
Igor Reference

V-1

Igor Reference
This volume contains detailed information about Igor Pro’s built-in operations, functions, and keywords.
They are listed alphabetically after the category sections that follow.
External operations (XOPs) and external functions (XFUNCs) are not covered here. For information about
them, use the Command Help tab of the Igor Help Browser.

Built-In Operations by Category
Note: Some operations may appear in more than one category.

Graphs

Contour and Image Plots

Tables

AppendText AppendToGraph AppendToLayout CheckDisplayed
ColorScale ColorTab2Wave ControlBar Cursor
DefaultFont DefineGuide DelayUpdate DeleteAnnotations
Display DoUpdate DoWindow ErrorBars
GetAxis GetMarquee GetSelection GetWindow
GraphNormal GraphWaveDraw GraphWaveEdit HideInfo
HideTools KillFreeAxis KillWindow Label
Legend ModifyFreeAxis ModifyGraph ModifyWaterfall
MoveSubwindow MoveWindow NewFreeAxis NewWaterfall
PauseUpdate PrintGraphs RemoveFromGraph RenameWindow
ReorderImages ReorderTraces ReplaceText ReplaceWave
ResumeUpdate SaveGraphCopy SetActiveSubwindow SetAxis
SetMarquee SetWindow ShowInfo ShowTools
StackWindows Tag TextBox TileWindows

AppendImage AppendMatrixContour AppendToLayout AppendXYZContour
CheckDisplayed ColorScale ColorTab2Wave DefineGuide
DeleteAnnotations DoUpdate DoWindow FindContour
HideTools ImageLoad ImageSave KillWindow
ModifyContour ModifyImage MoveSubwindow NewImage
PauseUpdate RemoveContour RemoveImage ReplaceWave
SetActiveSubwindow SetWindow ShowTools Tag
TileWindows

AppendToLayout AppendToTable CheckDisplayed DelayUpdate
DoUpdate DoWindow Edit GetSelection
GetWindow KillWindow ModifyTable MoveWindow
PauseUpdate PrintTable RemoveFromTable RenameWindow
ResumeUpdate SaveTableCopy SetWindow StackWindows
TileWindows

Igor Reference

V-2

Layouts

Gizmo

Subwindows

Other Windows

All Windows

Wave Operations

AppendLayoutObject AppendText AppendToLayout ColorScale
DefaultFont DelayUpdate DeleteAnnotations DoUpdate
DoWindow GetMarquee GetSelection GetWindow
HideTools KillWindow Layout LayoutPageAction
LayoutSlideShow Legend ModifyLayout MoveWindow
NewLayout PauseUpdate PrintLayout RemoveFromLayout
RemoveLayoutObjects RenameWindow ReplaceText ResumeUpdate
SetMarquee SetWindow ShowTools Stack
StackWindows TextBox Tile TileWindows

AppendToGizmo ExportGizmo GetGizmo GizmoInfo
GizmoScale ModifyGizmo NewGizmo RemoveFromGizmo

DefineGuide GetMarquee KillWindow MoveSubwindow
RenameWindow SetActiveSubwindow SetMarquee

CloseHelp CloseProc CreateBrowser DisplayProcedure
DoWindow GetCamera GetSelection GetWindow
HideProcedures HideTools KillWindow ModifyBrowser
ModifyCamera ModifyPanel MoveWindow NewCamera
NewNotebook NewPanel Notebook NotebookAction
OpenHelp OpenNotebook PrintNotebook RenameWindow
SaveNotebook SetWindow ShowTools StackWindows

Append AutoPositionWindow DoWindow GetSelection
GetUserData GetWindow KillWindow Modify
MoveWindow Remove RenameWindow SetWindow
StackWindows TileWindows

AddMovieAudio Append AppendToGraph AppendToTable
CheckDisplayed ColorTab2Wave Concatenate CopyScales
DeletePoints Display Duplicate Edit
Extract FIFO2Wave FindSequence FindSequence
FindValue GBLoadWave GraphWaveDraw GraphWaveEdit
InsertPoints JCAMPLoadWave KillWaves LoadData
LoadWave Make MLLoadWave MoveWave
Note PlaySound Redimension Remove
RemoveFromGraph RemoveFromTable Rename ReplaceWave
Reverse Rotate Save SetDimLabel

Igor Reference

V-3

Analysis

Matrix Operations

Analysis of Functions

Signal Processing

SetScale SetWaveLock SetWaveTextEncoding SoundLoadWave
SoundSaveWave SplitWave WAVEClear WaveStats
wfprintf XLLoadWave

APMath BoundingBall Convolve Correlate
ConvexHull Cross CurveFit CWT
Differentiate DPSS DSPDetrend DSPPeriodogram
DWT EdgeStats FastGaussTransform FastOp
FFT FilterFIR FilterIIR FindContour
FindDuplicates FindLevel FindLevels FindPeak
FindPointsInPoly FindRoots FindValue FuncFit
FuncFitMD Hanning HilbertTransform Histogram
ICA IFFT IndexSort Integrate
Integrate1D Integrate2D IntegrateODE Interpolate2
Interp3DPath Interpolate3D JointHistogram Loess
LombPeriodogram MakeIndex MultiTaperPSD NeuralNetworkRun
NeuralNetworkTrain Optimize PCA PrimeFactors
Project PulseStats RatioFromNumber Resample
Smooth SmoothCustom Sort SortColumns
SphericalInterpolate SphericalTriangulate SumDimension SumSeries
Triangulate3D Unwrap WaveMeanStdv WaveStats
WaveTransform WignerTransform WindowFunction

Concatenate Extract FFT IFFT
ImageFilter ImageFromXYZ Loess MatrixConvolve
MatrixCorr MatrixEigenV MatrixFilter MatrixGaussJ
MatrixGLM MatrixInverse MatrixLinearSolve MatrixLinearSolveTD
MatrixLLS MatrixLUBkSub MatrixLUD MatrixLUDTD
MatrixMultiply MatrixOp MatrixSchur MatrixSolve
MatrixSVBkSub MatrixSVD MatrixTranspose Reverse
SplitWave SumDimension WaveTransform

FindRoots Integrate1D IntegrateODE Optimize
SumSeries

Convolve Correlate CWT DPSS
DSPDetrend DSPPeriodogram DWT EdgeStats
FFT FilterFIR FilterIIR FindLevel
FindLevels FindPeak Hanning HilbertTransform
IFFT ImageWindow LinearFeedbackShiftRegister LombPeriodogram
MultiTaperPSD PulseStats Resample Rotate
SmoothCustom Unwrap WignerTransform WindowFunction

Igor Reference

V-4

Image Analysis

Statistics

Geometry

Drawing

Programming & Utilities

ColorScale ColorTab2Wave DWT ImageAnalyzeParticles
ImageBlend ImageBoundaryToMask ImageEdgeDetection ImageFileInfo
ImageFilter ImageFocus ImageFromXYZ ImageGenerateROIMask
ImageGLCM ImageHistModification ImageHistogram ImageInfo
ImageInterpolate ImageLineProfile ImageLoad ImageMorphology
ImageNameList ImageNameToWaveRef ImageRegistration ImageRemoveBackground
ImageRestore ImageRotate ImageSave ImageSeedFill
ImageSnake ImageSkeleton3D ImageStats ImageThreshold
ImageTransform ImageUnwrapPhase ImageWindow Loess
MatrixFilter

EdgeStats FPClustering Histogram ICA
ImageHistModification ImageHistogram ImageStats JointHistogram
KMeans PCA PulseStats SetRandomSeed
StatsAngularDistanceTest StatsANOVA1Test StatsANOVA2NRTest StatsANOVA2RMTest
StatsANOVA2Test StatsChiTest StatsCircularCorrelationTest StatsCircularMeans
StatsCircularMoments StatsCircularTwoSampleTest StatsCochranTest StatsContingencyTable
StatsDIPTest StatsDunnettTest StatsFriedmanTest StatsFTest
StatsHodgesAjneTest StatsJBTest StatsKDE StatsKendallTauTest
StatsKSTest StatsKWTest StatsLinearCorrelationTest StatsLinearRegression
StatsMultiCorrelationTest StatsNPMCTest StatsNPNominalSRTest StatsQuantiles
StatsRankCorrelationTest StatsResample StatsSample StatsScheffeTest
StatsShapiroWilkTest StatsSignTest StatsSRTest StatsTTest
StatsTukeyTest StatsVariancesTest StatsWatsonUSquaredTest StatsWatsonWilliamsTest
StatsWheelerWatsonTest StatsWilcoxonRankTest StatsWRCorrelationTest WaveMeanStdv
WaveStats

BoundingBall ConvexHull FindPointsInPoly Interp3DPath
Interpolate3D Project SphericalInterpolate SphericalTriangulate
Triangulate3D

DrawAction DrawArc DrawBezier DrawLine
DrawOval DrawPICT DrawPoly DrawRect
DrawRRect DrawText DrawUserShape GraphNormal
GraphWaveDraw GraphWaveEdit HideTools SetDashPattern
SetDrawEnv SetDrawLayer ShowTools ToolsGrid

Abort BackgroundInfo Beep BuildMenu
ChooseColor CloseProc CtrlBackground CtrlNamedBackground
DefaultGUIFont DefaultGUIControls Debugger DebuggerOptions
DefaultTextEncoding DelayUpdate DisplayHelpTopic DisplayProcedure

Igor Reference

V-5

Files & Paths

Data Folders

Movies & Sound

DoAlert DoIgorMenu DoUpdate DoXOPIdle
Execute Execute/P ExecuteScriptText ExperimentModified
GetLastUserMenuInfo GetMouse Grep HideIgorMenus
HideProcedures IgorVersion KillBackground KillStrings
KillVariables LoadPackagePreferences MarkPerfTestTime MeasureStyledText
MoveString MoveVariable MoveWave MultiThreadingControl
ParseOperationTemplate PauseForUser PauseUpdate Preferences
PrintSettings PutScrapText Quit Rename
ResumeUpdate SavePackagePreferences SetBackground SetFormula
SetIgorHook SetIgorMenuMode SetIgorOption SetProcessSleep
SetRandomSeed SetWaveLock ShowIgorMenus Silent
Sleep Slow Demo sprintf
sscanf String StructGet StructPut
ThreadGroupPutDF ThreadStart ToCommandLine Variable
WAVEClear

AdoptFiles BrowseURL Close CopyFile
CopyFolder CreateAliasShortcut DeleteFile DeleteFolder
FBinRead FBinWrite fprintf FReadLine
FGetPos FSetPos FStatus FTPCreateDirectory
FTPDelete FTPDownload FTPUpload GBLoadWave
GetFileFolderInfo Grep ImageFileInfo ImageLoad
ImageSave JCAMPLoadWave KillPath KillPICTs
KillWaves LoadData LoadPICT LoadWave
MLLoadWave MoveFile MoveFolder NewNotebook
NewPath Open OpenNotebook OpenProc
PathInfo ReadVariables RemovePath RenamePath
RenamePICT Save SaveData SaveExperiment
SaveGraphCopy SaveNotebook SavePICT SaveTableCopy
SetFileFolderInfo URLRequest wfprintf XLLoadWave

cd Dir DuplicateDataFolder KillDataFolder
MoveDataFolder MoveVariable MoveWave NewDataFolder
pwd RenameDataFolder ReplaceWave root
SetDataFolder

AddMovieAudio AddMovieFrame Beep CloseMovie
ImageFileInfo NewMovie PlayMovie PlayMovieAction
PlaySnd PlaySound SoundInRecord SoundInSet
SoundInStartChart SoundInStatus SoundInStopChart SoundLoadWave
SoundSaveWave

Igor Reference

V-6

Controls & Cursors

FIFOs

Printing

Button Chart CheckBox ControlBar
ControlInfo ControlUpdate Cursor CustomControl
DefaultGUIFont DefaultGUIControls GetUserData GroupBox
HideInfo HideTools KillControl ListBox
ListBoxControl ModifyControl ModifyControlList NewPanel
popup PopupContextualMenu PopupMenu PopupMenuControl
SetVariable ShowInfo ShowTools Slider
TabControl TitleBox ValDisplay

AddFIFOData AddFIFOVectData Chart ControlInfo
CtrlFIFO FIFO2Wave FIFOStatus KillFIFO
NewFIFO NewFIFOChan SoundInStartChart

Print printf PrintGraphs PrintLayout
PrintNotebook PrintSettings PrintTable sprintf
wfprintf

Igor Reference

V-7

Built-In Functions by Category
Note: some functions may appear in more than one category.

Numbers

Trig

Exponential

Complex

Rounding

Conversion

Time and Date

Matrix Analysis

e Inf NaN numtype
Pi VariableList

acos asin atan atan2
cos cot csc sawtooth
sec sin sinc sqrt
tan

acosh alog asinh atanh
cosh coth cpowi csch
exp ln log sech
sinh tanh

cabs cequal cmplx conj
cpowi imag magsqr p2rect
r2polar real

abs cabs ceil floor
limit max min mod
round sign trunc

char2num cmplx ConvertGlobalStringTextEncoding ConvertTextEncoding
date2secs imag LowerStr magsqr
NormalizeUnicode num2char num2istr num2str
p2rect pnt2x r2polar real
Secs2Date Secs2Time str2num UpperStr
x2pnt

CreationDate date dateToJulian date2secs
DateTime JulianToDate ModDate Secs2Date
Secs2Time StartMSTimer StopMSTimer ticks
time

MatrixCondition MatrixDet MatrixDot MatrixRank
MatrixTrace

Igor Reference

V-8

Wave Analysis

About Waves

Special

area areaXY BinarySearch BinarySearchInterp
ContourZ FakeData faverage faverageXY
interp Interp2D Interp3D mean
median p poly poly2D
PolygonArea q r s
sum t Variance x
y z

BinarySearch BinarySearchInterp ContourInfo ContourNameToWaveRef
ContourZ CreationDate CsrInfo CsrWave
CsrWaveRef CsrXWave CsrXWaveRef deltax
DimDelta DimOffset DimSize EqualWaves
exists FindDimLabel GetDimLabel GetWavesDataFolder
GetWavesDataFolderDFR hcsr ImageInfo ImageNameToWaveRef
IndexToScale leftx ModDate NameOfWave
NewFreeWave note numpnts p
pcsr pnt2x q qcsr
r rightx s ScaleToIndex
t TagVal TagWaveRef TraceInfo
TraceNameToWaveRef WaveCRC WaveDims WaveExists
WaveInfo WaveList WaveName WaveRefIndexed
WaveRefsEqual WaveTextEncoding WaveType WaveUnits
x x2pnt xcsr XWaveName
XWaveRefFromTrace y v zcsr

airyA airyAD airyB airyBD
Besseli Besselj Besselk Bessely
bessI bessJ bessK bessY
beta betai binomial binomialln
binomialNoise chebyshev chebyshevU CosIntegral
dawson digamma Dilogarithm ei
enoise erf erfc erfcw
expInt ExpIntegralE1 expnoise factorial
fresnelCos fresnelCS fresnelSin gamma
gammaInc gammaNoise gammln gammp
gammq Gauss Gauss1D Gauss2D
gcd gnoise hermite hermiteGauss
hyperG0F1 hyperG1F1 hyperG2F1 hyperGNoise
hyperGPFQ inverseErf inverseErfc JacobiCn
JacobiSn laguerre laguerreA laguerreGauss
LambertW legendreA logNormalNoise lorentzianNoise
MandelbrotPoint MarcumQ poissonNoise poly

Igor Reference

V-9

poly2D SinIntegral sphericalBessJ sphericalBessJD
sphericalBessY sphericalBessYD sphericalHarmonics sqrt
VoigtFunc zeta ZernikeR

V-10

Statistics

Windows

binomialln binomialNoise enoise erf
erfc expnoise faverage faverageXY
gamma gammaInc gammaNoise gammln
gammp gammq gnoise inverseErf
inverseErfc lorentzianNoise logNormalNoise mean
max min norm poissonNoise
StatsCorrelation StatsBetaCDF StatsBetaPDF StatsBinomialCDF
StatsBinomialPDF StatsCauchyCDF StatsCauchyPDF StatsChiCDF
StatsChiPDF StatsCMSSDCDF StatsCorrelation StatsDExpCDF
StatsDExpPDF StatsErlangCDF StatsErlangPDF StatsErrorPDF
StatsEValueCDF StatsEValuePDF StatsExpCDF StatsExpPDF
StatsFCDF StatsFPDF StatsFriedmanCDF StatsGammaCDF
StatsGammaPDF StatsGeometricCDF StatsGeometricPDF StatsGEVCDF
StatsGEVPDF StatsHyperGCDF StatsHyperGPDF StatsInvBetaCDF
StatsInvBinomialCDF StatsInvCauchyCDF StatsInvChiCDF StatsInvCMSSDCDF
StatsInvDExpCDF StatsInvEValueCDF StatsInvExpCDF StatsInvFCDF
StatsInvFriedmanCDF StatsInvGammaCDF StatsInvGeometricCDF StatsInvKuiperCDF
StatsInvLogisticCDF StatsInvLogNormalCDF StatsInvMaxwellCDF StatsInvMooreCDF
StatsInvNBinomialCDF StatsInvNCChiCDF StatsInvNCFCDF StatsInvNormalCDF
StatsInvParetoCDF StatsInvPoissonCDF StatsInvPowerCDF StatsInvQCDF
StatsInvQpCDF StatsInvRayleighCDF StatsInvRectangularCDF StatsInvSpearmanCDF
StatsInvStudentCDF StatsInvTopDownCDF StatsInvTriangularCDF StatsInvUSquaredCDF
StatsInvVonMisesCDF StatsInvWeibullCDF StatsKuiperCDF StatsLogisticCDF
StatsLogisticPDF StatsLogNormalCDF StatsLogNormalPDF StatsMaxwellCDF
StatsMaxwellPDF StatsMedian StatsMooreCDF StatsNBinomialCDF
StatsNBinomialPDF StatsNCChiCDF StatsNCChiPDF StatsNCFCDF
StatsNCFPDF StatsNCTCDF StatsNCTPDF StatsNormalCDF
StatsNormalPDF StatsParetoCDF StatsParetoPDF StatsPermute
StatsPoissonCDF StatsPoissonPDF StatsPowerCDF StatsPowerNoise
StatsPowerPDF StatsQCDF StatsQpCDF StatsRayleighCDF
StatsRayleighPDF StatsRectangularCDF StatsRectangularPDF StatsRunsCDF
StatsSpearmanRhoCDF StatsStudentCDF StatsStudentPDF StatsTopDownCDF
StatsTriangularCDF StatsTriangularPDF StatsTrimmedMean StatsUSquaredCDF
StatsVonMisesCDF StatsVonMisesPDF StatsWaldCDF StatsWaldPDF
StatsWeibullCDF StatsWeibullPDF StudentA StudentT
sum Variance WaveMax WaveMin
wnoise

AnnotationInfo AnnotationList AxisInfo AxisList
AxisValFromPixel ChildWindowList ContourInfo CsrInfo
CsrWave CsrXWave GetBrowserLine GetBrowserSelection
GuideInfo GuideNameList GizmoScale hcsr
ImageInfo LayoutInfo PanelResolution pcsr

V-11

Strings

Names

Lists

Programming

PixelFromAxisVal ProcedureText qcsr SpecialCharacterInfo
SpecialCharacterList TagVal TraceInfo vcsr
WinList WinName WinRecreation WinType
xcsr XWaveName zcsr

AddListItem char2num cmpstr FontSizeHeight
FontSizeStringWidth GrepList GrepString IndexedDir
IndexedFile ListToTextWave LowerStr num2char
num2istr num2str PadString PossiblyQuoteName
RemoveEnding RemoveFromList RemoveListItem ReplaceStringByKey
SelectString str2num StringByKey StringCRC
StringFromList StringList StringMatch strlen
strsearch TextFile TrimString UnPadString
UpperStr URLDecode URLEncode WhichListItem

CheckName CleanupName ContourNameList ContourNameToWaveRef
ControlNameList CTabList FontList FunctionList
GetDefaultFont GetIndependentModuleName GetIndexedObjName GetWavesDataFolder
GetWavesDataFolderDFR ImageNameList ImageNameToWaveRef IndependentModuleList
IndexedDir IndexedFile MacroList NameOfWave
StringList TextEncodingCode TextEncodingName TraceFromPixel
TraceNameList TraceNameToWaveRef UniqueName VariableList
WaveList WaveName WinList WinName
XWaveName

AnnotationList AxisList ChildWindowList ContourNameList
ControlNameList CountObjects CountObjectsDFR DataFolderDir
FindListItem FontList FunctionInfo FunctionList
GetIndexedObjName GetWindow GuideNameList ImageNameList
IndependentModuleList ItemsInList ListMatch ListToTextWave
ListToWaveRefWave MacroList NumberByKey OperationList
PathList PICTList RemoveByKey RemoveFromList
RemoveListItem ReplaceNumberByKey ReplaceStringByKey SortList
StringByKey StringFromList StringList TableInfo
TraceNameList VariableList WaveList WaveRefIndexed
WaveRefWaveToList WhichListItem WinList

CaptureHistory CaptureHistoryStart ControlNameList DDEExecute
DDEInitiate DDEPokeString DDEPokeWave DDERequestString
DDERequestWave DDEStatus DDETerminate exists
FakeData FuncRefInfo FunctionInfo GetDefaultFont
GetDefaultFontSize GetDefaultFontStyle GetEnvironmentVariable GetErrMessage

V-12

Data Folders

I/O (files, paths, and PICTs)

GetFormula GetKeyState GetRTError GetRTErrMessage
GetRTLocation GetRTLocInfo GetRTStackInfo GetScrapText
GuideInfo GuideNameList Hash i
IgorInfo ilim j jlim
NameOfWave numtype NumVarOrDefault NVAR_Exists
PanelResolution ParamIsDefault PICTInfo PixelFromAxisVal
ProcedureText ScreenResolution SelectNumber SelectString
SetEnvironmentVariable SpecialDirPath StartMSTimer StopMSTimer
StringCRC StrVarOrDefault SVAR_Exists TableInfo
TagVal ThreadGroupCreate ThreadGroupGetDF ThreadGroupGetDFR
ThreadGroupRelease ThreadGroupWait ThreadProcessorCount ThreadReturnValue
UnsetEnvironmentVariable WaveCRC WinType

CountObjects DataFolderDir DataFolderExists DataFolderRefsEqual
DataFolderRefStatus GetDataFolder GetDataFolderDFR GetIndexedObjName
GetWavesDataFolder GetWavesDataFolderDFR NewFreeDataFolder

FetchURL FunctionPath IndexedDir IndexedFile
ParseFilePath PathList PICTInfo PICTList
SpecialDirPath TextFile URLDecode URLEncode

V-13

Built-In Keywords
Procedure Declarations

Procedure Subtypes

Object References

Function Local Variable Keywords

Flow Control

Other Programming Keywords

End EndMacro EndStructure Function
Macro Picture Proc Structure
Window

ButtonControl CameraWindow CDFFunc CheckBoxControl
CursorStyle FitFunc GizmoPlot Graph
GraphMarquee GraphStyle GridStyle Layout
LayoutMarquee LayoutStyle ListBoxControl Panel
PopupMenuControl SetVariableControl SliderControl TabControl
Table TableStyle

DFREF FUNCREF NVAR STRUCT
SVAR WAVE

Complex Double Int Int64
String STRUCT UInt64 Variable

AbortOnRTE AbortOnValue break catch
continue default do-while endtry
for-endfor if-elseif-endif if-endif return
strswitch-case-endswitch switch-case-endswitch try try-catch-endtry

#define #if-#elif-#endif #if-#endif #ifdef-#endif
#ifndef-#endif #include #pragma #undef
Constant DoPrompt GalleryGlobal hide
IgorVersion IndependentModule Menu ModuleName
MultiThread Override popup ProcGlobal
Prompt root rtGlobals Static
Strconstant String Submenu TextEncoding
ThreadSafe Variable version

V-14

Built-in Structures

Hook Functions
See Chapter IV-10, Advanced Topics, User-Defined Hook Functions on page IV-264.

Point PointF Rect RectF
RGBColor RGBAColor WMAxisHookStruct WMBackgroundStruct
WMButtonAction WMCheckboxAction WMCustomControlAction WMDrawUserShapeStruct
WMFitInfoStruct WMGizmoHookStruct WMListboxAction WMMarkerHookStruct
WMPopupAction WMSetVariableAction WMSliderAction WMTabControlAction
WMWinHookStruct

AfterCompiledHook AfterFileOpenHook AfterMDIFrameSizedHook AfterWindowCreatedHook
BeforeDebuggerOpensHook BeforeExperimentSaveHook BeforeFileOpenHook IgorBeforeNewHook
IgorBeforeQuitHook IgorMenuHook IgorQuitHook IgorStartOrNewHook

V-15

Alphabetic Listing of Functions, Operations and Keywords
This section alphabetically lists all built-in functions, operations and keywords. Much of this information is also
accessible online in the Command Help tab of the Igor Help Browser.

External operations (XOPs) and external functions (XFUNCs) are not covered here. For information about them, use
the Command Help tab of the Igor Help Browser and the XOP help file in the same folder as the XOP file.

Reference Syntax Guide
In the descriptions of functions and operations that follow, italics indicate parameters for which you can supply
numeric or string expressions. Non-italic keywords must be entered literally as they appear. Commas, slashes,
braces and parentheses in these descriptions are always literals. Brackets surround optional flags or parameters.
Ellipses (…) indicate that the preceding element may be repeated a number of times.

Italicized parameters represent values you supply. Italic words ending with “Name” are names (wave names, for
example), and those ending with “Str” are strings. Italic words ending with “Spec” (meaning “specification”) are
usually further defined in the description. If none of these endings are employed, the italic word is a numeric
expression, such as a literal number, the name of a variable or function, or some valid combination.

Strings and names are different, but you can use a string where a name is expected using “string substitution”:
precede a string expression with the $ operator. See String Substitution Using $ on page IV-17.

A syntax description may span several lines, but the actual command you create must occupy a single line.

Many operations have optional “flags”. Flags that accept a value (such as the Make operation’s /N=n flag)
sometimes require additional parentheses. For example:
Make/N=1 aNewWave

is acceptable because here n is the literal “1”. To use a numeric expression (anything other than a literal number) for
n, parentheses are needed:
Make/N=(numberOfPoints) aNewWave // error if no parentheses!

For more about using functions, operations and keywords, see Chapter IV-1, Working with Commands, Chapter
IV-2, Programming Overview, and Chapter IV-10, Advanced Topics.

#define

V-16

#define
#define symbol
The #define statement is a conditional compilation directive that defines a symbol for use only with #ifdef
or #ifndef expressions. #undef removes the definition.

Details
The defined symbol exists only in the file where it is defined; the only exception is in the main procedure
window where the scope covers all other procedures except independent modules. See Conditional
Compilation on page IV-100 for information on defining a global symbol.
#define cannot be combined inline with other conditional compilation directives.

See Also
The #undef, #ifdef-#endif, and #ifndef-#endif statements.
Conditional Compilation on page IV-100.

#if-#elif-#endif
#if expression1

<TRUE part 1>
#elif expression2

<TRUE part 2>
[…]
[#else

<FALSE part>]
#endif
In a #if-#elif-#endif conditional compilation statement, when an expression evaluates as TRUE (absolute value >
0.5), then only code corresponding to the TRUE part of that expression is compiled, and then the conditional
statement is exited. If all expressions evaluate as FALSE (zero) then FALSE part is compiled when present.

Details
Conditional compiler directives must be either entirely outside or inside function definitions; they cannot
straddle a function fragment. Conditionals cannot be used within Macros.

See Also
Conditional Compilation on page IV-100 for more usage details.

#if-#endif
#if expression

<TRUE part>
[#else

<FALSE part>]
#endif
A #if-#endif conditional compilation statement evaluates expression. If expression is TRUE (absolute value >
0.5) then the code in TRUE part is compiled, or if FALSE (zero) then the optional FALSE part is compiled.

Details
Conditional compiler directives must be either entirely outside or inside function definitions; they cannot
straddle a function fragment. Conditionals cannot be used within Macros.

See Also
Conditional Compilation on page IV-100 for more usage details.

#ifdef-#endif

V-17

#ifdef-#endif
#ifdef symbol

<TRUE part>
[#else

<FALSE part>]
#endif
A #ifdef-#endif conditional compilation statement evaluates symbol. When symbol is defined the code in
TRUE part is compiled, or if undefined then the optional FALSE part is compiled.

Details
Conditional compiler directives must be either entirely outside or inside function definitions; they cannot
straddle a function fragment. Conditionals cannot be used within Macros.
symbol must be defined before the conditional with #define.

See Also
The #define statement and Conditional Compilation on page IV-100 for more usage details.

#ifndef-#endif
#ifndef symbol

<TRUE part>
[#else

<FALSE part>]
#endif
An #ifndef-#endif conditional compilation statement evaluates symbol. When symbol is undefined the code
in TRUE part is compiled, or if defined then the optional FALSE part is compiled.

Details
Conditional compiler directives must be either entirely outside or inside function definitions; they cannot
straddle a function fragment. Conditionals cannot be used within Macros.
symbol must be defined before the conditional with #define.

See Also
The #define statement and Conditional Compilation on page IV-100 for more usage details.

#include
#include "file spec" or <file spec>
A #include statement in a procedure file automatically opens another procedure file. You should use
#include in any procedure file that you write if it requires that another procedure file be open. A #include
statement must always appear flush against the left margin in a procedure window.

Parameters
file spec is the procedure file name, which can incorporate a full or partial path. The form used depends of
the procedure file location: <file spec> is in "Igor Pro 7 Folder/WaveMetrics Procedures” and “file spec” is in
"Igor Pro 7 Folder/User Procedures" or "Igor Pro User Files/User Procedures".

See Also
The Include Statement on page IV-155 for usage details.
Igor Pro User Files on page II-31.

#pragma
#pragma pragmaName = value
#pragma introduces a compiler directive, which is a message to the Igor procedure compiler. A #pragma
statement must always appear flush against the left margin in a procedure window.
Igor ignores unknown pragmas such as pragmas introduced in later versions of the program.
Currently Igor supports the following pragmas:

#undef

V-18

#pragma rtGlobals = value
#pragma version = versionNumber
#pragma IgorVersion = versionNumber
#pragma hide = value
#pragma ModuleName = name
#pragma IndependentModule = name
#pragma rtFunctionErrors = value
#pragma TextEncoding = "textEncodingName"

See Also
Pragmas on page IV-48
The rtGlobals Pragma on page IV-48
The version Pragma on page IV-50
The IgorVersion Pragma on page IV-50
The hide Pragma on page IV-50
The ModuleName Pragma on page IV-50
The IndependentModule Pragma on page IV-51
The rtFunctionErrors Pragma on page IV-51
The TextEncoding Pragma on page IV-51

#undef
#undef symbol
A #undef statement removes a nonglobal symbol created previously by #define. See Conditional
Compilation on page IV-100 for information on undefining a global symbol.

See Also
The #define statement and Conditional Compilation on page IV-100 for more usage details.

Abort
Abort [errorMessageStr]
The Abort operation aborts procedure execution.

Parameters
The optional errorMessageStr is a string expression, which, if present, specifies the message to be displayed
in the error alert.

Details
Abort provides a way for a procedure to abort execution when it runs into an error condition.

See Also
Aborting Functions on page IV-103 , Aborting Macros on page IV-115, and Flow Control for Aborts on
page IV-45. The DoAlert operation.

AbortOnRTE
AbortOnRTE
The AbortOnRTE flow control keyword raises an abort with a runtime error.
AbortOnRTE should be used after a command that might give rise to a runtime error.
You can place AbortOnRTE immediately after a command that might give rise to a runtime error that you
want to handle instead of allowing Igor to handle it by halting procedure execution. Use a try-catch-endtry
block to catch the abort, if it occurs.
AbortOnRTE has very low overhead and should not significantly slow program execution.

Details
In terms of programming style, you should consider using AbortOnRTE (preceded by a semicolon) on the
same line as the command that may give rise to an abort condition.

AbortOnValue

V-19

When using AbortOnRTE after a related sequence of commands, then it should be placed on its own line.
When used with try-catch-endtry, you should place a call to GetRTError(1) in your catch section to clear
the runtime error.

Example
Abort if the wave does not exist:
WAVE someWave; AbortOnRTE

See Also
Flow Control for Aborts on page IV-45 and AbortOnRTE Keyword on page IV-45 for further details.
The try-catch-endtry flow control statement.

AbortOnValue
AbortOnValue abortCondition, abortCode
The AbortOnValue flow control keyword will abort function execution when the abortCondition is nonzero
and it will then return the numeric abortCode. No dialog will be displayed when such an abort occurs.

Parameters
abortCondition can be any valid numeric expression using comparison or logical operators.
abortCode is a nonzero numeric value returned to any abort or error handling code by AbortOnValue
whenever it causes an abort.

Details
When used with try-catch-endtry, you should place a call to GetRTError(1) in your catch section to clear
the runtime error.

See Also
Flow Control for Aborts on page IV-45 and AbortOnValue Keyword on page IV-45 for further details.
The AbortOnRTE keyword and the try-catch-endtry flow control statement.

abs
abs(num)
The abs function returns the absolute value of the real number num. To calculate the absolute value of a
complex number, use the cabs function.

See Also
The cabs function.

acos
acos(num)
The acos function returns the inverse cosine of num in radians in the range [0,π].
In complex expressions, num is complex and acos returns a complex value.

See Also
cos

acosh
acosh(num)
The acosh function returns the inverse hyperbolic cosine of num. In complex expressions, num is complex
and acosh returns a complex value.

AddFIFOData

V-20

AddFIFOData
AddFIFOData FIFOName, FIFO_channelExpr [, FIFO_channelExpr]…
The AddFIFOData operation evaluates FIFO_channelExpr expressions as double precision floating point
and places the resulting values into the named FIFO.

Details
There must be one FIFO_channelExpr for each channel in the FIFO.

See Also
FIFOs are used for data acquisition. See FIFOs and Charts on page IV-291.
Other operations used with FIFOs: NewFIFO, NewFIFOChan, CtrlFIFO, and FIFOStatus.

AddFIFOVectData
AddFIFOVectData FIFOName, FIFO_channelKeyExpr [, FIFO_channelKeyExpr]…
The AddFIFOVectData operation is similar to AddFIFOData except the expressions use a keyword to allow
either a single numeric value for a normal channel or a wave containing the data for a special image vector
channel.

Details
There must be one FIFO_channelKeyExpr for each channel in the FIFO.
A FIFO_channelKeyExpr may be one of:

num = numericExpression
vect = wave

For best results, the wave should have the same number of points as used to define the FIFO channel and
the same number type. See the NewFIFOChan operation.

See Also
FIFOs and Charts on page IV-291.

AddListItem
AddListItem(itemStr, listStr [, listSepStr [, itemNum]])
The AddListItem function returns listStr after adding itemStr to it. listStr should contain items separated by
the listSepStr character, such as “abc;def;”.
Use AddListItem to add an item to a string containing a list of items separated by a single character, such
as those returned by functions like TraceNameList or AnnotationList, or to a line from a delimited text file.
listSepStr and itemNum are optional; their defaults are “;” and 0, respectively.

Details
By default itemStr is added to the start of the list. Use the optional list index itemNum to add itemStr at a
different location. The returned list will have itemStr at the index itemNum or at ItemsInList(returnedListStr)-1
when itemNum equals or exceeds ItemsInList(listStr).
itemNum can be any value from -infinity (-Inf) to infinity (Inf). Values from -infinity to 0 prepend itemStr
to the list, and values from ItemsInList(listStr) to infinity append itemStr to the list.
itemStr may be "", in which case an empty item (consisting of only a separator) is added.
If listSepStr is "", then listStr is returned unchanged (unless listStr contains only list separators, in which
case an empty string ("") is returned).
listStr is treated as if it ends with a listSepStr even if it doesn’t.
In Igor6, only the first byte of listSepStr was used. In Igor7 and later, all bytes are used.

Examples
Print AddListItem("hello","kitty;cat;") // prints "hello;kitty;cat;"
Print AddListItem("z", "b,c,", ",", 1) // prints "b,z,c,"
Print AddListItem("z", "b,c,", ",", 999) // prints "b,c,z,"
Print AddListItem("z", "b,c,", ",", Inf) // prints "b,c,z,"
Print AddListItem("", "b-c-", "-") // prints "-b-c-"

AddMovieAudio

V-21

See Also
The FindListItem, FunctionList, ItemsInList, RemoveByKey, RemoveFromList, RemoveListItem,
StringFromList, StringList, TraceNameList, VariableList, and WaveList functions.

AddMovieAudio
AddMovieAudio soundWave
The AddMovieAudio operation adds audio samples to the audio track of the currently open movie.
In Igor Pro 7.00 and later, this operation is not supported on Macintosh.

Parameters
soundWave contains audio samples with an amplitude from -128 to +127 and with the same time scale as the
prototype soundWave used to open the movie.

Details
You can create movies with 16-bit and stereo sound by providing a sound wave in the appropriate format.
To specify 16-bit sound, the wave type must be signed 16-bit integer (/W flag in Make or Redimension). To
specify stereo, use a wave with two columns (or any other number of channels as desired).

See Also
Movies on page IV-230.
The NewMovie operation.

AddMovieFrame
AddMovieFrame [/PICT=pictName]
The AddMovieFrame operation adds the top graph, page layout, Gizmo window, or the specified picture
to the currently open movie.
Support for page layout and Gizmo windows was added in Igor Pro 7.00.
When you write a procedure to generate a movie, you need to call the DoUpdate operation after all
modifications to the target window and before calling AddMovieFrame. This allows Igor to process any
changes you have made to the window.
In Igor7 or later, the target window at the time you call NewMovie is remembered and is used by
AddMovieFrame even if it is not the target window when you call AddMovieFrame.
If the /PICT flag is provided, then the specified picture from the picture gallery (see Pictures on page III-448)
is used in place of the target window.

See Also
Movies on page IV-230.
The NewMovie operation.

AdoptFiles
AdoptFiles [flags]
The AdoptFiles operation adopts external files and waves into the current experiment.
When the experiment is next saved, the files and waves are saved in the experiment file for a packed
experiment or in the experiment folder for an unpacked experiment. References to the external files are
eliminated.
AdoptFiles cannot be called from a function except via Execute/P.

Flags

/A Adopts all external notebooks and user procedure files and all waves in the
experiment. WaveMetrics Procedure files are not adopted. /A is equivalent to
/NB/UP/DF.

/DF Adopts all waves saved external to the experiment.

airyA

V-22

Details
Only files and waves saved external to the current experiment are adopted. See References to Files and
Folders on page II-22 for a discussion of such standalone files.
The number of objects actually adopted is returned in V_Flag.
To adopt just one wave, use:
AdoptFiles/WV=wave

To adopt just one notebook or procedure window use AdoptFiles/W=winTitleOrName.

Command Line and Macro Examples
// Using AdoptFiles from the command line or from a macro
AdoptFiles/I // Show the Adopt All dialog.
AdoptFiles/A/WP // Adopt everything that can be adopted.
AdoptFiles/DF/NB/UP/WP // Adopt everything that can be adopted.
AdoptFiles/DF=root:subfolder // Adopt any externally saved waves in root:subfolder.
AdoptFiles/W=$"Proc0.ipf" // Adopt Proc0.ipf if it is saved externally.
AdoptFiles/WV=GetWavesDataFolder(wave0,2) // Adopt wave0 if it is saved externally.

Function Examples
// Using AdoptFiles from a user-defined function - you must use Execute/P
Execute/P "AdoptFiles/A" // Schedule adoption of all user files and waves
Execute/P "AdoptFiles/WV="+GetWavesDataFolder(w,2) // Schedule adoption of wave w

See Also
Adopt All on page II-24, Adopting Notebook and Procedure Files on page II-23, Avoiding Shared Igor
Binary Files on page II-23, Operation Queue on page IV-263.

airyA
airyA(x [, accuracy])
The airyA function returns the value of the Airy Ai(x) function:

where K is the modified Bessel function.

Details
See the bessI function for details on accuracy and speed of execution.

/DF=dataFolderPathStr Adopts all waves saved external to the experiment that are in the specified data
folder.

/I Shows the Adopt All dialog and adopts what the user selects there.

/NB Adopts all external notebook files.

/UP Adopts all external user procedure files.

/W=winTitleOrName Adopts the specified notebook or procedure file. /W was added in Igor Pro 7.02.
winTitleOrName is a name, not a string, so you construct /W like this:
/W=$"New Polar Graph.ipf"

or:
/W=Notebook0

When working with independent modules, winTitleOrName is a procedure
window title followed by a space and, in brackets, an independent module name.
See Independent Modules on page IV-224 for details.

/WP Adopts all WaveMetrics Procedure procedure files.

/WV=wave Adopts only the specified wave.

Ai(x) = 1

π
x

3
K1/3

2

3
x3/2⎛

⎝⎜
⎞
⎠⎟ ,

airyAD

V-23

See Also
The airyAD and airyB functions.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

airyAD
airyAD(x [, accuracy])
The airyAD function returns the value of the derivative of the Airy function.

Details
See the bessI function for details on accuracy and speed of execution.

See Also
The airyA function.

airyB
airyB(x [, accuracy])
The airyB function returns the value of the Airy Bi(x) function:

where I is the modified Bessel function.

Details
See the bessI function for details on accuracy and speed of execution.

See Also
The airyBD and airyA functions.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

airyBD
airyBD(x [, accuracy])
The airyBD function returns the value of the derivative Bi'(x) of the Airy function.

Details
See the bessI function for details on accuracy and speed of execution.

See Also
The airyB function.

alog
alog(num)
The alog function returns 10num.

AnnotationInfo
AnnotationInfo(winNameStr, annotationNameStr [, options])
The AnnotationInfo function returns a string containing a semicolon-separated list of information about the
named annotation in the named graph or page layout window or subwindow.
The main purpose of AnnotationInfo is to use a tag or textbox as an input mechanism to a procedure. This
is illustrated in the “Tags as Markers Demo” sample experiment, which includes handy utility functions
(supplied by AnnotationInfo Procs.ipf).

Bi(x) = x

3
I−1/3

2

3
x3/2⎛

⎝⎜
⎞
⎠⎟ + I1/3

2

3
x3/2⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
,

AnnotationInfo

V-24

Parameters
winNameStr can be "" to refer to the top graph or layout window or subwindow.
When identifying a subwindow with winNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
options is an optional parameter that controls the text formatting in the annotation output. The default value is 0.
Omit options or use 0 for options to escape the returned annotation text, which is appropriate for printing the
output to the history or for using the text in an Execute operation.
Use 1 for options to not escape the returned annotation text because you intend to extract the text for use in
a subsequent command such as Textbox or Tag.

Details
The string contains thirteen pieces of information. The first twelve pieces are prefaced by a keyword and
colon and terminated with a semicolon. The last piece is the annotation text, which is prefaced with a
keyword and a colon but is not terminated with a semicolon.

Keyword Information Following Keyword

ABSX X location, in points, of the anchor point of the annotation. For graphs, this is relative to the
top-left corner of the graph window. For layouts, it is relative to the top-left corner of the page.

ABSY Y location, in points, of the anchor point of the annotation. For graphs, this is relative to the
top-left corner of the graph window. For layouts, it is relative to the top-left corner of the page.

ATTACHX For tags, it is the X value of the wave at the point where the tag is attached, as specified
with the Tag operation. For textboxes, color scales, and legends, this will be zero and has
no meaning.

AXISX X location of the anchor point of the annotation. For tags or color scales in graphs, it is in
terms of the X axis against which the tagged wave is plotted. For textboxes and legends in
graphs, it is in terms of the first X axis. For layouts, this has no meaning and is always zero.

AXISY Y location of the anchor point of the annotation. For layouts, this has no meaning and is
always zero. For tags or color scales in graphs, it is in terms of the Y axis against which the
tagged wave is plotted. For textboxes and legends in graphs, it is in terms of the first Y axis.

AXISZ Z value of the image or contour level trace to which the tag is attached or NaN if the trace
is not a contour level trace or the annotation is not a tag.

COLORSCALE Parameters used in a ColorScale operation to create the annotation.

FLAGS Flags used in a Tag, Textbox, ColorScale, or Legend operation to create the annotation.

RECT The outermost corners of the annotation (values are in points):
RECT:left, top, right, bottom

TEXT Text that defines the contents of the annotation or the main axis label of a color scale.

TYPE Annotation type: “Tag”, “TextBox”, “ColorScale”, or “Legend”.

XWAVE For tags, it is the name of the X wave in the XY pair to which the tag is attached. If the tag
is attached to a single wave rather than an XY pair, this will be empty. For textboxes, color
scales, and legends, this will be empty and has no meaning.

XWAVEDF For tags, the full path to the data folder containing the X wave associated with the trace
to which the tag is attached. For textboxes, color scales, and legends, this will be empty
and has no meaning.

AnnotationList

V-25

AnnotationList
AnnotationList(winNameStr)
The AnnotationList function returns a semicolon-separated list of annotation names from the named graph
or page layout window or subwindow.

Parameters
winNameStr can be "" to refer to the top graph or layout window.
When identifying a subwindow with winNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.

APMath
APMath [flags] destStr = Expression
The APMath operation provides arbitrary precision calculation of basic mathematical expressions. It
converts the final result into the assigned string destStr, which can then be printed or used to represent a
value (at the given precision) in another APMath operation.

Parameters

APMath Operators

APMath Functions

YWAVE For tags, it is the name of the trace or image to which the tag is attached. See
ModifyGraph (traces) and Instance Notation on page IV-19 for discussions of trace
names and instance notation. For color scales, it is the name of the wave displayed in
associated the contour plot, image plot, f(z) trace, or the name of the color scale’s cindex
wave. For textboxes and legends, this will be empty and has no meaning.

YWAVEDF Full path to the data folder containing the Y wave or blank if the annotation is not a tag
or color scale.

destStr Specifies a destination string for the assignment expression. If destStr is not an existing
variable, it is created by the operation. When executing in a function, destStr will be a
local variable if it does not already exist.

Expression Algebraic expression containing constants, local, global, and reference variables or
strings, as well as wave elements together with the operators shown below.

+ Scalar addition Lowest precedence

- Scalar subtraction Lowest precedence

* Scalar multiplication Medium precedence

/ Scalar division Medium precedence

^ Exponentiation Highest precedence

sqrt(x) Square root of x.

cbrt(x) Cube root of x.

pi Value of π (without parentheses).

sin(x) Sine of x.

cos(x) Cosine of x.

tan(x) Tangent of x.

asin(x) Inverse sine of x.

Keyword Information Following Keyword

APMath

V-26

Flags

Details
By default, all arbitrary precision math calculations are performed with numDigits=50 and exDigits=6, which
yields a final result using at least 56 decimal places. Because none of the built-in variable types can express
numbers with such high accuracy, the arbitrary precision numbers must be stored as strings. The operation
automatically converts between strings and constants. It evaluates all of the numerical functions listed
above using the specified accuracy. If you need functions that are not supported by this operation, you may
have to precompute them and store the results in a local variable.
The operation stores the result in destStr, which may or may not exist prior to execution. When you execute
the operation from the command line, destStr becomes a global string in the current data folder if it does not
already exist. If it exists, then the result of the operation overwrites its value (as with any normal string
assignment). In a user function, destStr can be a local string, an SVAR, or a string passed by reference. If
destStr is not one of these then the operation creates a local string by that name.

acos(x) Inverse cosine of x.

atan(x) Inverse tangent of x.

atan2(y,x) Inverse tangent of y/x.

log(x) Logarithm of x.

log10(x) Logarithm based 10 of x.

exp(x) Exponential function e^x.

pow(x,n) x to the power n (n not necessarily integer).

sinh(x) Hyperbolic sine of x.

cosh(x) Hyperbolic cosine of x.

tanh(x) Hyperbolic tangent of x.

asinh(x) Inverse hyperbolic sine of x.

acosh(x) Inverse hyperbolic cosine of x.

atanh(x) Inverse hyperbolic tangent of x.

ceil(x) Smallest integer larger than x.

comp(x,y) Returns 0 for x == y, 1 if x > y and -1 if y > x.

factorial(n) Factorial of integer n.

floor(x) Greatest integer smaller than x.

gcd(x,y) Greatest common divisor of x and y.

lcd(x,y) Lowest common denominator of x and y (given by x*y/gcd(x,y).

sgn(x) Sign of x or zero if x == 0.

/EX=exDigits Specifies the number of extra digits added to the precision digits (/N) for
intermediate steps in the calculation.

/N=numDigits Specifies the precision of the final result. To add digits to the intermediate
computation steps, use /EX.

/V Verbose mode; prints the result in the history in addition to performing the
assignment.

/Z No error reporting.

Append

V-27

Arbitrary precision math calculations are much slower (by a factor of about 300) than equivalent floating
point calculations. Execution time is a function of the number of digits, so you should use the /N flag to limit
the evaluation to the minimum number of required digits.

Examples
Evaluate pi to 50 digits:
APMath/V aa=pi

Evaluate ratios of large factorials:
APMath/v aa=factorial(500)/factorial(499)

Evaluate ratios of large exponentials:
APMath/v aa=exp(-1000)/exp(-1001)

Division of mixed size values:
APMath/v aa=1-sgn(1-(1-0.00000000000000000001234)/(1-0.000000000000000000012345)))

you’ll get a different result trying to evaluate this using double precision.
Difference between built-in pi and the arbitrary precision pi:
Variable/G biPi=pi
APMath/v aa=biPi-pi

Precision control:
Function test()

APMath aa=pi // Assign 50 digit pi to the string aa.
APMath/v bb=aa // Create local string bb equal to aa.
APMath/v bb=aa-pi // Subtract arb. prec. pi from aa.

// note the default exDigits=6.
APMath/v/n=50/ex=0 bb=aa-pi // setting exDigits=0.

End

Numerical recreation:
APMath/v/n=16 aa=111111111^2

Append
Append
The Append operation is interpreted as AppendToGraph, AppendToTable, or AppendToLayout,
depending on the target window. This does not work when executing a user-defined function. Therefore
we now recommend that you use AppendToGraph, AppendToTable, or AppendLayoutObject rather
than Append.

AppendImage
AppendImage [/G=g/W=winName][axisFlags] matrix [vs {xWaveName, yWaveName}]
The AppendImage operation appends the matrix as an image to the target or named graph. By default the
image is plotted versus the left and bottom axes.

Parameters
matrix is either an NxM 2D wave for false color or indexed color images, or it can be a 3D NxMx3 wave
containing a layer of data for red, a layer for green and a layer for blue. It can also be a 3D NxMx4 wave
with the fourth plane containing alpha values.
If matrix contains multiple planes other than three or four or if it contains three or four and multiple chunks,
the ModifyImage plane keyword can be used to specify the desired subset to display.
If you provide xWaveName and yWaveName, xWaveName provides X coordinate values, and yWaveName
provides Y coordinate values. This makes an image with uneven pixel sizes. In both cases, you can use * to
specify calculated values based on the dimension scaling of matrix. See Details if you use xWaveName or
yWaveName.

AppendLayoutObject

V-28

Flags

Details
When appending an image to a graph each image data point is displayed as a rectangle. You can supply
optional X and Y waves to define the coordinates of the rectangle edges. These waves need to contain one more
data point than the X (row) or Y (column) dimension of the matrix. The waves must also be either strictly
increasing or strictly decreasing. See Image X and Y Coordinates on page II-301 for details.
For false color, the values in the matrix are linearly mapped into a color table. See the ModifyImage ctab
keyword. For indexed color, the values in the matrix are interpreted as Z values to be looked up in a user-
supplied 3 column matrix of colors. See the ModifyImage cindex keyword. Direct color NxMx3 waves
contain the actual red, green, and blue values for each pixel. NxMx4 waves add an alpha channel. If the
number type is unsigned bytes, then the range of intensity ranges from 0 to 255. For all other number types,
the intensity ranges from 0 to 65535.
By default, nondirect color matrices are initially displayed as false color using the Grays color table and
autoscale mode.
If the matrix is complex, the image is displayed in terms of the magnitude of the Z value, that is,
sqrt(real2 + imag2).

See Also
Image X and Y Coordinates on page II-301, Color Blending on page III-440.
The NewImage, ModifyImage, and RemoveImage operations. For general information on image plots see
Chapter II-15, Image Plots.

AppendLayoutObject
AppendLayoutObject [flags] objectType objectName
The AppendLayoutObject operation appends a single object to the top layout or to the layout specified via
the /W flag. It targets the active page or the page specified by the /PAGE flag.
Unlike the AppendToLayout operation, AppendLayoutObject can be used in user-defined functions.
Therefore, AppendLayoutObject should be used in new programming instead of AppendToLayout.

Parameters
objectType identifies the type of object to be appended. It is one of the following keywords: graph, table,
picture, gizmo.
objectName is the name of the graph, table, picture or Gizmo window to be appended.
Use a space between objectType and objectName. A comma is not allowed.

Flags

axisFlags Flags /L, /R, /B, and /T are the same as used by AppendToGraph.

/G=g

/W=winName Appends to the named graph window or subwindow. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/D=fidelity Draws layout objects in low fidelity (fidelity=0) or high fidelity (fidelity=1; default).
This affects drawing on the screen only, not exporting or printing. Low fidelity is
somewhat faster but less accurate and should be used only for graphs that take a very
long time to draw.

Controls the interpretation of three-plane images as direct RGB.
g=1 Suppresses the auto-detection of three or four plane images as direct (RGB)

color.
g=0 Same as no /G flag (default).

AppendMatrixContour

V-29

See Also
NewLayout, ModifyLayout, LayoutPageAction, RemoveLayoutObjects, TextBox, Legend

AppendMatrixContour
AppendMatrixContour [axisFlags][/F=formatStr /W=winName] zWave

[vs {xWave, yWave}]
The AppendMatrixContour operation appends to the target or named graph a contour plot of a matrix of z
values with autoscaled contour levels, using the Rainbow color table.
Note: There is no DisplayContour operation. Use Display; AppendMatrixContour.

Parameters
zWave must be a matrix (2D wave).
To contour a set of XYZ triplets, use AppendXYZContour.
If you provide the xWave and yWave specification, xWave provides X values for the rows, and yWave
provides Y values for the columns. This results in an “uneven grid” of Z values.
If you omit the xWave and yWave specification, Igor uses the zWave’s X and Y scaled indices as the X and Y
values. Igor also uses the zWave’s scaled indices if you use * (asterisk symbol) in place of xWave or yWave.
In a macro, to modify the appearance of contour levels before the contour is calculated and displayed with
the default values, append ";DelayUpdate" and immediately follow the AppendMatrixContour
command with the appropriate ModifyContour commands. All but the last ModifyContour command
should also have;DelayUpdate appended. DelayUpdate is not needed in a function, but DoUpdate is
useful in a function to force the contour traces to be built immediately rather than the default behavior of
waiting until all functions have completed.
On the command line, the Display command and subsequent AppendMatrixContour commands and any
ModifyContour commands can be typed all on one line with semicolons between:
Display; AppendMatrixContour MyMatrix; ModifyContour ...

/F=frame

/T=trans Sets the transparency of the object background to opaque (trans =0; default) or
transparent (trans =1).

For transparency to be effective, the object itself must also be transparent.
Annotations have their own transparent/opaque settings. Graphs are transparent
only if their backgrounds are white. PICTs may have been created transparent or
opaque. Opaque PICTs cannot be made transparent.

/R=(l, t, r, b) Sets the size and position of the object. If omitted, the object is placed with a default
size and position. l, t, r, and b are the left, top, right, and bottom coordinates of the
object, respectively. Coordinates are expressed in units of points, relative to the
top/left corner of the paper.

/PAGE=page Appends the object to the specified page.
Page numbers start from 1. To target the active page, omit /PAGE or use page=0.
The /PAGE flag was added in Igor Pro 7.00.

/W=winName Appends the object to the named page layout window. If /W is omitted or if winName
is $"", the top page layout is used.

Specifies the type of frame enclosing the object.
frame =1 Single frame (default).
frame =2 Double frame.
frame =3 Triple frame.
frame =4 Shadow frame.

AppendMatrixContour

V-30

Flags

Details
AppendMatrixContour creates and displays contour level traces. You can modify these all together using
the Modify Contour Appearance dialog or individually using the Modify Trace Appearance dialog. In most
cases, you will not need to modify the individual traces.
By default, Contour level traces are automatically named with names that show the zWave and the contour
level, for example, “zWave=1.5”. You will see these trace names in the Modify Trace Appearance dialog and
in Legends. In most cases, the default trace names will be just fine.
If you want to control the names of the contour level traces (which you might want to do for names in a
Legend), use the /F=formatStr flag. This flag uses a format string as described for the printf operation. The
default format string is "%.17s=%g", resulting in trace names such as “zWave=1.5”. formatStr must contain
at least %f or %g (used to insert the contour level) or %d (used to insert the zero-based index of the contour
level). Include %s, to insert the zWave name.
Here are some examples of format strings.

Examples
Make/O/N=(25,25) w2D // Make a matrix
SetScale x -1, 1, w2D // Set row scaling
SetScale y -1, 1, w2D // Set column scaling
w2D = sin(x) * cos(y) // Store values in the matrix
Display; AppendMatrixContour w2D
ModifyContour w2D autoLevels={*,*,9} // Roughly 9 automatic levels

See also
Display, AppendToGraph, AppendXYZContour, ModifyContour, RemoveContour, FindContour.
For general information on contour plots, see Chapter II-14, Contour Plots.

axisFlags Flags /L, /R, /B, /T are the same as used by AppendToGraph.

/F=formatStr Determines the names assigned to the contour level traces. See Details.

/W=winName Appends to the named graph window or subwindow. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

formatStr Examples of Resulting Name Format

"%g" “100”, “1e6”, “-2.05e-2” (<level>)

"z=%g" “z=100”, “z=1e6”, “z=-2.05e-2” (z=<level>)

"%s %f" “zWave 100.000000” (<wave>, space, <level>)

"[%d]=%g" “[0]=100”, “[1]=1e6” ([<index>]=<level>)

AppendText

V-31

AppendText
AppendText [/W=winName/N/NOCR [=n]] textStr
The AppendText operation appends a carriage return and textStr to the most recently created or changed
annotation, or to the named annotation in the target or graph or layout window. Annotations include tags,
textboxes, color scales, and legends.

Parameters
textStr can contain escape codes to control font, font size and other stylistic variations. See Annotation
Escape Codes on page III-53 for details.

Flags

Details
A textbox, tag, or legend can contain at most 100 lines. A color scale can have at most one line, and this line
is the color scale’s main axis label.

See Also
The Tag, TextBox, ColorScale, ReplaceText, and Legend operations.
Annotation Escape Codes on page III-53.

AppendToGizmo
AppendToGizmo [flags] keyword [=value]
The AppendToGizmo operation appends a Gizmo object or attribute operation to the top Gizmo window
or to the Gizmo window specified by the /N flag.
Documentation for the AppendToGizmo operation is available in the Igor online help files only. In Igor,
execute:
DisplayHelpTopic "AppendToGizmo"

AppendToGraph
AppendToGraph [flags] waveName [, waveName]…[vs xwaveName]
The AppendToGraph operation appends the named waves to the target or named graph. By default the
waves are plotted versus the left and bottom axes.

Parameters
The waveNames parameters are the names of existing waves.
vs xwaveName plots the data values of waveNames against the data values of xwaveName.
Subsets of data, including individual rows or columns from a matrix, may be specified using Subrange
Display Syntax on page II-250.
You can provide a custom name for a trace by appending /TN=traceName to the waveName specification.
This is useful when displaying waves with the same name but from different data folders. See User-defined
Trace Names on page IV-82 for more information.

/N=name Appends textStr to the named tag or textbox.

/NOCR[=n] Omits the initial appending of a carriage return (allows a long line to be created with
multiple AppendText commands). /NOCR=0 is the same as no /NOCR, and /NOCR=1
is the same as just /NOCR.

/W=winName Appends to an annotation in the named graph, layout window, or subwindow.
Without /W, AppendText appends to an annotation in the topmost graph or layout
window or subwindow. This must be the first flag specified when AppendText is
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

AppendToLayout

V-32

Flags

See Also
The Display operation.

AppendToLayout
AppendToLayout [flags] objectSpec [, objectSpec]…
The AppendToLayout operation appends the specified objects to the top layout.
The AppendToLayout operation can not be used in user-defined functions. Use the AppendLayoutObject
operation instead.

Parameters
The optional objectSpec parameters identify a graph, table, textbox or PICT to be added to the layout. An
object specification can also specify the location and size of the object, whether the object should have a
frame or not, whether it should be transparent or opaque, and whether it should be displayed in high
fidelity or not. See the Layout operation for details.

Flags

/B [=axisName] Plots X coordinates versus the standard or named bottom axis.

/C=(r,g,b) r, g, and b specify the amount of red, green, and blue in the color of the appended
waves as an integer from 0 to 65535.

/L [=axisName] Plots Y coordinates versus the standard or named left axis.

/NCAT Causes trace to be plotted normally on what otherwise is a category plot. X values are
just category numbers but can be fractional. Category numbers start from zero. This
can be used to overlay the original data points for a box plot.
See Combining Numeric and Category Traces on page II-273 for details.

/Q Uses a special, quick update mode when appending to a pair of existing axes. A side
effect of this mode is that waves that are appended are marked as not modified. This
will prevent other graphs containing these waves, if any, from being updated
properly.

/R [=axisName] Plots Y coordinates versus the standard or named right axis.

/T [=axisName] Plots X coordinates versus the standard or named top axis.

/TN=traceName Allows you to provide a custom trace name for a trace. This is useful when displaying
waves with the same name but from different data folders. See User-defined Trace
Names on page IV-82 for details.

/VERT Plots data vertically. Similar to SwapXY (ModifyGraph (axes)) but on a trace-by-
trace basis.

/W=winName Appends to the named graph window or subwindow. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/G=g Specifies grout, the spacing between tiled objects. Units are points unless /I, /M, or /R are
specified.

/I objectSpec coordinates are in inches.

/M objectSpec coordinates are in centimeters.

/R objectSpec coordinates are in percent of printing part of the page.

/S Stacks objects.

AppendToTable

V-33

See Also
The Layout and AppendLayoutObject operations for use with user-defined functions.

AppendToTable
AppendToTable [/W=winName] columnSpec [, columnSpec]…
The AppendToTable operation appends the specified columns to the top table. columnSpecs are the same as
for the Edit operation; usually they are just the names of waves.

Flags

See Also
Edit for details about columnSpecs, and RemoveFromTable.

AppendXYZContour
AppendXYZContour [/W=winName /F=formatStr][axisFlags] zWave [vs {xWave, yWave}]
The AppendXYZContour operation appends to the target or named graph a contour of a 2D wave
consisting of XYZ triples with autoscaled contour levels and using the Rainbow color table.
To contour a matrix of Z values, use AppendMatrixContour.
Note: There is no DisplayContour operation. Use Display; AppendXYZContour.

Parameters
If you provide the xWave and yWave specification, xWave provides X values for the rows, and yWave
provides Y values for the columns, zWave provides Z values and all three waves must be 1D. All must have
at least four rows and must have the same number of rows.
If you omit the xWave and yWave specification, zWave must be a 2D wave with 4 or more rows and 3 or more
columns. The first column is X, the second is Y, and the third is Z. Any additional columns are ignored.
If any of X, Y, or Z in a row is blank, (NaN), that row is ignored.
In a macro, to modify the appearance of contour levels before the contour is calculated and displayed with
the default values, append ";DelayUpdate" and immediately follow the AppendXYZContour command
with the appropriate ModifyContour commands. All but the last ModifyContour command should also
have ;DelayUpdate appended. DelayUpdate is not needed in a function, but DoUpdate is useful in a
function to force the contour traces to be built immediately rather than the default behavior of waiting until
all functions have completed.
On the command line, the Display command and subsequent AppendXYZContour commands and any
ModifyContour commands can be typed all on one line with semicolons between:
Display; AppendXYZContour zWave; ModifyContour ...

Flags

/T Tiles objects.

/W=winName Appends columns to the named table window or subwindow. When omitted, action
will affect the active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

axisFlags Flags /L, /R, /B, and /T are the same as used by AppendToGraph.

/F=formatStr Determines names assigned to the contour level traces. This is the same as for
AppendMatrixContour.

/W=winName Appends to the named graph window or subwindow. When omitted, action affects
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

area

V-34

Details
AppendXYZContour creates and displays contour level traces. You can modify these as a group using the
Modify Contour Appearance dialog or individually using the Modify Trace Appearance dialog. In most
cases, you will have no need to modify the traces individually.
See AppendMatrixContour for a discussion of how the contour level traces are named.

Examples
Make/O/N=(100) xW, yW, zW // Make X, Y, and Z waves
xW = sawtooth(2*PI*p/10) // Generate X values
yW = trunc(p/10)/10 // Generate Y values
zW = sin(2*PI*xW)*cos(2*PI*yW) // Generate Z values
Display; AppendXYZContour zW vs {xW, yW}; DelayUpdate
ModifyContour zW autoLevels={*,*,9} // roughly 9 automatic levels

See Also
The Display operation. AppendToGraph for details about other axis flags. The AppendMatrixContour,
ModifyContour, and RemoveContour operations. For general information on contour plots, see Chapter
II-14, Contour Plots.

area
area(waveName [, x1, x2])
The area function returns the signed area between the named wave and the line y=0 from x=x1 to x=x2 using
trapezoidal integration, accounting for the wave’s X scaling. If your data are in the form of an XY pair of
waves, see areaXY.

Details
If x1 and x2 are not specified, they default to -∞ and +∞, respectively.
If x1 or x2 are not within the X range of waveName, area limits them to the nearest X range limit of waveName.
If any values in the X range are NaN, area returns NaN.
The function returns NaN if the input wave has zero points.
Reversing the order of x1 and x2 changes the sign of the returned area.
The area function is intended to work on 1D real or complex waves only.
The area function returns a complex result for a complex input wave. The real part of the result is the area
of the real components in the input wave, and the imaginary part of the result is the area of the imaginary
components.

Examples
Make/O/N=100 data; SetScale/I x 0,Pi,data
data=sin(x)
Print area(data,0,Pi) // the entire X range, and no more
Print area(data) // same as -infinity to +infinity
Print area(data,Inf,-Inf) // +infinity to -infinity

The following is printed to the history area:
Print area(data,0,Pi) // the entire X range, and no more

1.99983
Print Print area(data) // same as -infinity to +infinity

1.99983
Print area(data,Inf,-Inf) // +infinity to -infinity

-1.99983

The -Inf value was limited to 0 and Inf was limited to Pi to keep them within the X range of data.

See Also
The figure “Comparison of area, faverage and mean functions over interval (12.75,13.32)”, in the Details
section of the faverage function.
Integrate, areaXY, faverage, faverageXY, PolygonArea

areaXY

V-35

areaXY
areaXY(XWaveName, YWaveName [, x1, x2])
The areaXY function returns the signed area between the named YWaveName and the line y=0 from x=x1 to
x=x2 using trapezoidal integration with X values supplied by XWaveName.
This function is identical to the area function except that it works on an XY wave pair and does not work
with complex waves.

Details
If x1 and x2 are not specified, they default to -∞ and +∞, respectively.
If x1 or x2 are outside the X range of XWaveName, areaXY limits them to the nearest X range limit of XWaveName.
If any values in the Y range are NaN, areaXY returns NaN.
If any values in the entire X wave are NaN, areaXY returns NaN.
The function returns NaN if the input wave has zero points.
Reversing the order of x1 and x2 changes the sign of the returned area.
If x1 or x2 are not found in XWaveName, a Y value is found by linear interpolation based on the two
bracketing X values and the corresponding values from YWaveName.
The values in XWaveName may be increasing or decreasing. AreaXY assumes that the values in XWaveName
are monotonic. If they are not monotonic, Igor does not complain, but the result is not meaningful. If any X
values are NaN, the result is NaN.
See the figure “Comparison of area, faverage and mean functions over interval (12.75,13.32)”, in the Details
section of the faverage function.
The areaXY operation is intended to work on 1D waves only.

Examples
Make/O/N=101 Xdata, Ydata
Xdata = x*pi/100
Ydata = sin(Xdata[p])
Print areaXY(Xdata, Ydata,0,Pi) // the entire X range, and no more
Print areaXY(Xdata, Ydata) // same as -infinity to +infinity
Print areaXY(Xdata, Ydata,Inf,-Inf) // +infinity to -infinity

The following is printed to the history area:
Print areaXY(Xdata, Ydata,0,Pi) // the entire X range, and no more

1.99984
Print areaXY(Xdata, Ydata) // same as -infinity to +infinity

1.99984
Print areaXY(Xdata, Ydata,Inf,-Inf) // +infinity to -infinity

-1.99984

The -Inf value was limited to 0, and Inf was limited to Pi to stay within the X range of data.

See Also
Integrate, area, faverage, faverageXY, PolygonArea

asin
asin(num)
The asin function returns the inverse sine of num in radians in the range [-π/2,π/2].
In complex expressions, num is complex, and asin returns a complex value.

See Also
sin

asinh
asinh(num)
The asinh function returns the inverse hyperbolic sine of num. In complex expressions, num is complex, and
asinh returns a complex value.

atan

V-36

atan
atan(num)
The atan function returns the inverse tangent of num in radians. In complex expressions, num is complex,
and atan returns a complex value. Results are in the range -π/2 to π/2.

See Also
tan, atan2

atan2
atan2(y1, x1)
The atan2 function returns the angle in radians whose tangent is y1/x1. Results are in the range -π to π.

See Also
tan, atan

atanh
atanh(num)
The atanh function returns the inverse hyperbolic tangent of num. In complex expressions, num is complex,
and atanh returns a complex value.

AutoPositionWindow
AutoPositionWindow [/E/M=m/R=relWindow][windowName]
The AutoPositionWindow operation positions the window specified by windowName relative to the next
lower window of the same kind or relative to the window given by the /R flag. If windowName is not
specified, AutoPositionWindow acts on the target window.

Flags

AxisInfo
AxisInfo(graphNameStr, axisNameStr)
The AxisInfo function returns a string containing a semicolon-separated list of information about the
named axis in the named graph window or subwindow.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
axisNameStr is the name of the graph axis.

/E Uses entire area of the monitor. Otherwise, it takes into account the command
window.

/M=m

/R=relWindow Positions windowName relative to relWindow.

Specifies the window positioning method.
m=0: Positions windowName to the right of the other window, if possible. If

there is no room, then it positions windowName just below the other
window but at the left edge of the display area. If that is not possible,
then the position is not affected.

m=1: Positions windowName just under the other window lined up on the
left edge, if possible. If there is no room, then it positions windowName
just to the right of the other window lined up on the bottom edges. If
neither are possible then it positions windowName as far to the bottom
and right as it will go.

AxisList

V-37

Details
The string contains several groups of information. Each group is prefaced by a keyword and colon, and
terminated with a semicolon. The keywords are:

The format of the RECREATION information is designed so that you can extract a keyword command from
the keyword up to the “;”, prepend “ModifyGraph”, replace the “x” with the name of an actual axis and
then Execute the resultant string as a command.

Examples
Make/O data=x;Display data
Print StringByKey("CWAVE", AxisInfo("","left")) // prints data

See Also
The StringByKey and NumberByKey functions.
The GetAxis and SetAxis operations.
The #include <Readback ModifyStr> procedures are useful for parsing strings returned by AxisInfo.

AxisList
AxisList(graphNameStr)
The AxisList function returns a semicolon-separated list of axis names from the named graph window or
subwindow.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.

Examples
Make/O data=x;Display/L/T data
Print AxisList("") // prints left;top;

Keyword Information Following Keyword

AXFLAG Flag used to select the axis in any of the operations that display waves (Display,
AppendMatrixContour, AppendImage, etc.).

AXTYPE Axis type, such as “left”, “right”, “top”, or “bottom”.

CATWAVE Wave supplying the categories for the axis if this is a category plot.

CATWAVEDF Full path to data folder containing category wave.

CWAVE Name of wave controlling named axis.

CWAVEDF Full path to data folder containing controlling wave.

HOOK Name set by ModifyFreeAxis with hook keyword.

ISCAT Truth that this is a category axis (used in a category plot).

ISTFREE Truth that this is truly free axis (created via NewFreeAxis).

MASTERAXIS Name set by ModifyFreeAxis with master keyword.

RECREATION List of keyword commands as used by ModifyGraph command. The format of these
keyword commands is:
keyword(x)=modifyParameters;

SETAXISCMD Full SetAxis command.

SETAXISFLAGS Flags that would be used with the SetAxis function to set the particular auto-scaling
behavior that the axis uses. If the axis uses a manual axis range, SETAXISFLAGS is blank.

UNITS Axis units, if any.

AxisValFromPixel

V-38

AxisValFromPixel
AxisValFromPixel(graphNameStr, axNameStr, pixel)
The AxisValFromPixel function returns an axis value corresponding to the local graph pixel coordinate in
the graph window or subwindow.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
If the specified axis is not found and if the name is “left” or “bottom” then the first vertical or horizontal
axis will be used. Sources for pixel value may be the GetWindow operation or a user window hook with the
mousemoved and mousedown event messages (see the SetWindow operation).
If graphNameStr references a subwindow, pixel is relative to top left corner of base window, not the
subwindow.

See Also
The PixelFromAxisVal and TraceFromPixel functions; the GetWindow and SetWindow operations.

BackgroundInfo
BackgroundInfo
The BackgroundInfo operation returns information about the current unnamed background task.
BackgroundInfo works only with the unnamed background task. New code should used named background
tasks instead. See Background Tasks on page IV-298 for details.

Details
Information is returned via the following variables:

See Also
The SetBackground, CtrlBackground, CtrlNamedBackground, KillBackground, and SetProcessSleep
operations, and the ticks function. See Background Tasks on page IV-298 for usage details.

Beep
Beep
The Beep operation plays the current alert sound (Macintosh) or the system beep sound (Windows).

Besseli
Besseli(n,z)
The Besseli function returns the modified Bessel function of the first kind, In(z), of order n and argument z.
Replaces the bessI function, which is supported for backwards compatibility only.
If z is real, Besseli returns a real value, which means that if z is also negative, it returns NaN unless n is an integer.
For complex z a complex value is returned, and there are no restrictions on z except for possible overflow.

V_flag 0: No background task is defined.

1: Background task is defined, but not running (is idle).

2: Background task is defined and is running.

V_period DeltaTicks value set by CtrlBackground. This is how often the background task runs.

V_nextRun Ticks value when the task will run again. 0 if the task is not scheduled to run again.

S_value Text of the numeric expression that the background task executes, as set by
SetBackground.

Besselj

V-39

Details
The calculation is performed using the SLATEC library. The function supports fractional and negative
orders n, as well as real or complex arguments z.

See Also
The Besselj, Besselk, and Bessely functions.

Besselj
Besselj(n,z)
The Besselj function returns the Bessel function of the first kind, Jn (z), of order n and argument z. Replaces
the bessJ function, which is supported for backwards compatibility only.
If z is real, Besselj returns a real value, which means that if z is also negative, it returns NaN unless n is an integer.
For complex z a complex value is returned, and there are no restrictions on z except for possible overflow.

Details
The calculation is performed using the SLATEC library. The function supports fractional and negative
orders n, as well as real or complex arguments z.

See Also
The Besseli, Besselk, and Bessely functions.

Besselk
Besselk(n,z)
The Besselk function returns the modified Bessel function of the second kind, Kn(z), of order n and
argument z. Replaces the bessK function, which is supported for backwards compatibility only.
If z is real, Besselk returns a real value, which means that if z is also negative, it returns NaN unless n is an integer.
For complex z a complex value is returned, and there are no restrictions on z except for possible overflow.

Details
The calculation is performed using the SLATEC library. The function supports fractional orders n, as well
as real or complex arguments z.

See Also
The Besseli, Besselj, and Bessely functions.

Bessely
Bessely(n,z)
The Bessely function returns the Bessel function of the second kind, Yn(z), of order n and argument z.
Replaces the bessY function, which is supported for backwards compatibility only.
If z is real, Bessely returns a real value, which means that if z is also negative, it returns NaN unless n is an integer.
For complex z a complex value is returned, and there are no restrictions on z except for possible overflow.

Details
The calculation is performed using the SLATEC library. The function supports fractional and negative
orders n, as well as real or complex arguments z.

See Also
The Besseli, Besselj, and Besselk functions.

bessI
bessI(n, x [, algorithm [, accuracy]])
Obsolete — use Besseli.
The bessI function returns the modified Bessel function of the first kind, In(x) of order n and argument x.
For real x, the optional parameter algorithm selects between a faster, less accurate calculation method and slower,
more accurate methods. In addition, when algorithm is zero or absent, the order n is truncated to an integer.

bessJ

V-40

When algorithm is included and is 1, accuracy can be used to specify the desired fractional accuracy. See
Details about algorithms.
If x is complex, a complex result is returned. In this case, algorithm and accuracy are ignored. The order n can
be fractional, and must be real.

Details
The algorithm parameter has three options, each selecting a different calculation method:

The achievable accuracy of algorithms 1 and 2 is a complicated function n and x. To see a summary of
achievable accuracies choose File→Example Experiments→Testing and Misc→Bessel Accuracy menu item.

bessJ
bessJ(n, x [, algorithm [, accuracy]])
Obsolete — use Besselj.
The bessJ function returns the Bessel function of the first kind, Jn(x) of order n and argument x.
For real x, the optional parameter algorithm selects between a faster, less accurate calculation method and slower,
more accurate methods. In addition, when algorithm is zero or absent, the order n is truncated to an integer.
When algorithm is included and is 1, accuracy can be used to specify the desired fractional accuracy. See
Details about algorithms.
If x is complex, a complex result is returned. In this case, algorithm and accuracy are ignored. The order n can
be fractional, and must be real.

Details
See the bessI function for details on algorithms, accuracy and speed of execution.
When algorithm is 1, pairs of values for bessJ and bessY are calculated simultaneously. The values are stored, and
a subsequent call to bessY after a call to bessJ (or vice versa) with the same n, x, and accuracy will be very fast.

Algorithm What You Get

0 (default) Uses a calculation method that has fractional accuracy better than 10-6 everywhere and is
generally better than 10-8. This method does not handle fractional order n; the order is
truncated to an integer before the calculation is performed.

Algorithm 0 is fastest by a large margin.

1 Allows fractional order. The calculation is performed using methods described in
Numerical Recipes in C, 2nd edition, pp. 240-245.

Using algorithm 1, accuracy specifies the fractional accuracy that you desire. That is, if you
set accuracy to 1e-7 (that is, 10-7), that means that you wish that the absolute value of (factual
- freturned)/factual be better than 10-7. Asking for less accuracy gives some increase in speed.

You pay a heavy price for higher accuracy or fractional order. When algorithm is nonzero,
calculation time is increased by an order of magnitude for small x; at larger x the penalty
is even greater.

If accuracy is greater than 10-8 and n is an integer, algorithm 0 is used.

The algorithm calculates bessI and bessK simultaneously. Both values are stored, and if a
call to bessI is followed by a call to bessK (or bessK is followed by bessI) with the same n,
x, and accuracy the previously-stored value is returned, making the second call very fast.

2 Fractional order is allowed. The calculation is performed using code from the SLATEC
library. The accuracy achievable is often better than algorithm 1, but not always. Algorithm
2 is 1.5 to 3 times faster than algorithm 1, but still slower than algorithm 0. The accuracy
parameter is ignored.

bessK

V-41

bessK
bessK(n, x [, algorithm [, accuracy]])
Obsolete — use Besselk.
The bessK function returns the modified Bessel function of the second kind, Kn(x) of order n and argument x.
For real x, the optional parameter algorithm selects between a faster, less accurate calculation method and slower,
more accurate methods. In addition, when algorithm is zero or absent, the order n is truncated to an integer.
When algorithm is included and is 1, accuracy can be used to specify the desired fractional accuracy. See
Details about algorithms.
If x is complex, a complex result is returned. In this case, algorithm and accuracy are ignored. The order n can
be fractional, and must be real.

Details
See the bessI function for details on algorithms, accuracy and speed of execution.
When algorithm is 1, pairs of values for bessJ and bessY are calculated simultaneously. The values are stored, and
a subsequent call to bessY after a call to bessJ (or vice versa) with the same n, x, and accuracy will be very fast.

bessY
bessY(n, x [, algorithm [, accuracy]])
Obsolete — use Bessely.
The bessY function returns the Bessel function of the second kind, Yn(x) of order n and argument x.
For real x, the optional parameter algorithm selects between a faster, less accurate calculation method and slower,
more accurate methods. In addition, when algorithm is zero or absent, the order n is truncated to an integer.
When algorithm is included and is 1, accuracy can be used to specify the desired fractional accuracy. See
Details about algorithms.
If x is complex, a complex result is returned. In this case, algorithm and accuracy are ignored. The order n can
be fractional, and must be real.

Details
See the bessI function for details on algorithms, accuracy and speed of execution.
When algorithm is 1, pairs of values for bessJ and bessY are calculated simultaneously. The values are stored, and
a subsequent call to bessY after a call to bessJ (or vice versa) with the same n, x, and accuracy will be very fast.

beta
beta(a, b)
The beta function returns for real or complex arguments as

with Re(a), Re(b)>0. Γ is the gamma function.

See Also
The gamma function.

betai
betai(a, b, x [, accuracy])
The betai function returns the regularized incomplete beta function Ix(a,b),

Here

B(a,b) =
Γ(a)Γ(b)

Γ(a + b)
,

Ix (a,b) =
B(x;a,b)

B(a,b)
.

BinarySearch

V-42

where a,b > 0, and 0 ≤ x ≤ 1.
Optionally, accuracy can be used to specify the desired fractional accuracy.

Details
The accuracy parameter specifies the fractional accuracy that you desire. That is, if you set accuracy to 10-7,
that means that you wish that the absolute value of (factual - freturned)/factual be less than 10-7.
Larger values of accuracy (poorer accuracy) result in evaluation of fewer terms of a series, which means the
function executes somewhat faster.
A single-precision level of accuracy is about 3x10-7, double-precision is about 2x10-16. The betai function
will return full double-precision accuracy for small values of a and b. Achievable accuracy declines as a and
b increase:

BinarySearch
BinarySearch(waveName, val)
The BinarySearch function performs a binary search of the one-dimensional waveName for the value val.
BinarySearch returns an integer point number p such that waveName[p] and waveName[p+1] bracket val. If
val is in waveName, then waveName[p]==val.

Details
BinarySearch is useful for finding the point in an XY pair that corresponds to a particular X coordinate.
WaveName must contain monotonically increasing or decreasing values.
BinarySearch returns -1 if val is not within the range of values in the wave, but would numerically be placed
before the first value in the wave.
BinarySearch returns -2 if val is not within the range of values in the wave, but would fall after the last value
in the wave.
BinarySearch returns -3 if the wave has zero points.

Examples
Make/O data = {1, 2, 3.3, 4.9} // Monotonic increasing
Print BinarySearch(data,3) // Prints 1
// BinarySearch returns 1 because data[1] <= 3 < data[2].

Make/O data = {9, 4, 3, -6} // Monotonic decreasing
Print BinarySearch(data,2.5) // Prints 2
// BinarySearch returns 2 because data[2] >= 2.5 > data[3].
Print BinarySearch(data,10) // Prints -1, precedes first value
Print BinarySearch(data,-99) // Prints -2, beyond last value

See Also
The BinarySearchInterp and FindLevel operations. See Indexing and Subranges on page II-71.

BinarySearchInterp
BinarySearchInterp(waveName, val)
The BinarySearchInterp function performs a binary interpolated search of the named wave for the value val.
The returned value, pt, is a floating-point point index into the named wave such that waveName[pt] == val.

a b x betai Accuracy Achievable

1 1.5 0.5 0.646447 2x10-16 (full double precision)

8 10 0.5 0.685470 6x10-16

20 21 0.5 0.562685 2x10-15

20 21 0.1 1.87186x10-10 5x10-15

B(x;a,b) = t a−1(1− t)b−1dt.
0

x

∫

binomial

V-43

Details
BinarySearchInterp is useful for finding the point in an XY pair that corresponds to a particular X
coordinate.
WaveName must contain monotonically increasing or decreasing values.
When the named wave does not actually contain the value val, BinarySearchInterp locates a value below val
and a value above val and uses reverse linear interpolation to figure out where val would fall if a straight
line were drawn between them. It includes that fractional amount in the resulting point index.
BinarySearchInterp returns NaN if val is not within the range of values in the wave.

Examples
Make/O data = {1, 2, 3.3, 4.9} // Monotonic increasing
Print BinarySearchInterp(data,3) // Prints 1.76923
Print data[1.76923] // Prints 3

Make/O data = {9, 4, 3, 1} // Monotonic decreasing
Print BinarySearchInterp(data,2.5) // Prints 2.25
Print data[2.25] // Prints 2.5

See Also
The BinarySearch and FindLevel operations. See Indexing and Subranges on page II-71.

binomial
binomial(n, k)
The binomial function returns the ratio:

It is assumed that n and k are integers and 0 ≤ k ≤ n and ! denotes the factorial function.
Note that although the binomial function is an integer-valued function, a double-precision number has 53
bits for the mantissa. This means that numbers over 252 (about 4.5x1015) will be accurate to about one part
in 2x1016.

binomialln
binomialln(a, b)
The binomialln function returns the natural log of the binomial coefficient for a and b.

See Also
Chapter III-12, Statistics for an overview of the various functions and operations; binomial,
StatsBinomialPDF, StatsBinomialCDF, and StatsInvBinomialCDF.

binomialNoise
binomialNoise(n, p)
The binomialNoise function returns a pseudo-random value from the binomial distribution

whose mean is np and variance is np(1-p).
When n is large such that pn is zero to machine accuracy the function returns NaN. When n is large such
that np(1-p)>5 and 0.1<p<0.9 you can replace the binomial variate with a normal variate with mean np and
standard deviation sqrt(n*p*(1-p)).

n!

k! n − k()!

binomialln a b(,) a!()ln b!()ln– a b–()!()ln–=

f (x) =
n

x

�
��

�
��
px (1� p)n� x ,

0 � p � 1

x = 1,2,...n

BoundingBall

V-44

The random number generator initializes using the system clock when Igor Pro starts. This almost
guarantees that you will never repeat the same sequence. For repeatable “random” numbers, use
SetRandomSeed. The algorithm uses the Mersenne Twister random number generator.

See Also
The SetRandomSeed operation.
Noise Functions on page III-344.
Chapter III-12, Statistics for an overview of the various functions and operations.

BoundingBall
BoundingBall [/F/Z] scatterWave
The BoundingBall operation calculates a bounding circle or the bounding sphere for a set of scatter points.
The operation accepts 2D waves that have two, three or more columns; data in the additional columns are
ignored.
When scatterWave consists of two columns the operation computes the bounding circle. Otherwise it
computes the bounding 3D sphere.

Parameters
scatterWave is a two-dimensional wave with X coordinates in column 0, Y in column 1, and optional Z
coordinates in column 2.

Flags

Details
The center and radius of the bounding sphere are stored in the variables: V_CenterX, V_CenterY,
V_CenterZ, and V_Radius.
If you are not using the /F flag, the operation also accepts a 2 column wave consisting of X, Y pairs for
calculating the center and radius of a bounding circle in the plane.

Example
Make/N=(33,2) ddd=enoise(4) // Create random data
BoundingBall ddd
Display ddd[][1] vs ddd[][0]
ModifyGraph mode=3
Make/n=360 xxx,yyy
yyy=v_centerY+V_radius*cos(p*2*pi/360)
xxx=v_centerX+V_radius*sin(p*2*pi/360)
AppendToGraph yyy vs xxx

References
Glassner, Andrew S., (Ed.), Graphics Gems, 833 pp., Academic Press, San Diego, 1990.

break
break
The break flow control keyword immediately terminates execution of a loop, switch, or strswitch.
Execution then continues with code following the loop, switch, or strswitch.

See Also
Break Statement on page IV-44, Switch Statements on page IV-41, and Loops on page IV-42 for usage
details.

/F This flag applies to 3D scatter only. It uses an algorithm from “An Efficient Bounding
Sphere” by Jack Ritter originally from Graphics Gems. Unfortunately it does not give
an accurate bounding ball but something that is sufficiently large. This algorithm is
less accurate but it produces a ball which is sufficiently large to contain all the points.

/Z No error reporting.

BrowseURL

V-45

BrowseURL
BrowseURL [/Z] urlStr
The BrowseURL operation opens the Web browser or FTP browser on your computer and asks it to display
a particular Web page or to connect to an FTP server.
BrowseURL sets a variable named V_flag to zero if the operation succeeds and to nonzero if it fails. This, in
conjunction with the /Z flag, can be used to allow procedures to continue to execute if an error occurs.

Parameters
urlStr specifies a Web page or FTP server directory to be browsed. It is constructed of a naming scheme (e.g.,
“http://” or “ftp://”), a computer name (e.g., “www.wavemetrics.com” or “ftp.wavemetrics.com” or
“38.170.234.2”), and a path (e.g., “/Test/TestFile1.txt”). See Examples for sample usage.

Flags

Examples
// Browse a Web page.

String url = "http://www.wavemetrics.com/News/index.html"
BrowseURL url

// Browse an FTP server.
String url = "ftp://ftp.wavemetrics.com/pub/test"
BrowseURL url

See Also
URLRequest

BuildMenu
BuildMenu menuNameStr
The BuildMenu operation rebuilds the user-defined menu items in the specified menu the next time the
user clicks in the menu bar.

Parameters
menuNameStr is a string expression containing a menu name or "All".

Details
Call BuildMenu when you’ve defined a custom menu using string variables for the menu items. After you
change the string variables, call BuildMenu to update the menu.
BuildMenu "All" rebuilds all the menu items and titles and updates the menu bar.
Under the current implementation, if menuNameStr is not "All", Igor will rebuild all user-defined menu
items if BuildMenu is called for any user-defined menu.

See Also
Dynamic Menu Items on page IV-120.

Button

Button [/Z] ctrlName [keyword = value [, keyword = value …]]
The Button operation creates or modifies the named button control.
For information about the state or status of the control, use the ControlInfo operation.

Parameters

/Z Errors are not fatal. Will not abort procedure execution if the URL is bad or if the
server is down. Your procedure can inspect the V_flag variable to see if the transfer
succeeded. V_flag will be zero if it succeeded or nonzero if it failed.
Syntactic errors, such as omitting the URL altogether or omitting quotes, are still fatal.

name is the name of the Button control to be created or changed.

Button

V-46

appearance=
{kind [, platform]}

disable=d

See the ModifyControl example for setting the bits individually.

fColor=(r,g,b) Sets color of the button. r, g, and b are integers from 0 to 65535. To set the color of the
title text, use escape sequences as described below for title. fColor defaults to black
(0,0,0). To set the color of the title text, see valueColor.

focusRing=fr

On Macintosh, regardless of this setting, the focus ring appears if you have enabled
full keyboard access via the Shortcuts tab of the Keyboard system preferences.

font="fontName" Sets button font, e.g., font="Helvetica".

fsize=s Sets font size.

fstyle=fs

help={helpStr} Specifies the help for the control. Help text is limited to a total of 255 bytes. On
Macintosh, help appears if you turn Igor Tips on. On Windows, help for the first 127
bytes or up to the first line break appears in the status line. If you press F1 while the
cursor is over the control, you will see the entire help text. You can insert a line break
by putting “\r” in a quoted string.

noproc No procedure is executed when clicking the button.

Sets the appearance of the control. platform is optional. Both parameters are
names, not strings.
kind=default: Appearance determined by DefaultGUIControls.
kind=native: Creates standard-looking controls for the current computer

platform.
kind=os9: Igor Pro 5 appearance (quasi-Macintosh OS 9 controls that

look the same on Macintosh and Windows).
platform=Mac: Changes the appearance of controls only on Macintosh;

affects the experiment whenever it is used on Macintosh.
platform=Win: Changes the appearance of controls only on Windows;

affects the experiment whenever it is used on Windows.
platform=All: Changes the appearance on both Macintosh and Windows

computers.

Sets the state of the control. d is a bit field: bit 0 (the least significant bit) is set when
the control is hidden. Bit 1 is set when the control is disabled:
d=0: Normal (visible), enabled.
d=1: Hidden.
d=2: Visible and disabled. Drawn in grayed state, also disables

action procedure.
d=3: Hidden and disabled.

Enables or disables the drawing of a rectangle indicating keyboard focus:
fr=0: Focus rectangle will not be drawn.
fr=1: Focus rectangle will be drawn (default).

Specifies the font style. fs is a bitwise parameter with each bit controlling one
aspect of the font style:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold
Bit 1: Italic
Bit 2: Underline
Bit 4: Strikethrough

Button

V-47

Details
The target window must be a graph or panel.

Button Action Procedure
The action procedure for a Button control takes a predefined structure WMButtonAction as a parameter
to the function:
Function ActionProcName(B_Struct) : ButtonControl

STRUCT WMButtonAction &B_Struct
…
return 0

End

The “: ButtonControl” designation tells Igor to include this procedure in the Procedure pop-up menu
in the Button Control dialog.
See WMButtonAction for details on the WMButtonAction structure.
Although the return value is not currently used, action procedures should always return zero.
You may see an old format button action procedure in old code:
Function procName(ctrlName) : ButtonControl

String ctrlName
…
return 0

End

This old format should not be used in new code.

picture= pict Draws the button using the named picture. The picture is taken to be three side-by-
side frames that show the control appearance in the normal state, when the mouse is
down, and in the disabled state. The picture may be either a global (imported) picture
or a Proc Picture (see Proc Pictures on page IV-53).
In Igor6, the size keyword is ignored when a picture is used with a button control. To
make it easier to size graphics for high-resolution screens, as of Igor7, the size
keyword is respected in this case.

pos={left,top} Sets the position of the button in pixels.

pos+={dx,dy} Offsets the position of the button in pixels.

proc=procName Names the procedure to execute when clicking the button.

rename=newName Gives the button a new name.

size={width,height} Sets width and height of button in pixels.

title=titleStr Sets title of button (text that appears in the button) to the specified string expression. If not
given then title will be “New”. If you use "" the button will contain no text.
Using escape codes you can change the font, size, style, and color of the title. See
Annotation Escape Codes on page III-53 or details.

userdata(UDName)
=UDStr

Sets the unnamed user data to UDStr. Use the optional (UDName) to specify a named
user data to create.

userdata(UDName)
+=UDStr

Appends UDStr to the current unnamed user data. Use the optional (UDName) to
append to the named UDStr.

valueColor=(r,g,b) Sets initial color of the button's text (title). r, g, and b range from 0 to 65535. valueColor
defaults to black (0,0,0). To further change the color of the title text, use escape
sequences as described for title=titleStr.

win=winName Specifies which window or subwindow contains the named button control. If not
given, then the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

ButtonControl

V-48

See Also
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls. The GetUserData operation for retrieving named user data.

ButtonControl
ButtonControl
ButtonControl is a procedure subtype keyword that identifies a macro or function as being an action
procedure for a user-defined button control. See Procedure Subtypes on page IV-193 for details. See Button
for details on creating a button control.

cabs
cabs(z)
The cabs function returns the real-valued absolute value of complex number z.

See Also
The magsqr function.

CameraWindow
CameraWindow
CameraWindow is a procedure subtype keyword that identifies a macro as being a camera window
recreation macro. It is automatically used when Igor creates a window recreation macro for a camera
window. See Procedure Subtypes on page IV-193 and Saving and Recreating Graphs on page II-261 for
details.

CaptureHistory
CaptureHistory(refnum, stopCapturing)
The CaptureHistory function returns a string containing text from the history area of the command window
since a matching call to the CaptureHistoryStart function.

Parameters
refnum is a number returned from a call to CaptureHistoryStart. It identifies the starting point in the history
for the returned string.
Set stopCapturing to nonzero to indicate that no more history should be captured for the given refnum.
Subsequent calls to CaptureHistory with the same refnum will result in an error.
Set stopCapturing to zero to retrieve history text captured so far. Further calls to CaptureHistory with the
same reference number will return this text, plus any additional history text added subsequently.

Details
You can have multiple captures active at one time. Each call to CaptureHistoryStart will return a unique
reference number identifying a start point in the history. The capture corresponding to each reference
number can be terminated at any time, regardless of the order of the CaptureHistoryStart calls.

CaptureHistoryStart
CaptureHistoryStart()
The CaptureHistoryStart function returns a reference number to identify a starting point in the history area
text. Subsequently, the CaptureHistory function can be used to retrieve captured history text. See
CaptureHistory for details.

catch
catch
The catch flow control keyword marks the beginning of code in a try-catch-entry flow control construct for
handling any abort conditions.

See Also
The try-catch-endtry flow control statement for details.

cd

V-49

cd
cd dataFolderSpec
The cd operation sets the current data folder to the specified data folder. It is identical to the longer-named
SetDataFolder operation.
cd is named after the UNIX "change directory" command.

See Also
SetDataFolder, pwd, Dir, Data Folders on page II-99

CDFFunc
CDFFunc
CDFFunc is a procedure subtype keyword that identifies a function as being suitable for calling from the
StatsKSTest operation.

ceil
ceil(num)
The ceil function returns the closest integer greater than or equal to num.

See Also
The round, floor, and trunc functions.

cequal
cequal(z1, z2)
The cequal function determines the equality of two complex numbers z1 and z2. It returns 1 if they are
equal, or 0 if not.
This is in contrast to the == operator, which compares only the real components of z1 and z2, ignoring the
imaginary components.

Examples
Function TestComplexEqualities()

Variable/C z1= cmplx(1,2), z2= cmplx(1,-2)
// This test compares only the real parts of z1 and z2:
if(z1 == z2)

Print "== match"
else

Print "no == match"
endif
// This test compares both real and imaginary parts of z1 and z2:
if(cequal(z1,z2))

Print "cequal match"
else

Print "no cequal match"
endif

End

•TestComplexEqualities()
 == match
 no cequal match

See Also
The imag, real, and cmplx functions.

char2num

V-50

char2num
char2num(str)
The char2num function returns a numeric code representing the first byte of str or the first character of str.
If str contains zero bytes, char2num returns NaN.
If str contains exactly one byte, char2num returns the value of that byte, treated as a signed byte. For
backward compatibility with Igor6, if the input is a single byte in the range 0x80..0xFF, char2num returns a
negative number.
If str contains more than one byte, char2num returns a number which is the Unicode code point for the first
character in str treated as UTF-8 text. If str does not start with a valid UTF-8 character, char2num returns
NaN.
Prior to Igor Pro 7.00, char2num always returned the value of the first byte, treated as a signed byte.

Examples
Function DemoChar2Num()

String str

str = "A"
Printf "Single ASCII character: %02X\r", char2num(str) // Prints 0x41

str = "ABC"
Printf "Multiple ASCII characters: %02X\r", char2num(str) // Prints 0x41

str = U+2022 // Bullet character
Printf "Valid UTF-8 text: U+%04X\r", char2num(str) // Prints U+2022
Printf "First byte value: %02X\r", char2num(str[0]) & 0xFF // Prints E2
Printf "Second byte value: %02X\r", char2num(str[1]) & 0xFF // Prints 80

str = num2char(0xE2, 0) + num2char(0x41, 0) // Invalid UTF-8 text
Printf "Invalid UTF-8 text: U+%04X\r", char2num(str) // Prints NaN

str = ""
Printf "Empty string: %g\r", char2num(str) // Prints NaN

End

See Also
The num2char, str2num and num2str functions.
Text Encodings on page III-409.

Chart
Chart [/Z] ctrlName [keyword = value [, keyword = value …]]
The Chart operation creates or modifies a chart control. Charts are generally used in conjunction with data
acquisition. Charts do not have to be connected to a FIFO, but they are not useful until they are.
For information about the state or status of the control, use the ControlInfo operation.

Parameters

ctrlName is the name of the Chart control to be created or changed.
The following keyword=value parameters are supported:

chans={ch#, ch#,…} List of FIFO channel numbers that Chart is to monitor.

color(ch#)=(r,g,b) Sets the color of the specified trace. r, g, and b specify the amount of red, green,
and blue in the color as an integer from 0 to 65535.

ctab=colortableName When a channel is connected to an image strip FIFO channel, the data is displayed
as an image using this built-in color table. Valid names are the same as used in
images. Invalid name will result in the default Grays color table being used.

Chart

V-51

disable=d

fbkRGB=(r,g,b) Sets frame background color. r, g and b are integers from 0 to 65535.

fgRGB=(r,g,b) Sets foreground color (text, etc.). r, g and b are integers from 0 to 65535

fifo=FIFOName Sets which named FIFO the chart will monitor. See the NewFIFO operation.

font="fontName" Sets the font used in the chart, e.g., font="Helvetica".

fsize=s Sets font size for chart.

fstyle=fs

gain(ch#)=g Sets the display gain g of the specified channel relative to nominal. Values greater
than unity expand the display.

gridRGB=(r,g,b) Sets grid color. r, g, and b are integers from 0 to 65535.

help={helpStr} Specifies help for the control. Help text is limited to a total of 255 bytes. On
Macintosh, help appears if you turn Igor Tips on. On Windows, help for the first
127 bytes or up to the first line break appears in the status line. If you press F1
while the cursor is over the control, you will see the entire help text. You can
insert a line break by putting “\r” in a quoted string.

jumpTo=p Jumps to point number p. This works in review mode only.

lineMode(ch#)=lm

mass=m Sets the “feel” of the chart paper when you move it with the mouse. The larger
the mass m, the slower the chart responds. Odd values cause the movement of the
paper to stop the instant the mouse is clicked while even values continue with the
illusion of mass.

maxDots=md Controls whether points in a given vertical strip of the chart are displayed as dots
or as a solid line. See lineMode above. Default is 20.

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Disable user input.

Charts do not change appearance because they are read-
only. When disabled, the hand cursor is not shown.

Specifies the font style. fs is a bitwise parameter with each bit controlling one
aspect of the font style:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold
Bit 1: Italic
Bit 2: Underline
Bit 4: Strikethrough

Sets the display line mode for the given channel.
lm=0: Dots mode. Draws values as dots. However, if the number of

dots in a strip exceeds maxDots then Igor draws a vertical line
from the min to the max of the values packed into the strip.

lm=1: Lines mode. Draws a vertical line encompassing the min and
the max of the points in a given strip along with the last point
of the preceding strip. Since which strip is the preceding strip
depends on the direction of motion then the appearance may
slightly shift depending on which direction the chart is
moving.

lm=2: Dots mode. Draws values as dots. However, if the number of
dots in a strip exceeds maxDots then Igor draws a vertical line
from the min to the max of the values packed into the strip.

chebyshev

V-52

Flags

Details
The target window must be a graph or panel.
The action of some of the Chart keywords depends on whether or not data acquisition is taking place. If the
chart is in review mode then all keywords cause the chart to be redrawn. If data acquisition is taking place
and the chart is in live mode then some keywords affect new data but do not attempt to update the part of
the “paper” that has already been drawn. The following keywords affect only new data during live mode:
ppStrip, maxDots, gain, offset, color, lineMode

See Also
Charts on page III-368 and FIFOs and Charts on page IV-291.
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls. The GetUserData operation for retrieving named user data.

chebyshev
chebyshev(n, x)
The chebyshev function returns the Chebyshev polynomial of the first kind and of degree n.
The Chebyshev polynomials satisfy the recurrence relation:

offset(ch#)=o Sets the display offset of the specified channel. The offset value o is subtracted
from the data before the gain is applied.

oMode=om

pbkRGB=(r,g,b) Sets plot area background color. r, g, and b are integers from 0 to 65535.

ppStrip=pps Number of data points packed into each vertical strip of the chart.

rSize(ch#)=rs Sets the relative vertical size allocated to the given channel. Nominal is unity. If
the value of rs is zero then this channel shares space with the previous channel.

sMode=sm

sRate=sr Sets the scroll rate (vertical strips/second). If the chart control is in review mode
negative numbers scroll in reverse.

title=titleStr Specifies the chart title. Use "" for no title.

uMode=um

win=winName Specifies which window or subwindow contains the named control. If not given,
then the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page
III-87 for details on forming the window hierarchy.

/Z No error reporting.

Chart operation mode.
om=0: Live mode.
om=1: Review mode.

Status line mode.
sm=0: Turns off fancy status line and positioning bar.
sm=1: Normal mode.
sm=2: Uses alternate style for bar.

Status line mode.
um=1: Fast update with no bells and whistles.
um=2: Status line and positioning bar.
um=3: Status line, positioning bar, and animated pens.

chebyshevU

V-53

with:

The orthogonality of the polynomial is expressed by the integral:

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

See Also
chebyshevU.

chebyshevU
chebyshevU(n, x)
The chebyshevU function returns the Chebyshev polynomial of the second kind, degree n and argument x.
The Chebyshev polynomial of the second kind satisfies the recurrence relation
U(n+1,x)=2xU(n,x)-U(n-1,x)

which is also the recurrence relation of the Chebyshev polynomials of the first kind.
The first 10 polynomials of the second kind are:
U(0,x)=1
U(1,x)=2x
U(2,x)=4x2-1
U(3,x)=8x3-4x
U(4,x)=16x4-12x2+1
U(5,x)=32x5-32x3+6x
U(6,x)=64x6-80x4+24x-1
U(7,x)=128x7-192x5+80x3-8x
U(8,x)=256x8-448x6+240x4-40x2+1
U(9,x)512x9-1024x^7+672x5-160x3+10x

See Also
The chebyshev function.

CheckBox
CheckBox [/Z] ctrlName [keyword = value [, keyword = value …]]
The CheckBox operation creates or modifies a checkbox, radio button or disclosure triangle in the target or
named window, which must be a graph or control panel.
ctrlName is the name of the checkbox.
For information about the state or status of the control, use the ControlInfo operation.

Parameters

ctrlName is the name of the CheckBox control to be created or changed.
The following keyword=value parameters are supported:

Tn+1(x) = 2xTn (x)−Tn−1(x)

T0 (x) = 1

T1(x) = x

T2 (x) = 2x2 −1.

Tn (x)Tm (x)

1− x2
dx =

0 m ≠ n
π / 2 m = n ≠ 0
π m = m = 0

.

⎧

⎨
⎪

⎩
⎪−1

1

∫

CheckBox

V-54

appearance=
{kind [, platform]}

Sets the appearance of the control. platform is optional. Both parameters are
names, not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
See Button and DefaultGUIControls for more appearance details.

disable=d

fsize=s Sets font size for checkbox.

fColor=(r,g,b) Sets the initial color of the title. r, g, and b range from 0 to 65535. fColor defaults
to black (0,0,0). To further change the color of the title text, use escape sequences
as described for title=titleStr.

focusRing=fr

On Macintosh, regardless of this setting, the focus ring appears if you have
enabled full keyboard access via the Shortcuts tab of the Keyboard system
preferences.

help={helpStr} Sets the help for the control. The help text is limited to a total of 255 bytes. You
can insert a line break by putting “\r” in a quoted string.

mode=m

noproc Specifies that no procedure is to execute when clicking the checkbox.

picture= pict Draws the checkbox using the named picture. The picture is taken to be six side-by-
side frames which show the control appearance in the normal state, when the
mouse is down, and in the disabled state. The first three frames are used when the
checked state is false and the next three show the true state. The picture may be
either a global (imported) picture or a Proc Picture (see Proc Pictures on page
IV-53).

pos={left,top} Sets the position of the checkbox in pixels.

pos+={dx,dy} Offsets the position of the checkbox in pixels.

proc=procName Specifies the procedure to execute when the checkbox is clicked.

rename=newName Renames the checkbox to newName.

side=s

size={width,height} Sets checkbox size in pixels.

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Disable user input.

Enables or disables the drawing of a rectangle indicating keyboard focus:
fr=0: Focus rectangle will not be drawn.
fr=1: Focus rectangle will be drawn (default).

Specifies checkbox appearance.
m=0: Default checkbox appearance.
m=1: Display as a radio button control.
m=2: Display as a disclosure triangle (Macintosh) or treeview

expansion node (Windows).

Sets the location of the title relative to the box:
s =0: Checkbox is on the left, title is on the right (default).
s =1: Checkbox is on the right, title is on the left.

CheckBox

V-55

Flags

Details
The target window must be a graph or panel.

Checkbox Action Procedure
The action procedure for a CheckBox control can takes a predefined structure WMCheckboxAction as a
parameter to the function:
Function ActionProcName(CB_Struct) : CheckBoxControl

STRUCT WMCheckboxAction &CB_Struct
…
return 0

End

The “: CheckboxControl” designation tells Igor to include this procedure in the Procedure pop-up
menu in the Checkbox Control dialog.
See WMCheckboxAction for details on the WMCheckboxAction structure.
Although the return value is not currently used, action procedures should always return zero.
You may see an old format checkbox action procedure in old code:
Function procName(ctrlName,checked) : CheckBoxControl

String ctrlName
Variable checked // 1 if selected, 0 if not
…
return 0

End

This old format should not be used in new code.
When using radio button controls, it is the responsibility of the Igor programmer to turn off other radio
buttons when one of a group of radio buttons is pressed.

Examples
The following code is an example of how to program such a group.
Window Panel0() : Panel

PauseUpdate; Silent 1 // building window …
NewPanel /W=(150,50,353,212)
Variable/G gRadioVal= 1
CheckBox check0,pos={52,25},size={78,15},title="Radio 1"
CheckBox check0,value=1,mode=1,proc=MyCheckProc
CheckBox check1,pos={52,45},size={78,15},title="Radio 2"

title=titleStr Sets title of checkbox to the specified string expression. The title is the text that
appears in the checkbox. If not given or if "" then the title will be “New”.
Using escape codes you can change the font, size, style, and color of the title. See
Annotation Escape Codes on page III-53 or details.

userdata(UDName)=
UDStr

Sets the unnamed user data to UDStr. Use the optional (UDName) to specify a
named user data to create.

userdata(UDName)+=
UDStr

Appends UDStr to the current unnamed user data. Use the optional (UDName) to
append to the named UDStr.

value=v Specifies whether the checkbox is selected (v=1) or not (v=0).

variable= varName Specifies a global numeric variable to be set to the current state of a checkbox
whenever it is clicked or when it is set by the value parameter. The variable is
two-way: setting the variable also changes the state of the checkbox.

win=winName Specifies which window or subwindow contains the named control. If not given,
then the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page
III-87 for details on forming the window hierarchy.

/Z No error reporting.

CheckBoxControl

V-56

CheckBox check1,value=0,mode=1,proc=MyCheckProc
CheckBox check2,pos={52,65},size={78,15},title="Radio 3"
CheckBox check2,value= 0,mode=1,proc=MyCheckProc

EndMacro

Function MyCheckProc(cb) : CheckBoxControl
STRUCT WMCheckboxAction& cb

NVAR gRadioVal= root:gRadioVal

strswitch (cb.ctrlName)
case "check0":

gRadioVal= 1
break

case "check1":
gRadioVal= 2
break

case "check2":
gRadioVal= 3
break

endswitch
CheckBox check0,value= gRadioVal==1
CheckBox check1,value= gRadioVal==2
CheckBox check2,value= gRadioVal==3

return 0
End

See Also
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls. The GetUserData operation for retrieving named user data.

CheckBoxControl
CheckBoxControl
CheckBoxControl is a procedure subtype keyword that identifies a macro or function as being an action
procedure for a user-defined checkbox control. See Procedure Subtypes on page IV-193 for details. See
CheckBox for details on creating a checkbox control.

CheckDisplayed
CheckDisplayed [/A/W] waveName [, waveName]…
The CheckDisplayed operation determines if named waves are displayed in a host window or subwindow.

Flags

Details
If neither /A nor /W are used, CheckDisplayed checks only the top graph or table.
CheckDisplayed sets a bit in the variable V_flag for each wave that is displayed.

Examples
CheckDisplayed/W=Graph0 aWave,bWave,cWave

Checks Graph0 to see if aWave, bWave, and cWave are displayed in it. If aWave is displayed, CheckDisplayed
sets bit 0 of V_flag (V_flag=1). If bWave is displayed, sets bit 1 (V_flag=2). If cWave is displayed, sets bit 2
(V_flag=4). If all three waves are displayed, V_flag=7.

See Also
Setting Bit Parameters on page IV-12 for information about bit settings.

/A Checks all graph and table windows

/W=winName Checks only the named graph or table window
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

CheckName

V-57

CheckName
CheckName(nameStr, objectType [, windowNameStr])
The CheckName function returns a number which indicates if the specified name is legal and unique
among objects in the namespace of the specified object type.
Waves, global numeric variables, and global string variables are all in the same namespace and need to be
unique only within the data folder containing them. However, they also need to be distinct from names of
Igor operations and functions and from names of user-defined procedures.
Data folders are in their own namespace and need to be unique only among other data folders at the same
level of the data folder hierarchy.
windowNameStr is optional. If missing, it is taken to be the top graph, panel, layout, or notebook according
to the value of objectType.

Details
A result of zero indicates that the name is legal and unique within its namespace. Any nonzero result
indicates that the name is illegal or not unique. You can use the CleanupName and UniqueName functions
to guarantee legality and uniqueness.
nameStr should contain an unquoted name (i.e., no single quotes for liberal names), such as you might
receive from the user through a dialog or control panel.
objectType is one of the following:

The windowNameStr argument is used only with objectTypes 14, 15, and 16. The nameStr is checked for
uniqueness only within the named window (other windows might have objects with the given name). If a
named window is given but does not exist, any valid nameStr is permitted

Examples
Variable waveNameIsOK = CheckName(proposedWaveName, 1) == 0
Variable annotationNameIsOK = CheckName("text0", 14, "Graph0") == 0

// Create a valid and unique wave name
Function/S CreateValidAndUniqueWaveName(proposedName)

String proposedName

String result = proposedName

if (CheckName(result,1) != 0) // 1 for waves
result = CleanupName(result, 1) // Make sure it's valid
result = UniqueName(result, 1, 0) // Make sure it's unique

endif

return result
End

See Also
CleanupName and UniqueName functions.

1: Wave. 9: Control panel window.
2: Reserved. 10: Notebook window.
3: Global numeric variable. 11: Data folder.
4: Global string variable. 12: Symbolic path.
5: XOP target window. 13: Picture.
6: Graph window. 14: Annotation in the named or topmost graph or layout.
7: Table window. 15: Control in the named topmost graph or panel.
8: Layout window. 16: Notebook action character in the named or

topmost notebook.

ChildWindowList

V-58

ChildWindowList
ChildWindowList(hostNameStr)
The ChildWindowList function returns a string containing a semicolon-separated list of immediate
subwindow window names of the specified host window or subwindow.

Parameters
hostNameStr is a string or string expression containing the name of an existing host window or subwindow.
When identifying a subwindow with hostNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.

Details
Error if the host does not exist or if it is not an allowed host type.

See Also
WinList and WinType functions.

ChooseColor
ChooseColor [/A[=a]/C=(r,g,b)]
The ChooseColor operation displays a dialog for choosing a color.
The color initially shown is black unless you specify a different color with /C.

Flags

Details
ChooseColor sets the variable V_flag to 1 if the user clicks OK in the dialog or to 0 otherwise.
If V_flag is 1 then V_Red, V_Green, V_Blue, and V_Alpha are set to the selected color as integers from 0 to
65535.
A completely opaque color sets V_Alpha=65535. A fully transparent color sets V_Alpha=0.

See Also
ImageTransform rgb2hsl and hsl2rgb.

CleanupName
CleanupName(nameStr, beLiberal)
The CleanupName function returns the input name string, possibly altered to make it a legal object name.

Details
nameStr should contain an unquoted (i.e., no single quotes for liberal names) name, such as you might
receive from the user through a dialog or control panel.
beLiberal is 0 to use strict name rules or 1 to use liberal name rules. Strict rules allow only letters, digits and
the underscore character. Liberal rules allow other characters such as spaces and dots. Liberal rules were
introduced with Igor Pro 3.0 and are allowed for names of waves and data folders only.
Note that a cleaned up name is not necessarily unique. Call CheckName to check for uniqueness or
UniqueName to ensure uniqueness.

Examples
String cleanStrVarName = CleanupName(proposedStrVarName, 0)

/A[=a] a=1 shows the alpha (opacity) channel. /A is the same as /A=1.
a=0 hides the alpha channel. This is the default setting.
The /A flag was added in Igor Pro 7.00.

/C=(r,g,b) r, g, and b specify the amount of red, green, and blue in the color initially displayed in
the dialog as an integer from 0 to 65535.

Close

V-59

See Also
CheckName and UniqueName functions.

Close
Close [/A] fileRefNum
The Close operation closes a file previously opened by the Open operation or closes all such files if /A is used.

Parameters
fileRefNum is the file reference number of the file to close. This number comes from the Open operation. If
/A is used, fileRefNum should be omitted.

Flags

CloseHelp
CloseHelp [/FILE=fileNameStr /NAME=helpNameStr /P=pathName]
The CloseHelp operation closes a help window.
The CloseHelp operation was added in Igor Pro 7.00.

Flags

Details
You must provide either the /NAME or /FILE flag.

See Also
OpenHelp

CloseMovie
CloseMovie
The CloseMovie operation closes the currently open movie. You must close a movie before you can play it.

See Also
Movies on page IV-230.
The NewMovie operation.

CloseProc
CloseProc /NAME=procNameStr [flags]
CloseProc /FILE=fileNameStr [flags]
The CloseProc operation closes a procedure window. You cannot call CloseProc on the main Procedure
window.

/A Closes all files. Mainly useful for cleaning up after an error during procedure
execution occurs so that the normal Close operation is never executed.

/FILE=fileNameStr Identifies the help window to close using the help file's location on disk. The file
is specified by fileNameStr and /P=pathName where pathName is the name of an
Igor symbolic path. fileNameStr can be a full path to the file, in which case /P is not
needed, a partial path relative to the folder associated with pathName, or the name
of a file in the folder associated with pathName.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401
for details on forming the path.

/NAME=helpNameStr Identifies the help window to close using the window's title as specified by
helpNameStr. This is the text that appears in the help window title bar.

/P=pathName Specifies the folder to look in for the file specified by /FILE. pathName is the name
of an existing Igor symbolic path.

CloseProc

V-60

CloseProc provides a way to programmatically create and alter procedure files. You might do this in order
to make a user-defined menu-bar menu with contents that change.
Note: CloseProc alters procedure windows so it cannot be called while functions or macros are

running. If you want to call it from a function or macro, use Execute/P.
Warning: If you close a procedure window that has no source file or without specifying a destination file,

the window contents will be permanently lost.

Flags

Details
Specify which window to close using either the /NAME or /FILE flag. You must use one or the other.
Usually you would use /NAME, as it is usually more convenient. If by some chance two procedures have
the same name, /FILE can be used to distinguish between them.
You cannot call CloseProc on a nonmain procedure window that someone has had the bad taste to call
“Procedure”.

See Also
Chapter III-13, Procedure Windows.
The Execute/P operation.

/COMP[=compile]

/D[=delete]

/FILE=fileNameStr Identifies the procedure window to close using the file name and path to the file
given by fileNameStr. The string can be just the file name if /P is used to specify a
symbolic path name of the enclosing folder. It can be a partial path if /P points to
a folder enclosing the start of the partial path. It can also be a full path the file.

/NAME=procNameStr Identifies the procedure window to close with the string expression procNameStr.
This is the same text that appears in the window title. If the procedure window is
associated with a file, it will be the file name and extension.
To close a procedure file that is part of an independent module, you must include
the independent module name in procNameStr. For example:
CloseProc /NAME="GraphBrowser.ipf [WM_GrfBrowser]"

Note that there is a space after the file name followed by the independent module
name in brackets.

/P=pathName Specifies the folder to look in for the file specified by /FILE. pathName is the name
of an existing symbolic path.

/SAVE[=savePathStr] Saves the procedure before closing the window. If the flag is used with no
argument, it saves any changes to the procedure window to its source file before
closing it. If savePathStr is present, it must be a full path naming a file in which to
save the procedure window contents. The /P flag is not used with savePathStr so it
must be a full path.

Specifies whether procedures should be compiled after closing the procedure
window.
compile=1: Compiles procedures (same as /COMP only).
compile=0: Leaves procedures in an uncompiled state.

Specifies whether the procedure file should be deleted after closing the procedure
window.
delete=1: Deletes procedure file (same as /D only).

Warning: You cannot recover any file deleted this way.
delete=0: Leaves any associated file unaffected.

cmplx

V-61

cmplx
cmplx(realPart, imagPart)
The cmplx function returns a complex number whose real component is realPart and whose imaginary
component is imagPart.
Use this to assign a value to a complex variable or complex wave.

Examples
Assume wave1 is complex. Then:
wave1(0) = cmplx(1,2)

sets the Y value of wave1 at x=0 such that its real component is 1 and its imaginary component is 2.
Assuming wave2 and wave3 are real, then:
wave1 = cmplx(wave2,wave3)

sets the real component of wave1 equal to the contents of wave2 and the imaginary component of wave1
equal to the contents of wave3.
You may get unexpected results if the number of points in wave2 or wave3 differs from the number of
points in wave1. If wave2 or wave3 are shorter than wave1, the last element of the short wave is copied
repeatedly to fill wave1.

See Also
conj, imag, magsqr, p2rect, r2polar, and real functions.

cmpstr
cmpstr(str1, str2 [, flags])
The cmpstr function returns -1, 0 or 1 depending on how string str1 compares alphabetically to string str2.

Details
cmpstr returns the following values:

If flags is not present, or if flags is zero, case (upper or lower) is not significant. Set flags to 1 for a case-
sensitive comparison.

See Also
The ReplaceString function.

ColorScale
ColorScale [flags] [, keyword = value, …] [axisLabelStr]
The ColorScale operation puts a color scale (or “color legend”) annotation on the
top graph or page layout.
The ColorScale operation can be executed with no flags and no parameters.
When a graph is the top window the color scale represents the colors and values
associated with the first image plot that was added to the graph.
If there is no image plot in the graph, the color scale represents the first contour plot or first f(z) trace added to the
graph, one of which must exist for the command to execute without error when executed without parameters.
Executing ColorScale (with no parameters) when a layout is the top window displays a color bar as if the
ctab={0,100,Rainbow} parameters had been specified.

Flags
Use the /W=winName flag to specify a specific graph or layout window. When used on the command line
or in a Macro or Proc, /W must precede all other flags.

-1: str1 is alphabetically before str2.

0: str1 and str2 are equal.

1: str1 is alphabetically after str2.

ColorScale

V-62

To change a color scale, use the /C/N=name flags. Annotations are automatically named “text0”, “text1”, etc.
if no name is specified when it is created, and you must use that name to modify an existing annotation or
else a new one will be created.
For explanations of all flags see the TextBox operation.

Parameters
The following keyword-value pairs are the important parameters to the ColorScale operation, because they
specify what object the color scale is representing.
For use with page layouts, the keyword ={graphName,…} form is required.
For graphs it is simpler to use the image=imageInstanceName form (omitting graphName), though you can
use $"" to mean the top graph, or specify the name of another graph with the long form. See the Examples.

axisLabelStr Contains the text printed beside the color scale’s main axis.
Using escape codes you can change the font, size, style and color of text, create
superscripts and subscripts, create dynamically-updated text, insert legend symbols,
and apply other effects. See Annotation Escape Codes on page III-53 for details.
You can use AppendText or ReplaceText to modify this axis label string. The default
value for axisLabelStr is "".

cindex=cindexMatrixWave

The colors shown are those in the named color index wave with axis values derived
from the wave’s X (row) scaling and units.
The image colors are determined by doing a lookup in the specified matrix wave. See
the ModifyImage cindex keyword.

contour=contourInstanceName
contour={graphName,contourInstanceName}

The colors show the named contour plot’s colors and associated contour (Z) values
and contour data units. All of the image plot’s characteristics are represented,
including color table, cindex, and fixed colors.

ctab={zMin,zMax,ctName, reverse}

The color table specified by ctName is drawn in the color legend.
zMin and zMax set the range of z values to map.
The color table name can be omitted if you want to leave it unchanged.
ctName can be any color table name returned by the CTabList function, such as Grays
or Rainbow (see Image Color Tables on page II-305) or the name of a 3 column or 4
column color table wave (Color Table Waves on page II-311).
A color table wave name supplied to ctab must not be the name of a built-in color
table (see CTabList). A 3 column or 4 column color table wave must have values that
range between 0 and 65535. Column 0 is red, 1 is green, and 2 is blue. In column 3 a
value of 65535 is opaque, and 0 is fully transparent.
Set reverse to 1 to reverse the color table. Setting it to 0 or omitting it leaves the color
table unreversed.

image=imageInstanceName
image={graphName,imageInstanceName}

The colors show the named image plot’s colors and associated image (Z) values and
image data units. All of the image plot’s characteristics are represented, including
color table, cindex, lookup wave, eval colors, and NaN transparency. Note: only false-
color image plots can be used with ColorScale (see Indexed Color Details on page
II-312).

ColorScale

V-63

Size Parameters
The following keyword-value parameters modify the size of the color scale annotation. These keywords are
similar to those used by the Slider control. The size of the annotation is indirectly controlled by setting the
size of the “color bar” and the various axis parameters. The annotation sizes itself to accommodate the color
bar, tick labels, and axis labels.

logLabel=t t is the maximum number of decades before minor tick labels are suppressed. The
default value is 3.
The logLabel keyword was added in Igor Pro 7.00.

logTicks=t t=0 means “auto”. This is the default value.
If t is not 0 then it represents the maximum number of decades before minor ticks are
suppressed.
The logLabel keyword was added in Igor Pro 7.00.

lookup=waveName Specifies an optional 1D wave used to modify the mapping of scaled Z values into the
color table specified with the ctab keyword. Values should range from 0.0 to 1.0. A
linear ramp from 0 to 1 would have no effect while a ramp from 1 to 0 would reverse
the image. Used to apply gamma correction to grayscale images or for special effects.
Use lookup=$"" to remove option.
This keyword is not needed with the image keyword, even if the image plot uses a lookup
wave. The image plot’s lookup wave is used instead of the ColorScale lookup wave.

trace=traceInstanceName
trace={graphName,traceInstanceName}

The colors show the color(s) of the named trace. This is useful when the trace has its
color set by a “Z wave” using the ModifyGraph zColor(traceName)=… feature.
In the Modify Trace Appearance dialog this is selected in the “Set as f(z)” subdialog.
The color scale’s main axis shows the range of values in the Z wave, and displays any
data units the wave may have.

height=h Sets the height of the color bar in points, overriding any heightPct setting. The default
height is 75% of the plot area height if the color scale is vertical, or a constant of 15
points if the color scale is horizontal. The default is restored by specifying height=0.
Specifying a heightPct value resets height to this default.

heightPct=hpct Sets height as a percentage of the graph’s plot area, overriding any height setting. The
default height is 75% of the plot area height if the color scale is vertical, or a constant
of 15 points if the color scale is horizontal. The default height is restored by setting
heightPct=0. Specifying a height value resets heightPct to this default.

side=s

vert=v

width=w Sets the width of the color bar in points, overriding any widthPct setting. The default
width is a constant 15 points if the color scale is vertical, or 75% of the plot area width
if the color scale is horizontal. The default is restored by specifying width=0.
Specifying a widthPct value resets width to this default.

widthPct=wpct Sets width as a percentage of the graph’s plot area, overriding any width setting. The
default width is a constant 15 points if the color scale is vertical, or 75% of the plot area
width if the color scale is horizontal. The default is restored by setting widthPct=0.
Specifying a width value resets widthPct to this default.

Selects on which axis to draw main axis ticks.
s=1: Right of the color bar if vert=1, or below if vert=0.
s=2: Left of the color bar if vert=1, or above if vert=0.

Specifies color scale orientation.
v=0: Horizontal.
v=1: Vertical (default).

ColorScale

V-64

Color Bar Parameters
The following keyword-value parameters modify the appearance of the color scale color bar.

Axis Parameters
The following keyword-value parameters modify the appearance of the color scale axes. These keywords
are based on the ModifyGraph Axis keywords because they modify the main or secondary color scale axes.

colorBoxesFrame=on Draws frames surrounding up to 99 swatches of colors in the color bar (on=1).
When specifying more than 99 colors in the color bar (such as the Rainbow color
table, which has 100 colors), the boxes aren’t framed. Framing color boxes is
effective only for small numbers of colors. Set the width of the frame with the
frame keyword.
Use on=0 to turn off color box frames.

frame=f Specifies the thickness of the frame drawn around the color bar in points (f can
range from 0 to 5 points). The default is 1 point. Fractional values are permitted.
Turn frames off with f=0. Values less that 0.5 do not display on screen, but the thin
frame will print.

frameRGB=(r, g, b) or 0 Sets the color of the frame around the color bar. r, g, and b specify the amount of
red, green, and blue as an integer from 0 to 65535. The frame includes the
individual color bar colors when colorBoxesFrame=1.
The frame will use the colorscale foreground color, as set by the /G flag, when
frameRGB=0.

axisRange={zMin, zMax}

Sets the color bar axis range to values specified by zMin and zMax. Use * to use
the default axis range for either or both values.
Omit zMin or zMax to leave that end of the range unchanged. For example, use
{zMin, } to change zMin and leave zMax alone, or use { ,*} to set only the axis
maximum value to the default value.

dateInfo={sd,tm,dt}

These have no effect unless the axis is controlled by a wave with 'dat' data units.
For an f(z) color scale:
SetScale d, 0,0, "dat", fOfZWave

For a contour plot or image plot color scale:
SetScale d, 0,0, "dat", ZorXYZorImageWave

See Date/Time Axes on page II-244 and Date, Time, and Date&Time Units on
page II-64 for details on how date/time axes work.

font=fontNameStr Name of font as string expression. If the font does not exist, the default font is
used. Specifying “default” has the same effect. Unlike ModifyGraph, the
fontNameStr is evaluated at runtime, and its absence from the system is not an
error.

Controls formatting of date/time axes.
sd=0: Show date in the date&time format.
sd=1: Suppress date.
tm=0: 12 hour (AM/PM) time.
tm=1: 24 hour (military) time.
tm=2: Elapsed time.
dt=0: Short dates (2/22/90).
dt=1: Long dates (Thursday, February 22, 1990).
dt=2: Abbreviated dates (Thurs, Feb 22, 1990).

ColorScale

V-65

fsize=s

fstyle=fs

See Setting Bit Parameters on page IV-12 for details about bit settings.

highTrip=h If the extrema of an axis are between its lowTrip and its highTrip then tick mark
labels use fixed point notation. Otherwise they use exponential (scientific or
engineering) notation. The default highTrip is 100,000.

lblLatPos=p Sets a lateral offset for the main axis label. This is an offset parallel to the axis. p is in
points. Positive is down for vertical axes and to the right for horizontal axes. The
default is 0.

lblMargin=m Moves the main axis label by m points (default is 0) from the normal position. The
default value is -5, which brings the axis label closer to the axis. Use more positive
values to move the axis label away from the axis.

lblRot=r Rotates the axis label by r degrees. r is a value from -360 to 360. Rotation is
counterclockwise and starts from the label's normal orientation.

log=l

logHTrip=h Same as highTrip but for log axes. The default is 10,000.

logLTrip=l Same as lowTrip but for log axes. The default is 0.0001.

logTicks=t Specifies the maximum number of decades in log axis before minor ticks are
suppressed.

lowTrip=l If the axis extrema are between its lowTrip and its highTrip, then tick mark labels
use fixed point notation. Otherwise, they use exponential (scientific or
engineering) notation. The default lowTrip is 0.1.

minor=m

notation=n

nticks=n Specifies the approximate number of ticks to be distributed along the main axis.
Ticks are labelled using the same automatic algorithm used for graph axes. The
default is 5.
Set n=0 for no ticks.

prescaleExp=exp Multiplies axis range by 10exp for tick labeling and exp is subtracted from the axis
label exponent. In other words, the exponent is moved from the tick labels to the
axis label. The default is 0 (no modification). See the discussion in the
ModifyGraph (axes) Details section.

Sets the font size in points.
s=0: Use the graph font size for tick labels and axis labels (default).

Sets the font style. fs is a bitwise parameter with each bit controlling one
aspect of the font style for the tick mark labels:
Bit 0: Bold
Bit 1: Italic
Bit 2: Underline
Bit 4: Strikethrough

Specifies the axis type:
l=0: Linear (default).
l=1: Log base 10.
l=2: Log base 2.

Controls minor tick marks:
m=0: Disables minor ticks (default).
m=1: Enables minor ticks.

Controls tick label notation:
n=0: Engineering notation (default).
n=1: Scientific notation.

ColorScale

V-66

Secondary Axis Parameters

tickExp=te

tickLen=t

tickThick=t

tickUnit=tu Turns on (tu=0) or off (tu=1) units labels attached to tick marks.

userTicks={tvWave,tlblWave}

Supplies user defined tick positions and labels for the main axis. tvWave contains
the numeric tick positions while text wave tlblWave contains the corresponding
labels.
Overrides normal ticking specified by nticks.
See User Ticks from Waves on page II-241 for details.
The tick mark labels can be multiline and use styled text. For more details, see
Fancy Tick Mark Labels on page II-270.

ZisZ=z z =1 labels the zero tick mark (if any) with the single digit “0” regardless of the
number of digits used for other labels. Default is z=0.

axisLabel2=axisLabelString2

Axis label for the secondary axis. This axis label is drawn only if userTicks2 is in effect.
Text after any \r character is ignored, as is the \r character. The default is "".

lblLatPos2=p Sets lateral offset for secondary axis labels. This is an offset parallel to the axis. p is in
points. Positive is down for vertical axes and to the right for horizontal axes. The default
is 0.

lblMargin2=m Specifies the distance in points (default 0) to move the secondary axis label from the
position that would be normal for a graph. The default is value is -5, which brings the axis
label closer to the axis. Use more positive values to move the axis label away from the axis.

lblRot2=r Rotates the secondary axis label by r degrees counterclockwise starting from the
normal label orientation. r is a value from -360 to 360.

userTicks2={tvWave,tlblWave}

Controls tick label exponential notation:
te=1: Forces tick labels to exponential notation when labels have units

with a prefix.
te=0: Turns off exponential notation.

Sets the length of the ticks. t is the major tick mark length in points. This value
must be between -100 and 50.
t= 0 to 50: Draws tick marks between the tick labels and the colors

box.
t= -1: Default; auto tick length, equal to 70% of the tick label

font size. Draws tick marks between the tick labels and
the colors box.

t= -2 to -50: Draws tick marks crossing the edge of the colors box
nearest the tick labels. The actual total tick mark length
is -t.

t= -100 to -51: Draws tick marks inside the edge of the colors box
nearest the tick labels. Actual tick mark length is -(t+50).
For example, -58 makes in an inside tick mark that is 8
points long.

Sets the tick mark thickness in points (from 0 to 5 points). The default is 1 point.
Fractional values are permitted.
t=0: Turns tick marks off, but not the tick labels.

ColorTab2Wave

V-67

Examples
Make/O/N=(20,20) img=p*q; NewImage img // Make and display an image
ColorScale // Create default color scale
// First annotation is text0
ColorScale/C/N=text0 nticks=3,minor=1,"Altitude"

ModifyImage img ctab= {*,*,Relief19,0} // 19-color color table
ColorScale/C/N=text0 axisRange={100,300} // Detail for 100-300 range
ColorScale/C/N=text0 colorBoxesFrame=1 // Frame the color boxes
ColorScale/C/N=text0 frameRGB=(65535,0,0) // Red frame

See Also
For all other flags see the TextBox and AppendText operations.
AnnotationInfo, AnnotationList

ColorTab2Wave
ColorTab2Wave colorTableName
The ColorTab2Wave operation extracts colors from the built-in color table and places them in an Nx3 matrix of
red, green, and blue columns named M_colors. Values are unsigned 16-bit integers and range from 0 to 65535.
N will typically be 100 but may be as little as 9 and as large as 476. Use
Variable N= DimSize(M_colors,0)

to determine the actual number of colors.
The wave M_colors is created in the current data folder. Red is in column 0, green is in column 1, and blue
in column 2.

Parameters
colorTableName can be any of those returned by CTabList, such as Grays or Rainbow.
colorTableName can also be Igor or IgorRecent, to return either the 128 standard or 0-32 user-selected
colors from Igor's color menu.

Details
See Image Color Tables on page II-305.

Supplies user defined tick positions and labels for a second axis which is always on
the opposite side of the color bar from the main axis. The tick mark labels can be
multiline and use styled text. For more details, see Fancy Tick Mark Labels on page
II-270. This is the only way to draw a second axis.

15
10

5
0

151050

300

250

200

150

100

A
ltitude

Complex

V-68

Complex
Complex localName
Declares a local complex 64-bit double-precision variable in a user-defined function or structure.
Complex is another name for Variable/C. It is available in Igor Pro 7 and later.

Concatenate
Concatenate [type flags][flags] waveListStr, destWave
Concatenate [type flags][flags] {wave1, wave2, wave3,…}, destWave
The Concatenate operation combines data from the source waves into destWave, which is created if it does not
already exist. If destWave does exists and overwrite is not specified, the source waves' data is concatenated
with the existing data in the destination wave.
By default the concatenation increases the dimensionality of the destination wave if possible. For example, if
you concatenate two 1D waves of the same length you get a 2D wave with two columns. The destination wave
is said to be "promoted" to a higher dimensionality.
If you use the /NP (no promotion) flag, the dimensionality of the destination wave is not changed. For
example, if you concatenate two 1D waves of the same length using /NP you get a 1D wave whose length is
the sum of the lengths of the source waves.
If the source waves are of different lengths, no promotion is done whether /NP is used or not.

Parameters
waveListStr is a string expression containing a list of wave names separated by semicolons. The list must be
terminated with a semicolon. The alternate syntax using {wave1, wave2, …} is limited to 100 waves or less,
but there is no limit when using waveListStr.
destWave is the name of a new or existing wave that will contain the concatenation result.

Flags

Type Flags (used only in functions)
Concatenate also can use various type flags in user functions to specify the type of destination wave
reference variables. These type flags do not need to be used except when needed to match another wave
reference variable of the same name or to identify what kind of expression to compile for a wave
assignment. See WAVE Reference Types on page IV-67 and WAVE Reference Type Flags on page IV-68
for a complete list of type flags and further details.

Details
If destWave does not already exist or, if the /O flag is used, destWave is created by duplication of the first
source wave. Waves are concatenated in order through the list of source waves. If destWave exists and the
/O flag is not used, then the concatenation starts with destWave.
destWave cannot be used in the source wave list.
Source waves must be either all numeric or all text.
If promotion is allowed, the number of low-order dimensions that all waves share in common determines
the dimensionality of destWave so that the dimensionality of destWave will then be one greater. The default
behaviors will vary according to the source wave sizes. Concatenating 1D waves that are all the same length
will produce a 2D wave, whereas concatenating 1D waves of differing lengths will produce a 1D wave.

/DL Sets dimension labels. For promotion, it uses source wave names as new dimension
labels otherwise it uses existing labels.

/KILL Kills source waves.

/NP Prevents promotion to higher dimension.

/NP=dim Prevents promotion and appends data along the specified dimension (0= rows, 1=
columns, 2=layers, 3=chunks). All dimensions other than the one specified by dim
must be the same in all waves.

/O Overwrites destWave.

conj

V-69

Similarly, concatenating 2D waves of the same size will produce a 3D wave; but if the 2D source waves have
differing numbers of columns then destWave will be a 2D wave, or if the 2D waves have differing numbers
of rows then destWave will be a 1D wave. Concatenating 1D and 2D waves that have the same number of
rows will produce a 2D wave, but when the number of rows differs, destWave will be a 1D wave. See the
examples.
Use the /NP flag to suppress dimension promotion and keep the dimensionality of destWave the same as the
input waves.

Examples
// Given the following waves:
Make/N=10 w1,w2,w3
Make/N=11 w4
Make/N=(10,7) m1,m2,m3
Make/N=(10,8) m4
Make/N=(9,8) m5

// Concatenate 1D waves
Concatenate/O {w1,w2,w3},wdest // wdest is a 10x3 matrix
Concatenate {w1,w2,w3},wdest // wdest is a 10x6 matrix
Concatenate/NP/O {w1,w2,w3},wdest // wdest is a 30-point 1D wave
Concatenate/O {w1,w2,w3,w4},wdest // wdest is a 41-point 1D wave

// Concatenate 2D waves
Concatenate/O {m1,m2,m3},wdest // wdest is a 10x7x3 volume
Concatenate/NP/O {m1,m2,m3},wdest // wdest is a 10x21 matrix
Concatenate/O {m1,m2,m3,m4},wdest // wdest is a 10x29 matrix
Concatenate/O {m4,m5},wdest // wdest is a 152-point 1D wave
Concatenate/O/NP=0 {m4,m5},wdest // wdest is a 19x8 matrix

// Concatenate 1D and 2D waves
Concatenate/O {w1,m1},wdest // wdest is a 10x8 matrix
Concatenate/O {w4,m1},wdest // wdest is a 81-point 1D wave

// Append rows to 2D wave
Make/O/N=(3,2) m6, m7
Concatenate/NP=0 {m6}, m7 // m7 is a 6x2 matrix

// Append columns to 2D wave
Make/O/N=(3,2) m6, m7
Concatenate/NP=1 {m6}, m7 // m7 is a 3x4 matrix

// Append layer to 2D wave
Make/O/N=(3,2) m6, m7
Concatenate/NP=2 {m6}, m7 // m7 is a 3x2x2 volume
// The last command has the same effect as:
// Concatenate {m6}, m7
// Both versions extend add a third dimension to m7

See Also
Duplicate, Redimension, SplitWave

conj
conj(z)
The conj function returns the complex conjugate of the complex value z.

See Also
cmplx, imag, magsqr, p2rect, r2polar, and real functions.

Constant
Constant kName = literalNumber
Constant/C kName = (literalNumberReal, literalNumberImag)
The Constant declaration defines the number literalNumber under the name kName for use by other code,
such as in a switch construct.
The complex form, using the /C flag to create a complex constant, requires Igor Pro 7.00 or later.

See Also
The Strconstant keyword for string types, Constants on page IV-47 and Switch Statements on page IV-41.

continue

V-70

continue
continue
The continue flow control keyword returns execution to the beginning of a loop, bypassing the remainder
of the loop’s code.

See Also
Continue Statement on page IV-45 and Loops on page IV-42 for usage details.

ContourInfo
ContourInfo(graphNameStr, contourWaveNameStr, instanceNumber)
The ContourInfo function returns a string containing a semicolon-separated list of information about the
specified contour plot in the named graph.

Parameters
graphNameStr can be "" to refer to the top graph.
contourWaveNameStr is a string containing either the name of a wave displayed as a contour plot in the
named graph, or a contour instance name (wave name with “#n” appended to distinguish the nth contour
plot of the wave in the graph). You might get a contour instance name from the ContourNameList function.
If contourWaveNameStr contains a wave name, instanceNumber identifies which instance you want
information about. instanceNumber is usually 0 because there is normally only one instance of a wave
displayed as a contour plot in a graph. Set instanceNumber to 1 for information about the second contour
plot of the wave, etc. If contourWaveNameStr is "", then information is returned on the instanceNumberth
contour plot in the graph.
If contourWaveNameStr contains an instance name, and instanceNumber is zero, the instance is taken from
contourWaveNameStr. If instanceNumber is greater than zero, the wave name is extracted from
contourWaveNameStr, and information is returned concerning the instanceNumberth instance of the wave.

Details
The string contains several groups of information. Each group is prefaced by a keyword and colon, and
terminated with the semicolon. The keywords are as follows:

Keyword Information Following Keyword

AXISFLAGS Flags used to specify the axes. Usually blank because /L and /B (left and bottom
axes) are the defaults.

DATAFORMAT Either XYZ or Matrix.

LEVELS A comma-separated list of the contour levels, including the final automatic levels,
(or manual or from-wave levels), and the “more levels”, all sorted into ascending Z
order.

RECREATION List of keyword commands as used by ModifyContour command. The format of
these keyword commands is:
keyword (x)=modifyParameters;

TRACESFORMAT The format string used to name the contour traces (see AppendMatrixContour or
AppendXYZContour).

XAXIS X axis name.

XWAVE X wave name if any, else blank.

XWAVEDF Full path to the data folder containing the X wave or blank if there is no X wave.

YAXIS Y axis name.

YWAVE Y wave name if any, else blank.

ContourNameList

V-71

The format of the RECREATION information is designed so that you can extract a keyword command from
the keyword and colon up to the “;”, prepend “ModifyContour”, replace the “x” with the name of a
contour plot (“data#1” for instance) and then Execute the resultant string as a command.

Examples
The following command lines create a very unlikely contour display. If you did this, you would most likely
want to put each contour plot on different axes, and arrange the axes such that they don’t overlap. That
would greatly complicate the example.
Make/O/N=(20,20) jack
Display;AppendMatrixContour jack
AppendMatrixContour/T/R jack // Second instance of jack

This example accesses the contour information for the second contour plot of the wave “jack” (which has
an instance number of 1) displayed in the top graph:
Print StringByKey("ZWAVE", ContourInfo("","jack",1)) // prints jack

See Also
The Execute and ModifyContour operations.

ContourNameList
ContourNameList(graphNameStr, separatorStr)
The ContourNameList function returns a string containing a list of contours in the graph window or
subwindow identified by graphNameStr.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
The parameter separatorStr should contain a single character such as “,” or “;” to separate the names.
A contour name is defined as the name of the wave containing the data from which a contour plot is
calculated, with an optional #n suffix that distinguishes between two or more contour plots in the same graph
window that have the same wave name. Since the contour name has to be parsed, it is quoted if necessary.

Examples
The following command lines create a very unlikely contour display. If you did this, you would most likely
want to put each contour plot on different axes, and arrange the axes such that they don’t overlap. That
would greatly complicate the example.
Make/O/N=(20,20) jack,'jack # 2';
Display;AppendMatrixContour jack
AppendMatrixContour/T/R jack
AppendMatrixContour 'jack # 2'
AppendMatrixContour/T/R 'jack # 2'
Print ContourNameList("",";")

prints jack;jack#1;'jack # 2';'jack # 2'#1;

See Also
Another command related to contour plots and waves: ContourNameToWaveRef.
For commands referencing other waves in a graph: TraceNameList, WaveRefIndexed,
XWaveRefFromTrace, TraceNameToWaveRef, CsrWaveRef, CsrXWaveRef, ImageNameList, and
ImageNameToWaveRef.

YWAVEDF Full path to the data folder containing the Y wave or blank if there is no Y wave.

ZWAVE Name of wave containing Z data from which the contour plot was calculated.

ZWAVEDF Full path to the data folder containing the Z data wave.

Keyword Information Following Keyword

ContourNameToWaveRef

V-72

ContourNameToWaveRef
ContourNameToWaveRef(graphNameStr, contourNameStr)
Returns a wave reference to the wave corresponding to the given contour name in the graph window or
subwindow named by graphNameStr.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
The contour name is identified by the string in contourNameStr, which could be a string determined using
ContourNameList. Note that the same contour name can refer to different waves in different graphs, if the
waves are in different data folders.

See Also
The ContourNameList function.
For a discussion of wave reference functions, see Wave Reference Functions on page IV-186.

ContourZ
ContourZ(graphNameStr, contourInstanceNameStr, x, y [,pointFindingTolerance])
The ContourZ function returns the interpolated Z value of the named contour plot data displayed in the
named graph.
For gridded contour data, ContourZ returns the bilinear interpolation of the four surrounding XYZ values.
For XYZ triplet contour data, ContourZ returns the value interpolated from the three surrounding XYZ
values identified by the Delaunay triangulation.

Parameters
graphNameStr can be "" to specify the topmost graph.
contourNameStr is a string containing either the name of the wave displayed as a contour plot in the named
graph, or a contour instance name (wave name with “#n” appended to distinguish the nth contour plot of
the wave in the graph). You might get a contour instance name from the ContourNameList function.
If contourNameStr contains a wave name, instance identifies which contour plot of contourNameStr you want
information about. instance is usually 0 because there is normally only one instance of a wave displayed as
a contour plot in a graph. Set instance to 1 for information about the second contour plot of contourNameStr,
etc. If contourNameStr is "", then information is returned on the instanceth contour plot in the graph.
If contourNameStr contains an instance name, and instance is zero, the instance is taken from contourNameStr.
If instance is greater than zero, the wave name is extracted from contourNameStr, and information is returned
concerning the instanceth instance of the wave.
x and y specify the X and Y coordinates of the value to be returned. This may or may not be the location of
a data point in the wave selected by contourNameStr and instance.
Set pointFindingTolerance =1e-5 to overcome the effects of perturbation (see the perturbation keyword of the
ModifyContour operation).
The default value is 1e-15 to account for rounding errors created by the triangulation scaling (see
ModifyContour's equalVoronoiDistances keyword), which works well ModifyContour perturbation=0.
A value of 0 would require an exact match between the scaled x/y coordinate and the scaled and possibly
perturbed coordinates to return the original z value; that is an unlikely outcome.

Details
For gridded contour data, ContourZ returns NaN if x or y falls outside the XY domain of the contour data.
If x and y fall on the contour data grid, the corresponding Z value is returned.
For XYZ triplet contour data, ContourZ returns the null value if x or y falls outside the XY domain of the
contour data. You can set the null value to v with this command:
ModifyContour contourName nullValue=v

ControlBar

V-73

If x and y match one of the XYZ triplet values, the corresponding Z value from the triplet usually won't be
returned because Igor uses the Watson contouring algorithm which perturbs the x and y values by a small
random amount. This also means that normally x and y coordinates on the boundary will return a null
value about half the time if perturbation is on and pointFindingTolerance is greater than 1e-5.

Examples
Because ContourZ can interpolate the Z value of the contour data at any X and Y coordinates, you can use
ContourZ to convert XYZ triplet data into gridded data:
// Make example XYZ triplet contour data
Make/O/N=50 wx,wy,wz
wx= enoise(2) // x = -2 to 2
wy= enoise(2) // y = -2 to 2
wz= exp(-(wx[p]*wx[p] + wy[p]*wy[p])) // XY gaussian, z= 0 to 1

// ContourZ requires a displayed contour data set
Display; AppendXYZContour wz vs {wx,wy};DelayUpdate
ModifyContour wz autolevels={*,*,0} // no contour levels are needed
ModifyContour wz xymarkers=1 // show the X and Y locations

// Set the null (out-of-XY domain) value
ModifyContour wz nullValue=NaN // default is min(wz) - 1

// Convert to grid: Make matrix that spans X and Y
Make/O/N=(30,30) matrix
SetScale/I x, -2, 2, "", matrix
SetScale/I y, -2, 2, "", matrix
matrix= ContourZ("","wz",0,x,y) // or = ContourZ("","",0,x,y)
AppendImage matrix

See Also
AppendMatrixContour, AppendXYZContour, ModifyContour, FindContour, zcsr, ContourInfo

References
Watson, David F., Contouring: A Guide To The Analysis and Display of Spatial Data, Pergamon, 1992.

ControlBar
ControlBar [flags] barHeight
The ControlBar operation sets the height and location of the control bar in a graph.

Parameters
barHeight is in points on Macintosh and pixels or points on Windows, depending on the screen resolution.
See Control Panel Resolution on Windows on page III-405 for details.
Setting barHeight to zero removes the control bar.

Flags

Details
The control bar is an area at the top of graphs reserved for controls such as buttons, checkboxes and pop-
up menus. A line is drawn between this area and the graph area. The control bar may be assigned a separate
background color by pressing Control (Macintosh) or Ctrl (Windows) and clicking in the area, by right-
clicking it (Windows), or with the ModifyGraph operation. You can not use draw tools in this area.
For graphs with no controls you do not need to use this operation.

Examples
Display myData
ControlBar 35 // 35 pixels high
Button button0,pos={56,8},size={90,20},title="My Button"

See Also
Chapter III-14, Controls and Control Panels, for details about control panels and controls.

/L/R/B/T Designates whether to use the Left, Right, Bottom, or Top (default) window edge,
respectively, for the control bar location.

/W=graphName Specifies the name of a particular graph containing a control bar.

ControlInfo

V-74

ControlInfo
ControlInfo [/W=winName] controlName
The ControlInfo operation returns information about the state or status of the named control in a graph or
control panel window or subwindow.

Flags

Parameters
controlName is the name of a control in the window specified by /W or in the top graph or panel window.
controlName may also be the keyword kwBackgroundColor to set V_Red, V_Green, V_Blue, and V_Alpha,
the keyword kwControlBar or kwControlBarBottom to set V_Height, the keyword kwControlBarLeft or
kwControlBarRight to set V_Width, or the keyword kwSelectedControl to set S_value and V_flag.

Details
Information for all controls is returned via the following string and numeric variables:

The kind of control is returned in V_flag as a positive or negative integer. A negative value indicates the
control is incomplete or not active. If V_flag is zero, then the named control does not exist. Information
returned for specific control types is as follows:

Buttons

Chart

/G [=doGlobal] If doGlobal is non-zero or absent, the position returned via V_top and V_left is in
global screen coordinates rather relative to the window containing the control.

/W=winName Looks for the control in the named graph or panel window or subwindow. If /W is
omitted, ControlInfo looks in the top graph or panel window or subwindow.

When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

S_recreation Commands to recreate the named control.

V_disable

V_Height, V_Width,
V_top, V_left

Dimensions and position of the named control in pixels.

V_flag 1

V_value Tick count of last mouse up.

S_UserData Primary (unnamed) user data text. For retrieving any named user data, you must use
the GetUserData operation.
See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 6 or -6

V_value Current point number.

S_UserData Keyword-packed information string. See S_value for Chart Details for more
keyword information.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

Disable state of control:
0: Normal (enabled, visible).
1: Hidden.
2: Disabled, visible.

ControlInfo

V-75

Checkbox

CustomControl

GroupBox

ListBox

PopupMenu

V_flag 2

V_value 0 if it is deselected or 1 if it is selected.

S_UserData Primary (unnamed) user data text. For retrieving any named user data, you must use
the GetUserData operation.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 12

V_value Tick count of last mouse up.

S_UserData Primary (unnamed) user data text. For retrieving any named user data, you must use
the GetUserData operation.

S_value Name of the picture used to define the control appearance.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 9

S_value Title text.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 11

V_value Currently selected row (valid for mode 1 or 2 or modes 5 and 6 when no selWave is
used). If no list row is selected, then it is set to -1.

V_selCol Currently selected column (valid for modes 5 and 6 when no selWave is used).

V_horizScroll Number of pixels the list has been scrolled horizontally to the right.

V_vertScroll Number of pixels the list has been scrolled vertically downwards.

V_rowHeight Height of a row in pixels.

V_startRow The current top visible row.

S_columnWidths A comma-separated list of column widths in pixels.

S_dataFolder Full path to listWave (if any).

S_UserData Primary (unnamed) user data text. For retrieving any named user data, you must use
the GetUserData operation.

S_value Name of listWave (if any).

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 3 or -3

ControlInfo

V-76

SetVariable

Slider

TabControl

TitleBox

V_Red, V_Green,
V_Blue. V_Alpha

For color array pop-up menus, these are the encoded color values.

V_value Current item number (counting from one).

S_UserData Primary (unnamed) user data text. For retrieving any named user data, you must use
the GetUserData operation.

S_value Text of the current item. If PopupMenu is a color array then it contains color values
encoded as (r,g,b) where r, g, and b are integers from 0 to 65535.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 5 or -5

V_value Value of the variable. If the SetVariable is used with a string variable, then it is the
interpretation of the string as a number, which will be NaN if conversion fails.

S_dataFolder Full path to the variable.

S_UserData Primary (unnamed) user data text. For retrieving any named user data, you must use
the GetUserData operation.

S_value Name of the variable or, if the value was set using _STR: syntax, the string value itself.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 7

V_value Numeric value of the variable.

S_dataFolder Full path to the variable.

S_UserData Primary (unnamed) user data text. For retrieving any named user data, you must use
the GetUserData operation.

S_value Name of the variable.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 8

V_value Number of the current tab.

S_UserData Primary (unnamed) user data text. For retrieving any named user data, you must use
the GetUserData operation.

S_value Tab text.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 10

S_dataFolder Full path if text is from a string variable.

S_value Name if text is from a string variable.

ControlInfo

V-77

ValDisplay

kwBackgroundColor

kwControlBar or kwControlBarTop

kwControlBarBottom

kwControlBarLeft

kwControlBarRight

kwSelectedControl

S_value for Chart Details
The following applies only to the keyword-packed information string returned in S_value for a chart.
S_value will consist of a sequence of sections with the format: “keyword:value;” You can pick a value out of
a keyword-packed string using the NumberByKey and StringByKey functions. Here are the S_value
keywords:

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_flag 4 or -4

V_value Displayed value.

S_value Text of expression that ValDisplay evaluates.

See also the descriptions of S_recreation, V_disable, V_Height, V_Width, V_top,
V_left at the beginning of the Details section.

V_Red, V_Green,
V_Blue, V_Alpha

If controlName is kwBackgroundColor then this is the color of the control panel
background. This color is usually the default user interface background color, as set
by the Appearance control panel on the Macintosh or by the Appearance tab of the
Display Properties on Windows, until changed by ModifyPanel cbRGB.

V_Height The height in pixels of the top control bar area in a graph as set by ControlBar.

V_Height The height in pixels of the bottom control bar area in a graph as set by ControlBar/B.

V_Width The width in pixels of the left control bar area in a graph as set by ControlBar/L.

V_Width The width in pixels of the right control bar area in a graph as set by ControlBar/R.

V_flag Set to 1 if a control is selected or 0 if not.
SetVariable and ListBox controls can be selected, most other controls can not.

S_value Name of selected control (if any) or "".

Keyword Type Meaning

FNAME string Name of the FIFO chart is monitoring.

LHSAMP number Left hand sample number.

NCHANS number Number of channels displayed in chart.

PPSTRIP number The chart’s points per strip value.

RHSAMP number Right hand sample number (same as V_value).

ControlNameList

V-78

In addition, ControlInfo writes fields to S_value for each channel in the chart. The keyword for the field is
a combination of a name and a number that identify the field and the channel to which it refers. For
example, if channel 4 is named “Pressure” then the following would appear in the S_value string:
“CHNAME4:Pressure”. In the following table, the channel’s number is represented by #:

Examples
ControlInfo myChart; Print S_value

Prints the following to the history area:
FNAME:myFIFO;NCHANS:1;PPSTRIP:1100;RHSAMP:271;LHSAMP:-126229;

See Also
Chapter III-14, Controls and Control Panels, for details about control panels and controls. The
GetUserData operation for retrieving named user data.

ControlNameList
ControlNameList(winNameStr [, listSepStr [, matchStr]])
The ControlNameList function returns a string containing a list of control names in the graph or panel
window or subwindow identified by winNameStr.

Parameters
winNameStr can be "" to refer to the top graph or panel window.
When identifying a subwindow with winNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
The optional parameter listSepStr should contain a single character such as "," or ";" to separate the names;
the default value is ";".
The optional parameter matchStr is some combination of normal characters and the asterisk wildcard character
that matches anything. To use matchStr, listSepStr must also be used. See StringMatch for wildcard details.
Only control names that satisfy the match expression are returned. For example, "*_tab0" matches all control
names that end with "_tab0". The default is "*", which matches all control names.

Examples
NewPanel
Button myButton
Checkbox myCheck
Print ControlNameList("") // prints "myButton;myCheck;"
Print ControlNameList("", ";", "*Check") // prints "myCheck;"

See Also
The ListMatch, StringFromList and StringMatch functions, and the ControlInfo and ModifyControlList
operations. Chapter III-14, Controls and Control Panels, for details about control panels and controls.

Keyword Type Meaning

CHCTAB# number Channel’s color table value as set by Chart ctab keyword.

CHGAIN# number Channel’s gain value as set by Chart gain keyword.

CHNAME# string Name of channel defined by FIFO.

CHOFFSET# number Channel’s offset value as set by Chart offset keyword.

ControlUpdate

V-79

ControlUpdate
ControlUpdate [/A/W=winName][controlName]
The ControlUpdate operation updates the named control or all controls in a window, which can be the top
graph or control panel or the named graph or control panel if you use /W.

Flags

Details
ControlUpdate is useful for forcing a pop-up menu to rebuild, to update a ValDisplay control, or to forcibly
accept a SetVariable’s currently-being-edited value.
Normally, a pop-up menu rebuilds only when the user clicks on it. If you set up a pop-up menu so that its
contents depend on a global string variable, on a user-defined string function or on an Igor function (e.g.,
WaveList), you may want to force the pop-up menu to be updated at your command.
Usually, a ValDisplay control displays the value of a global variable or of an expression involving a global
variable. If the global variable changes, the ValDisplay will automatically update. However, you can create
a ValDisplay that displays a value that does not depend on a global variable. For example, it might display
the result of an external function. In a case like this, the ValDisplay will not automatically update. You can
update it by calling ControlUpdate.
When a SetVariable control is being edited, the text the user types isn’t “accepted” (or processed) until the
user presses Return or Enter. ControlUpdate effectively causes the named control to act as though the user
has pressed one of those keys. If /A is specified, the currently active SetVariable control (if any) is affected
this way. The motivation here is that the user may have typed a new value without having yet pressed
return, and then may click a button in a different panel which runs a routine that uses the SetVariable value
as input. The user expected the typed value to have been accepted but the variable has not yet been set.
Calling ControlUpdate/A on the first panel will read the typed value in the variable, avoiding a discrepancy
between the visible value of the SetVariable control and the actual value of the variable.

Examples
NewPanel;DoWindow/C PanelX
String/G popupList="First;Second;Third"
PopupMenu oneOfThree value=popupList // popup shows “First”
popupList="1;2;3" // popup is unchanged
ControlUpdate/W=PanelX oneOfThree // popup shows “1”

See Also
Chapter III-14, Controls and Control Panels, for details about control panels and controls. The ValDisplay
and WaveList operations.

ConvertGlobalStringTextEncoding
ConvertGlobalStringTextEncoding [flags] originalTextEncoding, newTextEncoding,

[string , string, ...]
The ConvertGlobalStringTextEncoding operation converts the contents of the specified global string
variables or the contents of all global string variables in the data folder specified with the /DF flag from one
text encoding to another.
The ConvertGlobalStringTextEncoding operation was added in Igor Pro 7.00.
By default, the contents of global string variables containing control characters (codes less than 32) other
than carriage return (13), linefeed (10), and tab (9) are not converted. To convert the contents of global string
variables containing control characters, you must include the /SKIP=0 flag.
In Igor Pro 7, the contents of all global string variables are assumed to be encoded as UTF-8. You should
convert the text encoding of a global string variable if, for example, you have global string variables in

/A Updates all controls in the window. You must omit controlName.

/W=winName Specifies the window or subwindow containing the control. If you omit winName it
will use the top graph or control panel window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

ConvertGlobalStringTextEncoding

V-80

experiments created prior to Igor7 and they contain non-ASCII characters. For those strings to be displayed
and interpreted correctly in Igor Pro 7, their contents need to be converted to UTF-8.
Most users will have no need to worry about the text encoding of Igor global string variables since most
global string variables do not contain non-ASCII text. You should not use this operation unless you have a
thorough understanding of text encoding issues or are instructed to use it by someone who has a thorough
understanding.
See String Variable Text Encodings on page III-428 for essential background information.
ConvertGlobalStringTextEncoding can work on a list of specific global string variables or on all of the
global string variables in a data folder (/DF flag). When working on a data folder, it can work on just the
data folder itself or recursively on sub-data folders as well.
Conversion does not change the characters that make up text - it merely changes the numeric codes used to
represent those characters.

Parameters
originalTextEncoding specifies the original (current) text encoding used by the specified global string
variables. See Text Encoding Names and Codes on page III-434 for a list of codes. It will typically be 2
(MacRoman), 3 (Windows-1252) or 4 (Shift JIS), depending on the system on which the string variables were
created.
newTextEncoding specifies the output text encoding. See Text Encoding Names and Codes on page III-434
for a list of codes. It will typically be 1 which stands for UTF-8.
string , string , ... is a list of targeted global string variables. Only the name of string variables, not a path
specification plus the name, is allowed. Therefore, the string variables must be in the current data folder.
The list is optional and must be omitted if you use the /DF flag. Using both the /DF flag and a list of string
variables is treated as an error. Use of local string variables in this list is also an error. Use
ConvertTextEncoding to convert local string variables.

Flags

/CONV={errorMode [, diagnosticsFlags]}

errorMode determines how ConvertGlobalStringTextEncoding behaves if the
conversion can not be done because the text can not be mapped to the specified text
encoding. This occurs if the string variable’s original text is not valid in the specified
originalTextEncoding or if it contains characters that can not be represented in the
specified newTextEncoding.

errorMode takes one of these values:
1: Generate error. SetWaveTextEncoding returns an error to Igor.
2: Use a substitute character for any unmappable characters. The

substitute character for most text encodings is either control-Z or a
question mark.

3: Skip unmappable input characters. Any unmappable characters
will be missing in the output.

4: Use escape sequences representing any unmappable characters or
invalid source text.
If the source text is valid in the source text encoding but can not be
represented in the destination text encoding, unmappable
characters are replaced with \uXXXX where XXXX specifies the
UTF-16 code point of the unmappable character in hexadecimal.
If the conversion can not be done because the source text is not
valid in the source text encoding, invalid bytes are replaced with
\xXX where XX specifies the value of the invalid byte in
h d i l

ConvertGlobalStringTextEncoding

V-81

Details
For general background information on text encodings, see Text Encodings on page III-409.
For background information on string variable text encodings, see String Variable Text Encodings on page
III-428.
ConvertGlobalStringTextEncoding is used to change the numeric codes representing the text - i.e., to
convert the content to a different text encoding. Its main use is to convert Igor Pro 6 global string variables
from whatever text encoding they use, which typically will be MacRoman, Windows-1252, or Shift JIS, to
UTF-8. UTF-8 is a form of Unicode which is more modern but is not backward compatible with Igor Pro 6.
Igor Pro 7 assumes that string variables are encoded as UTF-8.
For example, if you have global string variables from Igor Pro 6 that are encoded in Japanese (Shift JIS) and
contain non-ASCII characters, you should convert them to UTF-8. Otherwise you will get errors or garbled
text if you print the string variable or use it, for example, to label a graph. This also applies to western text

ConvertGlobalStringTextEncoding skips text conversion if the global string variable’s
contents are detected as binary and you omit /SKIP=0.

/DF={dfr, recurse, excludedDFR}

dfr is a reference to a data folder. ConvertGlobalStringTextEncoding operates on all
global string variables in the specified data folder. If dfr is null ($"")
ConvertGlobalStringTextEncoding acts as if /DF was omitted.
If you use the /DF flag, you must omit the optional string variable list.
If recurse is 1, ConvertGlobalStringTextEncoding works recursively on all sub-data
folders. Otherwise it affects only the data folder referenced by dfr.
excludedDFR is an optional reference to a data folder to be skipped by
ConvertGlobalStringTextEncoding. For example, this command converts the string
data for all global string variables in all data folders except for root:Packages and its
sub-data folders:
ConvertGlobalStringTextEncoding /DF={root:,1,root:Packages} 4, 1

If excludedDFR is null ($"") ConvertGlobalStringTextEncoding acts as if excludedDFR
was omitted and no data folders are excluded.

/SKIP=skip

/Z[=z] Prevents procedure execution from aborting if ConvertGlobalStringTextEncoding
generates an error. Use /Z or the equivalent, /Z=1, if you want to handle errors in your
procedures rather than having execution abort.
/Z does not suppress invalid parameter errors. It suppresses only errors in doing text
encoding reinterpretation or conversion.

diagnosticsFlags is an optional bitwise parameter defined as follows:

All other bits are reserved for future use.
See Setting Bit Parameters on page IV-12 for details about bit settings.
diagnosticsFlags defaults to 6 (bits 1 and 2 set) if the /DF flag is not present and to
14 (bits 1, 2 and 3 set) if the /DF flag is present.

Bit 0: Emit diagnostic message if text conversion succeeds.
Bit 1: Emit diagnostic message if text conversion fails.
Bit 2: Emit diagnostic message if text conversion is skipped.
Bit 3: Emit summary diagnostic message.

Skips conversion of a string variable if the string contains control characters
(codes less than 32) other than carriage return (13), linefeed (10), and tab (9).
skip=0: Do not skip conversion of any string variables.
skip=1: Skip conversion of string variables containing binary data.

This is the default behavior if /SKIP is omitted.

ConvertTextEncoding

V-82

encoded as MacRoman or Windows-1252 which contain non-ASCII characters. Conversion changes the
underlying numeric codes but does not change the characters represented by the text.

Output Variables
The ConvertGlobalStringTextEncoding operation returns information in the following variables:

Examples
// In the following examples 1 means UTF-8, 4 means Shift JIS.

// Convert specific strings' content from Shift JIS to UTF-8
ConvertGlobalStringTextEncoding 4, 1, string0, string1

// Convert all strings' content from Shift JIS to UTF-8
ConvertGlobalStringTextEncoding /DF={root:,1} 4, 1

// Same as before but exclude the root:Packages data folder
ConvertGlobalStringTextEncoding /DF={root:,1,root:Packages} 4, 1

// Convert all strings’ content from Shift JIS to UTF-8 except strings containing binary
ConvertGlobalStringTextEncoding /DF={root:,1}/SKIP=0 4, 1

See Also
Text Encodings on page III-409, String Variable Text Encodings on page III-428, Text Encoding Names
and Codes on page III-434
ConvertTextEncoding, SetWaveTextEncoding

ConvertTextEncoding
ConvertTextEncoding(sourceTextStr, sourceTextEncoding, destTextEncoding,

mapErrorMode, options)
ConvertTextEncoding converts text from one text encoding to another.
The ConvertTextEncoding function was added in Igor Pro 7.00.
In Igor Pro 7, all text in memory is assumed to be in UTF-8 format except for text stored in waves which can
be stored in any text encoding. You might want to convert text from UTF-8 to Windows-1252 (Windows
Western European), for example, to export it to a program that expects Windows-1252.
You might have text already loaded into Igor that you know to be in Windows-1252. To display it correctly
in Igor Pro 7 you need to convert it to UTF-8.
You can also use ConvertTextEncoding to test if text is valid in a given text encoding, by specifying the same
text encoding for sourceTextEncoding and destTextEncoding.

Parameters
sourceTextStr is the text that you want to convert.
sourceTextEncoding specifies the source text encoding.
destTextEncoding specifies the output text encoding.
See Text Encoding Names and Codes on page III-434 for a list of acceptable text encoding codes.
mapErrorMode determines what happens if an input character can not be mapped to the output text
encoding because the character does not exist in the output text encoding. It takes one of these values:
options is a bitwise parameter which defaults to 0 and with the bits defined as follows:
All other bits are reserved and must be cleared.

V_numConversionsSucceeded V_numConversionsSucceeded is set to the number of successful text
conversions.

V_numConversionsFailed V_numConversionsFailed is set to the number of unsuccessful text
conversions.

V_numConversionsSkipped V_numConversionsSkipped is set to the number of skipped text
conversions. Text conversion is skipped if the string variable contains
binary data and the /SKIP=0 flag is omitted.

ConvertTextEncoding

V-83

Details
ConvertTextEncoding returns a null result string if sourceTextEncoding or destTextEncoding are not valid text
encoding codes or if a text conversion error occurs. You can test for a null string using strlen which returns
NaN if the string is null.
If bit 0 of the options parameter is cleared, Igor generates an error which halts procedure execution. If it is
set, Igor generates no error and you should test for null and attempt to handle the error, as illustrated by
the example below.
A text conversion error occurs if mapErrorMode is 1 and the source text contains one or more characters that
are not mappable to the destination text encoding. A text conversion error also occurs if the source text
contains a sequence of bytes that is not valid in the source text encoding.
The "binary" text encoding (255) is not a real text encoding. If either sourceTextEncoding or destTextEncoding
are binary (255), ConvertTextEncoding does no conversion and just returns sourceTextStr unchanged.
See Text Encodings on page III-409 for further details.

Example
In reading these examples, keep in mind that Igor converts escape codes such as “\u8C4A”, when they
appear in literal text, to the corresponding UTF-8 characters. See Unicode Escape Sequences in Strings on
page IV-14 for details.
Function DemoConvertTextEncoding()

// Get text encoding codes for text the text encodings used below
Variable teUTF8 = TextEncodingCode("UTF-8")
Variable teWindows1252 = TextEncodingCode("Windows-1252")

1: Generate error. The function returns "" and generates an error.

2: Return a substitute character for the unmappable character. The substitute character for most
text encodings is either control-Z or a question mark.

3: Skip unmappable input character.

4: Return escape sequences representing unmappable characters and invalid source text.
If the source text is valid in the source text encoding but can not be represented in the
destination text encoding, unmappable characters are replaced with \uXXXX where XXXX
specifies the UTF-16 code point of the unmappable character in hexadecimal. The
DemoUnmappable example function below illustrates this.
If the conversion can not be done because the source text is not valid in the source text
encoding, invalid bytes are replaced with \xXX where XX specifies the value of the invalid
byte in hexadecimal. The DemoInvalid example function below illustrates this.
If mapErrorMode is 2, 3 or 4, the function does not return an error in the event of an
unmappable character.

Bit 0: If cleared, in the event of a text conversion error, a null string is returned and an error is
generated. Use this if you want to abort procedure execution if an error occurs.
If set, in the event of a text conversion error, a null string is returned but no error is generated.
Use this if you want to detect and handle a text conversion error. You can test for null using
strlen as shown in the example below.

Bit 1: If cleared (default), null bytes in sourceTextStr are considered invalid and
ConvertTextEncoding returns an error. If set, null bytes are considered valid.

Bit 2: If cleared (default) and sourceTextEncoding and destTextEncoding are the same,
ConvertTextEncoding attempts to do the conversion anyway. If sourceTextStr is invalid in the
specified text encoding, the issue is handled according to mapErrorMode. This allows you to
check the validity of text whose text encoding you think you know, by passing 1 for
mapErrorMode and 5 for options. Use strlen to test if the returned string is null, indicating that
sourceTextStr is not valid in the specified text encoding.
If set and sourceTextEncoding and destTextEncoding are the same, ConvertTextEncoding merely
returns sourceTextStr without doing any conversion.

ConvertTextEncoding

V-84

Variable teShiftJIS = TextEncodingCode("ShiftJIS")

// Convert from Windows-1252 to UTF-8
String source = "Division sign: " + num2char(0xF7)
String result = ConvertTextEncoding(source, teWindows1252, teUTF8, 1, 0)
Print result

// Convert unmappable character from UTF-8 to Windows-1252
// \u8C4A is an escape sequence representing a Japanese character in Unicode
// for which there is no corresponding character in Windows-1252

// Demonstrate mapErrorMode = 1 (fail unmappable character)
source = "Unmappable character causes failure: {\u8C4A}"
// Pass 1 for options parameter to tell Igor to ignore error and let us handle it
result = ConvertTextEncoding(source, teUTF8, teWindows1252, 1, 1)
Variable len = strlen(result) // Will be NaN if conversion failed
if (NumType(len) == 2)

Print "Conversion failed (as expected). Result is NULL."
// You could cope with this error by trying again with the mapErrorMode
// parameter set to 2, 3 or 4.

else
// We should not get here
Print "Conversion succeeded (should not happen)."
Print result

endif

// Demonstrate mapErrorMode = 2 (substitute for unmappable character)
source = "Unmappable character replaced by question mark: {\u8C4A}"
result = ConvertTextEncoding(source, teUTF8, teWindows1252, 2, 0)
Print result // Prints "?" in place of unmappable character

// Demonstrate mapErrorMode = 3 (skip unmappable character)
source = "Unmappable character skipped: {\u8C4A}"
result = ConvertTextEncoding(source, teUTF8, teWindows1252, 3, 0)
Print result // Skips unmappable character

// Demonstrate mapErrorMode = 4 (insert escape sequence for unmappable character)
source = "Unmappable character replaced by escape sequence: {\u8C4A}"
result = ConvertTextEncoding(source, teUTF8, teWindows1252, 4, 0)
Print result // Unmappable character represented as escape sequence

// Demonstrate mapErrorMode = 4 (insert escape sequence for unmappable character)
source = "Unmappable character replaced by escape sequence: {\u8C4A}"
// First convert UTF-8 to Shift_JIS (Japanese). This will succeed.
result = ConvertTextEncoding(source, teUTF8, teShiftJIS, 1, 0)
// Next convert Shift_JIS (Japanese) to Windows-1252. The character can not
// be mapped and is replaced by an escape sequence.
result = ConvertTextEncoding(result, teShiftJIS, teWindows1252, 4, 0)
Print result // Unmappable character represented as escape sequence

End

// Demo unmappable character
// In this example, the source text is valid but not representable in destination
// text encoding. Because we pass 4 for the mapErrorMode parameter, ConvertTextEncoding
// uses an escape sequenceto represent the unmappable text.
Function DemoUnmappable()

String input = "\u2135" // Alef symbol - available in UTF-8 but not in MacRoman
String output = ConvertTextEncoding(input, 1, 2, 4, 0)
Print output // Prints "\u2135"

End

// Demo invalid input text
// In this example, the source text is invalid in the source text encoding.
// Because we pass 4 for the mapErrorMode parameter, ConvertTextEncoding uses an escape

sequences
// to represent the invalid text.
Function DemoInvalidInput()

String input = "\x8E" // Represents "é" in MacRoman but is not valid in UTF-8
String output = ConvertTextEncoding(input, 1, 2, 4, 0)
Print output // Prints "\x8E"

End

See Also
Text Encodings on page III-409, Text Encoding Names and Codes on page III-434

ConvexHull

V-85

TextEncodingCode, TextEncodingName, SetWaveTextEncoding
ConvertGlobalStringTextEncoding, String Variable Text Encoding Error Example on page III-428

ConvexHull
convexHull [flags]xwave, ywave
convexHull [flags] tripletWave
The ConvexHull operation calculates the convex hull in either 2 or 3 dimensions. The dimensionality is
deduced from the input wave(s). If the input consists of two 1D waves of the same length, the number of
dimensions is assumed to be 2. If the input consists of a single triplet wave (a wave of 3 columns), then the
number of dimensions is 3.
In 2D cases the operation calculates the convex hull and produces the result in a pair of x and y waves,
W_XHull and W_YHull.
In 3D cases the operation calculates the convex hull and stores it in a triplet wave M_Hull that describes
ordered facets of the convex hull.
ConvexHull returns an error if the input waves have fewer than 3 data points.

Flags

Examples
Make/O/N=33 xxx=gnoise(5),yyy=gnoise(7)
Convexhull/c xxx,yyy
Display W_Yhull vs W_Xhull
Appendtograph yyy vs xxx
ModifyGraph mode(yyy)=3,marker(yyy)=8,rgb(W_YHull)=(0,15872,65280)

See Also
Triangulate3D

Convolve
Convolve [/A/C] srcWaveName, destWaveName [, destWaveName]…
The Convolve operation convolves srcWaveName with each destination wave, putting the result of each
convolution in the corresponding destination wave.
Convolve is not multidimensional aware. Some multidimensional convolutions are covered by the
MatrixConvolve, MatrixFilter, and MatrixOp operations

/C (2D convex hull only) adds the first point to the end of the W_XHull and W_YHull
waves so that the first and the last points are the same.

/E (3D case only) if you use this flag the operation also creates a wave that lists the
indices of the vertices which are not part of the convex hull, i.e., vertices which are
interior to the hull. The output is in the wave W_HullExcluded.

/I (3D convex hull only) use this flag to get the corresponding index of the vertex as the
fourth column in the M_Hull wave.

/S (3D convex hull only) use this flag if you want the resulting M_Hull to have NaN lines
separating each triangle.

/T=tolerance (3D case only) default tolerance for measuring if a point is inside or outside the convex
hull is 1.0x10-20. You can use any other positive value.

/V (3D case only) if you use this flag the operation also creates a wave containing the
output in a list of vertex indices. The wave M_HullVertices contains a row per triangle
where each entry on a row corresponds to the index of the input vertex.

/Z No error reporting.

Convolve

V-86

Flags

Details
Convolve performs linear convolution unless the /C or /A flag is used. See the diagrams in the examples below.
Depending on the type of convolution, the destination waves’ lengths may increase. srcWaveName is not
altered unless it also appears as a destination wave.
If srcWaveName is real-valued, each destination wave must be real-valued, and if srcWaveName is complex,
each destination wave must be complex, too. Double and single precision waves may be freely intermixed;
calculations are performed in the higher precision.
The linear convolution equation is:

where N is the number of points in the longer of destWaveIn and srcWave. For circular convolution, the index
[p -m] is wrapped around when it exceeds the range of [0,numpnts(srcWave)-1]. For acausal convolution,
when [p -m] exceeds the range a zero value is substituted for srcWave [p -m]. Similar operations are applied
to destWaveIn [m].
Another way of looking at this equation is that, for all p, destWaveOut[p] equals the sum of the point-by-
point products from 0 to p of the destination wave and an end-to-end reversed copy of the source wave that
has been shifted to the right by p.
The following diagram shows the reversed/shifted srcWave that would be combined with destWaveIn. The
points numbered 0 through 4 of the reversed srcWave would be multiplied with destWaveIn[0…4] and
summed to produce destWaveOut[4]:

For linear and acausal convolution, the destination wave is first zero-padded by one less than the length of
the source wave. This prevents the “wrap-around” effect that occurs in circular convolution. The zero-
padded points are removed after acausal convolution, and retained after linear convolution. The X scaling
of the waves is ignored.
The convolutions are performed by transforming the source and destination waves with the Fast Fourier
Transform, multiplying them in the frequency domain, and then inverse-transforming them into the
destination wave(s).
The convolution is performed in segments if the resulting wave has more than 256 points and the destination
wave has twice as many points as the source wave. For acausal convolution, the length of the resulting wave
is considered to be (numpnts(srcWaveName) +numpnts(destWaveName)-1) for this calculation.

Applications
The usual application of convolution is to compute the response of a linear system defined by its impulse
response to an input signal. srcWaveName would contain the impulse response, and the destination wave
would initially contain the input signal. After the Convolve operation has completed, the destination wave
contains the output signal.
Use linear convolution when the source wave contains an impulse response (or filter coefficients) where the
first point of srcWave corresponds to no delay (t = 0).

/A Acausal linear convolution.

/C Circular convolution.

destWaveOut[p]= destWaveIn[m] � srcWave[p � m]
m=0

N�1

�

0

76543210

0

43210-1-2-3

Original srcWave Reversed srcWave
shifted to p = 4

CopyFile

V-87

Use circular convolution for the case where the data in srcWaveName and destWaveName are considered to
endlessly repeat (or “wrap around” from the end back to the start), which means no zero padding is needed.
Use acausal convolution when the source wave contains an impulse response where the middle point of
srcWave corresponds to no delay (t = 0).

See Also
Convolution on page III-253 for illustrated examples. MatrixOp.

References
A very complete explanation of circular and linear convolution can be found in sections 2.23 and 2.24 of
Rabiner and Gold, Theory and Application of Digital Signal Processing, Prentice Hall, 1975.

CopyFile
CopyFile [flags][srcFileStr] [as destFileOrFolderStr]
The CopyFile operation copies a file on disk.

Parameters
srcFileStr can be a full path to the file to be copied (in which case /P is not needed), a partial path relative to
the folder associated with pathName, or the name of a file in the folder associated with pathName.
If Igor can not determine the location of the source file from srcFileStr and pathName, it displays a dialog
allowing you to specify the source file.
destFileOrFolderStr is interpreted as the name of (or path to) an existing folder when /D is specified,
otherwise it is interpreted as the name of (or path to) a possibly existing file.
If destFileOrFolderStr is a partial path, it is relative to the folder associated with pathName.
If /D is specified, the source file is copied inside the folder using the source file’s name.
If Igor can not determine the location of the destination file from pathName, srcFileStr, and
destFileOrFolderStr, it displays a Save File dialog allowing you to specify the destination file (and folder).
If you use a full or partial path for either srcFileStr or destFileOrFolderStr, see Path Separators on page III-401
for details on forming the path.
Folder paths should not end with single Path Separators. See the Details section for MoveFolder.

Flags

/D Interprets destFileOrFolderStr as the name of (or path to) an existing folder (or
“directory”). Without /D, destFileOrFolderStr is interpreted as the name of (or path to)
a file.
If destFileOrFolderStr is not a full path to a folder, it is relative to the folder associated
with pathName.

/I [=i]

/M=messageStr Specifies the prompt message in the Open File dialog. If /S is not used, then messageStr
will be used for both Open File and for Save File dialogs. But see Prompt Does Not
Work on Macintosh on page IV-137.

/O Overwrites any existing destination file.

Specifies the level of user interactivity.
/I=0: Interactive only if one or srcFileStr or destFileOrFolderStr is not

specified or if the source file is missing. (Same as if /I was not
specified.)

/I=1: Interactive even if srcFileStr is specified and the source file exists.
/I=2: Interactive even if destFileOrFolderStr is specified.
/I=3: Interactive even if srcFileStr is specified, the source file exists, and

destFileOrFolderStr is specified. Same as /I only.

CopyFolder

V-88

Variables
The CopyFile operation returns information in the following variables:

Examples
Copy a file within the same folder using a new name:
CopyFile/P=myPath "afile.txt" as "destFile.txt"

Copy a file into subfolder using the original name (using /P):
CopyFile/D/P=myPath "afile.txt" as ":subfolder"
Print S_Path // prints "Macintosh HD:folder:subfolder:afile.txt"

Copy file into subfolder using the original name (using full paths):
CopyFile/D "Macintosh HD:folder:afile.txt" as "Server:archive"

Copy a file from one folder to another, assigning the copy a new name:
CopyFile "Macintosh HD:folder:afile.txt" as "Server:archive:destFile.txt"

Copy user-selected file in any folder as destFile.txt in myPath folder (prompt to save even if destFile.txt
doesn’t exist):
CopyFile/I=2/P=myPath as "destFile.txt"

Copy user-selected file in any folder as destFile.txt in any folder:
CopyFile as "destFile.txt"

See Also
The Open, MoveFile, DeleteFile, and CopyFolder operations. The IndexedFile function. Symbolic Paths
on page II-21.

CopyFolder
CopyFolder [flags][srcFolderStr] [as destFolderStr]
The CopyFolder operation copies a folder (and its contents) on disk.

Parameters
srcFolderStr can be a full path to the folder to be copied (in which case /P is not needed), a partial path relative
to the folder associated with pathName, or the name of a folder inside the folder associated with pathName.
If Igor can not determine the location of the folder from srcFolderStr and pathName, it displays a dialog
allowing you to specify the source folder.

/P=pathName Specifies the folder to look in for the source file, and the folder into which the file is
copied. pathName is the name of an existing symbolic path.
Using /P means that both srcFileStr and destFileOrFolderStr must be either simple file
or folder names, or paths relative to the folder specified by pathName.

/S=saveMessageStr Specifies the prompt message in the Save File dialog.

/Z [=z]

V_flag Set to zero if the file was copied, to -1 if the user cancelled either the Open File or Save File
dialogs, and to some nonzero value if an error occurred, such as the specified file does not
exist.

S_fileName Stores the full path to the file that was copied. If an error occurred or if the user cancelled,
it is set to an empty string.

S_path Stores the full path to the file copy. If an error occurred or if the user cancelled, it is set to
an empty string.

Prevents procedure execution from aborting if it attempts to copy a file that does not
exist. Use /Z if you want to handle this case in your procedures rather than aborting
execution.
/Z=0: Same as no /Z.
/Z=1: Copies a file only if it exists. /Z alone has the same effect as /Z=1.
/Z=2: Copies a file if it exists or displays a dialog if it does not exist.

CopyFolder

V-89

If /P=pathName is given, but srcFolderStr is not, then the folder associated with pathName is copied.
destFolderStr can be a full path to the output (destination) folder (in which case /P is not needed), or a partial
path relative to the folder associated with pathName.
An error is returned if the destination folder would be inside the source folder.
If Igor can not determine the location of the destination folder from destFolderStr and pathName, it displays
a dialog allowing you to specify or create the destination folder.
If you use a full or partial path for either folder, see Path Separators on page III-401 for details on forming
the path.

Flags

Warning: The CopyFolder command can destroy data by overwriting another folder and contents!

When overwriting an existing folder on disk, CopyFolder will do so only if permission is
granted by the user. The default behavior is to display a dialog asking for permission. The user
can alter this behavior via the Miscellaneous Settings dialog’s Misc category.

If permission is denied, the folder will not be copied and V_Flag will return 1088 (Command
is disabled) or 1275 (You denied permission to overwrite a folder). Command execution will
cease unless the /Z flag is specified.

/D Interprets destFolderStr as the name of (or path to) an existing folder (or directory) to
copy the source folder into. Without /D, destFolderStr is interpreted as the name of (or
path to) the copied folder.
If destFolderStr is not a full path to a folder, it is relative to the folder associated with
pathName.

/I [=i]

/M=messageStr Specifies the prompt message in the Select (source) Folder dialog. If /S is not used, then
messageStr will be used for the Select Folder dialog and for the Create Folder dialog. But
see Prompt Does Not Work on Macintosh on page IV-137.

/O Overwrite existing destination folder, if any.
On Macintosh, a Macintosh-style overwrite-move is performed in which the source
folder completely replaces the destination folder.
On Windows, a Windows-style mix-in move is performed in which the contents of the
source folder are moved into the destination folder, replacing any same-named files
but leaving other files in place.

/P=pathName Specifies the folder to look in for the source folder. pathName is the name of an existing
symbolic path.
If srcFolderStr is not specified, the folder associated with pathName is copied.
Using /P means that srcFolderStr (if specified) and destFolderStr must be either simple
folder names or paths relative to the folder specified by pathName.

/S=saveMessageStr Specifies the prompt message in the Create Folder dialog.

Specifies the level of user interactivity.
/I=0: Interactive only if the source or destination folder is not specified or

if the source folder is missing. (Same as if /I was not specified.)
/I=1: Interactive even if the source folder is specified and it exists.
/I=2: Interactive even if destFolderStr is specified.
/I=3: Interactive even if the source folder is specified, the source folder

exists, and destFolderStr is specified. Same as /I only.

CopyScales

V-90

Variables
The CopyFolder operation returns information in the following variables:

Details
You can use only /P=pathName (without srcFolderStr) to specify the source folder to be copied.
Folder paths should not end with single Path Separators. See the Details section for MoveFolder.

Examples
Copy the folder that the current experiment is stored in:
CopyFile/P=home as "HD:Copy Of Folder Experiment Is In"

Copy the Igor Extensions Folder to the Windows desktop:
CopyFile/D/P=Igor ":Igor Extensions" as "C:WINDOWS:Desktop"

Ask the user to select a folder, starting with the Igor folder, and then make a copy of that folder in the
Igor Pro 7 folder:
CopyFile/I=2/P=Igor as "::Folder Copy"

Copy an entire disk inside a folder:
CopyFolder/O/D "Floppy" as "HD:Desktop Folder:Copy Into Here"

See Also
Open, MoveFile, DeleteFile, MoveFolder, NewPath, and IndexedDir operations, and Symbolic Paths on
page II-21.

CopyScales
CopyScales [/I/P] srcWaveName, waveName [, waveName]…
The CopyScales operation copies the x, y, z, and t scaling, x, y, z, and t units, the data Full Scale and data
units from srcWaveName to the other waves.

Flags

Details
Normally the x, y, z, and t (dimension) scaling is copied in min/max format. However, if you use /P, the
dimension scaling is copied in slope/intercept format so that if srcWaveName and the other waves have
differing dimension size (number of points if the wave is a 1D wave), then their dimension values will still
match for the points they have in common. Similarly, /I uses the inclusive variant of the min/max format.
See SetScale for a discussion of these dimension scaling formats.
If a wave has only one point, /I mode reverts to /P mode.

/Z [=z]

V_flag Set to zero if the folder was copied, to -1 if the user cancelled either the Select Folder or
Create Folder dialogs, and to some nonzero value if an error occurred, such as the
specified file does not exist.

S_fileName Stores the full path to the folder that was copied, with a trailing colon. If an error occurred
or if the user cancelled, it is set to an empty string.

S_path Stores the full path to the folder copy, with a trailing colon. If an error occurred or if the
user cancelled, it is set to an empty string.

/I Copies the x, y, z, and t scaling in inclusive format.

/P Copies the x, y, z, and t scaling in slope/intercept format (x0, dx format).

Prevents procedure execution from aborting if it attempts to copy a file that does
not exist. Use /Z if you want to handle this case in your procedures rather than
aborting execution.
/Z=0: Same as no /Z.
/Z=1: Copies a folder only if it exists. /Z alone has the same effect as /Z=1.
/Z=2: Copies a folder if it exists or displays a dialog if it does not exist.

Correlate

V-91

CopyScales copies scales only for those dimensions that srcWaveName and waveName have in common.

See Also
x, y, z, and t scaling functions.

Correlate
Correlate [/AUTO/C/NODC] srcWaveName, destWaveName [, destWaveName]…
The Correlate operation correlates srcWaveName with each destination wave, putting the result of each
correlation in the corresponding destination wave.

Flags

Details
Note: To compute a single-value correlation number use the StatsCorrelation function which returns

the Pearson's correlation coefficient of two same-length waves.
Correlate performs linear correlation unless the /C flag is used.
Depending on the type of correlation, the length of the destination may increase. srcWaveName is not altered
unless it also appears as a destination wave.
If the source wave is real-valued, each destination wave must be real-valued and if the source wave is
complex, each destination wave must be complex, too. Double and single precision waves may be freely
intermixed; calculations are performed in the higher precision.
The linear correlation equation is:

where N is the number of points in the longer of destWaveIn and srcWave.
For circular correlation, the index [p +m] is wrapped around when it exceeds the range of
[0,numpnts(destWaveIn)-1]. For linear correlation, when [p +m] exceeds the range a zero value is
substituted for destWaveIn[p +m]. When m exceeds numpnts(srcWave)-1, 0 is used instead of srcWave[m].
Comparing this with the Convolve operation, which is the linear convolution:

you can see that the only difference is that for correlation the source wave is not reversed before shifting and
combining with the destination wave.
The Correlate operation is not multidimensional aware. For details, see Analysis on Multidimensional
Waves on page II-86 and in particular Analysis on Multidimensional Waves on page II-86.

/AUTO Auto-correlation scaling. This forces the X scaling of the destination wave's center point to be
x=0, and divides the destination wave by the center point's value so that the center value is
exactly 1.0.

If srcWaveName and destWaveName do not have the same number of points, this flag is
ignored.

/AUTO is not compatible with /C.

/C Circular correlation. (See Compatibility Note.)

/NODC Removes the mean from the source and destination waves before computing the correlations.
Removing the mean results in the un-normalized auto- or cross-covariance.
"DC" is an abbrevation of "direct current", an electronics term for the non-varying average
value component of a signal.

destWaveOut[p] = srcWave[m] �destWaveIn[p + m]
m=0

N�1

�

destWaveOut[p] = destWaveIn[m] � srcWave[p � m]
m=0

N�1

�

cos

V-92

Compatibility Note
Prior to Igor Pro 5, Correlate/C scaled and rotated the results improperly (the result was often rotated left
by one and the X scaling was entirely negative).
Now the destination wave’s X scaling is unaltered and it does not rotate the result. You can force the old
behavior for compatibility with old procedures that depend on the old behavior by setting
root:V_oldCorrelationScaling=1.
A better way to get identical Correlate/C results with all versions of Igor Pro is to use this code, which
rotates the result so that x=0 is always the first point in destWave, no matter which Igor Pro version runs this
code (currently, it doesn’t change anything and runs extremely quickly because it does no rotation):
Correlate/C srcWave, destWave
Variable pointAtXEqualZero= x2pnt(destWave,0) // 0 for Igor Pro 5
Rotate -pointAtXEqualZero,destWave
SetScale/P x, 0, DimDelta(destWave,0), "", destWave

Applications
A common application of correlation is to measure the similarity of two input signals as they are shifted by
one another.
Often it is desirable to normalize the correlation result to 1.0 at the maximum value where the two inputs
are most similar. To normalize destWaveOut, compute the RMS values of the input waves and the number
of points in each wave:
WaveStats/Q srcWave
Variable srcRMS = V_rms
Variable srcLen = numpnts(srcWave)

WaveStats/Q destWave
Variable destRMS = V_rms
Variable destLen = numpnts(destWave)

Correlate srcWave, destWave // overwrites destWave

// now normalize to max of 1.0
destWave /= (srcRMS * sqrt(srcLen) * destRMS * sqrt(destLen))

Another common application is using autocorrelation (where srcWaveName and destWaveName are the
same) to determine Power Spectral Density. In this case it better to use the DSPPeriodogram operation
which provides more options.

See Also
Convolution on page III-253 and Correlation on page III-255 for illustrated examples. See the Convolve
operation for algorithm implementation details, which are identical except for the lack of source wave
reversal, and the lack of the /A (acausal) flag.
The MatrixOp, StatsCorrelation, StatsCircularCorrelationTest, StatsLinearCorrelationTest, and
DSPPeriodogram operations.

References
An explanation of autocorrelation and Power Spectral Density (PSD) can be found in Chapter 12 of Press,
William H., et al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New York, 1992.
WaveMetrics provides Igor Technical Note 006, “DSP Support Macros” that computes the PSD with options
such as windowing and segmenting. See the Technical Notes folder. Some of the techniques discussed there
are available as Igor procedure files in the “WaveMetrics Procedures:Analysis:” folder.
Wikipedia: http://en.wikipedia.org/wiki/Correlation
Wikipedia: http://en.wikipedia.org/wiki/Cross_covariance
Wikipedia: http://en.wikipedia.org/wiki/Autocorrelation_function

cos
cos(angle)
The cos function returns the cosine of angle which is in radians.
In complex expressions, angle is complex, and cos(angle) returns a complex value:

http://en.wikipedia.org/wiki/Correlation
http://en.wikipedia.org/wiki/Cross_covariance
http://en.wikipedia.org/wiki/Autocorrelation_function

cosh

V-93

See Also
acos, sin, tan, sec, csc, cot

cosh
cosh(num)
The cosh function returns the hyperbolic cosine of num:

In complex expressions, num is complex, and cosh(num) returns a complex value.

