent module from the
ProcGlobal context. Control action procedures and hook functions execute in the ProcGlobal context. But,
as a convenience and to make #include files more useful, Igor eliminates this requirement when you create
controls and specify hook functions from a user-defined function in an independent module.

When you execute an operation that creates a control or specifies a hook function while running in an inde-
pendent module, Igor examines the specified control action function name or hook function name. If the
named function is defined in the same independent module, Igor automatically inserts the independent
module name. This means you can write something like:

#pragma IndependentModule = IndependentModuleA
Button b0, proc=ButtonProc
SetWindow hook(Hook1)=HookFunc

You don't have to write:

#pragma IndependentModule = IndependentModuleA
Button b0, proc=IndependentModuleA#ButtonProc
SetWindow hook(Hook1)=IndependentModuleA#HookFunc

Such independent module name insertion is only done when an operation called from a function defined
in an independent module. It is not done if the operation is executed from the command line or via Execute.

The control action function or hook function must be public (non-static) except as describe under Regular
Modules Within Independent Modules on page IV-228.

Here is a working example:

#pragma IndependentModule = IndependentModuleA

Chapter IV-10 — Advanced Topics

IV-227

Function ButtonProc(ba) : ButtonControl // Must not be static
STRUCT WMButtonAction &ba

switch (ba.eventCode)
case 2: // mouse up

Print "Running IndependentModuleA#ButtonProc"
break

endswitch

return 0
End

Function CreatePanel()
NewPanel /W=(375,148,677,228)
Button button0,pos={106,23},size={98,20},title="Click Me"
Button button0,proc=ButtonProc

End

Independent Modules and User-Defined Menus
Independent modules can contain user-defined menus. When you choose a user-defined menu item, Igor
determines if the menu item was defined in an independent module. If so, and if the menu item's execution
text starts with a call to a function defined in the independent module, then Igor prepends the independent
module name before executing the text. This means that the second and third menu items in the following
example both call IndependentModuleA#DoAnalysis:

#pragma IndependentModule = IndependentModuleA

Menu "Macros"
"Load Data File/1", Beep; LoadWave/G
"Do Analysis/2", DoAnalysis() // Igor automatically prepends IndependentModuleA#
"Do Analysis/3", IndependentModuleA#DoAnalysis()

End

Function DoAnalysis()
Print "DoAnalysis in IndependentModuleA"

End

This behavior on Igor's part makes it possible to #include a procedure file that creates menu items into an
independent module and have the menu items work. However, in many cases you will not want a
#included file's menu items to appear. You can suppress them using menus=0 option in the #include state-
ment. See Turning the Included File’s Menus Off on page IV-156.

Note: If a procedure file with menu definitions is included into multiple independent modules, the
menus are repeatedly defined (see Independent Modules and #include on page IV-226).
Judicious use of the menus=0 option in the #include statements helps prevent this. See Turning
the Included File’s Menus Off on page IV-156.

When the execution text doesn't start with a user-defined function name, as for the first menu item in this
example, Igor executes the text without altering it.

Independent Modules and Popup Menus
In an independent module, implementing a popup menu whose items are determined by a function call at
click time requires special care. For example, outside of an independent module, this works:

Function/S MyPopMenuList()
return "Item 1;Item2;"

End
...
PopupMenu pop0 value=#"MyPopMenuList()" // Note the quotation marks

Chapter IV-10 — Advanced Topics

IV-228

But inside an independent module you need this:

#pragma IndependentModule=MyIM
Function/S MyPopMenuList()

return "Item 1;Item2;"
End
...
String cmd= GetIndependentModuleName()+"#MyPopMenuList()"
PopupMenu pop0 value=#cmd // No enclosing quotation marks

GetIndependentModuleName returns the name of the independent module to which the currently-
running function belongs or "ProcGlobal" if the currently-running function is not part of an independent
module.

You could change the command string to:

PopupMenu pop0 value=#"MyIM##MyPopMenuList()"

but using GetIndependentModuleName allows you to disable the IndependentModule pragma by com-
menting it out and have the code still work which can be useful during development. With the pragma com-
mented out you are running in ProcGlobal context and GetIndependentModuleName returns "ProcGlobal".

When the user clicks the popup menu, Igor generates the menu items by evaluating the text specified by
the PopupMenu value keyword as an Igor expression. The expression ("MyIM#MyPopMenuList()" in
this case) is evaluated in the ProcGlobal context. In order for Igor to find the function in the independent
module, it must be public (non-static), except as describe under Regular Modules Within Independent
Modules on page IV-228, and you must use a qualified name.

Note that #cmd is not the same as #"cmd". The #cmd form was introduced with Igor Pro 6. The string vari-
able cmd is evaluated when PopupMenu runs which occurs in the context of the independent module. The
contents of cmd ("MyIM#MyPopMenuList()" in this case) are stored in the popup menu's internal data
structure. When the popup menu is clicked, Igor evaluates the stored text as an Igor expression. This causes
the function MyIM#MyPopMenuList to run.

With the older #"cmd" syntax, the stored text is evaluated only when the popup menu is clicked, not when
the PopupMenu operation runs, and this evaluation occurs in the ProcGlobal context. It is too late to capture
the independent module in which the text should be evaluated.

Regular Modules Within Independent Modules
It is usually not necessary but you can create a regular module within an independent module. For example:

#pragma IndependentModule = IndependentModuleA
#pragma ModuleName = RegularModuleA
Function Test()

Print "Test in RegularModuleA within IndependentModuleA"
End

Here RegularModuleA is a regular module within IndependentModuleA.

To call the function Test from outside of the independent module you must qualify the call like this:

IndependentModuleA#RegularModuleA#Test()

This illustrates that the independent module establishes its own namespace (IndependentModuleA) which
can host one level of sub-namespace (RegularModuleA). By contrast, a regular module creates a namespace
within the global namespace (called ProcGlobal) and can not host additional sub-namespaces.

This nesting of modules is useful to prevent name conflicts in a large independent module project compris-
ing multiple procedure files. Otherwise it is not necessary.

Because all procedure files in a given independent module are compiled separately from all other files,
function names never conflict with those outside the group and there is little or no need to use the static

Chapter IV-10 — Advanced Topics

IV-229

designation on functions in an independent module. However, if need be, you can call static functions in a
regular module inside an independent module from outside the independent module using a triple-quali-
fied name:

IndependentModuleName#RegularModuleName#FunctionName()

Calling Routines From Other Modules
Code in an independent module can not directly call routines in other modules and usually should not need
to. If you must call a routine from another module, you can do it using the Execute operation. You must use
a qualified name. For example:

Execute "ProcGlobal#foo()"

To call a function in a regular module, you must prepend ProcGlobal and the regular module name to the
function name:

Execute "ProcGlobal#MyRegularModule#foo()"

Calling a nonstatic function in a different independent modules requires prepending just the other inde-
pendent module name:

Execute "OtherIndependentModule#bar()"

Calling static functions in other independent modules requires prepending the independent module name
and a regular module name:

Execute "OtherIndependentModule#RegularModuleName#staticbar()"

Using Execute Within an Independent Module
If you need to call a function in the current independent module using Execute, you can compose the name
using the GetIndependentModuleName function. For example, outside of an independent module the
commands would be:

String cmd = "WS_UpdateWaveSelectorWidget(\"Panel0\", \"selectorWidgetName\")"
Execute cmd

But inside an independent module the commands are:

#pragma IndependentModule=MyIM
String cmd="WS_UpdateWaveSelectorWidget(\"Panel0\", \"selectorWidgetName\")"
cmd = GetIndependentModuleName() + "#" + cmd // Make qualified name
Execute cmd

You could change the command string to:

cmd = "MyIM#" + cmd

but using GetIndependentModuleName allows you to disable the IndependentModule pragma by com-
menting it out and have the code still work which can be useful during development. With the pragma com-
mented out you are running in ProcGlobal context and GetIndependentModuleName returns "ProcGlobal".

Independent Modules and Dependencies
GetIndependentModuleName is also useful for defining dependencies using functions in the current inde-
pendent module. Dependencies are evaluated in the global procedure context (ProcGlobal). In order for
dependencies to evaluate correctly, the dependency must use GetIndependentModuleName to create a
formula to pass to the SetFormula operation. For example, outside of an independent module, this works:

String formula = "foo(root:wave0)"
SetFormula root:aVariable $formula

But inside an independent module you need this:

Chapter IV-10 — Advanced Topics

IV-230

#pragma IndependentModule=MyIM
String formula = GetIndependentModuleName() + "#foo(root:wave0)"
SetFormula root:aVariable $formula

Independent Modules and Pictures
To allow DrawPICT to use a picture in the picture gallery, you must prepend GalleryGlobal# to the picture
name:

DrawPICT 0,0,1,1,GalleryGlobal#PICT_0

Without GalleryGlobal, only proc pictures can be used in an independent module.

Making Regular Procedures Independent-Module-Compatible
You may want to make an existing set of procedures into an independent module. Alternatively, you may
want to make an existing procedure independent-module-compatible so that it can be #included into an
independent module. This section outlines the necessary steps.

1. If you are creating an independent module, add the IndependentModule pragma:
#pragma IndependentModule=<NameOfIndependentModule>

2. Change any Macro or Proc procedures to functions.
3. Make Execute commands suitable for running in the ProcGlobal context or in an independent module

using GetIndependentModuleName. See Using Execute Within an Independent Module on page
IV-229.

4. Make PopupMenu controls that call a string function to populate the menu work in the ProcGlobal con-
text or in an independent module using GetIndependentModuleName. See Independent Modules and
Popup Menus on page IV-227.

5. Make any dependencies work in the ProcGlobal context or in an independent module using GetInde-
pendentModuleName. See Independent Modules and Dependencies on page IV-229.

See also Regular Modules on page IV-222, Controls and Control Panels on page III-365, User-Defined
Hook Functions on page IV-264, User-Defined Menus on page IV-117, and GetIndependentModule-
Name on page V-261.

Sound
Two operations are provided for playing of sound through the computer speakers:
• PlaySound
• PlaySnd (Macintosh)

The PlaySound operation takes the sound data from a wave.

The obsolete PlaySnd operation gets its data from a Macintosh 'snd ' resource stored in a file.

A number of sound input operations are provided: SoundInStatus (page V-758) , SoundInSet (page V-757) ,
SoundInRecord (page V-756) , SoundInStartChart (page V-757) and SoundInStopChart (page V-758) .
Several example experiments that use these routines can be found in your Igor Pro 7 Folder in the Examples
folder.

The SoundLoadWave operation loads various sound file formats into waves and SoundSaveWave saves
wave data to sound files. These operations replace SndLoadWave, SoundSaveAIFF and SoundSaveWAV
from the obsolete SndLoadSaveWave XOP.

Movies
You can play movies in Igor. You can also create movies, optionally with a soundtrack. And you can extract
frames from movies for analysis.

Chapter IV-10 — Advanced Topics

IV-231

On Macintosh Igor can play QuickTime and AVI movies. It can create QuickTime movies only.

On Windows Igor can create and play AVI movies only.

Playing Movies
Use the PlayMovie operation to play a movie whether the movie was created in Igor or not.
Playing a movie requires that you have the codecs required by the movie installed on your machine.
On Macintosh, both QuickTime and AVI movies open in the Igor application.
On Windows, AVI movies open in your default movie viewing program - typically Windows Media Player.

Creating Movies
You can create a movie from a graph, page layout, or Gizmo window. To do this, you write a procedure
that modifies the window and adds a frame to the movie in a loop. On Windows, you can include audio.
Here are the operations used to create and play a movie:
• NewMovie
• AddMovieFrame
• AddMovieAudio
• CloseMovie
• PlayMovie
• PlayMovieAction

The NewMovie operation creates a movie file and also defines the movie frame rate and optional audio
track specifications.

On Macintosh NewMovie always creates a QuickTime movie and the /A (AVI) flag is ignored.

On Windows NewMovie creates an AVI movie.

Before calling NewMovie, you need to prepare the first frame of your movie as the target graph, page
layout, or Gizmo window.

If you will be using audio you also need to prepare a sound wave. The sound wave can be of any time dura-
tion but usually will either be the entire length of the movie or will be the length of one video frame. As of
Igor Pro 7, sound is not supported on Macintosh.

After creating the file and the first video frame and optional audio, you use AddMovieFrame to add as
many video frames as you wish. You may also add more audio using the AddMovieAudio operation.
Finally you use the CloseMovie and PlayMovie operations.

When you write a procedure to generate a movie, you need to call the DoUpdate operation after all modi-
fications to the graph, page layout, or Gizmo window and before calling AddMovieFrame. This allows Igor
to process any changes you have made to the window.

In addition to creating a movie from a window, you can also create movies from pictures in the picture
gallery (see Pictures on page III-448) using the /PICT flag with NewMovie and AddMovieFrame. You can
put pictures of Igor graphs, tables, page layouts, and Gizmo plots in the gallery using SavePICT.

Extracting Movie Frames
You can extract individual frames from a movie and can control movie playback using PlayMovieAction.

Movie Programming Examples
For examples of programming with movies, choose File→Example Experiments→Movies & Audio.

Chapter IV-10 — Advanced Topics

IV-232

Timing
There are two methods you can use when you want to measure elapsed time:
• The ticks counter using the ticks function
• The microsecond timer using StartMSTimer and StopMSTimer

Ticks Counter
You can easily measure elapsed time with a precision of 1/60th of a second using the ticks function. It
returns the tick count which starts at zero when you first start your computer and is incremented at a rate
of approximately 60 Hz rate from then on.

Here is an example of typical use:
…
Variable t0
…
t0= ticks
<operations you wish to time>
printf "Elapsed time was %g seconds\r",(ticks-t0)/60
…

Microsecond Timer
You can measure elapsed time to microsecond accuracy for durations up to 35 minutes using the microsec-
ond timer. See the StartMSTimer function (page V-775) for details and an example.

Packages
A package is a set of files that adds significant functionality to Igor. Packages consist of procedure files and
may also include XOPs, help files and other supporting files.

A package usually adds one or more items to Igor's menus that allow the user to interactively load the pack-
age, access its functionality, and unload the package.

A package typically provides some level of user-interface, such as a menu item and a control panel, for
accessing the added functionality. It may store settings in experiments or in global preferences.

A package is typically loaded into memory and unloaded at the user's request.

Igor comes pre-configured with numerous WaveMetrics packages accessed through the Data→Packages,
Analysis→Packages, Misc→Packages, Windows→New→Packages and Graph→Packages submenus as
well as others. Take a peek at these submenus to see what packages are supplied with Igor.

Menu items for WaveMetrics packages are added to Igor's menus by the WMMenus.ipf procedure file
which is shipped in the Igor Procedures folder. WMMenus.ipf is hidden unless you enable independent
module development. See Independent Modules on page IV-224.

Creating a Package
This section shows how to create a package through a simple example. The package is called "Sample Pack-
age". It adds a Load Sample Package item to the Macros menu. When the user chooses Load Sample Pack-
age, the package's procedure file is loaded. This adds two additional items to the Macros menu: Hello From
Sample Package and Unload Sample Package.

The package consists of two procedure files stored in a folder in the Igor Pro User Files folder. If you are not
familiar with Igor Pro User Files, take a short detour and read Special Folders on page II-29 and Igor Pro
User Files on page II-31.

Chapter IV-10 — Advanced Topics

IV-233

The sample package is installed as follows:
Igor Pro 7 User Files

Sample Package
Sample Package Loader.ipf
Sample Package.ipf

Igor Procedures
Alias or shortcut pointing to the "Sample Package Loader.ipf" file

User Procedures
Alias or shortcut pointing to the "Sample Package" folder

Putting the alias/shortcut for the "Sample Package Loader.ipf" in Igor Procedures causes Igor to load that
file at launch time. The file adds the "Load Sample Package" item to the Macros menu. See Global Proce-
dure Files on page III-353 for details.

Putting the alias/shortcut for the "Sample Package" folder in User Procedures causes Igor to search that
folder when a #include is invoked. See Shared Procedure Files on page III-354 for details.

A real package might include other procedure files and a help file in the "Sample Package" folder.

To try this out yourself, follow these steps:

1. Create the "Sample Package" folder in your Igor Pro User Files folder.
You can locate your Igor Pro User Files folder using the Help menu.

2. Create a new procedure file named "Sample Package Loader.ipf" in the "Sample Package" folder and en-
ter the following contents in the file:
Menu "Macros"

"Load Sample Package", /Q, LoadSamplePackage()
End

Function LoadSamplePackage()
Execute/P/Q/Z "INSERTINCLUDE \"Sample Package\""
Execute/P/Q/Z "COMPILEPROCEDURES "// Note the space before final quote

End

Save the procedure file.
3. Create a new procedure file named "Sample Package.ipf" in the "Sample Package" folder and enter the

following contents in the file:
Menu "Macros"

"Hello From Sample Package", HelloFromSamplePackage()
"Unload Sample Package", UnloadSamplePackage()

End

Function HelloFromSamplePackage()
DoAlert /T="Sample Package Wants to Say" 0, "Hello!"

End

Function UnloadSamplePackage()
Execute /P /Q /Z "DELETEINCLUDE \"Sample Package\""
Execute /P /Q /Z "COMPILEPROCEDURES "// Note the space before final quote

End

Save the procedure file.
4. In the desktop, make an alias or shortcut for "Sample Package Loader.ipf" file and put it in the Igor Pro-

cedures folder in the Igor Pro User Files folder.
This causes Igor to load the "Sample Package Loader.ipf" file at launch time. This is how the Load Sam-
ple Package menu item gets into the Macros menu.

5. In the desktop, make an alias or shortcut for the "Sample Package" folder and put it in the User Proce-
dures folder in the Igor Pro User Files folder.

Chapter IV-10 — Advanced Topics

IV-234

This causes Igor to search the "Sample Package" folder when a #include is invoked. This allows Igor to
find the "Sample Package.ipf" file when it is #included.

6. Quit and restart Igor so that Igor will load the "Sample Package Loader.ipf" file.
If you prefer you can just manually make sure that "Sample Package Loader.ipf" is open and "Sample
Package.ipf" is closed. This simulates the state of affairs after restarting Igor.

7. Choose Windows→Procedure Windows and verify that Igor has loaded the "Sample Package Load-
er.ipf" file.

8. Click the Macros menu and verify that the "Load Sample Package" item is present.
9. Choose Macros→Load Sample Package.

The LoadSamplePackage function runs, adds a #include statement to the built-in procedure window,
and forces procedures to be recompiled. This cause Igor to load the "Sample Package.ipf" procedure file
which contains the bulk of the package's procedures and adds items to the Macros menu.

10. Click the Macros menu and notice that the "Hello From Sample Package" and "Unload Sample Package"
items have been added.

11. Choose Macros→Hello From Sample Package.
The package displays an alert. A real package would do something more exciting.

12. Choose Macros→Unload Sample Package.
The UnloadSamplePackage function runs, removes the #include statement from the built-in procedure
window, and forces procedures to be recompiled. This cause Igor to unload the "Sample Package.ipf"
procedure.

13. Click the Macros menu and notice that the "Hello From Sample Package" and "Unload Sample Package"
items have been removed.

Most real packages do not create Unload menu items. Instead they provide an Unload Package button in a
control panel or automatically unload when a control panel is closed. Or they might not support unloading.

A real package typically does not include "Package" in its name or in its menu items.

Lightweight Packages
A lightweight package is one that consists of at most a few procedure files and does not create clutter in the
current experiment unless it is actually used.

If your package is lightweight you might prefer to dispense with loading and unload it and just keep it
loaded all the time. To do this you would organize your files like this:

Igor Pro 7 User Files
Your Package

Your Package Part 1.ipf
Your Package Part 2.ipf

Igor Procedures
Alias or shortcut pointing to the "Your Package" folder

Here both of your package procedure files are global, meaning that Igor loads them at launch time and
never unloads them. You do not need procedures for loading and unloading your package.

If you have an ultra-light package, consisting of just a single procedure file, you can dispense with the "Your
Package" folder and put the procedure file directly in the Igor Procedures folder.

Managing Package Data
When you create a package of procedures, you need some place to store private data used by the package
to keep track of its state. It's important to keep this data separate from the user's data to avoid clutter and
to protect your data from inadvertent changes.

Chapter IV-10 — Advanced Topics

IV-235

Private data should be stored in a data folder named after the package inside a generic data folder named
Packages. For example, if your package is named My Package you would store your private data in
root:Packages:My Package.

There are two general types of private data that you might need to store: overall package data and per-
instance data. For example, for a data acquisition package, you may need to store data describing the state
of the acquisition as a whole and other data on a per-channel basis.

Creating and Accessing the Package Data Folder
This section demonstrates the recommended way to create and access a package data folder. We use a bot-
tleneck function that returns a DFREF for the package data folder. If the package data folder does not yet
exist, the bottleneck function creates and initializes it. This way calling functions don't need to worry about
whether the package data folder has been created.
First we write a function to create and initialize the package data folder:
Function/DF CreatePackageData() // Called only from GetPackageDFREF

// Create the package data folder
NewDataFolder/O root:Packages
NewDataFolder/O root:Packages:'My Package'

// Create a data folder reference variable
DFREF dfr = root:Packages:'My Package'

// Create and initialize package data
Variable/G dfr:gVar1 = 1.0
String/G dfr:gStr1 = “hello”
Make/O dfr:wave1
WAVE wave1 = dfr:wave1
wave1= x^2

return dfr
End

Now we can write the bottleneck function:
Function/DF GetPackageDFREF()

DFREF dfr = root:Packages:'My Package'
if (DataFolderRefStatus(dfr) != 1) // Data folder does not exist?

DFREF dfr = CreatePackageData() // Create package data folder
endif
return dfr

End

GetPackageDFREF would be used like this:
Function/DF DemoPackageDFREF()

DFREF dfr = GetPackageDFREF()

// Read a package variable
NVAR gVar1 = dfr:gVar1
Printf "On entry gVar1=%g\r", gVar1

// Write to a package variable
gVar1 += 1
Printf "Now gVar1=%g\r", gVar1

End

All functions that access the package data folder should do so through GetPackageDFREF. The calling func-
tions do not need to worry about whether the data folder has been created and initialized because GetPack-
ageDFREF does this for them.

Chapter IV-10 — Advanced Topics

IV-236

Creating and Accessing the Package Per-Instance Data Folders
Here we extend the technique of the preceding section to handle per-instance data. This example shows
how you might handle per-channel data in a data acquisition package. If your package does not use per-
instance data then you can skip this section.

First we write a function to create and initialize the per-instance package data folder:

Function/DF CreatePackageChannelData(channel) // Called only from
Variable channel // 0 to 3 // GetPackageChannelDFREF

DFREF dfr = GetPackageDFREF() // Access main package data folder

String dfName = "Channel" + num2istr(channel) // Channel0, Channel1, ...

// Create the package channel data folder
NewDataFolder/O dfr:$dfName

// Create a data folder reference variable
DFREF channelDFR = dfr:$dfName

// Initialize per-instance data
Variable/G channelDFR:gGain = 5.0
Variable/G channelDFR:gOffset = 0.0

return channelDFR
End

Now we can write the bottleneck function:

Function/DF GetPackageChannelDFREF(channel)
Variable channel // 0 to 3

DFREF dfr = GetPackageDFREF() // Access main package data folder

String dfName = "Channel" + num2istr(channel) // Channel0, Channel1, ...
DFREF channelDFR = dfr:$dfName
if (DataFolderRefStatus(channelDFR) != 1) // Data folder does not exist?

DFREF channelDFR = CreatePackageChannelData(channel) // Create it
endif
return channelDFR

End

GetPackageChannelDFREF would be used like this:

Function/DF DemoPackageChannelDFREF(channel)
Variable channel // 0 to 3

DFREF channelDFR = GetPackageChannelDFREF(channel)

// Read a package variables
NVAR gGain = channelDFR:gGain
NVAR gOffset = channelDFR:gOffset
Printf "Channel %d: Gain=%g, offset=%g\r", channel, gGain, gOffset

End

All functions that access a package channel data folder should do so through GetPackageChannelDFREF.
The calling functions do not need to worry about whether the data folder has been created and initialized
because GetPackageChannelDFREF does this for them.

Chapter IV-10 — Advanced Topics

IV-237

Saving Package Preferences
If you are writing a sophisticated package of Igor procedures you may want to save preferences for your
package. For example, if your package creates a control panel that can be opened in any experiment, you
may want it to remember its position on screen between invocations. Or you may want to remember
various settings in the panel from one invocation to the next.

Such “state” information can be stored either separately in each experiment or it can be stored just once for
all experiments in preferences. These two approaches both have their place, depending on circumstances.
But, if your package creates a control panel that is intended to be present at all times and used in any exper-
iment, then the preferences approach is usually the best fit.

If you choose the preferences approach, you will store your package preference file in a directory created for
your package. Your package directory will be in the Packages directory, inside Igor’s own preferences directory.

The location of Igor’s Packages directory depends on the operating system and the particular user’s config-
uration. You can find where it is on a particular system by executing:
Print SpecialDirPath("Packages", 0, 0, 0)

Important:You must choose a very distinctive name for your package because that is the only thing that
prevents some other package from overwriting yours. All package names starting with “WM”
are reserved for WaveMetrics.

A package name is limited to 31 bytes and must be a legal name for a directory on disk.

There are two ways to store package preference data:
• In a special-format binary file stored in your package directory

• As Igor waves and variables in an Igor experiment file stored in your package directory

The special-format binary file approach is relatively simple to implement but is not suitable for storing very large
amounts of data. In most cases it is not necessary to store very large amounts of data so this is the way to go.

The use of the Igor experiment file supports storing a large amount of preference data but creates a problem
of synchronizing your preference data stored in memory and your preference data stored on disk. It also
leads to a proliferation of preference data stored in various experiments. You should avoid using this tech-
nique if possible.

Saving Package Preferences in a Special-Format Binary File
This approach supports preference data consisting of a collection of numeric and string data. You define a struc-
ture encapsulating your package preference data. You use the LoadPackagePreferences operation (page V-440)
to load your data from disk and the SavePackagePreferences operation (page V-703) to save it to disk.

SavePackagePreferences stores data from your package’s preferences data structure in memory. LoadPack-
agePreferences returns that data to you via the same structure.

SavePackagePreferences also creates a directory for your package preferences and stores your data in a file
in that directory. Your package directory is located in the Packages directory in Igor’s preferences directory.
The job of storing the preferences data in the file is handled transparently which, by default, automatically
flushes your data to the file when the current experiment is saved or closed and when Igor quits.

You would call LoadPackagePreferences every time you need to access your package preference data and
SavePackagePreferences every time you want to change your package preference data. You pass to these
operations an instance of a structure that you define.

