
Chapter

II-7
II-7Numeric and String Variables

Overview.. 94
Creating Global Variables.. 94
Uses For Global Variables.. 94
Variable Names ... 94
System Variables ... 95
User Variables ... 95

Special User Variables .. 95
Numeric Variables ... 96
String Variables .. 97
Local and Parameter Variables in Procedures .. 97

String Variables and Text Encodings ... 98

Chapter II-7 — Numeric and String Variables

II-94

Overview
This chapter discusses the properties and uses of global numeric and string variables. For the fine points of
programming with global variables, see Accessing Global Variables and Waves on page IV-59.

Numeric variables are double-precision floating point and can be real or complex. String variables can hold
an arbitrary number of bytes. Igor stores all global variables when you save an experiment and restores
them when you reopen the experiment.

Numeric variables or numeric expressions containing numeric variables can be used in any place where literal
numbers are appropriate including as operands in assignment statements and as parameters to operations,
functions, and macros.

When using numeric variables in operation flag parameters, you need parentheses. See Reference Syntax
Guide on page V-15.

String variables or string expressions can be used in any place where strings are appropriate. String variables can
also be used as parameters where Igor expects to find the name of an object such as a wave, variable, graph, table
or page layout. For details on this see Converting a String into a Reference Using $ on page IV-57.

In Igor7 or later, Igor assumes that the contents of string variables are encoded as UTF-8. If you store non-ASCII
text in string variables created by Igor6 or before, you need to convert it for use in Igor7 or later. See String Vari-
ables and Text Encodings on page II-98 for details.

Creating Global Variables
There are 20 built-in numeric variables (K0 … K19), called system variables, that exist all the time. Igor uses
these mainly to return results from the CurveFit operation. We recommend that you refrain from using
system variables for other purposes.
All other variables are user variables. User variables can be created in one of two ways:
• Automatically in the course of certain operations
• Explicitly by the user, via the Variable/G and String/G operations

When you create a variable directly from the command line using the Variable or String operation, it is
always global and you can omit the /G flag. You need /G in Igor procedures to make variables global. The
/G flag has a secondary effect — it permits you to overwrite existing global variables.

Uses For Global Variables
Global variables have two properties that make them useful: globalness and persistence. Since they are
global, they can be accessed from any procedure. Since they are persistent, you can use them to store set-
tings over time.

Using globals for their globalness creates non-explicit dependencies between procedures. This makes it dif-
ficult to understand and debug them. Using a global variable to pass information from one procedure to
another when you could use a parameter is bad programming and should be avoided except under rare
circumstances. Consequently, you should use global variables when you need persistence.

A legitimate use of a global variable for its globalness is when you have a value that rarely changes and
needs to be accessed by many procedures.

Variable Names
Variable names consist of 1 to 31 bytes. The first character must be alphabetic. The remaining characters can
be alphabetic, numeric or the underscore character. Names in Igor are case insensitive.

Variable names must be standard names, not liberal names. See Object Names on page III-443 for details.

Chapter II-7 — Numeric and String Variables

II-95

Variable names must not conflict with the names of other Igor objects, functions or operations.

You can rename a variable using the Rename operation, or the Rename Objects dialog via the Misc menu.

System Variables
System variables are built in to Igor. They are mainly provided for compatibility with older versions of Igor
and are not recommended for general use. You can see a list of system variables and their values by choos-
ing the Object Status item in the Misc menu.

There are 20 system variables named K0,K1...K19 and one named veclen. The K variables are used by the
curve fitting operations.

The veclen variable is present for compatibility reasons. In previous versions of Igor, it contained the default
number of points for waves created by the Make operation. This is no longer the case. Make will always create
waves with 128 points unless you explicitly specify otherwise using the /N=(<number of points>) flag.

Although the CurveFit operation stores results in the K variables, it does so only for compatibility reasons
and it also creates user variables and waves to store the same results.

However, the CurveFit operation does use system variables for the purpose of setting up initial parameter
guesses if you specify manual guess mode. You can also use a wave for this purpose if you use the
kwCWave keyword. See the CurveFit operation on page V-105.

It is best to not rely on system variables unless necessary. Since Igor writes to them at various times, they
may change when you don’t expect it.

The Data Browser does not display system variables.

System variables are stored on disk as single precision values so that they can be read by older versions of
Igor. Thus, you should store values that you want to keep indefinitely in your own global variables.

User Variables
You can create your own global variables by using the Variable/G (see Numeric Variables on page II-96)
and String/G operations (see String Variables on page II-97). Variables that you create are called “user vari-
ables” whether they be numeric or string. You can browse the global user variables by choosing the Object
Status item in the Misc menu. You can also use the Data Browser window (Data menu) to view your variables.

Global user variables are mainly used to contain persistent settings used by your procedures.

Special User Variables
In the course of some operations, Igor automatically creates special user variables. For example, the Curve-
Fit operation creates the user variable V_chisq and others to store various results generated by the curve
fit. The names of these variables always start with the characters “V_” for numeric variables or “S_” for
string variables. The meaning of these variables is documented along with the operations that generate
them in Chapter V-1, Igor Reference.

In addition, Igor sometimes checks for V_ variables that you can create to modify the default operation of
certain routines. For example, if you create a variable with the name V_FitOptions, Igor will use that to
control the CurveFit, FuncFit and FuncFitMD operations. The use of these variables is documented along
with the operations that they affect.