See Also
sinh, tanh, coth

CosIntegral
CosIntegral(z)
The CosIntegral(z) function returns the cosine integral of z.
If z is real, a real value is returned. If z is complex then a complex value is returned.
The CosIntegral function was added in Igor Pro 7.00.

Details
The cosine integral is defined by

where γ is the Euler-Mascheroni constant 0.5772156649015328606065.
IGOR computes the CosIntegral using the expression:

References
Abramowitz, M., and I.A. Stegun, "Handbook of Mathematical Functions", Dover, New York, 1972. Chapter
5.

See Also
SinIntegral, ExpIntegralE1, hyperGPFQ

cot
cot(angle)
The cot function returns the cotangent of angle which is in radians.
In complex expressions, angle is complex, and cot(angle) returns a complex value.

See Also
sin, cos, tan, sec, csc

cos(x + iy) = cos(x)cosh(y)� isin(x)sinh(y).

cosh(x) = ex + e� x

2
.

Ci(z) = γ + ln(z) +
cos(t) −1

t
dt,

0

z

∫ �������������� arg(z) < π()

Ci(z) = −
Z 2

4 2F3 1,1;2,2,
3

2
;−
z2

4

⎛
⎝⎜

⎞
⎠⎟
+ ln(z) + γ ,

coth

V-94

coth
coth(num)
The coth function returns the hyperbolic cotangent of num:

 In complex expressions, num is complex, and coth(num) returns a complex value.

See Also
sinh, cosh, tanh

CountObjects
CountObjects(sourceFolderStr, objectType)
The CountObjects function returns the number of objects of the specified type in the data folder specified
by the string expression.
CountObjectsDFR is preferred.

Parameters
sourceFolderStr can be either ":" or "" to specify the current data folder. You can also use a full or partial
data folder path. objectType should be one of the following values:

See Also
Chapter II-8, Data Folders, and the GetIndexedObjName function.

CountObjectsDFR
CountObjectsDFR(dfr,objectType)
The CountObjectsDFR function returns the number of objects of the specified type in the data folder
specified by the data folder reference dfr.
CountObjectsDFR is the same as CountObjects except the first parameter, dfr, is a data folder reference
instead of a string containing a path.

Parameters
objectType is one of the following values:

See Also
Chapter II-8, Data Folders and Data Folder References on page IV-72.
GetIndexedObjNameDFR

1 Waves

2 Numeric variables

3 String variables

4 Data folders

1 Waves

2 Numeric variables

3 String variables

4 Data folders

coth(x) = ex + e� x

ex � e� x .

cpowi

V-95

cpowi
cpowi(num, ipow)
This function is obsolete as the exponentiation operator ^ handles complex expressions with any
combination of real, integer and complex arguments. See Operators on page IV-5. The cpowi function
returns a complex number resulting from raising complex num to integer-valued power ipow. ipow can be
positive or negative, but if it is not an integer cpowi returns (NaN, NaN).

CreateAliasShortcut
CreateAliasShortcut [flags][targetFileDirStr] [as aliasFileStr]
The CreateAliasShortcut operation creates an alias (Macintosh) or shortcut (Windows) file on disk. The alias
can point to either a file or a folder. The file or folder pointed to is called the “target” of the alias or shortcut.

Parameters
targetFileDirStr can be a full path to the file or folder to make an alias or shortcut for, a partial path relative to
the folder associated with /P=pathName, or the name of a file or folder in the folder associated with pathName.
If Igor can not determine the location of the file or folder from targetFileDirStr and pathName, it displays a
dialog allowing you to specify a target file. Use /D to select a folder as the alias target, instead.
aliasFileStr can be a full path to the created alias file, a partial path relative to the folder associated with
pathName if specified, or the name of a file in the folder associated with pathName.
If Igor can not determine the location of the alias or shortcut file from aliasFileStr and pathName, it displays
a File Save dialog allowing you to create the file.
If you use a full or partial path for either targetFileDirStr or aliasFileStr, see Path Separators on page III-401
for details on forming the path.
Folder paths should not end with single path separators. See the MoveFolder Details section.

Flags

/D Uses the Select Folder dialog rather than Open File dialog when targetFileDirStr is not
fully specified.

/I [=i]

/M=messageStr Specifies the prompt message in the Open File or Select Folder dialog. If /S is not specified,
then messageStr will be used for Open File (or Select Folder) and for Save File dialogs. But
see Prompt Does Not Work on Macintosh on page IV-137.

/O Overwrites any existing file with the alias or shortcut file.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/S=saveMessageStr Specifies the prompt message in the Save File dialog when creating the alias or shortcut
file.

Specifies the level of user interactivity.
/I=0: Interactive only if one or targetFileDirStr or aliasFileStr is not specified

or if the target file is missing. (Same as if /I was not specified.)
/I=1: Interactive even if targetFileDirStr is fully specified and the target file

exists.
/I=2: Interactive even if targetFileDirStr is specified.
/I=3: Interactive even if targetFileDirStr is specified and the target file

exists. Same as /I only.

CreateBrowser

V-96

Variables
The CreateAliasShortcut operation returns information in the following variables:

Examples
Create a shortcut (Windows) to the current experiment, on the desktop:
String target= Igorinfo(1)+".pxp" // experiments are usually .pxp on Windows
CreateAliasShortcut/O/P=home target as "C:WINDOWS:Desktop:"+target

Create an alias (Macintosh) to the VDT XOP in the Igor Extensions folder:
String target= ":More Extensions:Data Acquisition:VDT"
CreateAliasShortcut/O/P=Igor target as ":Igor Extensions:VDT alias"

Create an alias to the “HD 2” disk. Put the alias on the desktop:
CreateAliasShortcut/D/O "HD 2" as "HD:Desktop Folder:Alias to HD 2"

See Also
Symbolic Paths on page II-21.
The Open, MoveFile, DeleteFile, and GetFileFolderInfo operations. The IgorInfo and ParseFilePath
functions.

CreateBrowser
CreateBrowser [/M] [keyword = value [, keyword = value …]]
The CreateBrowser operation creates a data browser window.
Documentation for the CreateBrowser operation is available in the Igor online help files only. In Igor,
execute:
DisplayHelpTopic "CreateBrowser"

CreationDate
CreationDate(waveName)
Returns creation date of wave as an Igor date/time value, which is the number of seconds from 1/1/1904.
The returned value is valid for waves created with Igor Pro 3.0 or later. For waves created in earlier
versions, it returns 0.

See Also
ModDate.

/Z[=z]

V_flag

S_fileName Full path to the target file or folder. If an error occurred or if the user cancelled, it is an
empty string.

S_path Full path to the created alias or shortcut file. If an error occurred or if the user cancelled,
it is an empty string.

Prevents procedure execution from aborting the procedure tries to create an alias or
shortuct for a file or folder that does not exist. Use /Z if you want to handle this case
in your procedures rather than aborting execution.
/Z=0: Same as no /Z.
/Z=1: Creates an alias to a file or folder only if it exists. /Z alone has the same

effect as /Z=1.
/Z=2: Creates an alias to a file or folder only if it exists and displays a dialog

if it does not exist.

Status output:
0 Created an alias or shortcut file.
1 User cancelled any of the Open File, Select Folder, or Save File dialogs.
Other: An error occurred, such as the target file does not exist.

Cross

V-97

Cross
Cross [/DEST=destWave /FREE /T /Z] vectorA, vectorB [, vectorC]
The Cross operation computes the cross products vectorA x vectorB and vectorA x (vectorB x vectorC). Each
vector is a 1D real wave containing 3 rows. Stores the result in the wave W_Cross in the current data folder.

Flags

csc
csc(angle)
The csc function returns the cosecant of angle which is in radians.

In complex expressions, angle is complex, and csc(angle) returns a complex value.

See Also
sin, cos, tan, sec, cot

csch
csch(x)
The csch function returns the hyperbolic cosecant of x.

In complex expressions, x is complex, and csch(x) returns a complex value.

See Also
cosh, tanh, coth, sech

/DEST=destWave Stores the cross product in the wave specified by destWave.
The destination wave is overwritten if it exists.
The destination wave must be different from the input waves.
The operation creates a wave reference for the destination wave if called in a user-
defined function. See Automatic Creation of WAVE References on page IV-66
for details.
If you omit /DEST, the operation stores the result in the wave W_Cross in the
current data folder.
Requires Igor7 or later.

/FREE When used with /DEST, the destination wave is created as a free wave. See Free
Waves on page IV-84 for details on free waves.
/FREE is allowed in user-defined functions only.
Requires Igor7 or later.

/T Stores output in a row instead of a column in W_Cross.

/Z Generates no errors for any unsuitable inputs.

csc(x) = 1

sin(x)
.

csch(x) = 1

sinh(x)
= 2

ex − e− x .

CsrInfo

V-98

CsrInfo
CsrInfo(cursorName [, graphNameStr])
The CsrInfo function returns a keyword-value pair list of information about the specified cursor
(cursorName is A through J) in the top graph or graph specified by graphNameStr. It returns "" if the cursor
is not in the graph.

Details
The returned string contains information about the cursor in the following format:
TNAME:traceName; ISFREE:freeNum;POINT:xPointNumber;[YPOINT:yPointNumber;]

RECREATION:command;

The traceName value is the name of the graph trace or image to which it is attached or which supplies the x
(and y) values even if the cursor isn’t attached to it.
If TNAME is empty, fields POINT, ISFREE, and YPOINT are not present.
The freeNum value is 1 if the cursor is not attached to anything, 0 if attached to a trace or image.
The POINT value is the same value pcsr returns.
The YPOINT keyword and value are present only when the cursor is attached to a two-dimensional item such
as an image, contour, or waterfall plot or when the cursor is free. Its value is the same as returned by qcsr.
If cursor is free, POINT and YPOINT values are fractional relative positions (see description in the Cursor
command).
The RECREATION keyword contains the Cursor commands (including /W) necessary to regenerate the
current settings.

Examples
Variable aExists= strlen(CsrInfo(A)) > 0 // A is a name, not a string
Variable bIsFree= NumberByKey("ISFREE",CsrInfo(B,"Graph0"))

See Also
Programming With Cursors on page II-249.
Cursors — Moving Cursor Calls Function on page IV-316.
Trace Names on page II-216, Programming With Trace Names on page IV-81.

CsrWave
CsrWave(cursorName [, graphNameStr [, wantTraceName]])
The CsrWave function returns a string containing the name of the wave the specified cursor (A through J)
is on in the top (or named) graph. If the optional wantTraceName is nonzero, the trace name is returned. A
trace name is the wave name with optional instance notation (see ModifyGraph (traces)).

Details
The name of a wave by itself is not sufficient to identify the wave because it does not specify what data
folder contains the wave. Thus, if you are calling CsrWave for the purpose of passing the wave name to
other procedures, you should use the CsrWaveRef function instead. Use CsrWave if you want the name of
the wave to use in an annotation or a notebook.

Examples
String waveCursorAIsOn = CsrWave(A) // not CsrWave("A")
String waveCursorBIsOn = CsrWave(B,"Graph0") // in specified graph
String traceCursorBIsOn = CsrWave(B,"",1) // trace name in top graph

See Also
Programming With Cursors on page II-249.
Trace Names on page II-216, Programming With Trace Names on page IV-81.

CsrWaveRef

V-99

CsrWaveRef
CsrWaveRef(cursorName [, graphNameStr])
The CsrWaveRef function returns a wave reference to the wave the specified cursor (A through J) is on in
the top (or named) graph.

Details
The wave reference can be used anywhere Igor is expecting the name of a wave (not a string containing the
name of a wave).
CsrWaveRef should be used in place of the CsrWave() string function to work properly with data folders.

Examples
Print CsrWaveRef(A)[50] // not CsrWaveRef("A")
Print CsrWaveRef(B,"Graph0")[50] // in specified graph

See Also
Programming With Cursors on page II-249.
Wave Reference Functions on page IV-186.

CsrXWave
CsrXWave(cursorName [, graphNameStr])
The CsrXWave function returns a string containing the name of the wave supplying the X coordinates for
an XY plot of the Y wave the specified cursor (A through J) is attached to in the top (or named) graph.

Details
CsrXWave returns an empty string ("") if the wave the cursor is on is not plotted versus another wave
providing the X coordinates (that is, if the wave was not plotted with a command such as Display
theWave vs anotherWave).
The name of a wave by itself is not sufficient to identify the wave because it does not specify what data
folder contains the wave. Thus, if you are calling CsrXWave for the purpose of passing the wave name to
other Igor procedures, you should use the CsrXWaveRef function instead. Use CsrXWave if you want the
name of the wave to use in an annotation or a notebook.

Examples
Display ywave vs xwave

ywave supplies the Y coordinates and xwave supplies the X coordinates for this XY plot.
Cursor A ywave,0
Print CsrXWave(A) // prints xwave

See Also
Programming With Cursors on page II-249.

CsrXWaveRef
CsrXWaveRef(cursorName [, graphNameStr])
The CsrXWaveRef function returns a wave reference to the wave supplying the X coordinates for an XY plot
of the Y wave the specified cursor (A through J) is attached to in the top (or named) graph.

Details
The wave reference can be used anywhere Igor is expecting the name of a wave (not a string containing the
name of a wave).
CsrXWaveRef returns a null reference (see WaveExists) if the wave the cursor is on is not plotted versus
another wave providing the X coordinates (that is, if the wave was not plotted with a command such as
Display theWave vs anotherWave). CsrXWaveRef should be used in place of the CsrXWave string
function to work properly with data folders.

Examples
Display ywave vs xwave

ywave supplies the Y coordinates and xwave supplies the X coordinates for this XY plot.

CTabList

V-100

Cursor A ywave,0
Print CsrXWaveRef(A)[50] // prints value of xwave at point #50

See Also
Programming With Cursors on page II-249.
Wave Reference Functions on page IV-186.

CTabList
CTabList()
The CTabList string function returns a semicolon-separated list of the names of built-in color tables. This
can be useful when creating pop-up menus in control panels.

Color tables available through version 4:

Additional color tables added for version 5:

Additional color tables added for version 6:

Additional color tables added for version 6.2:

See Also
See Image Color Tables on page II-305 and ColorTab2Wave.

CtrlBackground
CtrlBackground [key [= value]]…
The CtrlBackground operation controls the unnamed background task.
CtrlBackground works only with the unnamed background task. New code should used named background
tasks instead. See Background Tasks on page IV-298 for details.

Parameters

Grays Rainbow YellowHot BlueHot BlueRedGreen
RedWhiteBlue PlanetEarth Terrain

Grays256 Rainbow256 YellowHot256 BlueHot256 BlueRedGreen256
RedWhiteBlue256 PlanetEarth256 Terrain256 Grays16 Rainbow16
Red Green Blue Cyan Magenta
Yellow Copper Gold CyanMagenta RedWhiteGreen
BlueBlackRed Geo Geo32 LandAndSea LandAndSea8
Relief Relief19 PastelsMap PastelsMap20 Bathymetry9
BlackBody Spectrum SpectrumBlack Cycles Fiddle
Pastels

RainbowCycle Rainbow4Cycles GreenMagenta16 dBZ14 dBZ21
Web216 BlueGreenOrange BrownViolet ColdWarm Mocha
VioletOrangeYellow SeaLandAndFire

Mud Classification

dialogsOK=1 or 0 If 1, your task will be allowed to run while an Igor dialog is present. This can
potentially cause crashes unless your task is well-behaved.

noBurst=1 or 0 Normally (or noBurst=0), your task will be called at maximum rate if a delay causes
normal run times to be missed. Using noBurst=1, will suppress this burst catch up
mode.

period=deltaTicks Sets the minimum number of ticks that must pass between invocations of the
background task.

CtrlNamedBackground

V-101

See Also
The BackgroundInfo, SetBackground, CtrlNamedBackground, KillBackground, and SetProcessSleep
operations, and Background Tasks on page IV-298.

CtrlNamedBackground
CtrlNamedBackground taskName, keyword = value [, keyword = value …]
The CtrlNamedBackground operation creates and controls named background tasks.
We recommend that you see Background Tasks on page IV-298 for an orientation before working with
background tasks.
Important: Unlike the unnamed background task, by default named tasks run when a dialog window is
active. This can cause a crash if the background task does things the dialog does not expect. See
Background Tasks and Dialogs on page IV-300 for details.

Parameters

Details
The user function you specify via the proc keyword must have the following format:
Function myFunc(s)

STRUCT WMBackgroundStruct &s
…

The members of the WMBackgroundStruct are:

start[=startTicks] Starts the background task (designated by SetBackground) when the tick count
reaches startTicks. If you omit startTicks the task starts immediately.

stop Stops the background task.

taskName taskName is the name of the background task or _all_ to control all named background
tasks. You can use any valid standard Igor object name as the background task name.

burst [= b] Enable burst catch up mode (off by default, b=0). When on (b=1), the task is called at
the maximum rate if a delay misses normal run times.

dialogsOK [= d] Use dialogsOK=0 to prevent the background task from running when a dialog
window is active. By default, dialogsOK=1 is in effect. See Background Tasks and
Dialogs on page IV-300 for details.

kill [= k] Stops and releases task memory for reuse (k=1; default) or continues (k=0).

period=deltaTicks Sets the minimum number of ticks (deltaTicks) that must pass between background
task invocations. deltaTicks is truncated to an integer and clipped to a value greater
than zero. See Background Task Period on page IV-299 for details.

proc=funcName Specifies name of a background user function (see Details).

start [=startTicks] Starts when the tick count reaches startTicks. A task starts immediately without
startTicks.

status Returns background task information in the S_info string variable.

stop [= s] Stops the background task (s=1; default) or continues (s=0).

Base WMBackgroundStruct Structure Members

Member Description

char name[MAX_OBJ_NAME+1] Background task name.

uint32 curRunTicks Tick count when task was called.

int32 started TRUE when CtrlNamedBackground start is issued. You may clear
or set to desired value.

uint32 nextRunTicks Precomputed value for next run but user functions may change this.

CtrlFIFO

V-102

You may also specify a user function that takes a user-defined STRUCT as long as the first elements of the
structure match the WMBackgroundStruct or, preferably, if the first element is an instance of
WMBackgroundStruct. Use the started field to determine when to initialize the additional fields. Your
structure may not include any String, WAVE, NVAR, DFREF or other fields that reference memory that is
not part of the structure itself.
If you specify a user-defined structure that matches the first fields rather than containing an instance of
WMBackgroundStruct, then your function will fail if, in the future, the size of the built-in structure
changes. The value of MAX_OBJ_NAME is 31 but this may also change.
Your function should return zero unless it wants to stop in which case it should return 1.
You can call CtrlNamedBackground within your background function. You can even switch to a different
function if desired.
Use the status keyword to obtain background task information via the S_info variable, which has the format:
NAME:name;PROC:fname;RUN:r;PERIOD:p;NEXT:n;QUIT:q;FUNCERR:e;

When parsing S_info, do not rely on the number of key-value pairs or their order. RUN, QUIT, and FUNCERR
values are 1 or 0, NEXT is the tick count for the next firing of the task. QUIT is set to 1 when your function
returns a nonzero value and FUNCERR is set to 1 if your function could not be used for some reason.

See Also
See Background Tasks on page IV-298 for examples.

Demos
Choose File→Example Experiments→Programming→ Background Task Demo.

CtrlFIFO
CtrlFIFO FIFOName [, key = value]…
The CtrlFIFO operation controls various aspects of the named FIFO.

Parameters

close Closes the FIFO’s output or review file (if any).

deltaT=dt Documents the data acquisition rate.

doffset=dataOffset Used only with rdfile. Offset to data. If not provided offset is zero.

dsize=dataSize Used only with rdfile. Size of data in bytes. If not provided, then data size is
assumed to be the remainder of file. If this assumption is not valid then
unexpected results may be observed.

flush New data in FIFO is flushed to disk immediately.

file=oRefNum File reference number for the FIFO’s output file. You obtain this reference number
from the Open operation used to create the file.

note=noteStr Stores the note string in the file header. It is limited to 255 bytes.

rdfile=rRefNum Like rfile but for review of raw data (use Open/R command). Channel data must
match raw data in file. Offset from start of file to start of data can be provided
using doffset given in same command. If data does not extend all the way to the
end of the file, then the number of bytes of data can be provided using dsize in
the same command.

rfile=rRefNum File reference number for the FIFO’s review file. Use a review file when you are
using a FIFO to review existing data. Obtain the reference number from the
Open/R operation used to open the file. File may be either unified header/data or
a split format where the header contains the name of a file containing the raw
data.

size=s Sets number of chunks in the FIFO. The default is 10000. A chunk of data consists
of a single data point from each of the FIFO’s channels.

Cursor

V-103

Details
Once start has been issued, the FIFO can accept no further commands except stop.
The FIFO must be in the valid state for you to access its data (using a chart control or using the FIFO2Wave
operation). When you create a FIFO, using NewFIFO, it is initially invalid. It becomes valid when you issue the
start command via the CtrlFIFO operation. It remains valid until you change a FIFO parameter using CtrlFIFO.
FIFOs are used for data acquisition.

See Also
The NewFIFO and FIFO2Wave operations, and FIFOs and Charts on page IV-291.

Cursor
Cursor [flags] cursorName traceName x_value
Cursor /F[flags] cursorName traceName x_value, y_value
Cursor /K[/W=graphName] cursorName
Cursor /I[/F][flags] cursorName imageName x_value, y_value
Cursor /M[flags] cursorName
The Cursor operation moves the cursor specified by cursorName onto the named trace at the point whose X
value is x_value. or the coordinates of an image pixel or free cursor position at x_value and y_value.

Parameters
cursorName is one of ten cursors A through J.

Flags

start Starts the FIFO running by setting the time/date in the FIFO header, writing the
header to the output file and marking the FIFO active.

stop Stops the FIFO by flushing data to disk and marking the FIFO as inactive.

swap Used only with rdfile. Indicates that the raw data file requires byte-swapping
when it is read. This would be the case if you are running on a Macintosh, reading
a binary file from a PC, or vice versa.

/A=a Activates (a=1) or deactivates (a=0) the cursor. Active cursors move with arrow keys
or the cursor panel.

/C=(r,g,b[,a]) Sets the cursor color (default is black). r, g, and b specify the amount of red, green, and
blue in the color of the waves as an integer from 0 to 65535.
In Igor Pro 7.00 or later, optionally provide a to set transparency, with 0 being fully
transparent (invisible) and 65535 being fully opaque (default).

/F Cursor roams free. The trace or image provides the axis pair that defines x and y
coordinates for the setting and readout. Use /P to set in relative coordinates, where 0,0 is
the top left corner of the rectangle defined by the axes and 1,1 is the right bottom corner.

/H=h

/I Places cursor on specified image.

/K Removes the named cursor from the top graph.

/L=lStyle

Specifies crosshairs on cursors.
h =0: Full crosshairs off.
h =1: Full crosshairs on.
h =2: Vertical hairline.
h =3: Horizontal hairline.

Line style for crosshairs (full or small).
lStyle=0: Solid lines.
lStyle=1: Alternating color dash.

Cursor

V-104

Details
Usually traceName is the same as the name of the wave displayed by that trace, but it could be a name in
instance notation. See ModifyGraph (traces) and Instance Notation on page IV-19 for discussions of trace
names and instance notation.
A string containing traceName can be used with the $ operator to specify the trace name.
x_value is an X value in terms of the X scaling of the wave displayed by traceName. If traceName is graphed
as an XY pair, then x_value is not the same as the X axis coordinate. Since the X scaling is ignored when
displaying an XY pair in a graph, we recommend you use the /P flag and use a point number for x_value.
cursorName is a name, not a string.
To get a cursor readout, choose ShowInfo from the Graph menu.

/M Modifies properties without having to specify trace or image coordinates. Does not
work with the /F or /I flags.

/N=noKill

/NUML=n Used in conjunction with /H when h is non-zero. Sets the number of crosshair lines to
draw. n must be between 1 and 3. When n is greater than 1, the line separation is set
by the /T=t flag. If n = 2 or 3 and t is less than 3, the line appears as if n is 1. If n = 3 and
t is less than 5, the appearance reverts to n = 2. Lines are symmetrically disposed
around the cursor position. When n = 3, t sets the separation of the outer pair of lines.
/NUML was added in Igor Pro 7.00.

/P Interpret xNum as a point number rather than an X value.

/S=s

/T=t Sets the thickness of crosshair lines for /H when h is non-zero. If /NUML sets the
number of lines greater than 1 then /T sets the separation of the outer pair of lines.
t is the line thickness or separation distance in units of pixels. The default is /T=1.
The form /T={mode, t1, t2} provides finer control.
/T was added in Igor Pro 7.00.

/T={mode,t1,t2} Sets the thickness of crosshair lines for /H when h is non-zero. If /NUML sets the
number of lines greater than 1 then /T sets the separation of the outer pair of lines.
If mode=1 then t1 and t2 are in units of screen pixels. t1 is the vertical line thickness or
separation distance and t2 is the horizontal line thickness or separation distance.
The default crosshair appearance is equivalent to /T={1,1,1}.
If mode=0 then t1 and t2 are in units of axis coordinates and consequently track
changes in axis range and graph size. Normally t1 is the vertical line thickness or
separation distance and t2 is the horizontal line thickness or separation distance but
they are swapped if the trace or graph is in swap XY mode.
/T was added in Igor Pro 7.00.

/W=graphName Specifies a particular named graph window or subwindow. When omitted, action
will affect the active window or subwindow.
When identifying a subwindow with graphName, see Subwindow Syntax on page
III-87 for details on forming the window hierarchy.

Determines if the cursor is removed ("killed") if the user drags it outside of the
plot area:
noKill=0: Remove the cursor (default).
noKill=1: Do not remove the cursor.

Sets cursor style.
s=0: Original square or circle.
s=1: Small crosshair with letter.
s=2: Small crosshair without letter.

CursorStyle

V-105

Moving a cursor in a macro or function does not immediately erase the old cursor. DoUpdate has to be
explicitly called.

Examples
Display myWave // X coordinates from X scaling of myWave
Cursor A, myWave, leftx(myWave) //cursor A on first point of myWave

AppendToGraph yWave vs xWave //X coordinates from xWave, not X scaling
Cursor/P B,yWave,numpnts(yWave)-1 //cursor B on last point of yWave
DoUpdate // erase any old A or B cursors

See Also
Programming With Cursors on page II-249 and the DoUpdate operation.

CursorStyle
CursorStyle
CursorStyle is a procedure subtype keyword that puts the name of the procedure in the “Style function”
submenu of the Cursor Info pop-up menu. It is automatically used when Igor creates a cursor style function.
To create a cursor style function, choose “Save style function” in the “Style function” submenu of the Cursor
Info pop-up menu.
See also Programming With Cursors on page II-249.

CurveFit
CurveFit [flags] fitType, [kwCWave=coefWaveName,] waveName [flag parameters]
The CurveFit operation fits one of several built-in functions to your data (for user-defined fits, see the
FuncFit operation). When with CurveFit and built-in fit functions, automatic initial guesses will provide a
good starting point in most cases.
The results of the fit are returned in a wave, by default W_coef. In addition, the results are put into the
system variables K0, K1 … Kn but the use of the system variables is limited and considered obsolete
You can specify your own wave for the coefficient wave instead of W_coef using the kwCWave keyword.
Virtually all waves specified to the CurveFit operation can be a sub-range of a larger wave using the same
sub-range syntax as the Display operation uses for graphing. See Wave Subrange Details on page V-112.
See Chapter III-8, Curve Fitting for detailed information including the use of the Curve Fit dialog.
CurveFit operation parameters are grouped in the following categories: flags, fit type, parameters
(kwCWave=coefWaveName and waveName), and flag parameters. The sections below correspond to these
categories. Note that flags must precede the fit type and flag parameters must follow waveName.

Flags

/B=pointsPerCycle Used when type is sin; pointsPerCycle is the estimated number of data points per sine
wave cycle. This helps provide initial guesses for the fit. You may need to try a few
different values on either side of your estimated points/cycle.

/C Makes constraint matrix and vector. This only applies if you use the /C=constraintSpec
parameter to specify constraints (see below). Creates the M_FitConstraint matrix and
the W_FitConstraint vector. For more information, see Fitting with Constraints on
page III-198.

/G Use values in variables K0, K1 … Kn as starting guesses for a fit. If you specify a
coefficient wave with the kwCWave keyword, the starting guesses will be read from
the coefficient wave.

/H="hhh…" Specifies coefficients to hold constant.
h is 1 for coefficients to hold, 0 for coefficients vary.
For example, /H="100" holds K0 constant, varies K1 and K2.

CurveFit

V-106

/K={constants} Sets values of constants (not fit coefficients) in certain fitting functions. For instance, the
exp_XOffset function contains an X offset constant. Built-in functions will set the constant
automatically, but the automatic value can be overridden using this flag.
constants is a list of constant values, e.g., /K={1,2,3}. The length of the list must match
the number of constants used by the chosen fit function.
This flag is not currently supported by the Curve Fit dialog. Use the To Cmd button
and add the flag on the command line.

/L=destLen Sets the length of the wave created by the AutoTrace feature, that is, /D without
destination wave (see the /D parameter above). The length of the wave fit_waveName
will be set to destLen. This keyword also sets the lengths of waves created for
confidence and prediction bands.

/M Generates the covariance matrix, the waves CM_Kn, where n is from 0 (for K0) to the
number of coefficients minus one.

/M=doMat Generates the covariance matrix. If doMat =2, the covariance matrix is put into a 2D
matrix wave called M_Covar. If doMat =1 or is missing, the covariance matrix is
generated as the 1D waves CM_Kn, where n is from 0 (for K0) to the number of
coefficients minus one. If doMat =0, the covariance matrix is not generated. doMat =1
is included for compatibility with previous versions; it is better to use doMat =2.

/N[=dontUpdate] If dontUpdate = 1, suppresses updates during the fit. This can make the curve fit go
much faster; all graphs, tables, etc. will be updated when the fit finishes. /N is the
same as /N=1.
The default is /N=1. Prior to Igor Pro 7.00 it was /N=0. To update every iteration, use
/N=0.

/NTHR = nthreads This flag is accepted but is obsolete and does nothing. See Curve Fitting with
Multiple Processors on page III-218 for further information.

/O Only generates initial guesses; doesn’t actually do the fit.
Unless /ODR=2, this flag is ignored when used with linear fit types (line, poly,
poly_XOffset, and poly2D). The FuncFit operation also ignores this flag.

/ODR=fitMethod

Note that fitting with non-zero fitMethod is not threadsafe. Since the basic curve fitting
operations are threadsafe, using /ODR=<nonzero> in a threadsafe user function will
compile, but will result in a run-time error.

/Q[=quiet] If quiet = 1, prevents results from being printed in history. /Q is the same as /Q=1.

Selects a fitting method. Values for fitMethod are:
0: Default Levenberg-Marquardt least-squares method using old code.
1: Trust-region Levenberg-Marquardt ordinary least-squares method

implemented using ODRPACK95 code. See Curve Fitting
References on page III-236.

2: Trust-region Levenberg-Marquardt least orthogonal distance method
implemented using ODRPACK95 code. This method is appropriate
for fitting when there are measurement errors in the independent
variables, sometimes called “errors in variables fitting”, “random
regressor models,” or “measurement error models”.

3: Implicit fit. No dependent variable is specified; instead fitting
attempts to adjust the fit coefficients such that the fit function returns
zero for all dependent variables.
Implicit fitting will be of almost no use with the built-in fitting functions.
Instead, use FuncFit and a user-defined fit function designed for an
implicit fit.

CurveFit

V-107

Fit Types
fitType is one of the built-in curve fit function types:

/TBOX =
textboxSpec

Request inclusion of various parts by adding up the values for each part you want.
Setting textboxSpec to zero will remove the textbox. Default is textboxSpec = 0.

/X Sets the X scaling of the auto-trace destination wave to match the appropriate X axis
on the graph when the Y data wave is on the top graph. This is useful when you want
to extrapolate the curve outside the range of X data being fit.

/W=wait

gauss Gaussian peak: .

lor Lorentzian peak: .

exp Exponential: .

dblexp Double exponential: .

sin Sinusoid: .

line Line: .

poly n Polynomial: .

n is from 3 to 20. n is the number of terms or the degree plus one.

poly_XOffset n Polynomial: y = K0+K1*(x-x0)+K2*(x-x0)^2+...

Adds an annotation to the graph containing the fit data (see the TextBox operation,
or Chapter III-2, Annotations). The textbox contains a customizable set of
information about the fit. The argument textboxSpec is a bitfield to select various
elements to be included in the textbox:
1 Title “Curve Fit Results”
2 Date
4 Time
8 Fit Type (Least Squares, ODR, etc.)
16 Fit function name
32 Model Wave, the autodestination wave (includes a symbol

for the trace if appropriate)
64 Y Wave, with trace symbol
128 X Wave
256 Coefficient value report
512 Include errors in the coefficient value report

Specifies behavior for the curve fit results window.
wait=1: Wait till user clicks OK button before dismissing curve fit results

window. This is the default behavior from the command line or dialog.
wait=0: Display the curve fit window but do not wait for the user to click the

OK button.
wait=2: Do not display the curve fit results window at all. This is the default for

fits run from a procedure.

y K= 0 K1
x K2–

K3

2
–exp+

y K= 0
K1

x K2–()2 K3+
-----------------------------------+

y K0 K1 K2x–()exp+=

y K0 K1 K2x–()exp K3 K4x–()exp+ +=

y K0 K1 K2x K3+()sin+=

y K0 K1x+=

y k0 K1x K2x
2 …+ + +=

CurveFit

V-108

Parameters
kwCWave=coefWaveName specifies an optional coefficient wave. If present, the specified coefficient wave is
set to the final coefficients determined by the curve fit. If absent, a wave named W_coef is created and is set
to the final coefficients determined by the curve fit.
If you use kwCWave=coefWaveName and you include the /G flag, initial guesses are taken from the specified
coefficient wave.
waveName is the wave containing the Y data to be fit to the selected function type. You can fit to a subrange
of the wave by supplying (startX,endX) after the wave name. Though not shown in the syntax description,
you can also specify the subrange in points by supplying [startP,endP] after the wave name. See Wave
Subrange Details on page V-112 for more information on subranges of waves in curve fitting.
If you are using one of the two-dimensional fit functions (gauss2D or poly2D) either waveName must name
a matrix wave or you must supply a list of X waves via the /X flag.

n is from 3 to 20. n is the number of terms or the degree plus one.
x0 is a constant; by default it is set to the minimum X value involved in the fit.
Inclusion of x0 prevents problems with floating-point roundoff errors when you have
large values of X in your data set.

hillequation Hill’s Equation: .

This is a sigmoidal function. Note that X values must be greater than 0.

sigmoid .

power Power law: . Note that X values must be greater than 0.

lognormal Log normal: . X values must be greater than 0.

gauss2D 2D Gaussian: .

The cross-correlation coefficient (K6) must be between -1 and 1. This coefficient is
automatically constrained to lie in that range. If you are confident that the correlation
is zero, it may greatly speed the fit to hold it at zero.

poly2D n Two-dimensional polynomial: .

where n is the degree of the polynomial. All terms up to degree n are included,
including cross terms. For instance, degree 3 terms are x3, x2y, xy2, and y3.

exp_XOffset Exponential: .

x0 is a constant; by default it is set to the minimum x value involved in the fit.
Inclusion of x0 prevents problems with floating-point roundoff errors that can afflict
the exp function.

dblexp_XOffset Double exponential: .

x0 is a constant; by default it is set to the minimum x value involved in the fit. Inclusion of
x0 prevents problems with floating-point roundoff errors that can afflict the exp function.

y K= 0
K1 K0–()

1 K3 x⁄()+
K2

--------------------------------+

y K0
K1

1 K2 x K3⁄–()exp+
---+=

y K0 K1x
K2+=

y K0 K1
x K2⁄()ln
K3

 2

–exp+=

z K= 0 K1
1–

2 1 K6
2–()

x K2–

K3

 2 y K4–

K5

 2 2K6 x K2–() y K4–()

K3K5
--–+

exp+

z K0 K1x K2y K3x
2 K4xy K5y

2 …+ + + + + +=

y K0 K1 x x0–() K2⁄–()exp+=

y K0 K1 x x0–() K2⁄–()exp K3 x x0–() K4 2()⁄–()exp+ +=

CurveFit

V-109

Flag Parameters
These flag parameters must follow waveName.

/A=appendResid appendResid =1 (default) appends the automatically-generated residual to the
graph and appendResid =0 prevents appending (see /R[=residwaveName]). With
appendResid =0, the wave is generated and filled with residual values, but not
appended to the graph.

/AD[=doAutoDest] If doAutoDest is 1, it is the same as /D alone. /AD is the same as /AD=1.

/C=constraintSpec Applies linear constraints during curve fitting. Constraints can be in the form of
a text wave containing constraint expressions (/C=textWaveName) or a suitable
matrix and vector (/C={constraintMatrix, constraintVector}). See Fitting with
Constraints on page III-198. Note: Constraints are not available for the built-in
line, poly and poly2D fit functions. To apply constraints to these fit functions you
must create a user-defined fit function.

/D [=destwaveName] destwaveName is evaluated based on the equation resulting from the fit.
destwaveName must have the same length as waveName.
If only /D is specified, an automatically named wave is created. The name is
based on the waveName with “fit_” as a prefix. This automatically named wave
will be appended (if necessary) to the top graph if waveName is graphed there.
The X scaling of the fit_ wave is set from the range of x data used during the fit.
By default the length of the automatically-created wave is 200 points (or 2 points
for a straight line fit). This can be changed with the /L flag.
If waveName is a 1D wave displayed on a logarithmic X axis, Igor also creates an
X wave with values exponentially spaced. The name is based on waveName with
“fitX_” as a prefix.

/F={confLevel, confType [, confStyleKey [, waveName…]]}

Calculates confidence intervals for a confidence level of confLevel. The value of
confLevel must be between 0 and 1 corresponding to confidence levels of 0 to 100 per
cent.

These values can be added together to select multiple options. That is, to select
both a confidence band and fit coefficient confidence intervals, set confType to 5.
Confidence and prediction bands can be shown as waves contouring a given
confidence level (use “Contour” for confStyleKey) or as error bars (use “ErrorBar”
for confStyleKey). The default is Contour.
If no waves are specified, waves to contain the results are automatically
generated and appended to the top graph (if the top graph contains the fitted
data). See Confidence Band Details for details on the waves for confidence
bands.
Note: Confidence bands and prediction bands are not available for multivariate
curve fits.

/I [=weightType] If weightType is 1, the weighting wave (see /W parameter) contains standard
deviations. If weightType is 0, the weighting wave contains reciprocal of the
standard deviation. If the /I parameter is not present, the default is /I=0.

/M=maskWaveName Specifies that you want to use the wave named maskWaveName to select points to
be fit. The mask wave must match the dependent variable wave in number of
points and dimensions. Setting a point in the mask wave to zero or NaN (blank
in a table) eliminates that point from the fit.

confType selects what to calculate:
1: Confidence bands for the model.
2: Prediction bands for the model.
4: Confidence intervals for the fit coefficients.

CurveFit

V-110

Flag Parameters for Nonzero /ODR

/R [=residwaveName] Calculates elements of residwaveName by subtracting model values from the data
values. residwaveName must have the same length as waveName.
If only /R is specified, an automatically named wave is created with the same number
of points as waveName. The name is based on waveName with “Res_” as a prefix.
The automatically created residual wave will be appended (if necessary) to the
top graph if waveName is graphed there. The residual wave is appended to a new
free axis named by prepending “Res_” to the name of the vertical axis used for
plotting waveName. To the extent possible, the new free axis is formatted nicely.
If the graph containing the data to be fit has very complex formatting, you may
not wish to automatically append the residual to the graph. In this case, use /A=0.

/AR=doAutoResid If doAutoResid is 1, it is the same as /R alone. /AR is the same as /AR=1.

/W=wghtwaveName wghtwaveName contains weighting values applied during the fit, and must have the
same length as waveName. These weighting values can be either the reciprocal of
the standard errors, or the standard errors. See the /I parameter above for details.

/X=xwaveName The X values for the data to fit come from xwaveName, which must have the same
length and type as waveName.
If you are fitting to one of the two-dimensional fit functions and waveName is a matrix
wave, xwaveName supplies independent variable data for the X dimension. In this
case, xwaveName must name a 1D wave with the same number of rows as waveName.

/X={xwave1, xwave2} For fitting to one of the two-dimensional fit functions when waveName is a 1D
wave. xwave1 and xwave2 must have the same length as waveName.

/Y=ywaveName For fitting using one of the 2D fit functions if waveName is a matrix wave.
ywaveName must be a 1D wave with length equal to the number of columns in
waveName.

/NWOK Allowed in user-defined functions only. When present, certain waves may be set
to null wave references. Passing a null wave reference to CurveFit is normally
treated as an error. By using /NWOK, you are telling CurveFit that a null wave
reference is not an error but rather signifies that the corresponding flag should be
ignored. This makes it easier to write function code that calls CurveFit with
optional waves.
The waves affected are the X wave or waves (/X), weight wave (/W), mask wave
(/M) and constraint text wave (/C). The destination wave (/D=wave) and residual
wave (/R=wave) are also affected, but the situation is more complicated because
of the dual use of /D and /R to mean "do autodestination" and "do autoresidual".
See /AR and /AD.
If you don't need the choice, it is better not to include this flag, as it disables useful
error messages when a mistake or run-time situation causes a wave to be missing
unexpectedly.
Note: To work properly this flag must be the last one in the command.

/XW=xWeightWave
/XW={xWeight1, xWeight2}

CurveFit

V-111

Details
CurveFit gets initial guesses from the Kn system variables when user guesses (/G) are specified, unless a
coefficient wave is specified using the kwCWave keyword. Final curve fit parameters are written into a
wave name W_coef, unless you specify a coefficient wave with the kwCWave keyword.
Other output waves are M_Covar (see the /M flag), M_FitConstraint and W_FitConstraint (see /C parameter
and Fitting with Constraints on page III-198) and W_sigma.
For compatibility with earlier versions of Igor, the parameters are also stored in the system variables Kn.
This can be a source of confusion. We suggest you think of W_coef as the output coefficients and Kn as
input coefficients that get overwritten.
Other output waves are M_Covar (see the /M flag), M_FitConstraint and W_FitConstraint (see /C parameter
and Fitting with Constraints on page III-198), W_sigma. If you have selected coefficient confidence limits
using the /F parameter, a wave called W_ParamConfidenceInterval is created with the confidence intervals
for the fit coefficients.
CurveFit stores other curve fitting statistics in variables whose names begin with “V_”. CurveFit also looks
for certain V_ variables which you can use to modify its behavior. These are discussed in Special Variables
for Curve Fitting on page III-202.
When fitting with /ODR=nonzero, fitting with constraints is limited to simple “bound constraints.” That is,
you can constrain a fit coefficient to be greater than or less than some value. Constraints involving
combinations of fit coefficients are supported only with /ODR=0. The constraints are entered in the same
way, using an expression like K0>1.

/ODR=2 or 3 only.
Specifies weighting values for the independent variables using xWeightWave,
which must have the same length as waveName. When fitting to one of the
multivariate fit functions such as poly2D or Gauss2D, you must supply a weight
wave for each independent variable using the second form.
Weighting values can be either the reciprocal of the standard errors, or the
standard errors. The choice of standard error or reciprocal standard error must be
the same for both /W and /XW. See /I for details.

/XHLD=holdWave
/XHLD={holdWave1, holdWave2}

/ODR=2 or 3 only.
Specifies a wave or waves to hold the values of the independent variables fixed
during orthogonal distance regression. The waves must match the input X data;
a one in a wave element fixes the value of the corresponding X value.

/CMAG=scaleWave Specifies a wave that indicates the expected scale of the fit coefficients at the
solution. If different coefficients have very different orders of magnitude of
expected values, this can improve the efficiency and accuracy of the fit.

/XD=xDestWave

/XD={xDestWave1, xDestWave2}

/ODR=2 or 3 only.
Specifies a wave or waves to receive the fitted values of the independent variables
during a least orthogonal distance regression.

/XR=xResidWave
/XR={xResidWave1, xResidWave2}

/ODR=2 or 3 only.
Specifies a wave or waves to receive the differences between fitted values of the
independent variables and the starting values during a least orthogonal distance
regression. That is, they will be filled with the X residuals.

CurveFit

V-112

Wave Subrange Details
Almost any wave you specify to CurveFit can be a subrange of a wave. The syntax for wave subranges is
the same as for the Display command (see Subrange Display Syntax on page II-250 for details). However,
the Display command allows only one dimension to have a range (multiple elements from the dimension);
if a multidimensional wave is appropriate for CurveFit, you may use a range for more than one dimension.
Some waves must have the same number of points as other waves. For instance, a one-dimensional Y wave
must have the same number of points as any X waves. Thus, if you use a subrange for an X wave, the
number of points in the subrange must match the number of points being used in the Y wave (but see
Subrange Backward Compatibility on page V-113 for a complication to this rule).
A common use of wave subranges might be to package all your data into a single multicolumn wave, along
with the residuals and model values. For a univariate fit, you might need X and Y waves, plus a destination
(model) wave and a residual wave. You can achieve all of that using a 4 column wave. For example:
Make/D/N=(100, 4) Data
... fill column zero with X data and column one with Y data ...
CurveFit poly 3, Data[][1] /X=Data[][0]/D=Data[][2]/R=Data[][3]

Note that because all the waves are full columns from a single multicolumn wave, the number of points is
guaranteed to be the same.
The number of points used for X waves (xwaveName or {xwave1, xwave2, …}), weighting wave
(wghtwaveName), mask wave (maskWaveName), destination wave (destwaveName) and residual wave
(residwaveName) must be the same as the number of points used for the Y wave (waveName). If you specify
your own confidence band waves (/F flag) they must match the Y wave; you cannot use subranges with
confidence band waves. If you set /ODR = nonzero, the X weight, hold, destination and residuals waves
must match the Y wave.
The total number of points in each wave does not need to match other waves, just the number of points in
the specified subrange.
When fitting to a univariate fit function (that includes almost all the fit types) the Y wave must have
effectively one dimension. That means the Y wave must either be a 1D wave, or it must have a subrange
that makes the data being used one dimensional. For instance:
Make/N=(100,100) Ydata // 2D wave
CurveFit gauss Ydata[][0] // OK- a single column is one-dimensional
CurveFit gauss Ydata[2][] // OK- s single row is one-dimensional
CurveFit gauss Ydata // not OK- Ydata is two-dimensional
CurveFit gauss Ydata[][0,1] // not OK- two columns makes 2D subrange

When fitting a multivariate function (poly2D or Gauss2D) you have the choice of making the Y data either
one-dimensional or two-dimensional. If it is one-dimensional, then you must be fitting XYZ (or Y,X1,X2)
triplets. In that case, you must provide a one-dimensional Y wave and two one-dimensional X waves, or 2
columns from a multicolumn wave. For instance:
These are OK:
Make/N=(100,3) myData
CurveFit Gauss2D myData[][0] /X={myData[][1],myData[][2]}
CurveFit Gauss2D myData[][0] /X=myData[][1,2]

These are not OK:
CurveFit Gauss2D myData /X={myData[][1],myData[][2]}// 2D Y wave with 1D X waves
CurveFit Gauss2D myData[][0] /X=myData // too many X columns

If you use a 2D Y wave, the X1 and X2 data can come from the grid positions and the Y wave’s X and Y index
scaling, or you can use one-dimensional waves or wave subranges to specify the X1 and X2 positions of the
grid:
Make/N=(20,30) yData
CurveFit Gauss2D yData //OK- 2D Y data, X1 and X2 from scaling
Make/N=20 x1Data
Make/N=30 x2Data
// OK: 2D effective Y data, matching 1D X and Y flags
CurveFit Gauss2D yData[0,9][0,19] /X=x1Data[0,9]/Y=x2data[10,29]
// OK: effective 2D Y data
Make/N=(10,20,3) Y data
CurveFit Gauss2D yData[][][0]

There are, of course, lots of possible combinations, too numerous to enumerate.

CurveFit

V-113

Subrange Backward Compatibility
Historically, a Y wave could have a subrange. The same subrange applied to all other waves. For backward
compatibility, if you use a subrange with the Y wave only, and other waves lack a subrange, these other waves
must have either: 1) The same total number of points as the total number of points in the Y wave in which case
the Y wave subrange will be applied; or 2) The same total number of points as the Y wave’s subrange.
In addition, the Y wave can take a subrange in parentheses to indicate that the subrange refers to the Y
wave’s scaled indices (X scaling). If you use parentheses to specify an X range, you must satisfy the old
subrange rules: All waves must have the same number of points. Subrange is allowed for the Y wave only.
The Y wave subrange is applied to all other waves.

Confidence Band Details
Automatic generation of confidence and prediction bands occurs if the /F={…} parameter is used with no
wave names. One to four waves are generated, or you can specify one to four wave names yourself
depending on the confKind and confStyle settings.
Waves auto-generated by /F={confLevel, confKind, confStyle}:

Note that confKind may have 4 added to it if you want coefficient confidence limits calculated as well.
The contour waves are appended to the top graph as traces if the data wave is displayed in the top graph.
The wave names have dataName replaced with the name of the wave containing the Y data for the fit.
Waves you must supply for /F={confLevel, confKind, confStyle, wave, wave…}:

The waves you supply must have the same number of points as the dependent variable data wave. The
band intervals will be calculated at the X values of the input data. These waves are not automatically
appended to a graph; it is expected that you will display the contour waves as traces or use the error bar
waves to make error bars on the model fit wave.

Residual Details
Residuals are calculated only for elements corresponding to elements of waveName that are included in the
fit. Thus, you can calculate residuals automatically for a piecewise fit done in several steps.
The automatic residual wave will be appended to the top graph if the graph displays the Y data. It is
appended to a new free axis positioned directly above the axis used to display the Y data, making a stacked
graph. Other axes are shortened as necessary to make room for the new axis. You can alter the axis
formatting later. See Creating Stacked Plots on page II-253 for details.

confKind confStyle What You Get Auto Wave Names

1 "Contour" upper and lower confidence contours UC_dataName, LC_dataName

2 "Contour" upper and lower prediction contours UP_dataName, LP_dataName

3 "Contour" upper and lower confidence contours
and prediction contours

UC_dataName, LC_dataName,
UP_dataName, LP_dataName

1 "ErrorBar" confidence interval wave CI_dataName

2 "ErrorBar" prediction interval wave PI_dataName

3 "ErrorBar" confidence and prediction interval waves CI_dataName, PI_dataName

confKind confStyle You Supply

1 "Contour" 2 waves to receive upper and lower confidence contours.

2 "Contour" 2 waves to receive upper and lower prediction contours.

3 "Contour" 4 waves to receive upper and lower confidence and upper and lower
prediction contours.

1 "ErrorBar" 1 wave to receive values of confidence band width.

2 "ErrorBar" 1 wave to receive values of prediction band width.

3 "ErrorBar" 2 waves to receive values of confidence and prediction band widths.

CustomControl

V-114

While Igor will go to some lengths to make a nicely formatted stacked graph, the changes made to the graph
formatting may be undesirable in certain cases. Use /A=0 to suppress the automatic append to the graph.
The automatic residual wave will be created and filled with residual values, but not appended to the graph.

See Also
Inputs and Outputs for Built-In Fits on page III-184 and Special Variables for Curve Fitting on page
III-202 as well as Accessing Variables Used by Igor Operations on page IV-115.
When fitting to a user-specified function, see FuncFit. For multivariate user-specified fitting functions, see
FuncFit and FuncFitMD. See Confidence Bands and Coefficient Confidence Intervals on page III-193 for
a detailed description of confidence and prediction bands.

References
An explanation of the Levenberg-Marquardt nonlinear least squares optimization can be found in Chapter
14.4 of Press, William H., et al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New
York, 1992.

CustomControl
CustomControl [/Z] ctrlName [keyword = value [, keyword = value …]]
The CustomControl operation creates or modifies a custom control in the target window. A CustomControl
starts out as a generic button, but you can customize both its appearance and its action.

For information about the state or status of the control, use the ControlInfo operation.

Parameters

ctrlName is the name of the CustomControl to be created or changed. See Button for standard default
parameters.
The following keyword=value parameters are supported:

fColor=(r,g,b) Sets color of the button only when picture is not used and frame=1.
r, g, and b can range from 0 to 65535.

focusRing=fr

On Macintosh, regardless of this setting, the focus ring appears if you have enabled
full keyboard access via the Shortcuts tab of the Keyboard system preferences.

frame=f

labelBack=(r,g,b) or 0

Sets background color for the control only when a picture is not used and frame is not
1 and is not 3 on Macintosh.
r, g and b specify the amount of red, green and blue in the color as an integer from 0
to 65535. If not set (or labelBack=0), then background is transparent (not erased).

Enables or disables the drawing of a rectangle indicating keyboard focus:
fr=0: Focus rectangle will not be drawn.
fr=1: Focus rectangle will be drawn (default).

Sets frame style used only when picture is not used:
f=0: No frame (only the title is drawn).
f=1: Default, a button is drawn with a centered title. Set fColor to

something other than black to colorize the button.
f=2: Simple box.
f=3: 3D sunken frame. On Macintosh, when "native GUI appearance" is

enabled for the control, the frame is filled with the proper operating
system color.

f=4: 3D raised frame.
f=5: Text well.

CustomControl

V-115

Flags

Details
When you create a custom control, your action procedure gets information about the state of the control
using the WMCustomControlAction structure. See WMCustomControlAction for details on the
WMCustomControlAction structure.
Although the return value is not currently used, action procedures should always return zero.
When you call a function with the kCCE_draw event, the basic button picture (custom or default) will
already have been drawn. You can use standard draw commands such as DrawLine to draw on top of the
basic picture. Unlike the normal situation when draw commands merely add to a draw list, which only later
is drawn, kCCE_draw event draw commands are executed directly. The coordinate system, which you can
not change, is pixels with (0,0) being the top left corner of the control. Most drawing commands are legal
but because of the immediate nature of drawing, the /A (append) flag of DrawPoly is not allowed.

mode=m Notifies the control that something has happened. Can be used for any purpose. See
Details discussion of the kCCE_mode event.

noproc Specifies that no procedure will execute when clicking the custom control.

picture= pict Uses the named Proc Pictures to draw the control. The picture is taken to be three side-
by-side frames, which show the control appearance in the normal state, when the
mouse is down, and in the disabled state.
The control action function can overwrite the picture number using the
picture={pict,n} syntax.
The picture size overrides the size keyword.

picture={pict,n} Uses the specified Proc Picture to draw the control. The picture is n side-by-side
frames instead of the default three frames.

pos={left,top} Sets the postion of the control in pixels.

pos+={dx,dy} Offsets the position of the control in pixels.

proc=procName Specifies the name of the action function for the control. The function must not kill the
control or the window.

size={width,height} Sets size of the control in pixels but only when not using a Proc Picture.

title=titleStr Specifies text that appears in the control.
Using escape codes you can change the font, size, style, and color of the title. See
Annotation Escape Codes on page III-53 or details.

userdata(UDName)=UDStr

Sets the unnamed user data to UDStr. Use the optional (UDName) to specify a named
user data to create.

userdata(UDName)+=UDStr

Appends UDStr to the current unnamed user data. Use the optional (UDName) to
append to the named UDStr.

value=varName Sets the numeric variable, string variable, or wave that is associated with the control.
With a wave, specify a point using the standard bracket notation with either a point
number (value=awave[4]) or a row label (value=awave[%alabel]).

valueColor=(r,g,b) Sets initial color of the title for the button drawn only when picture is not used and
frame=1.
r, g, and b range from 0 to 65535. valueColor defaults to black (0,0,0). To further change
the color of the title text, use escape sequences as described for title=titleStr.

/Z No error reporting.

CWT

V-116

The kCCE_mode event can be used for any purpose, but it mainly serves as a notification to the control that
something has happened. For example, to send information to a control, you can set a named (or the unnamed)
userdata and then set the mode to indicate that the control should examine the userdata. For this signaling
purpose, you should use a mode value of 0 because this value will not become part of the recreation macro.
The kCCE_frame event is sent just before drawing one of the pict frames, as set by the picture parameter. On
input, the curFrame field is set to 0 (normal or mouse down outside button), to 1 (mouse down in button), or
to 2 (disable). You may modify curFrame as desired but your value will be clipped to a valid value.
When you specify a pict with the picture parameter, you will get a kCCE_drawOSBM event when that pict
is drawn into an offscreen bitmap. Once it is created, all updates use the offscreen bitmap until you specify
a new picture parameter. Thus the custom drawing done at this event is static, unlike drawing done during
the kCCE_draw event, which can be different each time the control is drawn. Because the pict can be contain
multiple side-by-side frames, the width of the offscreen bitmap is the width derived from the ctrlRect
field multiplied by the number of frames.
Because the action function is called in the middle of various control events, it must not kill the control or
the window. Doing so will almost certainly cause a crash.

Examples
See Creating Custom Controls on page III-377 for some examples of custom controls.
For a demonstration of custom controls, see the Custom Control Demo.pxp example experiment, which is
located in your Igor Pro 7 Folder in the Examples:Feature Demos 2: folder.

See Also
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls.
Proc Pictures on page IV-53.
The TextBox, DrawPoly and DefaultGUIControls operations.

CWT
CWT [flags] srcWave
The CWT operation computes the continuous wavelet transform (CWT) of a 1D real-valued input wave
(srcWave). The input can be of any numeric type. The computed CWT is stored in the wave M_CWT in the
current data folder. M_CWT is a double precision 2D wave which, depending on your choice of mother
wavelet and output format, may also be complex. The dimensionality of M_CWT is determined by the
specifications of offsets and scales. The operation sets the variable V_flag to zero if successful or to a
nonzero number if it fails for any reason.

Flags

/ENDM=method

/FSCL Use correction factor to the wave scaling of the second dimension of the output wave
so that the numbers are more closely related to Fourier wavelength. See References
for more information on the calculation of these correction factors. This flag does not
affect the output from the Haar wavelet.

/M=method

Selects the method used to handle the two ends of the data array with direct
integration (/M=1).
method=0: Padded on both sides by zeros.
method=1: Reflected at both the start and end.
method=2: Entered with cyclical repetition.

Specifies the CWT computation method.
method=0: Fast method uses FFT (default).
method=1: Slower method using direct integration.

CWT

V-117

You should mostly use the more efficient FFT method. The direct method should be
reserved to situations where the FFT is not producing optimal results. Theoretically,
when the FFT method fails, the direct method should also be fairly inaccurate, e.g., in
the case of undersampled signal. The main advantage in the direct method is that you
can use it to investigate edge effects.

/OUT=format

Depending on the method of calculation and the choice of mother wavelet, the
“native” output of the transform may be real or complex. You can force the output to
have a desired format using this flag.

/Q Quiet mode; no results printed to the history.

/R1={startOffset, delta1, numOffsets

Specifies offsets for the CWT. Offsets are the first dimension in a CWT. Normally you
will calculate the CWT for the full range of offsets implied by srcWave so you will not
need to use this flag. However, when using the slow method, this flag restricts the
output range of offsets and save some computation time. startOffset (integer) is the point
number of the first offset in srcWave. delta1 is the interval between two consecutive CWT
offsets. It is expressed in terms of the number srcWave points. numOffsets is the number
of offsets for which the CWT is computed.
By default startOffset=0, delta1=1, and numOffsets is the number of points in srcWave. If
you want to specify just the startOffset and delta1, you can set numOffsets=0 to use the
same number of points as the source wave.

/R2={startScale, scaleStepSize, numScales}

Specifies the range of scales for the CWT is computation. Scales are the second
dimension in the output wave. Note however that there are limitations on the minimum
and maximum scales having to do with the sampling of your data. Because there is a
rough correspondence between a Fourier spatial frequency and CWT scale it should be
understood that there is also a maximum theoretical scale. This is obvious if you
compute the CWT using an FFT but it also applies to the slow method. If you specify a
range outside the allowed limits, the corresponding CWT values are set to NaN.
Use NaN if you want to use the default value for any parameter.
The default value for startScale is determined by sampling of the source wave and the
wavelet parameter or order.
At a minimum you must specify either scaleStepSize or numScales.

/SMP1=offsetMode Determines computation of consecutive offsets. Currently supporting only
offsetMode=1 for linear, user-provided partial offset limits (see /R1 flag):
val1=startOffset+numOffsets*delta1.

Sets the format of the output wave M_CWT:
format=1: Complex.
format=2: Real valued.
format=4: Real and contains the magnitude.

CWT

V-118

/SMP2=scaleMode

When using scaleMode=4 the operation saves the consecutive scale values in the wave
W_CWTScaling. Note also that if you use scaleMode=4 without specifying a
corresponding /R2 flag, the default scaleStepSize of 1 and 64 scale values gives rise to
scale values that quickly exceed the allowed limits.
(See /R2 flag for details about the different parameters used in the equations above.)

/SW2=sWave Provides specific scale values at which the transform is evaluated. Use instead of /R2
flag. It is your responsibility to make sure that the entries in the wave are appropriate
for the sampling density of srcWave.

/WBI1={Wavelet [, order]}

order applies to DOG and Paul wavelets only and specifies m, the particular member
of the wavelet family.
The default wavelet is the Morlet.

/WPR1={param1} param1 is a wavelet-specific parameter for the wavelet function selected by /WBI1. For
example, use /WPR1={6} to change the Morlet frequency from the default (5).

Determines computation of consecutive scales. scaleMode is 1 by default if you
specify the /R2 flag.
format=1: Linear:

theScale=startScale+index*scaleStepSize

format=2: User-provided scaling wave.
format=4: Power of 2 scaling interval:

theScale=startScale*2.^(index*scaleStepSize)

Specifies the built-in wavelet (mother) function. Wavelet is the name of a wavelet
function: Morlet (default), MorletC (complex), Haar, MexHat, DOG, and Paul.

Morlet:

By default, ω=5. Use the /WPR1 flag to specify other values for ω.

MorletC:

By default, ω=5. Use the /WPR1 flag to specify other values for ω.

Haar:

DOG:

MexHat: Special case of DOG with m=2.

Paul:

Ψ0 (x) = 1

π 1/4 cos(ω x)exp − x
2

2

⎛
⎝⎜

⎞
⎠⎟

.

Ψ0 (x) = 1

π 1/4 exp iω x()exp − x
2

2

⎛
⎝⎜

⎞
⎠⎟

.

Ψ0 (x) = 1 0 ≤ x < 0.5
−1 0.5 ≤ x <1

⎧
⎨
⎩

.

Ψ0 (x) =
−1()m+1

Γ m + 1
2

⎛
⎝⎜

⎞
⎠⎟

dm

dxm
exp − x

2

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

.

Ψ0 (m, x) = 2m imm!

π 2m()!
1− ix()− m+1() .

DataFolderDir

V-119

Details
The CWT can be computed directly from its defining integral or by taking advantage of the fact that the integral
represents a convolution which in turn can be calculated efficiently using the fast Fourier transform (FFT).
When using the FFT method one encounters the typical sampling problems and edge effects. Edge effects
are also evident when using the slow method but they only significant in high scales.
From sampling considerations it can be shown that the maximum frequency of a discrete input signal is
1/2dt where dt is the time interval between two samples. It follows that the smallest CWT scale is 2dt and
the largest scale is Ndt where N is the total number of samples in the input wave.
The transform in M_CWT is saved with the wave scaling. startOffset and delta1 are used for the X-scaling. Both
startOffset and delta1 are either specified by the /R1 flag or copied from srcWave. The Y-scaling of M_CWT
depends on your choice of /SMP2. If the CWT scaling is linear then the wave scaling is based on startScale and
scaleStepSize. If you are using power of 2 scaling interval then the Y wave scaling of M_CWT has a start=0 and
delta=1 and the wave W_CWTScaling contains the actual scale values for each column of M_CWT. Note that
W_CWTScaling has one extra data point to make it suitable for display using an operation like:
AppendImage M_CWT vs {*, W_CWTScaling}

We have encountered two different definitions for the Morlet wavelet in the literature. The first is a complex
function (MorletC) and the second is real (Morlet). Instead of choosing one of these definitions we
implemented both so you may choose the appropriate wavelet.

See Also
For discrete wavelet transforms use the DWT operation. The WignerTransform and FFT operations.
For further discussion and examples see Continuous Wavelet Transform on page III-251.

References
Torrence, C., and G.P. Compo, A Practical Guide to Wavelet Analysis, Bulletin of the American Meteorological

Society, 79, 61-78, 1998.
The Torrence and Compo paper is also online at:
<http://paos.colorado.edu/research/wavelets/>.

DataFolderDir
DataFolderDir(mode [, dfr])
The DataFolderDir function returns a string containing a listing of some or all of the objects contained in
the current data folder or in the data folder referenced by dfr.

Parameters
mode is a bitwise flag for each type of object. Use -1 for all types. Use a sum of the bit values for multiple
types.

dfr is a data folder reference.

/Z No error reporting. If an error occurs, sets V_flag to -1 but does not halt function
execution.

Desired Type Bit Number Bit Value

All -1

Data folders 0 1

Waves 1 2

Numeric variables 2 4

String variables 3 8

http://paos.colorado.edu/research/wavelets/

DataFolderExists

V-120

Details
The returned string has the following format:
1. FOLDERS:name,name,…;<CR>
2. WAVES:name,name,…;<CR>
3. VARIABLES:name,name,…;<CR>
4. STRINGS:name,name,…;<CR>
Where <CR> represents the carriage return character.

Tip
This function is mostly useful during debugging, used in a Print command. For finding the contents of a data
folder programmatically, it will be easier to use the functions CountObjects and GetIndexedObjName.

Examples
Print DataFolderDir(8+4) // prints variables and strings
Print DataFolderDir(-1) // prints all objects

See Also
Chapter II-8, Data Folders.
Setting Bit Parameters on page IV-12 for information about bit settings.

DataFolderExists
DataFolderExists(dataFolderNameStr)
The DataFolderExists function returns the truth that the specified data folder exists.
dataFolderNameStr can bea a full path or partial path relative to the current data folder.
If dataFolderNameStr is null DataFolderExists returns 1 because, for historical reasons, a null data folder path
is taken to refer to the current data folder.

See Also
Chapter II-8, Data Folders.

DataFolderRefsEqual
DataFolderRefsEqual(dfr1, dfr2)
The DataFolderRefsEqual function returns the truth the two data folder references are the same.

See Also
Chapter II-8, Data Folders and Data Folder References on page IV-72.
The DataFolderRefStatus function.

DataFolderRefStatus
DataFolderRefStatus(dfr)
The DataFolderRefStatus function returns the status of a data folder reference.

Details
DataFolderRefStatus returns zero if the data folder reference is invalid or non-zero if it is valid.
DataFolderRefStatus returns a bitwise result with bit 0 indicating if the reference is valid and bit 1
indicating if the reference data folder is free. Therefore the returned values are:

A data folder reference is invalid if it was never assigned a value or if it is assigned an invalid value. For
example:

0: The data folder reference is invalid.

1: The data folder reference refers to a regular global data folder.

3: The data folder reference refers to a free data folder.

dateToJulian

V-121

DFREF dfr // dfr is invalid
DFREF dfr = root: // dfr is valid
DFREF dfr = root:NonExistentDataFolder // dfr is invalid

A data folder reference can be valid and yet point to a non-existent data folder:
NewDataFolder/O root:MyDataFolder
DFREF dfr = root:MyDataFolder // dfr is valid
KillDataFolder root:MyDataFolder // dfr is still valid

After the KillDataFolder, dfr is still a valid data folder reference but points to a non-existent data folder.
You should use DataFolderRefStatus to test any DFREF variables that might not be valid, such as after
assigning a reference when you are not sure that the referenced data folder exists. For historical reasons, an
invalid DFREF variable will often act like root.

See Also
Chapter II-8, Data Folders and Data Folder References on page IV-72.

dateToJulian
dateToJulian(year, month, day)
The dateToJulian function returns the Julian day number for the specified date. The Julian day starts at noon.
Use negative number for BC years and positive numbers for AD years. To exclude any ambiguity, there is no
year zero in this calendar. For general orientation, Julian day 2450000 corresponds to October 9, 1995.

See Also
The JulianToDate function.
For more information about the Julian calendar see:
<http://www.tondering.dk/claus/calendar.html>.

date
date()
The date function returns a string containing the current date.
Formatting of dates depends on your operating system and on your preferences entered in the Date & Time
control panel (Macintosh) or the Regional Settings control panel (Windows).

Examples
Print date() // Prints Mon, Mar 15, 1993

See Also
The Secs2Date, Secs2Time, and time functions.

date2secs
date2secs(year, month, day)
The date2secs function returns the number of seconds from midnight on 1/1/1904 to the specified date.
Note that the month and day parameters are one-based, so these series start at one.
If year, month, and day are all -1 then date2secs returns the offset in seconds from the local time to the UTC
(Universal Time Coordinate) time.

Examples
Print Secs2Date(date2secs(1993,3,15),1) // Ides of March, 1993

Prints the following, depending on your system’s date settings, in the history area:
Monday, March 15, 1993

This next example sets the X scaling of a wave to 1 day per point, starting January 1, 1993:
Make/N=125 myData = 100 + gnoise(50)
SetScale/P x,date2secs(1993,1,1),24*60*60,"dat",myData
Display myData;ModifyGraph mode=5

See Also
For further discussion of how Igor represents dates, see Date/Time Waves on page II-78.

http://www.tondering.dk/claus/calendar.html

DateTime

V-122

The Secs2Date, Secs2Time, and time functions.

DateTime
DateTime
The DateTime function returns number of seconds from 1/1/1904 to current local date and time.
To get the UTC date and time, subtract Date2Secs(-1,-1,-1) from the value returned by DateTime.
Unlike most Igor functions, DateTime is used without parentheses.

Examples
Variable localNow = DateTime

See Also
The Secs2Date, Secs2Time and time functions.

dawson
dawson(x)
The dawson function returns the value of the Dawson integral:

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 298 pp., Dover, New York, 1972.

DDEExecute
DDEExecute(refNum, cmdStr [, timeout])
This is a Windows-only function; it will return an error on the Macintosh.
The DDEExecute function sends a string of commands, cmdStr, to the server for execution. The format of
the commands depends on the server application.
refNum is a DDE session reference number returned by DDEInitiate to start a particular session.
It returns an error code from the server or zero if there was no error.
DDEExecute returns -1 if the server gave an error but the error code was zero. Returns -2 if the server did
not reply before the timeout period. Returns -3 if the refNum is invalid and -4 for other errors.
The optional timeout value is in seconds. The default timeout is 60 sec.
In some situations, you may want to use a zero timeout and then use DDEStatus to monitor when the server
is finished. You would do this if the server might take a long time to accomplish the commands and you
want Igor to continue working at the same time.

See Also
For further information refer to the other DDE functions and to the DDE Server and DDE Client sections in
the Obsolete Topics help file.

DDEInitiate
DDEInitiate(serverName, topicName)
This is a Windows-only function; it will return an error on the Macintosh.
The DDEInitiate function opens a DDE session and returns a reference number for use by the rest of the
DDE routines. Returns zero if failure.
If the desired application is not running, DDEInitiate will return zero. If this occurs, you can use the
ExecuteScriptText operation to start the server application.

F(x) = exp −x2() exp t 2()dt.
0

x

∫

DDEPokeString

V-123

Refer to your application’s documentation for the serverName and topicName. See the following example for
usage with Excel.

Examples
Variable ch= DDEInitiate("excel","book1")

See Also
The ExecuteScriptText operation. For further information refer to the other DDE functions and to the DDE
Server and DDE Client sections in the Obsolete Topics help file.

DDEPokeString
DDEPokeString(refNum, itemString, string [, timeout])
This is a Windows-only function; it will return an error on the Macintosh.
The DDEPokeString function sends string to the server.
itemString is a string specifying the server application’s DDE item name for the location into which to store
the string. For example, "R1C1" specifies the first cell in an Excel spreadsheet.
refNum is the DDE session reference number returned by DDEInitiate to start a particular session.
It returns an error code from the server or zero if there was no error.
DDEPokeString returns -1 if the server gave an error but the error code was zero. Returns -2 if the server
did not reply before the timeout period. Returns -3 if the refNum is invalid and -4 for other errors.
The optional timeout value is in seconds. The default timeout is 60 sec.

See Also
For further information refer to the other DDE functions and to the DDE Server and DDE Client sections in
the Obsolete Topics help file.

DDEPokeWave
DDEPokeWave(refNum, itemString, wave [, timeout [, format]])
This is a Windows-only function; it will return an error on the Macintosh.
The DDEPokeWave function sends data from a wave to the server.
itemString is a string specifying the server application’s DDE item name for the location into which to store
the string. For example, "R1C1:R10C10" specifies a 10x10 block of cells in an Excel spreadsheet.
refNum is a DDE session reference number returned by DDEInitiate to start a particular session.
It returns an error code from the server or zero if there was no error.
DDEPokeWave returns -1 if the server gave an error but the error code was zero. Returns -2 if the server
did not reply before the timeout period. Returns -3 if the refNum is invalid and -4 for other errors.
The optional format parameter can be 0 to send the data as tab-delimited text (default) or can be 1 to specify
Microsoft’s XLTable (excel) format. To specify format without specifying timeout, the latter may be
completely missing (,,) or a * symbol may be used:
err= DDEPokeWave(ch,"R1C1:R10C10",*,1)

The optional timeout value is in seconds. The default timeout is 60 sec.

Examples
A session using Microsoft Excel:
Variable ch,err1,err2
ch= DDEInitiate("excel","book1")
Make/O/N=(5,5) jack= P+10*Q
err1= DDEPokeWave(ch,"R1C1:R5C5",jack)
err2= DDETerminate(ch)

See Also
For further information refer to the other DDE functions and to the DDE Server and DDE Client sections in
the Obsolete Topics help file.

DDERequestString

V-124

DDERequestString
DDERequestString(refNum, itemString [, timeout])
This is a Windows-only function; it will return an error on the Macintosh.
The DDERequestString string function returns a string of requested data or null handle in case of failure.
itemString is a string specifying the server application’s DDE item name for the data being requested. For
example, "R1C1" specifies the first cell in an Excel spreadsheet.
refNum is a DDE session reference number returned by DDEInitiate to start a particular session.
The optional timeout value is in seconds. The default timeout is 60 sec.

See Also
For further information refer to the other DDE functions and to the DDE Server and DDE Client sections in
the Obsolete Topics help file.

DDERequestWave
DDERequestWave(refNum, itemString, destWave [, timeout])
This is a Windows-only function; it will return an error on the Macintosh.
The DDERequestWave function loads a preexisting wave with data from the server. The provided destination
wave, destWave, can be either text or numeric. Data from the server must be a tab delimited array. It is analyzed
to determine the dimensions of the wave but the numeric type (or string type) of the wave is not changed.
itemString is a string specifying the server application’s DDE item name for the requested data. For example,
"R1C1:R10C10" specifies a 10x10 block of cells in an Excel spreadsheet.
refNum is a DDE session reference number returned by DDEInitiate to start a particular session.
It returns an error code from the server or zero if there was no error.
DDERequestWave returns -1 if the server gave an error but the error code was zero. Returns -2 if the server
did not reply before the timeout period. Returns -3 if the refNum is invalid and -4 for other errors.
The optional timeout value is in seconds. The default timeout is 60 sec.

See Also
For further information refer to the other DDE functions and to the DDE Server and DDE Client sections in
the Obsolete Topics help file.

DDEStatus
DDEStatus(refNum)
This is a Windows-only function; it will return an error on the Macintosh.
The DDEStatus function returns the status of the DDE session defined by refNum from a previous
DDEInitiate.
Returns zero if refNum is not valid or if the session has been closed.
Returns nonzero if session is valid where the individual bits have the following meanings:

See Also
For further information refer to the other DDE functions and to the DDE Server and DDE Client sections in
the Obsolete Topics help file.

Bit 0: Set if the session is valid and not busy.

Bit 1: Set if waiting for an ack from the server for a previous DDEPoke or DDEExecute that
timed out. (bit 0 and 1 are exclusive).

Bit 2: Set if the ack from the server for a previous poke or execute command was negative. Only
applies to timed out commands.

DDETerminate

V-125

DDETerminate
DDETerminate(refNum)
This is a Windows-only function; it will return an error on the Macintosh.
The DDETerminate function closes the DDE session defined by refNum from a previous DDEInitiate.
Returns truth session was valid.
Pass zero to terminate all client sessions.

See Also
For further information refer to the other DDE functions and to the DDE Server and DDE Client sections in
the Obsolete Topics help file.

Debugger
Debugger
The Debugger operation breaks into the debugger if it is enabled.

See Also
The Debugger on page IV-198 and the DebuggerOptions operation.

DebuggerOptions
DebuggerOptions [enable=en, debugOnError=doe, NVAR_SVAR_WAVE_Checking=nvwc]
The DebuggerOptions operation programmatically changes the user-level debugger settings. These are the
same three settings that are available in the Procedure menu (and the debugger source pane contextual menu)

Parameters
All parameters are optional. If none are specified, no action is taken, but the output variables are still set.

Details
DebuggerOptions sets the following variables to indicate the Debugger settings that are in effect after the
command is executed. A value of zero means the setting is off, nonzero means the setting is on.

See Also
The Debugger on page IV-198 and the Debugger operation.

enable=en Turns the debugger on (en=1) or off (en=0).
If the debugger is disabled then the other settings are cleared even if other settings are
on.

debugOnError=doe

NVAR_SVAR_WAVE_Checking=nvwc

V_enable V_debugOnError V_NVAR_SVAR_WAVE_Checking

Turns Debugging On Error on or off.
doe=0: Disables Debugging On Error (see Debugging on Error on page

IV-199).
doe=1: Enables Debugging On Error and also enables the debugger

(implies enable=1).

Turns NVAR, SVAR, and WAVE checking on or off.
nvwc=0: Disables “NVAR SVAR WAVE Checking”. See Accessing

Global Variables and Waves on page IV-59 for more details.
nvwc=1: Enables this checking and also enables the debugger (implies

enable=1).

default

V-126

default
default:
The default flow control keyword is used in switch and strswitch statements. When none of the case labels
in the switch or strswitch match the evaluation expression, execution will continue with code following the
default label, if it is present.

See Also
Switch Statements on page IV-41.

DefaultFont
DefaultFont [/U] "fontName"
The DefaultFont operation sets the default font to be used in graphs for axis labels, tick mark labels and
annotations, and in page layouts for annotations.

Parameters
“fontName” should be a font name, optionally in quotes. The quotes are not required if the font name is one word.

Flags

DefaultGUIControls
DefaultGUIControls [/Mac/W=winName/Win] [appearance]
The DefaultGUIControls operation changes the appearance of user-defined controls.

Use DefaultGUIControls/W=winName to override that setting for individual windows.

Parameters

Flags

Details
If appearance is not specified, nothing is changed. The current value for appearance is returned in S_value.

/U Updates existing graphs and page layouts immediately to use the new default font.

Note: The recommended way to change the appearance of user-defined controls is to use the
Miscellaneous Settings dialog’s Native GUI Appearance for Controls checkbox in the
Compatibility tab, which is equivalent to DefaultGUIControls native when
checked, and to DefaultGUIControls os9 when unchecked.

appearance may be one of the following:

native Creates standard-looking controls for the current computer platform. This is the default
value.

os9 Igor Pro 5 appearance (quasi-Macintosh OS 9 controls that look the same on Macintosh and
Windows).

default Inherits the window appearance from either a parent window or the experiment-wide
default (only valid with /W).

/Mac Changes the appearance of controls only on Macintosh, and it affects the
experiment whenever it is used on Macintosh.

/W=winName Affects the named window or subwindow. When omitted, sets an experiment-wide
default.

When identifying a subwindow with winName, see Subwindow Syntax on page
III-87 for details on forming the window hierarchy.

/Win Changes the appearance of controls only on Windows, and it affects the
experiment whenever it is used on Windows.

DefaultGUIControls

V-127

If appearance is specified the previous appearance value for the window- or experiment-wide default is
returned in S_value.
With /W, the control appearance applies only to the specified window (Graph or Panel). If it is not used,
then the settings are global to experiments on the current computer. Tip: Use /W=# to refer to the current
active subwindow.
The /Mac and /Win flags specify the affected computer platform. If the current platform other than
specified, then the settings are not used, but (if native or OS9) are remembered for use in window recreation
macros or experiment recreation. This means you can create an experiment that with different appearances
depending on the current platform.
If neither /Mac nor /Win are used, it is implied by the current platform. To set native appearance on both
platforms, use two commands:
DefaultGUIControls/W=Panel0/Mac native

DefaultGUIControls/W=Panel0/Win native

In addition to the experiment-wide appearance setting and the window-specific appearance setting, an
individual control’s appearance can be set with the appropriate control command’s appearance keyword
(or a ModifyControl appearance keyword). A control-specific appearance setting overrides a window-
specific appearance, which in turn overrides the experiment-wide appearance setting.
Although meant to be used before controls are created, calling DefaultGUIControls will update all open
windows.
DefaultGUIControls does not change control fonts or font sizes, which means you can create controls that
look "native-ish" without having to readjust their positions to avoid avoid shifting or overlap. However, the
smooth font rendering that the Native GUI uses on Macintosh does change the length of text slightly, so
some shifting will occur that affects mostly controls that were aligned on their right sides.
The native appearance affects the way that controls are drawn in TabControl and GroupBox controls.

TabControl Background Details
Unlike the os9 appearance which draws only an outline to define the tab region (leaving the center alone)
the native tab appearance fills the tab region. Fortunately, TabControls are drawn before all other kinds of
controls which allows enclosed controls to be drawn on top of a tab control regardless of the order in which
the buttons are defined in the window recreation macro.
However the drawing order of native TabControls does matter: the top-most TabControls draws over other
TabControls. (The top-most TabControl is listed last in the window recreation macro.) The os9 appearance
allows a smaller (nested) TabControl to be underneath the later (enclosing) TabControl because tabs
normally aren’t filled. Converting these tabs to native appearance will cause nested tab to be hidden.
To fix the drawing order problem in an existing panel, turn on the drawing tools, select the arrow tool,
right-click the enclosing TabControl, and choose Send to Back to correct this situation. If the TabControl
itself is inside another TabControl, select that enclosing TabControl and also choose Send to Back, etc.
To fix the window recreation macro or function that created the panel, arrange the enclosing TabControl
commands to execute before the commands that create the enclosed TabControls.
A natively-drawn TabControl draws any drawing objects that are entirely enclosed by the tab region so that
it behaves the same as an os9 unfilled TabControl with drawing objects inside.

Groupbox Control Background Details
GroupBox controls, unlike TabControls, are not drawn before all other controls, so the drawing order
always matters if the GroupBox specifies a background (fill) color and it contains other controls.
You may find that enabling native appearance hides some controls inside the GroupBox. They are probably
underneath (before) the GroupBox in the drawing order.

Note: The setting for DefaultGUIControls without /W is not stored in the experiment file; it is a
user preference set by the Miscellaneous Settings dialog’s Native GUI Appearance for
Controls checkbox in the Compatibility tab. If you use DefaultGUIControls native or
DefaultGUIControls os9 commands, the checkbox will not show the current state of the
experiment-wide setting. Clicking Save Settings in the Miscellaneous Settings dialog will
overwrite the DefaultGUIControls setting (but not the per-window settings).

DefaultGUIFont

V-128

To fix this in an existing panel, turn on the drawing tools, right-click on the GroupBox and choose Send to
Back. To fix the window recreation macro or function that created the panel, arrange the GroupBox
commands to execute before the commands that create the enclosed controls.
A natively-drawn GroupBox draws any drawing objects that are entirely enclosed by the box; an os9 filled
GroupBox does not.

See Also
The DefaultGUIFont, ModifyControl, Button, GroupBox, and TabControl operations.
Chapter III-14, Controls and Control Panels, for details about control panels and controls.

DefaultGUIFont
DefaultGUIFont [/W=winName /Mac/Win] group = {fNameStr,fSize,fStyle} [,…]
The DefaultGUIFont operation changes the default font for user-defined controls and other Graphical User
Interface elements.

Parameters
fNameStr is the name of a font, fSize is the font size, and fStyle is a bitwise parameter with each bit controlling
one aspect of the font style. See Button for details about these parameters.
group may be one of the following:

Flags

Details
Although designed to be used before controls are created, calling DefaultGUIFont will update all affected
windows with controls. This makes it easy to experiment with fonts. Keep in mind that fonts can cause
compatibility problems when moving between machines or platforms.
The /Mac and /Win flags indicate the platform on which the fonts are to be used. If the current platform is
not the one specified then the settings are not used but are remembered for use in window recreation
macros or experiment recreation. This allows a user to create an experiment that will use different fonts
depending on the current platform.
If the /W flag is used then the font settings apply only to the specified window (Graph or Panel.) If the /W flag is
not used, then the settings are global to the experiment. Tip: Use /W=# to refer to the current active subwindow.

all All controls

button Button and default CustomControl

checkbox CheckBox controls

tabcontrol TabControl controls

popup Affects the icon (not the title) of a PopupMenu control. The text in the popped state is
set by the system and can not be changed. The title of a PopupMenu is affected by the
all group but the icon text is not.

panel Draw text in a panel.

graph Overlay graphs. Size is used only if ModifyGraph gfSize= -1; style is not used.

table Overlay tables.

/Mac Changes control fonts only on Macintosh, and it affects the experiment whenever it is
used on Macintosh.

/W=winName Affects the named window or subwindow. When omitted, sets an experiment-wide
default.

When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/Win Changes control fonts only on Windows, and it affects the experiment whenever it is
used on Windows.

DefaultGUIFont

V-129

fNameStr may be an empty string ("") to clear a group. Setting the font name to "_IgorSmall",
"_IgorMedium", or "_IgorLarge" will use Igor’s own defaults. The standard defaults for controls are the
equivalent to setting all to "_IgorSmall", tabcontrol to "_IgorMedium", and button to "_IgorLarge". Use
a fSize of zero to also get the standard default for size. On Windows, the three default fonts and sizes are all the
same.
Although designed to be used before controls are created, calling DefaultGUIFont will update all affected
windows with controls. This makes it easy to experiment with fonts. Keep in mind that fonts can cause
compatibility problems when moving between machines or platforms.
To read back settings, use DefaultGUIFont [/W=winName/Mac/Win/OVR] group to return the
current font name in S_name, the size in V_value, and the style in V_flag. With /OVR or if /Mac or /Win is
not current, it returns only override values. Otherwise, values include Igor built-in defaults. If S_name is
zero length, values are not defined.

Default Fonts and Sizes
The standard defaults for controls is the equivalent to setting all to "_IgorSmall", tabcontrol to
"_IgorMedium", and button to "_IgorLarge". Use a fSize of zero to also get the standard default for size.
On Windows, the three default fonts and sizes are all the same.

Examples
DefaultGUIFont/Mac all={"Zapf Chancery",12,0},panel={"geneva",12,3}
DefaultGUIFont/Win all={"Century Gothic",12,0},panel={"arial",12,3}
NewPanel
Button b0
DrawText 40,43,"Some text"

See Also
The DefaultGUIControls operation. Chapter III-14, Controls and Control Panels, for details about control
panels and controls.
Window Position Coordinates on page III-405 and Points Versus Pixels on page III-404 for explanations
of how font sizes in panels are interpreted for various screen resolutions.

Demos
Choose File→Example Experiments→Feature Demos 2→All Controls Demo.

Macintosh Windows

Control Font Font Size Font Font Size

Button Lucida Grande 13 MS Shell Dlg*

* MS Shell Dlg is a “virtual font name” which maps to Tahoma on Windows XP, to
MS Sans Serif on Windows 7, and to Segoe UI on Windows 8 and Windows 10.

12

Checkbox Geneva 9 MS Shell Dlg 12

GroupBox Geneva 9 MS Shell Dlg 12

ListBox Geneva 9 MS Shell Dlg 12

PopupMenu†

† On Macintosh, the PopupMenu font is Geneva 9 for the title and Lucida Grande 12
for the popup menu itself. On Windows, both fonts are MS Shell Dlg 12.

Geneva 9 MS Shell Dlg 12

SetVariable Geneva 9 MS Shell Dlg 12

Slider Geneva 9 MS Shell Dlg 12

TabControl Geneva 12 MS Shell Dlg 12

TitleBox Geneva 9 MS Shell Dlg 12

ValDisplay Geneva 9 MS Shell Dlg 12

DefaultTextEncoding

V-130

DefaultTextEncoding
DefaultTextEncoding [encoding=textEncoding, overrideDefault=override]
The DefaultTextEncoding operation programmatically changes the default text encoding and experiment
text encoding override settings. These settings, which are discussed under The Default Text Encoding on
page III-415, are also accessible via the Misc→Text Encoding→Default Text Encoding menu.
DefaultTextEncoding is rarely needed because typically you will change the default text encoding
manually using the menu, if at all.
The DefaultTextEncoding operation was added in Igor Pro 7.00.

Parameters
All parameters are optional. If none are specified, no action is taken, but the output variables are still set.

Details
The default text encoding affects Igor’s behavior when opening a file whose text encoding is unknown. See
The Default Text Encoding on page III-415 for details.
The experiment text encoding affects how files are loaded during experiment loading only. The override
setting allows you to override the experiment text encoding stored in the experiment file. Normally you will
not need to do this. See The Default Text Encoding on page III-415 for further discussion.
You may occasionally find it necessary to change the default text encoding because an Igor operation lacks
a /ENCG flag that allows you to specify the text encoding and instead uses the current default text encoding.
In such cases it is a good idea to save the original default text encoding, change it as necessary, and then
change it back to the original text encoding. The example below demonstrates this technique.

Output Variables
DefaultTextEncoding sets the following output variables to indicate the settings that are in effect after the
command executes:

Example
Function DemoDefaultTextEncoding()

// Store the original default text encoding
DefaultTextEncoding
Variable originalTextEncoding = V_defaultTextEncoding

// Set new default text encoding
DefaultTextEncoding encoding = 3 // 3= Windows-1252

[Do something that depends on the default text encoding]

// Restore the original default text encoding
DefaultTextEncoding encoding = originalTextEncoding

End

encoding=textEncoding

textEncoding specifies the new default text encoding. See Text Encoding Names and
Codes on page III-434 for a list of codes.
Pass 0 to set the default text encoding to the equivalent of selecting "Western" from
the Default Text Encoding submenu.
The value 255, corresponding to the binary text encoding type, is treated as an invalid
value for the textEncoding parameter.

overrideDefault=override

Turns overriding of the experiment's text encoding off or on.
0: Turns override off
1: Turns override on

V_defaultTextEncoding A text encoding code.

V_overrideExperiment A value of zero means the setting is off, nonzero means the setting is on.

defined

V-131

See Also
The Default Text Encoding on page III-415, Text Encoding Names and Codes on page III-434

defined
defined(symbol)
The defined function returns 1 if the symbol is defined 0 if the symbol is not defined.
symbol is a symbol possibly created by a #define statement or by SetIgorOption poundDefine=symbol.
symbol is a name, not a string. However you can use $ to convert a string expression to a name.

Details
The defined function can be used in three ways:

Outside of a procedure using a #if statement
Inside a procedure using a #if statement
Inside a procedure using an if statement

For example:
#define DEBUG

#if defined(DEBUG) // Outside of a function with #if
Constant kSomeConstant = 100

#else
Constant kSomeConstant = 50

#endif

Function Test1() // Inside a function with #if
#if defined(DEBUG)

Print "Debugging"
#else

Print "Not debugging"
#endif

End

Function Test1() // Inside a function with if
if (defined(DEBUG))

Print "Debugging"
else

Print "Not debugging"
endif

End

In these examples, we could have just as well used #ifdef instead of the defined function. For logical
combinations of conditions however, only defined will do:
#if (defined(SYMBOL1) && defined(SYMBOL2)

. . .
#endif

When used in a procedure window, defined(symbol) returns 1 if symbol is defined at the time the line is
compiled. In a given procedure file, only the following symbols are visible:

Symbols defined earlier in that procedure file *
Symbols defined in the built-in procedure window †
Predefined symbols (see Predefined Global Symbols on page IV-101)
Symbols defined by SetIgorOption poundDefine=symbol

* When used in the body of a procedure, as opposed to outside of a procedure, a symbol defined anywhere
in a given procedure window is visible. However, to avoid depending on this confusing exception, you
should define all symbols before they are referenced in a procedure file.
† Symbols defined in the built-in procedure window are not available to independent modules.
When the defined function is used from the command line, only symbols defined in the built-in procedure
window, predefined symbols, and symbols defined using SetIgorOption are visible.

DefineGuide

V-132

See Also
#define, Conditional Compilation on page IV-100, Predefined Global Symbols on page IV-101

DefineGuide
DefineGuide [/W= winName] newGuideName = {[guideName1, val [, guideName2]]} [,…]
The DefineGuide operation creates or overwrites a user-defined guide line in the target or named window
or subwindow. Guide lines help with the positioning of subwindows in a host window.

Parameters
newGuideName is the name for the newly created guide. When it is the name of an existing guide, the guide
will be moved to the new position.
guideName1, guideName2, etc., must be the names of existing guides.
The meaning of val depends on the form of the command syntax. When using only one guide name, val is
an absolute distance offset from to the guide. The directionality of val is to the right or below the guide for
positive values. The units of measure are points except in panels where they are in pixels. When using two
guide names, val is the fractional distance between the two guides.

Flags

Details
The names for the built-in guides are as defined in the following table:

The frame guides apply to all window and subwindow types. The graph rectangle and plot rectangle guide
types apply only to graph windows and subwindows.
To delete a guide use guideName={}.

See Also
The Display, Edit, NewPanel, NewImage, and NewWaterfall operations.
The GuideInfo function.

DelayUpdate
DelayUpdate
The DelayUpdate operation delays the updating of graphs and tables while executing a macro.

Details
Use DelayUpdate at the end of a line in a macro if you want the next line in the macro to run before graphs
or tables are updated.
This has no effect in user-defined functions. During execution of a user-defined function, windows update
only when you explicitly call the DoUpdate operation.

See Also
The DoUpdate, PauseUpdate, and ResumeUpdate operations.

/W=winName Defines guides in the named window or subwindow. When omitted, action will affect
the active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

Left Right Top Bottom

Host Window Frame FL FR FT FB

Host Graph Rectangle GL GR GT GB

Inner Graph Plot Rectangle PL PR PT PB

DeleteAnnotations

V-133

DeleteAnnotations
DeleteAnnotations [flags] [tagOffscreen, tagTraceHidden, invisible,

offsetOffscreen, tooSmall[=size]]
The DeleteAnnotations operation lists, in the S_name output variable, and optionally deletes annotations
that are hidden for reasons specified by the flags and keywords.
The operation affects the window or subwindow specified by the /W flag or, if /W is omitted, the active
window or subwindow.
Do not use DeleteAnnotations to progammatically delete a specific, single annotation. Instead use:
TextBox/W=winName/K/N=annotationName

The /LIST flag limits the action to only listing, instead of deleting, the annotations.
The DeleteAnnotations operation was added in Igor Pro 7.00.

Keywords
The keywords identify annotations based on the reasons for their being hidden:

Flags

Output Variables

Examples
Function DeleteAnnotationsInWin(win)

String win // Specifies a top-level window or a subwindow

// Handle specified top-level window or subwindow
DeleteAnnotations/W=$win/A
Variable numDeleted = V_Flag

// Now handle subwindows, if any
String children = ChildWindowList(win)
Variable n = ItemsInList(children)
Variable i

invisible Deletes or lists annotations hidden with /V=0.

offsetOffscreen Deletes or lists annotations that are offscreen, usually because of excessive /X and /Y
offsets.

tagOffscreen Deletes or lists tags hidden because they are attached to trace points that are offscreen.
This affects trace tags, axis tags, and image tags if their "if offscreen" setting, as set in
the Position tab of the Modify Annotation dialog, is set to "hide the tag".

tagTraceHidden Deletes or lists tags hidden because the tagged trace is hidden.

tooSmall [=size] Deletes or lists annotations whose height or width is size points or smaller. size is
expressed in points and defaults to 8. This is useful for deleting annotations that are
too small to see or to double-click.

/A All annotations, whether hidden or not, are listed or deleted. All keywords are
ignored.

/LIST Specifies that annotations identified by the other parameters are to be listed in the
S_name output variable but not deleted.

/W=winName Annotations in the named window or subwindow are considered. When omitted,
annotations in the active window or subwindow are considered.
When identifying a subwindow with winName, see Subwindow Syntax for details on
forming the window hierarchy.

S_name A semicolon-separated list of the annotations that match the criteria set by the
keywords and flags.

V_flag Set to the number of annotations deleted or listed.

DeleteFile

V-134

for(i=0; i<n; i+=1)
String child = StringFromList(i, children)
numDeleted += DeleteAnnotationsInWin(child) // Recurse

endfor

return numDeleted
End

See Also
TextBox, StringFromList, AnnotationList

DeleteFile
DeleteFile [flags] [fileNameStr]
The DeleteFile operation deletes a file on disk.

Parameters
fileNameStr can be a full path to the file to be deleted (in which case /P is not needed), a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName.
If Igor can not locate the file from fileNameStr and pathName, it displays a dialog allowing you to specify the
file to be deleted.
If you use a full or partial path for either file, see Path Separators on page III-401 for details on forming the path.

Flags

Variables
The DeleteFile operation returns information in the following variables:

See Also
DeleteFolder, MoveFile, CopyFile, NewPath, and Symbolic Paths on page II-21.

/I Interactive mode displays the Open File dialog even if fileNameStr is specified and the
file exists.

/M=messageStr Specifies the prompt message for the Open File dialog. But see Prompt Does Not
Work on Macintosh on page IV-137.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/Z[=z]

V_flag Set to zero if the file was deleted, to -1 if the user cancelled the Open File dialog, and
to some nonzero value if an error occurred, such as the specified file does not exist.

S_path Stores the full path to the file that was deleted. If an error occurred or if the user
cancelled, it is set to an empty string.

Prevents procedure execution from aborting if it attempts to delete a file that does
not exist. Use /Z if you want to handle this case in your procedures rather than
having execution abort.
/Z=0: Same as no /Z.
/Z=1: Deletes a file only if it exists. /Z alone has the same effect as /Z=1.
/Z=2: Deletes a file if it exists or displays a dialog if it does not exist.

DeleteFolder

V-135

DeleteFolder
DeleteFolder [flags] [folderNameStr]
The DeleteFolder operation deletes a disk folder and all of its contents.

Parameters
folderNameStr can be a full path to the folder to be deleted, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a folder within the folder associated with pathName.
If Igor can not determine the location of the folder from folderNameStr and pathName, it displays a Select
Folder dialog allowing you to specify the folder to be deleted.
If /P=pathName is given, but folderNameStr is not, then the folder associated with pathName is deleted.
If you use a full or partial path for either folder, see Path Separators on page III-401 for details on forming
the path.
Folder paths should not end with single Path Separators. See the MoveFolder Details section.

Flags

Variables
The DeleteFolder operation returns information in the following variables:

Details
You can use only /P=pathName (without folderNameStr) to specify the source folder to be deleted.
Folder paths should not end with single Path Separators. See the Details section for MoveFolder.

Warning: The DeleteFolder command destroys data! The deleted folder and the contents are not moved
to the Trash or Recycle Bin.

DeleteFolder will delete a folder only if permission is granted by the user. The default
behavior is to display a dialog asking for permission. The user can alter this behavior via
the Miscellaneous Settings dialog’s Misc category.

If permission is denied, the folder will not be deleted and V_Flag will return 1088
(Command is disabled) or 1276 (You denied permission to delete a folder). Command
execution will cease unless the /Z flag is specified.

/I Interactive mode displays a Select Folder dialog even if folderNameStr is specified and
the folder exists.

/M=messageStr Specifies the prompt message for the Select Folder dialog. But see Prompt Does Not
Work on Macintosh on page IV-137.

/P=pathName Specifies the folder to look in for the folder. pathName is the name of an existing
symbolic path.

/Z[=z]

V_flag Set to zero if the folder was deleted, to -1 if the user cancelled the Select Folder dialog,
and to some nonzero value if an error occurred, such as the specified folder does not
exist.

S_path Stores the full path to the folder that was deleted, with a trailing colon. If an error
occurred or if the user cancelled, it is set to an empty string.

Prevents procedure execution from aborting if it attempts to delete a folder that does
not exist. Use /Z if you want to handle this case in your procedures rather than
having execution abort.
/Z=0: Same as no /Z.
/Z=1: Deletes a folder only if it exists. /Z alone has the same effect as /Z=1.
/Z=2: Deletes a folder if it exists or displays a dialog if it does not exist.

DeletePoints

V-136

See Also
The DeleteFile, MoveFolder, CopyFolder, NewPath, and IndexedDir operations. Symbolic Paths on page
II-21.

DeletePoints
DeletePoints [/M=dim] startElement, numElements, waveName

[, waveName]…
The DeletePoints operation deletes numElements elements from the named waves starting from element
startElement.

Flags

Details
A wave may have any number of points, including zero. Removing all elements from any dimension
removes all points from the wave, leaving a 1D wave with zero points.
Except for the case of removing all elements, DeletePoints does not change the dimensionality of a wave.
Use Redimension for that.

See Also
The Redimension operation.

deltax
deltax(waveName)
The deltax function returns the named wave’s dx value. deltax works with 1D waves only.

Details
This is equal to the difference of the X value of point 1 minus the X value of point 0.

See Also
The leftx and rightx functions.
When working with multidimensional waves, use the DimDelta function.
For an explanation of waves and wave scaling, see Changing Dimension and Data Scaling on page II-63.

DFREF
DFREF localName [= path or dfr], [localName1 [= path or dfr]]
DFREF is used to define a local data folder reference variable or input parameter in a user-defined function.
The syntax of the DFREF is:
DFREF localName [= path or dfr][, localName1 [= path or dfr]]...

where dfr stands for "data folder reference". The optional assignment part is used only in the body of a
function, not in a parameter declaration.
Unlike the WAVE reference, a DFREF in the body without the assignment part does not do any lookup. It
simply creates a variable whose value is null.

Examples
Function Test(dfr)

DFREF dfr

Variable dfrStatus = DataFolderRefStatus(dfr)

/M=dim

If /M is omitted, DeletePoints deletes from the rows dimension.

dim specifies the dimension from which elements are to be deleted. Values are:
0: Rows.
1: Columns.
2: Layers.
3: Chunks.

Differentiate

V-137

if (dfrStatus == 0)
Print "Invalid data folder reference"
return -1

endif

if (dfrStatus & 2) // Bit 1 set means free data folder
Print "Data folder reference refers to a free data folder"

endif

if (dfrStatus == 1)
Print "Data folder reference refers a global data folder"
DFREF dfSav = GetDataFolderDFR()
Print GetDataFolder(1) // Print data folder path
SetDataFolder dfSav

endif

Make/O dfr:jack=sin(x/8) // Make a wave in the referenced data folder

return 0
End

See Also
For information on programming with data folder references, see Data Folder References on page IV-72.

Differentiate
Differentiate [type flags][flags] yWaveA [/X = xWaveA]

[/D = destWaveA][, yWaveB [/X = xWaveB][/D = destWaveB][, …]]
The Differentiate operation calculates the 1D numerical derivative of a wave.
Differentiate is multi-dimension-aware in the sense that it computes a 1D differentiation along the
dimension specified by the /DIM flag or along the rows dimension if you omit /DIM.
Complex waves have their real and imaginary components differentiated individually.

Flags

Type Flags (used only in functions)
Differentiate also can use various type flags in user functions to specify the type of destination wave
reference variables. These type flags do not need to be used except when needed to match another wave
reference variable of the same name or to identify what kind of expression to compile for a wave

/DIM=d

For example, for a 2D wave, /DIM=0 differentiates each row and /DIM=1 differentiates
each column.

/EP=e

/METH=m

/P Forces point scaling.

Specifies the wave dimension along which to differentiate when yWave is
multi-dimensional.
d=-1: Treats entire wave as 1D (default).
d=0: Differentiates along rows.
d=1: Differentiates along columns.
d=2: Differentiates along layers.
d=3: Differentiates along rows.

Controls end point handling.
e=0: Replaces undefined points with an approximation (default).
e=1: Deletes the point(s).

Sets the differentiation method.
m=0: Central difference (default).
m=1: Forward difference.
m=2: Backward difference.

digamma

V-138

assignment. See WAVE Reference Types on page IV-67 and WAVE Reference Type Flags on page IV-68
for a complete list of type flags and further details.
For example, when the input (and output) waves are complex, the output wave will be complex. To get the
Igor compiler to create a complex output wave reference, use the /C type flag with /D=destwave:
Make/O/C cInput=cmplx(sin(p/8), cos(p/8))
Make/O/C/N=0 cOutput
Differentiate/C cInput /D=cOutput

Wave Parameters

Details
If the optional /D = destWave flag is omitted, then the wave is differentiated in place overwriting the original
data.
When using a method that deletes points (/EP=1) with a multidimensional wave, deletion is not done if no
dimension is specified.
When using an X wave, the X wave must match the Y wave data type (excluding the complex type flag) and
it must be 1D with the number points matching the size of the dimension being differentiated. X waves are
not used with integer source waves.
Differentiate/METH=1/EP=1 is the inverse of Integrate/METH=2, but Integrate/METH=2 is the
inverse of Differentiate/METH=1/EP=1 only if the original first data point is added to the output wave.
Differentiate applied to an XY pair of waves does not check the ordering of the X values and doesn’t care about
it. However, it is usually the case that your X values should be monotonic. If your X values are not monotonic,
you should be aware that the X values will be taken from your X wave in the order they are found, which will
result in random X intervals for the X differences. It is usually best to sort the X and Y waves using Sort.

See Also
The Integrate operation.

digamma
digamma(x)
The digamma function returns the digamma, or psi function of x. This is the logarithmic derivative of the
gamma function:

In complex expressions, x is complex, and digamma(x) returns a complex value.
Limited testing indicates that the accuracy is approximately 1 part in 1016, at least for moderately-sized
values of x.

Dilogarithm
Dilogarithm(z)
Returns the Dilogarithm function for real or complex argument z. The dilogarithm is a special case of the
polylogarithm defined by

Note: All wave parameters must follow yWave in the command. All wave parameter flags
and type flags must appear immediately after the operation name.

/D=destWave Specifies the name of the wave to hold the differentiated data. It creates destWave if it
does not already exist or overwrites it if it exists.

/X=xWave Specifies the name of the corresponding X wave.

Ψ(z) ≡ d

dz
ln Γ(z)() = Γ '(z)

Γ(z)
.

Li2 (z) = zk

k2
k=1

∞

∑ .

DimDelta

V-139

The dilogarithm function was added in Igor Pro 7.00.

See Also
zeta

Reference
Wood, D.C. (June 1992). "The Computation of Polylogarithms. Technical Report 15-92". Canterbury, UK:

University of Kent Computing Laboratory.
The function based on an algorithm by Didier Clamond.

DimDelta
DimDelta(waveName, dimNumber)
The DimDelta function returns the scale factor delta of the given dimension.
Use dimNumber=0 for rows, 1 for columns, 2 for layers and 3 for chunks. If dimNumber=0 this is identical to
deltax(waveName).

See Also
DimOffset, DimSize, SetScale, WaveUnits, ScaleToIndex
For an explanation of waves and wave scaling, see Changing Dimension and Data Scaling on page II-63.

DimOffset
DimOffset(waveName, dimNumber)
The DimOffset function returns the scaling offset of the given dimension.
Use dimNumber=0 for rows, 1 for columns, 2 for layers, and 3 for chunks. If dimNumber=0 this is identical to
leftx(waveName).

See Also
DimDelta, DimSize, SetScale, WaveUnits, ScaleToIndex
For an explanation of waves and wave scaling, see Changing Dimension and Data Scaling on page II-63.

DimSize
DimSize(waveName, dimNumber)
The DimSize function returns the size of the given dimension.
Use dimNumber=0 for rows, 1 for columns, 2 for layers, and 3 for chunks. For a 1D wave,
DimSize(waveName,0) is identical to numpnts(waveName).

See Also
DimDelta, DimOffset, SetScale, WaveUnits

Dir
Dir [dataFolderSpec]
The Dir operation returns a listing of all the objects in the specified data folder.

Parameters
If you omit dataFolderSpec then the current data folder is used.
If present, dataFolderSpec can be just the name of a child data folder in the current data folder, a partial path
(relative to the current data folder) and name or an absolute path (starting from root) and name.

Details
The format of the printed information is the same as the format used by the string function DataFolderDir.
Igor programmers may find it more convenient to use CountObjects and GetIndexedObjName.
Usually it is easier to use the Data Browser (Data menu). However, Dir is useful when you want to copy a
name into the command line or when you want to document the current state of the folder in the history.

Display

V-140

See Also
Chapter II-8, Data Folders.

Display
Display [flags] [waveName [, waveName]…[vs xwaveName]]

[as titleStr]
The Display operation creates a new graph window or subwindow, and appends the named waves, if any.
Waves are displayed as 1D traces.
By default, waves are plotted versus the left and bottom axes. Use the /L, /B, /R, and /T flags to plot the
waves against other axes.

Parameters
Up to 100 waveNames may be specified, subject to the 1000 byte command line length limit. If no wave
names are specified, a blank graph is created and the axis flags are ignored.
If you specify “vs xwaveName”, the Y values of the named waves are plotted versus the Y values of xwaveName.
If you don’t specify “vs xwaveName”, the Y values of each waveName are plotted versus its own X values.
If xwaveName is a text wave, the resulting plot is a category plot. Each element of waveName is plotted by
default in bars mode (ModifyGraph mode=5) against a category labeled with the text of the corresponding
element of xwaveName.
The Y waves for a category plot should have point scaling (see Changing Dimension and Data Scaling on
page II-63); this is how category plots were intended to work. However, if all the Y waves have the same
scaling, it will work correctly.
titleStr is a string expression containing the graph’s title. If not specified, Igor will provide one which
identifies the waves displayed in the graph.
Subsets of data, including individual rows or columns from a matrix, may be specified using Subrange
Display Syntax on page II-250.
You can provide a custom name for a trace by appending /TN=traceName to the waveName specification.
This is useful when displaying waves with the same name but from different data folders. See User-defined
Trace Names on page IV-82 for more information.

Flags

/B[=axisName] Plots X coordinates versus the standard or named bottom axis.

/FG=(gLeft, gTop, gRight, gBottom)

Specifies the frame guide to which the outer frame of the subwindow is attached
inside the host window.
The standard frame guide names are FL, FR, FT, and FB, for the left, right, top, and
bottom frame guides, respectively, or user-defined guide names as defined by the
host. Use * to specify a default guide name.
Guides may override the numeric positioning set by /W.

/HIDE=h Hides (h = 1) or shows (h = 0, default) the window.

/HOST=hcSpec Embeds the new graph in the host window or subwindow specified by hcSpec.
When identifying a subwindow with hcSpec, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

 /I Specifies that /W coordinates are in inches.

Display

V-141

Details
If /N is not used, Display automatically assigns to the graph a name of the form “Graphn”, where n is some
integer. In a function or macro, the assigned name is stored in the S_name string. This is the name you can
use to refer to the graph from a procedure. Use the RenameWindow operation to rename the graph.

Examples
To make a contour plot, use:
Display; AppendMatrixContour waveName

or

/K=k

/L[=axisName] Plots Y coordinates versus the standard or named left axis.

/M Specifies that /W coordinates are in centimeters.

/N=name Requests that the created graph have this name, if it is not in use. If it is in use, then
name0, name1, etc. are tried until an unused window name is found. In a function or
macro, S_name is set to the chosen graph name. Use DoWindow/K name to ensure
that name is available.

/NCAT In Igor Pro 6.37 or later, allows subsequent appending of a category trace to a numeric
plot. See Combining Numeric and Category Traces on page II-322 for details.

/PG=(gLeft, gTop, gRight, gBottom)

Specifies the inner plot rectangle of the graph subwindow inside its host window.
The standard plot rectangle guide names are PL, PR, PT, and PB, for the left, right, top,
and bottom plot rectangle guides, respectively, or user-defined guide names as
defined by the host. Use * to specify a default guide name.
Guides may override the numeric positioning set by /W.

/R[=axisName] Plots Y coordinates versus the standard or named right axis.

/T[=axisName] Plots Y coordinates versus the standard or named top axis.

/TN=traceName Allows you to provide a custom trace name for a trace. This is useful when displaying
waves with the same name but from different data folders. See User-defined Trace
Names on page IV-82 for details.

/W=(left,top,right,bottom)

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

Gives the graph a specific location and size on the screen. Coordinates for /W are
in points unless /I or /M are specified before /W.
When used with the /HOST flag, the specified location coordinates of the sides can
have one of two possible meanings:

When the subwindow position is fully specified using guides (using the /HOST,
/FG, or /PG flags), the /W flag may still be used although it is not needed.

1: When all values are less than 1, coordinates are assumed to be
fractional relative to the host frame size.

2: When any value is greater than 1, coordinates are taken to be fixed
locations measured in points relative to the top left corner of the
host frame.

DisplayHelpTopic

V-142

Display; AppendXYZContour waveName

To display an image, use:
Display; AppendImage waveName

or
NewImage waveName

See Also
The AppendToGraph operation.
The operations AppendImage, AppendMatrixContour, AppendXYZContour, and NewImage. For more
information on Category Plots, see Chapter II-13, Category Plots.
The operations ModifyGraph, ModifyContour, and ModifyImage for changing the characteristics of graphs.
The DoWindow operation for changing aspects of the graph window.

DisplayHelpTopic
DisplayHelpTopic [/K=k /Z] TopicString
The DisplayHelpTopic operation displays a help topic as if a help link had been clicked in an Igor help file.

Parameters
TopicString is string expression containing the topic. It may be in one of three forms: <topic name>,
<subtopic name>, <topic name>[<subtopic name>]. These forms are illustrated by the examples.
Make sure that your topic string is specific to minimize the likelihood that Igor will find the topic in a help
file other than the one you intended. To avoid this problem, it is best to use the <topic name>[<subtopic
name>] form if possible.

Flags

Details
DisplayHelpTopic first searches for the specified topic in the open help files. If the topic is not found, it then
searches all help files in the Igor Pro 7 folder and subfolders.
If the topic is still not found, it then searches all help files in the current experiment’s home folder, but not
in subfolders. This puts a help file that is specific to a particular experiment in the experiment’s home folder.
If the topic is still not found and if DisplayHelpTopic was called from a procedure and if the procedure
resides in a stand-alone file on disk (i.e., it is not in the built-in procedure window or in a packed procedure
file), Igor then searches all help files in the procedure file’s folder, but not in subfolders. This puts a help file
that is specific to a particular set of procedures in the same folder as the procedure file.
If Igor finds the topic, it displays it. If Igor can not find the topic, it displays an error message, unless /Z is used.

Examples
// This example uses the topic only.
DisplayHelpTopic "Waves"

// This example uses the subtopic only.
DisplayHelpTopic "Waveform Arithmetic and Assignment"

// This example uses the topic[subtopic] form.
DisplayHelpTopic "Waves[Waveform Arithmetic and Assignment]"

/K=k

/Z Ignore errors. If /Z is used, DisplayHelpTopic sets V_flag to 0 if the help topic was found or to
a nonzero error code if it was not found. V_flag is set only when /Z is used.

Determines when the help file is closed.
k=0: Leaves the help file open indefinitely (default). Use this if the help topic may

be of interest in any experiment.
k=1: If the found topic is in a closed help file, the help file closes with the current

experiment. Use this if the help topic is tightly associated with the current
experiment.

DisplayProcedure

V-143

See Also
Chapter II-1, Getting Help for information about Igor help files and formats.

DisplayProcedure
DisplayProcedure [flags] [functionOrMacroNameStr]
The DisplayProcedure operation displays the named function, macro or line by bringing the procedure
window it is defined in to the front with the function, macro or line highlighted.

Parameters
functionOrMacroNameStr is a string expression containing the name of the function or macro to display. If
you omit functionOrMacroNameStr then you must use /W or /L.
functionOrMacroNameStr may be a simple name or may include independent module and/or module name
prefixes to display static functions.
If you use /L to display a particular line then you must omit functionOrMacroNameStr.
To display a procedure window without changing its scrolling or selection, use /W and omit
functionOrMacroNameStr.

Flags

Details
If a procedure window has syntax errors that prevent Igor from determining where functions and macros
start and end, then DisplayProcedure may not be able to locate the procedure.
winTitleOrName is not a string; it is a name. To position the found procedure window behind a window
whose title has a space in the name, use the $ operator as in the second example, below.
If winTitleOrName does not match any window, then the found procedure window is placed behind the top
target window.
lineNum is a zero-based line number: 0 is the first line of the window. Because each line of a procedure
window is a paragraph, line numbers and paragraph numbers are the same. You can use the
Procedure→Info menu item to show a selection's starting and ending paragraph/line number.
procWinTitle is also a name. Use /W=$"New Polar Graph.ipf" to search for the function or macro in
only that procedure file.
Don’t specify both functionOrMacroNameStr and /L=lineNum as this is ambiguous and not allowed.

Advanced Details
If SetIgorOption IndependentModuleDev=1, procWinTitle can also be a title followed by a space and,
in brackets, an independent module name. In such cases searches for the function or macro are in the
specified procedure window and independent module. (See Independent Modules on page IV-224 for
independent module details.)
For example, if any procedure file contains these statements:

/B=winTitleOrName Brings up the procedure window just behind the window with this name or title.

/L=lineNum If /W is specified, lineNum is a zero-based line number in the specified window.
If /W is not specified, lineNum is a “global” line number. Each procedure window line
has a unique global line number as if all of the procedure files were concatenated into
one big file. The order of concatenation of files can change when procedures are
recompiled.
If you use /L then you must omit functionOrMacroNameStr.

/W=procWinTitle Searches in the procedure window with this title.
procWinTitle is a name, not a string, so you construct /W like this:
/W=$"New Polar Graph.ipf"

If you omit /W, DisplayProcedure searches all open (nonindependent module)
procedure windows.

do-while

V-144

#pragma IndependentModule=myIM
#include <Axis Utilities>

The command
DisplayProcedure/W=$"Axis Utilities.ipf [myIM]" "HVAxisList"

opens the procedure window that contains the HVAxisList function, which is in the Axis Utilities.ipf file
and the independent module myIM. The command uses the $"" syntax because space and bracket
characters interfere with command parsing.
Similarly, if SetIgorOption IndependentModuleDev=1 then functionOrMacroNameStr may also
contain an independent module prefix followed by the # character. The preceding command can be
rewritten as:
DisplayProcedure/W=$"Axis Utilities.ipf" "myIM#HVAxisList"

or more simply
DisplayProcedure "myIM#HVAxisList"

You can use the same syntax to display a static function in a non-independent module procedure file using
a module name instead of (or in addition to) the independent module name.s
procWinTitle can also be just an independent module name in brackets to retrieve the text from any
procedure window that belongs to named independent module:
DisplayProcedure/W=$"[myIM]" "HVAxisList"

Examples
DisplayProcedure "Graph0"

DisplayProcedure/B=Panel0 "MyOwnUserFunction"

DisplayProcedure/W=Procedure // Shows the main Procedure window

DisplayProcedure/W=Procedure/L=5 // Shows line 5 (the sixth line)

DisplayProcedure/W=$"Wave Lists.ipf"

DisplayProcedure "moduleName#myStaticFunctionName"

SetIgorOption IndependentModuleDev=1
DisplayProcedure "WMGP#GizmoBoxAxes#DrawAxis"

See Also
Independent Modules on page IV-224.
MacroList, FunctionList, and ProcedureText, HideProcedures, DoWindow.

do-while
do

<loop body>
while(<expression>)
A do-while loop executes loop body until expression evaluates as FALSE (zero) or until a break statement is
executed.

See Also
Do-While Loop on page IV-42 and break for more usage details.

DoAlert
DoAlert [/T=titleStr] alertType, promptStr
The DoAlert operation displays an alert dialog and waits for user to click button.

Parameters

alertType=t

promptStr Specifies the text that is displayed in the alert dialog.

Controls the type of alert dialog:
t=0: Dialog with an OK button.
t=1: Dialog with Yes button and No buttons.
t=2: Dialog with Yes, No, and Cancel buttons.

DoIgorMenu

V-145

Flags

Details
DoAlert sets the variable V_flag as follows:

See Also
The Abort operation.

DoIgorMenu
DoIgorMenu [/C /OVRD] MenuNameStr, MenuItemStr
The DoIgorMenu operation allows an Igor programmer to invoke Igor’s built-in menu items. This is useful
for bringing up Igor’s built-in dialogs under program control.

Parameters

Flags
Using both the /C and the /OVRD flag in one command is not permitted.

Details
All menu names and menu item text are in English to ensure that code developed for a localized version of
Igor Pro will run on all versions. Note that no trailing “…” is used in MenuItemStr.
V_flag is set to 1 if the corresponding menu item was enabled, which usually means the menu item was
successfully selected. Otherwise V_flag is 0. V_flag does not reflect the success or failure of the resulting
dialog, if any.
If the menu item selection displays a dialog that generates a command, clicking the Do It button executes the
command immediately without using the command line as if Execute/Z operation had been used. Clicking the
To Cmd Line button appends the command to the command line rather than inserting the command at the front.

/T=titleStr Changes the title of the dialog window from the default title.

1: Yes clicked.

2: No clicked.

3: Cancel clicked.

MenuNameStr The name of an Igor menu, like “File”, “Graph”, or “Load Waves”.

MenuItemStr The text of an Igor menu item, like “Copy” (in the Edit menu) or “New Graph” (in the
Windows menu).

/C Just Checking. The menu item is not invoked, but V_flag is set to 1 if the item was
enabled or to 0 if it was not enabled.

/OVRD Tells Igor to skip checks that it normally does before executing the menu command
specified by MenuNameStr and MenuItemStr. You are responsible for ensuring that the
menu command you are invoking is appropriate under conditions existing at
runtime.
The main use for the /OVRD flag is to allow an advanced programmer to invoke a
menu command for a menu that is currently hidden when dealing with subwindows.
For example, if you have a graph subwindow in a control panel which is in operate
mode, the Graph menu is not visible in the menu bar. Normally the user could not
invoke an item, such as Modify Trace Appearance.
/OVRD allows you to invoke the menu command, but it is up to you to verify that it
is appropriate. In the Modify Trace Appearance example, you should invoke the
menu command only if the active window or subwindow is a graph that contains at
least one trace.
/OVRD was added in Igor Pro 7.00.

DoPrompt

V-146

The DoIgorMenu operation will not attempt to select a menu during curve fitting. Doubtless there are other
times during which using DoIgorMenu would be unwise.
The text of some items in the File menu changes depending on the type of the active window. In these cases
you must pass generic text as the MenuItemStr parameter. Use “Save Window”, “Save Window As”, “Save
Window Copy”, “Adopt Window”, and “Revert Window” instead of “Save Notebook” or “Save Procedure”,
etc. Use “Page Setup” instead of “Page Setup For All Graphs”, etc. Use “Print” instead of “Print Graph”, etc.

See Also
The SetIgorMenuMode and Execute operations.

DoPrompt
DoPrompt [/HELP=helpStr] dialogTitleStr, variable [, variable]…
The DoPrompt statement in a function invokes the simple input dialog. A DoPrompt specifies the title for
the simple input dialog and which input variables are to be included in the dialog.

Flags

Parameters
variable is the name of a dialog input variable, which can be real or complex numeric local variable or local
string variable, defined by a Prompt statement. You can specify as many as 10 variables.
dialogTitleStr is a string or string expression containing the text for the title of the simple input dialog.

Details
Prompt statements are required to define what variables are to be used and the text for any string
expression to accompany or describe the input variable in the dialog. When a DoPrompt variable is missing
a Prompt statement, you will get a compilation error. Pop-up string data can not be continued across
multiple lines as can be done using Prompt in macros. See Prompt for further usage details.
Prompt statements for the input variables used by DoPrompt must come before the DoPrompt statement
itself, otherwise, they may be used anywhere within the body of a function. The variables are not required
to be input parameters for the function (as is the case for Prompt in macros) and they may be declared
within the function body. DoPrompt can accept as many as 10 variables.
Functions can use multiple DoPrompt statements, and Prompt statements can be reused or redefined.
When the user clicks the Cancel button, any new input parameter values are not stored in the variables.
DoPrompt sets the variable V_flag as follows:

See Also
The Simple Input Dialog on page IV-132, the Prompt keyword, and DisplayHelpTopic.

Double
double localName
Declares a local 64-bit double-precision variable in a user-defined function or structure.
Double is another name for Variable. It is available in Igor Pro 7 and later.

/HELP=helpStr Sets the help topic or help text that appears when the dialog’s Help button is pressed.
helpStr can be a help topic and subtopic such as is used by DisplayHelpTopic/K=1
helpStr, or it can be text (255 characters max) that is displayed in a subdialog just as
if DoAlert 0, helpStr had been called, or helpStr can be "" to remove the Help
button.

0: Continue button clicked.

1: Cancel button clicked.

DoUpdate

V-147

DoUpdate
DoUpdate [/E=e /W=targWin /SPIN=ticks]
The DoUpdate operation updates windows and dependent objects.

Flags

Details
Call DoUpdate from an Igor procedure to force Igor to update any objects that need updating. Igor updates
any graphs, tables or page layouts that need to be updated and also any objects (string variables, numeric
variables, waves, controls) that depend on other objects that have changed since the last update.
Igor performs updates automatically when:
• No user-procedure is running.
• An interpreted procedure (Macro, Proc, Window type procedures) is running and PauseUpdate or

DelayUpdate is not in effect.
An automatic DoUpdate is not done while a user-defined function is running. You can call DoUpdate from
a user-defined function to force an update.

See Also
The DelayUpdate, PauseUpdate, and ResumeUpdate operations, Progress Windows on page IV-144.

DoWindow
DoWindow [flags] [windowName]
The DoWindow operation controls various window parameters and aspects. There are additional forms for
DoWindow when the /S or /T flags are used; see the following DoWindow entries.

Parameters
windowName is the name of a graph, table, page layout, notebook, panel, Gizmo, camera, or XOP target
window.
A window’s name is not the same as its title. The title is shown in the window’s title bar. The name is used
to manipulate the window from Igor commands. You can check both the name and the title using the
Window Control dialog (in the Arrange submenu of the Window menu).

Flags

/E=e Used with /W, /E=1 marks window as a progress window that can accept mouse
events while user code is executing. Currently, only control panel windows can be
used as a progress window.

/W=targWin Updates only the specified window. Does not update dependencies or do any other
updating.
Currently, only graph and panel windows honor the /W flag.
V_Flag is set to the truth the window exists. See Progress Windows on page IV-144
for other values for V_Flag.

/SPIN=ticks Sets the delay between the start of a control procedure and the spinning beachball.
ticks is the delay in ticks (60th of a second.) Unless used with the /W flag, /SPIN just
sets the delay and an update is not done.

/B[=bname] Moves the specified window to the back (to the bottom of desktop) or behind window
bname.

/C Changes the name of the target window to the specified name. The specified name must
not be used for any other object except that it can be the name of an existing window
macro.

/C/N Changes the target window name and creates a new window macro for it. However,
/N does nothing if a macro or function is running. /N is not applicable to notebooks.

/D Deletes the file associated with window, if any (for notebooks only).

DoWindow

V-148

Details
DoWindow sets the variable V_flag to 1 if there was a window with the specified name after DoWindow
executed, to 0 if there was no such window, or to 2 if the window is hidden.
Call DoWindow with no flags to check if a window exists.
When used with the /N flag, windowName must not conflict with the name of any other object. When used
with the /C flag, windowName must not conflict with the name of any other object except that it can be the
name of an existing window macro.
The /R and /N flags do nothing when executed while a macro or function is running. This is necessary
because changing procedures while they are executing causes unpredictable and undesirable results.
However you can use the Execute/P operation to cause the DoWindow command to be executed after
procedures are finished running. For example:
Function SaveWindowMacro(windowName)

String windowName // "" for top graph or table

if (strlen(windowName) == 0)
windowName = WinName(0, 3) // Name of top graph or table

endif

String cmd
sprintf cmd, "DoWindow/R %s", windowName
Execute/P cmd

End

You can use the /D flag in conjunction with the /K flag to kill a notebook window and delete its associated
file, if any. /D has no effect on any other type of window and has no effect if the /K flag is not present.

/F Brings the window with the given name to the front (top of desktop).

/H Specifies the command window as the target of the operation. When using /H,
windowName must not be specified and only the /B and /HIDE flags are honored.
Use /H to bring the command window to the front (top of desktop).
Use /H/B to send the command window to the bottom of the desktop.
Use /H/HIDE to hide or show the command window.

/HIDE=h

/K Kills the window with the given name. KillWindow is preferred.

/N Creates a new window macro for the window with the given name. However, /N does
nothing if a macro or function is running. /N is not applicable to notebooks.

/R Replaces (updates) the window macro for the named window or creates it if it does
not yet exist. However, /R does nothing if a macro or function is running. /R is not
applicable to notebooks.

/R/K Replaces (updates) the window macro for the named window or creates it if it does
not yet exist and then kills the window. However, /R does nothing if a macro or
function is running. /R is not applicable to notebooks.

/W=targWin Designates targWin as the target window; it also requires that you specify windowName.
Use this mainly with floating panels, which are always on top. You can use a
subwindow specification of an external subwindow only with the /T flag or without any
flags.

Sets hidden state of a window.

You can also read the hidden state using GetWindow and set it using SetWindow.

h=0: Visible.
h=1: Hidden.
h=?: Sets the variable V_flag as follows:

0: The window does not exist.
1: The window is visible.
2: The window is hidden.

DoWindow/T

V-149

Examples
DoWindow Graph0 // Set V_flag to 1 if Graph0 window exists.
DoWindow/F Graph0 // Make Graph0 the top/target window.
DoWindow/C MyGraph // Target window (Graph0) renamed MyGraph.
DoWindow/K Panel0 // Kill the Panel0 window.
DoWindow/H/B // Put the command window in back.
DoWindow/D/K Notebook2 // Kill Notebook2, delete its file.

See Also
RenameWindow, MoveWindow, MoveSubwindow, SetActiveSubwindow, KillWindow
HideProcedures, IgorInfo

DoWindow/T
DoWindow /T windowName, windowTitleStr
The DoWindow/T operation sets the window title for the named window to the specified title.

Details
The title is shown in the window’s title bar, and listed in the appropriate Windows submenu. The window
name is still used to manipulate the window, so, for example, the window name (if windowName is a graph
or table) is listed in the New Layout dialog; not the title.
You can check both the name and the title using the Window Control dialog (in the Control submenu of the
Windows menu).
windowName is the name of the window or a special keyword, kwTopWin or kwFrame.
If windowName is kwTopWin, DoWindow retitles the top target window.
If windowName is kwFrame, DoWindow retitles the “frame” or “application” window that Igor has only
under Windows. This is the window that contains Igor’s menus and status bar. On Macintosh, kwFrame is
allowed, but the command does nothing.
The Window Control dialog does not support kwFrame. The frame title persists until Igor quits or until it
is restored as shown in the example. Setting windowTitleStr to "" will restore the normal frame title.

Examples
DoWindow/T MyGraph, "My Really Neat Graph"
DoWindow/T kwFrame, "My Igor-based Application"
DoWindow/T kwFrame, "" // restore normal frame title

DoWindow/S
DoWindow /N/S=styleMacroName windowName
DoWindow /R/S=styleMacroName windowName
The DoWindow/S operation creates a new “style macro” for the named window, using the specified style
macro name. Does not create or replace the window macro for the specified window.

Flags

Details
The /R or /N flag must appear before the /S flag.
If the /S flag is present, the DoWindow operations does not create or replace the window macro for the
specified window.
The /R and /N flags do nothing when executed while a macro or function is running. This is necessary because
changing procedures while they are executing causes unpredictable and undesirable results.

/N/S=styleMacroName Creates a new style macro with the given name based on the named window.

/R/S=styleMacroName Creates or replaces the style macro with the given name based on the named
window.

DoXOPIdle

V-150

DoXOPIdle
DoXOPIdle
The DoXOPIdle operation sends an IDLE event to all open XOPs. This operation is very specialized.
Generally, only the author of an XOP will need to use this operation.

Details
Some XOPs (External OPeration code modules) require IDLE events to perform certain tasks.
Igor does not automatically send IDLE events to XOPs while an Igor program is running. You can call
DoXOPIdle from a user-defined program to force Igor to send the event.

DPSS
DPSS [flags] numPoints, numWindows
The DPSS operation generates Slepian's Discrete Prolate Spheroidal Sequences.
The DPSS operation was added in Igor Pro 7.00.

Flags

Details
DPSS generates Slepian's Discrete Prolate Spheroidal Sequences in a 2D double-precision wave of
dimensions numPoints by numWindows.
If you do omit /DEST the operation creates the output wave M_DPSS in the current data folder. The
sequences/tapers are arranged as columns in the output wave.

Examples
DPSS/DEST=dpss5 1000,5
Display dpss5[][0],dpss5[][1],dpss5[][2],dpss5[][3],dpss5[][4]
ModifyGraph rgb(dpss5#1)=(0,65535,0),rgb(dpss5#2)=(1,16019,65535)
ModifyGraph rgb(dpss5#3)=(65535,0,52428),rgb(dpss5#4)=(0,0,0)

// Different sequences are orthogonal

/DEST=destWave Saves the DPSS in a wave specified by destWave. The destination wave is overwritten
if it exists.
Creates a wave reference for the destination wave in a user function. See Automatic
Creation of WAVE References on page IV-66 for details.
If you omit /DEST the operation saves the result in the wave M_DPSS in the current
data folder.

/EV=evWave Saves the first numWindows eigenvalues in a wave specified by evWave. The
eigenvalues are computed for a symmetric tridiagonal matrix. They are real, positive
and close to 1. They can be used to estimate bias in multitaper calculations.

/FREE Creates output waves as free waves.
/FREE is permitted in user-defined functions only, not from the command line or in
macros.
If you use /FREE then destWave, evWave and sumsWave must be simple names, not
paths.
See Free Waves on page IV-84 for details on free waves.

/NW=nw Specifies the time-bandwidth product. This value should typically be in the range
[2,6]. Given a time-bandwidth product nw it is recommended to use no more than
2*nw tapers in order to maximize variance efficiency. The default value of the time-
bandwidth product is 3.

/DTPS=sumsWave Saves the sums of the generated DPSS windows in a wave specified by sumsWave.

/Q Suppress printing information in the history.

/Z Suppress errors. The variable V_Flag is set to 0 if successful and to -1 otherwise.

DrawAction

V-151

MatrixOp/o aa=col(dpss5,1)*col(dpss5,4)
Integrate/METH=1 aa/D=W_INT
Print W_INT[numpnts(W_INT)-1]

See Also
MultiTaperPSD, WindowFunction, ImageWindow, Hanning

References
D. Slepian, "Prolate spheroidal wave functions, Fourier analysis and uncertainty -- V: The discrete case.",

Bell Syst. Tech J., vol 57 pp. 1317-1430, May 1978.

DrawAction
DrawAction [/L=layerName/W=winName] keyword = value [, keyword = value …]
The DrawAction operation deletes, inserts, and reads back a named drawing object group or the entire
draw layer.

Parameters
DrawAction accepts multiple keyword = value parameters on one line.

Flags

Details
Commands stored in S_recreation are the same as those that would be generated for the range of objects in
the recreation macro for the window but also have comment lines preceding each object of the form:
// ;ITEMNO:n;

where n is the item number of the draw object.

Examples
Create a drawing with a named group:
NewPanel /W=(455,124,936,413)
SetDrawEnv fillfgc= (65535,0,0)
DrawRect 58,45,132,103
SetDrawEnv gstart,gname= fred
SetDrawEnv fillfgc= (65535,43690,0)
DrawRect 79,62,154,120

beginInsert [=index] Inserts draw commands before or at index position or at position specified by
getgroup or delete parameters; position otherwise is zero.

commands [=start,stop] Stores commands in S_recreation for draw objects between start and stop index
values, range defined by getgroup, or entire layer otherwise.

delete [=start,stop] Deletes draw objects between start and stop index values, range defined by
getgroup, or entire layer otherwise.

extractOutline
[=start,stop]

Stores polygon outline between start and stop index values, range defined by
getgroup, or entire layer otherwise. Waves W_PolyX and W_PolyY contain
coordinates with NaN separators. V_npnts contains the number of objects.
Coordinates are for the first object encountered.

endInsert Terminates insert mode.

getgroup=name Stores first and last index of named group in V_startPos and V_endPos. Use
all to specify the entire layer. Sets V_flag to truth group exists.

/L=layerName Specifies the drawing layer on which to act. layerName is one of the drawing layers
as specified in SetDrawLayer.

/W=winName Sets the named window or subwindow for drawing. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page
III-87 for details on forming the window hierarchy.

DrawArc

V-152

SetDrawEnv arrow= 1
DrawLine 139,70,219,70
SetDrawEnv gstop
SetDrawEnv fillfgc= (0,65535,65535)
DrawRect 95,77,175,138
SetDrawEnv fillfgc= (0,0,65535)
DrawRect 111,91,191,156

Get and print commands for the “fred” group:
DrawAction getgroup=fred,commands
Print S_recreation

prints:
// ;ITEMNO:3;
SetDrawEnv gstart,gname= fred
// ;ITEMNO:4;
SetDrawEnv fillfgc= (65535,43690,0)
// ;ITEMNO:5;
DrawRect 79,62,154,120
// ;ITEMNO:6;
SetDrawEnv arrow= 1
// ;ITEMNO:7;
DrawLine 139,70,219,70
// ;ITEMNO:8;
SetDrawEnv gstop

Replace group fred (the orange rectangle and the arrow) with a different object. First delete the group and
enter insert mode:
DrawAction getgroup=fred, delete, begininsert

Next draw the replacement:
SetDrawEnv gstart,gname= fred
SetDrawEnv fillfgc= (65535,65535,0)
DrawOval 82,62,161,123
SetDrawEnv gstop

Lastly exit insert mode:
DrawAction endinsert

See Also
The SetDrawEnv operation and Chapter III-3, Drawing.

DrawArc
DrawArc [/W=winName/X/Y] xOrg, yOrg, arcRadius, startAngle, stopAngle
The DrawArc operation draws a circular counterclockwise arc with center at xOrg and yOrg.

Parameters
(xOrg, yOrg) defines the center point for the arc in the currently active coordinate system.
Angles are measured in degrees increasing in a counterclockwise direction. The startAngle specifies the
starting angle for the arc and stopAngle specifies the end. If stopAngle is equal to startAngle, 360° is added to
stopAngle. Thus, a circle can be drawn using startAngle = stopAngle.
The arcRadius is the radial distance measured in points from (xOrg, yOrg).

Flags

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/X Measures arcRadius using the current X-coordinate system. If /Y is also used, the arc
may be elliptical.

/Y Measures arcRadius using the current Y-coordinate system. If /X is also used, the arc
may be elliptical.

DrawBezier

V-153

Details
Arcs honor the current dash pattern and arrowhead setting in the same way as polygons and Beziers. In
fact, arcs are implemented using Bezier curves.
Normally, you would create arcs programmatically. If you need to sketch an arc-like object, you should
probably use a Bezier curve because it is more flexible and easier to adjust. However, there is one handy
feature of arcs that make them useful for manual drawing: the origin can be in any of the supported
coordinate systems and the radius is in points.
To draw an arc interactively, see Arcs and Circles on page III-63 for instructions.

See Also
Chapter III-3, Drawing.
The SetDrawEnv and SetDrawLayer operations.
The DrawBezier, DrawOval and DrawAction operations.

DrawBezier
DrawBezier [/W=winName /ABS] xOrg, yOrg, hScaling, vScaling, {x0,y0,x1,y1 …}
DrawBezier [/W=winName /ABS] xOrg, yOrg, hScaling, vScaling, xWaveName,

yWaveName
DrawBezier/A [/W=winName] {xn, yn, xn+1, yn+1 …}
The DrawBezier operation draws a Bezier curve with first point of the curve positioned at xOrg and yOrg.

Parameters
(xOrg, yOrg) defines the starting point for the Bezier curve in the currently active coordinate system.
hScaling and vScaling set the horizontal and vertical scale factors about the origin, with 1 meaning 100%.
The xWaveName, yWaveName version of DrawBezier gets data from the named X and Y waves. This
connection is maintained so that any changes to either wave will result in updates to the Bezier curve.
To use the version of DrawBezier that takes a literal list of vertices, you place as many vertices as you like
on the first line and then use as many /A versions as necessary to define all the vertices.

Flags

Details
Data waves defining Bezier curves must have 1+3*n data points. Every third data point is an anchor point
and lies on the curve; intervening points are control points that define the direction of the curve relative to
the adjacent anchor point.
Normally, you should create and edit a Bezier curve using drawing tools, and not calculate values. See
Polygon Tool on page III-63 for instructions.
You can include the /ABS flag to suppress the default subtraction of the first point. Also, you can now insert
NaN values to break a bezier into pieces.
To change just the origin and scale without respecifying the data use:
DrawBezier xOrg, yOrg, hScaling, vScaling,{}

To delete an anchor point, press Option (Macintosh) or Alt (Windows) and then click on the anchor. To insert
a new anchor, click on the curve between anchor points.

/A Appends the given vertices to the currently open Bezier (freshly drawn or current
selection).

/ABS Suppresses the default subtraction of the first point from the rest of the data.

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

DrawLine

V-154

Example
Create a half circle approximation from three anchor points starting at the 12 o’clock position, with an
anchor at the 3 o’clock position, and the last at the 6 o’clock position using explicit values:
// Set plot relative coords, 0-1, no fill
SetDrawEnv xcoord=prel, ycoord=prel, fillpat= 0, save

Variable len= 0.275 // control point length = 0.55 * radius for a circle
// Starting anchor point has only a trailing control point
Variable anchor0x= 0.5, anchor0y=1 // starting point at 6 o'clock
Variable t0x= 0.5+len, t0y= 1 // trailing control point

// second anchor point has both leading and trailing control points
Variable l1x=1, l1y = 0.5+len // leading control point
Variable anchor1x= 1, anchor1y= 0.5 // 3 o'clock anchor
Variable t1x=1, t1y = 0.5-len // trailing control point

// Last (3rd) anchor point has only a leading control point
Variable l2x=0.5+len, l2y = 0 // leading control point
Variable anchor2x= 0.5, anchor2y= 0 // 6 o'clock

// One command per anchor for clarity
DrawBezier anchor0x, anchor0y, 1,1, {anchor0x, anchor0y, t0x, t0y}
DrawBezier/A {l1x, l1y, anchor1x, anchor1y, t1x, t1y}
DrawBezier/A {l2x, l2y, anchor2x, anchor2y}

To draw using waves:
Make/O bezierX= {anchor0x, t0x, l1x, anchor1x, t1x, l2x, anchor2x }
Make/O bezierY= {anchor0y, t0y, l1y, anchor1y, t1y, l2y, anchor2y }
DrawBezier anchor0x, anchor0y, 1,1, bezierX, bezierY

See Also
Chapter III-3, Drawing.
Polygon Tool on page III-63 for discussion on creating Beziers. DrawPoly and DrawBezier Operations on
page III-71 and the SetDrawEnv and SetDrawLayer operations.
The DrawArc, DrawPoly and DrawAction operations.

DrawLine
DrawLine [/W=winName] x0, y0, x1, y1
The DrawLine operation draws a line in the target graph, layout or control panel from (x0,y0) to (x1,y1).

Flags

Details
The coordinate system as well as the line’s thickness, color, dash pattern and other properties are
determined by the current drawing environment. The line is drawn in the current draw layer for the
window, as determined by SetDrawLayer.

See Also
Chapter III-3, Drawing.
The SetDrawEnv, SetDrawLayer and DrawAction operations.

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

DrawOval

V-155

DrawOval
DrawOval [/W=winName] left, top, right, bottom
The DrawOval operation draws an oval in the target graph, layout or control panel within the rectangle
defined by left, top, right, and bottom.

Flags

Details
The coordinate system as well as the oval’s thickness, color, dash pattern and other properties are
determined by the current drawing environment (note that you cannot draw dashed ovals). The oval is
drawn in the current draw layer for the window, as determined by SetDrawLayer.

See Also
Chapter III-3, Drawing.
The SetDrawEnv, SetDrawLayer and DrawAction operations.

DrawPICT
DrawPICT [/W=winName][/RABS] left, top, hScaling, vScaling, pictName
The DrawPICT operation draws the named picture in the target graph, layout or control panel. The left and
top parameters set the position of the top/left corner of the picture. hScaling and vScaling set the horizontal
and vertical scale factors with 1 meaning 100%.

Flags

Details
The coordinate system for the left and top parameters is determined by the current drawing environment.
The PICT is drawn in the current draw layer for the window, as determined by SetDrawLayer.

See Also
Chapter III-3, Drawing.
The SetDrawEnv, SetDrawLayer and DrawAction operations.

DrawPoly
DrawPoly [/W=winName /ABS] xorg, yorg, hScaling, vScaling, xWaveName, yWaveName
DrawPoly [/W=winName /ABS] xorg, yorg, hScaling, vScaling, {x0,y0,x1,y1 …}
DrawPoly/A [/W=winName] {xn, yn, xn+1, yn+1 …}
The DrawPoly operation draws a polygon in the target graph, layout or control panel.

Parameters
(xorg, yorg) defines the starting point for the polygon in the currently active coordinate system.
hScaling and vScaling set the horizontal and vertical scale factors, with 1 meaning 100%.

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/RABS Draws the named picture using absolute scaling. In this mode, it draws the picture in
the rectangle defined by left and top for point (x0,y0), and by hScaling and vScaling for
point (x1,y1), respectively.

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

DrawPoly

V-156

The xWaveName, yWaveName version of DrawPoly gets data from those X and Y waves. This connection is
maintained so that changes to either wave will update the polygon.
The DrawPoly operation is not multidimensional aware. See Analysis on Multidimensional Waves on
page II-86 for details.
To use the version of DrawPoly that takes a literal list of vertices, you place as many vertices as you like on
the first line and then use as many /A versions as necessary to define all the vertices.

Flags

Details
Because xorg and yorg define the location of the starting vertex of the poly, adding or subtracting a constant
from the vertices will have no effect. The first XY pair in the {x0, y0, x1, y1,…} vertex list will appear at
(xorg,yorg) regardless of the value of x0 and y0. x0 and y0 merely serve to set a reference point for the list of
vertices. Subsequent vertices are relative to (x0,y0).
To keep your mental health intact, we recommend that you specify (x0,y0) as (0,0) so that all the following
vertices are offsets from that origin. Then (xorg,yorg) sets the position of the polygon and all of the vertices
in the list are relative to that origin.
An alternate method is to use the same values for (x0,y0) as for (xorg,yorg) if you consider the vertices to be
“absolute” coordinates.
You can include the /ABS flag to suppress the subtraction of the first point. Also, you can now insert NaN
values to break a polygon into pieces.
To change just the origin and scale of the currently open polygon — without having to respecify the data — use:
DrawPoly xorg, yorg, hScaling, vScaling,{}

The coordinate system as well as the polygon’s thickness, color, dash pattern and other properties are
determined by the current drawing environment. The polygon is drawn in the current draw layer for the
window, as determined by SetDrawLayer.

Examples
Here are some commands to draw some small triangles using absolute drawing coordinates (see SetDrawEnv).
Display // make a new empty graph
//Draw one triangle, starting at 50,50 at 100% scaling
SetDrawEnv xcoord= abs,ycoord= abs
DrawPoly 50,50,1,1, {0,0,10,10,-10,10,0,0}
//Draw second triangle below and to the right, same size and shape
SetDrawEnv xcoord= abs,ycoord= abs
DrawPoly 100,100,1,1, {0,0,10,10,-10,10,0,0}

See Also
Chapter III-3, Drawing.
The SetDrawEnv and SetDrawLayer operations, DrawPoly and DrawBezier Operations on page III-71,
and Chapter III-3, Drawing and DrawAction.

/A Appends the given vertices to the currently open polygon (freshly drawn or current
selection).

/ABS Suppresses the default subtraction of the first point from the rest of the data.

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

DrawRect

V-157

DrawRect
DrawRect [/W=winName] left, top, right, bottom
The DrawRect operation draws a rectangle in the target graph, layout or control panel within the rectangle
defined by left, top, right, and bottom.

Flags

Details
The coordinate system as well as the rectangle’s thickness, color, dash pattern and other properties are
determined by the current drawing environment. The rectangle is drawn in the current draw layer for the
window, as determined by SetDrawLayer.

See Also
Chapter III-3, Drawing.
The SetDrawEnv, SetDrawLayer and DrawAction operations.

DrawRRect
DrawRRect [/W=winName] left, top, right, bottom
The DrawRRect operation draws a rounded rectangle in the target graph, layout or control panel within the
rectangle defined by left, top, right, and bottom.

Flags

Details
The coordinate system as well as the rectangle’s rounding, thickness, color, dash pattern and other
properties are determined by the current drawing environment. The rounded rectangle is drawn in the
current draw layer for the window, as determined by SetDrawLayer.

See Also
Chapter III-3, Drawing.
The SetDrawEnv, SetDrawLayer and DrawAction operations.

DrawText
DrawText [/W=winName] x0, y0, textStr
The DrawText operation draws the specified text in the target graph, layout or control panel. The position
of the text is determined by (x0, y0) along with the current textxjust, textyjust and textrot settings as set by
SetDrawEnv.

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

DrawUserShape

V-158

Flags

Details
The coordinate system as well as the text’s font, size, style and other properties are determined by the
current drawing environment. The text is drawn in the current draw layer for the window, as determined
by SetDrawLayer.

See Also
Chapter III-3, Drawing.
The SetDrawEnv, SetDrawLayer and DrawAction operations.

DrawUserShape
DrawUserShape [/W=winName /MO=options] x0, y0, x1, y1, userFuncName, textString,

privateString
The DrawUserShape operation is similar to built-in drawing operations except the shape is defined by a
user-defined function which is executed when the shape is drawn.
DrawUserShape was added in Igor Pro 7.00.

Parameters
For rectangular shapes (x0,y0) defines the top left corner while (x1,y1) defines the lower right corner in the
currently active coordinate system. For line-like shapes, (x0,y0) specifies the start of the line while(x1,y1)
specifies the end.
userFuncName specifies your user-defined function that uses built-in drawing operations to define the
shape and provides information about it to Igor.
textString specifies text to be drawn over the shape by Igor. Pass "" if you do not need text. Using escape
codes you can change the font, size, style, and color of the text. See Annotation Escape Codes on page III-53
or details.
privateString is text or binary data used by the user-defined function for any purpose. It is typically used to
maintain state information and is saved in recreation macros using a method that supports binary. Pass ""
if you do not need this.
To support modifying an existing shape, each of the last three parameters above can be _NoChange_. The
x0, y0, x1, y1 parameters can be all zero for no change. Using _NoChange_ when there is no existing shape
is an error. To target an existing shape, it must be selected by the drawing tools.

Flags

Details
The user-defined function must have the following form and structure parameter.
Function MyUserShape(s) : DrawUserShape // Optional ": DrawUserShape" indicates

// that this function should be added
STRUCT WMDrawUserShapeStruct &s // to the menu of shapes in the drawing palette

Variable returnValue= 1

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/W=winName Draws to the named window or subwindow. When omitted, action will affect the
active window or subwindow. This must be the first flag specified when used in a
Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/M=options An integer that Igor passes to your user-defined drawing function for use for any
purpose.

DrawUserShape

V-159

StrSwitch(s.action)
case "draw":

Print "Put DrawXXX commands here"
break

case "drawSelected":
Print "Put Draw commands when selected (may be same as normalDraw) here"
break

case "hitTest":
Print "Put code to test if mouse is over a control point here"
// Set doSetCursor and optionally cursorCode if so"
// Set returnValue to zero if not over control point or, if in operate
// mode and you don't want to start a button operation.
break

case "mouseDown":
if(s.operateMode)

Print "Mouse down in button mode."
else

// Code similar or same as hitTest.
Print "User is starting a drag of a control point."

endif
// Set returnValue to zero if if no action or redraw needed
break

case "mouseMove":
if(s.operateMode)

Print "Roll-over mode and mouse is inside shape."
else

Print "Mouse has been captured and user is dragging a control point."
endif
// Set returnValue to zero if if no action or redraw needed
break

case "mouseUp":
if(s.operateMode)

Print "Mouse button released."
else

Print "User finished dragging control point."
endif
break

case "getInfo":
Print "Igor is requesting info about this shape."
s.textString= "category for shape"
s.privateString= "shape name"
s.options= 0// Or set bits 0, 1 and/or 2
break

EndSwitch

return returnValue
End

WMDrawUserShapeStruct is a built-in structure with the following members:

WMDrawUserShapeStruct Structure Members

Member Description

char action[32] Input: Specifies what action is requested.

SInt32 options Input: Value from /MO flag.
Output: When action is getInfo, set bits as follows:
Set bit 0 if the shape should behave like a simple line. When
resizing end-points, you will get live updates.
Set bit 1 if the shape is to act like a button; you will get mouse
down in normal operate mode.
Set bit 2 to get roll-over action. You will get hitTest action
and if 1 is returned, the mouse will be captured.

SInt32 operateMode Input: If 0, the shape is being edited; if 1, normal operate mode
(only if options bit 1 or 2 was set during getInfo).

PointF mouseLoc Input: The location of the mouse in normalized coordinates.

DrawUserShape

V-160

The constants used to size the char arrays, MAX_HostChildSpec and MAX_OBJ_NAME, are defined
internally in Igor and are subject to change in future versions.
The drawing commands you provide for the draw and drawSelected actions must use normalized
coordinates ranging from (0,0) to (1,1). For example, to draw a rectangle you would use
DrawRect 0,0,1,1

Generally, you will not set drawing environment parameters such as color or fill mode but will leave that
to the user of your shape just as they would for built-in shapes such as a Rectangle.
You will get the drawSelected action when the user has selected your shape with the arrow draw tool.
For simple shapes, this can use the same code as the draw action but if you want the shape to be editable,
you can draw control points such as a yellow dot. You would then provide code in the hitTest and
mouseDown actions that determines if the user has moved over or clicked on a control point. For an example
of this, see the FatArrows procedure file in the User Draw Shapes demo experiment.
Your function should respond to the getInfo action by setting the textString field to a category name and
the privateString field to a shape name. A category name might be "Arrows" and a shape name might be
"Right Arrow". These names are used to populate the menus you get when right-clicking the user shapes
icon in the drawing tools palette. You can also set bits in the options field to enable certain special actions.
For examples of these, see the LineCallout and button procedure windows in the User Draw Shapes demo
experiment.
Note: To support button-like shapes in graphs and layouts, an additional drawing layer named Overlay
was added in Igor Pro 7.00. This layer is drawn over the top of everything else and is not printed or
exported. Objects in the Overlay draw layer can update without the need to redraw the entire window as
would be the case if one of the previously existing layers were used. For consistency, this layer is also
available in control panels.

See Also
Chapter III-3, Drawing.
SetDrawEnv, SetDrawLayer, DrawBezier, DrawPoly, DrawAction

SInt32 doSetCursor Output: If action is hitTest, set true to use the following
cursor number. Also used for mouseMoved in rollover mode.

SInt32 cursorCode Output: If action is hitTest and doSetCursor is set, then set
this to the desired Igor cursor number.

double x0,y0,x1,y1 Input: Coordinates of the enclosing rectangle of the shape.

RectF objectR Input: Coordinates of the enclosing rectangle of the shape in
device units.

char winName[MAX_HostChildSpec+1] Full path to host subwindow

// Information about the coordinate system

Rect drawRect Draw rect in device coordinates

Rect plotRect In a graph, this is the plot area

char xcName[MAX_OBJ_NAME+1] Name of X coordinate system, may be axis name

char ycName[MAX_OBJ_NAME+1] Name of Y coordinate system, may be axis name

double angle Input: Rotation angle, use when displaying text

String textString Input: Use or ignore; special output for getInfo

String privateString Input and output: Maintained by Igor but defined by user
function; may be binary; special output for getInfo

WMDrawUserShapeStruct Structure Members

Member Description

DSPDetrend

V-161

DSPDetrend
DSPDetrend [flags] srcWave
The DSPDetrend operation removes from srcWave a trend defined by the best fit of the specified function
to the data in srcWave.

Flags

Details
DSPDetrend sets V_flag to zero when the operation succeeds, otherwise it will be set to -1 or will contain
an error code from the curve fitting routines. Results are saved in the wave W_Detrend (for 1D input) or
M_Detrend (for 2D input) in the current data folder. If a wave by that name already exists in the current
data folder it will be overwritten.

See Also
CurveFit for more information about V_FitQuitReason and the built-in fitting functions.

DSPPeriodogram
DSPPeriodogram [flags] srcWave [srcWave2]
The DSPPeriodogram operation calculates the periodogram, cross-spectral density or the degree of
coherence of the input waves. The result of the operation is stored in the wave W_Periodogram in the
current data folder.
To compute the cross-spectral density or the degree of coherence, you need to specify the second wave
using the optional srcWave2 parameter. In this case, W_Periodogram will be complex and the /dB and /dBR
flags do not apply.

Flags

/A Subtracts the average of srcWave before performing any fitting. Added in Igor Pro
7.00.

/F= function function is the name of a built-in curve fitting function:
gauss, lor, exp, dblexp, sin, line, poly (requires /P flag), hillEquation, sigmoid, power,
lognormal, poly2d (requires /P flag), gauss2d.
If function is unspecified, the defaults are line if srcWave is 1D or poly2d if srcWave is
2D.

/M=maskWave Detrending will only affect points that are nonzero in maskWave. Note that maskWave
must have the same dimensionality as srcWave.

/P=n Specifies polynomial order for poly or poly2d functions (see CurveFit for details).
When used with the 1D poly function n specifies the number of terms in the
polynomial.
By default n=3 for the 1D case and n=1 for poly2d.

/Q Quiet mode; no error reporting.

/dB Expresses results in dB using the maximum value as reference.

/dBR=ref Express the results in dB using the specified ref value.

/COHR Computes the degree of coherence. This flag applies when the input consists of two
waves.

/DLSG When computing the periodogram, cross-spectral density or the degree of coherence
using multiple segments the operation by default pads the last segment with zeros as
necessary. If you specify this flag, an incomplete last segment is dropped and not
included in the calculation.

DSPPeriodogram

V-162

Details
The default periodogram is defined as

where F (s) is the Fourier transform of the signal s and N is the number of points.
In most practical situations you need to account for using a window function (when computing the Fourier
transform) which takes the form

where w is the window function, Np is the number of points and Nw is the normalization of the window
function.
If you compute the periodogram by subdividing the signal into multiple segments (with any overlap) and
averaging the results over all segments, the expression for the periodogram is

/NODC=val

/NOR=N

/Q Quiet mode; suppresses printing in the history area.

/SEGN={ptsPerSegment, overlapPts}

Use this flag to compute the periodogram, cross-spectral density or degree of
coherence by averaging over multiple segments taken from the input waves. The size
of each interval is ptsPerSegment. overlapPts determines the number of points at the
end of each interval that are included in the next segment.

/R=[startPt, endPt] Calculates the periodogram for a limited range of the wave. startPt and endPt are
expressed in terms of point numbers in srcWave.

/R=(startX, endX) Calculates the periodogram for a limited range of the wave. startX and endX are
expressed in terms of x-values. Note that this option will convert your x-specifications
to point numbers and some roundoff may occur.

/WIN=windowKind Specifies the window type. If you omit the /W flag, DSPPeriodogram uses a
rectangular window for the full wave or the range of data selected by the /R flag.
Choices for windowKind are:
Bartlett, Blackman367, Blackman361, Blackman492, Blackman474, Cos1, Cos2, Cos3,
Cos4, Hamming, Hanning, KaiserBessel20, KaiserBessel25, KaiserBessel30, Parzen,
Poisson2, Poisson3, Poisson4, and Riemann.
See FFT for window equations and details.

/Z Do not report errors. When an error occurs, V_flag is set to -1.

Suppresses the DC term:
val=1: Removes the DC by subtracting the average value of the signal before

processing and before applying any window function (see /Win
below).

val=2: Suppresses the DC term by setting it equal to the second term in the
FFT array.

val=0: Computes the DC term using the FFT (default).

Sets the normalization, N, in the periodogram equation. By default, it is the number
of data points times the square norm of the window function (if any).

Any other value of N is used as the only normalization.

N=0 or 1: Skips default normalization.

Periodogram =
F(s)

2

N
,

Periodogram =
F(s �w)

2

NpNw

,

DSPPeriodogram

V-163

where si is the ith segment s, Ns is the number of points per segment and M is the number of segments.
When calculating the cross-spectral density (csd) of two waves s1 and s2, the operation results in a complex
valued wave

which contains the normalized product of the Fourier transform of the first wave SA with the complex
conjugate of the Fourier transform of the second wave SB. The extension of the csd calculation to segment
averaging has the form

where SAi is the ith segment of the first wave, M is the number of segments and Ns is the number of points
in a segment.
The degree of coherence is a normalized version of the cross-spectral density. It is given by

The bias in the degree of coherence is calculated using the approximation

The bias is stored in the wave W_Bias.
If you use the /SEGN flag the actual number of segments is reported in the variable V_numSegments.
Note that DSPPeriodogram does not test the dimensionality of the wave; it treats the wave as 1D. When you
compute the cross-spectral density or the degree of coherence the number-type, dimensionality and the
scaling of the two waves must agree.

See Also
The ImageWindow operation for 2D windowing applications. FFT for window equations and details.
The Hanning, LombPeriodogram and MatrixOp operations.

References
For more information about the use of window functions see:
Harris, F.J., On the use of windows for harmonic analysis with the discrete Fourier Transform, Proc, IEEE,

66, 51-83, 1978.

Periodogram =
F(si �w)

2

i=1

M

�

MNsNw

,

csd = F(sA)[F(sB)]*

N
,

csd =
F(sAi)[F(sBi)]

*

i=0

M

�

MNsNw

,

� =
F(sAi)[F(sBi)]

*

i=0

M

�

F(sAi)[F(sAi)]
*

i=0

M

� F(sBi)[F(sBi)]
*

i=0

M

�

.

B = 1

M
1� �

2
�
�

�
�

2

.

Duplicate

V-164

G.C. Carter, C.H. Knapp and A.H. Nuttall, The Estimation of the Magnitude-squared Coherence Function
Via Overlapped Fast Fourier Transform Processing, IEEE Trans. Audio and Electroacoustics, V. AU-
21, (4) 1973.

Duplicate
Duplicate [flags][type flags] srcWaveName, destWaveName [, destWaveName]…
The Duplicate operation creates new waves, the names of which are specified by destWaveNames and the
contents, data type and scaling of which are identical to srcWaveName.

Parameters
srcWaveName must be the name of an existing wave.
The destWaveNames should be wave names not currently in use unless the /O flag is used to overwrite
existing waves.

Flags

Type Flags (used only in functions)
When used in user-defined functions, Duplicate can also take the /B, /C, /D, /I, /S, /U, /W, /T, /DF and
/WAVE flags. This does not affect the result of the Duplicate operation - these flags are used only to identify
what kind of wave is expected at runtime.
This information is used if, later in the function, you create a wave assignment statement using a duplicated
wave as the destination:

/FREE Creates a free wave (see Free Waves on page IV-84).

/FREE is allowed only in functions and only if a simple name or wave reference
structure field is specified as the destination wave name.

/O Overwrites existing waves with the same name as destWaveName.

/R=(startX,endX) Specifies an X range in the source wave from which the destination wave is created.
See Details for further discussion of /R.

/R=(startX,endX)(startY,endY)

Specifies both X and Y range. Further dimensions are constructed analogously.
See Details for further discussion of /R.

/R=[startP,endP] Specifies a row range in the source wave from which the destination wave is created.
Further dimensions are constructed just like the scaled dimension ranges.
See Details for further discussion of /R.

/RMD=[firstRow,lastRow][firstColumn,lastColumn][firstLayer,lastlayer][firstChunk,lastChunk]

Designates a contiguous range of data in the source wave to which the operation is to
be applied. This flag was added in Igor Pro 7.00.
You can include all higher dimensions by leaving off the corresponding brackets. For
example:
/RMD=[firstRow,lastRow]

includes all available columns, layers and chunks.
You can use empty brackets to include all of a given dimension. For example:
/RMD=[][firstColumn,lastColumn]

means "all rows from column A to column B".
You can use a * to specify the end of any dimension. For example:
/RMD=[firstRow,*]

means "from firstRow through the last row".

DuplicateDataFolder

V-165

Function DupIt(wv)
Wave/C wv //complex wave

Duplicate/O/C wv,dupWv //tell Igor that dupWv is complex
dupWv[0]=cmplx(5.0,1.0) //no error, because dupWv known complex
…

If Duplicate did not have the /C flag, Igor would complain with a “function not available for this number
type” message when it tried to compile the assignment of dupWv to the result of the cmplx function.
These type flags do not need to be used except when it needed to match another wave reference variable of
the same name or to identify what kind of expression to compile for a wave assignment. See WAVE
Reference Types on page IV-67 and WAVE Reference Type Flags on page IV-68 for a complete list of type
flags and further details.

Details
If /R is omitted, the entire wave is duplicated.
In the range specifications used with /R, a * for the end means duplicate to the end. You can also simply
leave out the end specification. To include all of a given dimension, use /R=[]. If you leave off higher
dimensions, all those dimensions are duplicated. That is, /R=[1,5] for a 2D wave is equivalent to
/R=[1,5][].
The destination wave will always be unlocked, even if the source wave was locked.

Warning:
Under some circumstances, such as in loops in user-defined functions, Duplicate may exhibit undesired
behavior. When you use
Duplicate/O srcWave, DestWaveName

in a user-defined function, it creates a local WAVE variable named DestWaveName at compile time. At
runtime, if the WAVE variable is NULL, it creates a wave of the same name in the current data folder. If,
however, the WAVE variable is not NULL, as it would be in a loop, then the referenced wave will be
overwritten no matter where it is located. If the desired behavior is to create (or overwrite) a wave in the
current data folder, you should use one of the following two methods:
Duplicate/O srcWave, $"DestWaveName"
WAVE DestWaveName // only if you need to reference dest wave

or
Duplicate/O srcWave, DestWaveName
// then after you are finished using DestWaveName…
WAVE DestWaveName=$""

See Also
Rename, Concatenate, SplitWave

DuplicateDataFolder
DuplicateDataFolder sourceDataFolderSpec, destDataFolderSpec
The DuplicateDataFolder operation makes a copy of the source data folder and everything in it and places
the copy at the specified location with the specified name.

Parameters
sourceDataFolderSpec can be just the name of a child data folder in the current data folder, a partial path
(relative to the current data folder) and name or an absolute path (starting from root) and name.
destDataFolderSpec can be just a data folder name, a partial path (relative to the current data folder) and
name or an absolute path (starting from root) and name. If just a data folder name is used then the new data
folder is created in the current data folder.

Details
An error is issued if the destination is contained within the source data folder.

Examples
Create a copy of foo named foo2 in bar:
DuplicateDataFolder foo,:bar:foo2

DWT

V-166

See Also
See the MoveDataFolder operation. Chapter II-8, Data Folders.

DWT
DWT [flags] srcWaveName, destWaveName
The DWT operation performs discrete wavelet transform on the input wave srcWaveName. The operation
works on one or more dimensions only as long as the number of elements in each dimension is a power of
2 or when the /P flag is specified

Flags

Details
If destWaveName exists, DWT overwrites it; if it does not exist, DWT creates it.
When used in a function, the DWT operation automatically creates a wave reference for the destination
wave. See Automatic Creation of WAVE References on page IV-66 for details.
If destWaveName is not specified, the DWT operation stores the results in W_DWT for 1D waves and
M_DWT for higher dimensions.

/D Denoises the source wave. Performs the specified wavelet transform in the forward direction. It
then zeros all transform coefficients whose magnitude fall below a given percentage (specified
by the /V flag) of the maximum magnitude of the transform. It then performs the inverse
transform placing the result in destWaveName. The /I flag is incompatible with the /D flag.

/I Perform the inverse wavelet transform. The /S and /D flags are incompatible with the /I flag.

/N=num Specifies the number of wavelet coefficients. See /T flag for supported combinations.

/P=num

/S Smooths the source wave. This performs the specified wavelet transform in the forward
direction. It then zeros all transform coefficients except those between 0 and the cut-off value
(specified in % by /V flag). It then performs the inverse transform placing the result in
destWaveName. The /I flag is incompatible with the /S flag.

/T=type

/V=value Specifies the degree of smoothing with the /S and /D flags only.
For /S, value gives the cutoff as a percentage of data points above which coefficients are set to
zero. For /D, value specifies the percentage of the maximum magnitude of the transform such
that coefficients smaller than this value are set to zero.

Controls padding:
num=1: Adds zero padding to the end of the dimension up to nearest power of 2

when the number of data elements in a given dimension of srcWaveName is
not a power of 2.

num=2: Uses zero padding to compute the transform, but the resulting wave is
truncated to the length of the input wave.

Performs the wavelet transform specified by type. The following table gives the transform
name with the type code for the transform and the allowed values of the num parameter
used with the /N flag. “NA” means that the /N flag is not applicable to the corresponding
transform.
Wavelet Transform type num
Daubechies 1 (default) 4, 6, 8, 10, 12, 20
Haar 2 NA
Battle-Lemarie 4 NA
Burt-Adelson 8 NA
Coifman 16 2, 4, 6
Pseudo-Coifman 32 NA
splines 64 1 (2-2), 2 (2-4), 3 (3-3), 4 (3-7)

e

V-167

When working with 1D waves, the transform results are packed such that the higher half of each array
contains the detail components and the lower half contains the smooth components and each successive
scale is packed in the lower elements. For example, if the source wave contains 128 points then the lowest
scale results are stored in elements 64-127, the next scale (power of 2) are stored from 32-63, the following
scale from 16-31 etc.

Example
Make/O/N=1024 testData=sin(x/100)+gnoise(0.05)
DWT /S/N=20/V=25 testData, smoothedData

See Also
For continuous wavelet transforms use the CWT operation. See the FFT operation.
For further discussion and examples see Discrete Wavelet Transform on page III-252.

e
e
The e function returns the base of the natural logarithm system (2.7182818…).

EdgeStats
EdgeStats [flags] waveName
The EdgeStats operation produces simple statistics on a region of a wave that is expected to contain a single
edge. If more than one edge exists, EdgeStats works on the first one found.

Flags

Details
The /B=box, /T=dx, /P, and /Q flags behave the same as for the FindLevel operation.

/A=avgPts Determines startLevel and endLevel automatically by averaging avgPts points at
centered at startX and endX. Default is /A=1.

/B=box Sets box size for sliding average. This should be an odd number. If /B=box is omitted
or box equals 1, no averaging is done.

/F=frac Specifies levels 1, 2 and 3 as a fraction of (endLevel-startLevel):
level1 = frac* (endLevel-startLevel) + startLevel
level2 = 0.5 * (endLevel-startLevel) + startLevel
level3 = (1-frac) * (endLevel-startLevel) + startLevel
The default value for frac is 0.1 which makes level1 the 10% level, level2 the 50% level
and level3 the 90% level.
frac must be between 0 and 0.5.

/L=(startLevel, endLevel)

Sets startLevel and endLevel explicitly. If omitted, they are determined automatically.
See /A.

/P Output edge locations (see Details) are returned as point numbers. If /P is omitted,
edge locations are returned as X values.

/Q Prevents results from being printed in history and prevents error if edge is not found.

/R=(startX,endX) Specifies an X range of the wave to search. You may exchange startX and endX to
reverse the search direction.

/R=[startP,endP] Specifies a point range of the wave to search. You may exchange startP and endP to
reverse the search direction. If /R is omitted, the entire wave is searched.

/T=dx Forces search in two directions for a possibly more accurate result. dx controls where
the second search starts.

EdgeStats

V-168

EdgeStats considers a region of the input wave between two X locations, called startX and endX. startX and
endX are set by the /R=(startX,endX) flag. If this flag is missing, startX and endX default to the start and end
of the entire wave. startX can be greater than endX so that the search for an edge can proceed from the
“right” to the “left”.
The diagram above shows the default search direction, from the “left” (lower point numbers) of the wave
toward the “right” (higher point numbers).
The startLevel and endLevel values define the base levels of the edge. You can explicitly set these levels with
the /L=(startLevel, endLevel) flag or you can let EdgeStats find the base levels for you by using the /A=avgPts
flag which averages points around startX and endX.
Given startLevel and endLevel and a frac value (see the /F=frac flag) EdgeStats defines level1, level2 and level3
as shown in the diagram above. With the default frac value of 0.1, level1 is the 10% point, level2 is the 50%
point and level3 is the 90% point.
With these levels defined, EdgeStats searches the wave from startX to endX looking for level2. Having found
it, it then searches for level1 and level3. It returns results via variables described below.
EdgeStats sets the following variables:

These X locations and distances are in terms of the X scaling of the named wave unless you use the /P flag,
in which case they are in terms of point number.
The EdgeStats operation is not multidimensional aware. See Analysis on Multidimensional Waves on
page II-86 for details.

See Also
The FindLevel operation for use of the /B=box, /T=dx, /P and /Q flags, and PulseStats.

V_flag 0: All three level crossings were found.
1: One or two level crossings were found.
2: No level crossings were found.

V_EdgeLoc1 X location of level1.

V_EdgeLoc2 X location of level2.

V_EdgeLoc3 X location of level3.

V_EdgeLvl0 startLevel value.

V_EdgeLvl1 level1 value.

V_EdgeLvl2 level2 value.

V_EdgeLvl3 level3 value.

V_EdgeLvl4 endLevel value.

V_EdgeAmp4_0 Edge amplitude (endLevel - startLevel).

V_EdgeDLoc3_1 Edge width (x distance between point 1 and point 3).

V_EdgeSlope3_1 Edge slope (straight line slope from point 1 and point 3).

point 1

point 2

level 3 point 3

x1 x2 x3 endX

point 4

point 0

level 1

level 2

startLevel

endLevel

startX

Edit

V-169

Edit
Edit [flags] [columnSpec [, columnSpec]…][as titleStr]
The Edit operation creates a table window or subwindow containing the specified columns.

Parameters
columnSpec is usually just the name of a wave. If no columnSpecs are given, Edit creates an empty table.
Column specifications are wave names optionally followed by one of the suffixes:

If the wave is complex, the wave names may be followed by .real or .imag suffixes. However, as of Igor Pro
3.0, both the real and imaginary columns are added to the table together — you can not add one without
the other — so using these suffixes is discouraged.

titleStr is a string expression containing the table’s title. If not specified, Igor will provide one which
identifies the columns displayed in the table.

Flags

Suffix Meaning

.i Index values.

.l Dimension labels.

.d Data values.

.id Index and data values.

.ld Dimension labels and data values.

Historical
Note:

Prior to Igor Pro 3.0, only 1D waves were supported. We called index values “X values”
and used the suffix “.x” instead of “.i”. We called data values “Y values” and used the
suffix “.y” instead of “.d”. For backward compatibility, Igor accepts “.x” in place of “.i”
and “.y” in place of “.d”.

/HIDE=h Hides (h = 1) or shows (h = 0, default) the window.

/HOST=hcSpec Embeds the new table in the host window or subwindow specified by hcSpec.
When identifying a subwindow with hcSpec, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/I Specifies that /W coordinates are in inches.

/K=k

/M Specifies that /W coordinates are in centimeters.

/N=name Requests that the created table have this name, if it is not in use. If it is in use, then name0,
name1, etc. are tried until an unused window name is found. In a function or macro,
S_name is set to the chosen table name. Use DoWindow/K name to ensure that name is
available.

/W=(left,top,right,bottom)

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

ei

V-170

Details
You can not change dimension index values shown in a table. Use the Change Wave Scaling dialog or the
SetScale operation.
If /N is not used, Edit automatically assigns to the table window a name of the form “Tablen”, where n is
some integer. In a function or macro, the assigned name is stored in the S_name string. This is the name you
can use to refer to the table from a procedure. Use the RenameWindow operation to rename the graph.

Examples
These examples assume that the waves are 1D.
Edit myWave,otherWave // 2 columns: data values from each wave
Edit myWave.id // 2 columns: x and data values
Edit cmplxWave // 2 columns: real and imaginary data values
Edit cmplxWave.i // One column: x values

The following examples illustrates the use of column name suffixes in procedures when the name of the
wave is in a string variable.
Macro TestEdit()

String w = "wave0"
Edit $w // edit data values
Edit $w.i // show index values
Edit $w.id // index and data values

End

Note that the suffix, if any, must not be stored in the string. In a user-defined function, the syntax would be
slightly different:
Function TestEditFunction()

Wave w = $"wave0"
Edit w // no $, because w is name, not string
Edit w.i // show index values
Edit w.id // index and data values

End

See Also
The DoWindow operation. For a description of how tables are used, see Chapter II-11, Tables.

ei
ei(x)
The ei function returns the value of the exponential integral Ei(x):

where P denotes the principal value of the integral.

See Also
The expInt function.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 228 pp., Dover, New York, 1972.

Gives the table a specific location and size on the screen. Coordinates for /W are in
points unless /I or /M are specified before /W.
When used with the /HOST flag, the specified location coordinates of the sides can
have one of two possible meanings:
When all values are less than 1, coordinates are assumed to be fractional relative to
the host frame size.
When any value is greater than 1, coordinates are taken to be fixed locations measured
in points relative to the top left corner of the host frame.

Ei(x) = P
et

t
dt

−∞

x

∫ (x > 0),

End

V-171

End
End
The End keyword marks the end of a macro, user function, or user menu definition.

See Also
The Function and Macro keywords.

EndMacro
EndMacro
The EndMacro keyword marks the end of a macro. You can also use End to end a macro.

See Also
The Macro and Window keywords.

EndStructure
EndStructure
The EndStructure keyword marks the end of a Structure definition.

See Also
The Structure keyword.

endtry
endtry
The endtry flow control keyword marks the end of a try-catch-entry flow control construct.

See Also
The try-catch-endtry flow control statement for details.

enoise
enoise(num [, RNG])
The enoise function returns a random value drawn from a uniform distribution having a range of [-num,
num).
The random number generator is initialized using the system clock when you start Igor, virtually guaranteeing
that you will never repeat the same sequence. If you want repeatable “random” numbers, use SetRandomSeed.
The optional parameter RNG selects one of two different pseudo-random number generators. If omitted,
the default is 1. The RNG’s are:

In a complex expression, the enoise function returns a complex value, as if you had called:
cmplx(enoise(num), enoise(num))

Except for gnoise, other noise functions do not have complex implementations.

Example
// Generate uniformly-distributed integers on the interval [from,to] with from<to
Function IntNoise(from, to)

Variable from, to
Variable amp = to - from
return floor(from + mod(abs(enoise(100*amp)),amp+1))

End

RNG Description

1 Linear Congruential generator by L’Ecuyer with added Bayes-Durham shuffle. The algorithm is
described in Numerical Recipes as the function ran2(). This option has nearly 232 distinct values
and the sequence of random numbers has a period in excess of 1018.

2 Mersenne Twister by Matsumoto and Nishimura. It is claimed to have better distribution
properties and period of 219937-1.

EqualWaves

V-172

See Also
The SetRandomSeed operation and the gnoise function.
Noise Functions on page III-344.

References
Press, William H., et al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New York,

1992.
Details about the Mersene Twister are in:
Matsumoto, M., and T. Nishimura, Mersenne Twister: A 623-dimensionally equidistributed uniform

pseudorandom number generator, ACM Trans. on Modeling and Computer Simulation, 8, 3-30, 1998.
More information is available online at: <http://en.wikipedia.org/wiki/Mersenne_twister>

EqualWaves
EqualWaves(waveA, waveB, selector [, tolerance])
TheEqualWaves function compares waveA to waveB. Each wave can be of any data type. It returns 1 for
equality and zero otherwise.
Use the selector parameter to determine which aspects of the wave are compared. You can add selector
values to test more than one field at a time or pass -1 to compare all aspects.

If you use the selectors for wave data, wave scaling, dimension units, dimension labels or dimension sizes,
EqualWaves will return zero if the waves have unequal dimension sizes. The other selectors do not require
equal dimension sizes.

Details
If you are testing for equality of wave data and if the tolerance is specified, it must be a positive number. The
function returns 1 for equality if the data satisfies:

If tolerance is not specified, it defaults to 10-8.
If tolerance is set to zero and selector is set to 1 then the data in the two waves undergo a binary comparison
(byte-by-byte).
If tolerance is non-zero then the presence of NaNs at a given point in both waves does not contribute to the
sum shown in the equation above when both waves contain NaNs at the same point. A NaN entry that is
present in only one of the waves is sufficient to flag inequality. Similarly, INF entries are excluded from the
tolerance calculation when they appear in both waves at the same position and have the same signs.
If you are comparing wave data (selector =1) and both waves contain zero points the function returns 1.

selector Field Compared

1 Wave data

2 Wave data type

4 Wave scaling

8 Data units

16 Dimension units

32 Dimension labels

64 Wave note

128 Wave lock state

256 Data full scale

512 Dimension sizes

waveA[i]− waveB[i]()2

i
∑ < tolerance.

http://en.wikipedia.org/wiki/Mersenne_twister

erf

V-173

See Also
The MatrixOp operation equal keyword.

erf
erf(num [, accuracy])
The erf function returns the error function of num.

Optionally, accuracy can be used to specify the desired fractional accuracy.
In complex expressions the error function is

where

is the confluent hypergeometric function of the first kind HyperG1F1. In this case the accuracy parameter
is ignored.

Details
The accuracy parameter specifies the fractional accuracy that you desire. That is, if you set accuracy to 10-7,
that means that you wish that the absolute value of (factual - freturned)/factual be less than 10-7.
For backwards compatibility, in the absence of accuracy an alternate calculation method is used that
achieves fractional accuracy better than about 2x10-7.
If accuracy is present, erf can achieve fractional accuracy better than 8x10-16 for num as small as 10-3. For
smaller num fractional accuracy is better than 5x10-15.
Higher accuracy takes somewhat longer to calculate. With accuracy set to 10-16 erfc takes about 50% more
time than with accuracy set to 10-7.

See Also
The erfc, erfcw, dawson, inverseErf, and inverseErfc functions.

erfc
erfc(num [, accuracy])
The erfc function returns the complementary error function of num (erfc(x) = 1 - erf(x)). Optionally, accuracy
can be used to specify the desired fractional accuracy.
In complex expressions the complementary error function is

 where

is the confluent hypergeometric function of the first kind HyperG1F1. In this case the accuracy parameter
is ignored.

Details
The accuracy parameter specifies the fractional accuracy that you desire. That is, if you set accuracy to 10-7,
that means that you wish that the absolute value of (factual - freturned)/factual be less than 10-7.
For backwards compatibility, in the absence of accuracy an alternate calculation method is used that
achieves fractional accuracy better than 2x10-7.

erf (x) = 2

π
e− t2 dt.

0

x

∫

erf (z) = 2z

π 1F1

1

2
;
3

2
;−z2⎛

⎝⎜
⎞
⎠⎟ ,

1F1

1

2
;
3

2
;−z2⎛

⎝⎜
⎞
⎠⎟

erfc z() 1 erfc z()– 1 2z
π

------- F1 1
1
2
--- 32
--- z2–,(,)–= = F1 1

1
2
--- 32
--- z2–,(,)

erfcw

V-174

If accuracy is present, erfc can achieve fractional accuracy better than 2x10-16 for num up to 1. From num = 1
to 10 fractional accuracy is better than 2x10-15.
Higher accuracy takes somewhat longer to calculate. With accuracy set to 10-16 erfc takes about 50% more
time than with accuracy set to 10-7.

See Also
The erf, erfcw, inverseErfc, and dawson functions.

erfcw
erfcw(z)
The erfcw is a complex form of the error function defined by

where

The function is computed with accuracy of 0.5e-10. It is particularly useful for large |z| where the
computation of erfc(z) starts encountering numerical instability.

References
1. http://en.wikipedia.org/wiki/Error_function
2. W. Gautschi, "Efficient Computation of the Complex Error Function", SIAM J. Numer. Anal. Vol. 7, No. 1,
March 1970.

See Also
The erf, erfc, inverseErfc, and dawson functions.

ErrorBars
ErrorBars [flags] traceName, mode [errorSpecification]
The ErrorBars operation adds or removes error bars to or from the named trace in the specified graph.
The “error bars” are lines that extend from each data point to “caps”. The length of the line (or “bar”) is
usually used to bracket a measured value by the amount of uncertainty, or “error” in the measurement.

Parameters
traceName is usually the name of a wave. If a wave is displayed more than once in a graph, the instance
number can be appended to identify which instance to apply error bars to. For instance, wave0#2 refers to
the third instance of wave0 displayed in the top graph (wave0, or wave0#0, is the first instance).
A string containing traceName can be used with the $ operator to specify traceName.
mode is one of the following keywords:

OFF No error bars.

X Horizontal error bars only.

Y Vertical error bars only.

XY Horizontal and vertical error bars.

BOX Box error bars.

SHADE={options, fillMode, fgColor, bkColor [, negFillMode, negFgColor, negBkColor]}

SHADE was added in Igor Pro 7.00.
options is reserved for future use and must be zero

erfcw(z) = exp[−z2]erfc(−iz),

erfc(z) = 2

π
exp[−t 2]dt.

z

∞

∫

http://en.wikipedia.org/wiki/Error_function

ErrorBars

V-175

For any mode other than OFF, there is an errorSpecification whose format is keyword [= value]. The
errorSpecification keywords are:

See the examples for the values that correspond to these mode and errorSpecification keywords. See the
diagram below. mode and errorSpecification control only the lengths of the horizontal and vertical lines (the
“bars”) to the “caps”. All other sizes and thicknesses are controlled by the flags.

XY mode Error Bars

Flags

fgColor is (r,g,b) or (r,g,b,a). If all zeros including alpha, i.e., (0,0,0,0), then the actual
color will be the trace color with an alpha of 20000.
bkColor is used for patterns only and can be simply (0,0,0) for solid fills.

negFillMode is the same as fillMode but for negative error shading.
negFgColor is the same as fgColor but for negative error shading.
negBkColor is the same as bkColor but for negative error shading.

The errorSpecification , described below, affects only the Y amplitude of error shading.
See Error Shading on page II-234 for more information and examples. See Color
Blending on page III-440 for information on the alpha color parameter.

pct Percent.

sqrt Square root.

const Constant.

wave Arbitrary error values. You can use subranges; see Subrange Display
Syntax on page II-250.

/L=lineThick Specifies the thickness of both the X and Y error bars drawn from the point on the
wave to the caps.

/T=thick Specifies the thickness of both the X and Y error bar “caps”.

fillMode sets the fill pattern.
n=0: No fill.
n=1: Erase.
n=2: Solid black.
n=3: 75% gray.
n=4: 50% gray.
n=5: 25% gray.
n>=6: See Fill Patterns on page III-441.

Y Cap

/Y=yWidth

/T=thick/L=lineThick

X
 C

ap

/X
=

xW
id

th

Y+ Error Bar

Y- Error BarX- Error Bar

X+ Error Bar

Sizes controlled by mode and errorSpecification Sizes controlled by flag values

Execute

V-176

The thicknesses and widths are in units of points. The thickness parameters need not be integers. Although
only integral thicknesses can be displayed exactly on the screen, nonintegral thicknesses are produced
properly on high resolution hard copy devices. Use /T=0 to completely suppress the caps and /L=0 to
completely suppress the lines to the caps.

Details
If a point in traceName is not within the graph’s axes (because the graph has been expanded) then that
point’s error bars are not shown. If a wave specifying error values for traceName is shorter than the wave
displayed by traceName then the last value of the error wave is used for the unavailable points. If a point in
an error wave contains NaN (Not a Number) then the half-bar associated with that point is not shown.

Examples

See Also
Trace Names on page II-216, Programming With Trace Names on page IV-81.

Execute
Execute [/Q/Z] cmdStr
The Execute operation executes the contents of cmdStr as if it had been typed in the command line.
The most common use of Execute is to call a macro or an external operation from a user-defined function.
This is necessary because Igor does not allow you to make such calls directly.
When the /Z flag is used, an error code is placed in V_flag.The error code will be -1 if a missing parameter
style macro is called and the user clicks Quit Macro, or zero if there was no error.

Flags

Details
Because the command line and command buffer are limited to 1000 bytes on a single line, cmdStr is likewise
limited to a maximum of 1000 executable bytes.
Do not reference local variables in cmdStr. The command is not executed in the local environment provided
by a macro or user-defined function.

/W=winName Changes error bars in the named graph window or subwindow. When omitted, action
will affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/X=xWidth Specifies the width (height, actually) of the caps to the left or right of the point.

/Y=yWidth Specifies the width of the caps above or below the point.

ErrorBars wave1,XY pct=10,pct=5 X and Y error bars, X is 10% of wave1, Y is 5%
ErrorBars wave1,X sqrt X error bars only, square root of wave1
ErrorBars wave1,Y const=4.3 Y error bars only, constant error value = 4.3
ErrorBars wave1,BOX pct=10,pct=5 error box, 10% in horizontal direction

5% in vertical direction
ErrorBars wave1,Y wave=(w1,w2) Y error bars only, arbitrary error values

wave w1 = errors for upper (Y+) bars
wave w2 = errors for lower (Y-) bars

ErrorBars wave1,Y wave=(,w2) Y error bars only, no upper (Y+) error bars
wave w2 = errors for lower bars

ErrorBars wave1,OFF turns error bars for wave1 off

/Q Command is not printed in the command line or history area.

/Z Errors are not fatal and error dialogs are suppressed.

Execute/P

V-177

Execute can accept a string expression containing a macro. The string must start with Macro, Proc, or
Window, and must follow the normal rules for macros. All lines must be terminated with carriage returns
including the last line. The name of the macro is not important but must exist. Errors will be reported except
when using the /Z flag, which will assign V_Flag a nonzero number in an error condition.

Examples
It is a good idea to compose the command to be executed in a local string variable and then pass that string
to the Execute operation. This prints the string to the history for debugging:
String cmd
sprintf cmd, "GBLoadWave/P=%s/S=%d \"%s\"", pathName, skipCount, fileName
Print cmd // For debugging
Execute cmd

// Execute with a macro:
Execute "Macro junk(a,b)\rvariable a=1,b=2\r\rprint \"hello from macro\",a,b\rEnd\r"

See Also
The Execute Operation on page IV-190 for other uses.

Execute/P
Execute/P [/Q/Z] cmdStr
Execute/P is similar to Execute except the command string, cmdStr, is not immediately executed but rather
is posted to an operation queue. Items in the operation queue execute only when nothing else is happening.
Macros and functions must not be running and the command line must be empty.

Flags

See Also
Operation Queue on page IV-263 for more details on using Execute/P with the operation queue.

ExecuteScriptText
ExecuteScriptText [flags] textStr
The ExecuteScriptText operation passes your text to Apple’s scripting subsystem for compilation and
execution or to the Windows command line.
If the /Z flag is used then a variable named V_flag is created and is set to a nonzero value if an error was
generated by the script or zero if no error. The error is not reported to Igor if the /Z flag is used.

/Q Command is not printed in the command line or history area.

/Z No error reporting.

On Macintosh: Any results, including error messages, are placed in a string variable named S_value.
String values returned in S_value often have double-quote characters at the start and
end. Use /UNQ to remove them.
The /B flag is ignored.
The /W flag is ignored and ExecuteScriptText does not return until the script is
finished.
The current directory will be / and the PATH environment variable will be the system
default, not the user default. Usually PATH=/usr/bin:/bin:/usr/sbin:/sbin.

ExecuteScriptText

V-178

Parameters
textStr must contain a valid AppleScript program or Windows command line.

Flags

Examples
// Macintosh: Convert file.PICT to file.GIF:
String ae = "tell application \"clip2gif\" "
ae += "to save file \"HD:file.PICT\"\r"
ExecuteScriptText/Z ae

// Macintosh: Execute a Unix shell command:
Function/S DemoUnixShellCommand()

// Paths must be POSIX paths (using /).
// Paths containing spaces or other nonstandard characters must be single-quoted.
// See Apple Techical Note TN2065 for more on shell scripting via AppleScript.
String unixCmd
unixCmd = "ls '/Applications/Igor Pro 7 Folder'"

String igorCmd

sprintf igorCmd, "do shell script \"%s\"", unixCmd
Print igorCmd // For debugging only.

On Windows: textStr contains the name of the executable file with optional Windows-style path and
optional arguments:
[path]executableName [.exe] [arg1]…
If path is not given and executableName ends with ".exe" or with no extension, Igor
locates the executable by searching first the registry and then along the PATH
environment variable. If not found, then the Igor Pro 7 Folder directory is assumed.
ExecuteScriptText "calc" // calc.exe, calculator

When calling a batch file or other non-*.exe file, supply the full path. If the path (or
file name) contains spaces put quotes in the string:
ExecuteScriptText "\"C:\\Program Files\\my.bat\""

If you use the /W=waitTime flag with a positive value for waitTime, ExecuteScriptText
waits up to that many seconds after submitting the command for the process started
by the command to terminate. If the process fails to terminate within that period of
time, ExecuteScriptText returns an error.
If you omit the /W flag or if you pass zero for waitTime, for GUI programs,
ExecuteScriptText returns when the program begins processing messages. For non-
GUI programs, ExecuteScriptText returns as soon as the OS returns control to Igor
after Igor submits the script text to the OS.
Igor currently can not write to a console application’s standard input nor read from
its standard output.
Use the /B flag to run the command in the background, keeping Igor as the active
application.
S_value is always set to "".

/B Execute Windows command line as a background task.

/W=waitTime This flag is accepted on any platform but has an effect only on Windows. See the
description above.

/UNQ Removes any leading and trailing double-quote characters from S_value.
This is useful on Macintosh only and has no effect on Windows.
The /UNQ flag was added in Igor Pro 7.00.

/Z Script errors are not fatal.

ExecuteScriptText

V-179

ExecuteScriptText/UNQ igorCmd
Print S_value // For debugging only.
return S_value

End

// Windows: Open MatLab in the background:
ExecuteScriptText/B "C:\\Matlab\\bin\\matlab.exe myFile.m"

// Windows: Pass a script to Windows Script Host:
ExecuteScriptText/W=5 "WScript.exe \"C:\\Test Script.vbs\""

// Windows: Execute a batch file and leave the command window open
ExecuteScriptText "cmd.exe /K \"C:\\mybatch.bat\""

// Windows: Execute a DOS command and get output, if any
// ExecuteDOSCommand(command, maxSecondsToWait)
// Executes a DOS command and returns any output text as the function result.
// Returns "" if the DOS command returns no text.
// maxSecondsToWait is the maximum number of seconds to wait for DOS to finish
// the command. If it takes longer than that, an error is generated.
// This function creates files in the Igor Pro User Folder:
// igorBatch.bat Holds command that DOS is to execute
// igorBatchOutput.txt Holds output generated by DOS command, if any
// Example:
// Print ExecuteDOSCommand("echo %PATH%", 3)
Function/S ExecuteDOSCommand(command, maxSecondsToWait)

String command // e.g., "echo %PATH%"
Variable maxSecondsToWait // Error if DOS takes longer than this

String quoteStr = "\""

// Get path to batch file in "Igor Pro User Files"
String dirPath = SpecialDirPath("Igor Pro User Files", 0, 0, 0)
dirPath = ParseFilePath(5, dirPath, "\\", 0, 0) // Convert to Windows path
String batchFilePath = dirPath + "igorBatch.bat"
String batchOutputFilePath = dirPath + "igorBatchOutput.txt"

DeleteFile/Z batchOutputFilePath

// Write DOS command to batch file
String dosCommand = command + " > " + quoteStr + batchOutputFilePath + quoteStr
Variable refNum
Open refNum as batchFilePath
FBinWrite refNum, dosCommand
Close refNum

// Execute batch file
// The DOS command must complete in the number of seconds specified via /W
// /C means cmd.exe quits after executing the command
String text
sprintf text, "cmd.exe /C \"%s\"", batchFilePath
ExecuteScriptText/W=(maxSecondsToWait) text

// Get output
String result = ""
Open/R/Z refNum as batchOutputFilePath
if (V_flag != 0)

result = ""
// result = "<No output was generated by batch file>" // For debugging

else
// Read contents of batch file into string
FStatus refNum
Variable numBytesInFile = V_logEOF
result = PadString("", numBytesInFile, 0x20)
FBinRead refNum, result
Close refNum

endif

return result
End

See Also
See AppleScript on page IV-249.

exists

V-180

exists
exists(objNameStr)
The exists function returns a number which indicates if objNameStr contains the name of an Igor object,
function or operation.

Details
 objNameStr can optionally include a full or partial path to the object. If the name does not include a path,
exists checks for waves, strings and variables in the current data folder.
objNameStr can optionally include a module name or independent module name prefix such as
"ProcGlobal#" to check for the existence of functions. This works for macros as well.
The return values are:

exists is not aware of local variables or parameters in user-defined functions, however it is aware of local
variables and parameters in macros.
objNameStr is a string or string expression, not a name.

Examples
// Prints 2 if V_flag exists as a global variable in the current data folder:
Print exists("V_Flag")

// Prints 5 if a macro named Graph0 exists.
Print exists("ProcGlobal#Graph0")

See Also
The DataFolderExists and WaveExists functions and the WinType operation.

exp
exp(num)
The exp function returns enum. In complex expressions, num is complex, and exp(num) returns a complex value.

ExperimentModified
ExperimentModified [newModifiedState]
The ExperimentModified operation gets and optionally sets the modified (save) state of the current
experiment.
Use this command to prevent Igor from asking you to save the current experiment after you have made
changes you do not need to save or, conversely, to force Igor to ask about saving the experiment even
though Igor would not normally do so.
The variable V_flag is always set to the experiment-modified state that was in effect before the
ExperimentModified command executed: 1 for modified, 0 for not modified.

Parameters
If newModifiedState is present, it sets the experiment-modified state as follows:

0: Name not in use, or does not conflict with a wave, numeric variable or string variable
in the specified data folder.