Here are example functions from the Package Preferences Demo experiment that use the LoadPackagePref-
erences and SavePackagePreferences operations to implement preferences for a particular package:
// NOTE: The package name you choose must be distinctive!
static StrConstant kPackageName = "Acme Data Acquisition"
static StrConstant kPrefsFileName = "PanelPreferences.bin"

Chapter IV-10 — Advanced Topics

IV-238

static Constant kPrefsVersion = 100
static Constant kPrefsRecordID = 0

Structure AcmeDataAcqPrefs
uint32version // Preferences structure version number. 100 means 1.00.
double panelCoords[4] // left, top, right, bottom
uchar phaseLock
uchar triggerMode
double ampGain
uint32 reserved[100] // Reserved for future use

EndStructure

// DefaultPackagePrefsStruct(prefs)
// Sets prefs structure to default values.
static Function DefaultPackagePrefsStruct(prefs)

STRUCT AcmeDataAcqPrefs &prefs

prefs.version = kPrefsVersion

prefs.panelCoords[0] = 5 // Left
prefs.panelCoords[1] = 40 // Top
prefs.panelCoords[2] = 5+190 // Right
prefs.panelCoords[3] = 40+125 // Bottom
prefs.phaseLock = 1
prefs.triggerMode = 1
prefs.ampGain = 1.0

Variable i
for(i=0; i<100; i+=1)

prefs.reserved[i] = 0
endfor

End

// SyncPackagePrefsStruct(prefs)
// Syncs package prefs structures to match state of panel.
// Call this only if the panel exists.
static Function SyncPackagePrefsStruct(prefs)

STRUCT AcmeDataAcqPrefs &prefs

// Panel does exists. Set prefs to match panel settings.
prefs.version = kPrefsVersion

GetWindow AcmeDataAcqPanel wsize
// NewPanel uses device coordinates. We therefore need to scale from
// points (returned by GetWindow) to device units for windows created
// by NewPanel.
Variable scale = ScreenResolution / 72
prefs.panelCoords[0] = V_left * scale
prefs.panelCoords[1] = V_top * scale
prefs.panelCoords[2] = V_right * scale
prefs.panelCoords[3] = V_bottom * scale

ControlInfo /W=AcmeDataAcqPanel PhaseLock
prefs.phaseLock = V_Value // 0=unchecked; 1=checked

ControlInfo /W=AcmeDataAcqPanel TriggerMode
prefs.triggerMode = V_Value // Menu item number starting from on

ControlInfo /W=AcmeDataAcqPanel AmpGain
prefs.ampGain = str2num(S_value) // 1, 2, 5 or 10

End

// InitPackagePrefsStruct(prefs)
// Sets prefs structures to match state of panel or
// to default values if panel does not exist.
static Function InitPackagePrefsStruct(prefs)

STRUCT AcmeDataAcqPrefs &prefs

DoWindow AcmeDataAcqPanel
if (V_flag == 0)

// Panel does not exist. Set prefs struct to default.
DefaultPackagePrefsStruct(prefs)

else
// Panel does exists. Sync prefs struct to match panel state.
SyncPackagePrefsStruct(prefs)

Chapter IV-10 — Advanced Topics

IV-239

endif
End

static Function LoadPackagePrefs(prefs)
STRUCT AcmeDataAcqPrefs &prefs

// This loads preferences from disk if they exist on disk.
LoadPackagePreferences kPackageName, kPrefsFileName, kPrefsRecordID, prefs

// If error or prefs not found or not valid, initialize them.
if (V_flag!=0 || V_bytesRead==0 || prefs.version!=kPrefsVersion)

InitPackagePrefsStruct(prefs) // Set from panel if it exists or to default values.
SavePackagePrefs(prefs) // Create initial prefs record.

endif
End

static Function SavePackagePrefs(prefs)
STRUCT AcmeDataAcqPrefs &prefs

SavePackagePreferences kPackageName, kPrefsFileName, kPrefsRecordID, prefs
End

NOTE: The package preferences structure, AcmeDataAcqPrefs in this case, must not use fields of type
Variable, String, WAVE, NVAR, SVAR or FUNCREF because these fields refer to data that may
not exist when LoadPackagePreferences is called.

The structure can use fields of type char, uchar, int16, uint16, int32, uint32, int64, uint64, float and double
as well as fixed-size arrays of these types and substructures with fields of these types.

Use the reserved field to add fields to the structure in a backward-compatible fashion. For example, a sub-
sequent version of the structure might look like this:
Structure AcmeDataAcqPrefs

uint32 // Preferences structure version number. 100 means 1.00.
double panelCoords[4] // left, top, right, bottom
uchar phaseLock
uchar triggerMode
double ampGain
uint32 triggerDelay
uint32 reserved[99] // Reserved for future use

EndStructure

Here the triggerDelay field was added and size of the reserved field was reduced to keep the overall size of
the structure the same. The AcmeDataAcqLoadPackagePrefs function would also need to be changed to set
the default value of the triggerDelay field.

If you need to change the structure such that its size changes or its fields are changed in an incompatible manner
then you must change your structure version, which will overwrite old preferences with new preferences.

A functioning example using this technique can be found in:
“Igor Pro 7 Folder:Examples:Programming:Package Preferences Demo.pxp”

In the example above we store just one structure in the preference file. However LoadPackagePreferences
and SavePackagePreferences allow storing any number of structures of the same or different types in the
preference file. You can store either multiple instances of the same structure or multiple different structures.
You must assign a unique nonnegative integer as a record ID for each structure stored and pass this record
ID to LoadPackagePreferences and SavePackagePreferences. You could use this feature, for example, to
store a different structure for each type of control panel that your package presents. Since all data is cached
in memory you should not attempt to store hundreds or thousands of structures.

In almost all cases a particular package will need just one preference file. For the rare cases where this is
inconvenient, LoadPackagePreferences and SavePackagePreferences allow each package to create any
number of preference files, each with a distinct file name. All of the preference files for a particular package
are stored in the same directory, the package’s preferences directory. Each file can store a different set of

Chapter IV-10 — Advanced Topics

IV-240

structure. However, the code that implements this feature is not tuned to handle large numbers of files so
you should not use this feature indiscriminately.

Saving Package Preferences in an Experiment File
This approach supports package preference data consisting of waves, numeric variables and string vari-
ables. It is more difficult to implement than the special-format binary file approach and is not recommended
except for expert programmers and then only if the previously described approach is not suitable.

You use the SaveData operation to store your waves and variables in a packed experiment file in your
package directory on disk. You can later use the LoadData operation to load the waves and variables into
a new experiment.

You must create your package directory as illustrated by the SavePackagePrefs function below.

The following example functions save and load package preferences. These functions assume that the
package preferences consist of all waves and variables at the top level of the package’s data folder. You may
need to customize these functions for your situation.
// SavePackagePrefs(packageName)
// Saves the top-level waves, numeric variables and string variables
// from the data folder for the named package into a file in the Igor
// preferences hierarchy on disk.
Function SavePackagePrefs(packageName)

String packageName // NOTE: Use a distinctive package name.

// Get path to Packages preferences directory on disk.
String fullPath = SpecialDirPath("Packages", 0, 0, 0)
fullPath += packageName

// Create a directory in the Packages directory for this package
NewPath/O/C/Q tempPackagePrefsPath, fullPath

fullPath += ":Preferences.pxp"

DFREF saveDF = GetDataFolderDFR()
SetDataFolder root:Packages:$packageName
SaveData/O/Q fullPath // Save the preference file
SetDataFolder saveDF

// Kill symbolic path but leave directory on disk.
KillPath/Z tempPackagePrefsPath

End

// LoadPackagePrefs(packageName)
// Loads the data from the previously-saved package preference file,
// if it exist, into the package's data folder.
// Returns 0 if the preference file existed, -1 if it did not exist.
// In either case, this function creates the package's data folder if it
// does not already exist.
// LoadPackagePrefs does not affect any other data already in the
// package's data folder.
Function LoadPackagePrefs(packageName)

String packageName // NOTE: Use a distinctive package name.

Variable result = -1
DFREF saveDF = GetDataFolderDFR()

NewDataFolder/O/S root:Packages // Ensure root:Packages exists
NewDataFolder/O/S $packageName // Ensure package data folder exists

// Find the disk directory in the Packages directory for this package
String fullPath = SpecialDirPath("Packages", 0, 0, 0)
fullPath += packageName
GetFileFolderInfo/Q/Z fullPath
if (V_Flag == 0) // Disk directory exists?

fullPath += ":Preferences.pxp"
GetFileFolderInfo/Q/Z fullPath
if (V_Flag == 0) // Preference file exist?

LoadData/O/R/Q fullPath // Load the preference file.
result = 0

endif
endif

Chapter IV-10 — Advanced Topics

IV-241

SetDataFolder saveDF
return result

End

The hard part of using the experiment file for saving package preferences is not in saving or loading the
package preference data but in choosing when to save and load it so that the latest preferences are always
used. There is no ideal solution to this problem but here is one strategy:
1. When package preference data is needed (e.g., you are about to create your control panel and need to

know the preferred coordinates), check if it exists in memory. If not load it from disk.
2. When the user does a New Experiment or quits Igor, if package preference data exists in memory, save

it to disk. This requires that you create an IgorNewExperimentHook function and an IgorQuitHook
function.

3. When the user opens an experiment file, if it contains package preference data, delete it and reload from
disk. This requires that you create an AfterFileOpenHook function. This is necessary because the pack-
age preference data in the just opened experiment is likely to be older than the data in the package pref-
erence file.

Creating Your Own Help File
If you are an advanced user, you can create an Igor help file that extends the Igor help system. This is some-
thing you might want to do if you write a set of Igor procedures or extensions for use by your colleagues.
If your procedures or extensions are generally useful, you might want to make them available to all Igor
users. In either case, you can provide documentation in the form of an Igor help file.

Here are the steps for creating an Igor help file.
1. Create a formatted-text notebook.

A good way to do this is to open the Igor Help File Template provided by WaveMetrics in the More
Help Files folder. Alternatively, you can start by duplicating another WaveMetrics-supplied help file
and then open it as a notebook using File→Open File→Notebook. Either way, you are starting with a
notebook that contains the rulers used to format an Igor help file.

2. Choose Save Notebook As from the File menu to create a new file. Use a “.ihf” extension so that Igor
will recognize it as a help file.

3. Enter your help text in the new file.
4. Save and kill the notebook.
5. Open the file as a help file using File→Open File→Help File.

When you open the file as a help file, it needs to be compiled. When Igor compiles a help file, it scans through it
to find out where the topics start and end and makes a note of subtopics. When the compilation is finished, it
saves the help file which now includes the help compiler information.

Once Igor has successfully compiled the help file, it acts like any other Igor help file. That is, when opened it
appears in the Help Windows submenu, its topics will appear in the Help Browser, and you can click links to
jump around.

Here are the steps for modifying a help file.
1. If the help file is open, kill it by pressing Option (Macintosh) or Alt (Windows) and clicking the close but-

ton.
2. Open it as a notebook, using File→Open File→Notebook.

Alternatively, you can press Shift while choosing the file from File→Recent Files. Then, in the resulting
dialog, specify that you want to open the file as a formatted notebook.

3. Modify it using normal editing techniques.
4. Choose Save Notebook from the File menu.
5. Click the close button and kill the notebook.
6. Reopen it as a help file using File→Open File→Help File.

Alternatively, you can press Shift while choosing the file from File→Recent Files. Then, in the resulting

Chapter IV-10 — Advanced Topics

IV-242

dialog, specify that you want to open the file as a help file.

Syntax of a Help File
Igor needs to be able to identify topics, subtopics, related topics declarations, and links in Igor help files. To do
this it looks for certain rulers, text patterns and text formats described in Creating Links on page IV-242. You
can get most of the required text formats by using the appropriate ruler from the Igor Help File Template file.

Igor considers a paragraph to be a help topic declaration if it starts with a bullet character followed by a tab
and if the paragraph’s ruler is named Topic. By convention, the Topic ruler’s font is Geneva on Macintosh
or Arial on Windows, its text size is 12 and its text style is bold-underlined. The bullet and tab characters
should be plain, not bold or underlined.

The easiest way to create a new topic with the right formatting is to copy an existing topic and then modify it.

Once Igor finds a topic declaration, it scans the body of the topic. The body is all of the text until the next
topic declaration, a related-topics declaration, or the end of the file. While scanning, it notes any subtopics.

Igor considers a paragraph to be a subtopic declaration if the name of the ruler governing the paragraph
starts with “Subtopic”. Thus if the ruler is named Subtopic or Subtopic+ or Subtopic2, the paragraph is a
subtopic declaration. By convention, the Subtopic ruler’s font is Geneva on Macintosh or Arial on Windows,
its text size is 10 and its text style is bold and underlined. Text following the subtopic name that is not bold
and underlined is not part of the subtopic name.

The easiest way to create a new subtopic with the right formatting is to copy an existing subtopic and then
modify it.

Igor considers a paragraph to be a related-topics declaration if the ruler governing the paragraph is named
RelatedTopics and if the paragraph starts with the text pattern “Related Topics:”. When Igor sees this
pattern it knows that this is the end of the current topic. The related-topics declaration is optional. Prior to
Igor Pro 4, Igor displayed a list of related topics in the Igor Help Browser. Igor Pro no longer displays this
list. The user can still click the links in the related topics paragraph to jump to the referenced topics.

Igor knows that it has hit the end of the current topic when it finds the related-topics declaration or when
it finds a new topic declaration. In either case, it proceeds to compile the next topic. It continues compiling
until it hits the end of the file.

When compiling the help file, Igor may encounter syntax that it can’t understand. For example, if you have
a related-topics declaration paragraph, Igor will expect the next paragraph to be a topic declaration. If it is
not, Igor will stop the compilation and display an error dialog. You need to open the file as a notebook, fix
the error, save and kill it and then reopen it as a help file.

Another error that is easy to make is to fail to use the plain text format for syntactic elements like bullet-tab,
“Related Topics:” or the comma and space between related topics. If you run into a non-obvious compile error
in a topic, subtopic or related topics declaration, recreate the declaration by copying from a working help file.

The help files supplied by WaveMetrics contain a large number of rulers to define various types of paragraphs
such as topic paragraphs, subtopic paragraphs, related topic paragraphs, topic body paragraphs and so on.
The Igor Help File Template contains many but not all of these rulers. If you find that you need to use a ruler
that exists in a WaveMetrics help file but not in your help file then copy a paragraph governed by that ruler
from the WaveMetrics help file and paste it into your file. This transfers the ruler to your file.

Creating Links
A link is text in an Igor help file that, when clicked, takes the user to some other place in the help. Igor con-
siders any pure blue, underlined text to be a link. Pure blue means that the RGB value is (0, 0, 65535). By
convention links use the Geneva font on Macintosh and the Arial font on Windows.

To create a link, select the text in the notebook that you are preparing to be a help file. Then choose Make Help
Link from the Notebook menu. This sets the text format for the selected text to pure blue and underlined.

Chapter IV-10 — Advanced Topics

IV-243

The link text refers to another place in the help using one of these forms:

• The name of a help topic (e.g., Command Window)

• The name of a help subtopic (e.g., History Area)

• A combined topic and subtopic (e.g., Command Window[History Area])

Use the combined form if there is a chance that the help topic or subtopic name by itself may be ambiguous.
For example, to refer to the Preferences operation, use Operations[Preferences] rather than Preferences by
itself.

When the user double-clicks a link, Igor performs the following search:
1. If the link is a topic name, Igor goes to that topic.
2. If the link is in topic[subtopic] form, Igor goes to that subtopic.
3. If steps 1 and 2 fail, Igor searches for a subtopic with the same name as the link. First, it searches for a

subtopic in the current topic. If that fails, it searches for a subtopic in the current help file. If that fails, it
searches for a subtopic in all help files.

4. If step 3 fails, Igor searches all help files in the Igor Pro 7 folder. If it finds the topic in a closed help file,
it opens and displays it.

5. If step 4 fails, Igor searches all help files in the Igor Pro User Files folder. If it finds the topic in a closed
help file, it opens and displays it.

6. If all of the above fail, Igor displays a dialog saying that the required help file is not available.
You can create a link in a help file that will open a Web page or FTP site in the user’s Web or FTP browser.
You do this by entering the Web or FTP URL in the help file while you are editing it as a notebook. The URL
must appear in this format:
<http://www.wavemetrics.com>
<ftp://ftp.wavemetrics.com>

The URL must include the angle brackets and the “http://”, “https://” or “ftp://” protocol specifier. Support
for https was added in Igor Pro 7.02.

After entering the URL, select the entire URL, including the angle brackets, and choose Make Help Link
from the notebook menu. Once the file is compiled and opened as a help file, clicking the link will open the
user’s Web or FTP browser and display the specified URL.

For any other kind of URL, such as sftp or mailto, use a notebook action that calls BrowseURL instead of a
help link.

It is currently not possible make ordinary text into a Web or FTP link. The text must be an actual URL in the
format shown above or you can insert a notebook action which brings up a web page using the BrowseURL
operation on page V-45. See Notebook Action Special Characters on page III-14 for details.

Checking Links
You can tell Igor to check your help links as follows:
1. Open your Igor help file and compile it as a help file if necessary.
2. Activate your help window.
3. Right-click in the body of the help file and choose Check Help Links. Igor will check your links from

where you clicked to the end of the file and note any problems by writing diagnostics to the history area
of the command window.

4. When Igor finishes checking, if it found bad links, kill the help file and open it as a notebook.
5. Use the diagnostics that Igor wrote in the history to find and fix any link errors.
6. Save the notebook and kill it.
7. Open the notebook as a help file. Igor will compile it.
8. Repeat the check by going back to Step 1 until you have no bad links.

Chapter IV-10 — Advanced Topics

IV-244

During this process, Igor searches for linked topics and subtopics in open and closed help files and opens any
closed help file to which a link refers. If a link is not satisfied by an already open help file, Igor searches closed
help files in:

• The Igor Pro 7 Folder and subfolders

• The Igor Pro User Files folder and subfolders

• Files and folders referenced by aliases or shortcuts in one of those folders

You can abort the check by pressing the User Abort Key Combinations.

The diagnostic that Igor writes to the history in case of a bad link is in the form:
Notebook $nb selection={(33,292), (33,334)} …

This is set up so that you can execute it to find the bad link. At this point, you have opened the help file as
a notebook. Assuming that it is named Notebook0, execute
String/G nb = "Notebook0"

Now, you can execute the diagnostic commands to find the bad link and activate the notebook. Fix the bad
link and then proceed to the next diagnostic. It is best to do this in reverse order, starting with the last diag-
nostic and cutting it from the history after fixing the problem.

If you press the Shift key while right-clicking a help window, you can choose Check Help Links in All Open
Help Files. Then Igor checks all help links all help files open at that time. While checking a help file, Igor
may open a previously unopened help file. Such newly opened help files are not checked. Only those help
files open when you chose Check Help Links in All Open Help Files are checked. However, if you repeat
the process, help files opened during the previous iteration are checked.

When fixing a bad link, check the following:
• A link is the name of a topic or subtopic in a currently open help file. Check spelling.
• There are no extraneous blue/underlined characters, such as tabs or spaces, before or after the link.

(You can not identify the text format of spaces and tabs by looking at them. Check them by selecting
them and then using the Set Text Format dialog.)

• There are no duplicate topics. If you specify a link in topic[subtopic] form and there are two topics
with the same topic name, Igor may not find the subtopic.

Creating Formatted Text
The printf, sprintf, and fprintf operations print formatted text to Igor’s history area, to a string variable or
to a file respectively. The wfprintf operation prints formatted text based on data in waves to a file.

All of these operations are based on the C printf function which prints the contents of a variable number of
string and numeric variables based on the contents of a format string. The format string can contain literal
text and conversion specifications. Conversion specifications define how a variable is to be printed.

Here is a simple example:
printf "The minimum is %g and the maximum is %g\r", V_min, V_max

In this example, the format string is "The minimum is %g and the maximum is %g\r" which con-
tains some literal text along with two conversion specifications — both of which are “%g”— and an escape
code (“\r”) indicating “carriage-return”. If we assume that the Igor variable V_min = .123 and V_max =
.567, this would print the following to Igor’s history area:
The minimum is .123 and the maximum is .567

We could print this output to an Igor string variable or to a file instead of to the history using the sprintf
(see page V-771) or fprintf (see page V-223) operations.

Chapter IV-10 — Advanced Topics

IV-245

Printf Operation
The syntax of the printf operation is:
printf format [, parameter [, parameter]. . .]

where format is the format string containing literal text or format specifications. The number and type of param-
eters depends on the number and type of format specifications in the format string. The parameters, if any, can
be literal numbers, numeric variables, numeric expressions, literal strings, string variables or string expressions.

The conversion specifications are very flexible and make printf a powerful tool. They can also be quite
involved. The simplest specifications are:

Here are some examples:
printf "%g, %g, %g\r", PI, 6.022e23, 1.602e-19

prints:
3.14159, 6.022e+23, 1.602e-19

printf "%e, %e, %e\r", PI, 6.022e23, 1.602e-19

prints:
3.141593e+00, 6.022000e+23, 1.602000e-19

printf "%f, %f, %f\r", PI, 6.022e23, 1.602e-19

prints:
3.141593, 602200000000000027200000.000000, 0.000000

printf "%d, %d, %d\r", PI, 6.022e23, 1.602e-19

prints:
3, 9223372036854775807, 0

printf "%s, %s\r", "Hello, world", "The time is " + Time()

prints:
Hello, world, The time is 11:43:40 AM

Note that the output for 6.022e23 when printed using the %d conversion specification is wrong. This is
because 6.022e23 is too big a number to represent as an 64-bit integer.

If you want better control of the output format, you need to know more about conversion specifications. It
gets quite involved. See the printf operation on page V-653.

sprintf Operation
The sprintf operation is very similar to printf except that it prints to a string variable instead of to Igor’s
history. The syntax of the sprintf operation is:
sprintf stringVariable, format [, parameter [, parameter]. . .]

Specification What It Does
%g Converts a number to text using integer, floating point or exponential notation

depending on the number’s magnitude.
%e Converts a number to text using exponential notation.
%f Converts a number to text using floating point notation.
%d Converts a number to text using integer notation.
%s Converts a string to text.

Chapter IV-10 — Advanced Topics

IV-246

where stringVariable is the name of the string variable to print to and the remaining parameters are as for
printf. sprintf is useful for generating text to use as prompts in macros, in axis labels and in annotations.

fprintf Operation
The fprintf operation is very similar to printf except that it prints to a file instead of to Igor’s history. The
syntax of the fprintf operation is:
fprintf variable, format [, parameter [, parameter]. . .]

where variable is the name of a numeric variable containing the file reference number for the file to print to
and the remaining parameters are as for printf. You get the file reference number using the Open operation,
described under Open and Close Operations on page IV-185.

For debugging purposes, if you specify 1 for the file reference number, Igor prints to the history area instead
of to a file, as if you used printf instead of fprintf.

wfprintf Operation
The wfprintf operation is similar to printf except that it prints the contents of one to 100 waves to a file. The
syntax of the wfprintf operation is:
wfprintf variable, format [/R=(start,end)] wavelist

variable is the name of a numeric variable containing the file reference number for the file to print to.

Unlike printf, which rounds, wfprintf converts floating point values to integers by truncating, if you use an
integer conversion specification such as “%d”.

Example Using fprintf and wfprintf
Here is an example of a command sequence that creates some waves and put values into them and then
writes them to an output file with column headers.
Make/N=25 wave1, wave2, wave3
wave1 = 100+x; wave2 = 200+x; wave3 = 300+x
Variable f1
Open f1
fprintf f1, "wave1, wave2, wave3\r"
wfprintf f1, "%g, %g, %g\r" wave1, wave2, wave3
Close f1

This generates a comma delimited file. To generate a tab delimited file, use:
fprintf f1, "wave1\twave2\twave3\r"
wfprintf f1, "%g\t%g\t%g\r" wave1, wave2, wave3

Since tab-delimited is the default format for wfprintf, this last command is equivalent to:
wfprintf f1, "" wave1, wave2, wave3

Client/Server Overview
An application can interact with other software as a server or as a client.

A server accepts commands and data from a client and returns results to the client.

A client sends commands and data to a server program and receives results from the server.

For the Macintosh, see Apple Events on page IV-247 for server information and AppleScript on page IV-249
for client capabilities.

For Windows, see ActiveX Automation on page IV-250. Igor can play the role of an Automation server but
not an Automation client. However it is possible to generate script files that allow Igor to indirectly play the
role of client.

Chapter IV-10 — Advanced Topics

IV-247

On Windows, Igor also supports Dynamic Data Exchange (DDE) and can be a DDE server or DDE client.
Because DDE is obsolescent and being phased out by Microsoft, new programming should use ActiveX
automation. Igor’s support for DDE is described in the Obsolete Topics help file.

Apple Events
This topic is of interest to Macintosh programmers. Windows users should see the section for ActiveX Auto-
mation on page IV-250.

This topic contains information for Igor users who wish to control Igor from other programs (e.g., Apple-
Script). It also contains information useful to people who are writing their own programs and wish to use
Igor Pro as a computing or graphing engine.

There is also a mechanism that allows Igor to act like a controller and initiate Apple event communication
with other programs. See AppleScript on page IV-249.

Apple Event Capabilities
Igor Pro supports the following Apple events:

Apple Events — Basic Scenario
You use the Open Document event to cause Igor to load an experiment with whatever goodies you find
useful. You then use the Do Script or Eval Expression events to send commands to Igor for execution and
to retrieve results. To get data into Igor you write files and then send commands to Igor to load the data. To
get data waves from Igor you do the reverse. To get graphics, you send commands to Igor that cause it to
write a graphics file that you can read. You may then close the experiment and start over with a new one.
You will not likely use the Save event.

Apple Events — Obtaining Results from Igor
To return information from Igor, you will need to embed special commands in the script you send to Igor
for execution. When Igor encounters these commands, it appends results to a packet that is returned to your
application after script execution ends. The special commands are variations on the standard Igor com-
mands FBinWrite and fprintf. Both of these commands take a file reference number as a parameter. If the
magic value zero is used rather than a real file reference number, then the data that would normally be
written to a file is appended to the result packet.

As far as Igor is concerned, there is no difference between the Do Script and Eval Expression events. How-
ever, old applications may expect results from Eval Expression and not from Do Script.

To use waves and graphics with Apple events, you will need to write or read the data via standard Igor
files. For example, you might include
SavePICT /E=-8 /P=MyPath as "Graphics.pdf"

Event Suite Action

Open Application Required Basically a nop; don’t use.

Open Document Required Loads an experiment.

Print Document Required NA; don’t use.

Quit Application Required Quits.

Close Core Acts on experiment, window or PPC port.

Save Core Acts on experiment only.

Open Core NA; don’t use.

Do Script Misc Executes commands; can return ASCII results.

Eval Expression Misc Same as Do Script; obsolete but included for compatibility.

Chapter IV-10 — Advanced Topics

IV-248

in a script that you send to Igor for execution. You could then read the file in your application.

Apple Event Details
This information is intended for programmers familiar with Apple events terminology.

Some of the following events can act on experiments or windows.

To specify an experiment, use object class cDocument ('docu') and specify either formAbsolutePosition
with index=1 or formName with name=name of experiment.

To specify a window, use object class cWindow ('cwin') and either formAbsolutePosition or formName
with name=title of window.

Event Class Code Action

Open
Application

'aevt' 'oapp' Basically a nop; don’t use.

Open
Document

'aevt' 'odoc' Loads an experiment. Direct object is assumed to be
coercible to a File System Spec record.

Print
Document

'aevt' 'pdoc' NA; don’t use.