When an Igor operation creates V_ and S_ variables, they are global if the operation was executed from the
command line and local if the operation was executed in a procedure. See Accessing Variables Used by
Igor Operations on page IV-115 for details.

Chapter II-7 — Numeric and String Variables

II-96

Numeric Variables
You create numeric user variables using the Variable operation from the command line or in a procedure.
The syntax for the Variable operation is:
Variable [flags] varName [=numExpr] [,varName [=numExpr]]...

There are three optional flags:

The variable is initialized when it is created if you supply the initial value with a numeric expression using
=numExpr. If you create a numeric variable and specify no initializer, it is initialized to zero.

You can create more than one variable at a time by separating the names and optional initializers for mul-
tiple variables with a comma.

When used in a procedure, the new variable is local to that procedure unless the /G flag is used. When used
on the command line, the new variable is always global.

Here is an example of a variable creation with initialization:
Variable v1=1.1, v2=2.2, v3=3.3*sin(v2)/exp(v1)

Since the /C flag was not specified, the data type of v1, v2 and v3 is double-precision real.

Since the /G flag was not specified, these variables would be global if you invoked the Variable operation
directly from the command line or local if you invoked it in a procedure.

Variable/G varname can be invoked whether or not a variable of the specified name already exists. If it
does exist as a variable, its contents are not altered by the operation unless the operation includes an initial
value for the variable.

To assign a value to a complex variable, use the cmplx() function:
Variable/C cv1 = cmplx(1,2)

You can kill (delete) a global user variable using the Data Browser or the KillVariables operation. The
syntax is:
KillVariables [flags] [variableName [,variableName]...]

There are two optional flags:

For example, to kill global variable cv1 without worrying about whether it was previously defined, use the
command:
KillVariables/Z cv1

Killing a global variable reduces clutter and saves a bit of memory. You can not kill a system variable or local
variable.

To kill all global variables in the current data folder, use KillVariables/A/Z.

/C Specifies complex variable.

/D Obsolete. Used in previous versions to specify double-precision. Now all
variables are double-precision.

/G Specifies variable is to be global and overwrites any existing variable.

/A Kills all global variables in the current data folder. If you use /A, omit
variableName.

/Z Doesn’t generate an error if a global variable to be killed does not exist.

Chapter II-7 — Numeric and String Variables

II-97

String Variables
You create user string variables by calling the String operation from the command line or in a procedure.
The syntax is:
String [/G] strName [=strExpr] [,strName [=strExpr]...]

The optional /G flag specifies that the string is to be global, and it overwrites any existing string variable.

The string variable is initialized when it is created if you supply the initial value with a string expression using
=strExpr. If you create a string variable and specify no initializer it is initialized to the empty string ("").

When you call String from the command line or from a macro, the string variable is initialized to the specified
initial value or to the empty string ("") if you provide no initial value.

When you declare a local string variable in a user-defined function, it is null (has no value) until you assign a
value to it, via either the initial value or a subsequent assignment statement. Igor generates an error if you use
a null local string variable in a user-defined function.

When you call String in a procedure, the new string is local to that procedure unless you include the /G flag.
When you call String from the command line, the new string is always global.

You can create more than one string variable at a time by separating the names and optional initializers for
multiple string variables with a comma.

Here is an example of variable creation with initialization:
String str1 = "This is string 1", str2 = "This is string 2"

Since /G was not used, these strings would be global if you invoked String directly from the command line
or local if you invoked it in a procedure.

String/G strName can be invoked whether or not a variable of the given name already exists. If it does
exist as a string, its contents are not altered by the operation unless the operation includes an initial value
for the string.

You can kill (delete) a global string using the Data Browser or the KillStrings operation. The syntax is:
KillStrings [flags] [stringName [,stringName]...]

There are two optional flags:

For example, to kill global string myGlobalString without worrying about whether it was previously
defined, use the command:
KillStrings/Z myGlobalString

Killing a string reduces clutter and saves a bit of memory. You can not kill a local string.

To kill all global strings in the current data folder, use KillStrings/A/Z.

Local and Parameter Variables in Procedures
You can create variables in procedures as parameters or local variables. These variables exist only while the
procedure is running. They can not be accessed from outside the procedure and do not retain their values
from one invocation of the procedure to the next. See Local Versus Global Variables on page IV-56 for
more information.

A Kills all global strings in the current data folder. If you use /A, omit stringName.

/Z Doesn’t generate an error if a global string to be killed does not exist.

Chapter II-7 — Numeric and String Variables

II-98

String Variables and Text Encodings
Igor Pro 7 uses Unicode internally. Older versions of Igor used non-Unicode text encodings such as Mac-
Roman, Windows-1252 and Shift JIS.

If you have string variables containing non-ASCII text in old experiments, they will be misinterpreted by
Igor7. For a discussion of this issues, see String Variable Text Encodings on page III-428.

	Numeric and String Variables
	Overview
	Creating Global Variables
	Uses For Global Variables
	Variable Names
	System Variables
	User Variables
	Special User Variables
	Numeric Variables
	String Variables
	Local and Parameter Variables in Procedures

	String Variables and Text Encodings