1: Name of a wave in the specified data folder.

2: Name of a numeric or string variable in the specified data folder.

3: Function name.

4: Operation name.

5: Macro name.

6: User-defined function name.

newModifiedState = 0: Igor will not ask to save the experiment before quitting or opening another
experiment, and the Save Experiment menu item will be disabled.

expInt

V-181

If newModifiedState is omitted, the state of experiment-modified state is not changed.

Details
Executing ExperimentModified 0 on the command line will not work because the command will be echoed
to the history area, marking the experiment as modifed. Use the command in a function or macro that does
not echo text to the history area.

Examples
The /Q flag is vital: it suppresses printing into the history area which would mark the experiment as
modified again.
Menu "File"

"Mark Experiment Modified",/Q,ExperimentModified 1 // Enables "Save Experiment"
"Mark Experiment Saved",/Q,ExperimentModified 0 // Disables "Save Experiment"

End

See Also
The SaveExperiment operation, Menu Definition Syntax on page IV-118.

expInt
expInt(n, x)
The expInt function returns the value of the exponential integral En(x):

See Also
ei, ExpIntegralE1

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

ExpIntegralE1
ExpIntegralE1(z)
The ExpIntegralE1(z) function returns the exponential integral of z.
If z is real, a real value is returned. If z is complex then a complex value is returned.
The ExpIntegralE1 function was added in Igor Pro 7.00.

Details
The exponential integral is defined by

References
Abramowitz, M., and I.A. Stegun, "Handbook of Mathematical Functions", Dover, New York, 1972. Chapter

5.

See Also
expInt, CosIntegral, SinIntegral, hyperGPFQ

newModifiedState = 1: Igor will ask to save the experiment before quitting or opening another
experiment, and the Save Experiment menu item will be enabled.

En (x) = P
e− xt

t n
dt

1

∞

∫ (x > 0;n = 0, 1, 2…).

E1(z) =
e− t

t
dt,

z

∞

∫ �������������� arg(z) < π().

expnoise

V-182

expnoise
expnoise(b)
The expnoise function returns a pseudo-random value from an exponential distribution whose average and
standard deviation are b and the probability distribution function is

.

The random number generator initializes using the system clock when Igor Pro starts. This almost
guarantees that you will never repeat a sequence. For repeatable “random” numbers, use SetRandomSeed.
The algorithm uses the Mersenne Twister random number generator.

See Also
The SetRandomSeed operation.
Noise Functions on page III-344.
Chapter III-12, Statistics for a function and operation overview.

ExportGizmo
ExportGizmo [flags] keyword [=value]
The ExportGizmo operation is obsolete but is still partially supported for partial backward compatibility.

As of Igor7 you can export Gizmo graphics using File→Save Graphics which generates a SavePICT
command. The ExportGizmo operation is only partially supported. It can export to the clipboard or to an
Igor wave and it can print but it can no longer export to a file. Use SavePICT instead.
Documentation for the ExportGizmo operation is available in the Igor online help files only. In Igor,
execute:
DisplayHelpTopic "ExportGizmo"

Extract
Extract [type flags][/INDX/O] srcWave, destWave, LogicalExpression
The Extract operation finds data in srcWave wherever LogicalExpression evaluates to TRUE and stores the
matching data sequentially in destWave, which will be created if it does not already exist.

Parameters
srcWave is the name of a wave.
destWave is the name of a new or existing wave that will contain the result.
LogicalExpression can use any comparison or logical operator in the expression.

Flags

Type Flags (used only in functions)
Extract also can use various type flags in user functions to specify the type of destination wave reference
variables. These type flags do not need to be used except when it needed to match another wave reference
variable of the same name or to identify what kind of expression to compile for a wave assignment. See
WAVE Reference Types on page IV-67 and WAVE Reference Type Flags on page IV-68 for a complete list
of type flags and further details.

Details
srcWave may be of any type including text.

/FREE Creates a free destWave (see Free Waves on page IV-84).
/FREE is allowed only in functions and only if a simple name or wave reference
structure field is specified for destWave.

/INDX Stores the index in destWave instead of data from srcWave.

/O Allows destWave to be the same as srcWave (overwrite source).

f x() 1
b
--- x

b
---–

 exp=

factorial

V-183

destWave has the same type as srcWave, but it is always one dimensional. With /INDX, the destWave type is set
to unsigned 32-bit integer and the values represent a linear index into srcWave regardless of its dimensionality.

Example
Make/O source= x
Extract/O source,dest,source>10 && source<20
print dest

Prints the following to the history area:
 dest[0]= {11,12,13,14,15,16,17,18,19}

See Also
The Duplicate operation.

factorial
factorial(n)
The factorial function returns n!, where n is assumed to be a positive integer.
Note that while factorial is an integer-valued function, a double-precision number has 53 bits for the
mantissa. This means that numbers over 252 will be accurate to about one part in about 2x1016. Values of n
greater than 170 result in overflow and return Inf.

FakeData
FakeData(waveName)
The FakeData function puts fake data in the named wave, which must be single-precision float. This is
useful for testing things that require changing data before you have the source for the eventual real data.
FakeData can be useful in a background task expression.
The FakeData function is not multidimensional aware. See Analysis on Multidimensional Waves on page
II-86 for details.

Examples
Make/N=200 wave0; Display wave0
SetBackground FakeData(wave0) // define background task
CtrlBackground period=60, start // start background task
// observe the graph for a while
CtrlBackground stop // stop the background task

FastGaussTransform
FastGaussTransform [flags] srcLocationsWave, srcWeightsWave
The FastGaussTransform operation implements an efficient algorithm for evaluating the discrete Gauss
transform, which is given by

where G is an M-dimensional vector, y is an N-dimensional vector representing the observation position,
{qi} are the M-dimensional weights, {xi} are N-dimensional vectors representing source locations, and h is
the Gaussian width. The wave M_FGT contains the output in the current data folder.

Flags

/AERR=aprxErr Sets the approximate error, which determines how many terms of the Taylor
expansion of the Gaussian are used by the calculation. Default value is 1e-5.

/WDTH=h Sets the Gaussian width. Default value is 1.

/OUTW=locWave Specifies the locations at which the output is computed. locWave must have the same
number of columns as srcLocationsWave. The other /OUT flags are mutually exclusive;
you should use only one at any time.

G(yj) = qi exp −
yj − xi

2

h

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟i=0

N−1

∑ ,

FastOp

V-184

Details
The discrete Gauss transform can be computed as a direct sum. An exact calculation is practical only for
moderate number of sources and observation points and for low spatial dimensionality. With increasing
dimensionality and increasing number of sources it is more efficient to take advantage of some properties
of the Gaussian function. The FastGaussianTransform operation does so in two ways: It first arranges the
sources in N-dimensional spatial clusters so that it is not necessary to compute the contributions of all
source points that belong to remote clusters (see FPClustering). The second component of the algorithm is
an approximation that factorizes the sum into a factor that depends only on source points and a factor that
depends only on observation points. The factor that depends only on source points is computed only once
while the factor that depends on observation points is evaluated once for each observation point.
The trade-off between computation efficiency and accuracy can be adjusted using multiple parameters. By
default, the operation calculates the number of terms it needs to use in the Taylor expansion of the
Gaussian. You can modify the default approximate error value using /AERR or you can directly set the
number of terms in the expansion using /TET.
FastGaussianTransform supports calculations in dimensions that may exceed the maximum allowed wave
dimensionality. srcLocationsWave must be a 2D, real-valued single- or double-precision wave in which each row
corresponds to a single source position and columns represent the components in each dimension (e.g., a triplet
wave would represent 3D source locations). srcWeightsWave must have the same number of rows as
srcLocationsWave and it must be a real-valued single- or double-precision wave. In most applications
srcWeightsWave will have a single column so that the output G will be scalar. However, if srcWeightsWave has
multiple columns than G is a vector. This can be handy if you need to test multiple sets of coefficients at one time.
If you specify observation points using /OUTW then locWave must have the same number of columns as
srcLocationsWave (the number of rows in the output is arbitrary). The operation does not support wave scaling.

See Also
The CWT, FFT, ImageInterpolate, Loess, and FPClustering operations.

References
Yang, C., R. Duraiswami, and L. Davis, Efficient Kernel Machines Using the Improved Fast Gauss

Transform, Advances in Neural Information Processing Systems 16, 2004.

FastOp
FastOp [/C] destwave = prod1 [± prod2 [± prod3]]
The FastOp operation can be used to get improved speed out of certain wave assignment statements. The
syntax was designed so that you can simply insert FastOp in front of any wave assignment statement that
meets the syntax requirements.

/OUT1={x1,nx,x2}
/OUT2={x1,nx,x2,y1,ny,y2}
/OUT3={x1,nx,x2,y1,ny,y2,z1,nz,z2}

Specifies gridded output of the required dimension. In each case you set the starting
and ending values together with the number of intervals in that dimension. You
cannot specify an output that does not match the dimensions of the input source.

/Q No results printed in the history area.

/RX=rx Sets the maximum radius of any cluster. The clustering algorithm terminates when
the maximum radius is less than rx. Without /RX, the maximum radius is the same as
the maximum radius encountered.

/RY=ry Sets the upper bound for the distance between an observation point and a cluster
center for which the cluster contributes to the transform value. Default is 5h.

/TET=nTerms Sets the number of terms in the Taylor expansion. Use /TET to set the number of terms
and bypass the default error estimate, which is estimated from the approximate error
value (/AERR).

/Z No error reporting.

FastOp

V-185

Parameters

Flags

Details
Certain combinations are evaluated using faster specific code rather than more general but slower generic
code. The following specific formats are given special consideration:

In the above, pluses may be minuses and the trailing constant (C0, C1, C2) may be omitted.

Typically, FastOp will improve performance by 10 to 40 times. The speed increase will be dependent on the
computer and on the length of the waves, with the greatest improvement for waves having 1000 to 100,000
points.
This operation replaces the obsolete FastWaveOps XOP. It has all the capabilities of the XOP and then some
and has an easier to read syntax.

Examples
Valid expressions:
FastOp waved= 3
FastOp waved= waveA + waveB
FastOp waved= 0.5*waveA + 0.5*waveB
FastOp waved= waveA*waveB
FastOp waved= (2*3)*waveA + 6
FastOp waved= (locvar)*waveA

Expressions that are not valid:
FastOp waved= 3*4
FastOp waved= (waveA + waveB)
FastOp waved= waveA*0.5 + 0.5*waveB
FastOp waved= waveA*waveB/2
FastOp waved= 2*3*waveA + 6
FastOp waved= locvar*waveA

See Also
The MatrixOp operation for more efficient matrix operations.

destWave An existing destination wave for the assignment expression. An error will be reported
at runtime if the waves are not all the same length or number type.

prod1, prod2, prod3 Products with the following formats:

constexpr*wave1*wave2
or
constexpr*/wave2
constexpr may be a literal numeric constant or a constant expression in parentheses.
Such expressions are evaluated only once.
Any component in a prod expression may be omitted.

/C Specifies a complex expression. Only applicable to floating point waves.

Single or Double Precision Real Integer
waved = C0 waved = C0
waved = C0 *waveA +C1 waved = waveA +C1
waved = waveA +C1 waved = waveA +waveB +C2

Note: Integer waves are evaluated using double precision intermediate values except for the
aforementioned special cases which are evaluated using the native format.

faverage

V-186

faverage
faverage(waveName [, x1, x2])
The faverage function returns the trapezoidal average value of the named wave from x=x1 to x=x2.
If your data are in the form of an XY pair of waves, see faverageXY.

Details
If x1 and x2 are not specified, they default to -∞ and +∞, respectively.
If x1 or x2 are not within the X range of waveName, faverage limits them to the nearest X range limit of waveName.
faverage returns the area divided by (x2-x1). In other words, the X scaling of waveName is eliminated when
computing the average.
If any Y values in the specified X range are NaN, faverage returns NaN.
Unlike the area function, reversing the order of x1 and x2 does not change the sign of the returned value.
The faverage function is not multidimensional aware. See Analysis on Multidimensional Waves on page
II-86 for details.
The faverage function returns a complex result for a complex inpt wave. The real part of the result is the
average of the real components in the input wave and the imaginary part of the result is the average of the
imaginary components.

Examples
Comparison of area, faverage and mean functions over interval (12.75,13.32)

See Also
Integrate, area, areaXY, faverageXY and PolygonArea

faverageXY
faverageXY(XWaveName, YWaveName [, x1, x2])
The faverageXY function returns the trapezoidal average value of YWaveName from x=x1 to x=x2, using X
values from XWaveName.
This function operates identically to faverage, except that it uses an XY pair of waves for X and Y values
and it does not work with complex waves.

Details
If x1 and x2 are not specified, they default to -∞ and +∞, respectively.
If x1 or x2 are not within the X range of XWaveName, faverageXY limits them to the nearest X range limit of
XWaveName.
faverageXY returns the area divided by (x2 -x1).
If any values in the X range are NaN, faverageXY returns NaN.

area(wave,12.75,13.32) = 0.05 · (43+55) / 2
+ 0.20 · (55+88) / 2
+ 0.20 · (88+100) / 2
+ 0.12 · (100+92.2) / 2

= 47.082

// first trapezoid
// second trapezoid
// third trapezoid
// fourth trapezoid

faverage(wave,12.75,13.32) = area(wave,12.75,13.32) / (13.32-12.75)
= 47.082/0.57 = 82.6

mean(wave,12.75,13.32) = (55+88+100+87)/4 = 82.5

120

80

40

0

13.613.413.213.012.812.6

0.05 0.2 0.2 0.12

43

92.255
88 100

7

87

FBinRead

V-187

Reversing the order of x1 and x2 does not change the sign of the returned value.
The values in XWaveName may be increasing or decreasing. faverageXY assumes that the values in XWaveName
are monotonic. If they are not monotonic, Igor does not complain, but the result is not meaningful. If any X
values are NaN, the result is NaN.
The faverageXY function is not multidimensional aware. See Chapter II-6, Multidimensional Waves for
details on multidimensional waves, particularly Analysis on Multidimensional Waves on page II-86.

See Also
Integrate, area, areaXY, faverage and PolygonArea

FBinRead
FBinRead [flags] refNum, objectName
The FBinRead operation reads binary data from the file specified by refNum into the named object.
For simple applications of loading binary data into numeric waves you may find the GBLoadWave
operation simpler to implement.

Parameters
refNum is a file reference number from the Open operation used to open the file.
objectName is the name of a wave, numeric variable, string variable, or structure.

Flags

Details
If objectName is the name of a string variable then /F doesn’t apply. The number of bytes read is the number
of bytes in the string before the FBinRead operation is called. You can use the PadString function to set the
size of a string.
The binary format that FBinRead uses for numeric variables or waves depends on the /F flag. If no /F flag
is present, the native binary format of the named object is used.
Byte ordering refers to the order in which a multibyte datum is read from a file. For example, a 16-bit word
(sometimes called a “short”) consists of a high-order byte and a low-order byte. Under big-endian byte
ordering, which is commonly used on Macintosh, the high-order byte is read from the file first. Under little-
endian byte ordering, which is commonly used on Windows, the low-order byte is read from the file first.
FBinRead will read an entire structure from a disk file. The individual fields of the structure will be byte-
swapped if the /B flag is designated.
The FBinRead operation is not multidimensional aware. See Analysis on Multidimensional Waves on
page II-86 for details.

/B[=b]

/F=f

/U Integer formats (/F=1, 2, or 3) are unsigned. If /U is omitted, integers are signed.

Specifies file byte ordering.
b=0: Native (same as no /B).
b=1: Reversed (same as /B).
b=2: Big-endian (Motorola).
b=3: Little-endian (Intel).

Controls the number of bytes read and how the bytes are interpreted.
f=0: Native binary format of the object (default).
f=1: Signed byte; one byte.
f=2: Signed 16-bit word; two bytes.
f=3: Signed 32-bit word; four bytes.
f=4: 32-bit IEEE floating point; four bytes.
f=5: 64-bit IEEE floating point; eight bytes.
f=6: 64-bit integer; eight bytes. Requires Igor Pro 7.00 or later.

FBinWrite

V-188

See Also
FBinWrite, Open, FGetPos, FSetPos, FStatus, GBLoadWave

FBinWrite
FBinWrite [flags] refNum, objectName
The FBinWrite operation writes the named object in binary to a file.

Parameters
refNum is a file reference number from the Open operation used to open the file.
objectName is the name of a wave, numeric variable, string variable, or structure.

Flags

Details
A zero value of refNum is used in conjunction with Program-to-Program Communication (PPC) or Apple
events (Macintosh) or DDE (Windows). The data that would normally be written to a file is appended to the
PPC or Apple event or DDE result packet.
If the object is a string variable then /F doesn’t apply. The number of bytes written is the number of bytes
in the string.
The binary format that FBinWrite uses for numeric variables or waves depends on the /F flag. If no /F flag
is present, FBinWrite uses the native binary format of the named object.
Byte ordering refers to the order in which a multibyte datum is written to a file. For example, a 16-bit word
(sometimes called a “short”) consists of a high-order byte and a low-order byte. Under big-endian byte
ordering, which is commonly used on Macintosh, the high-order byte is written to the file first. Under little-
endian byte ordering, which is commonly used on Windows, the low-order byte is written to the file first.
FBinWrite will write an entire structure to a disk file. The individual fields of the structure will be byte-
swapped if the /B flag is designated.
The FBinWrite operation is not multidimensional aware. See Analysis on Multidimensional Waves on
page II-86 for details.

See Also
FBinRead, Open, FGetPos, FSetPos, FStatus, GBLoadWave

/B[=b]

/F=f

/P Adds an IgorBinPacket to the data. This is used for PPC or Apple event result packets (refNum = 0) and
is not normally of use when writing to a file.

/U Integer formats (/F=1, 2, or 3) are unsigned. If /U is omitted, integers are signed.

Specifies file byte ordering.
b=0: Native (same as no /B).
b=1: Reversed (same as /B).
b=2: Big-endian (Motorola).
b=3: Little-endian (Intel).

Controls the number of bytes written and how the bytes are formatted.
f=0: Native binary format of the object (default).
f=1: Signed byte; one byte.
f=2: Signed 16-bit word; two bytes.
f=3: Signed 32-bit word; four bytes.
f=4: 32-bit IEEE floating point; four bytes.
f=5: 64-bit IEEE floating point; eight bytes.
f=6: 64-bit integer; eight bytes. Requires Igor Pro 7.00 or later.

FetchURL

V-189

FetchURL
FetchURL(urlStr)
The FetchURL function returns a string containing the server's response to a request to get the contents of
the URL specified by urlStr. If urlStr contains a URL that uses the file:// scheme, the contents of the local file
is returned.

Parameters
urlStr is a string containing the URL to retrieve. You can include a username, password, and server port
number as part of the URL.
FetchURL expects that urlStr has been percent-encoded if it contains reserved characters. See Percent
Encoding on page IV-253 for additional information on when percent-encoding is necessary and how to do
it.
See URLs on page IV-252 for details about how to correctly specify the URL.
FetchURL supports only the http://, https://, ftp://, and file:// schemes. See Supported Network Schemes on
page IV-253 for details.
There are two special values of urlStr that can be used to get information about the network library that Igor
uses. The keyword=value pairs returned when urlStr is "curl_version_info" may be useful to programmers
in that the features and protocols available in the library are specified.
FetchURL("curl_version")
FetchURL("curl_version_info")

Details
If FetchURL encounters an error, it returns a NULL string. You should check for errors before using the
returned string. In a user-defined function, use the GetRTError function.
String urlStr = "http://www.badserver"
String response = FetchURL(urlStr)
Variable error = GetRTError(1) // Check for error before using response
if (error != 0)

// FetchURL produced an error
// so don't try to use the response.

endif

Limitations
It is possible for FetchURL to return a valid server response even though the URL you requested does not
exist on the server or requires a username and password that you did not provide. In this situation, the
response returned by the server will usually be a web page stating that the page was not found or another
error message. You can check for this kind of error in your own code by examining the response.
FetchURL does not support advanced features such as network proxies, file or data uploads, setting the
timeout period, or saving the server's response directly to a file. When using the http:// scheme, only the
GET method is supported. This means that you cannot use FetchURL to submit form data to a web server
that requires using the http POST method. Use the URLRequest operation if you need any of these features.
Igor Pro is not capable of displaying the contents of a URL in a rendered form like a web browser.

Examples
// Retrieve the contents of the WaveMetrics home page.
String response
response = FetchURL("http://www.wavemetrics.com")

// Get a binary image file from a web server and then
// save the image to a file on the desktop.
String url = "http://www.wavemetrics.net/images/tbg.gif"
String imageBytes = FetchURL(url)
Variable error = GetRTError(1)
if (error != 0)

Print "Error downloading image."
else

Variable refNum
String localPath = SpecialDirPath("Desktop", 0, 0, 0) + "tbg.gif"
Open/T=".gif" refNum as localPath
FBinWrite refNum, imageBytes
Close refNum

endif

FFT

V-190

See Also
FTPDownload, URLEncode, URLRequest
Network Communication on page IV-252, Network Connections From Multiple Threads on page IV-255.

FFT
FFT [flags] srcWave
The FFT operation computes the Discrete Fourier Transform of srcWave using a multidimensional prime
factor decomposition algorithm. By default, srcWave is overwritten by the FFT.

Output Wave Name
For compatibility with earlier versions of Igor, if you use FFT with no flags or with just the /Z flag, the
operation overwrites srcWave.
If you use any flag other than /Z, FFT uses default output wave names: W_FFT for a 1D FFT and M_FFT for
a multidimensional FFT.
We recommend that you use the /DEST flag to make the output wave explicit and to prevent overwriting
srcWave.

Flags

/COLS Computes the 1D FFT of 2D srcWave one column at a time, storing the results in the
destination wave.

You must specify a destination wave using the /DEST flag. No other flags are allowed
with this flag. The number of rows must be even. If srcWave is a real (NxM) wave, the
output matrix will be (1+N/2,M) in analogy with 1D FFT. To avoid changes in the
number of points you can convert srcWave to complex data type. This flag applies only
to 2D source waves. See also the /ROWS flag.

/DEST=destWave Specifies the output wave created by the FFT operation.
It is an error to attempt specify the same wave as both srcWave and destWave.
The default output wave name is W_FFT for a 1D FFT and M_FFT for a
multidimensional FFT.
When used in a function, the FFT operation by default creates a complex wave
reference for the destination wave. See Automatic Creation of WAVE References on
page IV-66 for details.

/FREE Creates destWave as a free wave.
/FREE is allowed only in functions and only if destWave, as specified by /DEST, is a
simple name or wave reference structure field.
See Free Waves on page IV-84 for more discussion.
The /FREE flag was added in Igor Pro 7.00.

/HCC Hypercomplex transform (cosine). Computes the integral

using the 2D FFT (see Details).

I[t1][n] = f [t1][k]exp i2�kn / N()
k=0

N�1

� .

Ic (�1,�2) = f (t1, t2)cos(t1�1)exp(it2�2)dt1dt2
��

�

��

FFT

V-191

/HCS Hypercomplex transform (sine). Computes the integral

using the 2D FFT (see Details).

/MAG Saves just the magnitude of the FFT in the output wave. See comments under /OUT.

/MAGS Saves the squared magnitude of the FFT in the output wave. See comments under
/OUT.

/OUT=mode

/PAD={dim1 [, dim2, dim3, dim4]}

Converts srcWave into a padded wave of dimensions dim1, dim2…. The padded wave
contains the original data at the start of the dimension and adds zero entries to each
dimension up to the specified dimension size. The dim1… values must be greater than
or equal to the corresponding dimension size of srcWave. If you need to pad just the
lowest dimension(s) you can omit the remaining dimensions; for example, /Pad=dim1
will set dim2 and above to match the dimensions in srcWave.

/REAL Saves just the real part of the transform in the output wave. See comments under /OUT.

/ROWS Calculates the FFT of only the first dimension of a 2D srcWave. It thus computes the
1D FFT of one row at a time, storing the results in the destination wave.

You must specify a destination wave using the /DEST flag. No other flags are allowed
with this flag. The number of columns must be even. If srcWave is a real (NxM) wave,
the output matrix will be (N,1+M/2) in analogy with 1D FFT. To avoid changes in the
number of points you can convert srcWave to complex data type. See also /COLS flag.

/RP=[startPoint, endPoint]

/RX=(startX, endX) Defines a segment of a 1D srcWave that will be transformed. By default the operation
transforms the whole wave. It is sometimes useful to take advantage of this feature in
order to transform just the defined interval, which includes both end points. You can
define the interval using wave point indexing with the /RP flag or using the X-values
with the /RX flag. The interval must include at least four data points and the total
number of points must be an even number.

Is (�1,�2) = f (t1, t2)sin(t1�1)exp(it2�2)dt1dt2
��

�

��

Sets the output wave format.

You can also identify modes 2-4 using the convenience flags /REAL, /MAG, and
/MAGS. The convenience flags are mutually exclusive and are overridden by the
/OUT flag.
The scaled quantities apply to transforms of real valued inputs where the output is
normally folded in the first dimension (because of symmetry). The scaling applies
a factor of 2 to the squared magnitude of all components except the DC. The scaled
transforms should be used whenever Parseval's relation is expected to hold.

mode=1: Default for complex output.
mode=2: Real output.
mode=3: Magnitude.
mode=4: Magnitude square.
mode=5: Phase.
mode=6: Scaled magnitude.
mode=7: Scaled magnitude squared.

Sets the output wave format.

You can also identify modes 2-4 using the convenience flags /REAL, /MAG, and
/MAGS. The convenience flags are mutually exclusive and are overridden by the
/OUT flag.
The scaled quantities apply to transforms of real valued inputs where the output is
normally folded in the first dimension (because of symmetry). The scaling applies
a factor of 2 to the squared magnitude of all components except the DC. The scaled
transforms should be used whenever Parseval's relation is expected to hold.

mode=1: Default for complex output.
mode=2: Real output.
mode=3: Magnitude.
mode=4: Magnitude square.
mode=5: Phase.
mode=6: Scaled magnitude.
mode=7: Scaled magnitude squared.

N[n][t2] = f [k][t2]
k=0

M �1

� exp(i2�kn / M)

FFT

V-192

Details
The data type of srcWave is arbitrary. The first dimension of srcWave must be an even number and the
minimum length of srcWave is four points. When srcWave is a double precision wave, the FFT is computed
in double precision. All other data types are transformed using single precision calculations. The result of
the FFT operation is always a floating point number (single or double precision).
Depending on your choice of outputs, you may not be able to invert the transform in order to obtain the
original srcWave.
srcWave or any of its intervals must have at least four data points and must not contain NaNs or INFs.
The FFT algorithm is based on prime number decomposition, which decomposes the number of points in
each dimension of the wave into a product of prime numbers. The FFT is optimized for primes < 5. In time
consuming applications it is frequently worthwhile to pad the data so that the total number of points factors
into small prime numbers.
The hypercomplex transforms are computed by writing the sine and cosine as a sum of two exponentials.
Let the 2D Fourier transform of the input signal be

then the two hypercomplex transforms are given by

and

Window Functions
The /F=windowKind flag premultiplies a 1D srcWave with the selected window function.
In the following window definitions, w(n) is the value of the window function that multiplies the signal, N
is the number of points in the signal wave (or range if /R is specified), and n is the wave point index. With
/R, n=0 for the first datum in the range.
Choices for windowKind are in bold.

Bartlet:
A synonym for Bartlett.

/WINF=windowKind

Premultiplies a 1D srcWave with the selected window function.
If you include the /PAD flag, the window function is applied to the pre-padded data.
See Window Functions below for details.

/Z Disables rotation of the FFT of a complex wave. Igor normally rotates the FFT result
(which is also complex) by N/2 so that x=0 is at the center point (N/2). When /Z is
specified, Igor does not perform this rotation and leaves x=0 at the first point (0).

F n1[] n2[] = f
k2 =0

N2 �1

�
k1=0

N1�1

� k1[] k2[]exp i2�k1

n1

N1

�

�
�

�
��

exp i2�k2

n2

N2

�

�
�

�
��

Ic n1[] n2[] = 1

2
F[n1][n2]+ F[�n1][n2]()

Is n1[] n2[] = 1

2i
F[n1][n2]� F[�n1][n2]()

FFT

V-193

Bartlett:

Blackman367, Blackman361, Blackman492, Blackman474:

.

Cos1, Cos2, Cos3, Cos4:

Hamming:

windowKind a0 a1 a2 a3

Blackman367 0.42323 0.49755 0.07922

Blackman361 0.44959 0.49364 0.05677

Blackman492 0.35875 0.48829 0.14128 0.01168

Blackman474 0.40217 0.49703 0.09392 0.00183

windowKind α

Cos1: α = 1

Cos2: α = 2

Cos3: α = 3

Cos4: α = 4

w(n) =

2n

N
n = 0,1,...

N

2

2 � 2n

N
n = N

2
,...N �1

�

�

��

�

�

�

w(n) = a0 � a1 cos
2�

N
n

�

�
�

�

�
� + a2 cos

2�

N
2n�

�
�

�

�
� � a3 cos

2�

N
3n�

�
�

�

�
�

n = 0,1,2...N �1.

w(n) = cos
n

N
�

�

�
�

�
��
�

,

n = � N
2

,...,�1,0,1,...,
N

2
.

w(n) =
0.54 + 0.46cos

2�n

N
�

�
�

�
� n = � N

2
,...,�1,0,1,...,

N

2

0.54 � 0.46cos
2�n

N
�

�
�

�
� n = 0,1,2,...,N �1

�

�

�
�

	

�

�

FFT

V-194

Hanning:

KaiserBessel20, KaiserBessel25, KaiserBessel30:

where I0 is the zero-order modified Bessel function of the first kind.

Parzen:

Poisson2, Poisson3, Poisson4:

Riemann:

See Also
See Fourier Transforms on page III-239 for discussion. The inverse operation is IFFT.

windowKind α

KaiserBessel20: α = 2.

KaiserBessel25: α = 2.5.

KaiserBessel30: α = 3.

windowKind α

Poisson2: α = 2.

Poisson3: α = 3.

Poisson4: α = 4.

w n()

1
2
--- 1 2n

N
------π
 cos+ n N

2
---- … 1 0 1 … N

2
----, , , ,–, ,–=

1
2
--- 1 2n

N
------π
 cos– n 0 1 2 … N 1–, , , ,=

=w(n) =

1

2
1+ cos

2�n

N
�

�
�

!
"#

�

�
�

$
%&

n = � N
2

,...,�1,0,1,...,
N

2

1

2
1� cos

2�n

N
�

�
�

!
"#

�

�
�

$
%&

n = 0,1,2,...,N �1

	

�
�

�

�

�

w(n) =

I0 �� 1� 2n
N

�

�
�

�

	

2�

�

�
�

�

	
	

I0 ��() 0 � n �
N

2
.

w(n) = 1� 2n

N

2

0 � n �
N

2
.

w(n) = exp ��
2 n

N

�

�
�

�
��

0 � n �
N

2
.

w(n) =
sin

2�n
N

�

�
�

�

�
	

2�n
N

�

�
�

�

�
	

0 � n �
N

2
.

FGetPos

V-195

Spectral Windowing on page III-244. For 2D windowing see ImageWindow. Also the Hanning window
operation.
Also see the DWT operation for the discrete wavelet transform and the CWT operation for the continuous
wavelet transform. The HilbertTransform and WignerTransform operations.
The Unwrap, MatrixOp, DSPPeriodogram and LombPeriodogram operations.

References
For more information about the use of window functions see:
Harris, F.J., On the use of windows for harmonic analysis with the discrete Fourier Transform, Proc, IEEE,

66, 51-83, 1978.

FGetPos
FGetPos refNum
The FGetPos operation returns the file position for a file.
FGetPos is a faster alternative to FStatus if the only thing you are interested in is the file position.
The FGetPos operation was added in Igor Pro 7.00.

Parameters
refNum is a file reference number obtained from the Open operation.

Details
FGetPos supports very big files theoretically up to about 4.5E15 bytes in length.
FGetPos sets the following variables:

See Also
Open, FSetPos, FStatus

FIFO2Wave
FIFO2Wave [/R/S] FIFOName, channelName, waveName
The FIFO2Wave operation copies FIFO data from the specified channel of the named FIFO into the named
wave. FIFOs are used for data acquisition.

Flags

Details
The FIFO must be in the valid state for FIFO2Wave to work. When you create a FIFO, using NewFIFO, it is
initially invalid. It becomes valid when you issue the start command via the CtrlFIFO operation. It remains
valid until you change a FIFO parameter using CtrlFIFO.
If you specify a range of FIFO data points, using /R=[startPoint,endPoint] then FIFO2Wave dumps the
specified FIFO points into the wave after clipping startPoint and endPoint to valid point numbers.

V_flag Nonzero (true) if refNum is valid.

V_filePos Current file position for the file in bytes from the start.

/R=[startPoint,endPoint] Dumps the specified FIFO points into the wave.

/S=s Controls the wave’s X scaling and number type:
s=0: Same as no /S.
s=1: Sets the wave’s X scaling x0 value to the number of the first

sample in the FIFO.
s=2: Changes the wave’s number type to match the FIFO channel’s

type.
s=3: Combination of s=1 and s=2.

FIFOStatus

V-196

The valid point numbers depend on whether the FIFO is running and on whether or not it is attached to a
file. If the FIFO is running then startPoint and endPoint are truncated to number of points in the FIFO. If the
FIFO is buffering a file then the range can include the full extent of the file.
If you specify no range then FIFO2Wave transfers the most recently acquired FIFO data to the wave. The number
of points transferred is the smaller of the number of points in the FIFO and number of points in the wave.
FIFO2Wave may or may not change the wave’s X scaling and number type, depending on the current X
scaling and on the /S flag.
Think of the wave’s X scaling as being controlled by two values, x0 and dx, where the X value of point p is
x0 + p*dx. FIFO2Wave always sets the wave’s dx value equal to the FIFO’s deltaT value (as set by the
CtrlFIFO operation). If you use no /S flag, FIFO2Wave does not set the wave’s x0 value nor does it set the
wave’s number type.
If you are using FIFO2Wave to update a wave in a graph as quickly as possible, the /S=0 flag gives the
highest update rate. The other /S values trigger more recalculation and slow down the updating.
If the wave’s number type (possibly changed to match the FIFO channel) is a floating point type,
FIFO2Wave scales the FIFO data before transferring it to the wave as follows:
scaled_value = (FIFO_value - offset) * gain

If the FIFO channel’s gain is one and its offset is zero, the scaling would have no effect so FIFO2Wave skips it.
If the specified FIFO channel is an image strip channel (one defined using the optional vectPnts parameter
to NewFIFOChan), then the resultant wave will be a matrix with the number of rows set by vectPnts and
the number of columns set by the number of points described above for one-dimensional waves. To create
an image plot that looks the same as the corresponding channel in a Chart, you will need to transpose the
wave using MatrixTranspose.

See Also
The NewFIFO and CtrlFIFO operations, and FIFOs and Charts on page IV-291 for more information on
FIFOs and data acquisition. For an explanation of waves and wave scaling, see Changing Dimension and
Data Scaling on page II-63.

FIFOStatus
FIFOStatus [/Q] FIFOName
The FIFOStatus operation returns miscellaneous information about a FIFO and its channels. FIFOs are used
for data acquisition.

Flags

Details
FIFOStatus sets the variable V_flag to nonzero if a FIFO of the given name exists. If the named FIFO does
exist then FIFOStatus stores information about the FIFO in the following variables:

The keyword-packed information string consists of a sequence of sections with the following form: keyword:value;
You can pick a value out of a keyword-packed string using the NumberByKey and StringByKey functions.
Here are the keywords for S_Info:
In addition, FIFOStatus writes fields to S_Info for each channel in the FIFO. The keyword for the field is a
combination of a name and a number that identify the field and the channel to which it refers. For example,
if channel 4 is named “Pressure” then the following would appear in the S_Info string: NAME4:Pressure.
In the following table, the channel’s number is represented by “#”.

/Q Doesn’t print in the history area.

V_FIFORunning Nonzero if FIFO is running.

V_FIFOChunks Number of chunks of data placed in FIFO so far.

V_FIFOnchans Number of channels in the FIFO.

S_Info Keyword-packed information string.

FilterFIR

V-197

See Also
The NewFIFO, CtrlFIFO, and NewFIFOChan operations, FIFOs and Charts on page IV-291 for more
information on FIFOs and data acquisition.
The NumberByKey and StringByKey functions for parsing keyword-value strings.

FilterFIR
FilterFIR [flags] waveName [, waveName]…
The FilterFIR operation convolves each waveName with automatically-designed filter coefficients or with
coefsWaveName using time-domain methods.
The automatically-designed filter coefficients are simple lowpass and highpass window-based filters or a
maximally-flat notch filter. Multiple filter designs are combined into a composite filter. The filter can be
optionally placed into the first waveName or just used to filter the data in waveName.
FilterFIR filters data faster than Convolve when there are many fewer filter coefficient values than data
points in waveName.

Parameters
waveName is a destination wave that is overwritten by the convolution of itself and the filter.
waveName may be multidimensional, but only one dimension selected by /DIM is filtered (for two-dimensional
filtering, see MatrixFilter).
If waveName is complex, the real and imaginary parts are filtered independently.

Flags

Keyword Type Meaning

DATE Number The date/time when start was issued via CtrlFIFO.

DELTAT Number The FIFO’s deltaT value as set by CtrlFIFO.

DISKTOT Number Current number of chunks written to the FIFO’s file.

FILENUM Number The output file refNum or review file refNum as set by CtrlFIFO. This will be
zero if the FIFO is connected to no file.

NOTE String The FIFO’s note string as set by CtrlFIFO.

VALID Number Zero if FIFO is not valid.

Keyword Type Meaning

FSMINUS# Number Channel’s minus full scale value as set by NewFIFOChan.

FSPLUS# Number Channel’s plus full scale value as set by NewFIFOChan.

GAIN# Number Channel’s gain value as set by NewFIFOChan.

NAME# String Name of channel.

OFFSET# Number Channel’s offset value as set by NewFIFOChan.

UNITS# String Channel’s units as set by NewFIFOChan.

Note: FilterFIR replaces the obsolete SmoothCustom operation.

/COEF [=coefsWaveName]

FilterFIR

V-198

Replaces the first output waveName by the filter coefficients instead of the filtered
results or, when coefsWaveName is specified, replaces the output wave(s) by the result
of convolving waveName with coefficients in coefsWaveName.
coefsWaveName must not be one of the destination waveNames. It must be single- or
double-precision numeric and one-dimensional.
To avoid shifting the output with respect to the input, coefsWaveName must have an
odd length with the “center” coefficient in the middle of the wave.
The coefficients are usually symmetrical about the middle point, but FilterFIR does
not enforce this.

/DIM=d

/E=endEffect

/HI={f1, f2, n} Creates a high-pass filter based on the windowing method, using the Hanning
window unless another window is specified by /WINF.
f1 and f2 are filter design frequencies measured in fractions of the sampling frequency,
and may not exceed 0.5 (the normalized Nyquist frequency).
f1 is the end of the reject band, and f2 is the start of the pass band:
0 < f1 < f2 < 0.5
n is the number of FIR filter coefficients to generate. A larger number gives better
stop-band rejection. A good number to start with is 101.
Use both /HI and /LO to create a bandpass filter.

/LO={f1, f2, n} Creates a low-pass filter. f1 is the end of the pass band, f2 is the start of the reject band,
and n is the number of FIR filter coefficients. See /HI for more details.

/NMF={fc, fw [, eps, nMult]}

Specifies the wave dimension to filter.

Use /DIM=0 to apply the filter to each individual column (each one a channel, say
left and right) in a multidimensional waveName where each row comprises all of
the sound samples at a particular time.

d=-1: Treats entire wave as 1D (default).
d=0: Operates along rows.
d=1: Operates along columns.
d=2: Operates along layers.
d=3: Operates along chunks.

Determines how the ends of the wave (w) are handled when fabricating missing
neighbor values. endEffect has values:
0: Bounce method (default). Uses w[i] in place of the missing w[-i] and w[n-

i] in place of the missing w[n+i].
1: Wrap method. Uses w[n-i] in place of the missing w[-i] and vice versa.
2: Zero method. Uses 0 for any missing value.
3: Fill method. Uses w[0] in place of the missing w[-i] and w[n] in place of

the missing w[n+i].

FilterFIR

V-199

Details
If coefsWaveName is specified, then /HI, /LO, and /NMF are ignored.
If more than one of /HI, /LO, and /NMF are specified, the filters are combined using linear convolution. The
length of the combined filter is slightly less than the sum of the individual filter lengths.
The filtering convolution is performed in the time-domain. That is, the FFT is not employed to filter the
data. For this reason the coefficients length should be small in comparison to the destination waves.
FilterFIR assumes that the middle point of coefsWaveName corresponds to the delay = 0 point. The “middle”
point number = trunc(numpnts(coefsWaveName -1)/2). coefsWaveName usually contains the two-sided
impulse response of a filter, and usually contains an odd number of points. This is the kind of coefficients
data generated by /HI, /LO, and /NMF.
FilterFIR ignores the X scaling of all waves, except when /COEF creates a coefficients wave, which preserves
the X scale deltax and alters the leftx value so that the zero-phase (center) coefficient is located at x=0.

Examples
// Make test sound from three sine waves
Variable/G fs= 44100 // Sampling frequency
Variable/G seconds= 0.5 // Duration
Variable/G n= 2*round(seconds*fs/2)
Make/O/W/N=(n) sound // 16-bit integer sound wave
SetScale/p x, 0, 1/fs, "s", sound
Variable/G f1= 200, f2= 1000, f3= 7000
Variable/G a1=100, a2=3000,a3=1500
sound= a1*sin(2*pi*f1*x)
sound += a2*sin(2*pi*f2*x)
sound += a3*sin(2*pi*f3*x)+gnoise(10) // Add a noise floor

Creates a maximally-flat notch filter centered at fc with a -3dB width of fw. fc and fw
are filter design frequencies measured in fractions of the sampling frequency, and
may not exceed 0.5 (the normalized Nyquist frequency).
The longest filter length allowed is 4001 points, which requires fw >= 0.0079 (1.58% of
the sampling frequency).
The longest filter length allowed is 2,147,483,647 points, which requires
fw >= 1.07644e-05 (0.00107644 % of the sampling frequency).
Coefficients at the ends that are smaller than the optional eps parameter are removed,
making the filter shorter (and faster), though less accurate. The default is 2-40. Use 0
to retain all coefficients, no matter how small, even zero coefficients.
nMult specifies how much longer the filter may be to obtain the most accurate notch
frequency. The default is 2 (potentially twice as many coefficients). Set nMult <= 1 to
generate the shortest possible filter.
The maximally flat notch filter design is based on Zahradník and Vlcek, and uses
arbitrary precision math (see APMath) to compute the coefficients.

 /WINF=windowKind

Applies the named “window” to the filter coefficients. Windows alter the frequency
response of the filter in obvious and subtle ways, enhancing the stop-band rejection
or steepening the transition region between passed and rejected frequencies. They
matter less when many filter coefficients are used.
If /WINF is not specified, the Hanning window is used. For no coefficient filtering, use
/WINF=None.
Choices for windowKind are:
Bartlett, Blackman367, Blackman361, Blackman492, Blackman474, Cos1, Cos2, Cos3,
Cos4, Hamming, Hanning, KaiserBessel20, KaiserBessel25, KaiserBessel30, Parzen,
Poisson2, Poisson3, Poisson4, and Riemann.
See FFT for window equations and details.

FilterIIR

V-200

// Compute the sound's spectrum in dB
FFT/MAG/WINF=Hanning/DEST=soundMag sound
soundMag= 20*log(soundMag)
SetScale d, 0, 0, "dB", soundMag

// Apply a 5 kHz low-pass filter to the sound wave
Duplicate/O sound, soundFiltered
FilterFIR/E=3/LO={4000/fs, 6000/fs, 101} soundFiltered

// Compute the filtered sound's spectrum in dB
FFT/MAG/WINF=Hanning/DEST=soundFilteredMag soundFiltered
soundFilteredMag= 20*log(soundFilteredMag)
SetScale d, 0, 0, "dB", soundFilteredMag

// Compute the filter's frequency response in dB
Make/O/D/N=0 coefs // Double precision is recommended
SetScale/p x, 0, 1/fs, "s", coefs
FilterFIR/COEF/LO={4000/fs, 6000/fs, 101} coefs
FFT/MAG/WINF=Hanning/PAD={(2*numpnts(coefs))}/DEST=coefsMag coefs
coefsMag= 20*log(coefsMag)
SetScale d, 0, 0, "dB", coefsMag

// Graph the frequency responses
Display/R/T coefsMag as "FIR Lowpass Example";DelayUpdate
AppendToGraph soundMag, soundFilteredMag;DelayUpdate
ModifyGraph axisEnab(left)={0,0.6}, axisEnab(right)={0.65,1}
ModifyGraph rgb(soundFilteredMag)=(0,0,65535), rgb(coefsMag)=(0,0,0)
Legend

// Graph the unfiltered and filtered sound time responses
Display/L=leftSound sound as "FIR Filtered Sound";DelayUpdate
AppendToGraph/L=leftFiltered soundFiltered;DelayUpdate
ModifyGraph axisEnab(leftSound)={0,0.45}, axisEnab(leftFiltered)={0.55,1}
ModifyGraph rgb(soundFiltered)=(0,0,65535)

// Listen to the sounds
PlaySound sound // This has a very high frequency tone
PlaySound soundFiltered // This doesn't

References
Zahradník, P., and M. Vlcek, Fast Analytical Design Algorithms for FIR Notch Filters, IEEE Trans. on

Circuits and Systems, 51, 608 - 623, 2004.
<http://euler.fd.cvut.cz/publikace/files/vlcek/notch.pdf>

See Also
Smoothing on page III-261; the Smooth, Convolve, MatrixConvolve, and MatrixFilter operations.

FilterIIR
FilterIIR [flags] [waveName,…]
The FilterIIR operation applies to each waveName either the automatically-designed IIR filter coefficients or
the IIR filter coefficients in coefsWaveName. Multiple filter designs are combined into a composite filter. The
filter can be optionally placed into the first waveName or just used to filter the data in waveName.

-150

-100

-50

0

dB

20151050
kHz

120

80

40

0

dB

20151050
kHz

 coefsMag
 soundMag
 soundFilteredMag

http://euler.fd.cvut.cz/publikace/files/vlcek/notch.pdf

FilterIIR

V-201

The automatically-designed filter coefficients are bilinear transforms of the Butterworth analog prototype
with an optional variable-width notch filter.
To design more advanced IIR filters, see Designing the IIR Coefficients.

Parameters
waveName may be multidimensional, but only the one dimension selected by /DIM is filtered (for two-
dimensional filtering, see MatrixFilter).
waveName may be omitted for the purpose of checking the format of coefsWaveName. If the format is detectably
incorrect an error code will be returned in V_flag. Use /Z to prevent command execution from stopping.

Flags

/CASC Specifies that coefsWaveName contains cascaded bi-quad filter coefficients. The
cascade implementation is more stable and numerically accurate for high-order IIR
filtering than Direct Form 1 filtering. See Cascade Details.

/COEF [=coefsWaveName]

Replaces the first output waveName by the filter coefficients instead of the filtered
results or, when coefsWaveName is specified, replaces the output wave(s) by the result
of filtering waveName with the IIR coefficients in coefsWaveName.
coefsWaveName must not be one of the destination waveNames. It must be single- or
double-precision numeric and two-dimensional.
When used with /CASC, coefsWaveName must have 6 columns, containing real-valued
coefficients for a product of ratios of second-order polynomials (cascaded bi-quad
sections).
If /ZP is specified, it must be complex, otherwise it must be real.
See Details for the format of the coefficients in coefsWaveName.

/DIM=d

/HI=fHigh Creates a high-pass Butterworth filter with the -3dB corner at fHigh. The order of the
filter is controlled by the /ORD flag.
fHigh is a filter design frequency measured in fractions of the sampling frequency, and
may not exceed 0.5 (the normalized Nyquist frequency).

/LO=fLow Creates a low-pass Butterworth filter with the -3dB corner at fLow. The /ORD flag
controls the order of the filter.
fLow is a filter design frequency measured in fractions of the sampling frequency, and
may not exceed 0.5 (the normalized Nyquist frequency).
Create bandpass and bandreject filters by specifying both /HI and /LO. For a
bandpass filter, set fLow > fHigh, and for a band reject filter, set fLow < fHigh.

Specifies the wave dimension to filter.

Use /DIM=0 to apply the filter to each individual column (each one a channel, say
left and right) in a multidimensional waveName where each row comprises all of
the sound samples at a particular time.

d=-1: Treats entire wave as 1D (default).
d=0: Operates along rows.
d=1: Operates along columns.
d=2: Operates along layers.
d=3: Operates along chunks.

FilterIIR

V-202

Details
FilterIIR sets V_flag to 0 on success or to an error code if an error occurred. Command execution stops if an
error occurs unless the /Z flag is set. Omit /Z and call GetRTError and GetRTErrMessage under similar
circumstances to see what the error code means.

Direct Form 1 Details
Unless /CASC or /ZP are specified, the coefficients in coefsWaveName describe a ratio of two polynomials of
the Z transform:

where x is the input wave waveName and y is the output wave (either waveName again or destWaveName).
FilterIIR computes the filtered result using the Direct Form I implementation of H(z).
The rational polynomial numerator (ai) coefficients in are column 0 and denominator (bi) coefficients in
column 1 of coefsWaveName.
The coefficients in row 0 are the nondelayed coefficients a0 (in column 0) and b0 (in column 1).
The coefficients in row 1 are the z-1 coefficients, a1 and b1.
The coefficients in row n are the z-n coefficients, an and bn.

/N={fNotch,
notchQ}

Creates a notch filter with the center frequency at fNotch and a -3dB width of
fNotch/notchQ.
fNotch is a filter design frequency measured in fractions of the sampling frequency,
and may not exceed 0.5 (the normalized Nyquist frequency).
notchQ is a number greater than 1, typically 10 to 100. Large values produce a filter
that “rings” a lot.

/ORD=order Sets the order of the Butterworth filter(s) created by /HI and /LO. The default is 2
(second order), and the maximum is 100.

/Z=z Prevents procedure execution from aborting when an error occurs. Use /Z=1 to handle
this case in your procedures using GetRTError(1) rather than having execution abort.
/Z=0 is the same as no /Z at all.

/ZP Specifies that coefsWaveName contains complex z-domain zeros (in column 0) and
poles (in column 1) or, if coefsWaveName is not specified, that the first output
waveName is to be replaced by filter coefficients in the zero-pole format. See Zeros and
Poles Details.

H z() Y z()
X z()

a0 a1z
1– a2z

2– …+ + +

b0 b1z
1– b2z

2– …+ + +
---= =

xi yiao

-b1

-b2a2

a1

z-1

z-1

z-1

z-1

∑∑
1
bo

Direct Form I Implementation

yi
a0xi a1xi 1– a2xi 2– … b1yi 1– b2yi 2– …+––+ + +

b0
--=

FilterIIR

V-203

The number of coefficients for the numerator can differ from the number of coefficients for the
denominator. In this case, specify 0 for unused coefficients.

Alternate Direct Form 1 Notation
The designation of ai, etc. as the numerator is at odds with many textbooks such as Digital Signal Processing,
which uses b for the numerator coefficients of the rational function, a for the denominator coefficients with
an implicit a0 = 1, in addition to reversing the signs of the remaining denominator coefficients so that they
can write H(z) as:

Coefficients derived using this notation need their denominator coefficients sign-reversed before putting
them into rows 1 through n of column 1 (the second column), and the “missing” nondelayed denominator
coefficient of 1.0 placed in row 0, column 1.

Cascade Details
When using /CASC, coefficients in coefsWaveName describe the product of one or more ratios of two
quadratic polynomials of the Z transform:

Each product term implements a “cascaded bi-quad section”, and H(z) can be realized by feeding the output
of one section to the next one.
The cascade coefficients filter the data using a Direct Form II cascade implementation:

The cascade implementation is more stable and numerically accurate for high-order IIR filtering than Direct
Form I filtering. Cascade IIR filtering is recommended when the filter order exceeds 16 (a 16th-order Direct
Form I filter has 17 numerator coefficients and 17 denominator coefficients).

Note: If all the coefficients of the denominator are 0 (bi= 0 except b0 = 1), then the filter is actually
a causal FIR filter (Finite Impulse Response filter with delay of n-1). In this sense, FilterIIR
implements a superset of the FilterFIR operation.

H (z) = Y (z)

X(z)
=

biz
− i

i=0

n

∑

1− aiz
− i

i=1

n

∑
.

H (z) = Y (z)

X(z)
=

a0k
+ a1k

z−1 + a2k
z−2

b0k
+ b1k

z−1 + b2k
z−2

k=1

K

∏ .

xi

wi

wi-2

wi-1

yiao

-b1

-b2 a2

a1

z-1

z-1

∑ ∑
1
bo

Cascaded Bi-Quad Direct Form II Implementation

wi
xi b1wi 1–– b2wi 2––

b0
---=

yi a0wi a1wi 1– a2wi 2–+ +=

FilterIIR

V-204

coefsWaveName must be a six-column real-valued numeric wave. Each row describes one bi-quad section.
The coefficients for the second term (or “section”) of the product (k=2) are in the following row, etc.:

The number of coefficients for the numerator (a’s) is allowed to differ from the number of coefficients for
the denominator (b’s). In this case, specify 0 for unused coefficients.
For example, a third order filter (three poles and three zeros) cascade implementation is a single-order
section combined with a second order section. The values for , for that section (k) would be 0. Here
the second section is specified as the first-order section:

Alternate Cascade Notation
In the DSP literature, the gain values are typically one and the H(z) expression contains an overall gain
value, usually K. Here each product term (or “section”) has a user-settable gain value. Computing the correct
gain values to control overflow in integer implementations is the responsibility of the user. For floating
implementations, you might as well set all values to one except, say, , to control the overall gain.

Zeros and Poles Details
When using /ZP, coefficients in coefsWaveName contains complex zeros and poles in the (also complex) Z
transform domain:

coefsWaveName must be a two-column complex wave with zero0, zero1,… zeroN in the first column of N+1
rows, and pole0, pole1,… poleN in the second column of those same rows:

If a zero or pole has a nonzero imaginary component, the conjugate zero or pole must be included in
coefsWaveName. For example, if a zero is placed at (0.7, 0.5), the conjugate is (0.7, -0.5), and that value must
also appear in column 0. These two zeros form what is known as a “conjugate pair”. The conjugate values
must match within the greater of 1.0e-6 or 1.0e-6 * |zeroOrPole|.
Use (0,0) for unused poles or zeros, as a zero or pole at z= (0,0) has no effect on the filter frequency response.
The /ZP format for the coefficients is internally converted into the Direct Form 1 implementation, or into
the Cascade Direct Form 2 implementation if /CASC is specified. There is no option for returning these
implementation-dependent coefficients in a wave.

k Row Col 0 Col 1 Col 2 Col 3 Col 4 Col 5

1 0

2 1

…

k Row Col 0 Col 1 Col 2 Col 3 Col 4 Col 5

1 0

2 1 0 0

k Row Col 0 Col 1

1 0 (zero0Real, zero0Imag) (pole0Real, pole0Imag)

2 1 (zero1Real, zero1Imag) (pole1Real, pole1Imag)

3 2 (zero2Real, zero2Imag) (pole2Real, pole2Imag)

…

a01 a11 a21 b01 b11 b21

a02 a12 a22 b02 b12 b22

a2k b2k

a01 a11 a21 b01 b11 b21

a02 a12 b02 b12

b0k

b0k b01

H (z) = Y (z)

X(z)
= (z − z0)(z − z1)(z − z2)…

(z − p0)(z − p1)(z − p2)…

FilterIIR

V-205

Designing the IIR Coefficients
Simple IIR filters can be used or created by specifying the /LO, /HI, /ORD, /N, /CASC, and /ZP flags. Use
/COEF without coefsWaveName to put these simple IIR filter coefficients into the first waveName.
More advanced IIR filters (Bessel, Chebyshev) can be designed using the separate IFDL package. IFDL is a
suite of extensions and macros that you use to design FIR (Finite Impulse Response) and IIR (Infinite
Impulse Response) filters and to apply them to your data. The IIR design software creates IIR coefficients
based on bilinear transforms of analog prototype filters such as Bessel, Butterworth, and Chebyshev. See
the WaveMetrics web site for more about IFDL.
Even without IFDL, you can create custom IIR filters by manually placing poles and zeros in the Z plane
using the Pole and Zero Filter Design procedures. Copy the following line to your Procedure window and
click the Compile button at the bottom of the procedure window:
#include <Pole And Zero Filter Design>

Then choose Pole and Zero Filter Design from the Analysis menu.

Examples
// Make test sound from three sine waves
Variable/G fs= 44100 // Sampling frequency
Variable/G seconds= 0.5 // Duration
Variable/G n= 2*round(seconds*fs/2)
Make/O/W/N=(n) sound // 16-bit integer sound wave
SetScale/p x, 0, 1/fs, "s", sound
Variable/G f1= 200, f2= 1000, f3= 7000
Variable/G a1=100, a2=3000,a3=1500
sound= a1*sin(2*pi*f1*x)
sound += a2*sin(2*pi*f2*x)
sound += a3*sin(2*pi*f3*x)+gnoise(10) // Add a noise floor

// Compute the sound's spectrum in dB
FFT/MAG/WINF=Hanning/DEST=soundMag sound
soundMag= 20*log(soundMag)
SetScale d, 0, 0, "dB", soundMag

// Apply a 5 kHz, 6th order low-pass filter to the sound wave
Duplicate/O sound, soundFiltered
FilterIIR/LO=(5000/fs)/ORD=6 soundFiltered // Second order by default

// Compute the filtered sound's spectrum in dB
FFT/MAG/WINF=Hanning/DEST=soundFilteredMag soundFiltered
soundFilteredMag= 20*log(soundFilteredMag)
SetScale d, 0, 0, "dB", soundFilteredMag

// Compute the filter's frequency and phase by filtering an impulse
Make/O/D/N=2048 impulse= p==0 // Impulse at t==0
SetScale/P x, 0, 1/fs, "s", impulse
Duplicate/O impulse, impulseFiltered
FilterIIR/LO=(5000/fs)/ORD=6 impulseFiltered
FFT/MAG/DEST=impulseMag impulseFiltered
impulseMag= 20*log(impulseMag)
SetScale d, 0, 0, "dB", impulseMag
FFT/OUT=5/DEST=impulsePhase impulseFiltered
impulsePhase *= 180/pi // Convert to degrees
SetScale d, 0, 0, "deg", impulsePhase
Unwrap 360, impulsePhase // Continuous phase

// Graph the frequency responses
Display/R/T impulseMag as "IIR Lowpass Example"
AppendToGraph/L=phase/T impulsePhase
AppendToGraph soundMag, soundFilteredMag
ModifyGraph axisEnab(left)={0,0.6}
ModifyGraph axisEnab(right)={0.65,1}
ModifyGraph axisEnab(phase)={0.65,1}
ModifyGraph freePos=0, lblPos=60, rgb(soundFilteredMag)=(0,0,65535)
ModifyGraph rgb(impulseMag)=(0,0,0), rgb(impulsePhase)=(0,65535,0)
ModifyGraph axRGB(phase)=(3,52428,1), tlblRGB(phase)=(3,52428,1)
Legend

FindContour

V-206

// Graph the unfiltered and filtered impulse time responses
Display/L=leftImpulse impulse as "IIR Filtered Impulse"
AppendToGraph/L=leftFiltered impulseFiltered
ModifyGraph axisEnab(leftImpulse)={0,0.45}, axisEnab(leftFiltered)={0.55,1}
ModifyGraph freePos=0, margin(left)=50
ModifyGraph mode(impulse)=1, rgb(impulseFiltered)=(0,0,65535)
SetAxis bottom -0.00005,0.001
Legend

// Listen to the sounds
PlaySound sound // This has a very high frequency tone
PlaySound soundFiltered // This doesn't

References
Embree, P.M., and B. Kimble, C Language Algorithms for Signal Processing, 456 pp., Prentice Hall, Englewood

Cliffs, New Jersey, 1991.
Lynn, P.A., and W. Fuerst, Introductory Digital Signal Processing with Computer Applications, 479 pp., Prentice

Hall, Englewood Cliffs, New Jersey, 1998.
Oppenheim, A.V., and R.W. Schafer, Digital Signal Processing, 585 pp., Prentice Hall, Englewood Cliffs, New

Jersey, 1975.
Terrell, T.J., Introduction to Digital Filters, 2nd ed., 261 pp., John Wiley & Sons, New York, 1988.

See Also
Smoothing on page III-261; the FFT and FilterFIR operations.

FindContour
FindContour [flags] matrixWave, level
The FindContour operation creates an XY pair of waves representing the locus of the solution to
matrixWave=level .
The FindContour operation was added in Igor Pro 7.00.

-300

-200

-100

0

dB

20151050
kHz

500
400
300
200
100

0

de
g

120

80

40

0

dB

20151050
kHz

 impulseMag
 impulsePhase
 soundMag
 soundFilteredMag

1.0
0.8
0.6
0.4
0.2
0.0

1.00.80.60.40.20.0
ms

0.20

0.10

0.00

 impulse
 impulseFiltered

FindDimLabel

V-207

Flags

Details
FindContour uses a contour-following algorithm to generate a pair of waves describing the locus of the
solution to matrixWave=level.
If you omit /DSTX the output X data is written to W_XContour in the current data folder.
If you omit /DSTY the output Y data is written to W_YContour in the current data folder.
The output waves are written as double-precision floating point. They use NaNs to separate different
contiguous solution points.

Example
Make/N=(100,200) dataWave = 1e4*gauss(x,50,10,y,100,20)
FindContour dataWave,4 // Find solution to dataWave=4
NewImage dataWave
AppendToGraph/T W_YContour vs W_XContour

See Also
AppendMatrixContour, ContourZ

FindDimLabel
FindDimLabel(waveName, dimNumber, labelString)
Returns the index value corresponding to the label for the given dimension. Returns -1 if the label is for the
entire dimension. Returns -2 if the label is not found.
Use dimNumber =0 for rows, 1 for columns, 2 for layers, or 3 for chunks.

See Also
GetDimLabel, SetDimLabel

FindDuplicates
FindDuplicates [flags] srcWave
The FindDuplicates operation identifies duplicate values in a wave and optionally creates various output
waves. srcWave can be either numeric or text.
When srcWave is numeric, the /DN, /INDX, /RN and /SN flags create output waves as described below. If
you omit all of these flags then FindDuplicates does nothing.
When srcWave is text, the /DT, /INDX, /RT and /ST flags create output waves as described below. If you omit
all of these flags then FindDuplicates does nothing.
The FindDuplicates operation was added in Igor Pro 7.

Flags

Flags for Numeric Source Wave

/DSTX=destX Saves the output X data in the specified destination wave. The destination wave is
created or overwritten if it already exists.

/DSTY=destY Saves the output Y data in the specified destination wave. The destination wave is
created or overwritten if it already exists.

INDX=indexWave Creates a numeric output wave containing the index of each encountered duplicate.
The index is the point number in srcWave where a duplicate value was encountered.
This flag applies to both numeric and text inputs.

/Z Do not report any errors.

/DN=dupsWave Creates a numeric output wave that contains the duplicates.

/RN=dupsRemovedWave

FindDuplicates

V-208

Flags for Text Source Wave

Details
FindDuplicates scans srcWave and identifies duplicate values. The first instance of any value is not
considered a duplicate. Duplicates are either identical, as is the case with integer or text waves, or values
that are within a specified tolerance in the case of single-precision or double-precision numeric waves.
Text comparison is case-sensitive.
The operation creates wave references for the waves specified by the various flags above. See Automatic
Creation of WAVE References on page IV-66 for details.

See Also
FindLevels, FindValue, Sort

Creates a numeric output wave that contains the source data with all duplicates
removed.

/SN=replacement Creates a numeric output wave with all duplicates replaced with replacement.
replacement can be any numeric value including NaN or INF.
The output wave is W_ReplacedDuplicates in the current data folder unless you
specify a different output wave using the /SNDS flag.

/SNDS=dupsReplacedWave

Specifies the output wave generated by /SN. If you omit /SNDS then the output wave
created by /SN is W_ReplacedDuplicates in the current data folder. /SNDS without
/SN has no effect.

/TOL=tolerance Specifies the tolerance value for single-precision and double-precision numeric
source waves.
Two values are considered duplicates if
abs(value1-value2) <= tolerance

By default tolerance is zero.

/DT=dupsWave Creates a text output wave that contains the duplicates.

/RT=dupsRemovedWave

Creates a text output wave that contains the source data with all duplicates removed.

/ST=replacementStr Creates a text output wave with all duplicates replaced with replacementStr.
replacementStr can be any text value including "".
The output wave is T_ReplacedDuplicates in the current data folder unless you
specify a different output wave using the /STDS flag.

/STDS=dupsReplacedWave

Specifies the output wave generated by /ST. If you omit /STDS then the output wave
created by /ST is T_ReplacedDuplicates in the current data folder. /STDS without /ST
has no effect.

FindLevel

V-209

FindLevel
FindLevel [flags] waveName, level
The FindLevel operation searches the named wave to find the X value at which the specified Y level is
crossed.

Flags

Details
FindLevel scans through the wave comparing level to values derived from the Y values of the wave. Each
derived value is a sliding average of the Y values.
FindLevel searches for two derived wave values that straddle level. If it finds these values it computes the
X value at which level is located by linearly interpolating between the straddling Y values.

FindLevel reports its results by setting these variables:

/B=box Sets box size for sliding average. If /B=box is omitted or box equals 1, no averaging is
done. If you specify an even box size then the next higher (odd) integer is used. If you
use a box size greater than 1, FindLevel will be unable to find a level crossing that
occurs in the first or last (box-1)/2 points of the wave since these points don’t have
enough neighbors for computing the derived average wave values.

/EDGE=e

/P Computes the X crossing location in terms of point number. If /P is omitted, the level
crossing location is computed in terms of X values.

/Q Don’t print results in history and don’t report error if level is not found.

/R=(startX,endX) Specifies an X range of the wave to search. You may exchange startX and endX to
reverse the search direction.

/R=[startP,endP] Specifies a point range of the wave to search. You may exchange startP and endP to
reverse the search direction. If you specify the range as /R=[startP] then the end of the
range is taken as the end of the wave. If /R is omitted, the entire wave is searched.

/T=dx Search for two level crossings. dx must be less than minWidthX, so you must also
specify /M if you use /T. (FindLevel limits dx so that second search start isn’t beyond
where the first search for next edge will be.)

/T=dx Performs a second search after finding the initial level crossing. The second search
starts dx units beyond the initial level crossing and looks back in the direction of the
initial crossing. If FindLevel finds a second level crossing, it sets V_LevelX to the
average of the initial and second crossings. Otherwise, it sets V_LevelX to the initial
crossing.

Note: FindLevel does not locate values exactly equal to level; it locates transitions through level.
See BinarySearch for one method of locating exact values.

V_flag 0: level was found.
1: level was not found.

V_LevelX Interpolated X value at which level was found, or the corresponding point number if
/P is specified.

V_rising 0: Y values at the crossing are decreasing from wave start towards wave end.
1: Y values at the crossing are increasing.

Specifies searches for either increasing or decreasing level crossing.
e=1: Searches only for crossing where Y values are increasing as level is

crossed from wave start towards wave end.
e=2: Searches only for crossing where the Y values are decreasing as level

is crossed from wave start towards wave end.
e=0: Same as no /EDGE flag (searches for either increasing and decreasing

level crossing).

FindLevels

V-210

If you omit the /Q flag then FindLevel also reports its results by printing them in the history area.
If level is not found, and if you omit the /Q flag, FindLevel generates an error which puts up an error alert
and halts execution of any command line or macro that is in progress.
V_LevelX is returned in terms of the X scaling of the named wave unless you use the /P flag, in which case
it is in terms of point number.
The FindLevel operation is not multidimensional aware. See Analysis on Multidimensional Waves on
page II-86 for details.

See Also
The EdgeStats, FindLevels, FindValue, and PulseStats operations and the BinarySearch and
BinarySearchInterp functions.

FindLevels
FindLevels [flags] waveName, level
The FindLevels operation searches the named wave to find one or more X values at which the specified Y
level is crossed.
To find where the wave is equal to a given value, use FindValue instead.

Flags

Details
The algorithm for finding a level crossing is the same one used by the FindLevel operation.

/B=box Sets box size for sliding average. See the FindLevel operation.

/D=destWaveName Specifies wave into which FindLevels is to store the level crossing values. If /D and /DEST
are omitted, FindLevels creates a wave named W_FindLevels to store the level crossing
values in.

/DEST=destWaveName

Same as /D. Both /D and /DEST create a real wave reference for the destination wave
in a user function. See Automatic Creation of WAVE References on page IV-66 for
details.

/EDGE=e

/M=minWidthX Sets the minimum X distance between level crossings. This determines where
FindLevels searches for the next crossing after it has found a level crossing. The search
starts minWidthX X units beyond the crossing. The default value for minWidthX is 0.

/N=maxLevels Sets a maximum number of crossings that FindLevels is to find. The default value for
maxLevels is the number of points in the specified range of waveName.

/P Compute crossings in terms of points. See the FindLevel operation.

/Q Doesn’t print to history and doesn’t abort if no levels are found.

/R=(startX,endX) Specifies X range. See the FindLevel operation.

/R=[startP,endP] Specifies point range. See the FindLevel operation.

/T=dx Search for two level crossings. dx must be less than minWidthX, so you must also
specify /M if you use /T. (FindLevels limits dx so that second search start isn’t beyond
where the first search for next edge will be.) See FindLevel for more about /T.

Specifies searches for either increasing or decreasing level crossing.
e=1: Searches only for crossings where the Y values are increasing as level

is crossed from wave start towards wave end.
e=2: Searches only for crossings where the Y values are decreasing as level

is crossed from wave start towards wave end.
e=0: Same as no /EDGE flag (searches for both increasing and decreasing

level crossings).

FindListItem

V-211

If FindLevels finds maxLevels crossings or can not find another level crossing, it stops searching.
FindLevels sets the following variables:

Examples
Make/O/D/N=0 destWave
FindLevels/Q/D=destWave data, 5
if (V_LevelsFound)

Print destWave[0] // First crossing X location

FindLevels/Q/D=destWave data, 5
if (V_LevelsFound)

Print destWave[0] // First crossing X location

See Also
The FindLevel operation for details about the level crossing detection algorithm and the /B, /P, /Q, /R, and
/T flag values.
The FindLevels operation is not multidimensional aware. See Analysis on Multidimensional Waves on
page II-86 for details.

FindListItem
FindListItem(itemStr, listStr [, listSepStr [, start [, matchCase]]])
The FindListItem function returns a numeric offset into listStr where itemStr begins. listStr should contain
items separated by the listSepStr character, such as "abc;def;".
Use FindListItem to locate the start of an item in a string containing a "wave0;wave1;" style list such as those
returned by functions like TraceNameList or AnnotationList, or a line from a delimited text file.
Use WhichListItem to determine the index of an item in the list.
If itemStr is not found, if listStr is "", or if start is not within the range of 0 to strlen(listStr)-1, then -1 is returned.
listSepStr, startIndex, and matchCase are optional; their defaults are ";", 0, and 1 respectively.

Details
ItemStr may have any length.
listStr is searched for the first instance of the item string bound by a listSepStr on the left and a listSepStr on the
right. The returned number is the character index where the first character of itemStr was found in listSepStr.
The search starts from the character position in listStr specified by start. A value of 0 starts with the first
character in listStr, which is the default if start is not specified.
listString is treated as if it ends with a listSepStr even if it doesn’t.
Searches for listSepStr are always case-sensitive. The comparison of itemStr to the contents of listStr is
usually case-sensitive. Setting the optional matchCase parameter to 0 makes the comparison case insensitive.
In Igor6, only the first byte of listSepStr was used. In Igor7 and later, all bytes are used.
If startIndex is specified, then listSepStr must also be specified. If matchCase is specified, startIndex and
listSepStr must be specified.

Examples
Print FindListItem("w1", "w0;w1;w2,") // prints 3
Print FindListItem("v2", "v1,v2,v3,", ",") // prints 3
Print FindListItem("v2", "v0,v2,v2,", ",", 4) // prints 6
Print FindListItem("C", "a;c;C;") // prints 4
Print FindListItem("C", "a;c;C;", ";", 0, 0) // prints 2

See Also
The AddListItem, strsearch, StringFromList, RemoveListItem, RemoveFromList, ItemsInList,
WhichListItem, WaveList, TraceNameList, StringList, VariableList, and FunctionList functions.

V_flag 0: maxLevels level crossings were found.
1: At least one but less than maxLevels level crossings were found.
2: No level crossings were found.

V_LevelsFound Number of level crossings found.

FindPeak

V-212

FindPeak
FindPeak [flags] waveName
The FindPeak operation searches for a minimum or maximum by analyzing the smoothed first and second
derivatives of the named wave. Information about the peak position, amplitude, and width are returned in
the output variables.

Flags
Some of the flags have the same meaning as for the FindLevel operation.

Details
FindPeak sets the following variables:

FindPeak computes the sliding average of the input wave using the BoxSmooth algorithm with the box
parameter. The peak center is found where the derivative of this smoothed result crosses zero. The peak
edges are found where the second derivative of the smoothed result crosses zero. Linear interpolation of
the derivatives is used to more precisely locate the center and edges. The peak value is simply the greater
of the two unsmoothed values surrounding the peak center (if /N, then the lesser value).

/B=box Sets box size for sliding average.

/I Modify the search criteria to accommodate impulses (peaks of one sample) by
requiring only one value to exceed minLevel.
The default criteria requires that two successive values exceed minLevel for a peak to
be found (or two successive values be less than the /M level when searching for
negative peaks).
Impulses can also be found by omitting minLevel, in which case /I is superfluous.

/M=minLevel Defines minimum level of a peak. /N changes this to maximum level (see Details).

/N Searches for a negative peak (minimum) rather then a positive peak (maximum).

/P Location output variables (see Details) are reported in terms of (floating point) point
numbers. If /P is omitted, they are reported as X values.

/Q Doesn’t print to history and doesn’t abort if no peak is found.

/R=(startX,endX) Specifies X range and direction for search.

/R=[startP,endP] Specifies point range and direction for search.

V_flag Set only when using the /Q flag.
0: Peak was found.
Any nonzero value means the peak was not found.

V_LeadingEdgeLoc Interpolated location of the peak edge closest to startX or startP. If you use the /P
flag, V_LeadingEdgeLoc is a point number rather than to an X value. If the edge
was not found, this value is NaN.

V_PeakLoc Interpolated X value at which the peak was found. If you use the /P flag, FindPeak
sets V_PeakLoc to a point number rather than to an X value. Set to NaN if peak
wasn’t found.

V_PeakVal The approximate Y value of the found peak. If the peak was not found, this value
is NaN (Not a Number).

V_PeakWidth Interpolated peak width. If you use the /P flag, V_PeakWidth is expressed in
point numbers rather than as an X value. V_PeakWidth is never negative. If either
peak edge was not found, this value is NaN.

V_TrailingEdgeLoc Interpolated location of the peak edge closest to endX or endP. If you use the /P
flag, V_TrailingEdgeLoc is a point number rather than to an X value. If the edge
was not found, this value is NaN.

FindPointsInPoly

V-213

FindPeak is not a high-accuracy measurement routine; it is intended as a simple peak-finder. Use the
PulseStats operation for more precise statistics.
Without /M, a peak is found where the derivative crosses zero, regardless of the peak height.
If you use the /M=minLevel flag, FindPeak ignores peaks that are lower than minLevel (i.e., the Y value of a
found peak will exceed minLevel) in the box-smoothed input wave. If /N is also specified (search for
minimum), FindPeak ignores peaks whose amplitude is greater than minLevel (i.e., the Y value of a found
peak will be less than minLevel).
Without /I, a peak must have two successive values that exceed minLevel. Use /I when you are searching for
peaks that may have only one value exceeding minLevel.
The search for the peak begins at startX (or the first point of the wave if /R is not specified), and ends at endX
(or the last point of the wave if no /R). Searching backwards is permitted, and exchanges the values of
V_LeadingEdgeLoc and V_TrailingEdgeLoc.
A simple automatic peak-finder is implemented in the procedure file:
#include <Peak AutoFind>

one of the #include <Multi-peak fitting 1.3> procedures that provides support for Gaussian,
Lorentzian, and Voigt fitting functions. See the “Multi-peak fit” example experiment for details
(:Examples:Curve Fitting: folder).
The FindPeak operation is not multidimensional aware. See Analysis on Multidimensional Waves on page
II-86 for details.

See Also
The PulseStats operation, the FindLevel operation for details about the /B, /P, /Q, and /R flag values.

FindPointsInPoly
FindPointsInPoly xWaveName, yWaveName, xPolyWaveName, yPolyWaveName
The FindPointsInPoly operation determines if points fall within a certain polygon. It can be used to write
procedures that operate on a subset of data identified graphically in a graph.

Details
FindPointsInPoly determines which points in yWaveName vs xWaveName fall within the polygon defined
by yPolyWaveName vs xPolyWaveName.
xWaveName must have the same number of points as yWaveName and xPolyWaveName must have the same
number of points as yPolyWaveName.
FindPointsInPoly creates an output wave named W_inPoly with the same number of points as xWaveName.
FindPointsInPoly indicates whether the point yWaveName[p] vs xWaveName[p] falls within the polygon by
setting W_inPoly[p]=1 if it is within the polygon, or W_inPoly[p]=0 if it is not.
FindPointsInPoly uses integer arithmetic with a precision of about 1 part in 1000. This should be good
enough for visually determined (hand-drawn) polygons but might not be sufficient for mathematically
generated polygons.
The FindPointsInPoly operation is not multidimensional aware. See Analysis on Multidimensional Waves
on page II-86 for details.

See Also
The GraphWaveDraw operation.

FindRoots
FindRoots [flags] funcspec, pWave [, funcspec, pwave [, …]]
FindRoots /P=PolyCoefsWave
The FindRoots operation determines roots or zeros of a specified nonlinear function or system of functions.
The function or system of functions must be defined in the form of Igor user procedures.
Using the second form of the command, FindRoots finds all the complex roots of a polynomial with real
coefficients. The polynomial coefficients are specified by PolyCoefsWave.

FindRoots

V-214

Flags for roots of nonlinear functions

Flag for roots of polynomials

Parameters
func specifies the name of a user-defined function.
pwave gives the name of a parameter wave that will be passed to your function as the first parameter. It is
not modified. It is intended for your private use to pass adjustable constants to your function.

/B [= doBracket]

/F=trustRegion Sets the expansion factor of the trust region for the search algorithm when finding
roots of systems of functions. Smaller numbers will result in a more stable search,
although for some functions larger values will allow the search to zero in on a root
more rapidly. Default is 1.0; useful values are usually between 0.1 and 100.

/I=maxIters Sets the maximum number of iterations in searching for a root to maxIters. Default is 100.

/L=lowBracket
/H=highBracket

/L and /H are used only when finding roots of a single nonlinear function. lowBracket
and highBracket are X values that bracket a zero crossing of the function. A root is
found between the bracketing values.
If lowBracket and highBracket are on the same side of zero, it will try to find a minimum
or maximum between lowBracket and highBracket. If it is found, and it is on the other
side of zero, Igor will find two roots.
If lowBracket and highBracket are on the same side of zero, but no suitable extreme
point is found between, it will search outward from these values looking for a zero
crossing. If it is found, Igor determines one root.
If lowBracket and highBracket are equal, it adds 1.0 to highBracket before looking for a
zero crossing.
The default values for lowBracket and highBracket are zero. Thus, not using either
lowBracket or highBracket is the same as /L=0/H=1.

/Q Suppresses printout of results in the history area. Ordinarily, the results of root
searches are printed in the history.

/T=tol Sets the acceptable accuracy to tol. That is, the reported root should be within ±tol of
the real root.

/X=xWave
/X={x1, x2, …}

Sets the starting point for searching for a root of a system of functions. There must be
as many X values as functions. The starting point can be specified with a wave having
as many points as there are functions, or you can write out a list of X values in braces.
If you are finding roots of a single function, use /L and /H instead.
If you specify a wave, this wave is also used to receive the result of the root search.

/Z=yValue Finds other solutions, that is, places where f(x) = yValue. FindRoots usually finds
zeroes — places where f(x) = 0.

/P=PolyCoefsWave Specifies a wave containing real polynomial coefficients. With this flag, it finds
polynomial roots and does not expect to find user function names on the command line.
The /P flag causes all other flags to be ignored.
Use of this flag is not permitted in a thread-safe function.

Specifies bracketing for roots of a single nonlinear function only.
doBracket=0: Skips an initial check of the root bracketing values and the

possible search for bracketing values. This means that you must
provide good bracketing values via the /L and /H flags. See /L
and /H flags for details on bracketing of roots. /B alone is the
same as /B=0.

doBracket=1: Uses default root bracketing.

FindRoots

V-215

These parameters occur in pairs. For a one-dimensional problem, use a single func, pwave pair. An N-
dimensional problem requires N pairs unless you use the combined function form (see Combined Format
for Systems of Functions).

Function Format for 1D Nonlinear Functions
Finding roots of a nonlinear function or system of functions requires that you realize the function in the
form of an Igor user function of a certain form. In the FindRoots command you then specify the functions
with one or more function names paired with parameter wave names. See Finding Function Roots on page
III-290 for detailed examples.
The functions must have a particular form. If you are finding the roots of a single 1D function, it should look
like this:
Function myFunc(w,x)

Wave w
Variable x

return f(x) // an expression …
End

Replace “f(x)” with an appropriate expression. The FindRoots command might then look like this:
FindRoots /L=0 /H=1 myFunc, cw // cw is a parameter wave for myFunc

Function Format for Systems of Multivariate Functions
If you need to find the roots of a system of multidimensional functions, you can use either of two forms. In
one form, you provide N functions with N independent variables. You must have a function for each
independent variable. For instance, to find the roots of two 2D functions, the functions must have this form:
Function myFunc1(w, x1, x2)

Wave w
Variable x1, x2

return f1(x1, x2) // an expression …
End

Function myFunc2(w, x1, x2)
Wave w
Variable x1, x2

return f2(x1, x2) // an expression …
End

In this case, the FindRoots command might look like this (where cw1 and cw2 are parameter waves that
must be made before executing FindRoots):
FindRoots /X={0,1} myFunc1, cw1, myFunc2, cw2

You can also use a wave to pass in the X values. Make sure you have the right number of points in the X
wave — it must have N points for a system of N functions.
Function myFunc1(w, xW)

Wave w, xW

return f1(xW[0], xW[1]) // an expression …
End

Function myFunc2(w, xW)
Wave w, xW

return f2(xW[0], xW[1]) // an expression …
End

Combined Format for Systems of Functions
For large systems of equations it may get tedious to write a separate function for each equation, and the
FindRoots command line will get very long. Instead, you can write it all in one function that returns N Y
values through a Y wave. The X values are passed to the function through a wave with N elements. The
parameter wave for such a function must have N columns, one column for each equation. The parameters for
equation N are stored in column N-1. FindRoots will complain if any of these waves has other than N rows.
Here is an template for such a function:
Function myCombinedFunc(w, xW, yW)

Wave w, xW, yW

yW[0] = f1(w[0][...], xW[0], xW[1],..., xW[N-1])
yW[1] = f2(w[1][...], xW[0], xW[1],..., xW[N-1])

FindRoots

V-216

…
yW[N-1] = fN(w[N-1][...], xW[0], xW[1],..., xW[N-1])

End

When you use this form, you only have one function and parameter wave specification in the FindRoots
command:
Make/N=(nrows, nequations) paramWave

fill in paramWave with values

Make/N=(number of equations) guessWave
guessWave = {x0, x1, …, xN}
FindRoots /X=guessWave myCombinedFunc, paramWave

FindRoots has no idea how many actual equations you have in the function. If it doesn’t match the number
of rows in your waves, your results will not be what you expect!

Coefficients for Polynomials
To find the roots of a polynomial, you first create a wave with the correct number of points. For a
polynomial of degree N, create a wave with N+1 points. For instance, to find roots of a cubic equation you
need a four-point wave.
The first point (row zero) of the wave contains the constant coefficient, the second point contains the
coefficient for X, the third for X2, etc.
There is no hard limit on the maximum degree, but note that there are significant numerical problems
associated with computations involving high-degree polynomials. Round-off error most likely limits
reasonably accurate results to polynomials with degree limited to 20 to 30.
Ultimately, if you are willing to accept very limited accuracy, the numerical problems will result in a failure
to converge. In limited testing, we found no failures to converge with polynomials up to at least degree 100.
At degree 150, we found occasional failures. At degree 200 the failures were frequent, and at degree 500 we
found no successes.
Note that you really can't evaluate a polynomial with such high degree, and we have no idea if the
computed roots for a degree-100 polynomial have any practical relationship to the actual roots.
While FindRoots is a thread-safe operation, finding polynomial roots is not. Using FindRoots/P=polyWave
in a ThreadSafe function results in a compile error.

Results for Nonlinear Functions and Systems of Functions
The FindRoots operation reports success or failure via the V_flag variable. A nonzero value of V_flag
indicates the reason for failure:

V_flag=0: Successful search for a root. Otherwise, the value indicates what went wrong:

V_flag=1: User abort.

V_flag=3: Exceeded maximum allowed iterations

V_flag=4: /T=tol was too small. Reported by the root finder for systems of nonlinear functions.

V_flag=5: The search algorithm wasn’t making sufficient progress. It may mean that /T=tol was
set to too low a value, or that the search algorithm has gotten trapped at a false root.
Try restarting from a different starting point.

V_flag=6: Unable to bracket a root. Reported when finding roots of single nonlinear functions.

V_flag=7: Fewer roots than expected. Reported by the polynomial root finder. This may indicate
that roots were successfully found, but some are doubled. Happens only rarely.

V_flag=8: Decreased degree. Reported by the polynomial root finder. This indicates that one or
more of the highest-order coefficients was zero, and a lower degree polynomial was
solved.

V_flag=9: Convergence failure or other numerical problem. Reported by the polynomial root
finder. This indicates that a numerical problem was detected during the computation.
The results are not valid.

FindSequence

V-217

The results of finding roots of a single 1D function are put into several variables:

Results for roots of a system of nonlinear functions are reported in waves:

Roots of a polynomial are reported in a wave:

See Also
Finding Function Roots on page III-290.
The FindRoots operation uses the Jenkins-Traub algorithm for finding roots of polynomials:
Jenkins, M.A., Algorithm 493, Zeros of a Real Polynomial, ACM Transactions on Mathematical Software, 1,

178-189, 1975. Used by permission of ACM (1998).

FindSequence
FindSequence [flags] srcWave
The FindSequence operation finds the location of the specified sequence starting the search from the
specified start point. The result of the search stored in V_value is the index of the entry in the wave where
the first value is found or -1 if the sequence was not found.

Flags

V_numRoots The number of roots found. Either 1 or 2.

V_Root The root.

V_YatRoot The Y value of the function at the root. Always check this; some discontinuous
functions may give an indication of success, but the Y value at the found root isn’t
even close to zero.

V_Root2 Second root if FindRoots found two roots.

V_YatRoot2 The Y value at the second root.

W_Root X values of the root of a system of nonlinear functions. If you used /X=xWave, the root
is reported in your wave instead.

W_YatRoot The Y values of the functions at the root of a system of nonlinear functions.
Only one root is found during a single call to FindRoots.

W_polyRoots A complex wave containing the roots of a polynomial. The number of roots should be
equal to the degree of the polynomial, unless a root is doubled.

/FNAN Specifies searching for a NaN value when srcWave is floating point.
This flag was added in Igor Pro 7.00.

/I=wave Specifies an integer sequence wave for integer search.

/M=val If there are repeating entries in the match sequence, val is a tolerance value that specifies
the maximum difference between the number of repeats. So, for example, if the match
sequence is aaabbccc and the srcWave contains a sequence aabbcc then the sequence will
not be considered a match if val=0 but will be considered a match if val=1.

/S=start Sets starting point of the search. If /S is not specified, start is 0.

/T=tolerance Defines the tolerance (value ± tolerance will be accepted) when comparing floating
point numbers.

/U=uValue Specifies the match sequence wave in case of unsigned long range.

/V=rValue Specifies the match sequence wave in the case of single/double precision numbers.

/Z No error reporting.

FindValue

V-218

Details
If the match sequence is specified via the /V flag, it is considered to be a floating point wave (i.e., single or
double precision) in which case it is compared to data in the wave using a tolerance value. If the tolerance
is not specified by the /T flag, the default value 1.0-7.
If the match sequence is specified via the /I flag, the sequence is assumed to be an integer wave (this includes
both signed and unsigned char, signed and unsigned short as well as long). In this case srcWave must also
be of integer type and the operation searches for the sequence based on exact equality between the match
sequence and entries in the wave as signed long integers.
If the match sequence is unsigned long wave use the /U flag to specify the value for an integer comparison.
You can also use this operation on waves of two or more dimensions. In this case you can calculate the rows,
columns, etc. For example, in the case of a 2D wave:
col=floor(V_value/rowsInWave)
row=V_value-col*rowsInWave

See Also
The FindValue operation.

FindValue
FindValue [flags] srcWave
FindValue [flags] txtWave
This operation finds the location of the specified value starting the search from the specified start point. The
result of the search stored in V_value is the index of the entry in the wave where the value is found or -1 if
not found.

Flags

Details
If the match value is specified via the /V flag, it is considered to be a floating point value in which case it is
compared to data in the wave using a tolerance value. If the tolerance is not specified by the /T flag, the
value 10-7 is used.
If the match value is specified via the /I flag, the value is assumed to be an integer. In this case srcWave must
be of integer type and the operation searches for the value based on exact equality between the match value
and entries in the wave as signed long integers.
If the match value is unsigned long use the /U flag to specify the value for an integer comparison.
You can also use this operation on waves of two or more dimensions. In this case you can calculate the rows,
columns, etc. For example, in the case of a 2D wave:

/I=ivalue Specifies an integer value for integer search.

/S=start Sets start of search in the wave. If /S is not specified, start is set to 0.

/T=tolerance Use this flag when comparing floating point numbers to define a non-negative
tolerance such that the specified value ± tolerance will be accepted.

/TEXT=templateString

Specifies a template string that will be searched for in txtWave.

/TXOP=txOptions

/U=uValue Specifies the match value in case of unsigned long range.

/V=rValue Specifies the match value in the case of single/double precision numbers. For most
purposes you should also use /T to specify the tolerance.

/Z No error reporting.

Specifies the search options using a combination of binary values.
1: Case sensitive
2: Whole word
4: Whole wave element

FitFunc

V-219

col=floor(V_value/rowsInWave)
row=V_value-col*rowsInWave

When searching for text in a text wave the operation creates the variable V_value as above but it also creates
the variable V_startPos to specify the position of templateString from the start of the particular wave element.

Example
Make jack = sin(x/8) // Single-precision floating point
Display jack

// This prints -1 because 0.5 +/- 1.0E-7 does not occur in wave jack
FindValue /V=.5 jack; Print V_value

// This prints 21 because 0.5 +/- 0.01 does occur in wave jack
FindValue /V=.5 /T=.01 jack; Print V_value

// The value of jack(21), to 6 decimal digits of precision, is 0.493920
Print jack(21)

See Also
FindSequence, FindLevel, FindLevels, FindDuplicates

FitFunc
FitFunc
Marks a user function as a user-defined curve fit function. By default, only functions marked with this
keyword are displayed in the Function menu in the Curve Fit dialog.
If you wish other functions to be displayed in the Function menu, you can select the checkbox labelled
“Show old-style functions (missing FitFunc keyword)”.

See Also
User-Defined Fitting Functions on page III-219.

floor
floor(num)
The floor function returns the closest integer less than or equal to num.

See Also
The round, ceil, and trunc functions.

FontList
FontList(separatorStr [, options])
The FontList function returns a list of the installed fonts, separated by the characters in separatorStr.

Parameters
A maximum of 10 bytes from separatorStr are appended to each font name as the output string is generated.
separatorStr is usually ";".
Use options to limit the returned font list according to font type. It is restricted to returning only scalable
fonts (TrueType, PostScript, or OpenType), which you can do with options = 1.
To get a list of nonscalable fonts (bitmap or raster), use:
String bitmapFontList = RemoveFromList(FontList(";",1), FontList(";"))

(Most Mac OS X fonts are scalable, so bitmapFontList may be empty.)

Examples
Function SetFont(fontName)

String fontName
Prompt fontName,"font name:",popup,FontList(";")+"default;"
DoPrompt "Pick a Font", fontName

Print fontName

Variable type= WinType("") // target window type
String windowName= WinName(0,127)
if((type==1) || (type==3) || (type==7)) // graph, panel, layout

FontSizeHeight

V-220

Print "Setting drawing font for "+windowName
Execute "SetDrawEnv fname=\""+fontName+"\""

else
if(type == 5) // notebook

Print "Setting font for selection in "+windowName
Notebook $windowName font=fontName

endif
endif

End

See Also
The FontSizeStringWidth, FontSizeHeight, and WinType functions, and the Execute, SetDrawEnv, and
Notebook Operations.

FontSizeHeight
FontSizeHeight(fontNameStr, fontSize, fontstyle [,appearanceStr])
The FontSizeHeight function returns the line height in pixels of any string when rendered with the named
font and the given font style and size.

Parameters
fontNameStr is the name of the font, such as "Helvetica".
fontSize is the size (height) of the font in pixels.
fontStyle is text style (bold, italic, etc.). Use 0 for plain text.

Details
The returned height is the sum of the font’s ascent and descent heights. Variations in fontStyle and typeface
design cause the actual font height to be different than fontSize would indicate. (Typically a font “height”
refers to only the ascent height, so the total height will be slightly larger to accommodate letters that
descend below the baseline, such as g, p, q, and y).
FontSize is in pixels. To obtain the height of a font specified in points, use the ScreenResolution function
and the conversion factor of 72 points per inch (see Examples).
If the named font is not installed, FontSizeHeight returns NaN.
FontSizeHeight understands “default” to mean the current experiment’s default font.
fontStyle is a binary coded integer with each bit controlling one aspect of the text style as follows:

To set bit 0 and bit 2 (bold, underline), use 20+22 = 1+4 = 5 for fontStyle. See Setting Bit Parameters on page
IV-12 for details about bit settings.
The optional appearanceStr parameter has no effect on Windows.
On Macintosh, the appearanceStr parameter is used for determining the height of a string drawn by a control.
Set appearanceStr to "native" if you are measuring the height of a string drawn by a "native GUI" control or
to "os9" if not.
Set appearanceStr to "default" to use the appearance set by the user in the Miscellaneous Settings dialog. "os9"
is the default value.
Usually you will want to set appearanceStr to the S_Value output of DefaultGUIControls/W=winName
when determining the height of a string drawn by a control.

Examples
Variable pixels= 12 * ScreenResolution/72 // convert 12 points to pixels
Variable pixelHeight= FontSizeHeight("Helvetica",pixels,0)
Print "Height in points= ", pixelHeight * 72/ScreenResolution

Bit 0: Bold

Bit 1: Italic

Bit 2: Underline

Bit 4: Strikethrough

FontSizeStringWidth

V-221

Function FontIsInstalled(fontName)
String fontName
if(numtype(FontSizeHeight(fontName,10,0)) == 2)

return 0 // NaN returned, font not installed
else

return 1
endif

End

See Also
The FontList, FontSizeStringWidth, numtype, ScreenResolution, and DefaultGUIControls functions.

FontSizeStringWidth
FontSizeStringWidth(fontNameStr, fontSize, fontstyle, theStr [,appearanceStr])
The FontSizeStringWidth function returns the width of theStr in pixels, when rendered with the named font
and the given font style and size.

Parameters
fontNameStr is the name of the font, such as "Helvetica".
fontSize is the size (height) of the font in pixels.
fontStyle is text style (bold, italic, etc.). Use 0 for plain text.
theStr is the string whose width is being measured.
The optional appearanceStr parameter has no effect on Windows.
On Macintosh, the appearanceStr parameter is used for determining the width of a string drawn by a control.
Set appearanceStr to "native" if you are measuring the width of a string drawn by a "native GUI" control or
to "os9" if not.
Set appearanceStr to "default" to use the appearance set by the user in the Miscellaneous Settings dialog. "os9"
is the default value.
Usually you will want to set appearanceStr to the S_Value output of DefaultGUIControls/W=winName
when determining the width of a string drawn by a control.

Details
If the named font is not installed, FontSizeStringWidth returns NaN.
FontSizeStringWidth understands “default” to mean the current experiment’s default font.
FontSize is in pixels. To obtain the width of a font specified in points, use the ScreenResolution function
and the conversion factor of 72 points per inch (see Examples).
fontStyle is a binary coded integer with each bit controlling one aspect of the text style as follows:

To set bit 0 and bit 2 (bold, underline), use 20+22 = 1+4 = 5 for fontStyle. See Setting Bit Parameters on page
IV-12 for details about bit settings.

Examples

Example 1
Variable fsPix= 10 * ScreenResolution/72 // 10 point text in pixels
String text= "How long is this text?"
Variable WidthPix= FontSizeStringWidth("Helvetica",fsPix,0,text)
Print "width in inches= ", WidthPix / ScreenResolution

Example 2
Variable fsPix= 13 * ScreenResolution/72 // 13 point text in pixels
String text= "text for a control"

Bit 0: Bold

Bit 1: Italic

Bit 2: Underline

Bit 4: Strikethrough

for-endfor

V-222

DefaultGUIControls/W=Panel0 // Sets S_Value
Variable WidthPix= FontSizeStringWidth("Helvetica",fsPix,0,text,S_Value)
Print "width in points= ", WidthPix / ScreenResolution * 72

See Also
The FontList, FontSizeHeight, ScreenResolution and DefaultGUIControls functions.

for-endfor
for(<initialize>;<exit test>;<update>)

<loop body>
endfor
A for-endfor loop executes loop body code until exit test evaluates as FALSE, zero, or until a break statement
is executed within the body code. When the loop starts, the initialize expressions are evaluated once. For
each iteration, the exit test is evaluated at the beginning, and the update expressions are evaluated at the end.

See Also
For Loop on page IV-43 and break for more usage details.

FPClustering
FPClustering [flags] srcWave
The FPClustering operation performs cluster analysis using the farthest-point clustering algorithm. The
input for the operation srcWave defines M points in N-dimensional space. Outputs are the waves
W_FPCenterIndex and W_FPClusterIndex.

Flags

Details
The input for FPClustering is a 2D wave srcWave which consists of M rows by N columns where each row
represents a point in N-dimensional space. srcWave can contain only finite real numbers and must be of type
SP or DP. The operation computes the clustering and produces the wave W_FPCenterIndex which contains
the centers or “hubs” of the clusters. The hubs are specified by the zero-based row number in srcWave which
contains the cluster center. In addition, the operation creates the wave W_FPClusterIndex where each entry
maps the corresponding input point to a cluster index. By default, the operation continues to add clusters

/CAC Computes all the clusters specified by /MAXC.

/CM Computes the center of mass for each cluster. The results are stored in the wave
M_clustersCM in the current data folder. Each row corresponds to a single cluster
with columns providing the respective dimensional components.

/INCD Computes the inter-cluster distances. The result is stored in the current data folder in
the wave M_InterClusterDistance, a 2D wave in which the [i][j] element contains the
distance between cluster i and cluster j.

/MAXC=nClusters Terminates the calculation when the number of clusters reaches the specified value.
Note that this termination condition is sufficient but not necessary, i.e., the operation
can terminate earlier if the farthest distance of an element from a hub is less than the
average distance.

/MAXR=maxRad Terminates the calculation when the maximum distance is less than or equal to maxRad.

/NOR Normalizes the data on a column by column basis. The normalization makes each
columns of the input span the range [0,1] so that even when srcWave contains columns
that may be different by several orders of magnitude, the algorithm is not biased by a
larger implied cartesian distance.

/Q Don’t print information to the history area.

/SHUB=sHub Specifies the row which is used as a starting hub number. By default the operation
uses the first row in srcWave.

/Z No error reporting.

fprintf

V-223

as long as the largest possible distance is greater than the average intercluster distance. You can also stop
the processing when the operation has formed a specified number of clusters (see /MAXC).
The variable V_max contains the maximum distance between any element and its cluster hub.
It is possible that in some circumstances you can get slightly different clustering depending on your starting
point. The default starting hub is row zero of srcWave but you can use the /SHUB flag to specify a different
starting point.
FPClustering computes the Cartesian distance between points. As a result, if the scale of any dimension is
significantly larger than other dimensions it might bias the clustering towards that dimension. To avoid this
situation you can use the /NOR flag which normalizes each column to the range [0,1] and hence equalizes
the weight of each dimension in the clustering process.

See Also
The KMeans operation.

References
Gonzalez, T., Clustering to minimize the maximum intercluster distance, Theoretical Computer Science, 38,

293-306, 1985.

fprintf
fprintf refNum, formatStr [, parameter]…
The fprintf operation prints formatted output to a text file.

Parameters
refNum is a file reference number from the Open operation used to open the file.
formatStr is the format string, as used by the printf operation.
parameter varies depending on formatStr.

Details
If refNum is 1, fprintf will print to the history area instead of to a file, as if you used printf instead of fprintf.
This useful for debugging purposes.
A zero value of refNum is used in conjunction with Program-to-Program Communication (PPC), Apple
events (Macintosh) or DDE (Windows). Data that would normally be written to a file is appended to the PPC,
Apple event or DDE result packet.
The fprintf operation supports numeric (real only) and string fields from structures. All other field types
will cause a compile error.

See Also
The printf operation for complete format and parameter descriptions. The Open operation and Creating
Formatted Text on page IV-244.

FReadLine
FReadLine [/N/T] refNum, stringVarName
The FReadLine operation reads bytes from a file into the named string variable. The read starts at the
current file position and continues until a terminator character is read, the end of the file is reached, or the
maximum number of bytes is read.

Parameters
refNum is a file reference number from the Open operation used to create the file.

fresnelCos

V-224

Flags

Details
If /N is omitted, there is no maximum number of bytes to read. When reading lines of text from a normal
text file, you will not need to use /N. It may be of use in specialized cases, such as reading text embedded
in a binary file.
If /T is omitted, FReadLine will terminate on any of the following: CR, LF, CRLF, LFCR. (Most Macintosh files
use CR. Most Windows files use CRLF. Most UNIX files use LF. LFCR is an invalid terminator but some buggy
programs generate files that use it.) FReadLine reads whichever of these appears in the file, terminates the
read, and returns just a CR in the output string. This default behavior transparently handles files that use CR,
LF, CRLF, or LFCR as the terminator and will be suitable for most cases.
If you use the /T flag, then FReadLine will terminate on the specified character only and will return the
specified character in the output string.
Once you have read all of the bytes in the file, FReadLine will return zero bytes via stringVarName. The
example below illustrates testing for this.
In Igor Pro 7.00 or later, if the file data begins with the UTF-8 byte order mark (BOM) then FReadLine skips
those bytes. In UTF-8, the BOM is the byte sequence 0xEF, 0xBB, 0xBF. If you want to check for the presence
of the BOM, use FBinRead instead of FReadLine.

Example
Function PrintAllLinesInFile()

Variable refNum
Open/R refNum as "" // Display dialog
if (refNum == 0)

return -1 // User canceled
endif

Variable lineNumber, len
String buffer
lineNumber = 0
do

FReadLine refNum, buffer
len = strlen(buffer)
if (len == 0)

break // No more lines to be read
endif
Printf "Line number %d: %s", lineNumber, buffer
if (CmpStr(buffer[len-1],"\r") != 0) // Last line has no CR ?

Printf "\r"
endif

lineNumber += 1
while (1)

Close refNum
return 0

End

See Also
The Open and FBinRead operations.

fresnelCos
fresnelCos(x)
The fresnelCos function returns the Fresnel cosine function C(x).

/N=n Specifies the maximum number of bytes to read.

/T=termcharStr Specifies the terminator character.
/T=(num2char(13)) specifies carriage return (CR, ASCII code 13).
/T=(num2char(10)) specifies linefeed (LF, ASCII code 10).
/T=";" specifies the terminator as a semicolon.
/T="" specifies the terminator as null (ASCII code 0).
See Details for default behavior regarding the terminator.

fresnelCS

V-225

See Also
The fresnelSin and fresnelCS functions.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

fresnelCS
fresnelCS(x)
The fresnelCS function returns both the Fresnel cosine in the real part of the result and the Fresnel sine in
the imaginary part of the result.

See Also
The fresnelSin and fresnelCos functions.

fresnelSin
fresnelSin(x)
The fresnelSin function returns the Fresnel sine function S(x).

See Also
The fresnelCos and fresnelCS functions.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

FSetPos
FSetPos refNum, filePos
The FSetPos operation attempts to set the current file position to the given position.

Parameters
refNum is a file reference number obtained from the Open operation when the file was opened.
filePos is the desired position of the file in bytes from the start of the file.

Details
FSetPos generates an error if filePos is greater than the number of bytes in the file. You can ascertain this
limit with the FStatus operation.
When a file that is open for writing is closed, any bytes past the end of the current file position are deleted
by the operating system. Therefore, if you use FSetPos, make sure to set the current file position properly
before closing the file.
FSetPos supports files of any length.

See Also
Open, FGetPos, FStatus

C(x) = cos
π
2
t 2⎛

⎝⎜
⎞
⎠⎟ dt.0

x

∫

S(x) = sin
π
2
t 2⎛

⎝⎜
⎞
⎠⎟ dt.0

x

∫

FStatus

V-226

FStatus
FStatus refNum
The FStatus operation provides file status information for a file.

Parameters
refNum is a file reference number obtained from the Open operation.

Details
FStatus supports files of any length.
FStatus sets the following variables:

The keyword-packed information string for S_info consists of a sequence of sections with the following
form: keyword:value; You can pick a value out of a keyword-packed string using the NumberByKey and
StringByKey functions.
Here are the keywords for S_info:

See Also
Open, FGetPos, FSetPos

FTPCreateDirectory
FTPCreateDirectory [flags] urlStr
The FTPCreateDirectory operation creates a directory on an FTP server on the Internet.
For background information on Igor's FTP capabilities and other important details, see File Transfer
Protocol (FTP) on page IV-257.
FTPCreateDirectory sets V_flag to zero if the operation succeeds or to a non-zero error code if it fails.
If the directory specified by urlStr already exists on the server, the server contents are not touched and
V_flag is set to -1. This is not treated as an error.

Parameters
urlStr specifies the directory to create. It consists of a naming scheme (always "ftp://"), a computer name
(e.g., "ftp.wavemetrics.com" or "38.170.234.2"), and a path (e.g., "/test/newDirectory"). For example:

"ftp://ftp.wavemetrics.com/test/newDirectory"

urlStr must always end with a directory name, and must not end with a slash.

V_flag Nonzero (true) if refNum is valid, in which case FStatus sets the other variables as well.

V_filePos Current file position for the file in bytes from the start.
In Igor7 or later, if you only want to know the current file position, use FGetPos
instead of FStatus, which is slower.

V_logEOF Total number of bytes in the file.

S_fileName Name of the file.

S_path Path from the volume to the folder containing the file. For example, "hd:Folder1:Folder2:".
This is suitable for use as an input to the NewPath operation. Note that on the Windows
operating system Igor uses a colon between folders instead of the Windows-standard
backslash to avoid confusion with Igor’s use of backslash to start an escape sequence (see
Escape Sequences in Strings on page IV-13).

S_info Keyword-packed information string.

Keyword Type Meaning

PATH string Name of the symbolic path in which the file is located. This will be empty if
there is no such symbolic path.

WRITEABLE number 1 if file can be written to, 0 if not.

FTPCreateDirectory

V-227

To indicate that urlStr contains an absolute path, insert an extra '/' character between the computer name
and the path. For example:

ftp://ftp.wavemetrics.com//pub/test/newDirectory

If you do not specify that the path in urlStr is absolute, it is interpreted as relative to the FTP user's base
directory. Since pub is the base directory for an anonymous user at wavemetrics.com, these URLs reference
the same directory for an anonymous user:

ftp://ftp.wavemetrics.com//pub/test/newDirectory // Absolute path
ftp://ftp.wavemetrics.com/test/newDirectory // Relative to base directory

Special characters, such as punctuation, that are used in urlStr may be incorrectly interpreted by the
operation. If you get unexpected results and urlStr contains such characters, you can try percent-encoding
the special characters. See Percent Encoding on page IV-253 for additional information.

Flags

Examples
// Create a directory.
String url = "ftp://ftp.wavemetrics.com/pub/test/newDirectory"
FTPCreateDirectory url

See Also
File Transfer Protocol (FTP) on page IV-257.
FTPDelete, FTPDownload, FTPUpload, URLEncode

/N=portNumber Specifies the server's TCP/IP port number to use (default is 21). In almost all cases, the
default will be correct so you won't need to use the /N flag.

/U=userNameStr Specifies the user name to be used when logging in to the FTP server. If /U is omitted
or if userNameStr is "", the login is done as an anonymous user. Use /U if you have an
account on the FTP server.

/V=diagnosticMode

/W=passwordStr Specifies the password to be used when logging in to the FTP server. Use /W if you
have an account on the FTP server.
If /W is omitted, the login is done using a default password that will work with most
anonymous FTP servers.
See Safe Handling of Passwords on page IV-254 for information on handling
sensitive passwords.

/Z Errors are not fatal. Will not abort procedure execution if an error occurs.
Your procedure can inspect the V_flag variable to see if the transfer succeeded. V_flag
will be zero if it succeeded, -1 if the specified directory already exists, or another
nonzero value if an error occurred.

Determines what kind of diagnostic messages FTPCreateDirectory will display in
the history area. diagnosticMode is a bitwise parameter, with the bits defined as
follows:

The default value for diagnosticMode is 3 (show basic and error diagnostics). If you
are having difficulties, you can try using 7 to show the commands sent to the server
and the server's response.
See FTP Troubleshooting on page IV-260 for other troubleshooting tips.

Bit 0: Show basic diagnostics. Currently this just displays the URL in the
history.

Bit 1: Show errors. This displays additional information when errors occur.
Bit 2: Show status. This displays commands sent to the server and the server's

response.

FTPDelete

V-228

FTPDelete
FTPDelete [flags] urlStr
The FTPDelete operation deletes a file or a directory from an FTP server on the Internet.
Warning: If you delete a directory on an FTP server, all contents of that directory and any subdirectories

are also deleted.
For background information on Igor's FTP capabilities and other important details, see File Transfer
Protocol (FTP) on page IV-257.
FTPDelete sets V_flag to zero if the operation succeeds and to nonzero if it fails. This, in conjunction with
the /Z flag, can be used to allow procedures to continue to execute if an FTP error occurs.

Parameters
urlStr specifies the file or directory to delete. It consists of a naming scheme (always "ftp://"), a computer
name (e.g., "ftp.wavemetrics.com" or "38.170.234.2"), and a path (e.g., "/test/TestFile1.txt"). For example:
"ftp://ftp.wavemetrics.com/test/TestFile1.txt"
urlStr must always end with a file name if you are deleting a file or with a directory name if you are deleting
a directory. In the case of a directory, urlStr must not end with a slash.
To indicate that urlStr contains an absolute path, insert an extra '/' character between the computer name
and the path. For example:

ftp://ftp.wavemetrics.com//pub/test

If you do not specify that the path in urlStr is absolute, it is interpreted as relative to the FTP user's base
directory. Since pub is the base directory for an anonymous user at wavemetrics.com, these URLs reference
the same directory for an anonymous user:

ftp://ftp.wavemetrics.com//pub/test

ftp://ftp.wavemetrics.com/test

Special characters such as punctuation that are used in urlStr may be incorrectly interpreted by the
operation. If you get unexpected results and urlStr contains such characters, you can try percent-encoding
the special characters. See Percent Encoding on page IV-253 for additional information

Flags

/D Deletes a complete directory and all its contents. Omit /D if you are deleting a file.

/N=portNumber Specifies the server's TCP/IP port number to use (default is 21). In almost all cases, the
default will be correct so you won't need to use the /N flag.

/U=userNameStr Specifies the user name to be used when logging in to the FTP server. If /U is omitted
or if userNameStr is "", the login is done as an anonymous user. Use /U if you have
an account on the FTP server.

/V=diagnosticMode Determines what kind of diagnostic messages FTPDelete will display in the history
area. diagnosticMode is a bitwise parameter, with the bits defined as follows:

The default value for diagnosticMode is 3 (show basic and error diagnostics). If you
are having difficulties, you can try using 7 to show the commands sent to the server
and the server's response.
See FTP Troubleshooting on page IV-260 for other troubleshooting tips.

Bit 0: Show basic diagnostics. Currently this just displays the URL in the
history.

Bit 1: Show errors. This displays additional information when errors occur.
Bit 2: Show status. This displays commands sent to the server and the server's

response.

FTPDownload

V-229

Examples
// Delete a file.
String url = "ftp://ftp.wavemetrics.com/test/TestFile1.txt"
FTPDelete url

// Delete a directory.
String url = "ftp://ftp.wavemetrics.com/test/TestDir1"
FTPDelete/D url

See Also
File Transfer Protocol (FTP) on page IV-257.
FTPCreateDirectory, FTPDownload, FTPUpload, URLEncode

FTPDownload
FTPDownload [flags] urlStr, localPathStr
The FTPDownload operation downloads a file or a directory from an FTP server on the Internet.

For background information on Igor’s FTP capabilities and other important details, see File Transfer
Protocol (FTP) on page IV-257.
FTPDownload sets a variable named V_flag to zero if the operation succeeds and to nonzero if it fails. This, in
conjunction with the /Z flag, can be used to allow procedures to continue to execute if a FTP error occurs.
If the operation succeeds, FTPDownload sets a string named S_Filename to the full file path of the
downloaded file or, if the /D flag was used, the full path to the base directory that was downloaded. This is
useful in conjunction with the /I flag.
If the operation fails, S_Filename is set to "".

Parameters
urlStr specifies the file or directory to download. It consists of a naming scheme (always "ftp://"), a computer
name (e.g., "ftp.wavemetrics.com" or "38.170.234.2"), and a path (e.g., "/Test/TestFile1.txt").
For example: "ftp://ftp.wavemetrics.com/pub/test/TestFile1.txt".
urlStr must always end with a file name if you are downloading a file or with a directory name if you are
downloading a directory. In the case of a directory, urlStr must not end with a slash.
To indicate that urlStr contains an absolute path, insert an extra '/' character between the computer name
and the path. For example:

ftp://ftp.wavemetrics.com//pub/test

If you do not specify that the path in urlStr is an absolute path, it is interpreted as a path relative to the FTP
user's base directory. Since pub is the base directory for an anonymous user, this URL references the same
directory:

ftp://ftp.wavemetrics.com/test

/W=passwordStr Specifies the password to be used when logging in to the FTP server. Use /W if you
have an account on the FTP server.
If /W is omitted, the login is done using a default password that will work with most
anonymous FTP servers.
See Safe Handling of Passwords on page IV-254 for information on handling
sensitive passwords.

/Z Errors are not fatal. Will not abort procedure execution if an error occurs.
Your procedure can inspect the V_flag variable to see if the transfer succeeded. V_flag
will be zero if it succeeded, or a nonzero value if an error occurred.

Warning: When you download a file or directory using the path and name of a file or directory that
already exists on your local hard disk, all previous contents of the local file or directory are
obliterated.

FTPDownload

V-230

Special characters such as punctuation that are used in urlStr may be incorrectly interpreted by the
operation. If you get unexpected results and urlStr contains such characters, you can try percent-encoding
the special characters. See Percent Encoding on page IV-253 for additional information.
localPathStr and pathName specify the name to use for the file or directory that will be created on your hard
disk. If you use a full or partial path for localPathStr, see Path Separators on page III-401 for details on
forming the path.
localPathStr must always end with a file name if you are downloading a file or with a directory name if you
are downloading a directory. In the case of a directory, localPathStr must not end with a colon or backslash.
FTPDownload displays a dialog through which you can identify the local file or directory in the following cases:

See Examples for examples of constructing a URL and local path.

Flags

1. You have used the /I (interactive) flag.

2. You did not completely specify the location of the local file or directory via pathName and localPathStr.

3. There is an error in localPathStr. This can be either a syntactical error or a reference to a nonexistent file
or directory.

4. The specified local file or directory exists and you have not used the /O (overwrite) flag.

/D Downloads a complete directory. Omit it if you are downloading a file.

/I Interactive mode which will prompt you to specify the name and location of the file
or directory to be created on the local hard disk.

/M=messageStr Specifies the prompt message used by the dialog in which you specify the name and
location of the file or directory to be created. But see Prompt Does Not Work on
Macintosh on page IV-137.

/N=portNumber Specifies the server’s TCP/IP port number to use (default is 21). In almost all cases, this
will be correct so you won’t need to use the /N flag.

/O[=mode]

/P=pathName Contributes to the specification of the file or directory to be created on your hard disk.
pathName is the name of an existing symbolic path. See Examples.

/S=showProgress

/T=transferType

Controls whether a local file or directory whose name is in conflict with the file or
directory being downloaded is overwritten without prompting the user.
mode=0: Prompts the user to allow the overwrite. This is the default behavior if

/O is omitted.
mode=1: Overwrites without prompting the user. If the /D flag is also used, all

contents of the destination directory are deleted if it already exists.
/O=1 is the same as /O.

mode=2: Merges files and subdirectories downloaded with the contents of the
destination directory. Unlike /O=1, the contents of the destination
directory are not deleted, however files and directories downloaded
from the server will overwrite existing files and directories of the same
name. When downloading a file this mode is accepted but has the
same effect as /O=1.

Determines if a progress dialog is displayed.
0: No progress dialog.
1: Show a progress dialog (default).

Controls the FTP transfer type.

See FTP Transfer Types on page IV-260 for more discussion.

0: Image (binary) transfer (default).
1: ASCII transfer.

FTPDownload

V-231

Examples
Download a file using a full local path:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestFile1.txt"
String localPath = "hd:Test Folder:TestFile1.txt"
FTPDownload url, localPath

Download a file using a local symbolic path and file name:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestFile1.txt"
String pathName = "Igor" // Igor is the name of a symbolic path.
String fileName = "TestFile1.txt"
FTPDownload/P=$pathName url, fileName

Download a directory using a full local path:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestDir1"
String localPath = "hd:Test Folder:TestDir1"
FTPDownload/D url, localPath

See Also
File Transfer Protocol (FTP) on page IV-257.
FTPCreateDirectory, FTPDelete, FTPUpload, URLEncode, FetchURL.

/U=userNameStr Specifies the user name to be used when logging in to the FTP server. If this flag is
omitted or if userNameStr is "", you will be logged in as an anonymous user. Use this
flag if you have an account on the FTP server.

/V=diagnosticMode

/W=passwordStr Specifies the password to be used when logging in to the FTP server. Use this flag if
you have an account on the FTP server.
If this flag is omitted, “nopassword” will be used for the login password. This will
work with most anonymous FTP servers. Some anonymous FTP servers request that
you use your email address as a password. You can do this by including the
/W=“<your email address>” flag.
If /W is omitted, the login is done using a default password that will work with most
anonymous FTP servers.
See Safe Handling of Passwords on page IV-254 for information on handling
sensitive passwords.

/Z Errors are not fatal. Will not abort procedure execution if an error occurs.
Your procedure can inspect the V_flag variable to see if the transfer succeeded. V_flag
will be zero if it succeeded, -1 if the user canceled in an interactive dialog, or another
nonzero value if an error occurred.

Determines what kind of diagnostic messages FTPDownload will display in the
history area. diagnosticMode is a bitwise parameter, with the bits defined as follows:

The default value for diagnosticMode is 3 (show basic and error diagnostics). If you are
having difficulties, you can try using 7 to show the commands sent to the server and
the server's response.
See FTP Troubleshooting on page IV-260 for other troubleshooting tips.

Bit 0: Show basic diagnostics. Currently this just displays the URL in the
history.

Bit 1: Show errors. This displays additional information when errors occur.
Bit 2: Show status. This displays commands sent to the server and the server's

response.

FTPUpload

V-232

FTPUpload
FTPUpload [flags] urlStr, localPathStr
The FTPUpload operation uploads a file or a directory to an FTP server on the Internet.

For background information on Igor’s FTP capabilities and other important details, see File Transfer
Protocol (FTP) on page IV-257.
FTPUpload sets a variable named V_flag to zero if the operation succeeds and to nonzero if it fails. This, in
conjunction with the /Z flag, can be used to allow procedures to continue to execute if a FTP error occurs.
If the operation succeeds, FTPUpload sets a string named S_Filename to the full file path of the uploaded
file or, if the /D flag was used, to the full path to the base directory that was uploaded. This is useful in
conjunction with the /I flag.
If the operation fails, S_Filename is set to "".

Parameters
urlStr specifies the file or directory to create. It consists of a naming scheme (always "ftp://"), a computer
name (e.g., "ftp.wavemetrics.com" or "38.170.234.2"), and a path (e.g., "/Test/TestFile1.txt").
For example: "ftp://ftp.wavemetrics.com/pub/test/TestFile1.txt".
urlStr must always end with a file name if you are uploading a file or with a directory name if you are
uploading a directory, in which case urlStr must not end with a slash.
To indicate that urlStr contains an absolute path, insert an extra '/' character between the computer name
and the path. For example:

ftp://ftp.wavemetrics.com//pub/test

If you do not specify that the path in urlStr is an absolute path, it is interpreted as a path relative to the FTP
user's base directory. Since pub is the base directory for an anonymous user, this URL references the same
directory:

ftp://ftp.wavemetrics.com/test

Special characters such as punctuation that are used in urlStr may be incorrectly interpreted by the
operation. If you get unexpected results and urlStr contains such characters, you can try percent-encoding
the special characters. If you get unexpected results and urlStr contains such characters, you can try percent-
encoding the special characters. See Percent Encoding on page IV-253 for additional information.
localPathStr and pathName specify the name and location on your hard disk of the local file to be uploaded. If you
use a full or partial path for localPathStr, see Path Separators on page III-401 for details on forming the path.
localPathStr must always end with a file name if you are uploading a file or with a directory name if you are
uploading a directory. In the case of a directory, localPathStr must not end with a colon or backslash.
FTPUpload displays a dialog that you can use to identify the file or directory to be uploaded in the
following cases:

See Examples for examples of constructing a URL and local path.

Flags

Warning: When you upload a file or directory to an FTP server, all previous contents of the server
file or directory are obliterated.

1. You used the /I (interactive) flag.

2. You did not completely specify the location of the file or folder to be uploaded via pathName and
localPathStr.

3. There is an error in localPathStr. This can be either a syntactical error or a reference to a nonexistent
directory.

/D Uploads a complete directory. Omit it if you are uploading a file.

/I Interactive mode which displays a dialog for choosing the local file or directory to be
uploaded.

FTPUpload

V-233

/M=messageStr Specifies the prompt message used by the dialog in which you choose the local file or
directory to be uploaded. But see Prompt Does Not Work on Macintosh on page
IV-137.

/N=portNumber Specifies the server’s TCP/IP port number to use (default is 21). In almost all cases, this
will be correct so you won’t need to use the /N flag.

/O[=mode] Overwrite. FTPUpload always overwrites the specified server file or directory,
whether /O is used or not.
If /O=2 is not used, all files and subdirectories in the destination directory on the
server are first deleted and then the local files and directories are uploaded to the
server.
If /O=2 is used, the existing contents the contents of the local source directory are
merged into the remote directory instead of completely overwriting it.

/P=pathName Contributes to the specification of the file or directory to be uploaded. pathName is the
name of an existing symbolic path. See Examples.

/S=showProgress

/T=transferType

/U=userNameStr Specifies the user name to be used when logging in to the FTP server. If this flag is
omitted or if userNameStr is "", you will be logged in as an anonymous user. Use this
flag if you have an account on the FTP server.

/V=diagnosticMode

/W=passwordStr Specifies the password used when logging in to the FTP server. Use this flag if you
have an account on the FTP server.
 If this flag is omitted, “nopassword” will be used for the login password. This will
work with most anonymous FTP servers. Some anonymous FTP servers request that
you use your email address as a password. You can do this by including the
/W=“<your email address>” flag.
If /W is omitted, the login is done using a default password that will work with most
anonymous FTP servers.
See Safe Handling of Passwords on page IV-254 for information on handling
sensitive passwords.

Determines if a progress dialog is displayed.
0: No progress dialog.
1: Show a progress dialog (default).

Controls the FTP transfer type.

See FTP Transfer Types on page IV-260 for more discussion.

0: Image (binary) transfer (default).
1: ASCII transfer.

Determines what kind of diagnostic messages FTPUpload will display in the
history area. diagnosticMode is a bitwise parameter, with the bits defined as follows:

The default value for diagnosticMode is 3 (show basic and error diagnostics). If you
are having difficulties, you can try using 7 to show the commands sent to the server
and the server's response.
See FTP Troubleshooting on page IV-260 for other troubleshooting tips.

Bit 0: Show basic diagnostics. Currently this just displays the URL in the
history.

Bit 1: Show errors. This displays additional information when errors occur.
Bit 2: Show status. This displays commands sent to the server and the server's

response.

FuncFit

V-234

Examples
Upload a file using a full local path:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestFile1.txt"
String localPath = "hd:Test Folder:TestFile1.txt"
FTPUpload url, localPath

Upload a file using a local symbolic path and file name:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestFile1.txt"
String pathName = "Igor" // Igor is the name of a symbolic path.
String fileName = "TestFile1.txt"
FTPUpload/P=$pathName url, fileName

Upload a directory using a full local path:
String url = "ftp://ftp.wavemetrics.com/pub/test/TestDir1"
String localPath = "hd:Test Folder:TestDir1"
FTPUpload/D url, localPath

See Also
File Transfer Protocol (FTP) on page IV-257.
FTPCreateDirectory, FTPDelete, FTPDownload, URLEncode.

FuncFit
FuncFit [flags] fitFuncName, cwaveName, waveName [flag parameters]
FuncFit [flags] {fitFuncSpec}, waveName [flag parameters]
The FuncFit operation performs a curve fit to a user defined function, or to a sum of fit functions using the
second form (see Fitting Sums of Fit Functions on page V-236). Fitting can be done using any method that
can be selected using the /ODR flag (see CurveFit for details).
FuncFit operation parameters are grouped in the following categories: flags, parameters (fitFuncName,
cwaveName, waveName or {fitFuncSpec }, waveName), and flag parameters. The sections below correspond to
these categories. Note that flags must precede the fitFuncName or fitFuncSpec and flag parameters must
follow waveName.

Flags
See CurveFit for all available flags.

Parameters

Flag Parameters

/Z Errors are not fatal. Will not abort procedure execution if an error occurs.
Your procedure can inspect the V_flag variable to see if the transfer succeeded. V_flag
will be zero if it succeeded, -1 if the user canceled in an interactive dialog, or another
nonzero value if an error occurred.

fitFuncName The user-defined function to fit to, which can be a function taking multiple independent
variables (see also FuncFitMD). Multivariate fitting with FuncFit requires /X=xwaveSpec.

cwaveName Wave containing the fitting coefficients.

waveName The wave containing the dependent variable data to be fit to the specified function.
For functions of just one independent variable, the dependent variable data is often
referred to as "Y data". You can fit to a subrange of the wave by supplying
(startX,endX) or [startP,endP] after the wave name. See Wave Subrange Details below
for more information on subranges of waves in curve fitting.

fitFuncSpec List of fit functions and coefficient waves, with some optional information. Using this
format fits a model consisting of the sum of the listed fit functions. Intended for fitting
multiple peaks, but probably useful for other applications as well. See Fitting Sums
of Fit Functions on page V-236.

FuncFit

V-235

These flag parameters must follow waveName.

Other parameters are used as for the CurveFit operation, with some exceptions for multivariate fits.

Details for Multivariate Fits
The dependent variable data wave, waveName, must be a 1D wave even for multivariate fits. For fits to data
in a multidimensional wave, see FuncFitMD.
For multivariate fits, the auto-residual (/R with no wave specified) is calculated and appended to the top
graph if the dependent variable data wave is graphed in the top graph as a simple 1D trace. Auto residuals
are calculated but not displayed if the data are displayed as a contour plot.
The autodest wave (/D with no wave specified) for multivariate fits has the same number of points as the
data wave, with a model value calculated at the X values contained in the wave or waves specified with
/X=xwaveSpec.
Confidence bands are not supported for multivariate fits.

Wave Subrange Details
Almost any wave you specify to FuncFit can be a subrange of a wave. The syntax for wave subranges is the
same as for the Display command (see Subrange Display Syntax on page II-250 for details). See Wave
Subrange Details on page V-112 for a discussion of the use of subranges in curve fitting.
The backwards compatibility rules for CurveFit apply to FuncFit as well.
In addition to the waves discussed in the CurveFit documentation, it is possible to use subranges when
specifying the coefficient wave and the epsilon wave. Since the coefficient wave and epsilon wave must
have the same number of points, it might make sense to make them two columns from a single multicolumn
wave. For instance, here is an example in which the first column is used as the coefficient wave, the second
is used as the epsilon wave, and the third is used to save a copy of the initial guesses for future reference:
Make/D/N=(5, 3) myCoefs
myCoefs[][0] = {1,2,3,4,5} // hypothetical initial guess
myCoefs[][1] = 1e-6 // reasonable epsilon values

/E=ewaveName A wave containing the epsilon values for each parameter. Must be the same length as
the coefficient wave.

/STRC=structureInstance

Used only with Structure Fit Functions on page III-229. When using a structure fit
function, you must specify an instance of the structure to FuncFit. This will be an
instance that has been initialized by a user-defined function that you write in order to
invoke FuncFit.

/X=xwaveSpec An optional wave containing X values for each of the input data values. If the fitting
function has more than one independent variable, xwaveSpec is required and must be
either a 2D wave with a column for each independent variable, or a list of waves, one
for each independent variable. A list must be in braces: /X={xwave0, xwave1,…}. There
must be exactly one column or wave for each independent variable in the fitting
function.

/NWOK Allowed in user-defined functions only. When present, certain waves may be set to
null wave references. Passing a null wave reference to FuncFit is normally treated as
an error. By using /NWOK, you are telling FuncFit that a null wave reference is not
an error but rather signifies that the corresponding flag should be ignored. This
makes it easier to write function code that calls FuncFit with optional waves.
The waves affected are the X wave or waves (/X), weight wave (/W), epsilon wave (/E)
and mask wave (/M). The destination wave (/D=wave) and residual wave (/R=wave)
are also affected, but the situation is more complicated because of the dual use of /D
and /R to mean "do autodestination" and "do autoresidual". See /AR and /AD.
If you don't need the choice, it is better not to include this flag, as it disables useful
error messages when a mistake or run-time situation causes a wave to be missing
unexpectedly.
Note: To work properly this flag must be the last one in the command.

FuncFit

V-236

myCoefs[][2] = myCoefs[p][0] // save copy of initial guess
FuncFit myFitFunc, myCoefs[][0] myData /E=myCoefs[][1] …

You might have a fit function that uses a subset of the coefficients that are used by another. It might be
useful to use a single wave for both. Here is an example in which a function that takes four coefficients is
used to fit a subset of the coefficients, and then that solution is used as the initial guess for a function that
takes six coefficients:
Make/D/N=6 Coefs6={1,2,3,4,5,6}
FuncFit Fit4Coefs, Coefs6[0,3] fitfunc4Coefs …
FuncFit Fit6Coefs, Coefs6 ...

Naturally, the two fit functions must be worked out carefully to allow this.

Fitting Sums of Fit Functions
If Igor encounters a left brace at the beginning of the fit function name, it expects a list of fit functions to be
summed during the fit. This is useful for, for instance, fitting several peaks in a data set to a sum of peak functions.
The fit function specification includes at least the name of the fitting function and an associated coefficient
wave. A sum of fit functions requires multiple coefficient waves, one for each fit function. Any coefficient
wave-related options must be specified in the fit function specification via keyword-value pairs.
The syntax of the sum-of-fit-functions specification is as follows:
{{func1, coef1, keyword=value},{func2, coef2, keyword=value}, …}

or
{string=fitSpecStr}

Within outer braces, each fit function specification is enclosed within inner braces. You can use one or more
fit function specifications, with no intrinsic limit on the number of fit functions.
The second format is available to overcome limitations on the length of a command line in Igor. This format
is just like the first, but everything inside the outer braces is contained in a string expression (which may be
just a single string variable).
You can use any fit function that can be used for ordinary fitting, including the built-in functions that are
available using the CurveFit operation. If you should write a user-defined fitting function with the same
name as a built-in fit function, the user-defined function will be used (this is strongly discouraged).
Every function specification must include an appropriate coefficient wave, pre-loaded with initial guesses.
The comma between each function specification is optional.
The keyword-value pairs are optional, and are used to communicate further options on a function-by-
function basis. Available keywords are:

HOLD=holdstr Indicates that a fit coefficient should be held fixed during fitting. holdstr works
just like the hold string specified via the /H flag for normal fitting, but applies
only to the coefficient wave associated with the fit function it appears with.
If you include HOLD in a string expression (the {string=fitSpecStr}
syntax), you must escape the quotation marks around the hold string.
If you use the command-line syntax {{func1,coef1,HOLD=holdStr},
...}, holdStr may be a reference to a global variable acquired using SVAR, or it
may be a quoted literal string.
If you use {string=fitSpecStr}, fitSpecStr is parsed at run-time outside the
context of any running function. Consequently, you cannot use a general string
expression. You can use either HOLD="quotedLiteralString" or
HOLD=root:globalString.

CONST={constants} Sets the values of constants in the fitting function. So far, only two built-in
functions take constants: exp_XOffset and dblexp_XOffset. They each take just
one constant (the X offset), so you will have a “list” of one number inside the
braces.

EPSW=epsilonWave Specifies a wave holding epsilon values. Use only with a user-defined fitting
function to set the differencing interval used to calculate numerical estimates of
derivatives of the fitting function.

FuncFitMD

V-237

For more details, and for examples of sums of fit functions in use, Fitting Sums of Fit Functions on page III-214.

See Also
The CurveFit operation for parameter details. See also FuncFitMD for user-defined multivariate fits to data
in a multidimensional wave.
The best way to create a user-defined fitting function is using the Curve Fitting dialog. See Using the Curve
Fitting Dialog on page III-155, especially the section Fitting to a User-Defined Function on page III-163.
For details on the form of a user-defined function, see User-Defined Fitting Functions on page III-219.

FuncFitMD
FuncFitMD [flags] fitFuncName, cwaveName, waveName [flag parameters]
The FuncFitMD operation performs a curve fit to the specified multivariate user defined fitFuncSpec.
FuncFitMD handles gridded data sets in multidimensional waves. Most parameters and flags are the same
as for the CurveFit and FuncFit operations; differences are noted below.
cwaveName is a 1D wave containing the fitting coefficients, and functionName is the user-defined fitting
function, which has 2 to 4 independent variables.
FuncFitMD operation parameters are grouped in the following categories: flags, parameters (fitFuncName,
cwaveName, waveName), and flag parameters. The sections below correspond to these categories. Note that
flags must precede the fitFuncName and flag parameters must follow waveName.

Flags

Parameters

Flag Parameters
These flag parameters must follow waveName.

STRC=structureInstance Specifies an instance of the structure to FuncFit when using a structure fit
function. structureInstance is an instance that was initialized by a user-defined
function that invokes FuncFit. This keyword (and structure fitting functions) can
be used only when calling FuncFit from within a user-defined function. See
Structure Fit Functions on page III-229 for more details.

/L=dimSize Sets the dimension size of the wave created by the auto-trace feature, that is, /D
without destination wave. The wave fit_waveName will be a multidimensional wave
of the same dimensionality as waveName that has dimSize elements in each dimension.
That is, if you are fitting to a matrix wave, fit_waveName will be a square matrix that
has dimensions dimSize XdimSize. Beware: dimSize =100 requires 100 million points for
a 4-dimensional wave!

fitFuncName User-defined function to fit to, which must be a function taking 2 to 4 independent
variables.

cwaveName 1D wave containing the fitting coefficients.

waveName The wave containing the dependent variable data to be fit to the specified function.
For functions of just one independent variable, the dependent variable data is often
referred to as "Y data". You can fit to a subrange of the wave by supplying
(startX,endX) or [startP,endP] for each dimension after the wave name. See Wave
Subrange Details below for more information on subranges of waves in curve fitting.

/E=ewaveName A wave containing the epsilon values for each parameter. Must be the same length as
the coefficient wave.

/T=twaveName Like /X except for the T independent variable. This is a 1D wave having as many
elements as waveName has chunks.

/X=xwaveName The X independent variable values for the data to fit come from xwaveName instead of
from the X scaling of waveName. This is a 1D wave having as many elements as
waveName has rows.

FUNCREF

V-238

Details
Auto-residual (/R with no wave specified) and auto-trace (/D with no wave specified) for functions having two
independent variables are plotted in a separate graph window if waveName is plotted as a contour or image in
the top graph. An attempt is made to plot the model values and residuals in the same way as the input data.
By default the auto-trace and auto-residual waves are 50x50 or 25x25x25 or 15x15x15x15. Use /L=dimSize for
other sizes. Make your own wave and use /D=waveName or /R=waveName if you want a wave that isn’t
square. In this case, the wave dimensions must be the same as the dependent data wave.
Confidence bands are not available for multivariate fits.

Wave Subrange Details
Almost any wave you specify to FuncFitMD can be a subrange of a wave. The syntax for wave subranges
is the same as for the Display command; see Subrange Display Syntax on page II-250 for details. Note that
the dependent variable data (waveName) must be a multidimensional wave; this requires an extension of the
subrange syntax to allow a multidimensional subrange. See Wave Subrange Details on page V-235 for a
discussion of the use of subranges in curve fitting.
The backwards compatibility rules for CurveFit apply to FuncFitMD as well.
A subrange could be used to pick a plane from a 3D wave for fitting using a fit function taking two
independent variables:
Make/N=(100,100,3) DepData
FuncFitMD fitfunc2D, myCoefs, DepData[][][0] …

See Also
The CurveFit operation for parameter details.
The best way to create a user-defined fitting function is using the Curve Fitting dialog. See Using the Curve
Fitting Dialog on page III-155, especially the section Fitting to a User-Defined Function on page III-163.
For details on the form of a user-defined function, see User-Defined Fitting Functions on page III-219.

FUNCREF
FUNCREF protoFunc func [= funcSpec]
Within a user function, FUNCREF is a reference that creates a local reference to a function or a variable
containing a function reference.
When passing a function as an input parameter to a user function, the syntax is:
FUNCREF protoFunc func

/Y=ywaveName Like /X except for the Y independent variable. This is a 1D wave having as many
elements as waveName has columns.

/Z=ywaveName Like /X except for the Z independent variable. This is a 1D wave having as many
elements as waveName has layers.

/NWOK Allowed in user-defined functions only. When present, certain waves may be set to
null wave references. Passing a null wave reference to FuncFitMD is normally treated
as an error. By using /NWOK, you are telling FuncFitMD that a null wave reference
is not an error but rather signifies that the corresponding flag should be ignored. This
makes it easier to write function code that calls FuncFitMD with optional waves.
The waves affected are the X wave or waves (/X), the Y spacing wave (/Y), the Z
spacking wave (/Z) the T spacing wave (/T), weight wave (/W), epsilon wave (/E) and
mask wave (/M). The destination wave (/D=wave) and residual wave (/R=wave) are
also affected, but the situation is more complicated because of the dual use of /D and
/R to mean "do autodestination" and "do autoresidual". See /AR and /AD.
If you don't need the choice, it is better not to include this flag, as it disables useful
error messages when a mistake or run-time situation causes a wave to be missing
unexpectedly.
Note: To work properly this flag must be the last one in the command.

FuncRefInfo

V-239

In this FUNCREF reference, protoFunc is a function that specifies the format of the function that can be
passed by the FUNCREF, and func is a function reference used as an input parameter.
When you declare a function reference variable within a user function, the syntax is:
FUNCREF protoFunc func = funcSpec
Here, the local FUNCREF variable, func, is assigned a funcSpec, which can be a literal function name, a $
string expression that evaluates at runtime, or another FUNCREF variable.

See Also
Function References on page IV-98 for an example and further usage details.

FuncRefInfo
FuncRefInfo(funcRef)
The FuncRefInfo function returns information about a FUNCREF.

Parameters
funcRef is a function reference variable declared by a FUNCREF statement in a user-defined function.

Details
FuncRefInfo returns a semicolon-separated keyword/value string containing the following information:

See Also
Function References on page IV-98 and FUNCREF on page V-238.

Function
Function [[/C /D /S /DF /WAVE] functionName([parameters])
The Function keyword introduces a user-defined function in a procedure window.
The optional flags specify the return value type, if any, for the function.

Flags

Details
If you omit all flags, the result is a scalar double-precision number.
The /D flag is not needed because all numeric return values are double-precision.

See Also
 Chapter IV-3, User-Defined Functions and Function Syntax on page IV-31 for further information.

Keyword Information

NAME The name of the reference function or "" if the FUNCREF variable has not been
assigned to point to a function.

ISPROTO 0 if the FUNCREF variable has been assigned to point to a function.
1 if it has not been assigned and therefore still points to the prototype function.

ISXFUNC 0 if it points to a user-defined function.
1 if the FUNCREF points to an external function.

/C Returns a complex number.

/D Returns a double-precision number. Obsolete, accepted for backward compatibility.

/S Returns a string.

/DF Returns a data folder reference. See Data Folder Reference Function Results on page IV-75.

/WAVE Returns a wave reference. See Wave Reference Function Results on page IV-70.

FunctionInfo

V-240

FunctionInfo
FunctionInfo(functionNameStr [, procedureWinTitleStr])
The FunctionInfo function returns a keyword-value pair list of information about the user-defined or
external function name in functionNameStr.

Parameters
functionNameStr a string expression containing the name or multipart name of a user-defined or external
function. functionNameStr is usually just the name of a function.
To return information about a static function, supply both the module name and the function name in
MyModule#MyFunction format (see Regular Modules on page IV-222), or specify the function name and
procedureWinTitleStr (see below).
To return information about a function in a different independent module, supply the independent module
name in addition to any module name and function name (a double or triple name):

(See Independent Modules on page IV-224 for details on independent modules.)
The optional procedureWinTitleStr can be the title of a procedure window (such as "Procedure" or "File Name
Utilities.ipf") in which to search for the named user-defined function. The information about the named
function in the specified procedure window is returned.
The procedureWinTitleStr parameter makes it possible to select one of several static functions with identical
names among different procedure windows, even if they do not contain a #pragma
moduleName=myModule statement.
If you execute this command:
SetIgorOption IndependentModuleDev=1

then procedureWinTitleStr can also be a title followed by an independent module name in brackets to return
information about the named function in the procedure window of the given title that belongs to named
independent module.
procedureWinTitleStr can also be just an independent module name in brackets to return information about
the named nonstatic function in any procedure window that belongs to named independent module.

Details
The returned string contains several groups of information. Each group is prefaced by a keyword and colon,
and terminated with the semicolon. The keywords are as follows:

Name What It Refers To

MyIndependentModule#MyFunction Refers to a non-static function in an independent
module.

MyIndependentModule#MyModule#MyFunction Refers to a static function in a procedure file with
#pragma moduleName=MyModule in an
independent module.

User-Defined and External Functions

Keyword Information Following Keyword

NAME The name of the function. Same as contents of functionNameStr in most cases. Just
the function name if you use the module#function format.

TYPE Value is "UserDefined" or "XFunc".

THREADSAFE Either "yes" or "no". See ThreadSafe Functions on page IV-97.

RETURNTYPE Number giving the return type of the function. See the table Return Type and
Parameter Type Codes on page V-241.

N_PARAMS Number of parameters for this function.

PARAM_n_TYPE Number encoding the type of each parameter. There will be N of these keywords,
one for each parameter. The part shown as n will be a number from 0 to N.

FunctionInfo

V-241

See Examples for a method for decoding these keywords.

User-Defined Functions Only

Keyword Information Following Keyword

PROCWIN Title of procedure window containing the function definition.

MODULE Module containing function definition (see Regular Modules on page IV-222).

INDEPENDENTMODULE Independent module containing function definition (see Independent
Modules on page IV-224).

SPECIAL The value part has one of three values:

no: Not a “special” function.

static: Is a static function. Use the module#function format to get info
about static functions.

override: Function is an override function. See Function Overrides on
page IV-98.

SUBTYPE The function subtype, for instance FitFunc. See Procedure Subtypes on page
V-13 for others.

PROCLINE Line number within the procedure window of the function definition.

VISIBLE Either "yes" or "no". Set to "no" in the unlikely event that the function is defined
in an invisible file.

N_OPT_PARAMS Number of optional parameters. Usually zero.

External Functions Only

Keyword Information Following Keyword

XOP Name of the XOP module containing the function.

Return Type and Parameter Type Codes

Type Code Code in Hex

Complex 1 0x1

Single Precision 2 0x2

Variable 4 0x4

Double Precision 4 0x4

Byte 8 0x8

16-bit Integer 16 0x10

32-bit Integer 32 0x20

Single Precision 2 0x2

/WAVE 128 0x80

Data folder reference 256 0x100

Structure 512 0x200

Function reference 1024 0x400

Pass by reference parameter 4096 0x1000

FunctionInfo

V-242

Igor functions can return a numeric value, a string value, a wave reference, or a data folder reference.
A returned numeric value is always double precision and may be complex. The return type for a normal
numeric function is 4, for a complex function (Function/C) is 5 (4 for number +1 for complex).
A string function (Function/S) is 8192 (string). A Function/WAVE has a return type of 16384.
The return and parameter codes may be combined to indicate combinations of attributes. For instance, the
code for a variable is 4 and the code for complex is 1. Consequently, the code for a complex variable
parameter is 5. The code for a complex variable parameter passed by reference is (4+1+4096) = 4101.
Variables are always double-precision, hence the code of 4.
Waves may have a variety of codes. Numeric waves will combine with one of the number type codes such
as 2 or 16. This does not reflect the numeric type of any actual wave, but rather any flag you may have used
in the Wave reference. Thus, if the beginning of your function looks like
Function myFunc(w)

Wave w

the code for the parameter w will be 16386 (16384 + 2) indicating a single-precision wave. You can use a
numeric type flag with the Wave reference:
Function myFunc(w)

Wave/I w

In this case, the code will be 16416 (16384 + 32).
Such codes are not very useful, as it is very rare to use a numeric type flag because the numeric type will be
resolved correctly at runtime regardless of the flag.
A text wave has no numeric type, so its code is exactly 16384 (or -16384 if /Z is also specified.) Thus, the
numeric type part of the code for a numeric wave serves to distinguish a numeric wave from a text wave.
And a Wave/WAVE (a wave that contains references to other waves) has a code of 16512 (16384 + 128),
unless /Z is also specified, which subtracts 32768, resulting in a code of -16256.

Examples
This function formats function information nicely and prints it in the history area in an organized fashion. You
can copy it into the Procedure window to try it out. It uses the function InterpretType() below to print a
human-readable version of the parameter and return types. To try PrintFuncInfo(), you will need to copy
the code for InterpretType() as well.
Function PrintFuncInfo(functionName)

String functionName

String infostr = FunctionInfo(functionName)
if (strlen(infostr) == 0)

print "The function \""+functionName+"\" does not exist."
return -1

endif

print "Name: ", StringByKey("NAME", infostr)

String typeStr = StringByKey("TYPE", infostr)
print "Function type: ", typeStr
Variable IsUserDefined = CmpStr(typeStr, "UserDefined")==0

// It's not really necessary to use an IF statement here;
// it simply prevents lines with blank information being
// printed for an XFUNC.

if (IsUserDefined)
print "Module: ", StringByKey("MODULE", infostr)

String 8192 0x2000

Wave 16384 0x4000

/Z -32768 0xFFFF8000

Return Type and Parameter Type Codes

Type Code Code in Hex

FunctionInfo

V-243

print "Procedure window: ", StringByKey("PROCWIN", infostr)
print "Subtype: ", StringByKey("SUBTYPE", infostr)
print "Special? ", StringByKey("SPECIAL", infostr)

// Note use of NumberByKey to get a numeric key value
print "Line number: ", NumberByKey("PROCLINE", infostr)

endif

// See function InterpretType() below for example of
// interpreting type information.

Variable returnType = NumberByKey("RETURNTYPE", infostr)

String returnTypeStr = InterpretType(returnType, 1)
printf "Return type: %d (0x%X) %s\r", returnType, returnType, returnTypeStr

Variable nparams = NumberByKey("N_PARAMS", infostr)
print "Number of Parameters: ", nparams

Variable nOptParams = 0
if (IsUserDefined)

nOptParams = NumberByKey("N_OPT_PARAMS", infostr)
print "Optional Parameters: ", nOptParams

endif

Variable i
for (i = 0; i < nparams; i += 1)

// Note how the PARAM_n_TYPE keyword string is constructed here:
String paramKeyStr = "PARAM_"+num2istr(i)+"_TYPE"
Variable ptype = NumberByKey(paramKeyStr, infostr)

String ptypeStr = InterpretType(ptype,0)
String format = "Parameter %d; type as number: %g (0x%X); type as string: %s"
String output
sprintf output, format, i, ptype, ptype, pTypeStr
print output

endfor

return 0
End

Function that creates a human-readable string with information about parameter and return types. Note that
various attributes of the type info is tested using the bitwise AND operator (&) to test for individual bits. The
constants are expressed as hexadecimal values (prefixed with “0x”) to make them more readable (at least to a
programmer). Otherwise, 0x4000 would be 16384; at least, 0x4000 is clearly a single-bit constant.
Function/S InterpretType(type, isReturnType)

Variable type
Variable isReturnType // 0: type is parameter type; 1: type is return type.

String typeStr = ""

// limit type to unsigned 16-bit values (remove sign extensions caused by 0x8000)
type = type & 0xFFFF

// isNumeric is flag to tell whether to print out "complex" and "real";
// we don't want that information on strings, text waves or wave of wave references.
Variable isNumeric = 1

if (type & 0x4000) // test for WAVE bit set
typeStr += "Wave"

if(!isReturnType)
if (type & 0x80) // test for WAVE/WAVE bit set

typeStr += "/WAVE"
// don't print "real" or "complex" for wave waves
isNumeric = 0

endif
if (type & 0x8000) // test for WAVE/Z bit set

typeStr += "/Z"
endif

endif
typeStr += " "

FunctionList

V-244

if((type == 0x4000) || (type == (0x4000 | 0x8000))) // WAVE/T or WAVE/Z/T
if(!isReturnType)

// For parameter types, if no numeric bits are set, it is a text wave.
// A numeric wave has some other bits set causing the value
// to be different from 0x4000 or 0xC000.
typeStr += "text "

endif
// Function/WAVE doesn't (cannot) specify whether the returned wave
// is text or numeric.
// Don't print "real" or "complex" for text or unknown wave types.
isNumeric = 0

endif
elseif (type & 0x2000) // test for STRING bit set

typeStr += "String "
isNumeric = 0

elseif (type & 4) // test for VARIABLE bit
typeStr += "Variable "

elseif (type & 0x100) // test for DFREF bit
typeStr += "Data folder reference "
isNumeric = 0

elseif (type & 0x200) // test for STRUCTURE bit
typeStr += "Struct "
isNumeric = 0

elseif (type & 0x400) // test for FUNCREF bit
typeStr += "FuncRef "
isNumeric = 0

endif

// print "real" or "complex" for numeric objects only
if (isNumeric)

if (type & 1) // test for COMPLEX bit
typeStr += "cmplx "

else
typeStr += "real "

endif
endif

if(!isReturnType && (type & 0x1000)) // test for PASS BY REFERENCE bit
typeStr += "reference "

endif

return typeStr
End

See Also
The StringByKey and NumberByKey functions.
StringByKey, NumberByKey, and FunctionList functions.
Regular Modules on page IV-222 and Independent Modules on page IV-224.

FunctionList
FunctionList(matchStr, separatorStr, optionsStr)
The FunctionList function returns a string containing a list of built-in or user-defined function names
satisfying certain criteria. This is useful for making a string to list functions in a pop-up menu control. Note
that if the procedures need to be compiled, then FunctionList will not list user-defined functions.

Parameters
Only functions having names that match matchStr string are listed. Use "*" to match all names. See
WaveList for examples.
The first character of separatorStr is appended to each function name as the output string is generated. separatorStr
is usually ";" for list processing (See Processing Lists of Waves on page IV-187 for details on list processing).

FunctionList

V-245

Use optionsStr to further qualify the list of functions. optionsStr is a string containing keyword-value pairs
separated by commas. Available options are:

KIND:nk

SUBTYPE:typeName

Lists functions that have the type typeName. That is, you could use ButtonControl as
typeName to list only functions that are action procedures for buttons.

VALTYPE:nv

NPARAMS:np Restricts the list to functions having exactly np parameters. Omitting this option lists
functions having any number of parameters.

NINDVARS:ni Restricts the list to fitting functions for exactly ni independent variables. NINDVARS
is ignored if you have not elected to list curve fitting functions using the KIND option.
Functions for any number of independent variables are listed if the NINDVARS
option is omitted.

WIN:windowTitle Lists functions that are defined in the procedure window with the given title.
“Procedure” is the title of the built-in procedure window.
Note: Because the optionsStr keyword-value pairs are comma separated and
procedure window names can have commas in them, the WIN:keyword must be the
last one specified.

WIN:windowTitle [independentModuleName]

Lists functions that are defined in the named procedure window that belongs to the
independent module independentModuleName. See Independent Modules on page
IV-224 for details. Requires SetIgorOption IndependentModuleDev=1,
otherwise no functions are listed.
Requires independentModuleName=ProcGlobal or SetIgorOption
independentModuleDev=1, otherwise no functions are listed.
Note: The syntax is literal and strict: the window title must be followed by one space
and a left bracket, followed directly by the independent module name and a closing
right bracket.

WIN:[independentModuleName]

Controls the kinds of functions returned.
nk=1: List built-in functions.
nk=2: List normal and override user-defined functions.
nk=4: List external functions (defined by an XOP).
nk=8: List only curve fitting functions; must be summed with 1, 2, 4, or 16.

For example, use 10 to list user-defined fitting functions.
nk=16: Include static user-defined functions; requires WIN: option, must be

summed with 1, 2, or 8. To list only static functions, subtract the non-
static functions using RemoveFromList.

Restricts list to functions whose return type is a certain kind.

Use a sum of these values to include more than one type. The return type is not
restricted if this option is omitted.

nv=1: Real-valued functions.
nv=2: Complex-valued functions.
nv=4: String functions.
nv=8: WAVE functions
nv=16: DFREF functions.

FunctionPath

V-246

Examples
To list user-defined fitting functions for two independent variables:
Print FunctionList("*",";","KIND:10,NINDVARS:2")

To list button-control functions that start with the letter b (note that button-control functions are user-
defined):
Print FunctionList("b*",";","KIND:2,SUBTYPE:ButtonControl")

See Also
Independent Modules on page IV-224.
For details on procedure subtypes, see Procedure Subtypes on page IV-193, as well as Button, CheckBox,
SetVariable, and PopupMenu.
The DisplayProcedure operation and the MacroList, OperationList, StringFromList, and WinList
functions.

FunctionPath
FunctionPath(functionNameStr)
The FunctionPath function returns a path to the file containing the named function. This is useful in certain
specialized cases, such as if a function needs access to a lookup table of a large number of values.
The most likely use for this is to find the path to the file containing the currently running function. This is
done by passing "" for functionNameStr, as illustrated in the example below.
The returned path uses Macintosh syntax regardless of the current platform. See Path Separators on page
III-401 for details.
If the procedure file is a normal standalone procedure file, the returned path will be a full path to the file
such as "hd:Igor Pro 7 Folder:WaveMetrics Procedures:Waves:Wave Lists.ipf".
If the function resides in the built-in procedure window the returned path will be ":Procedure". If the
function resides in a packed procedure file, the returned path will be ":<packed procedure window
title>".
If FunctionPath is called when procedures are in an uncompiled state, it returns “:”.

Parameters
If functionNameStr is "", FunctionPath returns the path to the currently executing function or "" if no
function is executing.
Otherwise FunctionPath returns the path to the named function or "" if no function by that name exists.

Examples
This example loads a lookup table into memory. The lookup table is stored as a wave in an Igor binary file.
Function LoadMyLookupTable()

String path

path = FunctionPath("") // Path to file containing this function.
if (CmpStr(path[0],":") == 0)

// This is the built-in procedure window or a packed procedure
// file, not a standalone file. Or procedures are not compiled.
return -1

endif

// Create path to the lookup table file.
path = ParseFilePath(1, path, ":", 0, 0) + "MyTable.ibw"

Lists functions that are defined in any procedure file that belongs to the named
independent module.
Requires independentModuleName=ProcGlobal or SetIgorOption
independentModuleDev=1, otherwise no functions are listed.
Note: The syntax is literal and strict: 'WIN:' must be followed by a left bracket,
followed directly by the independent module name and a closing right bracket, like
this:
FunctionList(...,"WIN:[myIndependentModuleName]")

GalleryGlobal

V-247

DFREF dfSave = GetDataFolderDFR()

// A previously-created place to store my private data.
SetDataFolder root:Packages:MyData

// Load the lookup table.
LoadWave/O path

SetDataFolder dfSave

return 0
End

See Also
The FunctionList function.

GalleryGlobal
GalleryGlobal#pictureName
The GalleryGlobal keyword is used in an independent module to reference a picture in the global picture
gallery which you can view by choosing Misc→Pictures.

See Also
See Independent Modules and Pictures on page IV-230.

gamma
gamma(num)
The gamma function returns the value of the gamma function of num. If num is complex, it returns a
complex result. Note that the return value for num close to negative integers is NaN, not ±Inf.

See Also
The gammln function.

gammaEuler
gammaEuler
The gammaEuler function returns the Euler-Mascheroni constant 0.5772156649015328606065.
The gammaEuler function was added in Igor Pro 7.00.

gammaInc
gammaInc(a, x [, upperTail])
The gammaInc function returns the value of the incomplete gamma function, defined by the integral

If upperTail is zero, the limits of integration are 0 to x. If upperTail is absent, it defaults to 1, and the limits of
integration are x to infinity, as shown. Note that gammaInc(a, x) = gamma(a) - gammaInc(a, x, 0).
Defined for x > 0, a ≥ 0 (upperTail = zero or absent) or a > 0 (upperTail = 0).

See Also
The gamma, gammp, and gammq functions.

gammaNoise
gammaNoise(a [, b])
The gammaNoise function returns a pseudo-random value from the gamma distribution

Γ(a, x) = e− tt a−1 dt.
x

∞

∫

gammln

V-248

whose mean is ab and variance is ab2. For backward compatibility you can omit the parameter b in which
case its value is set to 1. When a→1 gammaNoise reduces to expnoise.
The random number generator initializes using the system clock when Igor Pro starts. This almost guarantees
that you will never repeat a sequence. For repeatable “random” numbers, use SetRandomSeed. The
algorithm uses the Mersenne Twister random number generator.

References
Marsaglia, G., and W. W. Tsang, ACM, 26, 363-372, 2000.

See Also
The SetRandomSeed operation.
Noise Functions on page III-344.
Chapter III-12, Statistics for a function and operation overview.

gammln
gammln(num [, accuracy])
The gammln function returns the natural log of the gamma function of num, where num > 0. If num is
complex, it returns a complex result. Optionally, accuracy can be used to specify the desired fractional
accuracy. If num is complex, it returns a complex result. In this case, accuracy is ignored.

Details
The accuracy parameter specifies the fractional accuracy that you desire. That is, if you set accuracy to 10-7,
that means that you wish that the absolute value of (factual - freturned)/factual be less than 10-7.
For backward compatibility, if you don’t include accuracy, gammln uses older code that achieves an
accuracy of about 2x10-10.
With accuracy, newer code is used that is both faster and more accurate. The output has fractional accuracy better
than 1x10-15 except for values near zero, where the absolute accuracy (factual - freturned) is better than 2x10-16.
The speed of calculation depends only weakly on accuracy. Higher accuracy is significantly slower than
lower accuracy only for num between 6 and about 10.

See Also
The gamma function.

gammp
gammp(a, x [, accuracy])
The gammp function returns the regularized incomplete gamma function P(a,x), where a > 0, x ≥ 0. Optionally,
accuracy can be used to specify the desired fractional accuracy. Same as gammaInc(a, x, 0)/gamma(a).

Details
The accuracy parameter specifies the fractional accuracy that you desire. That is, if you set accuracy to 10-7,
that means that you wish that the absolute value of (factual - freturned)/factual be less than 10-7.
For backward compatibility, if you don’t include accuracy, gammp uses older code that is slower for an
equivalent accuracy, and cannot achieve as high accuracy.
The ability of gammp to return a value having full fractional accuracy is limited by double-precision
calculations. This means that it will mostly have fractional accuracy better than about 10-15, but this is not
guaranteed, especially for extreme values of a and x.

See Also
The gammaInc and gammq functions.

f (x) =
xa−1 exp − x

b
⎛
⎝⎜

⎞
⎠⎟

baΓ(a)
, x > 0, a > 0, b > 0,

gammq

V-249

gammq
gammq(a, x [, accuracy])
The gammq function returns the regularized incomplete gamma function 1-P(a,x), where a > 0, x ≥ 0. Optionally,
accuracy can be used to specify the desired fractional accuracy. Same as gammaInc(a, x)/gamma(a).

Details
The accuracy parameter specifies the fractional accuracy that you desire. That is, if you set accuracy to 10-7,
that means that you wish that the absolute value of (factual - freturned)/factual be less than 10-7.
For backward compatibility, if you don’t include accuracy, gammq uses older code that is slower for an
equivalent accuracy, and cannot achieve as high accuracy.
The ability of gammq to return a value having full fractional accuracy is limited by double-precision
calculations. This means that it will mostly have fractional accuracy better than about 10-15, but this is not
guaranteed, especially for extreme values of a and x.

See Also
The gammaInc and gammp functions.

Gauss
Gauss(x,xc,wx [,y,yc,wy [,z,zc,wz [,t,tc,wt]]])
The Gauss function returns a normalized Gaussian for the specified dimension.

where n is the number of dimensions.

Parameters
xc, yc, zc, and tc are the centers of the Gaussian in the X, Y, Z, and T directions, respectively.
wx, wy, wz, and wt are the widths of the Gaussian in the X, Y, Z, and T directions, respectively.
Note that wi here is the standard deviation of the Gaussian. This is different from the width parameter in
the gauss curve fitting function, which is sqrt(2) times the standard deviation.
Note also that the Gauss function lacks the cross-correlation parameter that is included in the Gauss2D
curve fitting function.

Examples
Make/n=100 eee=gauss(x,50,10)
Print area(eee,-inf,inf)
 0.999999

Make/n=(100,100) ddd=gauss(x,50,10,y,50,15)
Print area(ddd,-inf,inf)
 0.999137

Gauss1D
Gauss1D(w, x)
The Gauss1D function returns the value of a Gaussian peak defined by the coefficients in the wave w. The
equation is the same as the Gauss curve fit:

Examples
Do a fit to a Gaussian peak in a portion of a wave, then extend the model trace to the rest of the X range:

Gauss(r,c,w) = 1

wi 2π
exp − 1

2

ri − ci
wi

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

i=1

n

∏

w[0]+w[1]exp − x −w[2]

w[3]
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

Gauss2D

V-250

Make/O/N=100 junkg // fake data wave
Setscale/I x -1,1,junkg
Display junkg
junkg = 1+2.5*exp(-((x-.5)/.3)^2)+gnoise(.1)
Duplicate/O junkg, junkgfit
junkgfit = NaN
AppendToGraph junkgfit
CurveFit gauss junkg[50,99] /D=junkgfit
// now extend the model trace
junkgfit = Gauss1D(w_coef, x)

See Also
The CurveFit operation.

Gauss2D
Gauss2D(w, x, y)
The Gauss2D function returns the value of a two-dimensional Gaussian peak defined by the coefficients in
the wave w. The equation is the same as the Gauss2D curve fit:

Examples
Do a fit to a Gaussian peak in a portion of a wave, then extend the model trace to the rest of the X range
(watch out for the very long wave assignment to junkg2D):
Make/O/N=(100,100) junkg2D // fake data wave
Setscale/I x -1,1,junkg2D
Setscale/I y -1,1,junkg2D
Display; AppendImage junkg2D
//Caution! Next command wrapped to fit page:
junkg2D = -1 + 2.5*exp((-1/(2*(1-.4^2)))*(((x-.1)/.2)^2+((y+.2)/.35)^2+2*.4*

((x-.1)/.2)*((y+.2)/.35)))
junkg2D += gnoise(.01)
Duplicate/O junkg2D, junkg2Dfit
junkg2Dfit = NaN
AppendMatrixContour junkg2Dfit
CurveFit gauss2D junkg2D[20,80][10,70] /D=junkg2Dfit[20,80][10,70]
// now extend the model trace
junkg2Dfit = Gauss2D(w_coef, x, y)

See Also
The CurveFit operation.

GBLoadWave
GBLoadWave [flags] [fileNameStr]
The GBLoadWave operation loads data from a binary file into waves.
For more complex applications such as loading structured data into Igor structures see the FBinRead
operation.
Prior to Igor7, GBLoadWave was implemented as an XOP. It is now a built-in operation.

Parameters
If fileNameStr is omitted or is "", or if the /I flag is used, GBLoadWave presents an Open File dialog from
which you can choose the file to load.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.

w[0]+w[1]exp
−1

2 1−w[6]2()
x −w[2]

w[3]
⎛
⎝⎜

⎞
⎠⎟

2

+ y −w[4]

w[5]
⎛
⎝⎜

⎞
⎠⎟

2

− 2w[6](x −w[2])(y −w[4])

w[3]w[5]
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.

GBLoadWave

V-251

Flags

/A Automatically assigns arbitrary wave names using "wave" as the base name. Skips
names already in use.

/A=baseName Same as /A but it automatically assigns wave names of the form baseName0,
baseName1.

/D=d

/D by itself is equivalent to /D=1.

/F=f

/FILT=fileFilterStr Provides control over the file filter menu in the Open File dialog. This flag was added
in Igor Pro 7.00.
The construction of the fileFilterStr parameter is the same as for the /F=fileFilterStr flag
of the Open operation. See Open File Dialog File Filters on page IV-137 for details.

/I [={macFilterStr,
winFilterStr}]

Specifies interactive mode which displays the Open File dialog.
In Igor7, the macFilterStr and winFilterStr parameters are ignored. Use the /FILT flag
instead.

/J=j

/L=length New programming should use the /T flag instead of the /D, /L and /F flags.
length specifies the data length of the data in the file in bits (default = 32). Allowable
data lengths are 8, 16, 32, 64.

/N Same as /A except that, instead of choosing names that are not in use, it overwrites
existing waves.

/N=baseName Same as /N except that it automatically assigns wave names of the form baseName0,
baseName1.

/O=o

/O by itself is equivalent to /O=1.

/P=pathName Specifies the folder to look in for fileNameStr. pathName is the name of an existing
symbolic path.

/Q=q

/Q by itself is equivalent to /Q=1.

/S=s s is the number of bytes at the start of the file to skip. It defaults to 0.

New programming should use the /T flag instead of the /D, /L and /F flags.
d=0: Creates single-precision waves.
d=1: Creates double-precision waves.

New programming should use the /T flag instead of the /D, /L and /F flags.
f specifies the data format of the file:
f=1: Signed integer (8, 16, 32 bits allowed)
f=2: Creates double-precision waves
f=3: Floating point (default, 32, 64 bits allowed)

Specifies how input floating point data is interpreted.
j=0: IEEE floating point (default)
j=1: VAX floating point

Controls overwriting of waves in case of a name conflict.
o=0: Use unique wave names.
o=1: Overwrite existing waves.

Controls messages written to the history area of the command window.
q=0: Write messages.
q=1: Suppress messages.

GBLoadWave

V-252

Details
The /N flag instructs Igor to automatically name new waves "wave" (or baseName if /N=baseName is used)
plus a nimber. The nimber starts from zero and increments by one for each wave loaded from the file. If the
resulting name conflicts with an existing wave, the existing wave is overwritten.
The /A flag is like /N except that Igor skips names already in use.
The /T flag allows you to specify a data type for both the input (data in the file) and the output (data in the
waves). You should use the /T flag instead of the /D, /L and /F flags. These flags are obsolete but are still
supported.

GBLoadWave Open File Dialog
If you include the /I flag, or if the /P=pathName and fileNameStr parameters do not fully specify the file to be
loaded, GBLoadWave displays the Open File dialog.
The /FILT=fileFilterStr flag provides control over the file filter menu in the Open File dialog. This flag was
added in Igor Pro 7.00. The construction of the fileFilterStr parameter is the same as for the /F=fileFilterStr
flag of the Open operation. See Open File Dialog File Filters on page IV-137 for details.
In Igor7, the macFilterStr and winFilterStr parameters of the /I flag are ignored. Use the /FILT flag instead.

/T={fType,wType}

/U=u Specifies the number of points of data per array in the file.
The default is 0 which means “auto”. In this case GBLoadWave calculate the number
of data pointers per array based on the number of bytes in the file, the number of bytes
to be skipped at the start of the file (/S flag), and the number of arrays in the file (/W
flag).

/V=v

/V by itself is equivalent to /V=1.

/W=w Specifies the number of arrays in the file. The default is 1.
If you omit /W but specify the number of points per data array in the file via /U then
GBLoadWave calculates the number of waves to be loaded based on the number of
bytes in the file, the number of bytes to be skipped at the start of the file (/S flag), and
the specified number of points per data array in the file (/U flag). Therefore, if you
specify /U and want to load just one wave you must also specify /W=1.

/Y={offset, mult} Data loaded into waves is scaled using offset and mult:
output data = (input data + offset) * multiplier

This is useful to convert integer data into scaled, real numbers.

Specifies the data type of the file (fType) and the data type of the wave or waves to
be created (wType). The allowed codes for both fType and wType are:
2: Single-precision floating point
4: Double-precision floating point
8: 8-bit signed integer
16: 16-bit signed integer
32: 32-bit signed integer
64: 64-bit signed integer (Igor7 or later)
72: 8-bit unsigned integer (8+64)
80: 16-bit unsigned integer (16+64)
96: 32-bit unsigned integer (32+64)
192: 64-bit unsigned integer (128+64) (Igor7 or later)

Specifies interleaving of data in the file.
v=0: Data in file is not interleaved (default)
v=1: Data in file is interleaved

gcd

V-253

Output Variables
GBLoadWave sets the following output variables:

S_path uses Macintosh path syntax (e.g., “hd:FolderA:FolderB:”), even on Windows. It includes a
trailing colon.
When GBLoadWave presents an Open File dialog and the user cancels, V_flag is set to 0 and S_fileName is set
to "".

Example
// Load 128 point single precision version 2 Igor binary file
GBLoadWave/S=126/U=128 "fileName"

// Load 8 256 point arrays of 16 bit signed integers into single-precision waves
// after skipping 128 byte header
GBLoadWave/S=128/T={16,2}/W=8/U=256 "fileName"

// Load n 100 point arrays of double-precision floating point numbers
// into double-precision Igor waves with names like temp0, temp1, etc,
// overwriting existing waves. n is determined by the number of bytes
// in the file.
GBLoadWave/O/N=temp/T={4,4}/U=100 "fileName"

// Load a file containing a 1024 byte header followed by a 512 row
// by 384 column array of unsigned bytes into an unsigned byte matrix
// wave and display it as an image
GBLoadWave/S=1024/T={8+64,8+64}/N=temp "fileName"
Rename temp0, image
Redimension/N=(512,384) image
if (<file uses row-major order>)

MatrixTranspose image
endif

Display; AppendImage image

"Row-major order" relates to how a 2D array is stored in memory. In row-major order, all data for a given
row is stored contiguously in memory. In column-major order, all data for a given column is stored
contiguously in memory. Igor uses column-major order but row-major is more common.

See Also
Loading General Binary Files on page II-146.
FBinRead operation for more complex applications such as loading structured data into Igor structures.

gcd
gcd(A, B)
The gcd function calculates the greatest common divisor of A and B, which are both assumed to be integers.

Examples
Compute least common multiple (LCM) of two integers:
Function LCM(a,b)

Variable a, b

return((a*b)/gcd(a,b))
End

V_flag Number of waves loaded or -1 if an error occurs during the file load.

S_fileName Name of the file being loaded.

S_path File system path to the folder containing the file.

S_waveNames Semicolon-separated list of the names of loaded waves.

GetAxis

V-254

GetAxis
GetAxis [/W=winName /Q] axisName
The GetAxis operation determines the axis range and sets the variables V_min and V_max to the minimum
and maximum values of the named axis.

Parameters
axisName is usually "left", "right", "top" or "bottom", though it may also be the name of a free axis
such as "VertCrossing".

Flags

Details
GetAxis sets V_min according to the bottom of vertical axes or left of horizontal axes and V_max according
to the top of vertical axes or right of horizontal axes. It also sets the variable V_flag to 0 if the specified axis
is actually used in the graph, or to 1 if it is not.

See Also
The AxisInfo function.

GetBrowserLine
GetBrowserLine(fullPathStr [, mode])
The GetBrowserLine function returns the zero-based line number of the data folder referenced by
fullPathStr.
Documentation for the GetBrowserLine function is available in the Igor online help files only. In Igor,
execute:
DisplayHelpTopic "GetBrowserLine"

GetBrowserSelection
GetBrowserSelection(index [, mode])
The GetBrowserSelection returns a string containing the full path, quoted if necessary, to a selected Data
Browser item.
Documentation for the GetBrowserSelection function is available in the Igor online help files only. In Igor,
execute:
DisplayHelpTopic "GetBrowserSelection"

GetCamera
GetCamera [flags] [keywords]
The GetCamera operation provides information about a camera window.
Documentation for the GetCamera operation is available in the Igor online help files only. In Igor, execute:
DisplayHelpTopic "GetCamera"

/Q Prevents values of V_flag, V_min, and V_max from being printed in the history area.
The results are still stored in the variables.

/W=winName Retrieves axis info from the named graph window or subwindow. When omitted,
action will affect the active window or subwindow. This must be the first flag
specified when used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

GetDataFolder

V-255

GetDataFolder
GetDataFolder(mode [, dfr])
The GetDataFolder function returns a string containing the name of or full path to the current data folder
or, if dfr is present, the specified data folder.
GetDataFolderDFR is preferred.

Parameters
If mode=0, it returns just the name of the data folder.
If mode=1, GetDataFolder returns a string containing the full path to the data folder.
dfr, if present, specifies the data folder of interest.

Details
GetDataFolder can be used to save and restore the current data folder in a procedure. However
GetDataFolderDFR is preferred for that purpose.

Examples
String savedDataFolder = GetDataFolder(1) // Save
SetDataFolder root:
Variable/G gGlobalRootVar
SetDataFolder savedDataFolder // and restore

See Also
Chapter II-8, Data Folders.
The SetDataFolder operation and GetDataFolderDFR function.

GetDataFolderDFR
GetDataFolderDFR()
The GetDataFolderDFR function returns the data folder reference for the current data folder.

Details
GetDataFolderDFR can be used to save and restore the current data folder in a procedure. It is like
GetDataFolder but returns a data folder reference rather than a string.

Example
DFREF saveDFR = GetDataFolderDFR() // Save
SetDataFolder root:
Variable/G gGlobalRootVar
SetDataFolder saveDFR // and restore

See Also
Chapter II-8, Data Folders and Data Folder References on page IV-72.
The SetDataFolder operation.

GetDefaultFont
GetDefaultFont(winName)
The GetDefaultFont function returns a string containing the name of the default font for the named window
or subwindow.

Parameters
If winName is null (that is, "") returns the default font for the experiment.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.

Details
Only graph windows and the experiment as a whole have default fonts. If winName is the name of a window
other than a graph (e.g., a layout), or if winName is not the name of any window, GetDefaultFont returns
the experiment default font.

GetDefaultFontSize

V-256

In user-defined functions, font names are usually evaluated at compile time. To use the output of
GetDefaultFont in a user-defined function, you will usually need to build a command as a string expression
and execute it with the Execute operation.

Examples
String fontName = GetDefaultFont("Graph0")
String command= "SetDrawEnv fname=\"" + fontName + "\", save"
Execute command

See Also
The GetDefaultFontSize, GetDefaultFontStyle, FontSizeHeight, and FontSizeStringWidth functions.

GetDefaultFontSize
GetDefaultFontSize(graphNameStr, axisNameStr)
The GetDefaultFontSize function returns the default font size of the graph or of the graph’s axis (in points)
in the specified window or subwindow.

Details
If graphNameStr is "" the top graph is examined.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
If axisNameStr is "", the font size of the default font for the graph is returned.
If named axis exists, the default font size for the named axis in the graph is returned.
If named axis does not exist, NaN is returned.

See Also
The GetDefaultFont, GetDefaultFontStyle, FontSizeHeight, and FontSizeStringWidth functions.

GetDefaultFontStyle
GetDefaultFontStyle(graphNameStr, axisNameStr)
The GetDefaultFontStyle function returns the default font style of the graph or of the graph’s axis in the
specified window or subwindow.

Details
If graphNameStr is "" the top graph is examined.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
If axisNameStr is "", the font style of the default font for the graph is returned.
If named axis exists, the default font style for the named axis in the graph is returned.
If named axis does not exist, NaN is returned.
The function result is a bitwise value with each bit identifying one aspect of the font style as follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

See Also
The GetDefaultFont, GetDefaultFontSize, FontSizeHeight, and FontSizeStringWidth functions.

Bit 0: Bold

Bit 1: Italic

Bit 2: Underline

Bit 4: Strikethrough

GetDimLabel

V-257

GetDimLabel
GetDimLabel(waveName, dimNumber, dimIndex)
The GetDimLabel function returns a string containing the label for the given dimension or dimension
element.
Use dimNumber=0 for rows, 1 for columns, 2 for layers and 3 for chunks.
If dimIndex is -1, it returns the label for the entire dimension. If dimIndex is ≥ 0, it returns the dimension label
for that element of the dimension.

See Also
SetDimLabel, FindDimLabel
Dimension Labels on page II-85 for further usage details and examples.

GetEnvironmentVariable
GetEnvironmentVariable(varName)
The GetEnvironmentVariable function returns a string containing the current value of the specified
environment variable for the currently running Igor process. If the variable does not exist, an empty string
("") is returned.
The GetEnvironmentVariable function was added in Igor Pro 7.00.

Parameters

Details
The environment of Igor's process is composed of a set of key=value pairs that are known as environment
variables.
Any child process created by calling ExecuteScriptText inherits the environment variables of Igor's process.
On Windows, environment variable names are case-insensitive. On other platforms, they are case-sensitive.
GetEnvironmentVariable returns an empty string if varName does not exist or if it does exist but its value is
empty. If you need to know whether or not the environment variable itself actually exists, you can use the
following function:
Function EnvironmentVariableExists(varName)

String varName
String varList = GetEnvironmentVariable("=")

// Replace \r with \n because GrepString treats \n only as line separator, not \r.
varList = ReplaceString("\r", varList, "\n")
String regExp = "(?m)^" + varName + "="
return GrepString(varList, regExp)

End

Examples
String currentUser = GetEnvironmentVariable("USER")
String varList = GetEnvironmentVariable("=")

See Also
SetEnvironmentVariable, UnsetEnvironmentVariable

GetErrMessage
GetErrMessage(errorCode [, substitutionOption])
GetErrMessage returns a string containing an explanation of the error associated with errorCode.

varName The name of an environment variable which may or may not exist. It must not be an
empty string and may not contain an equals sign (=).
As a special case, if a single equals sign ("=") is passed for varName, a carriage return
(\r) separated list of all current key=value environment variable pairs is returned.

GetErrMessage

V-258

Details
errorCode is a value sometimes returned in V_Flag, as per the documentation of the an Igor function or
operation; the Execute operation is an example.
For a few error codes, the corresponding error message is designed to be combined with "substituted"
information available only immediately after the error occurs. An example is the "parameter out of range"
error which produces an error message such as "expected number between x and y". To get the correct error
message, you must call GetErrMessage immediately after calling the function or operation that generated
the error and you must pass the appropriate value for substitutionOption as explained below.

Substitution
Igor maintains two environments which store the substitution information: one for macros created using
the Macro, Proc and Window keywords and another for user-defined functions created with the Function
keyword. The optional substitutionOption parameter gives you the ability to choose between those
environments or to not substitute at all. Set substitutionOption to one of:

For most purposes you should pass 3 for substitutionOption when the error was generated in a user-defined
function other than through the Execute operation and pass 2 otherwise.

Examples
// Macro, Execute or command line
Execute/Q/Z "Duplicate/O nonexistentWave, dup"
Print GetErrMessage(V_Flag,2)

Prints:
expected wave name

// Function example
Function Test()

Make/O/N=(2,2) data= 0
FilterIIR/COEF=data/LO=999/Z data // purposely wrong /LO value
Print GetErrMessage(V_Flag)
Print GetErrMessage(V_Flag,1)
Print GetErrMessage(V_Flag,2)
Print GetErrMessage(V_Flag,3)

End

Executing Test() prints:
 expected _Not Available_ between _Not Available_ and _Not Available_
 expected between and
 expected between and
 expected /LO frequency between 0 and 0.5

See Also
 The GetRTErrMessage and GetRTError functions.

substitutionOption GetErrMessage Action

0 Substitution values are filled in with "_Not Available_". This is the default when
substitutionOption is not specified.

1 Substitution values are blank.

2 Substitution is performed based on the presumption that the error was received
while executing a macro or a command using Igor's command line. This includes
a command executed via the Execute operation even from a user-defined function
because such commands are executed as if entered in the command line.

3 Substitution is performed based on the presumption that the error was received
while executing a user-defined function.

GetFileFolderInfo

V-259

GetFileFolderInfo
GetFileFolderInfo [flags][fileOrFolderNameStr]
The GetFileFolderInfo operation returns information about a file or folder.

Parameters
fileOrFolderNameStr specifies the file (or folder) for which information is returned. It is optional if /P=pathName
and /D are specified, in which case information about the directory associated with pathName is returned.
If you use a full or partial path for fileOrFolderNameStr, see Path Separators on page III-401 for details on
forming the path.
Folder paths should not end with single Path Separators. See the MoveFolder Details section.
If Igor can not determine the location of the file from fileOrFolderNameStr and pathName, it displays a dialog
allowing you to specify the file to be examined. Use /D to select a folder.

Flags

Variables
GetFileFolderInfo returns information in the following variables:

/D Uses the Select Folder dialog rather than Open File dialog when pathName and
fileOrFolderNameStr do not specify an existing file or folder.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/Q No information printed to the history area.

/Z[=z]

V_flag 0: File or folder was found.
-1: User cancelled the Open File dialog.
Other: An error occurred, such as the specified file or folder does not exist.

S_path File system path of the selected file.

V_isFile 1: fileOrFolderNameStr is a file.

V_isFolder 1: fileOrFolderNameStr is a folder.

V_isInvisible 1: File is invisible (Macintosh) or Hidden (Windows).

V_isReadOnly Set if the file is locked (Macintosh) or is read-only (Windows).

On Macintosh, V_isReadOnly is either 0 (unlocked) or 1 (locked). To set this
manually, display the Finder Info window for the file and then check or uncheck
the “Locked” checkbox.

On Windows, V_isReadOnly is either 0 (unlocked) or 1 (locked). To set this
manually, display the Properties window for the file and then check or uncheck
the “Read-only” checkbox.

On both Macintosh and Windows, V_isReadOnly tells you only about the
property set in the Finder or Windows desktop. It does not tell you if you have
write permission for the file or for the folder containing the file. If your goal is to
determine if you can write to the file, the only way to do that is to try to write to
it and catch any resulting error.

Prevents procedure execution from aborting if GetFileFolderInfo tries to get
information about a file or folder that does not exist. Use /Z if you want to handle
this case in your procedures rather than having execution abort.
/Z=0: Same as no /Z.
/Z=1: Used for getting information for a file or folder only if it exists. /Z

alone has the same effect as /Z=1.
/Z=2: Used for getting information for a file or folder if it exists and

displaying a dialog if it does not exist.

GetFileFolderInfo

V-260

If fileOrFolderNameStr refers to a file (not a folder), GetFileFolderInfo returns additional information in the
following variables:

Details
You can change some of the file information by using SetFileFolderInfo.

Examples
Print the modification date of a file:
GetFileFolderInfo/Z "Macintosh HD:folder:afile.txt"
if(V_Flag == 0 && V_isFile) // file exists

Print Secs2Date(V_modificationDate,0), Secs2Time(V_modificationDate,0)
endif

Determine if a folder exists (easier than creating a path with NewPath and then using PathInfo):
GetFileFolderInfo/Z "Macintosh HD:folder:subfolder"
if(V_Flag && V_isFolder)

Print "Folder Exists!"
endif

Find the source for a shortcut or alias:
GetFileFolderInfo/Z "Macintosh HD:fileThatIsAlias"
if(V_Flag && V_isAliasShortcut)

V_creationDate Number of seconds since midnight on January 1, 1904 when the file or folder was
first created. Use Secs2Date to get a text format date.

V_modificationDat
e

Number of seconds since midnight on January 1, 1904 when the file or folder was
last modified. Use Secs2Date to get a text format date.

V_isAliasShortcut

1: File is an alias (Macintosh) or a shortcut (Windows) and S_aliasPath is also set.

S_aliasPath Full path to the file or folder that is the source for an alias (Macintosh) or a shortcut
(Windows).
When the source is a folder, S_aliasPath ends with a “:” character.

V_isStationery 1: The stationery bit is set (Macintosh) or (Windows) the file type is one of the
stationery file types (.pxt, .uxt, .ift).

S_fileType Four-character file type code, such as 'TEXT' or 'IGsU' (packed experiment). On
Windows, these codes are fabricated by translating from the equivalent file name
extensions, such as .txt and .pxp.

S_creator Four-character creator code, such as 'IGR0' (Igor Pro creator code).
On Windows, S_creator is set to 'IGR0' if the file name extensions is one of those
registered to Igor Pro, such as .pxp or .bwav (but not .txt). For other registered
extensions, S_creator is set to the full file path of the registered application.
Otherwise it is set to "".

V_logEOF Number of bytes in the file data fork. For other forks, use Open/F and FStatus.

V_version Version number of the file. On Macintosh, this is the value in the vers(1) resource.
On Windows, a file version such as 3.10.2.1 is returned as 4.021: use S_fileVersion
to avoid the problem of the second digit overflowing into the first digit.
“0”: File version can’t be determined, or the file can’t be examined because it is
already open.

S_fileVersion The file version as a string.
On Macintosh, this is just a string representation of V_Version. On Windows, a
file version such as 3.10.2.1 is returned as “3.10.2.1”.
“0”: (Macintosh) file version can’t be determined.
“0.0.0.0”: (Windows) file version can’t be determined.

GetFormula

V-261

Print S_aliasPath
endif

See Also
The SetFileFolderInfo, PathInfo, and FStatus operations. The IndexedFile, Secs2Date, and ParseFilePath
functions.

GetFormula
GetFormula(objName)
The GetFormula function returns a string containing the named object’s dependency formula. The named
object must be a wave, numeric variable or string variable.

Details
Normally an object will have an empty dependency formula and GetFormula will return an empty string
(""). If you assign a expression to an object using the := operator or the SetFormula operation, the text on
the right side of the := or the parameter to SetFormula is the object’s dependency formula and this is what
GetFormula will return.

Examples
Variable/G dependsOnIt
Make/O wave0 := dependsOnIt*2 //wave0 changes when dependsOnItdoes
Print GetFormula(wave0)

Prints the following in the history area:
dependsOnIt*2

See Also
See Dependency Formulas on page IV-214, and the SetFormula operation.

GetGizmo
GetGizmo [flags] keyword [=value]
The GetGizmo operation provides information about a Gizmo display window.
Documentation for the GetGizmo operation is available in the Igor online help files only. In Igor, execute:
DisplayHelpTopic "GetGizmo"

GetIndependentModuleName
GetIndependentModuleName()
The GetIndependentModuleName function returns the name of the currently running Independent
Module. If no independent module is running, it returns “ProcGlobal”.

See Also
 Independent Modules on page IV-224.
IndependentModuleList.

GetIndexedObjName
GetIndexedObjName(sourceFolderStr, objectType, index)
The GetIndexedObjName function returns a string containing the name of the indexth object of the
specified type in the data folder specified by the string expression.
GetIndexedObjNameDFR is preferred.

Parameters
sourceFolderStr can be either ":" or "" to specify the current data folder. You can also use a full or partial
data folder path. index starts from zero. If no such object exists a zero length string ("") is returned.
objectType is one of the following values:

Examples
Function PrintAllWaveNames()

String objName

GetIndexedObjNameDFR

V-262

Variable index = 0
do

objName = GetIndexedObjName(":", 1, index)
if (strlen(objName) == 0)

break
endif
Print objName
index += 1

while(1)
End

See Also
The CountObjects function, and Chapter II-8, Data Folders.

GetIndexedObjNameDFR
GetIndexedObjNameDFR(dfr, objectType, index)
The GetIndexedObjNameDFR function returns a string containing the name of the indexth object of the
specified type in the data folder referenced by dfr.
GetIndexedObjNameDFR is the same as GetIndexedObjName except the first parameter, dfr, is a data
folder reference instead of a string containing a path.

Parameters
index starts from zero. If no such object exists a zero length string ("") is returned.
objectType is one of the following values:

Examples
Function PrintAllWaveNames()

String objName
Variable index = 0
DFREF dfr = GetDataFolderDFR() // Reference to current data folder
do

objName = GetIndexedObjNameDFR(dfr, 1, index)
if (strlen(objName) == 0)

break
endif
Print objName
index += 1

while(1)
End

See Also
Chapter II-8, Data Folders and Data Folder References on page IV-72.
The CountObjectsDFR function.

objectType What You Get

1 Waves

2 Numeric variables

3 String variables

4 Data folders

objectType What You Get

1 Waves

2 Numeric variables

3 String variables

4 Data folders

GetKeyState

V-263

GetKeyState
GetKeyState(flags)
The GetKeyState function returns a bitwise numeric value that indicates the state of certain keyboard keys.
To detect keyboard events directed toward a window that you have created, such as a panel window, use
the window hook function instead of GetKeyState. See Window Hook Functions on page IV-276 for details.
GetKeyState is normally called from a procedure that is invoked directly through a user-defined button or
user-defined menu item. The procedure tests the state of one or more modifier keys and adjusts its behavior
accordingly.
Another use for GetKeyState is to determine if Escape is pressed. This can be used to detect that the user
wants to stop a procedure.
GetKeyState tests the keyboard at the time it is called. It does not tell you if keys were pressed between calls
to the function. Consequently, when a procedure uses the escape key to break a loop, the user must press
Escape until the running procedure gets around to calling the function.

Parameters
flags is a bitwise parameter interpreted as follows:

All other bits are reserved and must be zero.

Details
When set, the return value is interpreted bitwise as follows:

To test if a particular key is pressed, do a bitwise AND of the return value with the mask value 1, 2, 4, 8, 16,
32, 64, 128, 256 and 512 for bits 0 through 9 respectively. To test if a particular key and only that key is
pressed compare the return value with the mask value.
On Macintosh, it is currently possible to define a keyboard shortcut for a user-defined menu item and then,
in the procedure invoked by the keyboard shortcut, to use GetKeyState to test for modifier keys. This is not
possible on Windows because the keyboard shortcut will not be activated if a modifier key not specified in
the keyboard shortcut is pressed. It is also possible that this ability on Macintosh will be compromised by
future operating system changes. On both operating systems, however, you can test for a modifier key
when the user chooses a user-defined menu item or clicks a user-defined button using the mouse.

Examples
Function ShiftKeyExample()

Variable keys = GetKeyState(0)

if (keys == 0)
Print "No modifier keys are pressed."

endif

Bit 0: If set, GetKeyState reports keys keys even if Igor is not
the active application. If cleared, GetKeyState reports
keys only if Igor is the active application.

Bit 0: Command (Macintosh) or Ctrl (Windows) pressed.
Bit 1: Option (Macintosh) or Alt (Windows) pressed.
Bit 2: Shift pressed.
Bit 3: Caps Lock pressed.
Bit 4: Control pressed (Macintosh only).
Bit 5: Escape pressed.
Bit 6: Left arrow key pressed. Supported in Igor Pro 7.00 or later.
Bit 7: Right arrow key pressed. Supported in Igor Pro 7.00 or later.
Bit 8: Up arrow key pressed. Supported in Igor Pro 7.00 or later.
Bit 9: Down arrow key pressed. Supported in Igor Pro 7.00 or later.

GetLastUserMenuInfo

V-264

if (keys & 4)
if (keys == 4)

Print "The Shift key and only the Shift key is pressed."
else

Print "The Shift key is pressed."
endif

endif
End

Function EscapeKeyExample()
Variable keys

do
keys = GetKeyState(0)
if ((keys & 32) != 0) // User is pressing escape?

break
endif

while(1)
End

See Also
Keyboard Shortcuts on page IV-127. Setting Bit Parameters on page IV-12 for details about bit settings.

GetLastUserMenuInfo
GetLastUserMenuInfo
The GetLastUserMenuInfo operation sets variables in the local scope to indicate the value of the last
selected user-defined menu item.

Details
GetLastUserMenuInfo creates and sets these special variables:

V_flag The kind of menu that was selected:

 See Specialized Menu Item Definitions on page IV-123 for details about these special user-
defined menus.

V_flag Menu Kind

0 Normal text menu item, including Optional Menu Items (see page
IV-122) and Multiple Menu Items (see page IV-122).

3 "*FONT*"

6 "*LINESTYLEPOP*"

7 "*PATTERNPOP*"

8 "*MARKERPOP*"

9 "*CHARACTER*"

10 "*COLORPOP*"

13 "*COLORTABLEPOP*"

GetLastUserMenuInfo

V-265

Examples

A Multiple Menu Items menu definition:

V_value

S_value

V_Red, V_Green, V_Blue,V_Alpha

If a user-defined color menu ("*COLORPOP*" menu item) was chosen then these values hold
the red, green, and blue values of the selected color. The values range from 0 to 65535.
Will be 0 if the last user-defined menu selection was not a color menu selection.

S_graphName, S_traceName

These are set only when any user-defined menu is chosen from a graph’s trace contextual
menu. (Menu “TracePopup” or Menu “AllTracesPopup” definitions).
Initially "" until a user-defined menu selection was made from one of these contextual menus,
these are not reset for each user-defined menu selection.
S_graphName is the full host-child specification for the graph. If the graph is embedded into
a host window, S_graphName might be something like “Panel0#G0”. See Subwindow
Syntax on page III-87.
S_traceName is name of the trace that was selected by the trace contextual menu, or "" if the
AllTracesPopup menu was chosen. See Subwindow Syntax on page III-87.

Which menu item was selected. The value also depends on the kind of menu the item was
selected from:

V_flag V_value meaning

0 Text menu item number (the first menu item is number 1).

3 Font menu item number (use S_Value, instead).

6 Line style number (0 is solid line)

7 Pattern number (1 is the first selection, a SW-NE light diagonal).

8 Marker number (1 is the first selection, the X marker).

9 Character as an integer, = char2num(S_Value). Use S_Value instead.

10 Color menu item (use V_Red, V_Green, V_Blue, and V_Alpha instead).

13 Color table list menu item (use S_Value instead).

The menu item text, depending on the kind of menu it was selected from:

In the case of Specialized Menu Item Definitions (see page IV-123), S_value will be the title
of the menu or submenu, etc.

V_flag S_value meaning

0 Text menu item text.

3 Font name or “default”.

6 Name of the line style menu or submenu.

7 Name of the pattern menu or submenu.

8 Name of the marker menu or submenu.

9 Character as string.

10 Name of the color menu or submenu.

13 Color table name.

GetMarquee

V-266

Menu "Wave List", dynamic
"Menu Item 1", <some command>
"Menu Item 2", <some command>
WaveList("*",";",""), DoSomethingWithWave()

End

If the user selects one of the (many) menu items created by the “Wave List” menu item definition, the
DoSomethingWithWave user function can call GetLastUserMenuInfo to determine which wave was selected:
Function DoSomethingWithWave()

GetLastUserMenuInfo
WAVE/Z selectedWave = $S_value
…use selectedWave for something…

End

A trivial user-defined color menu definition:
Menu "Color"

"*COLORPOP*", DoSomethingWithColor()
End

Function DoSomethingWithColor()
GetLastUserMenuInfo
... do something with V_Red, V_Green, V_Blue, V_Alpha ...

End

See Specialized Menu Item Definitions on page IV-123 for another color menu example.
A Trace contextual menu Items menu definition:
Menu "TracePopup", dynamic // menu when a trace is right-clicked

"-" // separator divides this from built-in menu items
ExportTraceName(), ExportSelectedTrace()

End

Function/S ExportTraceName()
GetLastUserMenuInfo // only S_graphName, S_traceName are set.
Return "Export "+S_traceName

End

Function ExportSelectedTrace()
GetLastUserMenuInfo
…do something with S_graphName, S_traceName…

End

See Also
Chapter IV-5, User-Defined Menus and especially the sections Optional Menu Items on page IV-122,
Multiple Menu Items on page IV-122, and Specialized Menu Item Definitions on page IV-123.
Trace Names on page II-216, Programming With Trace Names on page IV-81.

GetMarquee
GetMarquee [/K/W=winName/Z] [axisName [, axisName]]
The GetMarquee operation provides a way for you to use the marquee as an input mechanism in graphs
and page layout windows. It puts information about the marquee into variables.

Parameters
If you specify axisName (allowed only for graphs) the coordinates are in axis units. If you specify an axis that
does not exist, Igor generates an error.
If you specify only one axis then Igor sets only the variables appropriate to that axis. For example, if you execute
“GetMarquee left” then Igor sets the V_bottom and V_top variables but does not set V_left and V_right.