Quit
Application

'aevt' 'quit' Quits the program. If the experiment was modified, then
Igor attempts to interact with the user to get save/no save
directions. If interaction is not allowed, then an error is
returned and nothing is done.
To prevent errors, send the close event with appropriate
save options prior to sending quit.

Close 'core' 'clos' Acts on an experiment or window.

For a window, the save/no save/ask optional parameter
(keyAESaveOptions) is allowed and refers to
making/replacing a recreation macro.
For a document (experiment), keyAESaveOptions is
allowed and an additional optional parameter
keyAEDestination my be used to specify where to save
(must be coercible to a FSS). If this is not given and the
experiment is untitled and if an attempt to interact with the
user fails then the experiment is not saved and an error
(such as errAENoUserInteraction) is returned.
Note that if the optional destination is given then the save
options are ignored (why give a destination and then say no
save?).

Save 'core' 'save' Acts on experiment only.

Takes same optional destination parameters as Close. A
save with a destination is the same as a Save as.

Chapter IV-10 — Advanced Topics

IV-249

AppleScript
This topic is of interest to Macintosh programmers. Windows users should see the section for ActiveX Auto-
mation on page IV-250.

Igor supports the creation and execution of simple AppleScripts in order to send commands to other programs.

To execute an AppleScript program, you first compose it in a string and then pass it to the ExecuteScriptText
operation, which in turn passes the text to Apple’s scripting module for compilation and execution. The
result, which might be an error message, is placed in a string variable named S_value. Igor does not save
the compiled script so every time you call ExecuteScriptText your script will have to be recompiled. See the
ExecuteScriptText operation on page V-177 for additional details.

The documentation for the ExecuteScriptText operation (page V-177) includes an example that shows how
to execute a Unix command.

Because there is no easy way to edit a script or to see where errors occur, you should first test your script
using Apple’s Script Editor application.

You can use “Silent 2” to prevent commands your script sends to Igor from being placed in the history area.

You can send commands to Igor without using the tell keyword.

You should check your quoting carefully. Your text must be quoted both for Igor and for Apple’s scripting
system. For example,
ExecuteScriptText "Do Script \"Print \\\"hello\\\"\""

You should compose scripts in string variables one line at a time to improve readability.

If an error occurs that you can’t figure out, print the string, copy from the history and paste into a Script
Editor for debugging.

If the script returns a text return value, it will be quoted within the S_value string.

Don’t forget to include the carriage return escape code, \r, at the end of each line of a multiline script.

The first time you call this routine, it may take an extra long time while the Mac OS loads the scripting modules.

Do Script 'misc' 'dosc' Same as Eval Expression.

Eval
Expression

'aevt' 'eval' Executes commands. Acts just as if commands had been
typed into the command line except the individual
command lines are preceded by a percent symbol rather
than the usual bullet symbol. Also, errors are returned in the
error reply parameter of the event rather than putting up a
dialog.

Note: You can suppress history logging by executing the
command, “Silent 2”, and you can turn it back on by
executing “Silent 3”.

Direct parameter must be text and not a file. Text can be of
any length.

You can return a string containing results by using the
fprintf command with a file reference number of zero.

Event Class Code Action

Chapter IV-10 — Advanced Topics

IV-250

Executing Unix Commands on Mac OS X
On Mac OS X, you can use AppleScript to send a command to the Unix shell. Here is a function that illus-
trates this:
Function/S ExecuteUnixShellCommand(uCommand, printCommandInHistory,
printResultInHistory)

String uCommand // Unix command to execute
Variable printCommandInHistory
Variable printResultInHistory

if (printCommandInHistory)
printf "Unix command: %s\r", uCommand

endif

String cmd
sprintf cmd, "do shell script \"%s\"", uCommand
ExecuteScriptText cmd

if (printResultInHistory)
Print S_value

endif

return S_value
End

You can test the function with this command:

ExecuteUnixShellCommand("ls", 1, 1)

Life is a bit more complicated if the command that you want to execute contains spaces or other nonstan-
dard Unix command characters. For example, imagine that you want to execute this:
ls /System/Library/Image Capture

These commands will not work because of the space in the command:
String unixCmd = "ls /System/Library/Image Capture"
ExecuteUnixShellCommand(unixCmd, 1, 1)

You need to quote the entire Unix command. In order to do this such that the quotes will make it through
Igor’s parser and AppleScript’s parser, you must do this:
String unixCmd = "ls \\\"/System/Library/Image Capture\\\""
ExecuteUnixShellCommand(unixCmd, 1, 1)

Igor’s parser converts \\ to \ and \" to ", so AppleScript sees this:
"ls \"/System/Library/Image Capture\""

AppleScript’s parser converts \" to " so Unix sees this:
ls "/System/Library/Image Capture"

ActiveX Automation
ActiveX Automation, often called just Automation, is Microsoft’s technology for allowing one program to
control another. The program that does the controlling is called the Automation client. The program that is
controlled is called the Automation Server. The client initiates things by making calls to the server which
carries out the requested actions and returns results.

Automation client programs are most often written in Visual Basic or C#. They can also be written in C++ and
other programming languages, and in various scripting languages such as VBScript, JavaScript, Perl, Python and
so on.

Igor can play the role of Automation Server. If you want to write an client program to drive Igor, see “Auto-
mation Server Overview” in the “Automation Server” help file in “\Igor Pro 7 Folder\Miscellaneous\Win-
dows Automation”.

Chapter IV-10 — Advanced Topics

IV-251

Igor Pro does not directly support playing the role of Automation client. However, it is possible to write an
Igor program which generates a script file which can act like an Automation client. For an example, choose
File→Example Experiments→Programming→CallMicrosoftWord.

Calling Igor from Scripts
You can call Igor from shell scripts, batch files, Apple Script, and the Macintosh terminal window using an
operation-like syntax. You can also use this feature to register an Igor license.

The syntax for calling Igor is:

<IGOR> [/I /Q /X /Y /N /Automation] [pathToFileOrCommands] [pathToFile] ...

<IGOR> [/I /N /Automation] [pathToFileOrCommands] [pathToFile] ...

<IGOR> [/I /Q /X /Automation] "commands"

<IGOR> /SN=num /KEY="key" /NAME="name" [/ORG="org" /QUIT]

where <IGOR> is the full path to the Igor executable file.

On Windows, the Igor executable file resides in a folder within the Igor Pro folder. The full path will be
something like:

"C:\Program Files\WaveMetrics\IgorBinaries_x64\Igor Pro 7 Folder\Igor64.exe"

On Macintosh, the Igor application is an "application bundle" and the actual executable file is inside the
bundle. The full path will be something like:

'/Applications/Igor Pro 7 Folder/Igor64.app/Contents/MacOS/Igor64'

In the following discussions, <IGOR> means "the full path to the Igor executable file".

Parameters
All parameters are optional. If you omit all parameters, including just the full path to the Igor executable, a
new instance of Igor is launched.

The usual parameter is a file for Igor to open. It is recommended that both the path and the path to the file
parameter be enclosed in quotes.

You can open multiple files by using a space between one quoted file path and the next.

With the /X flag, only one parameter is allowed and it is interpreted as an Igor command.

Flags
When you specify a flag, you can use a - instead of /. For example, you can write /Q or -Q.

/Automation This flag is supported on Windows only. The Windows OS uses it when launching Igor
Pro as an ActiveX Automation server. It is not intended for use in batch files.

/I Launches a new instance of Igor if one would otherwise not be launched. See Details
for a discussion of instances.

/KEY="key" Specifies the license activation key when registering a license. For example:
/KEY="ABCD-EFGH-IJKL-MNOP-QRST-UVWX-Y"

Do not omit the quotes, or it will fail.
/N Forces the current experiment to be closed without saving if any of the file parameters

are an experiment file.
To save a currently open experiment, use:
<IGOR> /X "SaveExperiment"

/NAME="name" Specifies the name of the licensed user when registering a license. A name is required
when registering.

Chapter IV-10 — Advanced Topics

IV-252

/ORG="org" Specifies the optional name of the licensed organization when registering a license.
/ORG is optional and defaults to "".

/Q Prevents the command from being displayed in Igor's command line as it is executing.
/QUIT Quits Igor Pro after entering license information when used with /SN, /KEY, and

/NAME. Otherwise /QUIT is ignored.
To quit Igor Pro, use:
<IGOR> /X "Quit/N"

/SN=num Specifies the license serial number when registering a license.
/X Executes the commands in the parameter. Only one parameter is allowed with /X. Use

semicolons to separate Igor commands within the parameter.

Details
If an existing instance of Igor is running, the command is sent to the existing instance if you omit the /I flag
and you include /X, /SN, or a path to a file. Otherwise, a new instance of Igor is launched.

Registering a License
You can register an Igor license using the /SN, /KEY, and /NAME flags. All of these flags must be present
to successfully register a license. The optional /ORG parameter defaults to "".

These batch file commands register Igor Pro with the given serial number and license activation key:

<IGOR> /SN=1234567 /KEY="ABCD-EFGH-IJKL-MNOP-QRST-UVWX-Y" /NAME="Jack" /ORG="Acme Scientific" /QUIT

Network Communication
The following sections contain material related to the network communication and Internet-related capa-
bilities of Igor Pro:

URLs on page IV-252
Safe Handling of Passwords on page IV-254
Network Timeouts and Aborts on page IV-255
Network Connections From Multiple Threads on page IV-255
File Transfer Protocol (FTP) on page IV-257
Hypertext Transfer Protocol (HTTP) on page IV-261

URLs
URLs, or Uniform Resource Locators, are compact strings that represent a resource available via the Inter-
net. The description of the URL standard is described in RFC1738 (http://www.rfc-edi-
tor.org/rfc/rfc1738.txt) and updated in RFC3986 (http://www.rfc-editor.org/rfc/rfc3986.txt).

Each URL is composed of several different parts, most of which are optional:

<scheme>://<username>:<password>@<host>:<port>/<path>?<query>

Some examples of valid URLs are:

http://www.example.com
http://www.example.com/afolder?key1=45&key2=66
http://myusername:Passw0rD@www.example.com:8010/index.html
ftp://ftp.wavemetrics.com
file:///C:\\Data\\Trial1\\control.ibw (on Windows only)
file:///Users/bob/Data/Trial1/control.ibw (on Macintosh only)

For most operations and functions that take a urlStr parameter, only the scheme and host parts of the URL
are required. See the Supported Network Schemes section for information on which schemes are sup-

http://www.rfc-editor.org/rfc/rfc1738.txt
http://www.rfc-editor.org/rfc/rfc1738.txt
http://www.rfc-editor.org/rfc/rfc3986.txt

Chapter IV-10 — Advanced Topics

IV-253

ported by which operations and functions, and which port is used by default if it is not provided as part of
the URL.

Usernames and Passwords
You can provide a username and password as part of the URL. However authentication credentials may
not be supported by all schemes (such as file://). Some operations allow you to provide a username and
password by using a flag, such as the /U and /W flags with FTPDownload or the /AUTH flag with URLRe-
quest.

If a URL contains a username and password in the URL and the authentication flags are also used, the
values specified in the flags override values provided in the URL.

If you do not provide a username and password as part of the URL, and you do not use the authentication
flags, then no authentication is attempted. An exception to this rule is that the FTP operations will login to
the FTP server using "anonymous" as the username and a generic email address as the password.

If either the username or password contains special or reserved characters, those characters must be
percent-encoded.

Supported Network Schemes
Different operations and functions support different schemes:

* Includes FTPUpload, FTPDownload, FTPDelete, and FTPCreateDirectory.

Percent Encoding
Percent encoding is a way to encode characters in URLs that would otherwise have a special meaning or
could be misinterpreted by servers. For example, a space character in a URL is encoded as "%20" using a
percent character followed by the hex code for a space in the ASCII character set.

Most URLs contain only the letters A-Z and a-z, the digits 0-9, and a few other characters such as the under-
score (_), hyphen (-), period (.), and tilde (~).

A URL may also contain "reserved characters" that may have special meaning depending on the way that
they are used. Every URL contains the reserved characters ":" and "/" and may also contain one or more of
the following reserved characters: !*'();@&=+$,?#[].

All operations and functions provided by Igor Pro that accept a URL string parameter expect that the URL
has already been percent-encoded as necessary.

In most cases you don't need to worry about percent encoding because most URLs don't use reserved char-
acters except for their special meaning. If you need to use a reserved character in a way that differs from the
character's special meaning, you must percent-encode the character. You can use the URLEncode function
for this purpose.

It is important that you not pass your entire URL to URLEncode to be encoded because that URL will not
be understood by a server. URLEncode percent-encodes all reserved characters in the string you pass to it,
because it cannot distinguish between reserved characters used for their special meaning and reserved

Operation Supported Schemes Default Port

FetchURL and URLRequest http

https

ftp

file

80

443

21

Not applicable

FTP operations* ftp 21

Chapter IV-10 — Advanced Topics

IV-254

characters used outside of their special meaning. Instead, you must pass each piece of the URL through
URLEncode so that the final URL uses the correct syntax.

As an example, we'll use URLEncode to properly encode a URL that contains the following parts:

Without any percent-encoding, the URL is:

http://A. MacGyver:yj@!2M@www.example.com/tape/duct?discount=10%&color=red

If this URL were passed to FetchURL, the result would be an error because the URL contains several
reserved characters that are not intended to be used in their standard way. For example, the "@" character
indicates the separation between the username:password information and the start of the host name, but in
this case the password itself also contains the "@" character. In addition, the "%" character is typically used
to indicate that the next two characters represent a percent-encoded character, but in this example it is also
part of the query. Finally, the username contains a space character. The space character is not technically a
reserved character, but should be percent-encoded to ensure that it is handled correctly.

The following table shows the values of the parts of the URL that need to be percent-encoded by passing
them through the URLEncode function:

The properly percent-encoded URL is:

http://A%2E%20MacGyver:yj%40%212M@www.example.com/tape/duct?discount=10%25&color=red

For keyword-value pairs that make up the query part, each keyword and value must be percent-encoded
separately because the "=" character that separates the key from the value and the "&" character that sepa-
rates the pairs in the list must not be percent-encoded.

For more information on percent-encoding and reserved characters, see http://en.wikipedia.org/wiki/Per-
cent-encoding.

Safe Handling of Passwords
Some operations and functions support the use of a username and password when making a network con-
nection. If you use sensitive passwords you must take certain precautions to prevent them from being acci-
dentally revealed.

1. Always use the /V=0 flag when using a username or password with the /U (username) and /W (pass-

Part Name Example

Scheme http

Username A. MacGyver

Password yj@!2M

Host www.example.com

Path /tape/duct

Query discount=10%&color=red

Part Name Encoded Value

Username A%2E%20MacGyver

Password yj%40%212M

Host www.example.com

Path /tape/duct

Query discount=10%25&color=red

http://en.wikipedia.org/wiki/Percent-encoding

Chapter IV-10 — Advanced Topics

IV-255

word) flags or the /AUTH flag. Otherwise, the debugging information that is printed to the history area
will contain those values and anyone who sees the experiment could see them.

2. Do not hard code username or password values into procedures, since anyone with access to the pro-
cedure file could read them.

3. Do not store username or password values in global variables. Since global variables are saved with an
experiment, if someone else had access to your experiment they could see this information.

Here is an example of how a username and sensitive password can be used in a secure manner:

Function SafeLogin()
String username = ""
String password = ""
Prompt username, "Username"
Prompt password, "Password"
DoPrompt "Enter username and password", username, password
if (V_flag == 1)

// User hit cancel button, so do nothing.
return 0

endif

// Percent-encode in case username and password contain reserved characters.
String encodedUser = URLEncode(username)
String encodedPass = URLEncode(password)

String theURL
sprintf theURL, "http://%s:%s@www.example.com", encodedUser, encodedPass
String response = FetchURL(theURL)
// NOTE: For FTP operations and URLRequest, make sure to use /V=0 so that
// the username and password are not printed to the history.

return 0
End

Note that the user is prompted to provide the username and password when the function is called and that
only local string variables are used to store the username and password. The values in those string variables
are not stored once the function is done executing.

Note also that the password is not hidden during entry in the dialog. Igor currently does not provide a way
to do this.

Network Timeouts and Aborts
Some network calls may return an error code to Igor if they timeout. Depending on the specific operation
or function, there can be a number of causes for a timeout.

If a network connection cannot be made after a period of time it will timeout. The amount of time allowed
for a connection to be established is dependent on several factors.

You can always abort a network operation or function by pressing the User Abort Key Combinations.

Network Connections From Multiple Threads
All network-related operations and functions are thread-safe, which means that they can be called from
multiple preemptive threads at the same time. This capability can be useful when:

• You want to retrieve information from several different URLs as quickly as possible.
• You want to do a long download or other operation in the background to avoid tieing Igor up.

Chapter IV-10 — Advanced Topics

IV-256

The following example illustrates the first of these cases. It uses FetchURL to retrieve a list of the most fre-
quently downloaded books from the Project Gutenberg web site. It then uses FetchURL to download the
entire text of the top four books and prints the number of bytes in each.

ThreadSafe Function GetThePage(url)
String url

String response = FetchURL(url)
return strlen(response)

End

Function ListGutenbergTopBooks()
String topBooksURL = "http://www.gutenberg.org/browse/scores/top"
String baseURL = "http://www.gutenberg.org/files/"

// Get the contents of the page.
String response = FetchURL(topBooksURL)
Variable error = GetRTError(1)
if (error || numtype(strlen(response)) != 0)

Print "Error getting the list of most popular books."
return 0

endif

String topBooksHTML = response

// Remove all line endings.
topBooksHTML = ReplaceString("\n", topBooksHTML, "")
topBooksHTML = ReplaceString("\r", topBooksHTML, "")

// Parse the page to get the section of the page
// with the list of the most popular books from yesterday.
// This could break if the format of the web page changes.
String regExp = "(?i)<h2 id=\"books-last1\">.*?(.*?)"
String topYesterdayHTML = ""
SplitString/E=regExp topBooksHTML, topYesterdayHTML
if (V_flag != 1)

Print "Error parsing the top 100 books section."
return 0

endif

// Replace the line endings.
topYesterdayHTML = ReplaceString("", topYesterdayHTML, "\r")

// Create a wave to store text info about the top four books.
Variable numBooksToUse = 4
Make/O/T/N=(numBooksToUse, 2) topBooksInfo

Make/O/N=(numBooksToUse) byteCounts

Variable n
String bookNumStr
Variable bookNum
String titleAuthor
String thisLine
Variable pos
String bookURL = ""
regExp = "(?i)a href=\".*?(\d+)\">(.+?)"
for (n=0; n<numBooksToUse; n+=1)

// For each book we're going to look at, get the
// partial URL and the title/author text.
thisLine = StringFromList(n, topYesterdayHTML, "\r")

Chapter IV-10 — Advanced Topics

IV-257

SplitString/E=regExp thisLine, bookNumStr, titleAuthor
if (V_flag != 2)

Print "Error parsing the URL and title/author information."
return 0

endif

// Remove the (###) stuff at the end of titleAuthor if it's there.
pos = strsearch(titleAuthor, "(", 0)
if (pos > 0)

titleAuthor = titleAuthor[0, pos - 1]
endif

bookNum = str2num(bookNumStr)

// Store the information about the book in the text wave.
sprintf bookURL, "%s%d/%d.txt", baseURL, bookNum, bookNum
topBooksInfo[n][0] = bookURL
topBooksInfo[n][1] = titleAuthor

endfor

// Download each book (using multiple threads if possible)
// and count the number of bytes in each.
MultiThread byteCounts = GetThePage(topBooksInfo[p][0])

// Print the results.
Print "The top four books by download from yesterday are:"
for (n=0; n<numBooksToUse; n+=1)

Printf "%s (%d bytes)\r", topBooksInfo[n][1], byteCounts[n]
endfor

End

Here is an example of what the output was when this help file was written:

The top four books by download from yesterday are:
Ulysses by James Joyce (1573044 bytes)
Alice's Adventures in Wonderland by Lewis Carroll (167529 bytes)
Piper in the Woods by Philip K. Dick (62214 bytes)
Pride and Prejudice by Jane Austen (704160 bytes)

File Transfer Protocol (FTP)
The FTPDownload, FTPUpload, FTPDelete, and FTPCreateDirectory operations support simple transfers of
files and directories over the Internet.

Since Igor’s SaveNotebook operation can generate HTML files from notebooks, it is possible to write an Igor
procedure that downloads data, analyzes it, graphs it, and uploads an HTML file to a directory used by a
Web server. You can then use the BrowseURL operation to verify that everything worked as expected. For
a demo of some of these features, choose File→Example Experiments→Feature Demos→Web Page Demo.

FTP Limitations
All FTP operations run “synchronously”. This means that, if the operation executes in the main thread, Igor
can not do anything else. However, it is possible to perform these operations using an Igor preemptive
thread so that they execute in the background and you can continue to use Igor for other purposes. For more
information, see Network Connections From Multiple Threads on page IV-255.

Igor does not currently provide any way for the user to browse the remote server from within Igor itself.

Chapter IV-10 — Advanced Topics

IV-258

Igor does not provide any secure way to store passwords. Consequently, you should not use Igor for FTP
in situations where tight security is required. See Safe Handling of Passwords on page IV-254 for an
example of how to securely prompt the user for a password.

Igor does not provide any support for using proxy servers. Proxy servers are security devices that stand between
the user and the Internet and permit some traffic while prohibiting other traffic. If your site uses a proxy server,
FTP operations may fail. Your network administrator may be able to provide a solution.

Igor does not include operations for listing a server directory or changing its current directory.

Downloading a File
The following function transfers a file from an FTP server to the local hard disk:
Function DemoFTPDownload()

String url = "ftp://ftp.wavemetrics.net/welcome.msg"
String localFolder = SpecialDirPath("Desktop",0,0,0)
String localPath = localFolder + "DemoFTPDownloadFile.txt"
FTPDownload/U="anonymous"/W="password" url, localPath

End

The output directory must already exist on the local hard disk. The target file may or may not exist on the local
hard disk. If it does not exist, the FTPDownload command creates it. If it does exist, FTPDownload asks if you
want to overwrite it. To overwrite it without being asked, use the /O flag.

Warning: If you elect to overwrite it, all previous contents of the local target file are obliterated.

FTPDownload presents a dialog asking you to specify the local file name and location in the following cases:
1. You use the /I (interactive) flag.
2. The parent directory specified by the local path does not exist.
3. The specified local file exists and you do not use the /O (overwrite) flag.

Downloading a Directory
The following function transfers a directory from an FTP server to the local hard disk:
Function DemoFTPDownloadDirectory()

String url = "ftp://ftp.wavemetrics.net/Utilities"
String localFolder = SpecialDirPath("Desktop",0,0,0)
String localPath = localFolder + "DemoFTPDownloadDirectory"
FTPDownload/D/U="anonymous"/W="password" url, localPath

End

The /D flag specifies that you are transferring a directory.

The output directory may or may not already exist on the local hard disk. If it does not exist, the FTPDownload
command creates it. If it does exist, FTPDownload asks if you want to overwrite it. To overwrite it without
being asked, use the /O flag.

Warning: If you elect to overwrite it, all previous contents of the local directory are obliterated.

If the local path that you specify ends with a colon or backslash, FTPDownload presents a dialog asking you
to specify the local directory because it is looking for the name of the directory to be created on the local
hard disk.
FTPDownload presents a dialog asking you to specify the local directory in the following cases:
1. You use the /I (interactive) flag.
2. The parent directory specified by the local path does not exist.
3. The specified directory (DemoFTPDownloadFolder in the example above) exists and you have not used

the /O (overwrite) flag.
4. FTPDownload gets an error when it tries to create the specified directory. This could happen, for exam-

ple, if you don’t have write privileges for the parent directory.

Chapter IV-10 — Advanced Topics

IV-259

Uploading a File
The following function uploads a file to an FTP server:
Function DemoFTPUploadFile()

String url = "ftp://ftp.wavemetrics.com/pub"
String localFolder = SpecialDirPath("Desktop",0,0,0)
String localPath = localFolder + "DemoFTPUploadFile.txt"
FTPUpload/U="username"/W="password" url, localPath

End

To successfully execute this, you need a real user name and a real password.

Note: The /O flag has no effect on the FTPUpload operation when uploading a file. FTPUpload always
overwrites an existing server file, whether /O is used or not.

Warning: If you overwrite a server file, all previous contents of the file are obliterated.

To overwrite an existing file on the server, you must have permission to delete files on that server. The
server administrator determines what permission a particular user has.

FTPUpload presents a dialog asking you to specify the local file in the following cases:
1. You use the /I (interactive) flag.
2. The local parent directory or the local file does not exist.

Uploading a Directory
The following function uploads a directory to an FTP server:
Function DemoFTPUploadDirectory()

String url = "ftp://ftp.wavemetrics.com/pub"
String localFolder = SpecialDirPath("Desktop",0,0,0)
String localPath = localFolder + "DemoFTPUploadDirectory"
FTPUpload/D/U="username"/W="password" url, localPath

End

To successfully execute this, you need a real user name and a real password. Also, the server would have
to allow uploading directories.

Note: FTPUpload always overwrites an existing server directory, whether /O is used or not.

Warning: If you omit /O or specify /O or /O=1, all previous contents of the directory are obliterated.

If you specify /O=2, FTPUpload performs a merge of the directory contents. This means that files
and directories in the source overwrite files and directories on the server that have the same
name, but files and directories on the server whose names do not conflict with those in the source
directory are not modified.

To overwrite an existing directory on the server, you must have permission to delete directories on that
server. The server administrator determines what permission a particular user has.

If the local path that you specify ends with a colon or backslash, FTPUpload presents a dialog asking you
to specify the local directory because it is looking for the name of the directory to be uploaded.

FTPUpload presents a dialog asking you to specify the local directory in the following cases:
1. You use the /I (interactive) flag.
2. The specified directory or any of its parents do not exist.
If you don’t have permission to remove and to create directories on the server, FTPUpload will fail and
return an error.

Creating a Directory
The FTPCreateDirectory operation creates a new directory on an FTP server.

Chapter IV-10 — Advanced Topics

IV-260

If the directory already exists on the server, the operation does nothing. This is not treated as an error,
though the V_Flag output variable is set to -1 to indicate that the directory already existed.

If you don't have permission to create directories on the server, FTPCreateDirectory fails and returns an
error.

Deleting a Directory
The FTPDelete operation with the /D flag deletes a directory on an FTP server.

If you don't have permission to delete directories on the server, or if the specified directory does not exist
on the server, FTPDelete fails and returns an error.

FTP Transfer Types
The FTP protocol supports two types of transfers: image and ASCII. Image transfer is appropriate for binary
files. ASCII transfer is appropriate for text files.

In an image transfer, also called a binary transfer, the data on the receiving end will be a replica of the data
on the sending end. In an ASCII transfer, the receiving FTP agent changes line terminators to match the local
convention. On Macintosh and Unix, the conventional line terminator is linefeed (LF, ASCII code 0x0A). On
Windows, it is carriage-return plus linefeed (CR+LF, ASCII code 0x0D + ASCII code 0x0A).

If you transfer a text file using an image transfer, the file may not use the local conventional line terminator,
but the data remains intact. Igor Pro can display text files that use any of the three conventional line termi-
nators, but some other programs, especially older programs, may display the text incorrectly.

On the other hand, if you transfer a binary file, such as an Igor experiment file, using an ASCII transfer, the
file will almost certainly be corrupted. The receiving FTP agent will convert any byte that happens to have
the value 0x0D to 0x0A or vice versa. If the local convention calls for CRLF, then a single byte 0x0D will be
changed to two bytes, 0x0D0A. In either case, the file will become unusable.

FTP Troubleshooting
FTP involves a lot of hardware and software on both ends and a network in between. This provides ample
opportunity for errors.

Here are some tips if you experience errors using the FTP operations.
1. Use an FTP client or web browser to connect to the FTP site. This confirms that your network is operat-

ing, the FTP server is operating, and that you are using the correct URL.
2. Use an FTP client or web browser to verify that the user name and password that you are using is correct

or that the server allows anonymous FTP access.
Many web browser accept URLs of the form:
ftp://username:password@ftp.example.com

However the password is not transferred securely.
3. Use an FTP client or web browser to verify that the directory structure of the FTP server is what you

think it is.
4. Using an FTP client or web browser, do the operation that you are attempting to do with Igor. This ver-

ifies that you have sufficient permissions on the server.
5. Use /V=7 to tell the Igor operation to display status information in the history area.
6. Try the simplest transfer you can. For example, try to download a single file that you know exists on the

server.
7. If you have access to the FTP server, examine the FTP server log for clues.

Chapter IV-10 — Advanced Topics

IV-261

Hypertext Transfer Protocol (HTTP)
The FetchURL function supports simple URL requests over the Internet from web or FTP servers and to
local files. For example, you can use FetchURL to get the source code of a web page in text form, and then
process the text to extract specific information from the response.

The URLRequest operation supports both simple URL requests and more complicated requests such as
using the http POST, PUT, and DELETE methods. It also provides experimental support for using a proxy
server.

HTTP Limitations
At this time, FetchURL and BrowseURL routines work with the HTTP protocol.

Currently not supported are features such as using network proxy servers, using the HTTP POST method
to submit forms and upload files to a web server, and making secure network connections using the Secure
Socket Layer (SSL) protocol.

Downloading a Web Page Via HTTP
This example uses FetchURL to download the contents of the WaveMetrics home page into a string, and
then counts the number of times that the string "Igor" occurs in the text of the page.

Function DownloadWebPageExample()
String webPageText = FetchURL("http://www.wavemetrics.com")
if (numtype(strlen(webPageText)) == 2)

Print "There was an error while downloading the web page."
endif
Variable count, pos
do

pos = strsearch(webPageText, "Igor", pos, 2)
if (pos == -1)

break // No more occurrences of "Igor"
else

pos += 1
count += 1

endif
while (1)
Printf "The text \"Igor\" was found %d times on the web page.\r", count

End

Downloading a File Via HTTP
This example uses FetchURL to download a file from a web server. Because FetchURL does not support
storing the downloaded data into a file directly, we store the data in memory and then use Igor to write that
data to a file on disk.

Though the example uses a URL that begins with http://, FetchURL also supports https://, ftp:// and file://.
You could use the code below with a different URL to download a file from an FTP server or even to access
a local on-disk file.

Function DownloadWebFileExample()
String url = "http://www.wavemetrics.net/IgorManual.zip"

// Based on the URL, determine what the destination
// file name should be. This will be the default in the
// Save As... dialog.
String urlStrParam = RemoveEnding(url, "/")
Variable parts = ItemsInList(urlStrParam, "/")
String destFileNameStr = StringFromList(parts - 1, urlStrParam, "/")
if (strlen(destFileNameStr) < 1)

Print "Error: Could not determine the name of the destination file."

Chapter IV-10 — Advanced Topics

IV-262

return 0
endif

Variable refNum
Open/D/M="Save File As..."/T="????" refNum as destFileNameStr
String fullFilePath = S_fileName

if (strlen(fullFilePath) > 0) // No error and user didn't cancel in dialog.
// Open the selected file so that it can later be written to.
Open/Z/T="????" refNum as fullFilePath
if (V_flag != 0)

Print "There was an error opening the local destination file."
else

String response = FetchURL(url)
Variable error = GetRTError(1)
if (error == 0 && numtype(strlen(response)) == 0)

FBinWrite refNum, response
Close refNum
Print "The file was successfully downloaded as " + fullFilePath

else
Close refNum
DeleteFile/Z fullFilePath // Clean up the empty file.
Print "There was an error downloading the file."

endif
endif

endif
End

Making a Query Via HTTP
Another use for HTTP requests is to get the server's response to a query. Many simple web forms use the
HTTP GET method, which both FetchURL and URLRequest support. For example, you can simulate the
submission of the basic Google search form using the following code.

Function WebQueryExample()
String keywords
String baseURL = "http://www.gutenberg.org/ebooks/search/"

// Prompt the user to enter search keywords.
Prompt keywords, "Enter search term"
DoPrompt "Search Gutenberg.org", keywords
if (V_flag == 1)

return -1 // User clicked cancel button
endif

// Pass the search terms through URLEncode to
// properly percent-encode them.
keywords = URLEncode(keywords)

// Build the full URL.
String url = ""
sprintf url, "%s?query=%s", baseURL, keywords

// Fetch the results.
String response
response = FetchURL(url)
Variable error = GetRTError(1)
if (error != 0 || numtype(strlen(response)) != 0)

Print "Error fetching search results."
return -1

endif

Chapter IV-10 — Advanced Topics

IV-263

// Try to extract the thumbnail image of the first result.
String regExp = "(?s)<img class=\"cover-thumb\" src=\"(.+?)\".*"
String firstURL
SplitString/E=regExp response, firstURL
firstURL = TrimString(firstURL)
firstURL = "http:" + firstURL
if (V_flag == 1)

BrowseURL firstURL
else

Print "Could not extract the first result from the"
Print "results page. Your search terms might not"
Print "have given any results, or the format of"
Print "the results may have changed so that the"
Print "first result cannot be extracted."
return -1

endif

return 0
End

Examples using the POST method can be found in the section The HTTP POST Method of the documenta-
tion for the URLRequest operation.

HTTP Troubleshooting
Here are some tips if you experience errors using FetchURL or URLRequest:

1. Use a web browser to connect to the site. This confirms that your network is operating, the server is op-
erating, and that you are using the correct URL.

2. FetchURL and URLRequest generate an error if it cannot connect to the destination server, which could
happen if your computer is not connected to the network or if the target URL contains an invalid host
name or port number.
However if the URL contains an invalid path or if the destination URL requires you to provide a user-
name and password, these operations will likely not generate an error. The reason is these errors typi-
cally result in a web page being returned, though not the one you expected. If you need to check that a
call to FetchURL returned a valid web page and not an error web page, you must do that in your own
code. One possibility would be to try searching the page for key phrases, such as "File Not Found" or
"Page Not Found".
With URLRequest, you can inspect the value of the V_responseCode output variable. For successful
HTTP requests, this value will usually be 200. A different value may indicate that there was an error
making the request.

Operation Queue
Igor implements an operation queue that supports deferred execution of commands and some special com-
mands for dealing with files, procedures, and experiments.

Igor services the operation queue when no procedures are running and the command line is empty. If the
operation queue is not empty, Igor then executes the oldest command in the queue.

You can append a command to the operation queue using
Execute/P <command string>

The /P flag tells Igor to post the command to operation queue instead of executing it immediately.

You can also specify the /Q (quiet) or /Z (ignore error) flags. See Execute/P operation (page V-177) for details
about /Q and /Z.

Chapter IV-10 — Advanced Topics

IV-264

The command string can contain either a special command that is unique to the operation queue or ordi-
nary Igor commands. The special commands are:
INSERTINCLUDE procedureSpec
DELETEINCLUDE procedureSpec
COMPILEPROCEDURES
NEWEXPERIMENT
LOADFILE filePath
MERGEEXPERIMENT filePath
Note: The special operation queue keywords must be all caps and must have exactly one space after the

keyword.

INSERTINCLUDE and DELETEINCLUDE insert or delete #include lines in the main procedure window.
procedureSpec is whatever you would use in a #include statement except for “#include” itself.

COMPILEPROCEDURES does just what it says, compiles procedures. You must call it after operations such
as INSERTINCLUDE that modify, add, or remove procedure files.

NEWEXPERIMENT closes the current experiment without saving.

LOADFILE opens the file specified by filePath. filePath is either a full path or a path relative to the Igor Pro
Folder. The file can be any file that Igor can open. If the file is an experiment file, execute NEWEXPERI-
MENT first to avoid displaying a “Do you want to save” dialog. If you want to save the changes in an exper-
iment before loading another, you can use the standard SaveExperiment operation.

MERGEEXPERIMENT merges the experiment file specified by filePath into the current experiment. Before
using this, make sure you understand the caveats regarding merging experiments. See Merging Experi-
ments on page II-19 for details.

Here is an example:
Function DemoQueue()

Execute/P "INSERTINCLUDE <Multi-peak fitting 1.3>"
Execute/P "INSERTINCLUDE <Peak Functions>"
Execute/P "COMPILEPROCEDURES "
Execute/P "CreateFitSetupPanel()"
Execute/P "Sleep 00:00:04"
Execute/P "NEWEXPERIMENT "
Execute/P "LOADFILE :Examples:Feature Demos:Live mode.pxp"
Execute/P "DoWindow/F Graph0"
Execute/P "StartButton(\"StartButton\")"

End

One important use of the operation queue is providing easy access to useful procedure packages. The "Igor
Pro 7 Folder/Igor Procedures" folder contains a procedure file named “DemoLoader.ipf” that creates the
Packages submenus found in various menus. To try it out, choose one of the items from the Analy-
sis→Packages menu.

DemoLoader.ipf is an independent module. To examine it, execute:
SetIgorOption IndependentModuleDev=1

and then use the Windows→Procedure Windows submenu.

User-Defined Hook Functions
Igor calls specific user-defined functions, called “hook” functions, if they exist, when it performs certain
actions. This allows savvy programmers to customize Igor’s behavior.

Chapter IV-10 — Advanced Topics

IV-265

In some cases the hook function may inform Igor that the action has been completely handled, and that Igor
shouldn’t perform the action. For example, you could write a hook function to load data from a certain kind
of text file that Igor can not handle directly.

This section discusses general hook functions that do not apply to a particular window. For information on
window-specific events, see Window Hook Functions.

There are two ways to get Igor to call your general hook function. The first is by using a predefined function
name. For example, if you create a function named AfterFileOpenHook, Igor will automatically call it after
opening a file. The second way is to explicitly tell Igor that you want it to call your hook using the SetIgor-
Hook operation.

If you use a predefined hook function name, you should make the function static (private to the file con-
taining it) so that other procedure files can use the same predefined name.

Here are the predefined hook functions.

To create hook functions, you must write functions with the specified names and store them in any proce-
dure file. If you store the procedure file in "Igor Pro User Files/Igor Procedures" (see Igor Pro User Files on
page II-31 for details), Igor will automatically open the file and compile the functions when it starts up and
will execute the IgorStartOrNewHook function if it exists.

To allow for multiple procedure files to define the same predefined hook function, you should declare your
hook function static. For example:

static Function IgorStartOrNewHook(igorApplicationNameStr)
String igorApplicationNameStr

The use of the static keyword makes the function private to the procedure file containing it and allows other
procedure files to have their own static function with the same name.

Igor calls static hook functions after the SetIgorHook functions are called. The static hook functions them-
selves are called in the order in which their procedure file was opened. You should not rely on any execu-
tion order among the static hook functions. However, any hook function which returns a nonzero result
prevents remaining hook functions from being called and prevents Igor from performing its usual process-
ing of the hook event. In most cases hook functions should exercise caution in returning any value other
than 0. For hook functions only, returning a NaN or failing to return a value (which returns a NaN) is con-
sidered the same as returning 0.

Action Hook Function Called
Procedures were successfully compiled AfterCompiledHook
A file or experiment was opened AfterFileOpenHook
The Windows-only "MDI frame" (main application window) was
resized

AfterMDIFrameSizedHook

A target window was created AfterWindowCreatedHook
The debugger window is about to open BeforeDebuggerOpensHook
An experiment is about to be saved BeforeExperimentSaveHook
A file or XOP is about to be opened BeforeFileOpenHook
Igor is about to open a new experiment IgorBeforeNewHook
Igor is about to quit IgorBeforeQuitHook
Igor is building and enabling menus or about to handle a menu
selection

IgorMenuHook

Igor is about to quit IgorQuitHook
Igor launching or creating a new experiment IgorStartOrNewHook

Chapter IV-10 — Advanced Topics

IV-266

The following sections describe the individual hook functions in detail.

AfterCompiledHook
AfterCompiledHook()
AfterCompiledHook is a user-defined function that Igor calls after the procedure windows have all been
compiled successfully.
You can use AfterCompiledHook to initialize global variables or data folders, among other things.
The function result from AfterCompiledHook must be 0. All other values are reserved for future use.

See Also
SetIgorHook, User-Defined Hook Functions on page IV-264.

AfterFileOpenHook
AfterFileOpenHook(refNum, fileNameStr, pathNameStr, fileTypeStr,
fileCreatorStr, fileKind)
AfterFileOpenHook is a user-defined function that Igor calls after it has opened a file because the user
dragged it onto the Igor icon or into Igor or double-clicked it.
AfterFileOpenHook is not called when a file is opened via a menu.

Windows system files with .bin, .com, .dll, .exe, and .sys extensions aren’t passed to the hook functions.
The parameters contain information about the file, which has already been opened for read-only access.
AfterFileOpenHook’s return value is ignored unless fileKind is 9. If the returned value is zero, the default
action is performed.

Parameters
refNum is the file reference number. You use this number with file I/O operations to read from the file. Igor
closes the file when the user-defined function returns, and refNum becomes invalid. The file is opened for
read-only; if you want to write to it, you must close and reopen it with write access. refNum will be -1 for
experiment files and XOPs. In this case, Igor has not opened the file for you.
fileNameStr contains the name of the file.
pathNameStr contains the name of the symbolic path. pathNameStr is not the value of the path. Use the
PathInfo operation to determine the path’s value.
fileTypeStr contains the Macintosh file type, if applicable. File type codes are obsolete. Use the file name
extension to determine if you want to handle the file. You can use ParseFilePath to obtain the extension
from fileNameStr.
fileCreatorStr contains the Macintosh creator code, if applicable. Creator codes are obsolete so ignore this
parameter.

Chapter IV-10 — Advanced Topics

IV-267

fileKind is a number that identifies what kind of file Igor thinks it is. Values for fileKind are listed in the next
section.

AfterFileOpenHook fileKind Parameter
This table describes the AfterFileOpenHook function fileKind parameter.
If the user’s AfterFileOpenHook function returns 0, Igor performs the default action listed in the table:

Details
AfterFileOpenHook’s return value is ignored, except when fileKind is 9 (Numeric text, Tab-Separated-
Values, MIME). If you return a value of 0, Igor executes the default action, which displays the loaded data
in a table and a graph. If you return a value of 1, Igor does nothing.
Another way to disable the MIME-TSV default action is define a global variable named
V_no_MIME_TSV_Load (in the root data folder) and set its value to 1. In this case any file of fileKind = 9 is
reassigned a fileKind of 8.
The default action for fileKind = 9 makes Igor a MIME-TSV document Helper Application for Web browsers
such as Netscape or Internet Explorer.
The exact criteria for Igor to consider a file to be of kind 9 are:
• fileTypeStr must be “TEXT” or “WMT0” (that’s a zero, not an oh).
• Either the first line of the file must begin with a # character, or the name of the file must end with

“.tsv” in either lower or upper case.
• The first line must contain one or more column titles. If the line starts with a # character, the first

column title must not start with “include”, “pragma” or the ! character. Spaces are allowed in the
titles, but if two or more title columns are present, they must be separated by one tab character.

• The second line must contain one or more numbers. If two or more numbers, they must be separated
by one tab character, and the first line’s words must also be separated by tabs.

When the MIME-TSV file contains one column of data, it is graphed as a series of Y values.
Short columns (less than 50 values) are graphed with lines and markers, longer columns with lines only.
Preferences are turned on when the graph is made.

Kind of File fileKind Default Action, if Any
Unknown 0

Igor Experiment, packed
(stationery, too)

1

Igor Experiment, unpacked
(stationery, too)

2

Igor XOP 3

Igor Binary File 4

Igor Text (data and commands) 5

Text, no numbers detected in first
two lines

6

General Numeric text (no tabs) 7

Numeric text
Tab-Separated-Values

8

Numeric text
Tab-Separated-Values, MIME

9 Display loaded data in a new table
and a new graph.

Text, with tabs 10

Igor Notebook
(unformatted or formatted)

11

Igor Procedure 12

Igor Help 13

Chapter IV-10 — Advanced Topics

IV-268

Two columns are assumed to be X followed by Y, and are graphed as Y versus X. More columns do not
affect the graph, though they are shown in the table.

Example
// This hook function prints the first line of opened TEXT files
// into the history area
Function AfterFileOpenHook(refNum,file,pathName,type,creator,kind)

Variable refNum,kind
String file,pathName,type,creator
// Check that the file is open (read only), and of correct type
if((refNum >= 0) && (CmpStr(type,"TEXT")==0)) // also "text", etc.

String line1
FReadLine refNum, line1 // Read the line (and carriage return)
Print line1 // Print line in the history area.

endif
return 0 // don't prevent MIME-TSV from displaying

End

See Also
BeforeFileOpenHook and SetIgorHook.

BeforeDebuggerOpensHook
BeforeDebuggerOpensHook(errorInRoutineStr, stoppedByBreakpoint)
BeforeDebuggerOpensHook is a user-defined function that Igor calls when the debugger window is about
to be opened, whether by hitting a breakpoint or when Debug on Error is enabled.
BeforeDebuggerOpensHook can be used to prevent the debugger window opening for certain error codes
or in selected user-defined functions when Debug on Error is enabled. This is a feature for advanced
programmers only. Most programmers will not need it.
This hook does not work well for macros or procs, because their runtime errors don't automatically open
the debugger, but instead present an error dialog from which the user manually enters the debugger by
clicking the Debug button.

Parameters
errorInRoutineStr contains the name of the routine (function or macro) the debugger will be stopping in as
a fully-qualified name, comprised of at least "ModuleName#RoutineName", suitable for use with
FunctionInfo.
If the routine is in a regular module procedure window (see Regular Modules on page IV-222),
errorInRoutineStr will be a triple name such as "MyIM#MyModule#MyFunction".
stoppedByBreakpoint is 0 if the debugger is about to be shown because of Debug on Error, or non-zero if the
debugger encountered a user-set breakpoint (see Setting Breakpoints on page IV-199).
If a breakpoint exists at the line where an error caused the debugger to appear, stoppedByBreakpoint will be
non-zero, even though the cause was Debug on Error.

Details
If BeforeDebuggerOpensHook returns 0 or NaN (or doesn't return a value), the debugger window is
opened normally.
If it returns 1, the debugger window is not shown and program execution continues.
All other return values are reserved for future use.

Example
The following hypothetical example:
1. Prevents breakpoints from bringing up the debugger, unless DEBUGGING is defined.
2. Prints the name of the routine with the error, and the error message.
3. Beeps before the debugger appears.
Function ProvokeDebuggerInFunction()

DebuggerOptions enable=1, debugOnError=1 // Enable debug on error

ProvokeDebugger()

Chapter IV-10 — Advanced Topics

IV-269

End

Function ProvokeDebugger()
Variable var=0 // Put a breakpoint here.

// Without a #define DEBUGGING, the breakpoint is skipped.
Make/O $"" // Cause an error
Print "Back from bad Make command in function"

End

static Function BeforeDebuggerOpensHook(pathToErrorFunction,isUserBreakpoint)
String pathToErrorFunction
Variable isUserBreakpoint

#ifndef DEBUGGING
if(isUserBreakpoint)

return 1 // Ignore user breakpoints we forgot to clear.
// Don't use this during development!

endif
#endif

Print "stackCrawl = ", GetRTStackInfo(0)
Print "FunctionInfo = ", FunctionInfo(pathToErrorFunction)

// Don't clear errors unless you're preventing the debugger from appearing
Variable clearErrors= 0
Variable rtErr= GetRTError(clearErrors) // Get the error #

Variable substitutionOption= exists(pathToErrorFunction)== 3 ? 3 : 2
String errorMessage= GetErrMessage(rtErr,substitutionOption)

Beep // Audible cue that the debugger is showing up!

Print "Error \""+errorMessage+"\" in "+pathToErrorFunction+"

return 0 // Return 0 to show the debugger; an unexpected error occurred.
End

•ProvokeDebuggerInFunction() // Execute this in the command line
 stackCrawl =

ProvokeDebuggerInFunction;ProvokeDebugger;BeforeDebuggerOpensHook;
 FunctionInfo =

NAME:ProvokeDebugger;PROCWIN:Procedure;MODULE:;INDEPENDENTMODULE:;...
 Error "Expected name" in ProcGlobal#ProvokeDebugger
 Back from bad Make command in function

See Also
SetWindow, SetIgorHook, and User-Defined Hook Functions on page IV-264
Static Functions on page IV-96, Regular Modules on page IV-222, Independent Modules on page IV-224
FunctionInfo, GetRTStackInfo, GetRTError, GetRTErrMessage
Conditional Compilation on page IV-100

AfterMDIFrameSizedHook
AfterMDIFrameSizedHook(param)
AfterMDIFrameSizedHook is a user-defined function that Igor calls when the Windows-only "MDI frame"
(main application window) has been resized.
AfterMDIFrameSizedHook can be used to resize windows to fit the new frame size. See GetWindow
kwFrame and MoveWindow.

Chapter IV-10 — Advanced Topics

IV-270

Parameters
param is one of the following values:

Details
This function is not called on Macintosh.
Resizing the MDI frame by the top left corner calls AfterMDIFrameSizedHook twice: first for the move
(param = 3) and then for the normal resize (param = 0).
Igor currently ignores the value returned by AfterMDIFrameSizedHook. Return 0 in case Igor uses this
value in the future.

See Also
SetWindow, GetWindow, SetIgorHook, and User-Defined Hook Functions on page IV-264.

AfterWindowCreatedHook
AfterWindowCreatedHook(windowNameStr, winType)
AfterWindowCreatedHook is a user-defined function that Igor calls when a target window is first created.
AfterWindowCreatedHook can be used to set a window hook on target windows created by the user or by
other procedures.

Parameters
windowNameStr contains the name of the created window.
winType is the type of the window, the same value as returned by WinType.

Details
“Target windows” are graphs, tables, layout, panels, and notebook windows.
AfterWindowCreatedHook is not called when an Igor experiment is being opened.
Igor ignores the value returned by AfterWindowCreatedHook.

See Also
SetWindow, SetIgorHook, and User-Defined Hook Functions on page IV-264.

BeforeExperimentSaveHook
BeforeExperimentSaveHook(refNum, fileNameStr, pathNameStr, fileTypeStr,
fileCreatorStr, fileKind)
BeforeExperimentSaveHook is a user-defined function that Igor calls when an experiment is about to be
saved by Igor.
Igor ignores the value returned by BeforeExperimentSaveHook.
Parameters
refNum is -1. Ignore this parameter.
fileNameStr contains the name of the file.
pathNameStr contains the name of the symbolic path. pathNameStr is not the value of the path. Use the
PathInfo operation to determine the path’s value.
fileTypeStr contains the Macintosh file type, if applicable. File type codes are obsolete. Use the file name
extension to determine if you want to handle the file. You can use ParseFilePath to obtain the extension
from fileNameStr
fileCreatorStr contains the Macintosh creator code, if applicable. Creator codes are obsolete so ignore this
parameter.

Size Event param
Normal resize 0

Minimized 1

Maximized 2

Moved 3

Chapter IV-10 — Advanced Topics

IV-271

Variable fileKind is a number that identifies what kind of file Igor will be saving:

Details
You can determine the full directory and file path of the experiment by calling the PathInfo operation with
$pathNameStr.

Example
This example prints the full file path of the about-to-be-saved experiment to the history area, and deletes
all unused symbolic paths.
#pragma rtGlobals=1 // treat S_path as local string variable

Function BeforeExperimentSaveHook(rN,fileName,path,type,creator,kind)
Variable rN,kind
String fileName,path,type,creator

PathInfo $path // puts path value into (local) S_path
Printf "Saved \"%s\" experiment\r",S_path+fileName

KillPath/A/Z // Delete all unneeded symbolic paths
End

See Also
The SetIgorHook operation.

BeforeFileOpenHook
BeforeFileOpenHook(refNum, fileNameStr, pathNameStr, fileTypeStr,
fileCreatorStr, fileKind)
BeforeFileOpenHook is a user-defined function that Igor calls when a file is about to be opened because the
user dragged it onto the Igor icon or into Igor or double-clicked it.
BeforeFileOpenHook is not called when a file is opened via a menu.
Windows system files with .bin, .com, .dll, .exe, and .sys extensions aren’t passed to the hook functions.
The value returned by BeforeFileOpenHook informs Igor whether the hook function handled the open
event and therefore Igor should not perform its default action. In some cases, this return value is ignored,
and Igor performs the default action anyway.

Parameters
refNum is the file reference number. You use this number with file I/O operations to read from the file. Igor
closes the file when the user-defined function returns, and refNum becomes invalid. The file is opened for
read-only; if you want to write to it, you must close and reopen it with write access. refNum will be -1 for
experiment files and XOPs. In this case, Igor has not opened the file for you.
fileNameStr contains the name of the file.
pathNameStr contains the name of the symbolic path. pathNameStr is not the value of the path. Use the
PathInfo operation to determine the path’s value.
fileTypeStr contains the Macintosh file type, if applicable. File type codes are obsolete. Use the file name
extension to determine if you want to handle the file. You can use ParseFilePath to obtain the extension
from fileNameStr
fileCreatorStr contains the Macintosh creator code, if applicable. Creator codes are obsolete so ignore this
parameter.
fileKind is a number that identifies what kind of file Igor thinks it is. Values for fileKind are listed in the next
section.

Kind of File fileKind
Igor Experiment, packed*

* Including stationery experiment files.

1

Igor Experiment, unpacked* 2

Chapter IV-10 — Advanced Topics

IV-272

BeforeFileOpenHook fileKind Parameter
This table describes the BeforeFileOpenHook function fileKind parameter.

Details
BeforeFileOpenHook must return 1 if Igor is not to take action on the file (it won’t be opened), or 0 if Igor
is permitted to take action on the file. Igor ignores the return value for fileKind values of 3, 12, and 13. The
hook function is not called for Igor experiments (fileKind values of 1 and 2).
Igor always closes the file when the user-defined function returns, and refNum becomes invalid (don’t store
the value of refNum in a global for use by other routines, since the file it refers to has been closed).