Flags

/K Kills the marquee. Usually you will want to kill the marquee when you call
GetMarquee, so you should use the /K flag. This is modeled after what happens when
you create a marquee in a graph and then choose Expand from the Marquee menu.
There may be some situations in which you want the marquee to persist. Igor also
automatically kills the marquee anytime the window containing the marquee is
deactivated, including when a dialog is summoned.

GetMarquee

V-267

Details
GetMarquee is intended to be used in procedures invoked through user menu items added to the graph
Marquee menu and the layout Marquee menu.
GetMarquee sets the following variables and strings:

When called from the command line, GetMarquee sets global variables and strings in the current data
folder. When called from a procedure, it sets local variables and strings.
In addition, creating, adjusting, or removing a marquee may set additional marquee global variables (see
the Marquee Globals section, below).
The target window must be a layout or a graph. Use /Z to avoid generating a runtime-error (V_flag will be
0 if the target window was not a layout or graph).
If the target is a layout then Igor sets the variables in units of points relative to the top/left corner of the paper.
If the target is a graph then Igor sets V_left and V_right based on the specified horizontal axis. If no
horizontal axis was specified, V_left and V_right are set relative to the left edge of the base window in
points.
If the target is a graph then Igor sets V_bottom and V_top based on the specified vertical axis. If no vertical
axis was specified, V_top and V_bottom are set relative to the top edge of the base window in points.
If there is no marquee when you invoke GetMarquee then Igor sets V_left, V_top, V_right, V_bottom based
on the last time the marquee was active.

GetMarquee Example
Menu "GraphMarquee"

"Print Marquee Coordinates", PrintMarqueeCoords()
End

Function PrintMarqueeCoords()
GetMarquee left, bottom
if (V_flag == 0)

Print "There is no marquee"
else

printf "marquee left in bottom axis terms: %g\r", V_left
printf "marquee right in bottom axis terms: %g\r", V_right
printf "marquee top in left axis terms: %g\r", V_top
printf "marquee bottom in left axis terms: %g\r", V_bottom

endif
End

You can run this procedure by putting it into the procedure window, making a marquee in a graph, clicking
in the marquee and choosing Print Marquee Coordinates:

/W=winName Specifies the named window or subwindow. When omitted, action will affect the
active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/Z No runtime error generated if the target window isn’t a graph or layout, but V_flag
will be zero. /Z does not prevent other kinds of problems from generating a runtime
error.

V_flag 0: There was no marquee when GetMarquee was invoked.
1: There was a marquee when GetMarquee was invoked.

V_left Marquee left coordinate.

V_right Marquee right coordinate.

V_top Marquee top coordinate.

V_bottom Marquee bottom coordinate.

S_marqueeWin Name of window containing the marquee, or "" if no marquee. If subwindow,
subwindow syntax will be used.

GetMarquee

V-268

The procedure calls GetMarquee to set the local marquee variables and then prints their values in the
history area:
PrintMarqueeCoords()

marquee left in bottom axis terms: 32.1149
marquee right in bottom axis terms: 64.7165
marquee top in left axis terms: 0.724075
marquee bottom in left axis terms: -0.131061

Marquee Globals
You can cause Igor to update global marquee variables whenever the user adjusts the marquee (without the
need for you to invoke GetMarquee) by creating a global variable named V_marquee in the root data folder:
Variable/G root:V_marquee = 1 //Creates V_marquee and sets bit 0 only

When the user adjusts the marquee Igor checks to see if root:V_marquee exists and which bits are set, and
updates (and creates if necessary) these globals:

Unlike the local variables, for graphs these global variables are never in points. Root:V_left and V_right will
be axis coordinates based on the first bottom axis created for the graph (if none, then for the first top axis).
The axis creation order is the same as is returned by AxisList. Similarly, root:V_top and root:V_bottom will
be axis coordinates based on the first left axis or the first right axis.
Igor examines the global root:V_marquee for bitwise flags to decide which globals to update, and when:

Marquee Globals Example
By creating the global variable root:V_marquee this way:
Variable/G root:V_marquee = 1 + 4 + 0x8000

whenever the user creates, adjusts, or removes a marquee in any graph or layout Igor will create and update
the global root:V_left, etc. coordinate variables and set the global string root:S_marqueeWin to the name of
the window which has the marquee in it. When the marquee is removed, root:S_marqueeWin will be set to "".
This mechanism does neat things by making a ValDisplay or SetVariable control depend on any of the
globals. See the Marquee Demo experiment in the Examples:Feature Demos folder for an example.

Variable/G root:V_left Marquee left coordinate.

Variable/G root:V_right Marquee right coordinate.

Variable/G root:V_top Marquee top coordinate.

Variable/G root:V_bottom Marquee bottom coordinate.

String/G root:S_marqueeWin Name of window that contains marquee, or "" if no marquee.
Set only if root:V_Marquee has bit 15 (0x8000) set.

root:V_marquee Bit Meaning Bit Number Bit Value

Update global variables for graph marquees 0 1

Update global variables for layout marquees 2 4

Update S_marqueeWin when updating global variables 15 0x8000

GetMouse

V-269

You can also cause a function to run whenever the user creates, adjusts, or removes a marquee by setting
up a dependency formula using SetFormula to bind one of the marquee globals to one of the function’s
input arguments:
Variable/G root:dependencyTarget

SetFormula root:dependencyTarget, "MyMarqueeFunction(root:S_marqueeWin)"

Function MyMarqueeFunction(marqueeWindow)
String marqueeWindow // this will be root:S_marqueeWin

if(strlen(marqueeWindow))
NVAR V_left= root:V_left, V_right= root:V_right
NVAR V_top= root:V_top, V_bottom= root:V_bottom
Printf marqueeWindow + " has a marquee at: "
Printf "%d, %d, %d, %d\r", V_left, V_right, V_top, V_bottom

else
Print "The marquee has disappeared."

endif

return 0 // return value doesn't really matter
End

See Also
The SetMarquee and SetFormula operations. Setting Bit Parameters on page IV-12 for information about
bit settings.

GetMouse
GetMouse [/W=winName]
The GetMouse operation returns information about the position of the input mouse, and the state of the
mouse buttons.
GetMouse is useful in situations such as background tasks where the mouse position and state aren't
available as they are in control procedures and window hook functions.

Flags

Details
GetMouse returns the mouse position in local coordinates relative to the specified window unless /W is
omitted in which case the returned coordinates are global.
On Windows, global coordinates are actually relative to the frame window. See GetWindow wsizeDC
kwFrameInner.
Information is returned via the following string and numeric variables:

/W=winName Returns the mouse position relative to the named window or subwindow. When
identifying a subwindow with winName, see Subwindow Syntax on page III-87.

/W=kwTopWin Returns the mouse position relative to the currently frontmost non-floating window.

/W=kwCmdHist Returns the mouse position relative to the command window.

/W=Procedure Returns the mouse position relative to the main Procedure window.

V_left Horizontal mouse position, in pixels.

V_top Vertical mouse position, in pixels.

V_flag Mouse button state. V_flag is a bitwise value with each bit reporting the mouse
button states:
Bit 0: 1 if the primary mouse button (usually the left) is down, 0 if it is up.
Bit 1: 1 if the secondary mouse button (usually the right) is down, 0 if it is up.
On Macintosh, the secondary mouse button can be invoked by pressing the control
key while clicking the primary (often the only) mouse button, but GetMouse does not
report this with bit 1 set. Use GetKeyState's bit 4 to test if the control key is pressed.
See Setting Bit Parameters on page IV-12 for details about bit settings.

GetRTError

V-270

See Also
GetWindow, GetKeyState, SetWindow, WMWinHookStruct, WMButtonAction
Background Tasks on page IV-298, Subwindow Syntax on page III-87

GetRTError
GetRTError(flag)
The GetRTError function returns information about the error state of Igor's user-defined function runtime
execution environment.
If flag is 0, GetRTError returns an error code if an error has occurred or 0 if no error has occurred.
If flag is 1, GetRTError returns an error code if an error has occurred or 0 if no error has occurred and it clears
the error state of Igor’s runtime execution environment. Use this if you want to detect and handle runtime
errors yourself.
If flag is 2, GetRTError returns the state of Igor's internal abort flag but does not clear it.
For flag=0 and flag=1, you can call GetErrMessage to obtain the error message associated with the returned
error code, if any.
In Igor Pro 7.00 or later, using GetRTError(1) on the same line as a command that causes an error overrides
the debugger “debug on error” setting and prevents the debugger from activating for that error.

Example
// This illustrates how to detect and handle a runtime error
// rather than allowing it to cause Igor to abort execution.
Function Demo()

<Call an Igor operation or a user-defined function>
Variable err = GetRTError(0)
if (err != 0)

String message = GetErrMessage(err)
Printf "Error in Demo: %s\r", message
err = GetRTError(1) // Clear error state
Print "Continuing execution"

endif
<Call an Igor operation or a user-defined function>

End

See also
 The GetErrMessage and GetRTErrMessage functions.

GetRTErrMessage
GetRTErrMessage()
In a user function, GetRTErrMessage returns a string containing the name of the operation that caused the error,
a semicolon, and an error message explaining the cause of the error. This is the same information that appears
in the alert dialog displayed. If no error has occurred, the string will be of zero length. GetRTErrMessage must
be called before the error is cleared by calling GetRTError with a nonzero argument.

See also
 The GetRTError and GetErrMessage functions.

GetRTLocation
GetRTLocation(sleepMS)
GetRTLocation is used for profiling Igor procedures.
You will typically not call GetRTLocation directly but instead will use it through FunctionProfiling.ipf
which you can access using this include statement:
#include <FunctionProfiling>

S_name Name of the window or subwindow which the position is relative to, or "" if not a
nameable window or if /W was omitted. Most useful with /W=kwTopWin. The result
can be kwCmdHist or Procedure, or the name of a target window.

GetRTLocInfo

V-271

GetRTLocation is called from an Igor preemptive thread to monitor the main thread. It returns a code that
identifies the current location in the procedure files corresponding to the procedure line that is executing in
the main thread.

Parameters
sleepMs is the number of milliseconds to sleep the preemptive thread after fetching a value.

Details
The result from GetRTLocation is passed to GetRTLocInfo to determine the location in the procedures. This
samples the main thread only and the location becomes meaningless after any procedure editing.

See Also
GetRTLocInfo

GetRTLocInfo
GetRTLocInfo(code)
GetRTLocInfo is used for profiling Igor procedures.
You will typically not call GetRTLocInfo directly but instead will use it through FunctionProfiling.ipf which
you can access using this include statement:
#include <FunctionProfiling>

GetRTLocation is called from an Igor preemptive thread to monitor the main thread. It returns a key/value
string containing information about the procedure location associated with code or "" if the location could
not be found.

Parameters
code is the result from a very recent call to GetRTLocation.

Details
The format of the result string is:
"PROCNAME:name;LINE:line;FUNCNAME:name;"

As of Igor Pro 7.03, if the code is in an independent module other than ProcGlobal then this appears at the
beginning of the result string:
IMNAME:inName;

The line number is padded with zeros to facilitate sorting.

See Also
GetRTLocation

GetRTStackInfo
GetRTStackInfo(selector)
The GetRTStackInfo function returns information about “runtime stack” (the chain of macros and functions
that are executing).

Details
If selector is 0, GetRTStackInfo returns a semicolon-separated list of the macros and procedures that are
executing. This list is the same you would see in the debugger’s stack list.
The currently executing macro or function is the last item in the list, the macro or function that started
execution is the first item in the list.
If selector is 1, it returns the name of the currently executing function or macro.
If selector is 2, it returns the name of the calling function or macro.
If selector is 3, GetRTStackInfo returns a semicolon-separated list of routine names, procedure file names
and line numbers. This is intended for advanced debugging by advanced programmers only.
For example, if RoutineA in procedure file ProcA.ipf calls RoutineB in procedure file ProcB.ipf, and
RoutineB calls GetRTStackInfo(3), it will return:
RoutineA,ProcA.ipf,7;RoutineB,ProcB.ipf,12;

GetScrapText

V-272

The numbers 7 and 12 would be the actual numbers of the lines that were executing in each routine. Line
numbers are zero-based.
GetRTStackInfo does not work correctly with string macros executed via the Execute operation.
In future versions of Igor, selector may request other kinds of information.

Examples
Function Called()

Print "Called by " + GetRTStackInfo(2) + "()"
Print "Routines in calling chain: " + GetRTStackInfo(0)

End

Function Calling()
Called()

End

Macro StartItUp()
Calling()

End

// Executing StartItUp() prints:
 Called by Calling()
 Routines in calling chain: StartItUp;Calling;Called;

See Also
StringFromList, ItemsInList, and GetRTError functions. The Stack and Variables Lists on page IV-202.

GetScrapText
GetScrapText()
The GetScrapText function returns a string containing any plain text on the Clipboard (aka “scrap”). This
is the text that would be pasted into a text document if you used Paste in the Edit menu.

See Also
The PutScrapText and LoadPICT operations.

GetSelection
GetSelection winType, winName, bitflags
The GetSelection operation returns information about the current selection in the specified window.

Parameters
winType is one of the following keywords:
graph, panel, table, layout, notebook, procedure

winName is the name of a window of the specified type.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
If winType is procedure then winName is actually a procedure window title inside a $"" wrapper, such as:
GetSelection procedure $"DemoLoader.ipf", 3

bitflags is a bitwise parameter that is used in different ways for different window types, as described in Details.
You should use 0 for undefined bits. Setting Bit Parameters on page IV-12 for further details about bit settings.

Details
For all window types, GetSelection sets V_flag:

Here is a description of what GetSelection does for each window type:

Examples
In a new experiment, make a table named “Table0” with some columns, and select some combination of
rows and columns:

V_flag 0: No selection when GetSelection was invoked.

1: There was a selection when GetSelection was invoked.

GetUserData

V-273

Make wave0 = p
Make wave1 = p + 1
Edit wave0, wave1
ModifyTable selection = (3,0,8,1,3,0)

Now execute these commands in a procedure or in the command line:
GetSelection table, Table0, 3
Print V_flag, V_startRow, V_startCol, V_endRow, V_endCol
Print S_selection

This will print the following in the history area:
1 3 0 8 1
wave0.d;wave1.d;

GetUserData
GetUserData(winName, objID, userdataName)
The GetUserData function returns a string containing the user data for a window or subwindow. The return
string will be empty if no user data exists.

Parameters
winName may specify a window or subwindow name. Use "" for the top window.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
objID is a string specifying the name of a control or graph trace. Use "" for a window or subwindow.
userdataName is the name of the user data or "" for the default unnamed user data.

See Also
The ControlInfo, GetWindow, and SetWindow operations.

GetWavesDataFolder
GetWavesDataFolder(waveName, kind)
The GetWavesDataFolder function returns a string containing the name of a data folder containing the
wave named by waveName. Variations on the theme are selected by kind.
The most common use for this is in a procedure, when you want to create a wave or a global variable in the
data folder containing a wave passed as a parameter.
GetWavesDataFolderDFR is preferred.

winType bitFlags Action

graph Does nothing.

panel Does nothing.

table 1 Sets V_startRow, V_startCol, V_endRow, and V_endCol based on the selected
cells in the table. The top/left cell, not including the Point column, is (0, 0).

2 Sets S_selection to a semicolon-separated list of column names.

4 Sets S_dataFolder to a semicolon-separated list of data folders, one for each column.

layout 2 Sets S_selection to a semicolon separated list of selected objects in the layout
layer (not any drawing layers). S_selection will be "" if no objects are selected.

notebook 1 Sets V_startParagraph, V_startPos, V_endParagraph, and V_endPos based on
the selected text in the notebook.

2 Sets S_selection to the selected text.

procedure 1 Sets V_startParagraph, V_startPos, V_endParagraph, V_endPos based on the
selected text in the procedure window.

2 Sets S_selection to the selected text.

GetWavesDataFolderDFR

V-274

Details

Kinds 2 and 4 are especially useful in creating command strings to be passed to Execute.

Examples
Function DuplicateWaveInDataFolder(w)

Wave w
DFREF dfSav = GetDataFolderDFR()
SetDataFolder GetWavesDataFolder(w,1)
Duplicate/O w, $(NameOfWave(w) + "_2")
SetDataFolder dfSav

End

See Also
Chapter II-8, Data Folders.

GetWavesDataFolderDFR
GetWavesDataFolderDFR(waveName)
The GetWavesDataFolderDFR function returns a data folder reference for the data folder containing the
specified wave.
GetWavesDataFolderDFR is the same as GetWavesDataFolder except that it returns a data folder reference
instead of a string containing a path.

See Also
Chapter II-8, Data Folders and Data Folder References on page IV-72.

GetWindow
GetWindow [/Z] winName, keyword
The GetWindow operation provides information about the named window or subwindow. Information is
returned in variables, strings, and waves.

Parameters
winName can be the name of graph, table, panel, page layout, notebook, or any subwindow. It can also be
the title of a procedure window or one of these four special keywords:

When identifying a subwindow with winName, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.

kind GetWavesDataFolder Returns

0 Only the name of the data folder containing waveName.

1 Full path of data folder containing waveName, without wave name.

2 Full path of data folder containing waveName, including possibly quoted wave name.

3 Partial path from current data folder to the data folder containing waveName.

4 Partial path including possibly quoted wave name.

kwTopWin Specifies the topmost graph, table, panel, page layout, or notebook window.

kwCmdHist Specifies the command history area.

kwFrameOuter Specifies the “frame” or “application” window that Igor Pro has only under
Windows. This is the window that contains Igor’s menus and status bar.

kwFrameInner Specifies the inside of the same “frame” window under Windows. This is the window
that all other Igor windows are inside.

GetWindow

V-275

Only one of the following keywords may follow winName. The keyword chosen determines the information
stored in the output variables:

active Sets V_Value to 1 if the window is active or to 0 otherwise. Active usually means
the window is the frontmost window.

activeSW Stores the window “path” of currently active subwindow in S_Value. See
Subwindow Syntax on page III-87 for details on the window hierarchy.

backRGB Sets V_Red, V_Green, V_Blue, and V_Alpha to the background color of the
window. The values range from 0 to 65535. The background color is set with
ModifyGraph (colors) wbRGB, ModifyLayout bgRGB, and Notebook backRGB.
Also returns the background color of procedure windows and the
command/history windows. Other windows set these values to 65535 (opaque
white).
Added in Igor Pro 7.00.

exterior Sets V_value to 1 if the window is an exterior panel window or to 0 otherwise.
Useful for window hook functions that must work for both regular windows and
exterior panel windows, since exterior panels use their own hook function.

bgRGB Another name for backRGB.
Added in Igor Pro 7.00.

cbRGB Sets V_Red, V_Green, V_Blue, and V_Alpha to the control panel area background
color of the window in graphs or panel windows, as set by ModifyGraph (colors)
cbRGB and ModifyPanel cbRGB. Other windows set these values to 65535
(opaque white).
Added in Igor Pro 7.00.

drawLayer If the specified window is a graph, layout, or panel window then the window's
current drawing layer is returned in S_value. S_value is set to "" for other
windows. See Drawing Layers on page III-68.
Added in Igor Pro 7.00.

expand For graph windows, sets V_Value to the expand value set by ModifyGraph
(general) expand=value, a value normally 0 or 1, where 1.5 means 150%.
For notebook, procedure and command windows, sets V_Value to the
magnification, normally 100. See the Notebook magnification=m documentation
for details.
For layout windows, sets V_Value to the ModifyLayout mag=m value, usually
0.5 (50%).
Table windows set V_Value to 0, panels and other unsupported windows to
NaN.
Added in Igor Pro 7.00.

file Works for notebook and procedure windows only.
Returns via S_value a semicolon-separated list containing:
- the file name
- the Mac path to the folder containing the file with a colon at the end
- the name of a symbolic path pointing to that folder, if any
If the window was never saved to a standalone file then "" is returned in S_value.
If the specified window is not a notebook or procedure window then "" is
returned in S_value.

GetWindow

V-276

gbRGB Sets V_Red, V_Green, V_Blue, and V_Alpha to the plot area background color of
the window in graph windows, as set by ModifyGraph (colors) gbRGB. Other
windows set these values to 65535 (opaque white).
Use wbRGB to get the color of window background (the area outside of the axes).
Added in Igor Pro 7.00.

gsize Reads graph outer dimensions into V_left, V_right, V_top, and V_bottom in local
coordinates. This includes axes but not the tool palette, control bar, or info panel.
Dimensions are in points.

gsizeDC Same as gsize but dimensions are in device coordinates (pixels).

hide Sets V_Value bit 0 if the window or subwindow is hidden.
Sets bit 1 if the host window is minimized.
Sets bit 2 if the subwindow is hidden only because an ancestor window or
subwindow is hidden. Added in Igor Pro 7.00.
On Macintosh, if you execute MoveWindow 0,0,0,0 to minimize a window to
the dock, and then you immediately call GetWindow hide, bit 1 may not be
correctly set because of the delay caused by the animation of the window sliding
into the dock.

hook Copies name of window hook function to S_value. See Unnamed Window Hook
Functions on page IV-286.

hook(hName) For the given named hook hName, copies name of window hook function to
S_value. See Named Window Hook Functions on page IV-277.

logicalpapersize Returns logical paper size of the page setup associated with the named window
into V_left, V_right, V_top, and V_bottom. Dimensions are in points.
If the Page Setup dialog uses 100% scaling, these are also the physical dimensions
of the page. V_left and V_top are 0 and correspond to the left top corner of the
physical page.
On the Macintosh, using a Scale of 50% multiplies all of these dimensions by 2.

logicalprintablesize Returns logical printable size of the page setup associated with the named
window into V_left, V_right, V_top, and V_bottom. Dimensions are in points.
If the Page Setup dialog uses 100% scaling, these are also the physical dimensions
of the page minus the margins. V_left and V_top are the number of points from
the left top corner of the physical page to the left top corner of the printable area
of page.
On the Macintosh, using a page setup scale of 50% multiplies all of these
dimensions by 2.

magnification Sets V_Value exactly the same way that expand does.
Added in Igor Pro 7.00.

maximize Sets V_Value to 1 if the window is maximized, 0 otherwise. On Macintosh,
V_Value is always 0.

needUpdate Sets V_Value to 1 if window or subwindow is marked as needing an update.

note Copies window note to S_value.

psize Reads graph plot area dimensions (where the traces are) into V_left, V_right,
V_top, and V_bottom in local coordinates. Dimensions are in points.

psizeDC Same as psize but dimensions are in device coordinates (pixels).

GetWindow

V-277

sizeLimit Returns the size limits imposed on a window via SetWindow sizeLimit in the
V_minWidth, V_minHeight, V_maxWidth and V_maxHeight. The values are
scaled for screen resolution to the same units as GetWindow wsize, which is
points. Very large limits are returned as INF.
The sizeLimit keyword was added in Igor Pro 7.00.
Also returns a sizeLimit status value in V_Value. 0 means no SetWindow
sizeLimit command will appear in the window's recreation macro, usually
because no SetWindow sizeLimit command was applied to the window. 1
means a SetWindow sizeLimit command will appear in the window's
recreation macro. -1 means it won't appear because of conflicts with graph
absolute sizing modes.

title Gets the title (set by as titleStr with NewPanel, Display, etc., or by the Window
Control dialog) and puts it into S_value. S_value is set to "" if winName specifies a
subwindow. See also the wtitle keyword, below.

userdata Returns the primary (unnamed) user data for a window in S_value. Use
GetUserData to obtain any named user data.

wavelist Creates a 3 column text wave called W_WaveList containing a list of waves used
in the graph in winName. Each wave occupies one row in W_WaveList. This list
includes all waves that can be in a graph, including the data waves for contour
plots and images.

wbRGB Another name for backRGB.
Added in Igor Pro 7.00.

wsize Reads window dimensions into V_left, V_right, V_top, and V_bottom in points
from the top left of the screen. For subwindows, values are local coordinates in the
host.

wsizeDC Same as wsize but dimensions are in local device coordinates (pixels). The origin
is the top left corner of the host window’s active rectangle.

wsizeOuter Reads window dimensions into V_left, V_right, V_top, and V_bottom in points
from the top left of the screen. Dimensions are for the entire window including
any frame and title bar. For subwindows, values are for the host window.

wsizeOuterDC Same as wsizeOuter but dimensions are in local device coordinates (pixels). The
origin is the top left corner of the host window’s active rectangle, so V_top will be
negative for a window with a title bar. V_left will be negative for windows with
a frame; windows on Macintosh OS X have no frame, so V_left will be zero.

wsizeRM Generally the same as wsize, but these are the coordinates that would actually be
used by a recreation macro except that the coordinates are in points even if the
window is a panel. Also, if the window is minimized or maximized, the
coordinates represent the window’s restored location.
On Windows, GetWindow kwFrameOuter wsizeRM returns the pixel
coordinates of the MDI frame even when the frame is maximized. wsizeDC
returns 2,2,2,2 in this case.

wtitle Gets the actual window title displayed in the window's title bar, regardless of
whether it was set by the user (see the title keyword above) or is the default title
created by Igor, and puts it into S_value.
S_value is set to "" if winName specifies a subwindow.
If winName is kwFrameOuter or kwFrameInner, on Macintosh S_Value is set to
the name of the Igor application. On Windows it is set to the full title of the
application as seen on the frame's window, which can be altered using
DoWindow/T kwFrame.

GetWindow

V-278

Flags

Details
winName can be the title of a procedure window. If the title contains spaces, use:
GetWindow $"Title With Spaces" wsize

However, if another window has a name which matches the given procedure window title, that window’s
properties are returned instead of the procedure window.
The wsize parameter is appropriate for all windows.
The gsize, psize, gbRGB, and wavelist parameters are appropriate only for graph windows.
The logicalpapersize, logicalprintablesize and expand/magnification parameters are appropriate for all printable
windows except for control panels and Gizmo plots.

Local Coordinates
“Local coordinates” are relative to the top left of the graph area, regardless of where that is on the screen or
within the graph window. All dimensions are reported in units of points (1/72 inch) regardless of screen
resolution. On the Macintosh, this is the same as screen pixels.

Frame Window Coordinates
kwCmdHist, kwFrameInner, and kwFrameOuter may be used with only the wsize keyword.
On Windows computers, kwFrameInner and kwFrameOuter return coordinates into V_left, V_right, V_top,
and V_bottom. On the Macintosh, they always return 0, because Igor has no frame on the Macintosh.
kwFrameOuter coordinates are the location of the outer edges of Igor’s application window, expressed in
screen (pixel) coordinates suitable for use with MoveWindow/F to restore, minimize, or maximize the Igor
application window.
If Igor is currently minimized, kwFrameOuter returns 0 for all values. If maximized, it returns 2 for all
values. Otherwise, the screen (pixel) coordinates of the frame are returned in V_left, V_right, V_top, and
V_bottom. This is consistent with MoveWindow/F.
kwFrameInner coordinates, however, are the location of the inner edges of the application window, expressed
in Igor window coordinates (points) suitable for positioning graphs and other windows with MoveWindow.
If Igor is currently minimized, kwFrameInner returns the inner frame coordinates Igor would have if Igor
were “restored” with MoveWindow/F 1,1,1,1.
V_left and V_top will always both be 0, and V_Bottom and V_Right will be the maximum visible (or
potentially visible) window (not screen) coordinates in points.

The Wavelist Keyword
The format of W_WaveList, created with the wavelist keyword, is as follows:

The wave name in column 1 is simply the name of the wave with no path. It may be the same as other waves
in the list, if there are waves from different data folders.
The partial path in column 2 includes the wave name and can be used with the $ operator to get access to
the wave.
The special ID number in column 3 has the format ##<number>##. A version of the recreation macro for the
graph can be generated that uses these ID numbers instead of wave names (see the WinRecreation function).
This makes it relatively easy to find every occurrence of a particular wave using a function like strsearch.

Examples
// These commands draw a red foreground rectangle framing
// the printable area of a page layout window.
GetWindow Layout0 logicalpapersize
DoWindow/F Layout0

/Z Suppresses error if, for instance, winName doesn't name an existing window.
V_flag is set to zero if no error occurred or to a non-zero error code.

Column 1 Column 2 Column 3
Wave name partial path to the wave special ID number

GizmoInfo

V-279

SetDrawLayer/K userFront
SetDrawEnv linefgc=(65535,0,0), fillpat=0 // Transparent fill
DrawRect V_left+1, V_top+1, V_right-1, V_bottom-1

// These commands demonstrate the difference between title and wtitle.
Make/O data=x
Display/N=MyGraph data
GetWindow MyGraph title;Print S_Value // Prints nothing (S_Value = "")
GetWindow MyGraph wtitle;Print S_Value // Prints "MyGraph:data"
DoWindow/T MyGraph, "My Title for My Graph"
GetWindow MyGraph title;Print S_Value // Prints "My Title for My Graph"
GetWindow MyGraph wtitle;Print S_Value // Prints "My Title for My Graph"

See Also
The SetWindow, GetUserData, MoveWindow and DoWindow operations.
The IgorInfo function.

GizmoInfo
GizmoInfo(nameStr, key)
The GizmoInfo function is used to determine if a particular name is valid and unique as a Gizmo item
names.
Documentation for the GizmoInfo function is available in the Igor online help files only. In Igor, execute:
DisplayHelpTopic "GizmoInfo"

GizmoPlot
GizmoPlot
GizmoPlot is a procedure subtype keyword that identifies a macro as being a Gizmo recreation macro. It is
automatically used when Igor creates a window recreation macro for a Gizmo plot. See Procedure
Subtypes on page IV-193 and Saving and Recreating Graphs on page II-261 for details.

GizmoScale
GizmoScale(dataValue, dimNumber [, gizmoNameStr])
The GizmoScale function returns a scaled dataValue for the specified dimension. The scaled values are used
to position non-data drawing objects in the Gizmo window.
Documentation for the GizmoScale function is available in the Igor online help files only. In Igor, execute:
DisplayHelpTopic "GizmoScale"

gnoise
gnoise(num [, RNG])
The gnoise function returns a random value from a Gaussian distribution such that the standard deviation
of an infinite number of such values would be num.
The random number generator is initialized using the system clock when you start Igor, virtually
guaranteeing that you will never get the same sequence twice. If you want repeatable “random” numbers,
use SetRandomSeed.
The Gaussian distribution is achieved using a Box-Muller transformation of uniform random numbers.
The optional parameter RNG selects one of two different pseudo-random number generators used to create
the uniformly-distributed random numbers used as the input to the Box-Muller transformation. If omitted,
the default is 1. The RNG’s are:

RNG Description

1 Linear Congruential generator by L’Ecuyer with added Bayes-Durham shuffle. The algorithm is
described in Numerical Recipes (2nd edition) as the function ran2(). This RNG has nearly 232
distinct values and the sequence of random numbers has a period in excess of 1018.

2 Mersenne Twister by Matsumoto and Nishimura. It is claimed to have better distribution
properties and period of 219937-1.

Graph

V-280

In a complex expression, the gnoise function returns a complex value, as if you had called:
cmplx(gnoise(num), gnoise(num))

Except for enoise, other noise functions do not have complex implementations.

See Also
The SetRandomSeed operation and the enoise function.
Noise Functions on page III-344.

References
Press, William H., et al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New York,

1992.
Details about the Mersene Twister are in:
Matsumoto, M., and T. Nishimura, Mersenne Twister: A 623-dimensionally equidistributed uniform

pseudorandom number generator, ACM Trans. on Modeling and Computer Simulation, 8, 3-30, 1998.
More information is available online at: <http://en.wikipedia.org/wiki/Mersenne_twister>

Graph
Graph
Graph is a procedure subtype keyword that identifies a macro as being a graph recreation macro. It is
automatically used when Igor creates a window recreation macro for a graph. See Procedure Subtypes on
page IV-193 and Saving and Recreating Graphs on page II-261 for details.

GraphMarquee
GraphMarquee
GraphMarquee is a procedure subtype keyword that puts the name of the procedure in the graph Marquee
menu. See Marquee Menu as Input Device on page IV-151 for details.

GraphNormal
GraphNormal [/W=winName]
The GraphNormal operation returns the target or named graph to the normal mode, exiting any drawing
mode that it may be in.
You would usually enter normal mode by choosing ShowTools from the Graph menu and clicking the
crosshair tool.

Flags

See Also
The GraphWaveDraw and GraphWaveEdit operations.

GraphStyle
GraphStyle
GraphStyle is a procedure subtype keyword that puts the name of the procedure in the Style pop-up menu
of the New Graph dialog and in the Graph Macros menu. See Graph Style Macros on page II-262 for details.

GraphWaveDraw
GraphWaveDraw [flags] [yWaveName, xWaveName]
The GraphWaveDraw operation initiates drawing a curve composed of yWaveName vs xWaveName in the
target or named graph. The user draws the curve using the mouse, and the values are stored in a pair of
waves as XY data.
Normally, you would initiate drawing by choosing ShowTools from the Graph menu and clicking in the
appropriate tool rather than using GraphWaveDraw.

/W=winName Reverts the named graph window. This must be the first flag specified when used in
a Proc or Macro or on the command line.

http://en.wikipedia.org/wiki/Mersenne_twister

GraphWaveEdit

V-281

Parameters
yWaveName and xWaveName will contain the y and x values of the curve drawn by the user with the mouse.
If yWaveName and xWaveName do not already exist, they are created with two points which are initially set
to NaN (Not a Number) and appended to the target.
If yWaveName and xWaveName already exist, an error is generated unless the /O (overwrite) flag is present.
If /O is present, the waves are re-created — with two points which are initially set to NaN — and appended
to the target if they are not already in it.
If yWaveName and xWaveName are omitted then waves called W_YPolyn and W_XPolyn are created with
two points set to NaN and appended to the target (n is some digit, so Igor might create a wave named
W_YPoly0, for example).

Flags

Details
Once drawing starts no other user actions are allowed.
In normal mode, drawing stops when you double-click or when you click the first point (in which case the
last point is set equal to the first point). When drawing finishes, the edit mode is entered.
In freehand mode, drawing stops when the mouse is released or when 10000 points have been drawn.
If /O is used and the waves are already on the graph then the first instance on the graph will be used even
if they use a different pair of axes than specified.

See Also
The GraphNormal, GraphWaveEdit and DrawAction operations.

GraphWaveEdit
GraphWaveEdit [flags] traceName
The GraphWaveEdit operation initiates editing a wave trace in a graph. The wave trace must already be in
the graph.
Normally, you would initiate editing by choosing ShowTools from the Graph menu and clicking in the
appropriate tool rather than using GraphWaveEdit.

Parameters
traceName is a wave name, optionally followed by the # character and an instance number: “myWave#1” is
the second instance of myWave appended to the graph (“myWave” is the first).
If traceName is omitted then you get to pick the wave trace to edit by clicking it.

/F[=f] Initiates freehand drawing. In normal drawing, you click where you want a data point.
In freehand drawing, you click once and then draw with the mouse button held down.
If present, f specifies the smoothing factor. Max value is 8 (which is really slow), min
value is 0 (default). The drawing tools use a value of 3 which is the recommended value.

/L/R/B/T Specifies which axes to use (Left, Right, Bottom, Top). Bottom and Left axes are used
by default. Can specify free axes using /L=axis name type notation. See
AppendToGraph for details. If necessary, the specified axes will be created. If an axis
is created its range is set to -1 to 1.

/M Specifies that the curve being edited must be monotonic in the X dimension. The user
is not allowed drag points so that they cross horizontally.

/O Overwrites yWaveName and xWaveName if they already exist.

/W=winName Draws in the named graph window or subwindow. When omitted, action will affect
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

Grep

V-282

Flags

Details
The GraphWaveEdit operation is not multidimensional aware. See Analysis on Multidimensional Waves
on page II-86 for details.

See Also
The GraphNormal, GraphWaveDraw and DrawAction operations.
Trace Names on page II-216, Programming With Trace Names on page IV-81.

Grep
Grep [flags][srcFileStr][srcTextWaveName][as [destFileOrFolderStr]

[destTextWaveName]]
The Grep operation copies lines matching a search expression from a file on disk, the Clipboard, or rows
from a text wave to a new or existing file, an existing text wave, the History area, the Clipboard, or to
S_value as a string list.

Source Parameters
The optional srcFileStr can be
• The full path to the file to copy lines from (in which case /P is not needed).
• The partial path relative to the folder associated with pathName.
• The name of a file in the folder associated with pathName.
• “Clipboard” to read lines of text from the Clipboard (in which case /P is ignored).
If Igor can not determine the location of the source file from srcFileStr and pathName, it displays a dialog
allowing you to specify the source file.
The optional srcTextWaveName is the name or path to a text wave.
Only one of srcFileStr or srcTextWaveName may be specified. If neither is specified then an Open File dialog
is presented allowing you to specify a source file.

Destination Parameters
The optional destFileOrFolderStr can be
• The name of (or path to) an existing folder when /D is specified.
• The name of (or path to) a possibly existing file.
• “Clipboard”, in which case the matching lines are copied to the Clipboard (and /P and /D are ignored).

The text can be retrieved with the GetScrapText function.
If destFileOrFolderStr is a partial path, it is relative to the folder associated with pathName.
If /D is specified, the source file is created inside the folder using the source file name.
If Igor can not determine the location of the destination file from pathName, srcFileStr, and destFileOrFolderStr,
it displays a Save File dialog allowing you to specify the destination file (and folder).

/M Specifies that the edited trace must be monotonic in the X dimension. You cannot drag
points so that they cross horizontally.

/NI Suppresses automatic new point insertion when clicking between points.

/T=t Sets the trace mode.
t=0: Lines and small square markers (default).
t=1: User settings unchanged.

/W=winName Edits traces in the named graph window or subwindow. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

Grep

V-283

The optional destTextWaveName is the name or path to an existing text wave. It may be the same wave as
srcTextWaveName.
Only one of destFileOrFolderStr or destTextWaveName may be specified.
If no destination file or text wave is specified then matching lines are printed in the history area, unless the
/Q flag is specified, in which case the matching lines aren’t printed or copied anywhere (though the output
variables are still set).
Use /LIST to set S_value to a string list containing the matching lines or rows.
Use /INDX to create a wave W_index containing the zero-based row or line number where matches were found.

Parameter Details
If you use a full or partial path for either srcFileStr or destFileOrFolderStr, see Path Separators on page III-401
for details on forming the path.
Folder paths should not end with single path separators. See MoveFolder’s Details section.

Flags

/A Appends matching lines to the destination file, creating it if necessary, appends text
to the Clipboard if the destFileOrFolderStr is “Clipboard”, or appends rows to the
destination text wave. Has no effect on output to the History area.

/D Interprets destFileOrFolderStr as the name of (or path to) an existing folder (or directory).
Without /D, destFileOrFolderStr is the name of (or path to) a file. It is ignored if the
destination is a text wave, the Clipboard, or the History area.
If destFileOrFolderStr is not a full path to a folder, it is relative to the folder associated
with pathName.

/DCOL={colNum} Useful only when the destination is destTextWaveName.
Copies matching lines of text from the source file, Clipboard, or srcTextWaveName to
column colNum of destTextWaveName, with any terminator characters removed.
The default when the source is a file or the Clipboard is /DCOL={0}, which copies
matching lines into the first column of destTextWaveName.
The default when the source is srcTextWaveName is to copy each column of a matched
row to the corresponding column in destTextWaveName.
/DCOL must be used with the /A flag, otherwise the destination wave will have only
1 column.

/DCOL={[colNum] [, delimStr], …}

Useful only when the source is srcTextWaveName and the destination is a file, the
Clipboard, History area, or S_value.
Copies multiple columns in any order from matching rows of srcTextWaveName to the
destination file, Clipboard, History area, or S_value.
Construct the line by appending the contents of the numbered column and the
delimStr parameters in the order specified. The output line is terminated as described
in Line Termination.

/E=regExprStr Specifies the Perl-compatible regular expression string. A line must match the regular
expression to be copied to the output file. See Regular Expressions.
Multiple /E flags may be specified, in which case a line is copied only if it matches every
regular expression.

/E={regExprStr, reverse}

Grep

V-284

/ENCG=textEncoding

Specifies the text encoding of named text file. This flag applies if the source is a file
and is ignored if the source is the clipboard or a text wave.
See Text Encoding Names and Codes on page III-434 for a list of accepted values for
textEncoding.
If you omit /ENCG, Grep uses the default text encoding as specified by the
Misc→Text Encoding→Default Text Encoding menu.
Passing 0 for textEncoding acts as if /ENCG were omitted. Passing 255 (binary) for
textEncoding is treated as an error because the source text must be internally
converted to UTF-8 and there is no valid conversion from binary to UTF-8.

/GCOL=grepCol Greps the specified column of srcTextWaveName, which is a two-dimensional text
wave. The default search is on the first column (grepCol=0). Use grepCol=-1 to
match against any column of srcTextWaveName.
Does not apply if the source is a file or Clipboard.

/I Requires interactive searching even if srcFileStr and destFileOrFolderStr are specified
and if the source file exists. Same as /I=3.

/I=i

/INDX Creates in the current data folder an output wave W_Index containing the line
numbers (or row numbers) where matching lines were found. If this is the only output
you need, also use the /Q flag.

/LIST[=listSepStr] Creates an output string variable S_value containing a semicolon-separated list of the
matching lines. If listSepStr is specified, then it is used to separate the list items. See
StringFromList for details on string lists. If this is the only output you need, also use
the /Q flag.

/M=messageStr Specifies the prompt message in any Open File dialog. If /S is not specified, then
messageStr will be used for both the Open File and Save File dialogs. But see Prompt
Does Not Work on Macintosh on page IV-137.

/O Overwrites any existing destination file.

/P=pathName Specifies the folder containing the source file or the folder into which the file is copied.
pathName is the name of an existing symbolic path.
Both srcFileStr and destFileOrFolderStr must be either simple file or folder names, or
paths relative to the folder specified by pathName.

Specifies the Perl-compatible regular expression string, regExprStr, for which the
sense of the match can be changed by reverse.
reverse=1: Matching expressions are taken to not match, and vice versa. For

example, use /E={"CheckBox",1} to list all lines that do not
contain “CheckBox”.

reverse=0: Same as /E=regExptrStr.

Specifies the degree of file search interactivity with the user.
i=0: Default; interactive only if srcFileStr is not specified or if the source file

is missing. Same as if /I were not specified.
Note: This is different behavior than other commands such as CopyFile.

i=1: Interactive even if srcFileStr is specified and the source file exists.
i=2: Interactive even if destFileOrFolderStr is specified.
i=3: Interactive even if srcFileStr is specified, the source file exists, and

destFileOrFolderStr is specified.

Grep

V-285

Line Termination
Line termination applies mostly to source and destination files. (The Clipboard and history area delimit
lines with CR, and text waves have no line terminators.)
If /T is omitted, Grep will break file lines on any of the following: CR, LF, CRLF, LFCR. (Most Macintosh
files use CR. Most Windows files use CRLF. Most UNIX files use LF. LFCR is an invalid terminator but some
buggy programs generate files that use it.)
Grep reads whichever of these terminator(s) appear in the source file and use them to write lines to any
output file.
The terminator(s) are removed before the line is matched against the regular expression.
For lines that match regExprStr, terminator(s) in the input file are transferred to the output file unless the
output is the Clipboard or history area, in which case the output terminator is always only CR (like
LoadWave). This means you can transparently handle files that use CR, LF, CRLF, or LFCR as the
terminator, and omitting /T will be suitable for most cases.
If you use the /T flag, then Grep will terminate line-from-file reads on the specified character only and will
output the specified character into any output file.

“Lines” in One-dimensional Text Waves
Grep considers each row of srcTextWaveName or destTextWaveName to be a “line” of input or output.
When the destination is a file, the Clipboard, or the History area, Grep copies all of the text in a matching row
of srcTextWaveName to the file and terminates the line. See Line Termination for the rules on line terminators.
When the destination is a destTextWaveName, Grep simply copies all the text in a matching row to a row in
destTextWaveName, without adding or omitting any terminators.

“Lines” and Columns in Two-Dimensional Text Waves
Grep by default matches against only the first column (column 0) of each row of srcTextWaveName. You can
use the /GCOL=grepCol flag to specify a different column to match against. Use /GCOL=-1 to match
against any column of srcTextWaveName.
When the source is a text wave and the destination is a file, the Clipboard, or the History area, Grep by
default copies only the first column (column 0) to the destination.
Use the /DCOL={colNum1, delimStr1, colNum2, delimStr2,...colNumN} to print multiple
columns (in any order) with delimiters after each column (the last column number need not be followed by
a delimiter string). The output line is terminated with CR or termcharStr as described in Line Termination.

/Q Prevents printing results to an output file, text wave, History, or Clipboard. Use /Q to
check for a match to regExprStr by testing the value of V_flag, V_value, S_value
(/LIST), or W_Index (/INDX) without generating any other matching line output.
Note: When using /Q neither destFileOrFolderStr nor destTextWaveName may be
specified.

/S=saveMessageStr Specifies the prompt message in any Save File dialog.

/T=termCharStr

/Z[=z]

Specifies the terminator character.

See Line Termination for the default behavior of the terminator character.

/T=(num2char(13)) Carriage return (CR, ASCII code 13).
/T=(num2char(10)) Linefeed (LF, ASCII code 10).
/T=";" Semicolon.
/T="" Null (ASCII code 0).

Prevents aborting of procedure execution when attempting to open a nonexistent
file for searching. Use /Z if you want to handle this case in your procedures rather
than having execution abort.
z=0: Same as no /Z at all.
z=1: Open file only if it exists. /Z alone is the same as /Z=1.
z=2: Open file if it exists and display a dialog if it does not exist.

Grep

V-286

When both the source and destination are text waves and append (/A) is not specified, the destination text
wave is redimensioned to have the same number of columns as the source text wave, and all columns of
matching rows of srcTextWaveName are copied to destTextWaveName.
When both the source and destination are text waves and append /A is specified, then the number of
columns in destTextWaveName is left unchanged, and each column of srcTextWaveName is copied to the
corresponding column of destTextWaveName.
If the destination is a text wave and the source is a file or the Clipboard, each line (without the terminator)
is copied to the first column of the destination text wave, or use /DCOL={destColNum} to put the text into
a different column.

Output Variables
The Grep operation returns information in the following variables. When running in a user-defined
function these are created as local variables. Otherwise they are created as global variables in the current
data folder.

Regular Expressions
A regular expression is a pattern that is matched against a subject string from left to right. Most characters
stand for themselves in a pattern, and match the corresponding characters in the “subject”.
In the case of Grep, the “subject” is each line of the source file or Clipboard, or each row in the source text wave.
The regular expression syntax supported by Grep, GrepList, and GrepString is based on the “Perl-
Compatible Regular Expression” (PCRE) library.
The syntax is similar to regular expressions supported by various UNIX and POSIX egrep(1) commands.
See Regular Expressions on page IV-164 for more details.
As a trivial example, the pattern “Fred” as specified here:
Grep/P=myPath/E="Fred" "afile.txt" as "FredFile.txt"

matches lines that contain the string “Fred” anywhere on the line.
Character matching is case-sensitive by default, similar to strsearch. Prepend the Perl 5 modifier (?i) to
match upper and lower-case versions of “Fred”:
// Copy lines that contain "Fred", "fred", "FRED", "fREd", etc
Grep/P=myPath/E="(?i)fred" "afile.txt" as "AnyFredFile.txt"

To copy lines that do not match the regular expression, set the /E flag’s reverse parameter:
// Copy lines that do NOT contain "Fred", "fred", "fREd", etc.
Grep/P=myPath/E={"(?i)fred",1} "afile.txt" as "NotFredFile.txt"

V_flag 0: Output successfully generated.
-1: User cancelled either the Open File or Save File dialogs.
Other: An error occurred, such as the specified file does not exist.

V_value The number of input lines that matched the regular expression.

V_startParagraph Zero-based line number into the file or Clipboard (or the row number of a source
text wave) where the first regular expression was matched. Also see the /INDX flag.

S_fileName Full path to the source file, the source text wave, or “Clipboard”. If an error
occurred or if the user cancelled, it is an empty string.

S_path Full path to the destination file or destination text wave.
"Clipboard": If destFileOrFolderStr was the Clipboard.
"History": If the output was printed to the history area of the window.
"": If an error occurred, if the user cancelled, or if /Q was specified.

S_value Contains matching lines as a string list only if /LIST is specified.

Note: Igor doesn’t use the opening and closing regular expression delimiters that UNIX grep or
Perl use: they would have used "/Fred/" and "/(?i)fred/".

Grep

V-287

Regular expressions in Igor support the expected metacharacters and character classes that make the whole
grep paradigm so useful. For example:
// Copy lines that START with a space or tab character
Grep/P=myPath/E="^[\\t]" "afile.txt" as "LeadingTabsFile.txt"

For a complete description of regular expressions, see Regular Expressions on page IV-164, especially for
a description of the many uses of the regular expression backslash character (see Backslash in Regular
Expressions on page IV-167).

Examples
// Copy lines in afile.txt containing "Fred" (case sensitive)
// to an output file named "AnyFredFile.txt" in the same directory.
Grep/P=myPath/E="Fred" "afile.txt" as "AnyFredFile.txt"

// Copy lines in afile.txt containing "Fred" and "Wilma" (case-insensitive)
// to a text wave (which must exist andis overwritten):
Make/O/N=0/T outputTextWave
Grep/P=myPath/E="(?i)fred"/E="(?i)wilma" "afile.txt" as outputTextWave

// Print lines in afile.txt containing "Fred" and "Wilma" (case-insensitive)
// to the history area
Make/O/N=0/T outputTextWave
Grep/P=myPath/E="(?i)fred"/E="(?i)wilma" "afile.txt"

// Test whether afile.txt contains the word "boondoggle", and if so,
// on which line the first occurence was found, WITHOUT creating any output.
//
// Note: the \\b sequences limit matches to a word boundary before and after
// "boondoggle", so "boondoggles" and "aboondoggle" won't match.
//
Grep/P=myPath/Q/E="(?i)\\bBoondoggle\\b" "afile.txt"
if(V_value) // at least one instance was found

Print "First instance of \"boondoggle\" was found on line", V_startParagraph
endif

// Create in S_value a string list of the lines as \r - separated list items:
Grep/P=myPath/LIST="\r"/Q/E="(?i)\\bBoondoggle\\b" "afile.txt"
if(V_Value) // some were found

Print S_value
endif

// Create in W_index a list of the 0-based line numbers where "boondoggle"
// or "boondoggles", etc was found in afile.txt.
Grep/P=myPath/INDX/Q/E="(?i)boondoggle" "afile.txt"
if(V_flag == 0) // grep succeeded, perhaps none were found; let's see where

WAVE W_Index // needed if in a function
Edit W_Index // show line numbers in a table.

endif

// (Create a string list and text wave for the following examples.)
String list= CTabList() // "Grays;Rainbow;YellowHot;..."
Variable items= ItemsInList(list)
Make/O/T/N=(items) textWave= StringFromList(p,list)

// Copy rows of textWave that contain "Red" (case sensitive)
// to the Clipboard as carriage-return separated lines.
Grep/E="Red" textWave as "Clipboard"

Note: Because Igor Pro also has special uses for backslash (see Escape Sequences in Strings on
page IV-13), you must double the number of backslashes you would normally use for a
Perl or grep pattern. Each pair of backslashes identifies a single backslash for the Grep
command.
For example, to copy lines that contain “\z”, the Perl pattern would be \\z, but the
equivalent Grep expression would be /E="\\\\z".
See Backslash in Regular Expressions on page IV-167 for a more complete description of
backslash behavior in Igor Pro.

Grep

V-288

// Copy lines of the Clipboard that do NOT contain "Blue"
// (case in-sensitve) back to the Clipboard, overwriting what was there:
Grep/E={"(?i)blue",1} "Clipboard" as "Clipboard"

// Format matching text wave row to the history area
Grep/E=("Red")/DCOL={"prefix text --- ", 0, " --- suffix text"} textWave

// Printed output:
prefix text --- BlueRedGreen --- suffix text
prefix text --- RedWhiteBlue --- suffix text
prefix text --- BlueRedGreen256 --- suffix text
prefix text --- RedWhiteBlue256 --- suffix text
prefix text --- Red --- suffix text
prefix text --- RedWhiteGreen --- suffix text
prefix text --- BlueBlackRed --- suffix text

// Re-copy rows of textWave that contain "Red" (case sensitive)
// to the Clipboard as carriage-return separated lines.
Grep/E="Red" textWave as "Clipboard"
// Create a 2-column text wave whose column 1 (the second column)
// contains the matching text from the Clipboard
Make/O/N=(0,2)/T outputTextWave
// Grep with /A to preserve 2 columns of outputTextWave
Grep/A/E="Red"/GCOL=1/DCOL={1} "Clipboard" as outputTextWave
Edit outputTextWave

// Examples with two-dimensional source text waves
Make/O/T/N=(10, 3) sourceTW= StringFromList(p+10*q,list)
Edit sourceTW

// Copy rows of textWave that contain "Red" in column 2 to outputTextWave.
Make/O/N=0/T outputTextWave
Grep/E="Red"/GCOL=2 sourceTW as outputTextWave
Edit outputTextWave

// Format matching text wave columns to the history area.
// Match lines that contain "Red" in any column of sourceTW:
Grep/E=("Red")/GCOL=-1/DCOL={0,", ",1,", ",2} sourceTW

// Printed output:
YellowHot, BlueRedGreen256, Magenta
BlueHot, RedWhiteBlue256, Yellow
BlueRedGreen, PlanetEarth256, Copper
RedWhiteBlue, Terrain256, Gold
Terrain, Rainbow16, RedWhiteGreen
Grays256, Red, BlueBlackRed

References
The regular expression syntax supported by Grep, GrepString, and GrepList is based on the PCRE — Perl-
Compatible Regular Expression Library by Philip Hazel, University of Cambridge, Cambridge, England. The
PCRE library is a set of functions that implement regular expression pattern matching using the same
syntax and semantics as Perl 5.
Visit <http://pcre.org/> for more information about the PCRE library, and
<http://www.perldoc.com/> for more about Perl regular expressions. The description of regular
expressions above is taken from the PCRE documentation.
A good book on regular expressions is: Friedl, Jeffrey E. F., Mastering Regular Expressions, 2nd ed., 492 pp.,
O’Reilly Media, 2002.
A helpful web site is: http://www.regular-expressions.info

See Also
Regular Expressions on page IV-164 and Symbolic Paths on page II-21.
Demo, CopyFile, PutScrapText, LoadWave operations. The GrepString, GrepList, StringMatch, and
cmpstr functions.

http://pcre.org/
http://www.perldoc.com/
http://www.regular-expressions.info

GrepList

V-289

GrepList
GrepList(listStr, regExprStr [,reverse [, listSepStr]])
The GrepList function returns each list item in listStr that matches the regular expression regExprStr.
ListStr should contain items separated by the listSepStr character, such as in “abc;def;”.
regExprStr is a regular expression such as is used by the UNIX grep(1) command. It is much more powerful
than the wildcard syntax used for ListMatch. See Regular Expressions on page IV-164 for regExprStr details.
reverse is optional. If missing, it is taken to be 0. If reverse is nonzero then the sense of the match is reversed. For
example, if regExprStr is "^abc" and reverse is 1, then all list items that do not start with “abc” are returned.
listSepStr is optional; the default is ";". In order to specify listSepStr, you must precede it with reverse.

Examples
To list ColorTables containing “Red”, “red”, or “RED” (etc.):
Print GrepList(CTabList(),"(?i)red") // case-insensitive matching

To list window recreation commands starting with “\tCursor”:
Print GrepList(WinRecreation("Graph0", 0), "^\tCursor", 0 , "\r")

See Also
Regular Expressions on page IV-164.
ListMatch, StringFromList, and WhichListItem functions and the Grep operation.

GrepString
GrepString(string, regExprStr)
The GrepString function tests string for a match to the regular expression regExprStr. Returns 1 to indicate
a match, or 0 for no match.

Details
regExprStr is a regular expression such as is used by the UNIX grep(1) command. It is much more powerful than
the wildcard syntax used for StringMatch. See Regular Expressions on page IV-164 for regExprStr details.
Character matching is case-sensitive by default, similar to strsearch. Prepend the Perl 5 modifier "(?i)" to
match upper and lower-case text

Examples
Test for truth that the string contains at least one digit:
if(GrepString(str,"[0-9]+"))

Test for truth that the string contains at least one “abc”, “Abc”, “ABC”, etc.:
if(GrepString(str,"(?i)abc")) // case-insensitive test

See Also
Regular Expressions on page IV-164.
The StringMatch, cmpstr, strsearch, ListMatch, and ReplaceString functions and the Demo and sscanf
operations.

GridStyle
GridStyle
GridStyle is a procedure subtype keyword that puts the name of the procedure in the Grid->Style Function
submenu of the mover pop-up menu in the drawing tool palette. You can have Igor automatically create a
grid style function for you by choosing Save Style Function from that submenu.

GroupBox
GroupBox [/Z] ctrlName [keyword = value [, keyword = value …]]
The GroupBox operation creates a box to surround and group related controls.
For information about the state or status of the control, use the ControlInfo operation.

GroupBox

V-290

Parameters
ctrlName is the name of the GroupBox control to be created or changed.
The following keyword=value parameters are supported:

appearance={kind [, platform]}

Sets the appearance of the control. platform is optional. Both parameters are
names, not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
See DefaultGUIControls Default Fonts and Sizes for how enclosed controls are
affected by native groupbox appearance.
See Button for more appearance details.

disable=d

fColor=(r,g,b) Sets color of the title text. r, g, and b are integers from 0 to 65535.

font="fontName" Sets font used for the box title, e.g., font="Helvetica".

frame=f Sets frame mode. If 1 (default), the frame has a 3D look. If 0, then a simple gray
line is used. Generally, you should not use frame=0 with a title if you want to be
in accordance with human interface guidelines.

fsize=s Sets font size for box title.

fstyle=fs

labelBack=(r,g,b) or 0 Sets fill color for the interior. r, g, and b are integers from 0 to 65535. If not set, then
interior is transparent. Note that if a fill color is used, draw objects can not be used
because they will be covered up. Also, you will have to make sure the GroupBox
is drawn before any interior controls.

pos={left,top} Sets the postion of the box in pixels.

pos+={dx,dy} Offsets the position of the box in pixels.

size={width,height} Sets box size in pixels.

userdata(UDName)=UDStr

Sets the unnamed user data to UDStr. Use the optional (UDName) to specify a
named user data to create.

userdata(UDName)+=UDStr

Appends UDStr to the current unnamed user data. Use the optional (UDName) to
append to the named UDStr.

title=titleStr Sets title to titleStr. Use "" for no title.

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Draw in gray state.

Sets the font style of the title text. fs is a bitwise parameter with each bit
controlling one aspect of the font style for the tick mark labels as follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold
Bit 1: Italic
Bit 2: Underline
Bit 4: Strikethrough

GuideInfo

V-291

Flags

Details
If no title is given and the width is less than 11 or height is specified as less than 6, then a vertical or
horizontal separator line will be drawn rather than a box.

See Also
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls. The GetUserData operation for retrieving named user data.

GuideInfo
GuideInfo(winNameStr, guideNameStr)
The GuideInfo function returns a string containing a semicolon-separated list of information about the
named guide line in the named host window or subwindow.

Parameters
winNameStr can be "" to refer to the top host window.
When identifying a subwindow with winNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
guideNameStr is the name of the guide line for which you want information.

Details
The returned string contains several groups of information. Each group is prefaced by a keyword and colon,
and terminated with the semicolon. The keywords are as follows:

The following keywords will be present only for user-defined guides:

win=winName Specifies which window or subwindow contains the named control. If not given,
then the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page
III-87 for details on forming the window hierarchy.

/Z No error reporting.

Note: Like TabControls, you need to click near the top of a GroupBox to select it.

Keyword Information Following Keyword

NAME Name of the guide.

WIN Name of the window or subwindow containing the guide.

TYPE The value associated with this keyword is either User or Builtin. A User type denotes
a guide created by the DefineGuide operation, equivalent to dragging a new guide
from an existing one.

HORIZONTAL Either 0 for a vertical guide, or 1 for a horizontal guide.

POSITION The position of the guide in points. This is the actual position relative to the left or
bottom edge of the window, not the relative position specified to DefineGuide.

Keyword Information Following Keyword

GUIDE1 The guide is positioned relative to GUIDE1.

GUIDE2 In some cases, the guide is positioned at a fractional position between GUIDE1 and
GUIDE2. If the guide does not use GUIDE2, the value will be "".

RELPOSITION The position relative to GUIDE1 (and GUIDE2 if applicable). This is the same as the
val parameter in DefineGuide. The returned value is in units of points if only
GUIDE1 is used, or a fractional value if both GUIDE1 and GUIDE2 are used.

GuideNameList

V-292

See Also
The GuideNameList,s StringByKey and NumberByKey functions; the DefineGuide operation.

GuideNameList
GuideNameList(winNameStr, optionsStr)
The GuideNameList function returns a string containing a semicolon-separated list of guide names from
the named host window or subwindow.

Parameters
winNameStr can be "" to refer to the top host window.
When identifying a subwindow with winNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
optionsStr is used to further qualify the list of guides. It is a string containing keyword-value pairs separated
by commas. Use "" to list all guides. Available options are:

Example
String list = GuideNameList("Graph0", "TYPE:Builtin,HORIZONTAL:1")

See Also
The DefineGuide operation and the GuideInfo function.

Hanning
Hanning waveName [, waveName]…
Note: The WindowFunction operation has replaced the Hanning operation.
The Hanning operation multiplies the named waves by a Hanning window (which is a raised cosine
function).
You can use Hanning in preparation for performing an FFT on a wave if the wave is not an integral number
of cycles long.
The Hanning operation is not multidimensional aware. See Chapter II-6, Multidimensional Waves,
particularly Analysis on Multidimensional Waves on page II-86 for details.

See Also
The WindowFunction operation implements the Hanning window as well as other forms such as
Hamming, Parzen, and Bartlet (triangle).
ImageWindow, DPSS

Hash
Hash(inputStr, method)
The Hash function returns a cryptographic hash of the data in inputStr.

Parameters
inputStr is string of length up to 2^31 bytes. inputStr can contain binary or text data.
method is a number indicating the hash algorithm to use:

TYPE:type type = BuiltIn: List only built-in guides.
type = User: List only user-defined guides, those created by the DefineGuide
operation or by manually dragging a new guide from an existing one.

HORIZONTAL:h h = 0: List only non-horizontal (that is, vertical) guides.
h = 1: List only horizontal guides.

1 SHA-256 (SHA-2)

2 MD4

3 MD5

hcsr

V-293

Prior to Igor Pro 7.00, only method 1 was supported.

hcsr
hcsr(cursorName [, graphNameStr])
The hcsr function returns the horizontal coordinate of the named cursor (A through J) in the coordinate
system of the top (or named) graph’s X axis.

Parameters
cursorName identifies the cursor, which can be cursor A through J.
graphNameStr specifies the graph window or subwindow.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.

Details
The X axis used is the one that controls the trace on which the cursor is placed.

Examples
Variable xAxisValueAtCursorA = hcsr(A) // not hcsr("A")
String str="A"
Variable xA= hcsr($str,"Graph0") // $str is a name, too

See Also
The pcsr, qcsr, vcsr, xcsr, and zcsr functions.
Programming With Cursors on page II-249.

hermite
hermite(n, x)
The hermite function returns the Hermite polynomial of order n:

The first few polynomials are:

See Also
The hermiteGauss function.

4 SHA-1

5 SHA-224 (SHA-2)

6 SHA-384 (SHA-2)

7 SHA-512 (SHA-2)

Hn (x) = (−1)n exp x2() d
n

dxn
exp −x2().

1

2x

4x2 − 2

8x3 −12x

hermiteGauss

V-294

hermiteGauss
hermiteGauss(n, x)
The hermiteGauss function returns the normalized Hermite polynomial of order n:

Here the normalization was chosen such that

where δnm is the Kronecker symbol.

You can verify the Hermite-Gauss normalization using the following functions:
Function TestNormalization(order)

Variable order

Variable/G theOrder = order
// The integrand vanishes in double-precision outside [-30,30]
Print/D Integrate1D(hermiteIntegrand,-30,30,2)

End

Function HermiteIntegrand(inX)
Variable inX

NVAR n = root:theOrder
return HermiteGauss(n,inx)^2*exp(-inx*inx)

End

See Also
The hermite function.

hide
#pragma hide = value
The hide pragma allows you to make a procedure file invisible.

See Also
The The hide Pragma on page IV-50 and #pragma.

HideIgorMenus
HideIgorMenus [MenuNameStr [, MenuNameStr]…
The HideIgorMenus operation hides the named built-in menus or, if none are explicitly named, hides all
built-in menus in the menu bar.
The effect of HideIgorMenus is lost when a new experiment is opened. The state of HideIgorMenus is saved
with the experiment.
User-defined menus are not hidden by HideIgorMenus unless attached to built-in menus and the menu
definition uses the hideable keyword.

Parameters

Details
The optional menu names are in English and not abbreviated. This ensures that code developed for a
localized version of Igor will run on all versions.
The built-in menus that can be shown or hidden (the Help menu can be hidden only on Windows) are those
that appear in the menu bar:

MenuNameStr The name of an Igor menu, like “File”, “Data”, or “Graph”.

Hn (x) = 1

π 2n n!
(−1)n exp x2() d

n

dxn
exp −x2().

e− x2

Hn (x)Hm (x)dx = δmn ,
−∞

∞

∫

HideInfo

V-295

Hiding a built-in menu to which a user-defined menu is attached results in a built-in menu with only the
user-defined items. For example, if this menu definition attaches items to the built-in Graph menu:
Menu "Graph"

"Do My Graph Thing", ThingFunction()
End

Calling HideIgorMenus "Graph" will still leave a Graph menu showing (when a Graph is the top-most
target window) with only the user-defined menu(s) in it: in this example the one “Do My Graph Thing” item.
Hiding the Macros menu hides menus created from Macro definitions like:
Macro MyMacro()

Print "Hello, world."
End

but does not hide normal user-defined “Macros” definitions like:
Menu "Macros"

"Macro 1", MyMacro(1)
End

You can set user-defined menus to hide and show along with built-in menus by adding the optional
hideable keyword to the menu definition:
Menu "Graph", hideable

"Do My Graph Thing", ThingFunction()
End

Then HideIgorMenus "Graph" will hide those items, too. If all user-defined Graph menu definitions use
the hideable keyword, then no Graph menu will appear in the menu bar.
Some WaveMetrics procedures use the hideable keyword so that only customer-defined menus remain
when HideIgorMenus is executed.

See Also
Chapter IV-5, User-Defined Menus.
The ShowIgorMenus, DoIgorMenu, and SetIgorMenuMode operations.

HideInfo
HideInfo [/W=winName]
The HideInfo operation removes the info panel from a graph if it was previously shown by the ShowInfo
operation.

Flags

See Also
The ShowInfo operation.
Programming With Cursors on page II-249.

HideProcedures
HideProcedures
The HideProcedures operation hides all procedure windows without closing or killing them.

See Also
The DisplayProcedure and DoWindow operations.

File Edit Data Analysis Macros Windows Graph

Layout Notebook Panel Procedure Table Misc Help

/W=winName Hides the info panel in the named window.

HideTools

V-296

HideTools
HideTools [/A/W=winName]
The HideTools operation hides the tool palette in the top graph or control panel if it was previously shown
by the ShowTools operation.

Flags

See Also
The ShowTools operation.

HilbertTransform
HilbertTransform [/Z][/O][/DEST=destWave] srcWave
The HilbertTransform operation computes the Hilbert transformation of srcWave, which is a real or complex
(single or double precision) wave of 1-3 dimensions. The result of the HilbertTransform is stored in
destWave, or in the wave W_Hilbert (1D) or M_Hilbert in the current data folder.

Flags

Details
The Hilbert transform of a function f(x) is defined by:

Theoretically, the integral is evaluated as a Cauchy principal value. Computationally one can write the
Hilbert transform as the convolution:

which by the convolution theorem of Fourier transforms, may be evaluated as the product of the transform
of f(x) with -i*sgn(x) where:

/A Sizes the window automatically to make extra room for the tool palette. This
preserves the proportion and size of the actual graph area.

/W=winName Hides the tool palette in the named window. This must be the first flag specified when
used in a Proc or Macro or on the command line.

/DEST=destWave Creates a real wave reference for the destination wave in a user function. See
Automatic Creation of WAVE References on page IV-66 for details.

/O Overwrites srcWave with the transform.

/PAD={dim1 [, dim2, dim3, dim4]}

Converts srcWave into a padded wave of dimensions dim1, dim2…. The padded wave
contains the original data at the start of the dimension and adds zero entries to each
dimension up to the specified dimension size. The dim1… values must be greater than
or equal to the corresponding dimension size of srcWave. If you need to pad just the
lowest dimension(s) you can omit the remaining dimensions; for example, /Pad=dim1
will set dim2 and above to match the dimensions in srcWave.
This flag was added in Igor Pro 7.00.

/Z No error reporting.

F(t) = 1

πt
f (x)dx

x − t
.

−∞

∞

∫

F(t) = −1

πt
∗ f (t),

Histogram

V-297

Note that the Hilbert transform of a constant is zero. If you compute the Hilbert transform in more than one
dimension and one of the dimensions does not vary (is a constant), the transform will be zero (or at least
numerically close to zero).
There are various definitions for the extension of the Hilbert transform to more than one dimension. In two
dimensions this operation computes the transform by multiplying the 2D Fourier transform of the input by
the factor (-i)sgn(x)(-i)sgn(y) and then computing the inverse Fourier Transform. A similar procedure is
used when the input is 3D.

Examples
Extract the instantaneous amplitude and frequency of a narrow-band signal.
Make/O/N=1000 w0,amp,phase
SetScale/I x 0,50,"", w0,amp,phase
w0 = exp(-x/10)*cos(2*pi*x)
HilbertTransform /DEST=w0h w0 // w0+i*w0h is the "analytic signal", i=cmplx(0,1)
amp = sqrt(w0^2 + w0h^2) // extract the envelope
phase = atan2(-w0h,w0) // extract the phase [SIGN CONVENTION?]
Unwrap 2*pi, phase // eliminate the 2*pi phase jumps
Differentiate phase /D=freq // would have less noise if fit to a line

// over interior points
freq /= 2*pi // phase = 2*pi*freq*time
Display w0,amp // original waveform and its envelope; note boundary effects
Display freq // instantaneous frequency estimate, with boundary effects

See Also
The FFT operation.

References
Bracewell, R., The Fourier Transform and Its Applications, McGraw-Hill, 1965.

Histogram
Histogram [flags] srcWaveName, destWaveName
The Histogram operation generates a histogram of the data in srcWaveName and puts the result in
destWaveName or in W_Histogram or in the wave specified by /DEST.

Parameters
srcWaveName specifies the wave containing the data to be histogrammed.
For historical reasons the meaning and use of destWaveName depend on the binning mode as specified by
/B. See Histogram Destination Wave on page V-299 below for details.

Flags

/A Accumulates the histogram result with the existing values in the destination wave
instead of replacing the existing values with the result. Assumes /B=2 unless the /B flag
is present.
Note: The result will be incorrect if you also use /P.

sgn(x) =
−1 x < 0
0 x = 0
1 x > 0

.

⎧
⎨
⎪

⎩⎪

Histogram

V-298

/B=mode

/B={binStart,binWidth,numBins}

Sets the histogram bins from these parameters rather than from destWaveName.
Changes the X scaling and length of the destination wave.

/C Sets the X scaling so that X values are in the centers of the bins, which is required
when you do a curve fit to the histogram output. Ordinarily, wave scaling of the
output wave is set with X values at the left bin edges.

/CUM Requests a cumulative histogram in which each bin is the sum of bins to the left. The
last bin will contain the total number of input data points, or, with /P, 1.0.
/CUM cannot be used with a weighted histogram (/W flag).
When used with /A, the destination wave must be the result of a histogram created
with /CUM.
Note that if you use a binning mode (/B flag) that sets a bin range that does not include
the entire range of the input data, then the output will not count all of input points
and the last bin will not contain the total number of input points. Input points whose
values fall below the left edge of the first bin or above the right edge of the last bin will
not be counted.

/DEST=destWave Saves the histogram output in a wave specified by destWave. The destination wave is
created or overwritten if it already exists.
Creates a wave reference for the destination wave in a user function. See Automatic
Creation of WAVE References on page IV-66 for details.
See Histogram Destination Wave on page V-299 below for further discussion.
The /DEST flag was added in Igor Pro 7.00.

/N Creates a wave (W_SqrtN) containing the square root of the number of counts in each
bin. This is an appropriate wave to use as a weighting wave when doing a curve fit to
the histogram results.

Controls binning:
mode=1: Semi-automatic mode that sets the bin range based on the range of the

Y values in srcWaveName. The number of bins is determined by the
number of points in the destination wave.

mode=2: Uses the bin range and number of bins determined by the X scaling
and number of points in the destination wave.

mode=3: Uses Sturges’ method to determine optimal number of bins and
redimensions the destination wave as necessary. By this method
numBins=1+log2(N)

where N is the number of data points in srcWaveName. The bins will be
distributed so that they include the minimum and maximum values.

mode=4: Uses a method due to Scott, which determines the optimal bin width
as

binWidth=3.49*σ*N-1/3

where N is the number of data points in srcWaveName and σ is the
standard deviation of the distribution. The bins will be distributed so
that they include the minimum and maximum values.

method=5: Uses the Freedman-Daiconis method where

binWidth=2*IQR*N-1/3

where IQR is the interquartile distance (see StatsQuantiles) and the
bins are evenly distributed between the minimum and maximum
values.

Histogram

V-299

Histogram Destination Wave
For historical reasons there are multiple ways to specify the destination wave and the meaning and use of
destWaveName depend on the binning mode as specified by /B. This section explains the details and then
provides guidance and when to use which mode.
In binning modes 1 and 2 (/B=1 and /B=2, described above), the destination wave plays a role in determining
the binning and destWaveName must be the name of an existing wave. If you omit /DEST then the output is
written to destWaveName. If you provide /DEST then the output is written to the wave specified by /DEST.
In binning modes 3, 4 and 5 (/B=3, /B=4 and /B=5, described above), the destination wave plays no role in
determining the binning. If you omit destWaveName and /DEST, Histogram stores its output in a wave
named W_Histogram in the current data folder. If you omit /DEST and provide destWaveName, then
destWaveName must name an existing wave to which the output is written. If you provide /DEST, you can
omit destWaveName. If you provide both /DEST and destWaveName then destWaveName must name an
existing wave but the operation ignores it.
Here is the recommended usage:

/NLIN=binsWave Computes a non-linear histogram using the bins specified in the wave binsWave. This
option is not compatible with the flags /A, /B, /C, /CUM, /N, /P, /W.
The bins must be contiguous and non-overlapping so that binsWave contains
monotonically increasing values with no NaNs and INFs. For example, if you want
the 3 bins [1,10),[10,100),[100,1000), execute:
Make/O/N=4 bins={1,10,100,1000}
The upper end of each bin is open.
The /NLIN flag was added in Igor Pro 7.00.

/P Normalizes the histogram as a probability distribution function, and shifts wave
scaling so that data correspond to the bin centers.
When using the results with Integrate, you must use /METH=0 or /METH=2 to select
rectangular integration methods.

/R=(startX,endX) Specifies the range of X values of srcWaveName over which the histogram is to be
computed.

/R=[startP,endP] Specifies the range of points of srcWaveName over which the histogram is to be computed.

/RMD=[firstRow,lastRow][firstColumn,lastColumn][firstLayer,lastlayer][firstChunk,lastChunk]

Designates a contiguous range of data in the source wave to which the operation is to
be applied. This flag was added in Igor Pro 7.00.
You can include all higher dimensions by leaving off the corresponding brackets. For
example:
/RMD=[firstRow,lastRow]

includes all available columns, layers and chunks.
You can use empty brackets to include all of a given dimension. For example:
/RMD=[][firstColumn,lastColumn]

means "all rows from column A to column B".
You can use a * to specify the end of any dimension. For example:
/RMD=[firstRow,*]

means "from firstRow through the last row".

/W=weightWave Creates a “weighted” histogram. In this case, instead of adding a single count to the
appropriate bin, the corresponding value from weightWave is added to the bin.
weightWave may be any number type, and it may be complex. If it is complex, then the
destination wave will be complex.
/W cannot be used with a cumulative histogram (/CUM flag).

Histogram

V-300

If you want to use specific binning that you have determined, use /B={binStart,binWidth,numBins}, use
/DEST to specify the destination wave, and omit destWaveName.
If you want Igor to determine the binning, use /B=3, /B=4 or /B=5, use /DEST to specify the destination wave,
and omit destWaveName.
For backward compatibility with Igor Pro 6, use /B=1, /B=2, /B=3, /B=4 or /B={binStart,binWidth,numBins},
create a destination wave, use it as destWaveName and omit /DEST.

Details
If you use /B={binStart, binWidth, numBins}, then the initial number of data points in the wave is immaterial
since the Histogram operation changes the number of points.
Only one /B and only one /R flag is allowed.
If both /A and /B flags are missing, the bin range and number of bins is calculated as if /B=1 had been
specified.
When accumulating multiple histograms in one output wave, typically you will want to use
/B={binStart,binWidth,numBins} for the first histogram, and /A for successive histograms.
The Histogram operation works on single precision floating point destination waves. If necessary,
Histogram redimensions the destination wave to be single precision floating point. However, Histogram/A
requires that the destination wave already be single precision floating point.
For a weighted histogram, the destination wave will be double-precision.
If you specify the range as /R=(start), then the end of the range is taken as the end of srcWaveName.
In an ordinary histogram, input data is examined one data point at a time. The operation determines which bin
a data value falls into and a single count is added to that bin. A weighted histogram works similarly, except that
it adds to the bin a value from another wave in which each row corresponds to the same row in the input wave.

The Histogram operation is not multidimensional aware. See Analysis on Multidimensional Waves on
page II-86 for details. In fact, the Histogram operation can be usefully applied to multidimensional waves,
such as those that represent images. The /R flag will not work as expected, however.

Examples
// Create histogram of two sets of data.
Make/N=1000 data1=gnoise(1), data2=gnoise(1)
Make/N=1 histResult

Input Data
1.1
3.2
2.9
-3.5
0.3
-2.7
1.8

-3 -2 -1 0 1 2

+1

Input Data
1.1
3.2
2.9
-3.5
0.3
-2.7
1.8

-3 -2 -1 0 1 2

Weight Data

1.8
1.1
0.5
0.2
1.1
2.5
0.3 +0.3

Normal Histogram

Weighted Histogram

hyperG0F1

V-301

// Sets bins, does histogram.
Histogram/B={-5,1,10} data1, histResult
Display histResult; ModifyGraph mode=5

// Accumulates into existing bins.
Histogram/A data2, histResult

See Also
Histograms on page III-120, ImageHistogram, JointHistogram

References
Sturges, H.A., The choice of a class-interval, J. Amer. Statist. Assoc., 21, 65-66, 1926.
Scott, D., On optimal and data-based histograms, Biometrika, 66, 605-610, 1979.

hyperG0F1
hyperG0F1(b, z)
The hyperG0F1 function the confluent hypergeometric function

where is the gamma function.

See Also
The hyperG1F1, hyperG2F1, and hyperGPFQ functions.

References
The PFQ algorithm was developed by Warren F. Perger, Atul Bhalla, and Mark Nardin.

hyperG1F1
hyperG1F1(a, b, z)
The hyperG1F1 function returns the confluent hypergeometric function

where is the Pochhammer symbol

See Also
The hyperG0F1, hyperG2F1, and hyperGPFQ functions.

References
The PFQ algorithm was developed by Warren F. Perger, Atul Bhalla, and Mark Nardin.

hyperG2F1
hyperG2F1(a, b, c, z)
The hyperG2F1 function returns the confluent hypergeometric function

Note: The series evaluation may be computationally intensive. You can abort the computation
by pressing the User Abort Key Combinations.

Note: The series evaluation may be computationally intensive. You can abort the computation
by pressing the User Abort Key Combinations.

0F1(b,z) = zi

Γ(b + i)i!
,

i=0

∞

∑
Γ x()

1F1(a,b,z) = (a)n z
n

(b)n n!
,

n=0

∞

∑
a()n

(a)n = a(a +1)…(a + n −1).

hyperGNoise

V-302

where is the Pochhammer symbol

See Also
The hyperG0F1, hyperG1F1, and hyperGPFQ functions.

References
The PFQ algorithm was developed by Warren F. Perger, Atul Bhalla, and Mark Nardin.

hyperGNoise
hyperGNoise(m, n, k)
The hyperGNoise function returns a pseudo-random value from the hypergeometric distribution whose
probability distribution function is

where m is the total number of items, n is the number of marked items, and k is the number of items in a
sample.
The random number generator initializes using the system clock when Igor Pro starts. This almost
guarantees that you will never repeat a sequence. For repeatable “random” numbers, use SetRandomSeed.
The algorithm uses the Mersenne Twister random number generator.

See Also
SetRandomSeed, StatsHyperGCDF, and StatsHyperGPDF.
Chapter III-12, Statistics for a function and operation overview.
Noise Functions on page III-344.

hyperGPFQ
hyperGPFQ(waveA, waveB, z)
The hyperGPFQ function returns the generalized hypergeometric function

where is the Pochhammer symbol

Note: The series evaluation may be computationally intensive. You can abort the computation
by pressing the User Abort Key Combinations.

F2 1 a b c z,,(,)
a()n b()nz

n

c()nn!

n 0=

∞

=

2F1(a,b,c;z) = (a)n (b)n z
n

(c)n n!
,

n=0

∞

∑
a()n

(a)n = a(a +1)…(a + n −1).

p Fq a1,... ap{ }, b1,... bq{ };z() = (a1)n (a2)n ... (ap)n z
n

(b1)n (b2)n ... (bq)n n!
,

n=0

∞

∑

a()n

i

V-303

See Also
hyperG0F1, hyperG1F1, hyperG2F1
CosIntegral, ExpIntegralE1, SinIntegral

References
The PFQ algorithm was developed by Warren F. Perger, Atul Bhalla, and Mark Nardin.

i
i
The i function returns the loop index of the inner most iterate loop in a macro. Not to be used in a function.
iterate loops are archaic and should not be used.

ICA
ICA [flags] srcWave
The ICA operation performs independent component analysis using the FastICA algorithm. Input data is
in the form of a 2D wave where each column represents the equivalent of a single data acquisition channel.
The results of the operation are stored in the waves M_ICAComponents, M_ICAUnMix and M_matrixW in
the current data folder.
The ICA operation was added in Igor Pro 7.00.

Flags

Note: The series evaluation may be computationally intensive. You can abort the computation
by pressing the User Abort Key Combinations.

/A=alpha alpha is a constant used as a factor in the argument of the logCosh function. It is not
used with the exp function.
alpha is in the range [1,2] and its default value is 1.
You will rarely need to change this value to affect the rate of convergence or the
quality of the results.

/CF=num

/COLS Preconditions the input by subtracting the mean and then normalizing the input on a
column-by-column basis. The algorithm appears to converge and produce better
results when this flag is used.

/DFLT Use the deflation/vector method where iterations solve for a single vector of the
"unmixing" matrix at a time. By default the operation uses the matrix method which
solves for the complete unmixing matrix at one time.

/PCA Save the output of the "PCA" stage which is also the form of the data before the
fastICA iterations. The data are saved in the wave M_PCA in the current data folder.

/Q Quiet mode; do not print anything in the history.

/TOL=tolerance The tolerance value is used to determine when iterations converge.
In the deflation/vector method the tolerance measures the difference between the
values of vectors in consecutive iterations.
In the matrix method the tolerance measures the average deviation of all components.
By default tolerance = 1e-5 for both methods.

(a)n = a(a +1)…(a + n −1).

Specifies the contrast function, also called the non-quadratic function, used
by ICA.
num=0: logCosh (default)
num=1: exp

ICA

V-304

Details
srcWave is a 2D wave of nRows by nCols. It must be a single or double precision real-valued wave
containing no NaNs or INFs. Each column of srcWave corresponds to a single data acquisition channel that
is assumed to consist of a linear superposition of independent components. This can be expressed as a
matrix product
X=A (S^t)
where S is an nRows by nCols matrix of independent components, ^t denotes the transpose, A is an nCols
by nCols mixing matrix and X is the "mixed" input. The ICA operation attempts to find the independent
components of S from the transformation
S=W X
so that the mutual information between the resulting columns of S is minimized. Since mutual information
is not affected by a multiplication of components by scalar constants, the resulting independent
components can be specified up to a scalar factor.
The operation uses the FastICA algorithm to compute the independent components.
The algorithm has two available methods for computation. The default is to attempt to evaluate the full W
matrix at once. The second method (/DFLT flag) also known as "deflation" computes one row of W at a time.
The deflation method might have advantages in cases where there are fewer independent components than
there are columns in the input.

Example
// Create the source
Make/O/N=(1000,3) ddd
ddd[][0]=sin(2*pi*x/13)
ddd[][1]=sin(2*pi*x/17)
ddd[][2]=sin(2*pi*x/23)

// Create mixing matrix
Make/O/N=(3,3) AA
AA[0][0]= {0.291,0.6557,-0.5439}
AA[0][1]= {0.5572,0.3,-0.2}
AA[0][2]= {-0.1,-0.7,0.4}

// Do the mixing
MatrixOp/O xx=ddd x AA

// Try the ICA
ICA/DFLT/COLS xx
Wave ICARes
Display M_ICAComponents[][0]
Display M_ICAComponents[][1]
Display M_ICAComponents[][2]

References
A. Hyvarinen and E. Oja (2000) Independent Component Analysis: Algorithms and Applications, Neural
Networks, (13)411-430.

See Also
PCA

/WINT=w Provides an initial unmixing matrix W. If you do not provide this matrix the
algorithm initializes using enoise.
The wave w must be 2D having the same number type as srcWave and having
dimensions nCols x nCols, where nCols is the number of columns of srcWave.
Providing an initial matrix is useful if you have obtained one from a previous set of
iterations which may have converged using inadequate tolerance.

/Z No error reporting.

if-elseif-endif

V-305

if-elseif-endif
if (<expression1>)

<TRUE part 1>
elseif (<expression2>)

<TRUE part 2>
[…]
[else

<FALSE part>]
endif
In an if-elseif-endif conditional statement, when an expression first evaluates as TRUE (nonzero), then only
code corresponding to the TRUE part of that expression is executed, and then the conditional statement is
exited. If all expressions evaluate as FALSE (zero) then FALSE part is executed when present. After
executing code in any TRUE part or the FALSE part, execution will next continue with any code following
the if-elseif-endif statement.

See Also
If-Elseif-Endif on page IV-38 for more usage details.

if-endif
if (<expression>)

<TRUE part>
[else

<FALSE part>]
endif
An if-endif conditional statement evaluates expression. If expression is TRUE (nonzero) then the code in
TRUE part is executed, or if FALSE (zero) then the optional FALSE part is executed.

See Also
If-Else-Endif on page IV-37 for more usage details.s

IFFT
IFFT [flags] srcWave
The IFFT operation calculates the Inverse Discrete Fourier Transform of srcWave using a multidimensional
fast prime factor decomposition algorithm. This operation is the inverse of the FFT operation.

Output Wave Name
For compatibility with earlier versions of Igor, if you use IFFT without /ROWS or /COLS, the operation
overwrites srcWave.
If you use the /ROWS flag, IFFT uses the default output wave name M_RowFFT and if you use the /COLS
flag, IFFT uses the default output wave name M_ColFFT.
We recommend that you use the /DEST flag to make the output wave explicit and to prevent overwriting
srcWave.

Parameters
srcWave is a complex wave. The IFFT of srcWave is a either a real or complex wave, according to the length
and flags.

Flags

/C Forces the result of the IFFT to be complex. Normally, the IFFT produces a real result
unless certain special conditions are detected as described in Details.

/COLS Computes the 1D IFFT of 2D srcWave one column at a time, storing the results in the
destination wave. You must specify a destination wave using the /DEST flag (no other
flags are allowed). See the /ROWS flag and corresponding flags of the FFT operation.

IFFT

V-306

Details
The data type of srcWave must be complex and must not be an integer type. You should be aware that an
IFFT on a number of points that is prime can be slow.
By default, IFFT assumes you are performing an inverse transform on data that was originally real and
therefore it produces a real result. However, for historical and compatibility reasons, IFFT detects the
special conditions of a one-dimensional wave containing an integral power of 2 data points and
automatically creates a complex result.
When the result is complex, the number of points (N) in the resulting wave will be of the same length.
Otherwise the resulting wave will be real and of length (N-1)*2.
In either the complex or real case the X units of the output wave are changed to “s”. The X scaling also is
changed appropriately, cancelling out the adjustments made by the FFT operation. When the data is
multidimensional, the same considerations apply to the additional dimensions. The scaling description and
IDFT equation below pretend that the IFFT is not performed in-place. After computing the IFFT values, the
X scaling of waveOut is changed as if Igor had executed these commands:
Variable points // time-domain points, NtimeDomain
if(waveIn was complex wave)

points= numpnts(waveIn)
else // waveIn was real wave

points= (numpnts(waveIn) - 1) * 2
endif
Variable deltaT= 1 / (points*deltaX(waveIn)) // 1/(NtimeDomaindx)
SetScale/P waveOut 0,deltaT,"s"

The IDFT equation is:

See Also
The FFT, DSPPeriodogram, and MatrixOp operations.

/DEST=destWave Specifies the output wave created by the IFFT operation.
It is an error to specify the same wave as both srcWave and destWave.
In a function, IFFT by default creates a real wave reference for the destination wave.
See Automatic Creation of WAVE References on page IV-66 for details.

/FREE Creates destWave as a free wave.
/FREE is allowed only in functions and only if destWave, as specified by /DEST, is a
simple name or wave reference structure field.
See Free Waves on page IV-84 for more discussion.
The /FREE flag was added in Igor Pro 7.00.

/R Forces real output when, due to a power of 2 number of points, IFFT would otherwise
automatically produce a complex result.

/ROWS Calculates the IFFT of only the first dimension of 2D srcWave. It computes the 1D FFT
one row at a time. You must specify a destination wave using the /DEST flag (no other
flags are allowed). See the /COLS flag and corresponding flags of the FFT operation.

/Z Will not rotate srcWave when computing the IDFT of a complex wave whose length is
an integral power of 2.
This length indicates that the Inverse DFT result will also be a complex wave. When
the result is complex, and the x scaling of srcWave is such that the first point is not x=0,
it normally rotates srcWave by -N/2 points before performing the IFFT. This inverts the
process of performing an FFT on a complex wave. However when /Z is specified, it
does not perform this rotation.

waveOut[n] = 1

N
waveIn[k]exp

2πikn
N

⎛
⎝⎜

⎞
⎠⎟

k=0

N−1

∑ , where i = −1.

IgorInfo

V-307

IgorInfo
IgorInfo(selector)
The IgorInfo function returns information about the Igor application and the environment in which it is
running.

Details
selector is a number from 0 to 6.
Always pass 0, 1, 2, 3, 4, 5, 6 or 7 as the input parameter. In future versions of Igor Pro, this parameter may
request other kinds of information.
If selector is 0, IgorInfo returns a collection of assorted information. The result string contains five kinds of
information. Each group is prefaced by a keyword and a colon, and terminated with a semicolon.

If selector is 1, IgorInfo returns the name of the current Igor experiment.
If selector is 2, IgorInfo returns the name of the current platform: “Macintosh” or “Windows”.
If selector is 3, IgorInfo returns a collection of more detailed information about the operating system,
localization information, and the actual file version of the Igor executable. The keywords are OS,
OSVERSION, LOCALE, and IGORFILEVERSION.

Keyword Information Following Keyword For IgorInfo(0)

FREEMEM The amount of free memory available to Igor.

PHYSMEM The amount of total physical memory available to Igor. Added in Igor Pro 7.00.

USEDPHYSMEM The amount of used physical memory available to Igor. Added in Igor Pro 7.00.

IGORKIND

IGORVERS The version number of the Igor application. Also see IGORFILEVERSION returned
by IgorInfo(3).

NSCREENS Number of screens currently attached to the computer and used for the desktop.

SCREEN1 A description of the characteristics of screen 1.
The format of the SCREEN1 description is:
SCREEN1:DEPTH=bitsPerPixel,RECT=left,top,right,bottom;
left, top, right, and bottom are all in pixels.
If there are multiple screens, there will be additional SCREEN keywords, such as
SCREEN2 and SCREEN3.

Keyword Information Following Keyword For IgorInfo(3)

IGORFILEVERSION The actual version number of the Igor application file.

On Macintosh, the version number is a floating point number with a possible
suffix. Igor Pro 7.00, for example, returns “7.00”. Igor Pro 7.02A returns “7.02A”.

On Windows, the version format is a period-separated list of four numbers.
Igor Pro 7.02 returns “7.0.2.0”. A revision to Igor Pro 7.02 would be indicated in
the last digit, such as “7.0.2.12”.

The type of Igor application:

“pro64” and “pro64 demo” are returned by the 64-bit of Igor Pro 7.00 or later.
The presence of “demo” indicates that Igor is running in demo mode, either
because the user’s fully-functional demo period has expired or because the user
chose to run in demo mode using the License dialog.

"pro": Igor Pro 32-bit
"pro demo": Igor Pro 32-bit in demo mode
"pro64": Igor Pro 64-bit
"pro64 demo": Igor Pro 64-bit in demo mode

IgorVersion

V-308

If selector is 4, IgorInfo returns the name of the current processor architecture. Currently this is always
“Intel”.
If selector is 5, IgorInfo returns, as a string, the serial number of the program if it is registered or "_none_" if
it isn't registered. Use str2num to store the result in a numeric variable. str2num returns NaN if the program
isn't registered.
If selector is 6, IgorInfo returns, as a string, the version of the Qt library under which Igor is running, for
example “5.6.1”. This selector value was added in Igor Pro 7.00.
If selector is 7, IgorInfo returns, as a string, the name of the current user. This selector value was added in
Igor Pro 7.00.

Examples
Print NumberByKey("NSCREENS", IgorInfo(0)) // Number of active displays

Function RunningWindows() // Returns 0 if Macintosh, 1 if Windows
String platform = UpperStr(IgorInfo(2))
Variable pos = strsearch(platform,"WINDOWS",0)
return pos >= 0

End

IgorVersion
#pragma IgorVersion = versNum
When a procedure file contains the directive, #pragma IgorVersion=versNum, an error will be generated
if versNum is greater than the current Igor Pro version number. It prevents procedures that use new features
added in later versions from running under older versions of Igor in which these features are missing.
However, this version check is limited because it does not work with versions of Igor older than 4.0.

See Also
The The IgorVersion Pragma on page IV-50 and #pragma.

IgorVersion
The IgorVersion function returns version number of the Igor application as a floating point number. Igor
Pro 7.00 returns 7.00, as does Igor Pro 7.00A.

Details
Because floating point numbers are not precise, exact comparisons to floating point values often behave in
unexpected ways. For example:
Variable result = 6 + 0.1
if (result == 6.1)

Print "result == 6.1" // this is not printed!
else

Print "difference = ", result - 6.1 // prints "difference = -8.88178e-16"
endif

However, IgorVersion compensates for this so that the following will work as expected:
if (IgorVersion() == 6.1)

Print "result == 6.1"// this is printed to the history area
endif

LOCALE Country for which this version of Igor Pro is localized. “US” for most versions,
“Japan” for the Japanese versions.

OS On Mac OS X, this will be “Macintosh OS X”.

On Windows, this might be “Windows XP (Build 1234)”. The actual build
number and format of the text will vary with the operating system.

OSVERSION Operating system number.
On Macintosh, this is something like “10.9.5”.
On Windows, this is something like “6.3.10586”.

Keyword Information Following Keyword For IgorInfo(3)

ilim

V-309

You can use IgorVersion in conditionally compile code expressions, which can be used to omit calls to new
Igor features or to provide backwards compatibility code.
#if (IgorVersion() >= 7.00)

[Code that compiles only on Igor Pro 7.00 or later]
#else

[Code that compiles only on earlier versions of Igor]
#endif

If at all possible, it is better to require your users to use a later version of Igor rather than writing conditional
code. Attempting this kind of backward-compatibility multiplies your testing requirements and the
chances for bugs.

See Also
IgorInfo, Conditional Compilation on page IV-100, The IgorVersion Pragma on page IV-50

ilim
ilim
The ilim function returns the ending loop count for the inner most iterate loop Not to be used in a function.
iterate loops are archaic and should not be used.

imag
imag(z)
The imag function returns the imaginary component of the complex number z as a real (not complex)
number.

See Also
The cmplx, conj, p2rect, r2polar, and real functions.

ImageAnalyzeParticles
ImageAnalyzeParticles [flags] keyword imageMatrix
The ImageAnalyzeParticles operation performs one of two particle analysis operations on a 2D or 3D source
wave imageMatrix. The source image wave must be binary, i.e., an unsigned char format where the particles
are designated by 0 and the background by 255 (the operation will produce erroneous results if your data
uses the opposite designation). Note that all nonzero values in the source image will be considered part of
the background. Grayscale images must be thresholded before invoking this operation (you may need to
use the /I flag with the ImageThreshold operation).
Note: ImageAnalyzeParticles does not take into account wave scaling. All image metrics are in pixels

and all pixels are assumed to be square.

Parameters
keyword is one of the following names:

mark Creates a masking image for a single particle, which is specified by an internal (seed) pixel
using the /L flag. The masking image is stored in the wave M_ParticleMarker, which is an
unsigned char wave. All points in M_ParticleMarker are set to 64 (image operations on binary
waves use the value 64 to designate the equivalent of NaN) except points in the particle which
are set to the 0. This wave is designed to be used as an overlay on the original image (using
the explicit=1 mode of ModifyImage). This keyword is superseded by the ImageSeedFill
operation.

stats Measures the particles in the image. See ImageAnalyzeParticles Stats on page V-312 for
details.

ImageAnalyzeParticles

V-310

Flags

/A=minArea Specifies a minimum area as a threshold that must be exceeded for a particle to be
counted (e.g., use minArea=0 to find single pixel particles). The minimum area is
measured in pixels; its default value is minArea=5.
When the source wave is 3D, minArea specifies the minimum number of voxels that
constitute a particle.
/A has no effect when used with the mark method.

/B Erases a 1 pixel wide frame inset from the boundary. This insures that no particles will
have boundary pixels (see /EBPC below) and all boundary waves will describe close
contours.

/CIRC={minCircularity,maxCircularity}

Use this flag to filter the output so that only particles in the range of the specified
circularity are counted.

/D=dataWave Specify a wave from which the minimum, maximum, and total particle intensity are
sampled when used with the stats keyword. dataWave must be of the same
dimensions as the input binary image imageMatrix. It can be of any real numeric type.
Results are returned in the waves W_IntMax, W_IntMin, and W_IntAvg.

/E Calculates an ellipse that best fits each particle. The equivalent ellipse is calculated by
first finding the moments of the particle (i.e., average x-value, average y-value,
average x2, average y2, and average x*y), and then requiring that the area of the ellipse
be equal to that of the particle. The resulting ellipses are saved in the wave
M_Moments. When imageMatrix is a 2D wave, the results returned in M_Moments are
the columns: the X-center of the ellipse, the Y-center of the ellipse, the major axis, the
minor axis, and the angle (radians) that the major axis makes with the X-direction.
When imageMatrix is a 3D wave, the results in M_Moments include the sum of the X,
Y, and Z components as well as all second order permutations of their products. They
are arranged in the order: sumX, sumY, sumZ, sumXX, sumYY, sumZZ, sumXY,
sumXZ, and sumYZ.

/EBPC Use this flag to exclude from counting any particle that has one or more pixels on any
boundary of the image.

/F Fills 2D particles having internal holes and adjusts their area measure for the removal
of holes. Internal boundaries around the holes are also eliminated. When the
boundary of the particle consists of thin elements that cannot be traversed as a single
closed path which passes each boundary pixel only once, the particle will not be filled.
Note that filling particles may increase execution time considerably and on some
images it may require large amount of memory. It is likely that a more efficient
approach would be to preprocess the binary image and remove holes using
morphology operations. This flag is not supported when imageMatrix is a 3D wave.

/FILL Use /FILL to fill holes inside particles. The reported values of area and perimeter are
computed as if there are no holes. The filling algorithm could fail if, for example, there
is a closed contour of zeros around the particles.
If you specify both /F and /FILL the operation used /FILL only.
Added in Igor Pro 7.00.

/L= (row,col) Specifies a 2D particle location in connection with the mark method. (row, col) is a seed
value corresponding to any pixel inside the particle. If the seed belongs to the particle
boundary, the particle will not be filled. This flag is not supported when imageMatrix
is a 3D wave.

ImageAnalyzeParticles

V-311

Details
Particle analysis is accomplished by first converting the data from its original format into a binary representation
where the particle is designated by zero and the background by any nonzero value. The algorithm searches for
the first pixel or voxel that belongs to a particle and then grows the particle from that seed while keeping count

/M=markerVal

/MAXA=maxArea Specifies an upper limit of the area of an acceptable particle when used with the stats
keyword. The area is measured in pixels and the default value of maxArea is the number
of pixels in the image. In 3D the maximum value applies to the number of voxels.

/NSW Creates the marker wave (see /M flag) but not the particle statistics waves when used with
the stats keyword. This should reduce execution time in images containing many
particles.

/P=plane Specifies the plane when operating on a single layer of a 3D wave.

/PADB Use this flag with the stats keyword to pad the image with a 1 pixel wide background.
This has the effect that particles touching the image boundary are now interior
particles with closed perimeter (that extend one pixel beyond the original image
frame). In addition, entries in the wave W_ObjPerimeter will be longer for all
boundary particles which will also affect other derived parameters such as circularity.
/PADB is different from /B in that it takes into account all pixels belonging to the
particle that lie on the boundary of the image. The two flags are mutually exclusive.
/PADB was added in Igor Pro 7.00.

/Q Quiet flag, does not report the number of particles to the history area.

/R=roiWave Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/b/u) that has the same number of rows and columns as imageMatrix. The ROI
itself is defined by the entries or pixels in the roiWave with value of 0. Pixels outside
the ROI may have any nonzero value. The ROI does not have to be contiguous. When
imageMatrix is a 3D wave, roiWave can be either a 2D wave (matching the number of
rows and columns in imageMatrix) or it can be a 3D wave that must have the same
number of rows, columns and layers as imageMatrix. When using a 2D roiWave with a
3D imageMatrix the ROI is understood to be defined by roiWave for each layer in the
3D wave.
See ImageGenerateROIMask for more information on creating 2D ROI waves.

/U Saves the wave M_ParticleMarker as an 8-bit unsigned instead of the default 16-bit
when used with the mark keyword.

/W Creates boundary waves W_BoundaryX, W_BoundaryY, and W_BoundaryIndex for a
2D imageMatrix wave. W_BoundaryX and W_BoundaryY contain the pixels along the
particle boundaries. The boundary of each particle ends with a NaN entry in both waves.
Each entry in W_BoundaryIndex is the index to the start of a new particle in
W_BoundaryX and W_BoundaryY, so that you can quickly locate the boundary of each
particle.
When there are holes in particles, the entries in W_BoundaryX and W_BoundaryY
start with the external boundary followed by all the internal boundaries for that
particle. There are no index entries for internal boundaries.
This flag is not supported when imageMatrix is a 3D wave.

Use this flag with the stats mode for 2D images. See stats keyword for a full
description of the following waves:

This flag does not apply to 3D waves.

markerVal=0: No marker waves.
markerVal=1: M_ParticlePerimeter.
markerVal=2: M_ParticleArea.
markerVal=3: M_Particle.

ImageAnalyzeParticles

V-312

of the area, perimeter and count of pixels or voxels in the particle. If you use additional flags, the algorithm must
compute additional quantities for each pixel or voxel belonging to the particle.
If your goal is to mask only the particle, a more efficient approach is to use the ImageSeedFill operation,
which similarly follows the particle but does not spend processing time on computing unrelated particle
properties. ImageSeedFill also has the additional advantage of not requiring that the input wave be binary,
which will save time on performing the initial threshold and, in fact, may produce much better results with
the adaptive/fuzzy features that are not available in ImageAnalyzeParticles.

ImageAnalyzeParticles Stats
The ImageAnalyzeParticles stats keyword measures the particles in the image. Results of the measurements
are reported for all particles whose area exceeds the minArea specified by the /A flag. The results of the
measurements are:

One of the following waves can be created depending on the /M specification. The waves are designed to
be used as an overlay on the original image (using the explicit=1 mode of ModifyImage). Note: the
additional time required to create these waves is negligible compared with the time it takes to generate the
stats data.

V_NumParticles Number of particles that exceed the minArea limit.

W_ImageObjArea Area (in pixels) for each particle.

W_ImageObjPerimeter Perimeter (in pixels) of each particle. The perimeter calculation involves
estimates for 45-degree pixel edges resulting in noninteger values.

W_circularity Ratio of the square of the perimeter to (4*π*objectArea). This value
approaches 1 for a perfect circle.

W_rectangularity Ratio of the area of the particle to the area of the inscribing (nonrotated)
rectangle. This ratio is π/4 for a perfectly circular object and unity for a
nonrotated rectangle.

W_SpotX and W_SpotY Contain a single x, y point from each object. There is one entry per particle
and the entries follow the same order as all other waves created by this
operation. Each (x,y) point from these waves can used to define the position
of a tag or annotation for a particle. Points can also be used as seed pixels for
the associated mark method or for the ImageSeedFill operation.

W_xmin, W_xmax, W_ymin, W_ymax

Contain a single point for each particle defining an inscribing rectangular box
with axes along the X and Y directions.

M_ParticlePerimeter Masking image of particle boundaries. It is an unsigned char wave that
contains 0 values for the object boundaries and 64 for all other points.

M_ParticleArea Masking image of the area occupied by the particles. It is an unsigned char
wave containing 0 values for the object boundaries and 64 for all other points.
It is also different from the input image in that particles smaller than the
minimum size, specified by /A, are absent.

M_Particle Image of both the area and the boundary of the particles. It is an unsigned
char wave that contains the value 16 for object area, the value 18 for the object
boundaries and the value 64 for all other points.

M_rawMoments Contains five columns. The first column is the raw sum of the x values for each
particle, and the second column contains the sum of the y values. To obtain the
average or “center” of a particle divide these values by the corresponding area.
The third column contains the sum of x2, the fourth column the sum of y2, and
the fifth column the sum of x*y. The entries of this wave are used in calculating a
fit to an ellipse (using the /E flag).

ImageBlend

V-313

When imageMatrix is a 3D wave, the different results are packed into a single 2D wave M_3DParticleInfo,
which consists of one row and 11 columns for each particle. Columns are arranged in the following order:
minRow, maxRow, minCol, maxCol, minLayer, maxLayer, xSeed, ySeed, zSeed, volume, and area. Use
Edit M_3DParticleInfo.ld to display the results in a table with dimension labels describing the
different columns.

Examples
Convert a grayscale image (blobs) into a proper binary input:
ImageThreshold/M=4/Q/I blobs

Get the statistics on the thresholded image of blobs and create an image mask output wave for the perimeter
of the particles:
ImageAnalyzeParticles/M=1 stats M_ImageThresh

Display an image of the blobs with a red overlay of the perimeter image:
NewImage/F blobs; AppendImage M_ParticlePerimeter
ModifyImage M_ParticlePerimeter explicit=1, eval={0,65000,0,0}

See Also
The ImageThreshold, ImageGenerateROIMask, ImageSeedFill, and ModifyImage operations. For more
usage details see Particle Analysis on page III-328.

ImageBlend
ImageBlend [/A=alpha /W=alphaWave] srcWaveA, srcWaveB [, destWave]
The ImageBlend operation takes two RGB images (3D waves) in srcWaveA and srcWaveB and computes the
alpha blending so that
destWave = srcWaveA * (1 - alpha) + srcWaveB * alpha
for each color component. If destWave is not specified or does not already exist, the result is saved in the
current data folder in the wave M_alphaBlend.
The source and destination waves must be of the same data types and the same dimensions. The alphaWave,
if used, must be a single precision (SP) float wave and it must have the same number of rows and columns
as the source waves.

Flags

ImageBoundaryToMask
ImageBoundaryToMask width=w, height=h, xwave=xwavename, ywave=ywavename [,

scalingWave=scalingWaveName, [seedX=xVal, seedY=yVal]]
The ImageBoundaryToMask operation scan-converts a pair of XY waves into an ROI mask wave.

Parameters

/A=alpha Specifies a single alpha value for the whole image

/W=alphaWave Single precision wave that specifies an alpha value for each pixel.

height = h Specifies the mask height in pixels.

scalingWave = scalingWaveName

2D or 3D wave that provides scaling for the mask. If specified, the scaling of the
first two dimensions of scalingWave are copied to M_ROIMask, and both the X
and Y waves are assumed to describe pixels in the scaled domain.

seedX = xVal Specifies seed pixel location. The operation fills the region defined by the seed
and the boundary with the value 1. Background pixels are set to zero. Requires
seedY.

seedY = yVal Specifies seed pixel location. The operation fills the region defined by the seed
and the boundary with the value 1. Background pixels are set to zero. Requires
seedX.

ImageEdgeDetection

V-314

Details
ImageBoundaryToMask generates an unsigned char 2D wave named M_ROIMask, of dimensions specified
by width and height. The wave consists of a background pixels that are set to 0 and pixels representing the
mask that are set to 1.
The x and y waves can be of any type. However, if the waves describe disjoint regions there must be at least
one NaN entry in each wave corresponding to the discontinuity, which requires that you use either single or
double precision waves. The values stored in the waves must correspond to zero-based integer pixel values.
If the x and y waves include a vertex that lies outside the mask rectangle, the offending vertex is moved to
the boundary before the associated line segment is scan converted.
If you want to obtain a true ROI mask in which closed regions are filled, you can specify the seedX and
seedY keywords. The ROI mask is set with zero outside the boundary of the domain and 1 everywhere
inside the domain.

Examples
Make/O/N=(100,200) src=gnoise(5) // create a test image
SetScale/P x 500,1,"", src;DelayUpdate // give it some funny scaling
SetScale/P y 600,1,"", src
Display; AppendImage src
Make/O/N=201 xxx,yyy // create boundary waves
xxx=550+25*sin(p*pi/100) // representing a close ellipse
yyy=700+35*cos(p*pi/100)
AppendToGraph yyy vs xxx

Now create a mask from the ellipse and scale it so that it will be appropriate for src:
ImageBoundaryToMask ywave=yyy,xwave=xxx,width=100,height=200,scalingwave=src

To generate an ROI masked filled with 1 in a region defined by a seed value and the boundary curves:
ImageBoundaryToMask

ywave=yyy,xwave=xxx,width=100,height=200,scalingwave=src,seedx=550,seedy=700

See Also
The ImageAnalyzeParticles and ImageSeedFill operations. For another example see Converting
Boundary to a Mask on page III-331.

ImageEdgeDetection
ImageEdgeDetection [flags] Method imageMatrix
The ImageEdgeDetection operation performs one of several standard image edge detection operations on
the source wave imageMatrix.
Unless the /O flag is specified, the resulting image is saved in the wave M_ImageEdges.
The edge detection methods produce binary images on output; the background is set to 0 and the edges to
255. This is due, in most cases to a thresholding performed in the final stage.
Except for the case of marr and shen detectors, you can use the /M flag to specify a method for automatic
thresholding; see the ImageThreshold /M flag.

Parameters
Method selects type of edge detection. Method is one of the following names:

width = w Specifies the mask width in pixels.

xwave = xwavename Name of X wave for mask region.

ywave = ywavename Name of Y wave for mask region.

canny Canny edge detector uses smoothing before edge detection and thresholding. You can
optionally specify the threshold using the /T flag and the smoothing factor using /S.

frei Calculates the Frei-Chen edge operator (see Pratt p. 503) using only the row and column
filters.

kirsch Kirsch edge detector (see Pratt p. 509). Performs convolution with 8 masks calculating
gradients.

ImageEdgeDetection

V-315

Flags

marr Marr-Hildreth edge detector. Performs two convolutions with Laplacian of Gaussian and then
detects zero crossings. Use the /S flag to define the width of the convolution kernel.

prewitt Calculates the Prewitt compass gradient filters. Returns the result for the largest filter
response.

roberts Calculates the square root of the magnitude squared of the convolution with the Robert’s row
and column edge detectors.

shen Shen-Castan optimized edge detector. Supposed to be effective in the presence of noise. The flags
that modify this operation are: /F for the threshold ratio (0.9 by default), /S for smoothness factor
(0.9 by default), /W for window width (default is 10), /H for thinning factor which by default is 1.

sobel Sobel edge detector using convolutions with row and column edge gradient masks (see Pratt p.
501).

/F=fraction Determines the threshold value for the shen algorithm by starting from the histogram
of the image and choosing a threshold such that fraction specifies the portion of the
image pixels whose values are below the threshold. Valid values are in the interval (0
< fraction < 1).

/H=thinning Thins edges when used with shen edge detector. By default the thinning value is 1.
Higher values produce thinner edges.

/I Inverts the output, i.e., sets the edges to 255 and the background to 0.

/M=threshMethod See the ImageThreshold automatic methods for obtaining a threshold value.
Methods 1, 2, 4 and 5 are supported in this operation. If you use threshMethod = -1,
threshold is not applied.
If you want to apply your own thresholding algorithm, use /M=6 to bypass the
thresholding completely. The wave M_RawCanny contains the result regardless of
any other flags you may have used.

/N Sets the background level to 64 (i.e., NaN)

/O Overwrites the source image with the output image.

/P=layer Applies the operation to the specified layer of a 3D wave.
/P is incompatible with /O.
/P was added in Igor Pro 7.00.

/R=roiSpec Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/b/u). The ROI wave must have the same number of rows and columns as the
image wave. The ROI itself is defined by entries/pixels whose values are 0. Pixels
outside the ROI can be any nonzero value. The ROI does not have to be contiguous
and can be any arbitrary shape. See ImageGenerateROIMask for more information
on creating ROI waves.

By default roiFlag is set to 1 and it is then possible to use the /R flag using the
abbreviated form /R=roiWave.

/S= smoothVal Specifies the standard deviation or the width of the smoothing filter. By default the
operation uses 1. Larger values require longer computation time. In the shen
operation the default value is 0.9 and the valid range is (0 < smoothVal< 1).

In general, the roiSpec has the form {roiWaveName, roiFlag}, where roiFlag can take
the following values:
roiFlag=0: Set pixels outside the ROI to 0.
roiFlag=1: Set pixels outside the ROI as in original image.
roiFlag=2: Set pixels outside the ROI to NaN (=64).

ImageFileInfo

V-316

See Also
The ImageGenerateROIMask operation for creating ROIs and the ImageThreshold operation.
Edge Detectors on page III-318 for a number of examples.

References
Pratt, William K., Digital Image Processing, John Wiley, New York, 1991.

ImageFileInfo
ImageFileInfo [/P=pathName] fileNameStr
As of Igor Pro 7, ImageFileInfo is no longer supported an always returns an error.
It is obsolete because it used QuickTime to obtain graphics file information and Apple is phasing out
QuickTime.

ImageFilter
ImageFilter [flags] Method dataMatrix
The ImageFilter operation is identical to MatrixFilter, accepting the same parameters and flags, with the
exception of the additional features described below.

Parameters
Method selects the filter type. Method is one of the following names:

Flags

Details
You can operate on 3D waves using the 3D filters listed above. These filters are extensions of the 2D filters
available under MatrixFilter. The avg3d, gauss3d, and point3d filters are implemented by a 3D convolution
that uses an averaging compensation at the edges.
This operation does not support complex waves.

/T=thresh Sets a manual threshold for any method above that uses a single threshold. This is
faster than using /M.

/W=width Specifies window width when used in the shen operation. By default width is set to
10 and it is clipped to 49.

avg3d nxnxn average filter for 3D waves.

gauss3d nxnxn gaussian filter for 3D waves.

hybridmedian Implements ranking pixel values between two groups of pixels in a 5x5
neighborhood. The first group includes horizontal and vertical lines through the
center, the second group includes diagonal lines through the center, and both groups
include the center pixel itself. The resulting median value is the ranked median of
both groups and the center pixel.

max3d nxnxn maximum rank filter for 3D waves.

median3d nxnxn median filter for 3D waves where n must be of the form 3r (integer r), e.g.,
3x3x3, 9x9x9 etc. The filter does not change the value of the voxel it is centered on if
any of the filter voxels lies outside the domain of the data.

min3d nxnxn minimum rank filter for 3D waves.

point3d nxnxn point finding filter using normalized (n3-1)*center-outer for 3D waves.

/N=n Specifies the filter size. By default n =3. In most situations it will be useful to set n to
an odd number in order to preserve the symmetry in the filters.

/O Overwrites the source image with the output image. Used only with the
hybridmedian filter, which does not automatically overwrite the source wave.

ImageFocus

V-317

See Also
MatrixFilter for descriptions of the other available parameters and flags.
MatrixConvolve for information about convolving your own 3D kernels.

References
Russ, J., Image Processing Handbook, CRC Press, 1998.

ImageFocus
ImageFocus [flags] stackWave
The ImageFocus operation creates in focus image(s) from a stack of images that contain in and out of focus
regions. It computes the variance in a small neighborhood around each pixel and then takes the pixel value
from the plane in which the highest variance is found.

Flags

See Also
Chapter III-11, Image Processing contains links to and descriptions of other image operations.

ImageFromXYZ
ImageFromXYZ [flags] xyzWave, dataMatrix, countMatrix
ImageFromXYZ [flags] {xWave,yWave,zWave}, dataMatrix, countMatrix
ImageFromXYZ converts XYZ data to matrix form. You might use it, for example, to convert a "sparse
matrix" to an actual matrix for easier display and processing.
You provide the input data in the XYZ triplet xyzWave or in 1D waves xwave, ywave, and zwave.
dataMatrix and countMatrix receive output data but you must create them prior to calling ImageFromXYZ.
For each XY location in the input data, ImageFromXYZ adds the corresponding Z value to an element of
dataMatrix. The element is determined based on the input XY location and the X and Y scaling of dataMatrix.
For each XY location in the input data, ImageFromXYZ increments the corresponding element of
countMatrix. This permits you to obtain an average Z value if multiple input values fall into a given element
of dataMatrix.

Parameters
xyzWave is a triplet wave containing the input XYZ data.
xWave, yWave and zWave are 1D input waves containing XYZ data.
You specify either xyzWave by itself or xWave, yWave and zWave in braces.
dataMatrix is a 2D wave to which the Z values are added. It must be either single-precision or double-
precision floating point. The X and Y scaling of dataMatrix determines how input values are mapped to
output matrix elements.
countMatrix is a 2D wave the elements of which store the number of Z values added to each corresponding
element of dataMatrix. ImageFromXYZ sets it to 32-bit integer if it is not already so.

/ED=edepth Sets the effective depth in planes. For example, an effective depth of one means that
it computes the best focus for each plane using a stack of three planes, which includes
the current plane and any one adjacent plane above and below it. Does not affect the
default method (/METH=0).

/METH=method

/Q Quiet mode; no output to history area.

/Z No error reporting.

Specifies the calculation method.
method=0: Computes a single plane output for the stack (default).
method=1: Computes the best image for each plane using /ED.

ImageGenerateROIMask

V-318

Flags

Details
For each point in the XYZ input data, ImageFromXYZ adds the Z value to the appropriate element of
dataMatrix and increments the corresponding element of countMatrix. Normally you will clear dataMatrix
and countMatrix before calling it.
You can combine multiple XYZ datasets in one matrix by calling ImageFromXYZ multiple times with
different input data and the same dataMatrix and countMatrix. In this case you would clear dataMatrix and
countMatrix before the first call to ImageFromXYZ only.
What you do with the output is up to you but one technique is to divide dataMatrix by countMatrix to get
the average and then use MatrixFilter NanZapMedian to eliminate any NaN values that result from zero
divided by zero.

Example
Make /N=1000 /O wx=enoise(2), wy= enoise(2), wz= exp(-(wx^2+wy^2))
Make /O /N=(100,100) dataMat=0
SetScale x,-2,2,dataMat
SetScale y,-2,2,dataMat
Duplicate /O dataMat,countMat
ImageFromXYZ /AS {wx,wy,wz}, dataMat, countMat

// Execute these one at a time
NewImage dataMat
dataMat /= countMat // Replace cumulative z value with average
MatrixFilter NanZapMedian, dataMat // Apply median filter, zapping NaNs

See Also
SetScale, Image X and Y Coordinates on page II-301.

ImageGenerateROIMask
ImageGenerateROIMask [/W=winName/E=e/I=i] imageInstance
The ImageGenerateROIMask operation creates a Region Of Interest (ROI) mask for use with other
ImageXXX commands. It assumes the top (or /W specified) graph contains an image and that the user has
drawn shapes using Igor’s drawing tools in a specific manner.
ImageGenerateROIMask creates an unsigned byte mask matrix with the same x and y dimensions and
scaling as the specified image. The mask is initially filled with zeros. Then the drawing layer, progFront, in
the graph is scanned for suitable fillable draw objects. The area inside each shape is filled with ones unless
the fill mode for the shape is set to erase in which case the area is filled with zeros.

Flags

Details
To generate an ROI wave for use with most image processing operations you need to set the values of
interior pixels to zero and exterior pixels to one using /E=1/I=0.
Suitable objects are those that can be filled (rectangles, ovals, etc.) and which are plotted in axis coordinate
mode specified using the same axes by which the specified image instance is displayed. Objects plotted in
plot relative mode are also used, However, this is not recommended because it will give correct results only

/AS If /AS (autoscale) is specified, ImageFromXYZ clears both dataMatrix and countMatrix and sets
the X and Y scaling of dataMatrix based on the range of X and Y input values.

/E=e Changes value used for the exterior from the default zero values to e.

/I=i Changes value used for the interior from the default one values to i.

/W=winName Looks for the named graph window or subwindow containing appropriate image
masks drawn by the user. If /W is omitted, ImageGenerateROIMask uses the top
graph window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

ImageGLCM

V-319

if the image exactly fills the plot rectangle. If you use axis coordinate mode then you can zoom in or out as
desired and the resulting mask will still be correct.
Note that the shapes can have their fill mode set to none. This still results in a fill of ones. This is to allow
the drawn ROI to be visible on the graph without obscuring the image. However cutouts (fills with erase
mode) will obscure the image.
Note also that nonfill drawing objects are ignored. You can use this fact to create callouts and other annotations.
In a future version of Igor, we may create a new drawing layer in graphs dedicated to ROIs.
The mask generated is named M_ROIMask and is generated in the current data folder.
Variable V_flag is set to 1 if the top graph contained draw objects in the correct layer and 0 if not. If 0 then
the M_ROIMask wave was not generated.

Examples
Make/O/N=(200,400) jack=x*y; NewImage jack; ShowTools
SetDrawLayer ProgFront
SetDrawEnv linefgc=(65535,65535,0),fillpat=0,xcoord=top,ycoord=left,save
DrawRect 63.5,79.5,140.5,191.5
DrawRRect 61.5,206.5,141.5,280.5
SetDrawEnv fillpat= -1
DrawOval 80.5,169.5,126.5,226.5
ImageGenerateROIMask jack
NewImage M_ROIMask
AutoPositionWindow/E

See Also
For another example see Generating ROI Masks on page III-331.

ImageGLCM
ImageGLCM [flags] srcWave
The ImageGLCM operation calculates the gray-level co-occurrence matrix for an 8-bit grayscale image and
optionally evaluates Haralick's texture parameters.
The ImageGLCM operation was added in Igor Pro 7.00.

Flags

/D=distance Sets the offset in pixels for which the co-occurrence matrix is calculated. The default
value is 1.

/DEST=destGLCM Specifies the wave to hold the co-occurrence matrix. If you omit /DEST the operation
stores the matrix in the wave M_GLCM in the current data folder.

/DETP=destParamWave

Specifies the wave to hold the computed texture parameters. If you omit /DETP the
operation stores the texture parameters in the wave W_TextureParams in the current
data folder.
If the destination wave already exists it is overwritten. Note that you must specify the
/HTFP flag to compute the texture parameters.

/E=structureBits structureBits is a bitwise setting that lets you control the combination of co-
occurrences that you want to compute.
Consider a wave displayed in a table and a pixel at position x

0 3 5
1 x 6
2 4 7

0 3 5
1 x 6
2 4 7

ImageGLCM

V-320

Details
ImageGLCM computes the co-occurrence matrix for the image in srcWave and optionally evaluates
Haralick's texture parameters. The operation supports 8-bit grayscale images and generates a 256x256
single-precision floating point co-occurrence matrix.
The elements of the matrix P[i][j] are defined as the normalized number of pixels that have a spatial
relationship defined by the distance (/D) and the structure (/E) such that the first pixel has gray-level i and
the second pixel has gray-level j. The matrix is normalized so that the sum of all its elements is 1.
If you specify the /HTFP flag the operation computes the 13 Haralick texture parameters and stores them
sequentially in the destination wave (see /DETP). The wave is saved with dimension labels defining each
element. The expressions for the texture parameters are:

The structureBits corresponding to co-occurrence between x and any direction is
simply 2^direction. By default the operation computes all combinations. This is
equivalent to structureBits=255.
Note that the structureBits only define directions. The combination of the distance (/D)
and the structureBits define the full co-occurrence calculation.
See Setting Bit Parameters on page IV-12 for details about bit settings.

/FREE Creates output waves as free waves.
/FREE is permitted in user-defined functions only, not from the command line or in
macros.
If you use /FREE then destGLCM and destParamWave must be simple names, not paths.
See Free Waves on page IV-84 for details on free waves.

/HTFP Computes Haralick's texture parameters. See the discussion in the Details section
below for more information about the texture parameters.

/P=plane If the image consists of more than one plane you can use this flag to determine which
plane in srcWave is analysed. By default it is plane zero.

/Z No error reporting.

f1 = p[i][j]()2
,

j
∑

i
∑f1 = p[i][j]()2

,
j
∑

i
∑

f2 = n2 p[i][j]
j=0
i− j =n

255

∑
i=0

255

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
n=0

254

∑ ,f2 = n2 p[i][j]
j=0
i− j =n

255

∑
i=0

255

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
n=0

254

∑ ,

f3 =
(i − μx)(j − μy)p[i][j]

σ xσ y

,
j
∑

i
∑f3 =

(i − μx)(j − μy)p[i][j]

σ xσ y

,
j
∑

i
∑

f4 = (i − μ)2 p[i][j],
j
∑

i
∑f4 = (i − μ)2 p[i][j],

j
∑

i
∑

f5 = 1

1+ (i − j)2 p[i][j],
j
∑

i
∑f5 = 1

1+ (i − j)2 p[i][j],
j
∑

i
∑

ImageGLCM

V-321

Here

f6 = ipx+y(i)
i
∑ ,f6 = ipx+y(i)
i
∑ ,

f7 = (i − f6)2 px+y(i)
i
∑ ,f7 = (i − f6)2 px+y(i)
i
∑ ,

f8 = − px+y(i)
i
∑ log px+y(i)(),f8 = − px+y(i)
i
∑ log px+y(i)(),

f9 = − p[i][j]
j
∑

i
∑ log p[i][j](),f10 =Variance px−y(),f9 = − p[i][j]

j
∑

i
∑ log p[i][j](),

f10 =Variance px−y(),f10 =Variance px−y(),

f11 = px−y(i)log px−y(i)()
i
∑ ,f11 = px−y(i)log px−y(i)()
i
∑ ,

f12 = f9 − HXY1

max HX,HY() ,f12 = f9 − HXY1

max HX,HY() ,

f13 = 1− exp −2 HXY 2 − f 9()().f13 = 1− exp −2 HXY 2 − f 9()().

px (i) = p[i][j],
j
∑ py(j) = p[i][j],

i
∑px (i) = p[i][j],

j
∑ py(j) = p[i][j],

i
∑

μx = ipx (i),
i
∑ μy = ipy(i),

i
∑ μ = (μx + μy) / 2.μx = ipx (i),

i
∑ μy = ipy(i),

i
∑ μ = (μx + μy) / 2.

σ x = 1− μx()2
px (i)

i
∑ , σ y = 1− μy()2

py(i)
i
∑ ,

px+y(k) = p[i][j],
j
i+ j=k

∑
i
∑px+y(k) = p[i][j],

j
i+ j=k

∑
i
∑

ImageHistModification

V-322

There are at least two versions of f7 used in the literature and in software. We know of at least three versions
of f14 so ImageGLCM does not compute it.

References
R.M. Haralick, K. Shanmugam and Itshak Dinstein, "Textural Features for Image Classification", IEEE
Transactions on Systems, Man, and Cybernetics, 1973.

ImageHistModification
ImageHistModification [flags] imageMatrix
The ImageHistModification operation performs a modification of the image histogram and saves the results
in the wave M_ImageHistEq. If /W is not specified, the operation is a simple histogram equalization of
imageMatrix. If /W is specified, the operation attempts to produce an image with a histogram close to
waveName. If /A is specified, the operation performs an adaptive histogram equalization. imageMatrix is a
wave of any noncomplex numeric type. Adaptive histogram equalization applies only to 2D waves and the
other parts apply to both 2D and 3D waves.

Flags

/A Performs an adaptive histogram equalization by subdividing the image into a
minimum of 4 rectangular domains and using interpolation to account for the
boundaries between adjacent domains. When the /C flag is specified with contrast
factor greater than 1, this operation amounts to contrast-limited adaptive histogram
equalization. By default the operation divides the image into 8 horizontal and 8
vertical regions. See /H and /V.

/B=bins Specifies the number of bins used with the /A flag. If not specified, this value defaults
to 256.

/C=cFactor Specifies a contrast factor (or clipping value) above which pixels are equally
distributed over the whole range. cFactor must be greater than 1, in the limit as cFactor
approaches 1 the operation is a regular adaptive histogram equalization. Note: this
flag is used only with the /A flag.

/H=hRegions Specifies the number of horizontal subdivisions to be used with the /A feature. Note,
the number of image pixels in the horizontal direction must be an integer multiple of
hRegions.

/I Extends the standard histogram equalization by using 216 bins instead of 28 when
calculating histogram equalization. This feature does not apply to the adaptive
histogram equalization (/A flag).

px−y(k) = p[i][j],
j
i− j =k

∑
i
∑px−y(k) = p[i][j],

j
i− j =k

∑
i
∑

HXY1= − p[i][j]log px (i)py(j)(),
j
∑

i
∑HXY1= − p[i][j]log px (i)py(j)(),

j
∑

i
∑

HXY 2 = − px (i)py(j)log px (i)py(j)()
j
∑

i
∑ ,

HX = − px (i)log px (i)(),
i
∑ HY = − py(i)log py(i)().

i
∑

ImageHistogram

V-323

See Also
The ImageGenerateROIMask and ImageTransform operations for creating ROIs. For examples see
Histograms on page III-325 and Adaptive Histogram Equalization on page III-307.

ImageHistogram
ImageHistogram [flags] imageMatrix
The ImageHistogram operation calculates the histogram of imageMatrix. The results are saved in the wave
W_ImageHist. If imageMatrix is an RGB image stored as a 3D wave, the resulting histograms for each color
plane are saved in W_ImageHistR, W_ImageHistG, W_ImageHistB.
imageMatrix must be a real-valued numeric wave.

Flags

/O Overwrites the source image. If this flag is not specified, the resulting image is saved
in the wave M_ImageHistEq.

/R=roiSpec Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/b/u). The ROI wave must have the same number of rows and columns as
imageMatrix. The ROI itself is defined by the entries whose values are 0. Regions
outside the ROI can take any nonzero value. The ROI does not have to be contiguous
and can take any arbitrary shape.

By default roiFlag is set to 1 and it is then possible to use the /R flag with the
abbreviated form /R=roiWave. When imageMatrix is a 3D wave, roiWave can be either
a 2D wave (matching the number of rows and columns in imageMatrix) or it can be a
3D wave which must have the same number of rows, columns, and layers as
imageMatrix. When using a 2D roiWave with a 3D imageMatrix, the ROI is understood
to be defined by roiWave for each layer in the 3D wave.
See ImageGenerateROIMask for more information on creating ROI waves.

/V=vRegions Specifies the number of vertical subdivisions to be used with the /A flag. The number
of image pixels in the horizontal direction must be an integer multiple of vRegions. If
the image dimensions are not divisible by the number of regions that you want, you
can pad the image using ImageTransform padImage.

/W=waveName Specifies a 256-point wave that provides the desired histogram. The operation will
attempt to produce an image having approximately the desired histogram values.
This flag does not apply to the adaptive histogram equalization (/A flag)

/I Calculates a histogram with 65536 bins evenly distributed between the minimum and
maximum data values. The operation first finds the extrema and then calculates the
bins and the resulting histogram. Data can be a 2D wave of any type including float
or double.

/P=plane Restricts the calculation of the histogram to a specific plane when imageMatrix is a non
RGB 3D wave.

In general, the roiSpec has the form {roiWaveName, roiFlag}, where roiFlag can
take the following values:
roiFlag=0: Set pixels outside the ROI to 0.
roiFlag=1: Set pixels outside the ROI as in original image (default).
roiFlag=2: Set pixels outside the ROI to NaN (=64).

ImageInfo

V-324

Details
The ImageHistogram operation works on images, but it handles both 2D and 3D waves of any data type.
Unless you use one of the special features of this operation (e.g., ROI or /P or /I) you could alternatively use
the Histogram operation, which computes the histogram for the full wave and includes additional options
for controlling the number of bins.
If the data type of imageMatrix is single byte, the histogram will have 256 bins from 0 to 255. Otherwise, the
256 bins will be distributed between the minimum and maximum values encountered in the data. Use the
/I flag to increase the number of bins to 65536, which may be useful for unsigned short (/W/U) data.

See Also
ImageHistModification, ImageGenerateROIMask, JointHistogram, Histograms on page III-325

ImageInfo
ImageInfo(graphNameStr, imageWaveNameStr, instanceNumber)
The ImageInfo function returns a string containing a semicolon-separated list of information about the
specified image in the named graph window or subwindow.

Parameters
graphNameStr can be "" to refer to the top graph.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
imageWaveNameStr contains either the name of a wave displayed as an image in the named graph, or an
image instance name (wave name with “#n” appended to distinguish the nth image of the wave in the
graph). You might get an image instance name from the ImageNameList function.
If imageWaveNameStr contains a wave name, instanceNumber identifies which instance you want information
about. instanceNumber is usually 0 because there is normally only one instance of a wave displayed as an
image in a graph. Set instanceNumber to 1 for information about the second image of the wave, etc. If
imageWaveNameStr is "", then information is returned on the instanceNumberth image in the graph.
If imageWaveNameStr contains an instance name, and instanceNumber is zero, the instance is taken from
imageWaveNameStr. If instanceNumber is greater than zero, the wave name is extracted from
imageWaveNameStr, and information is returned concerning the instanceNumberth instance of the wave.

/R=roiWave Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/b/u) that has the same number of rows and columns as imageMatrix. The ROI
itself is defined by the entries o pixels in the roiWave with value of 0. Pixels outside the
ROI may have any nonzero value. The ROI does not have to be contiguous. When
imageMatrix is a 3D wave, roiWave can be either a 2D wave (matching the number of
rows and columns in imageMatrix) or it can be a 3D wave that must have the same
number of rows, columns and layers as imageMatrix. When using a 2D roiWave with a
3D imageMatrix the ROI is understood to be defined by roiWave for each layer in the
3D wave.
See ImageGenerateROIMask for more information on creating 2D ROI waves.

/S Computes the histogram for a whole 3D wave possibly subject to 2D or 3D ROI
masking. The /S and /P flags are mutually exclusive.

ImageInfo

V-325

Details
The string contains several groups of information. Each group is prefaced by a keyword and colon, and
terminated with the semicolon for ease of use with StringByKey. The keywords are as follows:

The format of the RECREATION information is designed so that you can extract a keyword command from
the keyword and colon up to the “;”, prepend “ModifyImage ”, replace the “x” with the name of a image
plot (“data#1” for instance) and then Execute the resultant string as a command.

Example 1
This example gets the image information for the second image plot of the wave "jack" (which has an instance
number of 1) and applies its ModifyImage settings to the first image plot.
#include <Graph Utility Procs>, version>=6.1 // For WMGetRECREATIONFromInfo

// Make two image plots of the same data on different left and right axes
Make/O/N=(20,20) jack=sin(x/5)+cos(y/4)
Display;AppendImage jack // bottom and left axes
AppendImage/R jack // bottom and right axes

// Put image plot jack#0 above jack#1
ModifyGraph axisEnab(left)={0.5,1},axisEnab(right)={0,0.5}

// Set jack#1 to use the Rainbow color table instead of the default Grays
ModifyImage jack#1 ctab={*,*,Rainbow,0}

Keyword Information Following Keyword

AXISFLAGS Flags used to specify the axes. Usually blank because /L and /B (left and bottom axes)
are the defaults.

COLORMODE

RECREATION Semicolon-separated list of keyword=modifyParameters commands for the
ModifyImage command.

XAXIS X axis name.

XWAVE X wave name if any, else blank.

XWAVEDF The full path to the data folder containing the X wave or blank if there is no X wave.

YAXIS Y axis name.

YWAVE Y wave name if any, else blank.

YWAVEDF The full path to the data folder containing the Y wave or blank if there is no Y wave.

ZWAVE Name of wave containing Z data used to calculate the image plot.

ZWAVEDF The full path to the data folder containing the Z data wave.

A number indicating how the image colors are derived:
1: Color table (see Image Color Tables on page II-305).
2: Scaled color index wave (see Indexed Color Details on page II-312).
3: Point-scaled color index (See Example: Point-Scaled Color Index Wave

on page II-313).
4: Direct color (see Direct Color Details on page II-313).
5: Explicit Mode (See ModifyImage explicit keyword).

ImageInterpolate

V-326

Now we peek at some of the image information for the second image plot of the wave "jack" (which has an
instance number of 1) displayed in the top graph:
Print ImageInfo("","jack",1)[69,148] // Just the interesting stuff

;ZWAVE:jack;ZWAVEDF:root:;COLORMODE:1;RECREATION:ctab= {*,*,Rainbow,0};plane= 0;

// Apply the color table, etc from jack#1 to jack:
String info= WMGetRECREATIONFromInfo(ImageInfo("","jack",1))
info= RemoveEnding(info) // Remove trailing semicolon

// Use comma instead of semicolon separators
String text = ReplaceString(";", info, ",")
Execute "ModifyImage jack " + text

Example 2
This example gets the full path to the wave containing the Z data from which the first image plot in the top
graph was calculated.
String info= ImageInfo("","",0) // 0 is index of first image plot
String pathToZ= StringByKey("ZWAVEDF",info)+StringByKey("ZWAVE",info)
Print pathToZ

root:jack

See Also
The ModifyImage, AppendImage, NewImage and Execute operations.
Image Plots on page II-297.
Image Instance Names on page II-314.

ImageInterpolate
ImageInterpolate [flags] Method srcWave
The ImageInterpolate operation interpolates the source srcWave and stores the results in the wave
M_InterpolatedImage in the current data folder unless you specify a different destination wave using the
/DEST flag.

ImageInterpolate

V-327

Parameters
Method selects type of interpolation. Method is one of the following names:

Affine2D Performs an affine transformation on srcWave using parameters specified by the /APRM flag.
The transformation applies to a general combination of rotation, scaling, and translation
represented by a 3x3 matrix

The upper 2x2 matrix is a composite of rotation and scaling, tx and ty are composite
translations and w is usually 1. It computes the dimensions of the output wave and then uses
the inverse transformation and bilinear interpolation to compute the value of each output
pixel. When an output pixel does not map back into the source domain it is set to the user-
specified background value. It supports 2D and 3D input waves. If srcWave is a 3D wave it
applies on a layer by layer basis.
The output is stored in the wave M_Affine in the current data folder.

/ATOL Allows ImageInterpolate to use a tolerance value if the result of the interpolation at any point
is NaN. The algorithm returns the first non-NaN value it finds by adding or subtracting
1/10000th of the size of the X or Y interpolation step. At worst this algorithm is 5 times slower
than the default algorithm if the interpolation is performed in a region which is completely
outside the convex source domain.
/ATOL was added in Igor Pro 7.00.

/CMSH Use this flag in Voronoi interpolation to create a triangle mesh surface representing the input
data. After triangulating the X, Y locations (in a plane z=const), the mesh is generated from a
sequence of XYZ vertices of all the resulting triangles. The output is stored in the wave
M_ScatterMesh in the current data folder. It is in the form of a triplet wave where every
consecutive 3 rows represent a disjoint triangle.
If the input contains a NaN or INF in any column, the corresponding row is excluded from the
triangulation.
If you want to generate this mesh without generating the interpolated matrix you can omit the
/S flag.
/CMSH was added in Igor Pro 7.00.

Bilinear Performs a bilinear interpolation subject to the specified flag. You can use either the /F or /S
flag, but not both.

Kriging Uses Kriging to generate an interpolated matrix from a sparse data set. Kriging calculates
interpolated values for a rectangular domain specified by the /S flag. The Kriging parameters
are specified via the /K flag.
Kriging is computed globally for a single user-selected variogram model. If there are
significant spatial variances within the domain occupied by the data, you should consider
subdividing the domain along natural boundaries and use a single variogram model in each
subdivision.
If there are N data points, the algorithm first computes the NxN matrix containing the
distances between the data and then inverts an associated matrix of similar size to compute
the result for the selected variogram model. Because inversion of an NxN matrix can be
computationally expensive, you should consider restricting the calculation to regions that are
similar to the range implied by the variogram. Such an approach can also be justified in the
sense that the local interpolation should not be affected by a remote datum.
Note: Kriging does not support data containing NaNs or INFs. Wave scaling has no effect.

M =
r11 r12 tx
r21 r22 ty

0 0 w

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.

ImageInterpolate

V-328

Pixelate Creates a lower resolution (pixelated) version of srcWave by averaging the pixels inside
domain specified by /PXSZ flag. The results are saved in the wave M_PixelatedImage in the
current data folder.
The computed wave has the same numeric type as srcWave so the averaging may be inaccurate
in the case of integer waves.
When srcWave is a 3D wave you have the option of averaging only over data in each layer
using /PXSZ={nx,ny} or averaging over data in a rectangular cube using /PXSZ={nx,ny,nz}.
When not averaging over layers, the number of rows and columns of the new image are
obtained by integer division of the original number by the respective size of the averaging
rectangle and adding one more pixel for any remainder.
When averaging over layers the resulting rows and columns are obtained by truncated integer
division ignoring remainders (if any).

Resample Computes a new image based on the selected interpolation function and transformation
parameters. Set the interpolation function with the /FUNC flag. Use the /TRNS flag to specify
transformation parameters for grayscale images, or /TRNR, /TRNG, and /TRNB for the red,
green, and blue components, respectively, of RGB images. M_InterpolatedImage contains the
output image in the current data folder.
There are currently two transformation functions: the first magnifies an image and the second
applies a radial polynomial sampling. The radial polynomial affects pixels based on their
position relative to the image center. A linear polynomial reproduces the same image. Any
nonlinear terms contribute to distortion (or correction thereof).

Spline Computes a 2D spline interpolation for 2D matrix data. The degree of the spline is specified
by the /D flag.

Voronoi Generates an interpolated matrix from a sparse data set (srcWave must be a triplet wave) using
Voronoi polygons. It calculates interpolated values for a rectangular domain as specified by
the /S or /RESL flags.
It first computes the Delaunay triangulation of X, Y locations in the Z=0 plane (assuming that
X, Y positions occupy a convex domain in the plane). It then uses the Voronoi dual to
interpolate the Z values for X and Y pairs from the grid defined by the /S flag. The computed
grid may exceed the bounds of the convex domain defined by the triangulation. Interpolated
values for points outside the convex domain are set to NaN or the value specified by the /E
flag.
Use the /I flag to iterate to finer triangulation by subdividing the original triangles into smaller
domains. Each iteration increases computation time by approximately a factor of two, but
improves the smoothness of the interpolation.
If you have multiple sets of data in which X,Y locations are unchanged, you can use the /STW
flag to store one triangulation and then use the /PTW flag to apply the precomputed
triangulation to a new interpolation. To use this option you should use the Voronoi keyword
first with a triplet wave for srcWave and set xn = x0 and yn = y0. The operation creates the wave
W_TriangulationData that you use in the next triangulation with a 1D wave as srcWave.
Voronoi interpolation is similar to what can be accomplished with the ContourZ function
except that it does not require an existing contour plot, it computes the whole output matrix
in one call, and it has the option of controlling the subdivision iterations.
See Voronoi Interpolation Example below.

XYWaves Performs bilinear interpolation on a matrix scaled using two X and Y 1D waves (specified by
/W). The interpolation range is defined by /S. The data domain is defined between the centers
of the first and last pixels (X in this example):
xmin=(xWave[0]+xWave[1])/2
xmax=(xWave[last]+xWave[last-1])/2

Values outside the domain of the data are set to NaN. The interpolation is contained in the
M_InterpolatedImage wave, which is single precision floating point or double precision if
srcWave is double precision.

ImageInterpolate

V-329

Flags

Warp Performs image warping interpolation using a two step algorithm with three optional
interpolation methods. The operation warps the image based on the relative positions of
source and destination grids. The warped image has the same size as the source image. The
source and destination grids are each specified by a pair of 2D X and Y waves where the rows
and columns correspond to the relative location of the source grid. The smallest supported
dimensions of grid waves are 2x2. All grid waves must be double-precision floating point and
must have the same number of points corresponding to pixel positions within the image. Grid
waves must not contain NaNs or INFs. Wave scaling is ignored.

/APRM={r11,r12,tx,r21,r22,ty,w,background}

Sets elements of the affine transformation matrix and the background value.

/D=splineDeg Specifies the spline degree with the Spline method. The default spline degree is 2.
Supported values are 2, 3, 4, and 5.

/DEST=destWave Specifies the wave to contain the output of the operation. If the specified wave already
exists, it is overwritten.
Creates a wave reference for the destination wave in a user function. See Automatic
Creation of WAVE References on page IV-66 for details.

/E=outerValue Assigns outerValue to all points outside the convex domain of the Delaunay
triangulation. By default outerValue = NaN.

/F={fx,fy} Calculates a bilinear interpolation of all the source data. Here fx is the sampling factor
for the X-direction and fy is the sampling factor in the Y-direction. The output number
of points in a dimension is factor*(number of data intervals) +1. The number of data
intervals is one less than the number of points in that dimension.
For example, if srcWave is a 2x2 matrix (you have a single data interval in each
direction) and you use /F={2,2}, then the output wave is a 3x3 matrix (i.e., 2x2
intervals) which is a factor of 2 of the input. Sampling factors can be noninteger
values.

/FDS Performs spline interpolation to a “local” cubic spline that depends only on the 2D
neighboring data. The interpolation goes exactly through the original data and
provides continuity of the function and its first derivative. The second derivative is
set to vanish on the boundary. The implemented algorithm was provided by Francis
Dalaudier. /FDS was added in Igor Pro 7.00.

/FUNC=funcName

/I=iterations Specifies the number of times the original triangulation is subdivided with the
Voronoi interpolation method. By default the Voronoi interpolation computes the
original triangulation without subdivision.

/K={model, nugget, sill, range}

Specifies the interpolation function. funcName can be:
nn Nearest neighbor interpolation uses the value of the nearest neighbor

without interpolation. This is the fastest function.
bilinear Bilinear interpolation uses the immediately surrounding pixels and

computes a linear interpolation in each dimension. This is the second
fastest function.

cubic Cubic polynomial (photoshop-like) uses a 4x4 neighborhood value to
compute the sampled pixel value.

spline Spline smoothed sampled value uses a 4x4 neighborhood around the
pixel.

sinc Slowest function using a 16x16 neighborhood.

ImageInterpolate

V-330

/PFTL=tol In Voronoi interpolation, controls the rectangular neighborhood about each datum
position XY where the algorithm returns the original Z-value. The tolerance value
0 <= tol < 1 is tested separately in X and Y (i.e., it is not a geometric distance) when
both X and Y are normalized to the range [0,1]. By default tol=1e-15.
Added in Igor Pro 7.00.

/PTW=tWave Uses a previous triangulation wave with Voronoi interpolation. tWave will be the
wave saved by the /STW flag. You can’t use a triangulation wave that was computed
and saved on a different computer platform.
See PTW Flag Example on page V-332.

/PXSZ={nx,ny} Specifies the size in pixels of the averaging rectangle used by the Pixelate operation.
nx is the number of rows and ny is the number of columns that are averaged to yield
a single output pixel. If srcWave is a 3D wave the resulting wave has the same
number of layers as srcWave with pixelation computed on a layer-by-layer basis.

/PXSZ={nx,ny,nz} Specifies the size in pixels of the averaging rectangle used by the Pixelate operation.
nx is the number of rows and ny is the number of columns and nz is the number of
layers that are averaged to yield a single output pixel.
This form of the /PXSZ flag was added in Igor Pro 7.00.

/RESL={nx, ny} Specifies resampling the full input image to an output image having nx rows by ny
columns.

/S={x0,dx,xn,y0,dy,yn}

Calculates a bilinear interpolation of a subset of the source data. Here x0 is the starting
point in the X-direction, dx is the sampling increment, xn is the end point in the X-
direction and the corresponding values for the Y-direction. If you set x0 equal to xn
the operation will compute the triangulation but not the interpolation.

Specifies the variogram parameters for kriging using standard notation, models are
expressed in terms of the nugget value C0, sill value C0+C1, and range a.

Wave scaling has no effect on kriging calculations.

model Selects the variogram model. Values and models are:

1: Spherical.

2: Exponential.

3: Gaussian.

nugget Specifies the lowest value in the variogram.
sill Specifies the maximum (plateau) value in the variogram range the

characteristic length of the different variogram models.

1.0

0.8

0.6

0.4

0.2

0.0
γ(

h)

120100806040200
Lag(h)

nugget

sill

range (a)
C1

C0

γ h() C0 C1 3h 2a⁄ 0.5 h3 a3⁄⋅–()⋅+=

γ h() C0 C1 1 3– h a⁄⋅[]exp–()⋅+=

γ h() C0 C1 1 3– h a⁄()2⋅[]exp–()⋅+=

ImageInterpolate

V-331

Flags for Warp

/SPRT Skips the XY perturbation step. The perturbation step is designed to break
degeneracies that originate when the XY data are sampled on a rectangular grid. If
your data are not sampled on a rectangular grid you can skip the perturbation and get
better accuracy in reproducing the Z-values at the sampled locations. See also
ModifyContour with the keyword Perturbation.
Added in Igor Pro 7.00.

/STW Saves the triangulation information in the wave W_TriangulationData in the current
data folder. W_TriangulationData can only be used on the computer platform where
it was created.

/SV Saves the Voronoi interpolation in the 2D wave M_VoronoiEdges, which contains
sequential edges of the Voronoi polygons. Edges are separated from each other by a
row of NaNs. The outer most polygons share one or more edges with a large triangle
containing the convex domain.

/TRNS={transformFunc,p1,p2,p3,p4}

/U=uniformScale Calculates a bilinear interpolation of all the source data as with the /F flag but with
two exceptions: A single uniform scale factor applies in both dimensions, and the
scale factor applies to the number of points — not the intervals of the data.

/W={xWave, yWave} Provides the scaling waves for XYWaves interpolation. Both waves must be
monotonic and must have one more point than the corresponding dimension in
srcWave. The waves contain values corresponding to the edges of data points in
srcWave, so that the X value at the first data point is equal to
(xWave[0]+xWave[1])/2.

/dgrx=wave Sets the wave containing the destination grid X data.

/dgry=wave Sets the wave containing the destination grid Y data.

/sgrx=wave Sets the wave containing the source grid X data.

/sgry=wave Sets the wave containing the source grid Y data.

Determines the mapping between a pixel in the destination image and the source
pixel. transformFunc can be:

The corresponding parameters are:

scaleShift Sets image scaling which could be anamorphic if the X and Y
scaling are different.

radialPoly Corrects both color as well as barrel and pincushion distortion. In
radialPoly the mapping from a destination pixel to a source
pixel is a polynomial in the pixel’s radius relative to the center of
the image.
A source pixel, sr, satisfies the equation:

where r is the radius of a destination pixel having an origin at the
center of the destination image.

transformFunc p1 p2 p3 p4

scaleShift xOffset xScale yOffset yScale

di lP l b d

sr = ar + br2 + cr3 + dr4 ,

ImageInterpolate

V-332

Details
When computing Bilinear or Spline interpolation srcWave can be a 2D or a 3D wave. When srcWave is a 3D
wave the interpolation is computed on a layer by layer basis and the result is stored in a corresponding 3D
wave. When the interpolation method is Kriging or Voronoi, srcWave is a 2D triplet wave (3-column wave)
where each row specifies the X, Y, Z values of a datum. srcWave can be of any real data type. Results are
stored in the wave M_InterpolatedImage. If srcWave is double precision so is M_InterpolatedImage;
otherwise M_InterpolatedImage is a single precision wave.

Voronoi Interpolation Example
Function DemoVoronoiInterpolation()

Make/O/N=(100,3) sampleTriplet
sampleTriplet[][0]=enoise(5)
sampleTriplet[][1]=enoise(5)
sampleTriplet[][2]=sqrt(sampleTriplet[p][0]^2+sampleTriplet[p][1]^2)

// Interpolate the data to a rectangular grid of 50x50 pixels
ImageInterpolate/RESL={50,50}/DEST=firstImage voronoi, sampleTriplet

// Triangulate the XY locations and save the triangulation wave
ImageInterpolate/STW voronoi, sampleTriplet

// Use the previous triangulation on the Z column of the sample
MatrixOp/O zData=col(sampleTriplet,2)
Wave W_TriangulationData
ImageInterpolate/PTW=W_TriangulationData/RESL={50,50}/DEST=secondImage voronoi, zData

End

PTW Flag Example
Function DemoPTW()

// Create some random data
Make/O/N=(100,3) eee = enoise(5)

// Compute triangulation wave
ImageInterpolate/RESL={1,1}/STW voronoi, eee
Wave W_TriangulationData

// Copy the Z-column to a 1D wave
MatrixOp/O e3 = col(eee,2)

// Use the previous triangulation with 1D wave
ImageInterpolate/PTW=W_TriangulationData /RESL={100,100} voronoi, e3
Wave M_InterpolatedImage
Duplicate/O M_InterpolatedImage, oneD

// Direct computation for comparison
ImageInterpolate/RESL={100,100} voronoi, eee

// Display
NewImage M_InterpolatedImage
NewImage oneD

End

See Also
The interp, Interp3DPath, ImageRegistration, and Loess operations. The ContourZ function. For
examples see Interpolation and Sampling on page III-312.

References
Unser, M., A. Aldroubi, and M. Eden, B-Spline Signal Processing: Part I-Theory, IEEE Transactions on Signal

Processing, 41, 821-832, 1993.
Douglas B. Smythe, “A Two-Pass Mesh Warping Algorithm for Object Transformation and Image

Interpolation” ILM Technical Memo #1030, Computer Graphics Department, Lucasfilm Ltd. 1990.

/WM=im Sets the interpolation method for warping an image.
im=1: Fast selection of original data values.
im=2: Linear interpolation.
im=3: Smoothing interpolation (slow)

ImageLineProfile

V-333

ImageLineProfile
ImageLineProfile [flags] xWave=xwave, yWave=ywave, srcWave=srcWave [,

width=value, widthWave=wWave]
The ImageLineProfile operation provides sampling of a source image along an arbitrary path specified by
the two waves: xWave and yWave. The arbitrary path is made of line segments between every two
consecutive vertices of xWave and yWave. In each segment the profile is calculated at a number of points
(profile points) equivalent to the sampling density of the original image (unless the /V flag is used). Both
xWave and yWave should have the same scaling as srcWave. If srcWave does not have the same scaling in
both dimensions you should remove the scaling to compute an accurate profile.
At each profile point, the profile value is calculated by averaging samples along the normal to the profile
line segment. The number of samples in the average is determined by the keyword width. The operation
actually averages the interpolated values at N equidistant points on the normal to profile line segment, with
N=2(width+0.5). Samples outside the domain of the source image do not contribute to the profile value.
The profile values are stored in the wave W_ImageLineProfile. The actual locations of the profile points are
stored in the waves W_LineProfileX and W_LineProfileY. When the averaging width is greater than zero,
the operation can also calculate at each profile point the standard deviation of the values sampled for that
point (see /S flag). The results are then stored in the wave W_LineProfileStdv. When using this operation
on 3D RGB images, the profile values are stored in the 3 column waves M_ImageLineProfile and
M_LineProfileStdv respectively.

Parameters

Flags

Examples
Make/N=(50, 50) sampleData
sampleData = sin((x-25) / 10) * cos((y-25) / 10)
NewImage sampleData
Make/n=2 xTrace={0,50} ,yTrace={20,20}
ImageLineProfile srcWave=sampleData, xWave=xTrace, yWave=yTrace
AppendtoGraph/T yTrace vs xTrace
Display W_ImageLineProfile

srcWave=srcWave Specifies the image for which the line profile is evaluated. The image may be a 2D
wave of any type or a 3D wave or RGB data.

xWave=xwave Specifies the wave containing the x coordinate of the line segments along the
path.

yWave=ywave Specifies the wave containing the y coordinate of the line segments along the
path.

width=value Specifies the width (diameter) in pixels (need not be an integer value) in a
direction perpendicular to the path over which the data is interpolated and
averaged for each path point. If you do not specify width or use width=0, only the
interpolated value at the path point is used.

widthWave=wWave Specifies the width of the profile (see definition above) on a segment by segment
basis. wWave should be a 1D wave that has the same number of entries as xWave
and yWave. If you provide a widthWave any value assigned with the width
keyword is ignored. All values in the wave must be positive and finite.

/P=plane Specifies which plane (layer) of a 3D wave is to be profiled. By default plane =-1 and
the profiles are of either the single layer of a 2D wave or all three layers of a 3D RGB
wave. Use plane =-2 if you want to profile all layers of a 3D wave.

/S Calculates standard deviations for each profile point.

/SC Saves W_LineProfileX and W_LineProfileY using the X and Y scaling of srcWave.

/V Calculate profile points only at the vertices of xWave and yWave.

ImageLoad

V-334

See Also
For additional examples see ImageLineProfile Operation on page III-325.

ImageLoad
ImageLoad [flags] [fileNameStr]
The ImageLoad operation loads an image file into an Igor wave. It can load PNG, JPEG, BMP, TIFF, and
Sun Raster Files.

Parameters
The file to be loaded is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.
If you want to force a dialog to select the file, omit the fileNameStr parameter or pass “” for it.

Flags

/AINF Loads all of the image files in a disk folder into the current data folder. For example,
if you have created an Igor symbolic path named ImagePath that points to a folder
containing image files, you can execute:
ImageLoad/P=ImagePath/T=TIFF/AINF

When using /AINF, you must include /T to specify the type of image file to be loaded.

/BIGT=mode When mode is 1, ImageLoad uses the LibTIFF library to load TIFF files. This library
supports the traditional TIFF file format and the Big TIFF file format, which supports
file sizes greater than 4 GB.
When mode is 0, ImageLoad uses Igor’s internal TIFF code to load image data. This
internal code does not support Big TIFF and is limited to file sizes less than 2 GB.
If you omit /BIGT, ImageLoad first attempts to load the file using LibTIFF. If an error
occurs, it automatically attempts to load the file using Igor’s internal TIFF code.
The /SCNL, /STRP and /TILE flags require using LibTIFF. If you use any of these flags,
/BIGT=1 is automatically in effect.
The /RAT and /RTIO flags require using Igor’s internal TIFF code. If you use these
flags, /BIGT=0 is automatically in effect.
/BIGT=1 supports 8, 16, 32, and 64 bits per color component.
/BIGT=0 supports 8, 16, and 32 bits per color component.

/C=count Specifies the number of images to load from a TIFF stack containing multiple images.
The images are stored in individual waves if /LR3D is omitted or in a single 3D wave
if /LR3D is present.
By default, it loads only a single image (i.e., /C=1). Use /C=-1 to load all images. Images
must be either 8 bits, 16 bits, or 32 bits/pixel for this option.
To load a subset of the images in a TIFF stack, use /S to specify the starting image.
If you specify a count that exceeds the number of images in the file, ImageLoad loads
all images beginning with the first image or the image specified by /S.

/G Displays the loaded image in a new image plot window.

/LR3D Specifies that the images in a TIFF stack are to be loaded into a 3D wave rather than
into multiple 2D waves. This option works with grayscale images only, not with full
color (e.g., RGB).
To load a subset of the images into the 3D wave, also use /S and /C.

ImageLoad

V-335

/N=baseName Stores the waves using baseName as the wave name. Only when baseName conflicts
with an existing wave name will a numeric suffix be appended to the new wave
names.
If you omit /N, ImageLoad uses the name of the file as the base name.

/O Overwrites an existing wave with the same name.
If you omit /O and there is an existing wave with the same name, a numeric suffix is
appended to the image name to create a unique name.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/Q Quiet mode. Suppresses printing a description of the loaded data to the history area.

/RAT

/RTIO Reads tag information only from a TIFF file. /RTIO is similar to /RAT but it loads tag
information only without loading any images.
If you are loading a stack of images you can use the /C and /S flags to obtain tags from
a specific range of images.

/S=start Specifies the first image to load from a TIFF stack containing multiple images.
start is zero-based and defaults to 0.
Use /C to specify the number of images to load.

/SCNL=num Reads the specified scanline from a TIFF file using LibTiff.
Added in Igor Pro 7.00.

/STRP=num Reads the specified strip from a TIFF file using LibTiff.
Added in Igor Pro 7.00.

Read All Tags reads all of the tags in a TIFF file into one or more waves.
/RAT creates a data folder named “Tagn” with a numeric suffix, n, starting from zero
for each loaded image. When reading multiple images from a stack TIFF file, /RAT
creates a corresponding number of data folders.
Each data folder contains a text wave named T_Tags consisting of 5 columns. The
first row contains the offset of the current Image File Directory (IFD) from the start
of the file. The remaining rows describe the individual TIFF Tags as they appear in
the IFD.
The first column contains the tag number, the second contains the tag description,
the third contains the tag type, the fourth contains the tag length, and the fifth
contains either the value of the tag or a statement identifying the name of the wave
in which the data was stored. For example, a simple tag that contains a single value
has the form:

A tag that contains more data, such as an array of values has the form:

Here the Length field is negative (-1*realLength) and the Value field contains the
name of the wave tifTag273 which contains the array of strip offsets.
When the Value field consists of ASCII characters it is stored in the T_Tags wave
itself. All other types are stored in a wave in the same Tag data folder.
Private tags are usually designated by negative tag numbers. If their data type is
anything other than ASCII, they are saved in separate waves.

Num Desc Type Length Value

256 IMAGEWIDTH 4 1 2560

Num Desc Type Length Value

273 STRIPOFFSETS 4 -120 tifTag273

ImageLoad

V-336

Details
The name of the wave created by ImageLoad is based on the file name or on baseName if you provide the
/N=baseName flag. In either case, if and only if there is a name conflict, ImageLoad appends a number to
create a unique wave name.
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-21 for details.

Output Variables
ImageLoad sets the following variables:

S_path uses Macintosh path syntax (e.g., “hd:FolderA:FolderB:”), even on Windows. It includes a trailing colon.

Loading PNG Files
If you use /T=rpng (“raw PNG”) or if you omit /T and the file as a .png extension, ImageLoad interprets the PNG
file as raw data.
We recommend that you use /T=rpng and use /T=png only if /T=rpng does not produce the desired results.
/T=rpng creates an 8-bit or 16-bit unsigned integer wave with 1 to 4 layers.
PNG images with physical units produce waves with X and Y units of meters.
If a PNG image has a color table, ImageLoad creates two waves: a main image wave with one layer and a color
table wave of the same name but with an “_pal” suffix. If the name is too long it creates a wave named PNG_pal
instead.

/T=type

If you omit /T or specifiy /T=any, Igor makes a guess based on the file name extension.
ImageLoad reports an error if it is unable to determine the image file type.
/T=any allows the user to choose any file, regardless of its file name extension, if
ImageLoad displays an Open File dialog.
When loading TIFF, we recommend that you use /T=tiff. See Loading TIFF Files
below for details.

/TILE=num Reads the specified tile from a TIFF file using LibTiff.
Added in Igor Pro 7.00.

/Z No error reporting.

V_flag Set to 1 if the image was successfully loaded or to 0 otherwise.

S_fileName Set to the name of the file that was loaded.

V_numImages Set to the number of images loaded. Applies to TIFF files only.

S_path Set to the file system path to the folder containing the file.

S_waveNames Set to a semicolon-separated list of the names of loaded waves.

Identifies what kind of image file to load. type is one of the following image file
formats:
type Loads this Image Format
any Any graphic file type
bmp Windows bitmap file
jpeg JPEG file
png PNG file
rpng Raw PNG file (see Details)
sunraster Sun Raster file
tiff TIFF file (see also Loading TIFF Files).

ImageMorphology

V-337

Loading TIFF Files
ImageLoad supports 1-bit, 8-bit, 16-bit, 24-bit, and 32-bit TIFF files as well as floating point TIFFs.
1-bit/pixel images are loaded into a unsigned byte waves.
8-bit/pixel images are loaded into a unsigned byte waves.
16-bit/pixel images are loaded into unsigned 16-bit waves.
24-bit/pixel images and 32-bit/pixel images loaded into 3D RGB and RGBA waves respectively.

Loading a TIFF File With a Color Table
If your TIFF file includes a color table, ImageLoad /T=tiff loads the data into a 2D wave and loads the color
table into a separate color table wave which can be used when creating an image plot.
If you want to load the TIFF file into a 3D RGB wave, use /T=tiff to load it into a 2D wave plus a color table
and then use ImageTransform cmap2RGB to create the 3D RGB wave.

Loading TIFF Stacks
A TIFF stack is a TIFF file that contains multiple images. When loading a stack, you can:
• Load all images
• Load a range of images specified by /S (starting image) and /C (image count)
You can also load the images into:
• Separate 2D waves by omitting the /LR3D flag
• A single 3D wave by using the /LR3D flag
When you use /LR3D, ImageLoad stores each image from the TIFF file in a layer of the 3D output wave.
This option works with grayscale images only, not with full color (e.g., RGB).

EXIF Metadata
Some applications embed metadata (information about the image) in EXIF format. In both JPEG and TIFF
files, the metadata is stored using TIFF tags. To read the metadata, use the /RAT flag, even if you are loading
a JPEG file.

Examples
// Load all images from a TIFF stack into separate 2D waves
ImageLoad /C=-1 /T=TIFF

// Load a single image from a TIFF stack into a 2D wave
ImageLoad/S=10/C=1/T=TIFF // Load image 10 (zero based)

// Load all images from a TIFF stack into a single 3D wave
ImageLoad/LR3D/S=0/C=-1/T=TIFF

// Read all tags without loading any images
ImageLoad/C=-1/T=TIFF/RTIO

// Get the number of images in a TIFF stack
NewDataFolder/O/S tmp
ImageLoad/C=-1/T=TIFF/RTIO
Print V_numImages
KillDataFolder :

See Also
Loading Image Files on page II-138.
The ImageSave operation for saving waves as image files.

ImageMorphology
ImageMorphology [flags] Method imageMatrix
The ImageMorphology operation performs one of several standard image morphology operations on the
source imageMatrix. Unless the /O flag is specified, the resulting image is saved in the wave
M_ImageMorph. The operation applies only to waves of type unsigned byte. All ImageMorphology
methods except for watershed use a structure element. The structure element may be one of the built-in
elements (see /E flag) or a user specified element.
Erosion, Dilation, Opening, and Closing are the only methods supported for a 3D imageMatrix.

ImageMorphology

V-338

Parameters
Method is one of the following names:

BinaryErosion Erodes the source binary image using a built-in or user specified structure element
(see /E and /S flags).

BinaryDilation Dilates the source binary image using a built-in or user specified structure element
(see /E and /S flags).

Closing Performs the closing operation (dilation followed by erosion). The same structure
element is used in both erosion and dilation. Note that this operation is an
idempotent, which means that there is no point of executing it more than once.

Dilation Performs a dilation of the source grayscale image using either a built-in structure
element or a user specified structure element. The operation supports only 8-bit gray
images.

Erosion Erodes the source grayscale image using either a built-in structure element or a user
specified structure element. The operation supports only 8-bit gray images.

Opening Performs an opening operation (erosion followed by dilation). The same structure
element is used in both erosion and dilation. Note that this operation is an idempotent
which means that there is no point of executing it more than once.

TopHat Calculates the difference between the eroded image and dilated image using the same
structure element.

Watershed Calculates the watershed regions for grayscale or binary image. Use the /N flag to
mark all nonwatershed lines as NaNs. The /L flag switches from using 4 neighboring
pixels (default) to 8 neighboring pixels.

ImageMorphology

V-339

Flags

/E=id

/I= iterations Repeats the operation the specified number of iterations.

/L Uses 8-connected neighbors instead of 4.

/N Sets the background level to 64 (= NaN).

/O Overwrites the source wave with the output.

Uses a particular built in structure element. The following are the built-in structure
element. The following are the built-in structure elements; make sure to use the
appropriate id for the dimensionality of imageMatrix:

Note that this flag has no effect on watershed calculations.

id Element Origin Shape

1 2x2 (0,0) square (default)

2 1x3 (1,1) row (in 3x3 square)

3 3x1 (1,1) column (in 3x3 square)

4 3x3 (1,1) cross (in 3x3 square)

5 5x5 (2,2) circle (in 5x5 square)

6 3x3 (1,1) full 3x3 square

200 2x2x2 (1,1,1) symmetric cube

202 2x2x2 (1,1,1) 2 voxel column in Y direction

203 2x2x2 (1,1,1) 2 voxel column in X direction

204 2x2x2 (1,1,1) 2 voxel column in Z direction

205 2x2x2 (1,1,1) XY plane

206 2x2x2 (1,1,1) YZ plane

207 2x2x2 (1,1,1) XZ plane

300 3x3x3 (1,1,1) symmetric cube

301 3x3x3 (1,1,1) symmetric ball

302 3x3x3 (1,1,1) 3 voxel column in Y direction

303 3x3x3 (1,1,1) 3 voxel column in X direction

304 3x3x3 (1,1,1) 3 voxel column in Z direction

305 3x3x3 (1,1,1) XY plane

306 3x3x3 (1,1,1) YZ plane

307 3x3x3 (1,1,1) XY plane

500 5x5x5 (2,2,2) symmetric cube

501 5x5x5 (2,2,2) symmetric ball

700 7x7x7 (3,3,3) symmetric cube

701 7x7x7 (3,3,3) symmetric ball

ImageNameList

V-340

Examples
If you would like to apply a morphological operation to a wave whose data type is not an unsigned byte
and you wish to retain the wave’s dynamic range, you can use the following approach:
Function ScaledErosion(inWave)

Wave inWave

WaveStats/Q inWave
Variable nor=255/(V_max-V_min)
MatrixOp/O tmp=nor*(inWave-V_min)
Redimension/B/U tmp
ImageMorphology/E=5 Erosion tmp
Wave M_ImageMorph
MatrixOp/O inWave=(M_ImageMorph/nor)+V_min
KillWaves/Z tmp,M_ImageMorph

End

See Also
The ImageGenerateROIMask operation for creating ROIs. For details and usage examples see
Morphological Operations on page III-321 and Particle Analysis on page III-328.

ImageNameList
ImageNameList(graphNameStr, separatorStr)
The ImageNameList function returns a string containing a list of image names in the graph window or
subwindow identified by graphNameStr.

/R=roiSpec Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/b/u). The ROI wave must have the same number of rows and columns as the
image wave. The ROI itself is defined by the entries/pixels whose values are 0. Pixels
outside the ROI can take any nonzero value. The ROI does not have to be contiguous
and can take any arbitrary shape. See ImageGenerateROIMask for more information
on creating ROI waves.

By default roiFlag is set to 1 and it is then possible to use the /R flag using the
abbreviated form /R=roiWave.

/S= seWave Specifies your own structure element.
seWave must be of type unsigned byte with pixels that belong to the structure element
set to 1 and background pixels set to 0.
There are no limitations on the size of the structure element and you can use the /X
and /Y flags to specify the origin of your structure element.

/W= whiteVal Sets the white value in the binary image if it is different than 255. The black level is
assumed to be zero.

/X= xOrigin Specifies the X-origin of a user-defined structure element starting at 0. If you do not
use this flag Igor sets the origin to the center of the specified structure element.

/Y= yOrigin Specifies the Y-origin of a user defined structure element starting at 0. If you do not
use this flag Igor sets the origin to the center of the specified structure element.

/Z= zOrigin Specifies the Z-origin of the element for 3D structure elements. If you do not use this
flag Igor sets the origin to the center of the specified structure element.

In general, the roiSpec has the form {roiWaveName, roiFlag}, where roiFlag can take
the following values:
roiFlag=0: Set pixels outside the ROI to 0.
roiFlag=1: Set pixels outside the ROI as in original image.
roiFlag=2: Set pixels outside the ROI to NaN (=64).

ImageNameToWaveRef

V-341

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
separatorStr should contain a single character such as “,” or “;” to separate the names.
An image name is defined as the name of the 2D wave that defines the image with an optional #ddd suffix
that distinguishes between two or more images that have the same wave name. Since the image name has
to be parsed, it is quoted if necessary.

Examples
The following command lines create a very unlikely image display. If you did this, you would want to put
each image on different axes, and arrange the axes such that they don’t overlap. That would greatly
complicate the example.
Make/O/N=(20,20) jack,'jack # 2';
Display;AppendImage jack
AppendImage/T/R jack
AppendImage 'jack # 2'
AppendImage/T/R 'jack # 2'
Print ImageNameList("",";")

prints jack;jack#1;'jack # 2';'jack # 2'#1;

See Also
Another command related to images and waves: ImageNameToWaveRef.
For commands referencing other waves in a graph: TraceNameList, WaveRefIndexed,
XWaveRefFromTrace, TraceNameToWaveRef, CsrWaveRef, CsrXWaveRef, ContourNameList, and
ContourNameToWaveRef.

ImageNameToWaveRef
ImageNameToWaveRef(graphNameStr, imageNameStr)
The ImageNameToWaveRef function returns a wave reference to the 2D wave corresponding to the given
image name in the graph window or subwindow named by graphNameStr.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
The image is identified by the string in imageNameStr, which could be a string determined using
ImageNameList. Note that the same image name can refer to different waves in different graphs.

See Also
The ImageNameList function.
For a discussion of wave references, see Wave Reference Functions on page IV-186.

ImageRegistration
ImageRegistration [flags][testMask=testMaskWave] [refMask=refMaskWave]

testWave=imageWave1, refWave=imageWave2
The ImageRegistration operation adjusts the test image wave, testWave, to match the reference image
wave, refWave, possibly subject to auxiliary mask waves. The registration may involve offset, rotation,
scaling or skewing.
Image data may be in two or three dimensions.
ImageRegistration is designed to find accurate registration for relatively small variation on the order of a
few degrees of rotation and a few pixels offset between the reference and test images.
All the input waves are expected to be single precision float (SP) so you may have to redimension your
images before using ImageRegistration.

ImageRegistration

V-342

ImageRegistration does not tolerate NaNs or INFs; use the masks if you need to exclude pixels from the
registration process.

Parameters

testMaskWave and refMaskWave are optional ROI waves. The waves must have the same dimensions as
testWave and refWave respectively. They must be single precision floating point waves with nonzero
entries marking the “ON” state. If you need to include the whole region described by testWave or the whole
region described by refWave you can omit the respective mask wave

Flags

refMask=refMaskWave Specifies an optional ROI wave used to mask refWave. Omit refMask to use
all of the refWave.

The wave must have the same dimensions as refWave. refMask is a single
precision floating point wave with nonzero entries marking the “ON” state.
Note that the operation modifies this wave and that you should not use the
same wave for both the reference and the test masks.

refWave=imageWave2 Specifies the name of the reference image wave used to adjust testWave.

testMask=testMaskWave Specifies an optional ROI wave used to mask testWave. Omit testMask to use
all of the testWave.
The wave must have the same dimensions as refWave. testMask is a single
precision floating point wave with nonzero entries marking the “ON” state.
Note that the operation modifies this wave and that you should not use the
same wave for both the reference and the test masks.

testWave=imageWave1 Specifies the name of the image wave that will be adjusted to match refWave.

/ASTP=val Sets the adaptation step for the Levenberg-Marquardt algorithm. Default value is 4.

/BVAL=val Enables clipping and sets the background values to which masked out voxels of the
test data will be set.

/CONV=val

/CSNR=val

/FLVL=val Specifies the finest level on which the optimization is to be performed.
If this is the same as /PRDL, then only the coarsest registration calculation is done.
If /FLVL=1 (default), then the full multiresolution pyramid is processed. You can use
this flag to terminate the computation at a specified coarseness level greater than 1.

/GRYM Optimizes the gray level scaling factor.
It is sometimes dangerous to let the program adjust for gray levels because in some
situations it might result in a null image.

/GRYR Renders output using the gray scaling parameter. This is more meaningful if the
operation computes the optimal gray scaling (see /GRYM).

Sets the convergence method.
val=0: Gravity, use if the difference between the images is only in

translation. This option is frequently useful as a first step when the
test and reference data are too far apart for accurate registration. The
result of this registration is then passed to a subsequent
ImageRegistration with /CONV=1.

val=1: Marquardt.

Determines if the operation calculates the signal to noise ratio (SNR)

Skipping the SNR calculation saves time and may be particularly useful when
performing the registration on a stack of images.

val=0: The SNR is not calculated.
val=1: The SNR is calculated (default).

ImageRegistration

V-343

/GWDT={sx,sy,sz} Sets the three fields to the half-width of a Gaussian window that is used to smooth the
data when computing the default masks. Defaults are {1,1,1}. See /REFM and /TSTM
for more details.

/INTR=val

/ISOS Optimizes the isometric scaling. This option is inappropriate if voxels are not cubic.

/ISR Computes the multiresolution pyramid with isotropic size reduction.
If the flag is not specified, the size reduction is in the XY plane only.

/MING=val Sets the minimum gain at which the computations will stop. Default value is zero, but
you can use a slightly larger value to stop the iterations earlier.

/MSKC=val

/PRDL=depth Specifies the depth of the multiresolution pyramid. The finest level is depth=1. Each
level of the pyramid decreases the resolution by a factor of 2. By default, the pyramid
depth=4, which corresponds to a resolution reduction by a factor of 2(depth-1)=8.
The algorithm starts by computing the first registration on large scale features in the
image (deepest level of the pyramid). It then makes small corrections to the
registration at each consecutive pyramid level.
For best results, the coarsest representation the data should be between 30 and 60
pixels on a side. For example, for an image that is H by V pixels, you should choose
the depth such that H/2(depth-1) ≈ 30.

/PSTK When performing registration of a stack of images, use this flag to apply the
registration parameters of the previous layer as the initial guess for the registration of
each layer after the first in the 3D stack.

/Q Quiet mode; no messages printed in the history area.

/REFM=val

/ROT={rotX,rotY,rotZ}

Sets the interpolation method.
val=0: Nearest neighbor. Used when registering the center of gravity of the

test and reference images.
val=1: Trilinear.
val=2: Tricubic (default).

Sets mask combination value. During computation the masks for the test data and
the mask for the reference data are also transformed. This flag determines how the
two masks are to be combined. The registration criteria are computed for the
combination of the two masks.
val=0: or.
val=1: nor.
val=2: and (default).
val=3: nand.
val=4: xor.
val=5: nxor.

Sets the reference mask.

When computing the reference mask it is assumed that brighter features are more
important. This is done by using a low pass filter on the data (using the parameters
in /GWDT) which is then converted into a binary mask. Note that you do not need
to specify /REFM=1 if you are providing a reference mask wave. See also /TSTM.

val=0: To leave blank and then every pixel is taken into account.
val=1: Value will be set if a valid reference mask is provided.
val=2: The test mask is computed (default).

ImageRegistration

V-344

Details
ImageRegistration will register images that have sufficiently similar features. It will not work if key features
are too different. For example, ImageRegistration can handle two images that are rotated relative to each other
by a few degrees, but cannot register images if the relative rotation is as large as 45 degrees. The algorithm is
capable of subpixel resolution but it does not handle large variations between the test image and the reference
image. If the centers of the two images are too far from each other, you should first try ImageRegistration
using /CON=0 to remove the translation offset before proceeding with a finer registration of details.
The algorithm is based on an iterative processing that proceeds from coarse to fine detail. Optimization uses
a modified Levenberg-Marquardt algorithm and produces an affine transformation for the relative rotation

Determines if optimization will take into account rotation about the X, Y, or Z axes. A
value of one allows optimization and zero prevents optimization from affecting the
corresponding rotation parameter. Defaults are {0,0,1}, which are the appropriate
values for rotating images.

/SKEW={skewX,skewY,skewZ}

Determines if optimization will take into account skewness about the X, Y, or Z axes.
A value of one allows optimization and zero prevents optimization from affecting the
corresponding skewness parameter. Defaults are {0,0,0}. Note that skewing and
rotation or isometric scaling are mutually exclusive operations.

/STCK Use /STCK to perform the registration between a 2D reference image and each of the
layers in a 3D image. The number of rows and columns of the refWave must match
exactly the number of rows and columns in testWave. The transformation parameters
are saved in the wave M_RegParams where each column contains the parameters for
the corresponding layer in testWave.

/STRT=val Sets the first value of the adaptation parameter in the Levenberg-Marquardt
algorithm.
The default value of this parameter is 1.

/TRNS={transX,transY,transZ}

Determines if optimization will take into account translation about the X, Y, or Z axes.
A value of one allows optimization and zero prevents optimization from affecting the
corresponding translation parameter. Defaults are {1,1,0}, which are appropriate for
finding the X and Y translations of an image.

/TSTM=val

/USER=pWave Provides a user transformation that will be applied to the input testWave in order to
create the trasnsformed image. pWave must be a double precision wave which
contains the same number of rows as W_RegParams.
Note: If you use a previously created W_RegParams make sure to change its name as
it is overwritten by the operation.
If pWave has only one column and testWave contains multiple layers, then the same
transformation applies to all layers. If pWave contains more than one column, then
each layer of testWave is processed with corresponding column. If there are more
layers than columns the first column is used in place of the missing columns.

/ZMAN Modifies the test and reference data by subtracting their mean values prior to
optimization.

Sets the test mask.

The test image mask is computed in the same way as the reference image mask (see
/REFM) using the same set of smoothing parameters. Note that you do not need to
specify /TSTM=1 if you are providing a test mask wave.

val=0: To leave blank and then every pixel is taken into account.
val=1: This value will be set if a valid reference mask is provided.
val=2: The reference mask is computed. This is the default value.

ImageRegistration

V-345

and translation as well as for isometric scaling and contrast adjustment. The algorithm is most effective with
square images where the center of rotation is not far from the center of the image.
When using gravity for convergence, skew parameters can’t be evaluated (only translation is supported).
Skew and isoscaling are mutually exclusive options. Mask waves are defined to have zero entries for pixels
outside the region of interest and nonzero entries otherwise. If a mask is not provided, every pixel is used.
ImageRegistration creates the waves M_RegOut and M_RegMaskOut, which are both single precision
waves. In addition, the operation creates the wave W_RegParams which stores 20 double precision
registration parameters. M_RegOut contains the transformed (registered) test image and M_RegMaskOut
contains the transformed mask (which is not affected by mask combination). ImageRegistration ignores
wave scaling; images are compared and registered based on pixel values only.
The results printed in the history include:

These parameters are stored in the wave W_RegParams (or M_RegParams in the case of registering a stack).
Angles are in radians. Dimension labels are used to describe the contents of each row of the output wave.
Each column of the wave consists of the following rows (also indicated by dimension labels):

You can view the output waves with dimension labels by executing:
Edit W_RegParams.ld

See Also
The ImageInterpolate Warp operation.

dx, dy, dz translation offsets measured in pixels.

aij Elements in the skewing transformation matrix.

phi Rotation angle in degrees about the X-axis. Zero for 2D waves.

tht Rotation angle in degrees about the Y-axis. Zero for 2D waves.

psi Rotation angle in degrees about the Z-axis.

det Absolute value of determinant of the skewing matrix (aij).

err Mean square error defined as

where xi is the original pixel value, yi the computed value, and N is the number of pixels.

snr Signal to noise ratio in dB. It is given by:

Point Contents Point Contents Point Contents Point Content

0 dx 6 a21 12 gamma 17 origin_x

1 dy 7 a22 13 phi 18 origin_y

2 dz 8 a23 14 theta 19 origin_z

3 a11 9 a31 15 psi 21 MSE

4 a12 10 a32 16 lambda 21 SNR

5 a13 11 a33

1

N
xi − yi()2

,∑

10log
xi

2∑
xi − yi()2∑

⎛

⎝
⎜

⎞

⎠
⎟ .

ImageRemoveBackground

V-346

References
The ImageRegistration operation is based on an algorithm described by:
Thévenaz, P., and M. Unser, A Pyramid Approach to Subpixel Registration Based on Intensity, IEEE

Transactions on Image Processing, 7, 27-41, 1998.

ImageRemoveBackground
ImageRemoveBackground /R=roiWave [flags] srcWave
The ImageRemoveBackground operation removes a general background level, described by a polynomial
of a specified order, from the image in srcWave. The result of the operation are stored in the wave
M_RemovedBackground.

Flags

Details
The identification of the background is done via the ROI wave. Set the pixels that define the background
region to 1. The remaining pixels can be any value other than 1. We recommend using 64 which Igor image
processing operations often interpret as "blank" in unsigned byte image waves.
The operation first performs a polynomial fit to the points designated by the ROI wave using the specified
polynomial order. A polynomial of order N corresponds to the function:

Using the polynomial fit, a surface corresponding to the polynomial is subtracted from the source wave and
the result is saved in M_RemovedBackground, unless the /O flag is used, in which case the original wave
is overwritten.
Use the /W flag if you want polynomial coefficients to be saved in the W_BackgroundCoeff wave.
Coefficients are stored in the same order as the terms in the sums above.
If you do not specify the polynomial order using the /P flag, the default order is 1, which means that the
operation subtracts a plane (fitted to the ROI data) from the source image.
Note, if the image is stored as a wave of unsigned byte, short, or long, you might consider converting it into
single precision (using Redimension/S) before removing the background. To see why this is important,
consider an image containing a region of pixels equal to zero and subtracting a background plane
corresponding to a nonconstant value. After subtraction, at least some of the pixels in the zero region should
become negative, but because they are stored as unsigned quantities, they appear incorrectly as large values.

Examples
See Background Removal on page III-332.

/F Computes only the background surface fit. Will only store the resulting fit in
M_RemovedBackground. This will not subtract the fit from the image.

/O Overwrites the original wave.

/P=polynomial order Specifies the order of the polynomial fit to the background surface. If omitted, the
order is assumed to be 1.

/R=roiWave Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/B/U), which has the same number of rows and columns as the image wave.
Set the pixels that define the background region to 1. The remaining pixels can be
any value other than 1. We recommend using 64 which Igor image processing
operations often interpret as "blank" in unsigned byte image waves.
The ROI does not have to be contiguous.
See ImageGenerateROIMask for more information on creating ROI waves.

/W Specifies that polynomial coefficients are to be saved in the wave
W_BackgroundCoeff.

FN x, y() = cnmx
m−nyn .

n=0

m

∑
m=0

N

∑

ImageRestore

V-347

See Also
The ImageGenerateROIMask operation for creating ROIs.

ImageRestore
ImageRestore [flags] srcWave=wSrc, psfWave=wPSF [, relaxationGamma=h,

startingImage=wRecon]
The ImageRestore operation performs the Richardson-Lucy iterative image restoration.

Flags

Parameters

Details
ImageRestore performs the Richardson-Lucy iteration solution to the deconvolution of an image. The input
consists of the degraded image and point spread function as well as the desired number of iterations.
The operation allows you to apply additional iterations by setting the starting image to the restored output
wave from a previous call to ImageRestore using the startingImage keyword. If startingImage is omitted,
the starting image is created by ImageRestore with each pixel set to the value 1.
In the case of stellar images it may be useful to apply a relaxation step that involves scaling the correction
evaluated at each iteration by

where v is pixel value, vmax and vmin are the maximum and minimum level pixels in the image and
gamma is the user-specified relaxationGamma.

References
W.H. Richardson, "Bayesian-Based Iterative Method of Image Restoration". JOSA 62, 1: 55-59, 1972.
L.B. Lucy, "An iterative technique for the rectification of observed distributions", Astronomical Journal 79, 6:
745-754, 1974.

/DEST=destWave Specifies the desired output wave.
If /DEST is omitted, the output from the operation is stored in the wave
M_Reconstructed in the current data folder.

/ITER=iterations Specifies the number of iterations. The default number of iterations is 100.

/Z Do not report errors.

psfWave=wPSF Specifies a known point spread function. wPSF must be a 2D (square NxN) wave
of the same numeric type as wSRC. N must be an odd number greater than 1.

relaxationGamma=h Specifies positive power gamma of in the relaxation mapping (see Details).

startingImage=wRecon Use this keyword to specify a starting image that could be for example the output
from a previous call to this operation. wRecon must have the same dimensions as
wSRC and the same numeric type.
You must make sure that wRecon is not the user-specified or the default
destination wave of the operation.

srcWave=wSrc Specifies the degraded image which must be a 2D single-precision or double-
precision real wave.

factor(v) = sin
�

2

v � vmin

vmax � vmin

�

�
�

�
��

�

,

ImageRotate

V-348

ImageRotate
ImageRotate [flags] imageMatrix
The ImageRotate operation rotates the image clockwise by angle (degrees) or counter-clockwise if /W is
used.
The resulting image is saved in the wave M_RotatedImage unless the /O flag is specified. The size of the
resulting image depends on the angle of rotation.
The portions of the image corresponding to points outside the domain of the original image are set to the
default value 64 or the value specified by the /E flag.
You can apply ImageRotate to 2D and 3D waves of any data type.

Flags

See Also
The MatrixTranspose operation.

ImageSave
ImageSave [flags] waveName [[as]fileNameStr]
The ImageSave operation saves the named wave as an image file.
Previously this operation used QuickTime to implement the saving of some file formats. As of Igor Pro 7.00,
it no longer uses QuickTime. Consequently, some file formats re no longer supported and some flags have
changed.

Parameters
The file to be written is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.

/A=angle Specifies the rotation angle measured in degrees in a clockwise direction. For rotations by
exactly 90 degrees use /C or /W instead.

/C Specifies clockwise rotation.
Clockwise is the default direction so the rotation will be clockwise whether you use /C or not,
so long as you do not use /W.

/E= val Specifies the value for pixels that are outside the domain of the original image. By default
pixels are set to 64. If you specify /E=(NaN) and your data is of type char, short, or long, the
operation sets the external values to 64.

/F Rotates image by 180 degrees.

/H Flip the image horizontally.

/O Overwrites the original image with the rotated image.

/Q Quiet mode. Without this flag the operation writes warnings in the history area.

/RGBA=[R, G, B [, A])

Specifies the RGB or RGBA values of pixels that lie outside the domain occupied by the
original image. This flag was added in Igor Pro 7.00.

/S Uses source image wave scaling to preserve scaling and relative locations of objects in the
image for rotation angles that are multiples of 90 degrees.

/V Flip the image vertically.

/W Specifies counter-clockwise rotation.

/Z Ignore errors.

ImageSave

V-349

If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.
If you want to force a dialog to select the file, omit the fileNameStr parameter or specify "" for fileNameStr
or use the /I flag. The “as” keyword before fileNameStr is optional.
In Igor Pro 7.00 or later, if you specify “Clipboard” for fileNameStr and the file type is JPEG or PNG, Igor
writes the image to the clipboard.
In Igor Pro 7.00 or later, if the file type is PNG or JPEG you can write the image to the picture gallery using
the magic path name _PictGallery_. For example
ImageSave/T=PNG/P=_PictGallery_ waveName

Flags

/ALPH=mode Sets the value used for the ExtraSamples tag (338) in the TIFF file format. This flag was
added in Igor Pro 7.00.
The tag tells a TIFF file reader how to use the alpha values. Supported modes are 1 for
premultiplied and 2 for unassociated alpha. Premultiplied means that the RGB
components have already been multiplied by alpha. Unassociated means that the
RGB components are raw.
By default, alpha is assumed to be premultiplied (mode=1).

/D=depth As of Igor7, this flag is deprecated and should not be used in new code.
Specifies color depth in bits-per-pixel. Integer values of 1, 8, 16, 24, 32, and 40 are
supported. A depth of 40 specifies 8-bit grayscale; a depth of 8 saves the file as 8-
bits/pixel with a color lookup table. If /D is omitted, it acts like /D=8.
Saving with a color table may cause some loss of fidelity.
See also the discussion of saving TIFF files below.

/DS=depth Saves TIFF data in depth bits/sample.
Values for depth of 8, 16, 32 and 64 are supported. The default is 8.
The total number of bits/pixel is: (bits/sample) * (samples/pixel).
When using 32 or 64 bits/sample, srcWave is saved without normalization.

/F As of Igor7, this flag is deprecated and should not be used in new code.
Saves the wave as single precision float. The data is not normalized. Applies only to
TIFF files.

/I Interactive mode. Forces ImageSave to display a Save File dialog, even if the file and
folder location are fully specified.

/IGOR In Igor6 this flag told Igor to use internal code rather than QuickTime to write TIFF
files. As of Igor7, Igor no longer uses QuickTime and always uses internal coe. This
flag is still accepted but has no effect.

/O Overwrites the specified file if it exists. If /O is omitted and the file exists, ImageSave
displays a Save File dialog.

/P=pathName Specifies the folder in which to save the image file. pathName is the name of an existing
symbolic path.

/Q=quality Specifies the quality of the compressed image. quality is a number between 0 and 1,
with 1 being the highest quality. This is only applicable when saving in formats with
lossy compression like JPEG.

/S Saves as stack. Applies only to 3D or 4D source waves saved as TIFF files.

ImageSave

V-350

Details
Image files are characterized by the number of color components per pixel and the bit-depth of each
components. Igor displays images that consist of 1 components (gray-scale/false color), 3 components
(RGB) or 4 components (RGBA) per pixel. You can display waves of all real numeric types as images, but
wave data are assumed to be either in the range of [0,255] for 8-bits/components or [0,65535] for all other
numeric types. For more information see Creating an Image Plot on page II-299.
When you save a numeric wave as image file your options depend on the number of components (layers)
of your wave and its number type.

Saving as PNG
You can save an Igor wave as a PNG file with 24 bits per pixel or 32 bits per pixel. The following table
describes how the wave's data type corresponds to the PNG pixel format.

Gray means that the three components of each pixel have the identical value. Data normalization consists
of finding the global (over all layers) minimum and maximum values of srcWave followed by scaling to the
full range, e.g.,
minValue = WaveMin(srcWave)
maxValue = WaveMax(srcWave)
outValue[i][j][k] = 255*(srcWave[i][j][k]-minValue)/(maxValue-minValue)

/T=fileTypeStr

/U Prevents normalization. This works when saving TIFF only. See Saving as TIFF
below.

/WT=tagWave Saves TIFF files with file tags as specified by tagWave, which is a text wave consisting
of a row and 5 columns for each tag (see description of the /RAT flag under
ImageLoad). It ignores any information in the second column but will write the tags
sequentially (only in the first Image File Directory (IFD) if there is more than one
image). If the fourth column contains a negative number, there must be a wave, whose
name is given in the fifth column of tagWave, in the same data folder as tagWave. You
must make sure that: (1) tag numbers are legal and do not conflict with any existing
tags; (2) the data type and data size are consistent with the amount of data saved in
external waves.

/Z No error reporting.

Source Wave PNG Pixel Format

1-layer any type RGB 24 bits per pixel gray normalized [0,255]

3-layer unsigned byte RGB 24 bits per pixel no scaling

3-layer unsigned short RGB 24 bits per pixel data divided by 256

3-layer all other types RGB 24 bits per pixel data normalized [0,255]

4-layer unsigned byte RGBA 32 bits per pixel no scaling

4-layer unsigned short RGBA 32 bits per pixel data divided by 256

4-layer all other types RGBA 32 bits per pixel data normalized [0,255]

Specifies the type of file to be saved.

If /T is omitted, the default type is "tiff".

fileTypeStr Saved Image Format

"jpeg" JPEG file

"png" PNG file

"rpng" raw PNG file (see Saving as Raw PNG)

"tiff" TIFF file

ImageSeedFill

V-351

Saving as Raw PNG
The rpng image format requires a wave in 8- or 16-bit unsigned integer format with 1 to 4 layers. Use one
layer for grayscale, 3 layers for rgb color, and the extra layer for an alpha channel. If X or Y scaling is not
unity, they both must be valid and must be either inches per pixel or meters per pixel. If the units are not
inches they are taken to be meters.

Saving as TIFF
ImageSave supports saving uncompressed TIFF images of 8, 16, 32 and 64 bits per color component with 1,
3 or 4 components per pixel.
Depending on the data type of your wave and the depth of the image file being created, ImageSave may
save a "normalized" version of your data. The normalized version is scaled to fit in the range of the image
file data type. For example, if you save a 16-bit Igor wave containing pixel values from -1000 to +1000 in an
8-bit grayscale TIFF file, ImageSave will map the wave values -1000 and +1000 to the file values 0 and 255
respectively. When saving an image file of 16-bits/component, Igor normalizes to 65535 as the full-scale
value.
There is no normalization when you save in floating point (32 or 64 bits/component). Normalization is also
not done when saving 8-bit wave data to an 8-bit image file. You can disable normalization with the /U flag.
Saving in floating point can lead to large image files (e.g., 64-bit/component RGBA has 256 bits/pixel) which
are not supported by many applications.