Example
This example checks the first line of the file about to be opened to determine whether it has a special,
presumably user-specific, format. If it does, then LoadMyFile (another user-defined function) is called to
load it. LoadMyFile presumably loads this custom data file, and returns 1 if it succeeded. If it returns 0 then
Igor will open it using the Default Action from the above table.
Function BeforeFileOpenHook(refNum,fileName,path,type,creator,kind)

Variable refNum,kind
String fileName,path,type,creator

Variable handledOpen=0
if(CmpStr(type,"TEXT")==0) // text files only

String line1
FReadLine refNum, line1 // First line (and carriage return)
if(CmpStr(line1[0,4],"XYZZY") == 0) // My special file

FSetPos refNum, 0 // rewind to start of file
handledOpen= LoadMyFile(refNum) // returns 1 if loaded OK

endif
endif
return handledOpen // 1 tells Igor not to open the file

End

Kind of File fileKind Default Action, if Any
Unknown 0

Igor Experiment, packed *

* Including stationery experiment files.

1 (Hook not called)

Igor Experiment, unpacked* 2 (Hook not called)

Igor XOP 3

Igor Binary file 4 Data loaded
Igor Text (data and commands) 5 Data loaded, commands executed
Text, no numbers detected in first
two lines

6 Opened as unformatted notebook

General Numeric text (no tabs) 7 Data loaded as general text
Numeric text
Tab-Separated-Values

8 Data loaded as delimited text

Numeric text
Tab-Separated-Values, MIME

9 Display loaded data in a new table and
a new graph.

Text, with tabs 10 Opened as unformatted notebook
Igor Notebook
(unformatted or formatted)

11 Opened as notebook

Igor Procedure 12 Always opened as procedure file
Igor Help 13 Always opened as help file

Chapter IV-10 — Advanced Topics

IV-273

See Also
AfterFileOpenHook and SetIgorHook.

IgorBeforeNewHook
IgorBeforeNewHook(igorApplicationNameStr)
IgorBeforeNewHook is a user-defined function that Igor calls before a new experiment is opened in
response to the New Experiment, Revert Experiment, or Open Experiment menu items in the File menu.
You can use IgorBeforeNewHook to clean up the current experiment, or to avoid losing unsaved data even
if the user chooses to not save the current experiment.
Igor ignores the value returned by IgorBeforeNewHook.

Parameters
igorApplicationNameStr contains the name of the currently running Igor Pro application.

See Also
IgorStartOrNewHook and SetIgorHook.

IgorBeforeQuitHook
IgorBeforeQuitHook(unsavedExp,unsavedNotebooks,unsavedProcedures)
IgorBeforeQuitHook is a user-defined function that Igor calls just before Igor is about to quit, before any
save-related dialogs have been presented.

Parameters
unsavedExp is 0 if the experiment is saved, non-zero if unsaved.
unsavedNotebooks is the count of unsaved notebooks.
unsavedProcedures is the count of unsaved procedures.
The save state of packed procedure and notebook files is part of unsavedExp, not unsavedNotebooks or
unsavedProcedures. This applies to adopted procedure and notebook files and new procedure and notebook
windows that have never been saved.

Details
IgorBeforeQuitHook should normally return 0. In this case, Igor presents the “Do you want to save” dialog,
and if the user approves, proceeds with the quit, which includes calling IgorQuitHook.
If IgorBeforeQuitHook returns 1, then the quit is aborted. The current experiment, notebooks, and
procedures are not saved, no dialogs are presented to the user, and IgorQuitHook is not called.

See Also
IgorQuitHook and SetIgorHook.

IgorMenuHook
IgorMenuHook(isSelection, menuStr, itemStr, itemNo, activeWindowStr, wType)
IgorMenuHook is a user-defined function that Igor calls just before and just after menu selection, whether
by mouse or keyboard.

Parameters
isSelection is 0 before a menu item has been selected and 1 after a menu item has been selected.
When isSelection is 1, menuStr is the name of the selected menu. It is always in English, regardless of the
localization of Igor. When isSelection is 0, menuStr is "".
When isSelection is 1, itemStr is the name of the selected menu item. When isSelection is 0, itemStr is "".
When isSelection is 1, itemNo is the one-based item number of the selected menu item. When isSelection is 0,
itemNo is 0.
activeWindowStr identifies the active window. See details below.
wType identifies the kind of window that activeWindowStr identifies. It returns the same values as the
WinType function.

Chapter IV-10 — Advanced Topics

IV-274

activeWindowStr Parameter
activeWindowStr identifies the window to which the menu selection will apply. It can be a window name,
window title, or special keyword, as follows:

See Window Names and Titles on page II-40 for a discussion of the distinction.

Details
IgorMenuHook is called with isSelection set to 0 after all the menus have been enabled and before a mouse
click or keyboard equivalent is handled.
The return value should normally be 0. If the return value is nonzero (1 is usual) then the active window’s
hook function (see SetWindow operation on page V-739) is not called for the enablemenu event.
IgorMenuHook is called with isSelection set to 1 after the menu has been selected and before Igor has acted
on the selection.
If the IgorMenuHook function returns 0, Igor proceeds to call the active window’s hook function for the
menu event. (If the window hook function exists and returns nonzero, Igor ignores the menu selection.
Otherwise Igor handles the menu selection normally.)
If the IgorMenuHook function returns nonzero (1 is recommended), Igor does not call the remaining hook
functions and Igor ignores the menu selection.

Example
This example invokes the Export Graphics menu item when Command-C (Macintosh) or Ctrl+C (Windows)
is selected for all graphs, preventing Igor from performing the usual Copy.
Function IgorMenuHook(isSel, menuStr, itemStr, itemNo, activeWindowStr, wt)

Variable isSel
String menuStr, itemStr
Variable itemNo
String activeWindowStr
Variable wt

Variable handled= 0
if(Cmpstr(menuStr,"Edit") == 0 && CmpStr(itemStr,"Copy") == 0)

if(wt == 1) // graph
// DoIgorMenu would cause recursion, so we defer execution
Execute/P/Q/Z "DoIgorMenu \"Edit\", \"Export Graphics\""
handled= 1

endif
endif

return handled
End

See Also
SetWindow, Execute, and SetIgorHook.

IgorQuitHook
IgorQuitHook(igorApplicationNameStr)
IgorQuitHook is a user-defined function that Igor calls when Igor is about to quit.
The value returned by IgorQuitHook is ignored.

Window activeWindowStr
Target window Window name.

The target window is that top graph, table, page layout, notebook,
control panel, Gizmo plot, or XOP target window.

Command window kwCmdHist (as used with GetWindow).
Procedure window Window title as shown in the window’s title bar. The built-in

procedure window is “Procedure”.
XOP non-target window The window title as shown in the window’s title bar.

Chapter IV-10 — Advanced Topics

IV-275

Parameters
igorApplicationNameStr contains the name of the currently running Igor Pro application (including the .exe
extension under Windows).

Details
You can determine the full directory and file path of the Igor application by calling the PathInfo operation
with the Igor path name. See the example in IgorStartOrNewHook on page IV-275.

See Also
IgorBeforeQuitHook and SetIgorHook.

IgorStartOrNewHook
IgorStartOrNewHook(igorApplicationNameStr)
IgorStartOrNewHook is a user-defined function that Igor calls when starting up and when creating a new
experiment. It is also called if Igor is launched as a result of double-clicking a saved Igor experiment.
Igor ignores the value returned by IgorStartOrNewHook.

Parameters
igorApplicationNameStr contains the name of the currently running Igor Pro application (including the .exe
extension under Windows).

Details
You can determine the full directory and file path of the Igor application by calling the PathInfo operation
with the Igor path name.

Example
This example prints the full path of Igor application whenever Igor starts up or creates a new experiment:
Function IgorStartOrNewHook(igorApplicationNameStr)

String igorApplicationNameStr

PathInfo Igor // puts path value into (local) S_path
printf "\"%s\" (re)starting\r", S_path + igorApplicationNameStr

End

See Also
IgorBeforeNewHook and SetIgorHook.

Window User Data
The window user data feature provides a way for packages that create or manage windows to store per-
window settings. You can store arbitrary data with a window using the userdata keyword with the SetWin-
dow.

Each window has a primary, unnamed user data that is used by default.

You can also store an unlimited number of different user data strings by specifying a name for each differ-
ent user data string. The name can be any legal Igor name. It should be distinct to prevent clashes between
packages.

Packages should use named user data.

You can retrieve information from the default user data using the GetWindow. To retrieve named user
data, you must use the GetUserData.

Here is a simple example of user data using the top window:
SetWindow kwTopWin,userdata= "window data"
Print GetUserData("","","")

Although there is no size limit to how much user data you can store, it does have to be stored as part of the
recreation macro for the window when experiments are saved. Consequently, huge user data can slow
down experiment saving and loading

Chapter IV-10 — Advanced Topics

IV-276

Window Hook Functions
A window hook function is a user-defined function that receives notifications of events that occur in a spe-
cific window. Your window hook function can detect and respond to events of interest. You can then allow
Igor to also process the event or inform Igor that you have handled it.

This section discusses window hook functions that apply to a specific window. For information on general
events hooks, see User-Defined Hook Functions on page IV-264.

To handle window events, you first write a window hook function and then use the SetWindow operation
to install the hook on a particular window. This example shows how you would detect arrow key events in
a particular window. To try it, paste the code below into the procedure window and then execute
DemoWindowHook():

Function MyWindowHook(s)
STRUCT WMWinHookStruct &s

Variable hookResult = 0 // 0 if we do not handle event, 1 if we handle it.

switch(s.eventCode)
case 11: // Keyboard event

switch (s.keycode)
case 28:

Print "Left arrow key pressed."
hookResult = 1
break

case 29:
Print "Right arrow key pressed."
hookResult = 1
break

case 30:
Print "Up arrow key pressed."
hookResult = 1
break

case 31:
Print "Down arrow key pressed."
hookResult = 1
break

default:
// The keyText field requires Igor Pro 7 or later
// See Keyboard Events on page IV-281
Printf "Key pressed: %s\r", s.keyText
break

endswitch
break

endswitch

return hookResult // If non-zero, we handled event and Igor will ignore it.
End

Function DemoWindowHook()
DoWindow/F DemoGraph // Does graph exist?
if (V_flag == 0)

Display /N=DemoGraph // Create graph
SetWindow DemoGraph, hook(MyHook)=MyWindowHook // Install window hook

endif
End

The window hook function receives a WMWinHookStruct structure as a parameter. WMWinHookStruct is
a built-in structure that contains all of the information you might need to respond to an event. One of its
fields, the eventCode field, specifies what kind of event occurred.

Chapter IV-10 — Advanced Topics

IV-277

If your hook function returns 1, this tells Igor that you handled the event and Igor does not handle it. If your
hook function returns 0, this tells Igor that you did not handle the event, so Igor does handle it.

This example uses a named window hook. In this case the name is MyHook. More than one procedure file
can install a hook on a given window. The purpose of the name is to allow a package to install and remove
its own hook function without disturbing the hook functions of other packages. Choose a distinct hook
function name that is unlikely to conflict with other hook names.

Earlier versions of Igor supported only one unnamed hook function. This meant that only one package
could hook any particular window. Unnamed hook functions are still supported for backward compatibil-
ity but new code should always use named hook functions.

Window Hooks and Subwindows
Igor calls window hook functions for top-level windows only, not for subwindows. If you want to hook a
subwindow, you must set the hook on the top-level window. In the hook function, test to see if the subwin-
dow is active. For example, this code, at the start of a window hook function, insures that the hook runs
only if a subwindow named G0 is active.
GetWindow $s.winName activeSW
String activeSubwindow = S_value
if (CmpStr(activeSubwindow,"G0") != 0)

return 0
endif

Exterior panels (see Exterior Control Panels on page III-394) are top-level windows even though they are
subwindows. To hook an exterior subwindow, you must install the hook on the exterior panel using sub-
window syntax.

Named Window Hook Functions
A named window hook function takes one parameter - a WMWinHookStruct structure. This built-in struc-
ture provides your function with information about the status of various window events.

The named window hook function has this format:
Function MyWindowHook(s)

STRUCT WMWinHookStruct &s

Variable hookResult = 0

switch(s.eventCode)
case 0: // Activate

// Handle activate
break

case 1: // Deactivate
// Handle deactivate
break

// And so on . . .
endswitch

return hookResult // 0 if nothing done, else 1
End

If you handle a particular event and you want Igor to ignore it, return 1 from the hook function. However,
you cannot make Igor ignore a window kill event - once the kill event is received the window will be killed.

Named Window Hook Events
Here are the events passed to a named window hook function:

Chapter IV-10 — Advanced Topics

IV-278

eventCode eventName Notes

0 “Activate”

1 “Deactivate”

2 “Kill” Returning 1 when you receive this event does not cause Igor to ignore
the event. At this point, you cannot prevent the window from being
killed. See the killVote event to prevent the window being killed.

3 “Mousedown”

4 “Mousemoved”

5 “Mouseup”

6 “Resize”

7 “Cursormoved” See Cursors — Moving Cursor Calls Function on page IV-316.

8 “Modified” A modification to the window has been made. This is sent to graph and
notebook windows only. It is an error to try to kill a notebook window
from the window hook during the modified event.

9 “Enablemenu”

10 “Menu”

11 “Keyboard”

12 “moved”

13 “renamed”

14 “subwindowKill” One of the window’s subwindows is about to be killed.

15 “hide” The window or one of its subwindows is about to be hidden. See
Window Hook Show and Hide Events on page IV-284.

16 “show” The window or one of its subwindows is about to be unhidden. See
Window Hook Show and Hide Events on page IV-284.

17 “killVote” Window is about to be killed. Return 2 to prevent the window from
being killed, otherwise return 0.
Note: Don’t delete data structures during this event, use killVote only
to decide whether the window kill should actually happen. Delete data
structures in the kill event. See Window Hook Deactivate and Kill
Events on page IV-283.

18 “showTools”

19 “hideTools”

20 “showInfo”

21 “hideInfo”

22 “mouseWheel”

23 “spinUpdate” This event is sent only to windows marked via DoUpdate/E=1 as
progress windows. It is sent when Igor spins the beachball cursor. See
Progress Windows on page IV-144 for details.

Chapter IV-10 — Advanced Topics

IV-279

WMWinHookStruct
The WMWinHookStruct structure has members as described in the following tables:

Base WMWinHookStruct Structure Members

Member Description

char winName[MAX_PATH_LENGTH+1] hcSpec of the affected (sub)window.

STRUCT Rect winRect Local coordinates of the affected (sub)window.

STRUCT Point mouseLoc Mouse location.

double ticks Tick count when event happened.

Int32 eventCode See see eventCode table on page IV-278.

char eventName[31+1] Name-equivalent of eventCode, see eventCode table on page
IV-278. Added in Igor 5.03.

Int32 eventMod Bitfield of modifiers. See description for MODIFIERS:flags.

Members of WMWinHookStruct Structure Used with menu Code

Member Description

char menuName[255+1] Name of menu (in English) as used by SetIgorMenuMode.

char menuItem[255+1] Text of the menu item as used by SetIgorMenuMode

Members of WMWinHookStruct Structure Used with keyboard Code

Member Description

Int32 keycode ASCII value of key struck. Function keys are not available but
navigation keys are translated to specific values and will be the
same on Macintosh and Windows.
This field can not represent non-ASCII text such as accented
characters. Use keyText instead.

Int32 specialKeyCode See Keyboard Events on page IV-281.
This field was added in Igor Pro 7.

char keyText[16] UTF-8 representation of key struck.
This field was added in Igor Pro 7.

Members of WMWinHookStruct Structure Used with cursormoved Code

Member Description

char traceName[MAX_OBJ_NAME+1] The name of the trace or image to which the moved cursor is
attached or which supplies the X (and Y) values. Can be "" if the
cursor is free.

char cursorName[2] Cursor name A through J.

double pointNumber Point number of the trace or the X (row) point number of the
image where the cursor is attached.

Chapter IV-10 — Advanced Topics

IV-280

Mouse Events
Igor sends mouse down and mouse up events with the eventCode field of the WMWinHookStruct struc-
ture set to 3 or 5. With rare exceptions, your hook function should act on the mouse up event.

In Igor7, a mouse click on a table cell causes Igor to send a mouse down event to your hook function before
Igor acts on the click, allowing you to block the action by returning a non-zero result. Igor then sends a
mouse down event after Igor has acted on the click.

In Igor6, the mouse down event was sent only when the selection was finished, that is, after the mouse up
event occurred. If you have existing code that uses the mouse down event to get a table selection, you need
to change your code to use the mouse up event.

If the cursor is “free”, pointNumber is actually the fractional
relative xValue as used in the Cursor/F/P command.

double yPointNumber Valid only when the cursor is attached to a two-dimensional
item such as an image, contour, or waterfall plot, or when the
cursor is free.

If attached to an image, contour, or waterfall plot, yPointNumber
is the Y (column) point number of the image where the cursor is
attached.

If the cursor is “free”, yPointNumber is actually the fractional
relative yValue as used in the Cursor/F/P command.

Int32 isFree Has value of 1 if the cursor is not attached to anything, or value
of 0 if it is attached to a trace, image, contour, or waterfall.

Members of WMWinHookStruct Structure Used with mouseWheel Code

Member Description

double wheelDy Vertical lines to scroll. Typically +1 or -1.

double wheelDx Horizontal lines to scroll. Typically +1 or -1.
On Windows, horizontal mouse wheel requires Vista.

Members of WMWinHookStruct Used with renamed Code

Member Description

char oldWinName[MAX_OBJ_NAME+1] Old name of the window or subwindow. Not the absolute path
hcSpec, just the name.

User-Modifiable Members of WMWinHookStruct Structure

Member Description

Int32 doSetCursor Set to 1 to change cursor to that specified by cursorCode.

Int32 cursorCode See Setting the Mouse Cursor.

Members of WMWinHookStruct Structure Used with cursormoved Code

Member Description

Chapter IV-10 — Advanced Topics

IV-281

Keyboard Events
The WMWinHookStruct structure has three members used with keyboard events.

The keycode field works with ASCII characters and some special keys such as keyboard navigation keys.

The specialKeyCode fields works with navigation keys, function keys and other special keys.
specialKeyCode is zero for normal text such as letters, numbers and punctuation.

The keyText field works with ASCII characters and non-ASCII characters such as accented characters.

The specialKeyCode and keyText fields were added in Igor Pro 7. New code that does not need to run
with earlier Igor versions should use these new fields instead of the keycode field. See Keyboard Events
Example on page IV-281 for an example.

Here are the codes for the specialKeyCode and keyCode fields:

Keyboard Events Example
This example illustrates the use of the various keyboard event fields in the WMWinHookStruct structure.
It requires Igor Pro 7 or later.

Function KeyboardWindowHook(s)
STRUCT WMWinHookStruct &s

Key specialKeyCode keyCode Note

F1 through F39 1 through 39 Not supported Function keys

LeftArrow 100 28

RightArrow 101 29

UpArrow 102 30

DownArrow 103 31

PageUp 104 11

PageDown 105 12

Home 106 1

End 107 4

Return 200 13

Enter 201 3

Tab 202 27

BackTab 203 Not supported Tab with Shift pressed

Escape 204 27

Delete 300 8 Backspace key

ForwardDelete 301 127

Clear 302 Not supported

Insert 303 Not supported

Help 400 Not supported

Break 401 Not supported Pause/Break key

Print 402 Not supported

SysReq 403 Not supported

Chapter IV-10 — Advanced Topics

IV-282

Variable hookResult = 0 // 0 if we do not handle event, 1 if we handle it.

String message = ""

switch(s.eventCode)
case 11: // Keyboard event

String keyCodeInfo
sprintf keyCodeInfo, "s.keycode = 0x%04X", s.keycode
if (strlen(message) > 0)

message += "\r"
endif
message +=keyCodeInfo

message += "\r"
String specialKeyCodeInfo
sprintf specialKeyCodeInfo, "s.specialKeyCode = %d", s.specialKeyCode
message +=specialKeyCodeInfo
message += "\r"

String keyTextInfo
sprintf keyTextInfo, "s.keyText = \"%s\"", s.keyText
message +=keyTextInfo

String text = "\\Z24" + message
Textbox /C/N=Message/W=KeyboardEventsGraph/A=MT/X=0/Y=15 text

hookResult = 1 // We handled keystroke
break

endswitch

return hookResult // If non-zero, we handled event and Igor will ignore it.
End

Function DemoKeyboardWindowHook()
DoWindow/F KeyboardEventsGraph // Does graph exist?
if (V_flag == 0)

// Create graph
Display /N=KeyboardEventsGraph as "Keyboard Events"

// Install hook
SetWindow KeyboardEventsGraph, hook(MyHook)=KeyboardWindowHook

String text = "\\Z24" + "Press a key"
Textbox /C/N=Message/W=KeyboardEventsGraph/A=MT/X=0/Y=15 text

endif
End

Setting the Mouse Cursor
An advanced programmer can use a named window hook function to change the mouse cursor.

You might want to do this, for example, if your window hook function intercepts mouse events on certain
items (e.g., waves) and performs custom actions. By setting a custom mouse cursor you indicate to the user
that clicking the items results in different-from-normal actions.

See the Mouse Cursor Control example experiment - in Igor choose File→Example Experi-
ments→Programming→Mouse Cursor Control.

Chapter IV-10 — Advanced Topics

IV-283

Panel Done Button Example
This example uses a window hook and button action procedure to implement a panel dialog with a Done
button such that the panel can't be closed by clicking the panel's close widget, but can be closed by the Done
button's action procedure:
Proc ShowDialog()

PauseUpdate; Silent 1 // building window...
NewPanel/N=Dialog/W=(225,105,525,305) as "Dialog"
Button done,pos={119,150},size={50,20},title="Done"
Button done,proc=DialogDoneButtonProc
TitleBox warning,pos={131,83},size={20,20},title=""
TitleBox warning,anchor=MC,fColor=(65535,16385,16385)
SetWindow Dialog hook(dlog)=DialogHook, hookevents=2

EndMacro

Function DialogHook(s)
STRUCT WMWinHookStruct &s
Variable statusCode= 0

strswitch(s.eventName)
case "killVote":

TitleBox warning win=$s.winName, title="Press the Done button!"
Beep
statusCode=2 // prevent panel from being killed.
break

case "mousemoved": // to reset the warning
TitleBox warning win=$s.winName, title=""
break

endswitch
return statusCode

End

Function DialogDoneButtonProc(ba) : ButtonControl
STRUCT WMButtonAction &ba
switch(ba.eventCode)

case 2: // mouse up
// turn off the named window hook
SetWindow $ba.win hook(dlog)=$""
// kill the window AFTER this routine returns
Execute/P/Q/Z "DoWindow/K "+ba.win
break

endswitch
return 0

End

Window Hook Deactivate and Kill Events
The actions caused by these events (eventCode 2, 14, 15, 16 and 17) potentially affect multiple subwindows.

If you kill a subwindow, the root window’s hook functions receives a subwindowKill event for that sub-
window and any child subwindows.

If you kill a root window, the root window’s hook function(s) receives a subwindowKill event for each child
subwindow, and then the root window’s hook function(s) receive a kill event.

Likewise, hiding and showing windows can result in subwindows being hidden or shown. In each case, the
window hook function receives a hide or show event for each affected window or subwindow.

The winName member of WMWinHookStruct will be set to the full subwindow path of the subwindow
that is affected.

Events for an exterior subwindow are a special case. See Hook Functions for Exterior Subwindows on
page IV-285.

Chapter IV-10 — Advanced Topics

IV-284

The hook functions attached to an exterior subwindow will receive a subwindowKill event if the exterior
subwindow is killed as a result of killing the parent window. But it will receive a regular kill event if it is
killed directly. Normal subwindows always receive only subwindowKill events.

The kill-related events are sent in this order when a window or subwindow is killed:

1. A killVote event is sent to the root window’s hook function(s). If any hook function returns 2, no further
events are generated and the window is not killed.

2. If the window is not a subwindow and wasn't created with /K=1, /K=2 or /K=3, the standard window
close dialog appears. If the close is cancelled, the window is not killed, the window will receive an acti-
vate event when the dialog is dismissed, and no further events are generated. Otherwise, proceed to
step 3.

3. If the window being killed has subwindows, starting from the bottom-most subwindow and working
back toward the window being killed:

3a. If the subwindow is a panel, action procedures for controls contained in the subwindow are called with
event -1, “control being killed”.

3b. The root window's hook function(s) receive a subwindowKill event for the subwindow. If any hook
function returns 1, no further subwindow hook events or control being killed events are sent, but the
window killing process continues.
Steps 3a and 3b are repeated for each subwindow until the window or subwindow being killed is
reached.

4. If the killed window is a root window, a kill event is sent to the root window’s hook function(s). If any
hook function returns 2, no further events are generated and the window is not killed. This method of
preventing a window from closing is to be avoided: use the killVote event or the window-equivalent of
NewPanel/K=2.
Prior to Igor 7, you could return 2 when the window hook received a kill event to prevent the killing of
the window. This is no longer supported. Use the killVote event instead.

There are several ways to prevent a window being killed. You might want to do this in order to enforce use
of a Done or Do It button, or to prevent killing a control panel while some hardware action is taking place.

The best method is to use /K=2 when creating the window (see Display or NewPanel). Then the only way
to kill the window is via the DoWindow/K command, or KillWindow command. In general, you would
provide a button that kills the window after checking for any conditions that would prevent it.

The KillVote event is more flexible but harder to use. It gives your code a chance to decide whether or not
killing is allowed. This means the user can close and kill the window with the window close box when it is
allowed.

Returning 2 for the window kill event is not recommended. If you have old code that uses this method, we
strongly recommend changing it to return 2 for the killVote event. New code should never return 2 for the
kill event.

As of Igor Pro 7, returning 2 for the window kill event does not prevent the window from being killed. If you
have old code that uses this technique, change it to return 2 for the killVote event instead.

Window Hook Show and Hide Events
Igor sends the show event to your hook function when the affected window is about to be shown but is still
hidden. Likewise, Igor sends the hide event when the window is about to be hidden but is still visible. Other
events, notably resize or move events, may be triggered by showing or hiding a window and may be sent
before the change in visibility actually occurs. Here is an example that illustrates this issue:

Function MyHookFunction(s)
STRUCT WMWinHookStruct &s

strswitch(s.eventName)
case "resize":

GetWindow $(s.winName) hide

Chapter IV-10 — Advanced Topics

IV-285

if (V_value)
Print "Resized while hidden"

else
Print "Resized while visible"

endif
break

case "moved":
GetWindow $(s.winName) hide
if (V_value)

Print "Moved while hidden"
else

Print "Moved while visible"
endif
break

case "hide":
print "Hide event"
break

case "show":
print "Show event"
break

endswitch

return 0 // Don't interfere with Igor's handling of events
End

Function MakePanelWithHook()
NewPanel/N=MyPanel/HIDE=1
SetWindow MyPanel, hook(myHook)=MyHookFunction

End

If you run the MakePanelWithHook function on the command line, you see nothing because the panel is
hidden. Now select Windows→Other Windows→MyPanel. The following is printed in the history:

Show event
Moved while hidden
Resized while hidden

The hook function received the Move and Resize events after the Show event, but before the window actually
became visible.

Hook Functions for Exterior Subwindows
A regular subwindow lives inside a host window and receives events through a hook function attached to its
host window.

An exterior subwindow is different because, although it is a subwindow (it is controlled by a host window),
unlike a regular subwindow, it has its own actual window and therefore you can attach a hook function
directly to it. A hook function attached to the root window does not receive events for an exterior subwindow.
To handle events for an exterior subwindow, you must attach a hook function to the exterior subwindow
itself. For example:

// Make a panel
NewPanel/N=RootPanel

// Make an exterior subwindow attached to RootPanel
NewPanel/HOST=RootPanel/EXT=0

// Attach a hook function to the exterior subwindow

Chapter IV-10 — Advanced Topics

IV-286

SetWindow RootPanel#P0 hook(myhook)=MyHookFunction

Unnamed Window Hook Functions
Unnamed window hook functions are supported for backward compatibility only. New code should use
named window hook functions. See Named Window Hook Functions on page IV-277.

Each window can have one unnamed hook function. You designate a function as the unnamed window
hook function using the SetWindow operation with the hook keyword.

The unnamed hook function is called when various window events take place. The reason for the hook
function call is stored as an event code in the hook function’s infoStr parameter.

The hook function is not called during experiment creation or load time so as to prevent the hook function
from failing because the experiment is not fully recreated.

The hook function has the following syntax:
Function procName(infoStr)

String infoStr
String event= StringByKey("EVENT",infoStr)
…
return statusCode // 0 if nothing done, else 1

End

infoStr is a string containing a semicolon-separated list of key:value pairs:

The value accompanying the EVENT keyword is one of the following:

Key Value

EVENT eventKey
See list of eventKey values below.

HCSPEC Absolute path of the window or subwindow.
See Subwindow Command Concepts on page III-87.

MODIFIERS Bit flags as follows:

Bit 0: Set if mouse button is down.

Bit 1: Set if Shift is down.

Bit 2: Set if Option (Macintosh) or Alt (Windows) is down.

Bit 3: Set if Command (Macintosh) or Ctrl (Windows) is down.

Bit 4: Contextual menu click: right-click or Control-click (Macintosh), or
right-click (Windows).

See Setting Bit Parameters on page IV-12 for details about bit settings.

OLDWINDOW Previous name of the window or subwindow (for renamed event). Not the
old absolute path hcSpec, just the name. WINDOW and HCSPEC contain
the new name and new hcSpec.

WINDOW Name of the window.

eventKey Meaning

activate Window has just been activated.

copy Copy menu item has been selected.

Chapter IV-10 — Advanced Topics

IV-287

The modified event is issued only when a graph updates (See DoUpdate, PauseUpdate, and ResumeUp-
date). Most changes to the graph are reported by the modified event, but not all: changing an annotation
will not trigger the event, nor will adding, removing, or modifying a control or showing or hiding the
drawing tools while using the /A flag. The modified event is not sent while a trace is being dragged or when
the values of a trace’s wave change (unless one the trace’s axes is autoscaled). However, changing an axis
range or indeed changing almost anything about axes or showing or hiding the info pane will send the
modified event (only one event per graph update). When in doubt, use a print statement to determine when
the event is sent.

cursormoved A graph cursor was moved.
This event is sent only if bit 2 of the SetWindow operation hookevents flag is set.

deactivate Window has just been deactivated.

enablemenu Menus are being built and enabled.

hide Window or subwindows about to be hidden.

hideInfo The window info panel or window has just been hidden by HideInfo.

hideTools The window tool palette or window has just been hidden by HideTools.

kill Window is being killed.
As of Igor Pro version 7, returning 2 as the hook function result no longer prevents Igor
from killing the window. Use the killVote event instead.

killVote Window is about to be killed. Return 2 to prevent that, otherwise return 0.
See Window Hook Deactivate and Kill Events on page IV-283.

menu A built-in menu item has been selected.

modified A modification to the window has been made. This is sent to graph and notebook
windows only. It is an error to try to kill a notebook window from the window hook
during the modified event.

mousedown Mouse button was clicked.
This event is sent only if bit 0 of the SetWindow operation hookevents flag is set.

mousemoved The mouse moved.
This event is sent only if bit 1 of the SetWindow operation hookevents flag is set.

mouseup Mouse button was released.
This event is sent only if bit 0 of the SetWindow operation hookevents flag is set.

moved Window has just been moved.

renamed Window has just been renamed. The previous name is available under the
OLDWINDOW key.

resize Window has just been resized.

show Window or subwindow is about to be unhidden.

showInfo The window info panel or window has just been shown by ShowInfo.

showTools The window tool palette or window has just been shown by ShowTools.

subwindowKill One of the window’s subwindows is about to be killed.

eventKey Meaning

Chapter IV-10 — Advanced Topics

IV-288

If mouse events are enabled then the following key:value pairs will also be present in infoStr:

Note that a mouseup event may or may not correspond to a previous mousedown. If the user clicks in the
window, drags out and releases the button then the mouseup event will be missing. If the user clicks in
another window, drags into this one and then releases then a mouseup will be sent that had no previous
mousedown.

In the case of mousedown or mousemoved messages, a nonzero return value will skip normal processing
of the message. This is most useful with mousedown.

The cursormoved event is not reported if Option (Macintosh) or Alt (Windows) is held down.

If the cursormoved event is enabled then the following key:value pairs will also be present in infoStr:

When the a menu event is reported then the following key:value pairs will also be present in infoStr:

The enablemenu event does not pass MENUNAME or MENUITEM.

The menu and enablemenu messages are not sent when drawing tools are in use in a graph or layout or
when waves are being edited in a graph.

Returning a value of 0 for the enablemenu message is recommended, though the return value is (currently)
ignored.

You can use the SetIgorMenuMode operation to alter the enable state of Igor’s built-in menus in a way you
find appropriate for the window. If you do this, usually you will also handle the menu message and
perform your idea of an appropriate action.

Key Value

MOUSEX X coordinate in pixels of the mouse.

MOUSEY Y coordinate in pixels of the mouse.

TICKS Time event happened.

Key Value

CURSOR Name of the cursor that moved (A through J).

TNAME Name of the trace the cursor is attached to (invalid if ISFREE=1).

ISFREE 1 if the cursor is “free” (not attached to a trace), 0 if it is attached to a trace
or image.

POINT Point number of the trace if not a free cursor.
If the cursor is attached to an image, value is the row number of the image.
If a free cursor, value is the fraction of the plot width, 0 being the left edge
of the plot area, and 1 being the right edge.

YPOINT Column number if the cursor is attached to an image, NaN if attached to
a trace.

If a free cursor, value is the fraction of the plot height, 0 being the top edge,
and 1 being the bottom edge.

Key Value

MENUNAME Name of menu (in English) as used by SetIgorMenuMode.

MENUITEM Text of menu item as used by SetIgorMenuMode.

Chapter IV-10 — Advanced Topics

IV-289

Note: Dynamic user-defined menus (see Dynamic Menu Items on page IV-120) are built and enabled
by using string functions in the menu definitions.

Returning a value of 0 for any menu message allows Igor to perform the normal action. Returning any other
value (1 is commonly used) tells Igor to skip performing the normal action.

See the user function description with IgorMenuHook on page IV-273 for details on the sequence of menu
building, enabling, and handling.

Custom Marker Hook Functions
You can define custom marker shapes for use with graph traces. To do this, you must define a custom
marker hook function, activate it by calling SetWindow with the markerHook keyword, and set a trace to
use it via the ModifyGraph operation marker keyword.

A custom marker hook function takes one parameter - a WMMarkerHookStruct structure. This structure
provides your function with information you need to draw a marker.

The function prototype used with a custom marker hook has the format:
Function MyMarkerHook(s)

STRUCT WMMarkerHookStruct &s
<code to draw marker>
...
return statusCode // 0 if nothing done, else 1

End

Your function can use the DrawXXX operations to draw the marker. The function is called each time the
marker is drawn and should not do anything other than drawing the marker. The function should return 1
if it handled the marker or 0 if not.
The marker number range, which you specify via the SetWindow markerHook call, can be any positive
integers less than 1000 and can overlap built-in marker numbers.

WMMarkerHookStruct
The WMMarkerHookStruct structure has the following members:

WMMarkerHookStruct Structure Members

Member Description

Int32 usage 0= normal draw, 1= legend draw (others reserved).

Int32 marker Marker number minus start (i.e., starts from zero).

float x,y Location of desired center of marker

float size Half width/height of marker

Int32 opaque 1 if marker should be opaque

float penThick Stroke width

STRUCT RGBColor mrkRGB Fill color

STRUCT RGBColor eraseRGB Background color

STRUCT RGBColor penRG Stroke color

WAVE ywave Trace's y wave

double ywIndex Point number; ywave[wyIndex] is the y value where the
marker is being drawn.

Chapter IV-10 — Advanced Topics

IV-290

When your marker function is called, the pen thickness and colors of the drawing environment of the target
window are already set consistent with the penThick, mrkRGB, eraseRGB and penRGB members.

Marker Hook Example
Here is an example that draws audiology symbols:

Function AudiologyMarkerProc(s)
STRUCT WMMarkerHookStruct &s

if(s.marker > 3)
return 0

endif

Variable size= s.size - s.penThick/2

if(s.opaque)
SetDrawEnv linethick=0,fillpat=-1
DrawRect s.x-size,s.y-size,s.x+size,s.y+size
SetDrawEnv linethick=s.penThick

endif
SetDrawEnv fillpat= 0 // polys are not filled

if(s.marker == 0) // 90 deg U open to the right
DrawPoly s.x+size,s.y-size,1,1,{size,-size,-size,-size,-size,size,size,size}

elseif(s.marker == 1) // 90 deg U open to the left
DrawPoly s.x-size,s.y-size,1,1,{-size,-size,size,-size,size,size,-size,size}

elseif(s.marker == 2) // Cap Gamma
DrawPoly s.x+size,s.y-size,1,1,{size,-size,-size,-size,-size,size}

elseif(s.marker == 3) // Cap Gamma reversed
DrawPoly s.x-size,s.y-size,1,1,{-size,-size,size,-size,size,size}

endif
return 1

End

Window Graph1() : Graph
PauseUpdate; Silent 1 // building window...
Make/O/N=10 testw=sin(x)
Display /W=(35,44,430,252) testw,testw,testw,testw
ModifyGraph offset(testw#1)={0,-0.2},offset(testw#2)={0,-0.4},

offset(testw#3)={0,-0.6}
ModifyGraph mode=3,marker(testw)=100,marker(testw#1)=101,marker(testw#2)=102,

marker(testw#3)=103
SetWindow kwTopWin,markerHook={AudiologyMarkerProc,100,103}

EndMacro

See also the Custom Markers Demo experiment - in Igor choose File→Example Experiments→Feature
Demos 2→Custom Markers Demo.

Data Acquisition
Igor Pro provides a number of facilities to allow working with live data:
• Live mode traces in graphs
• FIFOs and Charts
• Background task
• External operations and external functions
• Controls and control panels
• User-defined functions

Live mode traces in graphs are useful when you acquiring complete waveforms in a single short operation
and you want to update a graph many times per second to create an oscilloscope type display. See Live
Graphs and Oscilloscope Displays on page II-259 for details.

FIFOs and Charts are used when you have a continuous stream of data that you want to capture and, per-
haps, monitor. See FIFOs and Charts on page IV-291 details.

Chapter IV-10 — Advanced Topics

IV-291

You can set up a background task that periodically performs data acquisition while allowing you to con-
tinue to work with Igor in the foreground. The background operations are not done using interrupts and
therefore are easily disrupted by foreground operations. Background tasks are useful only for relatively
infrequent tasks that can be quickly accomplished and do not cause a cascade of graph updates or other
things that take a long time. See Background Tasks on page IV-298 for details.

You can create an instrument-like front panel for your data acquisition setup using user-defined controls in
a panel window. Refer to Chapter III-14, Controls and Control Panels, for details. There are many example
experiments that can be found in the Examples folder.

Igor Pro comes with an XOP named VDT2 for communicating with instruments via serial port (RS232),
another XOP named NIGPIB2 for communicating via General Purpose Interface Bus (GPIB), and another
XOP named VISA for communicating with VISA-compatible instruments. See the Igor Pro 7 Folder:More
Extensions:Data Acquisition folder.

Sound I/O can be done using the built-in SoundInRecord and PlaySound operations.

The NewCamera, GetCamera and ModifyCamera operations support frame grabbing.

WaveMetrics produces the NIDAQ Tools software package for doing data acquisition using National
Instruments cards. NIDAQ Tools is built on top of Igor using all of the techniques mentioned in this section.
Information about NIDAQ Tools is available via the WaveMetrics Web site <http://www.wavemet-
rics.com/Products/NIDAQTools/nidaqtools.htm>.

Third parties have created data acquisition packages that use other hardware. Information about these is
also available at <http://www.wavemetrics.com/Products/thirdparty.htm>.

If an XOP package is not available for your hardware you can write your own. For this, you will need to pur-
chase the XOP Toolkit product from WaveMetrics. See Creating Igor Extensions on page IV-195 for details.

FIFOs and Charts
This section will be of interest principally to programmers writing data acquisition packages.

Most people who use FIFOs and chart recorder controls will do so via packages provided by expert Igor
programmers. For information on using, as opposed to programming, chart controls, see Using Chart
Recorder Controls on page IV-296.

FIFO Overview
A FIFO is an invisible data objects that can act as a First-In-First-Out buffer between a data source and a
disk file. Data is placed in a FIFO either via the AddFIFOData operation or via an XOP package designed
to interface to a particular piece of hardware. Chart recorder controls provide a graphical view of a portion
of the data in a FIFO. When data acquisition is complete a FIFO can operate as a bidirectional buffer to a
disk file. This allows the user to review the contents of a file by scrolling the chart “paper” back and forth.
FIFOs can be used without a chart but charts have no use without a FIFO to monitor.

Data
Acquisition

FIFO buffer
FIFO
Data
File

http://www.wavemetrics.com/Products/NIDAQTools/nidaqtools.htm
http://www.wavemetrics.com/Products/NIDAQTools/nidaqtools.htm
http://www.wavemetrics.com/Products/thirdparty.htm

Chapter IV-10 — Advanced Topics

IV-292

A FIFO can have an arbitrary number of channels each with its own number type, scaling, and units. All
channels of a given FIFO share a common “timebase”.

Chart Recorder Overview
Chart recorder controls can be used to emulate a mechanical chart recorder that writes on paper with
moving pens as the paper scrolls by under the pens. Charts can be used to monitor data acquisition pro-
cesses or to examine a long data record. Although programming a chart is quite involved, using a chart is
very easy.

Here is a typical chart recorder control:

The First-In-First-Out (FIFO) buffer is an invisible Igor component that buffers the data coming from data
acquisition hardware and software and also writes the data to a file. The data that is streaming through the
FIFO can be observed using a chart recorder control. When data acquisition is finished the process can be
reversed with data coming back out of the file and into the FIFO where it can be reviewed using the chart.
The FIFO file is optional but if missing then all data pushed out the end of the FIFO is lost.

Chart recorder controls can take on quite a number of forms from the simple to the sophisticated:

A given chart recorder control can monitor an arbitrary selection of channels from a single FIFO. Each trace
can have its own display gain, color and line style and can either have its own area on the “paper” or can
share an area with one or more other traces. There can be multiple chart recorder controls active an one time
in one or more panel or graph windows.

Chart recorders can display an image strip when hooked up to a FIFO channel defined using the optional
vectPnts parameter to NewFIFOChan. An example experiment, Image Strip FIFO Demo, is provided to
illustrate how to use this feature.

Chart recorders can operate in two modes — live and review. When a chart is in live mode and data acqui-
sition is in progress, the chart "paper" scrolls by from right to left under the influence of the acquisition pro-
cess. When in review mode, you are in control of the chart. When you position the mouse over the chart
area you will see that the cursor turns into a hand. You can move the chart paper right or left by dragging
with the hand. If you give the paper a push it will continue scrolling until it hits the end.

You can place the chart in review mode even as data acquisition is in progress by clicking in the paper with
the hand cursor. To go back to live mode, give the paper a hard push to the left. When the paper hits the

Chapter IV-10 — Advanced Topics

IV-293

end then the chart will go to into live mode. You can also go back to live mode by clicking anywhere in the
margins of the chart.

Depending on the exact details of the data acquisition hardware and software you may run the risk of cor-
rupting the data if you use review mode while acquisition is in progress. The person that created the hard-
ware and software system you are using should have provided guidelines for the use of review mode
during acquisition. In general, if the acquisition process is paced by hardware then it should be OK to use
review mode.

In the chart recorder graphics above, you may have noticed the line directly under the scrolling paper area.
This line represents the current extent of data while the gray bar represents the data that is being shown in
the chart. The right edge of the gray bar represents the right edge of the section of data being shown in the
chart window. The above example is shown in live mode. Here are two examples shown in review mode:

While data acquisition is in progress, the horizontal line represents the extent of the data in the FIFO's
memory. After acquisition is over then the line includes all of the data in the FIFO's output file, if any.

If you are in review mode while data acquisition is taking place, you will notice that the gray bar indicates
the view area is moving even though the paper appears to be motionless. This is because the FIFO is moving
out from under the chart. Eventually it will reach a position where the chart display can not be valid since
the data it wants to display has been flushed off the end of the FIFO. When this happens the view area will
go blank. Because it is very time-consuming for Igor to try to keep the chart updated in this situation your
data acquisition rate may suffer.

Chart recorder controls sometimes try to auto-configure themselves to match their FIFO. Generally this
action is exactly what you want and is unobtrusive. Here are the rules that charts use:

When the FIFO becomes invalid or if it ceases to exist then the chart marks itself as being in auto-configure
mode. If the FIFO then becomes valid the chart will read the FIFO information and configure itself to
monitor all channels. It tries to set the ppStrip parameter to a value appropriate for the deltaT value of the
FIFO. It does so by assuming a desirable update rate of around 10 strips per second. Thus, for example, if
deltaT was 1 millisecond then ppStrip would be set to 100. The moral is: deltaT had better be valid or weird
values of ppStrip may be created.

Any chart recorder channel configuration commands executed after the FIFO becomes invalid but before
the FIFO becomes valid again will prevent auto-configuration from taking place.

Programming with FIFOs
You can create a FIFO by using the NewFIFO operation. When you are done using a FIFO you use the Kill-
FIFO operation. A freshly created FIFO is not useful until either channels are created with the NewFIFO-
Chan operation or until the FIFO is attached to a disk file for review using a variant of the CtrlFIFO
operation.

You can obtain information about a FIFO using the FIFOStatus operation and you can extract data from a
FIFO using the FIFO2Wave operation. Once a FIFO is set up and ready to accept data, you can insert data
using the AddFIFOData operation. Alternately, you can insert data using an XOP package.

Once data is stored in a file you can review the data using a FIFO or extract data using user-defined func-
tions. See the example experiment, “FIFO File Parse”, for sample utility routines.

Review of live data

Use hand to move or fling “paper” Click to position right edge of “paper”

End caps indicate file review

Review of data from a file

Chapter IV-10 — Advanced Topics

IV-294

Here are the operations and functions used in FIFO programming:

As with background tasks, FIFOs are considered transient objects — they are not saved and restored as part
of an experiment.

A FIFO does not need to be attached to a file to be useful. Note, however, that the oldest data is lost when
a FIFO overflows.

A FIFO set up to acquire data does not become valid until the start command is issued. Chart controls will
report invalid FIFOs on their status line. FIFO2Wave will give an error if it is invoked on an invalid FIFO. A
stopped FIFO remains valid until the first command is issued that could potentially change the FIFO’s setup.

Data in a running FIFO is written to disk when Igor notices that the FIFO is half full or when the AddFIFOData
command is issued and the FIFO is full. The amount of time it takes to write data to disk can be quite consid-
erable and at the same time unpredictable. If the computer disk cache size is large then writes to disk will be
less frequent but when they do occur they will take a long time. This will matter to you most if you are
attempting to take data rapidly using software, perhaps using an Igor background task.

If you are taking data via interrupt transfer to an intermediate buffer of adequate size or if your hardware has
an adequate internal buffer then the disk write latency may not be a concern. If dead time due to disk writes
is a concern then you may want to decrease the size of the disk cache and you may want to run with a rela-
tively small FIFO. Note that if you change the size of the disk cache you may have to reboot for the change to
take effect.

When the stop command is given to a running FIFO then it goes into review mode and remains valid. If the
FIFO is attached to a file then the entire contents of the file can be reviewed or be transferred to a wave using
the FIFO2Wave command.

The act of attaching a FIFO to an existing file for review using the rfile keyword of the CtrlFIFO command
reads in the file contents and sets itself up for review. You should not use the NewFIFOChan command or
any of the other CtrlFIFO keywords except size. Here is all that is required to review a preexisting file:
Variable refnum
Open/R/P=mypath refnum as "my file"
NewFIFO dave
CtrlFIFO dave,rfile=refnum

If any chart controls have been set up to monitor FIFO dave then they will automatically configure them-
selves to display all the channels of dave using default parameters.

The connection between FIFOs and chart controls relies on Igor’s dependency manager. The dependency
manager does not automatically run during function execution — you have to explicitly call it by executing
the DoUpdate command.

The dependency manager sends messages to a chart control when:
• A FIFO is created
• A FIFO is killed
• A FIFO becomes valid (start command)
• Data is added to a FIFO

In particular, if inside a user function, you kill a FIFO and then create it again you should call DoUpdate
after the kill so that the chart control notices the kill and can get ready for the creation.

NewFIFO KillFIFO

NewFIFOChan CtrlFIFO

FIFO2Wave AddFIFOData

AddFIFOVectData FIFOStatus

Chapter IV-10 — Advanced Topics

IV-295

FIFO File Format
This information is for users who may wish to create FIFO files with their own programs or for those who
need to analyze data stored in a FIFO file. You will need to have a reading familiarity with the C program-
ming language to understand the following. Note, the following information may be out of date. For the
most up to date information, refer to the most recent version of the auxiliary file named NamedFIFO.h
located in the “Miscellaneous:More Documentation:” folder.

Consider the following data structures….
#define CUR_FIFOFILE_VERSION 0

typedef struct FIFOFIleHeader{
long typeP1,typeP2; // 'IGOR','fifo'
long version; // CUR_FIFOFILE_VERSION
long datasize; // bytes of data following ChartChunkInfo field if known
long hsize; // size of following ChartChunkInfo field; data follows

}FIFOFIleHeader;

#define MAX_NOTESIZE 255
#define FIFO_CHAN_VERSION_NUM 0x01

typedef struct ChartChanInfo{
long ntype; // number type -- NT_FP32 or NT_I16 or ...
double offset,gain; // result= (measval-offset)*gain
double fsPlus,fsMinus; // value of + & - full scale
char name[MAX_OBJ_NAME+1]; // name of this channel
char units[4]; // SU abbrev of units
long chanRefcon; // for use by data acquisition sw

}ChartChanInfo;

typedef struct ChartChunkInfo{
long type; // 'chrt'
short version; // version number of this data structure
short pad1; // maintain 32 bit allignment
unsigned long startDate; // datetime of start command
char note[MAX_NOTESIZE+1]; // room for a short note from user
double deltaT; // data acquisition speed (if known, in seconds)
long xopRefcon; // for use by data acquisition sw
long nchan; // number of channels
ChartChanInfo info[]; // info for each channel

}ChartChunkInfo;

The FIFO file consists of the FIFOFileHeader followed by the ChartChunkInfo and finally by chunks of data
until the end of the file. It is expected that the format of this file will undergo evolutionary changes. You
should be prepared to keep up with such changes. In particular you should always check for the proper
version numbers when trying to interpret such a file.

An example of a user-defined function that can parse a FIFO file can be found in:
Igor Pro Folder:Examples:Programming:FIFO File Parse.pxp

The vectpnts field allows FIFO channels to contain a vector of data rather than just a single data point.

Igor also supports a split file FIFO header:

#define CUR_FIFOSplitFILE_VERSION (CUR_FIFOFILE_VERSION+1)
typedef struct FIFOSplitFIleHeader{

long typeP1,typeP2; // 'IGOR','fifo'
long version; // CUR_FIFOSplitFILE_VERSION

/*
** The split file header differs from the unified by the
** insertion of the following 3 fields.

Chapter IV-10 — Advanced Topics

IV-296

*/
char datafile[256]; // c-string containing name of file

// containing actual data
long dataoffset; // offset into data file
long dsize; // number of bytes of data or zero

// to use entire rest of file

long datasize; // bytes of data following ChartChunkInfo
// field if known

long hsize; // size of following ChartChunkInfo field;
// data follows that

}FIFOSplitFIleHeader;

This format allows the raw data to reside in its own file rather than having to be in the same file as the
header. This was provided to allow the review of large binary files generated by third-party programs.

Another way to use a FIFO and chart control to review a raw binary file is to use the rdfile keyword with
the CtrlFIFO command.

See the example experiment, Wave Review Chart Demo, for sample code for both the split header and raw
binary formats.

FIFO and Chart Demos
Igor Pro Folder:Examples:Feature Demos:FIFO Chart Demo FM.pxp
Igor Pro Folder:Examples:Feature Demos:FIFO Chart Overhead.pxp
Igor Pro Folder:Examples:Feature Demos:Wave Review Chart Demo.pxp
Igor Pro Folder:Examples:Imaging:Image Strip FIFO Demo.pxp

Using Chart Recorder Controls
The information provided here pertains to using rather than programming a chart recorder control. For
information on programming chart controls, see FIFOs and Charts on page IV-291.

An Igor chart recorder control works in conjunction with a FIFO to display data as it is acquired or to review
data that has previously been acquired.

Chart Reorder Control Basics
An Igor chart recorder control is neither an analytical tool nor a presentation quality graphic. It is meant
only for real time monitoring of incoming data or to review data from a FIFO file. When you want an ana-
lytical or presentation quality graph you must transfer the data to a wave and then use a conventional Igor
graph.
An Igor chart recorder control emulates a mechanical chart recorder that writes on paper with moving pens
as the paper scrolls by under the pens. It differs from a real chart recorder in that the paper of the latter
moves at a constant velocity whereas the “paper” of an Igor chart moves only when data becomes available
in the FIFO it is monitoring. If data is placed in the FIFO at a constant rate then the “paper” will scroll by at
a constant rate. However, since there can be no guarantee that the data is coming in at a constant rate, we
refer to the horizontal axis not in terms of time but rather in terms of data sample number.

A given chart recorder control can monitor an arbitrary selection of channels from a single FIFO. Each chart
trace can have its own display gain, color and line style and can either have its own area on the “paper” or
can share an area with one or more other traces. There can be multiple charts active an one time in one or
more control panel or graph windows.

Operating a Chart Recorder
Here is a typical chart recorder while taking data:

Chapter IV-10 — Advanced Topics

IV-297

And here is the same chart recorder while reviewing data even though data acquisition is still taking place:

And here we are while reviewing data from the file after data acquisition is complete:

Notice the positioning strip just under the chart and above the status line. It consists of a horizontal line and
a horizontal, gray bar. The line, called the positioning line, represents the extent of available data. The bar,
called the positioning bar, represents the currently displayed region of this data.

While data acquisition is in progress, the available data is the data in the FIFO's memory. After the acqui-
sition is over then the available data includes all of the data in the FIFO's output file, if any. The vertical bars
at the ends of the positioning line indicate we are reviewing from a file.