Saving 3D or 4D Waves as a Stack of TIFF Images
If your Igor data is a 3D wave other than an RGB wave or a 4D wave, you can save it as a stack of grayscale
images without a color map.
Use /S to indicate that you want to save a stack of images rather than a single image from the first layer of
the wave.
Use /D=8 to save as 8 bits. Normalization is done except if the wave data is 8 bits.
Use /D=16 to save as 16 bits with normalization.
Use /F to save as single-precision floating point without normalization. Many programs can not read this
format.
Use /U to prevent normalization.
Stacked images are normalized on a layer by layer basis. If you want to have uniform scaling and
normalization you should convert your wave to the file data type before executing ImageSave.

See Also
The ImageLoad operation for loading image files into waves.

ImageSeedFill
ImageSeedFill [flags] [keyword], seedX=xLoc, seedY=yLoc, target=setValue,

srcWave=srcImage
The ImageSeedFill operation takes a seed pixel and fills a contiguous region with the target value, storing
the result in the wave M_SeedFill. The filled region is defined by all contiguous pixels that include the seed
pixel and whose pixel values lie between the specified minimum and maximum values (inclusive).
ImageSeedFill works on 2D and 3D waves.

Parameters

ImageSeedFill

V-352

keyword is one of the following names:

adaptive=factor Invokes the adaptive algorithm where a pixel or voxel is accepted if its value is
between the specified minimum and maximum or its value satisfies:

Here val is the value of the pixel or voxel in question, avg is the average value of the
pixels or voxels in the neighborhood and stdv is the standard deviation of these
values. By choosing a small factor you can constrain the acceptable values to be very
close to the neighborhood average. A large factor allows for more deviation assuming
that the stdv is greater than zero.
This requirement means that a connected pixel has to be between the specified
minimum and maximum value and satisfy the adaptive relationship. In most
situations it is best to set wide limits on the minimum and maximum values and allow
the adaptive parameter to control the local connectivity.

fillNumber=num Specifies the number, in the range 1 to 26, of voxels in each 3x3x3 cube that belong to
the set. If fillNumber is exceeded, the operation fills the remaining members of the
cube. If you do not specify this keyword, the operation does not fill the cube. Used
only in the fuzzy algorithm.

fuzzyCenter=fcVal Specifies the center value for the fuzzy probability with the fuzzy algorithm (see
Details). The default value is 0.25. Its standard range is 0 to 0.5, although interesting
results might be obtained outside this range.

fuzzyProb=fpVal Specifies a probability threshold that must be met by a voxel to be accepted to the
seeded set. The value must be in the range 0 to 1. The default value is 0.75.

fuzzyScale=fsVal Determines if a voxel is to be considered in a second stage using fuzzy probability.
fsVal must be nonzero in order to invoke the fuzzy algorithm. The scale is used in
comparing the value of the voxel to the value of the seed voxel. The scale should
normally be in the range 0.5 to 2.0.

fuzzyWidth=fwVal Defines the width of the fuzzy probability distribution with the fuzzy algorithm (see
Details). In most situations you should not need to specify this parameter. The default
value is 1.

min=minval Specifies the minimum value that is accepted in the seeded set. Not needed when
using fuzzy algorithm.

max=maxval Specifies the maximum value that is accepted to the seeded set. Not needed when
using the fuzzy algorithm.

seedP=row Specifies the integer row location of the seed pixel or voxel. This avoids roundoff
issues when srcWave has wave scaling. You must provide either seedP or seedX with
all algorithms. It is sometimes convenient to use this with cursors e.g.,
seedP=pcsr(a).

seedQ=col Specifies the integer column location of the seed pixel or voxel. This avoids roundoff
difficulties when srcWave has wave scaling. You must provide either seedQ or seedY
with all algorithms.

seedR=layer Specifies the integer layer position of the seed voxel. When srcWave is a 3D wave you
must use either seedR or seedZ.

seedX=xLoc Specifies the pixel or voxel index. If srcWave has wave scaling, seedX must be
expressed in terms of the scaled coordinate. This keyword or seedP is required with
all algorithms.

seedY=yLoc Specifies the pixel or voxel index. If srcWave has wave scaling, seedY must be
expressed in terms of the scaled coordinate. This keyword or seedQ is required with
all algorithms.

val − avg < factor * stdv.

ImageSeedFill

V-353

Flags

Details
In two dimensions, the operation takes a seed pixel, optional minimum and maximum pixel values and
optional adaptive coefficient. It then fills a contiguous region (in a copy of the source image) with the target
value. There are two algorithms for 2D seed fill. In direct seed fill (only min, max, seedX and seedY are
specified) the filled region is defined by all contiguous pixels that include the seed pixel and whose pixel
values lie between the specified minimum and maximum values (inclusive). In adaptive fill, there is an
additional condition for the pixel or voxel to be selected, which requires that the pixel value must be within
the standard deviation of the average in the 3x3 (2D) or 3x3x3 (3D) nearest neighbors. If you do not specify
the minimum and maximum values then the operation selects only values identical to that of the seed pixel.
In 3D, there are three available algorithms. The direct seed fill algorithm uses the limits specified by the user
to fill the seeded domain. In adaptive seed fill the algorithm requires the limits as well as the adaptive
parameter. It fills the domain by accepting only voxels that lie within the adaptive factor times the standard
deviation of the immediate voxel neighborhood. To invoke the third algorithm you must set fuzzyScale to
a nonzero value. The fuzzy seed fill uses two steps to determine if a voxel should be in the filled domain.
In the first step the value of the voxel is compared to the seed value using the fuzzy scale. If accepted, it
passes to the second stage where a fuzzy probability is calculated based on the number of voxels in the
3x3x3 cell which passed the first step together with the user-specified probability center (fuzzyCenter) and
width (fuzzyWidth). If the result is greater than fuzzyProb, the voxel is set to belong to the filled domain.
If the /O flag is not specified, the result is stored in the wave M_SeedFill.
If you specify a background value with the /B flag, the resulting image consists of the background value
and the target value in the area corresponding to the seed fill. Although the wave is now bi-level, it retains
the same number type as the source image.
ImageSeedFill returns a “bad seed pixel specification” if the seed pixel location derived from the various
keywords above satisfies one or more of the following conditions:
• The computed integer pixel/voxel is outside the image.
• The value stored in the computed integer pixel/voxel location does not satisfy the min/max or fuzzy

conditions. This is the most common condition when srcWave has wave scaling. To avoid this
difficulty you should use the keywords seedP, seedQ, and seedR.

Examples
Using Cursor A position and value to supply parameter inputs for a 2D seedFill (Warning: command
wrapped over two lines):
ImageSeedFill

seedZ=zLoc Specifies the voxel index. If srcWave has wave scaling, seedZ must be expressed in
terms of the scaled coordinate. You must use this keyword or seedR whenever
srcWave is 3D.

srcWave=srcImage Specifies the source image wave.

target=val Sets the value assigned to pixels or voxels that belonging to the seeded set.

/B=bValue Specifies the value assigned to pixels or voxels that do not belong to the fuzzy set.

/C Uses 8-connectivity where a pixel can be connected to any one of its neighbors and
with which it shares as little as a single boundary point. The default setting is 4-
connectivity where pixels can be connected if they are neighbors along a row or a
column. This has no effect in 3D, where 26-connectivity is the only option.

/K=killCount Terminates the fill operation after killCount elements have been accepted.

/O Overwrites the source wave with the output (2D only).

/R=roiWave Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/b/u), that has the same number of rows and columns and layers as the image
wave. The ROI itself is defined by the entries/pixels whose value are 0. Pixels outside
the ROI can take any nonzero value. The ROI does not have to be contiguous. See
ImageGenerateROIMask for more information on creating ROI waves.

ImageSnake

V-354

seedP=pcsr(a),seedQ=qcsr(a),min=zcsr(a),max=zcsr(a),target=0,srcwave=image0

Using the fuzzy algorithm for a 3D wave (Warning: command wrapped over two lines):
ImageSeedFill seedX=232,seedY=175,seedZ=42,target=1,fillnumber=10,fuzzycenter=.25,

fuzzywidth=1,threshold=1,fuzzyprob=0.4,srcWave=ddd

See Also
For an additional example see Seed Fill on page III-330. To display the result of the operation for 3D waves
it is useful to convert the 3D wave M_SeedFill into an array of quads. See ImageTransform vol2surf.

ImageSnake
ImageSnake [flags] srcWave
The ImageSnake operation creates or modifies an active contour/snake in the grayscale image srcWave. The
operation iterates to find the “lowest total energy” snake. The energy is defined by a range of optional flags,
each corresponding to an individual term in the total energy expression. Iterations terminate by reaching
the maximum number of iterations, when the snake does not move between iterations or when the user
aborts the operation.

Flags

/ALPH=alpha Sets the coefficient of the energy term arising from the “tightness” of the snake.

/BETA=beta Sets the coefficient of the energy term corresponding to curvature of the snake. A high
value for beta makes the snake more rounded.

/DELT=delta Sets the coefficient of the repulsion energy. A high value of delta keeps
nonconsecutive snake points far from each other.

/EPS=num Sets the maximum number of vertices which are allowed to move in one iteration. If
the number of vertices which move during an iteration is smaller than num then
iterations terminate.

/EXEF=eta Sets the coefficient of the optional external energy component. By default this value is
set to zero and there is no external energy contribution to the snakes energy. Note, this
component is referred to as “external” because it is completely up to the user to
specify both its coefficient and the value associated with each pixel. It should not be
confused with what is called external snake energy in the literature, which usually
applies to energy proportional to the gradient image (see /GAMM and /GRDI).

/EXEN=wave Specify a wave that contains energy values that will be added to the snakes energy
calculation. The wave must have the same dimensions as srcWave and must be single
precision float. Each pixel value corresponds to user defined energy which will be
multiplied by the /EXEF coefficient and added to the sum which the snake minimizes.
Note that when /EXEF is set to zero this component is ignored. An external energy
wave may be useful, for example, if you want to attract the snake to the picture
boundaries. In that case you can set:
Duplicate/O srcWave,extWave
Redimension/S extWave
Variable rows=DimSize(srcWave,0)-1
Variable cols=DimSize(srcWave,1)-1
extWave=(p==0 || q==0 || p==rows || q==cols) ? 0:1

/GAMM=gamma Sets the coefficient of the energy term corresponding to the gradient. A high value of
gamma makes the snake follow lines of high image gradient.

/GRDI=gWave Specify the gradient image. This wave must have the same dimensions as srcWave and
it must be single precision float. The wave corresponds to the quantity
abs(grad(gauss**srcWave)), where grad is the gradient operator and ** denotes
convolution of the source wave with a Gaussian kernel. It is best to run the operation
the first time without specifying this wave. When the operation executes, it creates the
wave M_GradImage which can then be used in subsequent executions of this
operation. If you want to modify the wave to express some other form of energy that
you want the operation to minimize, you should use the /EXEN and /EXEF flags.

ImageSnake

V-355

Details
A snake is a two-dimensional, usually closed, path drawn over an image. The snake is described by a pair
of XY waves consisting of N vertices (sometimes called “snake elements” or “snaksels”). In this
implementation it is assumed that the snake is closed so that the last point in the snake is connected to the
first. Snakes are used in image segmentation, when you want to automatically select a contiguous portion
of the plane based on some criteria. Unlike the classic contours, snakes do not have to follow a constant
level. Their structure (or path) is found by associating the concept of energy with every snake configuration
and attempting to find the configuration for which the associated energy is a minimum. The search for a
minimum energy configuration is usually time consuming and it strongly depends on the format of the
energy function and the initial conditions (as defined by the starting snake). The operation computes the
energy as a sum of the following 5 terms:
1. The coefficient alpha times a sum of absolute deviations from the average snake segment length. This

term tends to distribute the vertices of the snake at even intervals.
2. The coefficient beta times a sum of energies associated with the curvature of the snake at each vertex.
3. The coefficient gamma times a sum of energies computed from the negative magnitude of the gradient

of a Gaussian kernel convolved with the image. This term is usually referred to in the literature as the
external energy and usually drives the snake to follow the direction of high image gradients.

/ITER=iterations Sets the maximum number of iterations. Convergence can be achieved if the value
specified by /EPS is met. You can also terminate the process earlier by pressing the
User Abort Key Combinations.

/N=snakePts Specify the number of vertices in the snake or the number of snake points. Note that
if you are providing snake waves in /SX and /SY, you do not need to specify this flag.
If you do not specify this flag the default value is 40.

/SIG=sigma Sets the size of the Gaussian kernel that is used to convolve the input image when
creating the gradient image. Note that you do not need to use this flag if you provide
a gradient image. sigma is 3 by default. You can use larger odd integers for larger
Gaussian kernels which would correspond to a stronger blur.

/STRT={centerX, centerY, radius}

Sets the starting snake to be a circle with the given center and radius. If you use this
flag you should also provide the number of snake points using the /N flag.

/STEP=pixels Sets the maximum radius of search. By default the radius of the search is 6 pixels and
the search follows a clockwise pattern from radius of 1 pixel to maximum radius
specified by this flag. Note: the search radius should be smaller than the dimension of
a typical feature in the image. If the radius is larger the snake may encompass more
than one object. Larger radius is also less efficient because many of the pixels in that
range would result in a snake that crosses itself and hence get rejected in the process.

/SX=xSnake Provide an X-wave for the starting snake. You must also provide an appropriate Y-
wave using /SY.

/SY=ySnake Provide a Y-Wave for the starting snake. Must work in combination with /SX.

/UPDM=mode

/Q Quiet mode; don’t print information in the history.

/Z Don’t report any errors.

Sets the update mode using any combination of the following:

Value Update

0 Once when the operation terminates.

1 Once at the end of every iteration.

2 Once after every snake vertex moves.

4 Once for every search position.

ImageSkeleton3D

V-356

4. The coefficient delta times a repulsion energy. Repulsion is computed as an inverse square law by
adding contributions from all vertices except the two that are immediately connected to each vertex.
This energy term is designed to make sure that the snake does not fold itself into “valleys”.

5. The coefficient eta times the sum of values corresponding to the positions of all snake vertices in the
wave you provide in /EXEN.

The energy calculation skips all terms for which the coefficient is zero. In addition there is a built-in scan
which adds a very high penalty for configurations in which the snake crosses itself.

ImageSkeleton3D
ImageSkeleton3D [/DEST=destWave /METH=method /Z] srcWave
The ImageSkeleton3D operation computes the skeleton of a 3D binary object in srcWave by "thinning".
Thinning is a layer-by-layer erosion until only the "skeleton" of an object remains. (See reference below.) It
is used in neuroscience to trace neurons.
The ImageSkeleton3D operation was added in Igor Pro 7.

Parameters
srcWave is a 3D unsigned-byte wave where object voxels are set to 1 and the background is set to 0.

Flags

Details
The output is stored in the wave M_Skeleton in the current data folder or in the wave specified by /DEST.
Skeleton voxels are set to the value 1 and background voxels are set to 0.

Example
// Create a cube with orthogonal square holes
Make/B/U/N=(30,30,30) ddd=0
ddd[2,27][2,27][2,27]=1
ddd[2,27][10,20][10,20]=0
ddd[10,20][2,27][10,20]=0
ddd[10,20][10,20][2,27]=0
ImageSkeleton3D ddd

See Also
Chapter III-11, Image Processing, ImageMorphology, ImageSeedFill

Reference
K. Palagyi, "A 3D fully parallel surface-thinning algorithm", Theoretical Computer Science 406 (2008) 119-135.

ImageStats
ImageStats [flags] imageWave
The ImageStats operation calculates wave statistics for specified regions of interest in a real matrix wave.
The operation applies to image pixels whose corresponding pixels in the ROI wave are set to zero. It does
not print any results in the history area.

/DEST=destWave Specifies the wave to contain the output of the operation. If the specified wave already
exists, it is overwritten.
When used in a user-defined function, ImageSkeleton3D creates wave reference for
destWave if it is a simple name. See Automatic Creation of WAVE References on page
IV-66 for details.
If you omit /DEST the output wave is M_Skeleton in the current data folder.

/METH=m

/Z Do not report any errors.

Sets the method used to compute the skeleton.

This is currently the only supported method.

m=1: Uses elements of an algorithm by Kalman Palagyi (default).

ImageStats

V-357

Flags

/BEAM Computes the average, minimum, and maximum pixel values in each layer of a 3D
wave and 2D ROI. Output is to waves W_ISBeamAvg, W_ISBeamMax, and
W_ISBeamMin in the current data folder. Use /RECT to improve efficiency for simple
ROI domains. V_ variable results correspond to the last evaluated layer of the 3D
wave. Do not use /G, /GS, or /P with this flag. Set /M=1 for maximum efficiency.

/BRXY={xWave, yWave}

Use this option with a 3D imageWave. It provides a more efficient method for
computing average, minimum and maximum values when the set of points of interest
is much smaller than the dimensions of an image.
Here xWave and yWave are 1D waves with the same number of points containing XY
integer pixel locations specifying arbitrary pixels for which the statistics are
calculated on a plane by plane basis as follows:

Pixel locations are zero-based; non-integer entries may produce unpredictable results.
The calculated statistics for each plane are stored in the current data folder in the
waves W_ISBeamAvg, W_ISBeamMax and W_ISBeamMin.
Note: This flag is not compatible with any other flag except /BEAM.

/C=chunk When imageWave is a 4D wave, /C specifies the chunk for which statistics are
calculated. By default chunk = 0.
Added in Igor Pro 7.00.

/G={startP, endP, startQ, endQ}

Specifies the corners of a rectangular ROI. When this flag is used an ROI wave is not
required. This flag requires that startP ≤ endP and startQ ≤ endQ. When the parameters
extend beyond the image area, the command will not execute and V_flag will be set
to -1. You should therefore verify that V_flag=0 before using the results of this
operation.

/GS={sMinRow,sMaxRow,sMinCol,sMaxCol}

Specifies a rectangular region of interest in terms of the scaled image coordinates.
Each one of the 4 values will be translated to an integer pixel using truncation.
This flag, /G, and an ROI specification are mutually exclusive.

/M=val Calculates the average and locates the minimum and the maximum in the ROI when
/M=1. This will save you the computation time associated with the higher order
statistical moments.

/P=planeNumber Restricts the calculation to a particular layer of a 3D wave. By default, planeNumber= -
1 and only the first layer of the wave is processed.

/R=roiWave Specifies a region of interest (ROI) in the image. The ROI is defined by a wave of type
unsigned byte (/b/u), which has the same number of rows and columns as the image
wave. The ROI itself is defined by the entries/pixels whose value are 0. Pixels outside
the ROI can take any nonzero value. The ROI does not have to be contiguous. See
ImageGenerateROIMask for more information on creating ROI waves.

/RECT={minRow, maxRow, minCol, maxCol}

Limits the range of the ROI to a rectangular pixel range with /BEAM.

W_ISBeamAvg[k]=
1

n
Image[xWave[i]][yWave[i]].

i=1

n

ImageThreshold

V-358

Details
The image statistics are returned via the following variables:

Most of these statistical results are similarly defined as for the WaveStats operation. WaveStats will be more
convenient to use when calculating statistics for an entire wave.
If imageWave is 4D it is often useful to use the reversible conversion
Redimension/N=(rows,cols,layers*chunks) ImageWave

which allows you to obtain the statistics for each layer and all chunks of the wave. To convert back to 4D,
execute:
Redimension/N=(rows,cols,layers,chunks) ImageWave

See Also
The ImageGenerateROIMask and WaveStats operations. ImageStats Operation on page III-324.

ImageThreshold
ImageThreshold [flags] imageMatrix
The ImageThreshold operation converts a grayscale imageMatrix into a binary image. The operation
supports all data types. However, the source wave must be a 2D matrix. If imageMatrix contains NaNs, the
pixels corresponding to NaN values are mapped into the value 64. The values for the On and Off pixels are
255 and 0 respectively. The resulting image is stored in the wave M_ImageThresh.

Flags

V_adev Average deviation of pixel values.

V_avg Average of pixel values.

V_kurt Kurtosis of pixel values.

V_min Minimum pixel value.

V_minColLoc Specifies the location of the column in which the minimum pixel value was found or
the first eligible column if no single column was found.

V_minRowLoc Specifies the location of the row in which the minimum pixel value was found or the
first eligible row if no single minimum was found.

V_max Maximum pixel value.

V_maxColLoc Specifies the location of the column in which the maximum pixel value was found or
the first eligible column if no single column was found.

V_maxRowLoc Specifies the location of the row in which the maximum pixel value was found or the
first eligible row if no single maximum was found.

V_npnts Number of points in the ROI.

V_rms Root mean squared of pixel values.

V_sdev Standard deviation of pixel values.

V_skew Skewness of pixel values.

/C Calculates the correlation coefficient between the original image and the image
generated by the threshold operation. The correlation value is printed to the history
area (unless the /Q flag is specified), it is also stored in the variable V_correlation.

/I Inverts values written to the image, i.e., sets to zero all pixels above threshold.

ImageThreshold

V-359

/M= method

/N Sets the background level to 64 (i.e., NaN).

/O Overwrites the original image with the calculated threshold image.
If you do not specify the /O flag, the threshold image is written into the wave
M_ImageThresh.

/P=layer When imageMatrix is a 3D wave /P selects a specific layer for which to compute the
threshold. layer is the zero-based layer index.
If layer is -1, which is the default value, the threshold is computed for all layers of
imageMatrix.
The /P flag is not compatible with /O.
The /P flag was added in Igor Pro 7.00.

/Q Suppresses printing calculated correlation coefficients (/C) and calculated thresholds
(/M) to the history area.

/R=roiSpec Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/b/u). The ROI wave must have the same number of rows and columns as the
image wave. The ROI itself is defined by the entries/pixels whose values are 0. Pixels
outside the ROI can take any nonzero value. The ROI does not have to be contiguous
and can take any arbitrary shape. See ImageGenerateROIMask for more information
on creating ROI waves.

Specifies the thresholding method. The calculated value will be printed to the
history area (unless /Q is specified) and stored in the variable V_threshold.
method=0: Default. In thie case you must use the /T flag to specify a

manually-selected threshold.
method=1: Automatically calculate a threshold value using an iterative

method.
method=2: Image histogram is a simple bimodal distribution.
method=3: Adaptive thresholding. Evaluates threshold based on the last 8

pixels in each row, using alternating rows.
The output wave M_ImageThresh has the same numeric type as
the input wave. In particular, when the input is signed byte, the
on and off pixel values are 127 and 0 respectively.
Note that this method is not supported when used as part of the
operation ImageEdgeDetection.

method=4: Fuzzy thresholding using entropy as the measure for
“fuzziness”.

method=5: Fuzzy thresholding using a method that minimizes a
“fuzziness” measure involving the mean gray level in the object
and background.

method=6: Determines an ideal threshold by histograming the data and
representing the image as a set of clusters that is iteratively
reduced until there are two clusters left. The threshold value is
then set to the highest level of the lower cluster. This method is
based on a paper by A.Z. Arifin and A. Asano (see reference
below) but modified for handling images with relatively flat
histograms.
If the image histogram results in less than two clusters, it is
impossible to determine a threshold using this method and the
threshold value is set to NaN.
Added in Igor Pro 7.00.

method=7: Determines the ideal threshold value by maximizing the total
variance between the “object” and the “background”. See
http://en.wikipedia.org/wiki/Otsu%27s_method.

http://en.wikipedia.org/wiki/Otsu%27s_method

ImageTransform

V-360

References
The automatic thresholding method (/M=1) is described in: T. W. Ridler and S. Calvard, IEEE Transactions
on Systems, Man and Cybernetics, SMC-8, 630-632, 1978.
The thresholding method used with /M=6 is described in: A.Z. Arifin and A Asano, "Image segmentation
by histogram thresholding using hierarchical cluster analysis", Pattern Recognition Letters 27 (2006) 1515-
1521.

See Also
For usage examples see Threshold Examples on page III-309. The ImageGenerateROIMask and
ImageEdgeDetection operations.

ImageTransform
ImageTransform [flags] Method imageMatrix
The ImageTransform operation performs one of a number of transformations on imageMatrix. The result of
using most keywords is a new wave stored in the current data folder. Most flags in this operation are
exclusive to the keywords in which they are mentioned.

Parameters
Method selects type of transform. It is one of the following names:

By default roiFlag is set to 1 and it is then possible to use the /R flag using the
abbreviated form /R=roiWave.

/T=thresh Sets the threshold value.

/W= Twave Sets the threshold intervals. Each interval is specified by a pair of values in the wave
Twave. The first element in each pair is the low value and the second element is the
high value. Pixel values that lie outside all the specified intervals are set to 0.

averageImage Computes an average image for a stack of images contained in 3D imageMatrix. The
average image is stored in the wave M_AveImage and the standard deviation for each
pixel is stored in the wave M_StdvImage in the current data folder. You can use this
keyword together with the optional /R flag where a region of interest is defined by
zero value points in a ROI wave. The operation sets to NaN the entries in
M_AveImage and M_StdvImage that correspond to pixels outside the ROI.
imageMatrix must have at least three layers.

averageImages Computes an average image from a sequence of RGB images represented by a 4D
wave. The average is computed separately for the R, G and B channels and the
resulting RGB image is stored in the wave M_AverageRGBImage in the current data
folder. The operation supports all real data types.
Added in Igor Pro 7.00.

In general, the roiSpec has the form {roiWaveName, roiFlag}, where roiFlag can take
the following values:
roiFlag=0: Set pixels outside the ROI to 0.
roiFlag=1: Set pixels outside the ROI as in original image.
roiFlag=2: Set pixels outside the ROI to NaN (=64).

ImageTransform

V-361

backProjection Reconstructs the source image from a projection slice and stores the result in the wave
M_BackProjection. The projection slice should either be a wave produced by the
projectionSlice keyword of this operation or a wave that would be similarly scaled.
The input must be a single or double precision real 2D wave. Row scaling must range
symmetrically about zero. For example, if the reconstructed image is expected to have
256 rows then the row scaling of the input should be from -128 to 127. Similarly, the
column scaling of the input should range between zero and π. An equivalent
implementation as a user function is provided in the demo experiment. You can use
this implementation as a starting point if you want to develop filtered back projection.
See the projectionSlice keyword and the RadonTransformDemo experiment. For
algorithm details see the chapter “Reconstruction of cross-sections and the projection-
slice theorem of computerized tomography” in Born and Wolf, 1999.

ccsubdivision Performs a Catmull-Clark recursive generation of B-spline surfaces. There are two
valid inputs: triangular meshes or quad meshes.
Quad meshes are assumed to be in the form of a 3D wave where the first plane
contains the X-values, the second the Y-values and the third the Z-values.
Triangle meshes are much more complicated to convert into face-edge-vertex arrays
so they are less desirable. They are stored in a three column (triplet) wave where the
first column corresponds to the X coordinate, the second to the Y coordinate and the
third to the Z coordinate. Each triangle is described by three rows in the wave and
common vertices have to be repeated so that each sequential three rows in the triplet
wave correspond to a single triangle. You can also associate a scalar value with each
vertex and it will be suitably interpolated as new vertices are computed and old ones
are shifted. In this case the input source wave contains one more column in the case
of a triplet wave or one more plane in the case of a quad wave. The scalar value is
added everywhere as an additional dimension to the spatial part of any point
calculation.
You can specify the number of iterations using the /I flag. By default the operation
executes a single iteration. The output is saved in a quad wave M_CCBSplines that
consists of 4 columns. Each row corresponds to a Quad where the 3 planes contain the
X, Y, and Z components. If you are using an optional scalar in the input, the scalar
result is stored in the wave M_CCBScalar.

cmap2rgb Converts an image and its associated colormap wave (specified using the /C flag) into
an RGB image stored in a 3D wave M_RGBOut.

CMYK2RGB Converts a CMYK image, stored as 4 layer unsigned byte wave, into a 3 layer,
standard RGB image wave. The output wave is M_CMYK2RGB that is stored in the
current data folder.

compress Compresses the data in the imageWave using a nonlossy algorithm and stores it in the
wave W_Compressed in the current data folder. The compressed wave includes all
data associated with imageWave including its units and wavenote. Use the
decompress keyword to recover the original wave. The operation supports all
numeric data types.
NOTE: The compression format for waves greater than 2GB in size was changed in
version 6.30B02. If you compressed a wave greater than 2 GB in IGOR64 6.30B01, you
will need to decompress it using the same version. You can not decompress it in
6.30B02 or later.

convert2gray Converts an arbitrary 2D wave into an 8-bit normalized 2D wave. The default output
wave name is M_Image2Gray.

decompress Decompresses a compressed wave. It saves a copy of the decompressed wave under
the name W_DeCompressed in the current data folder.
NOTE: The compression format for waves greater than 2GB in size was changed in
version 6.30B02. If you compressed a wave greater than 2 GB in IGOR64 6.30B01, you
will need to decompress it using the same version. You can not decompress it in
6.30B02 or later.

ImageTransform

V-362

distance Computes the distance transform, also called "distance map", for the input image.
Added in Igor Pro 7.00.
The distance transform/map is an image where every pixel belonging to the "object"
is replaced by the shortest distance of that pixel from the background/boundary.
imageMatrix must be a 2D wave of type unsigned byte (Make/B/U) where pixels
corresponding to the object are set to zero and pixels corresponding to the
background are set to 255. Such an image can be obtained, for example, using
ImageThreshold with the /I flag.
The resulting distance map is stored in the wave M_DistanceMap in the current data
folder. The operation supports three metrics (Manhattan, Euclidean, Euclidean +
scaling) set via the /METR flag.

extractSurface Extracts values corresponding to a plane that intersects a 3D volume wave
(imageMatrix). You must specify the extraction parameters using the /X flag. The
volume is defined by the wave scaling of the 3D wave. The result, obtained by
trilinear interpolation, is stored in the wave M_ExtractedSurface and is of the type
NT_FP64. Points in the plane that lie outside the volume are set to NaN.

fht Performs a Fast Hartley Transform subject to the /T flag. The source wave must be a
2D real matrix with a power of 2 number of rows and columns. Default output is
saved in the double-precision wave M_Hartley in the current data folder. If you use
the /O flag the result overwrites imageMatrix without changing the numeric type. If
imageMatrix is single-precision float the conversion is straightforward. All other
numeric types are scaled. Single- and double-byte types are scaled to the full dynamic
range. 32 bit integers are scaled to the range of the equivalent 16 bit types (i.e.,
unsigned int is scaled to unsigned short range etc.). It does not support wave scaling
or NaN entries.

fillImage Fills a 2D target image wave with data from a 1D image wave (specified using /D).
Both waves must be the same data type, and the number of data points in the target
wave must match the number of points in the data wave. There are four fill modes
that are specified via the /M flag. The operation supports all noncomplex numeric
data types.

findLakes Originally intended to identify lakes in geographical data, this operation creates a
mask for a 2D wave for all the contiguous points whose values are close to each other.
You can determine the minimum number of pixels within a contiguous region using
the /LARA=minPixels flag (default is 100). You can determine how close values must
be in order to belong to a contiguous region using the /LTOL=tolerance flag (default is
zero). You can also limit the search region using the /LRCT flag. Use the flag
/LTAR=target to set the value of the masked regions. By default, the algorithm uses 4-
connectivity when looking at adjacent pixels. You can set it to 8-connectivity using the
/LCVT flag. The result of the operation is saved in the wave M_LakeFill. It has the
same data type as the source wave and contains all the source values outside the
masked pixels.

flipCols Rearrange pixels by exchanging columns symmetrically about a center column or the
center of the image (if the number of columns is even). The exchange is performed in
place and can be reverted by repeating the operation. When working with 3D waves,
use the /P flag to specify the plane that you want to operate on.

flipRows Rearrange pixels in the image by exchanging rows symmetrically about the middle
row or the middle of the image (if the image has an even number of rows). The
exchange is performed in place and can be reverted by repeating the operation. When
working with 3D waves, use the /P flag to specify the plane that you want to operate
on.

flipPlanes Rearrange data in a 3D wave by exchanging planes symmetrically about the middle
plane. The operation is performed in place and can be reverted by repeating the
operation.

ImageTransform

V-363

fuzzyClassify Segments grayscale and color images using fuzzy logic. Iteration stops when it
reaches convergence defined by /TOL or the maximum number of iterations specified
by /I. It is a good practice to specify the tolerance and the number of iterations. If the
number of classes is small, the operation prints the class values in the history. Use /Q
to eliminate printing and increase performance. Use /CLAS to specify the number of
classes and optionally use /CLAM to modify the fuzzy probability values. Use /SEG
to generate the segmentation image. The classes are stored in the wave
W_FuzzyClasses in the current data folder and it will be overwritten if it already
exists.
When imageMatrix is a grayscale image, each class is a single wave entry. When
imageMatrix is a RGB image, classes are stored consecutively in the wave
W_FuzzyClasses. If you request more classes than are present in imageMatrix, you will
likely find a degeneracy where the space of a data class is spanned by more than one
class. It is a good idea to compute the Euclidean distance between every possible pair
of classes and eliminate degeneracies when the distance falls below some threshold.
Any real data type is allowed but values in the range [0,255] are optimal. You can
segment 3D waves of more than 3 layers in which a class will be a vector of
dimensionality equal to the number of layers in imageMatrix.
For examples see Examples/Imaging/fuzzyClassifyDemo.pxp.

getBeam Extracts a beam from a 3D wave.
A “beam” is a 1D array in the Z-direction. If a row is a 1D array in the first dimension
and a column is a 1D array in the second dimension then a beam is a 1D array in the
third dimension.
The number of points in a beam is equal to the number of layers in imageWave. Specify
the beam with the /BEAM={row,column} flag. It stores the result in the wave W_Beam
in the current data folder. W_Beam has the same numeric type as imageWave. Use
setBeam to set beam values. (See also, MatrixOp beam.)

getChunk Extracts the chunk specified by chunk index /CHIX from imageMatrix and stores it in
the wave M_Chunk in the current data folder. For example, if imageMatrix has the
dimensions (10,20,3,10), the resulting M_Chunk has the dimensions (10,20,3). See also
setChunk and insertChunk.

getCol Extracts a 1D wave, named W_ExtractedCol, from any type of 2D or 3D wave. You
specify the column using the /G flag. For a 3D source wave, it will use the first plane
unless you specify a plane using the /P flag. imageMatrix can be real or complex. (See
also putCol keyword, MatrixOp col.)

getPlane Creates a new wave, named M_ImagePlane, that contains data in the plane specified
by the /P flag. The new wave is of the same data type as the source wave. You can
specify the type of plane using the /PTYP flag. (See also setPlane keyword,
MatrixOp.)

getRow Extracts a 1D wave, named W_ExtractedRow, from any type of 2D or 3D wave. You
specify the row using the /G flag. For a 3D source wave, it will use the first plane
unless you specify a plane using the /P flag. imageMatrix can be real or complex. (See
also setRow keyword, MatrixOp row.)

ImageTransform

V-364

Hough Performs the Hough transform of the input wave. The result is saved to a 2D wave
M_Hough in which the columns correspond to angle and the rows correspond to the
radial domain.
By default the output consists of 180 columns. Use the /F flag to modify the angular
resolution.
If the input image has N rows and M columns then the number of rows in the
M_Hough is set to 1+sqrt(N^2+M^2).
It is assumed that the input wave has square pixels of unit size and that is binary
(/B/U) where the background value is 0.
See also Hough Transform on page III-317.

hsl2rgb Transforms a 3-plane HSL wave into a 3-plane RGB wave. If the source wave for this
operation is of any type other than byte or unsigned byte, the HSL values are expected
to be between 0 and 65535. For all source wave types the resulting RGB wave is of type
unsigned short. The result of the operation is the wave M_HSL2RGB (of type
unsigned word), where the RGB values are in the range 0 to 65535.

hslSegment Creates a binary image of the same dimensions as the source image, in which all pixels
that belong to all three of the specified Hue, Saturation, and Lightness ranges are set
to 255 and the others to zero. You can specify the HSL ranges using the /H, /S, and /L
flags. Each flag takes as an argument either a pair of values or a wave containing pairs
of values. You must specify the /H flag but you can omit the /S and /L flags in which
case the default values (corresponding to full range 0 to 1) are used. imageMatrix is
assumed to be an RGB image.

imageToTexture Transforms a 2D or 3D image wave into a 1D wave of contiguous pixel components.
The transformation is useful for creating an OpenGL texture (for Gizmo) or for saving
a color image in a format requiring either RGB or RGBA sequences.
The /O flag does not apply to imageToTexture.
Use the /TEXT flag to specify the type of transformation. imageMatrix must be an
unsigned byte wave. A 1D unsigned byte wave named W_Texture is created in the
current data folder.

insertChunk Inserts a chunk (a 3D wave specified by the /D flag) into imageMatrix at chunk index
specified by the /CHIX flag. The dimensions of the inserted chunk must match the
first three dimensions of imageMatrix. The wave must also have the same numeric
type. The 4th dimension of imageMatrix is incremented by 1 to accommodate the new
data. See also getChunk and setChunk.

insertImage Inserts the image specified by the flag /INSI into imageMatrix starting at the position
specified by the flags /INSX and /INSY. If the imageMatrix is a 3D wave then it inserts
the image in the layer specified by the /P flag. The inserted image and imageMatrix
must be the same data type. The inserted data is clipped to the boundaries of
imageMatrix.

W_Texture's wave note is set to a semicolon-separated list of keyword -value pairs
that can be parsed using StringByKey and NumberByKey:

Keyword Information Following Keyword

WIDTHPIXELS DimSize(imageMatrix,0) or truncated to nearest
power of 2 if /TEXT value is odd

HEIGHTPIXELS DimSize(imageMatrix,1) or truncated to nearest
power of 2

LAYERS DimSize(imageMatrix,2)

TEXTUREMODE val parameter from /TEXT flag

SOURCEWAVE GetWavesDataFolder(imageMatrix, 2)

ImageTransform

V-365

insertXplane Inserts a 2D wave as a new plane perpendicular to the X-axis in a 3D wave. The /P flag
specifies the insertion point and the /INSW flag specifies the inserted wave. The 2D
wave must be the same numeric data type as the 3D wave and its dimensions must be
cols x layers of the 3D wave. For example, if the 3D wave has the dimensions
(10x20x30) the 2D wave must be 20x30. If you do not use the /O flag, it stores the result
in the wave M_InsertedWave in the current data folder.

insertYplane Inserts a 2D wave as a new plane perpendicular to the Y-axis in a 3D wave. The /P flag
specifies the insertion point and the /INSW flag specifies the inserted wave. The 2D
wave must be the same numeric data type as the 3D wave and its dimensions must be
rows x layers of the 3D wave. For example, if the 3D wave has the dimensions
(10x20x30) the 2D wave must be 10x30. If you do not use the /O flag, it stores the result
in the wave M_InsertedWave in the current data folder.

insertZplane Inserts a 2D wave as a new plane perpendicular to the Z-axis in a 3D wave. The /P flag
specifies the insertion point and the /INSW flag specifies the inserted wave. The 2D
wave must be the same numeric data type as the 3D wave and its dimensions must be
rows x cols of the 3D wave. For example, if the 3D wave has the dimensions
(10x20x30) the 2D wave must be 10x20. If you do not use the /O flag, it stores the result
in the wave M_InsertedWave in the current data folder. This keyword is included for
completeness. You can accomplish the same task using InsertPoints.

Invert Converts pixel values using the formula newValue=255-oldValue. Works on
waves of any dimension, but only on waves of type unsigned byte. The result is stored
in the wave M_Inverted unless specifying the /O flag.

indexWave Creates a 1D wave W_IndexedValues in the current data folder containing values
from imageMatrix that are pointed to by the index wave (see /IWAV). Each row in the
index wave corresponds to a single value of imageMatrix. If any row does not point to
a valid index (within the dimensions of imageMatrix), the corresponding value is set
to zero and the operation returns an error. Indices are zero based integers; the
operation does not support interpolation and ignores wave scaling.

matchPlanes Finds pixels that match test conditions in all layers of a 3D wave. It creates a 2D
unsigned byte output wave, M_matchPlanes, that is set to the values 0 and 255. A
value of 255 indicates that the corresponding pixel has satisfied test conditions in all
layers of the wave for which conditions were provided. Otherwise the pixel value is 0.
Test conditions are entered as a 2D wave using the /D flag. The condition wave must
be double precision and it must contain the same number of columns as the number
of layers in the 3D source wave. A condition for layer j of the source wave is specified
by two rows in column j of the condition wave. The first row entry, say A, and the
second row entry, say B, imply a condition on pixels in layer j such that A ≤ x < B. You
can have more than one condition for a given layer by adding pairs of rows to the
condition wave. For example, if you add in consecutive rows the values C and D, this
implies the test:

If you do not have any conditions for some layer, set its corresponding condition
column to NaN. Similarly, if you have two conditions for the first layer and one
condition for the second layer, pad the bottom of column 1 in the condition wave with
NaNs. See Examples for use of this keyword to perform hue/saturation segmentation.

offsetImage Shifts an image in the XY plane by dx, dy pixels (specified by the /IOFF flag). Pixels
outside the shifted image will be set to the specified background value. The operation
works on 2D waves or on 3D waves with the optional /P flag. When shifting a 3D
wave with no specified plane, it creates a 3D wave with all planes offset by the same
amount. The wave M_OffsetImage contains the result in the current data folder.
The /O flag is not supported with offsetImage.

A � x � B() || C � x � D().

ImageTransform

V-366

padImage Resizes the source image. When enlarged, values from the last row and column fill in
the new area. The /N flag specifies the new image size in terms of the rows and
columns change. The /W flag specifies whether data should be wrapped when
padding the image. Unless you use the /O flag, the result is stored in the wave
M_PaddedImage in the current data folder.

projectionSlice Computes a projection slice for a parallel fan of rays going through the image at
various angles. For every ray in the fan the operation computes a line integral through
the image (equivalent to the sum of the line profile along the ray). The operation
computes the line integrals for multiple fans defined by the number and position of
the rays as well as the angle that they make with the positive X-direction. Use the /PSL
flag to specify the projection parameters. The projection slice itself is stored in a 2D
wave M_ProjectionSlice where the rows correspond to the rays and the columns
correspond to the selected range of angles. The operation does not support wave
scaling. If the source wave is 3D the projection slice currently supports slices that are
perpendicular to the z-axis and specified by their plane number.
See the backProjection keyword and the RadonTransformDemo experiment. For
algorithm details see the chapter “Reconstruction of cross-sections and the projection-
slice theorem of computerized tomography” in Born and Wolf, 1999.

putCol Sets a column of imageMatrix to the values in the wave specified by the /D flag. Use
the /G flag to specify column number and the /P flag to specify the plane. Note that if
there is a mismatch in the number of entries between the specified waves, the
operation uses the smaller number. See also getCol keyword.

putRow Sets a row of imageMatrix to the values in the wave specified by the /D flag. Use the
/G flag to specify column number and the /P flag to specify the plane. Note that if
there is a mismatch in the number of entries between the specified waves, the
operation uses the smaller number. See also getRow keyword.

rgb2cmap Computes a default color map of 256 colors to represent the input RGB image. The
colors are computed by clustering the input pixels in RGB space. The resulting color
map is stored in the wave M_ColorIndex in the current data folder. The operation also
saves the wave M_IndexImage which contains an index into the colormap that can be
used to display the image using the commands:
NewImage M_IndexImage
ModifyImage M_IndexImage cindex= M_ColorIndex

To change the default number of colors use the /NCLR flag. When the number of
colors are greater than 256, M_IndexImage will be a 16-bit unsigned integer or a 32 bit
integer wave depending on the number. rgb2cmap supports input images in the form
of 3D waves of type unsigned byte or single precision float. The floating point option
may be used to input images in colorspaces that use signed numeric data.

rgb2gray When the input imageMatrix is a 3D RGB wave, rgb2gray produces a 2D wave of type
unsigned byte containing the grayscale representation of the input. By default, the
operation stores the output in the wave M_RGB2Gray in the current data folder. The
RGB values are converted into the luminance Y of the YIQ standard using:
Y = 0.299R + 0.587G + 0.114B

When the input imageMatrix is a 4D wave containing multiple (3 layer) RGB chunks,
the conversion produces a 3D wave where each layer corresponds to the grayscale
conversion of the corresponding chunk in the input wave. In this case the numeric
type of the output is the same as that of the input but the conversion formula is the
same. The /O flag is not supported when transforming a 4D RGB wave.

rgb2hsl Converts an RGB image stored in a 3D wave into another 3D wave in which the three
planes correspond to Hue, Saturation and Lightness in the HSL color model. Values
of all components are normalized to the range 0 to 255 unless the /U flag is used or if
the source wave is not 8-bit, in which case the range is 0 to 65535. The default output
wave name is M_RGB2HSL.

ImageTransform

V-367

rgb2i123 Performs a colorspace conversion of an RGB image into the following quantities:

where

I1, I2, and I3 are stored in the wave M_I123 (using the same data type as the original
RGB wave) in the current data folder. I1 is stored in the first layer, I2 in the second and
I3 in the third. This color transformation is said to have useful applications in machine
vision.
For more information see: Gevers and Smeulders (1999).

removeXplane Removes one or more planes perpendicular to the X-axis from a 3D wave. The /P flag
specifies the starting position. By default, it removes a single plane but you can
remove more planes with the /NP flag. If you do not use the /O flag, it saves the result
in the wave M_ReducedWave in the current data folder.

removeYplane Removes one or more planes perpendicular to the Y-axis from a 3D wave. The /P flag
specifies the starting position. By default, it removes a single plane but you can
remove more planes with the /NP flag. If you do not use the /O flag, it saves the result
in the wave M_ReducedWave in the current data folder.

removeZplane Removes one or more planes perpendicular to the Z-axis from a 3D wave. The /P flag
specifies the starting position. By default, it removes a single plane but you can
remove more planes with the /NP flag. If you do not use the /O flag, it saves the result
in the wave M_ReducedWave in the current data folder.

rgb2xyz Converts a 3D RGB image wave into a 3D wave containing the XYZ color space
equivalent. The conversion is based on the D65 white point and uses the following
transformation:

.
The XYZ values are stored in a wave named “M_RGB2XYZ” unless the /O flag is used,
in which case the source image is overwritten and converted into single precision
wave (NT_FP32).

roiTo1D Copies all pixels in an ROI and saves them sequentially in a 1D wave. The ROI is
specified by /R. The ROI wave must have the same dimensions as imageMatrix. If
imageMatrix is a 3D wave, the ROI must have as many layers as imageMatrix. The wave
W_roi_to_1d contains the output in the current data folder, has the same numeric
type as imageMatrix, and contains the selected pixels in a column-major order.

rotateCols Rotates rows in place. This operation is analogous to the Rotate operation except that
it works on images and rotates an integer number of rows. The number of rows is
specified by the /G flag.
When imageMatrix contains multiple layers you can use the /P flag to specify the layer
of the wave that will undergo rotation. By default, if you do not specify the /P flag and
if imageMatrix consists of three layers (RGB), then all three layers are rotated.
Otherwise the operation rotates only the first layer of the wave.

I1 = R �G D

I2 = R � B D

I3 = G � B D,

D = 255

R �G + R � B + G � B
.

x

y

z

�

�

�

�

�

�

�

�

�

=
0.412453 0.357580 0.180423

0.212671 0.715160 0.072169

0.019334 0.119193 0.950227

�

�

�

�

�

�

�

�

�

�

R

G

B

�

�

�

�

�

�

�

�

�

�

ImageTransform

V-368

rotateRows Rotates columns in place. This operation is analogous to the Rotate operation except
that it works on images and rotates an integer number of columns. The number of
columns is specified by the /G flag.
When imageMatrix contains multiple layers you can use the /P flag to specify the layer
of the wave that will undergo rotation. By default, if you do not specify the /P flag and
if imageMatrix consists of three layers (RGB), then all three layers are rotated.
Otherwise the operation rotates only the first layer of the wave.

scalePlanes Scales each plane of the 3D wave, imageMatrix, by a constant taken from the
corresponding entry in the 1D wave specified by the /D flag. The result is stored in the
wave M_ScaledPlanes unless the /O flag is specified, in which case scaling is done in
place.
When using /O, first redimension the wave to a different data type to make sure there
are no artifacts due to type clipping.
If imageMatrix is double precision, M_ScaledPlanes is double precision. Otherwise
M_ScaledPlanes is single precision.
This operation also supports the optional flag.
Note that when you display M_ScaledPlanes, which has three planes that originated
from scaling byte data, you will have to multiply the wave by 255 to see the image
because the RGB format for single and double precision data requires values in the
range 0 to 65535.

selectColor Creates a mask for the image in which pixel values depend on the proximity of the
color of the image to a given central color. The central color, the tolerance and a
grayscale indicator must be specified using the /E flag.
For example, /E={174,187,75,10,1} specifies an RGB of (174,187,75), a tolerance
level of 10 and a requested grayscale output.
RGB values must be provided in a range appropriate for the source image. If the
source wave type is not byte or unsigned byte, then the range of the RGB components
should be 0 to 65535.
The color proximity is calculated in the nonuniform RGB space and the tolerance
applies to the maximum component difference from the corresponding component of
the central color.
The tolerance, just like the central color, should be appropriate to the type of the
source wave.
The generated mask is stored in the wave M_SelectColor in the current data folder. If
a wave by that name exists prior to the execution of this operation, it is overwritten.
You can also use the /R flag with this operation to limit the color selection to pixels in
the ROI wave whose value is zero.

setBeam Sets the data of a particular beam in imageMatrix.
A “beam” is a 1D array in the Z-direction. If a row is a 1D array in the first dimension
and a column is a 1D array in the second dimension then a beam is a 1D array in the
third dimension.
Specify the beam with the /BEAM={row,column} flag and the 1D beam data wave with
the /D flag. The beam data wave must have the same number of elements as the
number of layers and same numeric type as imageMatrix. Use getBeam to extract the
beam.

setChunk Overwrites the data in the wave imageMatrix at chunk index specified by /CHIX with
the data contained in a 3D wave specified by the /D flag. The assigned data must be
contained in a wave that matches the first three dimensions of imageMatrix and must
have the same number type. See also getChunk and insertChunk.

ImageTransform

V-369

setPlane Sets a plane (given by the /P flag) in the designated image with the data in a wave
specified by the /D flag. It is designed as a complement of the getPlane keyword to
provide an easier (faster) way to create multiplane images. Note that the operation
supports setting a plane when the source data is smaller than the destination plane in
which case the source data is placed in memory contiguously starting from the corner
pixel of the destination plane. If the source data is larger than the destination plane it
is clipped to the appropriate rows and columns. If you are setting all planes in the
destination wave using algorithmically named source waves you could use the
stackImages keyword instead. See also getPlane keyword.

shading Calculates relative reflectance of a surface for a light source position defined by the /A
flag.
The operation estimates the slope of the surface and then computes a relative
reflectance defined as the dot product of the direction of the light and the normal to
the surface at the point of interest. Reflectivity is scaled using the expression:
outPixel = shadingA * (sunDirection · surfaceNormal) + shadingB
By default shadingA=1, shadingB=0.
The result is stored in the wave M_ShadedImage, which has the same data type as the
source wave.
If the source wave is any integer type, and the value of shadingA=1 the operation sets
that value to 255.
The smallest supported wave size is 4x4 elements.
Values along the boundary (1 pixel wide) are arbitrary because there are no
derivatives calculable for those pixels, so these pixels are filled with duplicates of the
inner rows and columns.

shrinkBox Shrinks 3D imageMatrix to include only the minimum three dimension rectangular
range that contains all the voxels whose values are different from an outer value. The
outer value is specified with the /F flag. This feature is useful in situations where
ImageSeedFill has set the voxels around an object of interest to some outer value and
it is desired to extract the smallest box that contains interesting data. The output is
stored in the wave M_shrunkBox.
Added in Igor Pro 7.00.

shrinkRect Shrinks imageMatrix to include only the minimum rectangle that contains all the
pixels whose value is different from an outer value. The outer value is specified with
the /F flag. This is useful in situations where ImageSeedFill has set the pixels around
the object of interest to some outer value and it is desired to extract the smallest
rectangle that contains interesting data. The output is stored in the wave M_Shrunk.

stackImages Creates a 3D or 4D stack from individual image waves in the current data folder. The
waves should be of the form baseNameN, where N is a numeric suffix specifying the
sequence order. imageMatrix should be the name of the first wave that you want to
add to the stack. You can use the /NP flag to specify the number of waves that you
want to add to the stack.
The result is a 3D or 4D wave named M_Stack, which overwrites any existing wave
of that name in the current data folder.
With /K, it kills all waves copied into the stack.

sumAllCols Creates a wave W_sumCols in which every entry is the sum of the pixels on the
corresponding image column. For a 3D wave, unless you specify a plane using the /P
flag it will use the first plane by default.

sumAllRows Creates a wave W_sumRows in which every entry is the sum of the pixels on the
corresponding image row. For a 3D wave, unless you specify a plane using the /P flag
it will use the first plane by default.

ImageTransform

V-370

sumCol Stores in the variable V_value the sum of the elements in the column specified by /G
flag and optionally the /P flag.

sumPlane Stores in the variable V_value the sum of the elements in the plane specified by the /P
flag.

sumPlanes Creates a 2D wave M_SumPlanes which contains the same number of rows and
columns as the 3D source wave. Each entry in M_SumPlanes is the sum of the
corresponding pixels in all the planes of the source wave. M_SumPlanes is a double
precision wave if the source wave is double precision. Otherwise it is a single
precision wave.

sumRow Stores in the variable V_value the sum of the elements of a row specified by /G flag
and optionally the /P flag.

swap Swaps image data following a 2D FFT. The transform swaps diagonal quadrants of
the image in one or more planes. This keyword does not support any flags. The
swapping is done in place and it overwrites the source wave.

swap3D Swaps data following a 3D FFT. The transform swaps diagonal quadrants of the data.
This keyword does not support any flags. The swapping is done in place and the
source wave is overwritten.

transpose4D Converts a 4D wave into a new 4D wave where the data are reordered by dimensions
specified by the /TM4D flag. The results are stored in the wave M_4DTranspose in the
current data folder. There is no option to overwrite the input wave so /O has no effect
with transpose4D.
Added in Igor Pro 7.00.

transposeVol

vol2surf Creates a quad-wave output (appropriate for display in Gizmo) that wraps around 3D
“particles”. A particle is defined as a region of nonzero value voxels in a 3D wave. The
algorithm effectively computes a box at the resolution of the input wave which
completely encloses the data. The output wave M_Boxy is a 2D single precision wave
of 12 columns where each row corresponds to one disjoint quad and the columns
provide the sequential X, Y, and Z coordinates of the quad vertices.

voronoi Computes the voronoi tesselation of a convex domain defined by the X, Y positions of
the input wave. imageMatrix must be a triplet wave where the first column contains
the X-values, the second column contains the Y-values and the third column is an
arbitrary (zero is recommended) constant. The result of the operation is stored in the
two column wave M_VoronoiEdges which contains sequential edges of the Voronoi
polygons. Edges are separated from each other by a row of NaNs. The outer most
polygons share one or more edges with a large triangle which contains the convex
domain.

xProjection Computes the projection in the X-direction and stores the result in the wave
M_xProjection. See zProjection for more information.

Transposes a 3D wave. The transposed wave is stored in M_VolumeTranspose. The
/O flag does not apply. The operation supports the following 5 transpose modes
which are specified using the /G flag:

mode Equivalent Command

1 M_VolumeTranspose=imageMatrix[p][r][q]

2 M_VolumeTranspose=imageMatrix[r][p][q]

3 M_VolumeTranspose=imageMatrix[r][q][p]

4 M_VolumeTranspose=imageMatrix[q][r][p]

5 M_VolumeTranspose=imageMatrix[q][p][r]

ImageTransform

V-371

Flags

xyz2rgb Converts a 3D single precision XYZ color-space data into RGB based on the D65 white
point. The transformation used is:

If you do not specify the /O flag, the results are saved in a single precision 3D wave
(NT_FP32) “M_XYZ2RGB”.
Note that not all XYZ values map into positive RGB triplets (consider colors that
reside outside the RGB triangle in the XYZ diagram). This operation gives you the
following choices: by default, the output wave is a single precision wave that will
include possible negative RGB values. If you specify the /U flag, for unsigned short
output wave, the operation will set to zero all negative components and scale the
remaining ones in the range 0 to 65535.

yProjection Computes the projection in the Y-direction and stores the result in the wave
M_yProjection. See zProjection for more information.

zDot Computes the dot product of a beam in srcWave with a 1D zVector wave (specified
with the /D flag). This will convert stacked images of spectral scans into RGB or XYZ
depending on the scaling in zVector. The srcWave and zVector must be the same data
type (float or double). The wave M_StackDot contains the result in the current data
folder.

zProjection Computes the projection in the Z-direction and stores the result in the wave
M_zProjection. The source wave must be a 3D wave of arbitrary data type. The value
of the projection depends on the method specified via the /METH flag.

/A={azimuth, elevation [, shadingA, shadingB]}

Specifies parameters for shade. Position of the light source is given by azimuth
(measured in degrees counter-clockwise) and elevation (measured in degrees above
the horizon).
The parameters shadingA and shadingB are optional. By default their values are 1
and 0, respectively.

/Beam={row,column} Designates a beam in a 3D wave; both row and column are zero based.

/BPJ={width,height} Specifies the backProjection parameters: width and height are the width and
height of the reconstructed image and should be equal to the size of the original
wave.

/C=CMapWave Specifies the colormap wave for cmap2rgb keyword. The CMapWave is expected
to be a 2D wave consisting of three columns corresponding to the RGB entries.

/CHIX=chunkIndex Identifies the chunk index for getting, inserting or setting a chunk of data in a 4D
wave. chunkIndex ranges from 0 to the number of chunks in imageMatrix.

/CLAM=fuzzy Sets the value used to compute the fuzzy probability in fuzzyClassify. It must
satisfy fuzzy > 1 (default is 2).

/CLAS=num Sets the number of requested classes in fuzzyClassify. If you don’t know the
number of expected classes and num is too high, fuzzyClassify will likely produce
some degenerate classes.

/D=waveName Specifies a data wave. Check the appropriate keyword documentation for more
information about this wave.

R

G

B

�

�

�

�

�

�

�

�

�

�

=
3.240479 �1.537150 � 0.498535

�0.969256 1.875992 0.041556

0.055648 � 0.204043 1.057311

�

�

�

�

�

�

�

�

�

�

x

y

z

�

�

�

�

�

�

�

�

�

�

.

ImageTransform

V-372

/F=value Increases the sampling in the angle domain when used with the Hough keyword.
By default value=1 and the operation results in single degree increments in the
interval 0 to 180, and if value=1.5 there will be 180*1.5 rows in the transform.
Specifies the outer pixel value surrounding the region of interest when used with
shrinkRect keyword.

/G=colNumber Specifies either the row or column number used in connection with getRow or
getCol keywords. This flag also specifies the transpose mode with the
transposeVol keyword.

/H={minHue, maxHue}
/H=hueWave

Specifies the range of hue values for selecting pixels. The hue values are specified
in degrees in the range 0 to 360. Hue intervals that contain the zero point should
be specified with the higher value first, e.g., /H={330,10}.
Use hueWave when you have more than one pair of hue values that bracket the
pixels that you want to select.
See HSL Segmentation on page III-327 for an example.

/I=iterations Sets the number of iterations in ccsubdivision and in fuzzyClassify.

/INSI=imageWave Specifies the wave, imageWave, to be used with the insertImage keyword.
imageWave is a 2D wave of the same numeric data type as imageMatrix.

/INSW=wave Specifies the 2D wave to be inserted into a 3D wave using the keywords:
insertXplane, insertYplane, or insertZplane.

/INSX=xPos Specifies the pixel position at which the first row is inserted. Ignores wave
scaling.

/INSY=yPos Specifies the pixel position at which the first column is inserted. Ignores wave
scaling.

/IOFF={dx,dy,bgValue} Specifies the amount of positive or negative integer offset with dx and dy and the
new background value, bgValue, with the offsetImage keyword.

/IWAV=wave Specifies the wave which provides the indices when used with the keyword
indexWave. The wave should have as many columns as the dimensions of
imageMatrix (2, 3, or 4). For example, to specify indices for pixels in an image, the
wave should have two columns. The first column corresponds to the row
designation and the second to the column designation of the pixel. The wave can
be of any number type (other than complex) and entries are assumed to be integer
indices; there is no support for interpolation or for wave scaling.

/L={minLight, maxLight}
/L=lightnessWave

Specifies the range of lightness for selecting pixels. The lightness values are in the
range 0-1. If you do not use the /L flag than the default full range is used.
Use lightnessWave when you have more than one pair of lightness values
corresponding to the pixels that you want to select. For each pair, values should
be arranged so that the smaller one is first and the larger is second. There is no
restriction on the order of pairs in the wave except that they match the other
waves used by the operation.

/LARA=minPixels Specifies the minimum number of pixels required for an area to be masked by the
findLakes keyword. If you do not specify this flag, the default value used is 100.

/LCVT Use 8-connectivity instead of 4-connectivity.

/LRCT={minX,minY,maxX,maxY}

Sets the rectangular region of interest for the findLakes keyword. The operation
will not affect the original data outside the specified rectangle. The X and Y values
are the scaled values (i.e., using wave scaling).

/LTAR=target Set the target value for the masked region in the findLakes keyword.

/L

ImageTransform

V-373

/LTOL=tol Specifies the tolerance for the findLakes keyword. By default the tolerance is
zero. The tolerance must be a positive number. The operation uses the tolerance
by requiring neighboring pixels to have a value between that of the current pixel
V and V+tol.

/M=n

/METH=method

/METR=method

method=0 executes faster than the other methods. method=2 can be 2x slower
especially if different scaling is applied along the two axes.

/N={rowsToAdd, colsToAdd}

Creates an image that is larger or smaller by rowsToAdd, colsToAdd. The additional
pixels are set by duplicating the values in the last row and the last column of the
source image.

/NCLR=M Specifies the maximum number of colors to find with the rgb2cmap keyword. M
must be a positive number; the default value is 256 colors.
The result of the operation is saved in the wave M_paddedImage.

/NP=numPlanes Specifies the number of planes to remove from a 3D wave when using the
removeXplane, removeYplane, or removeZplane keywords. Specifies the
number of waves to be added to the stack with the stackImages keyword.

/O Overwrites the input wave with the result except in the cases of Hough transform
and cmap2rgb. Does not apply to the transposeVol parameter.

/P=planeNum Specifies the plane on which you want to operate with the rgb2gray or getPlane
keywords. Also used for getRow or getCol if the source wave is 3D.

/PSL={xStart,dx,Nx,aStart,da,Na}

Specifies the method by which a 2D target image is filled with data from a 1D
wave using the fillImage keyword.
n =0: Straight column fill, which you can also accomplish by a

redimension operation.
n=1: Straight row fill.
n=2: Serpentine column fill. The points from the data wave are

sequentially loaded onto the first column and continue from the
last to the first point of the second column, and then sequentially
through the third column, etc.

n=3: Serpentine row fill.

Determines the values of the projected pixels for xProjection, yProjection, and
zProjection keywords.
method=1: Pixel (i,j) in M_zProjection is assigned the maximum value that

(i,j,*) takes among all layers of imageMatrix (default).
method=2: Pixel (i,j) in M_zProjection is assigned the average value that

(i,j,*) takes among all layers of imageMatrix.
method=3: Pixel (i,j) in M_zProjection is assigned the minimum value that

(i,j,*) takes among all layers of imageMatrix.

Sets the metric used by the distance transform. Added in Igor Pro 7.00.
method=0: Manhattan distance. Default.
method=1: Euclidean distance where the distance is measured between

centers of pixels (assumed square).
method=2: Euclidean distance that also takes into account actual pixel size

using the input's wave scaling.

ImageTransform

V-374

Specifies projection slice parameters. xStart is the first offset of the parallel rays
measured from the center of the image. dx is the directed offset to the next ray in
the fan and Nx is the number of rays in the fan. aStart is the first angle for which
the projection is calculated. The angle is measured between the positive X-
direction and the direction of the ray. da is the offset to the next angle at which the
fan of rays is rotated and Na is the total number of angles for which the projection
is computed.

/PTYP=num

/Q Quiet flag. When used with the Hough transform, it suppresses report to the
history of the angle corresponding to the maximum.

/R=roiWave Specifies a region of interest (ROI) defined by roiWave. For use with the keywords:
averageImage, scalePlanes and selectColor.

/S={minSat, maxSat}

/S=saturationWave Specifies the range of saturation values for selecting pixels. The saturation values
are in the range 0 to 1. If you do not use the /S flag, the default value is the full
saturation range.
Use saturationWave when you have more than one pair of saturation values. If you
use a saturation wave you must also use a lightness wave (see /L). saturationWave
should consist of pairs of values where the first point is the lower saturation value
and the second point is the higher saturation value. There is no restriction on the
order of pairs within the wave.

/SEG Computes the segmentation image for fuzzyClassify. The image is stored in the
2D wave M_FuzzySegments. The value of each pixel is 255*classIndex/number of
classes. Here classIndex is the index of the class to which the pixel belongs with the
highest probability.

/T=flag Use one or more of the following flags.
1: Swaps the data so that the DC is at the center of the image.

2: Calculates the power defined as: .

/TEXT=val

/TOL=tolerance Sets the tolerance for iteration convergence with fuzzyClassify. Convergence is
satisfied when the sum of the squared differences of all classes drops below
tolerance, which must not be negative.

Specifies the plane to use with the getPlane keyword.
num=0: XY plane.
num=1: XZ plane.
num=2: YZ plane.

P f() 0.5 H f()2 H f–()2+()⋅=

Specifies the type of texture to create with the imageToTexture keyword. val is
a binary flag that can be a combination of the following values.

val Texture

1 Truncates each dimension to the nearest power of 2, which is
required for OpenGL textures.

2 Creates a 1D texture (all other textures are for 2D applications).

4 Creates a single channel texture suitable for alpha or luminance
channels.

8 Creates a RGB texture from a 3 (or more) layer data.

16 Creates a RGBA texture. If imageMatrix does not have a 4th
layer, alpha is set to 255.

ImageTransform

V-375

Examples
If you want to insert a 2D (M x N) wave, plane0, into plane number 0 of an (M x N x 3) wave, rgbWave:
ImageTransform /P=0/D=plane0 setPlane rgbWave

If your source wave is 100 rows by 100 columns and you want to create a montage of this image use:
ImageTransform /W/N={200,200} padImage srcWaveName

An example of hue and saturation segmentation on an HSL wave.
Function hueSatSegment(hslW,lowH,highH,lowS,highS)

Wave hslW
Variable lowH,highH,lowS,highS

Make/D/O/N=(2,3) conditionW
conditionW={{lowH,highH},{lowS,highS},{NaN,NaN}}
ImageTransform/D=conditionW matchPlanes hslW
KillWaves/Z conditionW

End

An example of voronoi tesselation.
Make/O/N=(33,3) ddd=gnoise(4)
ImageTransform voronoi ddd
Display ddd[][1] vs ddd[][0]
ModifyGraph mode=3,marker=19,msize=1,rgb=(0,0,65535)
Appendtograph M_VoronoiEdges[][1] vs M_VoronoiEdges[][0]
SetAxis left -15,15
SetAxis bottom -5,10

See Also
Chapter III-11, Image Processing, for many examples. In particular see: Color Transforms on page III-305,
Handling Color on page III-332, and General Utilities: ImageTransform Operation on page III-334. The
MatrixOp operation.

References
Born, Max, and Emil Wolf, Principles of Optics, 7th ed., Cambridge University Press, 1999.
Details about the rgb2i123 transform:
Gevers, T., and A.W.M. Smeulders, Color Based Object Recognition, Pattern Recognition, 32, 453-464, 1999.

/TM4D=mode Used with transpose4D to specify the format of the output wave. Here mode is a 4
digit integer that describes the mapping of the transformation. The digit 1 is used
to represent the first dimension, 2 for the second, 4 for the third and 8 for the 4th
dimension such that the original wave corresponds to mode=1248. All other
modes are obtained by permuting one or more of the four digits and mode must
consist of 4 distinct digits.
Added in Igor Pro 7.00.

/U Creates an HSL wave of type unsigned short that contains values between 0 and
65535 when used with rgb2hsl.

/W Pads the image by wrapping the data. If you are adding more rows or more
columns than are available in the source wave, the operation cycles through the
source data as many times as necessary.

/X={Nx,Ny,x1,y1,z1,x2,y2,z2,x3,y3,z3}

Nx and Ny are the rows and columns of the wave M_ExtractedSurface. The
remaining parameters specify three 3D points on the extracted plane. The three
points must be chosen at the vertices of the plane and entered in clock-wise order
without skipping a vertex.

/Z Ignores errors.

ImageUnwrapPhase

V-376

ImageUnwrapPhase
ImageUnwrapPhase [flags][qualityWave=qWave,] srcwave=waveName
The ImageUnwrapPhase operation unwraps the 2D phase in srcWave and stores the result in the wave
M_UnwrappedPhase in the current data folder. srcWave must be a real valued wave of single or double
precision. Phase is measured in cycles (units of 2π).

Parameters

Flags

qualityWave=qWave Specifies a wave, qWave, containing numbers that rate the quality of the phase
stored in the pixels. qWave is 2D wave of the same dimensions as srcWave that can
be any real data type and values can have an arbitrary scale. If used with /M=1 the
quality values determine the order of phase unwrapping subject to branch cuts,
with higher quality unwrapped first. If used with /M=2 the unwrapping is guided
by the quality values only. This wave must not contain any NaNs or INFs.

srcwave=waveName Specifies a real-valued SP or DP wave that may contain NaNs or INFs but is
otherwise assumed to contain the phase modulo 1.

/E Eliminate dipoles. Only applies to Goldstein’s method (/M=1). Dipoles are a pair of a
positive and negative residues that are side by side. They are eliminated from the
unwrapping process by replacing them with a branch cut. The variable
V_numResidues contains the number of residues remaining after removal of the
dipoles.

/L

/M=method

/MAX=len Specifies the maximum length of a branch cut. Only applicable to Goldstein’s method
(/M=1). By default this is set to the largest of rows or columns.

/Q Suppresses messages to the history.

Saves the lookup table(LUT) used in the analysis with /M=1. This information may
be useful in analyzing your results. The LUT is saved as a 2D unsigned byte wave
M_PhaseLUT in the current data folder. Each entry consists of 8-bit fields:

Other bits are reserved and subject to change. See Setting Bit Parameters on page
IV-12 for details about bit settings.

bit=0: Positive residue.
bit=1: Negative residue.
bit=2: Branch cut.
bit=3: Image boundary exclusion.

Determines the method for computing the unwrapped phase:
method =0: Modified Itoh’s algorithm, which assumes that there are no residues

in the phase. The phase is unwrapped in a contiguous way subject
only to the ROI or singularities in the data (e.g., NaNs or INFs). You
will get wrong results for the unwrapped phase if you use this
method and your data contains residues.

method=1: Modified Goldstein’s algorithm. Creates the variables
V_numResidues and V_numRegions. Optional qWave can
determine order of unwrapping around the branch cuts.

method=2: Uses a quality map to decide the unwrapping path priority. The
quality map is a 2D wave that has the same dimensions as the source
wave but could have an arbitrary data type. The phase is
unwrapped starting from the largest value in the quality map.

ImageUnwrapPhase

V-377

Details
Phase unwrapping in two dimensions is difficult because the result of the operation needs to be such that any
path integral over a closed contour will vanish. In many practical situations, certain points in the plane have the
property that a path integral around them is not zero. These nonzero points are residues. We use the definition
that when a counterclockwise path integral leads to a positive value the residue is called a positive residue.
ImageUnwrapPhase uses the modified Itoh’s method by default. Phase is unwrapped with an offset equal
to the first element that is allowed by the ROI starting at (0,0) and scanning by rows. If there are no residues
or if you unwrap the phase using Itoh’s algorithm, then the phase is unwrapped only subject to the optional
ROI using a seed-fill type algorithm that unwraps by growing a region outward from the seed pixel. Each
time that the region growing is terminated by boundaries (external or due to the ROI), the algorithm returns
to the row scanning to find a new starting point.
If there are residues and you choose Goldstein’s method, the residues are first mapped into a lookup table
(LUT) and branch-cuts are determined between residues and boundaries. It is also possible to remove some
residues (dipoles) using the /E flag. Phase is then unwrapped in regions bounded by branch cuts using a
seed-fill type algorithm that does not cross branch cuts. With a quality wave, the algorithm follows the same
seed-fill approach except that it gives priority to pixels with high quality level. The phase on the branch cuts
themselves is subsequently calculated.
The output wave M_UnwrappedPhase has the same wave scaling and dimension units as srcWave. The
unwrapped phase is units of cycles; you will have to multiply it by 2π if you need the results in radians.
The operation creates two variables:

Examples
To unwrap a complex wave wCmplx:
Make/O/N=(DimSize(wCmplx,0),DimSize(wCmplx,1) phaseWave
phaseWave=atan2(imag(wCmplx),real(wCmplx))/2*pi
ImageUnwrapPhase/N=1 srcWave=phaseWave

To find the locations of positive residues in the phase:
ImageUnwrapPhase/N=1/L srcWave=phaseWave
Duplicate/O M_PhaseLUT ee
ee=M_PhaseLUT&3 ? 1:0

To find the branch cuts:
Duplicate/O M_PhaseLUT bc
bc=M_PhaseLUT&4 ? 1:0

See Also
The Unwrap operation and the mod function.

References
The following reference is an excellent text containing in-depth theory and detailed explanation of many
two-dimensional phase unwrapping algorithms:

/R=roiWave Specifies a region of interest (ROI). The ROI is defined by a wave of type unsigned
byte (/B/U) that has the same number of rows and columns as waveName. The ROI
itself is defined by entries or pixels in the roiWave with value of 1. Pixels outside the
ROI should be set to zero. The ROI does not have to be contiguous but it is best if you
choose a convex ROI in order to make sure that any branch cuts computed by the
algorithm lie completely inside the ROI domain.

/REST = threshold Sets the threshold value for evaluating a residue. The residue is evaluated by the
equivalent of a closed path integral. If the path integral value exceeds the threshold
value, the top-left corner of the quad is taken to be a positive residue. If the path
integral is less than -threshold, it is a negative residue.

V_numResidues Number of residues encountered(if using /M=1).

V_numRegions Number of independent phase regions. In Goldstein’s method the regions are
bounded by branch cuts, but in Itoh’s method they depend on the content of the ROI
wave.

ImageWindow

V-378

Ghiglia, Dennis C., and Mark D. Pritt, Two Dimensional Phase Unwrapping — Theory, Algorithms and Software,
Wiley, 1998.

ImageWindow
ImageWindow [/I/O/P=param] method srcWave
The ImageWindow operation multiplies the named waves by the specified windowing method.
ImageWindow is useful in preparing an image for FFT analysis by reducing FFT artifacts produced at the
image boundaries.

Parameters

Flags

Details
The 1-dimensional window for each column is multiplied by the value of the corresponding row’s window
value. In other words, each point is multiplied by the both the row-oriented and column-oriented window value.
This means that all four edges of the image are decreased while the center remains at or near its original
value. For example, applying the Bartlett window to an image whose values are all equal results in a
trapezoidal pyramid of values:

The default output wave is created with the same data type as the source image. Therefore, if the source
image is of type unsigned byte (/b/u) the result of using /I will be identically zero (except possibly for the
middle-most pixel). If you keep in mind that you need to convert the source image to a wave type of single
or double precision in order to perform the FFT, it is best if you convert your source image (e.g.,
Redimension/S srcImage) before using the ImageWindow operation.
The windowed output is in the M_WindowedImage wave unless the source is overwritten using the /O flag.
The necessary normalization value (equals to the average squared window factor) is stored in V_value.

srcWave Two-dimensional wave of any numerical type. See WindowFunction for windowing
one-dimensional data.

method Selects the type of windowing filter. See ImageWindow Methods on page V-379.

/I Creates only the output wave containing the windowing filter values that are used to
multiply each pixel in srcWave. It does not filter the source image.

/O Overwrites the source image with the output image. If /O is not used then the
operation creates the M_WindowedImage wave containing the filtered source image.

/P=param Specifies the design parameter for the Kaiser window.

Column 99 Profile

Column 50 Profile

Column 25 Profile

1.0

0.8

0.6

0.4

0.2

0.0
200150100500

ImageWindow

V-379

ImageWindow Methods
This section describes the supported keywords for the method parameter. In all equations, L is the array
width and n is the pixel number.

Hanning:

Hamming:

Bartlet: Synonym for Bartlett.

Bartlett:

Blackman:

Kaiser:

where I0{…} is the zeroth-order Bessel function of the first kind and ωa is
the design parameter specified by /P=param.

KaiserBessel20: α = 2.0
KaiserBessel25: α = 2.5
KaiserBessel30: α = 3.0

w(n) = 1

2
1− cos

2πn
L −1

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

0 ≤ n ≤ L −1

w(n) = 0.54 − 0.46cos
2πn
L −1

⎛
⎝⎜

⎞
⎠⎟ 0 ≤ n ≤ L −1

w(n) =

2n

L −1
0 ≤ n ≤ L −1

2

2 − 2n

L −1

L −1

2
≤ n ≤ L −1

⎧

⎨

⎪
⎪

⎩

⎪
⎪

w(n) = 0.42 − 0.5cos
2πn
L −1

⎛
⎝⎜

⎞
⎠⎟ + 0.08cos

4πn
L −1

⎛
⎝⎜

⎞
⎠⎟

0 ≤ n ≤ L −1

I0 ω a

L −1
2

⎛
⎝⎜

⎞
⎠⎟

2

− n − L −1
2

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜

⎞

⎠
⎟

I0 ω a

L −1
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

0 ≤ n ≤ L −1

w(n) =

I0 πα 1− n
L / 2

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜

⎞

⎠
⎟

I0 πα() 0 ≤ n ≤ L

2

I0 (x) =
x2 / 4()k
k!()2 .

k=0

∞

∑

IndependentModule

V-380

Examples
To see what one of the windowing filters looks like:
Make/N=(80,80) wShape // Make a matrix
ImageWindow/I/O Blackman wShape // Replace with windowing filter
Display;AppendImage wShape // Display windowing filter
Make/N=2 xTrace={0,79},yTrace={39,39} // Prepare for 1D section
AppendToGraph yTrace vs xTrace
ImageLineProfile srcWave=wShape, xWave=xTrace, yWave=yTrace
Display W_ImageLineProfile // Display 1D section of filter

See Also
The WindowFunction operation for information about 1D applications.
Spectral Windowing on page III-244. Chapter III-11, Image Processing contains links to and descriptions
of other image operations.
See FFT operation for other 1D windowing functions for use with FFTs; DSPPeriodogram uses the same
window functions. See Correlations on page III-315.
DPSS

References
For further windowing information, see page 243 of:
Pratt, William K., Digital Image Processing, John Wiley, New York, 1991.

IndependentModule
#pragma IndependentModule = imName
The IndependentModule pragma designates groups of one or more procedure files that are compiled and
linked separately. Once compiled and linked, the code remains in place and is usable even though other
procedures may fail to compile. This allows functioning control panels and menus to continue to work
regardless of user programming errors.

See Also
Independent Modules on page IV-224, The IndependentModule Pragma on page IV-51 and #pragma.

IndependentModuleList
IndependentModuleList(listSepStr)
The IndependentModuleList function returns a string containing a list of independent module names
separated by listSepStr.
Use StringFromList to access individual names.

Parameters
 listSepStr contains the character, usually ";", to be used to to separate the names in the returned list.

Details
In Igor6, only the first byte of listSepStr was used. In Igor7 and later, all bytes are used.
ProcGlobal is not in the returned list, and the order of returned names is not defined.

See Also
Independent Modules on page IV-224.
GetIndependentModuleName, StringFromList, FunctionList.

IndexedDir
IndexedDir(pathName, index, flags)
The IndexedDir function returns a string containing the name of or the full path to the indexth folder in the
folder referenced by pathName.

Parameters
pathName is the name of an Igor symbolic path pointing to the parent directory.

IndexedDir

V-381

index is the index number of the directory (within the parent directory) of interest starting from 0. If index
is -1, IndexedDir will return the name of all of the folders in the parent, separated by semicolons.
flags is a bitwise parameter:

All other bits are reserved and should be cleared.
See Setting Bit Parameters on page IV-12 for details about bit settings.

Details
You create the symbolic path identifying the parent directory using the NewPath operation or the New
Path dialog (Misc menu).
Prior to Igor Pro 3.1, IndexedDir was an external function and took a string as the first parameter rather
than a name. The pathName parameter can now be either a name or a string containing a name. Any of the
following will work:
String str = "IGOR"
Print IndexedDir(IGOR, 0, 0) // First parameter is a name.
Print IndexedDir($str, 0, 0) // First parameter is a name.
Print IndexedDir("IGOR", 0, 0) // First parameter is a string.
Print IndexedDir(str, 0, 0) // First parameter is a string.

The acceptance of a string is for backward compatibility only. New code should be written using a name.
The returned path uses the native conventions of the OS under which Igor is running.

Examples

Example: Recursively Listing Directories and Files
Here is an example for heavy-duty Igor Pro programmers. It is an Igor Pro user-defined function that prints
the paths of all of the files and folders in a given folder with or without recursion. You can rework this to
do something with each file instead of just printing its path.
To try the function, copy and paste it into the Procedure window. Then execute the example shown in the
comments.
// PrintFoldersAndFiles(pathName, extension, recurse, level)
// Shows how to recursively find all files in a folder and subfolders.
// pathName is the name of an Igor symbolic path that you created
// using NewPath or the Misc->New Path menu item.
// extension is a file name extension like ".txt" or "????" for all files.
// recurse is 1 to recurse or 0 to list just the top-level folder.
// level is the recursion level - pass 0 when calling PrintFoldersAndFiles.
// Example: PrintFoldersAndFiles("Igor", ".ihf", 1, 0)
Function PrintFoldersAndFiles(pathName, extension, recurse, level)

String pathName // Name of symbolic path in which to look for folders and files.
String extension // File name extension (e.g., ".txt") or "????" for all files.
Variable recurse // True to recurse (do it for subfolders too).
Variable level // Recursion level. Pass 0 for the top level.

Variable folderIndex, fileIndex
String prefix

// Build a prefix (a number of tabs to indicate the folder level by indentation)
prefix = ""
folderIndex = 0
do

if (folderIndex >= level)
break

endif
prefix += "\t" // Indent one more tab
folderIndex += 1

while(1)

// Print folder
String path
PathInfo $pathName // Sets S_path
path = S_path
Printf "%s%s\r", prefix, path

Bit 0: Set if you want a full path. Cleared if you want just the directory name.

IndexedDir

V-382

// Print files
fileIndex = 0
do

String fileName
fileName = IndexedFile($pathName, fileIndex, extension)
if (strlen(fileName) == 0)

break
endif
Printf "%s\t%s%s\r", prefix, path, fileName
fileIndex += 1

while(1)

if (recurse) // Do we want to go into subfolder?
folderIndex = 0
do

path = IndexedDir($pathName, folderIndex, 1)
if (strlen(path) == 0)

break // No more folders
endif

String subFolderPathName = "tempPrintFoldersPath_" + num2istr(level+1)

// Now we get the path to the new parent folder
String subFolderPath
subFolderPath = path

NewPath/Q/O $subFolderPathName, subFolderPath
PrintFoldersAndFiles(subFolderPathName, extension, recurse, level+1)
KillPath/Z $subFolderPathName

folderIndex += 1
while(1)

endif
End

Example: Fast Scan of Directories
Calling IndexedDir for each directory is an O(N^2) problem because to get the nth directory the OS routines
underlying IndexedDir need to iterate through directories 0..n-1. This becomes an issue only if you are
dealing with hundreds or thousands of directories.
This function illustrates a technique for converting this to an O(N) problem by getting a complete list of
paths from IndexedDir in one call and storing them in a text wave. This approach could also be used with
IndexedFile.
Function ScanDirectories(pathName, printDirNames)

String pathName // Name of Igor symbolic path
Variable printDirNames // True if you want to print the directory names

Variable t0 = StopMSTimer(-2)

String dirList = IndexedDir($pathName, -1, 0)
Variable numDirs = ItemsInList(dirList)

// Store directory list in a free text wave.
// The free wave is automatically killed when the function returns.
Make/N=(numDirs)/T/FREE dirs = StringFromList(p, dirList)

String dirName
Variable i
for(i=0; i<numDirs; i+=1)

dirName = dirs[i]
Print i, dirName

endfor

Variable t1 = StopMSTimer(-2)
Variable elapsed = (t1 - t0) / 1E6
Printf "Took %g seconds\r", elapsed

End

IndexedFile

V-383

IndexedFile
IndexedFile(pathName, index, fileTypeOrExtStr [, creatorStr])
If index is greater than or equal to zero, IndexedFile returns a string containing the name of the indexth file
in the folder specified by pathName which matches the file type or extension specified by fileTypeOrExtStr.
If index is -1, IndexedFile returns a semicolon-separated list of all matching files.
IndexedFile returns an empty string ("") if there is no such file.

Parameters
pathName is the name of an Igor symbolic path. It is not a string.
index normally starts from zero. However, if index is -1, IndexedFile returns a string containing a semicolon-
separated list of the names of all files in the folder associated with the specified symbolic path which match
fileTypeOrExtStr.
fileTypeOrExtStr is either:
• A string starting with “.”, such as “.txt”, “.bwav”, or “.c”. Only files with a matching file name

extension are indexed. Set fileTypeOrExtStr to “.” to index file names that end with “.” such as
“myFileNameEndsWithThisDot.”

• A string containing exactly four ASCII characters, such as “TEXT” or “IGBW”. Only files of the
specified Macintosh file type are indexed. However, if fileTypeOrExtStr is “????”, files of any type are
indexed.

• On Windows, Igor considers files with “.txt” extensions to be of type TEXT. It does similar
mappings for other extensions. See File Types and Extensions on page III-404 for details.

creatorStr is an optional string argument containing four ASCII characters such as “IGR0”. Only files with
the specified Macintosh creator code are indexed. Set creatorStr to “????” to index all files (or omit the
argument altogether). This argument is ignored on Windows systems.

Order of Files Returned By IndexedFile
The order in which files are returned by IndexedFile is determined by the operating system. Empirically,
this is alphabetical order for both Macintosh and Windows. If the order matters to you, you should
explicitly sort the file names.
For example, assume you have files named "File1.txt", "File2.txt" and "File10.txt". An alphabetic order gives
you: "File1.txt;File10.txt;File2.txt;". Often what you really want is a combination of alphabetic and numeric
sorting returning "File1.txt;File2.txt;File10.txt;". Here is a function that does that:
Function DemoIndexedFile()

String pathName = "Igor"// Refers to "Igor Pro 7 Folder"

// Get a semicolon-separated list of all files in the folder
String list = IndexedFile($pathName, -1, ".txt")

// Sort using combined alpha and numeric sort
list = SortList(list, ";", 16)

// Process the list
Variable numItems = ItemsInList(list)
Variable i
for(i=0; i<numItems; i+=1)

String fileName = StringFromList(i, list)
Print i, fileName

endfor
End

Treatment of Macintosh Dot-Underscore Files
IndexedFile ignores "dot-underscore" files unless fileTypeOrExtStr is "????".
A dot-underscore file is a file created by Macintosh when it writes to a non-HFS volume, for example, when
it writes to a Windows volume via SMB file sharing. The dot-underscore file stores Macintosh HFS-specific
data such as the file's type and creator codes, and the file's resource fork, if it has one.
For example, if a file named "wave0.ibw" is copied via SMB to a Windows volume, Mac OS X creates two
files on the Windows volume: "wave0.ibw" and "._wave0.ibw". Mac OS X makes these two files appear as
one to Macintosh applications. However, Windows does not do this. As a consequence, when a Windows
program sees "._wave0.ibw", it expects it to be a valid .ibw file, but it is not. This causes problems.

IndexSort

V-384

By ignoring dot-underscore files, IndexedFile prevents this type of problem. However, if fileTypeOrExtStr
is "????", IndexedFile will return dot-underscore files on Windows.

Examples
NewPath/O myPath "MyDisk:MyFolder:"
Print IndexedFile(myPath,-1,"TEXT") // all text-type files
Print IndexedFile(myPath,0,"TEXT") // only the first text file
Print IndexedFile(myPath,-1,".dat") // *.dat
Print IndexedFile(myPath,-1,"TEXT","IGR0") // all Igor text files
Print IndexedFile(myPath,-1,"????") // all files, all creators

See IndexedDir for another example using IndexedFile and for a method for speeding up scanning of very
large numbers of files.

See Also
The TextFile and IndexedDir functions.

IndexSort
IndexSort [/DIML] indexWaveName, sortedWaveName [, sortedWaveName]…
The IndexSort operation sorts the values in each sortedWaveName wave according to the Y values of
indexWaveName.

Flags

Details
indexWaveName can not be complex. indexWaveName is presumed to have been the destination of a previous
MakeIndex operation.
This has the effect of putting the sortedWaveName waves in the same order as the wave from which the index
values in indexWaveName was made.
All of the sortedWaveName waves must be of equal length.

See Also
MakeIndex and IndexSort Operations on page III-127.

IndexToScale
IndexToScale(wave, index, dim)
The IndexToScale function returns the scaled coordinate value corresponding to wave element index in the
specified dimension.
The IndexToScale function was added in Igor Pro 7.00.

Details
The function returns the expression:
DimOffset(wave,dim) + index*DimDelta(wave,dim)
index is an integer.
dim is 0 for rows, 1 for columns, 2 for layers or 3 for chunks.
The function returns NaN if dim is not a valid dimension or if index is greater than the number of elements
in the specified dimension.

Examples
Make/N=(10,20,30,40) w4D
SetScale/P y 2,3,"", w4D
SetScale/P z 4,5,"", w4D
SetScale/P t 6,7,"", w4D
Print IndexToScale(w4D,1,0)
Print IndexToScale(w4D,1,1)
Print IndexToScale(w4D,1,2)
Print IndexToScale(w4D,1,3)

/DIML Moves the dimension labels with the values (keeps any row dimension label with the
row's value).

Inf

V-385

Print IndexToScale(w4D,1,4)
Print IndexToScale(w4D,-1,0)
Print IndexToScale(w4D,11,0)

See Also
ScaleToIndex, pnt2x, DimDelta, DimOffset
Waveform Model of Data on page II-57 for an explanation of wave scaling.

Inf
Inf
The Inf function returns the “infinity” value.

InsertPoints
InsertPoints [/M=dim] beforePoint, numPoints, waveName [, waveName]…
The InsertPoints operation inserts numPoints points in front of point beforePoint in each waveName. The new
points have the value zero.

Flags

Details
Trying to insert points into any but the rows of a zero-point wave results in a zero-point wave. You must
first make the number of rows nonzero before anything else has an effect.

See Also
Lists of Values on page II-72.

Int
int localName
In a user-defined function or structure, declares a local 32-bit integer in IGOR32, a local 64-bit integer in
IGOR64.
Int is available in Igor Pro 7 and later. See Integer Expressions on page IV-36 for details.

See Also
Int64, UInt64

Int64
int64 localName
Declares a local 64-bit integer in a user-defined function or structure.
Int64 is available in Igor Pro 7 and later. See Integer Expressions on page IV-36 for details.

See Also
Int, UInt64

/M=dim Specifies the dimension into which elements are to be inserted. Values are 0 for rows, 1 for
columns, 2 for layers, 3 for chunks. If /M is omitted, InsertPoints inserts in the rows dimension.

Integrate

V-386

Integrate
Integrate [type flags][flags] yWaveA [/X = xWaveA][/D = destWaveA]

[, yWaveB [/X = xWaveB][/D = destWaveB][, …]]
The Integrate operation calculates the 1D numeric integral of a wave. X values may be supplied by the X-
scaling of the source wave or by an optional X wave. Rectangular integration is used by default.
Integrate is multi-dimension-aware in the sense that it computes a 1D integration along the dimension
specified by the /DIM flag or along the rows dimension if you omit /DIM.
Complex waves have their real and imaginary components integrated individually.

Flags

Type Flags (used only in functions)
Integrate also can use various type flags in user functions to specify the type of destination wave reference
variables. These type flags do not need to be used except when it needed to match another wave reference
variable of the same name or to identify what kind of expression to compile for a wave assignment. See
WAVE Reference Types on page IV-67 and WAVE Reference Type Flags on page IV-68 for a complete list
of type flags and further details.
For example, when the input (and output) waves are complex, the output wave will be complex. To get the
Igor compiler to create a complex output wave reference, use the /C type flag with /D=destwave:
Make/O/C cInput=cmplx(sin(p/8), cos(p/8))
Make/O/C/N=0 cOutput
Integrate/C cInput /D=cOutput

/DIM= d

/METH=m

/P Forces point scaling.

/T Trapezoidal integration. Same as /METH=1.

Specifies the wave dimension along which to integrate when yWave is multi-
dimensional.

For example, for a 2D wave, /DIM=0 integrates each row and /DIM=1 integrates
each column.

d=-1: Treats entire wave as 1D (default).
d=0: Integrates along rows.
d=1: Integrates along columns.
d=2: Integrates along layers.
d=3: Integrates along rows.

Sets the integration method.
m=0: Rectangular integration (default). Results at a point are stored at the

same point (rather than at the next point as for /METH=2). This
method keeps the dimension size the same.

m=1: Trapezoidal integration.
m=2: Rectangular integration. Results at a point are stored at the next point

(rather than at the same point as for /METH=0). This method
increases the dimension size by one to provide a place for the last bin.

Integrate

V-387

Wave Parameters

Details
The computation equation for rectangular integration using /METH=0 is:

The computation equation for rectangular integration using /METH=2 is:

The inverse of this rectangular integration is the backwards difference.
Trapezoidal integration (/METH=1) is a more accurate method of computing the integral than rectangular
integration. The computation equation is:

If the optional /D = destWave flag is omitted, then the wave is integrated in place overwriting the source wave.
When using an X wave, the X wave must be a 1D wave with data type matching the Y wave (excluding the
complex type flag). Rectangular integration (/METH=0 or 2) requires an X wave having one more point than
the number of elements in the dimension of the Y wave being integrated. X waves with number points plus
one are allowed for rectangular integration with methods needing only the number of points. X waves are
not used with integer source waves.
Although it is mathematically suspect, rectangular integration using /METH=0 would be correct if the X
scaling of the output wave is offset by ΔX.
Differentiate/METH=1/EP=1 is the inverse of Integrate/METH=2, but Integrate/METH=2 is the
inverse of Differentiate/METH=1/EP=1 only if the original first data point is added to the output wave.
Integrate applied to an XY pair of waves does not check the ordering of the X values and doesn’t care about
it. However, it is usually the case that your X values should be monotonic. If your X values are not monotonic,
you should be aware that the X values will be taken from your X wave in the order they are found, which will
result in random X intervals for the X differences. It is usually best to sort the X and Y waves first (see Sort).

See Also
Differentiate, Integrate2D, Integrate1D, area , areaXY

Note: All wave parameters must follow yWave in the command. All wave parameter flags and
type flags must appear immediately after the operation name (Integrate).

/D=destWave Specifies the name of the wave to hold the integrated data. It creates destWave if it does
not already exist or overwrites it if it exists.

/X=xWave Specifies the name of corresponding X wave. For rectangular integration, the number
of points in the X wave must be one greater than the number of elements in the Y wave
dimension being integrated.

waveOut[p] = waveIn[i]⋅ Δx
i=0

p

∑ .

waveOut[0] = 0

waveOut[p +1] = (xi+1 − xi)waveIn[i].
i=0

p

∑

waveOut[0] = 0

waveOut[p] = waveOut[p −1]+ Δx
2

waveIn[p −1]+waveIn[p]().

Integrate1D

V-388

Integrate1D
Integrate1D(UserFunctionName, min_x, max_x [, options [, count] [, pWave]]])
The Integrate1D function performs numerical integration of a user function between the specified limits
(min_x and max_x).

Parameters
UserFunctionName must have this format:
Function UserFunctionName(inX)

Variable inX
... do something
return result

End

However, if you supply the optional pWave parameter then it must have this format:
Function UserFunctionName(pWave, inX)

Wave pWave
Variable inX
... do something
return result

End

options is one of the following:

By default, options is 0 and the function performs trapezoidal integration. In this case Igor evaluates the
integral iteratively. In each iteration the number of points where Igor evaluates the function increases by a
factor of 2. The iterations terminate at convergence to tolerance or when the number of evaluations is 223.
The count parameter specifies the number of subintervals in which the integral is evaluated. If you specify
0 or a negative number for count, the function performs an adaptive Gaussian Quadrature integration in
which Igor bisects the interval and performs a recursive refining of the integration only in parts of the
interval where the integral does not converge to tolerance.
pWave is an optional parameter that, if present, is passed to your function as the first parameter. It is
intended for your private use, to pass one or more values to your function, and is not modified by Igor. The
pWave parameter was added in Igor Pro 7.00.

Details
You can integrate complex-valued functions using a function with the format:
Function/C complexUserFunction(inX)

Variable inX
Variable/C result
//… do something
return result

End

The syntax used to invoke the function is:
Variable/C cIntegralResult=Integrate1D(complexUserFunction,min_x,max_x…)

You can also use Integrate1D to perform a higher dimensional integrals. For example, consider the function:
F(x,y) = 2x + 3y + xy.
In this case, the integral

can be performed by establishing two user functions:
Function Do2dIntegration(xmin,xmax,ymin,ymax)

Variable xmin,xmax,ymin,ymax

Variable/G globalXmin=xmin
Variable/G globalXmax=xmax
Variable/G globalY

0: Trapezoidal integration (default).

1: Romberg integration.

2: Gaussian Quadrature integration.

h = dy f (x, y)dx∫∫

Integrate2D

V-389

return Integrate1d(userFunction2,ymin,ymax,1) // Romberg integration
End

Function UserFunction1(inX)
Variable inX

NVAR globalY=globalY

return (3*inX+2*globalY+inX*globalY)
End

Function UserFunction2(inY)
Variable inY

NVAR globalY=globalY
globalY=inY
NVAR globalXmin=globalXmin
NVAR globalXmax=globalXmax

// Romberg integration
return Integrate1D(userFunction1,globalXmin,globalXmax,1)

End

This method can be extended to higher dimensions.
If the integration fails to converge or if the integrand diverges, Integrate1D returns NaN. When a function
fails to converge it is a good idea to try another integration method or to use a user-defined number of
intervals (as specified by the count parameter). Note that the trapezoidal method is prone to convergence
problems when the absolute value of the integral is very small.

See Also
Integrate, Integrate2D, SumSeries

Integrate2D
Integrate2D [flags] [keyword = value [, keyword = value …]]
The Integrate2D operation calculates a two-dimensional numeric integral of a real-valued user-defined
function or a wave. The result of the operation is stored in the variable V_value and the variable V_Flag is
set to zero if there are no errors.
This operation was added in Igor Pro 7.00.

Flags

/OPTS=op Sets the integration options. By default, both the x and the y integrations are
performed using the adaptive trapezoidal method.

See Setting Bit Parameters on page IV-12 for details about bit settings.
Using these constants you can specify, for example, Romberg integration in the Y
direction and Gaussian Quadrature in the X direction using /OPTS=(2 | 32).

/Q Suppress printing to the history area.

/Z=zFlag Set zFlag to 1 to suppress error reporting.

op is a bitwise parameter that you set to select the x and y integration methods. Set
one bit for x and one bit for y:
Bit 0: Trapezoidal in Y (1)
Bit 1: Romberg in Y (2)
Bit 2: Gaussian Quadrature in Y (4)
Bit 3: Trapezoidal in X (8)
Bit 4: Romberg in X (16)
Bit 5: Gaussian Quadrature in X (32)

Integrate2D

V-390

Keywords

The Integrand Function
Integrate2D computes the general two-dimensional integral of a user-defined integrand function which
you specify using the integrand keyword. The integrand function has this form:
Function integrandFunc(pWave,inX,inY)

Wave/Z pWave
Variable inX,inY

 ... do something
return result

End

The function can have any name - integrandFunc is just an example. The function must take the parameters
shown and must return a real numeric result. Returning a NaN terminates the integration.
pWave is a parameter wave that you specify using the paramWave keyword. The operation passes this
wave on every call to the integrand function. If you omit paramWave when invoking Integrate2D then
pWave will be NULL.

The Limit Functions
The limit functions provide lower and/or upper limits of integration for the inner integral if they are
functions of x rather than fixed values. You specify a limit function using the innerLowerFunc and
innerUpperFunc keywords. The form of the limit function is:
Function limitFunction(pWave,inX)

Wave/Z pWave
Variable inX

 ... do something

epsilon=ep Specifies the convergence parameter. By default ep=1e-5. Smaller values lead
to more accurate integration result but the tradeoff is longer computation
time.

integrand=uF Specifies the user function to be integrated. See The Integrand Function
below for details.

innerLowerLimit=y1 Specifies the lower limit of the inner integral if this limit is fixed, i.e., if it is
not a function of x. See the innerLowerFunc keyword if you need to specify a
function for this limit.

innerUpperLimit=y2 Specifies the upper limit of the inner integral if this limit is fixed, i.e., if it is
not a function of x. See the innerUpperFunc keyword if you need to specify a
function for this limit.

innerLowerFunc=y1Func Specifies a user-defined function for the lower limit of the inner integral. See
The Limit Functions below.

innerUpperFunc=y2Func Specifies a user-defined function for the upper limit of the inner integral. See
The Limit Functions below.

outerLowerLimit=x1 Specifies the lower limit of the outer integral.

outerUpperLimit=x2 Specifies the upper limit of the outer integral.

paramWave=pWave Specifies a wave to be passed to the integrand and limit user-defined
functions as the pWave parameter. The wave may contain any number of
values that you might need to evaluate the integrand or the integration limits.
If you omit paramWave then the pWave parameter to the functions will be
NULL.

srcWave=mWave If you need to perform 2D integration of some data, you can specify the data
directly instead of providing a user-defined function that returns
interpolated data. mWave must be a 2D wave. Higher dimensional waves are
accepted but only the first layer of the wave is used in the integration.

Integrate2D

V-391

return result
End

Details
The operation computes the general two-dimensional integral of the form

Here y1 and y2 are in general functions of x but could also be simple constants, and f(x,y) is real valued
function. The integral is evaluated by considering the "outer" integral

where G(x) is the "inner" integral

The operation allows you to specify different algorithms for integrating the inner and outer integrals. The
simplest integration algorithm is the Trapezoidal method. You can typically improve on the accuracy of the
calculation using Romberg integration and the performance of Gaussian quadrature depends significantly
on the nature of the integrand.

Example 1: Integrating a 2D function over fixed limits
Suppose we wanted to check the normalization of the built-in two-dimensional Gauss function. The user-
defined function would be:
Function myIntegrand1(pWave,inX,inY)

Wave/Z pWave
Variable inX,inY
return Gauss(inX,50,10,inY,50,10)

End

To perform the integration, execute:
Integrate2D outerLowerLimit=0, outerUpperLimit=100, innerLowerLimit=0,

innerUpperLimit=100, integrand=myIntegrand1

Print/D V_Value

Example 2: Integrating a 2D function using function limits
In this example we compute the volume of a sphere of radius 1. To do so we use symmetry and integrate
the volume in one octant only. The limits of integration are [0,1] in the x direction and [0,sqrt(1-x^2)] in the
y direction. In this case we need to define two user-defined functions: one for the integrand and one for the
upper limit of the inner integral:
Function myIntegrand2(pWave,inX,inY)

Wave/Z pWave
Variable inx,iny
Variable r2=inX^2+inY^2
if(r2>=1)

return 0
else

return sqrt(1-r2)
endif

End

Function y2Func(pWave,inX)
Wave pWave
Variable inX
return sqrt(1-inX^2)

End

To perform the integration, execute:

I = dx f (x, y)dy.
y1(x)

y2(x)

∫
x1

x2

∫

I = G(x)dx,
x1

x2

∫

G(x) = f (x, y)dy.
y1(x)

y2(x)

∫

IntegrateODE

V-392

Integrate2D outerLowerLimit=0, outerUpperLimit=1, innerLowerLimit=0,
innerUpperFunc=y2Func, integrand=myIntegrand2

Print/D 4*pi/3 -8*V_Value // Calculation error

Note that the integrand function tests that r2 does not exceed 1. This is because the sqrt function would
return a NaN if r2>1 which can happen due to floating point rounding errors. Returning a NaN terminates
the integration.

Example 3: Integrating a 2D wave using fixed limits
In this example we compute the volume between the surface defined by the wave my2DWave and the plane
z=0 with integration limits [0,1] in the x-direction and [0,2] in the y-direction. For simplicity we set the
wave's value to be a constant (pi).
Make/O/N=(5,9) my2DWave=pi
SetScale/P x 0,0.3,"", my2DWave
SetScale/P y 0,0.4,"", my2DWave
Integrate2D outerLowerLimit=0, outerupperLimit=1, innerlowerLimit=0, innerUpperLimit=2,

srcWave=my2DWave
Print/D 2*pi-V_Value // Calculation error

See Also
Integrate, Differentiate, Integrate1D, area, areaXY

IntegrateODE
IntegrateODE [flags] derivFunc, cwaveName, ywaveSpec
The IntegrateODE operation calculates a numerical solution to a set of coupled ordinary differential
equations by integrating derivatives. The derivatives are user-specified via a user-defined function,
derivFunc. The equations must be a set of first-order equations; a single second-order equation must be
recast as two first-order equations, a third-order equation to three first order equations, etc. For more details
on how to write the function, see Solving Differential Equations on page III-274.
IntegrateODE offers two ways to specify the values of the independent variable (commonly called X or t)
at which output Y values are recorded. You can specify the X values or you can request a “free-run” mode.
The algorithms used by IntegrateODE calculate results at intervals that vary according to the characteristics of
the ODE system and the required accuracy. You can set specific X values where you need output (see the /X flag
below) and arrangements will be made to get values at those specific X values. In between those values,
IntegrateODE will calculate whatever spacing is needed, but intermediate values will not be output to you.
If you specify free-run mode, IntegrateODE will simply output all steps taken regardless of the spacing of
the X values that results.

Parameters

Flags

cwaveName Name of wave containing constant coefficients to be passed to derivFunc.

derivFunc Name of user function that calculates derivatives. For details on the form of the
function, see Solving Differential Equations on page III-274.

ywaveSpec Specifies a wave or waves to receive calculated results. The waves also contain initial
conditions. The ywaveSpec can have either of two forms:
ywaveName: ywaveName is a single, multicolumn wave having one column for each
equation in your equation set (if you have just one equation, the wave will be a simple
1D wave).
{ywave0, ywave1, …}: The ywaveSpec is a list of 1D waves, one wave for each equation.
The ordering is important — it must correspond to the elements of the y wave and
dydx wave passed to derivFunc.
Unless you use the /R flag to alter the start point, the solution to the equations is
calculated at each point in the waves, starting with row 1. You must store the initial
conditions in row 0.

/CVOP={solver, jacobian, extendedErrors [, maxStep]}

IntegrateODE

V-393

Selects options that affect how the Adams-Moulton and BDF integration schemes
operate. This flag applies only when using /M = 2 or /M = 3. These methods are based
on the CVODE package, hence the flag letters “CV”.

In both cases, the derivatives are approximated by finite differences.
In our experience, jacobian = 1 causes the integration to proceed by much smaller steps.
It might decrease overall integration time by reducing the computation required to
approximate the jacobian matrix.
If the extendedErrors parameter is nonzero, extra error information will be printed to
the history area in case of an error during integration using /M=2 or /M=3. This extra
information is mostly of the sort that will be meaningful only to WaveMetrics
software engineers, but may occasionally help you to solve problems. It is printed out
as a bug message (BUG:...) regardless of whether it is our bug or yours.
If maxStep is present and greater than zero, this option sets the maximum internal step
size that the CVODE package is allowed to take. This is particularly useful with /M=3,
as the BDF method is capable of taking extremely large steps if the derivatives don't
change much. Use of this option may be necessary to make sure that the CVODE
package doesn't step right over a brief excursion in, say, a forcing function. If you
have something in your derivative function that may be step-like and brief, set
maxStep to something smaller than the duration of the excursion.
If you want to set maxStep only, set the other three options to zero.

/E=eps Adjusts the step size used in the calculations by comparing an estimate of the
truncation error against a fraction of a scaled number. The fraction is eps. For instance,
to achieve error less than one part in a thousand, set eps to 0.001. The number itself is
set by a combination of the /F flag and possibly the wave specified with the /S flag.
See Solving Differential Equations on page III-274 for details.

If you do not use the /E flag, eps is set to 10-6.
For details, see Error Monitoring on page III-284.

The solver parameter selects a solver method for each step. The values of solver can
be:
solver=0: Select the default for the integration method. That is functional for

/M=2 or Newton for /M=3.
solver=1: Functional solver.
solver=2: Newton solver.

The jacobian parameter selects the method used to approximate the jacobian matrix
(matrix of df/dyi where f is the derivative function).

jacobian=0: Full jacobian matrix.
jacobian=1: Diagonal approximation.

IntegrateODE

V-394

/F=errMethod

Each bit that you set of bits 0, 1, or 2 adds a term to the number; setting bit 3 multiplies
the sum by the current step size to achieve a global error limit. Note that bit 3 has no
effect if you use the Adams or BDF integrators (/M=2 or /M=3). See Setting Bit
Parameters on page IV-12 for further details about bit settings.
If you don’t include the /F flag, a constant is used. Unless you use the /S flag, that
constant is set to 1.0.
For details, see Error Monitoring on page III-284.

/M=m

If you don’t specify a method, the default is the Runge-Kutta method (m=0). Bulirsch-
Stoer (m=1) should be faster than Runge-Kutta for problems with smooth solutions,
but we find that this is often not the case. Simple experiments indicate that Adams-
Moulton (m=2 may be fastest for nonstiff problems. BDF (m=3) is definitely the
preferred one for stiff problems. Runge-Kutta is a robust method that may work on
problems that fail with other methods.

/Q [= quiet] quiet = 1 or simply /Q sets quiet mode. In quiet mode, no messages are printed in the
history, and errors do not cause macro abort. The variable V_flag returns an error
code. See Details for the meanings of the V_flag error codes.

/R=(startX,endX) Specifies an X range of the waves in ywaveSpec.

/R=[startP,endP] Specifies a point range in ywaveSpec.
If you specify the range as /R=[startP] then the end of the range is taken as the end of
the wave. If /R is omitted, the entire wave is evaluated. If you specify only the end
point (/R = [,endP]) the start point is taken as point 0.
You must store initial conditions in startP. The first point is startP+1.

/S=errScaleWaveName

If you set bit 0 of errMethod using the /F flag, or if you don’t include the /F flag, a
constant is required for scaling the estimated error for each differential equation. By
default, the constants are simply set to 1.0.
You provide custom values of the constants via the /S flag and a wave. Make a wave
having one element for each derivative, set a reasonable scale factor for the
corresponding equation, and set errScaleWaveName to the name of that wave.
If you don’t use the /S flag, the constants are all set to 1.0.

/STOP = {stopWave, mode}

Adjusts the step size used in the calculations by comparing an estimate of the
truncation error against a scaled number. errMethod is a bitwise parameter that
specifies what to include in that number:
bit 0: Add a constant from the error scaling wave set by the /S flag.
bit 1: Add the current value of the results.
bit 2: Add the current value of the derivatives.
bit 3: Multiply by the current step size (/M=0 or /M=1 only).

Specifies the method to use in calculating the solution.
m=0: Fifth-order Runge-Kutta-Fehlberg (default).
m=1: Bulirsch-Stoer method using Richardson extrapolation.
m=2: Adams-Moulton method.
m=3: BDF (Backwards Differentiation Formula, or Gear method). This

method is the preferred method for stiff problems.

IntegrateODE

V-395

Details
The various waves you may use with the IntegrateODE operation must meet certain criteria. The wave to
receive the results (ywaveSpec), and which contains the initial conditions, must have exactly one column for
each equation in your system of equations, or you must supply a list of waves containing one wave for each
equation. Because IntegrateODE can’t determine how many equations there are from your function, it uses
the number of columns or the number of waves in the list to determine the number of equations.

Requests that IntegrateODE stop when certain conditions are met on either the
solution values (Y values) or the derivatives.
stopWave contains information that IntegrateODE uses to determine when to stop.

See Details, below, for more information.

/U=u Update the display every u points. By default, it will update the display every 10
points. To disable updates, set u to a very large number.

/X=xvaluespec Specifies the values of the independent variable (commonly called x or t) at which
values are to be calculated (see parameter ywaveSpec).
You can provide a wave or x0 and deltaX:
/X = xWaveName
Use this form to provide a list of values for the independent variable. They can have
arbitrary spacing and may increase or decrease, but should be monotonic.
If you use the /XRUN flag to specify free-run mode, /X = xWaveName is required. In
this case, the X wave becomes an output wave and any contents are overwritten. See
the description of /XRUN for details.
xValues = {x0, deltaX}
If you use this form, x0 is the initial value of the independent variable. This is the
value at which the initial conditions apply. It will calculate the first result at x0+deltaX,
and subsequent results with spacing of deltaX.
deltaX can be negative.
If you do not use the xValues keyword, it reads independent variable values from the
X scaling of the results wave (see ywaveSpec parameter).

/XRUN={dx0, Xmax}

If dx0 is nonzero, the output is generated in a free-running mode. That is, the output
values are generated at whatever values if the independent variable (x or t) the
integration method requires to achieve the requested accuracy. Thus, you will get
solution points at variably-spaced X values.
The parameter dx0 sets the step size for the first integration step. If this is smaller than
necessary, the step size will increase rapidly. If it is too large for the requested
accuracy, the integration method will decrease the step size as necessary.
If dx0 is set to zero, free-run mode is not used; this is the same as if the XRUN flag is
not used.
When using free-run mode, you must provide an X wave using /X = xWaveName. Set
the first value of the wave (this is usually point zero, but may not be if you use the /R
flag) to the initial value of X.
As the integration proceeds, the X value reached for each output point is written into
the X wave. The integration stops when the latest step taken goes beyond Xmax or
when the output waves are filled.

mode controls the logical operations applied to the elements of stopWave:
mode=0: OR mode. If stopWave contains more than one condition, any one

condition will stop the integration when it is satisfied.
mode=1: AND mode. If stopWave contains more than one condition, all

conditions must be satisfied to cause the integration to stop.

IntegrateODE

V-396

If you supply a list of waves for ywaveSpec, all the waves must have the same number of rows. If you supply
a wave containing values of the independent variable or to receive X values in free-run mode (using
/X=waveName) the wave must have the same number of rows as the ywaveSpec waves.
The wave you provide for error scaling via the /S flag must have one point for each equation. That is, one
point for each ywaveSpec wave, or one point for each column of a multicolumn ywaveSpec.
By default, the display will update after each tenth point is calculated. If you display one of your ywaveSpec
waves in a graph, you can watch the progress of the integration.
The display update may slow down the calculation considerably. Use the /U flag to change the interval
between updates. To disable the updates entirely, set the update interval to a number larger than the length
of the waves in ywaveSpec.
In free-run mode, it is impossible to predict how many output values you will get. IntegrateODE will stop
when either your waves are filled, or when the X value exceeds Xmax set in the /XRUN flag. The best
strategy is to make the waves quite large; unused rows in the waves will not be touched. To avoid having
“funny” traces on a graph, you can prefill your waves with NaN. Make sure that you don’t set the initial
condition row and initial X value row to Nan!

Stopping IntegrateODE
In some circumstances it is useful to be able to stop the integration early, before the full number of output
values has been computed. You can do this two ways: using the /STOP flag to put conditions on the
solution, or by returning 1 from your derivative function.
When using /STOP={stopWave, mode}, stopWave must have one column for each equation in your system or,
equivalently, a number of columns equal to the order of your system. Each column represents a condition
on either the solution value or the derivatives for a given equation in your system.
Row 0 of stopWave contains a flag telling what sort of condition to apply to the solution values. If the flag is
zero, that value is ignored. If the flag is 1, the integration is stopped if the solution value exceeds the value
you put in row 1. If the flag is -1, integration is stopped when the solution value is less than the value in row
1.
Rows 2 and 3 work just like rows 0 and 1, but the conditions are applied to the derivatives rather than to
the solution values.
If stopWave has two rows, only the solution values are checked. If stopWave has four rows, you can specify
conditions on both solution values and derivatives.
You can set more than one flag value non-zero. If you do that, then mode determines how the multiple
conditions are applied. If mode is 0, then any one condition can stop integration when it is satisfied. If mode
is 1, all conditions with a non-zero flag value must be satisfied at the same time. If row 0 and row 2 have
nothing but zeroes, then stopWave is ignored.
For further discussion, see Stopping IntegrateODE on a Condition on page III-287.

Output Variables
The IntegrateODE operation sets a variety of variables to give you information about the integration. These
variables are updated at the same time as the display so you can monitor an integration in progress. They are:

The values for V_Flag are:

V_ODEStepCompleted Point number of the last result calculated.

V_ODEStepSize Size of the last step in the calculation.

V_ODETotalSteps Total number of steps required to arrive at the current result. In free-run
mode, this is the same as V_ODEStepCompleted.

V_ODEMinStep Minimum step size used during the entire calculation.

V_ODEFunctionCalls The total number of calls made to your derivative function.

V_Flag Indicates why IntegrateODE stopped.

0: Finished normally.

1: User aborted the integration.

interp

V-397

See Also
Solving Differential Equations on page III-274 gives the form of the derivative function, details on the
error specifications and what they mean, along with several examples.

References
The Runge-Kutta (/M=0) and Bulirsh-Stoer (/M=1) methods are based on routines in Press, William H., et
al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New York, 1992, and are used by
permission.
The Adams-Moulton (/M=2) and BDF methods (/M=3) are based on the CVODE package developed at
Lawrence Livermore National Laboratory:
Cohen, Scott D., and Alan C. Hindmarsh, CVODE User Guide, LLNL Report UCRL-MA-118618, September 1994.
The CVODE package was derived in part from the VODE package. The parts used in Igor are described in
this paper:
Brown, P.N., G. D. Byrne, and A. C. Hindmarsh, VODE, a Variable-Coefficient ODE Solver, SIAM J. Sci. Stat.

Comput., 10, 1038-1051, 1989.

interp
interp(x1, xwaveName, ywaveName)
The interp function returns a linearly interpolated value at the location x = x1 of a curve whose X components
come from the Y values of xwaveName and whose y components come from the Y values of ywaveName.

Details
interp returns nonsense if the waves are complex or if xwaveName is not monotonic.
The interp function is not multidimensional aware. See Analysis on Multidimensional Waves on page
II-86 for details.

Examples

2: Integration stopped because the step size became too small.
That is, dX was so small that X + dX = X.

3: IntegrateODE ran out of memory.

4: In /M=2 or /M=3, the integrator received illegal inputs. Please report this to WaveMetrics (see
Technical Support on page II-4 for contact details).

5: In /M=2 or /M=3, the integrator stopped with a failure in the step solver. The method chosen may
not be suitable to the problem.

6: Indicates a bug in IntegrateODE. Please report this to WaveMetrics (see Technical Support on
page II-4 for contact details).

7: An error scaling factor was zero (see /S and /F flags).

8: IntegrateODE stopped because the conditions specified by the /STOP flag were met.

9: IntegrateODE stopped because the derivative function returned a value requesting the stop.

Examples

100

80

60

40

20

0

yData vs xData

interp(12.85,xData,yData) = 68.75

x1 = 12.85

Interp2D

V-398

See Also
Interpolate2
The Loess, ImageInterpolate, Interpolate3D, and Interp3DPath operations.
The Interp2D, Interp3D and ContourZ functions.

Interp2D
Interp2D(srcWaveName, xValue, yValue)
The Interp2D function returns a double precision number as the interpolated value for the xValue, yValue point
in the source wave. Returns NaN if the point is outside the source wave domain or if the source wave is complex.

Parameters
srcWaveName is the name of a 2D wave. The wave can not be complex.
xValue is the X-location of the interpolated point.
yValue is the Y-location of the interpolated point.

See Also
The ImageInterpolate operation. Interpolation on page III-109.

Interp3D
Interp3D(srcWave, x, y, z [, triangulationWave])
The Interp3D function returns an interpolated value for location P=(x, y, z) in a 3D scalar distribution srcWave.
If srcWave is a 3D wave containing a scalar distribution sampled on a regular lattice, the function returns a
linearly interpolated value for any P=(x, y, z) location within the domain of srcWave. If P is outside the
domain, the function returns NaN.
To interpolate a 3D scalar distribution that is not sampled on a regular lattice, srcWave is a four column 2D wave
where the columns correspond to x, y, z, f(z, y, z), respectively. You must also use a “triangulation” wave for
srcWave (use Triangulate3D/out=1 to obtain the triangulation wave). If P falls within the convex domain
defined by the tetrahedra in triangulationWave, the function returns the barycentric linear interpolation for P
using the tetrahedron where P is found. If P is outside the convex domain the function returns NaN.

Examples
Make/O/N=(10,20,30) ddd=gnoise(10)
Print interp3D(ddd,1,0,0)
Print interp3D(ddd,1,1,1)

Make/O/N=(10,4) ddd=gnoise(10)
Triangulate3D/OUT=1 ddd
Print interp3D(ddd,1,0,0,M_3DVertexList)
Print interp3D(ddd,1,1,1,M_3DVertexList)

See Also
The Interpolate3D operation. Interpolation on page III-109.

Interp3DPath
Interp3DPath 3dWave tripletPathWave
The Interp3DPath operation computes the trilinear interpolated values of 3dWave for each position specified
by a row of in tripletPathWave, which is a 3 column wave in which the first column represents the X coordinate,
the second represents the Y coordinate and the third represents the Z coordinate. Interp3DPath stores the
resulting interpolated values in the wave W_Interpolated. Interp3DPath is equivalent to calling the Interp3D()
function for each row in tripletPathWave but it is computationally more efficient.
If the position specified by the tripletPathWave is outside the definition of the 3dWave or if it contains a NaN,
the operation stores a NaN in the corresponding output entry.
Both 3dWave and tripletPathWave can be of any numeric type. W_Interpolated is always of type NT_FP64.

See Also
The ImageInterpolate operation and the Interp3D and interp functions. Interpolation on page III-109.

Interpolate2

V-399

Interpolate2
Interpolate2 [flags] [xWave,] yWave
The Interpolate2 operation performs linear, cubic spline and smoothing cubic spline interpolation on 1D
waveform or XY data. It produces output in the form of a waveform or an XY pair.
The cubic spline interpolation is based on a routine from "Numerical Recipes in C".
The smoothing spline is based on "Smoothing by Spline Functions", Christian H. Reinsch, Numerische
Mathematic 10, 177-183 (1967).
For background information, see The Interpolate2 Operation on page III-110.
Prior to Igor Pro 7, Interpolate2 was implemented as part of the Interpolate XOP. It is now built-in.

Parameters
xWave specifies the wave which supplies the X coordinates for the input curve. If you omit it, X coordinates
are taken from the X values of yWave.
yWave specifies the wave which supplies the Y coordinates for the input curve.

Flags

/A=a Controls pre-averaging. Pre-averaging is deprecated - use the smoothing spline (/T=3)
instead.
If a is zero, Interpolate2 does no pre-averaging. If a is greater than one, it specifies the
number of nodes through which you want the output curve to go. Interpolate2 creates
the nodes by averaging the raw input data.
Pre-averaging does not work correctly with the log-spaced output mode (/I=2). This
is because the pre-averaging is done on linearly-spaced intervals but the input data is
log-spaced.

/E=e

/F=f f is the smoothing factor used for the smoothing spline.
f=0 is nearly identical to the cubic spline.
f>0 gives increasing amounts of smoothing as f increases.
See Smoothing Spline Parameters on page III-113 for details.

Controls how the end points are determined for cubic spline interpolation only.
e=1: Match first derivative (default)
e=2: Match second derivative (natural)

Interpolate2

V-400

/I[=i]

If you omit /X=xDest then the X coordinates come from the X values of the output
waveform designated by /Y=yDest.
If you include /X=xDest then the X coordinates come from the data values of the
specified X output wave.
When using /I=3, the number of output points is determined by the destination wave
and the /N flag is ignored.
See Destination X Coordinates from Destination Wave on page III-114 for further
details.

/J=j

/N=n Controls the number of points in the output wave or waves. n defaults to the larger of
200 and the number of points in the source waves. This value is ignored if you /I=3 (X
from dest mode).

/S=s s is the estimated standard deviation of the noise of the Y data. It is used for the
smoothing spline only. s is used as the estimated standard deviation for all points in
the Y data.
If neither /S nor /SWAV are present, Interpolate2 arbitrarily assumes an s equal to .05
times the amplitude of the Y data.

/SWAV=stdDevWave

stdDevWave is a wave containing the standard deviation of the noise of the Y data on
a point-by-point basis. It is used for the smoothing spline only. stdDevWave must have
the same number of points as the Y data wave.
If neither /S nor /SWAV are present, Interpolate2 arbitrarily assumes an s equal to .05
times the amplitude of the Y data.

/T=t

Determines at what X coordinates the interpolation is done.
i=0: Gives output values at evenly-spaced X coordinates that span the X

range of the input data. This is the default setting if /I is omitted.
i=1: Same as i=0 except that the X input values are included in the list of X

coordinates at which to interpolate. This is rarely needed and is not
available if no X destination wave is specified. /I is equivalent to /I=1.
Both are not recommended.

i=2: Gives output values at X coordinates evenly-spaced on a logarithmic
scale. Use this if your data is plotted on a logarithmic X axis. This
mode ignores any non-positive values in your input X data.

i=3: Gives output values at X coordinates that you specify by setting the
X coordinates of the destination wave before calling Interpolate2.
You must create your destination wave or waves before doing the
interpolation for this mode.

Controls the use of end nodes with pre-averaging (/A). Pre-averaging is deprecated
- use the smoothing spline (/T=3) instead.
j=0: Turns end nodes off.
j=1: Creates end nodes by cubic extrapolation.
j=2: Creates end nodes equal to the first and last data points of the input

data set, not counting points that contain NaNs or INFs.

Controls the type of interpolation performed.
t=1: Linear interpolation
t=2: Cubic spline interpolation (default)
t=3: Smoothing spline interpolation

Interpolate3D

V-401

See Also
The Interpolate2 Operation on page III-110

References
"Numerical Recipes in C" for cubic spline.
"Smoothing by Spline Functions", Christian H. Reinsch, Numerische Mathematic 10, 177-183 (1967).

Interpolate3D
Interpolate3D [/Z] /RNGX={x0,dx,nx}/RNGY={y0,dy,ny}/RNGZ={z0,dz,nz}

/DEST=dataFolderAndName, triangulationWave=tWave, srcWave=sWave
The Interpolate3D operation uses a precomputed triangulation of sWave (see Triangulate3D) to calculate
regularly spaced interpolated values from an irregularly spaced source. The interpolated values are
calculated for a lattice defined by the range flags /RNGX, /RNGY, and /RNGZ. sWave is a 4 column wave
where the first three columns contain the spatial coordinates and the fourth column contains the associated
scalar value. Interpolate3D is essentially equivalent to calling the Interp3D function for each interpolated
point in the range but it is much more efficient.

Parameters

Flags

/X=xDest Specifies the X destination wave.
If /X is present the output is an XY pair.
If /X is omitted the output is a waveform.
The X destination wave may or may not exist when Interpolate2 is called except for
"X from dest" mode (/I=3) when it must exist. Interpolate2 overwrites it if it exists.

/Y=yDest Specifies the Y destination wave name.
If you omit /Y, a default wave name is generated. The name of the default wave is the
name of the source Y wave plus "_L" for linear interpolation, "_CS" for cubic spline or
"_SS" for smoothing spline.
The Y destination wave may or may not exist when Interpolate2 is called. Interpolate2
overwrites it if it exists.

triangulationWave=tWave

Specifies a 2D index wave, tWave, in which each row corresponds to one tetrahedron
and each column (tetrahedron vertex) is represented by an index of a row in sWave.
Use Triangulate3D with /OUT=1 to obtain tWave.

srcWave=sWave Specifies a real-valued 4 column 2D source wave, sWave, in which columns
correspond to x, y, z, f(x, y, z). Requires that the domain occupied by the set of {x, y, z}
be convex.

/DEST=dataFolderAndName

Saves the result in the specified destination wave. The destination wave will be
created or overwritten if it already exists. dataFolderAndName can include a full or
partial path with the wave name.

/RNGX={x0,dx,nx} Specifies the range along the X-axis. The interpolated values start at x0. There are nx
equally spaced interpolated values where the last value is at x0+(nx-1)dx. If you would
like to interpolate the data for a single plane you can set the appropriate number of
values to 1. For example, a YZ plane would have nx=1.

/RNGY={y0,dy,ny} Specifies the range along the Y-axis. The interpolated values start at y0. There are nx
equally spaced interpolated values where the last value is at y0+(ny-1)dy. If you would
like to interpolate the data for a single plane you can set the appropriate number of
values to 1. For example, a XZ plane would have ny=1.

inverseErf

V-402

Details
The triangulation wave defines a set of tetrahedra that spans the convex source domain. If the requested range
consists of points outside the domain, the interpolated values will be set to NaN. The interpolation process for
points inside the convex domain consists of first finding the tetrahedron in which the point resides and then
linearly interpolating the scalar value using the barycentric coordinate of the interpolated point.
In some cases the interpolation may result in NaN values for points that are clearly inside the convex domain.
This may happen when the preceding Triangulate3D results in tetrahedra that are too thin. You can try using
Triangulate3D with the flag /OUT=4 to get more specific information about the triangulation. Alternatively
you can introduce a slight random perturbation to the input source wave before the triangulation.

Example
Function Interpolate3DDemo()

Make/O/N=(50,4) ddd=gnoise(20) // First 3 columns store XYZ coordinates
ddd[][3]=ddd[p][2] // Fourth column stores a scalar which is set to z
Triangulate3D ddd // Perform the triangulation
Wave M_3dVertexList
Interpolate3D /RNGX={-30,1,80}/RNGY={-40,1,80}/RNGZ={-40,1,80}

/DEST=W_Interp triangulationWave=M_3dVertexList,srcWave=ddd
End

See Also
The Triangulate3D operation and the Interp3D function. Interpolation on page III-109.

References
Schneider, P.J., and D. H. Eberly, Geometric Tools for Computer Graphics, Morgan Kaufmann, 2003.

inverseErf
inverseErf(x)
The inverseErf function returns the inverse of the error function.

Details
The function is calculated using rational approximations in several regions followed by one iteration of
Halley’s algorithm.

See Also
The erf, erfc, dawson, and inverseErfc functions.

inverseErfc
inverseErfc(x)
The inverseErfc function returns the inverse of the complementary error function.

Details
The function is calculated using rational approximations in several regions followed by one iteration of
Halley’s algorithm.

See Also
The erf, erfc, erfcw, dawson, and inverseErf functions.

/RNGZ={z0,dz,nz} Specifies the range along the Z-axis. The interpolated values start at z0. There are nz
equally spaced interpolated values where the last value is at z0+(nz-1)dz. If you would
like to interpolate the data for a single plane you can set the appropriate number of
values to 1. For example, a XY plane would have nz=1.

/Z No error reporting.

ItemsInList

V-403

ItemsInList
ItemsInList(listStr [, listSepStr])
The ItemsInList function returns the number of items in listStr. listStr should contain items separated by the
listSepStr character, such as "abc;def;".
Use ItemsInList to count the number of items in a string containing a list of items separated by a single
character, such as those returned by functions like TraceNameList or AnnotationList, or a line from a
delimited text file.
If listStr is "" then 0 is returned.
listSepStr is optional. If missing, listSepStr is presumed to be “;”.

Details
listStr is searched for item strings bound by listSepStr on the left and right.
An item can be empty. The lists "abc;def;;ghi" and ";abc;def;;ghi;" have four items (the third
item is "").
listStr is treated as if it ends with a listSepStr even if it doesn’t. The search is case-sensitive.
In Igor6, only the first byte of listSepStr was used. In Igor7 and later, all bytes are used.

Examples
Print ItemsInList("wave0;wave1;wave1#1;") // prints 3
Print ItemsInList("key1=val1,key2=val2", ",") // prints 2
Print ItemsInList("1 \t 2 \t", "\t") // prints 2
Print ItemsInList(";") // prints 1
Print ItemsInList(";;") // prints 2
Print ItemsInList(";a;") // prints 2
Print ItemsInList(";;;") // prints 3

See Also
The AddListItem, StringFromList, FindListItem, RemoveListItem, RemoveFromList, WaveList,
TraceNameList, StringList, VariableList, and FunctionList functions.

j
j
The j function returns the loop index of the 2nd innermost iterate loop in a macro. Not to be used in a
function. iterate loops are archaic and should not be used.

JCAMPLoadWave
JCAMPLoadWave [flags] [fileNameStr]
The JCAMPLoadWave operation loads data from the named JCAMP-DX file into waves.
Prior to Igor7, JCAMPLoadWave was implemented as an XOP. It is now a built-in operation.

Parameters
If fileNameStr is omitted or is "", or if the /I flag is used, JCAMPLoadWave presents an Open File dialog from
which you can choose the file to load.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.

JCAMPLoadWave

V-404

Flags

Details
The /N flag instructs Igor to automatically name new waves "wave", or baseName if /N=baseName is used,
plus a number. The number starts from zero and increments by one for each wave loaded from the file. If
the resulting name conflicts with an existing wave, the existing wave is overwritten.
The /A flag is like /N except that Igor skips names already in use.

Output Variables
JCAMPLoadWave sets the following output variables:

S_path uses Macintosh path syntax (e.g., “hd:FolderA:FolderB:”), even on Windows. It includes a
trailing colon.
When JCAMPLoadWave presents an Open File dialog and the user cancels, V_flag is set to 0 and S_fileName is
set to "".
In addition, if the /V flag is used, variables are created corresponding to JCAMP-DX labels in the header.
See Variables Set By JCAMPLoadWave on page II-149 for details.

Example
Function LoadJCAMP(pathName, fileName)

String pathName // Name of Igor symbolic path or ""
String fileName // Full path, partial path or simple file name

JCAMPLoadWave/P=$pathName fileName

/A Automatically assigns arbitrary wave names using "wave" as the base name. Skips
names already in use.

/A=baseName Same as /A but it automatically assigns wave names of the form baseName0,
baseName1.

/D Creates double-precision waves. If omitted, JCAMPLoadWave creates single-
precision waves.

/H Reads header information from JCAMP file. If you include /W, this information is
stored in the wave note. If you include /V, it is stored in header variables.

/I Forces JCAMPLoadWave to display an Open File dialog even if the file is fully
specified via /P and fileNameStr.

/N Same as /A except that, instead of choosing names that are not in use, it overwrites
existing waves.

/N=baseName Same as /N except that it automatically assigns wave names of the form baseName0,
baseName1.

/O Overwrite existing waves in case of a name conflict.

/P=pathName Specifies the folder to look in for fileNameStr. pathName is the name of an existing
symbolic path.

/Q Suppresses the normal messages in the history area.

/R Reads data from file and creates Igor waves.

/V Set variables from header information if /H is also present

/W Stores header information in the wave note if /R and /H are also present.

V_flag Number of waves loaded or -1 if an error occurs during the file load.

S_fileName Name of the file being loaded.

S_path File system path to the folder containing the file.

S_waveNames Semicolon-separated list of the names of loaded waves.

JacobiCn

V-405

if (V_Flag == 0)
Print "No waves were loaded"
return -1

endif

NVAR VJC_NPOINTS
Printf "Number of points: %d\r", VJC_NPOINTS

SVAR SJC_YUNITS
Printf "Y Units: %s\r", SJC_YUNITS

return 0
End

See Also
Loading JCAMP Files on page II-148

JacobiCn
JacobiCn(x, k)
The JacobiCn function returns the Jacobian elliptic function cn(x,k) for real x and modulus k with

The JacobiCn function was added in Igor Pro 7.00.

See Also
JacobiSn

Reference
F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors, NIST Handbook of Mathematical Functions,
chapter 22. Cambridge University Press, New York, NY, 2010.

JacobiSn
JacobiSn(x, k)
The JacobiSn function returns the Jacobian elliptic function sn(x,k) for real x and modulus k with

The JacobiSn function was added in Igor Pro 7.00.

See Also
JacobiCn

Reference
F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors, NIST Handbook of Mathematical Functions,
chapter 22. Cambridge University Press, New York, NY, 2010.

jlim
jlim
The jlim function returns the ending loop count for the 2nd inner most iterate loop. Not to be used in a
function. iterate loops are archaic and should not be used.

JointHistogram
JointHistogram [flags] wave1, wave2 [, wave3, wave4]
The JointHistogram computes 2D, 3D and 4D joint histograms of data provided in the input waves. The
input waves must be 1D real numeric waves having the same number of points. The result of the operation
is stored in the multi-dimensional wave M_JointHistogram in the current data folder or in the wave
specified via the /DEST flag.
This operation was added in Igor Pro 7.00.

0 < k2 <1.

0 < k2 <1.

JointHistogram

V-406

Flags

Details
The input waves must be 1D real numeric waves. If one or more waves contain a non-finite value (a NaN
or INF) the corresponding row of all waves are not counted in the joint histogram.

/BINS={nx, ny, nz, nt} Specifies the number of bins along each axis. Set the number of bins for unused
axes to zero. If the number of bins is non-zero, then the flags /XBMT, /YBMT,
/ZBMT, and /TBMT are overridden.

/C Sets the output wave scaling so that the values in each axis are centered in the
bins. By default, wave scaling of the output wave is set with values at the left bin
edges. This flag has no effect on axes where bins are specified by using /XBWV,
/YBWV, /ZBWV or /TBWV.

/E Excludes outliers. This flag is relevant only if there are one or more bin waves
specified by using /XBWV, /YBWV, /ZBWV or /TBWV. By default values that
might fall below the first bin or above the last bin are folded into the first and last
bin respectively. These values (outliers) are excluded from the joint histogram
when you use /E. See /P below for the way outliers affect the probability
calculation.

/DEST=destWave Specifies the output wave created by the operation. If you omit /DEST then the
output wave is M_JointHistogram in the current data folder.
It is an error to specify a destination which is the same as one of the input waves.
When used in a user-defined function, the JointHistogram operation by default
creates a real wave reference for the destination wave. See Automatic Creation of
WAVE References on page IV-66 for details.

/P=mode Normalizes the histogram to a probability density.
Use mode=0 to count all points, including possible outliers but excluding non-
finite values, in the probability calculation. This is the default setting.
Use mode=1 if you want to completely exclude outliers from the normalization.
When outliers are excluded the output wave sums to 1. When they are included
the sum of the output wave is smaller by the ratio of the number of outliers to the
total number of points in the histogram.

/W=weightWave Creates a weighted histogram. Instead of adding a single count to the appropriate
bin, the corresponding value from weightWave is added to the bin. weightWave
may be any real number type.

/XBMT=method
/YBMT=method
/ZBMT=method
/TBMT=method

These flags specify which method is used to set the bins. By default method=0.
These flags are overridden by /BINS if a non-zero value is specified for a given
axis and by /XBWV, /YBWV, /ZBWV and /TBWV.
See JointHistogram Binning Methods below for details.

/XBWV=xBinWave
/YBWV=yBinWave
/ZBWV=zBinWave
/TBWV=tBinWave

Specifies the exact bins for a corresponding axis.
The wave must be 1D real numeric wave with monotonically increasing finite
values and must contain a minimum of 3 data points.
The values in a bin wave specify the edges of the bins. A bin wave with N points
defines n-1 bins. In the case of a 3-point bin wave, the first point corresponds to
the minimum value of the first bin, the second point is the boundary between the
two bins and the last point is the upper limit of the second bin.
These flags override the corresponding bin specification set via /BINS, /XBMT,
/YBMT, /ZBMT and /TBMT.

/Z [=zval] Suppresses error reporting.
/Z is equivalent to /Z=1 and /Z=0 is equivalent to not using the /Z flag at all.

JulianToDate

V-407

The optional waves that define user-specified bins must be real numeric waves and contain a monotonically
increasing values. Using non-finite values in user-specified bin waves may lead to unpredictable results.

JointHistogram Binning Methods
The /XBMT, /YBMT, /ZBMT and /TBMT flags set the binning method for the X, Y, Z and T dimensions
respectively.
These flags are overridden by /BINS if a non-zero value is specified for a given axis and by /XBWV, /YBWV,
/ZBWV and /TBWV.
The method parameter is defined as follows:

Bin selection methods are described at: http://en.wikipedia.org/wiki/Histogram

Example: 2D Joint Histogram
Make/O/N=(1000) xwave=gnoise(10), ywave=gnoise(5)
JointHistogram/BINS={20,30} xwave,ywave
NewImage M_JointHistogram

Example: 2D Joint Histogram using one bins wave
Make/O/N=(1000) xwave=gnoise(10), ywave=gnoise(5)
Make/O/N=3 xBinsWave={-8,0,14}
JointHistogram/BINS={0,30}/XBWV=xBinsWave/E xwave,ywave
Display; AppendImage/T M_JointHistogram vs {xBinsWave,*}

Example: 3D Joint Histogram
Make/O/N=(1000) xwave=gnoise(10), ywave=gnoise(5), zwave=enoise(4)
JointHistogram/BINS={15,15,20,0} xwave,ywave,zwave
NewImage M_JointHistogram
ModifyImage M_JointHistogram plane=10

See Also
Histogram, ImageHistogram

JulianToDate
JulianToDate(julianDay, format)
The JulianToDate function returns a date string containing the day, month, and year. The input julianDay
is truncated to an integer.

Parameters
julianDay is the Julian day to be converted.
format specifies the format of the returned date string.

method=0: 128 equally spaced bins between the minimum and maximum of the input data. This is
the default setting.

method=1: The number of bins is computed using Sturges' method where
numBins=1+log2(N).
N is the number of data points in each wave. The bins are distributed so that they include
the minimum and maximum values.

method=2: The number of bins is computed using Scott's method where the optimal bin width is
given by

binWidth=3.49*σ*N-1/3.
σ is the standard deviation of the distribution and N is the number of points. The bins are
distributed so that they include the minimum and maximum values.

method=3: Freedman-Daiconis method where
binWidth=2*IQR*N-1/3,
where IQR is the interquartile distance (see StatsQuantiles) and the bins are evenly
distributed between the minimum and maximum values.

http://en.wikipedia.org/wiki/Histogram

KillBackground

V-408

See Also
The dateToJulian function.
For more information about the Julian calendar see:
<http://www.tondering.dk/claus/calendar.html>.

KillBackground
KillBackground
The KillBackground operation kills the unnamed background task.
KillBackground works only with the unnamed background task. New code should used named background
tasks instead. See Background Tasks on page IV-298 for details.

Details
You can not call KillBackground from within the background function itself. However, if you return 1 from
the background function, instead of the normal 0, Igor will terminate the background task.

See Also
The BackgroundInfo, CtrlBackground, CtrlNamedBackground, SetBackground, and SetProcessSleep
operations; and Background Tasks on page IV-298.

KillControl
KillControl [/W=winName] controlName
The KillControl operation kills the named control in the top or specified graph or panel window or subwindow.
If the named control does not exist, KillControl does not complain.

Flags

See Also
Chapter III-14, Controls and Control Panels, for details about control panels and controls.

format Date String

0 mm/dd/year

1 dd/mm/year

2 Tuesday November 15, 2002

3 year mm dd

4 year/mm/dd

/W=winName Looks for the control in the named graph or panel window or subwindow. If /W is
omitted, KillControl looks in the top graph or panel window or subwindow.

When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

http://www.tondering.dk/claus/calendar.html

KillDataFolder

V-409

KillDataFolder
KillDataFolder [/Z] dataFolderSpec
The KillDataFolder operation kills the specified data folder and everything in it including other data folders.
However, if dataFolderSpec is the name of a data folder reference variable that refers to a free data folder, the
variable is cleared and the data folder is killed only if this is the last reference to that free data folder.

Flags

Parameters
dataFolderSpec can be just the name of a child data folder in the current data folder, a partial path (relative
to the current data folder) and name or an absolute path (starting from root) and name.

Details
If specified data folder is the current data folder or contains the current data folder then Igor makes its
parent the new current data folder.
For legacy reasons, a null data folder is taken to be the current data folder. This can happen when using a
$ expression where the string might possibly evaluate to "".
It is legal to kill the root data folder. In this case the root data folder itself is not killed but everything in it
is killed.
KillDataFolder generates an error if any of the waves involved are in use. In this case, nothing is killed.
KillDataFolder generates an error if any of the waves involved are in use. In this case, nothing is killed.
Execution ceases unless /Z is specified.
The variable V_flag is set to 0 when there is no error, otherwise it is an error code.

Examples
KillDataFolder foo // Kills foo in the current data folder.
KillDataFolder :bar:foo // Kills foo in bar in current data folder.
String str= "root:foo"
KillDataFolder $str // Kills foo in the root data folder.

See Also
Chapter II-8, Data Folders and the KillStrings, KillVariables, and KillWaves operations.

KillFIFO
KillFIFO FIFOName
The KillFIFO operation discards the named FIFO.

Details
FIFOs are used for data acquisition.
If there is an output or review file associated with the FIFO, KillFIFO closes the file. If the FIFO is used by
an XOP, you should call the XOP to release the FIFO before killing it.

See Also
See FIFOs and Charts on page IV-291 for information about FIFOs and data acquisition.

KillFreeAxis
KillFreeAxis [/W=winName] axisName
The KillFreeAxis operation removes a free axis specified by axisName from a graph window or subwindow.

/Z No error reporting (except for setting V_flag). Does not halt function execution.

KillPath

V-410

Flags

Details
Only an axis created by NewFreeAxis can be killed and only if no traces or images are attached to the axis.

See Also
The NewFreeAxis operation.

KillPath
KillPath [/A/Z] pathName
The KillPath operation removes a path from the list of symbolic paths. KillPath is a newer name for the
RemovePath operation.

Flags

Details
You can’t kill the built-in paths “home” and “Igor”.

See Also
The NewPath operation.

KillPICTs
KillPICTs [/A/Z] [PICTName [, PICTName]…]
The KillPICTs operation removes one or more named pictures from the current Igor experiment.

Flags

Details
You can not kill a picture that is used in a graph or page layout.

See Also
See Pictures on page III-448 for general information on how Igor handles pictures.

/W=winName Kills the free axis in the named graph window or subwindow. If /W is omitted, it acts
on the top graph window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/A Kills all symbolic paths in the experiment except for the built-in paths. Omit pathName
if you use /A.

/Z Does not generate an error if a path to be killed is a built-in path or does not exist. To
kill all paths in the experiment, use KillPath/A/Z.

/A Kills all pictures in the experiment.

/Z Does not generate an error if a picture to be killed is in use or does not exist. To kill all
pictures in the experiment, use KillPICTs/A/Z.

Warning: You can kill a picture that is referenced from a graph or layout recreation macro. If you do,
the graph or layout can not be completely recreated. Use the Find dialog (Edit menu) to
locate references in the procedure window to a named picture you want to kill.

KillStrings

V-411

KillStrings
KillStrings [/A/Z] [stringName [, stringName]…]
The KillStrings operation discards the named global strings.

Flags

KillVariables
KillVariables [/A/Z] [variableName [, variableName]…]
The KillVariables operation discards the named global numeric variables.

Flags

KillWaves
KillWaves [flags] waveName [, waveName]…
The KillWaves operation destroys the named waves.

Flags

Details
The memory the waves occupied becomes available for other uses. You can’t kill a wave used in a graph or
table or which is reserved by an XOP.
XOPs reserve a wave by sending the OBJINUSE message.
For functions compiled with the obsolete rtGlobals=0 setting, you also can't kill a wave referenced from a
user-defined function.

Examples
KillWaves/A/Z // kill waves not in use in current data folder

KillWindow
KillWindow [flags] winName
The KillWindow operation kills or closes a specified window or subwindow without saving a recreation macro.

Parameters
winName is the name of an existing window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.

Flags

See Also
The DoWindow operation.

/A Kills all global strings in the current data folder. If you use /A, omit stringName.

/Z Does not generate an error if a global string to be killed does not exist. To kill all global
strings in the current data folder, use KillStrings/A/Z.

/A Kills all global variables in the current data folder. If you use /A, omit variableName.

/Z Does not generate an error if a global variable to be killed does not exist. To kill all global
variables in the current data folder, use KillVariables/A/Z.

/A Kills all waves in the current data folder. If you use /A, omit waveNames.

/F Deletes the Igor binary file from which waveName was loaded.

/Z Does not generate an error if a wave to be killed is in use or does not exist.

/Z Does not generate an error if the specified window does not exist.

KMeans

V-412

KMeans
KMeans [flags] populationWave
The KMeans operation analyzes the clustering of data in populationWave using an iterative algorithm. The
result of KMeans is a specification of the classes which is saved in the wave M_KMClasses in the current
data folder. Optional results include the distribution of class members (W_KMMembers) and the inter-class
distances. populationWave is a 2D wave in which columns correspond to members of the population and
rows contain the dimensional information.

Flags

/CAN Analyzes the clustering by computing Euclidean distances between the means of the
resulting classes. The resulting distances are stored in an NxN square matrix where N
is the number of classes. Self distances (along the diagonal) or distances involving
classes that did not survive the iterations are filled with NaN. Also saves the wave
W_KMDispersion, which contains the sum of the distances between the center of each
class and all its members. Distances are evaluated using the method specified by /DIST.

/DEAD=method

/DIST=mode

/INIT=method

/INW=iWave Sets the initial classes. The number of rows of iWave equals the dimensionality of the
class and the number of columns of iWave is the number of classes. For example, if we
want to initialize 5 classes in a problem that involves position in two dimensions then
iWave must have 2 rows and 5 columns. The number of rows must also match the
number of rows in populationWave.

/NCLS=num Sets the number of classes in the data. If the initialization method uses specific means
(/INIT=2) then the number of columns of iWave (see /INW) must match num. The
default number of classes is 2.

Specifies how the algorithm should handle “dead” classes, which are those that
lose all members in a given iteration.
method=1: Remove the class if it looses all members.
method=2: Default; keeps the last value of the mean vector in case the class

might get new members in a subsequent iteration.
method=3: Assigns the class a random mean vector.

Specifies how the class distances are evaluated.
mode=1: Distance is evaluated as the sum of the absolute values (also

known as Manhattan distance).
mode=2: Default; distance is evaluated as Euclidean distance.

Specifies the initialization method.
method=1: Random assignment of members of the population to a class.
method=2: User-specified mean values (/INW).
method=3: Default; initialize classes using values of a random selection from

the population.

KMeans

V-413

Details
KMeans uses an iterative algorithm to analyze the clustering of data. The algorithm is not guaranteed to
find a global optimum (maximum likelihood solution) so the operation provides various flags to control
when the iterations terminate. You can determine if the operation iterates a fixed number of times or loops
until at most a specified maximum number of elements change class membership in a single iteration. If
you are computing KMeans in more than one dimension you should pay attention to the relative
magnitudes of the data in each dimension. For example, if your data is distributed on the interval [0,1] in
the first dimension and on the interval [0,1e7] in the second dimension, the operation will be biased by the
much larger magnitude of values in the second dimension.

Examples
Create data with 3 classes:
Make/O/N=(1,128) jack=4+gnoise(1)
jack[0][15,50]+=10
jack[0][60,]+=20

Perform KMeans looking for 5 classes:
KMeans/init=1/out=1/ter=1/dead=1/tern=1000/ncls=5 jack
Print M_KMClasses

 M_KMClasses[0][0]= {24.1439,68}
 M_KMClasses[0][1]= {14.1026,36}
 M_KMClasses[0][2]= {4.01537,24}

See Also
The FPClustering function.

/OUT=format

/SEED=val Sets the seed for a new sequence in the pseudo-random number generator that is used
by the operation. val must be an integer greater than zero.
By changing the sequence you may be able to find new solutions or just make the
process converge at a different rate.

/TER=method

/TERN=num Specifies the termination number. The meaning of the number is determined by /TER
above. By default, the termination method=2 and the default value of the maximum
number of elements that change classes in one iteration is 5% of the size of the population.

/Z No error reporting. If an error occurs, sets V_flag to -1 but does not halt function
execution.

Specifies the format for the results.
format=1: Output only the specification of the classes in the 2D wave

M_KMClasses (default). Each column in M_KMClasses represents a
class. The number of rows in M_KMClasses is equal to the number of
rows in populationWave+1. The last row contains the number of
class members. The remaining rows represent the center of the class.
For example, if populationWave has two rows then the dimensionality
of the problem is 2 and M_KMClasses has 3 rows with the first row
containing the first components of each class center, the second row
containing the second components of each class center and the third
row containing the number of elements in each class.

format=2: Output (in addition to M_KMClasses) the class membership in the
wave W_KMMembers. The rows in this 1D wave correspond to
sequential members of populationWave and the entries correspond
to the (zero based) column number in M_KMClasses.

Determines when the iterations stop.
method=1: User-specified number of iterations (/TERN).
method=2: Default; continue iterating until no more than a fixed number of

elements change classes in one iteration (TERN).

Label

V-414

Label
Label [/W=winName/Z] axisName, labelStr
The Label operation labels the named axis with labelStr.

Parameters
axisName is the name of an existing axis in the top graph. It is usually one of “left”, “right”, “top” or
“bottom”, though it may also be the name of a free axis such as “VertCrossing”.
labelStr contains the text that labels the axis.

Flags

Details
labelStr can contain escape codes which affect subsequent characters in the text. An escape code is
introduced by a backslash character. In a literal string, you must enter two backslashes to produce one. See
Backslashes in Annotation Escape Sequences on page III-57 for details.
Using escape codes you can change the font, size, style and color of text, create superscripts and subscripts,
create dynamically-updated text, insert legend symbols, and apply other effects. See Annotation Escape
Codes on page III-53 for details.
Some escape codes insert text based on axis properties. See Axis Label Escape Codes on page III-57 for
details.
The characters “<??>” in an axis label indicate that you specified an invalid escape code or used a font that
is not available.

See Also
See Annotation Escape Codes on page III-53. See the Legend operation about wave symbols.
Trace Names on page II-216, Programming With Trace Names on page IV-81.

laguerre
laguerre(n, x)
The laguerre function returns the Laguerre polynomial of degree n (positive integer) and argument x. The
polynomials satisfy the recurrence relation:

with the initial conditions

and

See Also
The laguerreA, laguerreGauss, chebyshev, chebyshevU, hermite, hermiteGauss, and legendreA
functions.

/W=winName Adds axis label in the named graph window or subwindow. When omitted, action
will affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/Z No errors generated if the named axis doesn’t exist. Used for style macros.

(n +1)Laguerre(n +1, x) = (2n +1− x)Laguerre(n, x)− nLaguerre(n −1, x),

Laguerre(0, x) = 1

Laguerre(1, x) = 1− x.

laguerreA

V-415

laguerreA
laguerreA(n, k, x)
The laguerreA function returns the associated Laguerre polynomial of degree n (positive integer), index k
(non-negative integer) and argument x. The associated Laguerre polynomials are defined by

where is the Laguerre polynomial.

See Also
The laguerre and laguerreGauss functions.

References
Arfken, G., Mathematical Methods for Physicists, Academic Press, New York, 1985.

laguerreGauss
laguerreGauss(p, m, r)
The laguerreGauss function returns the normalized product of the associated Laguerre polynomials and a
Gaussian. This function is typically encountered in solutions to physical problems where it represents the radial
solution with an additional factor exp(i*m*φ) which is not included in this case. The LaguerreGauss is given by

See Also
The laguerre, laguerreA, and hermiteGauss functions.

LambertW
LambertW(z, branch)
The LambertW function returns the complex value of Lambert's W function for complex z and integer index
branch. The function can be defined through its inverse,

Since w is multivalued, the branch parameter is used to differentiate between solutions for the equation.
The LambertW function was added in Igor Pro 7.00.

Details
IGOR's LambertW uses complex input and output. You can use LambertW in real expressions but you must
make sure that you are not calling the function in a range where its imaginary part is non-zero.
The average accuracy of the function defined by cabs(z-w*exp(w)) in the region |real(z)|<10, |imag(z)|<10
is 5e-14. In general the accuracy decreases with increasing |branch| and with increasing distance from the
origin in the z-plane.
IGOR uses a hybrid algorithm to compute the function which requires longer computation times in the
presence of numerical instabilities.

References
R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey and D.E. Knuth, "On Lambert W Function", Advances
in Computational Mathematics 5: 329-359

Ln
k (x) = (−1)k

d k

dxk
Ln+k (x)[],

Ln+k (x)

Upm (r) = 2p!

π (m + p)!
r 2()m Lp

m 2r2()exp −r2().

z = w ew .

Layout

V-416

Layout
Layout [flags] [objectSpec [, objectSpec]…][as titleStr]
The Layout operation creates a page layout.

Parameters
All of the parameters are optional.
Each objectSpec parameter identifies a graph, table, textbox or picture to be added to the layout. An object
specification can also specify the location and size of the object, whether the object should have a frame or
not, whether it should be transparent or opaque, and whether it should be displayed in high fidelity or not.
See Details.
titleStr is a string expression containing the layout’s title. If not specified, Igor will provide one which
identifies the objects displayed in the graph.

Flags

Note: The Layout operation is antiquated and can not be used in user-defined functions. For
new programming, use the NewLayout operation instead.

/A=(rows,cols) Specifies rows and columns for tiling or stacking.

/B=(r,g,b) Specifies the background color for the layout. r, g, and b are integers from 0 to 65535.
Defaults to white (65535,65535, 65535).

/C=colorOnScreen Obsolete. In ancient times, this flag switched the screen display of the layout between
black and white and color. It is still accepted but has no effect.

/G=g Specifies grout, the spacing between tiled objects. Units are points unless /I, /M, or /R
are specified.

/HIDE=h Hides (h = 1) or shows (h = 0, default) the window.

/I Specifies that coordinates are in inches. This affects subsequent /G, /W, and objectSpec
coordinates. Coordinates are relative to the top/left corner of the paper.

/K=k

/M Specifies that coordinates are in centimeters. This affects subsequent /G, /W, and
objectSpec coordinates. Coordinates are relative to the top/left corner of the paper.

/P=orientation orientation is either Portrait or Landscape (e.g., Layout/P= Landscape). This
controls the orientation of the page in the layout. See Details.
If you use the /P flag, you should make it the first flag in the Layout operation. This is
necessary because the orientation of the page affects the behavior of other flags, such
as /T and /G.

/R Specifies that coordinates are in percent. This affects subsequent /G, /W, and objectSpec
coordinates. For /W, coordinates are as a percent of the main screen. For /G and
objectSpec, coordinates are relative to the top/left corner of the printing part of the page.

/S Stacks objects.

/T Tiles objects.

/W=(left, top, right, bottom)

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

Layout

V-417

Details
When you create a new page layout window, if preferences are enabled, the page size is determined by the
preferred page size as set via the Capture Layout Prefs dialog. If preferences are disabled, as is usually the
case when executing a procedure, the page is set to the factory default size.
If you use the /P flag, you should make it the first flag in the Layout operation. This is necessary because
the orientation of the page affects the behavior of other flags, such as /T and /G.
The form of an objectSpec is:
objectName [(objLeft, objTop, objRight, objBottom)][/O=objType][/F=frame]

[/T=trans][/D=fidelity]

objectName can be the name of an existing graph, table or picture. It can also be the name of an object that
does not yet exist. In this case it is called a “dummy object”.
objectSpec can be specified using a string by using the $ operator, but the entire objectSpec must be in the string.
Here are some examples of valid usage:

Layout Graph0

Layout/I Graph0(1, 1, 6, 5)/F=1

String s = "Graph0"
Layout/I $s

String s = "Graph0(1, 1, 6, 5)/F=1"
Layout/I $s // Entire object spec is in string.

The object’s coordinates are determined as follows:
• If objectName is followed by a coordinates specification in (objLeft, objTop, objRight, objBottom) form

then this sets the object’s coordinates. The units for the coordinates are points unless the /I or /M
flag was present in which case the units are inches or centimeters respectively.

• If the object coordinates are not specified explicitly but the Layout/S flag was present then the object
is stacked. If the Layout/T flag was present then the object is tiled, and if the Layout/A=(rows,cols)
flag is present, tiling is performed using that number of rows and columns.

• If the object’s coordinates are not determined by these rules then the object is set to a default size
and is stacked.

Each object has a type (graph, table, textbox or picture) determined as follows:

If there is no /O flag and objectName is the name of an existing graph, table or picture, then the object type
is graph, table or picture.
If the object’s type is not determined by the above rules and objectName contains “Table”, “PICT”, or
“TextBox”, then the object type is table, picture or textbox.
If the object’s type is not specified by any of the above rules, it is taken to be a graph type object.
The remaining flags have the following meanings:

Gives the layout window a specific location and size on the screen. Coordinates for
/W are in points unless /I or /M are specified.

O=objType

/D=fidelity

If the objectName/O=objType flag is present then it determines the object’s type:
objType=1: Graph.
objType=2: Table.
objType=8: Picture.
objType=32: Textbox.

Controls the drawing of the layout object:
fidelity=0: Low fidelity display.
fidelity=1: High fidelity display (default).

Layout

V-418

See Also
The NewLayout and LayoutInfo operations. See Chapter II-17, Page Layouts.

Layout
Layout
Layout is a procedure subtype keyword that identifies a macro as being a page layout recreation macro. It
is automatically used when Igor creates a window recreation macro for a layout. See Procedure Subtypes
on page IV-193 and Killing and Recreating a Layout on page II-390 for details.

See Also
See Chapter II-17, Page Layouts.

LayoutInfo
LayoutInfo(winNameStr, itemNameStr)
The LayoutInfo function returns a string containing a semicolon-separated list of keywords and values that
describe an object in the active page of a page layout or overall properties of the layout. The main purpose
of LayoutInfo is to allow an advanced Igor programmer to write a procedure which formats or arranges
objects.
winNameStr is the name of an existing page layout window or "" to refer to the top layout.
itemNameStr is a string expression containing one of the following:
• The name (e.g., "Graph0") of a layout object in the active page to get information about that object.
• An object instance (e.g., "Graph0#0" or "Graph0#1") to get information about a particular instance

of an object in the active page. This is of use only in the unusual situation when the same object
appears in the active page multiple times. "Graph0#0" is equivalent to "Graph0". "Graph0#1" is the
second occurrence of Graph0 in the active page.

• An integer object index starting from zero to get information about an object referenced by its
position in the active page in the layout. Zero refers to the first object going from back to front in
the page.

• The word "Layout" to get overall information about the layout.

Details
In cases 1, 2 and 3 above, where itemNameStr references an object, the returned string contains the following
keywords, with a semicolon after each keyword-value pair.

/F=frame

/T=trans

Keyword Information Following Keyword

FIDELITY Object fidelity expressed as a code usable in a ModifyLayout fidelity command.

FRAME Object frame expressed as a code usable in a ModifyLayout frame command.

HEIGHT Object height in points.

Controls the object frame:
frame=0: No frame.
frame=1: Single frame (default).
frame=2: Double frame.
frame=3: Triple frame.
frame=4: Shadow frame.

Controls the transparency of the layout object:
trans=0: Opaque (default).
trans=1: Transparent. For this to be effective, the object itself must also be

transparent. Annotations have their own transparent/opaque
settings. Graphs are transparent only if their backgrounds are white.
Pictures may have been created transparent or opaque, and Igor
cannot make an inherently opaque picture transparent.

LayoutInfo

V-419

In case 4 above, where itemNameStr is "Layout", the returned string contains the following keywords, with
a semicolon after each keyword-value pair.

LayoutInfo returns "" in the following situations:
• winNameStr is "" and there are no layout windows.
• winNameStr is a name but there are no layout windows with that name.
• itemNameStr is not "Layout" and is not the name or index of an existing object.

Examples
This example sets the background color of all selected graphs in the active page of a particular page layout
to the color specified by red, green, and blue, which are numbers from 0 to 65535.
Function SetLayoutGraphsBackgroundColor(layoutName,red,green,blue)

String layoutName // Name of layout or "" for top layout.
Variable red, green, blue

Variable index
String info

INDEX Object position in back-to-front order in the active page of the layout, starting
from zero.

LEFT Object left position in points.

NAME The name of the object.

SELECTED Zero if the object is not selected or nonzero if it is selected. You can identify the
first-selected object by examining the SELECTED code of all objects in the page.
The one with the smallest nonzero selected code is the object that was first
selected.

TOP Object top position in points.

TRANS Object transparency expressed as a code usable in a ModifyLayout trans
command.

TYPE Object type which is one of: Graph, Table, Picture, or Textbox.

WIDTH Object width in points.

Keyword Information Following Keyword

BGRGB Layout background color expressed as <red>, <green>, <blue> where each color is
a value from 0 to 65535.

MAG Layout magnification: 0.25, 0.5, 1.0, or 2.0.

NUMOBJECTS Total number of objects in the active page of the layout.

NUMSELECTED Number of selected objects in the active page of the layout.

PAGE A rectangle defining the part of the paper that is inside the margins, expressed in
points. The format is <left>, <top>, <right>, <bottom>.

CURRENTPAGENUM One-based page number of the currently active page. Added in Igor Pro 7.00.

NUMPAGES Total number of pages in the layout. Added in Igor Pro 7.00.

PAPER A rectangle defining the bounds of the paper, expressed in points. The format is
<left>, <top>, <right>, <bottom>.

SELECTED A comma-separated list of the names of selected objects in the active page of the
layout.

UNITS Units used to display object locations and sizes. This will be one of the following:
0 for points, 1 for inches, 2 for centimeters.

Keyword Information Following Keyword

LayoutMarquee

V-420

Variable selected
String indexStr
String objectTypeStr
String graphNameStr

index = 0
do

sprintf indexStr, "%d", index
info = LayoutInfo(layoutName, indexStr)
if (strlen(info) == 0)

break // No more objects
endif

selected = NumberByKey("SELECTED", info)
if (selected)

objectTypeStr = StringByKey("TYPE", info)
if (CmpStr(objectTypeStr,"Graph") == 0)// This is a graph?

graphNameStr = StringByKey("NAME", info)
ModifyGraph/W=$graphNameStr wbRGB=(red,green,blue)
ModifyGraph/W=$graphNameStr gbRGB=(red,green,blue)

endif
endif

index += 1
while(1)

End

See Also
The Layout operation. See Chapter II-17, Page Layouts.

LayoutMarquee
LayoutMarquee
LayoutMarquee is a procedure subtype keyword that puts the name of the procedure in the layout Marquee
menu. See Marquee Menu as Input Device on page IV-151 for details.

See Also
See Chapter II-17, Page Layouts.

LayoutPageAction
LayoutPageAction [/W=winName] [keyword = value [, keyword = value …]]
The LayoutPageAction operation adds, deletes, reorders, or adjusts the sizes of layout pages.
The LayoutPageAction operation was added in Igor Pro 7.00.

Parameters

appendPage Appends a new page.

insertPage=page Inserts a new page before page.
Page numbers start from 1. Pass 0 for page to insert before the first page.

page=page Makes page the active page.
Page numbers start from 1.

deletePage=page Deletes page. This action cannot be undone.
Page numbers start from 1.

reorderPages={anchorPage, page1, ...}

Reorders the pages so that page1 and any others appear before anchorPage, in the same
order as their appearance in the command.
Page numbers start from 1.

size=(width, height) Sets the global page dimensions for the layout to width and height, specified in units
of points.

size(page)=(width, height)

LayoutSlideShow

V-421

Flags

Details
Page numbers starts from 1. Use page=0 to refer to the active page.
The layout as a whole has a size and margins. These are called "global" dimensions and govern all pages by
default. You can set the global dimensions using the size and margins keyword without specifying a
particular page.
You can override the dimensions for a given page using size(page) and margins(page) to specify custom
dimensions.
Use size(page)=(0,0) to revert the specified page to the global layout dimensions. This reverts both the page
size and its margins.

See Also
Page Layouts on page II-387, NewLayout, ModifyLayout

LayoutSlideShow
LayoutSlideShow [/W=winName] [keyword = value [, keyword = value …]]
The LayoutSlideShow operation starts, stops, or modifies a slideshow that displays the pages of a page
layout.
The LayoutSlideShow operation was added in Igor Pro 7.00.

Parameters

Sets the dimensions of page to width and height, specified in units of points.
Using this keyword with page set to -1 modifies the global page dimensions for the
layout.

margins=(leftMargin, topMargin, rightMargin, bottomMargin)

Sets the global page margins for the layout to the specified values, expressed in units
of points.

margins(page)=(leftMargin, topMargin, rightMargin, bottomMargin)

Sets the margins of specified page to these values, expressed in units of points.
Page numbers start from 1.
Passing -1 for page sets the global margins for the layout.

/W=winName Modifies the named layout. When omitted, the actions affect the top layout.

autoMode=a Controls whether the presentation will advance between slides automatically (a=1) or
manually (a=0). Use the delay keyword to control the delay between automatic
transitions.

delay=d d is the number of seconds to wait between slide transitions when running in auto
mode.

otherScreenContents=o

page=p Causes the slideshow to start from page p. p is a page number starting from 1. This
keyword has no effect unless the start keyword is also present.

Controls what is displayed on any additional screens that may be connected.
o=0: Other screens show the presentation.
o=1: Other screens show a presenter's view with additional information.

Use the presentersView keyword to control the contents of this view.
o=2: Other screens show a presenter's view with additional information.

Use the presentersView keyword to control the contents of this view.

LayoutSlideShow

V-422

Flags

Details
A layout slide show can be used to present an Igor experiment to others, or to run an information kiosk.
Any changes to the layout window during a slide show are automatically reflected in the slides. For
example you could use a background task to update a graph so that the slides always show the latest data.
You can control a running slide show by right-clicking on the slideshow. Alternatively, use the arrow keys
or a mouse click to advance to the next slide.
Press the space bar to toggle between automatic and manual advancing of the slides. Press escape to end
the slideshow.

Example
Function DemoSlideshow() // Press escape to end the slideshow

NewLayout
TextBox/C/N=text0/F=0/A=LB/X=33.57/Y=70.81 "\\Z961"
LayoutPageAction appendpage
TextBox/C/N=text0/F=0/A=LB/X=33.57/Y=70.81 "\\Z962"
LayoutPageAction appendpage
TextBox/C/N=text0/F=0/A=LB/X=33.57/Y=70.81 "\\Z963"
LayoutSlideShow autoMode=1,delay=1,page=1,wrapMode=1,start

End

See Also
Page Layouts on page II-387, NewLayout, LayoutPageAction

presentersView=p Controls what is displayed on the screens that show the presenter's view.

Setting Bit Parameters on page IV-12 for details about bit settings.

scaleMode=s

screen=s Specifies the screen to be used for the main presentation. Use s=1 to use the primary
screen. Use IgorInfo to determine the number of available screens.

start Starts the slideshow.

stop Stops the slideshow. You can also stop it by pressing the escape key.

wrapMode=w

/W= winName winName is the name of the desired layout window. If /W is omitted or if winName is
$"", the top layout window is used.

p is a bitfield of flags:
Bit 0: Show the next page.
Bit 1: Show the current time.
Bit 2: Show the elapsed time.

Specifies how the pages are scaled to fit the screen.
s=0: No scaling. Pages are drawn at actual size even if they are much

larger or smaller than the screen size.
s=1: All pages are individually scaled to the screen size.
s=2: All pages are scaled by the same factor so that the largest page fits on

the screen. This preserves the relative sizes of the pages.

Controls what happens when the presentation reaches the last page in the
slideshow.
w=0: Advancing to the next page has no effect.
w=1: Advancing to the next page causes the slideshow to wrap around to

the first page.
w=2: Advancing to the next page causes the slideshow to stop.

LayoutStyle

V-423

LayoutStyle
LayoutStyle
LayoutStyle is a procedure subtype keyword that puts the name of the procedure in the Style pop-up menu
of the New Layout dialog and in the Layout Macros menu. See Page Layout Style Macros on page II-409 for
details.

See Also
See Chapter II-17, Page Layouts and Page Layout Style Macros on page II-409.

leftx
leftx(waveName)
The leftx function returns the X value of point 0 (the first point) of the named 1D wave. The leftx function
is not multidimensional aware. The multidimensional equivalent of this function is DimOffset.

Details
Point 0 contains a wave’s first value, which is usually the leftmost point when displayed in a graph. Leftx
returns the value elsewhere called x0. The function DimOffset returns any of x0, y0, z0, or t0, for dimensions
0, 1, 2, or 3.

See Also
The deltax and rightx functions.
For multidimensional waves, see DimDelta, DimOffset, and DimSize.
For an explanation of waves and X scaling, see Changing Dimension and Data Scaling on page II-63.

Legend
Legend [flags] [legendStr]
The Legend operation puts a legend on a graph or page layout.

Parameters
legendStr contains the text that is printed in the legend.
If legendStr is missing or is an empty string (""), the text needed for a default legend is automatically
generated. Legends are automatically updated when waves are appended to or removed from the graph or
when you rename a wave in the graph.
legendStr can contain escape codes which affect subsequent characters in the text. An escape code is
introduced by a backslash character. In a literal string, you must enter two backslashes to produce one. See
Backslashes in Annotation Escape Sequences on page III-57 for details.
Using escape codes you can change the font, size, style and color of text, create superscripts and subscripts,
create dynamically-updated text, insert legend symbols, and apply other effects. See Annotation Escape
Codes on page III-53 for details. However normally you leave it to Igor to automatically manage the legend.
See Legend Text on page III-43 for a discussion of what legendStr may contain.

Flags

/H=legendSymbolWidth

Sets the width in points of the area in which to draw the wave symbols. A value of 0
means “default”. This results in a width that is based on the text size in effect when the
symbol is drawn. A value of 36 gives a 0.5 inch (36 points) width which is nice in most
cases.

/H={legendSymbolWidth, minThickness, maxThickness}

legendreA

V-424

See the TextBox operation for documentation for all other flags.

Examples
The command Legend (with no parameters) creates a default legend. A default legend in a layout contains
a line for each wave in each of the graphs in the layout, starting from the bottom graph and working toward
the front.
The command:
Legend/C/N=name ""

changes the named existing legend to a default legend.
You can put a legend in a page layout with a command such as:
Legend "\s(Graph0.wave0) this is wave0"

This creates a legend in the layout that shows the symbol for wave0 in Graph0. The graph named in the
command is usually in the layout but it doesn’t have to be.

See Also
TextBox, Tag, ColorScale, AnnotationInfo, AnnotationList.
Annotation Escape Codes on page III-53.
Legend Text on page III-43.
Trace Names on page II-216, Programming With Trace Names on page IV-81.
Color as f(z) Legend Example on page II-230 for a discussion of creating a legend whose symbols match
the markers in a graph that uses color as f(z).

legendreA
legendreA(n, m, x)
The legendreA function returns the associated Legendre polynomial:

where n and m are integers such that 0 ≤ m ≤ n and |x| ≤ 1.

References
Arfken, G., Mathematical Methods for Physicists, Academic Press, New York, 1985.

This is an additional form of the /H flag. The legendSymbolWidth parameter works the
same as described above.
The minThickness and maxThickness parameters allow you to create a legend whose
line and marker thicknesses are different from the thicknesses of the associated traces
in the graph. This can be handy to make the legend more readable when you use very
thin lines or markers for the traces.
minThickness and maxThickness are values from 0.0 to 10.0. Also, setting minThickness
to 0.0 and maxThickness to 0.0 (default) uses the same thicknesses for the legend
symbols as for the traces.

/J Disables the default legend mechanism so that a default legend is not created even if
legendStr is an empty string ("") or omitted.
Window recreation macros use /J in case legendStr is too long to fit on the same
command line as the Legend operation itself. In this case, an AppendText command
appears after the Legend command to append legendStr to the empty legend. For
really long values of legendStr, there may be multiple AppendText commands.

/M[=saMeSize] /M or /M=1 specifies that legend markers should be the same size as the marker in the
graph.
/M=0 turns same-size mode off so that the size of the marker in the legend is based on
text size.

Pn
m (x)

limit

V-425

limit
limit(num, low, high)
The limit function returns num, limited to the range from low to high:
num if low <= num <= high.
low if num < low.
high if num > high.
Since all comparisons with NaN return false, limit will not work as expected with NaNs. If a parameter may
be NaN, use numtype to test it before calling limit.

See Also
SelectNumber, min, max

LinearFeedbackShiftRegister
LinearFeedbackShiftRegister [flags]
The LinearFeedbackShiftRegister operation implements a, well, linear feedback shift register, or LFSR. A
LFSR is a way to produce a sequence of very bad pseudorandom numbers, or a random bit stream (that is,
a random sequence of zeroes of ones that over time are nearly equal in number).
If it produces bad random numbers, why would I want to use a LFSR? A properly-configured LFSR will create
a “maximal-length sequence”: a LFSR of N bits will produce 2N-1 numbers in a quasi-random sequence without
repeating. That is, it will produce all the N-bit numbers except zero. This gives the sequence good spectral
properties for certain applications, and, taking the least-significant bit as the output, it creates a pseudorandom
bit stream with nearly equal numbers of zeroes and ones (nearly means one more one than zeroes).
The LinearFeedbackShiftRegister operation generates either a wave full of the sequential states of the shift
register or a wave full of ones and zeroes representing the least significant bit of the shift register.

Linear Feedback Shift Registers
A LFSR is a shift register with taps. The tap bits are XOR’ed together and the result, after the register is
shifted, becomes the new most significant bit. Here is a diagram of a 7-bit LFSR:

Each successive number is generated by shifting the contents of the register (boxes 1-7) to the right, while
shifting in the output of the XOR node. The XOR node samples specified bits of the register contents,
generating its output ready to be shifted in. Thus, the inputs of the XOR are bits sampled before a shift; the
output of the XOR becomes the leading bit in the register after a shift.
In many applications the output of interest is the stream of bits that appear in the last position. This stream
of bits is a pseudorandom sequence of ones and zeroes (or ones and minus ones, or whatever other binary
sequence you need).
The bits fed into the XOR node are referred to as taps. The taps illustrated here would be specified with the
tap list 7,6,4,1. As implemented in Igor Pro, the output tap (tap 7 in the illustration) is the least significant
bit, so an alternate way to express the tap list is as the binary number 10010112 (7710).
With the right taps, a LFSR produces a maximal-length sequence. The list of sequential states in a maximal-
length sequence has length 2N-1 without repeating a state. That means that every possible N-bit nonzero
number appears exactly once in the maximal-length sequence.
Maximal-length tap lists always have an even number of taps.
If you have a tap list that gives a maximal-length sequence, you can generate another tap list from it. If your
tap list is (n, A, B, C) the new tap list is (n, n-C, n-B, n-A). This new tap list will generate a bit stream that is
the mirror image in time of the bit stream produced by the first tap list.

6 5 4 3 2 1 0

7654321IN

XOR

OUT

bit #

LinearFeedbackShiftRegister

V-426

Flags

/DEST=wavename Specifies a wave to receive the generated sequence. With /MODE=0, the number
type of the wave must have at least nbits bits for an integer wave, or at least an nbit
mantissa if it is a floating-point wave. That is, /N=25 requires a double-precision
wave or a 32-bit integer wave. /N=18 requires any floating-point wave or a 16- or
32-bit integer wave. If you use an integer wave, we recommend an unsigned
integer wave for /N=8, 16, or 32.
If /MODE=1 is used, any number type is acceptable. See the Details for what
happens if you don’t use /DEST.
If wavename doesn't exist, a suitable integer wave will be made.
If wavename already exists, LinearFeedbackShiftRegister will use it as-is. The
sequence length will be taken from the wave. If the number type of the wave is
not suitable, an error is issued. If the sequence length is less than the number of
points in your wave, it will be truncated to match.

/FREE In a user-defined function, makes a free wave. See Free Waves on page IV-84 for
details.

/INIT=initialValue Sets the initial value of the shift register to initialValue. This will also be the first
value in the output for /MODE=0, or the least-significant bit of initialValue will be
the first output for /MODE=1. You can use this initial value to restart a very long
sequence from the last state of a previous run.
Default is a single 1 bit in the first position (bit nbits-1 for /N=nbits).

/LEN=length Sets the length of sequence to generate. If the sequence repeats before length states are
generated, the sequence is terminated early. If length is larger than the number of
states in a maximal-length sequence, you will get a maximal-length sequence, or a
shorter sequence if the initial value is seen again (that is, your sequence is not a
maximal-length sequence).
You can specify length greater than the maximal-length sequence length, but it
will be truncated to the maximal length.

/MAX=index An internal table of tap lists gives maximal-length sequences. This table has up to
32 tap lists for each value of nbits. You select a tap list by setting index to a number
from 0 to 31. For values of nbits that do not have 32 maximal-length tap lists, the
table repeats. Most nbits values have many more than 32 possible maximal-length
sequences. For each tap list in the table, another tap list can be accessed using the
/MROR flag.

/MODE=doBitStream

/MROR [=doMirror] Transforms the tap list into its complementary tap list, creating a mirror-image bit
stream, when you use /MROR or doMirror=1. Specify the tap list using /TAPS,
/TAPB, or /MAX.

/N=nbits Determines the number of bits in the shift register. A maximal-length sequence
will have 2nbits-1 states. nbits must be in the range of 1-32. Note that nbits = 1 or 2
is not very interesting.

/STOP=stopValue Terminates the sequence when stopValue is the next shift register value. You can
use this flag to generate long sequences using multiple calls to
LinearFeedbackShiftRegister by storing the initial value of the first call, and
setting stopValue to that initial value in subsequent calls.

/TAPB=tapbits An alternate way to express the tap list. tapbits is a number in which each bit
represents a tap, with bit 0 representing the tap with tap number nbits.

/TAPS={t1, t2, …} Specifies the tap list. Tap numbers are in the range from 1 to nbits.

Sets the output stream format.
doBitStream=0: Succession of bit register states (default).
doBitStream=1: Stream of ones and zeroes.

LinearFeedbackShiftRegister

V-427

Details
If the /TAPS, /TAPB, or /MAX flags are absent, the maximal-length sequence corresponding to /MAX=0 is
generated.
In you omit the /DEST flag, a wave named W_LFSR will be generated for you. W_LFSR is an unsigned
integer wave with number type set to the minimum size for the shift register size and /MODE setting. Thus,
if you set /N=10/MODE=0, W_LFSR will be an unsigned 16-bit integer wave.
Because W_LFSR is an unsigned integer wave, you will need to redimension the wave to a floating-point
wave for many purposes. Use the Redimension operation or the Redimension Waves item in the Data menu.
Up to /N=18, W_LFSR will initially be created large enough to hold a maximal-length sequence, unless you
request a shorter sequence using the /LEN flag. If the initial value is seen again before a maximal-length
sequence is generated, it means that the tap list specified was not one that generates a maximal-length
sequence, and generation is terminated. The wave is shortened to the generated sequence length.
If you set a register size greater than /N=18 and you do not use /LEN, the generated sequence will stop after
218-1 (262143) states. Note that beyond some N, it will be impossible to create a wave large enough to hold
a maximal-length sequence.
Some tap lists do not generate maximal-length sequences but also do not repeat the initial value. In that
case, the generated sequence will be of maximal length but will contain repeated subsequences. The V_flag
variable will be set to 0 if the sequence was not a maximal-length sequence, or 1 if it was. If /LEN=length
values were generated, V_flag is set to 2.
If you specify your own wave using /DEST, the sequence length will be the same as the length of your wave.
Your wave will be resized if a shorter sequence is generated.

Generating Long Sequences in Smaller Segments
Very long maximal-length sequences will not fit in the largest wave you can make. It may also be more
convenient to make multiple, small fragments of a longer sequence. You can do this using the /INIT, /STOP,
and /LEN flags, along with the V_nextValue variable. Here is an example of making 1000-point
subsequences from a 16-bit maximal-length sequence:
// Start with the first 1000 states, with initial value of 1
LinearFeedbackShiftRegister/N=16/LEN=1000/INIT=1
// Restart using the V_nextValue variable to continue the sequence
// /STOP=1 sets the stopping value to the first initial value
LinearFeedbackShiftRegister/N=16/LEN=1000/INIT=(V_nextValue)/STOP=1
// Continue…
LinearFeedbackShiftRegister/N=16/LEN=1000/INIT=(V_nextValue)/STOP=1

Variables
The LinearFeedbackShiftRegister operation returns information in the following variables:

Examples
Generate a 16-bit maximal-length sequence and reprocess the output values to be centered on zero and
normalized to a maximum value of 1:
LinearFeedbackShiftRegister/N=16
Redimension/D W_LFSR

V_flag Set to zero when a nonmaximal-length sequence was detected. This occurs if the
initial value is seen again before a maximal-length sequence was generated, or if a
maximal-length sequence was generated but the final state was not the same as the
initial state.
Set to 1 when a maximal-length sequence was generated.

Set to 2 when the sequence was limited by /LEN=length or by the default limit of 218-
1 (262143) states.

V_tapValue Set to the binary representation of the tap sequence used. That is, you can generate the
same sequence using /TAPB=V_tapValue. If you use /MROR=1, V_tapValue reflects
that setting. It will also give the actual tap value used when you specify the a
maximal-length sequence using the /MAX flag.

V_nextValue Set to the next value beyond the last generated register state. This can be used to
restart a truncated sequence.

ListBox

V-428

W_LFSR -= 2^15
W_LFSR /= 2^15-1

Another way to do the same thing that avoids the Redimension operation, which could lead to
fragmentation of memory:
Make/D/N=(2^16-1) LFSR_output
LinearFeedbackShiftRegister/N=16/DEST=LFSR_output
LFSR_output -= 2^15
LFSR_output /= 2^15-1

Make a bit stream with random +1 and -1 instead of 0 and 1:
LinearFeedbackShiftRegister/N=16/MODE=1
Redimension/B W_LFSR
W_LFSR = W_LFSR*2-1

See Also
If you really need random numbers, we provide high-quality RNG’s that return random deviates from a
number of distributions. See enoise, gnoise, and others.

References
A discussion of LFSR’s can be found in “Generation of Random Bits” (Section 7.4) in Press, William H., et
al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New York, 1992. They refer to
“primitive polynomials modulo 2” and do not use the name Linear Feedback Shift Register, but it is the
same thing. We use an implementation equivalent to their Method I.

ListBox
ListBox [/Z] ctrlName [keyword = value [, keyword = value …]]
The ListBox operation creates or modifies the named control that displays, in the target window, a list from
which the user can select any number of items.
For information about the state or status of the control, use the ControlInfo operation.

Parameters
ctrlName is the name of the ListBox control to be created or changed.
The following keyword=value parameters are supported:

appearance={kind [, platform]}

Sets the appearance of the control. platform is optional. Both parameters are
names, not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
See Button and DefaultGUIControls for more appearance details.

clickEventModifiers=modifierSelector

ListBox

V-429

Selects modifier keys to ignore when processing clicks to start editing a cell or
when toggling a checkbox. That is, use this keyword if you want to prevent a
shift-click (for instance) from togging checkbox cells. Allows the action procedure
to receive mousedown events with those modifiers without interfering actions on
the part of the listbox control.

col=c Sets the left-most visible column (user scrolling will change this). The list is
scrolled horizontally as far as possible. Sometimes this won’t be far enough to
actually make column c the first column, but it will at least be visible. Use c =1 to
put the left edge of column 1 (the second column) at the left edge of the list.

colorWave=cw Specifies a 3-column (RGB) or 4-column (RGBA) numeric wave. Used in
conjunction with planes in selWave to define foreground and background colors
for individual cells. Values range from 65535 (full on) to 0.

disable=d

editStyle=e

focusRing=fr

On Macintosh, regardless of this setting, the focus ring appears if you have
enabled full keyboard access via the Shortcuts tab of the Keyboard system
preferences.

font="fontName" Sets the font used for the list box items, e.g., font="Helvetica".

frame=f

fsize=s Sets list box font size.

modifierSelector is a bit pattern with a bit for each modifier key; sum these values
to get the desired combination of modifiers:

See Setting Bit Parameters on page IV-12 for details about bit settings.

modifierSelector=1: Control key (Macintosh only)
modifierSelector=2: Option (Macintosh) or Alt (Windows)
modifierSelector=4: Context click

(right click on Windows, control-click on Macintosh)
modifierSelector=8: Shift key
modifierSelector=16: Cmd key (Macintosh) or Ctrl key (Windows)
modifierSelector=32: Caps lock key

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Draw in gray state; disable control action.

Sets the style for cells designated as editable (see selWave, bit 1).
e=0: Uses a light blue background (default).
e=1: Draws a frame around the cell with a white background.
e=2: Combines the frame with the blue background. The background in

all cases can be overridden using the colorWave parameter.

Enables or disables the drawing of a rectangle indicating keyboard focus:
fr=0: Focus rectangle will not be drawn.
fr=1: Focus rectangle will be drawn (default).

Specifies the list box frame style.
f=0: No frame.
f=1: Simple rectangle.
f=2: 3D well.
f=3: 3D raised.
f=4: Text well style.

ListBox

V-430

fstyle=fs

hScroll=h Scrolls the list to the right by h pixels (user scrolling will change this). h is the total
amount of horizontal scrolling, not an increment from the current scroll position:
h will be the value returned in the V_horizScroll variable by ControlInfo.

keySelectCol=col Sets scan column number col when doing keyboard selection. Default is to scan
column zero.

listWave=w A 1D or 2D text wave containing the list contents.

mode=m

proc=p Set name of user function proc to be called upon certain events. See discussion below.

pos={left,top} Sets the location of top left corner of the list box in pixels.

pos+={dx,dy} Offsets the position of the list box in pixels.

row=r r is desired top row (user scrolling will change this). Use a value of -1 to scroll to
the first selected cell (if any). Combine with selRow to select a row and to ensure
it is visible (modes 1 and 2).

selCol=c Defines the selected column when mode is 5 or 6 and no selWave is used. To read
this value, use ControlInfo and the V_selCol variable.

selRow=s Defines the selected row when mode is 1 or 2; when no selWave is used, it is
defined by modes 5 or 6. Use -1 for no selection.
To read this value, use ControlInfo and the V_value variable.

fs is a bitwise parameter with each bit controlling one aspect of the font style as
follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold
Bit 1: Italic
Bit 2: Underline
Bit 4: Strikethrough

List selection mode specifying how many list selections can be made at a time.

When multiple columns are used, you can enable individual cells to be selected
using modes 5, 6, 7, and 8 in analogy to m=1-4. When using m=3 or 4 with
multiple columns, only the first column of the selWave is used to indicate
selections. Checkboxes and editing mode, however, use all cells even in modes
0-4.
Modes 9 and 10 are the same as modes 4 and 8 except they use different
selection rules and require testing bit 3 as well as bit 0 in selWave. In modes 4
and 8, a shift click toggles individual cells or rows, but in modes 9 and 10, the
Command (Macintosh) or Ctrl (Windows) key toggles individual cells or rows
whereas Shift defines a rectangular selection. T o determine if a cell is selected,
perform a bitwise AND with 0x09.

m=0: No selection allowed.
m=1: One or zero selection allowed.
m=2: One and only one selection allowed.
m=3: Multiple, but not disjoint, selections allowed.
m=4: Multiple and disjoint selections allowed.

ListBox

V-431

selWave=sw sw is a numeric wave with the same dimensions as listWave. It is optional for
modes 0-2, 5 and 6 and required in all other modes.
In modes greater than 2, sw indicates which cells are selected. In modes 1 and 2
use ControlInfo to find out which row is selected.
In all modes sw defines which cells are editable or function as checkboxes or
disclosure controls.

In modes 3 and 4 bit 0 is set only in column zero of a multicolumn listbox.
Other bits are reserved. Additional dimensions are used for color info. See the
discussion for colorWave. selWave is not required for modes 5 and 6.

setEditCell={row,col,selStart,selEnd}

Initiates edit mode for the cell at row, col. An error is reported if row or col is less
than zero. Nothing happens and no error is reported if row, col is beyond the
limits of the listbox, or if the cell has not been made editable by setting bit 1 of
selWave.
selStart and selEnd set the range of bytes that are selected when editing is initiated;
0 is the start of the text. If there are N bytes in the listbox cell, setting selStart or
selEnd to N or greater moves the start or end of the selection to the point after the
last character. Setting selStart and selEnd to the same value selects no characters
and the insertion point is set to selStart. Setting selStart to -1 always causes all
characters to be selected.

size={width,height} Sets list box size in pixels.

special={kind,height,style}

titleWave=w Specifies a text wave containing titles for the listbox columns, instead of using the
list wave dimension labels. Each row is the title for one column; if you have N
columns you must have a wave with N rows. Allows more than 31 byte for a title,
which is particularly important if you use styled text.

Numeric values are treated as integers with individual bits defined as follows:
Bit 0 (0x01): Cell is selected.
Bit 1 (0x02): Cell is editable.
Bit 2 (0x04): Cell editing requires a double click.
Bit 3 (0x08): Current shift selection.
Bit 4 (0x10): Current state of a checkbox cell.
Bit 5 (0x20): Cell is a checkbox.
Bit 6 (0x40): Cell is a disclosure cell. Drawn as a disclosure triangle

(Macintosh) or a treeview expansion node (Windows).

Specifies special cell formatting or contents.

For kind=1 or 2, height may be zero to auto-set cell height to same as width or a
specific value.

kind=0: Normal text but with specified height (if nonzero). Use a style of 1
to autocalculate widths based on the entire list contents. In this
case, user widths are taken to be minimums and the last is not
repeated.

kind=1: Text taken to be the names of graphs or tables. Images of the
graphs or tables are displayed in the cells. Use a style of 0 to
display just the presentation portion of the graph or 1 to display
it entirely. For tables, only the presentation portion is displayed.

kind=2: Text taken to be the names of pictures. Images are displayed in
the cells.

kind=3: Displays a PNG, TIFF, or JPEG image. You can obtain binary
picture data using SavePICT.

ListBox

V-432

Flags

Details
If the list wave has column dimension labels (see SetDimLabel), then those will be used as column titles.
Note that a 1D wave is subtly different from a 1 column 2D wave. The former does not have any columns
and therefore no column dimension labels.
Alternately, use a text wave with the titleWave keyword to specify column titles.
Using escape codes you can change the font, size, style, and color of the title. See Annotation Escape Codes
on page III-53 or details.
For instance, to make a title bold use the \f01 escape sequence:
SetDimLabel 1, columnNum, $"\\f01My Label", textWave

userColumnResize=u

userdata=UDStr Sets the unnamed user data to UDStr.

userdata(UDName)=UDStr

Sets the named user data, UDName, to UDStr.

userdata+=UDStr Appends UDStr to the current unnamed user data.

userdata(UDName)+=UDStr

Appends UDStr to the current named user data, UDName.

widths={w1,w2,…} Optional list of minimum column widths in screen pixels. If more columns than
widths, the last is repeated. If total of widths is greater than list box width then a
horizontal scroll bar will appear. If total is less than available width then each
expands proportionally.

widths+={w1,w2,…} Additional column widths. Because only 1000 bytes fit on a command line, lists
with many columns may require multiple widths+= parameters to define all the
column widths. However if all the widths are the same, widths+= is not needed;
just use:
ListBox ctrlName widths={sameWidth}

win=winName Specifies which window or subwindow contains the named control. If not given,
then the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page
III-87 for details on forming the window hierarchy.

/Z No error reporting.

Enables resizing the list columns using the mouse.
u=0: Columns are not resizable (default). The widths parameter still

works, though.
u=1: User can resize columns by dragging the column dividers.

When resizing a column without Option, Alt, or Shift modifiers (a
“normal” resizing), any width added to the column is subtracted
from the following column (if any).
When resizing while pressing Option (Macintosh) or Alt
(Windows), only columns following the dragged divider will
move (the same way table columns are resized).
When pressing Shift, all columns are set to the same width as the
column being resized. If the total widths of all columns is less than
the width of the listbox, then each column expands to fill the
available width.

ListBox

V-433

If you can't fit title text within the 31 character limit (styled text can be especially long), use the titleWave
keyword with a text wave. The wave must have as many rows as the list wave has columns. When using a
title wave, there are no restrictions on the number of or what characters you can use.
This example uses a title wave to add a red up-arrow graph marker to the end of a centered title:
Make/O/T/N=(numColumns) columnTitles
columnTitles[colNum]="\\JCThis is the title\\K(65535,0,0)\\k(65535,0,0)\\W523"
ListBox list0 titleWave=columnTitles

That's a 51-byte title that results in 19 characters or symbols that you actually see. \JC requests centered text,
\K sets the text color (which colors the inside of the graph marker),\k sets the marker stroke color, and
\W523 inserts a down-pointing triangular graph marker.
When using modes that allow multiple selections, use Shift to extend or add to the selection.
You can specify individual cells as being editable by setting bit 1 (counting from zero on the right) in
selWave. The user can start editing a cell by either clicking in it or, if the cell is selected, by pressing Enter
(or Return). When finished, the user can press Enter to accept the changes or can press Escape to reject
changes. The user may also press Up or Down Arrow to accept changes and begin editing the next editable
cell in a column. Likewise, Tab and Shift-Tab moves to the next or previous column in a row. If bit 2 of
selWave is set then a double click will be required rather than a single click. Note: in edit mode, Tab and
Shift-Tab are used to move left and right because the Left and Right Arrow keys are used to move the text
entry cursor left and right.
When the listbox has keyboard focus (either by tabbing to the list box or by clicking in the box), the
keyboard arrow keys move a cell selection (or row depending on mode). When not in cell edit mode, Tab
and Shift-Tab move the keyboard focus to other objects in the window. The Home, End, Page Up, and Page
Down keys affect the vertical scroll bar.
When the listbox has focus, the user may type the first few chars of an entry in the list to select that entry.
Only the first column is used. If a match is not found then nothing is done. The search is case insensitive.

Listbox Action Procedure
The action procedure for a ListBox control takes a predefined structure WMListboxAction as a parameter
to the function:
Function ActionProcName(LB_Struct) : ListboxControl

STRUCT WMListboxAction &LB_Struct
…
return 0

End

The “: ListboxControl” designation tells Igor to include this procedure in the Procedure pop-up menu
in the List Box Control dialog.
See WMListboxAction for details on the WMListboxAction structure.
Although the return value is not currently used, action procedures should always return zero.
You may see an old format listbox action procedure in old code:
Function MyListboxProc(ctrlName,row,col,event) : ListboxControl

String ctrlName // name of this control
Variable row // row if click in interior, -1 if click in title
Variable col // column number
Variable event // event code
…
return 0 // other return values reserved

End

This old format should not be used in new code.

Specifying Cell Color
The background and foreground (text) color of individual cells may be defined by providing colorWave in
conjunction with specific planes in selWave. The planes in selWave are taken to be integer indexes into
colorWave. The planes are defined by specific dimension labels and not by specific plane numbers. To
provide foreground colors, define a plane labeled “foreColors” that contains the desired index values.
Likewise define and fill a plane labeled “backColors” for background colors. The value 0 is special and
indicates that the default colors should be used. Note that if you have a one column list for which you want
to supply colors, the selWave needs to be three dimensional but with just one column. Here is an example:

ListBox

V-434

Make/T/N=(5,1) tw= "row "+num2str(p) // 5 row, 1 col text wave (2D)
Make/B/U/N=(5,1,2) sw // 5 row, 1 col, 2 plane byte wave
Make/O/W/U myColors={{0,0,0},{65535,0,0},{0,65535,0},{0,0,65535},{0,65535,65535}}
MatrixTranspose myColors // above was easier to enter as 3 rows, 5 cols

NewPanel
ListBox lb,mode=3,listWave= tw,selWave= sw,size={200,100},colorWave=myColors
sw[][][1]= p // arbitrary index values into plane 1

Now, execute the following commands one at a time and observe the results:
SetDimLabel 2,1,backColors,sw // define plane 1 as background colors

SetDimLabel 2,1,foreColors,sw // redefine plane 1 s foreground colors

sw[][][%foreColors]= 4-p // change the color index values

In the above example, the selWave was defined as unsigned byte. If you need more than 254 colors, you
will have to use a larger number size.
The color wave may have four columns instead of three, with the fourth specifying transparency
(65535=opaque, 0=transparent). Transparency of the background color is of limited utility as it just shows
the white background color through the cell color, resulting in pastel shades. Transparency of the
foreground color permits the cell background color to show through the text color.

Checkboxes in Cells
You can cause a cell to contain a checkbox by setting bit 5 in selWave. The title (if any) is taken from listWave
and the results (selected/deselected) is bit 4 of selWave. If a checkbox cell is selected then the space bar will
toggle the checkbox. (Clicking a checkbox cell does not select it — use the arrow keys.)

Errors
Your listbox may be drawn with a red X and an error code. The error codes are:

Event Queue
It is possible for a single user action to produce more than one event. For instance, pressing the up arrow
key while editing to select a cell that is not visible generates event codes 4, 8, and 6. Igor calls your action
procedure separately for each code.
If your code tests for a nonzero value in eventCode2, and uses it only if it is nonzero, then the event queue
method will not break your code. If you have determined empirically when you need to use eventCode2
and you do not test, your code will break.

Scroll Event Warnings
Events 8, 9, and 10 report to you that the listbox has been scrolled vertically or horizontally. These events are
envisioned as allowing you to keep two listboxes synchronized (you may find other uses for these events).
You might use an action procedure like this one to keep two listboxes (named list0 and list1) in sync:
Function ListBoxProc2(LB_Struct) : ListBoxControl

STRUCT WMListboxAction &LB_Struct

if (LB_Struct.eventCode == 8)
String listname
if (CmpStr(LB_Struct.ctrlName, "list1") == 0)

listname = "list0"
else

listname = "list1"
endif
ControlInfo $listname
if (V_startRow != LB_Struct.row)

listbox $listname,row=LB_Struct.row
ControlUpdate $listname

endif
endif

Error Meaning

E1 Too small.

E2 listWave is invalid (missing, not text or no rows).

E3 listWave and selWave do not match in dimensions.

E4 mode > 2 with no selWave.

ListBox

V-435

return 0
End

It is very easy to create an infinite cascade of events feeding back between the two listboxes, especially if
you use event 10. When this happens, you will see your listboxes jigging up and down endlessly. The test
using ControlInfo is intended to make this unlikely.
The slow response of the old-style, nonstructure action procedure can defeat the ControlInfo test by
delaying the action procedure execution. If you use events 8, 9, or 10, we recommended that you use the
new-style action procedure.

Note on Keystroke Event
In a keystroke event passed to a listbox action procedure the eventCode is 12. A character code is stored in
the row field of the WMListboxAction structure. This works only for ASCII characters and a few special
characters such as delete (8), forward delete (127) and escape (27). It does not work for non-ASCII characters
such as accented characters which, in Igor Pro 7, are represented as UTF-8 and require multiple bytes.
As explained below, many keystroke events are not sent to the listbox action procedure because they are
consumed by the internal listbox code in Igor. For this reason the keystroke event for a listbox is of limited
use.
The architecture of Igor controls is such that events are passed to an action procedure only after the control
has used them. In the case of a keystroke event, that means that other uses of the keystroke may consume
the event before the action procedure gets a chance at it. In particular, a listbox editable cell that is actively
being edited consumes keystroke events, and the action procedure is not called. The only editing-related
events your action procedure will get are event codes 6 and 7.
If an arrow key is pressed, and this results in the selected row or cell changing, your action procedure will
not get a keystroke event. Instead, your action procedure will receive event code 4 or 5. If the arrow key
causes scrolling to occur, the action procedure will also get event code 8 or 9.

Examples
Here is a simple Listbox example:
Make/O/T/N=30 tjack="this is row "+num2str(p)
Make/O/B/N=30 sjack=0
NewPanel /W=(19,61,319,261)
ListBox lb1,pos={42,9},size={137,94},listWave=tjack,selWave=sjack,mode= 3
Edit/W=(367,61,724,306) tjack,sjack
ModifyTable width(tjack)=148

Make selections in the list and note changes in the table and vice versa. Edit one of the list text values in the
table and note update of the list.
Here is an example using a titleWave and styled text in the title cells. Note that the last title isn’t very long
when rendered, but requires a 63 character specification.
Make/O/T/N=(4,3) ListWave="row "+num2str(p)+" col "+num2str(q)
Make/O/T/N=3 titles // three rows to match 3-column ListWave
titles[0] = "\f01Bold Title"
titles[1] = "title with semicolon;"
titles[2] = "Marker in Gray: \K(40000,40000,40000)\k(40000,40000,40000)\W517"
NewPanel /W=(515,542,1011,794)
ListBox list0,pos={1,2},size={391,120},listWave=ListWave
ListBox list0,titleWave=titles

An example experiment that lets you easily experiment with ListBox settings is available in
“Examples:Feature Demos 2:ListBox Demo.pxp”.

See Also
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls.
Setting Bit Parameters on page IV-12 for further details about bit settings.
The GetUserData operation for retrieving named user data.

ListBoxControl

V-436

ListBoxControl
ListBoxControl
ListBoxControl is a procedure subtype keyword that identifies a macro or function as being an action
procedure for a user-defined listbox control. See Procedure Subtypes on page IV-193 for details. See
ListBox for details on creating a listbox control.

ListMatch
ListMatch(listStr, matchStr [, listSepStr])
The ListMatch function returns each list item in listStr that matches matchStr.
ListStr should contain items separated by the listSepStr character, such as "abc;def;".
You may include asterisks in matchStr as a wildcard character. Note that matching is case-insensitive. See
StringMatch for wildcard details.
ListSepStr is optional. If missing, it is taken to be ";".

See Also
The GrepList, StringMatch, StringFromList, and WhichListItem functions.

ListToTextWave
ListToTextWave(listStr, separatorStr)
The ListToTextWave function returns a free text wave containing the individual list items in listStr.
See Free Waves on page IV-84 for details on free waves.
The ListToTextWave function was added in Igor Pro 7.00.

Parameters
listStr is an string that contains any number of substrings separated by a common string separator.
separatorStr is the separator string that separates one item in the list from the next. It is usually a single
semicolon character but can by any string.

Details
The ListToTextWave function returns a free wave so it can't be used on the command line or in a macro. If
you need to convert the free wave to a global wave use MoveWave.
For lists with a large number of items, using ListToWave and then retrieving the substrings sequentially
from the returned text wave is much faster than retrieving the substrings using StringFromList. This is
because StringFromList must search from the start of the list to the desired substring each time it is called.
The reverse operation, converting the contents of a text wave into a string list, can be accomplished using
wfprintf like this:
WAVE/T tw
String list
wfprintf list, “%s\r”, tw // Carriage-return separated list

Example
Function Test(num, separator)

Variable num
String separator // Usually ";"

// Build a string list using separator
String list = ""
Variable i
for(i=0; i<num; i+=1)

list += "item_" + num2str(i) + separator
endfor

// Convert to a text wave and print its elements
Wave/T w = ListToTextWave(list, separator)
Print numpnts(w)
for(i=0; i<num; i+=1)

Print i, w[i]
endfor

End

ListToWaveRefWave

V-437

See Also
ListToWaveRefWave, WaveRefWaveToList, wfprintf
Using Strings as Lists on page IV-161, StringFromList, MoveWave, Free Waves on page IV-84

ListToWaveRefWave
ListToWaveRefWave(stringList [, options])
The ListToWaveRefWave function returns a free wave containing a wave reference for each entry in
stringList that corresponds to an existing wave.
The ListToWaveRefWave function was added in Igor Pro 7.00.

Parameters
stringList is a semicolon-separated string list of waves specified using full paths or partial paths relative to
the current data folder.
options is a bit field that is 0 by default. Set bit 0 to if you want the function to generate an error (see
GetRTError) if any of the list elements does not specify an existing wave. Other bits are reserved for future
use and must be cleared.

Example
Function Test()

NewDataFolder/O/S root:TestDF // Create empty data folder as current DF
Make/O aaa // aaa will be the first wave in list
Make/O bbb
String strList = WaveList("*", ";", "")
Wave/WAVE wr = ListToWaveRefWave(strList, 0) // Returns a free wave
Wave w = wr[0]
Print GetWavesDataFolder(w, 2)
Wave w = wr[1]
Print GetWavesDataFolder(w, 2)

End

See Also
WaveRefWaveToList, ListToTextWave, Wave References on page IV-65

ln
ln(num)
The ln function returns the natural logarithm of num, -INF if num is 0, or NaN if num is less than 0. In
complex expressions, num is complex, and ln(num) returns a complex value.
To compute a logarithm base n use the formula:

See Also
The log function.

LoadData
LoadData [flags] fileOrFolderNameStr
The LoadData operation loads data from the named file or folder. “Data” means Igor waves, numeric and
string variables and data folders containing them. The specified file or folder must be an Igor packed
experiment file or a folder containing Igor binary data, such as an Igor unpacked experiment folder or a
folder in which you have stored Igor binary wave files.
LoadData loads data objects into memory and they become part of the current Igor experiment,
disassociated from the file from which they were loaded.
If loading from a file-system folder, the data (waves, variables, strings) in the folder, including any
subfolders if /R is specified, is loaded into the current Igor data folder.

logn (x) = log(x)

log(n)
.

LoadData

V-438

If loading from a packed Igor experiment file, the data in the file, including any packed subdata folders if
/R is specified, is loaded into the current Igor data folder.
Use LoadData to load experiment data using Igor procedures. To load experiment data interactively, use
the Data Browser (Data menu).

Parameters
If you use a full or partial path for fileOrFolderNameStr, see Path Separators on page III-401 for details on
forming the path.
If fileOrFolderNameStr is omitted you get to locate the file (if /D is omitted) or the folder (if /D is present) via
a dialog.

Flags

/D If present, loads from a file-system folder (a directory). If omitted, LoadData
loads from an Igor packed experiment file.

/I Interactive. Forces LoadData to present a dialog.

/J=objectNamesStr Loads only the objects named in the semicolon-separated list of object names.

/L=loadFlags

To load multiple data types, sum the values shown in the table. For example, /L=1
loads waves only, /L=2 loads numeric variables only, and /L=3 loads both waves
and numeric variables. See Setting Bit Parameters on page IV-12 for further
details about bit settings.
If no /L is specified, all object types are loaded. This is equivalent to /L=7. All other
bits are reserved and should be set to zero.

/O[=overwriteMode] If /O alone is used, overwrites existing data objects in case of a name conflict.

See Details for more about overwriting.

/P=pathName Specifies folder to look in for the specified file or folder. pathName is the name of
an existing symbolic path.

/Q Suppresses the normal messages in the history area.

/R Recursively loads subdata folders.

/S=subDataFolderStr Specifies a subdata folder within a packed experiment file to be loaded. See
Details for more.

Controls what kind of data objects are loaded with a bit for each data type:

loadFlags Bit Number Loads this Object Type

1 0 Waves

2 1 Numeric Variables

4 2 String Variables

overwriteMode is defined as follows:
0: No overwrite, as if there were no /O.
1: Normal overwrite. In the event of a name conflict, objects in the

incoming file replace the conflicting objects in memory.
Incoming data folders completely replace any conflicting data
folders in memory.

2: Mix-in overwrite. In the event of a name conflict, objects in the
incoming file replace the conflicting objects in memory but
nonconflicting objects in memory are left untouched.

LoadData

V-439

Details
If /T is present, LoadData loads the top level data folder and its contents. If /T is omitted, it loads just the
contents of the top level data folder and not the data folder itself. This distinction has an analogy in the
desktop. You can drag the contents of disk folder A into folder B or you can drag folder A itself into folder B.
If present, /S=subDataFolderStr specifies the subdata folder within the packed experiment file from which
the load is to start. For example:
LoadData/P=Path1/S="Folder A:Folder B" "aPackedExpFile"

This starts loading from data folder “Folder B” which is in “Folder A” in the packed experiment file. Note
that the string specified by /S must specify each subdata folder until the desired data folder is reached. Since
this parameter is specified as a string, you must not use single quotes.
In Igor Pro 7.00 or later, you can include “root:” at the start of subDataFolderStr. However, it is not required
because, if it is omitted, LoadData takes the path to be relative to the root of the data hierarchy of the
experiment being loaded.
/S has no effect if you are loading from a file system folder rather than from a packed experiment file.
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-21 for details.
If /J=objectNamesStr is used, then only the objects named in objectNamesStr are loaded into the current
experiment. For example, /J="wave0;wave1" will load only the two named waves, ignoring any other
data in the file or folder being loaded.
Assume that you have an experiment that contains 5 runs where each run, stored in a separate data folder
in a packed experiment file, consists of data acquired from four channels from an ADC card. Using the /J
flag, you can load just one specific channel from each run. This way you can compare that channel’s data
from all runs without loading the other channels.
The list of object names used with /J must be semicolon-separated. A semicolon after the last object name
in the list is optional. Because the object names exist in a string expression, they should not be quoted. The
list is limited to 1000 bytes.
Using /J="" acts like no /J at all.
If you load a hierarchy of data folders (using the /R flag) with /J in effect, LoadData will create each data
folder in the hierarchy even if it contains none of the named objects. This behavior is necessary to avoid
loading a subdata folder without loading its parent, as well as other such complications.
If you do a load of a data folder, overwriting an existing data folder of the same name, the behavior of
LoadData depends on whether you use /J. If you do not use /J, the entire data folder and all of its contents
are replaced. If you do use /J, just the specified objects in the data folder are replaced, leaving any other
preexisting objects in the data folder unchanged.
If you do not use the /O (overwrite) flag or if you use /O=0 and there is a conflict between objects or data
folders in the current data folder and objects or data folders in the file or folder being loaded, LoadData will
present a dialog to ask you if you want to replace the existing data. However, LoadData can not replace an
object with an object of a different type and will refuse to do so.
You can overwrite an object that is in use, such as a wave that is displayed in a graph or table. You can also
overwrite a data folder that contains objects that are in use. This is a powerful feature. Imagine that you
define a data structure consisting of waves, variables and possibly subdata folders. You can display the data
in graphs and tables and you can display these in a layout. You can then overwrite the data with an
analogous data structure from a packed experiment file and Igor will automatically update any graphs,
tables, or layouts that need to be updated.
Because LoadData can load from a complex packed Igor experiment file or from a complex hierarchy of file-
system folders, it does not set the variables normally set by a file loader: S_path, S_fileName, and
S_waveNames. The variable V_flag is set to the total number of objects loaded, or to -1 if the user cancelled

/T[=topLevelName] If /T=topLevelName is specified, it creates a new data folder in the current data folder
with the specified name and places the loaded data in the new data folder.
If just /T is specified, it creates a new data folder in the current data folder with a
name derived from the name of the unpacked experiment folder, packed
experiment file or packed subdata folder being loaded.

LoadPackagePreferences

V-440

the open file dialog. To find what objects were created by LoadData, you can use the CountObjects and
GetIndexedObjName functions.

See Also
The SaveData operation, Importing Data on page II-117, The Data Browser on page II-106.

LoadPackagePreferences
LoadPackagePreferences [/MIS=mismatch /P=pathName] packageName, prefsFileName,

recordID, prefsStruct
The LoadPackagePreferences operation loads preference data previously stored on disk by the
SavePackagePreferences operation. The data is loaded into the specified structure.

The structure can use fields of type char, uchar, int16, uint16, int32, uint32, int64, uint64, float and double
as well as fixed-size arrays of these types and substructures with fields of these types.
If the /P flag is present then the location on disk of the preference file is determined by pathName and
prefsFileName. However in the usual case the /P flag will be omitted and the preference file is located in a file
named prefsFileName in a directory named packageName in the Packages directory in Igor’s preferences directory.

See Saving Package Preferences on page IV-237 for background information and examples.

Parameters
packageName is the name of your package of Igor procedures. It is limited to 31 bytes and must be a legal
name for a directory on disk. This name must be very distinctive as this is the only thing preventing
collisions between your package and someone else’s package.
prefsFileName is the name of a preference file to be loaded by LoadPackagePreferences. It should include an
extension, typically ".bin".
prefsStruct is the structure into which data from disk, if it exists, will be loaded.
recordID is a unique positive integer that you assign to each record that you store in the preferences file. If
you store more than one structure in the file, you would use distinct recordIDs to identify which structure
you want to load. In the simple case you will store just one structure in the preference file and you can use
0 (or any positive integer of your choice) as the recordID.

Flags

Note: The package preferences structure must not use fields of type Variable, String, WAVE,
NVAR, SVAR or FUNCREF because these fields refer to data that may not exist when
LoadPackagePreferences is called.

Note: You must choose a very distinctive name for packageName as this is the only thing
preventing collisions between your package and someone else’s package.

/MIS=mismatch

/P=pathName Specifies the directory to look in for the file specified by prefsFileName.
pathName is the name of an existing symbolic path. See Symbolic Paths on page II-21
for details.
/P=$<empty string variable> acts as if the /P flag were omitted.

Controls what happens if the number of bytes in the file does not match the size of
the structure:
0: Returns an error. Default behavior if /MIS is omitted.
1: Returns the smaller of the size of the structure and the number of

bytes in the file. Does not return an error. Use this if you want to
read and update old versions of a preferences structure.

LoadPICT

V-441

Details
LoadPackagePreferences sets the following output variables:

After calling LoadPackagePreferences if V_flag is nonzero or V_bytesRead is zero then you need to create
default preferences as illustrated by the example referenced below.
V_bytesRead, in conjunction with the /MIS flag, makes it possible to check for and deal with old versions
of a preferences structure as it loads the version field (typically the first field) of an older or newer version
structure. However in most cases it is sufficient to omit the /MIS flag and treat incompatible preference data
the same as missing preference data.

Example
See the example under Saving Package Preferences in a Special-Format Binary File on page IV-237.

See Also
SavePackagePreferences.

LoadPICT
LoadPICT [flags] [fileNameStr][, pictName]
The LoadPICT operation loads a picture from a file or from the Clipboard into Igor. Once you have loaded
a picture, you can append it to graphs and page layouts.

Parameters
The file to be loaded is specified by fileNameStr and /P=pathName where pathName is the name of an Igor symbolic
path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative to the folder
associated with pathName, or the name of a file in the folder associated with pathName. If Igor can not determine
the location of the file from fileNameStr and pathName, it displays a dialog allowing you to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.
If you want to force a dialog to select the file, omit the fileNameStr parameter.
If fileNameStr is “Clipboard” and /P=pathName is omitted, LoadPICT loads its data from the Clipboard
rather than from a file.
pictName is the name that you want to give to the newly loaded picture. You can refer to the picture by its
name to append it to graphs and page layouts. LoadPICT generates an error if the name conflicts with some
other type of object (e.g., wave or variable) or if the name conflicts with a built-in name (e.g., the name of
an operation or function).
If you omit pictName, LoadPICT automatically names the picture as explained in Details.

Flags

V_flag Set to 0 if no error occurred or to a nonzero error code.
If the preference file does not exist, V_flag is set to zero so you must use V_bytesRead
to detect that case.

V_bytesRead Set to the number of bytes read from the file. This will be zero if the preference file
does not exist.

V_structSize Set to the size in bytes of prefsStruct. This may be useful in handling structure version
changes.

/I=resIndex Specifies the resource to load by resource index, starting from 1 (Macintosh only).

/M=promptStr Specifies a prompt to use if LoadPICT needs to put up a dialog to find the file.

/N=resNameStr A string that specifies the resource to load by resource name (Macintosh only).

/O Overwrites an existing picture with the same name.
If /O is omitted and there is an existing picture with the same name, LoadPICT
displays a dialog in which you can resolve the name conflict.

LoadPICT

V-442

Details
If the picture file is not fully specified then LoadPICT presents a dialog from which you can select the file.
“Fully specified” means that LoadPICT can determine the name of the file (from the fileNameStr parameter)
and the folder containing the file (from the flag /P=pathName flag or from the fileNameStr parameter). If you
want to force a dialog, omit the fileNameStr parameter.
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-21 for details.
On Macintosh, LoadPICT can load picture data from the file’s data or resource fork. Most graphics
programs store a picture in the data fork. Some programs may store one or more pictures as resources. If
you use /R, /I, or /N, it loads the picture from the specified resource in the file. Otherwise, it loads the picture
from the file’s data fork.
If you omit pictName, LoadPICT automatically names the picture as follows:
On Macintosh, if the picture was loaded from the resource fork of a file (you used /R, /I, or /N) and the
resource had a nonempty name, it uses the resource name. If necessary, the name is made legal by replacing
illegal characters or shortening it.
If the picture was loaded from a file, LoadPICT uses the file name. If necessary, it makes it into a legal name
by replacing illegal characters or shortening it.
Otherwise, LoadPICT uses a name of the form “PICT_n”.
If the resulting name is in conflict with an existing picture name, Igor puts up a name conflict resolution dialog.
LoadPICT sets the variable V_flag to 1 if the picture exists and fits in available memory or to 0 otherwise.
It also sets the string variable S_info to a semicolon-separated list of values:

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/Q Quiet: suppresses the insertion of picture info into the history area.

/R=resourceID Specifies the resource to load by resource ID (Macintosh only).

/Z Doesn’t load the picture, just checks for its existence.

Keyword Information Following Keyword

NAME Name of the loaded PICT, often “PICT_0”, etc.

SOURCE One of “data fork”, “resource fork” or “Clipboard”.

RESOURCENAME Name of the resource the picture was loaded from, or "" if the source was not the
file’s resource fork.

RESOURCEID Resource ID the picture was loaded from, or 0 if the source was not the file’s
resource fork.

LoadWave

V-443

See Also
See Pictures on page III-448 for general information on how Igor handles pictures.
The ImageLoad operation for loading PICT and other image file types into waves, and the PICTInfo function.

LoadWave
LoadWave [flags] [fileNameStr]
The LoadWave operation loads data from the named Igor binary, Igor text, delimited text, fixed field text,
or general text file into waves. LoadWave can load 1D and 2D data from delimited text, fixed field text and
general text files, or data of any dimensionality from Igor binary and Igor text files.

Parameters
The file to be loaded is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If
LoadWave can not determine the location of the file from fileNameStr and pathName, it displays a dialog
allowing you to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.
If fileNameStr is “Clipboard” and /P=pathName is omitted, LoadWave takes its data from the Clipboard
rather than from a file. This is not implemented for binary loads.
If fileNameStr is omitted or is “”, or if the /I flag is used, LoadWave presents an Open File dialog from which
you can choose the file to load.

TYPE One of the following types:
DIB
Encapsulated PostScript
Enhanced metafile
JPEG
PDF
PNG
SVG
TIFF
Windows bitmap
Windows metafile
Unknown type

BYTES Amount of memory used by the picture.

WIDTH Width of the picture in pixels.

HEIGHT Height of the picture in pixels.

PHYSWIDTH Physical width of the picture in points.

PHYSHEIGHT Physical height of the picture in points.

Keyword Information Following Keyword

LoadWave

V-444

Flags

/A “Auto-name and go” option (used with /G, /F or /J).
This skips the dialog in which you normally enter wave names. Instead it
automatically assigns names of the form wave0, wave1, choosing names that are not
already in use. When used with /W, it reads wave names from the file instead of
automatically assigning names and /A just skips the wave name dialog. The /B flag
can also override names specified by /A.

/A=baseName Same as /A but it automatically assigns wave names of the form baseName0,
baseName1.

/B=columnInfoStr Specifies the name, format, numeric type, and field width for columns in the file. See
Specifying Characteristics of Individual Columns.

/C This is used in experiment recreation commands generated by Igor to force
experiment recreation to continue if an error occurs in loading a wave.

/D Creates double precision waves. (Used with /G, /F or /J.) The /B flag can override the
numeric precision specified by the /D flag.

/E=editCmd

/ENCG=textEncoding
/ENCG={textEncoding, tecOptions}

Controls table creation:
editCmd=1: Makes a new table containing the loaded waves.
editCmd=2: Appends the loaded waves to the top table. If no table exists, a

new table is created.
editCmd=0: Same as if /E had not been specified (loaded waves are not put

in any table).

LoadWave

V-445

Specifies the text encoding of the plain text file being loaded.
This flag was added in Igor Pro 7.00.
This flag is ignored when loading an Igor binary wave file.
See Text Encoding Names and Codes on page III-434 for a list of accepted values for
textEncoding.
For most purposes the default value for tecOptions, 3, is fine and you can use
/ENCG=textEncoding instead of /ENCG={textEncoding, tecOptions}.
tecOptions is an optional bitwise parameter that controls text encoding conversion. See
Setting Bit Parameters on page IV-12 for details about bit settings.

 See LoadWave Text Encoding Issues on page V-453 for further discussion.

/F={numColumns, defaultFieldWidth, flags}

Indicates that the file uses the fixed field file format. Most FORTRAN programs
generate files in this format.
numColumns is the number of columns of data in the file.
defaultFieldWidth is the default number of bytes in each column. If the columns do not
all have the same number of bytes, you need to use the /B flag to provide more
information to LoadWave.

All other bits are reserved and must be cleared.

/G Indicates that the file uses the general text format.

tecOptions is defined as follows:
Bit 0: If cleared, the presence of null bytes causes LoadWave to consider the

text invalid in all byte-oriented text encodings. This makes it easier
for LoadWave to identify UTF-16 and UTF-32 text which usually
contains null bytes.
If set (default), null bytes are allowed in byte-oriented text encodings.

Bit 1: If cleared LoadWave does not validate text if the specified text
encoding is UTF-8.
If set (default), LoadWave validates text even if the text encoding is
UTF-8.

Bit 2: If cleared (default) LoadWave validates the text in the specified text
encoding except that validation for UTF-8 is skipped if bit 1 is cleared.
If set, LoadWave assumes that the text is valid in the specified text
encoding and does not validate it. Setting this bit makes LoadWave
slightly faster but it is usually inconsequential.

Bit 3: If cleared (default), LoadWave presents the Choose Text Encoding
dialog if the specified text encoding is not valid for the text in the file.
If set, LoadWave does not present the Choose Text Encoding dialog
if the text is not valid in the specified text encoding and instead
returns an error. Set this bit if you are running an automated
procedure and do not want it interrupted by a dialog.

flags is a bitwise parameter that controls the conversion of text to values. The bits
are defined as follows:
Bit 0 : If set, any field that consists entirely of the digit “9” is taken to

be blank. A field that consists entirely of the digit “9” except for
a leading “+” or “-” is also taken to be blank.

LoadWave

V-446

/H Loads the wave into the current experiment and severs the connection between the
wave and the file. When the experiment is saved, the wave copy will be saved as part
of the experiment. For a packed experiment this means it is saved in the packed
experiment file. For an unpacked experiment this means it is saved in the
experiment's home folder.
See Sharing Versus Copying Igor Binary Files on page II-137.

/I Forces LoadWave to display an Open File dialog even if the file is fully specified via
/P and fileNameStr.

/J Indicates that the file uses the delimited text format.

/K=k

/L={nameLine, firstLine, numLines, firstColumn, numColumns}

Affects loading delimited text, fixed field text, and general text files only (/J, /F or /G).
/L is accepted no matter what the load type but is ignored for Igor binary and Igor text
loads. Line and column numbers start from 0.
nameLine is the number of the line containing column names. For general text loads, 0
means auto. See Loading General Text Files on page II-128 for details.
firstLine is the number of the first line to load into a wave. For general text loads, 0
means auto. See Loading General Text Files on page II-128 for details.
numLines is the number of lines that should be treated as data. 0 means auto which
loads until the end of the file or until the end of the block of data in general text files.
The numLines parameter can also be used to make loading very large files more
efficient. See Loading Very Large Files.
firstColumn is the number of the first column to load into a wave. This is useful for
skipping columns.
numColumns is the number of columns to load into a wave. 0 means auto, which loads
all columns.

/M Loads data as matrix wave. If /M is used then it ignores the /W flag (read wave names)
and follows the /U flags instead.
The wave is autonamed unless you provide a specific wave name using the /B flag.
The type of the wave (numeric or text) is determined by an assessment of the type of
the first loaded column unless you override this using the /K flag or the /B flag.
See The Load Waves Dialog for Delimited Text — 2D on page II-124 for further
information.

/N Same as /A except that, instead of choosing names that are not in use, it overwrites
existing waves.

/N=baseName Same as /N except that it automatically assigns wave names of the form baseName0,
baseName1.

Controls how to determine whether a column in the file is numeric or text (only for
delimited text and fixed field text files).

This flag as well as the ability to load text data into text waves were added in Igor
Pro 3.0. The default for the LoadWave operation is /K=1, meaning that it will treat
all columns as numeric. We did this so that existing procedures would behave the
same in Igor Pro 3.0 as before. Use /K=0 when you want to load text columns into
text waves. /K=2 may have use in a text-processing application.
For finer control, the /B flag specifies the format of each column in the file
individually.

k=0: Deduces the nature of the column automatically.
k=1: Treats all columns as numeric.
k=2: Treats all columns as text.

LoadWave

V-447

/O Overwrite existing waves in case of a name conflict.

/P=pathName Specifies the folder to look in for fileNameStr. pathName is the name of an existing
symbolic path.

/Q Suppresses the normal messages in the history area.

/R={languageName, yearFormat, monthFormat, dayOfMonthFormat, dayOfWeekFormat, layoutStr, pivotYear}

Specifies a custom date format for dates in the file. If the /R flag is used, it overrides
the date setting that is part of the /V flag.

languageName controls the language used for the alphabetic date components,
namely the month and the day-of-week. languageName is one of the following:

Default means the system language on Macintosh or the user default language on
Windows.

Default
Chinese ChineseSimplified Danish Dutch
English Finnish French German
Italian Japanese Korean Norwegian
Portuguese Russian Spanish Swedish

yearFormat is one of the following codes:
1: Two digit year.
2: Four digit year.

monthFormat is one of the following codes:
1: Numeric, no leading zero.
2: Numeric with leading zero.
3: Abbreviated alphabetic (e.g., Jan).
4: Full alphabetic (e.g., January).

dayOfMonthFormat is one of the following codes:
1: Numeric, no leading zero.
2: Numeric with leading zero.

dayOfWeekFormat is one of the following codes:
1: Abbreviated alphabetic (e.g., Mon).
2: Full alphabetic (e.g., Monday).

layoutStr describes which components appear in the date in what order and what
separators are used. layoutStr is constructed as follows (but with no line break):

where <component keyword> is one of the following:

and <separator> is a string of zero to 15 bytes.

"<component keyword><separator>

<component keyword><separator>

<component keyword><separator>

<component keyword>"

Year

Month

DayOfMonth

DayOfWeek

LoadWave

V-448

Starting from the end, parts of the layout string must be omitted if they are not used.
Extraneous spaces are not allowed in layoutStr. Each separator must be no longer than
15 bytes. No component can be used more than once. Some components may be used
zero times.
pivotYear determines how LoadWave interprets two-digit years. If the year is
specified using two digits, yy, and is less than pivotYear then the date is assumed to
be 20yy. If the two digit year is greater than or equal to pivotYear then the year is
assumed to be 19yy. pivotYear must be between 4 and 40.
See Loading Custom Date Formats on page V-449 for further discussion of date
formats.

/T Indicates that the file uses the Igor text format.
Although LoadWave is generally thread-safe, it is not thread-safe to load an Igor text
file containing an Igor command (e.g., "X <command>").

/U={readRowLabels, rowPositionAction, readColLabels, colPositionAction}

These parameters affect loading a matrix (/M) from a delimited text (/J) or a fixed field
text (/F) file. They are accepted no matter what the load type is but are ignored when
they don’t apply.
If readRowLabels is nonzero, it reads the first column of data in the file as the row labels
for the matrix wave.

The readColumnLabels and columnPositionAction parameters have analogous
meanings. The prefix used for the column position wave is “CP_”.
See Chapter II-9, Importing and Exporting Data for further details.

/V={delimsStr, skipCharsStr, numConversionFlags, loadFlags}

These parameters affect loading delimited text (/J) and fixed field text (/F) data and
column names. They do not affect loading general text (/G). They are accepted no
matter what the load type is but are ignored when they don’t apply. These parameters
should rarely be needed.
delimsStr is a string expression containing the characters that should act as delimiters
for delimited file loads. (When loading data as general text, the delimiters are always
tab, comma and space.) The default is “\t,” for tab and comma. You can specify the
space character as a delimiter, but it is always given the lowest priority behind any
other delimiters contained in delimsStr. The low priority means that if a line of text
contains any other delimiter besides the space character, then that delimiter is used
rather than the space character.
skipCharsStr is a string expression containing characters that should always be treated
as garbage and skipped when they appear before a number. The default is “$” for
space and dollar sign. This parameter should rarely be needed.

rowPositionAction has one of the following values:
0: The file has no row position column.
1: Uses the row position column to set the row scaling of the matrix

wave.
2: Creates a 1D wave containing the values in the row position column.

The name of the 1D wave will be the same as the matrix wave but
with the prefix “RP_”.

LoadWave

V-449

Details
Without the /G, /F, /J, or /T flags, LoadWave loads Igor Binary files.
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-21 for details.
When loading a general text file, the delimiters are always tab, comma and space.

Loading Custom Date Formats
Here are some examples showing custom date formats and how you would specify them using the /R flag:
When loading data as delimited text, if you use a date format containing a comma, such as “October 11,
1999”, you must use the /V flag to make sure that LoadWave will not treat the comma as a delimiter.
When loading a date format that consists entirely of digits, such as 991011, you must use the LoadWave/B
to specify that the data is a date. Otherwise, LoadWave will treat it as a regular number.

/W Looks for wave names in a file. (With /G, /F, and /J.)
LoadWave cleans up column names to create standard, not liberal, wave names. See
Object Names on page III-443 and CleanupName for details.
Use /W/A to read wave names from the file and then continue the load without
displaying the normal wave name dialog.

numConversionFlags is a bitwise parameter that controls the conversion of text to
numbers. The bits are defined as follows:

All other bits are reserved and must be cleared.
See Setting Bit Parameters on page IV-12 for details about bit settings.
If the /R flag is used to specify the date format, this overrides the setting of bit 0.

Bit 0: If set: dates are dd/mm/yy.
If cleared: dates are mm/dd/yy.

Bit 1: If set: decimal character is comma.
If cleared: it is period.

Bit 2: If set: thousands separators in numbers are ignored when loading
delimited text only (LoadWave/J).
The thousands separator is the comma in 1,234 or, if comma is the
decimal character, the dot in 1.234.
Most numeric data files do not use thousands separators and
searching for them slows loading down so this bit should usually be
0.
This bit has no effect if the thousands separator (e.g., comma) is also
a delimiter character as specified by delimsStr.

loadFlags is a bitwise parameter that controls the overall load. The bits are defined
as follows:

All other bits are reserved and must be cleared.

Bit 0: If set, ignores blanks at the end of a column. This is appropriate if the
file contains columns of unequal length. Set loadFlags = 1 to set bit 0.

Bit 1: If set, when the /W flag is specified and the line containing column
labels starts with one or more space characters, the spaces are taken
to be a blank column name. The resulting column will be named
Blank. Use this if both the line containing column labels and the lines
containing data start with leading spaces in a space-delimited file. Set
loadFlags = 2 to set bit 1.

Bit 2: If set: Disables pre-counting of lines of data. See Loading Very Large
Files below.

Bit 3: If set: Disables unescaping of backslash characters in text columns.
See Escape Sequences below.

LoadWave

V-450

Loading Very Large Files
The number of waves (columns) or points (rows) that LoadWave can handle when loading a text file is
limited only by available memory.
You can improve the speed and efficiency of loading very large files (i.e., more than 50,000 lines of data)
using the numLines parameter of the /L flag. Normally this parameter is used to load a section of the file
instead of the whole file. However, in delimited, general text and fixed field text loads, the numLines
parameter also specifies how many rows the waves should initially have. Thus all of the required memory
is allocated at the start of the load, rather than increasing the number of wave rows over and over as more
lines of data are loaded. When loading very large files, if you know the exact number of lines of data in the
file, use the numLines parameter of the /L flag. If you don’t know the exact number of lines, you can provide
a number that is guaranteed to be larger.
If you omit the /L flag or if the numLines parameter is zero, and if you are loading a file greater than 500,000
bytes, and if you are running on Windows, LoadWave will automatically count the lines of data in the file
so that the entire wave can be allocated before data loading starts. This acts as if you used /L and set
numLines to the exact correct value. For very large files on Windows, this can speed the loading process
considerably. For small files on Windows and for files of any size on Macintosh, it actually makes the load
slower. That’s why this feature takes effect only on Windows and only for files of greater than 500,000 bytes.
You can disable this feature by using the /V flag and setting bit 2 to 1.

Escape Sequences
An escape sequence is a two-character sequence used to represent special characters in plain text. Escape
sequences are introduced by a backslash character.
By default, in a text column, LoadWave interprets the following escape sequences: \t (tab), \n (linefeed),
\r (carriage-return), \\ (backslash), \" (double-quote) and \' (single-quote). This works well with Igor's
Save operation which uses escape sequences to encode the first four of these characters.
If you are loading a file that does not use escape sequences but which does contain backslashes, you can
disable interpretation of these escape sequences by setting bit 3 of the loadFlags parameter of the /V flag. This
is mainly of use for loading a text file that contains unescaped Windows file system paths.

Generating Wave Names
The /N flag automatically names new waves “wave” (or baseName if =baseName is used) plus a digit. The
digit starts from zero and increments by one for each wave loaded from the file. If the resulting name
conflicts with an existing wave, the existing wave is overwritten.
The /A flag is like /N except that it skips names already in use.

Specifying Characteristics of Individual Columns
The /B=columnInfoStr flag provides information to LoadWave for each column in a delimited text (/J), fixed
field text (/F) or general text (/G) file. The flag overrides LoadWave’s normal behavior. In most cases, you
will not need to use it.
columnInfoStr is constructed as follows:
"<column info>;<column info>; … ;<column info>;"

Date Format Specification

October 11, 1999 /R={English, 2, 4, 1, 1, "Month DayOfMonth, Year", 40}

Oct 11, 1999 /R={English, 2, 3, 1, 1, "Month DayOfMonth, Year", 40}

11 October 1999 /R={English, 2, 4, 1, 1, "DayOfMonth Month Year", 40}

11 Oct 1999 /R={English, 2, 3, 1, 1, "DayOfMonth Month Year", 40}

10/11/99 /R={English, 1, 2, 1, 1, "Month/DayOfMonth/Year", 40}

11-10-99 /R={English, 1, 2, 2, 1, "DayOfMonth-Month-Year", 40}

11-Jun-99 /R={English, 1, 3, 2, 1, "DayOfMonth-Month-Year", 40}

991011 /R={English,1,2,2,1,"YearMonthDayOfMonth", 40}

19991011 /R={English,2,2,2,1,"YearMonthDayOfMonth", 40}

LoadWave

V-451

where <column info> consists of one or more of the following:

Here is an example of the /B=columnInfoStr flag:
/B="C=1,F=-2,T=2,W=20,N=Factory; C=1,F=6,W=16,T=4,N=MfgDate;
C=1,F=0,W=16,T=2,N=TotalUnits; C=1,F=0,W=16,T=2,N=DefectiveUnits;"

This example is shown on two lines but in a real command it would be on a single line. In a procedure, it
could be written as:
String columnInfoStr = ""
columnInfoStr += "C=1,F=-2,T=2,W=20,N=Factory;"
columnInfoStr += "C=1,F=6,T=4,W=16,N=MfgDate;"
columnInfoStr += "C=1,F=0,T=2,W=16,N=TotalUnits;"
columnInfoStr += "C=1,F=0,T=2,W=16,N=DefectiveUnits;"

Note that each flag inside the quoted string ends with either a comma or a semicolon. The comma separates
one flag from the next within a particular column info specification. The semicolon marks the end of a column
info specification. The trailing semicolon is required. Spaces and tabs are permitted within the string.
This example provides information about a file containing four columns.

C=<number> The number of columns controlled by this column info specification. <number> is an
integer greater than or equal to one.

F=<format>

N=<name> A name to use for the column. <name> can be a standard name (e.g., wave0) or a
quoted liberal name (e.g., 'Heart Rate'). If <name> is '_skip_' (including single
quotation marks) then LoadWave will skip the column.
The N= flag works for delimited text, fixed field text and general text files.

T=<numtype>

W=<width> The column field width for fixed field files. <width> is an integer greater than or equal
to one. Fixed width files are FORTRAN-style files in which a fixed number of bytes is
allocated for each column and spaces are used as padding.
The W= flag is used for fixed field text only.

A code that specifies the data type of the column or columns. <format> is an integer
from -2 to 10. The meaning of the <format> is:

The F= flag is used for delimited text and fixed field text files only. It is ignored for
general text files.

-2: Text. The column will be loaded into a text wave.
-1: Format unknown. It will deduce the format.
0 to 5: Numeric.
6: Date.
7: Time.
8: Date/Time.
9: Octal number.
10: Hexadecimal number.

A number that specifies what the numeric type for the column should be. This flag
overrides the LoadWave/D flag. It has no effect on columns whose format is text.
<numtype> must be one of the following:
2: 32-bit float.
4: 64-bit float.
8: 8-bit signed integer.
16: 16-bit signed integer.
32: 32-bit signed integer.
72: 8-bit unsigned integer.
80: 16-bit unsigned integer.
96: 32-bit unsigned integer.

LoadWave

V-452

The first column info specification is “C=1;F=-2,T=2,W=20,N=Factory;”. This indicates that the
specification applies to one column, that the column format is text, that the numeric format is single-
precision floating point (but this has no effect on text columns), that the column data is in a fixed field width
of 20 bytes, and that the wave created for this column is to be named Factory.
The second column info specification is “C=1;F=6,T=4,W=16,N=MfgDate;”. This indicates that the
specification applies to one column, that the column format is date, that the numeric format is double-
precision floating point (double precision should always be used for dates), that the column data is in a
fixed field width of 16 bytes, and that the wave created for this column is to be named MfgDate.
The third column info specification is “C=1;F=0,T=2,W=16,N=TotalUnits;”. This indicates that the
specification applies to one column, that the column format is numeric, that the numeric format is single-
precision floating point, that the column data is in a fixed field width of 16 bytes, and that the wave created
for this column is to be named TotalUnits.
The fourth column info specification is the same as the third except that the wave name is DefectiveUnits.
All of the items in a column specification are optional. The default value for each item in the column info
specification is as follows:

Taking advantage of the default values, we could abbreviate the example as follows:
/B="F=-2,W=20,N=Factory; F=6,T=4,W=16,N=MfgDate;
W=16,N=TotalUnits; W=16,N=DefectiveUnits;"

If the file were not a fixed field text file, we would omit the W= flag and the example would become:
/B="F=-2,N=Factory;F=6,T=4,N=MfgDate;N=TotalUnits;N=DefectiveUnits;"

Here are some more examples and discussion that illustrate the use of the /B=columnInfoStr flag.
In this example, the /B flag is used solely to specify the name to use for the waves created from the columns
in the file:
/B="N=WaveLength; N=Absorbance;"

The wave names in the previous example are standard names. If you want to use liberal names, such as
names containing spaces or dots, you must use single quotes. For example:
/B="N='Wave Number'; N='Reflection Angle';"

The name that you specify via N= can not be used if overwrite is off and there is already a wave with this
name or if the name conflicts with a macro, function or operation or variable. In these cases, LoadWave
generates a unique name by adding one or more digits to the name specified by the N= flag for the column
in question. You can avoid the problem of a conflict with another wave name by using the overwrite (/O)
flag or by loading your data into a newly-created data folder. You can minimize the likelihood of a name
conflict with a function, operation or variable by avoiding vague names.
If you specify the same name in two N= flags, LoadWave will generate an error, so make sure that the names
are unique.
Except if the specified name is '_skip_', the N= flag generates a name for one column only, even if the C=
flag is used to specify multiple columns. Consider this example:
/B="C=10,N=Test;"

This ostensibly uses the name Test for 10 columns. However, wave names must be unique, so LoadWave will
not do this. It will use the name Test for just the first column and the other columns will receive default names.
You can load a subset of the columns in the file using the /L flag. Even if you do this, the column info
specifications that you provide via the /B flag start from the first column in the file, not from the first column

C=<number> C=1. Specifies that the column info describes one column.

F=<format> F=-1. Determines the format as dictated by the /K flag. If /K=0 is used, LoadWave will
automatically determine the column format.

N=<name> N=_auto_. Generates the wave name as it would if the /B flag were omitted.

T=<numtype> Defaults to T=4 (double precision) if the LoadWave/D flag is used or to T=2 (single
precision) if the /D flag is omitted.

W=<width> W=0. For a fixed width file, LoadWave will use the default field width specified by the
/F flag unless you provide an explicit field width greater than 0 using W=<width>.

LoadWave

V-453

to be loaded. For example, if you are using /L to skip columns 0 and 1, you must skip columns 0 and 1 in
the column info specification, like this:
// Skip column 0 and 1 and name the successive columns
/L={0,0,0,2,0} /B="C=2;N=Column2;N=Column3;"

The "C=2;" part accepts default specifications for columns 0 and 1 and the subsequent specifications apply
to subsequent columns.
You can achieve the same thing using /B without /L, like this:
/B="C=2,N='_skip_';N=Column2;N=Column3;"

Also, when loading data into a matrix wave, LoadWave uses only one name. If you specify more than one
name, only the first is used. If you are loading data into a matrix and also skipping columns, the explanation
above about skipping applies.
In this example, the /B flag solely specifies the format of each column in the file. The file in question starts
with a text column, followed by a date column, followed by 3 numeric columns.
/B="F=-2; F=6; C=3,F=0"

In most cases, it is not necessary to use the F= flag because LoadWave can automatically deduce the formats. The
flag is useful for those cases where it deduces the column formats incorrectly. It is also useful to force LoadWave
to interpret a column as octal or hexadecimal because LoadWave can not automatically deduce these formats.
The numeric codes (0…10) used by the F= flag are the same as the codes used by the ModifyTable operation.
If you create a table using the /E flag, the F= flag controls the numeric format of table columns.
The code -1 is not a real column format code. If you use F=-1 for a particular column, LoadWave will deduce
the format for that column from the column text.
In this example, the /B flag is used solely to specify the width of each column in a fixed field file. This file
contains a 20 character column followed by ten 16 character columns followed by three 24 character columns.
/B="C=1,W=20; C=10,W=16; C=3,W=24"

The field widths specified via W= override the default field width specified by the /F flag. If all of the
columns in the file have the same field width then you can use just the /F flag.
You can load a subset of the columns in the file using the /L flag. Even if you do this, the column info
specifications that you provide via the /B flag start from the first column in the file, not from the first column
to be loaded.

LoadWave Text Encoding Issues
This section discusses text encoding issues of interest to advanced users. It assumes that you are familiar
with the general topic of text encodings as explained under Text Encodings on page III-409.
Since Igor stores all text internally as UTF-8, it must convert text read from a file from the source text
encoding to UTF-8. In order to do this it needs to know the source text encoding.
When loading an Igor binary wave file LoadWave ignores the /ENCG=textEncoding flag. The loaded wave's
text encoding is determined as described under LoadWave Text Encodings for Igor Binary Wave Files on
page III-424. The rest of this section applied to loading data from plain text files, not from Igor binary wave
files.
When loading a text data file you can use the /ENCG=textEncoding flag to tell Igor what that text encoding
is. See Text Encoding Names and Codes on page III-434 for a list of accepted values for textEncoding.
LoadWave uses the text encoding specified by /ENCG and the rules described under Determining the Text
Encoding for a Plain Text File on page III-417 to determine the source text encoding for conversion of the
text file's data to UTF-8. If you omit /ENCG or specify /ENCG=0, the specified text encoding is unknown
and does not factor into the determination of the source text encoding. If following the rules does not
identify a text encoding that works for converting the file's text to UTF-8, Igor displays the Choose Text
Encoding dialog.
If the file contains nothing but ASCII characters, as is often the case, then any byte-oriented text encoding
will work and there is no need to use the /ENCG flag.
When you are loading a huge file (e.g., hundreds of megabytes), finding a valid source text encoding may
add a noticeable amount to the time it takes to load the file. If you know that the file is either all ASCII or is
valid UTF-8, you can tell LoadWave to skip text encoding conversion altogether using an optional
parameter, like this:

Loess

V-454

/ENCG={1,4}

"1" tells LoadWave that the text is valid as UTF-8, meaning that it is all ASCII or, if it contains non-ASCII
characters, they are properly encoded as UTF-8.
"4" tells LoadWave to assume that the text is valid as UTF-8 and skip all validation and conversion.
In testing with a 200 MB delimited text file containing 1 million rows and 20 columns, we found that using
/ENCG={1,4} saved about 10% of the time.
NOTE: If you use this flag but the file is not valid UTF-8 and you are loading data into text wave, the text
waves will wind up with invalid data which will result in errors when you use the waves later.
As noted above, if following the rules does not identify a text encoding that works for converting the file's
text to UTF-8, Igor displays the Choose Text encoding dialog. If you are loading many files using an
unattended, automated procedure, displaying this dialog will cause your procedure to grind to a halt. You
can prevent this by using another optional flag, like this:
/ENCG={1,8}

If you use this flag and LoadWave can not determine the source text encoding for a file, it will return an
error. If you want your procedure to continue with other files you must check for and handle the error using
GetRTError on page V-270.

Output Variables
LoadWave sets the following variables:

S_path uses Macintosh path syntax (e.g., “hd:FolderA:FolderB:”), even on Windows. It includes a
trailing colon. If LoadWave is loading from the Clipboard, S_path is set to "".
When LoadWave presents an Open File dialog and the user cancels, V_flag is set to 0 and S_fileName is set to "".

See Also
The ImageLoad operation.
See Importing Data on page II-117 for further information on loading waves, including loading
multidimensional data from HDF, PICT, TIFF and other graphics files. Check the “More Extensions:File
Loaders” folder other file-loader extensions.
Setting Bit Parameters on page IV-12 for further details about bit settings.

Loess
Loess [flags] srcWave = srcWaveName [, factors = factorWaveName1

[, factorWaveName2 …]]
The Loess operation smooths srcWaveName using locally-weighted regression smoothing. This algorithm is
sometimes classified as a “nonparametric regression” procedure. The regression can be constant, linear, or
quadratic. A robust option that ignores outliers is available. See Basic Algorithm, Robust Algorithm, and
References for additional details and terminology.
This implementation works with waveforms, XY pairs of waves, false-color images, matrix surfaces, and
multivariate data (one dependent data wave with multiple independent variable data waves).
Unlike the FilterFIR operation, Loess discards any NaN input values and will not generate a result that is
wholly NaN.

Parameters
srcWaveName is the input data to be smoothed. It may be a one-dimensional or a two-dimensional wave,
and it may contain NaNs.
When no /DEST flag is specified, Loess will overwrite srcWaveName with the smoothed result.

V_flag Number of waves loaded.

S_fileName Name of the file being loaded.

S_path File system path to the folder containing the file.

S_waveNames Semicolon-separated list of the names of loaded waves.

Loess

V-455

If srcWaveName is one-dimensional and no factors are provided, X values are derived from the X scaling of
srcWaveName.
If srcWaveName is two-dimensional, the factors keyword is not permitted and the X and Y values are
derived from the X and Y scaling of srcWaveName.
Higher dimensions of srcWaveName are not supported.
The optional factors parameter(s) provide the independent variable value(s) that correspond to the
observed value in srcWaveName.

Use one factors wave when srcWaveName is the one-dimensional Y wave of an XY data pair:
srcWaveName[i] = someFunction(factorWaveName1[i])

Use multiple factors waves when srcWaveName contains the values of a multivariate function.
“Multivariate” means that srcWaveName contains the observed results of a process that combines multiple
independent input variables:
srcWaveName[i] = someFunction(factorWaveName1[i], factorWaveName2[i],…)

A maximum of 10 factors waves is supported.
All factors wave(s) must be numeric, noncomplex, one-dimensional and have the same number points as
srcWaveName.
Any NaN values in srcWaveName[i], factorWaveName1[i], factorWaveName2[i], … cause all corresponding
values to be ignored. Factors waves may contain NaN values only when /DFCT is specified.
Loess does not support NaNs in any of destFactorWaveName1, destFactorWaveName2,… and the results are
undefined.

Flags

Note: Cleveland et al. (1992) use the term “multiple factors” instead of “multivariate”, hence the
keyword name “factors” is used to denote these waves.

/CONF={confInt, ciPlusWaveName [,ciMinusWaveName]}

confInt specifies the confidence interval (a probability value from 0 to 1).
ciPlusWaveName and the optional ciMinusWaveName are the names of new or
overwritten output waves to hold the fitted value ± the confidence interval.
Note: /CONF uses large memory allocations, approximately N*N*8 bytes, where
N is the number of points in srcWaveName (see Memory Details).

/DEST=destWaveName Specifies the name of the wave to hold the smoothed data. It creates
destWaveName if it does not already exist or overwrites it if it does. The x (and
possibly y) scaling of destWave determines the independent (factor) coordinates
unless /DFCT={destFactorWaveName1 [,destFactorWaveName2...]} is also specified.

/DFCT Specifies that the /DEST wave's x (and possibly y) scaling determines the
independent (factor) coordinates at which to compute the smoothed data.

/DFCT={destFactorWaveName1 [,destFactorWaveName2…]}

Specifies the names of one-dimensional waves providing the independent
coordinates at which to compute the smoothed data.
If /DFCT={...} is used, the same number of waves must be specified for /DFCT and
for factors = {factorWaveName1 [, factorWaveName2…]}, though their lengths may
(and usually will) be different. The length of destFactorWaveName waves must be
the same as that of the destWaveName wave.
All destination factor waves must be numeric, noncomplex, and one-
dimensional. The number of destination factor waves must match the number of
source factor waves (if specified), or match the dimensionality of srcWaveName
(one destination factor wave if srcWaveName is one-dimensional, two destination
factors waves if srcWaveName is two-dimensional.)
The values in the destination factor waves may not be NaN.

Loess

V-456

/E=extrapolate Set extrapolate to nonzero to use a slower fitting method that computes values
beyond the domain defined by the source factors. This is the “surface” parameter
named “direct” in Cleveland et al. (1992). The default is extrapolate = 0, which uses
the “interpolate” surface parameter, instead.

/N=neighbors Specifies the number of values in the smoothing window.
If neighbors is even, the next larger odd number is used. When neighbors is less
than two, no smoothing is done.
The default is 0.5*numpnts(srcWaveName) rounded up to the next odd
integer or 3, whichever is larger.
Use either /N or /SMTH, but not both.

/NORM [=norm] Set norm to 0 when specifying multiple factors and they all have the same scale
and meaning, for example multiple factors all in units of meters.
The default is norm = 1, which normalizes each factor independently when
computing the weighting function. This is appropriate when the factors are not
dimensionally related, for example one factor measures wavelength and another
measures temperature.

/ORD=order

/PASS=passes The number of iterations of local weighting and regression fitting performed. The
minimum is 1 and the default is 4. In Cleveland (1977), passes corresponds to r.

/R [=robust] Set robust to nonzero to use a robust fitting method that uses a bisquare weight
function instead of the normal tricube weight function. This corresponds to the
“symmetric” family in Cleveland et al. (1992). The robust method is less affected
by outliers. The default is robust = 0, which is the “gaussian” family in Cleveland
et al. (1992).

/SMTH=sf Another way to express the number of values in the smoothing window, 0 ≤ sf ≤
1. The default is 0.5.
To compute neighbors from sf, use:
neighbors = 1+floor(sf*numpnts(srcWaveName)).
Use either /N or /SMTH, but not both.

/TIME=secs secs is the number of seconds allowed to complete the calculation before either
warning (default) or stopping.
If the stop bit (4) of /V=verbose is set, the caculcation stops after the alloted time. If
the diagnostic bit of /V=verbose is also set, warnings about the calculation
exceeding the allotted time are printed to the history area.
As an example, use /TIME=30/V=6 to abort calculations longer than 30 seconds
and print the warning to the history area.

Specifies the regression (fitting) order, the d parameter in Cleveland (1977):
order=0: Fits a constant to the locally-weighted neighbors around each

point.
order=1: Fits a line to the locally-weighted neighbors around each point

(Lowess smoothing).
order=2: Default; fits a quadratic (Loess smoothing).

Loess

V-457

Basic Algorithm
The basic locally-weighted regression algorithm fits a constant, line, or quadratic to each point of the source
data, using data that falls within the given span of neighbors over the factor data. Data outside of the span
is ignored (given a weight of zero), and data inside the span is given a weight that depends on the distance
of the data from the point being evaluated: data closer to the point being evaluated have higher weights and
have a greater affect on the fit.
The basic algorithm uses the “tricube” weighting function to emphasize near values and deemphasize far
values. For the one-factor case (simple XY data), the weighting function can be expressed as:

where is the maximum Euclidean distance of the q factor values within the given span from the
factor point (x) whose observation (y) value is being evaluated.
The weights are applied to the factor values in the span to compute the constant, linear, or quadratic
regression at x.
When multiple factors are used, the Euclidean distance is computed using one dimension per factor. The
default is to normalize each factor’s range by the standard deviation of that factor’s values before
computing the Euclidean distances. When factors are dimensionally equal, use the /NORM=0 option to skip
this normalization. (See /NORM, about “dimensionally equal”.)

Robust Algorithm
The robust algorithm adds to the basic algorithm a method to identify and remove outliers by rejecting
values that exceed a threshold related to the “median absolute deviation” of the basic regression’s residuals.
The remaining values are used to compute robust “bisquare” weighting values:

where ei is the difference between the observed value and the regression’s fitted value, and is
evaluated for all the observed values.

/V [=verbose]

/Z[=z] Set z to nonzero to prevent an error from stopping execution. Use the V_flag
variable to see if the smoothing succeeded.

Controls how much information to print to the history area. verbose is a bitwise
parameter with each bit controlling one aspect:

Set verbose to 6 to both limit the time and print diagnostic and error messages.
/V alone is the same as /V=3, which prints all information.
S_info contains all the informational messages regardless of the value of

verbose=0: Prints nothing to the history area (default).
verbose=1: Prints the number of observations, equivalent number of

parameters, and residual standard error.
verbose=2: Prints diagnostic information and error messages.
verbose=4 Use with /TIME. If this bit is set, calculations that exceed secs

seconds are aborted.

wi = 1− x − xi
maxq x − xi()

3⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

3

,

maxq x xi–()

ri =
1− ei

6 ⋅median ei()
2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

for 0 ≤ ei < 6 ⋅median ei()

0 for ei > 6 ⋅median ei()

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

median ei()

Loess

V-458

These robust weighting values are multiplied with the original weighting values and a new regression
(with new residuals) is computed. This process repeats 4 times by default. Use the /PASS flag to specify a
different number of repetitions.

Details
Loess sets the variable V_flag to 0 if the smoothing was successful, or to an error code if not. Unlike other
operations, the /Z flag allows execution to continue even if input parameters are in error.
Information printed to the history area when /V is set is always stored in the S_info string, even if /V=0 (the
default). S_Info also contains the error message text if V_flag is an error code.
The error messages are described in Cleveland et al. (1992). They are often more dire than they seem.
The error message “Span too small. Fewer data values than degrees of freedom” usually means that the
/SMTH or /N values are too small. The error code returned in V_Flag for this case is 1106.
The “Extrapolation not allowed with blending” (V_Flag = 1115) error usually means that the destination factors
are trying to compute observations outside of the source factors domain without specifying /E=1. This happens
if the /DEST destWaveName already exists and has X scaling that extends beyond the X scaling of srcWaveName.
The solution is either kill the /DEST wave, limit the X scaling to the domain of the source wave, or use /E=1.

Memory Details
Loess requires a lot of memory, especially with the /CONF flag. Even without /CONF, the memory
allocations exceed this approximation:
Number of bytes allocated = number of points in srcWaveName * 216
With /CONF, Loess can allocate large amounts of memory, approximately N*N*8 bytes, where N is the
number of points in srcWaveName. The 2GB memory limit of 32-bit addressing limits srcWaveName to
approximately 10,000 points when using /CONF.
More precisely, the memory allocation may be approximated by this function:
Function ComputeLoessMemory(srcPoints, numFactorsWaves, doConfidence)

Variable srcPoints // number of points in srcWave, aka N
Variable numFactorsWaves// 1 or number of factors (independent variables)
Variable doConfidence // true if /CONF is specified

Variable doubles= 9 * srcPoints // 9 allocated double arrays
doubles += 5 * numFactorsWaves * srcPoints // 5 more arrays
doubles += (1+numFactorsWaves) * srcPoints // another array
doubles += (1+numFactorsWaves) * srcPoints // another array
doubles += (4+5) * srcPoints // two more arrays
if(doConfidence)

doubles += srcPoints*srcPoints // one HUGE array
endif
Variable bytes= doubles * 8
return bytes

End

Macro DemoLoessMemory()
Make/O wSrcPoints={10,100,1000,2000,3000,5000,7500,10000,12500,15000,20000}
Duplicate/O wSrcPoints, loessMemory, loessMemory3, loessMemoryConf
SetScale d, 0,0, "Points", wSrcPoints
SetScale d, 0,0, "Bytes", loessMemory, loessMemory3, loessMemoryConf
loessMemory= ComputeLoessMemory(wSrcPoints[p],1, 0)// 1 factor (X) no /CONF
loessMemory3= ComputeLoessMemory(wSrcPoints[p],3, 0)// 3 factors (X,Y,Z) no /CONF
loessMemoryConf= ComputeLoessMemory(wSrcPoints[p],1, 1)// 1 factor (X)with /CONF
Display loessMemory vs wSrcPoints; Append loessMemory3 vs wSrcPoints
ModifyGraph highTrip(bottom)=1e+08, rgb(loessMemory3)=(0,0,65535)
ModifyGraph lstyle(loessMemory3)=2
Legend
Display loessMemoryConf vs wSrcPoints
AutoPositionWindow
ModifyGraph highTrip(bottom)=1e+08

End

Examples
1-D, factors are X scaling, output in new wave:
Make/O/N=200 wv=2*sin(x/8)+gnoise(1)
KillWaves/Z smoothed // ensure Loess creates a new wave
Loess/DEST=smoothed srcWave=wv // 21-point loess.

Loess

V-459

Display wv; ModifyGraph mode=3,marker=19
AppendtoGraph smoothed; ModifyGraph rgb(smoothed)=(0,0,65535)

1-D, output in existing wave with more points than original data:
Make/O/N=100 short=2*cos(x/4)+gnoise(1)
Make/O/N=300 out; SetScale/I x, 0, 99, "" out // same X range
Loess/DEST=out/DFCT/N=30 srcWave=short
Display short; ModifyGraph mode=3,marker=19
AppendtoGraph out
ModifyGraph rgb(out)=(0,0,65535),mode(out)=2,lsize(out)=2

1-D Y vs X wave data interpolated to waveform (Y vs X scaling) with 99% confidence interval outputs:
// NOx = f(EquivRatio)
// Y wave
// Note: The next 2 Make commands are wrapped to fit on the page.
Make/O/D NOx = {4.818, 2.849, 3.275, 4.691, 4.255, 5.064, 2.118, 4.602, 2.286, 0.97,
3.965, 5.344, 3.834, 1.99, 5.199, 5.283, 3.752, 0.537, 1.64, 5.055, 4.937, 1.561};

// X wave (Note that the X wave is not sorted)
Make/O/D EquivRatio = {0.831, 1.045, 1.021, 0.97, 0.825, 0.891, 0.71, 0.801, 1.074,
1.148, 1, 0.928, 0.767, 0.701, 0.807, 0.902, 0.997, 1.224, 1.089, 0.973, 0.98, 0.665};

// Interpolate to dense waveform over X range
Make/O/D/N=100 fittedNOx
WaveStats/Q EquivRatio
SetScale/I x, V_Min, V_max, "", fittedNOx
Loess/CONF={0.99,cp,cm}/DEST=fittedNOx/DFCT/SMTH=(2/3) srcWave=NOx, factors={EquivRatio}
Display NOx vs EquivRatio; ModifyGraph mode=3,marker=19
AppendtoGraph fittedNOx, cp,cm // fit and confidence intervals
ModifyGraph rgb(fittedNOx)=(0,0,65535)
ModifyGraph mode(fittedNOx)=2,lsize(fittedNOx)=2

Interpolate X, Y, Z waves as a 3D surface.
// Note: The next 3 Make commands are wrapped to fit on the page.
Make/O/D vels= {1769, 1711, 1538, 1456, 1608, 1574, 1565, 1692, 1538, 1505, 1764, 1723,
1540, 1441, 1428, 1584, 1552, 1690, 1673, 1548, 1485, 1526, 1536, 1591, 1671, 1647, 1608,
1562, 1740, 1753, 1590, 1466, 1409, 1429}
Make/O/D ews={8.46279, 3.46303, -1.51508, -6.51483, 16.597, -5.95541, -28.5078, 9.68438,
-6.00159, -21.7557, 14.263, 6.02058, -2.25772, -10.536, -18.7785, 10.7509, -6.07024,
1.77531, 0.767701, -0.235545, -1.24315, 21.7298, 10.3964, 0.133859, -10.1733, -20.4359,
13.7658, -8.88429, 10.8869, 4.91318, -0.0649319, -5.06469, -10.0428, -11.0601}
Make/O/D nss={-38.1732, -15.6207, 6.83407, 29.3865, 3.67947, -1.32028, -6.32004, -
10.3852, 6.43591, 23.3302, -37.1565, -15.6842, 5.88156, 27.4473, 48.9196, 10.0254, -
5.66059, -40.6613, -17.5832, 5.39486, 28.4729, 43.5833, 20.852, 0.26848, -20.4045, -
40.988, 3.0518, -1.9696, -49.1077, -22.1619, 0.292889, 22.8453, 45.3001, 49.8887}

// Evaluate the smoothed function as interpolated image
Make/O/N=(50,50) velsImage
WaveStats/Q ews
SetScale/I x, V_Min, V_Max, "" velsImage // destination factors
WaveStats/Q nss
SetScale/I y, V_Min, V_Max, "" velsImage // are X and Y scaling

Loess/DEST=velsImage/DFCT/NORM=0/SMTH=0.75/E/Z srcWave=vels, factors={ews,nss}

// Display source data as a contour with x, y markers.
Display; AppendXYZContour vels vs {ews,nss}
ModifyContour vels xymarkers=1, labels=0
ColorScale

// Display interpolated surface as an image
AppendImage velsImage
ModifyImage velsImage ctab= {*,*,Grays256,0}
ModifyGraph mirror=2

References
Cleveland, W.S., Robust locally weighted regression and smoothing scatterplots, J. Am. Stat. Assoc., 74, 829-

836, 1979.
Cleveland, W.S., E. Grosse, and M.-J. Shyu, A Package of C and Fortran Routines for Fitting Local

Regression Models, Technical Report, Bell Labs, 54pp, 1992. <http://cm.bell-
labs.com/cm/ms/departments/sia/wsc/webpapers.html>.

NIST/SEMATECH, LOESS (aka LOWESS), in NIST/SEMATECH e-Handbook of Statistical Methods,
<http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd144.htm>, 2005.

http://cm.bell-labs.com/cm/ms/departments/sia/wsc/webpapers.html
http://cm.bell-labs.com/cm/ms/departments/sia/wsc/webpapers.html
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd144.htm

log

V-460

See Also
Smooth, Interpolate2, interp, MatrixFilter, MatrixConvolve, and ImageInterpolate.

log
log(num)
The log function returns the log base 10 of num.
It returns -INF if num is 0, and returns NaN if num is less than 0.
To compute a logarithm base n use the formula:

See Also
The ln function.

logNormalNoise
logNormalNoise(m,s)
The logNormalNoise function returns a pseudo-random value from the lognormal distribution function
whose probability distribution function is

with a mean

and variance .

The random number generator initializes using the system clock when Igor Pro starts. This almost
guarantees that you will never repeat a sequence. For repeatable “random” numbers, use SetRandomSeed.
The algorithm uses the Mersenne Twister random number generator.

See Also
The SetRandomSeed operation.
Noise Functions on page III-344.
Chapter III-12, Statistics for a function and operation overview.

LombPeriodogram
LombPeriodogram [flags] srcTimeWave, srcAmpWave [, srcFreqWave]
The LombPeriodogram is used in spectral analysis of signal amplitudes specified by srcAmpWave which are
sampled at possibly random sampling times given by srcTimeWave. The only assumption about the
sampling times is that they are ordered from small to large time values. The periodogram is calculated for
either a set of frequencies specified by srcFreqWave (slow method) or by the flags /FR and /NF (fast method).
Unless you specify otherwise, the results of the operation are stored by default in W_LombPeriodogram
and W_LombProb in the current data folder.

Flags

/DESP=datafolderAndName

logn (x) = log(x)

log(n)
.

f (x,m, s) = 1

xs 2π
exp −

ln(x) − m[]2

2s2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,

exp m +
1

2
s2�

�
�

�

�
� ,

exp 2m2 + s2() exp s2() �1�
�

�
�
.

LombPeriodogram

V-461

Details
The LombPeriodogram (sometimes referred to as "Lomb-Scargle" periodogram) is useful in detection of
periodicities in data. The main advantage of this approach over Fourier analysis is that the data are not
required to be sampled at equal intervals. For an input consisting of N points this benefit comes at a cost of
an O(N^2) computations which becomes prohibitive for large data sets. The operation provides the option
of computing the periodogram at equally spaced (output) frequencies using /FR and /NF or at completely
arbitrary set of frequencies specified by srcFreqWave. It turns out that when you use equally spaced output
frequencies the calculation is more efficient because certain parts of the calculation can be factored.
The Lomb periodogram is given by

Here yi is the ith point in srcAmpWave, ti is the corresponding point in srcTimeWave,

Saves the computed P-values in a wave specified by datafolderAndName. The
destination wave will be created or overwritten if it already exists. dataFolderAndName
can include a full or partial path with the wave name.
Creates by default a wave reference for the destination wave in a user function. See
Automatic Creation of WAVE References on page IV-66 for details.
If this flag is not specified, the operation saves the P-values in the wave W_LombProb
in the current data folder.

/DEST=datafolderAndName

Saves the computed periodogram in a wave specified by datafolderAndName. The
destination wave will be created or overwritten if it already exists. datafolderAndName
can include a full or partial path with the wave name
(/DEST=root:bar:destWave).
Creates by default a wave reference for the destination wave in a user function. See
Automatic Creation of WAVE References on page IV-66 for details.
If this wave is not specified the operation saves the resulting periodogram in the wave
W_LombPeriodogram in the current data folder.

/FR=fRes Use /FR to specify the frequency resolution of the output. This flag is used together
with /NF to specify the range of frequencies for which the periodogram is computed.
Note that fRes is also the lowest frequency in the output.

/NF=numFreq Use /NF to specify the number of frequencies at which the periodogram is computed.
The range of frequencies of the periodogram is then [fRes, (numFreq-1)*fRes].

/Q Quiet mode; suppresses printing results in the history area.

/Z Do not report any errors.

LP(�) = 1

2� 2

yi � y()cos � ti � �()�
�

�
�

i=0

N�1

	
�

�

�

�
�

2

cos2
� ti � �()�
�

�
�

i=0

N�1

	

+
yi � y()sin � ti � �()�

�
�
�

i=0

N�1

	
�

�

�

�
�

2

sin2
� ti � �()�
�

�
�

i=0

N�1

	

�

�
�

�

�

�

�

�

�
�

�

�

�

y =
1

N
yi

i=0

N�1

� ,

lorentzianNoise

V-462

and

In the absence of a Nyquist limit, the number of independent frequencies that you can compute can be
estimated using:

This expression was given by Horne and Baliunas derived from least square fitting. Nind is used to
compute the P-values as:

Note that you can invert the last expression to determine the value of LP(w) for any significance level.

See Also
The FFT and DSPPeriodogram operations.

References
1. J.H. Horne and S.L. Baliunas, Astrophysical Journal, 302, 757-763, 1986.
2. N.R. Lomb, Astrophysics and Space Science, 39, 447-462, 1976.
3. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes, 3rd ed., Section 13.8.

lorentzianNoise
lorentzianNoise(a,b)
The function returns a pseudo-random value from a Lorentzian distribution

Here a is the center and b is the full line width at half maximum (FWHM).

See Also
SetRandomSeed, enoise, gnoise.
Noise Functions on page III-344.
Chapter III-12, Statistics for a function and operation overview.

LowerStr
LowerStr(str)
The LowerStr function returns a string expression identical to str except that all upper-case ASCII characters
are converted to lower-case.

See Also
The UpperStr function.

tan(2��) =
sin(2�ti)

i=0

N�1

�

cos(2�ti)
i=0

N�1

�

.

p = 1� 1� exp LP(w)[]{ }Nind .

Nind = �6.362 +1.193N + 0.00098N 2 .

p = 1� 1� exp LP(w)[]{ }Nind .

f (x) =
1

�

(b / 2)

(x � a)2 + (b / 2)2 .

Macro

V-463

Macro
Macro macroName([parameters]) [:macro type]
The Macro keyword introduces a macro. The macro will appear in the Macros menu unless the procedure
file has an explicit Macros menu definition. See Chapter IV-4, Macros and Macro Syntax on page IV-110 for
further information.

MacroList
MacroList(matchStr, separatorStr, optionsStr)
The MacroList function returns a string containing a list of the names of user-defined procedures that start
with the Proc, Macro, or Window keywords that also satisfy certain criteria. Note that if the procedures
need to be compiled, then MacroList may not list all of the procedures.

Parameters
Only macros having names that match matchStr string are listed. See WaveList for examples.
The first character of separatorStr is appended to each macro name as the output string is generated. separatorStr
is usually “;” for list processing (See Processing Lists of Waves on page IV-187 for details on list processing).
optionsStr is used to further qualify the macros. It is a string containing keyword-value pairs separated by
commas. Available options are:

Examples
To list all Macros with three parameters:
Print MacroList("*",";","KIND:2,NPARAMS:3")

To list all Macro, Proc, and Window procedures in the main procedure window whose names start with b:
Print MacroList("b*",";","WIN:Procedure")

See Also
The DisplayProcedure operation and the FunctionList, OperationList, StringFromList, and WinList
functions.
For details on procedure subtypes, see Procedure Subtypes on page IV-193, as well as Button, CheckBox,
SetVariable, and PopupMenu.

KIND:nk

NPARAMS:np Restricts the list to macros having exactly np parameters. Omitting this option lists
macros having any number of parameters.

SUBTYPE:typeStr Lists macros that have the type typeStr. That is, you could use ButtonControl as typeStr
to list only macros that are action procedures for buttons.

WIN:windowNameStr

Lists macros that are defined in the named procedure window. “Procedure” is the
name of the built-in procedure window.
Note: Because optionsStr keyword-value pairs are comma separated and procedure
window names can have commas in them, the WIN: keyword must be the last one
specified.

Determines the kind of procedure returned.

nk can be the sum of these values to match multiple procedure kinds. For example,
use 3 to list both Proc and Macro procedures.

nk=1: List Proc procedures.
nk=2: List Macro procedures.
nk=4: List Window procedures.

magsqr

V-464

magsqr
magsqr(z)
The magsqr function returns the sum of the squares of the real and imaginary parts of the complex number
z, that is, the magnitude squared.

Examples
Assume waveCmplx is complex and waveReal is real.
waveReal = sqrt(magsqr(waveCmplx))

sets each point of waveReal to the magnitude of the complex points in waveCmplx.
You may get unexpected results if the number of points in waveCmplx differs from the number of points
in waveReal because of interpolation. See Mismatched Waves on page II-75 for details.

See Also
The cabs function.
WaveMetrics provides Igor Technical Note 006, “DSP Support Macros” which uses the magsqr function to
compute the magnitude of FFT data, and Power Spectral Density with options such as windowing and
segmenting. See the Technical Notes folder. Some of the techniques discussed there are available as Igor
procedure files in the “WaveMetrics Procedures:Analysis:” folder.

Make
Make [flags] waveName [, waveName]…
Make [flags] waveName [= {n0,n1,…}]…
Make [flags] waveName [= {{n0,n1,…},{n0,n1,…},…}]…
The Make operation creates the named waves. Use braces to assign data values when creating the wave.

Flags

/B Makes 8-bit signed integer waves or unsigned waves if /U is present.

/C Makes complex waves.

/D Makes double precision waves.

/DF Wave holds data folder references.
See Data Folder References on page IV-72 for more discussion.

/FREE Creates a free wave. Allowed only in functions and only if a simple name or wave
reference structure field is specified.
See Free Waves on page IV-84 for more discussion.

/I Makes 32-bit signed integer waves or unsigned waves if /U is present.

/L Makes 64-bit signed integer waves or unsigned waves if /U is present. Requires Igor
Pro 7.00 or later.

/N=n n is the number of points each wave will have. If n is an expression, it must be
enclosed in parentheses: Make/N=(myVar+1) aNewWave

/N=(n1, n2, n3, n4)

n1, n2, n3, n4 specify the number of rows, columns, layers and chunks each wave will
have. Trailing zeros can be omitted (e.g., /N=(n1, n2, 0, 0) can be abbreviated as
/N=(n1, n2)).

/O Overwrites existing waves in case of a name conflict. After an overwrite, you cannot
rely on the contents of the waves and you will need to reinitialize them or to assign
appropriate values.

/R Makes real value waves (default).

/T Makes text waves.

MakeIndex

V-465

Wave Data Types
As a replacement for the above number type flags you can use /Y=numType to set the number type as an
integer code. See the WaveType function for code values. The /Y flag overrides other type flags but you may
still need to use the /C, /T, /DF or /WAVE flags to define the type of an automatic WAVE reference variable
when used in user functions.

Details
Unless overridden by the flags, the created waves have the default length, type, precision, units and scaling.
The factory defaults are:

See Also
The SetScale, Duplicate, and Redimension operations.

MakeIndex
MakeIndex [/A/C/R] sortKeyWaves, indexWaveName
The MakeIndex operation sets the data values of indexWaveName such that they give the ordering of
sortKeyWaves.
For simple sorting problems, MakeIndex is not needed. Just use the Sort operation.

Parameters
sortKeyWaves is either the name of a single wave, to use a single sort key, or the name of multiple waves in
braces, to use multiple sort keys.
indexWaveName must specify a numeric wave.

/T=size Makes text waves with pre-allocated storage.
size is the number of bytes preallocated by Igor for each element in each text wave. The
waves are not initialized - it is up to you to initialize them.
Preallocation can dramatically speed up text wave assignment when the wave has a
very large number of points but only when all strings assigned to the wave are exactly
the same size as the preallocation size.

/U Makes unsigned Integer waves.

/W Makes 16-bit signed integer waves or unsigned waves if /U is present.

/WAVE Wave holds wave references.
See Wave References on page IV-65 for more discussion.

/Y=type Specifies wave data type. See details below.

Property Default

Number of points 128

Precision Single precision floating point

Type Real

dimensions 1

x, y, z, and t scaling offset=0, delta=1 (“point scaling”)

x, y, z, and t units "" (blank)

Data Full Scale 0, 0

Data units "" (blank)

Note: The preferred precision set by the Miscellaneous Settings dialog only presets the Make
Waves dialog checkbox and determines the precision of imported waves. It does not affect
the Make operation.

MandelbrotPoint

V-466

All waves must be of the same length and must not be complex.

Flags

Details
MakeIndex is used in preparation for a subsequent IndexSort operation. If /R is used the ordering is from
largest to smallest. Otherwise it is from smallest to largest.
When the /LOC flag is used, the bytes stored in the text wave at each point are converted into a Unicode
string using the text encoding of the text wave data. These Unicode strings are then compared using OS
specific text comparison routines based on the locale set in the operating system. This means that the order
of sorted items may differ when the same sort is done with the same data under different operating systems
or different system locales.
When /LOC is omitted the sort is done on the raw text without regard to the waves’ text encoding.

See Also
MakeIndex and IndexSort Operations on page III-127.

MandelbrotPoint
MandelbrotPoint(x, y, maxIterations, algorithm)
The MandelbrotPoint function returns a value between 0 and maxIterations based on the Mandelbrot set
complex quadratic recurrence relation z[n] = z[n-1]^2 + c where x is the real component of c, y is the
imaginary component of c and z[0] = 0.
The returned value is the number of iterations the equation was evaluated before |z[n]| > 2 (the escape
radius of the Mandelbrot set), or maxIterations, whichever is less.

Parameters

See Also
The “MultiThread Mandelbrot Demo” experiment.

References
http://en.wikipedia.org/wiki/Mandelbrot_set
http://linas.org/art-gallery/escape/escape.html

/A Alphanumeric. When sortKeyWaves includes text waves, the normal sorting places “wave1”
and “wave10” before “wave9”. Use /A to sort the number portion numerically, so that
“wave9” is sorted before “wave10”.

/C Case-sensitive. When sortKeyWaves includes text waves, the ordering is case-insensitive unless
you use the /C flag which makes it case-sensitive.

/LOC Performs a locale-aware sort.
When sortKeyWaves includes text waves, the text encoding of the text waves’ data is taken into
account and sorting is done according to the sorting conventions of the current system locale.
This flag is ignored if the text waves’ data encoding is unknown, binary, Symbol, or Dingbats.
This flag cannot be used with the /A flag. See Details for more information.
The /LOC flag was added in Igor Pro 7.00.

/R Reverse the index so that ordering is from largest to smallest.

algorithm=0 The "Escape Time" algorithm returns the integer n which is the number of iterations
until |z[n]| > 2.

algorithm=1 The "Renormalized Iteration Count Algorithm" algorithm returns a floating point
value which is a refinement of the number of iterations n by adding the quantity:
5 - ln(ln(|z[n+4]|)) / ln(2)

(which requires four more iterations of the recurrence relation). The returned value is
clipped to maxIterations.

http://en.wikipedia.org/wiki/Mandelbrot_set
http://linas.org/art-gallery/escape/escape.html

MarcumQ

V-467

MarcumQ
MarcumQ(m, a, b)
The MarcumQ function returns the generalized Q-function defined by the integral

where Ik is the modified Bessel function of the first kind and order k.
Its applications have been primarily in the fields of communication and detection theory. However, an
interesting interpretation of its result with m=1 and appropriate parameter scaling is the fractional power
of a two-dimensional circular Gaussian function within a displaced circular aperture.
Depending on the input arguments, the MarcumQ function may be computationally intensive but you can
abort the calculation at any time.

References
Cantrell, P.E., and A.K. Ojha, Comparison of Generalized Q-Function Algorithms, IEEE Transactions on

Information Theory, IT-33, 591-596, 1987.
Simon, M. K., A New Twist on the Marcum Q-Function and Its Application, IEEE Communications Letters,

3, 39-41, 1998.

MarkPerfTestTime
MarkPerfTestTime idval
Use the MarkPerfTestTime operation for performance testing of user-defined functions in conjunction with
SetIgorOption DebugTimer. When used between SetIgorOption DebugTimer, Start and
SetIgorOption DebugTimer, Stop, MarkPerfTestTime stores the ID value and the time of the call in
a buffer. When SetIgorOption DebugTimer, Stop is called the contents of the buffer are dumped to
a pair of waves: W_DebugTimerIDs will contain the ID values and W_DebugTimerVals will contain the
corresponding times of the calls relative to the very first call. The timings use the same high precision
mechanism as the StartMSTimer and StopMSTimer calls.
By default, SetIgorOption DebugTimer, Start allocates a buffer for up to 10000 entries. You can
allocate a different sized buffer using SetIgorOption DebugTimer, Start=bufsize.

See Also
SetIgorOption, StartMSTimer, and StopMSTimer.
Additional documentation can be found in an example experiment, PerformanceTesting.pxp, and a
WaveMetrics procedure file, PerformanceTestReport.ipf.

MatrixCondition
MatrixCondition(wave2D, mode)
MatrixCondition returns the estimated reciprocal of the condition number of a 2D square matrix wave2D.
The condition number is the product of the norm of the matrix with the norm of the inverse of the matrix
(see details below). The type of norm is determined by the value of the mode parameter. 1-norm is used if
mode is 1 and infinity-norm is used otherwise.
The MatrixCondition function was added in Igor Pro 7.00.

Details
The function uses LAPACK routines to estimate the reciprocal condition number by first obaining the norm
of the input matrix and then using LU decomposition to obtain the norm of the inverse of the matrix. The
estimate returned is

Qm a b(,) u ua

 m 1– a2 u2+()

2
----------------------–

 exp Im 1– au() ud
b

∞

=

reciprocalCon = 1

wave2D * wave2D−1
,

MatrixConvolve

V-468

where the norms are selected by the choice of the mode parameter. The 1-norm of matrix A with elements
aij is defined as

and the infinity-norm is defined by

The function returns a NaN if there is any error in the input parameters.

References
http://en.wikipedia.org/wiki/Matrix_norm

See Also
MatrixSVD provides a condition number for L2 norm using the ratio of singular values.
The MatrixOp operation for more efficient matrix operations.
Matrix Math Operations on page III-131 for more about Igor's matrix routines.

MatrixConvolve
MatrixConvolve [/R=roiWave] coefMatrix, dataMatrix
The MatrixConvolve operation convolves a small coefficient matrix coefMatrix into the destination
dataMatrix.

Flags

Details
On input coefMatrix contains an NxM matrix of coefficients where N and M should be odd. Generally N and
M will be equal. If N and M are greater than 13, it is more efficient to perform the using the Fourier
transform (see FFT).
The convolution is performed in place on the data matrix and is acausal, i.e., the output data is not shifted.
Edges are handled by replication of edge data.
When dataMatrix is an integer type, the results are clipped to limits of the given number type. For example,
unsigned byte is clipped to 0 to 255.
MatrixConvolve works also when both coefMatrix and dataMatrix are 3D waves. In this case the convolution
result is placed in the wave M_Convolution in the current data folder, and the optional /R=roiWave is
required to be an unsigned byte wave that has the same dimensions as dataMatrix.
This operation does not support complex waves.

See Also
MatrixFilter and ImageFilter for filter convolutions.
Matrix Math Operations on page III-131 for more about Igor’s matrix routines.
The Loess operation.

/R=roiWave Modifies only data contained inside the region of interest. The ROI wave should be 8-
bit unsigned with the same dimensions as dataMatrix. The interior of the ROI is
defined by zeros and the exterior is any nonzero value.

A
1
= max

1≤ j ≤ n aij ,
i=1

m

∑

A ∞ = max
1≤ i ≤ m

aij .
j=1

n

∑

http://en.wikipedia.org/wiki/Matrix_norm

MatrixCorr

V-469

MatrixCorr
MatrixCorr [/COV][/DEGC] waveA [, waveB]
The MatrixCorr operation computes the correlation or covariance or degree of correlation matrix for the
input 1D wave(s).
If we denote elements of waveA by {xi} and elements of waveB by {yi} then the correlation matrix for these
waves is the vector product of the form:

where * denotes complex conjugation. If you use the optional waveB then the matrix is the cross correlation
matrix. waveB must have the same length of waveA but it does not have to be the same number type.

Flags
The flags are mutually exclusive; only one matrix can be generated at a time.

Examples
The covariance matrix calculation is equivalent to:
Variable N=1/(DimSize(waveA,0)-1)
Variable ma=mean(waveA,-inf,inf)
Variable mb=mean(waveB,-inf,inf)
waveA-=ma
waveB-=mb
MatrixTranspose/H waveB
MatrixMultiply waveA,waveB
M_product*=N

See Also
Matrix Math Operations on page III-131 for more about Igor’s matrix routines.

References
Hayes, M.H., Statistical Digital Signal Processing And Modeling, 85 pp., John Wiley, 1996.

/COV Calculates the covariance matrix.
The covariance matrix for the same input is formed in a similar way after subtracting from
each vector its mean value and then dividing the resulting matrix elements by (n-1) where
n is the number of elements of waveA.
Results are stored in the M_Corr or M_Covar waves in the current data folder.

/DEGC Calculates the complex degree of correlation. The degree of correlation is defined by:

where M_Covar is the covariance matrix and Var(wave) is the variance of the wave.

The complex degree of correlation should satisfy:

x1

x2

x3

�
xn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

y1 y2 y3 … yn⎡
⎣

⎤
⎦

*

=

x1y1
* x1y2

* x1y3
* … x1yn

*

x2y1
* x2y2

* x2y3
* x2yn

*

x3y1
* x3y2

* x3y3
* x3yn

*

�
xny1

* xny2
* xny3

* � xnyn
*

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

degC = M _Covar

Var(waveA) ⋅Var(waveB)
,

0 ≤ degC ≤1.

MatrixDet

V-470

MatrixDet
matrixDet(dataMatrix)
The MatrixDet function returns the determinant of dataMatrix. The matrix wave must be a real, square
matrix or else the returned value will be NaN.

Details
The function calculates the determinant using LU decomposition. If, following the decomposition, any one of
the diagonal elements is either identically zero or equal to 10-100, the return value of the function will be zero.

See Also
The MatrixOp operation for more efficient matrix operations.
Matrix Math Operations on page III-131 for more about Igor’s matrix routines.

MatrixDot
MatrixDot(waveA, waveB)
The MatrixDot function calculates the inner (scalar) product for two 1D waves. A 1D wave A represents a
vector in the sense:

Given two such waves A and B, the inner product is defined as

When both waveA and waveB are complex and the result is assigned to a complex-valued number MatrixDot
returns:

If the result is assigned to a real number, MatrixDot returns:

If either waveA or waveB is complex and the result is assigned to a real-valued number, MatrixDot returns:

When the result is assigned to a complex-valued number MatrixDot returns:

See Also
The MatrixOp operation for more efficient matrix operations.
Matrix Math Operations on page III-131 for more about Igor’s matrix routines.

MatrixEigenV
MatrixEigenV [flags] matrixA [, matrixB]
MatrixEigenV computes the eigenvalues and eigenvectors of a square matrix using LAPACK routines.

A = α iêi∑ , êi is a unit vector.

ip = α iβi∑ .

ipc = α i
*βi∑ .

ip = α i
*βi∑ .

ip = α i βi∑ .

ipc = α i βi∑ .

MatrixEigenV

V-471

Flags for General Matrices

Flags for Symmetric Matrices

/C Creates complex valued output for real valued input waves. This is equivalent to
converting the input to complex, with zero imaginary component, prior to computing
the eigenvalues and eigenvectors. The main benefit of this format is that the output
has simple packing of eigenvalues and eigenvectors. See the example in the Details
for General Matrices section below.
The /C flag was added in Igor Pro 7.00.

/B=balance

/L Calculates for left eigenvectors.

/O Overwrites matrixWave, requiring less memory.

/R Calculates for right eigenvectors.

/S=sense Determines which reciprocal condition numbers are calculated.

If sense is 1 or 3 you must compute both left and right eigenvectors.
NOTE: /S is applicable only with the /X flag or for the generalized eigenvalue
problem.

/X Uses LAPACK expert routines, which require additional parameters (see /B and /S
flags). The operation creates additional waves:
The W_MatrixOpInfo wave contains in element 0 the ILO, in element 1 the IHI, and
in element 2 the ABNRM from the LAPACK routines.
The wave W_MatrixRCONDE contains the reciprocal condition numbers for the
eigenvalues.
The wave W_MatrixRCONDV contains the reciprocal condition number for the
eigenvectors.

/SYM Computes the eigenvalues of an NxN symmetric matrix and stores them in the wave
W_eigenValues. You must specify this flag if you want to use the special routines for
symmetric matrices. The number of eigenvalues is stored in the variable V_npnts. Because
W_eigenValues has N points, only the first V_npnts will contain relevant eigenvalues.
When using this flag with complex input the matrix is assumed to be Hermitian.

/EVEC Computes eigenvectors in addition to eigenvalues. Eigenvectors will be stored in the wave
M_eigenVectors, which is of dimension NxN. The first V_npnts columns of the wave will
contain the V_npnts eigenvectors corresponding to the eigenvalues in W_eigenValues. /EVEC
must be preceded by /SYM.

Determines how the input matrix should be scaled and or permuted to improve the
conditioning of the eigenvalues.
balance=0 (default), 1, 2, or 3, corresponding respectively to N, P, S, or B in the
LAPACK routines. Applicable only with the /X flag.
0: Do not scale or permute.
1: Permute.
2: Do diagonal scaling.
3: Scale and permute.

sense=0 (default), 1, 2, or 3, corresponding respectively to N, E, V, or B in the
LAPACK routines. Applicable only with the /X flag.
0: None.
1: Eigenvalues only.
2: Right eigenvectors.
3: Eigenvalues and right eigenvectors.

MatrixEigenV

V-472

Flags for Generalized Eigenvalue Problem
These are the same flags as for general (non-symmetric) matrices above except for /O and /X which are not
supported for the generalized eigenvalue solution.

Common Flags

Details
There are three mutually exclusive branches for the operation. The first is designed for a square matrix
input matrixA. The operation computes the solution to the problem

where A is the input matrix, x is an eigenvector and λ is an eigenvalue.
The second branch is designed for symmetric matrices A, i.e., when

where the superscript T denotes a transpose.
The third branch of the operation is designed to solve the generalized eigenvalue problem,

where A and B are square matrices, x is an eigenvector and λ is an eigenvalue.
Each branch of the operation supports its own set of flags as shown above. All branches support input of
single and double precision in real or complex waves. If you specify both matrixA and matrixB then they
must have the same number type.

Details for General Matrices
The eigenvalues are returned in the 1D complex wave W_eigenValues. The eigenvectors are returned in the
2D wave M_R_eigenVectors or M_L_eigenVectors.
The calculated eigenvectors are normalized to unit length.
Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the positive
imaginary part first.
If the jth eigenvalue is real, then the corresponding eigenvector u(j)=M[][j] is the jth column of
M_L_eigenVectors or M_R_eigenVectors. If the jth and (j+1)th eigenvalues form a complex conjugate pair,
then u(j) = M[][j] + i*M[][j+1] and u(j+1) = M[][j] - i*M[][j+1].
Example
Function TestMatrixEigenVReal()

Make/D/N=(2,2)/O eee={{0,1},{-1,0}}
MatrixEigenV/R eee
Wave W_eigenvalues, M_R_eigenVectors
MatrixOP/O firstEV=cmplx(col(M_R_eigenVectors,0),col(M_R_eigenVectors,1))
MatrixOP/O aa=eee x firstEV - W_eigenvalues[0]*firstEV
Print aa

End

Function TestMatrixEigenVComplex()

/RNG={method,low,high}

/Z No error reporting (except for setting V_flag).

Determines what is computed:

/RNG must be preceded by /SYM.

method=0: Computes all the eigenvalues or eigenvectors (default).
method=1: Computes eigenvalues for low and high double precision range.
method=2: Computes eigenvalues for low and high integer indices (1 based). For

example, to compute the first 3 eigenvalues use: /RNG={2,1,3}.

Ax = λx,

A = AT ,

Ax = λBx,

MatrixEigenV

V-473

Make/D/N=(2,2)/O eee={{0,1},{-1,0}}
MatrixEigenV/R/C eee
Wave W_eigenvalues, M_R_eigenVectors
MatrixOP/O aa=eee x col(M_R_eigenVectors,0) - W_eigenValues[0]*col(M_R_eigenVectors,0)
Print aa

End

Details for Symmetric Matrices
The LAPACK routines that compute the eigenvalues and eigenvectors of symmetric matrices claim to use
the Relatively Robust Representation whenever possible. If your matrix is symmetric you should use this
branch of the operation (/SYM) for improved accuracy.

Details for Generalized Eigenvalue Problem
Here the right eigenvectors (/R) are solutions to the equation

and the left eigenvectors (/L) are solutions to

where the superscript H denotes the conjugate transpose.
When both matrixA and matrixB are real valued, the operation creates the following waves in the current
data folder:

Every point in the wave W_alphaValues corresponds to an eigenvalue. When the imaginary part of
W_alphaValues[j] is zero, the eigenvalue is real and the corresponding eigenvector is also real e.g.,
M_rightEigenVectors[][j]. When the imaginary part is positive then there are two eigenvalues that are
complex-conjugates of each other with corresponding complex eigenvectors given by
cmplx(M_rightEigenVectors[][j],M_rightEigenVectors[][j+1])

and
cmplx(M_rightEigenVectors[][j],-M_rightEigenVectors[][j+1])

When both matrixA and matrixB are complex the operation creates the complex waves:
W_alphaValues, W_betaValues, M_leftEigenVectors, M_rightEigenVectors
with the ratio W_alphaValues[j]/W_betaValues[j] expressing the generalized eigenvalue. The
corresponding M_leftEigenVectors[][j] and M_rightEigenVectors[][j] are the respective left and right
eigenvectors. The simplicity of the complex case suggests that when matrixA and matrixB are real it is best
to convert them to complex waves prior to executing matrixEigenV.
Depending on the choice of /S the operation also calculates the reciprocal condition number for the
eigenvalues (stored in W_reciprocalConditionE) and the reciprocal condition number of the eigenvectors
(stored in W_reciprocalConditionV). Note that a zero entry in W_reciprocalConditionV implies that the
eigenvalues could not be ordered.

See Also
Matrix Math Operations on page III-131 for more about Igor’s matrix routines and for background
references with details about the LAPACK libraries.
Symmetric matrices can also be decomposed using the MatrixSchur operation and using MatrixOp chol.

W_alphaValues Contains the complex alpha values.

W_betaValues Contains the real-valued denominator such that
the eigenvalues are given by

M_leftEigenVectors and
M_rightEigenVectors

Real valued waves where columns correspond
to eigenvectors of the equation.

Ax = λBx,

xHA = λxHB,

λ j =
α j

β j

.

MatrixFilter

V-474

MatrixFilter
MatrixFilter [flags] Method dataMatrix
The MatrixFilter operation performs one of several standard image filter type operations on the destination
dataMatrix.

Parameters
Method selects the filter type. Method is one of the following names:

Note: The parameters below are also available in ImageFilter. See ImageFilter for additional
parameters.

avg nxn average filter.

FindEdges 3x3 edge finding filter.

gauss nxn gaussian filter.

gradN, gradNW, gradW, gradSW, gradS, gradSE, gradE, gradNE

3x3 North, NorthWest, West, … pointing gradient filter.

median nxn median filter. You can assign values other than the median by specifying the
desired rank using the /M flag.

min nxn minimum rank filter.

max nxn maximum rank filter.

NanZapMedian nxn filter that only affects data points that are NaN. Replaces them with the median
of the nxn surrounding points. Unless /P is used, automatically cycles through matrix
until all NaNs are gone or until cols*rows iterations.

point 3x3 point finding filter 8*center-outer.

sharpen 3x3 sharpening filter=(12*center-outer)/4.

sharpenmore 3x3 sharpening filter=(9*center-outer).

thin Calculates binary image thinning using neighborhood maps based on the algorithm
in Graphics Gems IV, p. 465.
Note: The thin keyword to MatrixFilter will be removed someday. The functionality
will be available — just not as a part of MatrixFilter. The /R flag does not apply to the
lame duck thin keyword.

MatrixGaussJ

V-475

Flags

Details
This operation does not support complex waves.

See Also
ImageFilter operation for additional options. Matrix Math Operations on page III-131 for more about
Igor’s matrix routines. The Loess operation.

References
Heckbert, Paul S., (Ed.), Graphics Gems IV, 575 pp., Morgan Kaufmann Publishers, 1994.
Zhang, T. Y., and C. Y. Suen, A fast thinning algorithm for thinning digital patterns, Comm. of the ACM, 27,

236-239, 1984.

MatrixGaussJ
MatrixGaussJ matrixA, vectorsB
The MatrixGaussJ operation solves matrix expression A*x=b for column vector x given matrix A and
column vector b. The operation can also be used to calculate the inverse of a matrix.

Parameters
matrixA is a NxN matrix of coefficients and vectorsB is a NxM set of right-hand side vectors.

Details
On output, the array of solution vectors x is placed in M_x and the inverse of A is placed in M_Inverse.
If the result is a singular matrix, V_flag is set to 1 to indicate the error. All other errors result in an alert, and
abort any calling procedure.
All output objects are created in the current data folder.
An error is generated if the dimensioning of the input arrays is invalid.
This routine is provided for completeness only and is not recommended for general work (use LU decomposition
— see MatrixLUD). MatrixGaussJ does calculate the inverse matrix but that is not generally needed either.

See Also
Matrix Math Operations on page III-131 for more about Igor’s matrix routines. The MatrixLUD operation.

/B=b Specifies value that is considered background. Used with thin. If object is black on
white background, use 255. If object is white on a black background, use 0.

/F=value Specifies the value in the ROI wave that marks excluded pixels. value is either 0 or 1.
This flag was added in Igor Pro 7.00.
By default, and for compatibility with Igor Pro 6, value=0. Use /F=1 if your ROI wave
contains 1 for pixels to be excluded.

/M=rank Assigns a pixel value other than the median when used with the median filter. Valid
rank values are between 0 and n2-1 (for the default median rank= n2/2).

/N=n For any method described above as “nxn”, you can specify that the filtering kernel
will be a square matrix of size n. In the absence of the /N flag, the default size is 3.

/P=p Filter passes over the data p times. The default is one pass.

/R=roiWave Only the data outside the region of interest will be modified. roiWave should be an 8-
bit unsigned wave with the same dimensions as the data matrix. The exterior of the
ROI is defined by zeros and the interior is any nonzero value.

/T Applies the thining algorithm of Zhang and Suen with the thin parameter. The wave
M_MatrixFilter contains the results; the input wave is not overwritten.

MatrixGLM

V-476

MatrixGLM
MatrixGLM [/Z] matrixA, matrixB, waveD
The MatrixGLM operation solves the general Gauss-Markov Linear Model problem (GLM) which
minimizes the 2-norm of a vector y

A is matrixA (an NxM wave), B is matrixB (an NxP wave), and d is provided by waveD which is a 1D wave
of N rows. The vectors x and y are the results of the calculation; they are stored in output waves Mat_X and
Mat_Y in the current data folder.

Flags

Details
All input waves must have the same numeric type. Supported types are single-precision and double-
precision floating point, both real and complex. The output waves Mat_X and Mat_Y have the same
numeric type as the input.
The LAPACK algorithm assumes that M <= N <= M+P and

Under these assumptions there is a unique solution x and a minimal 2-norm solution y, which are obtained
using a generalized QR factorization of A and B. If the operation completes successfully the variable V_Flag
is set to zero. Otherwise it contains a LAPACK error code.

Output Variables

See Also
Matrix Math Operations on page III-131 for more about Igor's matrix routines and for background
references with details about the LAPACK libraries.

MatrixInverse
MatrixInverse [flags] srcWave
The MatrixInverse operation calculates the inverse or the pseudo-inverse of a square matrix. srcWave may
be real or complex.
MatrixInverse saves the result in the wave M_Inverse in the current data folder.

/Z In the event of an error, MatrixGLM will not return the error to Igor, which would
cause procedure execute to abort. Your code should use the V_flag output variable to
detect and handle errors.

V_flag Set to 0 if MatrixGLM succeeds or to a LAPACK error code.

min y
2
subject to d = Ax + By.

rank(A) = M ,

rank(AB) = N.

MatrixLinearSolve

V-477

Flags

Example
Make/N=(2,2) mat0={{2,3},{1,7}}
MatrixInverse mat0 // Creates wave M_inverse
// Check the results
MatrixOp/O mat1=M_inverse x mat0
Print mat1 // Verify that you got the identity matrix

See Also
The MatrixOp operation for more efficient matrix operations.
Matrix Math Operations on page III-131 for more about Igor’s matrix routines.

References
See sec. 5.5.4 of:
Golub, G.H., and C.F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University Press, 1986.

MatrixLinearSolve
MatrixLinearSolve [flags] matrixA matrixB
The MatrixLinearSolve operation solves the linear system matrixA *X=matrixB where matrixA is an N-by-N
matrix and matrixB is an N-by-NRHS matrix of the same data type.

/D Creates the wave W_W that contains eigenvalues of the singular value decomposition (SVD)
for the pseudo-inverse calculation. If one or more of the eigenvalues are small, the matrix may
be close to singular.

/G Calculates only the direct inverse; does not affect calculation of pseudo-inverse. By default, it
calculates the inverse of the matrix using LU decomposition. The inverse is calculated using
Gauss-Jordan method. The only advantage in using Gauss-Jordan is that it is more likely to
flag singular matrices than the LU method.

/O Overwrites the source with the result.

/P Calculates the pseudo-inverse of a square matrix using the SVD algorithm. The calculated
pseudo-inverse is a unique minimal solution to the problem:

min
X∈�n×m

AX − Im .

MatrixLinearSolveTD

V-478

Flags

Details
If /O is not specified, the operation also creates the n-by-n wave M_A and the n-by-nrhs solution wave M_B.
The variable V_flag is created by the operation. If the operation completes successfully, V_flag is set to zero,
otherwise it is set to the LAPACK error code.

See Also
Matrix Math Operations on page III-131 for more about Igor’s matrix routines and for background
references with details about the LAPACK libraries.

MatrixLinearSolveTD
MatrixLinearSolveTD [/Z] upperW, mainW, lowerW, matrixB
The MatrixLinearSolveTD operation solves the linear system TDMatrix*X = matrixB. In the matrix product on
the left hand side, TDMatrix is a tridiagonal matrix with upper diagonal upperW, main diagonal mainW, and
lower diagonal lowerW. It solves for vector(s) X depending on the number of columns (NRHS) in matrixB.

Flags

Details
The input waves can be single or double precision (real or complex). Results are returned in the wave
M_TDLinearSolution in the current data folder. The wave mainW determines the size of the main diagonal

/M=method

/D={sub,super} Specifies a band diagonal matrix. The subdiagonal (sub) and superdiagonal (super)
size must be positive integers.

/L Uses the lower triangle of matrixA. /L and /U are mutually exclusive flags.

/U Uses the upper triangle of matrixA. /U is the default.

/O Overwrites matrixA and matrixB with the results of the operation. This will save on
the amount of memory needed.

/Z No error reporting.

/Z No error reporting.

Determines the solution method which best suites input matrixA.
method=1: Uses simple LU decomposition (default). See also LAPACK

documentation for SGESV, CGESV, DGESV, and ZGESV.
Creates the wave W_IPIV that contains the pivot indices that define
the permutation matrix P. Row (i) if the matrix was interchanged
with row ipiv(i).

method=2: If matrixA is band diagonal, you also have to specify /D. See also
LAPACK documentation for SGBSV, CGBSV, DGBSV, and
ZGBSV.
Creates the wave W_IPIV, which contains the pivot indices that
define the permutation matrix P. Row (i) if the matrix was
interchanged with row ipiv(i). Also note that if you are using the
/O flag, the overwritten waves may have a different dimensions.

method=4: For tridiagonal matrix; still expecting full matrix in matrixA, but
it will ignore the data in the elements outside the 3 diagonals.
See also LAPACK documentation for SGTSV, CGTSV, DGTSV,
and ZGTSV.

method=8: Symmetric/hermitian. See also LAPACK documentation for
SPOSV, CPOSV, DPOSV, and ZPOSV.

method=16: Complex symmetric (complex only). See also LAPACK
documentation for CSYSV and ZSYSV.

MatrixLLS

V-479

(N). All other waves must match it in size with upperW and mainW containing one less point and matrixB
consisting of N-by-NRHS elements of the same data type.
MatrixLinearSolveTD should be more efficient than MatrixLinearSolve with respect to storage
requirements.
MatrixLinearSolveTD creates the variable V_flag, which is zero when it finishes successfully.

See Also
Matrix Math Operations on page III-131; the MatrixLinearSolve and MatrixOp operations.

MatrixLLS
MatrixLLS [/O/Z/M=method] matrixA matrixB
The MatrixLLS operation solves overdetermined or underdetermined linear systems involving MxN
matrixA, using either QR/LQ or SV decompositions. Both matrixA and matrixB must have the same number
type. Supported types are real or complex single precision and double precision numbers.

Flags

Details
When the /O flag is not specified, the solution vectors are stored in the wave M_B, otherwise the solution
vectors are stored in matrixB. Let matrixA be m rows by n columns and matrixB be an m by NRHS (if NRHS=1
it can be omitted). If m ≥ n, MatrixLLS solves the least squares solution to an overdetermined system:

Here the first n rows of M_B contain the least squares solution vectors while the remaining rows can be
squared and summed to obtain the residual sum of the squares. If you are not interested in the residual you
can resize the wave using, for example:
Redimension/N=(n,NRHS) M_B

If m<n, MatrixLLS finds the minimum norm solution of the underdetermined system:

In this case, the first m rows of M_B contain the minimum norm solution vectors while the remaining rows
can be squared and summed to obtain the residual sum of the squares for the solution. If you are not
interested in the residual you can resize the wave using, for example:
Redimension/N=(m,NRHS) M_B

The variable V_flag is set to 0 when there is no error; otherwise it contains the LAPACK error code.

See Also
Matrix Math Operations on page III-131 for more about Igor’s matrix routines and for background
references with details about the LAPACK libraries.

/M=method

/O Overwrites matrixA with its decomposition and matrixB with the solution vectors.
This requires less memory.

/Z No error reporting.

Note: Here matrixB consists of one or more column vectors B corresponding to one or more
solution vectors X that are computed simultaneously. If matrixB consists of a single
column, M_B is a 2D matrix wave that contains a single solution column.

Specifies the decomposition method.
method=0: Decomposition is to QR or LQ (default). Creates the 2D wave

M_A, which contains details of the QR/LQ factorization.
method=1: Singular value decomposition. Creates the 2D wave MA, which

contains the right singular vectors stored row-wise in the first
min(m,n) rows. Creates the 1D wave M_SV, which contains
the singular values of matrixA arranged in decreasing order.

Minimize matrixB −matrixA ×X .

matrixA ×X = matrixB.

MatrixLUBkSub

V-480

MatrixLUBkSub
MatrixLUBkSub matrtixL, matrixU, index, vectorB
The MatrixLUBkSub operation provides back substitution for LU decomposition.

Details
This operation is used to solve the matrix equation Ax=b after you have performed LU decomposition (see
MatrixLUD). Feed this routine M_Lower, M_Upper and W_LUPermutation from MatrixLUD along with
your right-hand-side vector b. The solution vector x is returned as M_x. The array b can be a matrix
containing a number of b vectors and the M_x will contain a corresponding set of solution vectors.
Generates an error if the dimensions of the input matrices are not appropriate.

See Also
Matrix Math Operations on page III-131 for more about Igor’s matrix routines.

MatrixLUD
MatrixLUD [flags] matrixA
The MatrixLUD operation computes the LU factorization of a matrix. The general form of the
factorization/decomposition is expressed in terms of matrix products:
M_Pt x srcWave = M_Lower x M_Upper

M_Pt, M_Lower and M_Upper are outputs created by MatrixLUD.
M_Pt is the transpose of the permutation matrix, M_Lower is a lower triangular matrix with 1's on the main
diagonal and M_Upper is an upper triangular (or trapezoidal) matrix.
The MatrixLUD operation was substantially changed in Igor Pro 7.00. See the /B flag for information about
backward compatibility.

Flags

/B This flag is provided for backward compatibility only; it is not compatible with any other
flag. /B makes MatrixLUD behave as it did in Igor Pro 6. This flag is deprecated and will
be removed in a future version of Igor.

The input is restricted to a 2D real valued, single or double precision square matrix. The
outputs (all double precision) are stored in the waves M_Upper, M_Lower and
W_LUPermutation in the current data folder.

The W_LUPermutation output wave was needed for solving a linear system of equations
using the back substitution routine, MatrixLUBkSub. For better computation methods
see MatrixLinearSolve, MatrixLinearSolveTD and MatrixLLS.

/CMF Uses Combined Matrix Format where the upper and lower matrix factors are combined
into a single matrix saved in the wave M_LUFactors in the current data folder. The upper
matrix factor is constructed from the main and from the upper diagonals of M_LUFactors.
The lower matrix factor is constructed from the lower diagonals of M_LUFactors and
setting the main diagonal to 1.

/MIND Finds the minimum magnitude diagonal element of M_Upper and store it in V_min. This
is useful for investigating the behavior of the determinant of the matrix when it is close to
being singular.

/PMAT Saves the transpose of the permutation matrix in a double precision wave M_Pt in the
current data folder. Note that the permutation matrix is orthogonal and so the inverse of
the matrix is equal to its transpose.

/SUMP Computes the sum of the phases of the elements on the main diagonal of M_Upper and
store in the variable V_Sum. V_Sum is initialized to NaN and is set only if /SUMP is
specified and M_Upper is complex.

MatrixLUDTD

V-481

Details
The input matrix srcWave is an MxN real or complex wave of single or double precision. Use MatrixLUDTD if
your input is tri-diagonal.
The main results of the factorization are stored in the waves M_Lower, M_Upper and M_Pt. Alternatively the
lower and upper factors can be combined and stored in the wave M_LUFactors (see /CMF). The waves
M_Lower, M_Upper and M_LUFactors have the same data type as the input wave. M_Pt is always double
precision.
When the input matrix srcWave is square (NxN), the resulting matrices have the same dimensions (NxN). You
can reconstruct the input using the MatrixOp expression:
MatrixOp/O rA=(M_Pt^t) x (M_Lower x M_Upper)

If the input matrix is rectangular (NxM) the reconstruction depends on the size of N and M. If N<M:
MatrixOp/O rA=(M_Pt^t) x (subRange(M_lower,0,N-1,0,N-1) x M_Upper)

If N>M:
MatrixOp/O rA=(M_Pt^t) x M_lower x subRange(M_Upper,0,M-1,0,M-1)

The variable V_flag is set to zero if the operation succeeds and to 1 otherwise (e.g., if the input is singular). When
you use the /B flag the polarity of the matrix is returned in the variable V_LUPolarity. The variables V_Sum and
V_min are also set by some of the flag options above.

See Also
MatrixLUDTD, MatrixLUBkSub, MatrixLinearSolve, MatrixLinearSolveTD, MatrixLLS, MatrixOp
Matrix Math Operations on page III-131 for more about Igor’s matrix routines.

MatrixLUDTD
MatrixLUDTD [flags] srcMain, srcUpper, srcLower
The MatrixLUDTD operation computes the LU factorization of a tri-diagonal matrix. The general form of
the factorization/decomposition is expressed in terms of matrix products:
M_Pt x triDiagonalMat = M_Lower x M_Upper

triDiagonalMat is the matrix defined by the main diagonal specified by srcMain, the upper diagonal
specified by srcUpper, and the lower diagonal specified by srcLower.
M_Pt is an output wave created when the /PMAT flag is present. M_Lower and M_Upper are output waves
created when the /FM flag is present. M_Pt is the transpose of the permutation matrix, M_Lower is a lower
triangular matrix with 1's on the main diagonal and M_Upper is an upper triangular (or trapezoidal)
matrix.

Flags

Details
You specify the tridiagonal matrix using three 1D waves of the same data type (single or double precision
real or complex).
If /FM is present the output of the operation consists of two 2D waves and one 1D wave:

M_Lower is a lower triangular matrix with 1's on the main diagonal.

/MIND Finds the minimum magnitude diagonal element of M_Upper and stores it in V_min. This
feature is useful if you want to investigate the behaviour of the determinant of the matrix
when it is close to being singular.

/PMAT Saves the transpose of the permutation matrix in the wave M_Pt in the current data folder.
Note that the permutation matrix is orthogonal and so the inverse of the matrix is equal
to its transpose.

/SUMP Computes the sum of the phases of the elements on the main diagonal of M_Upper and
store in the variable V_Sum. Note that the variable is initialized to NaN and that it is not
set unless this flag is specified and M_Upper is complex.

/FM The full matrix output is stored in the waves M_Lower and M_Upper in the current data
folder.

MatrixMultiply

V-482

M_Upper is an upper triangular (or trapezoidal) matrix.
W_PIV is 1D wave containing pivot indices.
See code example below for implementation details.

If /FM is omitted the output of the operation consists of five 1D waves:
W_Diagonal is the main diagonal of matrixU.
W_UDiagonal is the first upper diagonal of M_Upper.
W_U2Diagonal is the second diagonal of M_Upper.
W_LDiagonal is the first lower diagonal of M_Lower.
W_PIV is a vector of pivot indices.

In this case M_Lower can be constructed (see below) from W_LDiagonal and the pivot index wave W_PIV.
If you are working with tridiagonal matrices you can take advantage of MatrixOp functionality to
reconstruct your outputs. For example:

MatrixOp/O M_Upper=Diagonal(W_diagonal)
MatrixOp/O M_Upper=setOffDiag(M_Upper,1,W_UDiagonal)
MatrixOp/O M_Upper=setOffDiag(M_Upper,2,W_U2Diagonal)

These commands can be combined into a single command line.
The construction of M_Lower is a bit more complicated and can be accomplished for real data using the
following code:
Function MakeLTMatrix(W_diagonal,W_LDiagonal,W_PIV)

Wave W_diagonal,W_LDiagonal,W_PIV

Variable i,N=DimSize(W_diagonal,0)
MatrixOp/O M_Lower=setOffDiag(ZeroMat(N,N,4),-1,W_LDiagonal)
M_Lower=p==q ? 1:M_Lower[p][q] // Set the main diagonal to 1's
MatrixOp/O index=W_PIV-1 // Convert from 1-based array
for(i=1;i<=N-2;i+=1)

if(index[i]!=i)
variable j,tmp
for(j=0;j<=i-1;j+=1)

tmp=M_Lower[i][j]
M_Lower[i][j]=M_Lower[i+1][j]
M_Lower[i+1][j]=tmp

endfor
endif

endfor
End

This code is provided for illustration only. In practice you could use the /FM flag so that the operation
creates the full lower and upper matrices for you.
The variable V_flag is set to zero if the operation succeeds and to 1 otherwise (e.g., if the input is singular).
The variables V_Sum and V_min are also set by some of the flag options above.

See Also
MatrixLUD, MatrixOp, Matrix Math Operations on page III-131 for more about Igor’s matrix routines.

MatrixMultiply
MatrixMultiply matrixA [/T], matrixB [/T] [, additional matrices]
The MatrixMultiply operation calculates matrix expression matrixA*matrixB and puts the result in a matrix
wave named M_product generated in the current data folder. The /T flag can be included to indicate that
the transpose of the specified matrix should be used.
If any of the source matrices are complex, then the result is complex.

Parameters
If matrixA is an NxP matrix then matrixB must be a PxM matrix and the product is an NxM matrix. Up to 10
matrices can be specified although it is unlikely you will need more than three. The inner dimensions must
be the same. Multiplication is performed from right to left.
It is legal for M_product to be one of the input matrices. Thus MatrixMultiply A,B,C could also be done as:

MatrixOp

V-483

MatrixMultiply B,C
MatrixMultiply A,M_product

Details
Supports multiplication of complex matrices.
An error is generated if the dimensioning of the input arrays is invalid.

See Also
The MatrixOp operation for more efficient matrix operations.
Matrix Math Operations on page III-131 for more about Igor’s matrix routines.

MatrixOp
MatrixOp [/C /FREE /NTHR=n /O /S] destwave = expression
The MatrixOp operation evaluates expression and stores the result in destWave.
expression may include literal numbers, numeric variables, numeric waves, and the set of operators and
functions described below. MatrixOp does not support text waves, strings or structures.
MatrixOp is faster and in some case more readable than standard Igor waveform assignments and matrix
operations.
See Using MatrixOp on page III-132 for an introduction to MatrixOp.

Parameters

destWave Specifies a destination wave for the assignment expression. destWave is created at
runtime. If it already exists, you must use the /O flag to overwrite it or the operation
returns an error.
When the operation is completed, destWave has the dimensions and data type implied
by expression. In particular, it may be complex if expression evaluates to a complex
quantity. If expression evaluates to a scalar, destWave is a 1x1 wave.
If you include the /FREE flag then destWave is created as a free wave.
By default the data type of destWave depends on the data types of the operands and
the nature of the operations on the right-hand side of the assignment. If expression
references integer waves only, destWave may be an integer wave too but most
operations with a scalars convert destWave into a double precision wave. See
MatrixOp Data Promotion Policy on page III-138 for further discussion.
Even if destWave exists before the operation, MatrixOp may change its data type and
dimensionality as implied by expression.
You can force the number type using MatrixOp functions such as uint16 and fp32.

expression expression is a mathematical expression referencing waves, local variables, global
variables and literal numbers together with MatrixOp functions and MatrixOp
operators as listed in the following sections.
You can use any combination of data types for operands.In particular, you can mix
real and complex types in expression. MatrixOp determines data types of inputs and
the appropriate output data type at runtime without regard to any type declaration
such as Wave/C.

MatrixOp

V-484

Operators

MatrixOp does not support operator combinations such as +=.
This table shows the precedence of MatrixOp operators:

You can use parentheses to force evaluation order.
Operators that have the same precedence associate from right to left. This means that a* b / c is
equivalent to a * (b / c).

Functions
These functions are available for use with MatrixOp.

+ Addition between scalars, matrix addition or addition of a scalar (real or complex) to each
element of a matrix.

- Subtraction of one scalar from another, matrix subtraction, or subtracting a scalar from each
element of a matrix. Subtraction of a matrix from a scalar is not defined.

* Multiplication between two scalars, multiplication of a matrix by a scalar, or element-by-
element multiplication of two waves of the same dimensions.

/ Division of two scalars, division of a matrix by a scalar, or element-by-element division
between two waves of the same dimensions.
Division of a scalar by a matrix is not supported but you can use the rec function with
multiplication instead.

x Matrix multiplication (lower case x symbol only).
This operator must be preceded and followed by a space. Matrix multiplication requires that
the number of columns in the matrix on the left side be equal to the number of rows in the
matrix on the right.

. Generalized form of a dot product. In an expression a.b it is expected that a and b have the
same number of points although they may be of arbitrary numeric type. The operator returns
the sum of the products of the sequential elements as if both a and b were 1D arrays.

^t Matrix transpose. This is a postfix operator meaning that ̂ t appears after the name of a matrix
wave.

^h Hermitian transpose. This is a postfix operator meaning that ^h appears after the name of a
matrix wave.

&& Logical AND operator supports all real data types and results in a signed byte numeric token
with the value of either 0 or 1. The operation acts on an element by element basis and is
performed for each element of the operand waves.

|| Logical OR operator supports all real data types and results in a signed byte numeric token
with the value of either 0 or 1. The operation acts on an element by element basis and is
performed for each element of the operand waves.

MatrixOp Operator Precedence

^h ^t Highest

x .

* /

+ -

&& || Lowest

abs(w) Absolute value of a real number or the magnitude of a complex number.

acos(w) Arc cosine of w.

MatrixOp

V-485

acosh(w) Inverse hyperbolic cosine of w. Added in Igor Pro 7.00.

asin(w) Arc sine of w.

asinh(w) Inverse hyperbolic sine of w. Added in Igor Pro 7.00.

asyncCorrelation(w) Asynchronous spectrum correlation matrix for a real valued input matrix
wave w. See syncCorrelation for details.

atan(w) Arc tangent (inverse tangent) of w.

atan2(y,x) Arc tangent (inverse tangent) of real y/x.

atanh(w) Inverse hyperbolic tangent of w. Added in Igor Pro 7.00.

averageCols(w) Returns a (1xcolumns) wave containing the averages of the columns of matrix
w. This is equivalent to sumCols(w)/numRows(w).
Added in Igor Pro 7.00.

backwardSub(U,c) Returns a column vector solution for the matrix equation Ux=c, where U is an
(NxN) wave representing an upper triangular matrix and c is a column vector
of N rows. If c has additional columns they are ignored. Ideally, U and c
should be either SP or DP waves (real or complex). Other numeric data types
are supported with a slight performance penalty.
This function is typically used in solving linear equations following a matrix
decomposition into lower and upper triangular matrices (e.g., Cholesky),
with an expression of the form:
MatrixOp/O solVector=backwardSub(U,forwardSub(L,b))

where U and L are the upper and lower triangular factors.
Added in Igor Pro 7.00.

beam(w,row,col) When w is a 3D wave the beam function returns a 1D array corresponding to
the data in the beam defined by w[row][col][]. In other words, it returns a 1D
array consisting of all elements in the specified row and column from all
layers. See also ImageTransform getBeam.
When w is a 4D wave it returns a 2D array containing w[row][col][][]. In other
words, it returns a matrix consisting of all elements in the specified row and
column from all layers and all chunks.
The beam function belongs to a special class in that it does not operate on a
layer by layer basis. It therefore does not permit compound expressions in
place of any of its parameters.
The beam function has the highest precedence.

bitAnd(w1,w2) Returns an array of the same dimensions and number type as w1 where each
element corresponds to the bitwise AND operation between w1 and w2.
w2 can be either a single number or a matrix of the same dimensions as w1.
Both w1 and w2 must be real integer numeric types.
Added in Igor Pro 7.00.

bitOr(w1,w2) Returns an array of the same dimensions and number type as w1 where each
element corresponds to the bitwise OR operation between w1 and w2.
w2 can be either a single number or a matrix of the same dimensions as w1.
Both w1 and w2 must be real integer numeric types.
Added in Igor Pro 7.00.

MatrixOp

V-486

bitShift(w1,w2) Returns an array of the same dimensions and number type as w1 shifted by
the amount specified in w2. When w2 is positive the shifting is to the left.
When it is negative the shifting is to the right.
w2 can be either a single number or a matrix of the same dimensions as w1.
Both w1 and w2 must be real integer numeric types.
Added in Igor Pro 7.00.

bitXor(w1,w2) Returns an array of the same dimensions and number type as w1 where each
element corresponds to the bitwise XOR operation between w1 and w2.
w2 can be either a single number or a matrix of the same dimensions as w1.
Both w1 and w2 must be real integer numeric types.
Added in Igor Pro 7.00.

bitNot(w) Returns an array of the same dimensions and number type as w where each
each element is the bitwise complement of the corresponding element in w.
Added in Igor Pro 7.00.

catCols(w1,w2) Concatenates the columns of w2 to those of w1. w1 and w2 must have the
same number of rows and the same number type.
Added in Igor Pro 7.00.

catRows(w1,w2) Concatenates the rows of w2 to those of w1. w1 and w2 must have the same
number of columns and the same number type.
Added in Igor Pro 7.00.

ceil(z) Smallest integer larger than z.

chirpZ(data,A,W,M) Chirp Z Transform of the 1D wave data calculated for the contour defined by

Here both A and W are complex and the standard z transform for a sequence
{x(n)} is defined by

The phase of the output is inverted to match the result of the ChirpZ
transform on the unit circle with that of the FFT.

chirpZf(data,f1,f2,df)

Chirp Z Transform except that the transform parameters are specified by
real-valued starting frequency f1, end frequency f2 and frequency resolution
df. The transform is confined to the unit circle because both A and W have unit
magnitude.

chol(w) Returns the Cholesky decomposition U of a positive definite symmetric
matrix w such that w=U^t x U. Note that only the upper triangle of w is
actually used in the computation.

chunk(w,n) Returns chunk n from 4D wave w.
Added in Igor Pro 7.00.

zk = AW �k ,

k = 0,1,...M �1.

X(z) = x(n)z�k .
k=0

N�1

�

MatrixOp

V-487

clip(w,low,high) Returns the values in the wave w clipped between the low and the high
parameters. If w contains NaN or INF values, they are not modified. The
result retains the same number type as the input wave w irrespective of the
range of the low and high input parameters.

cmplx(re,im) Returns a complex token from two real tokens. re and im must have the same
dimensionality.
Added in Igor Pro 7.00.

col(w,c) Returns column c from matrix wave w.

colRepeat(w,n) Returns a matrix that consists of n identical columns containing the data in
the wave w. If w is a 2D wave, it is treated as if it were a single column
containing all the data. Higher dimensions are supported on a layer-by-layer
basis. MatrixOp returns an error if n<2.
Added in Igor Pro 7.00.

conj(matrixWave) Complex conjugate of the input expression.

const(r,c,val) Returns an (r x c) matrix where all elements are equal to val. The data type of
the returned matrix is the same as that of val. See also zeroMat below.
Added in Igor Pro 7.00.

convolve(w1,w2,opt) Convolution of w1 with w2 subject to options opt. The dimensions of the
result are determined by the largest dimensions of w1 and w2 with the
number of rows padded (if necessary) so that they are even. Supported
options include opt=0 for circular convolution and opt=4 for acausal
convolution.
For fast 2D convolutions where where w1 is an image and w2 is a square
kernel of the same numeric type, you can use opt=-1 or opt=-2. When opt=-1 the
convolution at the boundaries is evaluated using zero padding. When opt=-2
the padding is a reflection of w1 about the boundaries. When working with
integer waves the kernel is internally normalized by the sum of its elements.
The kernel for floating point waves remain unchanged.
To convolve an image in w1 with a smaller point spread function in w2 you
can use:
opt=-1 if you want to pad the image boundaries with zeros or
opt=-2 if you want to pad the boundaries by reflecting image values about
each boundary.
The negative options are designed for a very optimized convolution
calculation which requires that w1 and w2 have the same numeric type. If the
size of the point spread function is larger than about 13x13 it may become
more efficient to compute the convolution using the positive options.

correlate(w1,w2,opt) Correlation of w1 with w2 subject to options opt. The dimensions of the result
are determined by the largest dimensions of w1 and w2 with the number of
rows padded (if necessary) so that they are even. Supported options include
opt=0 for circular correlation and opt=4 for acausal correlation.

cos(w) Cosine of w.

cosh(w) Hyperbolic cosine of w. Added in Igor Pro 7.00.

crossCovar(w1,w2,opt) Returns the cross-covariance for 1D waves w1 and w2. The options parameter
opt can be set to 0 for the raw cross-covariance or to 1 if you want the results
to be normalized to 1 at zero offset. If w1 has N rows and w2 has M rows then
the returned vector is of length N+M-1. The cross-covariance is computed by
subtracting the mean of each input followed by correlation and optional
normalization. See also Correlate with the /NODC flag.

MatrixOp

V-488

det(w) Returns a scalar corresponding to the determinant of matrix w, which must
be real.

diagonal(w) Creates a square matrix that has the same number of rows as w. All elements
are zero except for the diagonal elements whichare taken from the first
column in w. Use DiagRC if the input is not an existing wave (such as a result
from another function).

diagRC(w,rows,cols)

2D matrix of dimensions rows by cols. All matrix elements are set to zero
except those of the diagonal which are filled sequentially from elements of w.
The dimensionality of w is unimportant. If the total number of elements in w
is less than the number of elements on the diagonal then all elements will be
used and the remaining diagonal elements will be set to zero.

e Returns the base of the natural logarithm.

equal(a,b) Returns unsigned byte result with 1 for equality and zero otherwise. The
dimensionality of the result matches the dimensionality of the largest
parameter. Either or both a or b can be constants (i.e., one row by one column).
If a and b are not constants, they must have the same dimensions. Both
parameters can be either real or complex. A comparison of a real with a
complex parameter returns zero.

erf(w) Returns the error function (see erf) for real values in w.
Added in Igor Pro 7.00.

erfc(w) Returns the complementary error function (see erfc) for real values in w.
Added in Igor Pro 7.00.

exp(w) Exponential function for w which can be real or complex, scalar or a matrix.

fft(w,options) FFT of w.
w must have an even number of rows.
options contains a binary field flag. Set bit 1 to 1 if you want to disable the zero
centering (see /Z flag in the FFT operation). Other bits are reserved.
MatrixOp does not support wave scaling and therefore it does not produce
the same wave scaling changes as the FFT operation.

floor(w) Largest integer smaller than w. If w is complex the function is separatly
applied to the real and imaginary parts.

forwardSub(L,b) Returns a column vector solution for the matrix equation Lx=b, where L is an
(NxN) wave representing a lower triangular matrix and b is a column vector
of N rows. If b has additional columns they are ignored.
Ideally, L and b should be either SP or DP waves (real or complex). Other
numeric data types are supported with a slight performance penalty.
This function is typically used in solving linear equations following a matrix
decomposition into lower and upper triangular matrices (e.g., Cholesky),
with an expression of the form:
MatrixOp/O solVector=backwardSub(U,forwardSub(L,b))

where U and L are the upper and lower triangular factors.
Added in Igor Pro 7.00.

fp32(w) Converts w to 32-bit single precision floating point representation. See also
the /NPRM flag below for more information.
Added in Igor Pro 7.00.

MatrixOp

V-489

fp64(w) Converts w to 64-bit single precision floating point representation. See also
the /NPRM flag below for more information.
Added in Igor Pro 7.00.

Frobenius(w) Returns the Frobenius norm of a matrix defined as the square root of the sum
of the squared absolute values of all elements.

getDiag(w2d,d) Returns a 1D wave that contains diagonal d of w2d. d=0 is the main diagonal,
d>0 correspond to upper diagonals and d<0 to lower diagonals.
Added in Igor Pro 7.00.

greater(a,b) Returns an unsigned byte for the truth of a > b. Both a and b must be real but
one or both can be constants (see equal() above). The dimensionality of the
result matches the dimensionality of the largest parameter.

hypot(w1,w2) Returns the square root of the sum of the squares of w1 and w2.
Added in Igor Pro 7.00.

ifft(w,options) IFFT of w.
options is a bitwise parameter defined as follows:
Bit 0: Forces the result to be real, like the IFFT operation /C flag.
Bit 1: Disables center-zero.
Bit 2: Swaps the results.
See Setting Bit Parameters on page IV-12 for details about bit settings.
MatrixOp does not support wave scaling and therefore it does not produce
the same wave scaling changes as the IFFT operation.

identity(n,m)
identity(n)

Creates a computational object that is an identity matrix. If you use a single
argument n, the identity created is an (nxn) square matrix with 1’s for
diagonal elements (the remaining elements are set to zero). If you use both
arguments, the function creates an (nxm) zero matrix and fills its diagonal
elements with 1’s. Note that the identity is created at runtime and persists
only for the purpose of the specific operation.

imag(w) Imaginary part of w.

inf() Returns INF.
Added in Igor Pro 7.00.

insertMat(s,d,r,c) Inserts matrix s into matrix d starting at row r and column c. The waves s and
d must be of the same numeric data type. The inserted range is clipped to the
dimensions of the wave d. Both r and c must be non-negative.
Added in Igor Pro 7.00.

int8(w) Converts w to 8-bit signed integer representation. See also the /NPRM flag
below for more information.
Added in Igor Pro 7.00.

int16(w) Converts w to 16-bit signed integer representation. See also the /NPRM flag
below for more information.
Added in Igor Pro 7.00.

int32(w) Converts w to 32-bit signed integer representation. See also the /NPRM flag
below for more information.
Added in Igor Pro 7.00.

MatrixOp

V-490

integrate(w, opt) Returns a running sum of w.
If opt=0 the sum runs over the entire input wave treating the columns of 2D
waves as if they were part of one big column.
If opt=1 the running sum is computed separately for each column of a 2D
wave.
Added in Igor Pro 7.00.

intMatrix(w) Returns a double-precision matrix of the same dimensions as w.
Each element of the returned matrix is the sum of all the corresponding
elements of w that are above and to the left of it, i.e.,

The utility of this function is apparent in the following relationship:

intMatrix was added in Igor Pro 7.00.

inv(w) Returns the inverse of the square matrix w.
If w is not invertible, the operation returns a matrix of the same dimensions
where all elements are set to NaN.

inverseErf(w) Returns the inverse error function (see inverseErf) for the real values in w.
Added in Igor Pro 7.00.

inverseErfc(w) Returns the inverse complementary error function (see inverseErfc) for the
real values in w.
Added in Igor Pro 7.00.

layer(w) Returns layer n from the 3D wave w. w can not be a compound expression.
Added in Igor Pro 7.00.

limitProduct(w1,w2) Returns a partial element-by-element multiplication of waves w1 and w2.
It is assumed that the dimensions of w1 are greater or equal to that of w2. If
w2 is of dimensions NxM then the function returns a matrix of the same
dimensions as w1 with the first NxM elements contain the product of the
corresponding elements in w1 and w2 and the remaining elements set to zero.
The function is designed to be used in filtering applications where the size of
the kernel w2 is much smaller than the size of the input w1.
Added in Igor Pro 7.00.

log(w) Log base 10 of a token w which can be real or complex, scalar or a matrix.

ln(w) Natural logarithm of a token w2 which can be real or complex, scalar or a
matrix.

mag(w) Returns a real valued wave containing the magnitude of each element of w.
This is equivalent to the abs function.

magSqr(w) Returns a real value wave containing the square of a real w or the squared
magnitude of complex w.

outij = wmn .
n=0

j

∑
m=0

i

∑

wij = out[x2 , y2]− out[x2 , y1 −1]−
j=y1

y2

∑
i=x1

x2

∑ out[x1 −1, y2]+ out[x1 −1, y1 −1].

MatrixOp

V-491

maxAB(a,b) Returns the larger of the two real numbers a and b.
maxAB does not support NaN or complex inputs.
Added in Igor Pro 7.00.

maxCols(w) Returns a (1 x cols) wave containing the maximum values of each column in
the wave w. If w is complex the output is the maximum magnitude of
columns of w.
maxCols does not support NaN.
Added in Igor Pro 7.00.

maxVal(w) Returns the maximum value of the wave w. If w is complex it returns the
maximum magnitude of w.
When w is a 3D or 4D wave, maxVal returns a (1 x 1 x layers x chunks) data
token.
maxVal does not support NaN values.

mean(w) Returns the mean value w.

minVal(w) Returns the minimum value of the wave w. If w is complex the function
returns the minimum magnitude of w.
When w is a 3D or 4D wave, minVal returns a (1 x 1 x layers x chunks) data
token.
minVal does not support NaN values.

mod(w,b) Returns the remainder after dividing w by b. b can be a scalar or a matrix of
the same dimensions as w.
Added in Igor Pro 7.00.

nan() Returns NaN.
Added in Igor Pro 7.00.

normalize(w) Normalized version of a vector or a matrix. Normalization is such that the
returned token should have a unity magnitude except if all elements are zero,
in which case output is unchanged.

normalizeCols(w) Divides each column of the real wave w by the square root of the sum of the
squares of all elements of the column.

normalizeRows(w) Divides each row of the real wave w by the square root of the sum of the
squares of all the elements in that row.

numCols(w) Returns the number of columns in the wave w. When w is 1D the function
returns 1.

numPoints(w) Returns the number of points in a layer of w.

numRows(w) Returns the number of rows in w.

numType(w)

p2Rect(w) Converts each element of w from polar to rectangular representation.

phase(w) Returns a real valued wave containing the phase of each element of w
calculated using phase=atan2(y,x).

Pi Returns π.

Number the number type of w:
0: w is a normal number
1: w is +/-INF
2: w is NaN

MatrixOp

V-492

powC(w1,w2) Complex valued w1w2 where w1 and w2 can be real or complex.

powR(x,y) Returns x^y for real x and y.

productCol(w,c) Returns the a (1 x 1) wave containing the product of the elements in column
c of wave w. The output is double precision real or complex.
Added in Igor Pro 7.00.

productCols(w) Returns a (1 x cols) wave where each entry is the product of all the elements
in the corresponding column. The output is double precision real or complex.
Added in Igor Pro 7.00.

productDiagonal(w,d) Returns a (1 x 1) wave containing the product of the elements on the specified
diagonal of wave w. d=0 is the main diagonal, d>0 correspond to upper
diagonals and d<0 to lower diagonals. The output is double precision real or
complex.
Added in Igor Pro 7.00.

productRow(w,r) Returns the a (1 x 1) wave containing the product of the elements in row r of
wave w. The output is double precision real or complex.
Added in Igor Pro 7.00.

productRows(w) Returns a (1 x rows) wave where each entry is the product of all the elements
in the corresponding row. The output is double precision real or complex.
Added in Igor Pro 7.00.

r2Polar(w) Performs the equivalent of the r2polar function on each element of w, i.e.,
each complex number (x+iy) is converted into the polar represenation r,theta
with x+iy=r*exp(i*theta)

real(w) Real part of w.

rec(w) Reciprocal of each element in w.

redimension(w, nr, nc)

Returns an (nr x nc) matrix from the data in the wave w. The data in w are
moved contiguously (column by column regardless of dimensionality) into
the output. If the output size is larger than w the remaining points are set to
zero. If w contains more than one layer the new dimensions apply on a layer
by layer basis. For example:
Make/N=(10,20,30) ddd = p + 10*q + 100*r

MatrixOp/O aa = redimension(ddd,25,1)

creates a wave aa with dimensions (25,1,30).
Added in Igor Pro 7.00.

replace(w,findVal,replacementVal)

Replace in wave w every occurance of findVal with replacementVal. The wave
w retains its dimensionality and number type. replacementVal is converted to
the same number type as w which may cause truncation.

replaceNaNs(w,replacementVal)

Replaces every occurance of NaN in the wave w with replacementVal. The
wave w retains its dimensionality. replacementVal is converted to the same
number type as w which may cause truncation.

reverseCol(w,c) Returns array w with column c in reverse order.
Added in Igor Pro 7.00.

MatrixOp

V-493

reverseCols(w) Returns array w with all columns in reverse order.
Added in Igor Pro 7.00.

reverseRow(w,r) Returns array w with row r in reverse order.
Added in Igor Pro 7.00.

reverseRows(w) Returns array w with all rows in reverse order.
Added in Igor Pro 7.00.

rotateChunks(w,n) Returns a matrix where the last n chunks of w are moved to chunks [0, n-1].
If n is negative then the first abs(n) chunks are moved to the end of the data.
It is an error to pass NaN for n.
Added in Igor Pro 7.00.

rotateCols(w,nc) Rotates the columns of a 2D wave w so that the last nc columns are moved to
columns [0,nc -1] of the data. If nc is negative the first abs(nc) columns are
moved to columns [n-1-nc ,n-1]. Here n is the total number of columns. It is
an error to pass NaN for nc . If nc is greater than the number of columns then
the effective rotation is mod(nc ,actualCols).

rotateLayers(w,n) Returns a matrix where the last n layers of w are moved to layers [0, n-1]. If n
is negative then the first abs(n) layers are moved to the end of the data. It is
an error to pass NaN for n.
Added in Igor Pro 7.00.

rotateRows(w,nr) Rotates the rows of a 2D wave w so that the last nr rows are moved to rows
[0,nr -1] of the data. If nr is negative the first abs(nr) rows are moved to rows
[n-1-nr, n-1] where n is the total number of rows. It is an error to pass NaN for
nr. If nr is greater than the number of rows then the effective rotation is
mod(nr ,actualRows).

round(z) Rounds z to the nearest integer. The rounding method is “away from zero”.

row(w,r) Returns row r from matrix wave w. The returned row is a (1xC) wave where C
is the number of columns in w. To convert it to a 1D wave use
Redimension/N=(C). See also ImageTransform getRow.

rowRepeat(w,n) Returns a matrix that consists of n identical rows containing the data in the
wave w. If w is a 2D wave, it is treated as if it were a single column containing
all the data. Higher dimensions are supported on a layer-by-layer basis.
MatrixOp returns an error if n<2.
Added in Igor Pro 7.00.

scale(w,low,high) Returns the values in the wave w scaled between the low and the high
parameters. If w contains NaN or INF values, they are not modified. The
result retains the same number type as that of w irrespective of the range of
the low and high input parameters.

scaleCols(w1,w2) Returns a matrix of the same dimensions as w1 where each column of w1 is
scaled by the value in the corresponding row of the 1D wave w2. The number
of rows in w2 must equal the number of columns in w1.
Added in Igor Pro 7.00.

scaleRows(w1,w2) Returns a matrix of the same dimensions as w1 where each row of w1 is scaled
by the value in the corresponding row of the 1D wave w2. The number of
rows in w2 must equal the number of rows in w1.
Added in Igor Pro 7.00.

MatrixOp

V-494

setCol(w2d,c,w1d) Returns the data in the w2d with the contents of w1d stored in column c.
w1d must have at least as many elements as the number of rows of w2d. w2d
and w1d must be either both real or both complex.
Added in Igor Pro 7.00.

setNaNs(w,mask) Returns the data in the wave w with NaNs stored where the mask wave is
non-zero. The wave w can be of any numeric type.
mask must have the same dimensions as w and must be real. It is usually the
result of another expression. For example, to set all values in the destination
to NaN where w is greater than 5:
MatrixOp/o ou = setNaNs(w,greater(w,5))

Added in Igor Pro 7.00.

setOffDiag(w,d,w1) Returns the data in the w with the contents of w1 stored in diagonal d.
d=0 is the main diagonal of w, d>0 correspond to upper diagonals and d<0 to
lower diagonals. w and w1 can either be both real or both complex.
Added in Igor Pro 7.00.

setRow(w2d r,w1d) Returns the data in the w2d with the contents of w1d stored in row r.
w1d must have at least as many elements as the number of columns in w2d.
w2d and w1d must be either both real or both complex.
Added in Igor Pro 7.00.

sgn(w) Returns the sign of each element in w. It returns -1 for negative numbers and
1 otherwise. It does not accept complex numbers.

shiftVector(w, n, val)

Shifts the element of a 1D row-vector w by n elements and fills the displaced
elements with val, which must match the data type of w and should be
expressed as cmplx(a,b) for complex w.

sin(z) Sine of z.

sinh(z) Hyperbolic sine of z. Added in Igor Pro 7.00.

sqrt(z) Square root of z.

subRange(w,rs,re,cs,ce)

Returns a contiguous subset of the wave w from starting row rs through
ending row re and from starting column cs through ending column ce. This is
similar to Duplicate/R except that dimension scaling and labels not
preserved.
Added in Igor Pro 7.00.

subtractMean(w,opt) Computes the mean of the real wave w and returns the values of the wave
minus the mean value (opt=0). Computes the mean of each column and
subtracts it from that column (opt=1). Subtracts the mean of each row from
row values (opt=2).

subWaveC(w,r,c,count[,stride])

MatrixOp

V-495

Returns a subset of the data that is sampled along columns of the wave w,
containing count elements starting with the element at row r and column c.
By default stride=1 and the sampling is continuous.
You can specify a negative stride to sample backwards from the starting
element.
The operation returns an error if the sampling would exceed the array
bounds in either direction.
For example:
Make/O/N=(22,33) ddd=x

MatrixOP/O/P aa=subWaveC(ddd,4,5,10,2)
// aa={4,6,8,10,12,14,16,18,20,0}

MatrixOP/O/P aa=subWaveC(ddd,4,5,5,-4)
// aa={4,0,18,14,10}

subWaveR(w,r,c,count[,stride])

Returns a subset of the data that is sampled along rows of the wave w,
containing count elements starting with the element at row r and column c.
By default stride=1 and the sampling is continuous.
You can specify a negative stride to sample backwards from the starting
element.
The operation returns an error if the sampling would exceed the array
bounds in either direction.
Examples:
Make/O/N=(10,20) ddd=y

// Forward sampling across right boundary
MatrixOP/O/P aa=subWaveR(ddd,4,15,6,2)
// aa={15,17,19,1,3,5}

// Reverse sampling across left boundary
MatrixOP/O/P aa=subWaveR(ddd,2,3,5,-1)
// aa={3,2,1,0,19}

sum(z) Returns the sum of all the elements in expression z.

sumBeams(w) Returns an (n x m) matrix containing the sum over all layers of all the beams
of the 3D wave w:

A beam is a 1D array in the Z-direction.
sumBeams is a non-layered function which requires that w be a proper 3D
wave and not the result of another expression.

sumCols(w) Returns a (1 x m) matrix containing the sums of the m columns in the nxm
input wave w:

outij = wijk
k=0

nLayers�1

� .

out j = wij
i=0

nRows�1

� .

MatrixOp

V-496

sumRows(w) Returns an (n x 1) matrix containing the sums of the n rows in the nxm input
wave w:

sumSqr(w) Sum of the squares of all elements in w.

syncCorrelation(w) Synchronous spectrum correlation matrix for a real valued input matrix wave
w. See also asyncCorrelation.
The correlation matrix is computed by subtracting from each column of w its
mean value, multiplying the resulting matrix by its transpose, and finally
dividing all elements by (nrows-1) where nrows is the number of rows in w.

tan(w) Tangent of w.

tanh(w) Hyperbolic tangent of w. Added in Igor Pro 7.00.

tensorProduct(w1,w2) Returns a 2D matrix that is the tensor product of the 2D matrices w1 and w2.
For example, the tensor product of two (2 x 2) matrices is given by:

Added in Igor Pro 7.00.

Trace(w) Returns a real or complex scalar which is the sum of the diagonal elements of
w. If w is not a square matrix, the sum is over the elements for which the row
and column indices are the same.

transposeVol(w,mode)

triDiag(w1,w2,w3) Returns a tri-diagonal matrix where w1 is the upper diagonal, w2 the main
diagonal and w3 the lower diagonal. If w2 has n points than w1 and w3 are
expected to have n-1 points. The waves can be of any numeric type and the
returned wave has a numeric type that accommodates the input.

uint8(w) Converts w to 8-bit unsigned integer representation. See also the /NPRM flag
below for more information. Added in Igor Pro 7.00.

uint16(w) Converts w to 16-bit unsigned integer representation. See also the /NPRM
flag below for more information. Added in Igor Pro 7.00.

uint32(w) Converts w to 32-bit unsigned integer representation. See also the /NPRM
flag below for more information. Added in Igor Pro 7.00.

outi = wij
j=0

nCols�1

� .

a11 a12

a21 a22

⎛

⎝
⎜

⎞

⎠
⎟ ⊗

b11 b12

b21 b22

⎛

⎝
⎜

⎞

⎠
⎟ =

a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

For 3D wave w, transposeVol returns a transposed 3D wave depending on
the value of the mode parameter:

transposeVol is a non-layered function which requires that w be a proper
3D wave and not the result of another expression.

mode=1: output=w[p][r][q]
mode=2: output=w[r][p][q]
mode=3: output=w[r][q][p]
mode=4: output=w[q][r][p]
mode=5: output=w[q][p][r]

MatrixOp

V-497

Wave Parameters
MatrixOp was designed to work with 2D waves (matrices) but also works with 1D, 3D and 4D waves. A 1D
wave is treated like a 1-column matrix. 3D and 4D waves are treated on a layer-by-layer basis, as if each
layer were a matrix>
You can reference subsets of waves in expression. Only two types of subsets are supported: those that
evaluation to a single element, which are treated as scalars, and those that evaluate to one or more layers.
For example:

You can pass waves of any dimensions as parameters to MatrixOp functions. For example:

varCols(w) Returns a (1 x cols) wave where each element contains the variance of the
corresponding column in w.

waveIndexSet(w1,w2,w3)

Returns a matrix of the same dimensions as w1 with values taken either from
w1 or from w3 depending on values in w2 using:

w1 and w2 must have the same number of rows and columns. w1 and w3 must
match in number type. w2 cannot be unsigned.
Values from w2 are used as point number indices into w3 which is treated like
a 1D wave regardless of its actual dimensionality.
An index value from w2 is out-of-bounds if it is greater than or equal to the
number of points in w3. In this case, the output value is taken from w1 as if
the index value were negative.

waveMap(w1,w2) Returns an array of the same dimensions as w2 containing the values
w1[w2[i][j]]. The data type of the output is the same as that of w1. Values of
w2 are taken as 1D integer indices into the w1 array. See also IndexSort.

waveChunks(w) Returns the number of chunks in the wave w. Added in Igor Pro 7.00.

waveLayers(w) Returns the number of layers in the wave w. Added in Igor Pro 7.00.

wavePoints(w) Returns the number of points in the wave w. Added in Igor Pro 7.00.

within(w,low,high) Returns an array of the same dimensions as w with the value 1 where the
corresponding element of w is between low and high (low <= w[i][j] < high).
Added in Igor Pro 7.00.
All parameters must be real. It is an error to pass a NaN as either low or high.
It is also an error if low >= high. If w contains NaNs, the corresponding outputs
are 0.

zeroMat(r,c,nt) Returns an (r x c) matrix of number type nt where all entries are set to zero.
See WaveType for supported types. See also const above.
Added in Igor Pro 7.00.

wave1d[a] Scalar

wave2d[a][b] Scalar

wave3d[a][b][c] Scalar

wave3d[][][a] Layer a from 3D wave

wave3d[][][a,b] Layers a through b from 3D wave

wave3d[][][a,b,c] Layers a through b stepping by c from 3D wave

out[i][j] =
w1[i][j] if w2[i][j] < 0

w3[w2[i][j]] otherwise
.

�

�

�

MatrixOp

V-498

Make/O/N=128 wave1d = x
MatrixOp/O outWave = powR(wave1d,2)

MatrixOp does not allow using the same 3D wave on both sides of the assignment:
MatrixOp/O wave3D = wave3D + 3 // Not allowed

See MatrixOp Wave Data Tokens on page III-134 for further discussion.

Flags

Details
MatrixOp has the general form:
MatrixOp [flags] destWave = expression

destWave specifies the wave created by MatrixOp or overwritten by MatrixOp/O.
From the command line, destWave can be a simple wave name, a partial data folder path or a full data folder
path. In a user-defined function it can be a simple wave name or, if /O is present, a wave reference pointing
to an existing wave.
expression is a mathematical expression that consists of one or more data tokens combined with the built-in
MatrixOp functions and MatrixOp operators listed above. MatrixOp does not support the p, q, r, s, or x, y,
z, t symbols that are used in waveform assignment statements.
Data tokens include waves, variables and literal numbers.

/C Provides a complex wave reference for destWave. If omitted, MatrixOp creates a real wave
reference for destWave. The wave reference allows you to refer to the output wave in a
subsequent statement of a user-defined function.

/FREE Creates destWave as a free wave. Allowed only in functions and only if a simple name or wave
reference structure field is specified.

Requires Igor Pro 6.1 or later. For advanced programmers only.

See Free Waves on page IV-84 for more discussion.

/NTHR=n Sets the number of threads used to compute the results for 3D waves. Each thread computes
the results for a single layer of the input.

By default (/NTHR omitted) the calculations are performed by the main thread only.

If n=0 the operation uses as many threads you have processors on your computer.

If n>0, n specifies the number of threads to use. More threads may or may not improve
performance.

/NPRM Use /NPRM to restrict the automatic promotion of numeric data types in MatrixOp
expressions.
By default, MatrixOp promotes numeric data types so that operations result in reasonable
accuracy. In some situations you may want to keep the results as a particular data type even
at the risk of truncation or overflow. If you include the /NPRM flag, MatrixOp creates the
destination wave using the highest precision data type in the expression. For example, an
expression A=B+C where B is 16-bit wave and C is an 8-bit wave results in a 16-bit wave A.
Unsigned number types can result only when all operands are unsigned.
/NPRM is ignored when data promotion is required. For example:
Make/B/U wave2

MatrixOp/O/NPRM wave1 = -wave2

You can use MatrixOp functions such as int8, int16, etc., to precisely control the number type
of any token.

/O Overwrites destWave if it already exists.

/S Preserves the dimension scaling, units and wave note of a pre-existing destination wave in a
MatrixOp/O command.

MatrixOp

V-499

You can use any combination of data types for operands. In particular, you can mix real and complex types
in expression. MatrixOp determines data types of inputs and the appropriate output data type at runtime
without regard to any type declaration such as Wave/C.
See Using MatrixOp on page III-132 for more information.

Examples
In addition to these examples, see MatrixOp Optimization Examples on page III-139.
The following matrices are used in these examples:
Make/O/N=(3,3) r1=x, r2=y

Matrix addition and matrix multiplication by a scalar:
MatrixOp/O outWave = r1+r2-3*r1

Using the matrix Identity function:
MatrixOp/O outWave = Identity(3) x r1

Create a persisting identity matrix for another calculation:
MatrixOp/O id4 = Identity(4)

Using the Trace function:
MatrixOp/O outWave = (Trace(r1)*identity(3) x r1)-3*r1

Using matrix inverse function Inv() with matrix multiplication:
MatrixOp/O outWave = Inv(r2) x r2

Using the determinant function Det():
MatrixOp/O outWave = Det(r1)+Det(r2)

Using the Transpose postfix operator:
MatrixOp/O outWave = r1^t+(r2-r1)^t-r2^t

Using a mix of real and complex data:
Variable/C complexVar = cmplx(1,2)
MatrixOp/O outWave = complexVar*r2 - Cmplx(2,4)*r1

Hermitian transpose operator:
MatrixOp/O outWave = Trace(complexVar*r2)^h -Trace(cmplx(2,4)*r1)^h

In-place operation and conversion to complex:
MatrixOp/O r1 = r1*cmplx(1,2)

Image filtering using 2D spatial filter filterWave:
MatrixOp/O filteredImage=IFFT(FFT(srcImage,2)*filterWave,3)

Positive shift:
Make/O w={0,1,2,3,4,5,6}
MatrixOp/O w=shiftVector(w,2,77)
Print w
// w[0]= {77,77,0,1,2,3,4}

Negative shift:
Make/O w={0,1,2,3,4,5,6}
MatrixOp/O w=shiftVector(w,(-2),77)
Print w
// w[0]= {2,3,4,5,6,77,77}

References
syncCorrelation and asyncCorrelation:
Noda, I., Determination of Two-Dimensional Correlation Spectra Using the Hilbert Transform, Applied

Spectroscopy 54, 994-999, 2000.
ChirpZ:
Rabiner, L.R., and B. Gold, The Theory and Application of Digital Signal Processing, Prentice Hall, Englewood

Cliffs, NJ, 1975.

See Also
Using MatrixOp on page III-132
Matrix Math Operations on page III-131 for more about Igor’s matrix routines

MatrixRank

V-500

FastOp

MatrixRank
matrixRank(matrixWaveA [, conditionNumberA])
The matrixRank function returns the rank of matrixWaveA subject to the specified condition number.
The matrix is not considered to have full rank if its condition number exceeds the specified
conditionNumberA.
If the optional parameter conditionNumberA is not specified, Igor Pro uses the value 1020.
matrixRank supports real and complex single precision and double precision numeric wave data types.
The value of conditionNumberA should be large enough but taking into account the accuracy of the
numerical representation given the numeric data type.
If there are any errors the function returns NaN.

See Also
Matrix Math Operations on page III-131 for more about Igor’s matrix routines.

MatrixSchur
MatrixSchur [/Z] srcMatrix
The MatrixSchur operation computes for an NxN nonsymmetric srcMatrix, the eigenvalues, the real Schur
form A and the matrix of Schur vectors V.
The Schur factorization has the form: S = V x A x (V^T), where V^T is the transpose (use V^H if S is complex)
and x denotes matrix multiplication.

Flags

Details
The operation creates:

The variable V_flag is set to 0 when there is no error; otherwise it contains the LAPACK error code.

Examples
You can test this operation for an N-by-N source matrix:
Make/D/C/N=(5,5) M_S=cmplx(enoise(1),enoise(1))
MatrixSchur M_S
MatrixOp/O unitary=(M_V^h) x M_V // Check unitary
MatrixOp/O diff=abs(M_S-M_V x M_A x (M_V^H)) // Check decomposition

See Also
Matrix Math Operations on page III-131 for more about Igor’s matrix routines and for background
references with details about the LAPACK libraries.

MatrixSolve
MatrixSolve method, matrixA, vectorB
The MatrixSolve operation was superseded by MatrixLLS and is included for backward compatibility only.
Used to solve matrix equation Ax=b using the method of your choice. Choices for method are:

 /Z No error reporting.

 M_A Upper triangular matrix containing the Schur form A.

 M_V Unitary matrix containing the orthogonal matrix V of the Schur vectors.

 W_REigenValues
 W_IEigenValues

Waves containing the real and imaginary parts of the eigenvalues when srcMatrix is
a real wave. If srcMatrix is complex, the eigenvalues are stored in W_eigenValues.

MatrixSVBkSub

V-501

Details
The array b can be a matrix containing a number of b vectors and the output matrix M_x will contain a
corresponding set of solution vectors.
V_flag is set to zero if success, 1 if singular matrix using GJ or LU and 1 if SV fails to converge.
For normal problems you should use LU. GJ is provided only for completeness and has no practical use.
When using SV, singular values smaller than 10-6 times the largest singular value are set to zero before back
substitution.
Generates an error if the dimensions of the input matrices are not appropriate.

See Also
The MatrixLLS operation. Matrix Math Operations on page III-131 for more about Igor’s matrix routines.

MatrixSVBkSub
MatrixSVBkSub matrixU, vectorW, matrixV, vectorB
The MatrixSVBkSub operation does back substitution for SV decomposition.

Details
Used to solve matrix equation Ax=b after you have performed an SV decomposition.
Feed this routine the M_U, W_W and M_V waves from MatrixSVD along with your right-hand-side vector
b. The solution vector x is returned as M_x.
The array b can be a matrix containing a number of b vectors and the M_x will contain a corresponding set
of solution vectors.
Generates an error if the dimensions of the input matrices are not appropriate.

See Also
Matrix Math Operations on page III-131 for more about Igor’s matrix routines.

MatrixSVD
MatrixSVD [flags] matrixWave
The MatrixSVD operation uses the singular value decomposition algorithm to decompose an MxN
matrixWave into a product of three matrices. The default decomposition is into MxM wave M_U, min(M,N)
wave W_W and NxN wave M_VT.

Flags

method Solution Method

GJ Gauss Jordan.

LU LU decomposition.

SV Singular Value decomposition.

/B Use this flag for backwards compatibility with Igor Pro 3. This option applies
only to real valued input waves. Note that no other flag can be combined with /B.
Here the decomposition is such that:

/DACA Replaces the standard LAPACK algorithm with one that is based on a divide and
conquer approach. For a typical 1000x1000 matrix this provides a 6x speed
improvement.
Added in Igor Pro 7.00.

U*W*V^T = matrixWave
U: MxN column-orthonormal matrix.
W: NxN diagonal matrix of positive singular values.
V: NxN orthonormal matrix.

MatrixSVD

V-502

Details
The singular value decomposition is computed using LAPACK routines. The diagonal elements of matrix
W are returned as a 1D wave named W_W. If /B is used W_W will have N elements. Otherwise the number
of elements in W_W is min(M,N).
The matrix V is returned in a matrix wave named M_V if /B is used otherwise the transpose V^T is returned
in the wave M_VT.
All output objects are created in the current data folder.
The variable V_flag is set to zero if the operation succeeds. It is set to 1 if the algorithm fails to converge.
The variable V_SVConditionNumber is set to the condition number of the input matrix. The condition
number is the ratio of the largest singular value to the smallest.

Example
Make/O/D/N=(10,20) A=gnoise(10)
MatrixSVD A
MatrixOp/O diff=abs(A-(M_U x DiagRC(W_W,10,20) x M_VT))
Print sum(diff,-inf,inf)

References
J.C. Nash and S.Shlien "Simple Algorithms for the Partial Singular Value Decomposition", The Comp. J. (30)

No. 3 1987.

See Also
The MatrixOp operation for more efficient matrix operations.
Matrix Math Operations on page III-131 for more about Igor’s matrix routines and for background
references with details about the LAPACK libraries.

/INVW Saves the inverse of the elements in W_W. The results are then stored in wave
W_InvW.

/O Overwrites matrixWave with the first columns of U. Use this flag to if you need to
conserve memory. See also related settings of /U and /V.

/PART =nVals Performs a partial SVD computing only nVals singular values (stored in W_W)
and the associated vectors in the matrix M_U and M_V. If you use this flag the
operation ignores all other flags except /PDEL. The partial SVD is computed
using the Power method of Nash and Shlien.
The /PART flag was added in Igor Pro 7.00.

/PDEL=del Sets the convergence threshold which defaults to 1e-6. Larger positive values
result in faster execution but may lead to less accurate results.
The /PDEL flag was added in Igor Pro 7.00.

/U =UMatrixOptions

/V=VMatrixOptions

/Z No error reporting.

UMatrixOptions can have the following values:
0: All columns of U are returned in the wave M_U (default).
1: The first min(m,n) columns of U are returned in the wave M_U.
2: The first min(m,n) columns of U overwrite matrixWave (/O must be

specified).
3: No columns of U are computed.

VMatrixOptions can have the following values:
0: All rows of V^T are returned in the wave M_VT (default).
1: The first min(m,n) rows of V^T are returned in the wave M_VT.
2: The first min(m,n) rows of V^T are overwritten on matrixWave (/O must

be specified)
3: No rows of V^T are computed.

MatrixTrace

V-503

MatrixTrace
matrixTrace(dataMatrix)
The matrixTrace function calculates the trace (sum of diagonal elements) of a square matrix. dataMatrix can
be of any numeric data type.
If the matrix is complex, it returns the sum of the magnitudes of the diagonal elements.

See Also
Matrix Math Operations on page III-131 for more about Igor’s matrix routines.

MatrixTranspose
MatrixTranspose [/H] matrix
The MatrixTranspose operation Swaps rows and columns in matrix.
Does not take complex conjugate if data are complex. You can do that as a follow-on step.
Swaps row and column labels, units and scaling.
This works with text as well as numeric waves. If the matrix has zero data points, it just swaps the row and
column scaling.

Flags

See Also
The MatrixOp operation for more efficient matrix operations.
Matrix Math Operations on page III-131 for more about Igor’s matrix routines.

max
max(num1, num2 [, num3, ... num200])
The max function returns the greatest value of num1, num2, ... num200.
If any parameter is NaN, the result is NaN.

Details
In Igor7 or later, you can pass up to 200 parameters. Previously max was limited to two parameters.

See Also
min, limit, WaveMin, WaveMax

mean
mean(waveName [, x1, x2])
The mean function returns the arithmetic mean of the wave for points from x=x1 to x=x2.

Details
If x1 and x2 are not specified, they default to -∞ and +∞, respectively.
The wave values from x1 to x2 are summed, and the result divided by the number of points in the range.
The X scaling of the wave is used only to locate the points nearest to x=x1 and x=x2. To use point indexing,
replace x1 with pnt2x(waveName,pointNumber1), and a similar expression for x2.
If the points nearest to x1 or x2 are not within the point range of 0 to numpnts(waveName)-1, mean limits
them to the nearest of point 0 or point numpnts(waveName)-1.
If any values in the point range are NaN, mean returns NaN.
The function returns NaN if the input wave has zero points.
Unlike the area function, reversing the order of x1 and x2 does not change the sign of the returned value.

/H Computes the Hermitian conjugate of a complex wave.

median

V-504

Examples
Make/O/N=100 data; SetScale/I x 0,Pi,data
data=sin(x)
Print mean(data,0,Pi) // the entire point range, and no more
Print mean(data) // same as -infinity to +infinity
Print mean(data,Inf,-Inf) // +infinity to -infinity

The following is printed to the history area:
Print mean(data,0,Pi) // the entire point range, and no more

0.630201
Print mean(data) // same as -infinity to +infinity

0.630201
Print mean(data,Inf,-Inf) // +infinity to -infinity

0.630201

See Also
Variance, WaveStats, median
The figure “Comparison of area, faverage and mean functions over interval (12.75,13.32)”, in the Details
section of the faverage function.

median
median(waveName [, x1, x2])
The median function returns the median value of the wave for points from x=x1 to x=x2.
The median function was added in Igor Pro 7.00.

Details
If you omit x1 and x2, they default to -INF and +INF, respectively.
The X scaling of the wave is used only to locate the points nearest to x=x1 and x=x1. To use point indexing,
replace x1 with "pnt2x(waveName,pointNumber1)", and a similar expression for x2.
If the points nearest to x1 or x2 are outside the point range of 0 to numpnts(waveName)-1, median limits
them to the nearest of point 0 or point numpnts(waveName)-1.
If the wave contains NaNs they are skipped.
The function returns NaN if the input wave has zero non-NaN points.

See Also
mean, Variance, StatsMedian, StatsQuantiles, WaveStats

MeasureStyledText
MeasureStyledText [/W=winName /A=axisName /F=fontName /SIZE=fontSize

/STYL=fontStyle] styledTextStr
The MeasureStyledText operation takes as input a string optionally containing style codes such as are used
in graph annotations. It sets various variables with information about the dimensions of the string.

Flags

/W=winName Takes default text information from the window winName.

/A=axisName Takes default text information from the axis named axisName. If the /W flag is
used, the axis should be in that window (the window should also be a graph). If
the /W flag is not used, MeasureStyledText looks at the top graph window.

/F=fontNameStr The name of the default font.

/SIZE=size Sets default font size.

Menu

V-505

Parameters

Details
In the absence of formatting codes within the text that set the font, font size and font style, some mechanism
must be provided that sets them. The /W flag tells MeasureStyledText to look at a particular window and
get defaults from that window.
The /A flag specifies that the defaults should come from a graph's axis of the given name.
MeasureStyledText will look for the axis in the window named by /W, or in the top graph window in the
absence of the /W flag.
The /F, /SIZE and /STYL flags set defaults that override any defaults from a window or axis. If you don't
use any flags, the defaults are Igor's overall defaults.

Variables
The MeasureStyledText operation returns information in the following variables:

See Also
Annotation Escape Codes on page III-53 for a list of text formatting codes.

Menu
Menu menuNameStr [, hideable, dynamic, contextualmenu]
The Menu keyword introduces a menu definition. You can use this to create your own menu, or to add
items to a built-in Igor menu.
Use the optional hideable keyword to make the menu hideable using HideIgorMenus.
Use the optional dynamic keyword to cause Igor to re-evaluate the menu definition when the menu is used.
This is helpful when the menu item text is provided by a user-defined function. See Dynamic Menu Items
on page IV-120.
Use the optional contextualmenu keyword for menus invoked by PopupContextualMenu/N.
See Chapter IV-5, User-Defined Menus for further information.

min
min(num1, num2 [, num3, ... num200])
The min function returns the least value of num1, num2, ... num200.
If any parameter is NaN, the result is NaN.

Details
In Igor7 or later, you can pass up to 200 parameters. Previously min was limited to two parameters.

See Also
max, limit, WaveMin, WaveMax

/STYL=fontStyle

styledTextStr The text to be measured.
The text can contain escape codes to set the font, size, style, color and other properties.
See Annotation Escape Codes on page III-53 for details.

V_width The width in points of the text.

V_height The height in points of the text.

Sets default font style:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold
Bit 1: Italic
Bit 2: Underline
Bit 4: Strikethrough

MLLoadWave

V-506

MLLoadWave
MLLoadWave [flags] fileNameStr
The MLLoadWave operation loads data from the named Matlab MAT file into single 1D waves (vectors),
multi-dimensional waves (matrices), numeric variables or string variables.
For background information, including configuration instructions, see Loading Matlab MAT Files on page
II-144.

Parameters
The file to be loaded is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If
LoadWave can not determine the location of the file from fileNameStr and pathName, it displays a dialog
allowing you to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.
If fileNameStr is omitted or is "" or the /I flag is used, MLLoadWave displays an Open File dialog in which
you locate the file to be loaded.

Flags

/A[=name] Assign wave names using "wave" or name, if present, as the name or base name. Skips
names already in use.

/B This flag is obsolete and is ignored. Previously it was required to tell MLLoadWave
the byte order of the data in the file. MLLoadWave now determines the byte order
automatically.

/C Loads columns from a Matlab matrix into an Igor 1D wave. Use /R to load rows.

/E Skips empty Matlab matrices.

/G Tells Igor to make numeric and string variables global when called from a macro.
When called from a user-defined function or from the command line, variables are
always created as globals.

/I Interactive. Displays the Open File dialog to get the path to the file.

/M=m m =1: Loads an entire Matlab matrix into an Igor 1D wave. This is the default if you
omit /M.

m =2: Loads an entire Matlab matrix into an Igor matrix.

m =3: Loads an entire Matlab matrix into a transposed Igor matrix.

/M by itself is equivalent to /M=1.

/N[=name] Assign wave names using "wave" or name, if present, as the name or base name.
Overwrites existing waves if the name is already in use.

/O Overwrites existing waves and variables in case of a name conflict. If /O is omitted,
MLLoadWave chooses names that don’t conflict with existing objects.

/P=pathName Specifies the folder to look in for the specified file or folder. pathName is the name of
an existing Igor symbolic path.

/Q Be quiet. Suppresses normal diagnostic messages.

/R Loads rows from a Matlab matrix into an Igor 1D wave. Use /C to load columns.

MLLoadWave

V-507

Details
If neither /A, /A[=name], /N, or N[=name] is used then the waves names are taken from the matrix name, as
stored in the Matlab file.
When loading 1D waves, the /N flag instructs MLLoadWave to automatically name new waves "wave" (or
baseName if /N=baseName is used) plus a number. The number starts from zero and increments by one for
each wave loaded from the file. When loading multi-dimensional waves, name is used without an appended
number.
The /A flag is like /N except that MLLoadWave skips names already in use.
If a given matrix is to be loaded into a single Igor wave, MLLoadWave uses the name without appending
any digits. For example, if you have a 5x3 matrix in a file and you tell MLLoadWave to load it as a matrix
using the name "mat", MLLoadWave will name the matrix "mat". However, if you tell MLLoadWave to load
the matrix as 3 1D waves, it will use "mat0", "mat1" and "mat2".
If the name that MLLoadWave would use when creating a wave or variable is in use for an object of the
same type and if you use the overwrite flag, then it will overwrite the existing object. If you do not tell
MLLoadWave to overwrite, it will choose a non-conflicting name. If the conflict is with an object of a
different type or with an operation or function, MLLoadWave will also choose a non-conflicting name.
When loading Matlab strings into Igor, you can tell MLLoadWave to create Igor string variables or Igor text
waves. For example, if you have a 2x8 string matrix, MLLoadWave can create two string variables (/S=2) or
one text wave (/S=3) containing two elements.
When loading Matlab string data into an Igor wave, the Igor wave will be of dimension one less than the
Matlab data set. This is because each element in a Matlab string data set is a single byte whereas each
element in an Igor string wave is a string (any number of bytes).
MLLoadWave loads numeric matrices with one element into Igor numeric variables. It loads all other
numeric matrices into Igor waves.
When called from a macro, MLLoadWave creates local numeric and string variables unless you use the /G
flag which tells it to create global variables. When called from the command line or from a user-defined
function, MLLoadWave always creates global variables. Macros should be avoided in new programming.
For a discussion of how MLLoadWave handles 3D and 4D Matlab data, see Numeric Data Loading Modes.

/S=s

/S by itself is equivalent to /S=1.

/T Displays the loaded waves in a new table.

/V Skips Matlab numeric variables (numeric matrices with one element).

/Y=y

/Z Interactive load. Displays a dialog presenting options for each Matlab matrix in the
file.

Controls how Matlab string data is loaded:
s=1 Skips Matlab string matrices.
s=2 Loads Matlab string matrices into Igor string variables. This is the

default if /S is omitted.
s=3 Loads Matlab string matrices into Igor text waves.

Specifies the number type of the numeric waves to be created. The allowed codes
for y are:
2: Single-precision floating point
4: Double-precision floating point
32: 32-bit signed integer
16: 16-bit signed integer
8: 8-bit signed integer
96: 32-bit signed integer
80: 16-bit signed integer
72: 8-bit signed integer

mod

V-508

The /Z flag instructs MLLoadWave to load each Matlab object (matrix, vector, variable, string) step by step.
MLLoadWave presents a dialog for each Matlab object in the file. You can choose to load or skip the object.
If you omit the /Z flag, MLLoadWave will load all objects in the file without presenting any dialogs.
When running MLLoadWave using the Mathworks-supplied libraries, MLLoadWave can handle data from
any platform supported by the Mathworks libraries, presumably all platforms on which Matlab runs. When
running MLLoadWave without having installed the Mathworks-supplied libraries, MLLoadWave can load
VAX F (single precision) and G (double precision) but not D (extended precision) floating point data.

Output Variables
MLLoadWave sets the following output variables:

Prior to MLLoadWave 5.50, the variables V_Flag1, V_Flag2, V_Flag3 and V_Flag4 were named V1_Flag,
V2_Flag, V3_Flag and V4_Flag.

See Also
Symbolic Paths on page II-21
See Loading Matlab MAT Files on page II-144 for background information, including configuration
instructions.

mod
mod(num, div)
The mod function returns the remainder when num is divided by div.
The mod function may give unexpected results when num or div is fractional because most fractional
numbers can not be precisely represented by a finite-precision floating point value.

See Also
trunc, gcd

ModDate
ModDate(waveName)
The ModDate function returns the modification date/time of the wave.

Details
The returned value is a double precision Igor date/time value, which is the number of seconds from
1/1/1904. It returns zero for waves created by versions of Igor prior to 1.2, for which no modification
date/time is available.

See Also
The Secs2Date and Secs2Time functions.

S_path File system path to the folder containing the file.
This is a system file path (e.g., "hd:FolderA:FolderB:"), not an Igor symbolic path. The
path uses Macintosh path syntax, even on Windows, and has a trailing colon.

S_fileName Name of the loaded file.

V_flag Number of waves created.

V_flag1 Number of Matlab data sets (2D, 3D, or 4D) loaded.

V_flag2 Number of waves created.

V_flag3 Number of numeric variables created.

V_flag4 Number of string variables created.

S_waveNames Semicolon-separated list of the names of loaded waves.

Modify

V-509

Modify
Modify
We recommend that you use ModifyGraph, ModifyTable, ModifyLayout, or ModifyPanel rather than
Modify. When interpreting a command, Igor treats the Modify operation as ModifyGraph, ModifyTable,
ModifyLayout or ModifyPanel, depending on the target window. This does not work when executing a
user-defined function.

ModifyBrowser
ModifyBrowser [/M] [keyword = value [, keyword = value …]]
The ModifyBrowser operation modifies the state of the Data Browser according to the specified keywords.
Documentation for the ModifyBrowser operation is available in the Igor online help files only. In Igor,
execute:
DisplayHelpTopic "ModifyBrowser"

ModifyCamera
ModifyCamera [flags] [keywords]
The ModifyCamera operation modifies the properties of a camera window.
Documentation for the ModifyCamera operation is available in the Igor online help files only. In Igor,
execute:
DisplayHelpTopic "ModifyCamera"

ModifyContour
ModifyContour [/W=winName]contourInstanceName, keyword=value

[, keyword=value…]
The ModifyContour operation modifies the number, Z value and appearance of the contour level traces
associated with contourInstanceName.
contourInstanceName is a name derived from the name of the wave that provides the Z data values. It is
usually just the name of the wave, but may have #1, #2, etc. added to it in the unlikely event that the same
Z wave is contoured more than once in the same graph.
contourInstanceName can also take the form of a null name and instance number to affect the instanceth
contour plot. That is,
ModifyContour ''#1

modifies the appearance of the second contour plot in the top graph, no matter what the contour plot names
are. Note: Two single quotes, not a double quote.
The number of contour level traces and their Z values are set by the autoLevels, manLevels, and moreLevels
keywords, described in the Parameters section. Normally, you will use either autoLevels or manLevels, and
then optionally generate additional levels using moreLevels.

Parameters
Each parameter has the syntax
keyword = value

and is applied to all of the contour level traces associated with contourInstanceName.
To modify an individual contour level trace, use ModifyGraph.

autoLevels= {minLevel, maxLevel, numLevels}

ModifyContour

V-510

Controls automatic determination of contour levels.
If numLevels is zero, no automatic levels are generated. If it is nonzero, it specifies
the desired number of automatic contour levels.
minLevel specifies the minimum contour level and maxLevel specifies the
maximum contour level. The values that you specify are an approximate guide
for Igor to use in determining the actual levels.
However, if minLevel or maxLevel is * (asterisk symbol), Igor uses the minimum or
maximum value of the Z data for the corresponding contour level.
Using the autoLevels keyword cancels the effect of any previous autoLevels or
manLevels keyword.
When you first append a contour plot to a graph, default contour levels are
generated by the default setting autoLevels={*,*,11}.

boundary=b

cIndexFill= matrixWave Sets contour fills to use a color index wave when automatic fill is on (see the fill
keyword).
cIndexFill works the same as the cIndexLines keyword which controls the colors
of the contour level traces.
See Contour Fills on page II-286 for more information.
cIndexFill was added in Igor Pro 7.00.

cIndexLines= matrixWave

Sets the Z value mapping mode such that contour line colors are determined by
doing a lookup in the specified matrix wave.
matrixWave is a 3 column wave that contains red, green, and blue values from 0
to 65535. (The matrix can actually have more than three columns. Any extra
columns are ignored.)
The color for a the contour line at Z=z is determined by finding the RGB values in
the row of matrixWave whose scaled X index is z. In other words, the red value is
matrixWave(z)[0], the green value is matrixWave(z)[1] and the blue value is
matrixWave(z)[2].
If matrixWave has default X scaling, where the scaled X index equals the point
number, then row 0 contains the color for Z=0, row 1 contains the color for Z=1,
etc.
If you use cIndexLines, you must not use ctabLines or rgbLines in the same
command.

cTabFill= {zMin, zMax, ctName, mode}

Sets contour fills to use a color table when automatic fill is on (see the fill
keyword).
cTabFill works the same as the ctabLines keyword which controls the colors of the
contour level traces.
See Contour Fills on page II-286 for more information.
cTabFill was added in Igor Pro 7.00.

Draws an outline around the XY domain of the contour data. For a matrix, this
draws a rectangle showing the minimum and maximum X and Y values. For
XYZ triples, the outline is a polygon enclosing the outside edges of the
Delaunay Triangulation. Like the contour lines, the boundary is drawn using
a graph trace, whose name is usually something like
“contourInstanceName = boundary”.
b=0: Hides the data boundary (default).
b=1: Shows the data boundary.

ModifyContour

V-511

ctabLines={zMin, zMax, ctName, mode}

Sets the Z value mapping mode such that contour line colors are determined by
doing a lookup in the specified color table. zMin is mapped to the first color in the
color table. zMax is mapped to the last color. Z values between the min and max
are linearly mapped to the colors between the first and last in the color table.
You can enter * (an asterisk) for zMin and zMax, which uses the minimum and
maximum Z values of the data. The default is {*,*,Rainbow}.
Set parameter mode to 1 to reverse the color table; zero or missing does not reverse
the color table.
ctName can be any color table name returned by the CTabList function, such as
Grays or Rainbow (see Image Color Tables on page II-305) or the name of a 3
column or 4 column color table wave (see Color Table Waves on page II-311).
A color table wave name supplied to ctabLines must not be the name of a built-
in color table (see CTabList). A 3 column or 4 column color table wave must have
values that range between 0 and 65535. Column 0 is red, 1 is green, and 2 is blue.
In column 3 a value of 65535 is opaque, and 0 is fully transparent.
If you use ctabLines, you must not use cIndexLines or rgbLines in the same
command.

equalVoronoiDistances=e

fill=f

See Contour Fills on page II-286 for more information.
fill was added in Igor Pro 7.00.

Normally the x range and y range of the data are each normalized to a 0-1
range separately to generate the Voronoi triangulation. Voronoi triangulation
is a distance-based ("nearest neighbor") algorithm that may benefit from
scaling the X and Y ranges together to avoid numerical problems that occur
when the triangles become very thin because of widely differing x and y
ranges.

The equalVoronoiDistances keyword is allowed only for XYZ contour plots.

e=0: The x and y ranges are scaled individually to the 0-1 range
(default).

e=1: The x and y ranges are scaled so that that maximum range of
x or y is scaled to the 0-1 range, and the other is proportionally
smaller. For example, if yMax-yMin = 1000 and xMax-xMin =
5, then the y range is scaled to 0-1 and the y range is scaled to
5/1000 = 0 - 0.005.

Controls the automatic filling of contour levels.
f=0: Turns automatic fill off. Default.
f=1: Turns automatic fill on.

ModifyContour

V-512

interpolate=i XYZ contours can be interpolated to increase the apparent resolution, resulting in
smoother contour lines.

The interpolate parameter can be up to 8. Each time you increase i by one, you
quadruple the apparent resolution and get smoother contour lines at the expense
of computation time. Values of i greater than two are impractical because of the
computation time required.

labelBkg=(r, g, b) Sets the background color for all contour level labels to the specified color. r, g,
and b are values from 0 to 65535.

labelBkg=b

labelDigits=d d is the number of digits after the decimal point when using labelFormat=3 or
labelFormat=5.

labelFont=fontName Default; specifies the font to use for contour level labels. If you pass "" for
fontName, it will use the graph font (set via the Modify Graph dialog) for contour
labels.

labelFormat=l

labelFSize=s Specifies the font size of contour labels in points. For example, use labelSize=12
for 12 point type. The default value is 0, which chooses the size automatically
based on the size of the graph.

labelFStyle=n

This keyword is allowed only for XYZ contours, created by
AppendXYZContour.
i=0: Linear interpolation (default). This means that only the original

Delaunay triangulation generates contour lines.
i=1: Four times the resolution generates a smoother set of contour lines.

As expected, this takes longer than Linear interpolation.
i=2: Sixteen times the resolution generates a much smoother set of

contour lines. This is rather slow.

Controls the background color of contour labels.
b=0: Uses each label’s individual background color, as set via the Modify

Annotation dialog.
b=1: Makes all contour level labels transparent.
b=2: Uses the plot area background color as the label background color

(default).
b=3 Uses the window background color as the label background color.

Controls the formatting of contour labels. See the printf operation for a
discussion of formatting.
l=0: Uses general format that is suitable for most data. This is equivalent

to "%<sigDigits>g".
l=1: Uses integer format, equivalent to "%<sigDigits>d". This rounds

fractional values.
l=3: Uses fixed point format, equivalent to "%<decimalDigits>f".
l=5 Uses exponential format, equivalent to "%<decimalDigits>e".

n is a bitwise parameter with each bit controlling one aspect of the font style
for the contour level labels. The default is 0, plain text.

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold
Bit 1: Italic
Bit 2: Underline
Bit 4: Strikethrough

ModifyContour

V-513

labelHV=hv

labelRGB=(r, g, b) Sets the text color for all contour level labels. r, g, and b are values from 0 to 65535.
The default is black, labelRGB=(0,0,0).

labels=l

labelSigDigits=d d is the number of significant digits when labelFormat=0 is used.

logLines= 1 or 0 0 sets the default linearly-spaced contour line colors.
1 turns on logarithmically-spaced line colors. This requires that the contour levels
values be greater than 0 to display correctly.
Affects line color only when the cIndexLines or ctabLines parameter is used.
logLines does not affect the contour levels. To assign logarithmically-spaced
contour levels, use the moreLevels parameter and disable autoLevels, for
example:
ModifyContour ''#0, autoLevels={*,*,0} // No auto levels
ModifyContour ''#0, moreLevels=0
ModifyContour ''#0, moreLevels={1e-07,1e-06,1e-05,1e-04}

manLevels= {firstLevel, increment, numLevels}

Explicitly specifies contour levels. ModifyContour will generate numLevels
contour levels, evenly spaced starting from firstLevel and stepping by increment.
manLevels cancels the effect of any previous manLevels or autoLevels settings.

manLevels= manLevelsWave

Specifies the contour label orientation.
If hv is 3, 4, 5, or 6, the contour label's text rotates whenever it is redrawn,
usually when the underlying contour data changes, the graph is resized, or the
label is reattached to a new contour trace point.
hv=0: Horizontal contour level labels.
hv=1: Vertical contour level labels.
hv=2: Horizontal or vertical contour level labels, depending on the slope

of the contour line.
hv=3: Tangent to the contour line.
hv=4: Tangent to the contour line, snaps to vertical or horizontal if

within 2 degrees of vertical or horizontal (default).
hv=5: Perpendicular to the contour line.
hv=6: Perpendicular to the contour line, snaps to vertical or horizontal

if within 2 degrees of vertical or horizontal.

Controls the display of contour labels.
l=0: Hides contour level labels.
l=1: Leaves any contour level labels in place but stops updating them

and stops generation of new labels.
l=2: Generates or updates labels for the existing contour levels and

window size when the command executes, but disables further
updating of labels when window size or contour plot changes.
This is the recommended setting if updating the labels takes long
enough to annoy you.

l=3: Default; generates labels for all contour levels whenever the
contoured data changes but not when the window size changes.
If you resize the graph, the labels may overlap or be too sparse.

l=4: Generates labels for all contour levels whenever the contoured
data, contour levels, axis range, or the graph size changes.
(Actually, there are too many causes to list here. If all this update
annoys you, use labels=2 “update once, now”.)

ModifyContour

V-514

Explicitly specifies contour levels. ModifyContour will generate contour levels at
the values in manLevelsWave.
manLevels cancels the effect of any previous manLevels or autoLevels settings.

moreLevels= {level, level …}

Explicitly specifies contour levels. ModifyContour will generate a contour trace
for each of the listed levels. The maximum number of levels that you can specify
in a single command is the 50. However, you can concatenate any number of
ModifyContour moreLevels commands. moreLevels adds levels in addition to
any specified by manLevels or autoLevels. It does not override other parameters.
moreLevels=0: Removes all levels generated by previous moreLevels settings.

nullValue=zValue This keyword only affects the behavior of the ContourZ function. It is allowed
only for XYZ contours, created by AppendXYZContour.
By default, ContourZ treats data outside the domain of the contour as NaN and
so returns NaN if you ask for a contour value outside that domain.
The nullValue keyword allows you to change the default behavior to make
ContourZ treat values outside the domain as the specified zValue.

nullValueAuto This keyword only affects the behavior of the ContourZ function. It is allowed
only for XYZ contours, created by AppendXYZContour.
nullValueAuto acts like nullValue=zValue with zValue automatically set to the
minimum value in the Z wave minus 1.
See the nullValue keyword for details.
To turn nullValueAuto off and return the contour to the default state, execute:
ModifyContour <contourInstanceName>, nullValue=NaN

perturbation=p

rgbFill=(r, g, b) Specifies red, green, and blue values for all contour fills. r, g, and b are values from
0 to 65535.
If you use rgbFill, you must not use cIndexFill or ctabFill in the same command.

rgbLines=(r, g, b) Specifies red, green, and blue values for all contour lines. r, g, and b are values
from 0 to 65535.
If you use rgbLines, you must not use cIndexLines or ctabLines in the same
command.

triangulation=t Draws the Delaunay Triangulation. As part of the XYZ contouring algorithm, the
XY domain is subdivided into triangles in a process called Delaunay
Triangulation. Like the contour lines, the triangulation is drawn using a graph
trace, whose name is usually something like “contourInstanceName
=triangulation”.

Enable or disable perturbation (alteration) of the x and y values by a miniscule
amount to improve the natural neighbor triangulation of XYZ contours.

You can observe the perturbed x/y coordinates in the triangulation trace
added by ModifyContour triangulation=1.
The perturbation keyword is allowed only for XYZ contour plots.

p=0: Disables perturbation, preserving the original x and y values
unchanged.

p=1: Enables x/y perturbation (default). The values are shifted by random
values less than +/-0.000005 times the x and y domain extents.

The triangulation keyword is allowed only for XYZ contours, created by
AppendXYZContour.
t=0: Hides the Delaunay triangulation (default).
t=1: Shows the Delaunay triangulation.

ModifyControl

V-515

Flags

See Also
AppendMatrixContour and AppendXYZContour.

References
Watson, David F., nngridr - An Implementation of Natural Neighbor Interpolation, Dave Watson Publisher,
Claremont, Australia, 1994.

ModifyControl
ModifyControl [/Z] ctrlName [keyword = value [, keyword = value …]]
The ModifyControl operation modifies the named control. ModifyControl works on any kind of existing
control. To modify multiple controls, use ModifyControlList.

Parameters
ctrlName specifies the name of the control to be created or changed. The control must exist.

Keywords
The following keyword=value parameters are supported:

For details on these keywords, see the documentation for SetVariable on page V-729.
The following keywords are not supported:

update=u

xymarkers=x

/W=winName Applies to contours in the named graph window or subwindow. When omitted,
action will affect the active window or subwindow. This must be the first flag
specified when used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

activate appearance bodywidth disable fColor focusRing

font fSize fStyle help labelBack noproc

pos proc rename size title userdata

valueBackColor valueColor win

Sets the type of updating of contour traces when the data or contour settings
change.

If you use it in a command, the result is similar to u=0, but the Modify Contour
Appearance dialog will automatically select “update once, now” from the
Update Contours pop-up menu.

u=0: Turns off dynamic updates, which might be advisable if updates take a
long time.

u=1: Updates the contours only once, or until you next execute an
update=1 command.

u=2: Updates are automatic (default).
u=3 Marks the contour plot as having been updated once (u=1) already.

This option is used in recreation macros to prevent an extra redraw
of a graph saved with u=1 update mode in effect.

Controls the visibility of XY markers.
x=0: Hides markers showing XY coordinates of the Z data (default).
x=1: Displays markers showing XY coordinates of Z data. Initially, this

uses marker number zero. You can change this using the Modify
Trace Appearance dialog.

ModifyControl

V-516

Flags

Details
Use ModifyControl to move, hide, disable, or change the appearance of a control without regard to its kind

Example
Here is a TabControl procedure that shows and hides all controls in the tabs appropriately, without
knowing what kind of controls they are.
The “trick” here is that all controls that are to be shown within particular tab n have been assigned names
that end with “_tabn” such as “_tab0” and “_tab1”:
Function TabProc(ctrlName,tabNum) : TabControl

String ctrlName
Variable tabNum

String curTabMatch= "*_tab"+num2istr(tabNum)

String controls= ControlNameList("")
Variable i, n= ItemsInList(controls)
for(i=0; i<n; i+=1)

String control= StringFromList(i, controls)
Variable isInATab= stringmatch(control,"*_tab*")
if(isInATab)

Variable show= stringmatch(control,curTabMatch)
ControlInfo $control // gets V_disable
if(show)

V_disable= V_disable & ~0x1 // clear the hide bit
else

V_disable= V_disable | 0x1 // set the hide bit
endif
ModifyControl $control disable=V_disable

endif
endfor
return 0

End

// Action procedures which enable or disable the buttons
Function Tab1CheckProc(ctrlName,enableButton) : CheckBoxControl

String ctrlName
Variable enableButton

ModifyControl button_tab1, disable=(enableButton ? 0 : 2)
End

Function Tab0CheckProc(ctrlName,enableButton) : CheckBoxControl
String ctrlName
Variable enableButton

ModifyControl button_tab0, disable=(enableButton ? 0 : 2)
End

// Panel macro that creates a TabControl using TabProc
Window TabbedPanel() : Panel

PauseUpdate; Silent 1 // building window...
NewPanel /W=(381,121,614,237) as "Tab Demo"
TabControl tab, pos={12,9},size={205,91},proc=TabProc,tabLabel(0)="Tab 0"
TabControl tab, tabLabel(1)="Tab 1",value= 0
Button button_tab0, pos={54,39},size={110,20},disable=2
Button button_tab0, title="Button in Tab0"
Button button_tab1, pos={54,63},size={110,20},disable=1
Button button_tab1, title="Button in Tab1"
CheckBox check1_tab1, pos={51,41}, size={117,14}, disable=1, value= 1
CheckBox check1_tab1, proc=Tab1CheckProc, title="Enable Button in Tab 1"
CheckBox check0_tab0, pos={51,73}, size={117,14}, proc=Tab0CheckProc
CheckBox check0_tab0, value= 0, title="Enable Button in Tab 0"

EndMacro

Run TabbedPanel to create the panel. Then click on “Tab 0” and “Tab 1” to run TabProc.

mode popmatch popvalue value variable

/Z No error reporting.

ModifyControlList

V-517

See Also
See Chapter III-14, Controls and Control Panels, for details about control panels and controls.
Related functions ModifyControlList and ControlNameList.
The Button, Chart, CheckBox, GroupBox, ListBox, PopupMenu, SetVariable, Slider, TabControl,
TitleBox, and ValDisplay controls.

ModifyControlList
ModifyControlList [/Z] listStr [, keyword = value]…
The ModifyControlList operation modifies the controls named in the listStr string expression.
ModifyControlList works on any kind of existing control.

Parameters
listStr is a semicolon-separated list of names in a string expression. The expression can be an explicit list of
control names such as "button0;checkbox1;" or it can be any string expression such as a call to the
ControlNameList string function:
ModifyControlList ControlNameList("",";","*_tab0") disable=1

The controls must exist.

Keywords
The following keyword=value parameters are supported:

For details on these keywords, see the documentation for SetVariable on page V-729.
The following keywords are not supported:

Flags

Details
Use ModifyControlList to move, hide, disable, or change the appearance of multiple controls without
regard to their kind.
If listStr contains the name of a nonexistent control, an error is generated.
if listStr is "" (or any list element in listStr is ""), it is ignored and no error is generated.

Example
Here is the TabControl procedure example from ModifyControl rewritten to use ModifyControlList. It
shows and hides all controls in the tabs appropriately, without knowing what kind of controls they are, but
the code is simpler. This method does not, however, preserve the enable bit when a control is hidden.
The “trick” here is that all controls that are to be shown within particular tab n have been assigned names
that end with “_tabn” such as “_tab0” and “_tab1”:
// Action procedure
Function TabProc2(ctrlName,tabNum) : TabControl

String ctrlName
Variable tabNum

String controlsInATab= ControlNameList("",";","*_tab*")

String curTabMatch= "*_tab"+num2istr(tabNum)
String controlsInCurTab= ListMatch(controlsInATab, curTabMatch)
String controlsInOtherTabs=ListMatch(controlsInATab,"!"+curTabMatch)

activate appearance bodywidth disable fColor focusRing

font fSize fStyle help labelBack noproc

pos proc rename size title userdata

valueBackColor valueColor win

mod popmatch popvalue value variable

/Z No error reporting.