You can instantly jump to any portion of the data by clicking on the positioning line. The spot that you click
on indicates the part of the available data that you want to view. After clicking you can drag the "paper"
region around.

The chart recorder will be in one of two modes: live mode or review mode. While data acquisition is under
way, the chart recorder will display incoming data if it is in live mode. If it is in review mode, you can
review previously acquired data.

Clicking on the positioning line or in the positioning bar puts the chart recorder into review mode even if
data acquisition is taking place. To exit review mode and go into live mode, simply click anywhere in the
chart recorder outside of the "paper" and the positioning strip. Of course, if you are not acquiring data you
can not go into live mode.

Another way to go into review mode and navigate is to grab the "paper" with the mouse and fling it to the
left or right. It will keep going until it hits the end of available data. The speed at which the "paper" moves
depends on how hard you fling it.

Chapter IV-10 — Advanced Topics

IV-298

If you are in review mode while data acquisition is taking place, you will notice that the positioning bar
indicates the view area is moving even though the "paper" appears to be motionless. This is because the
FIFO is moving out from under the chart. Eventually it will reach a position where the chart display can not
be valid since the data it wants to display has been flushed off the end of the FIFO. When this happens the
paper will go blank. Because it is very time consuming for Igor to try to keep the chart updated in this sit-
uation, your data acquisition rate may suffer. To get an idea of what kind of data rates can be sustained
using an Igor background task, spend some time experimenting with the "FIFO/Chart Overhead" example
experiment.

Chart Recorder Control Demos
Igor Pro Folder:Examples:Feature Demos:FIFO Chart Demo FM.pxp
Igor Pro Folder:Examples:Feature Demos:FIFO Chart Overhead.pxp
Igor Pro Folder:Examples:Feature Demos:Wave Review Chart Demo.pxp
Igor Pro Folder:Examples:Imaging:Image Strip FIFO Demo.pxp

Background Tasks
Background tasks allow procedures to run periodically "in the background" while you continue to interact
normally with Igor. This is useful for data acquisition, simulations and other processes that run indefinitely,
over long periods of time, or need to run at regular intervals. Using a background task allows you to con-
tinue to interact with Igor while your data acquisition or simulation runs.

Originally Igor supported just one unnamed background task controlled using the CtrlBackground oper-
ation (page V-100). New code should use the CtrlNamedBackground operation (page V-101) to create
named background tasks instead, as shown in the following sections. You can run any number of named
backgrounds tasks.

In addition to the documentation provided here, the Background Task Demo experiment provides sample
code that is designed to be redeployed for other projects. We recommend reading this documentation first
and then opening the demo by choosing File→Example Experiments→Programming→Background Task
Demo.

Background Task Example #1
You create and control background tasks using the CtrlNamedBackground operation. The main parame-
ters of CtrlNamedBackground are the background task name, the name of a procedure to be called period-
ically, and the period. Here is a simple example:

Function TestTask(s) // This is the function that will be called periodically
STRUCT WMBackgroundStruct &s

Printf "Task %s called, ticks=%d\r", s.name, s.curRunTicks
return 0 // Continue background task

End

Function StartTestTask()
Variable numTicks = 2 * 60 // Run every two seconds (120 ticks)
CtrlNamedBackground Test, period=numTicks, proc=TestTask
CtrlNamedBackground Test, start

End

Function StopTestTask()
CtrlNamedBackground Test, stop

End

You start this background task by calling StartTestTask() from the command line or from another pro-
cedure. StartTestTask creates a background task named Test, sets the period which is specified in units of

Chapter IV-10 — Advanced Topics

IV-299

ticks (1 tick = 1/60th of a second), and specifies the user-defined function to be called periodically (TestTask
in this example).

You stop the Test background task by calling StopTestTask().

As shown above, the background procedure takes a WMBackgroundStruct parameter. In most cases you
won’t need to access it.

Background Task Exit Code
The background procedure (TestTask in the example above) returns an exit code to Igor. The code is one of
the following values:

0: The background procedure executed normally.
1: The background procedure wants to stop the background task.
2: The background procedure encountered an error and wants to stop the background task.

Normally the background procedure should return 0 and the background task will continue to run. If you
return a non-zero value, Igor stops the background task. You can tell Igor to terminate the background task
by returning the value 1 from the background function.

If you forget to add a return statement to your background procedure, this acts like a non-zero return value
and stops the background task.

Background Task Period
The CtrlNamedBackground operation's period keyword takes an integer parameter expressed in ticks. A
tick is approximately 1/60th of a second. Thus the timing of Igor background tasks has a nominal resolution
of 1/60th of a second.

You can override the specified period in the background task procedure by writing to the nextRunTicks
field of the WMBackgroundStruct structure. This is needed only if you want your procedure to run at irreg-
ular intervals.

The actual time between calls to the background procedure is not guaranteed. Igor runs the background
task from its outer loop, when Igor is doing nothing else. If you do something in Igor that takes a long time,
for example performing a lengthy curve fit, running a user-defined function that takes a long time, or
saving a large experiment, Igor's outer loop does not run so the background task will not run. If you do
something that causes a compilation of Igor procedures to fail, the background task is not called. On Mac-
intosh, the background task is not called while a menu is displayed or while the mouse button is pressed.

If you need your background task to continue running even if you edit other procedures in Igor, you need
to make your project an independent module. See Independent Modules on page IV-224 for details.

If you need precise timing that can not be interrupted, things get much more complicated. You need to do
your data acquisition in an Igor thread running in an independent module or in a thread created by an XOP
that you write. See ThreadSafe Functions and Multitasking on page IV-308 for details.

The shortest supported period is one tick. The minimum actual period for the background task depends on
your hardware and what your background task is doing. If you set the period too low for your background
task, interacting with Igor becomes sluggish.

It is very easy to bog your computer down using background tasks. If the background task takes a long time
to execute or if it triggers something that takes a long time (like a wave dependency formula or updating a
complex graph) then it may appear that the system is hung. It is not, but it may take longer to respond to
user actions than you are willing to wait.

Chapter IV-10 — Advanced Topics

IV-300

Background Task Limitations
The principal limitation of Igor background tasks is that they are stopped while other operations are taking
place. Thus, although you can type commands into the command line without disrupting the background
task, when you press Return the task is stopped until execution of the command line is finished.

Background tasks do not run if procedures are in an uncompiled state. If you need your background task
to continue running even if you edit other procedures in Igor, you need to make your project an indepen-
dent module. See Independent Modules on page IV-224 for details.

On Macintosh, the background task does not run when the mouse button is pressed or when a menu is dis-
played.

Background Tasks and Errors
If a background task procedure contains a bug, it will typically generate an error each time the procedure
runs. Normally an error generates an error dialog. If this happened over and over again, it would prevent
you from fixing the bug.

Igor handles such repeated errors as follows: The first time an error occurs during the execution of the back-
ground task procedure, Igor displays an error dialog. On subsequent errors, Igor prints an error message
in the history. After printing 10 such error messages, Igor stops printing messages. When you click a con-
trol, execute a command from the command line or execute a command through a menu item, the process
starts over.

If the Igor debugger is enabled and Debug on Error is turned on, Igor will break into the debugger each time
an error occurs in the background task procedure. You may have to turn Debug on Error off to give you
time to stop the background task. You can do this from within the debugger by right-clicking.

Background Tasks and Dialogs
By default, a background task created by CtrlNamedBackground continues to run while a dialog is dis-
played. You can change this behavior using the CtrlNamedBackground dialogsOK keyword.

If you allow background tasks to run while an Igor dialog is present, you should ensure that your back-
ground task does not kill anything that a dialog might depend on. It should not kill waves or variables. It
should never directly modify a window (except for a status panel) and especially should never remove
something from a window (such as a trace from a graph). Otherwise your background task may kill some-
thing that the dialog depends on which will cause a crash.

Background Task Tips
Background tasks should be designed to execute quickly. They do not run in separate threads threads and
they hang Igor’s event processing as long as they run. For maximum responsiveness, your task procedure
should take no more than a fraction of a second to run even when the period is long. If you have to perform a
lengthy computation, let the user know what is going on, perhaps via a message in a status control panel.

Background tasks should never attempt to put up dialogs or directly wait for user input. If you need to get the
attention of the user, you should design your system to include a status control panel with an area for messages
or some other change in appearance. If you need to wait for the user, you should do so by monitoring global
variables set by nonbackground code such as a button procedure in a panel.

Your task procedure should always leave the current data folder unchanged on exit.

Chapter IV-10 — Advanced Topics

IV-301

Background Task Example #2
Here is an example that uses many of the concepts discussed above. The task prints a message in the history
area at one second intervals five times, performs a “lengthy calculation”, and then waits for the user to give
the go-ahead for another run.
The task does its own timing and consequently is set to run at the maximum rate (60 times per second). The
task procedure, MyBGTask, tests to see if one second has elapsed since the last time it printed a message. In a
real application, you might test to see if some external event has occurred.

To try the example, copy the code below to the Procedure window and execute:
BGDemo()

Function BGDemo()
DoWindow/F BGDemoPanel // bring panel to front if it exists
if(V_Flag != 0)

return 0 // panel already exists
endif

String dfSav= GetDataFolderDFR() // so we can leave current DF as we found it
NewDataFolder/O/S root:Packages
NewDataFolder/O/S root:Packages:MyDemo // our variables go here

// still here if no panel, create globals if needed
if(NumVarOrDefault("inited",0) == 0)

Variable/G inited= 1

Variable/G lastRunTicks= 0 // value of ticks function last time we ran
Variable/G runNumber= 0 // incremented each time we run
// message displayed in panel using SetVariable...
String/G message="Task paused. Click Start to resume."

Variable/G running=0 // when set, we do our thing
endif

SetDataFolder dfSav
NewPanel /W=(150,50,449,163)
DoWindow/C BGDemoPanel // set panel name
Button StartButton,pos={21,12},size={50,20},proc=BGStartStopProc,title="Start"
SetVariable msg,pos={21,43},size={300,17},title=" ",frame=0
SetVariable msg,limits={-Inf,Inf,1},value= root:Packages:MyDemo:message

End

Function MyBGTask(s)
STRUCT WMBackgroundStruct &s

NVAR running= root:Packages:MyDemo:running

if(running == 0)
return 0 // not running -- wait for user

endif

NVAR lastRunTicks= root:Packages:MyDemo:lastRunTicks

if((lastRunTicks+60) >= ticks)
return 0 // not time yet, wait

endif

NVAR runNumber= root:Packages:MyDemo:runNumber

runNumber += 1

printf "Hello from the background, #%d\r",runNumber

if(runNumber >= 5)
runNumber= 0
running= 0 // turn ourself off after five runs

// run again when user says to
Button StopButton,win=BGDemoPanel,rename=StartButton,title="Start"

// Simulate a long calculation after a run
String/G root:Packages:MyDemo:message="Performing long calculation. Please wait."
ControlUpdate /W=BGDemoPanel msg
DoUpdate /W=BGDemoPanel // Required on Macintosh for control to be redrawn

Chapter IV-10 — Advanced Topics

IV-302

Variable t0= ticks
do

if (GetKeyState(0) & 32)
Print "Lengthy process aborted by Escape key"
break

endif
while(ticks < (t0+60*3)) // delay for 3 seconds

String/G root:Packages:MyDemo:message="Task paused. Click Start to resume."
endif

lastRunTicks= ticks

return 0
End

Function BGStartStopProc(ctrlName) : ButtonControl
String ctrlName

NVAR running= root:Packages:MyDemo:running
if(CmpStr(ctrlName,"StartButton") == 0)

running= 1
Button $ctrlName,rename=StopButton,title="Stop"
String/G root:Packages:MyDemo:message=""
CtrlNamedBackground MyBGTask, proc=MyBGTask, period=1, start

endif
if(CmpStr(ctrlName,"StopButton") == 0)

running= 0
Button $ctrlName,rename=StartButton,title="Start"
CtrlNamedBackground MyBGTask, stop
String/G root:Packages:MyDemo:message="Task paused. Press Start to resume."

endif
End

Background Task Example #3
For another example including code that you can easily redeploy for your own project, open the Back-
ground Task Demo experiment by choosing File→Example Experiments→Programming→Background
Task Demo.

Old Background Task Techniques
Originally Igor supported just one unnamed background task. This is still supported for backward compat-
ibility but new code should use CtrlNamedBackground to create and control named background tasks
instead.

The unnamed background task is designated using SetBackground, controlled using CtrlBackground and
killed using KillBackground. The BackgroundInfo operation returns information about the unnamed
background task.

The SetBackground, CtrlBackground, KillBackground and BackgroundInfo operations work only with the
unnamed background task. For named background tasks, the CtrlNamedBackground operation provides
all necessary functionality.

By default, a background task created by CtrlBackground does not run while a dialog is displayed. You can
change this behavior using the CtrlBackground dialogsOK keyword.

Automatic Parallel Processing with TBB
TBB stands for “Threading Building Blocks”. It is an Intel technology that facilitates the use of multiple pro-
cessors on a given task. The home page for TBB is:

https://www.threadingbuildingblocks.org

Starting with Igor Pro 7, some Igor operations, such as CurveFit, DSPPeriodogram, and ImageProfile, auto-
matically use TBB. To see which operations use TBB, choose Help→Command Help, click Show All, and
then check the Automatically Multithreaded Only checkbox.

https://www.threadingbuildingblocks.org

Chapter IV-10 — Advanced Topics

IV-303

You don’t need to do anything to take advantage of automatic multithreading with TBB. It happens auto-
matically.

Running on multiple threads reduces the time required for number crunching tasks when the benefit of
using multiple processors exceeds the overhead. Operations that use TBB automatically use multiple
threads only when the size of the data or the complexity of the problem crosses a certain threshold. Igor is
programmed to use a reasonable threshold for each supported operation. You can control the threshold
using the MultiThreadingControl operation.

Automatic Parallel Processing with MultiThread
Intermediate-level Igor programmers can make use of multiple processors to speed up wave assignment
statements in user-defined functions. To do this, simply insert the keyword MultiThread in front of a
normal wave assignment. For example, in a function:

Make wave1
Variable a=4
MultiThread wave1= sin(x/a)

The expression, on the right side of the assignment statement, is compiled as threadsafe even if the host
function is not.

Because of the overhead of spawning threads, you should use MultiThread only when the destination has
a large number of points or the expression takes a significant amount of time to evaluate. Otherwise, you
may see a performance penalty rather than an improvement.

The assignment is automatically parceled into as many threads as there are processors, each evaluating the
right-hand expression for a different output point.

The MultiThread keyword causes Igor to evaluate the expression for multiple output points simultane-
ously. Do not make any assumptions as to the order of processing and certainly do not try to use a point
from the destination wave other than the current point in the expression. For example, do not do something
like this:

wave1 = wave1[p+1] - wave1[p-1] // Result is indeterminate

Expressions like give unexpected results even in the absence of threading.

Here is a simple example to try on your own machine:

Function TestMultiThread(n)
Variable n // Number of wave points

Make/O/N=(n) testWave

// To prime processor data cache so comparison will be valid
testWave= 0

Variable t1,t2
Variable timerRefNum

// First, non-threaded
timerRefNum = StartMSTimer
testWave= sin(x/8)
t1= StopMSTimer(timerRefNum)

// Now, automatically threaded
timerRefNum = StartMSTimer
MultiThread testWave= sin(x/8)
t2= StopMSTimer(timerRefNum)

Chapter IV-10 — Advanced Topics

IV-304

Variable processors = ThreadProcessorCount
Print "On a machine with",processors,"cores,MultiThread is", t1/t2,"faster"

End

Here is the output on a Mac Pro:

•TestMultiThread(100)
 On a machine with 8 cores, MultiThread is 0.059746 faster

•TestMultiThread(10000)
 On a machine with 8 cores, MultiThread is 3.4779 faster

•TestMultiThread(1000000)
 On a machine with 8 cores, MultiThread is 6.72999 faster

•TestMultiThread(10000000)
 On a machine with 8 cores, MultiThread is 8.11069 faster

The first result shows that the MultiThread keyword slowed the assignment down. This is because the
assignment involved a small number of points and MultiThread has some overhead.

The remaining results illustrate that MultiThread can provide increased speed for assignments involving
large waves.

In the last result, the speed improvement factor was greater than the number of processors. This is
explained by the fact that, once running, a threadsafe expression has slightly less overhead than a normal
expression.

If the right-hand expression involves calling user-defined functions, those functions must be threadsafe (see
ThreadSafe Functions on page IV-97) and must also follow these rules:

1. Do not do anything to waves that are passed as parameters that might disturb memory. For example,
do not change the number of points in the wave or change its data type or kill it or write to a text wave.

2. Do not write to a variable that is passed by reference.
3. Note that any waves or global variables created by the function will disappear when then wave assign-

ment is finished.
4. Each thread has its own private data folder tree. You can not use WAVE, NVAR or SVAR to access ob-

jects in the main thread.

Failure to heed rule #1 will likely result in a crash.

Although it is legal to use the MultiThread mechanism in a threadsafe function that is already running in a
preemptive thread via ThreadStart, it is not recommended and will likely result in a substantial loss of
speed.

For an example using MultiThread, open the Mandelbrot demo experiment file by choosing
“File→Example Experiments→Programming→MultiThreadMandelbrot”.

Data Folder Reference MultiThread Example
Advanced programmers can use waves containing data folder references and wave references along with
MultiThread to perform multithreaded calculations more involved than evaluating an arithmetic expres-
sion. Here we use Free Data Folders (see page IV-88) to facilitate multithreading.

In this example, we extract each of the planes of a 3D wave, perform a filtering operation on the planes, and
then finally assemble the planes into an output 3D wave. The main function, Test, executes a multithreaded
assignment statement where the expression includes a call to a subroutine named Worker.

Because MultiThread is used, multiple instances of Worker execute simultaneously on different cores. Each
instance runs in its own thread, working on a different plane. Each instance returns one filtered plane in a
wave named M_ImagePlane in a thread-specific free data folder. The use of free data folders allows each
instance of Worker to work on its own M_ImagePlane wave without creating a name conflict.

Chapter IV-10 — Advanced Topics

IV-305

When the multithreaded assignment is finished, the main function assembles an output 3D wave by con-
catenating the filtered planes.

// Extracts a plane from the 3D input wave, filters it, and returns the
// filtered output as M_ImagePlane in a new free data folder
ThreadSafe Function/DF Worker(w3DIn, plane)

WAVE w3DIn
Variable plane

DFREF dfSav= GetDataFolderDFR()

// Create a free data folder to hold the extracted and filtered plane
DFREF dfFree= NewFreeDataFolder()
SetDataFolder dfFree

// Extract the plane from the input wave into M_ImagePlane.
// M_ImagePlane is created in the current data folder
// which is a free data folder.
ImageTransform/P=(plane) getPlane, w3DIn
Wave M_ImagePlane // Created by ImageTransform getPlane

// Filter the plane
WAVE wOut= M_ImagePlane
MatrixFilter/N=21 gauss,wOut

SetDataFolder dfSav

// Return a reference to the free data folder containing M_ImagePlane
return dfFree

End

Function Demo(numPlanes)
Variable numPlanes

// Create a 3D wave and fill it with data
Make/O/N=(200,200,numPlanes) src3D= (p==(2*r))*(q==(2*r))

// Create a wave to hold data folder references returned by Worker.
// /DF specifies the data type of the wave as "data folder reference".
Make/DF/N=(numPlanes) dfw

Variable timerRefNum = StartMSTimer

MultiThread dfw= Worker(src3D,p)

Variable elapsedTime = StopMSTimer(timerRefNum) / 1E6

Printf "Statement took %g seconds for %d planes\r", elapsedTime, numPlanes

// At this point, dfw holds data folder references to 50 free
// data folders created by Worker. Each free data folder holds the
// extracted and filtered data for one plane of the source 3D wave.

// Create an output wave named out3D by cloning the first filtered plane
DFREF df= dfw[0]
Duplicate/O df:M_ImagePlane, out3D

// Concatenate the remaining filtered planes onto out3D
Variable i
for(i=1; i<numPlanes; i+=1)

df= dfw[i] // Get a reference to the next free data folder

Chapter IV-10 — Advanced Topics

IV-306

Concatenate {df:M_ImagePlane}, out3D
endfor

// dfw holds references to the free data folders. By killing dfw,
// we kill the last reference to the free data folders which causes
// them to be automatically deleted. Because there are no remaining
// references to the various M_ImagePlane waves, they too are
// automatically deleted.
KillWaves dfw

End

To run the demo, execute:
Demo(50)

On an eight-core Mac Pro, this took 4.1 seconds with the MultiThread keyword and 0.6 seconds without the
MultiThread keyword for a speedup of about 6.8 times.

Wave Reference MultiThread Example
In the preceding example, free data folders were used to hold data processed by threads. Since each free
data folder held just a single wave, the example can be simplified by using free waves instead of free data
folders. So here we perform the same threaded filtering of planes using free waves.

Because MultiThread is used, multiple instances of Worker execute simultaneously on different cores. Each
instance runs in its own thread, working on a different plane. Each instance returns one filtered plane in a
free wave named M_ImagePlane. The use of free waves allows each instance of Worker to work on its own
M_ImagePlane wave without creating a name conflict.

This version of the example relies on the fact that a wave in a free data folder becomes a free wave when
the free data folder is automatically deleted. See Free Wave Lifetime on page IV-86 for details.

ThreadSafe Function/WAVE Worker(w3DIn, plane)
WAVE w3DIn
Variable plane

DFREF dfSav= GetDataFolderDFR()

// Create a free data folder and set it as the current data folder
SetDataFolder NewFreeDataFolder()

// Extract the plane from the input wave into M_ImagePlane.
// M_ImagePlane is created in the current data folder
// which is a free data folder.
ImageTransform/P=(plane) getPlane, w3DIn
Wave M_ImagePlane // Created by ImageTransform getPlane

// Filter the plane
WAVE wOut= M_ImagePlane
MatrixFilter/N=21 gauss,wOut

// Restore the current data folder
SetDataFolder dfSav

// Since the only reference to the free data folder created above
// was the current data folder, there are now no references it.
// Therefore, Igor has automatically deleted it.
// Since there IS a reference to the M_ImagePlane wave in the free
// data folder, M_ImagePlane is not deleted but becomes a free wave.

return wOut // Return a reference to the free M_ImagePlane wave
End

Chapter IV-10 — Advanced Topics

IV-307

Function Demo(numPlanes)
Variable numPlanes

// Create a 3D wave and fill it with data
Make/O/N=(200,200,numPlanes) srcData= (p==(2*r))*(q==(2*r))

// Create a wave to hold data folder references returned by Worker.
// /WAVE specifies the data type of the wave as "wave reference".
Make/WAVE/N=(numPlanes) ww

Variable timerRefNum = StartMSTimer

MultiThread ww= Worker(srcData,p)

Variable elapsedTime = StopMSTimer(timerRefNum) / 1E6

Printf "Statement took %g seconds for %d planes\r", elapsedTime, numPlanes

// At this point, ww holds wave references to 50 M_ImagePlane free waves
// created by Worker. Each M_ImagePlane holds the extracted and filtered
// data for one plane of the source 3D wave.

// Create an output wave named out3D by cloning the first filtered plane
WAVE w= ww[0]
Duplicate/O w, out3D

// Concatenate the remaining filtered planes onto out3D
Variable i
for(i=1;i<numPlanes;i+=1)

WAVE w= ww[i]
Concatenate {w}, out3D

endfor

// ww holds references to the free waves. By killing ww, we kill
// the last reference to the free waves which causes them to be
// automatically deleted.
KillWaves ww

End

To run the demo, execute:
Demo(50)

Structure Array MultiThread Example
In a preceding example, free data folders were used to hold data processed by threads. A somewhat simpler
approach is to use one or more structures to pass input data and to receive output data. The following
example uses a single structure for both input and output. An array of these structures stored in a wave
ensures that each thread works on its own data. After the calculation, the results are extracted. The net
result for this simple example is nothing more than: dataOutput = sin(p).

Structure ThreadIOData
// Input to thread
double x

// Output from thread
double out

EndStructure

Function Demo()
if (IgorVersion() < 6.36)

Chapter IV-10 — Advanced Topics

IV-308

// This example crashes in Igor Pro 6.35 or before
// because of a bug in StructGet/StructPut
Abort "Function requires Igor Pro 6.36 or later."

endif

STRUCT ThreadIOData ioData

// Prepare input
Make/O ioDataArray // This wave will be redimensioned by StructPut
Variable i, imax=100
for(i=0; i<imax; i+=1)

ioData.x = i // Set input data
StructPut ioData, ioDataArray[i] // Pack structure into wave column

endfor

// Generate output
Make/O/N=(imax) threadOutput
MultiThread threadOutput = Worker(ioDataArray, p)

// Extract output
Make/O/N=(imax) outputData
for(i=0; i<imax; i+=1)

StructGet ioData, ioDataArray[i]
outputData[i] = ioData.out

endfor

KillWaves ioDataArray, threadOutput
End

ThreadSafe Function Worker(w, point)
WAVE w
Variable point

STRUCT ThreadIOData ioData
StructGet ioData, w[point] // Extract structure from wave column

ioData.out = sin(ioData.x) // Calculate of output data

StructPut ioData, w[point] // Pack structure into wave column

// The return value from the thread worker function is accessible
// via ThreadReturnValue. It is not used in this example.
return point

End

To run the demo, execute:
Demo()

ThreadSafe Functions and Multitasking
Igor supports two multitasking techniques that are easy to use:

• Automatic Parallel Processing with TBB

• Automatic Parallel Processing with MultiThread

This section discusses the third technique, ThreadSafe Functions, which expert programmers can use to
create complex, preemptive multitasking background tasks.

Chapter IV-10 — Advanced Topics

IV-309

Preemptive multitasking uses the following functions and operations:

To run a threadsafe function preemptively, you first create a thread group using ThreadGroupCreate and
then call ThreadStart to start your worker function. Usually you will use the same function for each thread
of a group although they can be different.

The worker function must be defined as threadsafe and must return a real or complex numeric result. The
return value can be obtained after the function finishes by calling ThreadReturnValue.

The worker function can take variable and wave parameters. It can not take pass-by-reference parameters
or data folder reference parameters.

Any waves you pass to the worker are accessible to both the main thread and to your preemptive thread.
Such waves are marked as being in use by a thread and Igor will refuse to perform any operations that could
change the size of the wave.

You can determine if any threads of a group are still running by calling ThreadGroupWait. Use zero for the
“milliseconds to wait” parameter to just test if all threads are finished. Use a larger value to cause the main
thread to sleep until all threads are finished. If you know the maximum time the threads should take, you
can use that value and print an error message or take other action if the threads don’t finish in time.

When ThreadGroupWait is called, Igor updates certain internal variables including variables that track
whether a thread has finished and what result it returned. Therefore you must call ThreadGroupWait
before calling ThreadReturnValue.

Once you are finished with a given thread group, call ThreadGroupRelease.

The Igor debugger can not be used with preemptive threads. You will need to use print statements for
debugging.

The hard part of using multithreading is devising a scheme for partitioning your data processing algo-
rithms into threads.