ModifyFreeAxis

V-518

ModifyControlList controlsInOtherTabs disable=1 // hide
ModifyControlList controlsInCurTab disable=0 // show

return 0
End

// Panel macro that creates a TabControl using TabProc2():
Window TabbedPanel2() : Panel

PauseUpdate; Silent 1 // building window…
NewPanel /W=(35,208,266,374) as "Tab Demo"
TabControl tab,pos={12,9},size={205,140},proc=TabProc2
TabControl tab,tabLabel(0)="Tab 0"
TabControl tab,tabLabel(1)="Tab 1",value= 0
Button button_tab0,pos={26,43},size={110,20},title="Button in Tab0"
Button button2_tab0,pos={26,74},size={110,20},title="Button in Tab0"
Button button3_tab0,pos={26,106},size={110,20},title="Button in Tab0"
Button button_tab1,pos={85,43},size={110,20},title="Button in Tab1"
Button button2_tab1,pos={85,75},size={110,20},title="Button in Tab1"
Button button3_tab1,pos={84,108},size={110,20},title="Button in Tab1"
ModifyControlList ControlNameList("",";","*_tab1") disable=1

EndMacro

Run TabbedPanel2 and then click on "Tab 0" and "Tab 1" to run TabProc2.

See Also
See Chapter III-14, Controls and Control Panels for details about control panels and controls.
Related functions ModifyControl and ControlNameList.
The Button, Chart, CheckBox, GroupBox, ListBox, PopupMenu, SetVariable, Slider, TabControl,
TitleBox, and ValDisplay controls.

ModifyFreeAxis
ModifyFreeAxis [/W=winName] axisName, master=mastName

[, hook=funcName]
The ModifyFreeAxis operation designates the free axis (created with NewFreeAxis) to follow a controlling
axis from which it gets axis range and units information. The free axis updates whenever the controlling
axis changes. The axis limits and units can be modified by a user hook function.

Parameters
axisName is the name of the free axis (which must have been created by NewFreeAxis).
masterName is the name of the master axis controlling axisName.
funcName is the name of the user function that modifies the limits and units properties of the axis. If
funcName is $"", the named hook function is removed.

Flags

Details
The free axis can also be designated to call a user-defined hook function that can modify limits and units
properties of the axis. The hook function must be of the following form:
Function MyAxisHook(info)

STRUCT WMAxisHookStruct &info

<code to modify graph units or limits>
return 0

End

/W=winName Modifies axisName in the named graph window or subwindow. If /W is omitted the
command affects the top graph window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

ModifyFreeAxis

V-519

where WMAxisHookStruct is a built-in structure with the following members:

The constants used to size the char arrays are internal to Igor and are subject to change in future versions.
The hook function is called when refreshing axis range information (generally early in the update of a
graph). Your hook must never kill a graph or an axis.

Example
This example demonstrates how to program a free axis hook function, whose most important task is to
change the values of info.min and info.max to alter the axis range of the free axis. The example free axis
displays Fahrenheit values for data in Celsius.
Function CentigradeAndFahrenheit()

Make/O/N=20 temperatures = -2+p/3+gnoise(0.5) // sample data
Display temperatures// default left axis will indicate data's centigrade range
String graphName = S_name
Label/W=$graphName left "°C"
ModifyGraph/W=$graphName zero(left)=1
Legend/W=$graphName

// make a right axis whose range will be Fahrenheit
NewFreeAxis/R/O/W=$graphName fahrenheit
ModifyGraph/W=$graphName freePos(fahrenheit)={0,kwFraction},lblPos(fahrenheit)=43
Label/W=$graphName fahrenheit "°F"

ModifyFreeAxis/W=$graphName fahrenheit, master=left, hook=CtoF_FreeAxisHook
// NOTE master=left part which makes the "free" axis
// actually a "slave" to the left ("master") axis.

End

Function CtoF_FreeAxisHook(info)
STRUCT WMAxisHookStruct &info

GetAxis/Q/W=$info.win $info.mastName // get master axis range in V_min, V_Max
Variable minF = V_min*9/5+32
Variable maxF = V_max*9/5+32

// SetAxis/W=$info.win $info.axName, minF, maxF
// SetAxis here is fruitless. These values get overwritten by Igor
// after reading info.min and info.max, which we now set:

info.min = minF // new min for free axis
info.max= maxF // new max for free axis
return 0

End

See Also
The SetAxis, KillFreeAxis, and NewFreeAxis operations.
The ModifyGraph (axes) operation for changing other aspects of a free axis.

WMAxisHookStruct Structure Members

Member Description

char win[MAX_WIN_PATH+1] Host (sub)window.

char axName[MAX_OBJ_NAME+1] Name of the axis.

char mastName[MAX_OBJ_NAME+1] Name of controlling axis or nil.

char units[MAX_UNITS+1] Axis units. User modifiable.

double min, max Axis range minimum and maximum values. User modifiable.

ModifyGizmo

V-520

ModifyGizmo
ModifyGizmo [flags] keyword [=value]
The ModifyGizmo operation changes Gizmo properties.
Documentation for the ModifyGizmo operation is available in the Igor online help files only. In Igor,
execute:
DisplayHelpTopic "ModifyGizmo"

ModifyGraph (general)
ModifyGraph [/W=winName/Z] key=value [, key=value]…
The ModifyGraph operation modifies the target or named graph. This section of ModifyGraph relates to
general graph window settings.

Parameters

expand=e Specifies the onscreen expansion (or magnification) factor of a graph. e may be
zero or 0.125 to 8 times expansion.
Graph magnification affects only base graphs (not subwindowed graphs), and it
affects only the onscreen display; it has no effect on graph exporting or printing.
When magnification changes, the graph window will automatically resize except
for negative values, which are used in recreation macros where the size is already
correct.

frameInset= i Specifies the number of pixels by which to inset the frame of the graph
subwindow.

frameStyle= f

gfMult=f Multiplies font and marker size by f percent. Clipped to between 25% and 400%;
it is applied after all other font and marker size calculations.

gFont=fontStr Specifies the name of the default font for the graph, overriding the normal default
font. The normal default font for a subgraph is obtained from its parent while a
base graph uses the value set by the DefaultFont operation.

gfSize=gfs Sets the default size for text in the graph. Normally, the default size for text is
proportional to the graph size; gfSize will override that calculation as will the
gfRelSize method. Use a value of -1 to make a subgraph get its default font size from
its parent.

gfRelSize=pct Specifies the percentage of the graph size to use in calculating a default size for
text in the graph. This overrides the normal method for setting default font size
as a function of graph size. When used, the default marker size is set to one third
the font size. Use a value of 0 to revert to the default method.

gmSize=gms Sets the default size for markers in the graph. Use a value of -1 to make a
subgraph get its default marker size from its parent.

height=heightSpec Sets the height for the graph area. See the Examples.

y p

Specifies the frame style for a graph subwindow.

The last three styles are fake 3D and will look good only if the background
color of the enclosing space and the graph itself is a light shade of gray.

f=0: None.
f=1: Single.
f=2: Double.
f=3: Triple.
f=4: Shadow.
f=5: Indented.
f=6: Raised.
f=7: Text well.

ModifyGraph (general)

V-521

swapXY=s

useComma=uc

UIControl=f Disables certain aspects of the user interface for graphs. The UIControl keyword,
added in Igor Pro 7.00, is for use by advanced Igor programmers who want to
disable user actions.
This is a bitwise setting. Setting Bit Parameters on page IV-12 for details about
bit settings.

To disable items in the Graph menu use SetIgorMenuMode.

useLongMinus=m Uses a normal (m=0; default) or long dash (m=1) for the minus sign.

width=widthSpec Sets the width of the graph area. See the examples.

Sets the orientation of the X and Y axes.
s=0: Normal orientation of X and Y axes.
s=1: Swap X and Y values to plot Y coordinates versus the

horizontal axes and X coordinates versus the vertical axes.
The effect is similar to mirroring the graph about the lower-
left to upper-right diagonal.

Controls the decimal separator used in tick mark labels.
uc=0: Use period as decimal separator and comma as thousands

separator (default) when displaying numbers in graph labels
and annotations.

uc=1: Use comma as decimal separator and period as the thousands
separator. This does not alter the presentation of numbers in
\{expression} constructs in annotations.

f is defined as follows:
Bit 0: Disable axis click. Prevents moving or otherwise modifying an

axis.
Bit 1: Disable cursor click. Prevents moving a graph cursor.
Bit 2: Disable trace drag. Prohibits the click-and-hold action to offset a

trace on the graph.
Bit 3: Disable marquee. When set, you can't make a marquee on the

graph, which in turn prevents changing the range of the graph
using the marquee.

Bit 4: Disable draw mode.
Bit 5: Disable double click. Prohibits any double-click action. In general,

double-clicks in a graph bring up dialogs to modify the graph's
appearance.

Bit 6: Disable clicks on annotations. Prevents modification of
annotations.

Bit 7: Disable tool tips.
Bit 8: Disable contextual menus.
Bit 9: Disable marquee menu. With this set, you can still have a

marquee and use it for, i.e., selecting some portion of the graph,
but you can't use the maruqee menu to change the graph's range.
Note that if bit 3 is set, this bit is moot.

Bit 10: Disable mouse wheel events. This will prevent axis scaling using
the mouse wheel.

Bit 11: Disable option-drag. Prevents offsetting the graph by holding
down the option (Macintosh) or Alt (Windows) key and then
dragging in the plot area.

ModifyGraph (traces)

V-522

Flags

Examples
The following code creates a graph where all the text expands and contracts directly in relation to the
window size:
Make jack=sin(x/8);display jack
ModifyGraph mode=4,marker=8,gfRelSize= 5.0
TextBox/N=text0/A=MC "Some \\Zr200big\\]0 and \\Zr050small\\]0\rtext"

The widthSpec and heightSpecs set the width and height mode for the top graph. The following examples
illustrate how to specify the various modes.

ModifyGraph (traces)
ModifyGraph [/W=winName/Z] key [(traceName)] = value

[, key [(traceName)] = value]…
This section of ModifyGraph relates to modifying the appearance of wave “traces” in a graph. A trace is a
representation of the data in a wave, usually connected line segments.

Parameters
Each key parameter may take an optional traceName enclosed in parentheses. Usually traceName is simply the
name of a wave displayed in the graph, as in “mode(myWave)=4”. If “(traceName)” is omitted, all traces in the
graph are affected. For instance, “ModifyGraph lSize=0.5” sets the lines size of all traces to 0.5 points.
For multiple trace instances, traceName is followed by the “#” character and instance number. For example,
“mode(myWave#1)=4”. See Instance Notation on page IV-19.
A string containing a trace name can be used with the $ operator to specify traceName. For example, String
MyTrace="myWave#1"; mode($MyTrace)=4.
Though not shown in the syntax, the optional “(traceName)” may be replaced with “[traceIndex]”, where
traceIndex is zero or a positive integer denoting the trace to be modified. “[0]” denotes the first trace
appended to the graph, “[1]” denotes the second trace, etc. This syntax is used for style macros, in
conjunction with the /Z flag.

/W=winName Modifies the named graph window or subwindow. When omitted, action will affect
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/Z Does not generate an error if the indexed trace, named wave, or named axis does not
exist in a style macro.

ModifyGraph width=0, height=0 Set to auto height, width mode. The width, height of horizontal
and vertical axes are automatically determined based on the
overall size of the graph and other factors such as axis offset setting
and effect of exterior textboxes. This is the normal, default mode.

Variable n=72*5
ModifyGraph width=n

Five inches as points absolute width mode, horizontal axis
width constrained to n points.

ModifyGraph height=n Absolute height mode, n is in points. The height of the vertical
axes is constrained to n points.

Variable n=2
ModifyGraph
width={perUnit,n,bottom}

Per unit width mode. The width of the horizontal axes is n
points times the range of the bottom axis.

ModifyGraph height={Aspect,n} Aspect height mode, n = aspect ratio. The height of the
vertical axes is n times the width of the horizontal axes.

ModifyGraph
width={Plan,n,bottom,left}

Plan width mode. The width of the horizontal axes is n times
the height of the vertical axes times range of the bottom axis
divided by the range of the left axis.

ModifyGraph (traces)

V-523

For certain modes and certain properties, you can set the conditions at a specific point on a trace by
appending the point number in square brackets after the trace name. For more information, see the
Customize at Point on page V-532.
The parameter descriptions below omit the optional “(traceName)”. When using ModifyGraph from a user-
defined function, be careful not to pass wave references to ModifyGraph. ModifyGraph expects trace
names, not wave references. See Trace Name Parameters on page IV-82 for details.

arrowMarker=0

arrowMarker={aWave, lineThick, headLen, headFat, posMode [, barbSharp=b, barbSide=s, frameThick=f]}

Draws arrows instead of conventional markers at each data point in a wave. Arrows
are not clipped to the plot area and will be drawn wherever a data point is within the
plot area.
aWave contains arrow information for each data point. It is a two (or more) column
wave containing arrow line lengths (in points) in column 0 and angles (in radians
measured counterclockwise) in column 1. Zero angle is a horizontal arrow pointing
to the right. If an arrow is below the minimum length of 4 points, a default marker is
drawn.
You can change arrow markers into standard meteorological wind barbs by adding a
column to aWave and giving it a column label of windBarb. Values are integers from
0 to 40 representing wind speeds up to 4 flags. Use positive integers for clockwise
barbs and negative for the reverse. Use NaN to suppress the drawing. See Wind Barb
Plots on page II-258 for an example.
Additional columns may be supplied in aWave to control parameters on a point by
point basis. These optional columns are specified by dimension label and not by
specific column numbers. The labels are lineThick, headLen, and headFat that
correspond to the same parameters listed above.

lineThick is the line thickness in points.

headLen is the arrow head length in points.

headFat controls the arrow fatness. It is the width of the arrow head divided by the
length.

You can also enable inline mode even if aWave is not _inline_ by setting posMode
to values between 4 and 7. These are the same as modes 0-3 above.
Optional parameters must be specified using keyword = value syntax and can only be
appended after posMode in any order.

posMode specifies the arrow location relative to the data point.
posMode=0: Start at point.
posMode=1: Middle on point.
posMode=2: End at point.

In addition to the wave specification, aWave can also be the literal _inline_ to
draw lines and arrows between points on the trace (see Examples). If aWave is
inline, posMode values are:
posMode=0: Arrow at start.
posMode=1: Arrow in middle.
posMode=2: Arrow at end.
posMode=3: Arrow in middle pointing backwards.

barbSharp is the continuously variable barb sharpness between -1.0 and 1. 0:
barbSharp=1: No barb; lines only.
barbSharp=0: Blunt (default).
barbSharp=-1: Diamond.

ModifyGraph (traces)

V-524

frameThick specifies the stroke outline thickness of the arrow in points. The default is
frameThick = 0 for solid fill.

aWave can contain columns with data for each optional parameter using matching
column names.

barStrokeRGB=(r,g,b)

Specifies a separate color for bar strokes (outlines) if useBarStrokeRGB is 1. r, g and b
specify the amount of red, green and blue in the color of the stroked lines as an integer
from 0 to 65535. The default is black (0,0,0).
Applies only to Histogram Bars drawing mode (mode=5).
The bar fill color continues to be set with the rgb=(r,g,b), zColor={...}, usePlusRGB,
plusRGB=(r,g,b), useNegRGB, and negRGB=(r,g,b) parameters.

Use barStrokeRGB and useBarStrokeRGB to put a differently-colored outline around
Histogram Bars:

cmplxMode=c

column=n Changes the displayed column from a matrix. Out of bounds values are clipped.

gaps=g

gradient=<parameters>

Controls color gradients for graph trace fills. See Gradient Fills on page III-441 for
details.

gradientExtra=<parameters>

barbSide specifies which side of the line has barbs relative to a right-facing arrow:
barbSide=0: None.
barbSide=1: Top.
barbSide=2: Bottom.
barbSide=3: Both (default).

useBarStrokeRGB=0 useBarStrokeRGB=1

Display method for complex waves.

cmplxMode=0 does not work when the trace is a subrange of a multi-dimensional
wave.

c=0: Default mode displays both real and imaginary parts (imaginary
part offset by dx/2).

c=1: Real part only.
c=2: Imaginary part only.
c=3: Magnitude.
c=4: Phase (radians).

Controls treatment of NaNs:
g=0: No gaps (ignores NaNs).
g=1: Gaps (shows NaNs as gaps).

ModifyGraph (traces)

V-525

Controls color gradient details for graph trace fills. See Gradient Fills on page III-441
for details.

hBarNegFill=n Fill kind for negative areas if useNegPat is true. n is the same as for the hbFill
keyword.

hbFill=n

hideTrace=h

lHair=lh Sets the hairline factor for traces printed on a PostScript® printer.

live=lv Turns Live Mode off (lv=0) or on (lv=1).

logZColor=lzc

lOptions=options

lSize=l Sets the line thickness, which can be fractional or zero, which hides the line.

lSmooth=ls Sets the smoothing factor for traces printed on a PostScript® printer.

lStyle=s Sets trace line style or dash pattern.
s=0 for solid lines. s=1 to s=17 for various dashed line styles.

Sets the fill pattern.
n=0: No fill.
n=1: Erase.
n=2: Solid black.
n=3: 75% gray.
n=4: 50% gray.
n=5: 25% gray.
n>=6: See Fill Patterns on page III-441.

Removes a trace from the graph display.

When using h=1 to hide a graph trace, the hidden trace symbol and following text
in annotations are also hidden. The amount of hidden text is the lesser of: the
remaining text on the same line or the text up to but not including another trace
symbol "\s(traceName)".

h=0: Shows the trace if it is hidden.
h=1: Hides the trace and removes it from autoscale calculations.
h=2: Hides the trace.

Controls the interpretation of the zColor parameter.

Affects trace line color only when the zColor parameter is used with a color table
or color index wave - it has no effect if rgb=(r,g,b) parameter or
zColor={...,directRGB} are used.

lzc=0: Sets the default linearly-spaced zColors.
lzc=1: Turns on logarithmically-spaced zColors. This requires that the

zWave values be greater than 0 to display correctly.

options is a bitwise parameter:

All other bits are reserved and must be cleared.
See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: If set, dashed lines use round end caps. If cleared they use square end caps.

ModifyGraph (traces)

V-526

marker=n n =0 to 62 designates various markers if mode=3 or 4.
You can also create custom markers. See the SetWindow markerHook keyword.
See Markers on page II-223 for a table of marker values.

mask={maskwave,mode,value} or 0

mode=m

mrkStrokeRGB=(r,g,b)

Specifies the color for marker stroked lines if useMrkStrokeRGB = 1. r, g, and b values
are the amount of red, green, and blue in the color of the lines as an integer from 0 to
65535. The default is black (0,0,0).
The marker fill color continues to be set with the rgb=(r,g,b) or zColor={…}
parameters.
Applies only to the nontext and nonarrow marker modes.
Use mrkStrokeRGB and useMrkStrokeRGB to put a colored outline around filled
markers, such as marker=19:

Note: The stroke color of unfilled markers such as marker 8 is also affected by
mrkStrokeRGB, but their fill color is only affected by the opaque parameter (and the
opaque fill color is always white, so if you want a color-filled marker, don’t use
unfilled markers).

mrkThick=t Sets the thickness of markers in points, which can be fractional.

Specifies individual points for display by comparing values in maskWave with value
as specified by mode.

maskwave can be specified using subrange notation. The length of maskwave (or
subrange) must match the size of specified trace’s wave (or subrange.) Bitwise
modes should be used with integer waves with the intent of using one mask wave
with multiple traces. See Examples.

mode=0: Exclude if equal.
mode=1: Include if equal.
mode=2: Include if bitwise AND is true.
mode=3: Include if bitwise AND is false.

Sets trace display mode.
m=0: Lines between points.
m=1: Sticks to zero.
m=2: Dots at points.
m=3: Markers.
m=4: Lines and markers.
m=5: Histogram bars.
m=6: Cityscape.
m=7: Fill to zero.
m=8: Sticks and markers.

useMrkStrokeRGB=0 useMrkStrokeRGB=1

ModifyGraph (traces)

V-527

msize=m

mskip=n Puts a marker on only every nth data point in Lines and Markers mode (mode=4).
Useful for displaying many data points when you want to identify the traces with
markers. The maximum value for n is 32767.

muloffset={mx,my} Sets the display multiplier for X (mx) and Y (my). The effective value for a given X or
Y data point then becomes muloffset*data+offset. A value of zero means “no multiplier”
— not multiply by zero.

negRGB=(r, g, b) Specifies the color for negative areas if useNegRGB is 1. r, g, and b specify the amount
of red, green, and blue in the color of the trace as an integer from 0 to 65535.

offset={x,y} Sets the display offset in horizontal (X) and vertical (Y) axis units.

opaque=o Displays transparent (o=0) or opaque (o=1) markers.

patBkgColor= 0, 1, 2 or (r,g,b)

Specifies the background color for fill patterns.
0, the default, is white, 1 is graph background, 2 is transparent (does not work when
exporting in the Enhanced Metafile or Windows Metafile formats).
Use (r,g,b) for a specific RGB color.

plotClip=p p =1 clips the trace by the operating system (not by Igor) to the plot rectangle. This
trims overhanging markers and thick lines. On Windows, this may not be supported
for certain printers or by certain applications when importing.

plusRGB=(r, g, b) Specifies the color for positive areas if usePlusRGB is 1. r, g, and b specify the amount
of red, green, and blue in the color of the trace as an integer from 0 to 65535.

quickdrag=q

rgb=(r,g,b) Specifies the amount of red, green, and blue (r, g, and b) in the color of the trace as an
integer from 0 to 65535.

textMarker={<char or wave>,font,style,rot,just,xOffset,yOffset} or 0

Uses the specified character or text from the specified wave in place of the marker for
each point in the trace.
If the first parameter is a quoted string or a string expression of the form ""+strexpr
in a user function, ModifyGraph uses the first three bytes of the string as the marker
for all points. Three bytes are supported mainly for non-ASCII characters but can be
used for 3 separate single-byte characters. Otherwise, it interprets the first parameter
as the name of a wave. If the wave is a text wave, it uses the value of each point in the
text wave as the marker for the corresponding point in the trace. If the wave is a
numeric wave, the value for each point is converted into text and the result is used as
the marker for the corresponding point in the trace.

xOffset and yOffset are offsets in fractional points. Each marker will be drawn offset
from the location of the corresponding point in the trace by these amounts.

style is a font style code as used with the ModifyGraph fstyle keyword.

Specifies the marker size in points.

m can be fractional, which will only make a difference when the graph is
printed because fractional points can not be displayed on the screen.

m=0: Autosize markers.
m>0: Sets marker size.

Controls dragging of traces.
q=0: Normal traces.
q=1: Traces that can be instantly dragged without the normal one second

delay. See the Quickdrag section below.
q=2: Causes the mouse cursor to change to 4 arrows when over the trace

and a reduced search is used.

ModifyGraph (traces)

V-528

rot is a text rotation between -360 and 360 degrees.

just is a justification code as used in the DrawText operation except the X and Y codes
are combined as y*4+x. Use 5 for centered.

The font size is 3*marker size. Note that marker size and color can be dynamically set
via the zColor and zmrkSize keywords.

toMode=t

useBarStrokeRGB=u

If u=1 then bar stroked lines use the color specified by the barStrokeRGB keyword.
Applies only to Histogram Bars drawing mode (mode=5).
The bar fill color continues to be set with the rgb=(r,g,b), zColor={...}, usePlusRGB,
plusRGB=(r,g,b), useNegRGB, and negRGB=(r,g,b) parameters.
If u=0 then the bar stroked line colors are set with the rgb=(r,g,b) or zColor={...}
parameters, just like the bar fill color.

useMrkStrokeRGB=u

If u =1 then marker stroked lines use the color specified by the mrkStrokeRGB keyword.
The marker fill color continues to be set with the rgb=(r,g,b) or zColor={…} parameters.
Applies only to the nontext and nonarrow marker modes.
If u=0 then the marker stroked line colors are set with the rgb=(r,g,b) or zColor={…}
parameters, just like the marker fill color.

useNegPat=u If u=1, negative fills use the mode specified by the hBarNegFill keyword. Applies to
the fill-to-zero, fill-to-next and histogram bar modes.

useNegRGB=u If u =1, negative fills use the color specified by the negRGB keyword. Applies to the
fill-to-zero, fill-to-next and histogram bar modes.

usePlusRGB=u If u =1, positive fills use the color specified by the plusRGB keyword. Applies to the
fill-to-zero, fill-to-next and histogram bar modes.

userData={udName, doAppend, data}

Modifies the behavior of the display modes as determined by the mode parameter.

For modes 1, 2 and 3, both Y-waves must have the same number of points and
must use the same X values. Igor uses the X values from the first wave for both Y-

t=0: Fill to zero.
t=1: Fill to next trace. Applies to Sticks to zero (mode=1), histogram bars

(mode=5), and fill to zero (mode=7).
t=2: Add the current trace’s Y values to the next trace’s Y values. Works

with all display modes.
t=3: Stack on next and is the same as t=2 except that the added value is

clipped to zero. Works with all display modes.
t=-1: This mode is used only with category plots and means “keep with

next” (i.e., put in the same subcategory as the next trace). It is used for
special effects only.

ModifyGraph (traces)

V-529

Attaches arbitrary data to a trace. You should specify a trace name
(userData(<traceName>)={...}). Otherwise copies of the data will be attached to every
trace, which is most likely not what you intend.
Use the GetUserData function to retrieve the data, with the trace name as the object
ID.
udName: The name of your user data. Use $"" for unnamed user data.
doAppend=0: Do not append. Any pre-existing data is replaced.
doAppend=1: Append the data. Data is added to the end of any pre-existing data.
data: A string expression containing the data you wish to attach to the trace.

zColor={zWave,zMin,zMax,ctName [,reverseMode [,cWave]]} or 0

Dynamically sets color based on the values in zWave and color table name or mode
specified by ctName.
zWave may be a subrange expression such as myZWave[2,9] when zWave has more
points than the trace, in which case myZWave[2] provides the Z value for the first
point of the trace, and autoscaled zMin or zMax is determined over only the zWave
subrange.
If a value in the zWave is NaN then a gap or missing marker will be observed. If a
value is out of range it will be replaced with the nearest valid value. See also the
zColorMax and zColorMin keywords.

ctName can be the name of a built-in color table such as returned by the CTabList
function, such as Grays or Rainbow, for color table mode, ctableRGB for color table
wave mode, cindexRGB for color index wave mode, or directRGB for direct color
wave mode.

zColor for Built-in Color Table Mode
This mode uses zWave to select a color from a built-in color table specified by ctName.
See Image Color Tables on page II-305 for details.
zWave contains values that are used to select a color from the built-in color table
specified by ctName.
zMin is the zWave value that maps to the first entry in the color table. Use * for zMin
to autoscale it to the smallest value in zWave.
zMax is the zWave value that maps to the last entry in the color table. Use * for zMax
to autoscale it to the largest value in zWave.
ctName is the name of a built-in color table such as Grays or Rainbow. See the
CTabList function for a list of built-in color tables.
Set reverseMode to 1 to reverse the color table lookup or to 0 to use the normal lookup.
If you omit reverseMode or specify -1, the reverse mode is unchanged.
cWave must be omitted.
Normally the colors from the color table are linearly distributed between zMin and
zMax. Use logZColor=1 to distribute them logarithmically.
// Example zColor command using built-in color table
ModifyGraph zColor(data)={zWave,*,*,Rainbow}

ModifyGraph (traces)

V-530

zColor for Color Table Wave Mode
This mode is like Built-in Color Table except that the colors are stored in a color table
wave that you have created. A color table wavey can be a 3 column RGB wave or a 4
column RGBA wave. See Color Table Waves on page II-311 for details.
zWave contains values that are used to select a color from the color table wave
specified by cWave.
zMin is the zWave value that maps to the first entry in the color table wave. Use * for
zMin to autoscale it to the smallest value in zWave.
zMax is the zWave value that maps to the last entry in the color table wave. Use * for
zMax to autoscale it to the largest value in zWave.
ctName is ctableRGB.
Set reverseMode to 1 to reverse the color table lookup or to 0 to use the normal lookup.
If you omit reverseMode or specify -1, the reverse mode is unchanged.
cWave is a reference to your color table wave.
Normally the colors from the color table are linearly distributed between zMin and
zMax. Use logZColor=1 to distribute them logarithmically.
Example ctableRGB zColor command:
ColorTab2Wave Rainbow // Creates M_Colors wave
Rename M_Colors, MyColorTableWave

ModifyGraph zColor(data)={zWave,*,*,ctableRGB,0,MyColorTableWave}

zColor for Color Index Wave Mode
This mode is like Color Table Wave except that the values in zWave represent X
indices with respect to cWave. You must create the RGB or RGBA color index wave
and set its X scaling appropriately. See Color Index Wave on page II-285 for details.
zWave contains values that are used to select a color from the color index wave
specified by cWave.
zMin and zMax are not used and should be set to *.
ctName is cindexRGB.
Set reverseMode to 1 to reverse the color table lookup or to 0 to use the normal lookup.
If you omit reverseMode or specify -1, the reverse mode is unchanged. Normally the
zWave values select the color from the row of cWave whose X value is closest to the
zWave value. reverseMode=1 reverses the colors.
cWave is a reference to your color index wave.
Normally the colors from the color index wave are linearly distributed between the
minimum and maximum X values of the color index wave. Use logZColor=1 to
distribute them logarithmically.
// Example cindexRGB zColor command
zColor(data)={myZWave,*,*,cindexRGB,0,M_colors}
// M_colors is generated by ColorTab2Wave

ModifyGraph (traces)

V-531

zColor for Direct Color Wave Mode
In direct color mode, zWave is an RGB or RGBA wave that directly specifies the color
for each point in the trace. If zWave is 8-bit unsigned integer, then color component
values range from 0 to 255. For other numeric types, color component values range
from 0 to 65535. See ColorTab2Wave, which generates RGB waves, and Direct Color
Details on page II-313.
zWave is an RGB or RGBA wave that directly specifies the color for each point of the
trace.
zMin and zMax are not used and should be set to *.
ctName is directRGB.
reverseMode is not applicable and should be omitted or set to 0.
cWave must be omitted.
// Example directRGB zColor command
zColor(data)={zWaveRGB,*,*,directRGB}

Turning zColor Off
zColor = 0 turns the zColor modes off.

zColorMax=(red, green, blue)

Sets the color of the trace for zColor={zWave, …} values greater than the zColor’s
zMax. Also turns on zColorMax mode.
The red, green, and blue color values are in the range of 0 to 65535.

zColorMax=1, 0, or NaN

zColorMin=(red, green, blue)

Sets the color of the trace for zColor={zWave, …} values less than the zColor’s zMin.
Also turns zColorMin mode on.
The red, green, and blue color values are in the range of 0 to 65535.

zColorMin=1, 0, or NaN

zmrkNum={zWave} or 0

Turns zColorMax mode off, on, or transparent. These modes affect the color of
zColor={zWave, …} values greater than the zColor’s zMax.
1: Turns on zColorMax mode. The color of the affected trace pixels is black

or the last color set by zColorMax=(red, green, blue).
0: Turns off zColorMax mode (default). The color of the affected trace

pixels is the last color in the zColor’s ctname color table.
NaN: Transparent zColorMax mode. Affected trace pixels are not drawn.

Turns zColorMin mode off, on, or transparent. These modes affect the color of
zColor={zWave, …} values less than the zColor’s zMin.
1: Turns on zColorMin mode. The color of the affected image pixels is

black or the last color set by zColorMin=(red, green, blue).
0: Turns off zColorMin mode (default). The color of the affected trace

pixels is the first color in the zColor’s ctname color table.
NaN: Transparent zColorMin mode. Affected trace pixels are not drawn.

ModifyGraph (traces)

V-532

Flags

Details
Live Mode (live=1) improves graph update performance when one or more of the waves displayed in the
graph is frequently modified, for example, if the waves are being acquired from a data acquisition system.
Live Mode traces do not autoscale the axes.
Waves supplied with zmrkSize, zmrkNum, and zColor may use Subrange Display Syntax on page II-250.

Quickdrag
Quick drag mode (quickdrag=1) is a special purpose mode for creating cross hair cursors using a package
of Igor procedures. (See the Cross Hair Demo example experiment.) Normally you would have to click and
hold on a trace for one second before entering drag mode. When quickdrag is in effect, there is no delay. If
a trace is in quickdrag mode it should also be set to live mode. With this combination you can click a trace
and immediately drag it to a new XY offset. In addition to quick drag mode, the cross hair package relies
on Igor to store information about the drag in a string variable if certain conditions are in effect. The string
variable name (that you have to create) is S_TraceOffsetInfo, which must reside in a data folder that has the
same name as the graph (not title!) which in turn must reside in root:WinGlobals:. If these conditions are
met, then after a trace is dragged, information will be stored in the string using the following key-value
format: GRAPH:<name of graph>;XOFFSET:<x offset value>;YOFFSET:<y offset
value>;TNAME:<trace name>;

Customize at Point
You can customize the appearance of individual points on a trace in a graph for bar, marker, dot and lines
to zero modes using key(tracename[pnt])=value syntax. The point number must be a literal number
and the trace name is not optional. To turn off a customization, use key(tracename[-pnt-1])=value

Dynamically sets the marker number for each point to the corresponding value in
zWave. The values in zWave are the marker numbers (as used with the marker
keyword). If a value in the zWave is NaN then no marker will be drawn at the
corresponding point. If a value is out of range it will be replaced with the nearest valid
value.
zmrkNum=0 turns this mode off.

zmrkSize={zWave,zMin,zMax,mrkmin,mrkmax} or 0

Dynamically sets marker size based on values in zWave. Use * or a missing parameter
for zMin and zMax to autoscale. mrkmin and mrkmax can be fractional. If a value in the
zWave is NaN then a gap or missing mark will be observed. The marker size is clipped
to 20 on the high end and 1 on the low end. If a value is out of range it will be replaced
with the nearest valid value.
zmrkSize = 0 turns this mode off.

zpatNum={zWave} or 0

Dynamically sets the positive fill type/pattern number for each point to the
corresponding value in zWave. The values in zWave are the pattern numbers (as used
with the hbFill keyword). If a value in the zWave is NaN then the corresponding point
will not be drawn. If a value is out of range it will be replaced with the nearest valid
value.
zpatNum=0 turns this mode off.

/W=winName Modifies the named graph window or subwindow. When omitted, action will affect
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the Command Line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/Z Does not generate an error if the indexed trace, named wave, or named axis does not
exist in a style macro.

ModifyGraph (traces)

V-533

where value is not important but must match the syntax for the keyword. The offset of -1 is needed because
point numbers start from zero.
Although the syntax is allowed for all trace modifiers, it has meaning only for the following: rgb, marker,
msize, mrkThick, opaque, mrkStrokeRGB, barStrokeRGB, hbFill, patBkgColor and lSize.
Note that useBarStrokeRGB and useMrkStrokeRGB are not needed. The act of using barStrokeRGB or
mrkStrokeRGB is enough to customize the point. But as a convenience, since these are generated by the
modify graph dialog, they are ignored if used with [pnt] syntax.
Also note that legend symbols can use [pnt] syntax like so:

\s(<tracename>[pnt])

Automatically generated legends automatically include symbols for customized points.
For example:
Make/O/N=10 jack=sin(x); Display jack
ModifyGraph mode=5,hbFill=6,rgb=(0,0,0)
ModifyGraph hbFill(jack[2])=7,rgb(jack[2])=(0,65535,0)
ModifyGraph rgb(jack[3])=(65535,0,0)
Legend/C/N=text1/F=0/A=MC

Examples
Arrow markers.
Make/N=10 wave1= x; Display wave1
Make/N=(10,2) awave
awave[][0]= p*5 // length
awave[][1]= pi*p/9 // angle
ModifyGraph mode=3,arrowMarker(wave1)={awave,1,10,0.3,0}

// Now add an optional column to control headLen
Redimension/N=(-1,3) awave
awave[][2]= 7+p // will be head length

// Note: nothing changes until the following is executed
SetDimLabel 1,2,headLen,awave

Create meteorological wind barb symbols.
Make/O/N=50 jack= floor(x/10),jackx= mod(x,10)
Display jack vs jackx
Make/O/N=(50,3) jackbarb
jackbarb[][0]= 40 // length of stem
jackbarb[][1]= 45*pi/180 // angle (45deg)
jackbarb[][2]= p // wind speed code
SetDimLabel 1,2,windBarb,jackbarb
ModifyGraph mode=3,arrowMarker(jack)={jackbarb,1,10,0.5,0}
ModifyGraph margin(top)=62,margin(right)=84

See also Wind Barb Plots on page II-258.
Inline arrows and barb sharpness.
Make/O/N=20 wavex=cos(x/3),wavey=sin(x)
Display wavey vs wavex
ModifyGraph mode=3,arrowMarker={_inline_,1,20,.5,0,barbSharp= 0.2}

Use direct color mode to individually color each point in a trace:
Make jack=sin(x/8)
Make/N=(128,3)/B/U jackrgb
Display jack
ModifyGraph mode=3,marker=19
jackrgb= enoise(128)+128
ModifyGraph zColor(jack)={jackrgb,*,*,directRGB}

Use masking.
Make/N=100 jack= (p&1) ? sin(x/8) : cos(x/8)
Display jack

Make/N=100 mjack= (p&1) ? 0 : NaN // just to show NaN can be used
ModifyGraph mask(jack)={mjack,0,NaN}

// now switch which points are shown
mjack= (p&1) ? NaN : 0

ModifyGraph (axes)

V-534

See Also
Trace Names on page II-216, Programming With Trace Names on page IV-81.

ModifyGraph (axes)
ModifyGraph [/W=winName/Z] key [(axisName)] = value

[, key [(axisName)] = value]…
This section of ModifyGraph relates to modifying the appearance of axes in a graph.

Parameters
Each key parameter may take an optional axisName enclosed in parentheses.
axisName is “left”, “right”, “top”, “bottom” or the name of a free axis such as “vertCrossing”. For instance,
“ModifyGraph axThick(left)=0.5” sets the axis thickness for only the left axis.
If “(axisName)” is omitted, all axes in the graph are affected. For instance, “ModifyGraph standoff=0”
disables axis standoff for all axes in the graph.
The parameter descriptions below omit the optional “(axisName)”.

axisClip= c

axisEnab={lowFrac,highFrac}

Restricts the length of an axis to a subrange of normal. The axis is drawn from lowFrac
to highFrac of graph area height (vertical axis) or width (horizontal axis). For instance,
{0.1,0.75} specifies that the axis is drawn from 10% to 75% of the graph area
height/width, instead of the normal 0% to 100%. AxisEnab is discussed in Creating
Split Axes on page II-259 and Creating Stacked Plots on page II-253.

axisOnTop=t

axOffset=a Specifies the distance from default axis position to actual axis position in units of the
width of a zero character (0) in a tick mark label. Unlike margin, axOffset adjusts to
changes in the size of the graph.

axThick=t Specifies the axis thickness in points.

barGap=fraction Sets the fraction of the width available for bars to be used as gap between bars.
barGap sets the gap between bars within a single category while catGap sets the gap
between categories.

btLen=p Sets the length of major (“big”) tick marks to p points. If p is zero, it uses the default
length. p may be fractional.

btThick=p Sets the thickness of major (“big”) tick marks to p points. If p is zero, it uses the default
thickness. p may be fractional.

Specifies one of three clipping modes for traces.

c=0: Clips traces to a plot rectangle as defined by the pair of axes used by a
given trace (default).

c=1: Plots traces on an axis with a restricted range (as set by axisEnab) to
extend to the full range of the normal plot rectangle.

c=2: Traces extend outside the normal plot rectangle to the full extent of the
graph area.

Specifies drawing level of axis and associated grid lines.

t=0: Draws axis before traces and images (default).

t=1: Draws the axis after all traces and images.

ModifyGraph (axes)

V-535

catGap=fraction The value for catGap is the fraction of the category width to be used as gap. The gap
is divided equally between the start and end of the category width. A value of 0.2
would use 20% of the available space for the gap and leave 80% of the available space
for the bars.
catGap sets the gap between categories while barGap sets the gap between bars
within a single category.

dateFormat={languageName, yearFormat, monthFormat, dayOfMonthFormat, dayOfWeekFormat, layoutStr,
commonFormat}

Sets the custom date format used in the active graph.
Note: Use a custom date format only if you turn it on via a ModifyGraph dateInfo
command. The last parameter to the ModifyGraph dateInfo command must be -1 to
turn on the custom date format.
Parameters are the same as for the LoadWave/R flag except for the last one.

If the commonFormat parameter is negative, then it will select the Use Custom Format
radio button in the Modify Axis dialog rather than Use Common Format and will then
use the absolute value of commonFormat to determine which item to select in the
Common Format pop-up menu.

dateInfo={sd,tm,dt}

font="fontName" Sets the axis label font, e.g., font(left)="Helvetica".

commonFormat selects the common date format to use in the Modify Axis dialog.
The legal values correspond to the choices in the Common Format pop-up menu
of the Modify Axis dialog. They are:

Value Date Format Value Date Format
1 mm/dd/yy 16 mm/yy
2 mm-dd-yy 17 mm.yy
3 mm.dd.yy 18 Abbreviated month and year
4 mmddyy 19 Full month and year
6 dd/mm/yy 21 mm/dd
7 dd-mm-yy 22 dd.mm
8 dd.mm.yy 23 Abbreviated month and day
9 ddmmyy 24 Full month and day
11 yy/mm/dd 26 Abbreviated date without day of week
12 yy-mm-dd 27 Abbreviated date with day of week
13 yy.mm.dd 28 Full date without day of week
14 yymmdd 29 Full date with day of week

Controls formatting of date/time axes.

sd=0: Show date in the date&time format.

sd=1: Suppress date.

tm=0: 12 hour (AM/PM) time.

tm=1: 24 hour (military) time.

tm=2: Elapsed time.

dt=-1: Custom date as specified via the dateFormat keyword.

dt=0: Short dates (2/22/90).

dt=1: Long dates (Thursday, February 22, 1990).

dt=2: Abbreviated dates (Thurs, Feb 22, 1990).

ModifyGraph (axes)

V-536

freePos(freeAxName)=p

Sets the position of the free axis relative to the edge of the plot area to which the axis
is anchored. p is in points. i.e., if the axis was made via /R=axName then the axis is
placed p points from the right edge of the plot area. Positive is away from the central
plot area. freeAxName may not be any of the standard axes: “left”, “bottom”, “right”
or “top”.

freePos(freeAxName)={crossAxVal,crossAxName}

Positions the free axis so it will cross the perpendicular axis crossAxName where it has
a value of crossAxVal. freeAxName may not be any of the standard axis names “left”,
“bottom”, “right”, or “top”, though crossAxName may.
You can position a free axis as a fraction of the distance across the plot area by using
kwFraction for crossAxName. crossAxVal must then be between 0 and 1; any values
outside this range are clipped to valid values.

fsize=s Autosizes (s=0) tick mark labels and axis labels.
If s is between 3 and 99 then the labels are fixed at s points.

fstyle=f

ftLen=p Sets the length of 5th (or emphasized minor) tick marks to p points. If p is zero, it uses
the default length. p may be fractional.

ftThick=p Sets the thickness of 5th (or emphasized minor) tick marks to p points (fractional). If
p is zero, it uses the default thickness.

grid=g

gridEnab={lowFrac,highFrac}

Restricts the length of axis grid lines to a subrange of normal. The grid is drawn from
lowFrac to highFrac of graph area height (if axis is horizontal) or width (if axis is vertical).

gridHair=h Sets the grid hairline thickness (h =0 to 3; 0 for thicker lines, 3 for thinner; default is 2).
If h=0, the thickness of grid lines on major tick marks is the same as the axis thickness,
half for a minor tick and one tenth for a subminor tick (log axis only). As h increases
these thicknesses decrease by a factor of 2^h. If you want to see the effect of different
values of gridHair, you will need to print a sample graph because you generally can’t
see the effect of thin lines on the screen. Also see the example experiment
“Examples:Graphing Techniques:Graph Grid Demo”.

f is a bitwise parameter with each bit controlling one aspect of the font style for the
axis and tick mark labels as follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold
Bit 1: Italic
Bit 2: Underline
Bit 4: Strikethrough

Controls grid lines.

g=0: Grid off.

g=1: Grid on.

g=2: Grid on major ticks only.

ModifyGraph (axes)

V-537

gridStyle=g

Also see the example experiment “Examples:Graphing Techniques:Graph Grid
Demo”.

highTrip=h If the extrema of an axis are between its lowTrip and its highTrip then tick mark labels use
fixed point notation. Otherwise they use exponential (scientific or engineering) notation.

lblLatPos=p Sets a lateral offset for the axis label. This is an offset parallel to the corresponding
axis. p is in points. Positive is down for vertical axes and to the right for horizontal
axes.

lblMargin=l Specifies the distance from the edge of graph to a label in points.

lblPos=p Sets the distance from an axis to the corresponding axis label in points. If p=0, it
automatically picks an appropriate distance.
This setting is used only if the given graph edge has at least one free axis. Otherwise,
the lblMargin setting is used to position the axis label.

lblPosMode= m

The absolute modes are measured in points whereas scaled modes have similar
values but automatically expand or contract as the axis font height changes. Mode 0
is the default and results in no change relative to previous versions of Igor Pro that
used lblMargin unless a given side used a free axis in which case it used lblPos in
absolute mode. The margin modes measure relative to an edge of the graph while the
axis modes measure relative to the position of the axis. When using stacked axes, use
either margin modes. With multiple nonstacked axes, use Axis scaled if the graph
edge is not using a fixed margin or use axis absolute if it is.

lblRot=r Rotates the axis label by r degrees. r is a value from -360 to 360. Rotation is
counterclockwise and starts from the label's normal orientation.

linTkLabel=tl tl=1 attaches the data units with any exponent or prefix to each tick label on a normal
axis. tl=0 removes them.

Sets the grid style to various combinations of solid and dashed lines. In the
following discussion, major, minor and subminor refer to grid lines the
corresponding tick marks. Subminor ticks are used only on log axes when there is
a small range and sufficient room (they correspond to hundredths of a decade).
The different grid styes are solid, dotted, dashed, and blank. The possible grids are
as follows:

g=0: Same as mode 1 if graph background is white else uses mode 5.

g=1: Major dotted, minor and subminor dashed.

g=2: All dotted.

g=3: Major solid, minor dotted, subminor blank.

g=4: Major and minor solid, subminor dotted.

g=5: All solid.

Affects the meaning and usage of lblPos, lblLatPos, and lblMargin parameters.
Mainly for use when you have multiple axes on a side and you need axis labels to
be properly positioned even as you make graph windows dramatically larger or
smaller.

m=0: Default compatibility mode (Margin or Axis absolute depending on
presence of free axis).

m=1: Margin absolute.

m=2: Margin scaled.

m=3: Axis absolute.

m=4: Axis scaled.

ModifyGraph (axes)

V-538

log=l

logHTrip=h Same as highTrip but for log axes.

logLabel=l Sets the maximum number of decades in a log axis before minor tick labels are
suppressed.

logLTrip=l Same as lowTrip but for log axes.

loglinear=l Switches to a linear tick method (l=1) on a log axis if the number of decades of ranges
is less than 2. It switches to a linear tick exponent method if the number of decades is
greater than five.

logTicks=t Sets the maximum number of decades in log axis before minor ticks are suppressed.

lowTrip=l If the extrema of an axis are between its lowTrip and its highTrip then tick mark labels use
fixed point notation. Otherwise they use exponential (scientific or engineering) notation.

manminor={number, emphasizeEvery}

Specifies how to draw minor ticks in manual tick mode. There will be number ticks
between each major (labeled) tick. You will usually want to set this to 4 to make 5
divisions, or 9 to make 10 divisions. A medium-sized tick (an emphasized minor tick)
will be drawn every emphasizeEvery minor tick.

manTick={cantick, tickinc, exp, digitsrt [, timeUnit]}

Turns on manual tick mode. The tick from which all other ticks are calculated is the
cononic tick (cantick). The numerical spacing between ticks is set by tickinc. cantick and
tickinc are multiplied by 10exp. The number of digits to the right of the decimal point
displayed in the tick labels is set by digitsrt.
The optional parameter timeUnit is used with Date/Time axes to specify the units of
tickinc. In this case, tickinc must be an integer. The value of timeUnit is one of the
following keywords:
second, minute, hour, day, week, month, year

On a date/time axis, the exp and digitsrt keywords are ignored, but must be present.
You can set them to zero.

manTick=0 Turns off manual tick mode.

margin=m

minor=m Disables (m=0) or enables (m=1) minor ticks.

Controls axis log mode.

g=0: Normal axis.

g=1: Log base 10.

g=2: Log base 2.

Sets a fixed margin from the edge of the window to the axis in points. Used
principally to make axes of multiple graphs on a page line up when “stacked”. You
can use the left, right, bottom, and top axis names (even if an axis with that name
doesn’t exist) to adjust the graph plot area. See Types of Axes on page II-215.

m=0: Sets “automatic” margin size (dependent on the length and height of
tick marks and labels).

m=-1: Sets the margin to “none”, or 0. The axis is drawn at the graph
window’s edge.

ModifyGraph (axes)

V-539

mirror=m

mirrorPos=pos Specifies the position of the mirror axis relative to the normal position. pos is a value
between 0 and 1.

noLabel=n

notation=n Uses engineering (n=0) or scientific (n=1) notation for tick mark labels.
Affects tick mark labels displayed exponentially. See highTrip and lowTrip. Does not
affect log axes.

nticks=n Specifies the approximate number of ticks marks (n) on axis.

prescaleExp=exp Multiplies axis range by 10^exp for tick labeling and exp is subtracted from the axis
label exponent. In other words, the exponent is moved from the tick labels to the axis
label. (This affects the display only, not the source data.)

sep=s Specifies the minimum number of screen points (s) between minor ticks.

standoff=s Suppresses (s=0) or enables (s=1) axis standoff.
Axis standoff prevents waves or markers from covering the axis.

stLen=p Sets the length of minor (“small”) tick marks to p points. If p is zero, it uses the default
length. p may be fractional.

stThick=p Sets the thickness of minor (“small”) tick marks to p points. If p is zero, it uses the
default thickness. p may be fractional.

tick=t

In a category plot, adding 4 to the usual values for the tick keyword will place the tick
marks in the center of each category rather than at the edges.

tickEnab={lowTick,highTick}

Restricts axis ticking to a subrange of normal. Ticks are drawn and labelled only if
they fall within this inclusive numerical range.

tickExp=te te=1 forces tick labels to exponential notation when labels have units with a prefix.
te=0 turns this off.

tickUnit=tu Suppresses (tu =1) or turns on (tu =0) units labels attached to tick marks.

tickZap={[v1 [,v2 [,v3]]]}

Controls axis mirroring.

m=1: Right axis mirroring left or top mirroring bottom.

m=2: Mirror axis without tick marks.

m=3: Mirror axis with tick marks and tick labels.

m=0: No mirroring.

Controls axis labeling.

n=0: Normal labels.

n=1: Suppresses tick mark labels.

n=2: Suppresses tick mark labels and axis labels.

Sets tick position.

t=0: Outside axis.

t=1: Crossing axis.

t=2: Inside axis.

t=3: None.

ModifyGraph (axes)

V-540

Suppresses drawing of the tick mark label for values given in the list. This is useful
when you have crossing axes to prevent tick mark labels from overlapping. The list may
contain zero, one, two or three values. The values must be exact to suppress the label.

tkLblRot=r Rotates the tick mark labels by r degrees. r is a value from -360 to 360. Rotation is
counterclockwise and starts from the label's normal orientation.

tlOffset=o Offsets the tick mark labels by o fractional points relative to the default tick mark label
position. Positive is away from the axis.

ttLen=p Sets the length of subminor (“tiny”) tick marks to p points. If p is zero, it uses the
default length. p may be fractional. Subminor ticks are used only in log axes.

ttThick=p Sets the thickness of subminor (“tiny”) tick marks to p points. If p is zero, it uses the
default thickness. p may be fractional.

userticks={tickPosWave, tickLabelWave}

Draws axes with purely user-defined tick mark positions and labels. tickPosWave is a
numeric wave containing the desired positions of the tick marks, and tickLabelWave is
a text wave containing the labels. See User Ticks from Waves on page II-241 for an
example.
The tick mark labels can be multiline and use styled text. For more details, see Fancy
Tick Mark Labels on page II-270.
tickPosWave need not be monotonic. Igor will plot a tick if a value is in the range of the
axis. Both linear and log axes are supported.
Graph margins will adjust to accommodate tick labels. This will not prevent overlap
between labels, which you will need fix yourself.

useTSep=t t=1 displays a thousand's separator character between every group of three digits in
the tick mark label (e.g., "1,000" instead of "1000"). The default is t=0.

zapLZ=t Removes (t=1) leading zeros from tick mark labels. For example 0.5 becomes .5 and -
0.5 becomes -.5. Default is t=0.

zapTZ=t Removes (t=1) trailing zeros from tick mark labels. The the radix point will also be
removed if all digits are zero. Default is t=0.

zero=z

zeroThick=zt Sets the thickness of the zero line in points, from 0.0 to 5.0 points. zt=0.0 means the
zero line thickness automatically follows the thickness of the axis; this is the default.
You can use 0.1 for a thin zero line thickness.

ZisZ=t t=1 uses the single digit 0 as the zero tick mark label (if any) regardless of the number
of digits used for other labels. Default is t=0.

Controls the zero line.

z=0: A zero line at x=0 or y=0.
The line style is set to z-1. See ModifyGraph (traces) on page V-522,
lStyle keyword, for details on line styles.

z=1: No zero line.

ModifyGraph (colors)

V-541

Flags

Details
With the prescaleExp parameter, you can force tick and axis label scaling to values different from the defaults.
For example, if you have data whose X scaling ranges from 9pA to 120pA and you display this on a log axis,
the tick marks will be labelled 10pA and 100pA. But if you really want the tick marks labeled 10 and 100 with
pA in the axis label, you can set the prescaleExp to 12. To see this, execute the following commands:
Make/O jack=x
Display jack
SetScale x,9e-12,120e-12,"A",jack
ModifyGraph log(bottom)=1

then execute:
ModifyGraph prescaleExp(bottom)=12

The tickExp parameter applies to units that do not traditionally use SI prefix characters. For example, one usually
speaks of 10-3 Torr and not mTorr. To see how this feature works, execute the following example commands:
Make/O jack=x
Display jack
SetScale x,1E-7,1E-5,"Torr",jack
ModifyGraph log(bottom)=1

then execute:
ModifyGraph tickExp(bottom)=1

at this point, the tick mark labels have Torr in them. If you want to eliminate the units from the tick marks,
execute:
ModifyGraph tickUnit(bottom)=1

and if you now want Torr in the label string, use the \U escape in the label string:
Label bottom "\\U"

To see the effect of linTkLabel, execute these commands:
Make/O jack=x
Display jack
SetScale x,1E-7,1E-5,"Torr",jack

then execute:
ModifyGraph linTkLabel(bottom)=1

and then try:
ModifyGraph tickExp(bottom)=1

and finally:
ModifyGraph tickUnit(bottom)=1

ModifyGraph (colors)
ModifyGraph [/W=winName/Z] key [(axisName)] = (r,g,b)

[, key [(axisName)] = (r,g,b)]…
This section of ModifyGraph relates to modifying the use of colors in a graph.

Parameters
Most (but not all) of the key parameters may take an optional axisName enclosed in parentheses. axisName is
“left”, “right”, “top”, “bottom” or the name of an free axis such as “vertCrossing”.
Where the parameter descriptions indicate an “(axisName)”, it may be omitted to change all axes in the graph.
r, g, and b are each an integer from 0 to 65535 where (0, 0, 0) is black and (65535, 65535, 65535) is white.

/W=winName Modifies the named graph window or subwindow. When omitted, action will affect
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/Z Does not generate an error if the named axis does not exist in a style macro.

ModifyImage

V-542

Flags

Details
On Windows, use maximum white to set the control bar background color to track the 3D Objects color in
the Appearance Tab of the Display Properties control panel:
ModifyGraph cbRGB=(65535,65535,65535)

See Also
See Instance Notation on page IV-19.

ModifyImage
ModifyImage [/W=winName] imageInstance, keyword = value

[, keyword = value]…
The ModifyImage operation changes properties of the given image in the top graph (or the specified graph
if /W is used). imageInstance is the name of the image to be altered. This name is usually simply the name of
the matrix wave containing the image data. If the same matrix wave is displayed more than once, you must
append #0, #1 etc. to the name to distinguish which is which.

imageInstance can also take the form of a null name with an instance number to affect the instanceth image.
That is,
ModifyImage ''#1

modifies the appearance of the second image that was appended to the top graph, no matter what the image
names are. Note: two single quotes are used, not a double quote.

Parameter Specification Object Colored

alblRGB(axisName)=(r,g,b) Axis labels

axRGB(axisName)=(r,g,b) Axis

cbRGB=(r,g,b) Control bar background

gbRGB=(r,g,b) Graph background

gbGradient=<parameters> Controls color gradients for graph background. See
Gradient Fills on page III-441 for details.

gbGradientExtra=<parameters> Controls color gradient details for graph background. See
Gradient Fills on page III-441 for details.

gridRGB(axisName)=(r,g,b) Axis grid lines

tickRGB(axisName)=(r,g,b) Axis Tick marks

tlblRGB(axisName)=(r,g,b) Axis Tick labels

wbRGB=(r,g,b) Window background

wbGradient=<parameters> Controls color gradients for window background. See
Gradient Fills on page III-441 for details.

wbGradientExtra=<parameters> Controls color gradient details for window background.
See Gradient Fills on page III-441 for details.

/W=winName Modifies the named graph window or subwindow. When omitted, action will affect
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/Z Does not generate an error if the named axis does not exist in a style macro.

ModifyImage

V-543

Parameters
Here are the keyword-value pairs. These apply to false color images in which the data in the matrix is used
as an index into a color table. They do not apply to direct color images in which the data in the matrix
specifies the color directly.

cindex=matrixWave Sets the Z value mapping mode such that image colors are determined by doing a
lookup in the specified matrix wave.
matrixWave is a 3 column wave that contains red, green, and blue values from 0 to
65535. (The matrix can actually have more than three columns. It ignores any extra
columns.)
The color at Z=z is determined by finding the RGB values in the row of matrixWave
whose scaled X index is z. In other words, the red value is matrixWave(z)[0], the green
value is matrixWave(z)[1] and the blue value is matrixWave(z)[2].
If matrixWave has default X scaling, where the scaled X index equals the point number,
then row 0 contains the color for Z=0, row 1 contains the color for Z=1, etc.
If you use cindex, you should not use ctab in the same command.

ctab={zMin, zMax, ctName, reverse}

Sets the z mapping mode by which values in the matrix are mapped linearly into the
color table specified by ctName.
zMin and zMax set the range of z values to map. Omit zMin or zMax to leave as is or
use * to autoscale.
The color table name can be missing if you want to leave it as is.
ctName can be any color table name returned by the CTabList function, such as Grays
or Rainbow (see Image Color Tables on page II-305) or the name of a 3 column or 4
column color table wave (Color Table Waves on page II-311).
A color table wave name supplied to ctab must not be the name of a built-in color
table (see CTabList). A 3 column or 4 column color table wave must have values that
range between 0 and 65535. Column 0 is red, 1 is green, and 2 is blue. In column 3 a
value of 65535 is opaque, and 0 is fully transparent.
Set reverse to 1 to reverse the color table. Setting it to 0 or omitting it leaves the color
table unreversed.

ctabAutoscale=autoBits

eval={value, red, green, blue, [alpha]}

If the red, green, and blue values are in the valid range for a color value (0 to 65535)
the explicit value-color pair is added (or updated if value already exists). If the color
values are out of range (-1 is suggested) then the value is removed from the list if it is
present (no error if it is not).
alpha is optional: a value of 65535 is opaque, and 0 is fully transparent.

Sets the range of data used for autoscaling ctab * values.

If neither bit is set (if autoBits = 0, the default), then all of the data in the image wave
is used to autoscale the *’d zMin, zMax values for ctab.

Bit 0: Autoscales only the XY subset being displayed.

Bit 1: Autoscales only the current plane being displayed.

ModifyImage

V-544

explicit=1 or 0

imCmplxMode=m

interpolate= mode mode = 1 turns on smoothing of the boundaries between pixels. Since this is
implemented via system graphics calls and not by Igor actually doing the
interpolation, it will not affect EPS or EMF export on Windows and will not affect EPS
export on Mac. Although this may create a more esthetically pleasing display, it is not
clear that it is appropriate for scientific data.
mode = -1 forces pixels to be drawn as individual rectangles. This is sometimes needed
when a third-party program improperly interpolates PDF or EPS exported images.

log= 1 or 0 0 sets the default linearly-spaced false-image colors.
1 turns on logarithmically-spaced false-image colors. This requires that the image
values be greater than 0 to display correctly.
Affects the image colors for color table and color index images only (see Color Table
Details on page II-308 and Indexed Color Details on page II-312).

lookup= waveName Specifies an optional 1D wave that can be used to modify the mapping of scaled z
values into the color table specified with the ctab parameter. Values should range
from 0.0 to 1.0. A linear ramp from 0 to 1 would have no effect while a ramp from 1
to 0 would reverse the image. Used to apply gamma correction to grayscale images or
for special effects. Use a NULL wave ($"") to remove the option.

maxRGB=(red, green, blue, [alpha])

Sets the color of image values greater than the ctab zMax or greater than the cindex of
the matrixWave maximum X scaling value. Also turns max color mode on.
The red, green, and blue color values are in the range of 0 to 65535.
alpha is optional: a value of 65535 is opaque, and 0 is fully transparent.

maxRGB=1 or 0 or NaN

minRGB=(red, green, blue, [alpha])

Turns explicit (monochrome) mode on (1) or off (0). Meant to be used with
unsigned byte data but will do the best it can for other types. If value of data is
equal to one of the defined explicit values then its defined color is used otherwise
the pixel will be blank. The default predefined values are:

You can add, change, or delete explicit values with the eval keyword.

255: black

0: white

Sets complex data display mode.

m=0: Magnitude (default).

m=1: Real only.

m=2: Imaginary only.

m=3: Phase in radians.

Turns max color mode off, on, or transparent. These modes affect the display of
image values greater than the ctab zMax or greater than the cindex of the
matrixWave maximum X scaling value.

1: Turns on max color mode. The color of the affected image pixels is
black or the last color set by maxRGB=(red, green, blue).

0: Turns off max color mode (default). The color of the affected image
pixels is the last color table or color index color.

NaN: Transparent max color mode. The affected image pixels are not drawn.

ModifyLayout

V-545

Flags

See Also
AppendImage and RemoveImage.

ModifyLayout
ModifyLayout [flags] key [(objectName)] =value [, key [(objectName)] =value]…
The ModifyLayout operation modifies objects in the top layout or in the layout specified by the /W flag.

Parameters
Each key parameter may take an optional objectName enclosed in parentheses. If “(objectName)” is omitted,
all objects in the layout are affected.

Sets the color of image values less than the ctab zMin or less than the cindex of the
matrixWave minimum X scaling value. Also turns min color mode on.
The red, green, and blue color values are in the range of 0 to 65535.
alpha is optional: a value of 65535 is opaque, and 0 is fully transparent.

minRGB=1 or 0 or NaN

plane=p Determines which part of a 3D or 4D image wave to display.
The meaning of p depends on the nature of the image wave. If the size of the layer
dimension of the image wave is exactly three then the wave is treated as RGB data
with R, G, and B data in the three layers. If the size of the layer dimension is exactly
four, then the wave is treated as RGBA data, with A in the fourth layer. Otherwise
each layer of the wave is treated as a separate grayscale image.

Plane=p With RGB Data
If the wave is 3D, plane=p has no effect.
If the wave is 4D, each chunk contains a different set of R, G and B layers and p selects
which chunk to display.

Plane=p With Grayscale Data
If the wave is 3D, p selects which layer to display.
If the wave is 4D, plane=p acts as if all of the chunks were combined into a virtual 3D
wave and p selects which layer of this virtual 3D wave to display.

rgbMult=m If m is non-zero, direct color values (3 plane RGB) are multiplied by m. This would
typically be used for 10, 12 or 14 bit integers in a 16 bit word. For example, if your
image data is 14 bits, use rgbMult=4.

/W=winName Directs action to a specific window or subwindow rather than the top graph window.
When omitted, action will affect the active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

Turns min color mode off, on, or transparent. These modes affect the display of
image values less than the ctab zMin or less than the cindex of the matrixWave
minimum X scaling value.

1: Turns on min color mode. The color of the affected image pixels is black
or the last color set by minRGB=(red, green, blue).

0: Turns off min color mode (default). The color of the affected image
pixels is the first color table or color index color.

NaN: Transparent min color mode. The affected image pixels are not drawn.

ModifyLayout

V-546

Though not shown in the syntax, the optional “(objectName)” may be replaced with “[objectIndex]”, where
objectIndex is zero or a positive integer denoting the object to be modified. “[0]” denotes the first object
appended to the layout, “[1]” denotes the second object, etc. This syntax is used for style macros, in
conjunction with the /Z flag.
The parameter descriptions below omit the optional “(objectName)”.
The “units”, “mag” and “bgRGB” keywords apply to the layout as a whole, not to a specific object and do
not accept an objectName.

bgRGB=(r,g,b) Specifies the background color for the layout. r, g, and b are integers from 0 to 65535.

columns=c Specifies the number of columns for a table object.

fidelity=f

frame=f

gradient=<parameters>

Controls color gradients for layout pages. See Gradient Fills on page III-441 for
details.

gradientExtra=<parameters>

Controls color gradient details for layout pages. See Gradient Fills on page III-441 for
details.

height=h Sets the height of the object.

left=l l is the horizontal coordinate of the left edge of the object relative to the left edge of
the paper.

mag=m Sets the layout magnification where m=0.25, 0.5, 1, or 2.

rows=r Specifies the number of rows for table object.

top=t t is the vertical coordinate of the top edge of the object relative to the top edge of the paper.

trans=t

units=u

width=w Sets the object width.

Controls the drawing of layout objects.

f=0: Low fidelity.

f=1: High fidelity.

Specifies the type of frame enclosing the object.
f=0: No frame.
f=1: Single frame (default).
f=2: Double frame.
f=3: Triple frame.
f=4: Shadow frame.

Controls the transparency of the layout object:
t=0: Opaque (default).
t=1: Transparent. For this to be effective, the object itself must also be

transparent. Annotations have their own transparent/opaque
settings. Graphs are transparent only if their backgrounds are white.
PICTs may have been created transparent or opaque, and Igor cannot
make an opaque PICT transparent.

Sets dimension units in the layout info panel and in the Modify Objects dialog.

u=0: Points.

u=1: Inches.

u=2: Centimeters.

ModifyPanel

V-547

Flags

The /I and /M flags affect the units of the parameters for the left, top, width and height keywords only. If
neither /I nor /M is present then the parameters for the left, top, width and height keywords are points.

Details
Note that the units keyword affects only the units used in the layout info panel and in the Modify Objects
dialog. It has nothing to do with the units used for the left, top, width and height keywords. Those units are
points unless the /I or /M flags is present.

See Also
NewLayout, AppendLayoutObject and RemoveLayoutObjects.

ModifyPanel
ModifyPanel [/W=winName] keyword = value [, keyword = value …]
The ModifyPanel operation modifies properties of the top or named control panel window or subwindow.

Parameters
keyword is one of the following:

/I Dimensions in inches.

/M Dimensions in centimeters.

/W=winName winName is the name of the page layout window to be modified. If /W is omitted or if
winName is $"", the top page layout is modified.

/Z Does not generate an error if the indexed or named object does not exist in a style macro.

cbRGB=(r,g,b) Specifies the background color of the entire control panel or the graph’s control bar
area. r, g, and b are values from 0 to 65535.

fixedSize=f

frameInset= i Specifies the number of pixels by which to inset the frame of the panel subwindow.
Mostly useful for overlaying panels in graphs to give a fake 3D frame a better appearance.

frameStyle= f

Controls the resizing of the panel window.

f=0: Panel can be resized (default).

f=1: Panel cannot be resized by adjusting the size box or frame (nor
maximized on Windows), but the window can be minimized (on
Windows) and the MoveWindow operation can still change the size.
The fixedSize keyword overrides any previous size limit set
using the SetWindow sizeLimit command. If you try to use
SetWindow sizeLimit on a window with fixedSize=1, Igor
generates an error.

Specifies the frame style for a panel subwindow.

The last three styles are fake 3D and will look good only if the background color of
the enclosing space and the panel itself is a light shade of gray.

f=0: None.
f=1: Single.
f=2: Indented.
f=3: Raised.
f=4: Text well.

ModifyTable

V-548

Flags

Details
On Windows, set r, g, and b = 65535 (maximum white) to set the background color of the control panel to
track the 3D Objects color in the Appearance Tab of the Display Properties control panel.

See Also
The NewPanel operation.
Controls in Graphs on page III-392.

ModifyTable
ModifyTable [/W=winName/Z] key [(columnSpec)] =value [, key [(columnSpec)] =value]…
The ModifyTable operation modifies the appearance the top or named table window or subwindow.

Parameters
Many of the parameter keywords take an optional columnSpec enclosed in parentheses. Usually columnSpec is
simply the name of a wave displayed in the table. All table columns are affected when you omit (columnSpec).
More precisely, column specifications are wave names for waves in the current data folder or data folder
paths leading to waves in any data folder optionally followed by the suffixes .i, .l, .d, .id or .ld to specify
dimension indices, dimension labels, data values, dimension indices and data values, or dimension labels
and data values of the wave. For example, ModifyTable font(myWave.i)="Helvetica". If the wave
is complex, the column specification may be followed by .real or .imag suffixes.
One additional columnSpec is Point, which refers to the first column containing the dimension index
numbers. If multidimensional waves are displayed in the table, this column may have the title “Row”,
“Column”, “Layer”, “Chunk” or “Element”, but the columnSpec for this column is always Point. See
Column Names on page II-176 for details.
Though not shown in the syntax, the optional (columnSpec) may be replaced with [columnIndex],
where columnIndex is zero or a positive integer denoting the column to be modified. [0] denotes the Point
column, [1] denotes the first column appended to the table, [2] denotes the second appended column,
etc. This syntax is used for style macros, in conjunction with the /Z flag.
You can use a range of column numbers instead of just a single column number, for example [0,3].
The parameter descriptions below omit the optional (columnSpec).

noEdit= e

/W= winName Modifies the control panel in the named graph or control panel window or
subwindow. When omitted, action will affect the active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

alignment=a

autosize={mode, options, padding, perColumnMaxSeconds, totalMaxSeconds}

Sets the editability of the panel.

e=0: Editable (default).

e=1: Not editable. For a panel window, the Panel menu item is not
present and the ShowTools command is ignored. For a panel
subwindow, it can not be activated by clicking.

Sets the alignment of table cell text.
a=0: Left aligned.
a=1: Center aligned.
a=2: Right aligned.

ModifyTable

V-549

padding specifies extra padding for each column in points. Use -1 to get the default
amount of padding (16 points).
perColumnMaxSeconds specifies the maximum amount of time to spend autosizing a
single column. Use 0 to get the default amount of time (one second).
totalmaxSeconds specifies the maximum amount of time for autosizing the entire table.
Use 0 to get the default amount of time (ten seconds).

digits=d Specifies the number of digits after decimal point or, for hexadecimal and octal
columns, the number of total digits.

elements=(row, col, layer, chunk)

entryMode=m

Autosizes the specified column or columns.
mode=0: Sets width of each data column from a given multidimensional

wave individually.
mode=1: Sets width of all data columns from a given multidimensional wave

the same.

options is a bitwise parameter. Usually 0 is the best choice.

All other bits are reserved and must be set to zero.
See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Ignores column names.
Bit 1: Ignores horizontal indices.
Bit 2: Ignores data cells.

Selects the view of a multidimensional wave in the table. The values given to row,
col, layer, and chunk specify how to change the view.

See ModifyTable Elements Command on page II-197 for a detailed discussion of

-1: No change from current view.
-1: Display this dimension vertically.
-3: Display this dimension horizontally.
≥0: For waves with 3 or 4 dimensions, display this element of the

other dimensions.

Queries or sets the table’s entry line mode.
m=0: Just queries.
m=1: Accepts any entry that was started if possible.
m=2: Cancels any entry that was started if possible.

If m is 0 then the entry line state is not changed but is returned via V_flag as follows:
0: No entry is in progress.
-1: An entry is in progress and is valid.
Other: An entry is in progress and is invalid.

If m is 1 then the entry is accepted if it is valid and its state is returned via V_flag as
follows:
0: No entry is in progress.
-1: The entry was accepted.
Other: The entry is invalid and was not accepted.

ModifyTable

V-550

font="fontName" Sets font used in the table, e.g., font="Helvetica".

format=f

You cannot apply date or date&time formats to a wave that is not double-precision
(see Date, Time, and Date&Time Units on page II-64). To avoid this error, use
Redimension to change the wave to double-precision.

frameInset= i Specifies the number of pixels by which to inset the frame of the table subwindow.

frameStyle= f

horizontalIndex=h

The horizontal index row appears below the row of column names if the table
contains a multidimensional wave. Use horizontalIndex to override the default
behavior in order to display labels for the horizontal dimension while displaying
numeric indices for the vertical dimension or vice versa.
horizontalIndex controls the horizontal index row only. To control what is displayed
vertically, use AppendToTable to append a numeric index or dimension label
column.

If m is 2 then the entry is cancelled if possible and its state is returned via V_flag as
follows:
0: No entry is in progress.
-1: The entry was cancelled.

Sets the data format for the table.
f=0: General.
f=1: Integer.
f=2: Integer with thousands (e.g., "1,234").
f=3: Fixed point (e.g., "1234.56").
f=4: Fixed point with thousands (e.g., "1,234.56").
f=5: Exponential (scientific only).
f=6: Date format.
f=7: Time format (always 24 hour time).
f=8: Date&time format (date followed by time).
f=9: Octal.
f=10: Hexadecimal.

Specifies the frame style for a table subwindow.

The last three styles are fake 3D and will look good only if the background
color of the enclosing space and the table itself is a light shade of gray.

f=0: None.
f=1: Single.
f=2: Double.
f=3: Triple.
f=4: Shadow.
f=5: Indented.
f=6: Raised.
f=7: Text well.

Controls what is displayed in the horizontal index row when multidimensional
waves are displayed.
h=0: Displays dimension labels if the multidimensional wave’s label column

is displayed, otherwise displays numeric indices (default).
h=1: Always displays numeric indices for multidimensional waves.
h=2: Always displays dimension labels for multidimensional waves.

ModifyTable

V-551

rgb=(r, g, b) Sets color of text. r, g, and b are red, green, and blue components of the color and range
from 0 to 65,535. Default is black: (0,0,0).

selection=(firstRow, firstCol, lastRow, lastCol, targetRow, targetCol)

Sets the selected cells in the table.
If any of the parameters have the value -1 then the corresponding part of the selection
is not changed.
Otherwise they set the first and last selected cell and the target cell. Row and column
values are 0 or greater. The Point column can not be selected.
The proposed parameters are clipped to avoid invalid combinations, such as the last
selected row being before the first selected row.
With one exception, it does not support selecting unused cells. Therefore the
proposed selection is clipped to prevent this. The exception is that, if the parameters
call for selecting the first cell in the first unused column, then this is permitted.

showFracSeconds=s Shows (s=1) or hides (s=0; default) fractional seconds.

showParts=parts Specifies what elements of the table should be visible. Other elements are hidden.

All other bits are reserved and must be set to zero except that you can pass -1 to
indicate that you want to show all parts of the table.
See Setting Bit Parameters on page IV-12 for details about bit settings.
Presentation tables in subwindows in graphs and page layouts do not have an entry
line or scroll bars and therefore never show these items.
See Parts of a Table on page II-170 and Showing and Hiding Parts of a Table on page
II-172 for further information.

sigdigits=d d is the number of significant digits when the numeric format is general.

size=s Font size, e.g., size=14.

style=n

For example, bold underlined is 20 + 22 = 1 + 4 = 5. See Setting Bit Parameters on page
IV-12 for details about bit settings.

title="title" Sets the title of a column to title.

topLeftCell=(row, column)

parts is a bitwise parameter specifying what to show.
bit 0: Entry line and other top line controls.
bit 1: Name row.
bit 2: Horizontal index row.
bit 3: Point column.
bit 4: Horizontal scroll bar.
bit 5: Vertical scroll bar.
bit 6: Insertion cells.
bit 7: Insertion cells.

n is a bitwise parameter with each bit controlling one aspect of the column’s
font style as follows:
Bit 0: Bold
Bit 1: Italic
Bit 2: Underline
Bit 4: Strikethrough

ModifyWaterfall

V-552

Flags

Examples
ModifyTable size(myWave)=14 // change font size of myWave column
ModifyTable width(Point)=0 // hide Point column
ModifyTable style(cmplxWave.imag)=32 // condensed= bit 5 = 2^5 = 32

See Also
See Column Names on page II-176 and ModifyTable Elements Command on page II-197.

ModifyWaterfall
ModifyWaterfall [/W=winName] keyword = value [, keyword = value …]
The ModifyWaterfall operation modifies the properties of the waterfall plot in the top or named graph.

Parameters
keyword is one of the following:

Scrolls the table contents so that the cell identified by (row, column) is the top left
visible data cell, or as close as possible.
If row is -1 then the table’s vertical scrolling is not changed. If column is -1 then the
table’s horizontal scrolling is not changed.
If they are positive, row and column are zero-based numbers which are clipped to valid
values before being used. row=0 refers to the first row of data in the table, column=0
refers to the first column of data.
The Point column can not be scrolled horizontally.

trailingZeros=t Shows trailing zeros (t=1). This affects the general numeric format only.

width=w Sets column width to w points.
You will not always get the exact number of points that you request. This is because
a column must have an even number of screen pixels, so that grid lines look good. Igor
will modify your requested number of points to meet this requirement.

/W= winName Modifies the named table window or subwindow. When omitted, action will affect
the active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/Z No errors generated if the indexed or specified column does not exist in a style macro.

angle= a Angle in degrees from horizontal of the angled Y axis (a =10 to 90).

axlen= len Relative length of angled Y axis. len is a fraction between 0.1 and 0.9.

hidden= h Controls the hidden line algorithm.

Hidden lines are active only when the mode is lines between points.

h=0: Turns hidden lines off.

h=1: Uses painter’s algorithm.

h=2: True hidden.

h=3: Hides lines with bottom removed.

h=4: Hides lines using a different color for the bottom. When specified, the
top color is the normal color for lines and the bottom color is set using
ModifyGraph negRGB=(r,g,b).

ModuleName

V-553

Flags

Details
Painter’s algorithm draws the traces from back to front and erases hidden lines while modes 2, 3 and 4
detect which line segments are hidden and suppresses the drawing of these segments.

See Also
Waterfall Plots on page II-255.
The NewWaterfall and ModifyGraph operations.

ModuleName
#pragma ModuleName = modName
The ModuleName pragma assigns a name, which must be unique, to a procedure file so that you can use
static functions and Proc Pictures in a global context, such as in the action procedure of a control or on the
Command Line.
Using the ModuleName pragma involves at least two steps. First, within the procedure file assign it a name
using #pragma ModuleName=modName, and then access objects in the named file by preceding the object
name with the name of the module and the # character, such as or example: ModName#StatFuncName().

See Also
The Regular Modules on page IV-222, Static, Picture, and #pragma.

MoveDataFolder
MoveDataFolder sourceDataFolderSpec, destDataFolderPath
The MoveDataFolder operation removes the source data folder (and everything it contains) and places it at
the specified location with the original name.

Parameters
sourceDataFolderSpec can be just the name of a child data folder in the current data folder, a partial path
(relative to the current data folder) and name or an absolute path (starting from root) and name.
destDataFolderPath can be a partial path (relative to the current data folder) or an absolute path (starting
from root).

Details
MoveDataFolder generates an error if a data folder of the same name already exists at the destination.

Examples
Move data folder foo into data folder bar:
MoveDataFolder foo,root:bar:

Move data folder foo into data folder bar:
MoveDataFolder foo,:bar:

See Also
See the DuplicateDataFolder operation. Chapter II-8, Data Folders.

MoveFile
MoveFile [flags][srcFileStr] [as destFileOrFolderStr]
The MoveFile operation moves or renames a file on disk. A file is renamed by “moving” it to the same folder
it is already in using a different name.

/W= winName Modifies waterfall plot in the named graph window or subwindow. When omitted,
action will affect the active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

MoveFile

V-554

Parameters
srcFileStr can be a full path to the file to be moved or renamed (in which case /P is not needed), a partial path
relative to the folder associated with pathName, or the name of a file in the folder associated with pathName.
If Igor can not determine the location of the file from srcFileStr and pathName, it displays an Open File dialog
allowing you to specify the source file.
destFileOrFolderStr is interpreted as the name of (or path to) an existing folder when /D is specified,
otherwise it is interpreted as the name of (or path to) a possibly existing file.
If destFileOrFolderStr is a partial path, it is relative to the folder associated with pathName.
If /D is specified, the source file is moved inside the folder using the source file’s name.
If Igor can not determine the location of the destination file from pathName, srcFileStr, and
destFileOrFolderStr, it displays a Save File dialog allowing you to specify the destination file (and folder).
If you use a full or partial path for either srcFileStr or destFileOrFolderStr, see Path Separators on page III-401
for details on forming the path.
Folder paths should not end with single Path Separators. See the Details section for MoveFolder.

Flags

/D Interprets destFileOrFolderStr as the name of (or path to) an existing folder (or
directory). Without /D, destFileOrFolderStr is the name of (or path to) a file.
If destFileOrFolderStr is not a full path to a folder, it is relative to the folder associated
with pathName.

/I [=i]

/M=messageStr Specifies the prompt message in the Open File dialog. If /S is not specified, then
messageStr will be used for both Open File and for Save File dialogs. But see Prompt
Does Not Work on Macintosh on page IV-137.

/O Overwrite existing destination file, if any. Without /O, the user is asked if replacing
the existing file is to be allowed.

/P=pathName Specifies the folder to look in for the source file, and the folder into which the file is
copied. pathName is the name of an existing symbolic path.
Using /P means that both srcFileStr and destFileOrFolderStr must be either simple file
or folder names, or paths relative to the folder specified by pathName.

/S=saveMessageStr Specifies the prompt message in the Save File dialog.

/Z[=z]

Specifies the level of interactivity with the user.
/I=0: Interactive only if srcFileStr or destFileOrFolderStr is not specified or if

the source file is missing. (Same as if /I was not specified.)
/I=1: Interactive even if srcFileStr is specified and the source file exists.
/I=2: Interactive even if destFileOrFolderStr is specified.
/I=3: Interactive even if srcFileStr is specified and the source file exists. Same

as /I only.

Prevents procedure execution from aborting if it attempts to move a file that
does not exist. Use /Z if you want to handle this case in your procedures rather
than having execution abort.
/Z=0: Same as no /Z.
/Z=1: Moves a file only if it exists. /Z alone is equivalent to /Z=1.
/Z=2: Moves a file if it exists or displays a dialog if it does not exist.

MoveFolder

V-555

Variables
The MoveFile operation returns information in the following variables:

Examples
Rename a file, using full paths:
MoveFile "HD:folder:aFile.txt" as "HD:folder:bFile.txt"

Rename a file, using a symbolic path:
MoveFile/P=myPath "aFile.txt" as "bFile.txt"

Move a file into a subfolder (the subfolder must exist):
MoveFile/D "Macintosh HD:folder:aFile.txt" as ":subfolder"

Move a file into an unrelated folder (the subfolder must exist):
MoveFile/D "Macintosh HD:folder:afile.txt" as "Server:archive"

Move a file from one folder to another and rename it:
MoveFile "Macintosh HD:folder:afile.txt" as "Server:archive:destFile.txt"

Move user-selected file into a particular folder:
MoveFile/D as "C:My Data:Selected Files Folder"

Move user-selected file in any folder as bFile.txt in same folder:
MoveFile as "bFile.txt"

Move user-selected file in any folder as bFile.txt in any folder:
MoveFile/I=2 as "bFile.txt"

See Also
The Open, MoveFolder, CopyFolder, NewPath, and CreateAliasShortcut operations. The IndexedFile
function. Symbolic Paths on page II-21.

MoveFolder
MoveFolder [flags][srcFolderStr] [as destFolderStr]
The MoveFolder operation moves or renames a folder on disk. A folder is renamed by “moving” it into the
same folder it is already in, but with a different name.

Parameters
srcFolderStr can be a full path to the folder to be moved or renamed (in which case /P is not needed), a partial
path relative to the folder associated with pathName, or the name of a folder within the folder associated
with pathName.
If the location of the source folder cannot be determined from srcFolderStr and pathName, it displays a Select
Folder dialog allowing you to specify the source.
If /P=pathName is given, but srcFolderStr is not, then the folder associated with pathName is moved or renamed.

V_flag Set to zero if the file was moved, to -1 if the user cancelled either the Open File or Save
File dialogs, and to some nonzero value if an error occurred, such as the specified file
does not exist.

S_fileName Stores the full path to where the file was moved from. If an error occurred or if the
user cancelled, it is set to an empty string.

S_path Stores the full path where the file was moved to. If an error occurred or if the user
cancelled, it is set to an empty string.

Warning: The MoveFolder command can destroy data by overwriting another folder and its contents!
If you overwrite an existing folder on disk, MoveFolder will do so only if permission is
granted by the user. The default behavior is to display a dialog asking for permission. The
user can alter this behavior via the Miscellaneous Settings dialog’s Misc category.
If permission is denied, the folder will not be moved and V_Flag will return 1088
(Command is disabled) or 1275 (You denied permission to overwrite a folder). Command
execution will cease unless the /Z flag is specified.

MoveFolder

V-556

destFolderStr specifies the final location of the folder or, if /D is used, the parent of the final location of the folder.
destFolderStr can be a full path to the output (destination) folder (in which case /P is not needed), or a partial
path relative to the folder associated with pathName.
If the location of the destination folder cannot be determined from destFolderStr and pathName, it displays a
Save Folder dialog allowing you to specify the destination.
If you use a full or partial path for either file, see Path Separators on page III-401 for details on forming the path.

Flags

Variables
The MoveFolder operation returns information in the following variables:

/D Interprets destFolderStr as the name of (or path to) an existing folder (or “directory”)
to move the source folder into. Without /D, it interprets destFolderStr as the name of
(or path to) the moved folder.

If destFolderStr is not a full path to a folder, it is relative to the source folder.

/I [=i]

/M=messageStr Specifies the prompt message in the Open File dialog. If /S is not used, then messageStr
will be used for both Open File and for Save File dialogs. But see Prompt Does Not
Work on Macintosh on page IV-137.

/O Overwrite existing destination folder, if any. This deletes the existing destination
folder. When /O is specified, the source folder can’t be moved into an existing folder
without specifying the name of the moved folder in destFolderStr.

/P=pathName Specifies the folder for relative paths in srcFolderStr and destFolderStr. pathName is the
name of an existing symbolic path.
If srcFolderStr is omitted, the folder associated with pathName is moved. If destFolderStr
is omitted, the source folder is moved into the folder associated with pathName.
Using /P means that srcFolderStr (if specified) and destFolderStr must be either simple
folder names or paths relative to the folder specified by pathName.

/S=saveMessageStr Specifies the prompt message in the Save File dialog.

/Z[=z]

V_flag Set to zero if the file was moved, to -1 if the user cancelled either the Open File or Save
File dialogs, and to some nonzero value if an error occurred, such as the specified file
does not exist.

S_fileName Stores the full path to the folder that was moved, with a trailing colon. If an error
occurred or if the user cancelled, it is set to an empty string.

S_path Stores the full path of the moved folder, with a trailing colon. If an error occurred or
if the user cancelled, it is set to an empty string.

Specifies the level of interactivity with the user.
/I=0: Interactive only if srcFolderStr or destFolderStr is not specified or if the

source folder is missing. (Same as if /I was not specified.)
/I=1: Interactive even if srcFolderStr is specified and the source folder exists.
/I=2: Interactive even if destFolderStr is specified.
/I=3: Interactive even if srcFolderStr is specified and the source folder exists.

Same as /I only.

Prevents procedure execution from aborting if it attempts to move a folder that
does not exist. Use /Z if you want to handle this case in your procedures rather than
having execution abort.
/Z=0: Same as no /Z.
/Z=1: Moves a folder only if it exists. /Z alone is equivalent to /Z=1.
/Z=2: Moves a folder if it exists or displays a dialog if it does not exist.

MoveFolder

V-557

Details
You can use only /P=pathName (omitting srcFolderStr) to specify the source folder to be moved.
A folder path should not end with single Path Separators. For example:
MoveFolder "Macintosh HD:folder" as "Macintosh HD:Renamed Folder:"
MoveFolder "Macintosh HD:folder:" as "Macintosh HD:Renamed Folder"
MoveFolder "Macintosh HD:folder:" as "Macintosh HD:Renamed Folder:"

will do weird, unexpected things (and probably damaging things when /O is also used). Instead, use:
MoveFolder "Macintosh HD:folder" as "Macintosh HD:Renamed Folder"

Beware of PathInfo and other command which return paths with an ending path separator. (They can be
removed with the RemoveEnding function.)
A folder may not be moved into one of its own subfolders.
Conversely, the command:
MoveFolder/O/P=myPath "afolder"

which attempts to overwrite the folder associated with myPath with a folder that is inside it (namely
“afolder”) is not allowed. Instead, use:
MoveFolder/O/P=myPath "::afolder"

On Windows, renaming or moving a folder never updates the value of any Igor Symbolic Paths that point
to a moved folder:
// Create a folder
NewPath/O/C myPath "C:\\My Data\\My Work"

// Move the folder
MoveFolder/P=myPath as "C:\\My Data\\Moved"

// Display the path's value
PathInfo myPath // (or use the Path Status dialog)
Print S_Path
• C:My Data:My Work

You can use PathInfo to determine if a folder referred to by an Igor symbolic path exists and where it is on
the disk. Use NewPath/O to reset the path’s value.
On the Macintosh, however, renaming or moving a folder on the same volume does alter the value of
symbolic path. This is because MoveFolder uses a Mac OS alias to keep track of the folder. A folder renamed
or moved on the same volume retains the original “volume refnum” and “directory ID” stored in the alias
mechanism, so that the alias (and hence Igor’s symbolic path) remains pointing to the moved folder. After
moving the folder, using the unchanged volume refnum and directory ID (in PathInfo or when you use
/P=pathName) returns the updated path.
Moving the folder to a different volume actually creates a new folder with new volume refnum and
directory IDs, and symbolic paths pointing to or into the moved folder aren’t updated. They will be
pointing at a deleted folder (they’re probably invalid).

Examples
Rename a folder (“move” it to the same folder):
MoveFolder "Macintosh HD:folder" as "Macintosh HD:Renamed Folder"

Rename a folder referred to by only a path:
NewPath/O myPath "Macintosh HD:folder"
MoveFolder/P=myPath as "::Renamed Folder"

Move a folder from one volume to another. This moves “Macintosh HD:My Folder” inside “Server:My
Folder” if “Server:My Folder” already exists:
MoveFolder "Macintosh HD:My Folder" as "Server:My Folder"

Move a folder from one volume to another. This overwrites “Server:My Folder” (if it existed) with the
moved “Macintosh HD:My Folder”:
MoveFolder/O "Macintosh HD:My Folder" as "Server:My Folder"

Move user-selected folder in any folder as “Renamed Folder” into a user-selected folder (possibly the same
one):
MoveFolder as "Renamed Folder"

Move user-selected file in any folder as “Moved Folder” in any folder:

MoveString

V-558

MoveFolder/I=3 as "Moved Folder"

See Also
MoveFile, CopyFolder, IndexedDir, PathInfo, and RemoveEnding. Symbolic Paths on page II-21.

MoveString
MoveString sourceString, destDataFolderPath [newname]
The MoveString operation removes the source string variable and places it in the specified location
optionally with a new name.

Parameters
sourceString can be just the name of a string variable in the current data folder, a partial path (relative to the
current data folder) and variable name or an absolute path (starting from root) and variable name.
destDataFolderPath can be a partial path (relative to the current data folder) or an absolute path (starting
from root).

Details
An error is issued if a variable or wave of the same name already exists at the destination.

Examples
MoveString :foo:s1,:bar: // Move string s1 into data folder bar
MoveString :foo:s1,:bar:ss1 // Move string s1 into bar with new name ss1

See Also
The MoveVariable, MoveWave, and Rename operations; andChapter II-8, Data Folders.

MoveSubwindow
MoveSubwindow [/W=winName] key = (values)[, key = (values)]…
The MoveSubwindow operation moves the active or named subwindow to a new location within the host
window. This command is primarily for use by recreation macros; users should use layout mode for
repositioning subwindows.

Parameters

fguide=(gLeft, gTop, gRight, gBottom)

Specifies the frame guide name(s) to which the outer frame of the subwindow is
attached inside the host window.
The frame guides are identified by the standard names or user-defined names as
defined by the host. Use * to specify a default guide name.
When the host is a graph, additional standard guides are available for the outer graph
rectangle and the inner plot rectangle (where traces are plotted).
See Details for standard guide names.

fnum=(left, top, right, bottom)

Specifies the new location of the subwindow. The location coordinates of the
subwindow sides can have one of two possible meanings:
When all values are less than 1, coordinates are assumed to be fractional relative to
the host frame size.
When any value is greater than 1, coordinates are taken to be fixed locations measured in
points, or pixels for control panels, relative to the top left corner of the host frame.

pguide=(gLeft, gTop, gRight, gBottom)

MoveVariable

V-559

Flags

Details
When moving an exterior subwindow, only the fnum keyword may be used. The values are the same as the
NewPanel /W flag for exterior subwindows.
The names for the built-in guides are as defined in the following table:

The frame guides apply to all window and subwindow types. The graph rectangle and plot rectangle guide
types apply only to graph windows and subwindows.

See Also
The MoveWindow operation. Chapter III-4, Embedding and Subwindows for further details and
discussion.

MoveVariable
MoveVariable sourceVar, destDataFolderPath [newname]
The MoveVariable operation removes the source numeric variable and places it in the specified location
optionally with a new name.

Parameters
sourceVar can be just the name of a numeric variable in the current data folder, a partial path (relative to the
current data folder) and variable name or an absolute path (starting from root) and variable name.
destDataFolderPath can be a partial path (relative to the current data folder) or an absolute path (starting
from root).

Details
An error is issued if a variable or wave of the same name already exists at the destination.

Examples
MoveVariable :foo:v1,:bar: // Move v1 into data folder bar
MoveVariable :foo:v1,:bar:vv1 // Move v1 into bar with new name vv1

See Also
The MoveString, MoveWave, and Rename operations; and Chapter II-8, Data Folders.

Specifies the guide name(s) to which the plot rectangle of the graph subwindow is
attached inside the host window.
Guides are identified by the standard names or user-defined names as defined by the
host. Use * to specify a default guide name.
See Details for standard guide names.

/W= winName Moves the subwindow in the named window or subwindow. When omitted, action
will affect the active subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

Left Right Top Bottom
Subwindow Frame FL FR FT FB
Outer Graph Rectangle GL GR GT GB
Inner Plot Rectangle PL PR PT PB

MoveWave

V-560

MoveWave
MoveWave sourceWave, destDataFolderPath [newname]
The MoveWave operation removes the source wave and places it in the specified location optionally with
a new name.

Parameters
sourceWave can be just the name of a wave in the current data folder, a partial path (relative to the current
data folder) and wave name or an absolute path (starting from root) and wave name.
destDataFolderPath can be a partial path (relative to the current data folder) or an absolute path (starting
from root).

Details
An error is issued if a variable or wave of the same name already exists at the destination.

Examples
MoveWave :foo:w1,:bar: // Move wave w1 into data folder bar
MoveWave :foo:w1,:bar:ww1 // Move w1 into bar with new name ww1

See Also
The MoveString, MoveVariable, and Rename operations; and Chapter II-8, Data Folders.

MoveWindow
MoveWindow [flags] left, top, right, bottom
The MoveWindow operation moves the target or specified window to the given coordinates.

Flags

Details
Note that neither winName nor procedureTitleAsName is a string but is the actual window name or procedure
window title. If the procedure window’s title (procedure windows don’t have names) has a space in it, use
$ and quotes:
MoveWindow/P=$"Log Histogram" 0,0,600,400

If /W, /F, /C, and /P are omitted, MoveWindow moves the target window.
The coordinates are in points if neither /I nor /M is used.
In Igor Pro 7.00 or later, to move the window without changing its size, pass -1 for both right and bottom.
You can use the MoveWindow operation to minimize, restore, or maximize a window by specifying 0, 1, or
2 for all of the coordinates, respectively, as follows:
MoveWindow 0, 0, 0, 0 // Minimize target window.
MoveWindow 1, 1, 1, 1 // Restore target window.
MoveWindow 2, 2, 2, 2 // Maximize target window.

On Macintosh, “maximize” means to move and resize the window so that it fills the screen.
“Minimize”means to minimize to the dock.

/C Moves Command window instead of the target window.

/F Windows: Moves the Igor Pro application “frame” and the frame is then adjusted so
that no part is offscreen.
Macintosh: Moves nothing.

/I Coordinates are in inches.

/M Coordinates are in centimeters.

/P=procedureTitleAsName

Moves the specified procedure window instead of the target window.

/W=winName Moves the named window.

MultiTaperPSD

V-561

If the window size has been constrained by SetWindow sizeLimit, those limits are silently applied to
the size set by MoveWindow.

See Also
The MoveSubwindow and DoWindow operations.

MultiTaperPSD
MultiTaperPSD [flags] srcWave
The MultiTaperPSD operation estimates the power spectral density of srcWave using Slepian (DPSS) tapers.
The MultiTaperPSD operation was added in Igor Pro 7.00.

Flags

/A Uses Thomson's adaptive algorithm. In this case the operation also creates the wave
W_MultiTaperDF that contains the effective degrees of freedom. For each frequency
of the PSD the algorithm is expected to converge within few iterations. When it fails
to converge, the operation prints in the history the total number of frequencies where
it did not converge while the actual output contains the last iteration estimate.

/dB Scale the PSD results as 10*log10(spectralEst(f)).

/dbF=f0 Scale the PSD results as 10*log10(spectralEst(f)/spectralEst(f0)) where
f0 must be in the range [0,0.5/DimDelta(srcWave,0)].

/DEST=destWave Saves the PSD estimate in a wave specified by destWave. The destination wave is
created or overwritten if it already exists.
Creates a wave reference for the destination wave in a user function. See Automatic
Creation of WAVE References on page IV-66 for details.
If you omit /DEST the operation saves the resulting spectral estimate in the wave
W_MultiTaperPSD in the current data folder.

/F Computes F-test statistic for each output frequency. The results are stored in the wave
W_MultiTaperF.
If /DEST is also used then the F-test results are stored in the same data folder as
destWave. Otherwise W_MultiTaperF is created in the current data folder.

The statistic is a variance ratio, of the background and the power at the specific
frequency. Since the PSDs of the background and the line are assumed to be
distributed as Chi-squared with 2 and 2*nTapers-2 degrees of freedom respectively,
the relevant critical value for computing confidence intervals can be obtained from:
StatsInvFCdf(percentSignificance/100,2,2*nTapers-2)

/NOR=N Sets the normalization factor that is used to multiply each element of the output. For
example, if you want to normalize the output such that the sum of the PSD estimate
matches the variance of the input use /NOR=2/(np*np) where np is the number of
points in srcWave.

/NTPR=nTapers Specifies the number of Slepian tapers to be used. If you do not specify a number of
tapers, the operation uses 2*nw(twice the time-bandwidth product).

/NW=nw Specifies the time-bandwidth product. This value should typically be in the range
[2,6]. Given a time-bandwidth product nw it is recommended to use no more than
2*nw tapers in order to maximize variance efficiency.

/Q Quiet mode; suppresses printing in the history area.

/R=[startPoint,endPoint]

Calculates the PSD estimate for a specified input range. startPoint and endPoint are
expressed in terms of point numbers of the source wave.

MultiThread

V-562

Details
The MultiTaperPSD operation estimates the PSD of srcWave by computing a set of discrete prolate
spheroidal functions (Slepian DPSS) and using them as optimal window functions. The window
functions/tapers are applied to the input signal and squares of the resulting Fourier transforms are
weighted together to produce the PSD estimate.
srcWave must be a real-valued numeric wave of single or double precision and must not contain any INFs
or NaNs.
The mean value of the input is subtracted prior to multiplication by the tapers. Like DSPPeriodogram, the
MultiTaperPSD operation leaves the normalization to the user.
The default PSD estimate is calculated by combining the Fourier transforms of the tapered signal with
weights from the DPSS calculation. You can use the /A flag to improve the PSD estimate for increasing
tapers. Thomson's adaptive algorithm is reasonably efficient and also provides an estimate of the effective
degrees of freedom as a function of frequency.
The operation sets the variable V_Flag to zero if successful or to a -1 if it encounters an error. If you are using
Thomson's adaptive algorithm (/A) V_Flag is set to the number of frequencies at which the algorithm failed
to converge.

See Also
FFT, DSPPeriodogram, DPSS, ImageWindow, Hanning, LombPeriodogram

Demos
See the “MultiTaperPSD Demo” example experiment.

References
D.J. Thomson: "Spectrum Estimation and Harmonic Analysis", Proc. IEEE 70 (9) 1982 pp. 1055.
D. Slepian, "Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty -- V: the Discrete Case",

Bell System Tech J. Vol 57 (5) May-June 1978.
Lees, J. M. and J. Park (1995). Multiple-taper spectral analysis: A stand-alone C-subroutine: Computers &

Geosciences: 21, 199-236.

MultiThread

MultiThread wave = expression
In user-defined functions, the MultiThread keyword can be inserted in front of wave assignment statements
to speed up execution on multiprocessor computer systems.

The expression must be thread-safe. This means that if it calls a function, the function must be thread-safe.
This goes for both built-in and user-defined functions.
Not all built-in functions are thread-safe. Use the Command Help tab in the Igor Help Browser to see which
functions are thread-safe.
User-defined functions are thread-safe if they are defined using the ThreadSafe keyword. See ThreadSafe
Functions on page IV-97 for details.

See Also
Automatic Parallel Processing with MultiThread on page IV-303.
Waveform Arithmetic and Assignments on page II-69.

/R=(startX,endX) Calculates the PSD estimate for a specified input range. startX and endX are expressed
in terms of X values. Note that this option converts your X specifications to point
numbers and some roundoff may occur.

/Z Do not report errors.

Warning: Misuse of this keyword can result in a performance penalty or even a crash. Be sure to
read Automatic Parallel Processing with MultiThread on page IV-303 before using
MultiThread.

MultiThreadingControl

V-563

The “MultiThread Mandelbrot Demo” experiment.

MultiThreadingControl
MultiThreadingControl keyword [=value]
The MultiThreadingControl operation allows you to control how automatic multithreading works with
those IGOR operations that support it. Automatic multithreading is described below under Details.
For most purposes you will not need to use this operation.
The MultiThreadingControl operation was added in Igor Pro 7.00.

Keywords

Details
Some IGOR operations and functions have internal code that can execute calculations in parallel using
multiple threads. These operations are marked as "Automatically Multithreaded" in the Command Help
pane of the Igor Help Browser.
Running on multiple threads reduces the time required for number-crunching tasks on multi-processor
machines when the benefit of using multiple processors exceeds the overhead of running in multiple
threads. This is usually the case only for large-scale jobs.
By default Igor uses automatic multithreading in operations that support it when the number of
calculations exceeds a threshold value. This is called "automatic multithreading" to distinguish it from the
explicit multithreading that you can instruct Igor to do. Explicit multithreading is described under
ThreadSafe Functions and Multitasking on page IV-308. You don't need to do anything to benefit from
automatic multithreading.
By default automatic multithreading is enabled for operations called from the main thread and disabled for
operations called from explicit threads that you create (mode=1). You can change this using the setMode
keyword described above.
The state of automatic multithreading is not saved with the experiment. It is initialized to mode=1 with
default thresholds every time you start IGOR.

Automatic Multithreading Thresholds
Executing these commands
MultiThreadingControl getThresholds
Edit W_MultiThreadingArraySizes.ld

getMode Writes the current mode value into the variable V_autoMultiThread.

getThresholds Creates the wave W_MultiThreadingArraySizes in the current data folder. See
Automatic Multithreading Thresholds below for details.

setMode=m

You can not combine modes by ORing. The only valid values for m are those
shown above.

setThresholds=tWave Sets the thresholds for automatic multithreading. See Automatic Multithreading
Thresholds below for details.

Sets the mode for automatic multithreading. The mode controls the
circumstances in which automatic multithreading is enabled.

m=0: Disables automatic multithreading unconditionally.

m=1: Enables automatic multithreading based on operation-specific
thresholds for operations called from the main thread only. This is
the default setting.

m=4: Enables automatic multithreading based on operation-specific
thresholds for operations called from the main thread and from
user-created explicit threads.

m=8: Enables automatic multithreading unconditionally - regardless of
thresholds or the type of the calling thread.

NameOfWave

V-564

creates a wave named W_MultiThreadingArraySizes and displays it in a table. This shows you the current
threshold for each operation that supports automatic multithreading. The wave includes dimension labels
so you can see which row represents which operation's threshold.
The meaning of a given threshold value depends on the operation. For most operations the threshold is in
terms of the number of points in the input wave. For some operations the threshold depends on the
complexity of the calculation. For example, the threshold for the CurveFit operation takes the complexity
of the fitting function into account.
You can change the threshold for a given operation by setting the data for the appropriate row of
W_MultiThreadingArraySizes and passing it back to the MultiThreadingControl operation using the
setThresholds keyword. For example:
W_MultiThreadingArraySizes[%ICA]=5000 // Set the ICA threshold
MultiThreadingControl setThresholds=W_MultiThreadingArraySizes // Apply

You should not change any aspect of the wave other than the threshold values.

Examples
MultiThreadingControl setMode=0 // Disable automatic multithreading
MultiThreadingControl setMode=8 // Always multithread regardless of wave size

See Also
Automatic Parallel Processing with TBB on page IV-302
Automatic Parallel Processing with MultiThread on page IV-303
ThreadSafe Functions on page IV-97, ThreadSafe Functions and Multitasking on page IV-308

NameOfWave
NameOfWave(wave)
The NameOfWave function returns a string containing the name of the specified wave.
In a user-defined function that has a parameter or local variable of type WAVE, NameOfWave returns the
actual name of the wave identified by the WAVE reference. It can also be used with wave reference
functions such as WaveRefIndexedDFR.
NameOfWave does not return the full data folder path to the wave. Use GetWavesDataFolder for this
information.
A null wave reference returns a zero-length string. This might be encountered, for instance, when using
WaveRefIndexedDFR in a loop to act on all waves in a data folder, and the loop has incremented beyond
the highest valid index.

Examples
Function ZeroWave(w)

Wave w
w = 0
Print "Zeroed the contents of", NameOfWave(w)

End

See Also
See WAVE; the GetWavesDataFolder and WaveRefIndexed functions; and Wave Reference Functions on
page IV-186.

NaN
NaN
The NaN function returns the “Not a Number” value according to the IEEE standards.
Comparison operators do not work with NaN parameters because, by definition, NaN compared to
anything, even another NaN, is false. Use numtype to test if a value is NaN.

NeuralNetworkRun
NeuralNetworkRun [/Q/Z] Input=testWave, WeightsWave1=w1, WeightsWave2=w2
The NeuralNetworkRun operation uses the interconnection weights generated by NeuralNetworkTrain,
and saved in the waves M_Weights1 and M_Weights2, to execute the network for a given input. The input

NeuralNetworkTrain

V-565

can contain a single run represented by a 1D wave or M runs represented by M columns of a 2D wave. The
output of the calculation is saved in the wave W_NNResults or M_NNResults depending on the
dimensionality of the input wave. The structure of the network is completely specified by the two weights
waves and must match the number of rows in the input wave.

Flags

Parameters

See Also
The NeuralNetworkTrain operation.

NeuralNetworkTrain
NeuralNetworkTrain [/Q/Z] [keyword = value]…
The NeuralNetworkTrain operation trains a three-layer neural network. The training produces two 2D
waves that store the interconnection weights between the network neurodes. Once you obtain the weights,
you can use them with NeuralNetworkRun.

Flags

Parameters
keyword is one of the following:

/Q Suppresses printing information in the History area.

/Z No error reporting.

Input=testWave Specifies the input to the neural network. testWave must be a single or double
precision wave containing entries in the range [0,1] and have the correct number
of rows to match the weights. Execute the network for multiple runs by using a
2D input wave where each column corresponds to a single run. For a 2D input,
the result will be stored in M_NNResults with a corresponding column structure.

WeightsWave1=w1 Specifies the interconnection weights between the input and the hidden layer.

WeightsWave2=w2 Specifies the interconnection weights between the hidden layer and the output.

/Q Suppresses printing information in the History area.

/Z No error reporting.

Input=inWave Specifies the input patterns for training. inWave is a 2D wave where each row corresponds
to a single training event and each column corresponds to the input values. The number
of rows in inWave (the number of training sets) and in the output wave must be equal.
inWave must be single or double precision and all entries must be in the range [0,1].

Iterations=num Specifies the number of iterations. Default is 10000.

MinError=val Terminates training when the total error drops below val (default is 1e-8). The total
error is normalized, and is defined as the sum of the squared errors divided by the
number of training sets times outputs.

Momentum=val Specifies a coefficient for the back-propagation algorithm. This coefficient adds to the
change in a particular weight a contribution proportional to the error in a previous
iteration. Default momentum is 0.075.

NHidden=num Specifies the number of hidden neurodes. You do not need to use the Structure
keyword with NHidden because the network is completely specified by the training
waves and NHidden.

NReport=num Specifies over how many iterations (default is 1000) to print the global RMS error to
the history area. Ignored with /Q.

NewCamera

V-566

Details
NeuralNetworkTrain is the first half of the implementation of a three-layer neural network in which both
in inputs and outputs are taken as normalized quantities in the range [0,1]. Network training is based on
back-propagation to iteratively minimize the error between the output and the expected output for any
given training set. Training creates in two 2D waves that contain the interconnection weights between the
neurodes. M_Weights1 contains the weights between the input layer and the hidden layer and M_Weights2
contains the weights between the hidden layer and the output layer. During the iteration stage, global error
information can be printed in the history area.
The algorithm computes the output of the kth neurode by

where wi is the weight corresponding to input i, si is the signal corresponding to that input, and n is the
number of inputs connected to the neurode.
The total error is defined as the sum (over all training sets and all outputs) of the squared differences between
the network outputs and the expected values. The sum is normalized by the product of the number of training
sets and the number of outputs. The history reports (see NReport parameter) the square root of the total error
(RMS error). The square root of the error computed at the end of the last iteration is stored in the variable V_rms.

See Also
The NeuralNetworkRun operation.

NewCamera
NewCamera [flags] [keywords]
The NewCamera operation creates a new camera window.
Documentation for the NewCamera operation is available in the Igor online help files only. In Igor, execute:
DisplayHelpTopic "NewCamera"

Output=outWave Specifies the expected outputs corresponding to the entries in the input wave. The
number of rows in outWave (the number of training sets) and in the input wave must
be equal. outWave must be single or double precision and all entries must be in the
range [0,1].

LearningRate=val Sets the network learning rate, which is used in the backpropagation calculation.
Default is 0.15.

Restart Allows specification of your own set of weights as the starting values. Use this to run
the training and feed the output weights of one training session as the input for the
next.

Structure={Ni, Nh, No}

Specifies the structure of the network. Ni is the number of neurodes at the input, Nh
is the number of hidden neurodes, and No is the number of output neurodes.
Structure is unnecessary when using NHidden is because the remaining numbers are
determined by the sizes of the input and output waves.

WeightsWave1=w1 Specifies the weights for propagation from the first layer to the second. The 2D wave
must be double precision and the dimensions must match the specified neurodes with
the same numbers of rows and inputs and with matching numbers of columns and
hidden neurodes.

WeightsWave2=w2 Specifies the weights for propagation from the second to the third layer. The 2D wave
must be double precision and the dimensions must match the specified neurodes with
the same numbers of rows and hidden neurodes and with matching numbers of
columns and outputs.

Vk = 1+ exp − wisi
i=1

n

∑⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

−1

,

NewDataFolder

V-567

NewDataFolder
NewDataFolder [/O/S] dataFolderSpec
The NewDataFolder operation creates a new data folder of the given name.

Parameters
dataFolderSpec can be just a data folder name, a partial path (relative to the current data folder) with name
or a full path (starting from root) with name. If just a data folder name is used then the new data folder is
created in the current data folder. If a full or partial path is used, all data folders except for the last in the
path must already exist.

Flags

Examples
NewDataFolder foo // Creates foo in the current data folder
NewDataFolder :bar:foo // Creates foo in bar in current data folder
NewDataFolder root:foo // Creates foo in the root data folder

See Also
Chapter II-8, Data Folders.

NewFIFO
NewFIFO FIFOName
The NewFIFO operation creates a new FIFO.

Details
Useless until channel info is added with NewFIFOChan.
An error is generated if a FIFO of same name already exists. FIFOName needs to be unique only among
FIFOs. You can not overwrite a FIFO.

See Also
FIFOs are used for data acquisition. See FIFOs and Charts on page IV-291 and the NewFIFOChan
operation for more information.

NewFIFOChan
NewFIFOChan [flags] FIFOName, channelName, offset, gain, minusFS, plusFS,

unitsStr [, vectPnts]
The NewFIFOChan operation creates a new channel for the named FIFO.

Parameters
channelName must be unique for the specified FIFO.
The offset, gain, plusFS, minusFS and unitsStr parameters are used when the channel’s data is displayed in a
chart or transferred to a wave. If given, vectPnts must be between 1 and 65535.

Flags
The flags define the type of data to be stored in the FIFO channel:

/O No error if a data folder of the same name already exists.

/S Sets the current data folder to dataFolderSpec after creating the data folder.

/B 8-bit signed integer. Unsigned if /U is present.

/C Complex.

/D Double precision IEEE floating point.

/I 32-bit signed integer. Unsigned if /U is present.

/S Single precision IEEE floating point (default).

/U Unsigned integer data.

NewFreeAxis

V-568

Wave Data Types
As a replacement for the above number type flags you can use /Y=numType to set the number type as an
integer code. See the WaveType function for code values. Do not use /Y in combination with other type flags.

Details
You can not invoke NewFIFOChan while the named FIFO is running.
If you provide a value for vectPnts, you will create a channel capable of holding a vector of data rather than
just a single data value. When such a channel is used in a Chart, it is displayed as an image using one of the
built-in color tables.
Igor scales values in the FIFO channel before displaying them in a chart or transferring them to a wave as follows:
scaled_value = (FIFO_value - offset) * gain

Igor uses the plusFS and minusFS parameters (plus and minus full scale) to set the default display scaling
for charts.
The unitsStr parameter is limited to a maximum of three bytes.
When you transfer a channel’s data to a wave, using the FIFO2Wave operation, Igor stores the plusFS and
minusFS values and the unitsStr in the wave’s Y scaling.

See Also
FIFOs are used for data acquisition. See FIFOs and Charts on page IV-291 and the NewFIFO and
FIFO2Wave operations for more information.
The Chart operation for displaying FIFO data.

NewFreeAxis
NewFreeAxis[flags] axisName
The NewFreeAxis operation creates a new free axis that has no controlling wave.

Parameters
axisName is the name for the new free axis.

Flags

Details
A truly free axis does not use any scaling or units information from any associated waves (which need not
exist.) You can set the properties of a free axis using SetAxis or ModifyFreeAxis.

Example
Copy this function to your Procedure window and compile:
Function axhook(s)

STRUCT WMAxisHookStruct &s

Variable t= s.max
s.max= s.min
s.min= t
return 0

End

/W 16-bit signed integer. Unsigned if /U is present.

/Y=type Specifies wave data type. See details below.

/L/R/B/T Specifies whether to attach the free axis to the Left, Right, Bottom, or Top plot edge,
respectively. The Left edge is used by default.

/O Replaces axisName if it already exists, which means any existing axis is marked as truly
free.

/W=winName Draws in the named graph window. winName may also be the name of a subwindow.
winName must not conflict with other axis names except when using the /O flag. If /W
is omitted, it creates a new axis in the active graph window or subwindow.

NewFreeDataFolder

V-569

Now execute this code on the Command line:
Make jack=x
Display jack
NewFreeAxis fred
ModifyFreeAxis fred, master=left, hook=axhook

See Also
The SetAxis, KillFreeAxis, and ModifyFreeAxis operations.

NewFreeDataFolder
NewFreeDataFolder()
The NewFreeDataFolder function creates a free data folder and then returns its data folder reference.
Recommended for advanced programmers only.

Details
Free data folders are those that are not a part of the normal data folder hierarchy and can not be located by
name.

See Also
Chapter II-8, Data Folders, Free Data Folders on page IV-88 and Data Folder References on page IV-72.

NewFreeWave
NewFreeWave(type, numPoints)
The NewFreeWave function creates a free 1D wave of the given type and number of points and then returns
its wave reference.
Recommended for advanced programmers only.

Details
NewFreeWave creates a free wave named '_free_'.
You can also create free waves using Make/FREE and Duplicate/FREE. These are preferable for creating
multidimensional free waves and also fine for general use.
The type parameter can be either a code as documented for WaveType or can be 0x100 to create a data
folder reference wave or 0x200 to create a wave reference wave.
You can redimension free waves as desired but, for maximum efficiency, you should create the wave with
the desired type and total number of points and then use the /E=1 flag with Redimension to simply reshape
without moving data.
A free wave is automatically discarded when the last reference to it disappears.

See Also
Free Waves on page IV-84, Make, Duplicate.

NewGizmo
NewGizmo [flags]
The NewGizmo operation creates a new Gizmo display window.
Documentation for the NewGizmo operation is available in the Igor online help files only. In Igor, execute:
DisplayHelpTopic "NewGizmo"

NewImage
NewImage [flags] matrix
The NewImage operation creates a new image graph much like “Display;AppendImage matrix”
except the graph is prepared using a style more appropriate for images. Rather than using preferences,
NewImage provides several discrete styles to choose from.

Parameters
matrix is usually an MxN matrix containing image data. See AppendImage for details.

NewLayout

V-570

Flags

Details
The graph is sized to make the image pixels a multiple of the screen pixels with the graph size constrained
to be not too small and not too large.
If matrix appears to fit Igor’s standard monochrome category, then explicit mode is set (See ModifyImage
explicit). To be considered monochrome the wave must be unsigned byte and contain only values of 0, 64 or 255.
Once the graph is created it is a normal graph and has no special properties other than the settings it was
created with. Specifically, it will not autosize itself if the dimensions of matrix are changed. NewImage is
just a shortcut for creating a graph window with a style appropriate for images.
This operation is limited in scope by design. If you need to specify the position, size or title, then use the
operations Display and AppendImage.
If the styles provided are not what you desire, touch up an image graph to meet your needs and then use
Capture Graph Prefs from the Graphs menu. Then use “Display;AppendImage” rather than NewImage.

See Also
The Display, DoWindow, AppendImage, and ModifyImage operations.

NewLayout
NewLayout [flags] [as titleStr]
The NewLayout operation creates a page layout.

/F By default, the image is flipped vertically to correspond to normal image orientation.
if /F is present then the image is not flipped.

/G=g

/HIDE=h Hides (h = 1) or shows (h = 0, default) the window.

/HOST=hcSpec Embeds the new image plot in the host window or subwindow specified by hcSpec.
When identifying a subwindow with hcSpec, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/K=k

/N=name Requests that the created graph have this name, if it is not in use. If it is in use, then
name0, name1, etc. are tried until an unused window name is found. In a function or
macro, S_name is set to the chosen graph name. Use DoWindow/K name to ensure
that name is available.

/S=s

Controls treatment of three-plane images as direct (RGB) color.

g=1: Suppresses the autodetection of three-plane images as direct (RGB) color.

g=1: Same as no /G flag (default).

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

Specifies one of several window styles.
s=0: Fills entire window with image. No axes. However, this can result in

the lower-right corner not being visible due to the target icon or
grow icon (Macintosh).

s=1: Like s=0 but insets image to avoid corner icon.
s=2: Provides minimalist axes (default).

NewMovie

V-571

Unlike the Layout operation, NewLayout can be used in user-defined functions. Therefore, NewLayout
should be used in new programming instead of Layout.
NewLayout just creates the layout window. Use AppendLayoutObject to add objects to the window.

Parameters
The optional titleStr parameter is a string expression containing the layout’s title. If not specified, Igor will
provide one which identifies the objects displayed in the graph.

Flags

Details
When you create a new page layout window, if preferences are enabled, the page size is determined by the
preferred page size as set via the Capture Layout Prefs dialog. If preferences are disabled, as is usually the
case when executing a procedure, the page is set to the factory default size.

See Also
AppendLayoutObject, DoWindow, RemoveLayoutObjects, and ModifyLayout.

NewMovie
NewMovie [flags] [as fileNameStr]
The NewMovie operation opens a movie file in preparation for adding frames. It creates QuickTime movies
on Macintosh and AVI movies on Windows. Prior to Igor Pro 7, QuickTime was an option on Windows.

Parameters
The file to be opened is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If

/B=(r,g,b) Specifies the background color for the layout. r, g, and b are integers from 0 to 65535.
Defaults to white (65535, 65535, 65535).

/C=colorOnScreen Obsolete. In ancient times, this flag switched the screen display of the layout between
black and white and color. It is still accepted but has no effect.

/HIDE=h Hides (h = 1) or shows (h = 0, default) the window.

/K=k

/N=name Requests that the layout have this name, if it is not in use. If it is in use, then name0,
name1, etc. are tried until an unused window name is found. In a function or macro,
S_name is set to the chosen layout name. Use DoWindow/K name to ensure that name
is available.
If /N is not used, a name of the form “Layoutn”, where n is some integer, is assigned.
In a function or macro, the assigned name is stored in the S_name string. This is the
name you can use to refer to the page layout window from a procedure. Use the
RenameWindow operation to rename the window.

/P=orientation Sets the orientation of the page in the layout to either Portrait or Landscape (e.g.,
Layout/P=Landscape). See Details.

/W=(left,top,right,bottom)

Gives the layout window a specific location and size on the screen. Coordinates for
/W are in points.

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

NewMovie

V-572

NewMovie can not determine the location of the file from fileNameStr and pathName, it displays a dialog
allowing you to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.

Flags

Details
If either the path or the file name is omitted then NewMovie displays a Save File dialog to let you create a
movie file. If both are present, NewMovie creates the file automatically.
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-21 for details.
There can be only one open movie at a time.

/A This flag is obsolete. On Windows prior to Igor Pro 7, /A specified AVI rather than
QuickTime. Now AVI is always used on Windows.

/CTYPE=typeStr Specifies the compression codec to use.
/CTYP is supported on Macintosh only. It is ignored on Windows but may be
supported in the future.
typeStr is a 4 character case-sensitive string that specifies a compression codec.
If you omit /CTYP or if typeStr is "", the default is "rpza" unless you provide a file name
extension of either "mp4" or "m4v" in which case the "mp4v" Apple MPEG4
Compressor is used.
Common compressors in order of increasing file size when used with the FM
Modulation Movie example experiment include "smc ", "avc1", "png ", "rpza", "h263",
"icod", "jpeg", "mp4v" and "rle ".
Be sure to test on a small example first. If the type you specify is invalid or not
available on your machine, the resulting file will be small and not playable.
/CTYP was added in Igor Pro 7.00.

/F=frameRate Frames per second between 1 and 60. Defaults to 10.

/I Presents a system-provided dialog in which you can change the compression settings.
The selections you make become the new default settings but only until you quit Igor
Pro.
As of Igor Pro 7, /I is ignored on Macintosh due to changes by Apple. Use the /CTYP
flag instead.

/L[=flatten] /L is obsolete as of Igor Pro 7 and is ignored. Movies are always created flattened.

/O Overwrite existing file, if any.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/PICT=pictName Uses the specified picture (see Pictures on page III-448) rather than the top graph.

/S=soundWave Creates and defines sound track. The specified wave can be either a full-range 16 bit
or 8 bit integer type. Floating point waves can also be used and are assumed to contain
values from -128 to +127. The wave's time/point, as determined by its X scaling, must
be between 1.5625e-5 to 2e-4 which correspond to sampling rates of 5000 to 64000
hertz. The duration should match the duration of a video frame.
As of Igor Pro 7, /S is no longer supported on Macintosh due to changes by Apple.

/Z No error reporting; an error is indicated by nonzero value of the output variable
V_flag. If the user clicks the cancel button in the Save File dialog, V_flag is set to -1.

NewNotebook

V-573

The target window at the time you invoke NewMovie must be a graph (unless the /PICT flag is present) and
the graph size should remain constant while adding frames to the movie. The graph and optional sound wave
are used to determine the size and sound properties only; they do not specify the first frame.
In Igor7 or later, the target window at the time you call NewMovie is remembered and is used by
AddMovieFrame even if it is not the target window when you call AddMovieFrame.
The /PICT flag allows you to create a movie from a page layout in conjunction with the
SavePICT/P=_PictGallery_ method. See SavePICT on page V-704. This allows creation of a movie from a
source other than a graph, page layout or Gizmo window, but is rarely needed.

See Also
Movies on page IV-230.
The AddMovieFrame, AddMovieAudio, CloseMovie, PlayMovie, PlayMovieAction and SavePICT
operations.

NewNotebook
NewNotebook [flags] [as titleStr]
The NewNotebook operation creates a new notebook document.

Parameters
The optional titleStr is a string containing the title of the notebook window.

Flags

/HOST=hcSpec Embeds the new notebook in the host window or subwindow specified by hcSpec. The
host window or subwindow must be a control panel. Graphs and page layouts are not
supported as hosts for notebook subwindows.
When identifying a subwindow with hcSpec, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.
See Notebooks as Subwindows in Control Panels on page III-86 for more
information.

/ENCG=textEncoding

NewNotebook

V-574

textEncoding specifies the text encoding for the new notebook. This determines the
text encoding used for later saving the notebook to a file.
See Text Encoding Names and Codes on page III-434 for a list of accepted values for
textEncoding.
This flag was added in Igor Pro 7.00.
This flag is relevant for plain text notebooks only and has no effect for formatted
notebooks because formatted text notebooks can contain multiple text encodings. See
Plain Text File Text Encodings on page III-417 and Formatted Text Notebook File
Text Encodings on page III-421 for details.
If you omit /ENCG or pass 0 (unknown) for textEncoding, the notebook's text encoding
is determined by the default text encoding - see The Default Text Encoding on page
III-415 for details.
For most purposes, UTF-8 (textEncoding=1) is recommended. Other values are
available for compatibility with software that requires a specific text encoding. This
includes Igor Pro 6 which uses MacRoman (textEncoding=2), Windows-1252
(textEncoding=3) or Shift-JIS (textEncoding=4) depending on the operating system and
localization.
This flag has an optional form that allows you to control whether the byte order mark
is written when the notebook is later saved to disk. It applies to Unicode text
encodings also. The form is:
/ENCG = {textEncoding, writeBOM }

If you use the simpler form or omit /ENCG entirely, the notebook's writeBOM
property defaults to 1.
See Byte Order Marks on page III-420 for background information.

/F=format

/K=k

/N=winName Sets the notebook’s window name to winName.

/OPTS=options

/V=visible Specifies whether the notebook window is visible (visible=1; default) or invisible
(visible=0).

Specifies the format of the notebook:
format=0: Normal with dialog (default).
format=1: Kills with no dialog.
format=-1: Disables killing.

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

Sets special options. options is a bitwise parameter interpreted as follows:

All other bits are reserved and must be set to zero.
If /OPTS is omitted, all bits default to zero.
See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Hide the vertical scroll bar.
Bit 1: Hide the horizontal scroll bar.
Bit 2: Set the write-protect icon initially to on.
Bit 3: Sets the changeableByCommandOnly bit. When set, the user can

not make any modifications.

NewPanel

V-575

Details
A notebook has a file name, a window name, and a window title. In the simplest case these will all be the same.
The file name is the name by which the operating system identifies the notebook once it is saved to disk.
When you initially create a notebook, it is not associated with any file. However it still has a file name. This
is the name that will be used when the file is saved to disk.
The window name is the name by which Igor identifies the window and therefore the name you specify in
operations that act on the notebook.
The window title is what appears in the window’s title bar. If you omit the title, NewNotebook uses a
default title that is the same as the window name.
If you specify the window name and the notebook format and omit the window title, this is the simplest
case. NewNotebook creates the document with no user interaction. The file name, window name and
window title will all be the same. For example:
NewNotebook/N=Notebook1/F=0

If you omit the window name, NewNotebook chooses a default name (e.g., “Notebook0”) and presents the
standard New Notebook dialog.
If you omit the format or specify a format of -1 (either plain or formatted text), NewNotebook presents the
standard New Notebook dialog. For example:
NewNotebook/N=Notebook1 // no format specified

See Also
The Notebook and OpenNotebook operations, and Chapter III-1, Notebooks.
Notebooks as Subwindows in Control Panels on page III-86.

NewPanel
NewPanel [flags] [as titleStr]
The NewPanel operation creates a control panel window or subwindow, which may contain Igor controls
and drawing objects.

Flags

/W=(left,top,right,bottom)

Sets window location. Coordinates are in points for normal notebook windows.
When used with the /HOST flag, the specified location coordinates can have one of
two possible meanings:
When all values are less than 1, coordinates are assumed to be fractional relative to
the host frame size.
When any value is greater than 1, coordinates are taken to be fixed locations measured
in points relative to the top left corner of the host frame.

/EXT=e

/FG=(gLeft, gTop, gRight, gBottom)

Creates an exterior subwindow in combination with /HOST. e specifies the host
window side location:
e=0: Right.
e=1: Left.
e=2: Bottom.
e=3: Top.

NewPanel

V-576

Specifies the frame guide to which the outer frame of the subwindow is attached
inside the host window.
The standard frame guide names are FL, FR, FT, and FB, for the left, right, top, and
bottom frame guides, respectively, or user-defined guide names as defined by the
host. Use * to specify a default guide name.
Guides may override the numeric positioning set by /W.

/FLT[=f] /FLT or /FLT=1 makes the panel a floating panel.
/FLT=2 makes it a floating panel with no close box.
/FLT=0 is the same as omitting /FLT and creates a regular (non-floating) control panel.
You must execute the following after the NewPanel command:
SetActiveSubwindow _endfloat_

See Floating Panels below for further information.

/HIDE=h Hides (h = 1) or shows (h = 0, default) the window.

/HOST=hcSpec Embeds the new control panel in the host window or subwindow specified by hcSpec.
When identifying a subwindow with hcSpec, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/I Sets coordinates to inches.

/K=k

/M Sets coordinates to centimeters.

/N=name Requests that the created panel have this name, if it is not in use. If it is in use, then
name0, name1, etc. are tried until an unused window name is found. In a function or
macro, S_name is set to the chosen panel name. Use DoWindow/K name to ensure
that name is available.

Note that a function or macro with the same name will cause a name conflict.

/NA= n

/W=(left,top,right,bottom)

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.
Exterior subwindows never display a dialog when killed.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

Sets panel no-activate mode.
n=0: Normal (default).
n=1: Button click doesn’t activate window but click outside of any control does.
n=2: No activation even if click is outside controls. Title bar clicks still activate.

NewPanel

V-577

Details
If /N is not used, NewPanel automatically assigns to the panel a window name of the form “Paneln”, where
n is some integer. In a function or macro, the assigned name is stored in the S_name string. This is the name
you can use to refer to the panel from a procedure. Use the RenameWindow operation to rename the panel.
On Windows there are special considerations relating to screen resolution and control panels. See Control
Panel Resolution on Windows on page III-405 for details.

Floating Panels
Floating control panels float above all other windows except dialogs. Because floating panels cover up other
windows, you should use them sparingly and you should take care to make them small and unobtrusive.
Floating panels are not resizable by default. To allow panel resizing use
ModifyPanel fixedSize=0

Because floating panels always act as if they are on top, the standard rules for target windows and keyboard
focus do not apply.
Normally, a floating panel is never the target window and control procedures will need to explicitly designate
the target. But a newly-created floating panel is the default target and will remain so until you execute
SetActiveSubwindow _endfloat_

It also becomes the default target when the tools are showing and in any non-Operate mode. Similarly, a
floating panel with tools not in Operate mode has keyboard focus. To avoid confusion, do not attempt to
work on other windows when a floating panel is the default target.
When working with a floating panel, you can show or hide tools or create a recreation macro by Control-
clicking (Macintosh) or right-clicking (Windows) in the panel.
A floating panel does not have keyboard focus. However, a floating panel gains keyboard focus when a
control that needs focus is clicked. Focus remains until you press Enter or Escape for a text entry in a
setvariable, press Tab until no control has the focus, or until you click outside a focusable control.
On Macintosh, if a floating panel has focus and you activate another window, focus will leave the panel.
However on Windows, if a floating panel has focus and you activate another window, the activate sequence
will be fouled up leaving the windows in an indeterminate state. Consequently, it is important that you
always finish any keyboard interaction started in a floating panel before moving on to other windows. If
this can cause confusion, you should not use controls such as SetVariable and ListBox in a floating panel.
On Macintosh, floating panels are hidden when dialogs are up or when Igor Pro is not the front application.

Exterior Subwindows
Exterior subwindows are automatically positioned along the designated side of a host graph, table or panel
window. You can designate fixed sizes or automatic size with minima. Subwindows are stacked beside the
designated side in their creation order with the first one closest.
Subwindow dimensions have various meanings depending on their location. Interior values are taken to be
additional grout, exterior values are taken to be sizes. For left or right panels, top is taken to be the
minimum height and bottom, if not zero, is height. For top and bottom, left is taken to be the minimum
width and right, if not zero, is width. Zero values default to 50 for width and height or size of host.
Exterior subwindows are nonresizable by default. Use ModifyPanel fixedSize=0 to allow manual
resizing. If you resize a panel, the original window dimensions are lost. You can also use MoveSubwindow
to resize the subwindow.

Sets the initial coordinates of the panel window. The coordinates are in points unless
/I or /M are used before /W.
When used with the /HOST flag, the specified location coordinates of the sides can
have one of two possible meanings:
When all values are less than 1, coordinates are assumed to be fractional relative to
the host frame size.
When any value is greater than 1, coordinates are taken to be fixed locations measured
in points relative to the top left corner of the host frame.
When the subwindow position is fully specified using guides (using the /HOST or /FG
flags), the /W flag may still be used although it is not needed.

NewPanel

V-578

Unlike normal subwindows, exterior subwindows have a tools palette. Click in the window and then
choose the Show Tools or Hide Tools menu item.
Exterior subwindows have hook functions independent of the host window.

Examples
In a new experiment, execute these commands on the command line to create two exterior subwindows:
Display
// Create panel on right with min height of 200 points, width of 100.
NewPanel/HOST=Graph0/EXT=0/W=(0,200,100,0)
// Create another panel on right with grout of 10 and height= width= 100.
NewPanel/HOST=Graph0/EXT=0/W=(10,0,100,100)

Now try resizing and moving the graph.
For a demonstration of how the various exterior panels work, copy the following code to the procedure
window in a new experiment:
Function bpNewExSw(ba) : ButtonControl

STRUCT WMButtonAction &ba

switch(ba.eventCode)
case 2: // mouse up

ControlInfo/W=$ba.win ckUseRect
Variable useR= V_Value
ControlInfo/W=$ba.win popSide
Variable side= V_Value-1
ControlInfo/W=$ba.win ckResizeable
Variable resizeable= V_Value
WAVE w=root:epsizes
if(useR)

NewPanel/HOST=$ba.win/EXT=(side)/W=(w[0],w[1],w[2],w[3])
else

NewPanel/HOST=$ba.win/EXT=(side)
endif
if(resizeable)

ModifyPanel fixedSize=0 // default is 1 for floating and exterior sw
endif
break

endswitch

return 0
End

Window ExSwTest() : Graph
PauseUpdate; Silent 1 // building window...
Display /W=(803,377,1158,591)
Button bNewSW,pos={35,21},size={181,30},proc=bpNewExSw,title="Exterior Subwindow"
SetVariable svLeft,pos={118,82},size={96,15},title="left"
SetVariable svLeft,limits={0,100,1},value= epsizes[0],bodyWidth= 76
SetVariable svTop,pos={120,97},size={94,15},title="top"
SetVariable svTop,limits={0,100,1},value= epsizes[1],bodyWidth= 76
SetVariable svRight,pos={112,113},size={102,15},title="right"
SetVariable svRight,limits={0,100,1},value= epsizes[2],bodyWidth= 76
SetVariable svBottom,pos={103,129},size={111,15},title="bottom"
SetVariable svBottom,limits={0,100,1},value= epsizes[3],bodyWidth= 76
CheckBox ckUseRect,pos={70,62},size={61,14},title="Use Rect:",value= 0
PopupMenu popSide,pos={73,149},size={78,20},title="Side"
PopupMenu popSide,mode=1,popvalue="Right",value= #"\"Right;Left;Bottom;Top\""
CheckBox ckResizeable,pos={76,176},size={65,14},title="Resizeable",value= 0

EndMacro

Function test()
Make/O/N=4 epsizes=0
Execute "ExSwTest()"

End

After compiling the procedures, execute test() on the command line. You can now experiment with
different sides and size values.

See Also
Chapter III-14, Controls and Control Panels, for details about control panels and controls.
The ModifyPanel operation.

NewPath

V-579

NewPath
NewPath [flags] pathName [, pathToFolderStr]
The NewPath operation creates a new symbolic path name that can be used as a shortcut to refer to a folder
on disk.

Parameters
pathToFolderStr is a string containing the path to the folder for which you want to make a symbolic path.
pathToFolderStr can also point to an alias (Macintosh) or shortcut (Windows) for a folder.
If you use a full path for pathToFolderStr, see Path Separators on page III-401 for details on forming the path.
If you use a partial path or just a simple name for pathToFolderStr, and you use the /C flag, a new folder is
created relative to the Igor Pro 7 folder. No dialog is presented.
If you omit pathToFolderStr, you get a chance to select a folder or create a new folder from a dialog.

Flags

Details
Symbolic paths help to isolate your experiments from specific file system paths that contain files created or
used by Igor. By using a symbolic path, if the actual location or name of the folder changes, you won’t need
to change all of your commands. Instead, you need only to change the symbolic path so that it points to the
changed folder location.
NewPath sets the variable V_flag to zero if the operation succeeded or to nonzero if it failed. The main use
for this is to determine if the user clicked Cancel when you use NewPath to display a choose-folder dialog.
On the Macintosh, pressing Command-Option as the Choose Folder dialog comes up will allow you to
choose package folders and folders inside packages.

Examples
NewPath Path1, "hd:IgorStuff:Test 1" // Macintosh

NewPath Path1, "C:IgorStuff:Test 1" // Windows

creates the symbolic path named Path1 which refers to the specified folder (the path’s “value”). You can
then refer to this folder in many Igor operations and dialogs by using the symbolic path name Path1.

See Also
The PathInfo operation; especially if you need to preset a starting path for the dialog.
KillPath

/C Create the folder specified by pathToFolderStr if it does not already exist.

/M=messageStr Specifies the prompt message in the dialog. But see Prompt Does Not Work on
Macintosh on page IV-137.

/O Overwrites the symbolic path if it exists.

/Q Suppresses printing path information in the history.

/Z Doesn’t generate an error if the folder does not exist.

Windows Note:

You can use either the colon or the backslash character to separate folders. However,
the backslash character is Igor’s escape character in strings. This means that you have
to double each backslash to get one backslash like so:
NewPath stuff, "C:\\IgorStuff\\Test 1"

Because of this complication, it is recommended that you use Macintosh path syntax
even on Windows. See Path Separators on page III-401 for details.

NewWaterfall

V-580

NewWaterfall
NewWaterfall [flags] mwave [vs {wavex,wavez}]
The NewWaterfall operation creates a new waterfall plot window or subwindow using each column in the
2D matrix wave, mwave, as a waterfall trace.
You can manually set x and z scaling by specifying wavex and wavez to override the default scalings. Either
wavex or wavez may be omitted by using a “*”.

Flags

/FG=(gLeft, gTop, gRight, gBottom)

Specifies the frame guide to which the outer frame of the subwindow is attached
inside the host window.
The standard frame guide names are FL, FR, FT, and FB, for the left, right, top, and
bottom frame guides, respectively, or user-defined guide names as defined by the
host. Use * to specify a default guide name.
Guides may override the numeric positioning set by /W.

/HIDE=h Hides (h = 1) or shows (h = 0, default) the window.

/HOST=hcSpec Embeds the new waterfall plot in the host window or subwindow specified by hcSpec.
When identifying a subwindow with hcSpec, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/I Sets window coordinates to inches.

/K=k

/M Sets window coordinates to centimeters.

/N=name Requests that the created waterfall plot window have this name, if it is not in use. If it
is in use, then name0, name1, etc. are tried until an unused window name is found. In
a function or macro, S_name is set to the chosen name. Use DoWindow/K name to
ensure that name is available.

/PG=(gLeft, gTop, gRight, gBottom)

Specifies the inner plot rectangle of the waterfall plot subwindow inside its host
window.
The standard plot rectangle guide names are PL, PR, PT, and PB, for the left, right, top,
and bottom plot rectangle guides, respectively, or user-defined guide names as
defined by the host. Use * to specify a default guide name.
Guides may override the numeric positioning set by /W.

/W=(left,top,right,bottom)

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

norm

V-581

Details
The X and Z axes are always at the bottom and left, whereas the Y axis runs at a default 45 degrees along
the right-hand side. The angle and length of the Y axis can be changed using the ModifyWaterfall operation.
Other features of the graph can be changed using normal graph operations.
Each column from mwave is plotted in (and clipped by) a rectangle defined by the X and Z axes with the
rectangle displaced along the angled Y axis as a function of the y value.
Except when hidden lines are active, the traces are drawn from back to front.
To modify certain properties of a waterfall plot, you need to use the ModifyWaterfall operation. For other
properties, use the usual axis and trace dialogs.

See Also
Waterfall Plots on page II-255.
The ModifyWaterfall and ModifyGraph operations.

norm
norm(srcWave)
The norm function evaluate the norm of srcWave. It returns:

This function does not support text waves.

See Also
MatrixOp

NormalizeUnicode
NormalizeUnicode(sourceTextStr, normalizationForm[, options])
The NormalizeUnicode function normalizes the UTF-8-encoded text in sourceTextStr using the specified
normalization form. The output text encoding is UTF-8.
NormalizeUnicode was added in Igor Pro 7.00. Most users will have no need for this function and can
ignore it.
As explained under Details, in Unicode there are sometimes multiple ways to spell what appears visually
to be the same word. This can cause problems when comparing text. Two strings that appear to represent
the same word and which you consider equivalent may be spelled differently, causing a comparison
operation to indicate that they are unequal. The NormalizeUnicode function converts sourceTextStr to a
normalized form, which aides comparison.

Parameters
sourceTextStr is the text that you want to normalize. It must be encoded as UTF-8.
normalizationForm specifies the normalization form to use. These forms are described at
http://unicode.org/reports/tr15/#Norm_Forms. The allowed values are:

Specifies window size. Coordinates are in points unless /I or /M is specified before /W.
When used with the /HOST flag, the specified location coordinates of the sides can
have one of two possible meanings:
When all values are less than 1, coordinates are assumed to be fractional relative to
the host frame size.
When any value is greater than 1, coordinates are taken to be fixed locations measured
in points relative to the top left corner of the host frame.
When the subwindow position is fully specified using guides (using the /HOST, /FG,
or /PG flags), the /W flag may still be used although it is not needed.

0: NFD (Canonical Decomposition)

abs w[i]()2∑

String Variable Text Encoding Error Example on page III-428
String Variable Text Encoding Error Example on page III-428

NormalizeUnicode

V-582

options is a bitwise parameter, with the bits defined as follows:

All other bits are reserved and must be cleared.

Details
The Unicode standard specifies that some sequences of code points represent essentially the same character.
There are two types of equivalence: canonical equivalence and compatibility.
Sequences of code points defined as canonically equivalent are assumed to have the same appearance and
meaning when printed or displayed. For example, the code point U+006E (LATIN SMALL LETTER N)
followed by U+0303 (COMBINING TILDE) is defined by Unicode to be canonically equivalent to the single
code point U+00F1 (LATIN SMALL LETTER N WITH TILDE). The former is called "decomposed" while the
later is called "precomposed".
Sequences that are defined as compatible are assumed to have possibly distinct appearances, but the same
meaning in some contexts. Thus, for example, the code point U+FB00 (LATIN SMALL LIGATURE FF) is
defined to be compatible, but not canonically equivalent, to the sequence U+0066 U+0066 (two Latin "f"
letters). Sequences that are canonically equivalent are also compatible, but the opposite is not necessarily
true.
Text searching and sorting routines in Igor do not do any form of Unicode normalization. As a consequence,
searching for the precomposed form of small letter n with tilde (U+00F1) in a string that contains the
decomposed form (U+006E U+0303) will not result in a match. To get the desired result, you would need to
first pass both the target string and the string to be searched through NormalizeUnicode using the same
value for the normalizationForm parameter.

Example
Function TestNormalizeUnicode()

String precomposed = "Ni" + "\u00F1" + "o"
String decomposed = "Ni" + "\u006E\u0303" + "o"
String precomposedTarget = "\u00F1"
String decomposedTarget = "\u006E\u0303"
Variable foundPos

// SUCCESSFUL TESTS
// Searching the precomposed string for the precomposed target is successful.
foundPos = strsearch(precomposed, precomposedTarget, 0)
Print foundPos // Prints 2

// Likewise, searching the decomposed string for the decomposed target is successful.
foundPos = strsearch(decomposed, decomposedTarget, 0)
Print foundPos // Prints 2

// UNSUCCESSFUL TESTS
// Searching the precomposed string for the decomposed target fails.
foundPos = strsearch(precomposed, decomposedTarget, 0)
Print foundPos // Prints -1

// Likewise, searching the decomposed string for the precomposed target fails.
foundPos = strsearch(decomposed, precomposedTarget, 0)
Print foundPos // Prints -1

// USING NormalizeUnicode() FUNCTION
Variable normForm = 2 // Could use 0-3 and the results would be the same.

1: NFC (Canonical Decomposition, followed by Canonical Composition)

2: NFKD (Compatibility Decomposition)

3: NFKC (Compatibility Decomposition, followed by Canonical Composition)

Bit 0: If cleared, in the event of an error, a null string is returned and an error is generated. Use this if
you want to abort procedure execution if an error occurs.

If set, in the event of an error, a null string is returned but no error is generated. Use this if you
want to detect and handle an error yourself. You can test for null using strlen as shown in String
Variable Text Encoding Error Example on page III-428.

note

V-583

String precomposedNorm = NormalizeUnicode(precomposed, normForm)
String decomposedNorm = NormalizeUnicode(decomposed, normForm)
String precomposedTargetNorm = NormalizeUnicode(precomposedTarget, normForm)
String decomposedTargetNorm = NormalizeUnicode(decomposedTarget, normForm)

// Now, searching either precomposedNorm or decomposedNorm for either
// precomposedTargetNorm or decomposedTargetNorm will give a match.
Print strsearch(precomposedNorm, precomposedTargetNorm, 0) // Prints 2
Print strsearch(decomposedNorm, precomposedTargetNorm, 0) // Prints 2
Print strsearch(precomposedNorm, decomposedTargetNorm, 0) // Prints 2
Print strsearch(decomposedNorm, decomposedTargetNorm, 0) // Prints 2

End

See Also
Text Encodings on page III-409, String Variable Text Encoding Error Example on page III-428
http://en.wikipedia.org/wiki/Unicode_equivalence
http://unicode.org/reports/tr15/#Norm_Forms

note
note(waveName)
The note function returns a string containing the note associated with the specified wave.

See Also
To create a wave note, use the Note operation.

Note
Note [/K/NOCR] waveName [, str]
The Note operation appends str to the wave note for the named wave.

Parameters
str is a string expression.

Flags

Examples
Note/K wave0 // remove existing note
Note wave0, "This is the first line of the note"
Note wave0, "This is the second line of the note"
Note/K wave0, "This is now the only line of the note"

See Also
To get the contents of a wave note, use the note function.

Notebook
Notebook winName, keyword=value [, keyword=value]…
The Notebook operation sets various properties of the named notebook window. Notebook also inserts text
and graphics. See Chapter III-1, Notebooks, for general information on notebooks.
Notebook returns an error if the notebook is open for read-only. Keywords that don't materially change the
notebook, including findText, findPicture, selection, visible, magnification, userKillMode, showRuler and
rulerUnits, are still permitted. See Notebook Read/Write Properties on page III-10 for further information.

/K Kills existing note for specified wave.

/NOCR Appends note without a preceding carriage return (\r character). No effect when
used with /K.

http://en.wikipedia.org/wiki/Unicode_equivalence
http://unicode.org/reports/tr15/#Norm_Forms

Notebook

V-584

Parameters
winName is either kwTopWin for the top notebook window, the name of a notebook window or a host-child
specification (an hcSpec) such as Panel0#nb0. See Subwindow Syntax on page III-87 for details on host-
child specifications.
If winName is an hcSpec, the host window or subwindow must be a control panel. Graphs and page layouts
are not supported as hosts for notebook subwindows.
The parameters to the Notebook operation are of the form keyword=value where keyword says what to do and
value is a parameter or list of parameters. Igor limits the parameters that you specify to legal values before
applying them to the notebook.
The parameters are classified into related groups of keywords.

See Also
To create or modify a notebook action special character, see NotebookAction.
To create a notebook subwindow in a control panel, see Notebooks as Subwindows in Control Panels on
page III-86.

Notebook (Document Properties)

V-585

Notebook (Document Properties)
Notebook document property parameters
This section of Notebook relates to setting the document properties of the notebook.

adopt=a

backRGB=(r,g,b) Sets background color. r, g, and b are integers from 0 to 65535.

changeableByCommandOnly=c

defaultTab=dtw dtw is the default tab width in points.

magnification=m

pageMargins={left, top, right, bottom}

Sets page margins in points. left, top, right, and bottom are distances from the respective
edges of the physical page.

rulerUnits=r

showRuler=s Hides (s=0) or shows (s=1) the ruler.

startPage=sp Sets the starting page number for printing.

statusWidth=sw As of Igor7, because of changes to the layout of notebook windows, this keyword does
nothing.
In Igor6 it set the width in points of the status area on the left of the horizontal scroll
bar.

userKillMode=k

Adopts a notebook if it is a file saved to disk. Adopting a notebook makes it part
of the packed experiment file, which becomes more self-contained; if you send the
experiment to a colleague you will not need to send a notebook file.
a=0: Checks only whether the notebook is adoptable. Sets V_flag to 0 if

the notebook is already adopted or to 1 if it is adoptable.
a=1: Checks only whether the notebook is adoptable. Sets V_flag to 0 if

the notebook is already adopted or to 1 if it is adoptable.

This changeableByCommandOnly property is used to prevent manual
modifications to the notebook but allow modifications using commands.

See Notebook Read/Write Properties on page III-10 for details.

c=0: Turn changeableByCommandOnly off.
c=1: Turn changeableByCommandOnly on.

Specifies the desired magnification in percent (between 25 and 500). Otherwise, m
can be one of these special values:
m=1: Default magnification.
m=2: Default magnification.

In Igor Pro 6 this specified the no-longer-supported Fit Width mode.
m=3: Default magnification.

In Igor Pro 6 this specified the no-longer-supported Fit Page mode.

Sets the units for the ruler:
r=0: Points.
r=1: Inches.
r=2: Centimeters.

Specifies window behavior when the user attempts to close it.
k=0: Normal with dialog (default).
k=1: Clicking the close button kills the notebook with no dialog.
k=2: Clicking the close button does nothing.
k=3: Clicking the close button hides the notebook with no dialog.

Notebook (Headers and Footers)

V-586

Notebook (Headers and Footers)
Notebook headers and footers
You can turn headers and footers on and off and position headers and footers using the keywords in this
section.
There is currently no way to set the content of headers and footers except manually through the Document
Settings dialog. You may be able to use stationery files to create files with specific headers and footers.

writeBOM=w

writeProtect=wp

footerControl={defaultFooter, firstFooter, evenOddFooter}

defaultFooter is 1 to turn the default footer on, 0 to turn it off.
firstFooter is 1 to turn the first page footer on, 0 to turn it off.
evenOddFooter is 1 to turn different footers for even and odd pages on, 0 to use the
same footer for even and odd pages.

footerPos=pos pos is the position of the footer relative to the bottom of the page in points.

headerControl={defaultHeader , firstHeader , evenOddHeader}

defaultHeader is 1 to turn the default header on, 0 to turn it off.
firstHeader is 1 to turn the first page header on, 0 to turn it off.
evenOddHeader is 1 to turn different headers for even and odd pages on, 0 to use the
same header for even and odd pages.

headerPos=pos pos is the position of the header relative to the top of the page in points.

Sets the document's writeBOM property which determines if Igor writes a byte
order mark when saving the notebook. This applies to plain text notebooks only
and is ignored for formatted text notebooks.

See Byte Order Marks on page III-420 for details.
This keyword was added in Igor Pro 7.00.

w=-1: Does not change writeBOM flag.
w=0: Sets writeBOM to false.
w=1: Sets writeBOM to true.

The write-protect property is used to prevent inadvertent manual changes to the
notebook.

See Notebook Read/Write Properties on page III-10 for details.

wp=0: Turn write-protect off.
wp=1: Turn write-protect on.

Notebook (Miscellaneous)

V-587

Notebook (Miscellaneous)
Notebook miscellaneous parameters
This section of Notebook relates to setting miscellaneous properties of the notebook.

autoSave=v

frameInset= i Specifies the number of pixels by which to inset the frame of a notebook subwindow.
Does not affect a normal notebook window.
This keyword was added in Igor Pro 7.00.

frameStyle= f

status={messageStr, flags}

Sets the message in the status area at the bottom left of the notebook window.

If all bits are zero, the message stays until a new message comes along. All other bits
are reserved for future use and should be zero. See Setting Bit Parameters on page
IV-12 for details about bit settings.

updating={flags, r} Sets parameters related to the updating of special characters.

Controls auto-save mode.

This affects notebook subwindows in control panels only. Use autoSave=0 if you
do not want the notebook's contents to be saved and restored when the control
panel is recreated. Otherwise the notebook subwindow’s contents will be restored
when recreated.

v=0: Notebook subwindow contents will not be saved in recreation
macros.

v=1: Notebook subwindow contents will be saved in recreation macros
(default).

Specifies the frame style for a notebook subwindow. Does not affect a normal
notebook window.

The last three styles are fake 3D and will look best if the background color behind
the subwindow is a light shade of gray.
This keyword was added in Igor Pro 7.00.

f=0: None.
f=1: Single.
f=2: Double.
f=3: Triple.
f=4: Shadow.
f=5: Indented.
f=6: Raised.
f=7: Text well.

flags is interpreted bitwise. Message is erased when:
Bit 0: Selection changes.
Bit 1: Window is activated.
Bit 2: Window is deactivated.
Bit 3: Document is modified.

Notebook (Paragraph Properties)

V-588

Notebook (Paragraph Properties)
Notebook paragraph property parameters
This section of Notebook relates to setting the paragraph properties of the current selection in the notebook.
The margins, spacing, justification, tabs and rulerDefaults keywords provide control over paragraph
properties which are governed by rulers. These keywords, in conjunction with the ruler and newRuler
keywords, allow you to set paragraph properties. They are allowed for formatted text notebooks only, not
for plain text notebooks.
The ruler keywords are described in detail below. Before we get to the detail, you should understand the
different things you can do with rulers.
There are four things you can do with a ruler:

Igor’s behavior in response to ruler keywords depends on the order in which the keywords appear.
To modify the ruler(s) for the selected paragraph(s), use the margins, spacing, justification, tabs and
rulerDefaults keywords without using the newRuler or ruler keywords. For example:
Notebook Notebook0 tabs={36,144,288},justification=1

To redefine an existing ruler, invoke the ruler=rulerName keyword before any other keywords. For example:
Notebook Notebook0 ruler=Ruler1,tabs={36,144,288},justification=1

Unlike redefining the ruler manually, when you redefine an existing ruler using ruler=rulerName, it does
not apply the ruler to the selected text. However, it does update any text governed by the redefined ruler.
To create a new ruler, invoke the newRuler=rulerName keyword before any other keywords. For example:
Notebook Notebook0 newRuler=Ruler1,tabs={36,144,288},justification=1

All other bits are reserved for future use and should be zero. See Setting Bit
Parameters on page IV-12 for details about bit settings.

r is the update rate in seconds for updating date and time special characters.

These settings have no effect on the updating of special characters in headers or
footers. These characters are always automatically updated when the document is
printed.

We recommend that you leave automatic updating off (set bit 0 of the flags parameter
to 1) so that updating occurs only via the specialUpdate keyword or via the Special
menu.

visible=v

modify it (analogous to manually adjusting a ruler).

redefine it (analogous to the Redefine Ruler dialog).

create it (analogous to the Define New Ruler dialog).

apply it (analogous to selecting a ruler name from Ruler pop-up menu).

flags is interpreted bitwise:
Bit 0: Suppress automatic periodic updating of date and time special

characters. By default this bit is set so date and time special characters
are updated only when the user explicitly requests it or during printing
when they appear in headers and footers.

Bit 1: Allow manual updating of special characters via the specialUpdate
keyword or via the Special menu. By default this is cleared so manual
updating is not allowed.

Sets notebook visibility.
v=0: Hides notebook.
v=1: Shows notebook but does not make it top window.
v=2: Shows notebook and makes it top window.

Notebook (Paragraph Properties)

V-589

Unlike creating it manually, when you create a new ruler using newRuler=rulerName, it does not apply the
new ruler to the selected text. If you do not set a particular ruler property when creating a new ruler, the
property will be the same as for the Normal ruler. If the specified ruler already exists, newRuler=rulerName
overwrites the existing ruler.
To apply an existing ruler to the selected text, invoke the ruler=rulerName keyword without any other
keywords. For example:
Notebook Notebook0 ruler=ruler1

You and Igor will get confused if you mix ruler keywords with other types of keywords in the same
command. It is alright, however to put a selection keyword at the start of the command. Mixing will not
cause a crash or any drastic problem but it will likely produce results that you don’t understand.
To keep things clear, follow these rules:
• If you use ruler=rulerName or newRuler=rulerName, put them before any other ruler keywords.
• Do not mix ruler keywords with other kinds, except that it is alright to use the selection keyword

at the start of the command.

justification=j

margins={indent,left,right}

indent sets the indentation of first line from left page margin.
left sets the paragraph’s left margin in points measured from the left page margin.
right sets the paragraph’s right margin in points measured from the left page margin.

newRuler=rulerName

Creates a new ruler with the specified name. If a ruler with this name already exists,
it is overwritten.

ruler=rulerName Applies the named ruler to the selected text or to redefine the named ruler, as
explained above.

rulerDefaults={"fontName", fSize, fStyle, (r,g,b)}

"fontName" sets the ruler’s text font, e.g., "Helvetica".
fSize sets the ruler’s text size.
fStyle sets the ruler’s text style.
(r,g,b) sets the ruler’s text color. r, g, and b are integers from 0 to 65535.
You can only use rulerDefaults if you are redefining an existing ruler, using
ruler=rulerName, or you are creating a new ruler using newRuler=rulerName.

spacing={spaceBefore,spaceAfter,lineSpace}

spaceBefore sets the extra space before paragraph in points.
spaceAfter sets the extra space after paragraph in points.
lineSpace sets the extra space between lines of a paragraph in points.

tabs={tabSpec} tabSpec is list of tab stops in points added to special values that change the tab stop
type.
Tab stops have two parts: the tab stop position and the tab type. Each integer in the
list of tabs encodes both of these parts as follows:
The low 11 bits contains the tab stop position in points.
The next two bits are reserved for future use and must be zero.

Sets text justification:
j=0: Left aligned.
j=1: Center aligned.
j=2: Right aligned.
j=3: Fully justified.

Notebook (Paragraph Properties)

V-590

Tabs Example
The following puts a left tab at 1 inch, a center tab at 3 inches and a decimal tab at 5 inches:
Notebook Notebook1 tabs={1*72, 3*72 + 8192, 5*72 + 3*8192}

The high three bits are used to contain the tab type as follows:
left tab 0
center tab 1 add 1*8192 to tab stop position.
right tab 2 add 2*8192 to tab stop position.
decimal tab 3 add 3*8192 to tab stop position.
comma tab 4 add 4*8192 to tab stop position.

Notebook (Selection)

V-591

Notebook (Selection)
Notebook selection parameters
This section of Notebook relates to selecting a range of the content of the notebook.

findPicture={graphicNameStr, flags}

Searches for the picture containing the named graphic (Macintosh only) or the next
picture if you pass "". Sets V_flag to 1 if the picture was found or to 0 if not found.

The search is always forward from the end of the current selection to the end of the
document.

findSpecialCharacter={specialCharacterNameStr, flags}

Searches for the special character with the specified name or the next special character
if you pass "". Selects the special character if it is found.
Sets V_flag to 1 if the special character was found or to 0 if not. Sets S_name to the
name of the found special character or to "" if it was not found.

If specialCharacterNameStr is empty (""), the search proceeds from the end of the
current selection to the end of the document. Otherwise the search always covers the
entire document.

findText={textToFindStr, flags}

Searches for the specified text. Sets V_flag to 1 if the text was found or to 0 if not found.
textToFindStr is a string expression for the text you want to find. If the text contains a
carriage return, Igor considers only the part of the text before the carriage return.

To set bit 0 and bit 3, use 20+23 = 9 for flags. See Setting Bit Parameters on page IV-12
for details about bit settings.
If you are searching forward, the search starts from the end of the current selection. If
you are searching backward, the search starts from the start of the current selection.
If you specify "" as the text to search for, it “finds” the current selection. This displays
the current selection using findText={"", 1}.

selection={selStart, selEnd}

flags is a bitwise parameter interpreted as follows:

All other bits are reserved for future use. Set bit 0 by setting flags = 1.

Bit 0: Show selection after the find.

flags is a bitwise parameter interpreted as follows:

All other bits are reserved for future use. Set bit 0 by setting flags = 1.

Bit 0: Show selection after the find.

flags is a bitwise parameter interpreted as follows:

All other bits are reserved and must be set to zero.

Bit 0: Show selection after the find.
Bit 1: Do case-sensitive search.
Bit 2: Search for whole words.
Bit 3: Wrap around.
Bit 4: Search backward.

Notebook (Selection)

V-592

Selection Examples
Following are some examples of setting the selection:
// select all text in notebook
Notebook Notebook1 selection={startOfFile, endOfFile}

// move selection to the start of the notebook and display the selection
Notebook Notebook1 selection={startOfFile,startOfFile}, findText={"",1}

// move selection to the end of the notebook and display the selection
Notebook Notebook1 selection={endOfFile,endOfFile}, findText={"",1}

// select all of paragraph 3
Notebook Notebook1 selection={(3,0), (4,0)}

// select all of paragraph 3 and display the selection
Notebook Notebook1 selection={(3,0), (4,0)}, findText={"",1}

// select all of current paragraph except for trailing CR, if any
Notebook Notebook1 selection={startOfParagraph, endOfChars}

Igor clips the specified locations to legal values. It also sets the V_flag variable to 0 if
the selStart location that you specified was valid, to 1 if the start paragraph was out of
bounds and to 2 if the start position was out of bounds. You can use the
startOfNextParagraph keyword to step through the document one paragraph at a
time. When V_flag is nonzero, you are at the end of the document.
The terms next and prev are relative to the paragraph containing the start of the
selected text before the selection keyword was invoked.
The selection keyword just sets the selection. If you also want to scroll the selected text
into view you must also use the findText keyword as shown in the examples.

selStart and selEnd are locations within the document. You can specify these
document locations by using the following expressions:
(paragraph, pos) paragraph and pos are numeric expressions.

paragraph is a paragraph number from 0 to n-1 where n is
the number of paragraphs in the document.
pos is a byte position from 0 to n where n is the number
of bytes in the paragraph. Position 0 is to the left of the
first character in the paragraph. Position n is to the right
of the last character in the paragraph.

startOfFile Start of the document.
endOfFile End of the document.
startOfParagraph Start of current selStart paragraph.
endOfParagraph End of current selStart paragraph.
startOfNextParagraph Start of paragraph after current selStart paragraph.
endOfNextParagraph End of paragraph after current selStart paragraph.
startOfPrevParagraph Start of paragraph before current selStart paragraph.
endOfPrevParagraph End of paragraph before current selStart paragraph.
endOfChars Just before the carriage return of current selStart

paragraph.
startOfPrevChar Start of the character before the character at the current

selection start or selection end. This moves the selection
start or selection end like pressing the left arrow key.
Added in Igor Pro 7.00.

startOfNextChar Start of the character after the character at the current
selection start or selection end. This moves the selection
like pressing the right arrow key.
Added in Igor Pro 7.00.

Notebook (Selection)

V-593

// select the first occurrence of "Hello" in the document and display the selection
Notebook Notebook1 selection={startOfFile,startOfFile}, findText={"Hello",1}

// select the first picture in the document
Notebook Notebook1 selection={startOfFile,startOfFile}, findPicture={"",1}

See Also
The GetSelection operation to “copy” the selection.

Notebook (Text Properties)

V-594

Notebook (Text Properties)
Notebook text property parameters
This section of Notebook relates to setting the text properties of the current selection in the notebook.

Notebook (Writing Graphics)
Writing notebook graphics parameters
This section of Notebook relates to inserting graphics at the current selection in the notebook.
These graphics keywords are allowed for formatted text files only, not for plain text files.

font="fontName" "fontName" is the name of the font. Use "default" to specify the paragraph’s ruler
font.
If you specify an unavailable font, it does nothing. This is so that, when you share
procedures with a colleague, using a font that the colleague does not have will not
cause your procedures to fail. The downside of this behavior is that if you misspell a
font name you will get no error message.

fSize=fontSize Text size from 3 to 32000 points.
Use -1 to specify the paragraph’s ruler size.

fStyle=fontStyle

textRGB=(r,g,b) Specifies text color. r, g, and b are integers from 0 to 65535. (0, 0, 0) specifies black.
(65535, 65535, 65535) specifies white.

vOffset=v Sets the vertical offset in points (positive offset is down, negative is up). Use this to
create subscripts and superscripts. vOffset is allowed for formatted text files only, not
for plain text files.

convertToPNG=x Converts all pictures in the current selection to cross-platform PNG format. If the
picture is already PNG, it does nothing.
x is the resolution expansion factor, an integer from 1 to 16 times screen resolution. x
is clipped to legal limits.

frame=f

insertPicture={pictureName, pathName, filePath, options}

Inserts a picture from a file specified by pathName and filePath. The supported
graphics file formats are listed under Inserting Pictures on page III-13.

A binary coded integer with each bit controlling one aspect of the text style as
follows:

Use -1 to specify the paragraph’s ruler style. To set bit 0 and bit 1 (bold italic), use
20+21 = 3 for fontStyle. See Setting Bit Parameters on page IV-12 for details about
bit settings.

Bit 0: Bold
Bit 1: Italic
Bit 2: Underline
Bit 4: Strikethrough

Sets the frame used for the picture and insertPicture keywords.
f=0: No frame (default).
f=1: Single frame.
f=2: Double frame.
f=3: Triple frame.
f=4: Shadow frame.

Notebook (Writing Graphics)

V-595

pictureName is the special character name (see Special Character Names on page
III-13) to use for the inserted notebook picture or $"" to automatically assign a name.
pathName is the name of an Igor symbolic path created via NewPath or $"" to use no
path.
filePath is a full path to the file to be loaded or a partial path or simple file name
relative to the specified symbolic path.
If pathName and filePath do not fully specify a file, an Open File dialog is displayed
from which the user can choose the file to be inserted.

The variable V_flag is set to 1 if the picture was inserted or to 0 otherwise, for example,
if the user canceled from the Open File dialog.

The string variable S_name is set to the special character name of the picture that was
inserted or to "" if no picture was inserted.

The string variable S_fileName is set to the full path of the file that was inserted or to
"" if no picture was inserted.

picture={objectSpec, mode, flags [, expansion]}

Inserts a picture based on the specified object.
objectSpec is usually just an object name, which is the name of a graph, table, page
layout, Gizmo plot, or picture from Igor's picture gallery (Misc→Pictures). See further
discussion below.
mode controls what happens when you insert a picture of a graph, table or page layout
window. It does not affect insertions of pictures from the picture gallery.

options is a bitwise parameter interpreted as follows:

All other bits are reserved and must be set to zero.
See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: If set, an Open File dialog is displayed even if the file is fully specified
by pathName and filePath.

Bit 1: Determines what to do in the event of a name conflict. If set, the existing
special character with the conflicting name is overwritten. If cleared, a
unique name is created and used as the special character name for the
inserted picture.

mode specifies the format of the graph, table, or page layout picture as follows:
mode Macintosh Windows
-9 SVG SVG
-8 PDF 8X Enhanced metafile
-7 TIFF TIFF
-6 JPEG JPEG
-5 PNG PNG
-4 4X PNG Device-independent bitmap
-2 PDF 8X Enhanced metafile
-1 PDF 8X Enhanced metafile
0 PDF 8X Enhanced metafile
1 1X PDF 8X Enhanced metafile
2 2X PDF 8X Enhanced metafile
4 4X PDF 8X Enhanced metafile
8 8X PDF 8X Enhanced metafile

Notebook (Writing Graphics)

V-596

When using the picture keyword, you may include a coordinate specification after the object name in
objectSpec. For example:
Notebook Notebook1 picture={Layout0(100, 50, 500, 700), 1, 1}

The coordinates are in points. A coordinate specification of (0, 0, 0, 0) behaves the same as no coordinate
specification at all.
If the object is a graph, the coordinate specification determines the width and height of the graph. If you
omit the coordinate specification, Igor takes the width and height from the graph window.
If the object is a layout, the coordinate specification identifies a section of the layout. If you omit the coordinate
specification, Igor selects a section of the layout that includes all objects in the layout plus a small margin.
For any other kind of object, Igor ignores the coordinate specification if it is present.
The scaling and frame keywords affect the selected picture, if any. If no picture is selected, they affect the
insertion of a picture using the picture or insertPicture keywords. For example, this command inserts a picture
of Graph0 with 50% scaling and a double frame:
Notebook Test1 scaling={50, 50}, frame=2, picture={Graph0, 1, 1}

If no picture is selected and no picture is inserted, scaling and frame have no effect.

InsertPicture Example
Function InsertPictureFromFile(nb)

String nb // Notebook name or "" for top notebook

if (strlen(nb) == 0)
nb = WinName(0, 16, 1)

endif

if (strlen(nb) == 0)
Abort "There are no notebooks"

endif

// Display Open File dialog to get the file to be inserted
Variable refNum // Required for Open but not really used
String fileFilter = "Graphics Files:.eps,.jpg,.png;All Files:.*;"
Open /D /R /F=fileFilter refNum
String filePath = S_fileName

Modes -6, -7, -8, and -9 require Igor Pro 7.00 or later.
Mode 0 is recommended unless you are concerned about cross-platform
compatibility in which case you must use mode -5 (PNG) or mode -9 (SVG).
If objectSpec names a Gizmo window, only modes -5, -6, or -7 are allowed.
Modes -2 through 8 are supported for backward compatibility. In previous versions
of Igor, they selected other formats that are now obsolete.
See Chapter III-5, Exporting Graphics (Macintosh), Chapter III-6, Exporting
Graphics (Windows), and Metafile Formats on page III-96 for further discussion of
these formats.

expansion is optional and requires Igor Pro 7.00 or later. On Macintosh, it affects
modes -5, -6, -7, and -8 only. On Windows, it affects modes -5, -6, and -7 only.
expansion sets the expansion factor over screen resolution. expansion must be an
integer between 1 and 8 and is usually 1, 2, 4 or 8. The default value is 1.

scaling={h, v} Sets the horizontal(h) and vertical (v) scaling for the selected picture or the picture and
insertPicture keywords. h and v are in percent.

flags is a bitwise parameter interpreted as follows:

All other bits are reserved and must be set to zero.

For color, set flags = 20 = 1.
See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: 0 for black and white, 1 for color.

Notebook (Writing Special Characters)

V-597

if (strlen(filePath) == 0)
Print "You cancelled"
return -1

endif

Notebook $nb, insertPicture={$"", $"", filePath, 0}
if (V_flag)

Print "Picture inserted"
else

Print "No picture inserted"
endif

return 0
End

Save notebook pictures to files
The savePicture keyword is allowed for formatted text files only, not for plain text files.

Notebook (Writing Special Characters)
Writing special character parameters
This section of Notebook relates to inserting special characters at the current selection in the notebook. To
insert a notebook action, see NotebookAction.
The special characters are page break, short date, long date, abbreviated date and time. They act in some
respects like a single character but have special properties. You can insert the special characters using the
specialChar keyword.

savePicture={pictureName, pathName, filePath, options}

Saves a picture from a formatted text notebook to a file specified by pathName and
filePath.
pictureName is the special character name (see Special Character Names on page
III-13) of the picture to be saved or $"" to save the selected picture in which case one
picture and one picture only must be selected in the notebook.
pathName is the name of an Igor symbolic path created via NewPath or $"" to use no
path.
filePath is a full path to the file to be written or a partial path or simple file name
relative to the specified symbolic path.
If pathName and filePath do not fully specify a file, a Save File dialog is displayed in
which the user can specify the file to be written.

The variable V_flag is set to 1 if the picture was written or to 0 otherwise, for example,
if the user canceled from the Save File dialog.
The string variable S_name is set to the special character name of the picture that was
saved or to "" if no picture was saved.
The string variable S_fileName is set to the full path of the file that was written or to
"" if no picture was written.

options is a bitwise parameter interpreted as follows:

All other bits are reserved and must be set to zero.
See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: If set, a Save File dialog is displayed even if the file is fully specified by
pathName and filePath.

Bit 1: If set, a file with the same name is overwritten if it exists. If cleared, a
Save File dialog is displayed if the specified file already exists.

Bit 2: If set then the leaf name specified by filePath is ignored and a name is
automatically generated based on the picture name.

Notebook (Accessing Contents)

V-598

The specialChar keyword is allowed for formatted text files only, not for plain text files.
Other special characters are allowed in headers and footers only and you can not insert them in a document
using the specialChar keyword. These are window title, page number and total pages.
The special characters other than page break character are dynamic and update periodically.

See Also
Chapter III-1, Notebooks. The NewNotebook, NotebookAction, and OpenNotebook operations; the
SpecialCharacterInfo and SpecialCharacterList functions.

Notebook (Accessing Contents)
Accessing Notebook Contents

specialChar={type, flags, optionsStr}

flags is reserved for future use. You should pass 0 for flags.
optionsStr is reserved for future use. You should pass "" for optionsStr.

specialUpdate=flags

Updates special characters in the notebook.

The specialUpdate keyword can update pictures of graphs, tables, and page layouts
that were created from windows in the current experiment.

getData=mode Causes Igor to return the contents of the notebook in the S_value variable. The
contents are binary data in a private Igor format encoded as text. The only use for this
keyword is to transfer data from one notebook to another by calling getData followed
by setData.

type is the special character type as follows:
1: Page break.
2: Short date.
3: Long date.
4: Abbreviated date.
5: Time.

flags is interpreted bitwise:

If 1, updates regardless of whether updating is enabled or not.
All other bits are reserved and must be set to zero.
See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: 0 to update all special characters.
Bit 1: 1 to update special characters in the selected text.

Causes Igor to return the contents of the notebook in the S_value variable. The
contents are binary data in a private Igor format encoded as text. The only use for
this keyword is to transfer data from one notebook to another by calling getData
followed by setData.
mode=1: Stores in S_value plain text or formatted text data, depending on the

type of the notebook, from the entire notebook.
mode=2: Stores in S_value plain text data, regardless of the type of the

notebook, from the entire notebook.
mode=3: Stores in S_value plain text or formatted text data, depending on the

type of the notebook, from the notebook selection only.
mode=4: Stores in S_value plain text data, regardless of the type of the

notebook, from the notebook selection only.

Notebook (Writing Text)

V-599

See the Notebook In Panel example experiment for examples using getData and setData.

Notebook (Writing Text)
Writing notebook text parameters
This section of Notebook relates to inserting text at the current selection in the notebook.

NotebookAction
NotebookAction [/W=winName] keyword = value [, keyword = value …]
The NotebookAction operation creates or modifies an “action” in a notebook. A notebook action is an object
that executes commands when clicked.
See Chapter III-1, Notebooks, for general information about notebooks.
NotebookAction returns an error if the notebook is open for read-only. See Notebook Read/Write
Properties on page III-10 for further information.

Parameters
The parameters are in keyword =value format. Parameters are automatically limited to legal values before
being applied to the notebook.

text=textStr Inserts the text at the current selection.
Before the text is inserted, Igor converts escape sequences in textStr as described in
Escape Sequences in Strings on page IV-13.
Then, it checks for illegal characters. The only character code that is illegal is zero
(ASCII NUL character). If it finds an illegal character, Igor generates an error and does
not insert the text.

setData=dataStr Inserts the data at the current selection.
dataStr is either a regular string expression or the result returned by Notebook
getData.

zData=dataStr This keyword is used by Igor during the recreation of a notebook subwindow in a
control panel. dataStr is encoded binary data created by Igor when the recreation
macro was generated. It represents the contents of the notebook subwindow in a
format private to Igor.

zDataEnd=1 This keyword is used by Igor during the recreation of a notebook subwindow in a
control panel. It marks the end of encoded binary data created by Igor when the
recreation macro was generated.

bgRGB=(r, g, b) Specifies the action background color. r, g, and b are values from 0 to 65535.

commands=str Specifies the command string to be executed when clicking the action. For multiline
commands, add a carriage return (\r) between lines.

enableBGRGB=enable

Uses the background color specified by bgRGB (enable=1). Background color is
ignored for enable=0.

frame=f

helpText=helpTextStr

Specifies the frame enclosing the action.
f=0: No frame.
f=1: Single frame (default).
f=2: Double frame.
f=3: Triple frame.
f=4: Shadow frame.

NotebookAction

V-600

Flags

Examples
String nb = WinName(0, 16, 1) // Top visible notebook

NotebookAction name=Action0, title="Beep", commands="Beep"// Create action
NotebookAction name=Action0, enableBGRGB=1, padding={4,4,4,4,4}

Specifies the help string for the action. The text is limited to 255 bytes. On Macintosh,
help appears when the cursor is over the action after choosing Help→Show Igor Tips.
On Windows, help appears in the status line when the cursor is over the action.

ignoreErrors=ignore

Controls whether an error dialog will appear (ignore=0) or not (ignore is nonzero) if an
error occurs while executing the action commands.

linkStyle=linkStyle Controls the action title text style. If linkStyle=1, the style is the same as a help link (blue
underlined). If linkStyle=0, the style properties are the same as the preceding text.

name=name Specifies the name of the new or modified notebook action. This is a standard Igor
name. See Standard Object Names on page III-443 for details.

padding={leftPadding, rightPadding, topPadding, bottomPadding, internalPadding}

Sets the padding in points. internalPadding sets the padding between the title and the
picture when both elements are present.

picture=name Specifies a picture for the action icon. name is the name of a picture in the picture
gallery (see Pictures on page III-448).
If name is null ($""), it clears the picture parameter.

procPICTName=name

Specifies a Proc Picture for the action icon (see Proc Pictures on page IV-53). name is
the name of a Proc Picture or null ($"") to clear it. This will be a name like
ProcGlobal#myPictName or MyModuleName#myPictName. If you use a module
name, the Proc Picture must be declared static.
If you specify both picture and procPICTName, picture will be used.

quiet=quiet Displays action commands in the history area (quiet=0), otherwise (quiet=1) no
commands will be recorded.

scaling={h, v} Scales the picture in percent horizontally, h, and vertically, v.

showMode=mode

title=titleStr Sets the action title to titleStr, which is limited to 255 bytes.

/W= winName Specifies the notebook window of interest.
winName is either kwTopWin for the top notebook window, the name of a notebook
window or a host-child specification (an hcSpec) such as Panel0#nb0. See
Subwindow Syntax on page III-87 for details on host-child specifications.

If /W is omitted, NotebookAction acts on the top notebook window.

Determines if the title or picture are displayed.

Without a picture specification, the action will use title mode regardless of what
you specify.

mode=1: Title only.
mode=2: Picture only.
mode=3: Picture below title.
mode=4: Picture above title.
mode=5: Picture to left of title.
mode=6: Picture to right of title.

num2char

V-601

Notebook $nb, findSpecialCharacter={"Action0",1} // Select action

Notebook $nb, frame=1 // Set frame

See Also
Chapter III-1, Notebooks.
The Notebook, NewNotebook, and OpenNotebook operations; the SpecialCharacterInfo and
SpecialCharacterList functions.

num2char
num2char(num [, options)
The num2char function returns a string containing a character.
The options parameter was added in Igor Pro 7.00 and defaults to 0.
As of Igor7, Igor represents text internally as UTF-8, a form of Unicode. Previously it represented text as
system text encoding. Because of this change, the behavior of num2char is complicated.

Recommended use of num2char in Igor7 or later
If num is a Unicode code point, pass 0 for options and num2char will return a UTF-8 string containing the
character for the Unicode code point represented by num.
If you want a string containing a single byte, even though it may not be a valid UTF-8 string, pass 1 for
options and num2char will return a string containing the single byte whose value is num, provided that num
is between 0 and 255.

Detailed description of num2char in Igor7 or later
If num is between 0 and 127, num2char returns a string containing a single byte whose value is num. This
represents an ASCII character.
If num is between 128 and 255 and options is 1, num2char returns a string containing a single byte whose
value is num. This is not valid UTF-8 text, but it is consistent with the behavior of num2char in Igor6.
If num is between 128 and 255 and options is 0 or omitted, num2char returns the UTF-8 representation of the
character for the Unicode code point represented by num.
If num is greater than 255, num2char returns the UTF-8 representation of the character for the Unicode code
point represented by num regardless of the value of options .
If you provide the options parameter, it must be either 0 or 1. Other values may be used for other purposes
in the future.

Examples
Print num2char(65) // Prints A
Print num2char(97) // Prints a
Print num2char(0xF7) // Prints division sign
Print num2char(0xF7,0) // Prints division sign
Print num2char(0xF7,1) // Prints missing character symbol
Print num2char(0x0127) // Prints small letter h with stroke (h-bar)
Print num2char(0x0127,0) // Prints small letter h with stroke (h-bar)
Print num2char(0x0127,1) // Prints small letter h with stroke (h-bar)

// In the case of num2char(0xF7,1),num2char returns a string containing
// a single byte whose value is 0xF7. This is not a valid UTF-8 string.

See Also
The char2num, str2num and num2str functions.
Text Encodings on page III-409.

num2istr
num2istr(num)
The num2istr function returns a string representing num after rounding to the nearest integer.

num2str

V-602

num2str
num2str(num)
The num2str function returns a string representing the number num.
Precision is limited to only five decimal places. This can cause unexpected and confusing results. For this
reason, we recommend that you use num2istr or sprintf for better control of the format and precision of the
number conversion.

See Also
The sprintf operation.
The str2num, char2num and num2char functions.

NumberByKey
NumberByKey(keyStr, kwListStr [, keySepStr [, listSepStr [, matchCase]]])
The NumberByKey function returns a numeric value extracted from kwListStr based on the specified key
contained in keyStr. kwListStr should contain keyword-value pairs such as "KEY=value1,KEY2=value2"
or "Key:value1;KEY2:value2", depending on the values for keySepStr and listSepStr.
Use NumberByKey to extract a numeric value from a strings containing "key1=value1;key2=value2;"
style lists such as those returned by functions like AxisInfo or TraceInfo.
If the key is not found or if any of the arguments is "" or if the conversion to a number fails then it returns NaN.
keySepStr, listSepStr, and matchCase are optional; their defaults are ":", ";", and 0 respectively.

Details
keyStr is limited to 255 bytes.
kwListStr is searched for an instance of the key string bound by listSepStr on the left and a keySepStr on the
right. The text up to the next listSepStr is converted to the returned number.
kwListStr is treated as if it ends with a listSepStr even if it doesn’t.
Searches for keySepStr and listSepStr are always case-sensitive. Searches for keyStr in kwListStr are usually
case-insensitive. Setting the optional matchCase parameter to 1 makes the comparisons case sensitive.
In Igor6, only the first byte of keySepStr and listSepStr was used. In Igor7 and later, all bytes are used.
If listSepStr is specified, then keySepStr must also be specified. If matchCase is specified, keySepStr and
listSepStr must be specified.

Examples
Print NumberByKey("AKEY", "AKEY:123;") // prints 123
Print NumberByKey("BKEY", "AKEY=123;Bkey=456;", "=") // prints 456
Print NumberByKey("KEY2", "KEY1=123,KEY2=999,", "=", ",")// prints 999
Print NumberByKey("ckey", "CKEY=123;ckey=456;", "=") // prints 123
Print NumberByKey("ckey", "CKEY=123;ckey=456;", "=", ";", 1)// prints 456

See Also
The StringByKey, RemoveByKey, ReplaceNumberByKey, ReplaceStringByKey, ItemsInList, AxisInfo,
IgorInfo, SetWindow, and TraceInfo functions.

numpnts
numpnts(waveName)
The numpnts function returns the total number of data points in the named wave. To find the number of
elements in a dimension of a multidimensional wave, use the DimSize function.
Do not use numpnts to test if a wave reference is null as this causes a runtime error. Use WaveExists.

numtype

V-603

numtype
numtype(num)
The numtype function returns a number which indicates what kind of value num contains.

Details
If num is a real number, numtype returns a real number whose value is:

If num is a complex number, numtype returns a complex number in which the real part is the number type
of the real part of num and the imaginary part is the number type of the imaginary part of num.

NumVarOrDefault
NumVarOrDefault(pathStr, defVal)
The NumVarOrDefault function checks to see if the pathStr points to a numeric variable. If the numeric variable
exists, NumVarOrDefault returns its value. If the numeric variable does not exist, it returns defVal instead.

Details
NumVarOrDefault initializes input values of macros so they can remember their state without needing
global variables to be defined first. String variables use the corresponding numeric function,
StrVarOrDefault.

Examples
Macro foo(nval,sval)

Variable nval=NumVarOrDefault("root:Packages:mypack:nvalSav",2)
String sval=StrVarOrDefault("root:Packages:mypack:svalSav","Hi")

DFREF dfSav= GetDataFolderDFR()
NewDataFolder/O/S root:Packages
NewDataFolder/O/S mypack
Variable/G nvalSav= nval
String/G svalSav= sval
SetDataFolder dfSav

End

NVAR
NVAR [/C][/Z] localName [= pathToVar][, localName1 [= pathToVar1]]…
NVAR is a declaration that creates a local reference to a global numeric variable accessed in a user-defined
function.
The NVAR reference is required when you access a global numeric variable in a function. At compile time,
the NVAR statement specifies the local name referencing a global numeric variable. At runtime, it makes
the connection between the local name and the actual global variable. For this connection to be made, the
global numeric variable must exist when the NVAR statement is executed.
When localName is the same as the global numeric variable name and you want to reference a global variable
in the current data folder, you can omit pathToVar.
pathToVar can be a full literal path (e.g., root:FolderA:var0), a partial literal path (e.g., :FolderA:var0) or $
followed by string variable containing a computed path (see Converting a String into a Reference Using
$ on page IV-57).
You can also use a data folder reference or the /SDFR flag to specify the location of the numeric variable if
it is not in the current data folder. See Data Folder References on page IV-72 and The /SDFR Flag on page
IV-74 for details.
If the global variable may not exist at runtime, use the /Z flag and call NVAR_Exists before accessing the
variable. The /Z flag prevents Igor from flagging a missing global variable as an error and dropping into
the Igor debugger. For example:
NVAR/Z nv=<pathToPossiblyMissingNumericVariable>
if(NVAR_Exists(nv))

0: If num contains a normal number.

1: If num contains +/-INF.

2: If num contains NaN.

NVAR_Exists

V-604

<do something with nv>
endif

Note that to create a global numeric variable, you use the Variable/G operation.

Flags

See Also
NVAR_Exists function.
Accessing Global Variables and Waves on page IV-59.
Converting a String into a Reference Using $ on page IV-57.

NVAR_Exists
NVAR_Exists(name)
The NVAR_Exists function returns one if specified NVAR reference is valid or zero if not. It can be used
only in user-defined functions.
For example, in a user function you can test if a global numeric variable exists like this:
NVAR /Z var1 = gVar1 // /Z prevents debugger from flagging bad NVAR
if (!NVAR_Exists(var1)) // No such global numeric variable?

Variable/G gVar1 = 0 // Create and initialize it
endif

See Also
WaveExists, SVAR_Exists, and Accessing Global Variables and Waves on page IV-59.

Open
Open [flags] refNum [as fileNameStr]
The Open operation can, depending on the flags passed to it:
• Open an existing file to read data from (/R flag without /D).
• Open a to append results to (/A flag without /D).
• Create a new file or overwrite an existing file to write results to (no /D, /R or /A flags).
• Display an Open File dialog (/D/R or /D/A flags with or without /MULT).
• Display a Save File dialog (/D flag without /R or /A).

Parameters
refNum is the name of a numeric variable to receive the file reference number. refNum is set by Open if Open
actually opens a file for reading or writing (cases 1, 2 and 3). You use refNum with the FReadLine, FStatus,
FGetPos, FSetPos, FBinWrite, FBinRead, fprintf, and wfprintf operations to read from or write to the file.
When you’re finished, use pass refNum to the Close operation to close the file.
Open does not set the file reference number when the /D flag is used (cases 4 and 5) but you must still
supply a refNum parameter.
The following discussion of the pathName and fileNameStr parameters applies when you are attempting to
open a file for reading or writing (cases 2, 3, and 5 above).

/C Variable is complex.

/Z Ignores variable reference checking failures.

Open

V-605

The targeted file is specified by a combination of the pathName parameter and the fileNameStr parameter.
There are three ways to specify the targeted file:

If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.
The targeted file is fully specified if fileNameStr is a full path or if both pathName and fileNameStr are present
and not empty strings.
The targeted file is not fully specified in any of these cases:
• as fileNameStr is omitted
• fileNameStr is an empty string
• fileNameStr is not a full path and no symbolic path is specified

Opening an Existing File For Reading Only
This covers cases 1 (/R without /D).
If the file is fully-specified but does not exist, an error is generated. If you want to detect and handle the
error yourself, use the /Z flag.
If the file is not fully-specified, Open displays an Open File dialog.
If a file is opened, refNum is set to the file reference number.

Opening an Existing File For Appending
This covers cases 1 (/R without /D) and 2 (/A without /D).
If the file is fully-specified and exists, it is opened for read/write and the current file position is moved to
the end of the file.
If the file is fully-specified but does not exist, the file is created and opened for read/write.
If the file is not fully-specified, Open displays an Open File dialog.
If a file is opened, refNum is set to the file reference number.

Opening a File For Write
This covers case 3 (no /R, /A or /D).
If the targeted file exists, it is overwritten.
If the targeted file does not exist and it is fully-specified and targets a valid path, a new file is created.
If the file is fully-specified and targets an invalid path, an error is generated. If you want to detect and
handle the error yourself, use the /Z flag.
If the file is not fully-specified, Open displays a Save File dialog.
If a file is opened, refNum is set to the file reference number.

Displaying an Open File Dialog To Select a Single File
This covers cases 4 (/D with /R or /A).
Open does not actually open the file but just displays the Open File dialog.
If the user chooses a file in the Open File dialog, the S_fileName output string variable is set to a full path
to the file. You can use this in subsequent commands. If the user cancels, S_fileName is set to "".

Method How To Use It

Symbolic path and
simple file name

Use /P=pathName and fileNameStr, where pathName is the name of an Igor
symbolic path (see Symbolic Paths on page II-21) that points to the folder
containing the file and fileNameStr is the name of the file.

Symbolic path and
partial path

Use /P=pathName and fileNameStrs, where pathName is the name of an Igor
symbolic path that points to the folder containing the file and fileNameStr is a
partial path starting from the folder and leading to the file.

Full path Use just fileNameStr, where fileNameStr is a full path to the file.

Open

V-606

See the documentation for the /D, /F and /M flags and then read Displaying an Open File Dialog on page
IV-136 for details.
refNum is left unchanged.

Displaying an Open File Dialog To Select Multiple Files
This covers cases 4 (/D with /R or /A) with the /MULT=1 flag.
Open does not actually open the file but just displays the Open File dialog.
If the user chooses one or more files in the Open File dialog, the S_fileName output string variable is set to
a carriage-return-delimited list of full paths to one or more files. You can use this in subsequent commands.
If the user cancels, S_fileName is set to "".
See the documentation for the /D, /F, /M and /MULT flags and then read Displaying a Multi-Selection
Open File Dialog on page IV-137 for details.
refNum is left unchanged.

Displaying a Save File Dialog
This covers cases 5 (/D without /R or /A).
Open does not actually open the file but just displays the Save File dialog.
If the user chooses a file in the Save File dialog, the S_fileName output string variable is set to a full path to
the file. You can use this in subsequent commands. If the user cancels, S_fileName is set to "".
See the documentation for the /D, /F and /M flags and then read Displaying a Save File Dialog on page
IV-138 for details.
refNum is left unchanged.

Flags

/A Opens an existing file for appending or, if the file does not exist, creates a new file and
opens it for appending.

/C=creatorStr Specifies the file creator code. This is meaningful on Macintosh only and is ignored on
Windows. For opening an existing file, creator defaults to “????” which means “any
creator”. For creating a new file, creatorStr defaults to “IGR0” which is Igor’s creator code.

/D[=mode]

Use this mode to allow the user to choose a file to be opened by a subsequent
operation, such as LoadWave.

With /D or /D=1, open presents a dialog from which the user can select a file but does
not actually open the file. Instead, Open puts the full path to the file into the string
variable S_fileName.
/D=2 does the same thing except that it skips the dialog if pathName and fileNameStr
specify a valid file. In this case, if pathName and fileNameStr refer to an alias
(Macintosh) or shortcut (Windows), the target of the alias or shortcut is returned.
If the user clicks the Cancel button, S_fileName is set to an empty string.

Specifies dialog-only mode.
/D: A dialog is always displayed.
/D=1: Same as /D.
/D=2: A dialog is displayed only if pathName and fileNameStr do not specify

a valid file.

Open

V-607

Details
When Open returns, if a file was actually opened, the refNum parameter will contain a file reference number
that you can pass to other operations to read or write data. If the file was not opened because of an error or
because the user canceled or because /D was used, refNum will be unchanged.

Use Open/D/R to bring up an Open File dialog. See Displaying an Open File Dialog
on page IV-136 for details.
Use Open/D/R/MULT=1 to bring up an Open File dialog to select multiple files. See
Displaying a Multi-Selection Open File Dialog on page IV-137 for details.
Use Open/D to bring up a Save File dialog. See Displaying a Save File Dialog on page
IV-138 for details.
See Using Open in a Utility Routine on page IV-139 for an example using /D=2.
Do not use /Z with /D.

/F=fileFilterStr /F provides control over the file filter menu in the Open File dialog. See Open File
Dialog File Filters on page IV-137 and Save File Dialog File Filters on page IV-139
for details.

/M=messageStr Prompt message text in the dialog used to select the file, if any. But see Prompt Does
Not Work on Macintosh on page IV-137.

/MULT=m Use /D/R/MULT=1 to display a multi-selection Open File dialog.

/D/R/MULT=0 or just /D/R displays a single-selection Open File dialog.

/MULT=1 is allowed only if /D or /D=1 and /R are specified.

See Displaying a Multi-Selection Open File Dialog on page IV-137 for details.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/R The file is opened read only.

/T=typeStr When creating a new file on Macintosh (/A and /R flag omitted), /T sets the Macintosh
file type property for the file if it does not already exist. For example, /T="BINA" sets
the Macintosh file type to 'BINA'. If /T is omitted the Macintosh file type will be
'TEXT'. Apple has deemphasized Macintosh file types in favor of file name
extensions.
For new code, /F is recommended instead of /T.

When opening an existing file (/A or /R flag used), /T provides control over the file
filter menu in the Open File dialog. See Open File Dialog File Filters on page IV-137
for details.
When creating a new file (/A and /R flag omitted), /T provides control over the file
filter menu in the Save File dialog. See Save File Dialog File Filters on page IV-139
for details.

/Z[=z] Prevents aborting of procedure execution if an error occurs, for example if the
procedure tries to open a file that does not exist for reading. Use /Z if you want to
handle this case in your procedures rather than having execution abort.
When using /Z, /Z=1, or /Z=2, V_flag is set to 0 if no error occurred or to a nonzero
value if an error did occur.

Do not use /Z with /D.
/Z=0: Same as no /Z.
/Z=1: Suppresses normal error reporting. When used with /R, it opens the

file if it exists. /Z alone has the same effect as /Z=1.
/Z=2: Suppresses normal error reporting. When used with /R, it opens the

file if it exists or displays a dialog if it does not exist.

Open

V-608

If you use /R (open for read), Open opens an existing file for reading only.
If you use /A, Open opens an existing file for appending. If the file does not exist, it is created and then
opened for appending.
If both /R and /A are omitted then Open creates and opens a file. If the specified file does not already exist,
Open creates it and opens it for writing. If the file does already exist then Open opens it and sets the current
file position to the start of the file. The current file position determines where in the file data will be written.
Thus, you will be overwriting existing data in the file.