Thread Data Environment
When a thread is started, Igor creates a root data folder for that thread. This root data folder and any data
objects that the thread creates in it are private to the thread. This constitutes a separate data hierarchy for
each thread.

Data is transferred, when you request it, from the main thread to a preemptive thread and vice-versa using
input and output queues. The “currency” of these queues is the data folder, which provides considerable
flexibility for passing data to threads and for retrieving results. Each thread group has an input queue to
which the main thread may post data and an output queue from which the main thread may retrieve
results.

The terms “input“ and “output“ are relative to the preemptive thread. The main thread posts a data folder
to the input queue to send input to the preemptive thread. The preemptive thread retrieves the data folder
from the input queue. After processing, the preemptive thread may post a data folder to the output queue.
The main thread reads output from the preemptive thread by retrieving the data folder from the output
queue.

ThreadProcessorCount ThreadGroupCreate

ThreadStart ThreadGroupPutDF

ThreadGroupGetDF (deprecated) ThreadGroupGetDFR

ThreadGroupWait ThreadReturnValue

ThreadGroupRelease

Chapter IV-10 — Advanced Topics

IV-310

Use ThreadGroupPutDF to post data folders and ThreadGroupGetDFR to retrieve them. These are called
from both the main thread and from preemptive threads.

ThreadGroupPutDF clips the specified data folder, and everything it contains, out of the source thread's
data hierarchy and puts it in the queue. From the standpoint of the source thread, it is as if KillDataFolder
had been called. While a data folder resides in a queue, it is not accessible by any thread. See the documen-
tation for ThreadGroupPutDF for some warnings about its use.

ThreadGroupGetDFR removes the data folder from the queue and returns it, as a free data folder, to the
calling thread. Because it is a free data folder, Igor will automatically delete it when there are no more ref-
erences to it, for example, when the thread returns.

Except for waves passed to the thread worker function as parameters and the thread worker's return value,
the input and output queues are the only way for a thread to share data with the main thread. Examples
below illustrate the use of these queues.

Parallel Processing - Group-at-a-Time Method
In this example, we attempt to improve the speed of filling columns of a 2D wave with a sin function. The
traditional method is compared with parallel processing. Notice how much more complicated the multi-
threaded version, MTFillWave, is compared to the single threaded STFillWave.
ThreadSafe Function MyWorkerFunc(w,col)

WAVE w
Variable col

w[][col]= sin(x/(col+1))

return stopMSTimer(-2) // Time when we finished
End

Function MTFillWave(dest)
WAVE dest

Variable ncol= DimSize(dest,1)
Variable i,col,nthreads= ThreadProcessorCount
Variable threadGroupID= ThreadGroupCreate(nthreads)

for(col=0; col<ncol;)
for(i=0; i<nthreads; i+=1)

ThreadStart threadGroupID,i,MyWorkerFunc(dest,col)
col+=1
if(col>=ncol)

break
endif

endfor

do
Variable threadGroupStatus= ThreadGroupWait(threadGroupID,100)

while(threadGroupStatus != 0)
endfor
Variable dummy= ThreadGroupRelease(threadGroupID)

End

Function STFillWave(dest)
WAVE dest

Variable ncol= DimSize(dest,1)
Variable col

for(col= 0;col<ncol;col+=1)
MyWorkerFunc(dest,col)

endfor
End

Function ThreadTest(rows)
Variable rows

Variable cols=10

make/o/n=(rows,cols) jack

Variable i

Chapter IV-10 — Advanced Topics

IV-311

for(i=0;i<10;i+=1) // get any pending pause events out of the way
endfor

Variable ttime= stopMSTimer(-2)

Variable t0= stopMSTimer(-2)
MTFillWave(jack)
Variable t1= stopMSTimer(-2)
STFillWave(jack)
Variable t2= stopMSTimer(-2)

ttime= (stopMSTimer(-2) - ttime)*1e-6

// Times are in microseconds
printf "ST: %d, MT: %d; ",t2-t1,t1-t0
printf "speed up factor: %.3g; total time= %.3gs\r",(t2-t1)/(t1-t0),ttime

End

The empty loop above is necessary because of periodic pauses in execution when Igor checks for user
aborts. If a pause was pending, we want to get it out of the way beforehand to avoid it affecting the first
timing test.

After starting Igor Pro, there is initially some extra overhead associated with creating new threads. Conse-
quently, in the test results to follow, the first test is run twice.
Results for Mac Mini 1.66 GHz Core Duo, OS X 10.4.6:
•ThreadTest(100)
 ST: 223, MT: 1192; speed up factor: 0.187; total time= 0.00146s
•ThreadTest(100)
 ST: 211, MT: 884; speed up factor: 0.239; total time= 0.0011s
•ThreadTest(1000)
 ST: 1991, MT: 1821; speed up factor: 1.09; total time= 0.00381s
•ThreadTest(10000)
 ST: 19857, MT: 11921; speed up factor: 1.67; total time= 0.0318s
•ThreadTest(100000)
 ST: 199174, MT: 113701; speed up factor: 1.75; total time= 0.313s
•ThreadTest(1000000)
 ST: 2009948, MT: 1146113; speed up factor: 1.75; total time= 3.16s

As you can see, when there is sufficient work to be done, the speed up factor approaches the theoretical
maximum of 2 for dual processors.

Now on the same computer but booting into Windows XP Pro:
•ThreadTest(100)
 ST: 245, MT: 523; speed up factor: 0.468; total time= 0.000776s
•ThreadTest(100)
 ST: 399, MT: 247; speed up factor: 1.61; total time= 0.000655s
•ThreadTest(1000)
 ST: 3526, MT: 1148; speed up factor: 3.07; total time= 0.00468s
•ThreadTest(10000)
 ST: 34830, MT: 10467; speed up factor: 3.33; total time= 0.0453s
•ThreadTest(100000)
 ST: 350253, MT: 99298; speed up factor: 3.53; total time= 0.45s
•ThreadTest(1000000)
 ST: 2837645, MT: 1057275; speed up factor: 2.68; total time= 3.89s

So, what is happening here? The speed-up factors for Windows XP are greater than for Mac OS X, but
mostly because the ST version is much slower. We do not known why the ST version runs more slowly —
the Benchmark 2.01 example experiment shows similar values for OS X vs. XP on this same computer.

Parallel Processing - Thread-at-a-Time Method
In the previous section, we dispatched a group of threads, waited for them to all finish, and then dispatched
another group of threads. Using that technique, a slow thread in the group would cause all of the group's
threads to wait.

In this section, we dispatch a thread anytime there is a free thread in the group. This technique requires Igor
Pro 6.23 or later.

Chapter IV-10 — Advanced Topics

IV-312

The only thing that changes from the preceding example is that the MTFillWave function is replaced with
this MTFillWaveThreadAtATime function:

Function MTFillWaveThreadAtATime(dest)
WAVE dest

Variable ncol= DimSize(dest,1)
Variable col,nthreads= ThreadProcessorCount
Variable threadGroupID= ThreadGroupCreate(nthreads)
Variable dummy

for(col=0; col<ncol; col+=1)
// Get index of a free thread - Requires Igor Pro 6.23 or later
Variable threadIndex = ThreadGroupWait(threadGroupID,-2) - 1
if (threadIndex < 0)

dummy = ThreadGroupWait(threadGroupID, 50)// Let threads run a while
col -= 1 // Try again for the same column
continue // No free threads yet

endif
ThreadStart threadGroupID, threadIndex, MyWorkerFunc(dest,col)

endfor

// Wait for all threads to finish
do

Variable threadGroupStatus = ThreadGroupWait(threadGroupID,100)
while(threadGroupStatus != 0)

dummy = ThreadGroupRelease(threadGroupID)
End

The ThreadGroupWait statement suspends the main thread for a while so that the preemptive threads get
more processor time. The parameter 50 is the number of milliseconds to wait. You should tune this for your
application.

Input/Output Queues
In this example, data folders containing a data wave and a string variable that specifies the task to be per-
formed are created and posted to the thread group's input queue. The thread worker function waits for an
input data folder to become available. It then processes the input and posts an output data folder to the
thread group's output queue from which it is retrieved by the main thread.
ThreadSafe Function MyWorkerFunc()

do
do

DFREF dfr = ThreadGroupGetDFR(0,1000)// Get free data folder from input queue
if (DataFolderRefStatus(dfr) == 0)

if(GetRTError(2)) // New in 6.20 to allow this distinction:
Print "worker closing down due to group release"

else
Print "worker thread still waiting for input queue"

endif
else

break
endif

while(1)

SVAR todo = dfr:todo
WAVE jack = dfr:jack

NewDataFolder/S outDF

Duplicate jack,outw // WARNING: outw must be cleared. See WAVEClear below
String/G did= todo
if(CmpStr(todo,"sin"))

outw= sin(outw)
else

Chapter IV-10 — Advanced Topics

IV-313

outw= cos(outw)
endif

// Clear outw so Duplicate above does not try to use it and to allow
// ThreadGroupPutDF to succeed.
WAVEClear outw

ThreadGroupPutDF 0,: // Put current data folder in output queue

KillDataFolder dfr // We are done with the input data folder
while(1)

return 0
End

Function DemoThreadQueue()
Variable i,ntries= 5,nthreads= 2

Variable/G threadGroupID = ThreadGroupCreate(nthreads)

for(i=0;i<nthreads;i+=1)
ThreadStart threadGroupID,i,MyWorkerFunc()

endfor

for(i=0;i<ntries;i+=1)
NewDataFolder/S forThread
String/G todo
if(mod(i,3) == 0)

todo= "sin"
else

todo= "cos"
endif
Make/N= 5 jack= x + gnoise(0.1)

WAVEClear jack

ThreadGroupPutDF threadGroupID,: // Send current data folder to input queue
endfor

for(i=0;i<ntries;i+=1)
do

// Get results in free data folder
DFREF dfr= ThreadGroupGetDFR(threadGroupID,1000)
if (DatafolderRefStatus(dfr) == 0)

Print "Main still waiting for worker thread results."
else

break
endif

while(1)

SVAR did = dfr:did
WAVE outw = dfr:outw

Print "task= ",did,"results= ",outw

// The next two statements are not really needed as the same action
// will happen the next time through the loop or, for the last iteration,
// when this function returns.
WAVEClear outw // Redundant because of the WAVE statement above
KillDataFolder dfr // Redundant because dfr refers to a free data folder

endfor

// This terminates the MyWorkerFunc by setting an abort flag
Variable tstatus= ThreadGroupRelease(threadGroupID)
if(tstatus == -2)

Print "Thread would not quit normally, had to force kill it. Restart Igor."
endif

End

Typical output:
•DemoThreadQueue()

task= sin results=
outw[0]= {0.994567,0.660904,-0.516692,-0.996884,-0.63106}

task= cos results=

Chapter IV-10 — Advanced Topics

IV-314

outw[0]= {0.0786631,0.709576,0.873524,0.0586175,-0.718122}
task= cos results=

outw[0]= {-0.23686,0.848603,0.871922,0.0992451,-0.856209}
task= sin results=

outw[0]= {0.999734,0.531563,-0.172071,-0.931296,-0.750942}
task= cos results=

outw[0]= {-0.166893,0.767707,0.925874,0.114511,-0.662994}
worker closing down due to group release
worker closing down due to group release

Parallel Processing With Large Datasets
In the preceding section we synthesized the input data. In the real-world, your input data would most-
likely be in an existing wave and you would have to copy it to a data folder to put into the input queue.

If your input data is very large, for example, a 3D stack of images, copying would require too much
memory. In that case, a good choice is to pass the input directly to the thread using parameters to the thread
worker function and use the output queue to return output to the main thread.

To do this you can use the Parallel Processing - Thread-at-a-Time Method and the output queue to return
results.

Preemptive Background Task
In this example, we create a single worker thread that runs while the user does other things. A normal coop-
erative background task retrieves results from the preemptive thread. Although the background task will
sometimes be blocked (as described in Background Tasks on page IV-298) the preemptive worker thread
will always be running or waiting for data.

Another example of this kind of multitasking can be found in the “Slow Data Acq” demo experiment ref-
erenced under More Multitasking Examples on page IV-316.

In some cases, it may be possible to run two instances of Igor instead of using a preemptive background
task. Running two instances is far simpler, so use that approach if it is feasible.

We put the code for the background tasks in an independent module (see The IndependentModule
Pragma on page IV-51) so that the user can recompile procedures, which is done automatically when a rec-
reation macro is created, without stopping the background task.

You might use a preemptive background task is when you have lengthy computations but want to continue
to do other things, such as creating graphics for publication. Although you can do anything you want while
the task runs in the experiment, if you load a different experiment, the thread is killed.

For this example, our “lengthy computation” is simply creating a wave of sine values which is not lengthy
at all and consequently there is no reason for using a preemptive thread in this case. To simulate a lengthy
computation, the code delays for a few seconds before posting its results.

The named background task checks the output queue every 10 ticks, when it is not blocked, and updates a
graph with data retrieved from the queue.

Independent modules can not be defined in the built-in procedure window so paste the following code in
a new procedure window:
#pragma IndependentModule= PreemptiveExample

ThreadSafe Function MyWorkerFunc()
do

DFREF dfr = ThreadGroupGetDFR(0,inf)
if(DataFolderRefStatus(dfr) == 0)

return -1 // Thread is being killed
endif

WAVE frequencies = dfr:frequencies // Array of frequencies to calculate
Variable i, n= numpnts(frequencies)

for(i=0;i<n;i+=1)

Chapter IV-10 — Advanced Topics

IV-315

NewDataFolder/S resultsDF
Make jack= sin(frequencies[i]*x)

Variable t0= ticks
do

// waste cpu for a few seconds
while(ticks < (t0+120))

// ThreadGroupPutDF requires that no waves in the data folder be referenced
WAVEClear jack

ThreadGroupPutDF 0,: // Send current data folder to input queue
endfor

KillDataFolder dfr // We are done with the input data folder
while(1)

return 0
End

Function DisplayResults(s) // Called from cooperative background task
STRUCT WMBackgroundStruct &s

DFREF dfSav= GetDataFolderDFR()

SetDataFolder root:testdf
NVAR threadGroupID
DFREF dfr = ThreadGroupGetDFR(threadGroupID,0) // Get free data folder from queue
if(DataFolderRefStatus(dfr) != 0)

// Make free data folder a regular data folder in root:testdf
MoveDataFolder dfr, :

// Give data folder a unique name
String dfName = UniqueName("Results", 11, 0)
RenameDataFolder dfr, $dfName

WAVE jack = dfr:jack // This is the output from the thread
AppendToGraph/W=ThreadResultsGraph jack

endif

SetDataFolder dfSav
return 0

End

And put this in the main procedure window:
Function DemoPreemptiveBackgroundTask()

DFREF dfSav= GetDataFolderDFR()

NewDataFolder/O/S root:testdf // thread group ID and result datafolders go here

variable/G threadGroupID= ThreadGroupCreate(1)

ThreadStart threadGroupID,0,PreemptiveExample#MyWorkerFunc()

// MyWorkerFunc is now running and waiting for input data
// now, let's give it something to do
NewDataFolder/S tasks
Make/N=10 frequencies= 1/(10+p/2+enoise(0.2))// array of frequencies to calculate
WAVEClear frequencies

ThreadGroupPutDF threadGroupID,: // thread is now crunching away

// Results will be appended to this graph
Display /N=ThreadResultsGraph as "Thread Results"

// ...by this named task
CtrlNamedBackground ThreadResultsTask,period=10,proc=PreemptiveExample#DisplayResults,start

SetDataFolder dfSav // restore current df
End

Function PostMoreFreqs()
NVAR threadGroupID = root:testdf:threadGroupID

NewDataFolder/S moretasks
Make/N=50 frequencies= 1/(15+p/2+enoise(0.2)) // array of frequencies to calculate
WAVEClear frequencies

Chapter IV-10 — Advanced Topics

IV-316

ThreadGroupPutDF threadGroupID,: // thread continues crunching
End

Open the Data Browser and then, on the command line, execute:
DemoPreemptiveBackgroundTask()

After the action stops, send more tasks to the background thread by executing
PostMoreFreqs()

While this is running, experiment with creating graphs, using dialogs, creating functions, etc. Note that
both tasks run indefinitely.

To start over you need to stop the preemptive background task, stop the named background task, kill the
graph, and delete the data. This function, which you can paste into the main procedure window, will do it.

Function StopDemo()
NVAR threadGroupID = root:testdf:threadGroupID

// Stop preemptive thread
Variable status = ThreadGroupRelease(threadGroupID)

// Stop named background task
CtrlNamedBackground ThreadResultsTask, stop

// Kill graph
DoWindow /K ThreadResultsGraph

// Kill data
KillDataFolder root:testdf

End

More Multitasking Examples
More multitasking examples can be found in the following example experiments:

The Multithreaded LoadWave demo experiment in “Igor Pro 7 Folder/Examples/Programming”.

The Multithreaded Mandelbrot demo experiment in “Igor Pro 7 Folder/Examples/Programming”.

The Multiple Fits in Threads demo experiment in Igor “Pro Folder/Examples/Curve Fitting”.

The Slow Data Acq demo experiment in “Igor Pro 7 Folder/Examples/Programming”.

The Thread-at-a-Time demo experiment in “Igor Pro 7 Folder/Examples/Programming”.

Cursors — Moving Cursor Calls Function
You can write a hook function which Igor calls whenever a cursor is moved.

Graph-Specific Cursor Moved Hook
The preferred way to do this is to use SetWindow to designate a window hook function for a specific graph
window (see Window Hook Functions on page IV-276). In your window hook function, look for the cur-
sormoved event. Your hook function receives a WMWinHookStruct structure containing fields that
describe the cursor and its properties.

For a demo of this technique, choose File→Example Experiments→Techniques→Cursor Moved Hook
Demo.

Global Cursor Moved Hook
This section describes an old technique in which you create a hook function that is called any time a cursor
is moved in any graph. This technique is more difficult to implement and kludgy, so it is no longer recom-
mended.

Chapter IV-10 — Advanced Topics

IV-317

You can write a hook function named CursorMovedHook. Igor automatically calls it whenever any cursor
is moved in any graph, unless Option (Macintosh) or Alt (Windows) is pressed.
The CursorMovedHook function takes one string argument containing information about the graph, trace
or image, and cursor in the following format:
GRAPH:graphName;CURSOR:<A - J>;TNAME:traceName; MODIFIERS:modifierNum;
ISFREE:freeNum;POINT:xPointNumber; [YPOINT:yPointNumber;]

The traceName value is the name of the graph trace or image to which the cursor is attached.

The modifierNum value represents the state of some of the keyboard keys summed together:
1 If Command (Macintosh) or Ctrl (Windows) is pressed.
2 If Control (Macintosh only) is pressed.
4 If Shift is pressed.
8 If Caps Lock is pressed.

The Option key (Macintosh) or Alt key (Windows) is not represented because it prevents the hook from being
called.

The YPOINT keyword and value are present only when the cursor is attached to a two-dimensional item
such as an image, contour, or waterfall plot or when the cursor is free.

If cursor is free, POINT and YPOINT values are fractional relative positions (see description in Cursor oper-
ation on page V-103). If TNAME is empty, fields POINT, ISFREE and YPOINT are not present.

This example hook function simply prints the information in the history area:
Function CursorMovedHook(info)

String info
Print info

End

Whenever any cursor on any graph is moved, this CursorMovedHook function will print something like
the following in the history area:
GRAPH:Graph0;CURSOR:A;TNAME:jack;MODIFIERS:0;ISFREE:0;POINT:6;

Cursor Globals
On older technique involving globals named S_CursorAInfo and S_CursorBInfo is no longer recom-
mended. For details, see the “Cursor Globals” subtopic in the Igor6 help files.

Profiling Igor Procedures
You can find bottlenecks in your procedures using profiling.

Profiling is supported by the FunctionProfiling.ipf file. To use it, add this to your procedures:

#include <FunctionProfiling

Then choose Windows→Procedures→FunctionProfiling.ipf and read the instructions in the file.

Crashes
A crash results from a software bug and prevents a program from continuing to run. Crashes are highly
annoying at best and, at worst, can cause you to lose valuable work.

WaveMetrics uses careful programming practices and extensive testing to make Igor as reliable and bug-
free as we can. However in Igor as in any complex piece of software it is impossible to exterminate all bugs.
Also, crashes can sometimes occur in Igor because of bugs in other software, such as printer drivers, video
drivers or system extensions.

Chapter IV-10 — Advanced Topics

IV-318

We are committed to keeping Igor a solid and reliable program. If you experience a crash, we would like to
know about it.

When reporting a crash to WaveMetrics, please start by choosing Help-Contact Support. This provides us
with important information such as your Igor version and your OS version.

Please include the following in your report:

• A description of what actions preceded the crash and whether it is reproducible.
• A recipe for reproducing the crash, if possible.
• A crash log (described below), if possible.

In most cases, to fix a crash, we need to be able to reproduce it.

Crash Logs on Mac OS X
When a crash occurs on Mac OS X, most of the time the system is able to generate a crash log. You can
usually find it at:

/Users/<user>/Library/Logs/DiagnosticReports/Igor Pro_<date>_<machinename>.crash

where <user> is your user name.

The /Users/<user>/Library folder is hidden. To reveal the DiagnosticReports folder:

1. Choose Finder->Go to Folder
2. Enter ~/Library/Logs/DiagnosticReports
3. Click Go
Send this log as an attachment when reporting a crash.

Crashes On Windows
When a crash occurs on Windows, Igor attempts to write a crash report that may help WaveMetrics deter-
mine and fix the cause of the crash. If Igor is able to write a crash report, it displays a dialog showing the
location of the crash report on disk. The location is in your Igor preferences folder and will be something
like:

C:\Users\<user>\AppData\Roaming\WaveMetrics\Igor Pro 7\Diagnostics\Igor Crash Reports.txt

If the "Igor Crash Reports.txt" file already exists when a crash occurs, Igor appends a new report to the exist-
ing file.

Igor may also write a minidump file to the same folder. A minidump file, which has a ".dmp" extension,
contains additional information about the crash. There will typically be one minidump file for each crash.

When a crash occurs, Igor attempts to open the Diagnostics folder on your desktop to make it easy for you
to find the report and minidump files.

Please send the "Igor Crash Reports.txt" file, along with the minidump files related to the current crash, as
email attachments to WaveMetrics support. If possible, include instructions for reproducing the crash and
any other details that may help us understand what you were doing leading to the crash.

Once the problem has been resolved, if you want to reduce clutter and reclaim disk space, you can delete
the Diagnostics folder and its contents. Igor will recreate the folder if necessary.

There may be cases where Igor is not able to write a crash report. This would happen if a library, security
software or the operating system has overridden Igor's crash handler for some reason.

	Advanced Topics
	Regular Modules
	Regular Modules in Action Procedures and Hook Functions
	Regular Modules and User-Defined Menus

	Independent Modules
	Independent Modules - A Simple Example
	SetIgorOption IndependentModuleDev=1
	Independent Module Development Tips
	Independent Modules and #include
	Limitations of Independent Modules
	Independent Modules in Action Procedures and Hook Functions
	Independent Modules and User-Defined Menus
	Independent Modules and Popup Menus
	Regular Modules Within Independent Modules
	Calling Routines From Other Modules
	Using Execute Within an Independent Module
	Independent Modules and Dependencies
	Independent Modules and Pictures
	Making Regular Procedures Independent-Module-Compatible

	Sound
	Movies
	Playing Movies
	Creating Movies
	Extracting Movie Frames
	Movie Programming Examples

	Timing
	Ticks Counter
	Microsecond Timer

	Packages
	Creating a Package
	Lightweight Packages

	Managing Package Data
	Creating and Accessing the Package Data Folder
	Creating and Accessing the Package Per-Instance Data Folders

	Saving Package Preferences
	Saving Package Preferences in a Special-Format Binary File
	Saving Package Preferences in an Experiment File

	Creating Your Own Help File
	Syntax of a Help File
	Creating Links
	Checking Links

	Creating Formatted Text
	Printf Operation
	sprintf Operation
	fprintf Operation
	wfprintf Operation
	Example Using fprintf and wfprintf

	Client/Server Overview
	Apple Events
	AppleScript
	Executing Unix Commands on Mac OS X
	ActiveX Automation

	Calling Igor from Scripts
	Network Communication
	URLs
	Usernames and Passwords
	Supported Network Schemes
	Percent Encoding

	Safe Handling of Passwords
	Network Timeouts and Aborts
	Network Connections From Multiple Threads
	File Transfer Protocol (FTP)
	FTP Limitations
	Downloading a File
	Downloading a Directory
	Uploading a File
	Uploading a Directory
	Creating a Directory
	Deleting a Directory
	FTP Transfer Types
	FTP Troubleshooting

	Hypertext Transfer Protocol (HTTP)
	HTTP Limitations
	Downloading a Web Page Via HTTP
	Downloading a File Via HTTP
	Making a Query Via HTTP
	HTTP Troubleshooting

	Operation Queue
	User-Defined Hook Functions
	AfterCompiledHook
	AfterFileOpenHook
	BeforeDebuggerOpensHook
	AfterMDIFrameSizedHook
	AfterWindowCreatedHook
	BeforeExperimentSaveHook
	BeforeFileOpenHook
	IgorBeforeNewHook
	IgorBeforeQuitHook
	IgorMenuHook
	IgorQuitHook
	IgorStartOrNewHook

	Window User Data
	Window Hook Functions
	Window Hooks and Subwindows

	Named Window Hook Functions
	Named Window Hook Events
	WMWinHookStruct
	Mouse Events
	Keyboard Events
	Keyboard Events Example
	Setting the Mouse Cursor
	Panel Done Button Example
	Window Hook Deactivate and Kill Events
	Window Hook Show and Hide Events
	Hook Functions for Exterior Subwindows

	Unnamed Window Hook Functions
	Custom Marker Hook Functions
	WMMarkerHookStruct
	Marker Hook Example

	Data Acquisition
	FIFOs and Charts
	FIFO Overview
	Chart Recorder Overview
	Programming with FIFOs
	FIFO File Format
	FIFO and Chart Demos

	Using Chart Recorder Controls
	Chart Reorder Control Basics
	Operating a Chart Recorder
	Chart Recorder Control Demos

	Background Tasks
	Background Task Example #1
	Background Task Exit Code
	Background Task Period
	Background Task Limitations
	Background Tasks and Errors
	Background Tasks and Dialogs
	Background Task Tips
	Background Task Example #2
	Background Task Example #3
	Old Background Task Techniques

	Automatic Parallel Processing with TBB
	Automatic Parallel Processing with MultiThread
	Data Folder Reference MultiThread Example
	Wave Reference MultiThread Example
	Structure Array MultiThread Example

	ThreadSafe Functions and Multitasking
	Thread Data Environment
	Parallel Processing - Group-at-a-Time Method
	Parallel Processing - Thread-at-a-Time Method
	Input/Output Queues
	Parallel Processing With Large Datasets
	Preemptive Background Task
	More Multitasking Examples

	Cursors — Moving Cursor Calls Function
	Graph-Specific Cursor Moved Hook
	Global Cursor Moved Hook
	Cursor Globals

	Profiling Igor Procedures
	Crashes
	Crash Logs on Mac OS X
	Crashes On Windows