Output Variables
The Open operation returns information in the following variables:

When using /D, the value of V_flag is undefined. Do not use /Z with /D. Use S_fileName to determine if the
user selected a file or canceled.

Examples
This example function illustrates using Open to open a text file from which data will be read. The function
takes two parameters: an Igor symbolic path name and a file name. If either of these parameters is an empty
string, the Open operation will display a dialog allowing the user to choose the file. Otherwise, the Open
operation will open the file without displaying a dialog.
Function DemoOpen(pathName, fileName)

String pathName // Name of symbolic path or "" for dialog.
String fileName // File name, partial path, full path or "" for dialog.
Variable refNum
String str

// Open file for read.
Open/R/Z=2/P=$pathName refNum as fileName

// Store results from Open in a safe place.
Variable err = V_flag
String fullPath = S_fileName

if (err == -1)
Print "DemoOpen canceled by user."
return -1

endif

if (err != 0)
DoAlert 0, "Error in DemoOpen"
return err

endif

Printf "Reading from file \"%s\". First line is:\r", fullPath
FReadLine refNum, str // Read first line into string variable
Print str
Close refNum
return 0

End

See Also
Symbolic Paths on page II-21.

Warning: If you open an existing file for writing (you do not use /R) then you will overwrite or
truncate existing data in the file. To avoid this, open for read (use /R) or open for append
(use /A).

V_flag Set only when the /Z flag is used.
V_flag is set to zero if the file was opened, to -1 if Open displayed a dialog (because
the file was not fully-specified) and the user canceled, and to some nonzero value if
an error occurred.

S_fileName Stores the full path to the file that was opened.
If /MULT=1 is used, S_fileName is a carriage-return-separated list of full paths to one
or more files.
If an error occurred or if the user canceled, S_fileName is set to an empty string.

OpenHelp

V-609

Close, FBinRead, FBinWrite, FReadLine
FGetPos, FSetPos, FStatus
fprintf, wfprintf
Displaying an Open File Dialog on page IV-136, Displaying a Multi-Selection Open File Dialog on page
IV-137, Open File Dialog File Filters on page IV-137
Displaying a Save File Dialog on page IV-138, Save File Dialog File Filters on page IV-139
Using Open in a Utility Routine on page IV-139
The Load File Demo example in “Igor Pro 7 Folder:Examples:Programming”.

OpenHelp
OpenHelp [flags] fileNameStr
The OpenHelp operation opens the specified help file.
The OpenHelp operation was added in Igor Pro 7.00.

Parameters
The help file to be opened is specified by fileNameStr and /P=pathName where pathName is the name of an
Igor symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path
relative to the folder associated with pathName, or the name of a file in the folder associated with pathName.
If OpenHelp can not determine the location of the file from fileNameStr and pathName, it returns an error.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.

Flags

/INT[=interactive]

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing Igor
symbolic path.

/V=visible

/W=(left,top,right,bottom)

Specifies window size and position. Coordinates are in points.

/Z[=z]

/Z=1 prevents aborting procedure execution if an error occurs, for example if the file
does not exist or if there is a compilation error. Use /Z=1 if you want to handle errors
in your procedures rather than having execution abort.
When using /Z or /Z=1, check V_Flag to see if an error occurred.

Controls whether opening the help file is interactive or not.
/INT=1: If the help file being opened needs to be compiled, OpenHelp

presents a dialog asking the user whether the file should be compiled.
During the compile, a progress dialog is displayed. Any errors are
presented to the user in an error dialog. This is the default behavior if
/INT is omitted.

/INT=0: If the help file being opened needs to be compiled, OpenHelp
compiles it without presenting a dialog. Compilation errors are not
presented to the user but are reflected in the V_Flag output variable.

Controls help window visibility.
visible=0: The help window will be initially hidden.
visible=1: The help window will be initially visible. This is the default if /V is

omitted.

Controls error reporting.
/Z=0: Report errors normally. /Z=0 is the same as omitting /Z altogether.

This is the default behavior if /Z is omitted.
/Z=1: Suppresses normal error reporting.

/Z alone has the same effect as /Z=1.

OpenNotebook

V-610

Details
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like "hd:Folder1:" or "C:\\Folder1\\". See Symbolic Paths on page II-21 for details.
If the specified file is already open but not as a help window (for example as a notebook), OpenHelp returns
an error.
If the /W or /V flag is used, or both, the window size and position and visibility are set as specified even if
the file itself is already open, so long as the file is already opened as a help window.

Output Variables
The OpenHelp operation returns information in the following variables:

See Also
CloseHelp

OpenNotebook
OpenNotebook [flags] [fileNameStr]
The OpenNotebook operation opens a file for reading or writing as an Igor notebook.
Unlike the Open operation, OpenNotebook will not create a file if the specified file does not exist. To create
a new notebook, use the NewNotebook operation.

Parameters
The file to be opened is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.

V_Flag Set to a non-zero value if an error occurred and to zero if no error occurred.

V_alreadyOpen Set to 1 if the specified help file was already open as a help file or to zero otherwise.

OpenNotebook

V-611

Flags

Details
The /A (append) flag has no effect other than to move the selection to the end of the notebook after it is opened.
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-21 for details.
The /T=typeStr flag affects only the dialog that OpenNotebook presents if you do not specify a path and
filename. The dialog presents only those files whose type is specified by /T=typeStr. There are two file types
that are allowed for notebooks: 'TEXT' which is a plain text file and 'WMT0' which is a WaveMetrics
formatted text file. Therefore, the file type, if you use it, should be either “TEXT” or “WMT0”. If /T=typeStr is
missing, it defaults to “TEXTWMT0”. This opens either type of notebook file. On Windows, Igor considers

/A Moves the notebook’s selection to the end of the notebook.

/ENCG=textEncoding

Specifies the text encoding of the plain text file to be opened as a notebook.
This flag was added in Igor Pro 7.00.
This is relevant for plain text notebooks only and is ignored for formatted notebooks
because they can contain multiple text encodings. See Plain Text File Text Encodings
on page III-417 and Formatted Text Notebook File Text Encodings on page III-421
for details.
OpenNotebook uses the text encoding specified by /ENCG and the rules described
under Determining the Text Encoding for a Plain Text File on page III-417 to
determine the source text encoding for conversion to UTF-8.
Passing 0 for textEncoding acts as if /ENCG were omitted.
See Text Encoding Names and Codes on page III-434 for a list of accepted values for
textEncoding.

/K=k

/M=messageStr Prompt message text in the dialog used to find the file, if any. But see Prompt Does
Not Work on Macintosh on page IV-137.

/N=winName Specifies the window name to be assigned to the new notebook. If omitted, it assigns
a name like “Notebook0”.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/R Opens the file as read only.

/T=typeStr Specifies the type or types of files that can be opened.

/V=visible Hides (visible= 0) or shows (visible= 1; default) the notebook.

/W=(left,top,right,bottom)

Specifies window size and position. Coordinates are in points.

/Z Suppresses error generation. Use this to check if a file exists. If you use /Z,
OpenNotebook sets the variable V_flag to 0 if the notebook was opened or to nonzero
if there was an error, usually because the specified file does not exist.

Specifies window behavior when the user attempts to close it.

If you use /K=2 or /K=3, you can still kill the window using the KillWindow
operation.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.
k=3: Hides the window.

OpenProc

V-612

files with “.txt” extensions to be of type TEXT and considers files with “.ifn” to be of type WMT0. See File
Types and Extensions on page III-404 for details.

See Also
The Notebook and NewNotebook operations, and Chapter III-1, Notebooks.

OpenProc
OpenProc [flags] [fileNameStr]
The OpenProc operation opens a file as an Igor procedure file.
Note: This operation is used automatically to open procedure files when you open an Igor experiment.

You can invoke OpenProc only from the command line. Do not invoke it from a procedure. To
open procedure files from a procedure or from a menu definition, use the Execute/P operation.

Parameters
The file to be opened is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.

Flags

Details
The /A (append) flag has no effect other than to move the selection to the end of the procedure file after it
is opened.
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-21 for details.
OpenProc automatically opens procedure files when you open an Igor experiment. Normally, you will have
no use for it. You can not open a procedure file while procedures are executing. Thus, you can’t invoke
OpenProc from within a procedure. You can only invoke it from the command line or from a user menu
definition (actually, you may get away with it in a macro, but it’s not recommend).

/A Moves the procedure window’s selection to the end of the window.

/ENCG=textEncoding

Specifies the text encoding of the plain text file to be opened as a procedure file.
This flag was added in Igor Pro 7.00.
OpenProc uses the text encoding specified by /ENCG and the rules described under
Determining the Text Encoding for a Plain Text File on page III-417 to determine the
source text encoding for conversion to UTF-8.
Passing 0 for textEncoding acts as if /ENCG were omitted.
See Text Encoding Names and Codes on page III-434 for a list of accepted values for
textEncoding.

/M=messageStr Prompt message text in the dialog used to find the file, if any. But see Prompt Does
Not Work on Macintosh on page IV-137.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/R The file is opened read only.

/T=typeStr Specifies the type or types of files that can be opened.

/V=visible Hides (visible= 0) or shows (visible= 1; default) the procedure window.

/Z Suppresses error generation if the specified file does not exist.

OperationList

V-613

See Also
Chapter III-13, Procedure Windows.
The Execute operation.

OperationList
OperationList(matchStr, separatorStr, optionsStr)
The OperationList function returns a string containing a list of internal (built-in) or external operation
names corresponding to matchstr.

Parameters
Only operation names that match matchStr string are listed. Use "*" to match all names. See WaveList for
examples.
The first character of separatorStr is appended to each operation name as the output string is generated.
separatorStr is usually ";" for list processing (See Processing Lists of Waves on page IV-187 for details).
Use optionsStr to further qualify the list of operations. optionsStr is a (case-insensitive) string containing one
of these values:

Any other value for optionsStr ("all" is recommended) will return both internal and external operations.

See Also
The DisplayProcedure operation and the FunctionList, MacroList, StringFromList, and WinList
functions.

Optimize
Optimize [flags] funcspec, pWave
The Optimize operation determines extrema (minima or maxima) of a specified nonlinear function. The
function must be defined in the form of an Igor user function.
Use the first form for univariate functions (one dimensional functions; functions taking just one variable).
Use the second form with multivariate functions (functions in more than one dimension; functions of more
than one variable).
Optimize uses Brent’s method for univariate functions. For multivariate functions you can choose several
variations of quasi-Newton methods or simulated annealing.

Flags

"internal" Restricts the list to built-in operations.

"external" Restricts the list to external operations (see Igor Extensions on page III-450).

/A [= findMax] Finds a maximum (/A=1 or /A) or minimum (/A=0 or no flag).

/D=nDigits Specifies the number of good digits returned (default is 15) by the function being
optimized. If you use /X=xWave with a single-precision wave, the default is seven.
Ignored with simulated annealing (/M={3,0}).

/DSA=destWave Sets a wave to track the current best model only found with simulated annealing
(/M={3,0}). destWave must have the same number of points as the X vector.

/F=trustRegion Sets the initial trust region when /M={1 or 2, …} with multivariate functions. The value
is a scaled step size (see Multivariate Details). After the first iteration the trust region
is adjusted according to conditions.
Ignored with simulated annealing (/M={3,0}).

Optimize

V-614

/H= highBracket
/L= lowBracket

Find the extrema of a univariate function. lowBracket and highBracket are X values on either
side of the extreme point. An extreme point is found between the bracketing values.
If lowBracket and highBracket are equal, Optimize adds 1.0 to highBracket before looking
for an extreme point.
Default values for lowBracket and highBracket are zero. Thus, if neither lowBracket nor
highBracket is present, this is the same as /L=0/H=1.
Ignored with simulated annealing (/M={3,0}).

/I=maxIters Sets the maximum number of iterations in searching for an extreme point to maxIters.
Default is 100 for stepMethod (/M flag) 0-2, 10000 for stepMethod = 3 (simulated annealing).
If you use this form of the /I flag with simulated annealing, maxItersAtT is set to
maxIters/2 and maxAcceptances is set to maxIters/10.

/I={maxIters, maxItersAtT, maxAcceptances}

Specifies the number of iterations for simulated annealing. The maximum number of
iterations is set by maxIters, maxItersAtT sets the maximum number of iterations at a
given temperature in the cooling schedule, and maxAcceptances sets the total number
of accepted changes in the X vector (whether they increase or decrease the function)
at a given temperature.
If you use this form of the flag with any stepMethod (/M flag) other than 3, maxItersAtT
and maxAcceptances are ignored.
Defaults for stepMethod = 3 are {10000, 5000, 500}.

/M={stepMethod, hessMethod}

Default values are {0,0}. The hessMethod variable is ignored if you select stepMethod = 3.

/Q Suppresses printout of results in the history area. Ordinarily, the results of root
searches are printed in the history.

/R={typX1, typX2, …}

/R=typXWave Specifies the expected size of X values with multivariate functions. These values are
used to scale X values. If the X values you expect are very different from one, you will
get more accurate results if you can give a reasonable estimate. Optimize will use
typXi to scale Xi to reduce floating-point truncation error.

You must provide the same number of values in either a wave or a list of values as
you provide to the /X flag.
Ignored with simulated annealing (/M={3,0}).

/S=stepMax Limits the largest scaled step size allowed with multivariate functions. Optimize will
stop if five consecutive steps exceed stepMax.
Ignored with simulated annealing (/M={3,0}).

Specifies the method used for selecting the next step (stepMethod) and the method
for calculating the Hessian (matrix of second derivatives) with multivariate
functions.

stepMethod Method hessMethod Method

0 Line Search 0 secant (BFGS)

1 Dogleg 1 finite differences

2 More-Hebdon

3 Simulated Annealing

Optimize

V-615

Parameters
func specifies the name of your user-defined function that will be optimized.
pwave gives the name of a parameter wave that will be passed to your function as the first parameter. It is
not modified by Igor. It is intended for your private use to pass adjustable constants to your function.

/SSA=stepWave Name of a 3-column wave having number of rows equal to the length of the X vector
only when used with simulated annealing (/M={3,0}). stepWave sets information about
the step size used to generate new X vectors. The step sizes are in terms of normalized
X values. The normalization is such that the Xi ranges from -1 to 1 based on the ranges
set by the /XSA flag.
Column zero sets the step size used when creating new trial X vectors. Default is 1.0.
Column one sets the minimum step size. Default is 0.001.
Column two sets the maximum step size. Default is 1.0.

/T=tol Sets the stopping criterion with univariate functions. Optimize will attempt to find a
minimum within ± tol.
When this form is used with a multivariate function, gradTol is set to tol and stepTol is
set to gradTol2.
Ignored with simulated annealing (/M={3,0}).

/T={gradtol, stepTol} Sets the stopping criteria for multivariate functions. Iterations stop if a point is found
with estimated scaled gradient less than gradTol, or if an iteration takes a scaled step
shorter than stepTol. Default values are {8.53618x10-6, 7.28664x10-11}. These values are
(6.022x10-16)1/3 and (6.022x10-16)2/3 as suggested by Dennis and Schnabel. 6.022x10-16
is the smallest double precision floating point number that, when added to 1, is
different from 1.
Ignored with simulated annealing (/M={3,0}).

/TSA={InitialTemp, CoolingRate}

Used only with simulated annealing (/M={3,0}).
InitialTemp sets the initial temperature. If InitialTemp is set to zero, Optimize calls your
function 100 times to estimate the best initial temperature. This is the recommended
setting unless your function is very expensive to evaluate (in which case, you may not
want to use simulated annealing at all).
CoolingRate sets the factor by which the temperature is decreased.

/X=xWave
/X={x1, x2, …}

Sets the starting point for searching for an extreme point with multivariate functions or
with simulated annealing (/M={3,0}). The starting point can be specified with a wave
having as many points as the number of independent variables, or you can write out a
list of X values in braces. If you are finding extreme points of a univariate function, use
/L and /H instead unless you are using the simulated annealing method. If you specify
a wave, this wave is also used to receive the result of the extreme point search.

/XSA=XLimitWave Name of a 2-column wave having number of rows equal to the length of the X vector
only when used with simulated annealing (/M={3,0}).
Column zero sets the minimum value allowed for each element of the X vector.
Column one sets the maximum value allowed for each element of the X vector.
Default is ±Xi*10 if Xi is nonzero, or ±1 if Xi is zero. While a default is provided, it is
highly recommended that you provide an XLimitWave.

/Y=funcSize Specifies expected sizes of function values with multivariate functions. If you expect
your function will return values very different from one, you should set funcSize to
the expected size. Optimize will use this value to scale the function results to reduce
floating-point truncation error.

Optimize

V-616

Function Format
Finding extreme points of a nonlinear function requires that you realize the function as a Igor user function
of a certain form. See Finding Minima and Maxima of Functions on page III-295 for detailed examples.
Your function must look like this:
Function myFunc(w,x1, x2, …)

Wave w
Variable x1, x2

return f(x1, x2, …) // an expression …
End

A univariate function would have only one X variable.
A multivariate function can use a wave to pass in the X values:
Function myFunc(w,xw)

Wave w
Wave xw

return f(xw) // an expression …
End

Replace “f(…)” with an appropriate numerical expression.

Univariate Details
The method used by Optimize to find extreme points of univariate functions requires that the point be
bracketed before starting. If you don’t use /L and /H to specify the bracketing X values, the defaults are zero
and one. Optimize first attempts to find the requested extreme point using the bracketing values (or the
default). If that is unsuccessful, it attempts to bracket an extreme point by expanding the bracketing
interval. If a suitable interval is found (the search is by no means perfectly reliable), then the search for an
extreme point is made again.
Optimize uses Brent’s method for univariate functions, which requires no derivatives. This combines a
quadratic extrapolation with checking for wild results. In the case of wild results (points beyond the best
current bracketing values) the method reverts to a golden section bisection algorithm. For well-behaved
functions, the quadratic extrapolation converges superlinearly. The golden section bisection algorithm
converges more slowly but features global convergence, that is, if an extremum is there, it will be found.
The stopping criterion is

In this expression, a and b are the current bracketing values, and x is the best estimate of the extreme point
within the bracketing interval.
The left side of this expression works out to being simply the distance from the current solution to the
boundary of the bracketing interval.

Multivariate Details
With multivariate functions, Optimize scales certain quantities to reduce floating point truncation error.
You enter scaling factors using the /R and /Y flags. The /R flag specifies the expected magnitude of X values;
Optimize then uses Xi/typXi in all calculations. Likewise, /Y specifies the expected magnitude of function
values.
This scaling can be important for maintaining accuracy if your X’s or Y’s are very different from one, and
especially if your X’s have values spanning orders of magnitude.
The Optimize operation uses a quasi-Newton method with derivatives estimated numerically. The function
gradient is calculated using finite differences. For estimation of the Hessian (second derivative matrix) you can
use either a secant method (hessMethod = 0) or finite differences (hessMethod = 1). The finite difference method
gives a more accurate estimate and may succeed with difficult functions but requires more function evaluations
per iteration. The finite difference method’s greater accuracy may reduce the total number of iterations required,

Note: Optimizing a univariate function with the simulated annealing method (/M={3,0}) works
like a multivariate function, and this section does not apply. See the sections devoted to
simulated annealing.

x + a + b
2

+ a − b
2

≤ 2

3
tol.

Optimize

V-617

so the overall number of function evaluations depends on details of the problem being solved. Usually the secant
method requires fewer function evaluations and is preferred for functions that are expensive to evaluate.
Once a Newton step is calculated, there are three choices for the method used to find the best next value-
line search along the Newton direction (stepMethod = 0), double dogleg (stepMethod = 1), or More-Hebdon
(stepMethod = 2). The best method can be found only by experimentation. See Dennis and Schnabel (cited in
References) for details.
The /F=trustRegion, /S=stepMax and /T={…, stepTol} all refer to scaled step sizes. That is,

The Optimize operation presumes that an extreme point has been found when either the gradient at the
latest point is less than gradTol or when the last step taken was smaller than stepTol. These criteria both refer
to scaled quantities:

or

Simulated Annealing Introduction
The simulated annealing or Metropolis algorithm optimizes a function using a random search of the X
vector space. It does not use derivatives to guide the search, making it a good choice if the function to be
optimized is in some way poorly behaved. For instance, it is a good method for functions with
discontinuities in the function value or in the derivatives.
Simulated annealing also has a good chance of finding a global minimum or maximum of a function having
multiple local minima or maxima.
Because simulated annealing uses a random search method, it may require a large number of function
evaluations to find a minimum, and it is not guaranteed that it will stop at an actual minimum. For these
reasons, it is best to use one of the other methods unless those methods have failed.
The simulated annealing method generates new trial solutions by adding a random vector to the current X
vector. The elements of the random vector are set to stepsizei*Ri, where Ri is a random number in the interval
(-1, 1). As the solution progresses, the stepsize is gradually decreased.
Bad trials, that is, those that change the function value in the wrong direction are accepted with a
probability that depends on the simulated temperature. It is this aspect that allows simulated annealing to
find a global minimum.
Function values are generated and accepted or rejected for some number of iterations at a given
temperature, then the temperature is reduced. The probability of a bad iteration being accepted decreases
with decreasing temperature. A too-fast cooling rate can freeze in a bad solution.

Simulated Annealing Details
It is highly recommended that you use the XSA flag to specify XLimitWave. This wave sets bounds on the
values of the elements of the X vector during the random search. The defaults may be adequate but are
totally ad hoc. You are better off to specify bounds that make sense to the problem you are solving.
The values of XLimitWave in addition to bounding the search space also scale the X vector during computations
of probabilities, temperatures, etc. Consequently, the X limits can affect the performance of the algorithm.
A large number of iterations is required to have a good probability of finding a reasonable solution.

stepXi =
Δxi

max xi ,typXi() .

max
1≤i≤n

gi
max xi ,typXi()

max f , funcSize()
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
≤ gradTol,

max
1≤i≤n

gi
Δxi

max xi ,typXi()
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
≤ stepTol.

Optimize

V-618

It is recommended that you set the initial temperature to zero so that Optimize can estimate a good initial
temperature. If you can’t afford the 100 function evaluations required, you probably shouldn’t be using
simulated annealing.
Optimize uses an exponential cooling schedule in which Ti+1 = CoolingRate*Ti (see the /TSA flag).
CoolingRate must be in the range 0 to 1. A fast cooling rate (small value of CoolingRate) can cause simulated
quenching; that is, a bad solution can be frozen in. Very slow cooling will result in slow convergence.
When simulated annealing is selected, the optimization is treated as multivariate even if your function has
only a single X input. That is, the output variables and waves are the ones listed under multivariate functions.

Variables and Waves for Output
The Optimize operation reports success or failure via the V_flag variable. A nonzero value is an error code.
Variables for a univariate function:

If you searched for a minimum:

If you searched for a maximum:

For simulated annealing only:

Variables for a multivariate function:

V_flag 0: Search for an extreme point was successful.

57: User abort.

785: Function returned NaN.

786: Unable to find bracketing values for an extreme point.

V_minloc X value at the minimum.

V_min Function value (Y) at the minimum.

V_maxloc X value at the maximum.

V_max Function value (Y) at the maximum.

V_SANumIncreases Number of “bad” iterations accepted.

V_SANumReductions Number of iterations resulting in a better solution.

V_flag 0: Search for an extreme point was successful.

57: User abort.

788: Iteration limit was exceeded.

789: Maximum step size was exceeded in five consecutive iterations.

790: The number of points in the typical X size wave specified by /R does not
match the number of X values specified by the /X flag

791: Gradient nearly zero and no iterations taken. This means the starting
point is very nearly a critical point. It could be a solution, or it could be so
close to a saddle point or a maximum (when searching for a minimum)
that the gradient has no useful information. Try a slightly different
starting point.

V_OptTermCode Indicates why Optimize stopped. This may be useful information even if V_flag is
zero. Values are:

1: Gradient tolerance was satisfied.

2: Step size tolerance was satisfied.

Override

V-619

If you searched for a minimum:

If you searched for a maximum:

Variables for all functions:

Waves for a multivariate function:

See Also
Finding Minima and Maxima of Functions on page III-295 for further details and examples.

References
The Optimize operation uses Brent’s method for univariate functions. Numerical Recipes has an excellent
discussion (see section 10.2) of this method (but we didn’t use their code):
Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C,

2nd ed., 994 pp., Cambridge University Press, New York, 1992.
For multivariate functions Optimize uses code based on Dennis and Schnabel. To truly understand what
Optimize does, read their book:
Dennis, J. E., Jr., and Robert B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear

Methods, 378 pp., Society for Industrial and Applied Mathematics, Philadelphia, 1996.

Override
Override constant objectName = newVal
Override strconstant objectName = newVal
Override Function funcName()
The Override keyword redefines a constant, strconstant, or user function. The objectName or funcName must
be the same as the name of the original object or function that is being redefined. The override must be
defined before the target object appears in the compile sequence.

See Also
Function Overrides on page IV-98 and Constants on page IV-47 for further details.

3: No step was found that was better than the last iteration. This could be
because the current step is a solution, or your function may be too
nonlinear for Optimize to solve, or your tolerances may be too large (or
too small), or finite difference gradients are not sufficiently accurate for
this problem.

4: Iteration limit was exceeded.

5: Maximum step size was exceeded in five consecutive iterations. This may
mean that the maximum step size is too small, or that the function is
unbounded in the search direction (that is, goes to -inf if you are
searching for a minimum), or that the function approaches the solution
asymptotically (function is bounded but doesn’t have a well-defined
extreme point).

6: Same as V_flag = 791.

V_min Function value (Y) at the minimum.

V_max Function value (Y) at the maximum.

V_OptNumIters Number of iterations taken before Optimize terminated.

V_OptNumFunctionCalls Number of times your function was called before Optimize terminated.

W_extremum Solution if you didn’t use /X=<xWave>. Otherwise the solution is returned in your X wave.

W_OptGradient Estimated gradient of your function at the solution.

p

V-620

p
p
The p function returns the row number of the current row of the destination wave when used in a wave
assignment statement. The row number is the same as the point number for a 1D wave.

Details
Outside of a wave assignment statement p acts like a normal variable. That is, you can assign a value to it
and use it in an expression.

See Also
Waveform Arithmetic and Assignments on page II-69.
For other dimensions, the q, r, and s functions.
For scaled dimension indices, the x, y, z, and t functions.

p2rect
p2rect(z)
The p2rect function returns a complex value in rectangular coordinates derived from the complex value z
which is assumed to be in polar coordinates (magnitude is stored in the real part and the angle, in radians,
in the imaginary part of z).

Examples
Assume waveIn and waveOut are complex, then:
waveOut = p2rect(waveIn)

sets each point of waveOut to the rectangular coordinates based on the magnitude in the real part and the
angle (in radians) in the imaginary part of the points in waveIn.
You may get unexpected results if the number of points in waveIn differs from the number of points in waveOut.

See Also
The functions cmplx, conj, imag, r2polar, and real.

PadString
PadString(str, finalLength, padValue)
The PadString function returns a string identical to str except that it has been extended to a total length of
finalLength using bytes of padValue. Use zero to create a C-language style string or use 0x20 to pad with spaces
(FORTRAN style). This is useful when reading or writing binary files using FBinRead and FBinWrite.

See Also
The UnPadString function.

Panel
Panel
Panel is a procedure subtype keyword that identifies a macro as being a control panel recreation macro. It
is automatically used when Igor creates a window recreation macro for a control panel. See Procedure
Subtypes on page IV-193 and Saving a Window as a Recreation Macro on page II-42 for details.

PanelResolution
PanelResolution(wName)
The PanelResolution function returns the current resolution of the specified panel in pixels per inch. If
wName is empty, it reutrns the current global setting for panel resolution. If wName is the name of a graph
window, it returns the resolution for the ControlBar area. wName can be a subwindow specification.
The PanelResolution function was added in Igor Pro 7.00.
In general, PanelResolution and ScreenResolution return the same thing. However, on Windows when the
screen resolution is 96 DPI, which is typical for normal-resolution screens, panels can use 72 DPI for
compatibility with Igor Pro 6 and earlier.

ParamIsDefault

V-621

See Also
Control Panel Resolution on Windows on page III-405, ScreenResolution

ParamIsDefault
ParamIsDefault(pName)
The ParamIsDefault function determines if an optional user function parameter pName was specified during
the function call. It returns 1 when pName is default (not specified) or it returns 0 when it was specified.

Details
ParamIsDefault works only in the body of a user function and only with optional parameters. The variable
pName must be valid at compile time; you can not defer lookup to runtime with $.

See Also
Optional Parameters on page IV-33 and Using Optional Parameters on page IV-55.

ParseFilePath
ParseFilePath(mode, pathInStr, separatorStr, whichEnd, whichElement)
The ParseFilePath function provides the ability to manipulate file paths and to extract sections of file paths.

Parameters
The meaning of the parameters depends on mode.

mode Information Returned

0 Returns the element specified by whichEnd and whichElement.
whichEnd is 0 to select an element relative to the beginning of pathInStr, 1 to select an element
relative to the end. whichElement is zero-based.
Pass ":" if pathInStr is a Macintosh HFS path, "\\" if it is a Windows path. See Path Separators
on page III-401 for details about Macintosh versus Windows paths.

1 Returns the entire pathInStr, up to but not including the element specified by whichEnd and
whichElement.
whichEnd is 0 to select an element relative to the beginning of pathInStr, 1 to select an element
relative to the end. whichElement is zero-based.
Pass ":" if pathInStr is a Macintosh HFS path, "\\" if it is a Windows path. See Path Separators
on page III-401 for details about Macintosh versus Windows paths.

2 Returns the entire pathInStr with a trailing separator added if it is not already there. This is
useful when you have a path to a folder and want to tack on a file name.
Pass ":" if pathInStr is a Macintosh HFS path, "\\" if it is a Windows path. See Path Separators
on page III-401 for details about Macintosh versus Windows paths.
whichEnd and whichElement are ignored. Pass 0 for them.

3 Returns the last element of pathInStr with the extension, if any, removed. The extension is
anything after the last dot in pathInStr.
whichEnd and whichElement are ignored. Pass 0 for them.

4 Returns the extension in pathInStr or "" if there is no extension. The extension is anything after
the last dot in pathInStr.
Pass ":" if pathInStr is a Macintosh HFS path, "\\" if it is a Windows path. See Path Separators
on page III-401 for details about Macintosh versus Windows paths.
whichEnd and whichElement are ignored. Pass 0 for them.

5 Returns the entire pathInStr but converts it to a format determined by separatorStr.

ParseFilePath

V-622

separatorStr = ":"
Converts the path to Macintosh HFS style if it is Windows style. Does nothing to a Macintosh
HFS path.

separatorStr = "\\"
Converts the path to Windows style if it is Macintosh style. Does nothing to a Windows path.

separatorStr = "*"
Converts the path to the native style of the operating system Igor is running on. Does nothing
to a native path.
For historical reasons, on Macintosh “native” means colon-separated HFS path, not UNIX
path.

separatorStr = "/"
Macintosh-only: Converts the Macintosh-style pathInStr input to a Posix (UNIX) path. Unlike the
other conversions, the directory or file to which pathInStr refers must exist, otherwise "" is
returned.
To generate a Posix path for a non-existent file, generate the path for the existing folder and
append the file name.
This always returns "" on Windows.
whichEnd and whichElement are ignored. Pass 0 for them.

6 UNC volume name ("\\Server\Share") if pathIn starts with a UNC volume name or "" if not. Pass
"*" for separatorStr.
whichEnd and whichElement are ignored. Pass 0 for them.

7 UNC server name ("Server" from "\\Server\Share") if pathIn starts with a UNC volume name
or "" if not. Pass "*" for separatorStr.
whichEnd and whichElement are ignored. Pass 0 for them.

mode Information Returned

ParseFilePath

V-623

Details
When dealing with Windows paths, you need to be aware that Igor treats the backslash character as an
escape character. When you want to put a backslash in a literal string, you need to use two backslashes. See
Escape Sequences in Strings on page IV-13 and Path Separators on page III-401 for details.
On Windows two types of file paths are used: drive-letter paths and UNC (“Universal Naming
Convention”) paths. For example:
// This is a drive-letter path.
C:\Program Files\WaveMetrics\Igor Pro 7 Folder\Igor64.exe

// This is a UNC path.
\\BigServer\SharedApps\Igor Pro 7 Folder\Igor64.exe

In this example, ParseFilePath considers the volume name to be C: in the first case and
\\BigServer\SharedApps in the second. The volume name is treated as one element by ParseFilePath,
except for modes 7 and 8 which permit you to extract the components of the UNC volume name.
Except for the leading backslashes in a UNC path, ParseFilePath modes 0 and 1 internally strip any leading
or trailing separator (as defined by the separatorStr parameter) from pathInStr before it starts parsing. So
if you pass ":Igor Pro 7 Folder:WaveMetrics Procedures:", it is the same as if you had passed
"Igor Pro 7 Folder:WaveMetrics Procedures".
If there is no element corresponding to whichElement and mode is 0, ParseFilePath returns "".
If there is no element corresponding to whichElement and mode is 1, ParseFilePath returns the entire
pathInStr.

8 UNC share name ("Share" from "\\Server\Share") if pathIn starts with a UNC volume name or
"" if not. Pass "*" for separatorStr.
whichEnd and whichElement are ignored. Pass 0 for them.

9 Macintosh only. On Windows this mode returns an error.
Returns a Posix version of pathInStr which must be a full HFS path pointing to an existing
volume, directory or file.
This is the same as mode 5 except that separatorStr must be "*".
whichEnd and whichElement are ignored. Pass 0 for them.
You would typically use this mode when you are about to execute a Unix command, which
requires Posix paths, via ExecuteScriptText.
This mode was created in Igor Pro 7.00 to provide an alternative to the obsolete HFSToPosix
function provided by the HSFAndPosix XOP. With HFSToPosix, if the input path referred to
a directory, the output always ended with a slash. With ParseFilePath(9), the output will end
with a slash only if the input path ends with a colon.

10 Macintosh only. On Windows this mode returns an error.
Returns the HFS path corresponding to the Posix path in pathInStr .
pathInStr must be a full Posix path starting with a slash character. It does not need to point to
an existing directory or file.
The returned path may or may not refer to an existing volume, folder or file, depending on
pathInStr .
Pass "*" for separatorStr.
whichEnd and whichElement are ignored. Pass 0 for them.
You would typically use this mode when you receive a Posix path from a Unix command
executed via ExecuteScriptText and you want to use that path in Igor.
This mode was created in Igor Pro 7.00 to provide an alternative to the obsolete PosixToHFS
function provided by the HSFAndPosix XOP.

mode Information Returned

ParseOperationTemplate

V-624

Examples
String pathIn, pathOut

// Full path
pathIn= "hd:Igor Pro 7 Folder:WaveMetrics Procedures:Waves:Wave Lists.ipf"

// Extract first element.
Print ParseFilePath(0, pathIn, ":", 0, 0) // Prints "hd"

// Extract second element.
Print ParseFilePath(0, pathIn, ":", 0, 1) // Prints "Igor Pro 7 Folder"

// Extract last element.
Print ParseFilePath(0, pathIn, ":", 1, 0) // Prints "Wave Lists.ipf"

// Extract next to last element.
Print ParseFilePath(0, pathIn, ":", 1, 1) // Prints "Waves"

// Get path to folder containing the file.
// Prints "hd:Igor Pro 7 Folder:WaveMetrics Procedures:Waves:"
Print ParseFilePath(1, pathIn, ":", 1, 0)

// Extract the file name without extension.
Print ParseFilePath(3, pathIn, ":", 0, 0) // Prints "Wave Lists"

// Extract the extension.
Print ParseFilePath(4, pathIn, ":", 0, 0) // Prints "ipf"

// Make sure the given path ends with a colon and concatenate file name.
String path = <routine that returns a Macintosh-style path to a folder>
path = ParseFilePath(2, path, ":", 0, 0)
path += "AFile.txt"

See Also
Escape Sequences in Strings on page IV-13, UNC Paths on page III-401, and Path Separators on page
III-401 for details. The RemoveEnding function.

ParseOperationTemplate
ParseOperationTemplate [flags] cmdTemplate
The ParseOperationTemplate operation helps XOP programmers and WaveMetrics programmers write
code to implement Igor operations. If you are not an XOP programmer nor a WaveMetrics programmer, it
will be of no interest.
ParseOperationTemplate generates starter code for programmers who are creating Igor operations. The
starter code is copied to the clipboard, overwriting any previous clipboard contents.

Flags

/C=c If c is nonzero, ParseOperationTemplate stores code for your ExecuteOperation and
RegisterOperation functions in the clipboard.

The only difference between /C=6 and /C=2 is that the ExecuteOperation function is
declared as extern "C" instead of static. C++ files that use static work fine although extern
"C" is correct.

c=0: Do not generate code
c=1: Generate simplified C code - not recommended
c=2: Generate C code
c=6: Generate C++ code

PathInfo

V-625

Parameters
cmdTemplate is the template that describes the syntax for your operation. See the Igor XOP Toolkit Reference
Manual for details.

Details
ParseOperationTemplate parses your command template, generating structures that embody the syntax of
your operation. It then uses these structures to generate code that can serve as a starting point for
implementing your operation. The starter code is stored in the clipboard.
For most uses, the recommended flags are:
/T/S=1/C=2 // For non-threadsafe operations
/T/S=1/C=2/TS // For threadsafe operations

ParseOperationTemplate sets the following output variable, but only when called from a function or macro:

If V_flag is nonzero, this indicates that your cmdTemplate syntax is incorrect. See the Igor XOP Toolkit
Reference Manual for details.

Examples
Function Test()

String cmdTemplate
cmdTemplate = "MyTest"
cmdTemplate += " /A={number:aNum1,string:aStrH}"
cmdTemplate += " /B=wave:bWaveH"
cmdTemplate += " key1={name:k1N1[,wave:k1WaveH,name:k1N2,string[2]:k1StrHArray]}"

// If your XOP is C instead of C++, use /C=2 instead of /C=6
TestOperationParser/T/S=1/C=6 cmdTemplate
Print V_flag, S_value

End

See Also
Igor Extensions on page III-450.

PathInfo
PathInfo [/S /SHOW] pathName
The PathInfo operation stores information about the named symbolic path in the following variables:

/S=s

/T Stores a comment listing your command template in the clipboard.

/TS Identifies a ThreadSafe operation by adding an extra field to the runtime parameter structure.
This is only of use to WaveMetrics programmers.

V_flag 0: cmdTemplate was successfully parsed.

-1: cmdTemplate was not successfully parsed.

V_flag: 0 if the symbolic path does not exist, 1 if it does exist.

S_path: The full path (e.g., "hd:This:That:").

Stores a definition of your runtime parameter structure in the clipboard if s is nonzero.

We recommend that you use /S=1 and provide unique mnemonic parameter names in your
template. ParseOperationTemplate then uses your parameter names as structure field
names.
If you use /S=2, ParseOperationTemplate creates unique field names by concatenating flag
or keyword text and your mnemonic names. This is left over from the early days of
Operation Handler and is not recommended.

s=0: Do not generate the runtime parameter structure
s=1: Use your mnemonic names - recommended
s=2: Automatically generate mnemonic names - not recommended

PathList

V-626

The path returned is a colon-separated path which can be used on Macintosh or Windows. See Path
Separators on page III-401 for details.

Flags

Examples
// The following lines perform equivalent actions:
PathInfo/S myPath;Open refNum
Open/P=myPath refNum

// Show Igor's Preferences folder in the Finder/Windows Explorer.
String fullpath= SpecialDirPath("Preferences",0,0,0)
NewPath/O/Q tempPathName, fullpath
PathInfo/SHOW tempPathName

See Also
Symbolic Paths on page II-21.
The NewPath, GetFileFolderInfo, ParseFilePath and SpecialDirPath operations.

PathList
PathList(matchStr, separatorStr, optionsStr)
The PathList function returns a string containing a list of symbolic paths selected based on the matchStr
parameter.

Details
For a path name to appear in the output string, it must match matchStr. The first character of separatorStr is
appended to each path name as the output string is generated.
PathList works like the WaveList function, except that the optionsStr parameter is reserved for future use.
Pass "" for it.

Examples
When a new experiment is created there is only one path:
Print PathList("*",";","")

Prints the following in the history area:
Igor;

See Also
The WaveList function for an explanation of the matchStr and separatorStr parameters and for examples. See
also Symbolic Paths on page II-21 for an explanation of symbolic paths.

PauseForUser
PauseForUser [/C] mainWindowName [, targetWindowName]
The PauseForUser operation pauses procedure execution to allow the user to manually interact with a
window. For example, you can call PauseForUser from a loop to allow the user to move the cursors on a
graph. In this scenario, targetWindowName would be the name of the graph and mainWindowName would be
the name of a control panel containing a message telling the user to adjust the cursors and then click, for
example, the Continue button.
If targetWindowName is omitted then mainWindowName plays the role of target window.
PauseForUser works with graph, table, and panel windows only.

/S Presets the next otherwise undirected open or save file dialog to the given disk folder.

/SHOW Shows the folder, if it exists, in the Finder (Mac OS X) or Windows Explorer
(Windows).

PauseUpdate

V-627

Flags

Details
During execution of PauseForUser, only mouse and keyboard activity directed toward either
mainWindowName or targetWindowName is allowed.
While waiting for user action, PauseForUser disables double-clicks and any contextual menus that can lead
to dialogs in order to prevent changes on the command line. It also disables killing windows by clicking the
close icon in the title bar unless the window was originally created with the /K=1 flag (kill with no dialog).
If /C is omitted, PauseForUser returns only when the main window has been killed.
If /C is present, PauseForUser handles any pending events, sets V_Flag to the truth the target window still
exists, and then returns control to the calling user-defined function. Use PauseForUser/C in a loop if you
need to do something while waiting for the user to finish interacting with the target window.

See Also
Pause For User on page IV-140 for examples and further discussion.

PauseUpdate
PauseUpdate
The PauseUpdate operation delays the updating of graphs and tables until you invoke a corresponding
ResumeUpdate command.

Details
PauseUpdate is useful in a macro that changes a number of things relating to the appearance of a graph. It
prevents the graph from being updated after each change. Its effect ends when the macro in which it occurs
ends. It also affects updating of tables.
This operation is not allowed from the command line. It is allowed but has no effect in user-defined
functions. During execution of a user-defined function, windows update only when you explicitly call the
DoUpdate operation.

See Also
The DelayUpdate, DoUpdate, ResumeUpdate, and Silent operations.

PCA
PCA [flags][wave0, wave1,… wave99]
The PCA operation performs principal component analysis. Input data can be in the form of a list of 1D
waves, a single 2D wave, or a string containing a list of 1D waves. The operation can produce multiple
output waves depending on the specified flags.

Flags

/C Tells PauseForUser to return immediately after handling any pending events. See Details.

/ALL Shortcut for the combination of commonly used flags: /CVAR, /SL, /NF, /IND, /IE, and
/RMS.

/COV Calculates the input wave(s) covariance matrix, which as the input for the remainder of
the analysis. The covariance matrix is computed by first creating a matrix copying each
input 1D wave into sequential columns and then multiplying that matrix by its transpose.

/CVAR Computes the cumulative percent variance defined as 100 * sum of first m eigenvalues
divided by the sum of all eigenvalues. The results are stored in the wave
W_CumulativeVAR in the current data folder. See also /VAR.

/IE Computes the imbedded error. Returns errors in the wave W_IE in the current data
folder. The wave is scaled using SetScale/P x 1,1,"", W_IE. The imbedded
error is a function of the number of factors, the number of rows and columns and the
sum of the eigenvectors not included in the significant factors. The behavior of IE
determines the number of significant factors.

PCA

V-628

/IND Computes the factor indicator function. Note that if you specify /IND the residual
standard deviation will also be calculated. Returns results in the wave W_IND in the
current data folder. The wave is scaled using SetScale/P x 1,1,"", W_IND.

/LEIV Limits eigenvalues so that the SVD calculation does not require too much memory.
The limit is set to the minimum of the number of rows or columns of the input.

/NF Finds the number of significant factors and stores it in the variable V_npnts. You must
use /IND in order to compute the significant factors.

/O Overwrites input waves.

/Q Suppresses printing of factors in the history area.

/RSD[=rsdMode] Computes the Residual Standard Deviation (RSD) and returns the RSD in the wave
W_RSD in the current data folder. The first element in W_RSD is NaN and all
remaining wave elements correspond to the number of significant factors.
rsdMode =0: Covariance about the origin.
rsdMode =1: Correlation about the origin.

/RMS Computes the RMS error. Returns results in the wave W_RMS in the current data
folder. The wave is scaled using SetScale/P x 1,1,"", W_RMS.

/SCMT Saves C matrix after the singular value decomposition (SVD) in the wave M_C in the
current data folder.

/SCR Converts the individual wave input into standard scores. Does not work when the
input is a single 2D wave. It is an error to convert to standard scores when one or more
entries in the waves are NaN or INF. If you use this feature make sure to use the
appropriate form of the RSD calculation.

/SDM Saves a copy of the data matrix at the end of the calculation. This is useful if your input
consists of individual waves or if you want to save the computed standard scores. If
the input is a 2D matrix, you will get a copy of the input matrix in the wave M_D.

/SEVC Saves the eigenvalue vector in the wave W_Eigen, which are the raw eigenvalues
generated by the SVD, in the current data folder. Normally, if the SVD was applied to a
raw data matrix, i.e., not covariance or correlation matrix, you must square each
element of the wave to obtain the PCA eigenvalues. Note that this wave has default
wave scaling.

/SL Computes percent significance level and stores it in the wave W_PSL in the current
data folder.

/SQEV Does not square SVD eigenvalues. If you specify /COV there is no need to use this flag.
Use only if your input is already a covariance matrix. In this case the results of the
SVD are the eigenvalues not their square roots.

/SRMT Saves R matrix after the SVD in the wave M_R in the current data folder.

/U Leaves the input waves unchanged only when the input is a 2D wave. Note that
covariance calculations will not be made even if the appropriate flag is used.

/VAR Computes the variance associated with each eigenvalue. The variance is defined as
the ratio of the eigenvalue to the sum of all eigenvalues. The results are stored in the
wave W_VAR in the current data folder. See also /CVAR above.

/WSTR=waveListStr

String containing a list of names for all input waves.

/Z No error reporting.

pcsr

V-629

Details
The input is either via /WSTR=waveListStr or a list of up to 100 1D waves or a single 2D wave following the
last flag.
waveListStr is string containing a semicolon-separated list of 1D waves to be used for the data matrix.
waveListStr can include any legal path to a wave. Liberal names can be quoted or not quoted. It is assumed
that all waves are of the same numerical type (either single or double precision) and that all waves have the
same number of points.
Regardless of the inputs, the operation expects that the number of rows in the resulting matrix is greater
than or equal to the number of columns.
The operation starts by creating the data matrix from the input wave(s). If you provide a list of 1D waves
they become the columns of the data matrix. You can choose to use the covariance matrix (/COV) as the data
matrix and you can also choose to normalize each column of the data matrix to convert it into standard
scores. This involves computing the average and standard deviation of each column and then setting the
new values to be:

.

You can pre-process the input data using MatrixOp with the SubtractMean, NormalizeRows, and
NormalizeCols functions.
After creating the data matrix the operation computes the singular value decomposition (SVD) of the data
matrix. Results of the SVD can be saved or processed further. Save the C and R matrices using /SCMT and
/SRMT. These are related to the input data matrix through: .

The remainder of the operation lets you compute various statistical quantities defined by Malinowski (see
References). Use the flags to determine which ones are computed.
The operation generates a number of output waves. All waves are stored in the current data folder.
You can save the input matrix D in the wave M_D, the optional SVD results are stored in the waves M_C
that contains the column matrix C, M_R that contains the row matrix R, and W_Eigen that contains the
eigenvalues of the data matrix. Note that these can be the eigenvalues or the square of the eigenvalues
depending on the input matrix being a covariance matrix or not (see /SQEV).
The optional 1D output waves (W_RSD, W_RMS, W_IE, W_IND, W_PSL) are saved with wave scaling to
make it easier to display the wave as a function of the number of factors.

References
Kaiser, H., Computer Program for Varimax Rotation in Factor Analysis, Educational and Psychological

Measurement, XIX, 413-420, 1959.
Malinowski, E.R., Factor Analysis in Chemistry, 3rd ed., John Wiley, 2002.

See Also
ICA

pcsr
pcsr(cursorName [, graphNameStr])
The pcsr function returns the point number of the point which the specified cursor (A through J) is on in the
top (or named) graph. When used with cursors on images or waterfall plots, pcsr returns the row number,
and when used with a free cursor, it returns the relative X coordinate.

Parameters
cursorName identifies the cursor, which can be cursor A through J.
graphNameStr specifies the graph window or subwindow.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.

Details
The pcsr result is not affected by any X axis.

newValue oldValue colAverage–
colStdv

--=

D R C⋅=

Pi

V-630

See Also
The hcsr, qcsr, vcsr, xcsr, and zcsr functions.
Programming With Cursors on page II-249.

Pi
Pi
The Pi function returns π (3.141592…).

PICTInfo
PICTInfo(pictNameStr)
The PICTInfo function returns a string containing a semicolon-separated list of information about the
named picture. If the named picture does not exist, then "" is returned. Valid picture names can be found
in the Pictures dialog.

Details
The string contains six pieces of information, each prefaced by a keyword and colon and terminated with a
semicolon.

Examples
Print PICTInfo("PICT_0")

will print the following in the history area:
TYPE:PICT;BYTES:55734;WIDTH:468;HEIGHT:340;PHYSWIDTH:468;PHYSHEIGHT:340;

See Also
The ImageLoad operation for loading PICT and other image file types into waves, and the PICTList
function. The StringFromList operation for parsing the information string.
See Pictures on page III-448 and Pictures Dialog on page III-449 for general information on picture
handling.

PICTList
PICTList(matchStr, separatorStr, optionsStr)
The PICTList function returns a string containing a list of pictures based on matchStr and optionsStr
parameters. See Details for information on listing pictures in graphs, panels, layouts, and the picture gallery.

Details
For a picture name to appear in the output string, it must match matchStr and also must fit the requirements of
optionsStr. The first character of separatorStr is appended to each picture name as the output string is generated.
The name of each picture is compared to matchStr, which is some combination of normal characters and the
asterisk wildcard character that matches anything. For example:

Keyword Information Following Keyword

TYPE One of: “PICT”, “PNG”, “JPEG”, “Enhanced metafile”, “Windows metafile”, “DIB”,
“Windows bitmap”, or “Unknown type”.

BYTES Amount of memory used by the picture.

WIDTH Width of the picture in pixels.

HEIGHT Height of the picture in pixels.

PHYSWIDTH Physical width of the picture in points.

PHYSHEIGHT Physical height of the picture in points.

"*" Matches all picture names.

"xyz" Matches picture name xyz only.

"*xyz" Matches picture names which end with xyz.

Picture

V-631

matchStr may begin with the ! character to return windows that do not match the rest of matchStr. For
example:

The ! character is considered to be a normal character if it appears anywhere else, but there is no practical
use for it except as the first character of matchStr.
optionsStr is used to further qualify the picture.
Use "" accept all pictures in the Pictures Dialog that are permitted by matchStr.
Use the WIN: keyword to limit the pictures to the named or target window:

Examples

See Also
The ImageLoad operation for loading PICT and other image file types into waves, and the PICTInfo
function. Also the StringFromList function for retrieving items from lists.
See Pictures on page III-448 and Pictures Dialog on page III-449 for general information on picture
handling.

Picture
Picture pictureName
The Picture keyword introduces an ASCII code picture definition of binary image data.

See Also
Proc Pictures on page IV-53 for further information.

PixelFromAxisVal
PixelFromAxisVal(graphNameStr, axNameStr, val)
The PixelFromAxisVal function returns the local graph pixel coordinate corresponding to the axis value in
the graph window or subwindow.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
If the specified axis is not found and if the name is “left” or “bottom” then the first vertical or horizontal
axis will be used.

"xyz*" Matches picture names which begin with xyz.

"*xyz*" Matches picture names which contain xyz.

"abc*xyz" Matches picture names which begin with abc and end with xyz.

"!*xyz" Matches picture names which do not end with xyz.

"WIN:" Match all pictures displayed in the top graph, panel, or layout.

"WIN:windowName" Match all pictures displayed in the named graph, panel, or layout window.

PICTList("*",";","") Returns a list of all pictures in the Pictures Dialog.

PICTList("*", ";","WIN:") Returns a list of all pictures displayed in the top panel, graph, or
layout.

PICTList("*_bkg", ";", "WIN:Layout0")

Returns a list of pictures whose names end in “_bkg” and which are
displayed in Layout0.

PlayMovie

V-632

If graphNameStr references a subwindow, the returned pixel value is relative to top left corner of base
window, not the subwindow.

See Also
The AxisValFromPixel and TraceFromPixel functions.

PlayMovie
PlayMovie [flags] [as fileNameStr]
The PlayMovie operation opens a movie file in a window and plays it.

Parameters
The file to be opened is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.
On Windows the file is passed to the operating system to be opened with the default program for the given
filename extension and the /W flag is ignored.

Flags

Details
Coordinates are the initial coordinates of the movie window in points unless /I or /M are used before /W.
Only the top and left coordinates are used. The window has the standard width and height for movies.
If either the path or fileNameStr is omitted then PlayMovie will bring up a dialog to let you find a movie file.
If both are present, PlayMovie opens the file automatically.
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-21 for details.
Any movie file can be played, not just movies made by Igor. There is no limit on the number of movie
windows opened for playing.
Movie windows are considered transient and are not restored when an experiment is reopened.

See Also
Movies on page IV-230.
The PlayMovieAction operation.

/I Coordinates are in inches.

/M Coordinates are in centimeters.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing
symbolic path.

/W=(left,top,right,bottom) Sets the initial coordinates of the movie window (in points unless /I or /M are
used before /W).

/Z No error reporting; an error is indicated by nonzero value of the variable
V_flag. If the user clicks the cancel button in the Open File dialog, V_flag is set
to -1.

PlayMovieAction

V-633

PlayMovieAction
PlayMovieAction [/Z] keyword [=value][, keyword [=value]]
On Macintosh PlayMovieAction operates on the top movie window, opened via PlayMovie, or on a movie
file opened via the open keyword (requires Igor Pro 7 or later).
On Windows only movies opened via the open keyword are supported.
If the /Z flag is present, errors are not fatal. V_flag is set to error return regardless.

Parameters

Flags

Details
Operations are performed in the following order: kill, stop, gotoBeginning, gotoEnd, frame, step, getTime,
extract, start. kill overrides all other parameters.

extract Extracts current frame into an 8-bit RGB image wave named M_MovieFrame. (Can be
combined with frame=f.)

extract=e Extracts e frames into a single multiframe wave, M_MovieChunk. This wave will have
3 planes for RGB and will have e chunks.

frame=f Moves to specified movie frame (and stops movie).

getID Returns top movie ID number in V_Value. Do not use in same call with getTime.

getTime Reads current movie time into variable V_value (in seconds).

gotoBeginning Goes to beginning of movie.

gotoEnd Goes to end of movie.

kill Kills movie window or closes open movie window.

open=fullPath Opens the specifed movie file to enable frame extraction. No movie window is
involved. V_Flag is set to zero if no error occurred and V_Value is set to the file
reference number.
Prior to Igor Pro 7 the open keyword was supported on Windows only. It now also
works on Macintosh.
Prior to Igor Pro 7, the ref keyword was required for PlayMovieAction calls after the
open keyword. Now it is needed only if multiple files or windows are open. Even
then, you can use setFrontMovie to set the active movie window.

ref=refNum The ref keyword is used with all PlayMovieAction commands after using the open
keyword to access a movie file. refNum must be the file reference number returned in
V_Value in the open step.
Prior to Igor Pro 7 the ref keyword was supported on Windows only. It now also
works on Macintosh.

setFrontMovie= id Sets movie with given id as top window or active file. Error if no such window or file
(use /Z to suppress errors). Do not use in same call with getID.

start Starts movie playing.
The start keyword works on Macintosh only and only with movie windows, not with
files.

step=s Moves by s frames into movie (0 is same as 1, negative values move backwards).

stop Stops movie.
The stop keyword works on Macintosh only and only with movie windows, not with
files.

/Z No error reporting; an error is indicated by nonzero value of the variable V_flag.

PlaySnd

V-634

If you want to extract a grayscale image, you can convert the RGB image into grayscale using the
ImageTransform command as follows:
PlayMovieAction extract
ImageTransform rgb2gray M_MovieFrame
NewImage M_RGB2Gray

The open and ref keywords support extracting frames from files with out the need for an open movie
window. Prior to Igor Pro 7, this was a Windows only feature. It now also works on Macintosh..
When accessing a file using the open keyword, none of the keywords related to movie windows or playing
a movie are supported.
When you are finished extracting frames, use the kill keyword to close the file.
To get a full path for use with the open keyword, use the PathInfo or Open /D/R commands.

Examples
These commands show to determine the number of frames in a simple movie:
PlayMovieAction open = <full path to movie file>
PlayMovieAction stop,gotoEnd,getTime
Variable tend= V_value
PlayMovieAction step=-1,getTime
Print "frames= ",tend/(tend-V_value)
PlayMovieAction kill

See Also
Movies on page IV-230.
The PlayMovie operation.

PlaySnd
PlaySnd [flags] fileNameStr
Note: PlaySnd is obsolete. Use PlaySound instead.
Available only on the Macintosh.
The PlaySnd operation plays a sound from the file’s data fork, or from an 'snd ' resource.

Parameters
The file containing the sound is specified by fileNameStr and /P=pathName where pathName is the name of
an Igor symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path
relative to the folder associated with pathName, or the name of a file in the folder associated with pathName.
If Igor can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing
you to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.

Flags

Details
If none of /I, /N or /R are specified, PlaySnd tries to play a sound stored in the data fork of the file. If the file
dialog is used, only files of type 'sfil' are shown.

/I=resourceIndex Specifies the 'snd ' resource to load by resource index, starting from 1.

/M=promptStr Specifies a prompt if PlaySnd needs to put up a dialog to find the file.

/N=resNameStr Specifies the resource to load by resource name.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/Q Quiet: suppresses the insertion of 'snd ' info into the history area.

/R=resourceID Specifies the 'snd ' resource to load by resource ID.

/Z Does not play the sound, just checks for its existence.

PlaySound

V-635

If any of /I, /N or /R are specified, PlaySnd tries to play a sound from an 'snd ' resource. Most programs
store sounds in 'snd ' resources. If the file dialog is used, files of all types are shown.
If /P=pathName is omitted, then fileNameStr can take on three special values:

If you specify /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a file
system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-21 for details.
There are no sounds in the Igor Pro application file.
If the file is not fully specified and fileNameStr is not one of these special values, then PlaySnd presents a
dialog from which you can select a file. “Fully specified” means that Igor can determine the name of the file
(from the fileNameStr parameter) and the folder containing the file (from the /P=pathName flag or from the
fileNameStr parameter).
PlaySnd sets the variable V_flag to 1 if the sound exists and fits in available memory or to 0 otherwise.
If the sound exists, PlaySnd also sets the string variable S_Info to:
"SOURCE:sourceName;RESOURCENAME:resourceName;RESOURCEID:resourceID"

If the sound is not a resource then resourceName is "" and resourceID is 0. sourceName will be the name of the
file that was loaded or “Clipboard”, “System” or “Igor”.

Examples
PlaySnd/I=1/P=mySnds/Z "Wild Eep"
If (V_flag) // Any 'snd ' in the "Wild Eep" file?

Print S_info // Yes, print resource number, etc.
Endif

This prints the following into the history area:
SOURCE:resource fork;RESOURCENAME:Wild Eep;RESOURCEID:8;

PlaySound
PlaySound [/A[=a] /C] soundWave
PlaySound /A[=a] {soundWave1, soundWave2 [, soundWaveN…]}
The PlaySound operation plays the audio samples in the named wave. The various sound output
parameters — number of samples, sample rate, number of channels, and number of bits of resolution — are
determined by the corresponding parameters of the wave.

Flags

Details
The wave's time per point, as determined by its X scaling, must be a valid sampling rate. A value of 1/44100
(CD standard) is typical.

“Clipboard” Loads data from Clipboard.

“System” Loads data from System file.

“Igor” Loads data from Igor Pro application.

/A[=a]

/C Obsolete - do not use.
On Windows /C causes sound wave data greater than 16-bits to be converted to 16-bit integer.
Such data should range from -32768 to +32767.

On Macintosh /C is ignored.

Plays sounds asynchronously so that sounds will continue to play after the command itself
has executed.
/A=0: Same as no /A flag.
/A=1: Plays sounds asynchronously; same as /A.
/A=2: Stop playing any current sound before starting this one.
/A=3: Return with user abort error if output buffers are full (rather than waiting.)

Use GetRTError(1) to detect and clear the error condition.

pnt2x

V-636

Sound waves should be 16 bit integers with a range of -32768 to +32767. On Macintosh as of Igor version
6.11, 32-bit floating point data with a range of -1 to +1 can also be used. For backward compatibility, 8-bit
integer data with a range of -128 to +127 is also supported.
With the /A flag, the sound plays asynchronously (i.e., the command returns before the sound is finished).
If another command is issued before the sound is finished then the new command will wait until the last
sound finishes. A PlaySound without the /A flag can play on top of the current sound. The transition
between sounds should be seamless on Macintosh but may be slightly delayed on Windows.
It is OK to kill a sound wave immediately after PlaySound returns even if the /A flag is used.
To play a stereo sound, provide a 2 column wave with the left channel in column 0. Actually, the software
will attempt to play as many channels as there are columns in the wave. You can also use multiple1D waves
with the /A flag. To use this method, enclose the list of 1D waves in braces

Examples
Under Windows, support for sound is somewhat idiosyncratic so these sound examples may not work
correctly with your particular hardware configuration.
Make/B/O/N=1000 sineSound // 8 bit samples
SetScale/P x,0,1e-4,sineSound // Set sample rate to 10Khz
sineSound= 100*sin(2*Pi*1000*x) // Create 1Khz sinewave tone
PlaySound sineSound

The following example will create a rising pitch in the left channel and a falling pitch in the right channel:
Make/W/O/N=(20000,2) stereoSineSound // 16 bit data
SetScale/P x,0,1e-4,stereoSineSound // Set sample rate to 10Khz
stereoSineSound= 20000*sin(2*Pi*(1000 + (1-2*q)*150*x)*x)
PlaySound/A stereoSineSound // 16 bit, asynchronous

Multichannel sounds as in the previous example but from multiple 1D waves:
Make/W/O/N=20000 stereoSineSoundL,stereoSineSoundR // 16 bit data
SetScale/P x,0,1e-4,stereoSineSoundL,stereoSineSoundR// Set sample rate to 10Khz
stereoSineSoundL= 20000*sin(2*Pi*(1000 + 150*x)*x)// rising pitch in left
stereoSineSoundR= 20000*sin(2*Pi*(1000 - 150*x)*x)// falling in right
PlaySound/A {stereoSineSoundL,stereoSineSoundR} // two 1D waves

See Also
SoundLoadWave, SoundSaveWave

pnt2x
pnt2x(waveName, pointNum)
The pnt2x function returns the X value of the named wave at the point pointNum. The point number is
truncated to an integer before use.
For higher dimensions, use IndexToScale.

Details
The result is derived from the wave’s X scaling, not any X axis of a graph it may be displayed in.
If you would like to convert a fractional point number to an X value you can use:
leftx(waveName)+deltax(waveName)*pointNum.

See Also
DimDelta, DimOffset, x2pnt, IndexToScale
Waveform Model of Data on page II-57 and Changing Dimension and Data Scaling on page II-63 for an
explanation of waves and dimension scaling.

Point
The Point structure is used as a substructure usually to store the location of the mouse on the screen.
Structure Point

Int16 v

Note: The SoundInput operations provide matching sound recording capabilities. See the
SoundInStatus operation.

PointF

V-637

Int16 h
EndStructure

PointF
The PointF structure is the same as Point but with floating point fields.
Structure Point

float v
float h

EndStructure

poissonNoise
poissonNoise(num)
The poissonNoise function returns a pseudo-random value from the Poisson distribution whose
probability distribution function is

with mean and variance equal to numI (= λ).

The random number generator initializes using the system clock when Igor Pro starts. This almost
guarantees that you will never repeat a sequence. For repeatable “random” numbers, use SetRandomSeed.
The algorithm uses the Mersenne Twister random number generator.

See Also
The SetRandomSeed operation.
Noise Functions on page III-344.
Chapter III-12, Statistics for a function and operation overview.

poly
poly(coefsWaveName, x1)
The poly function returns the value of a polynomial function at x = x1.
coefsWaveName is a wave that contains the polynomial coefficients. The number of points in the wave
determines the number of terms in the polynomial.

Examples
To fill wave0 with 100 points containing the polynomial 1 + 2*x + 3*x2 + 4*x3 evaluated over the range from
x = -1 to x= 1 (and graph it):
Make coefs = {1, 2, 3, 4} // f(x) = 1 + 2*x + 3*x^2 + 4*x^3
Make/N=100/O wave0; SetScale/I x, -1, 1, wave0; Display wave0
wave0 = poly(coefs, x)

poly2D
poly2D(coefsWaveName, x1, y1)
The poly2D function returns the value of a 2D polynomial function at x = x1, y = y1.
coefsWaveName is a wave that contains the polynomial coefficients. The number of points in the wave
determines the number of terms in the polynomial and therefore the polynomial degree.

Details
The coefficients wave contains polynomial coefficients for low degree terms first. All coefficients for terms
of a given degree must be present, even if they are zero. Among coefficients for a given degree, those for
terms having higher powers of X are first. Thus, poly2D returns, for a coefficient wave cw:
f(x,y) = cw[0] + cw[1]*x + cw[2]*y + cw[3]*x^2 + cw[4]*x*y + cw[5]*y^2 + …
A 2D polynomial of degree N has (N+1)(N+2)/2 terms.

f (x;�) =
e��

�
x

x!
,

� > 0

x = 0,1,2...

PolygonArea

V-638

Examples
To fill wave0 with 400 points (20 by 20) containing the polynomial 1 + 2*x + 2.5*y + 3*x2 + 3.5*xy + 4*y2
evaluated over the range x = (-1, 1) and y = (-1, 1) and make a contour plot of it:
Make/O coefs = {1, 2, 2.5, 3, 3.5, 4}
Make/N=(20,20)/O wave0
SetScale/I x, -1, 1, wave0
SetScale/I y, -1, 1, wave0
wave0 = poly2D(coefs, x, y)
Display; AppendMatrixContour wave0

The polynomial is second degree, so the first command above made the wave coefs with six elements
because (2+1)(2+2)/2 = 6.
To fill wave0 with 100 points containing the polynomial 1 + 2*x + 3*y+ 4*x2 + 4*y2 + 5*x3 + 6*y3 (note the lack
of cross terms) evaluated over the range x = (-1, 1) and y = (-1, 1) (the contour plot already made should
update with the new data). The first zero eliminates the second-order cross term x*y and the second and
third zeros eliminate the third-order cross terms x2*y and x*y2:
Make/O coefs = {1, 2, 3, 4, 0, 4, 5, 0, 0, 6}
wave0 = poly2D(coefs, x, y)

PolygonArea
PolygonArea(xWave, yWave)
The PolygonArea function returns the area of a simple, closed, convex or nonconvex planar polygon
described by consecutive vertices in xWave and yWave.
A simple polygon has no internal “holes” and its boundary curve does not intersect itself. Both xWave and
yWave must be 1D, real, numerical waves of the same dimensions. The minimum number of vertices is 3.
The function uses the shoelace algorithm to compute the area (see theorem 1.3.3 in the reference below). If
there is any error in the input, the function returns NaN.

Example
Function estimatePi(num)

Variable num

Make/O/N=(num+1) xxx,yyy
xxx=sin(2*pi*x/num)
yyy=cos(2*pi*x/num)

printf "Relative Error=%g\r",(pi-PolygonArea(xxx,yyy))/pi
End

See also
The areaXY and faverageXY functions.

References
O’Rourke, Joseph, Computational Geometry in C, 2nd ed., Cambridge University Press, New York, 1998.

popup
popup menuList
The popup keyword is used with Prompt statements in Functions and Macros. It indicates that you want a
pop-up menu instead of the normal text entry item in a DoPrompt simple input dialog (or a Macro’s missing
parameter dialog (archaic)). menuList is a string expression containing a list of items, separated by
semicolons, that are to appear in the pop-up menu.
Pop-up menus accept both numeric and string parameters. For numeric parameters, the number of the item
selected is placed in the variable. Numbering starts from one. For string parameters, the selected item’s text
is placed in the string variable.
Pop-up items support all of the special characters available for user-defined menu definitions (see Special
Characters in Menu Item Strings on page IV-125) with the exception that items in pop-up menus are
limited to 50 bytes, keyboard shortcuts are not supported, and special characters must be enabled.

See Also
Prompt, DoPrompt, and Pop-Up Menus in Simple Dialogs on page IV-133.

PopupContextualMenu

V-639

See WaveList, TraceNameList, ContourNameList, ImageNameList, FontList, MacroList, FunctionList,
StringList, and VariableList for functions useful in generating lists of Igor objects.
Chapter III-14, Controls and Control Panels for details about control panels and controls.

PopupContextualMenu
PopupContextualMenu [/C=(xpix, ypix) /N /ASYN[=func]] popupStr
The PopupContextualMenu operation displays a pop-up menu.
The menu appears at the current mouse position or at the location specified by the /C flag.
The content of the menu is specified by popupStr as a semicolon-separated list of items or, if you include the
/N flag, by a user-defined menu definition referred to by the name contained in popupStr.
If you omit the /ASYN flag, the menu is tracked and the operation does not return until the user makes a
selection or cancels the menu by clicking outside of its window.
If you include /ASYN, the menu is displayed and the operation returns immediately. When the user makes
a selection, then the result is sent to the specified function or to the user-defined menu's execution text. You
can use /ASYN to allow a background task to continue while a contextual menu is popped up. /ASYN
requires Igor Pro 7.00 or later.

Parameters
If popupStr specifies the pop-up menu’s items (/N is not specified), then popupStr is a semicolon-separated
list of items such as “yes;no;maybe;”, or a string expression that returns such a list, such as TraceNameList.
The menu items can be formatted and checkmarked, like user-defined menus can. See Special Characters
in Menu Item Strings on page IV-125.
If /N is specified, popupStr must be the name of a user-defined menu that also has the
popupcontextualmenu keyword. See Example 3.

PopupContextualMenu

V-640

Flags

Details
If you omit /N and /ASYN, PopupContextualMenu sets the following variables:

/ASYN When used with /N: The user-defined menu is displayed and operation returns
immediately. The result of menu selection is handled by the user-defined menu's
execution text. See User-Defined Menus on page IV-117.

/ASYN=func When used without /N: The user-defined menu is displayed and operation returns
immediately. The result of menu selection is handled by calling the named function,
which must have the following format:
Function func(popupStr, selectedText, menuItemNum)

String popupStr
String selectedText
Variable menuItemNum

/C=(xpix, ypix) Sets the coordinates of the menu’s top left corner.
Units are in pixels relative to the top-most window or the window specified by /W,
like the MOUSEX and MOUSEY values passed to a window hook. See the window
hook example, below and SetWindow.
If /C is not specified, the menu’s top left corner appears at the current mouse position.

/N Indicates that popupStr contains the name of a menu definition instead of containing
a list of menu items.

/W=winName The /C coordinates are relative to the top/left corner of the named window or
subwindow. If you omit /W, /C uses the top-most window having focus.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.
/W was added in Igor Pro 7.00.

V_flag=0 User cancelled the menu without selecting an item, or there was an error such as an
empty popupStr.

V_flag=>= 1 1 if the first menu item was selected, 2 for the second, etc.

S_selection "" if the user cancelled or error, else the text of the selected menu item.

PopupContextualMenu

V-641

If you include /N and omit /ASYN, PopupContextualMenu sets the following variables in a manner similar
to GetLastUserMenuInfo:

V_kind

V_flag

S_selection

The kind of menu that was selected:

 See Specialized Menu Item Definitions on page IV-123 for details about these
special user-defined menus.

V_kind Menu Kind

0 Normal text menu item, including Optional Menu Items (see
page IV-122) and Multiple Menu Items (see page IV-122).

3 "*FONT*"

6 "*LINESTYLEPOP*"

7 "*PATTERNPOP*"

8 "*MARKERPOP*"

9 "*CHARACTER*"

10 "*COLORPOP*"

13 "*COLORTABLEPOP*"

-1 if the user didn't select any item, otherwise V_flag returns a value which
depends on the kind of menu the item was selected from:

V_kind V_flag Meaning

0 Text menu item number (the first menu item is number 1).

3 Font menu item number (use S_selection, instead).

6 Line style number (0 is solid line)

7 Pattern number (1 is the first selection, a SW-NE light
diagonal).

8 Marker number (1 is the first selection, the X marker).

9 Character as an integer, = char2num(S_selection). Use
S_selection instead.

10 Color menu item (use V_Red, V_Green, V_Blue, and V_Alpha
instead).

13 Color table list menu item (use S_selection instead).

The menu item text, depending on the kind of menu it was selected from:

V_kind S_selection Meaning

0 Text menu item text.

3 Font name or "default".

6 Name of the line style menu or submenu.

7 Name of the pattern menu or submenu.

8 Name of the marker menu or submenu.

9 Character as string.

10 Name of the color menu or submenu.

13 Color table name.

PopupContextualMenu

V-642

If you include /N and /ASYN, PopupContextualMenu sets the following variables:

If you include /N and omit /ASYN, PopupContextualMenu sets the following variables:

Examples

Example 1 - popupStr contains a list of menu items
// Menu formatting example

String checked= "\\M0:!" + num2char(18) + ":" // checkmark code
String items= "first;\M1-;"+checked+"third;" // 2nd is divider, 3rd is checked
PopupContextualMenu items
switch(V_Flag)

case 1:
// do something because first item was chosen
break;

case 3:
// do something because first item was chosen
break;

endswitch

Example 2 - popupStr contains a list of menu items
// Window hook example

SetWindow kwTopWin hook=TableHook, hookevents=1 // mouse down events
Function TableHook(infoStr)

String infoStr

Variable handledEvent=0
String event= StringByKey("EVENT",infoStr)
strswitch(event)

case "mousedown":
Variable isContextualMenu= NumberByKey("MODIFIERS",infoStr) & 0x10
if(isContextualMenu)

Variable xpix= NumberByKey("MOUSEX",infoStr)
Variable ypix= NumberByKey("MOUSEY",infoStr)
PopupContextualMenu/C=(xpix,ypix) "yes;no;maybe;"
strswitch(S_selection)

case "yes":
// do something because "yes" was chosen
break

case "no":
break

case "maybe":
// do something because "maybe" was chosen
break

In the case of Specialized Menu Item Definitions (see page IV-123), S_selection will
be the title of the menu or submenu, etc.

V_Red, V_Green, V_Blue, V_Alpha

If a user-defined color menu ("*COLORPOP*" menu item) was selected then these
values hold the red, green, and blue values of the chosen color. The values range from
0 to 65535.
Will be 0 if the last user-defined menu selection was not a color menu selection.

V_flag=0 There was an error such as an empty popupStr or popupStr did not name a compiled
user-defined menu.

V_flag=-1 No error. The named user menu was valid and no item was selected yet.

S_selection ""

V_flag=0 There was an error such as an empty popupStr.

V_flag=-1 No error. popupStr was valid and no item was selected yet.

S_selection ""

PopupContextualMenu

V-643

endswitch
handledEvent=1

endif
endswitch
return handledEvent

End

Example 3 - popupStr contains the name of a user-defined menu
// User-defined contextual menu example

// dynamic menu (to keep WaveList items updated), otherwise not required.
// contextualmenu keyword is required, and implies /Q for all menu items.
//
// NOTE: Actions here are accomplished by the menu definition's
// execution text, such as DoSomethingWithColor.
// See Example 4 for another approach.
//
Menu "ForContext", contextualmenu, dynamic

"Hello", Beep
Submenu "Color"

"*COLORPOP*", DoSomethingWithColor()
End
Submenu "Waves"

WaveList("*",";",""), /Q, DoSomethingWithWave()
End

End

Function DoSomethingWithColor()
GetLastUserMenuInfo
Print V_Red, V_Green, V_Blue, V_Alpha

End

Function DoSomethingWithWave()
GetLastUserMenuInfo
WAVE w = $S_value
Print "User selected "+GetWavesDataFolder(w,2)

End

// Use this code in a function or macro:
PopupContextualMenu/N "ForContext"
if(V_flag < 0)

Print "User did not select anything"
endif

Example 4 - popupStr contains the name of a user-defined menu
// User-defined contextual menu example

Menu "JustColorPop", contextualmenu
"*COLORPOP*(65535,0,0)", ;// initially red, empty execution text

End

// Use this code in a function or macro
PopupContextualMenu/C=(xpix, ypix)/N "JustColorPop"
if(V_flag < 0)

Print "User did not select anything"
else

Print V_Red, V_Green, V_Blue, V_Alpha
endif

Example 5 - popupStr contains a list of menu items, asynchronous popup result
Function YourFunction()

// Use this code in a function or macro:
PopupContextualMenu/ASYN=Callback "first;second;third;"
(YourFunction continues...)

End

// Routine called when/if popup menu item is selected. selectedItem=1 is the first item.
Function Callback(String list, String selectedText, Variable selectedItem)

PopupMenu

V-644

Print "Callback: ", list, selectedText, selectedItem
End

Example 6 - popupStr contains the name of a user-defined menu, asynchronous popup result
Function YourFunction()

PopupContextualMenu/ASYN/N "ForContext"
(YourFunction continues...)

End

// Selection result is handled in "ForContext" menu's execution texts, as in Example 4

See Also
Creating a Contextual Menu on page IV-149, User-Defined Menus on page IV-117.
Special Characters in Menu Item Strings on page IV-125 and Chapter III-14, Controls and Control Panels,
for details about control panels and controls.
The SetWindow and PopupMenu operations.

PopupMenu
PopupMenu [/Z] ctrlName [keyword = value [, keyword = value …]]
The PopupMenu operation creates or modifies a pop-up menu control in the target or named window.
For information about the state or status of the control, use the ControlInfo operation.

Parameters
ctrlName is the name of the PopupMenu control to be created or changed.
The following keyword=value parameters are supported:

appearance={kind [, platform]}

Sets the appearance of the control. platform is optional. Both parameters are names,
not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
See Button and DefaultGUIControls for more appearance details.

bodyWidth=width Specifies an explicit size for the body (nontitle) portion of a PopupMenu control. By
default (bodyWidth=0), the body portion autosizes depending on the current text. If
you supply a bodyWidth>0, then the body is fixed at the size you specify regardless
of the body text. This makes it easier to keep a set of controls right aligned when
experiments are transferred between Macintosh and Windows, or when the default
font is changed.

disable=d

fColor=(r,g,b) Sets the initial color of the title. r, g, and b range from 0 to 65535. fColor defaults to
black (0,0,0). To further change the color of the title text, use escape sequences as
described for title=titleStr.

focusRing=fr

On Macintosh, regardless of this setting, the focus ring appears if you have enabled
full keyboard access via the Shortcuts tab of the Keyboard system preferences.

font="fontName" Sets the font used for the pop-up title, e.g., font="Helvetica".

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Draw in gray state; disable control action.

Enables or disables the drawing of a rectangle indicating keyboard focus:
fr=0: Focus rectangle will not be drawn.
fr=1: Focus rectangle will be drawn (default).

PopupMenu

V-645

fsize=s Sets the font size for the pop-up title.

fstyle=fs

help={helpStr} Sets the help for the control. The help text is limited to a total of 255 bytes. You can
insert a line break by putting “\r” in a quoted string.

mode=m

noproc Specifies that no procedure is to execute when choosing in the pop-up menu.

popColor=(r,g,b) Specifies the color initially chosen in the color pop-up palette. r, g, and b are integers
from 0 to 65535. See the Colors, Color Tables, Line Styles, Markers, and Patterns
section.

popmatch=matchStr

Sets mode to the enabled menu item that matches matchStr. matchStr may be a
"wildcard" expression. See StringMatch. If no item is matched, mode is unchanged.

popvalue=valueStr Sets the string displayed by the menu when first created, if mode is not zero. See
Popvalue Keyword section.

pos={left,top} Sets the position of the pop-up menu in pixels.

pos+={dx,dy} Offsets the position of the pop-up in pixels.

proc=procName Specifies the procedure to execute when the pop-up menu is clicked. See Pop-up
Menu Action Procedure below.

rename=newName Gives pop-up menu a new name.

size={width,height} Sets pop-up menu size in pixels.

title=titleStr Sets title of pop-up menu to the specified string expression. Defaults to "" (no title).
Using escape codes you can change the font, size, style, and color of the title. See
Annotation Escape Codes on page III-53 or details.

userdata(UDName)=UDStr

Sets the unnamed user data to UDStr. Use the optional (UDName) to specify a named
user data to create. You can retrieve the data using GetUserData.

userdata(UDName)+=UDStr

Appends UDStr to the current unnamed user data. Use the optional (UDName) to
append to the named UDStr.

value=itemListSpec Specifies the pop-up menu’s items. itemListSpec can take several forms as described
below under Setting The Popup Menu Items.

fs is a bitwise parameter with each bit controlling one aspect of the font style as
follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold
Bit 1: Italic
Bit 2: Underline
Bit 4: Strikethrough

Specifies the pop-up title location.
m=0: Title is in pop-up menu.
m=1: Title is to the left of pop-up menu, the chosen menu item

appears in the pop-up menu, and menu item number m is
initially selected.

PopupMenu

V-646

Flags

Details
The target window, or the window named with the win=winName keyword, must be a graph or panel.

Pop-up Menu Action Procedure
The action procedure for a pop-up menu control takes a predefined WMPopupAction structure as a
parameter to the function:
Function PopupMenuAction(PU_Struct) : PopupMenuControl

STRUCT WMPopupAction &PU_Struct
...
return 0

End

The ": PopupMenuControl" designation tells Igor to include this procedure in the list of available popup
menu action procedures in the PopupMenu Control dialog used to create a popup menu.
See WMPopupAction for details on the WMPopupAction structure.
Although the return value is not currently used, action procedures should always return zero.
You may see an old format pop-up menu action procedure in old code:
Function PopupMenuAction (ctrlName,popNum,popStr) : PopupMenuControl

String ctrlName
Variable popNum // which item is currently selected (1-based)
String popStr // contents of current popup item as string
...
return 0

End

This old format should not be used in new code.

Setting The Popup Menu Items
This section discusses popup menus containing lists of text items. The next section discusses popup menus
for choosing colors, line styles, markers and patterns.
The items in the popup menu are determined by the itemListSpec parameter used with the value keyword.
itemListSpec can take several different forms from simple to complex.
No matter what the form, Igor winds up storing an expression that returns a string in the popup menu's
internal structure. This expression may be a literal string ("Red;Green;Blue;"), a call to a built-in or user-
defined function that returns a string, or the path to a global string variable. Igor evaluates this expression
when the popup menu is first created and again each time the user clicks on the menu. You can see the
string expression for a given popup menu using the PopupMenu Control dialog.
The right form for itemListSpec depends on your application. Here is a guide to choosing the right form with
the simpler forms first.

A literal string expression
Use this if you know the items you want in your popup menu when you write the PopupMenu call. For
example:
Function PopupDemo1() // Literal string

NewPanel
PopupMenu popup0, value="Red;Green;Blue;"

End

This method is limited to 1000 bytes of menu item text.

win=winName Specifies which window or subwindow contains the named control. If not given, then
the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/Z No error reporting.

PopupMenu

V-647

A function call
Use this if you need to compute the popup menu item list when the user clicks the popup menu. The
function must return a string containing a semicolon-separated list of menu items. This example creates a
popup menu which displays the name of each wave in the current data folder at the time the menu is
clicked:
Function PopupDemo2() // Built-in function

NewPanel
PopupMenu popup0, value=WaveList("*", ";", "")

End

You can also use a user-defined function. This example shows how to list waves from other than the current
data folder:
Function/S MyPopupWaveList()

DFREF saveDF

// Create some waves for demo purposes
saveDF = GetDataFolderDFR()
NewDataFolder/O/S root:Packages
NewDataFolder/O/S PopupMenuDemo
Make/O demo0, demo1, demo2
SetDataFolder saveDF

saveDF = GetDataFolderDFR()
SetDataFolder root:Packages:PopupMenuDemo
String list = WaveList("*", ";", "")
SetDataFolder saveDF

return list
End

Function PopupDemo3() // User-defined function
NewPanel
PopupMenu popup0, value=MyPopupWaveList()

End

followed by a local string variable specifying items
Use this when the popup menu item list is not known when you write the code but you can compute it at
runtime. For example:
Function PopupDemo4() // Local string variable specifying items

NewPanel
String quote = "\""
String list
if (CmpStr(IgorInfo(2),"Windows") == 0)

list = quote + "Windows XP; Windows VISTA;" + quote
else

list = quote + "Mac OS X 10.4;Mac OS X 10.5;" + quote
endif
PopupMenu popup0, value=#list

End

The strange-looking use of the quote string variable is necessary because the parameter passed to the
value=# keyword is evaluated once when the PopupMenu command executes and the result of that
evaluation is evaluated again when the PopupMenu is created or clicked. The result of the first evaluation
must be a legal string expression.
This method is limited to 1000 bytes of menu item text.

followed by a local string variable specifying a function
Use this when you need to compute the popup menu item list at click time and you need to select the
function which computes the list when the popup menu is created. For example:
Function/S WindowsItemList()

String list
list = "Windows XP; Windows VISTA;"
return list

End

Function/S MacItemList()
String list
list = "Mac OS X 10.4;Mac OS X 10.5;"

PopupMenu

V-648

return list
End

Function PopupDemo5() // Local string variable specifying function
String listFunc
if (CmpStr(IgorInfo(2),"Windows") == 0)

listFunc = "WindowsItemList()"
else

listFunc = "MacItemList()"
endif
NewPanel
PopupMenu popup0, value=#listFunc

End

This form is useful when you create a control panel in an independent module. Since the control panel runs
in the global name space, you must specify the independent module name in the invocation of the function
that provides the popup menu items. For example:
// Calling a non-static function in an independent module from #included code
#pragma IndependentModuleName=IM
. . .
String listFunc= GetIndependentModuleName()+"#PublicFunctionInIndepMod()"
PopupMenu popup0, value=#listFunc

// Calling a static function in an independent module from #included code
#pragma IndependentModuleName=IM
#pragma ModuleName=ModName
. . .
String listFunc= GetIndependentModuleName()+"#ModName#StaticFunctionInIndepMod()"
PopupMenu popup0, value=#listFunc

We use GetIndependentModuleName rather than hard-coding the name of the independent module so that
the code will continue to work if the name of the independent module is changed. Also, because this code
does not depend on the specific name of the independent module, it can be added to an independent
module via a #included procedure file.
Also see GetIndependentModuleName and Independent Modules and Popup Menus on page IV-227.

followed by a quoted literal path to a global string variable
Use this if you want to compute the popup menu item list before it is clicked, not each time it is clicked. This
would be advantageous if it takes a long time to compute the item list, and the list changes only at well-
defined times when you can set the global string variable.
The global string variable must exist when the PopupMenu command executes and when the menu is
clicked. In this example, the gPopupMenuItems global string variable is created and initialized when the
popup menu is created but can be changed to a different value later before the menu is clicked:
Function PopupDemo6() // Global string variable containing list

NewDataFolder/O root:Packages
NewDataFolder/O root:Packages:PopupMenuDemo
String/G root:Packages:PopupMenuDemo:gPopupMenuItems = "Red;Green;Blue;"

NewPanel
PopupMenu popup0 ,value=#"root:Packages:PopupMenuDemo:gPopupMenuItems"

End

followed by a local string variable containing a path to a global string variable
Use this when the popup menu item list contents will be stored in a global string variable whose location
is not known until the popup menu is created. For example:
Function PopupDemo7() // Local string containing path to global string

String graphName = WinName(0, 1, 1)// Name of top graph
if (strlen(graphName) == 0)

Print "There are no graphs."
return -1

endif

NewDataFolder/O root:Packages
NewDataFolder/O root:Packages:PopupMenuDemo

// Create data folder for graph
NewDataFolder/O root:Packages:PopupMenuDemo:$(graphName)

PopupMenu

V-649

String list = "Red;Green;Blue;"
String/G root:Packages:PopupMenuDemo:$(graphName):gPopupMenuItems = list

NewPanel

String path // Local string containing path to global string
path = "root:Packages:PopupMenuDemo:" + graphName + ":gPopupMenuItems"
PopupMenu popup0, value=#path

return 0
End

Colors, Color Tables, Line Styles, Markers, and Patterns
You can create PopupMenu controls for color, color tables, line style (dash modes), markers, and patterns.
To do so, simply specify the itemListSpec parameter to the value keyword as one of "*COLORPOP*",
"*COLORTABLEPOP*", "*COLORTABLEPOPNONAMES*", "*LINESTYLEPOP*", "*MARKERPOP*", or
"*PATTERNPOP*". In these modes the body of the control will contain a color box, a color table (gradient),
a line style sample, a marker, or a pattern sample.
For these special pop-up menus, mode=0 (“Title in Box” checked) is not used.
For a line style pop-up menu, the mode value is the line style number plus one. Thus line style 0 (a solid
line) is mode=1.
For a marker pop-up, the mode value is the marker number plus one, and marker 0 (the + marker) is mode=1.
For a pattern pop-up, the mode value is the SetDrawEnv fillPat number minus 4, so mode=1 corresponds
to fillpat=5, the SW-NE lines fill pattern shown above.
For a color table pop-up, the mode value is the CTabList() index plus 1, so mode=1 corresponds to the first
item in the list returned by CTabList, which is “Grays”:
ControlInfo $ctrlName // Sets V_Value
Print StringFromList(V_Value-1,CTabList()) // Prints "Grays"

ControlInfo also returns the color table name in S_Value.
To set the pop-up to a given color table name, you can use code like this:
Variable m = 1 + WhichListItem(ctabName, CTabList())
PopupMenu $ctrlName mode=m

For color pop-up menus, you set the current value using the popColor=(r,g,b) keyword. On output (via
the popStr parameter of your action procedure or via the S_value output from ControlInfo) the color is
encoded as “(r,g,b)” where r, g, and b are numbers. To get these numerical values, you can extract them from
the string using the MyRGBstrToRGB function below or use ControlInfo which sets V_Red, V_Green,
V_Blue and V_Alpha.
The following example demonstrates the line style and color pop-up menus. To run the example, copy the
following code to the procedure window of a new experiment and then run the panel macro.
Window Panel0() : Panel

PauseUpdate; Silent 1 // building window …
NewPanel /W=(150,50,400,182)
PopupMenu popup0,pos={74,31},size={96,20},proc=ColorPopMenuProc,title="colors"
PopupMenu popup0,mode=1,popColor= (0,65535,65535),value= "*COLORPOP*"
PopupMenu popup1,pos={9,68},size={221,20},proc=LStylePopMenuProc
PopupMenu popup1,title="line styles",mode=1,value= "*LINESTYLEPOP*"

EndMacro

Function ColorPopMenuProc(ctrlName,popNum,popStr) : PopupMenuControl
String ctrlName
Variable popNum
String popStr

Variable r,g,b
MyRGBstrToRGB(popStr,r,g,b) // One way to get r, g, b
print popStr," gives: ",r,g,b

ControlInfo $ctrlName // Another way: Sets V_Red,V_Green,V_Blue,V_Alpha
Printf "ControlInfo returned (%d,%d,%d,%d)\r", V_Red, V_Green, V_Blue, V_Alpha

return 0
End

PopupMenuControl

V-650

// Take (r,g,b) string and extract out numeric r,g,b values
Function MyRGBstrToRGB(rgbStr,r,g,b)

String rgbStr
Variable &r, &g, &b

r= str2num(rgbStr[1,inf])
variable spos= strsearch(rgbStr,",",0)
g= str2num(rgbStr[spos+1,inf])
spos= strsearch(rgbStr,",",spos+1)
b= str2num(rgbStr[spos+1,inf])
return 1

End

Function LStylePopMenuProc(ctrlName,popNum,popStr) : PopupMenuControl
String ctrlName
Variable popNum
String popStr

print "style:",popNum-1

return 0
End

Popvalue Keyword
There are times when the displayed value cannot be determined and saved such that it can be displayed
when the pop-up menu is recreated. For instance, because window recreation macros are evaluated in the
root folder, a pop-up menu of waves may not contain the correct list when a panel is recreated. That is, the
intention may be to have the menu show a particular wave from a data folder other than root. When the
panel recreation macro runs, the function that lists waves will list waves in the root data folder. The desired
selection may be wrong or nonexistent.
Similarly, a pop-up menu of fonts may need to display a particular font upon recreation on a different computer
having a different list of fonts. The mode=m keyword probably won’t pick the correct font from the new list.
The solution to these problems is to save the correct selection with the popvalue=valueStr keyword. The list
function will not be executed when the menu is first created. If the menu is popped, the list function will be
evaluated, and the correct list will be displayed then.
It is a good idea to set the mode=m keyword to the correct number, if it is known. That way, when the menu
is popped the correct item is chosen.
Normally you can let Igor redraw the pop-up menu when it redraws the graph or control panel containing
it. However, there are situations in which you may want to force the pop-up menu to be redrawn. This can
be done using the ControlUpdate operation.

See Also
The ControlInfo operation for information about the control. The ControlUpdate, WaveList, and
TraceNameList operations. Chapter III-14, Controls and Control Panels, for details about control panels
and controls. The GetUserData operation for retrieving named user data. Special Characters in Menu Item
Strings on page IV-125.

PopupMenuControl
PopupMenuControl
PopupMenuControl is a procedure subtype keyword that identifies a macro or function as being an action
procedure for a user-defined pop-up menu control. See Procedure Subtypes on page IV-193 for details. See
PopupMenu for details on creating a popup menu control.

PossiblyQuoteName
PossiblyQuoteName(nameStr)
The PossiblyQuoteName function returns the input name string if it conforms to the rules of standard wave
or Data Folder names. If it does not, then the name is returned in single quotes. This is used when
generating a command string that you will pass to the Execute command. You might get the input name
string from a function such as NameOfWave or CsrXWave.

Examples
Print PossiblyQuoteName("wave0") // prints wave0
Print PossiblyQuoteName("wave 0") // prints 'wave 0'

Preferences

V-651

Details
See Programming with Liberal Names on page IV-157 for an example.

Preferences
Preferences [/Q] [newPrefsState]
The Preferences operation sets or displays the state of user preferences.
User preferences affect the creation of new graphs, panels, tables, layouts, notebooks, procedure windows,
and the command window. They also affect the appearance of waves appended to graphs and tables, and
objects appended to layouts.

Parameters
If newPrefsState is present, it sets the state of user preferences as follows:

If newPrefsState is omitted, the state of user preferences is printed in the history area.

Flags

Details
The Preferences operation sets the variable V_flag to the state of user preferences that were in effect before
the Preferences command executed: 1 for on, 0 for off.
You can also set the state of Preferences with the Misc menu.
Under most circumstances we want procedures to be independent of preferences so that a particular
procedure will do the same thing regardless of the state of preferences. To achieve this, preferences are
automatically off when you initiate procedure execution. When execution is complete, the state of
preferences is restored to what it was before.
If you want preferences to be in effect during procedure execution, you must turn it on with the Preferences
operation.
If the preferences setting is changed by a procedure, the effect of the call is propagated down the calling
chain. If a macro changes the preferences setting, that change is undone when the macro returns. If a
function changes the preferences setting, the change persists after the function returns. However, even with
a function, the changed preferences state does not persist when Igor regains control.

Examples
Function Test()

Variable oldPrefState
Preferences 1; oldPrefState=V_flag // remember prefs setting
Make wave0=x
Display wave0 // Display uses preferences
Preferences oldPrefState // put prefs back, like a macro would

End

See Also
Chapter III-18, Preferences.

PrimeFactors
PrimeFactors [/Q] inNumber
PrimeFactors calculates the prime factors of inNumber. By default factors are printed in the history and are
also stored in the wave W_PrimeFactors in the current data folder.

newPrefsState=0: Preferences off (use factory defaults).

newPrefsState=1: Preferences on.

/Q Disables printing to the history.

Print

V-652

Flags

Details
The largest number that this operation can handle is 232-1.

Print
Print [flags] expression [, expression]…
The Print operation prints the evaluated expressions in the history area.

Parameters
An expression can be a wave, a numeric expression (e.g., 3*π/4), a string expression (e.g., "Today is "
+ date()), or a individual structure element or an entire structure variable.

Flags

Details
Numeric expressions are always evaluated in double precision. The /D flag just controls the number of
digits displayed.
Print determines if an expression is real, complex, or string from the first symbol in the expression. Usually this
works fine, but occasionally Print guesses wrong and you may have to rearrange your expression. For example:
Print 1+cmplx(1,2)

will give an error because the first symbol, “1”, is real but the expression should be complex. Changing this
to
Print cmplx(1,2)+1

will work.
Printing numeric or string expressions involving structure elements must not start with the structure
element. Instead an appropriate numeric or string literal must appear first so that Igor can determine what
kind of expression to compile. For example rather than
Print astruct.astring + "hello"

use
Print "" + astruct.astring + "hello"

Print breaks long strings into multiple lines. If there are no natural breaks (carriage returns or semicolons)
within a default length, then it breaks the string arbitrarily.
The default line length is 200 bytes. You can override this using the /LEN flag. The maximum number of
bytes that can be printed on a line in the history area is 1000.

/Q Suppresses printing of factors in the history area.

/C Evaluates all numeric expressions as complex.

/D Prints a greater number of digits.

/F Prints numeric wave data (1D and 2D waves only) using “nice,” easily readable formatting.

/LEN=len Sets the string break length to len number of bytes. The default is 200 and len is clipped to
between 200 and 1000.

/S Obsolete. Numeric results are printed with a moderate number of digits whether you use /S
or not. To print more digits, use /D.

/SR Prints a wave subrange for expressions that start as “waveName[“. Without /SR, such an
expression is taken as the start of a numeric expression such as wave[3]-wave[2]. (You can
still use wave[pnt] but only if it does not start the numeric expression.)
Wave subrange printing is not done with /F.
You can specify a single row or column using [r] syntax. For example, to print column 4 of a
matrix, use:
Print mymat[][4]

printf

V-653

When printing waves, you can use either formatted (specified by /F) or unformatted (default) methods.
Unformatted output is in an executable syntax for each printed line: wave={}.

Printing formatted wave data gives easily (human) readable output, and works best for small 1D and 2D
waves. If the data are too large or in an unsupported format (3D or greater, or the wave is text), then the output
will be unformatted. Formatting is done using spaces, so the output will look best in a fixed-width font.
Printed wave data, both formatted and unformatted, are limited to no more than 100 lines of output. When
the line limit is exceeded a warning message will be printed at the end of the truncated output. For text waves,
output is limited to 50 bytes of each string element, and there is no warning when a string is truncated.

See Also
The printf operation.
The PrintGraphs, PrintTable, PrintLayout andPrintNotebook operations.

printf
printf formatStr [, parameter [, parameter]…]
The printf operation prints formatted output to the history area.

Parameters
formatStr is a string which specifies the formatting of the output.
The type of the parameter, string or numeric, must agree with the corresponding conversion specification
in formatStr, or else the results will be indeterminate.
The printf parameters can be numeric or string expressions. Numeric and string structure fields are allowed
except that complex structure fields and non-numeric (e.g., WAVE, FUNCREF) structure fields are not
allowed.

Details
The formatStr contains literal text and conversion specifications.
A conversion specification starts with the % character and ends with a conversion character (for example,
g, e, f, d, or s as illustrated below). In between the % and the conversion character you may include one or
more flag characters, a field width specifier, and a precision specifier. The first % corresponds to the first
parameter, the second % corresponds to the second parameter, etc. If formatStr contains no % characters, no
parameters are expected.
Here are some simple examples. numVar is a numeric variable and strVar is a string variable.
printf "The answer is: %g\r", numVar
printf "Created wave %s\r", strVar
printf "Created wave %s, %d points\r", strVar, numVar

%g is a general-purpose format (floating point or scientific notation) that represents the value of numVar.
%d is an integer format that represents the value of numVar. %s specifies that the corresponding parameter
(strVar) is a string.
The "\r" in these examples appends a carriage return to the end of the printed text.
Here is a complex example using all of these elements of a conversion specification:
printf "%+015.4f\r", 1e6*PI

This prints:
The answer is: +003141592.6536

"+" is a flag character that tells printf to put a + or - sign in front of the number.
"015" is a field width specifier that tells printf to print the number in a field of at least 15 bytes, padded with
leading zeros. Using "15" instead of "015" would cause printf to pad with spaces before the + sign instead of
zeros after it.
".4" is a precision specifier that tells printf to print four digits after the decimal point.
"f" tells printf to use a floating point format.

Note: Executing lines printed from floating point waves will not exactly reproduce the source
data due to round-off or insufficient digits in the printed output.

printf

V-654

The most common conversions characters are “f” for floating point, “g” for general, “d” for decimal, and
“s” for string. They are interpreted as for the printf() function in the C programming language.
The escape codes \t and \r represent the tab and return characters respectively. See Escape Sequences in
Strings on page IV-13 for more information.
The supported flag characters and their meanings are as follows:

The meaning of the precision specifier depends on the numeric format (%g, %e, %f, %d, etc.) being used:

You can replace both the field width and precision specifiers with an asterisk. This gets the field width or
precision specifier from a parameter. For example:
printf "%*.*f\r" 4, 3, 1e6*PI

means that the field width is 4 and the precision is 3. You could use numeric expressions instead of the
literal numbers to control the field width and precision algorithmically.
Here is a complete list of the conversion characters supported by printf:

- Left align the result in the field.

+ Put a plus or minus sign before the number.

<space> Put a space before a positive number.

Specifies alternate form for e, f, g, and x formats.

e, E, f Precision specifies number of digits after decimal point.

g, G Precision specifies maximum number of significant digits.

d, o, u, x, X Precision specifies minimum number of digits.

f Converts a numeric parameter as [-]ddd.ddd, where the number of digits after the
decimal point is determined by the precision specifier and defaults to 6. If the # flag is
present, a decimal point will be used even if there are no digits to the right of it.
This conversion character uses the “round-to-half-even” rule, also known as “banker’s
rounding”. When the truncated digits are exactly 0.5000..., the quantity is rounded to an
even number. For example:
Printf “%.0f\r”, 15.5 // Prints 16 (rounded up to even)
Printf “%.0f\r”, 16.5 // Prints 16 (rounded down to even)

e, E Converts a numeric parameter as [-]d.ddde+/-dd, where the number of digits after the
decimal point is determined by the precision specifier and defaults to 6. If you use “E”
instead of “e” then printf uses a capital “E” in the number. If the # flag is present, a decimal
point will be used even if there are no digits to the right of it.

g, G Converts a numeric parameter using “f” or “e” style conversion depending on the
magnitude of the number. “e” is used if the exponent is less than -4 or greater than the
precision. “G” uses “f” or “E” style conversion. If the # flag is present, a decimal point will
be used even if there are no digits to the right of it and trailing zeros will not be removed.

d, o, u Converts a numeric parameter as a signed decimal integer, unsigned octal integer or
unsigned decimal integer. The precision defaults to one and specifies the minimum
number of digits to print.
These conversion characters use the “round-away-from-zero” rule, like Igor’s round
function. For example:
Printf “%d\r”, 15.5 // Prints 16 (rounded away from zero)
Printf “%d\r”, 16.5 // Prints 17 (rounded away from zero)

Unlike printf, sprintf and fprintf, wfprintf truncates rather than rounding.

PrintGraphs

V-655

Igor also supports a non-C, WaveMetrics extension to the conversion characters recognized by printf. This
conversion specification starts with “%W”. It is followed by a flag digit and a format character. For example,
printf "%W0Ps", 12.345E-6

prints 12.345000µs. In this example, the “%W0” introduces the WaveMetrics conversion specification. The
“0” (zero) following the “W” is the flag digit. The “P” that follows is the format specifier character, which
prints the number using a prefix, in this case, “µ”.
There is only one WaveMetrics format specifier character, “P”, which prints using a prefix such as µ, m, k,
or M. It recognizes two flag-digits, “0” or “1”. Option “0” prints with no space between the numeric part
and the prefix character while flag “1” prints with 1 space. Numbers greater than tera or less than femto
print using a power of ten notation. Here are a few examples:
printf "%.2W0PHz", 12.342E6 // prints 12.34MHz
printf "%.2W1PHz", 12.342E6 // prints 12.34 MHz
printf "%.0W0Ps", 12.342E-6 // prints 12µs
printf "%.0W1Ps", 12.342E-9 // prints 12 ns

See Also
The sprintf, fprintf, and wfprintf operations; Creating Formatted Text on page IV-244 and Escape
Sequences in Strings on page IV-13.

PrintGraphs
PrintGraphs [flags] graphSpec [, graphSpec]…
The PrintGraphs operation prints one or more graphs.
PrintGraphs prints one or more graphs on a single page from the command line or from a procedure. The
graphs can be overlaid or positioned any way you want.

Parameters
The graphSpec specifies the name of a graph to print, the position of the graph on the page and some other
options.

Flags

x, X Converts a numeric parameter as an unsigned hexadecimal integer, rounding floating
point values. Also supports integer data up to 64 bits.
Unlike printf, sprintf and fprintf, wfprintf truncates rather than rounding.
The “x” style uses lower case for the hexadecimal numerals “abcdef” where the “X” style
uses upper case.
The precision defaults to one and specifies the minimum number of digits to print.
If the # flag is present, the string “0x” or “0X” is prepended to the number if it is not zero.

s Converts a string parameter which can contain no more than 1000 bytes. If a precision is
specified, it sets the maximum number of bytes from the string parameter to be printed.

b WaveMetrics extension. Converts a numeric parameter to binary.

c Converts a numeric parameter to a single character.

% Prints a % sign. No parameter is used.

%W WaveMetrics extension. See description below.

/C=num Renders graphs in black and white (num=0) or in color (num=1; default).

/D Disables high resolution printing. This flag is of use only on Macintosh. It has no effect on
Windows.

/G=grout Specifies grout, the spacing between objects, for tiling in prevailing units.

/I Coordinates are in inches.

/M Coordinates are in centimeters.

PrintGraphs

V-656

Details
Graph coordinates are in inches (/I) or centimeters (/M) relative to the top left corner of the physical page.
If none of these options is present, coordinates are assumed to be in points.
The form of a graphSpec is:
graphName [(left, top, right, bottom)] [/F=f] [/T]

Here are some examples:
// Take size and position from window size and position.
PrintGraphs Graph0, Graph1

// Specify size and position explicitly.
PrintGraphs/I Graph0(1, 1, 6, 5)/F=1, Graph1(1, 6, 6, 10)/F=1

If the coordinates are missing and the /T or /S flags are present before graphSpec then the graphs are tiled or
stacked. If the coordinates are missing but no /T or /S flags are present then the graph is sized and
positioned based on its position on the desktop.
Finally there are these graphSpec options, which appear after the graph name:

Examples
You can put an entire graphSpec into a string variable and use the string variable in its place. In this case the
name of the string variable must be preceded by the $ character. This is handy for printing from a procedure
and also keeps the PrintGraphs command down to a reasonable number of characters. For example:
String spec0, spec1, spec2
spec0 = "Graph0(1, 1, 6, 5)/F=1"
spec1 = "Graph1(1, 6, 6, 10)/F=1"
spec2 = "" // PrintGraphs will ignore spec2.
PrintGraphs/I $spec0, $spec1, $spec2

If you use a string for a graphSpec and that string contains no characters then PrintGraphs will ignore that
graphSpec.

See Also
The PrintSettings, PrintTable, PrintLayout and PrintNotebook operations.

/R Coordinates are in percent of page size (see Examples).

/PD[=d] Displays print dialog. This allows the user to use Print Preview or to print to a file.

/S Stacks graphs.

/T Tiles graphs.

/F=f

/T Graph is transparent. This allows special effects when graphs are overlaid.
For this to be effective, the graph and its contents must also be transparent. Graphs are
transparent only if their backgrounds are white. Annotations have their own
transparent/opaque settings. PICTs may have been created transparent or opaque; an opaque
PICT cannot be made transparent.

If present the /PD flag must be the first flag.
d=0: Default. Prints without displaying the Print dialog.
d=1: Displays the Print dialog. /PD is equivalent to /PD=1.
d=2: Displays the Print Preview dialog. Requires Igor Pro 7.00 or later.

Specifies a frame around the graph.
f=0: No frame (default).
f=1: Single frame.
f=2: Double frame.
f=3: Triple frame.
f=4: Shadow frame.

PrintLayout

V-657

PrintLayout
PrintLayout [/C=num /D] winName
The PrintLayout operation prints the named page layout window.

Parameters
winName is the window name of the page layout to print.

Flags

Details
Normally page layouts are printed at the highest available resolution of the output device (printer, plotter,
or whatever). On Macintosh, it may not work properly at high resolution with some unusual output
devices. If this happens, you can try using the /D flag to see if it works properly at the default resolution.

See Also
The PrintSettings, PrintGraphs, PrintTable and PrintNotebook operations.

PrintNotebook
PrintNotebook [flags] notebookName
The PrintNotebook operation prints the named notebook window.

Parameters
notebookName is either kwTopWin for the top notebook window, the name of a notebook window or a host-
child specification (an hcSpec) such as Panel0#nb0. See Subwindow Syntax on page III-87 for details on
host-child specifications.

Flags

Details
If no /B flag is given, the default method of handling HiRes PICTs is used (/B=1). Printing of HiRes PICTs is
not well supported on the Macintosh, so by default it prints them using temporary high resolution bitmaps.
If a future version of the Mac OS improves in this respect, we will change the default method to print directly.

See Also
Chapter III-1, Notebooks.
The PrintSettings, PrintGraphs, PrintTable and PrintLayout operations.

/C=num Renders graphs, tables, and annotations in black-and-white (num=0) or in color (num=1;
default). It has no effect on pictures, which are colored independently.

/D Prints the layout at the default resolution of the output device. Otherwise it is printed at the
highest resolution. This flag is of use only on Macintosh. It has no effect on Windows.

/B=hiResMethod

/P=(startPage,endPage) Specifies a page range to print. 1 is the first page.

/S=selection

Macintosh only; this flag has no effect on Windows.
hiResMethod=1: Print HiRes PICTs using high resolution bitmaps.
hiResMethod=0: Don’t print HiRes PICTs using high resolution

bitmaps.
hiResMethod=-1: Print using the default method. Prints HiRes PICTs

using high resolution bitmaps and is the same as
method 1.

Controls what is printed.
selection=0: Print entire notebook (default).
selection=1: Print selection only.

PrintSettings

V-658

PrintSettings
PrintSettings [/I /M /W=winName] [copySource=source, orientation=o,

margins={left,top,right,bottom}, scale=s, colorMode=m, getPrinterList,
getPrinter, setPrinter=printerNameStr, getPageSettings, getPageDimensions]

The PrintSettings operation gets or sets parameters associated with printing, such as a list of available
printers or page setup information for a particular window.
An exception is the graphMode and graphSize keyword pair which affect printing of all graphs. This pair
was added in Igor Pro 7.00.
Prior to Igor Pro 7.00, PrintSettings applied to a page layout affected the size and orientation of the layout
page. In Igor Pro 7.00 and later, the size and orientation of the layout page are independent of print settings.
See Page Layout Page Sizes on page II-391 for details.
When getting or setting page setup information, PrintSettings acts on a particular window called the
destination window. The destination window is the top graph, table, page layout, or notebook window or
the window specified by the /W flag.
PrintSettings can not act on page setup records associated with the command window, procedure
windows, help windows, control panel, XOP windows, or any type of window other than graphs, tables,
page layouts, and notebooks.
The PrintSettings operation services the keywords in the order shown above, not in the order in which they
appear in the command. Thus, for example, the getPageSettings and getPageDimensions keywords report
the settings after all other keywords are executed.

Flags

Keywords

/I Measurements are in inches. If both /I and /M are omitted, measurements are in
points.

/M Measurements are in centimeters. If both /I and /M are omitted, measurements are
in points.

/W=winName Acts on the page setup record of the graph, table, page layout, or notebook window
identified by winName. If winName is omitted or if winName is "", then it used the
page setup for the top window.

colorMode=m Sets the color mode for the page setup to monochrome (m=0) or to color (m=1).
This keyword does nothing on Macintosh because it is not supported by Mac OS X.

copySource=source

getPageDimensions Returns page dimensions via the string variable S_value, which contains keyword-
value pairs that can be extracted using NumberByKey and StringByKey. See
Details for keyword-value pair descriptions.

Copies page setup settings from the specified source to the destination window.
source can be the name of a graph, table, page layout, or notebook window or it
can be one of the following special keywords:
Default_Settings: Sets the page setup record to the default for the associated

printer as specified by the printer driver.
Factory_Settings: Sets the page setup record to the WaveMetrics factory

default. This is the page setup you get when creating a new
window with user preferences turned off.

Preferred_Settings: Sets the page setup record to the user preferred page setup.
This is the page setup you get when creating a new
window with user preferences turned on. Because there is
only one page setup for all graphs and one page setup for
all tables, this has no effect when the destination window
is a graph or table. It does work for layouts and notebooks.

PrintSettings

V-659

getPageSettings Returns page setup settings in the string variable S_value, which contains keyword-
value pairs that can be extracted using NumberByKey and StringByKey. See
Details for keyword-value pair descriptions.

getPrinter Returns the name of the selected printer for the destination window in the string
variable S_value. On Macintosh the returned value will be "" if the setPrinter
keyword was never used on the destination window. This means that the window
will use the operating system’s “current printer”.

getPrinterList

graphMode=g

The graphMode keyword was added in Igor Pro 7.00.

graphSize={left, top, width, height}

Sets the custom graph size used when graphMode is 4. Parameters are in points
unless /I or /M is used.
Invoking the graphSize keyword automatically sets the graphMode to 4.
left and top are clipped so that they are no smaller than the minimum allowed by the
printer driver. width and height are not clipped.
This setting is not saved and is set to a default value when Igor starts.
The graphSize keyword was added in Igor Pro 7.00.

margins={left, top, right, bottom}

Sets the page margins. Dimensions are in points unless /I or /M is used.
The margins are clipped so that they are no smaller than the minimum allowed by
the printer driver and no larger than one-half the size of the paper.
The terms left, top, right, and bottom refer to the sides of the page after possible
rotation for landscape orientation.
Passing zero for all four margins sets the margins to the minimum margin allowed
by the printer.
On Macintosh only, passing -1 for all four margins sets the margins to whatever
minimum margin is allowed by the printer, even if the printer is changed later. This
is how Igor Pro behaved on Macintosh prior to the creation of the PrintSettings
operation, when the minimum printer margins were always used.

orientation=o Sets the paper orientation to portrait (o=0) or to landscape (o=nonzero).

scale=s In Igor Pro 7 and later, the scale keyword returns an “unimplemented” error, unless
s=100, because it is currently not supported. Let us know if this feature is important
to you. Though s=100 does not generate an error, it does nothing. You can still set
the scaling manually using the Page Setup dialog.

setPrinter=printerNameStr

Returns a semicolon-separated list of printer names in the string variable S_value.
Mac OS X: Returns a list of printers added through Print Center.
Windows: Returns the names of any local printers and names of

network printers to which the user has made previous
connections.

Sets the printing mode for graphs:
1: Fill page
2: Same size
3: Same aspect ratio
4: Custom size as set by graphSize keyword
5: Same size or shrink to fit page (default)

PrintSettings

V-660

Details
All graphs in the current experiment share a single page setup record so if you change the page setup for
one graph, you change it for all graphs.
All tables in the current experiment share a single page setup record.
Each page layout window has its own page setup record.
Each notebook window has its own page setup record.
The keyword-value pairs for the getPageSettings keyword are as follows:

The keyword-value pairs for the getPageDimensions keyword are as follows:

Sets the selected printer for the destination window.
SetPrinter attempts to preserve orientation, margins, scale, and color mode but
other settings may revert to the default state.

printerNameStr is a name as returned by the getPrinterList keyword and may not be
identical to the name displayed in various dialogs. For example, on Mac OS X, the
printer name “DESKJET 840C” is returned by getPrinterList as “DESKJET_840C”.
The latter is the “Queue Name” displayed by the Mac OS X Print Center or Printer
Setup Utility programs.

If you receive an error when using setPrinter, use the getPrinterList keyword to
verify that the printer name you are using is correct. Verify that the printer is
connected and turned on.
Windows printer names are sometimes UNC names of the form
“\\Server\Printer”. You must double-up backslashes when using a UNC name in
a literal string. See UNC Paths on page III-401 for details.

Keyword Information Following Keyword

ORIENTATION: 0 if the page is in portrait orientation, 1 if it is in landscape orientation.

MARGINS: The left, top, right, and bottom margins in points, separated by commas.

SCALE: The page scaling expressed in percent. 50 means that the graphics are drawn at 50% of
their normal size.

COLORMODE: 0 for black&white, 1 for color. This is not supported on Macintosh and always returns 1.

Keyword Information Following Keyword

PAPER: The left, top, right, and bottom coordinates of the paper in points, separated by
commas. The top and left are negative numbers so that the page can start at (0,0).

PAGE: The left, top, right, and bottom coordinates of the page in points, separated by commas. The
term page refers to the part of the paper inside the margins. The top/left corner of the page
is always at (0, 0).

PRINTAREA: The left, top, right, and bottom coordinates of the page in points, separated by commas.
The print area is the part of the paper on which printing can occur, as determined by
the printer. This is equal to the paper inset by the minimum supported margins. The top
and left are negative numbers so that the page can start at (0,0).

If printerNameStr is "", the printer for the destination window is set to the default
state. This means different things depending on the operating system:
Mac OS X: The destination window will use the operating system’s

“current printer”, as if the setPrinter keyword had never
been used.

Windows: The destination window will use the system default
printer.

PrintTable

V-661

Examples
For an example using the PrintSettings operation, see the PrintSettings Tests example experiment file in the
“Igor Pro 7 Folder:Examples:Testing” folder.
Here are some simple examples showing how you can use the PrintSettings operation.
Function GetOrientation(name) // Returns 0 (portrait) or 1 (landscape)

String name // Name of graph, table, layout or notebook

PrintSettings/W=$name getPageSettings
Variable orientation = NumberByKey("ORIENTATION", S_value)
return orientation

End

Function SetOrientationToLandscape(name)
String name // Name of graph, table, layout or notebook

PrintSettings/W=$name orientation=1
End

Function/S GetPrinterList()
PrintSettings getPrinterList
return S_value

End

Function SetPrinter(destWinName, printerName)
String destWinName, printerName

PrintSettings/W=$destWinName setPrinter=printerName
return 0

End

See Also
The PrintGraphs, PrintTable, PrintLayout and PrintNotebook operations.

PrintTable
PrintTable [/P=(startPage,endPage) /S=selection] winName
The PrintTable operation prints the named table window.

Parameters
winName is the window name of the table to print.

Flags

See Also
Chapter II-11, Tables.
The PrintSettings, PrintGraphs, PrintLayout and PrintNotebook operations.

Proc
Proc macroName([parameters]) [:macro type]
The Proc keyword introduces a macro that does not appear in any menu. Otherwise, it works the same as
Macro. See Macro Syntax on page IV-110 for further information.

/P=(startPage,endPage) Specifies a page range to print. 1 is the first page.
If /P is omitted all pages are printed unless /S is used.

/S=selection Controls what is printed.
selection=0: Print entire table (default).
selection=1: Print selection only.

ProcedureText

V-662

ProcedureText
ProcedureText(macroOrFunctionNameStr [, linesOfContext [,

procedureWinTitleStr]])
The ProcedureText function returns a string containing the text of the named macro or function as it exists
in some procedure file, optionally with additional lines that are before and after to provide context or to
collect documenting comments.
Alternatively, all of the text in the specified procedure window can be returned.

Parameters
macroOrFunctionNameStr identifies the macro or function. It may be just the name of a global (nonstatic)
procedure, or it may include a module name, such as "myModule#myFunction" to specify the static
function myFunction in a procedure window that contains a #pragma ModuleName=myModule statement.
If macroOrFunctionNameStr is set to "", and procedureWinTitleStr specifies the title of a single procedure
window, then all of the text in the procedure window is returned.
linesOfContext optionally specifies the number of lines around the function to include in the returned string.
The default is 0 (no additional contextual lines of text are returned). This parameter is ignored if
macroOrFunctionNameStr is "" and procedureWinTitleStr specifies the title of a single procedure window.
Setting linesOfContext to a positive number returns that many lines before the procedure and after the
procedure. Blank lines are not omitted.
Setting linesOfContext to -1 returns lines before the procedure that are not part of the preceding macro or
function. Usually these lines are comment lines describing the named procedure. Blank lines are omitted.
Setting linesOfContext to -n, where n>1, returns at most n lines before the procedure that are not part of the
preceding macro or function. Blank lines are not omitted in this case. n can be -inf, which acts the same as
-1 but includes blank lines.
The optional procedureWinTitleStr can be the title of a procedure window (such as "Procedure" or "File Name
Utilities.ipf"). The text of the named macro or function in the specified procedure window is returned.
You can use procedureWinTitleStr to select one of several static functions with identical names among
different procedure windows, even if they do not use a #pragma moduleName=myModule statement.

Advanced Parameters
If SetIgorOption IndependentModuleDev=1, procedureWinTitleStr can also be a title followed by a
space and, in brackets, an independent module name. In such cases ProcedureText retrieves function text
from the specified procedure window and independent module. (See Independent Modules on page
IV-224 for independent module details.)
For example, in a procedure file containing:
#pragma IndependentModule=myIM
#include <Axis Utilities>

A call to ProcedureText like this:
String text=ProcedureText("HVAxisList",0,"Axis Utilities.ipf [myIM]")

will return the text of the HVAxisList function located in the Axis Utilities.ipf procedure window, which
is normally a hidden part of the myIM independent module.
You can see procedure window titles in this format in the Windows→Procedure Windows menu when
SetIgorOption IndependentModuleDev=1 and when an experiment contains procedure windows
that comprise an independent module, as does #include <New Polar Graphs>.
procedureWinTitleStr can also be just an independent module name in brackets to retrieve function text from
any procedure window that belongs to the named independent module:
String text=ProcedureText("HVAxisList",0,"[myIM]")

See Also
Regular Modules on page IV-222 and Independent Modules on page IV-224.
The WinRecreation and FunctionList functions.

ProcGlobal

V-663

ProcGlobal
ProcGlobal#procPictureName
The ProcGlobal keyword is used with Proc Pictures to avoid possible naming conflicts with any other global
pictures in the experiment. When you add a picture to an experiment using the Pictures dialog, such a
picture is global in scope and may potentially have the same name as a Proc Picture. When a Proc Picture
is global (and only then), you should use the ProcGlobal keyword to make sure that the Proc Picture is used
with your code and to avoid confusion with pictures in the Pictures dialog.

See Also
See Proc Pictures on page IV-53 for details. Pictures Dialog on page III-449.

Project
Project [/C={long,lat}/M=method /P={p1,p2,…}] longitudeWave, latitudeWave
The Project operation calculates projections of XY data, which most often are longitude and latitude waves
of geographic coordinates. The output waves are W_XProjection and W_YProjection. Longitude and
Latitude are in degrees.

Parameters
longitudeWave is the name of the wave supplying the longitude or equivalent coordinates. latitudeWave is
the name of the wave supplying the latitude or equivalent coordinates.

Flags

Gnomonic
Here there is one extra parameter that defines the boundaries based on the angle. The specific expression
for the limit is that cos(c) in Eq. (5-3) of Snyder is greater than the specified parameter:
/P={cos(c)}

The actual transformation uses Eqs. (22-4) and (22-5) of Snyder with k' given by (22-3).

General Perspective
Here there is one extra parameter that defines the boundaries based on the angle. The specific expression
for the limit is that cos(c) in Eq. (5-3) of Snyder is greater than the specified parameter.
The actual transformation uses Eqs. (22-4) and (22-5) with k' given by (22-3). Here we specify the height H
is units of sphere radius. The tilt of the plane is specified by omega and gamma following the notation of
Snyder page 175.
The parameters actually specified by the command are:
/P={H,omega,gamma,deltax,deltay }
H is the height (in radii) above the surface of the earth, gamma is the azimuth east of north of the Y axis, and
omega is the tilt angle or the angle between the projection plane and the tangent plane. The x output will be
limited to ± deltax and the y output will be limited to the range ± deltay.

/C={long,lat} Specifies longitude and latitude center of projection. By default long=0 and lat=90.

/M=method

/P={p1,p2,…} One or more parameters required by a particular projection. See the following
sections for parameters required by the various projections.

Indicates the type of projection. method can be one of the following:
0: Orthographic (default).
1: Stereographic.
2: Gnomonic.
3: General perspective.
4: Lambert equal area.
5: Equidistant.
6: Mercator.
7: Transverse Mercator.
8: Albers Equal Area conic.

Prompt

V-664

Mercator
This projection requires the following parameters:
/P={minLong,maxLong,minLat,maxLat}
If /P is not specified, the default is {0,360,-90,90}
Note that this projection flips the sign of y when cos(longitude-long_0) changes sign. If you are plotting a
continuous path in which consecutive points exhibit the sign change, you should add a NaN entry in the
wave so that the path does not wrap.

Albers Equal Area Conic
This projection requires:
/P={minLong, maxLong, minLat, maxLat, Phi1, Phi2}
Phi1 and Phi2 are the specification of the two standard parallels, the other four parameters determine the
boundary of the map area for display.

References
Snyder, John P., Map Projections—A Working Manual, U.S.G.S. Professional Paper 1395, U.S. Government

Printing Office, Washington D.C., 1987, reprinted 1989, 1994, 1997 with corrections.

See Also
“Transforming Data into a Common Spatial Reference” in the “IgorGIS Help” file.

Prompt
Prompt variableName, titleStr [, popup, menuListStr]
The Prompt command is used in functions for the simple input dialog and in macros for the missing
parameter dialog. Prompt supplies text to describe variableName to the user, and optionally provides a pop-
up menu of choices for the value of variableName.

Parameters
variableName is the name of a macro input parameter or function variable.
titleStr is a string or string expression containing the text to present in the dialog to describe what variableName
is. titleStr is limited to 255 bytes.
The optional keyword popup is used to provide a pop-up list of choices for the values of variableName. If
popup is used, then menuListStr is required.
menuListStr is a string or string expression that contains a semicolon-separated list of choices for the value
of variableName. If variableName is a string, choosing from this list will set the string to the selection. If it is a
numeric variable, then it is set to the item number of the selection (if the first item is selected, the numeric
variable is set to 1, etc.).

Details
In macros, there must be a blank line after the set of input parameter declarations and prompt statements
and there must not be any blank lines within the set.
In user-defined functions, Prompt may be used anywhere within the body of the function, but must precede
any DoPrompt that uses the Prompt variable.
menuListStr may be continued on succeeding lines only in macros, as long as no comment is appended to
the Prompt line. The additional lines should start with a semicolon, and are appended to the menuListStrs
on preceding lines.

See Also
For use in user-defined functions, see The Simple Input Dialog on page IV-132.
For use in macros, see The Missing Parameter Dialog on page IV-113.
For use in functions and macros, see the DoPrompt and popup keywords.

PulseStats

V-665

PulseStats
PulseStats [flags] waveName
The PulseStats operation produces simple statistics on a region of the named wave that is expected to contain
three edges as shown below. If more than three edges exist, PulseStats works on the first three edges it finds.

PulseStats handles other cases in which there are only one or two edges.

Flags

/A=n Determines startLevel and endLevel automatically by averaging n points centered at
startX and endX. This does not work in case 2, which requires that you use the /L flag.
Default is /A=1.

/B=box Sets box size for sliding average. This should be an odd number. If /B=box is omitted
or box equals 1, no averaging is done.

/F=f Specifies levels 1, 2, and 3 as a fraction of (endLevel-startLevel):
level1 = level2 = level3 = f*(endLevel-startLevel) + startLevel

f must be between 0 and 1. The default value is 0.5 which sets the levels to midway
between the base levels.

/L=(startLevel, endLevel)

Sets startLevel and endLevel explicitly.

/M=dx Sets minimum edge width. Once an edge is found, the search for the next edge starts
dx units beyond the found edge. Default dx is 0.

/P Output edge locations (see Details) are set in terms of point number. If /P is omitted,
edge locations are set in terms of X values.

/Q Prevents results from being printed in history and prevents error if edge is not found.

/R=(startX,endX) Specifies an X range of the wave to search. You may exchange startX and endX to
reverse the search direction.

/R=[startP,endP] Specifies a point range of the wave to search. You may exchange startP and endP to
reverse the search direction.
If you specify the range as /R=[startP] then the end of the range is taken as the end of
the wave. If /R is omitted, the entire wave is searched.

point 1
point 3

level 1 level 2

startLevel

endLevel
point 2

level 3

startX endX

point 4

point 0

Case 1: 3 edges.

point 2

level 1

startLevel

endLevel
point 1

level 2

startX endX

point 4point 0
Case 2: 2 edges.
There is no point 3

point 1
startLevel

endLevel

level 1

startX endX

point 4

point 0

Case 3: 1 edge.
There is no point 2 or 3

PutScrapText

V-666

Details
The /B=box, /T=dx, /P and /Q flags behave the same as for the FindLevel operation.
PulseStats considers a region of the input wave between two X locations, called startX and endX. startX and
endX are set by the /R=(startX,endX) flag. If this flag is missing, startX and endX default to the start and end
of the entire wave.
The startLevel and endLevel values define the base levels of the pulse. You can explicitly set these levels with
the /L=(startLevel, endLevel) flag or you can let PulseStats find the base levels for you by using the /A=n flag.
With this flag, PulseStats determines startLevel and endLevel by averaging n points centered at startX and at
endX. In case 2, you must use /L=(startLevel, endLevel) since startLevel is not at point 0.
Given startLevel and endLevel and an f value (which you can set with the /F=f flag), PulseStats computes
level1, level2 and level3 which are always equal. With the default f value of 0.5, level1 is midway between
startLevel and endLevel.
With these levels defined, PulseStats searches the wave from startX to endX looking for one, two or three
level crossings. PulseStats sets the following variables:

X locations and distances are in terms of the X scaling of the source wave, unless you use the /P flag in which
case they are in terms of point number.
If any level crossings are missing then PulseStats sets the associated variables to NaN (Not a Number). If
one crossing is missing, variables depending on point 3 are set to NaN. If two crossings are missing,
variables depending on points 2 and 3 are set to NaN. If all crossings are missing, variables depending on
points 1, 2, and 3 are set to NaN. You can use the numtype function to test a variable to see if it is NaN.
The PulseStats operation is not multidimensional aware. See Analysis on Multidimensional Waves on
page II-86 for details.

See Also
The FindLevel operation about the /B=box, /T=dx, /P and /Q flags, EdgeStats and the numtype function.

PutScrapText
PutScrapText textStr
The PutScrapText operation places textStr on the Clipboard (aka “scrap”). This text will be used when the
user subsequently chooses Paste from the Edit menu.

/T=dx Forces search in two directions for a possibly more accurate result. dx controls where
the second search starts.

V_flag 0: All three level crossings were found.
1: One or two level crossings were found.
2: No level crossings were found.

V_PulseLoc1 X location where level1 was found.

V_PulseLoc2 X location where level2 was found.

V_PulseLoc3 X location where level3 was found.

V_PulseLvl0 startLevel value.

V_PulseLvl123 Level1 value that is the same as level2 and level3.

V_PulseLvl4 endLevel value.

V_PulseAmp4_0 Pulse amplitude (endLevel - startLevel).

V_PulseWidth2_1 Left pulse width (x distance between point 2 and point 1).

V_PulseWidth3_2 Right pulse width (x distance between point 3 and point 2).

V_PulseWidth3_1 Pulse period (x distance between point 3 and point 1).

V_PulsePolarity Trend of the edge at point 1 (-1 if decreasing, +1 if increasing).

pwd

V-667

Details
All contents of the Clipboard (including pictures) are cleared before the text is placed there.

Examples
Put two lines of text into the Clipboard:
String text = "This is the first line.\rAnd this is the second."
PutScrapText text

Empty the Clipboard:
PutScrapText ""

See Also
The GetScrapText function and the SavePICT operation.

pwd
pwd
The pwd operation prints the full path of the current data folder to the history area. It is equivalent to Print
GetDataFolder(1).
pwd is named after the UNIX "print working directory" command.

See Also
GetDataFolder, cd, Dir, Data Folders on page II-99

q
q
The q function returns the current column index of the destination wave when used in a multidimensional
wave assignment statement. The corresponding scaled column index is available as the y function.

Details
Unlike p, outside of a wave assignment statement, q does not act like a normal variable.

See Also
Waveform Arithmetic and Assignments on page II-69.
For other dimensions, the p, r, and s functions.
For scaled dimension indices, the x, y, z and t functions.

qcsr
qcsr(cursorName [, graphNameStr])
The qcsr function can be used with cursors on images or waterfall plots to return the column number. It can
also be used with free cursors to return the relative Y coordinate.

Parameters
cursorName identifies the cursor, which can be cursor A through J.
graphNameStr specifies the graph window or subwindow.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.

See Also
The hcsr, pcsr, vcsr, xcsr, and zcsr functions.
Programming With Cursors on page II-249.

Quit

V-668

Quit
Quit [/N/Y]
The Quit operation quits Igor Pro.

Flags

r
r
The r function returns the current layer index of the destination wave when used in a multidimensional
wave assignment statement. The corresponding scaled layer index is available as the z function.

Details
Unlike p, outside of a wave assignment statement, r does not act like a normal variable.

See Also
Waveform Arithmetic and Assignments on page II-69. For other dimensions, the p, q, s, and t functions.
For scaled dimension indices, the x, y, z, and t functions.

r2polar
r2polar(z)
The r2polar function returns a complex value in polar coordinates derived from the complex value z, which
is assumed to be in rectangular coordinates. The magnitude is stored in the real part and the angle (in
radians) is stored in the imaginary part of the returned complex value.

Examples
Assume waveIn and waveOut are complex.
waveOut= r2polar(waveIn)

sets each point of waveOut to the polar coordinates derived from the real and imaginary parts of waveIn.
You may get unexpected results if the number of points in waveIn differs from the number of points in waveOut.

See Also
The functions cmplx, conj, imag, p2rect, and real.

RatioFromNumber
RatioFromNumber [flags] num
The RatioFromNumber operation computes two integers whose ratio is equal to num ± maxError (/MERR
flag). The ratio is returned in V_numerator and V_denominator.

Parameters
num is the number to approximate by V_numerator/V_denominator.

Flags

/N Quits without saving changes and without dialog.

/Y Saves current experiment before quitting without putting up dialog unless current
experiment is “Untitled”.

/MERR=maxError Specifies the maximum tolerable error. The computed ratio differs from num by
no more than maxError (default value is num*1e-6).
maxError must be a value between 0 and num. See Details about setting maxError
to 0.

/MITS = maxIterations Keeps returned values small by specifying a small number for maxIterations.
maxIterations must be a value between 1 and 32767 (default is 100).

Rect

V-669

Details
The ratio is computed by continued fraction expansion and recurrence relations for the convergents and
checking num - (V_numerator/V_denominator) against maxError.
Setting maxError = 0 computes a maximally accurate ratio. The returned values can be surprisingly large:
RatioFromNumber/V/MERR=0 (1/1666)
 V_numerator= 4398046511104; V_denominator= 7.3271454874993e+15;
 ratio= 0.00060024009603842; V_difference= 0;

Using the default /MERR returns the expected 1 and 1666. The difference is attributable to floating-point
roundoff errors.
The ratio is computed by continued fraction expansion and recurrence relations for the convergents and
checking num - (V_numerator/V_denominator) against /MERR.

Output Variables
RatioFromNumber sets the following output variables:

Examples
RatioFromNumber/V pi
 V_numerator= 355; V_denominator= 113; ratio= 3.141592920354;
 V_difference= 2.6676418940497e-07; V_iterations= 3;

RatioFromNumber/V/MITS=2 pi
 V_numerator= 22; V_denominator= 7; ratio= 3.1428571428571;
 V_difference= 0.0012644892673497; V_iterations= 1;

See Also
The gcd and trunc functions.

Rect
The Rect structure is used as a substructure usually to store the coordinates of a window or control.
Structure Rect

Int16 top
Int16 left
Int16 bottom
Int16 right

EndStructure

RectF
The RectF structure is the same as Rect but with floating point fields.
Structure RectF

float top
float left
float bottom
float right

EndStructure

/V[=v] Prints output variables to history.
v=1: Prints variables (same as /V).
v=0: Nothing printed (same as no /V).

V_difference V_numerator/V_denominator - num (positive if the approximation is too big).

V_flag 0: V_difference less than or equal to /MERR.
1: V_difference greater than /MERR.

V_numerator, V_denominator

Values for the numerator and denominator. The ratio of V_numerator/V_denominator
approximates num.

V_iterations The number of iterations actually used.

ReadVariables

V-670

ReadVariables
ReadVariables
The ReadVariables operation reads variables into an experiment.
ReadVariables is used automatically when you open an experiment. You need not invoke it.

real
real(z)
The real function returns the real component of the complex value z.

See Also
The functions cmplx, conj, imag, p2rect, and r2polar.

Redimension
Redimension [flags] waveName [, waveName]…
The Redimension operation remakes the named waves, preserving their contents as much as possible.

Flags

Wave Data Types
As a replacement for the above number type flags you can use /Y=numType to set the number type as an
integer code. See the WaveType function for code values. Do not use /Y in combination with other type
flags. This technique cannot be used to change the number type without changing the real/complex setting.

Details
The waves must already exist. New points in waves that are extended are zeroed.

/B Converts waves to 8-bit signed integer or unsigned integer if /U is present.

/C Converts real waves to complex.

/D Converts single precision waves to double precision.

/E=e

/I Converts waves to 32-bit signed integer or unsigned integer if /U is present.

/L Converts waves to 64-bit signed integer or unsigned integer if /U is present. Requires Igor Pro
7.00 or later.

/N=n n is the new number of points each wave will have. Multidimensional waves are converted to
1 dimension. If n =-1, the wave is converted to a 1-dimensional wave with the original number
of rows.

/N=(n1, n2, n3, n4)

n1, n2, n3, n4 specify the number of rows, columns, layers, and chunks each wave will have.
Trailing zeros can be omitted (e.g., /N=(n1, n2, 0, 0) can be abbreviated as /N=(n1, n2)). If any
dimension size is to remain unchanged, pass -1 for that dimension.

/R Converts complex waves to real by discarding the imaginary part.

/S Converts double precision waves to single precision.

/U Converts integer waves to unsigned.

/W Converts waves to 16-bit integer (unsigned integer if /U is present).

/Y=type Specifies wave data type. See details below.

Controls the redimension mode:
e=0: No special action (default).
e=1: Force reshape without converting or moving data.
e=2: Perform endian swap. See FBinRead for a discussion of endian byte ordering.

Remove

V-671

In general, Redimension does not move data from one dimension to another. For instance, if you have a 6x6
matrix wave, and you would like it to be 3x12, the rows have been shortened and the data for the last three
rows is lost.
As a special case, if converting to or from a 1D wave, Redimension will leave the data in place while
changing the dimensionality of the wave. For example, you can use Redimension to convert a 36-element
1D wave into a 6x6 matrix in which the elements in the first column (column 0) are the first 6 elements of
the 1D wave, the elements of the second column are the next 6, etc. When redimensioning from a 1D wave,
columns are filled first, then layers, followed by chunks.

Examples
Reshaping a 1D wave having 4 elements to make a 2x2 matrix:
Make/N=4 vector=x
Redimension/N=(2,2) vector

See Also
Make, DeletePoints, InsertPoints, Concatenate, SplitWave

Remove
Remove
When interpreting a command, Igor treats the Remove operation as RemoveFromGraph,
RemoveFromTable, or See Also, depending on the target window. This does not work when executing a
user-defined function. Therefore, we recommend that you use RemoveFromGraph, RemoveFromTable, or
RemoveLayoutObjects rather than Remove.

RemoveByKey
RemoveByKey(keyStr, kwListStr [, keySepStr [, listSepStr [, matchCase]]])
The RemoveByKey function returns kwListStr after removing the keyword-value pair specified by keyStr.
kwListStr should contain keyword-value pairs such as "KEY=value1,KEY2=value2" or
"Key:value1;KEY2:value2", depending on the values for keySepStr and listSepStr.
Use RemoveByKey to remove information from a string containing a "key1:value1;key2:value2;" or
"key1=value1,key2=value2," style list such as those returned by functions like AxisInfo or TraceInfo.
If keyStr is not found then kwListStr is returned unchanged.
keySepStr, listSepStr, and matchCase are optional; their defaults are ":", ";", and 0 respectively.

Details
keyStr is limited to 255 bytes.
kwListStr is searched for an instance of the key string bound by listSepStr on the left and a keySepStr on the
right. The key, the keySepStr, and the text up to and including the next listSepStr (if any) are removed from
the returned string.
If the resulting string contains only listSepStr characters, then an empty string ("") is returned.
kwListStr is treated as if it ends with a listSepStr even if it doesn’t.
Searches for keySepStr and listSepStr are always case-sensitive. Searches for keyStr in kwListStr are usually
case-insensitive. Setting the optional matchCase parameter to 1 makes the comparisons case sensitive.
In Igor6, only the first byte of keySepStr and listSepStr was used. In Igor7 and later, all bytes are used.
If listSepStr is specified, then keySepStr must also be specified. If matchCase is specified, keySepStr and
listSepStr must be specified.

Examples
Print RemoveByKey("AKEY", "AKEY:123;BKEY:val") // prints "BKEY:val"
Print RemoveByKey("AKEY", "akey=1;BK=b;", "=") // prints "BK=b;"
Print RemoveByKey("AKEY", "AKEY=1,BK=b,", "=", ",") // prints "BK=b,"
Print RemoveByKey("ckey","CKEY:1;BKEY:2") // prints "BKEY:2"
Print RemoveByKey("ckey","CKEY:1;BKEY:2",":",";",1) // prints "CKEY:1;BKEY:2"

RemoveContour

V-672

See Also
The NumberByKey, StringByKey, ReplaceNumberByKey, ReplaceStringByKey, ItemsInList, AxisInfo,
IgorInfo, SetWindow, and TraceInfo functions.

RemoveContour
RemoveContour [/W=winName] contourInstanceName [, contourInstanceName]…
The RemoveContour operation removes the traces, and releases memory associated with the contour plot
of contourInstanceName in the target or named graph.

Parameters
contourInstanceName is usually simply the name of a wave. More precisely, contourInstanceName is a wave
name, optionally followed by the # character and an instance number to identify which contour plot of a
given wave is to be removed.

Flags

Details
If the axes used by the contour plot are no longer in use, they will also be removed.
An contour instance name in a string can be used with the $ operator to specify imageInstance.

Examples
Display;AppendMatrixContour zw //new graph, contour of zw matrix
AppendMatrixContour zw //two contours of zw
RemoveContour zw#1 //remove the second contour

See Also
The AppendMatrixContour and AppendXYZContour operations.

RemoveEnding
RemoveEnding(str [, endingStr])
The RemoveEnding function removes one character from the end of str, or it removes the endingStr from
the end of str.
endingStr is optional. If missing, one character is removed from the end of str.

Details
endingStr is compared to the end of str using a case insensitive comparison (such as cmpstr uses). If the end
of str does not match endingStr, the unaltered str is returned.

Examples
Print RemoveEnding("123") // prints "12"
Print RemoveEnding("no semi" , ";") // prints "no semi"
Print RemoveEnding("trailing semi;" , ";") // prints "trailing semi"
Print RemoveEnding("file.txt" , ".TXT") // prints "file"

See Also
The cmpstr and ParseFilePath functions.

/W=winName Removes contours from the named graph window or subwindow. When omitted,
action will affect the active window or subwindow. This must be the first flag
specified when used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

RemoveFromGizmo

V-673

RemoveFromGizmo
RemoveFromGizmo [flags]
The RemoveFromGizmo operation removes the specified object from the specified list and optionally
performs an update.
Documentation for the RemoveFromGizmo operation is available in the Igor online help files only. In Igor,
execute:
DisplayHelpTopic "RemoveFromGizmo"

RemoveFromGraph
RemoveFromGraph [/W=winName/Z] traceName [, traceName]…
The RemoveFromGraph operation removes the specified wave traces from the target or named graph. A
trace is a representation of the data in a wave, usually connected line segments.

Parameters
traceName is usually just the name of a wave.
More generally, traceName is a wave name, optionally followed by the # character and an instance number
- for example, wave0#1. See Instance Notation on page IV-19 for details.

Flags

Details
Up to 100 traceNames may be specified, subject to the 1000 byte command length limit.
If the axes used by the given trace are not in use after removing the trace, they will also be removed.
A string containing a trace name can be used with the $ operator to specify traceName.
Specifying $"#0" for traceName removes the first trace in the graph. $"#1" removes the second trace in the
graph, and so on. $"" is equivalent to $"#0".
Note that removing all the contour traces from a contour plot is not the same as removing the contour plot
itself. Use the RemoveContour operation.

Examples
The command:
Display myWave,myWave;Modify mode(myWave#1)=6

appends two instances of myWave to the graph.The first/backmost instance of myWave is instance 0, and
its trace name is just myWave as a synonym for myWave#0. The second or frontmost instance of myWave
is myWave#1 and it is displayed with the cityscape mode.
To remove the second instance from the graph requires the command:
RemoveFromGraph myWave#1

or
String MyTraceName="myWave#1"
RemoveFromGraph $MyTraceName

See Also
Trace Names on page II-216, Programming With Trace Names on page IV-81.

/W=winName Removes traces from the named graph window or subwindow. When omitted, action
will affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/Z Suppresses errors if specified trace or image is not on the graph.

RemoveFromLayout

V-674

RemoveFromLayout
RemoveFromLayout objectSpec [, objectSpec]…
Deprecated — use RemoveLayoutObjects.
The RemoveFromLayout operation removes the specified objects from the top layout.

Parameters
objectSpec is either an object name (e.g., Graph0) or an objectName with an instance (e.g., Graph0#1). An
instance is needed only if the same object appears in the layout more than one time. Graph0 is equivalent
to Graph0#0 and Graph0#1 refers to the second instance of Graph0 in the layout.

See Also
The RemoveLayoutObjects operation.

RemoveFromList
RemoveFromList(itemOrListStr, listStr [, listSepStr [, matchCase]])
The RemoveFromList function returns listStr after removing the item or items specified by itemOrListStr.
listStr should contain items separated by the listSepStr character, such as "abc;def;".
If itemOrListStr contains multiple items, they should be separated by the listSepStr character, too.
Use RemoveFromList to remove item(s) from a string containing a list of items separated by a single character,
such as those returned by functions like TraceNameList or AnnotationList, or a line from a delimited text file.
If all items in itemOrListStr are not found or if any of the arguments is "" then listStr is returned unchanged
(unless listStr contains only list separators, in which case an empty string is returned).
listSepStr and matchCase are optional; their defaults are ";" and 1 respectively.

Details
itemStr may have any length.
listStr is searched for an instance of the item string(s) bound by listSepStr on the left and right. All instances
of the item(s) and any trailing listSepStr (if any) are removed from the returned string.
If the resulting string contains only listSepStr characters, then an empty string ("") is returned.
listStr is treated as if it ends with a listSepStr even if it doesn’t.
Searches for listSepStr are case-sensitive. Searches for items in itemOrListStr are usually case-sensitive.
Setting the optional matchCase parameter to 0 makes the comparisons case insensitive.
In Igor6, only the first byte of listSepStr was used. In Igor7 and later, all bytes are used.
If matchCase is specified, then listSepStr must also be specified.

Examples
Print RemoveFromList("wave1", "wave0;wave1;") // prints "wave0;"
Print RemoveFromList("wave1", ";wave1;;;;") // prints ""
Print RemoveFromList("KEY=joy", "AX=3,KEY=joy", ",") // prints "AX=3,"
Print RemoveFromList("fred", "fred\twilma", "\t") // prints "wilma"
Print RemoveFromList("fred;barney","fred;wilma;barney")// prints "wilma;"
Print "X"+RemoveFromList("",";;;;")+"Y" // prints "XY"
Print RemoveFromList("FRED", "fred;wilma") // prints "fred;wilma"
Print RemoveFromList("FRED", "fred;wilma", ";", 0) // prints "wilma"

See Also
The FindListItem, FunctionList, ItemsInList, RemoveByKey, RemoveListItem, StringFromList,
StringList, TraceNameList, UpperStr, VariableList, and WaveList functions.

RemoveFromTable
RemoveFromTable [/W=winName] columnSpec [, columnSpec]…
The RemoveFromTable operation removes the specified columns from the top table.

Parameters
columnSpecs are the same as for the Edit operation; usually they are just the names of waves.

RemoveImage

V-675

Flags

See Also
Edit about columnSpecs, and AppendToTable.

RemoveImage
RemoveImage [/W=winName/Z] imageInstance [, imageInstance]…
The RemoveImage operation removes the given image from the target or named graph.

Parameters
imageInstance is usually simply the name of a wave. More precisely, imageInstance is a wave name, optionally
followed by the # character and an instance number to identify which image of a given wave is to be removed.

Flags

Details
If the axes used by the given image are not in use after removing the image, they will also be removed.
An image name in a string can be used with the $ operator to specify imageInstance.

See Also
The AppendImage operation.

RemoveLayoutObjects
RemoveLayoutObjects [/PAGE=page/W=winName/Z] objectSpec [, objectSpec]
The RemoveLayoutObjects operation removes the specified object or objects from the top page layout, or
from the layout specified by the /W flag. It targets the active page or the page specified by the /PAGE flag.
Unlike the RemoveFromLayout operation, RemoveLayoutObjects can be used in user-defined functions.
Therefore, RemoveLayoutObjects should be used in new programming.

Parameters
objectSpec is either an object name (e.g., Graph0) or an objectName with an instance (e.g., Graph0#1). An
instance is needed only if the same object appears in the layout more than one time. Graph0 is equivalent
to Graph0#0 and Graph0#1 refers to the second instance of Graph0 in the layout.

/W=winName Removes columns from the named table window or subwindow. When omitted,
action will affect the active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/W=winName Removes an image from the named graph window or subwindow. When omitted,
action will affect the active window or subwindow. Must be the first flag specified
when used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/Z Suppresses errors if specified image is not on the graph.

RemoveListItem

V-676

Flags

See Also
NewLayout, AppendLayoutObject, ModifyLayout, LayoutPageAction

RemoveListItem
RemoveListItem(index, listStr [, listSepStr [, offset]])
The RemoveListItem function returns listStr after removing the item specified by the list index index.
RemoveListItem removes an item from a string containing a list of items separated by a separator, such as
strings returned by functions like TraceNameList and AnnotationList.

Parameters
index is the zero-based index of the list item that you want to remove.
listStr contains a series of text items separated by listSepStr. The trailing separator is optional though
recommended.
listSepStr is optional. If omitted it defaults to ";". Prior to Igor Pro 7, only the first byte of listSepStr was used.
Now all bytes are used.
offset is optional and requires Igor Pro 7 or later. If omitted it defaults to 0. The search begins offset bytes
into listStr. When iterating through lists containing large numbers of items, using the offset parameter
provides dramatically faster execution. For an example using the offset parameter, see StringFromList.

Details
RemoveListItem differs from RemoveFromList in that it specifies the item to be removed by index and
removes only that item, while RemoveFromList specifies the item to be removed by value, and removes all
matching items.
If index less than 0 or greater than ItemsInList(listStr) - 1, or if listSepStr is "" then listStr is returned
unchanged (unless listStr contains only list separators, in which case an empty string is returned).
If the resulting string contains only listSepStr characters, then an empty string ("") is returned.

Examples
Print RemoveListItem(1, "wave0;wave1;w2;") // Prints "wave0;w2;"

See Also
The AddListItem, FindListItem, FunctionList, ItemsInList, RemoveByKey, RemoveFromList,
StringFromList, StringList, TraceNameList, VariableList, WaveList, and WhichListItem functions.

RemovePath
RemovePath [/A/Z] pathName
The RemovePath operation removes a path from the list of symbolic paths. RemovePath is an old name for
the new KillPath operation, which we recommend you use instead.

Rename
Rename oldName, newName
The Rename operation renames waves, strings, or numeric variables from oldName to newName.

Parameters
oldName may be a simple object name or a data folder path and name. newName must be a simple object name.

/PAGE=page Removes the object from the specified page.
Page numbers start from 1. To target the active page, omit /PAGE or use page=0.
The /PAGE flag was added in Igor Pro 7.00.

/W=winName winName is the name of the page layout window from which the object is to be
removed. If /W is omitted or if winName is $"", the top page layout is used.

/Z Does not report errors if the specified layout object does not exist.

RenameDataFolder

V-677

Details
You can not rename an object using a name that already exists. The following will result in an error:
Make wave0, wave1
// Rename wave0 and overwrite wave1.
Rename wave0, wave1 // This will not work.

However, you can achieve the desired effect as follows:
Make wave0, wave1
Duplicate/O wave0, wave1; KillWaves wave0

See Also
The Duplicate operation.

RenameDataFolder
RenameDataFolder sourceDataFolderSpec, newName
The RenameDataFolder operation changes the name of the source data folder to the new name.
sourceDataFolderSpec can be just the name of a child data folder in the current data folder, a partial path
(relative to the current data folder) and name or an absolute path (starting from root) and name.
newName is just the new name for the data folder, without any path.

Details
RenameDataFolder generates an error if the new name is already in use as a data folder contained within
the source data folder.

Examples
RenameDataFolder root:foo,foo2 // Change name of foo to foo2

See Also
Chapter II-8, Data Folders.

RenamePath
RenamePath oldName, newName
The RenamePath operation renames an existing symbolic path from oldName to newName.

See Also
Symbolic Paths on page II-21

RenamePICT
RenamePICT oldName, newName
The RenamePICT operation renames an existing picture to from oldName to newName.

See Also
Pictures on page III-448.

RenameWindow
RenameWindow oldName, newName
The RenameWindow operation renames an existing window or subwindow from oldName to newName.

Parameters
oldName is the name of an existing window or subwindow.
When identifying a subwindow with oldName, see Subwindow Syntax on page III-87 for details on forming
the window hierarchy.

See Also
The DoWindow operation.

ReorderImages

V-678

ReorderImages
ReorderImages [/W=winName] anchorImage, {imageA, imageB, …}
The ReorderImages operation changes the ordering of graph images to that specified in the braces.

Flags

Details
Igor keeps a list of images in a graph and draws the images in the listed order. The first image drawn is
consequently at the bottom. All other images are drawn on top of it. The last image is the top one; no other image
obscures it.
ReorderImages works by removing the images in the braces from the list and then reinserting them at the
location specified by anchorImage. If anchorImage is not in the braces, the images in braces are placed before
anchorImage.
If the list of images is A, B, C, D, E, F, G and you execute the command
ReorderImages F, {B,C}

images B and C are placed just before F: A, D, E, B, C, F, G.
The result of
ReorderImages E, {D,E,C}

is to reorder C, D and E and put them where E was. Starting from the initial ordering this gives A, B, D, E,
C, F, G.
ReorderImages generates an error if the same trace is in the list twice.
In Igor7 or later, anchorImage can be _front_ or _back_. To move A to the front, you can write:
ReorderImage _front_, {A}

See Also
The ReorderTraces operation.

ReorderTraces
ReorderTraces [/W=winName] anchorTrace, {traceA, traceB, …}
The ReorderTraces operation changes the ordering of graph traces to that specified in the braces.

Flags

Details
Igor keeps a list of traces in a graph and draws the traces in the listed order. The first trace drawn is consequently
at the bottom. All other traces are drawn on top of it. The last trace is the top one; no other trace obscures it.
ReorderTraces works by removing the traces in the braces from the list and then reinserting them at the location
specified by anchorTrace. If anchorTrace is not in the braces, the traces in braces are placed before anchorTrace.
If the list of traces is A, B, C, D, E, F, G and you execute the command
ReorderTraces F, {B,C}

traces B and C are placed just before F: A, D, E, B, C, F, G.
The result of

/W=winName Reorders images in the named graph window or subwindow. When omitted, action
will affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/W=winName Reorders traces in the named graph window or subwindow. When omitted, action
will affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

ReplaceNumberByKey

V-679

ReorderTraces E, {D,E,C}

is to reorder C, D and E and put them where E was. Starting from the initial ordering results in A, B, D, E,
C, F, G.
ReorderTraces generates an error if the same trace is in the list twice.
In Igor7 or later, anchorImage can be _front_ or _back_. To move A to the front, you can write:
ReorderTraces _front_, {A}

See Also
Trace Names on page II-216, Programming With Trace Names on page IV-81.
The ReorderImages operation.

ReplaceNumberByKey
ReplaceNumberByKey(keyStr, kwListStr, newNum [, keySepStr

[, listSepStr [, case]]])
The ReplaceNumberByKey function returns kwListStr after replacing the numeric value of the keyword-value
pair specified by keyStr. kwListStr should contain keyword-value pairs such as "KEY=value1,KEY2=value2"
or "Key:value1;KEY2:value2", depending on the values for keySepStr and listSepStr.
Use ReplaceNumberByKey to add or modify numeric information in a string containing a
"key1:value1;key2:value2;" style list such as those returned by functions like AxisInfo or TraceInfo.
If keyStr is not found in kwListStr, then the key and the value are appended to the end of the returned string.
keySepStr, listSepStr, and case are optional; their defaults are ":", ";", and 0 respectively.

Details
The actual string appended is:
[listSepStr] keyStr keySepStr newNum listSepStr
The optional leading list separator listSepStr is added only if kwListStr does not already end with a list separator.
keyStr is limited to 255 bytes.
kwListStr is searched for an instance of the key string bound by listSepStr on the left and a keySepStr on the
right. The text up to the next “;” is replaced by newNum after conversion to text using the %.15g format (see
printf for format conversion specifications).
kwListStr is treated as if it ends with a listSepStr even if it doesn’t.
Searches for keySepStr and listSepStr are always case-sensitive. Searches for keyStr in kwListStr are usually
case-insensitive. Setting the optional case parameter to 0 makes the comparisons case sensitive.
In Igor6, only the first byte of keySepStr and listSepStr was used. In Igor7 and later, all bytes are used.
If listSepStr is specified, then keySepStr must also be specified. If case is specified, keySepStr and listSepStr
must be specified.

Examples
Print ReplaceNumberByKey("K1", "K1:7;", 4) // prints "K1:4;"
Print ReplaceNumberByKey("k2", "K2=8;", 5, "=") // prints "K2=5;"
Print ReplaceNumberByKey("K3", "K3:9,", 6, ":", ",") // prints "K3:6,"
Print ReplaceNumberByKey("k3", "K0:9", 6, ":", ",") // prints "K0:9,k3:6,"
Print ReplaceNumberByKey("k3", "K3:9,", 6, ":", ",") // prints "K3:6,"
Print ReplaceNumberByKey("k3", "K3:9,", 6, ":", ",", 1) // prints "K3:9,k3:6,"

See Also
The ReplaceStringByKey, NumberByKey, StringByKey, RemoveByKey, ItemsInList, AxisInfo,
IgorInfo, SetWindow, and TraceInfo functions.

ReplaceString

V-680

ReplaceString
ReplaceString(replaceThisStr, inStr, withThisStr [, caseSense [, maxReplace]])
The ReplaceString function returns inStr after replacing any instance of replaceThisStr with withThisStr.
The comparison of replaceThisStr to the contents of inStr is case-insensitive. Setting the optional caseSense
parameter to nonzero makes the comparison case-sensitive.
Usually all instances of replaceThisStr are replaced. Setting the optional maxReplace parameter limits the
replacements to that number.

Details
If replaceThisStr is not found, inStr is returned unchanged.
If maxReplace is less than 1, then no replacements are made. Setting maxReplace = Inf is the same as
omitting it.

Examples
Print ReplaceString("hello", "say hello", "goodbye")// prints "say goodbye"
Print ReplaceString("\r\n", "line1\r\nline2", "") // prints "line1line2"
Print ReplaceString("A", "an Ack-Ack", "a", 1) // prints "an ack-ack"
Print ReplaceString("A", "an Ack-Ack", "a", 1, 1) // prints "an ack-Ack"
Print ReplaceString("", "input", "whatever") // prints "input" (no change)

See Also
The ReplaceStringByKey, cmpstr, StringMatch, and strsearch functions.

ReplaceStringByKey
ReplaceStringByKey(keyStr, kwListStr, newTextStr [, keySepStr

[, listSepStr [, matchCase]]])
The ReplaceStringByKey function returns kwListStr after replacing the text value of the keyword-value pair
specified by keyStr. kwListStr should contain keyword-value pairs such as "KEY=value1,KEY2=value2"
or "Key:value1;KEY2:value2", depending on the values for keySepStr and listSepStr.
Use ReplaceStringByKey to add or modify text information in a string containing a
"key1:value1;key2:value2;" style list such as those returned by functions like AxisInfo or TraceInfo.
If keyStr is not found in kwListStr, then the key and the value are appended to the end of the returned string.
keySepStr, listSepStr, and matchCase are optional; their defaults are ":", ";", and 0 respectively.

Details
The actual string appended is:
[listSepStr] keyStr keySepStr newTextStr listSepStr
The optional leading list separator listSepStr is added only if kwListStr does not already end with a list separator.
keyStr is limited to 255 bytes.
kwListStr is searched for an instance of the key string bound by a “;” on the left and a “:” on the right. The
text up to the next “;” is replaced by newTextStr.
If newTextStr is "", any existing value is deleted, but the key, the key separator, and the list separator are
retained. To remove a keyword-value pair, use the RemoveByKey function.
kwListStr is treated as if it ends with a listSepStr even if it doesn’t.
Searches for keySepStr and listSepStr are always case-sensitive. Searches for keyStr in kwListStr are case-
insensitive. Setting the optional matchCase parameter to 1 makes the comparisons case-sensitive.
In Igor6, only the first byte of keySepStr and listSepStr was used. In Igor7 and later, all bytes are used.
If listSepStr is specified, then keySepStr must also be specified. If matchCase is specified, keySepStr and
listSepStr must be specified.

Examples
Print ReplaceStringByKey("KY", "KY:a;KZ:c", "b") // prints "KY:b;KZ:c"
Print ReplaceStringByKey("KY", "ky=a;", "b", "=") // prints "ky=b;"
Print ReplaceStringByKey("KY", "KY:a,", "b", ":", ",")// prints "KY:b,"

ReplaceText

V-681

Print ReplaceStringByKey("ky", "ZZ:a,", "b", ":", ",")// prints "ZZ:a,ky:b,"
Print ReplaceStringByKey("kz", "KZ:a,", "b", ":", ",")// prints "KZ:b,"
Print ReplaceStringByKey("kz", "KZ:a,", "b", ":", ",", 1)// prints "KZ:a,kz:b,"

See Also
The ReplaceString, ReplaceNumberByKey, NumberByKey, StringByKey, ItemsInList, RemoveByKey,
AxisInfo, IgorInfo, SetWindow, and TraceInfo functions.

ReplaceText
ReplaceText [/W=winName/N=name] textStr
The ReplaceText operation replaces the text in the most recently created or changed annotation or in the
annotation specified by /W=winName and/N=name.

Parameters
textStr can contain escape codes to set the font, size, style, color and other properties. See Annotation
Escape Codes on page III-53 for details.
If the annotation is a color scale, this command replaces the text of the color scale’s main axis label.

Flags

See Also
Tag, TextBox, ColorScale, Legend, AppendText, Annotation Escape Codes on page III-53.

ReplaceWave
ReplaceWave [/W=winName] allinCDF
ReplaceWave [/X/W=winName] trace=traceName, waveName
ReplaceWave [/X/Y/W=winName] image=imageName, waveName
ReplaceWave [/X/Y/W=winName] contour=contourName, waveName
The ReplaceWave operation replaces waves displayed in a graph with other waves. The waves to be
replaced, and the replacement waves are chosen by the flags, the keyword and the wave names on the
command line.

Flags

Keywords

/N=name Replaces the text of the named tag or textbox.

/W=winName Replaces text in the named graph window or subwindow. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/W=winName Replaces the wave in the named graph window or subwindow. When omitted, action
will affect the active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/X Replaces the wave defining the X data spacing.

/Y Replaces the wave defining the Y data spacing.

allinCDF Searches the current data folder for waves with the same names as waves used in
the graph. If found and if the waves are of the correct type, they replace the
existing waves. Thus, if you have several data folders with identically-named
waves containing data from different experimental runs, you can browse through
the runs by moving from one data folder to another, using ReplaceWave
allinCDF to update the graph.

Resample

V-682

Details
Waves are replaced in the graph specified by /W=winName otherwise waves are replaced in the top graph.
Updating a contour plot in response to replacing a wave can be time-consuming. If you must replace more
than one wave, put all the commands separated by semicolons on a single line. In a macro, use
DelayUpdate to prevent updates between command lines.
When using the allinCDF keyword, ReplaceWave cannot find waves buried in dynamic annotation text (for
instance, using the \{} syntax in an annotation). ReplaceWave will not replace waves used for error bars, either.
Subsets of data, including individual rows or columns from a matrix, may be specified using Subrange
Display Syntax on page II-250.

Examples
Make XY plot, then replace the waves:
Make fred=x, sam=log(x)
Display fred vs sam
Make fred2=2*x, sam2=ln(x)
ReplaceWave/X trace=fred, sam2
ReplaceWave trace=fred, fred2 // trace is now named fred2

Make contour plot with XYZ triplet waves, then replace the waves. Note the DelayUpdate commands after
the first two ReplaceWave commands:
Make/N=100 junkx, junky, junkz // Waves for XYZ triplets
junkx=trunc(x/10) // X wave for XYZ triplets
junky=mod(x,10) // Y wave for XYZ triplets
junkz=sin(junkx[p])*cos(junky[p]) // Z wave for XYZ triplets
Display; AppendXYZContour junkz vs {junkx, junky} // Make contour plot
Make/O/N=150 junkx2, junky2, junkz2 // Make replacement waves
junkx2=trunc(x/15)
junky2=mod(x,15)
junkz2=sin(junkx2[p])*cos(junky2[p])
ReplaceWave/X contour=junkz,junkx2; DelayUpdate
ReplaceWave/Y contour=junkz,junky2; DelayUpdate
ReplaceWave contour=junkz,junkz2

This example is suitable for copying all the lines and pasting into the command line, or for use in a macro.
If you are typing on the command line, you would want to put the ReplaceWave commands all on one line:
ReplaceWave/X contour=junkz,junkx2; ReplaceWave/Y contour=…

See Also
Trace Names on page II-216, Programming With Trace Names on page IV-81.

Resample
Resample [flags] waveName [, waveName]…
The Resample operation resamples waveName by interpolating or up-sampling (set by /UP=upSample),
lowpass filtering, and decimating or down-sampling (set by /DOWN=downSample).
Lowpass filtering is specified with /N and /WINF or with /COEF=coefsWaveName.

contour=contourName Replaces the wave supplying the Z data for contourName. If /X or /Y is used,
replaces the wave used to set the X or Y data spacing (if the Z data are in a matrix)
or the wave used to supply the X or Y positions if XYZ triplets were specified with
three separate waves.

image=imageName Replaces the wave supplying the Z data for imageName. If /X or /Y is used, replaces
the wave used to set the X or Y data spacing.

trace=traceName Replaces the wave associated with traceName. With the /X flag, waveName will
replace the X wave associated with traceName, otherwise it will replace the Y
wave. Note that traceName is derived from the Y wave name; if you created a
graph using Display jack vs sam, you would use ReplaceWave/X
trace=jack,newsam to replace the X wave.

Resample

V-683

The sampling frequency (1/DimDelta) of a resampled output wave waveName is changed by the ratio of
downSample/upSample. For example, if upSample=4 and downSample=3, then the final sampling rate is 4/3 of
the original value.
Straight interpolation can be accomplished by setting upSample to the interpolation factor and downSample=1,
in which case the sample rate is multiplied by upSample. Deltax(waveName) will be proportionally smaller.
For decimation only, set upSample=1 and downSample to the decimation factor. The sample rate is divided
by downSample, and deltax(waveName) will be proportionally larger.
Use RatioFromNumber to choose appropriate values for upSample and downSample, or use
/SAME=sWaveName or /RATE=sampRate. See Resampling Rates Example for details.
When using /COEF=coefsWaveName, the filter coefficients should implement a low-pass filter appropriate
for the upSample and downSample values or aliasing (filtering errors) will result. See Advanced Externally-
Supplied Low Pass Filter Example for details.

Resampling Rates Flags
The upSample and downSample values define how much interpolation and decimation to perform. They can
be set directly with /UP and /DOWN or indirectly with /SAME or /RATE

/DOWN=downSample Down-samples or decimates the filtered result by this integer factor after up-
sampling and lowpass filtering. The default is 1 (no down-sampling).
For example, /DOWN=3 places only every third value in the output wave.
Down-sampling divides the sampling rate of the filtered data by a factor of
downSample. The DimDelta(waveName, dim) value is multiplied by the same
factor.

/RATE=sampRate Converts the output waveName to the specified sampling rate frequency
(normally Hz).
The necessary upSample and downSample values for each waveName are computed
internally as if you had executed:
RatioFromNumber (deltax(waveName)*sampRate)
upSample = V_numerator
downSample = V_denominator

/RATE returns V_numerator and V_denominator set to these automatically-
determined values for the last waveName.

/SAME=sWaveName

Converts the output waveName to the same sampling rate as sWaveName,
1/DimDelta(sWaveName, dim). The necessary upSample and downSample values are
computed internally as if you had executed:
Variable dd = DimDelta(waveName,dim)
RatioFromNumber dd/DimDelta(sWaveName,dim)
upSample = V_numerator
downSample = V_denominator

/SAME returns V_numerator and V_denominator set to these automatically
determined values for the last waveName.

/UP=upSample Up-samples or interpolates the input by this integer factor. The default is 1 (no
up-sampling).
For example, /UP=4 inserts three extra points between each input point
(producing 4 times as many values) before the lowpass filtering and down-
sampling occurs.
Up-sampling multiplies the sampling rate of the input data by a factor of
upSample, though no additional signal information is created. The
DimDelta(waveName, dim) value is divided by the same factor.

Resample

V-684

Internal Sinc Reconstruction Filter Flags
If /COEF=coefsWaveName is not specified, Resample computes a windowed sinc filter from /N, /DOWN,
/UP, and /WINF flag values.
If /COEF=coefsWaveName is specified, then coefsWaveName supplies the filter, and /N and /WINF are
ignored. See Externally-Supplied Low Pass Filter Flags.

Externally-Supplied Low Pass Filter Flags

/COEF Replaces the first waveName with coefficients generated by downSample, upSample,
numReconstructionSamples, and windowKind, a windowed sinc impulse response.
When resampling multiple waveNames with different filters (because /RATE or
/SAME were specified and the multiple waveNames had different sampling rates), the
filter used to resample the last waveName is returned.

/N=numReconstructionSamples

Specifies the number of input values used to created the up-sampled values (default is 21).
The value of numReconstructionSamples must be odd.
The size of the computed filter is (numReconstructionSamples-1) * upSample + 1.
Bigger is better: 15 is usually on the low side for yielding reasonably accurate results,
and although 101 will nearly always give very good results, it will be slow.

Use /COEF to output the impulse response, and the FFT to display the frequency
response of the interpolator:
Make/O coefs
Variable numReconstructionSamples= 51, upSample= 5
Resample/COEF/N=(numReconstructionSamples)/UP=(upSample) coefs
Variable evenNum= 2*floor((numpnts(coefs)+1)/2)
FFT/OUT=3/PAD={evenNum}/DEST=coefs_FFT coefs
Display coefs_FFT

Bigger is also slower: the filtering is computed in the time-domain, and execution time
is linearly related to
upSample/downSample * numReconstructionSamples.

 /WINF=windowKind

Applies the window, windowKind, to the computed filter coefficients. If /WINF is
omitted, the Hanning window is used. For no coefficient windowing, use
/WINF=None, though this is discouraged.
Windows alter the frequency response of the filter in obvious and subtle ways,
enhancing the stop-band rejection or steepening the transition region between passed
and rejected frequencies. They matter less when numReconstructionSamples is large.
Choices for windowKind are:
Bartlett, Blackman367, Blackman361, Blackman492, Blackman474, Cos1, Cos2, Cos3,
Cos4, Hamming, Hanning, KaiserBessel20, KaiserBessel25, KaiserBessel30, Parzen,
Poisson2, Poisson3, Poisson4, and Riemann.
See FFT for window equations and details.

/COEF =coefsWaveName

Identifies the wave, coefsWaveName, containing filter coefficients that implement a
low-pass filter with a cutoff frequency of the lesser of 0.5/upSample and
0.5/downSample, where 0.5 corresponds to the Nyquist frequency of the up-sampled
data.
For example, if upSample=2, then the filter must contain the classic “half-band” filter,
which stops the higher half of the frequencies and passes the lower half. If
upSample=10, then the filter must pass only the lowest 1/10th of the frequencies.

Resample

V-685

Data Range Flags

Parameters
waveName can be a wave with any number of dimensions. Only one dimension is resampled. Use multiple
Resample calls to resample across multiple dimensions.
Without /DIM, resampling is done along the row (first) dimension. Each column is resampled as if it were
a separate one-dimensional row. This allows multichannel audio to be resampled to another frequency.
If /DIM=1, then resampling proceeds across all the columns of each row.
If /COEF is specified without coefsWaveName, then the first waveName is overwritten by the filter coefficients
instead of being resampled.

Details
The filtering convolution is performed in the time-domain. That is, the FFT is not employed to filter the
data. For this reason the coefficients length (/N or the length of coefsWaveName) should be small in
comparison to the resampled waves.
Resample assumes that the middle point of coefsWaveName corresponds to the delay=0 point. The “middle”
point number = trunc(numpnts(coefsWaveName -1)/2). coefsWaveName usually contains the two-sided
impulse response of a filter, an odd number of points, and implements a low-pass filter whose cutoff

For downSample > upSample, the low-pass filter’s cutoff frequency must be
0.5/downSample. This prevents the decimation from introducing aliasing to the
resampled data.

To avoid shifting the output with respect to the input, coefsWaveName must have an
odd length with the “center” coefficient in the middle of the wave.

The length of coefsWaveName must be 1+upSample*n, where n is any even integer.

Note: Instead of using /N=numReconstructionSamples with /COEF=coefsWaveName,
numReconstructionSamples is computed from upSample and the number of points in
coefsWaveName:
numReconstructionSamples=1+(numpnts(coefsWaveName)-1)/upSample.

Coefficients are usually symmetrical about the middle point, but this is not enforced.

coefsWaveName must not be a destination waveName.
coefsWaveName must be single- or double-precision numeric and one-dimensional.

/DIM=d Specifies the wave dimension to resample.
For d =0, 1, …, resampling is along rows, columns, etc.
The default is /DIM=0, which resamples each individual column (each one a channel,
say left and right) in a multidimensional waveName where each row comprises all
sound samples at a particular time.
To resample in multiple dimensions, execute the command once for each dimension.
For example, use /DIM=0 followed by another command with /DIM=1 to resample a
two-dimensional wave in each direction.

E=endEffect Determines how to handle the ends of the resampled wave(s) (w) when fabricating
missing neighbor values.
endEffect=0: Bounce method. Uses w[i] in place of the missing w[-i] and

w[n-i] in place of the missing w[n+i].
endEffect=1: Wrap method. Uses w[n-i] in place of the missing w[-i] and vice

versa.
endEffect=2: Zero method (default). Uses 0 for any missing value.
endEffect=3: Repeat method. Uses w[0] in place of the missing w[-i] and

w[n] in place of the missing w[n+i].

Resample

V-686

frequency is the lesser of 0.5/upSample and 0.5/downSample (0.5 corresponds to the Nyquist frequency = 1/2
sampling frequency).
When /COEF creates a coefficients wave it sets the X scale deltax to 1 and alters the leftx value so that the
zero-phase (center) coefficient is located at x=0.

Simple Examples
Interpolation by factor of 4, default filter:
Resample/UP=4 data

Decimation by factor of 3, default filter:
Resample/DOWN=3 data

Match sampling rates, default filter:
Resample/SAME=dataAtDesiredRate dataAtWrongRate1, dataAtWrongRate2,...

Resample waves to 10 KHz sampling rate:
Resample/RATE=10e3 dataAtWrongRate1, dataAtWrongRate2,...

Interpolate an image by a factor of 2:
Resample/UP=2 image // default is /DIM=0, resample rows
Resample/UP=2/DIM=1 image // resample across columns

Resampling Rates Example
Suppose we have an audio wave sampled at 44,100 Hz and we wish to resample it to a higher 192,000 Hz
frequency.
We can use /RATE= 192000 and let Resample determine the correct values (provided waveName has its X
scaling set properly to reflect sampling at 44100 Hz), but let’s compute upSample and downSample ourselves.
Because the sampling rate = 1/deltax(wave), we can recast the /SAME formula to RatioFromNumber
(desiredSamplingRate/currentSamplingRate):
•RatioFromNumber/V (192000 / 44100)
 V_numerator= 640; V_denominator= 147;
 ratio= 4.3537414965986;
 V_difference= 0;

Then upSample=640 and downSample=147.
The 44100 Hz input data will be interpolated by 640 to 28,224,000 Hz.
The result is low-pass filtered with a “cutoff frequency” of 1/640th of the interpolated Nyquist frequency =
(28224000/2)/640 = 22,050 Hz, the same as the input signal’s original Nyquist frequency.
The result will be decimated by 147 to 192,000 Hz, which is the desired output sampling frequency.

Resample/UP=640/DOWN=147 sound // convert 44.1 KHz to 192 KHz

Advanced Externally-Supplied Low Pass Filter Example
You can generate an appropriate filter by executing commands like these:
// Compute a filter for after the input is upsampled
// to restore the frequency content to the original range.
Variable fc = min(0.5 / upSample, 0.5 * upSample / downSample)
// Transition width, small widths need big n
Variable tw= fc/10
// Set end of pass band
Variable f1= fc-tw/2
// Set start of stop band
Variable f2= fc+tw/2
// Use bigger values of n to make the filter smoother

Note: Interpolating by a factor of two does not produce an image with twice as many rows and
columns. The new number of rows = (original rows-1)*upSample +1, and a similar
computation applies to columns.

Note: If downSample had been greater than upSample, then the low-pass filter’s cutoff frequency
would have been 1/downSampleth of the interpolated Nyquist frequency =
(28224000/2)/downSample. This prevents the decimation from introducing aliasing to the
resampled data.

Resample

V-687

Variable nReconstruct= 31
Variable n= (nReconstruct-1)*upSample+1 // odd = no phase shift
// Create a wave to hold the coefficients; it gets resized to n
Make/O/N=0 coefsWaveName
FilterFIR/COEF/LO={f1,f2,n} coefsWaveName

However, FilterFIR does not create windowed sinc lowpass filters that have the endearing property that the
original input values are unaltered in the filtered output, though only if upSample > downSample. This is
called a “Nyquist filter” or “Kth-band filter” in the literature.
If upSample > downSample, you can enforce the Nyquist criterion by “zeroizing” the designed filter by setting
every upSampleth value to 0 except the center one.
// coefsWaveName length must be 1+upSample*n, where n is any even integer

Function Zeroize(w, upSample)
Wave w // coefsWaveName
Variable upSample // upSample value

Variable n= DimSize(w,0)
Variable centerP= floor((n-1)/2) // if n=101, centerP= 50
Variable i
for (i=0; i<n; i+=upSample)

if(i != centerP)
w[i] = 0

endif
endfor

End

Resample zeroizes the internally-generated low pass filter when upSample > downSample.
Additionally, the FilterFIR command generates a low-pass filter whose gain needs to be multiplied by upsample:
coefsWaveName *= upSample
When designing an externally supplied filter, you should also consider the filter’s “polyphase” nature;
coefsWaveName is actually a set of upSample interleaved filters, each with its own response. It makes sense
to adjust these filters to produce consistent responses. If you don’t, the results will contain ringing with a
period of upSample/downSample. This is most apparent when downSample is 1.
Using the filter we’ve designed so far with upSample=4, here’s the output of a constant-input wave:
Make/O constantData= 1
Resample/COEF=coefsWaveName/UP=4 constantData

The graph shows that the filter response at 0 Hz for the first of 4 filters is 1.0010, the second and fourth
filter’s responses are very close to 1.0, and the third filter’s response at 0 Hz is a little less than 1.0.
These variations can be eliminated by normalizing the sum of each polyphase filter to 1.0:
Function PolyphaseNormalize(w, upSample)

Wave w // coefsWaveName
Variable upSample // upSample value

Variable n= DimSize(w,0)
Variable filt
// for each filter (0..upSample-1)
for (filt=0; filt<upSample; filt+=1)

Variable total=0
Variable pt
// compute total for this filter
for (pt=filt; pt<n; pt+=upSample)

total += w[pt]
endfor

1.0010

1.0008

1.0006

1.0004

1.0002

1.0000

0.9998

0.9996

3.02.52.01.51.00.50.0

 constant data
 FilterFIR coefs without poly-phase filter adjustments (upSample=4)

ResumeUpdate

V-688

// divide by total to normalize total to 1
for (pt=filt; pt<n; pt+=upSample)

w[pt] /= total
endfor

endfor
End

Now the filter is ready to be used to filter data:
Resample/COEF=coefsWaveName/UP=(upSample)/DOWN=(downSample) dataWave

You can see that designing an externally-supplied lowpass filter is much more complicated than using the
internal sinc reconstruction filter, which does all this zeroizing, scaling, and polyphase normalization for you.

References
Mintzer, F., On half-band, third-band, and Nth band FIR filters and their design, IEEE Trans. on Acoust.,

Speech, Signal Process., ASSP-30, 734-738, 1982.

See Also
RatioFromNumber, FilterFIR, interp, Interp2D, Interpolate2, ImageInterpolate, Loess

ResumeUpdate
ResumeUpdate
The ResumeUpdate operation cancels the corresponding PauseUpdate.
This operation is of use in macros. It is not allowed from the command line. It is allowed but has no effect
in user-defined functions. During execution of a user-defined function, windows update only when you
explicitly call the DoUpdate operation.

See Also
The DelayUpdate, DoUpdate, and PauseUpdate operations.

return
return [expression]
The return flow control keyword immediately stops execution of the current procedure. If called by another
procedure, it returns expression and control to the calling procedure.
Functions can return only a single value directly to the calling procedure with a return statement. The
return value must be compatible with the function type. A function may contain any number of return
statements; only the first one encountered during procedure execution is evaluated.
A macro has no return value, so return simply quits the macro.

See Also
The Return Statement on page IV-35.

Reverse
Reverse [type flags][/DIM=d /P] waveA [/D = destWaveA][, waveB [/D = destWaveB][, …]]
The Reverse operation reverses data in a wave in a specified dimension. It does not accept text waves.

1.0000

0.9999

0.9998

0.9997

0.9996

0.9995

3.02.52.01.51.00.50.0

 constant data
 FilterFIR coefs with poly-phase filter adjustments

RGBColor

V-689

Flags

Type Flags (used only in functions)
Reverse also can use various type flags in user functions to specify the type of destination wave reference
variables. These type flags do not need to be used except when it is needed to match another wave reference
variable of the same name or to identify what kind of expression to compile for a wave assignment. See
WAVE Reference Types on page IV-67 and WAVE Reference Type Flags on page IV-68 for a complete list
of type flags and further details.

Wave Parameters

Details
If the optional /D = destWave flag is omitted, then the wave is reversed in place.

See Also
Sorting on page III-126, Sort, SortColumns

RGBColor
The RGBColor structure is used as a substructure usually to store various color settings.
Structure RGBColor

UInt16 red
UInt16 green
UInt16 blue

EndStructure

RGBAColor
The RGBAColor structure is the same as RGBColor but with an alpha field to represent translucency.
Structure RGBAColor

UInt16 red
UInt16 green
UInt16 blue
UInt16 alpha

EndStructure

rightx
rightx(waveName)
The rightx function returns the X value corresponding to point N of the named 1D wave of length N.

Details
Note that the point numbers in a wave run from 0 to N-1 so there is no point with this X value. To get the
X value of the last point in a wave (point N-1), use the following:
pnt2x(waveName,numpnts(waveName)-1) // N = numpnts(waveName)

which is more accurate than:
rightx(waveName) - deltax(waveName)

/DIM = d Specifies the wave dimension to reverse.
d=-1: Treats entire wave as 1D (default).
For d=0, 1, …, operates along rows, columns, etc.

/P Suppresses adjustment of dimension scaling. Without /P the scaled dimension value
of reversed points remains the same.

Note: All wave parameters must follow wave in the command. All wave parameter flags and
type flags must appear immediately after the operation name (Reverse).

/D=destWave Specifies the name of the wave to hold the reversed data. It creates destWave if it does not
already exist or overwrites it if it exists.

root

V-690

The rightx function is not multidimensional aware. See Analysis on Multidimensional Waves on page
II-86 for details. The equivalent information for any dimension can be calculated this way:
IndexN = DimSize(wave, dim)*DimDelta(wave, dim) + DimOffset(wave, dim)
Here IndexN is the value of the scaled dimension index corresponding to element N of the dimension dim
in a wave named wave that has N elements in that dimension.

See Also
The deltax and leftx functions, also the pnt2x and numpnts functions.
For an explanation of waves and dimension scaling, see Changing Dimension and Data Scaling on page II-63.
For multidimensional waves, see DimDelta, DimOffset, and DimSize.

root
root[:dataFolderName[:dataFolderName[:…]]][:objectName]
Igor’s data folder hierarchy starts with the root folder as its basis. The root data folder always exists and it
contains all other objects (waves, variables, strings, and data folders). By default, the root data folder is the
current data folder in a new experiment. In commands, root is used as part of a path specifying the location
of a data object in the folder hierarchy.

See Also
Chapter II-8, Data Folders.

Rotate
Rotate rotPoints, waveName [, waveName]…
The Rotate operation rotates the Y values of waves in wavelist by rotPoints points.

Parameters
If rotPoints is positive then values are rotated from the start of the wave toward the end and rotPoints values
from the end of a wave wrap around to the start of the wave.
If rotPoints is negative then values are rotated from the end of the wave toward the start and rotPoints values
from the start of a wave wrap around to the end of the wave.

Details
The X scaling of the named waves is changed so that the X values for the Y values remains the same except
for the points that wrap around.
The Rotate operation is not multidimensional aware. To rotate rows or columns of 2D waves, see the
rotateRows, rotateCols, rotateLayers and rotateChunks keywords for MatrixOp and the rotateRows and
rotateCols keywords for ImageTransform.
For general information about multidimensional analysis, see Analysis on Multidimensional Waves on
page II-86.

See Also
The shift parameter of the WaveTransform operation.

round
round(num)
The round function returns the integer value closest to num.
The rounding method is “away from zero”.

See Also
The ceil, floor, and trunc functions.

rtGlobals
#pragma rtGlobals = 0, 1, 2, or 3
#pragma rtglobals=<n> is a compiler directive that controls compiler and runtime behaviors for the
procedure file in which it appears.

s

V-691

This statement must be flush against the left edge of the procedure file with no indentation. It is usually
placed at the top of the file.
#pragma rtglobals=0 turns off runtime creation of globals. This is obsolete.
#pragma rtglobals=1 is a directive that turns on runtime lookup of globals. This is the default behavior
if #pragma rtGlobals is omitted from a given procedure file.
#pragma rtGlobals=2 turns off compatibility mode. This is mostly obsolete. See Legacy Code Issues on
page IV-104 for details.
#pragma rtglobals=3 turns on runtime lookup of globals, strict wave reference mode and wave index
bounds checking.
rtGlobals=3 is recommended.
See The rtGlobals Pragma on page IV-48 for a detailed explanation of rtGlobals.

s
s
The s function returns the current chunk index of the destination wave when used in a multidimensional
wave assignment statement. The corresponding scaled chunk index is available as the t function.

Details
Unlike p, outside of a wave assignment statement, s does not act like a normal variable.

See Also
Waveform Arithmetic and Assignments on page II-69.
For other dimensions, the p, r, and q functions.
For scaled dimension indices, the x, y, z and t functions.

Save
Save [flags] waveList [as fileNameStr]
The Save operation saves the named waves to disk as text (/F, /G or /J) or as Igor binary.

Parameters
waveList is either a list of wave names or, if the /B flag is present, a string list of references to waves. For
example, the following commands are equivalent, assuming that the waves in question are in the root data
folder and root is the current data folder:
Save/J wave0,wave1 as "Test.dat"
Save/J root:wave0,root:wave1 as "Test.dat"
Save/J/B "wave0;wave1;" as "Test.dat"
Save/J/B "root:wave0;root:wave1;" as "Test.dat"
String list="root:wave0;root:wave1;"; Save/J/B list as "Test.dat"

The form using the /B flag and a string containing a list of references to waves saves a very large number of
waves using one command. This is not possible using a list of wave names because of the 1000 byte
command line length limit. When using this form, the string must contain semicolon-separated wave
names or data folder paths leading to waves. Liberal names in the string may be quoted or unquoted.
The file to be written is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If it
cannot determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.

Save

V-692

Flags

/A[=a]

/B The waveList parameter is a string containing a list of references to waves instead of a
literal list of waves.

/C Saves a copy of the wave when saving as Igor binary.

/DLIM=delimStr Specifies the string to use as a column delimiter. This flag affects general text saves
(/G) and delimited text saves (/J) only.
delimStr defaults to tab. It can consist of multiple characters.
If you choose a delimiter that also appears in the data you are saving, for example if
you choose to save text waves containing commas using comma as the separator, the
resulting file is likely to be misinterpreted by any software loading it.
/DLIM was added in Igor Pro 7.00.

/DSYM=dsStr Specifies a string containing the character to use as the decimal symbol for all
numbers (default is a period). If dsStr is empty (""), then the decimal symbol is as
defined in system preferences as of when Igor was launched.

/E=useEscapeCodes

/F Writes delimited and general text files with numeric formatting as it appears in the
top table. Has no effect if there is no top table or if the wave being saved does not
appear in the top table.
Note: The text written to the file is exactly as displayed in the table. Set the table to
display as many digits of precision as you want in the file.
Note: Fractional and out-of-range floating point wave data can not be formatted as
octal or hex. See Octal Numeric Formats on page II-192 and Hexadecimal Numeric
Formats on page II-192 for details.
Note: When saving a multi-column wave (1D complex wave or multi-dimensional
wave), all columns of the wave are saved using the table format for the first table
column from the wave.

/G Saves waves in general text format.

/H "Adopts" the waves specified by waveList.
"Adopt" means that any connection between the waves and external files is severed.
The waves become part of the current experiment. When the experiment is next
saved, the waves are saved in the experiment file (for an packed experiment) or in the
experiment folder (for an unpacked experiment).

Appends to the file rather than overwriting it (with /T, /G or /J).
a=0: Does not append.
a=1: Appends to the file with a blank line before the appended data (same as

/A only).
a=2: Appends to the file with no blank line before the appended data.

Determines whether to use escape sequences for special characters.
/E=1: Converts carriage-return, linefeed, tab, and backslash characters to

escape sequences when writing general or delimited text files
(default; same as no /E).

/E=0: No escape sequences used in general or delimited text files. When
saving text waves containing backslashes (such as Windows paths)
in a file intended for another program, you probably should use
/E=0.

Save

V-693

Details
The Save operation saves only the named waves; it does not save the entire experiment.
Waves saved in Igor binary format are saved one wave per file. If you are saving more than one wave, you
must not specify a fileNameStr. Save will give each file a name which consists of the wave name concatenated
with “.ibw”.
When you save a wave as Igor binary, unless you use the /C flag to save a copy, the current experiment
subsequently references the file to which the wave was saved. See References to Files and Folders on page
II-22 for details.
In a general text file (/G), waves with different numbers of points are saved in different groups. Waves with
different precisions and number types are saved in same group if they have the same number of points.
In a delimited text file (/J), all waves are saved in one group whether or not they have the same number of
points.
If you save multiple 2D waves, the blocks of data are written one after the other.

When you use the /H flag, all other flags and the fileNameStr parameter are ignored.
The wave is not actually saved but rather is marked for saving as part of the current
experiment.
You would normally do this to make an experiment more self-contained which makes
it easier to send to other people. See Sharing Versus Copying Igor Binary Files on
page II-137 and the LoadWave /H flag.

/I Presents a dialog from which you can specify file name and folder.

/J Saves waves in delimited text format.
The delimiter defaults to tab unless you specify another delimiter using /DLIM.

/M=termStr Specifies the terminator character or characters to use at the end of each line of text.
The default is /M="\r", which uses a carriage return character. This is the Macintosh
convention. To use the Windows convention, carriage return plus linefeed, specify
/M="\r\n". To use the Unix convention, just a linefeed, specify /M="\n".

/O Overwrites file if it exists already.

/P=pathName Specifies the folder to store the file in. pathName is the name of an existing symbolic path.

/T Saves waves in Igor Text format.

/U={writeRowLabels, rowPositionAction, writeColLabels, colPositionAction}

These parameters affect the saving of a matrix (2D wave) to a delimited text (/J) or
general text (/G) file. They are accepted no matter what the save type is but are
ignored when they don’t apply.
If writeRowLabels is nonzero, Save writes the row labels of the matrix as the first
column of data in the file.

writeColumnLabels and columnPositionAction have analogous meanings. The prefix
used for the column position wave is “CP_”.
See Chapter II-9, Importing and Exporting Data, for further details.

/W Saves wave names (with /G or /J).

rowPositionAction has one of the following values:
0: Don’t write a row position column.
1: Writes a row position column based on the row scaling of the matrix

wave.
2: Writes a row position column based on the contents of the row

position wave for the matrix. The row position wave is an optional
1D wave whose name is the same as the matrix wave but with the
prefix “RP_”.

Save

V-694

If you save 3D waves, the data for each wave is written as a contiguous block having as many columns as
there are columns in the wave, and R*L rows, where R is the number of rows in the multidimensional wave
and L is the number of layers. All rows for layer 0 are saved followed by all rows for layer 1, and so on.
If you save 4D waves, the data for each wave is written as a contiguous block having R*L*C rows, where R
is the number of rows, L is the number of layers and C is the number of chunks. Igor writes all data for
chunk 0 followed by all data for chunk 1, and so on.
The Save operation will always present a save dialog if you try to save to an existing file without using the
overwrite flag.
Here are some details about saving an Igor binary file.
If you omit the path or the file name, the Save operation will normally present a save dialog. However, if
the wave has already been saved to a stand-alone file and if you use the overwrite flag, it will save the wave
to the same file without a dialog. Also, if the wave has never been saved and the current experiment is an
unpacked experiment, it will save to the home folder without a dialog.
If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-21 for details.

Examples
This function uses the string list of references to waves to save some or all of the waves in the current data folder:
Function SaveWavesFromCurrentDF(matchStr)

String matchStr // As for the WaveList function.

String list
list = WaveList(matchStr, ";", "")
Save/O/J/W/I/B list

End

For example, to save all of the waves in the current data folder, execute:
SaveWavesFromCurrentDF("*")

To save those waves in the current data folder whose name starts with “wave”, execute:
SaveWavesFromCurrentDF("wave*")

This function saves all of the waves used in a particular graph:
Function SaveWavesFromGraph(graphName) // Saves all waves in graph.

String graphName // "" for top graph.

String list, traceList, traceName
Variable index = 0
list = ""
traceList = TraceNameList(graphName, ";", 1)
do

traceName = StringFromList(index, traceList, ";")
if (strlen(traceName) == 0)

break
endif
Wave w = TraceNameToWaveRef(graphName, traceName)
list += GetWavesDataFolder(w,2) + ";"
index += 1

while(1)

if (strlen(list) > 0)
Save/O/J/W/I/B list

endif
End

See Also
Exporting Data on page II-156.

SaveData

V-695

SaveData
SaveData [flags] fileOrFolderNameStr
The SaveData operation writes data from the current data folder of the current experiment to a packed
experiment file on disk or to a file system folder. “Data” means Igor waves, numeric and string variables,
and data folders containing them. The data is written as a packed experiment file or as unpacked Igor
binary files in a file-system folder.

SaveData provides a way to save data for archival storage or unload data from memory during a lengthy process
like data acquisition. The file or files that SaveData writes are disassociated from the current experiment.
Use SaveData to save experiment data using Igor procedures. To save experiment data interactively, use
the Save Copy button in the Data Browser (Data menu).

Parameters
fileOrFolderNameStr specifies the packed experiment file (if /D is omitted) or the file system folder (if /D is
present) in which the data is to be saved. The documentation below refers to this file or folder as the “target”.
If you use a full or partial path for fileOrFolderNameStr, see Path Separators on page III-401 for details on
forming the path.
If fileOrFolderNameStr is omitted or is empty (""), SaveData displays a dialog from which you can select the
target. You also get a dialog if the target is not fully specified by fileOrFolderNameStr or the /P=pathName flag.

Flags

Warning: If you make a mistake using SaveData, it is possible to overwrite critical data, even entire
folders containing critical data. It is your responsibility to make sure that any file or folder
that you can not afford to lose is backed up. If you provide procedures for use by other
people, you should warn them as well.

/D [=d]

/I Presents a dialog in which you can interactively choose the target.

/J=objectNamesStr Saves only the objects named in the semicolon-separated list of object names. See
Details below.

/L=saveFlags

To save multiple data types, sum the values shown in the saveFlags column. For
example, /L=1 saves waves only, /L=2 saves numeric variables only and /L=3 saves
both waves and numeric variables.
If /L is not specified, all of these object types are saved. This is equivalent to /L=7. All
other bits are reserved and must be set to zero. See Setting Bit Parameters on page
IV-12 for details about bit settings.

Writes to a file-system folder (a directory). If omitted, SaveData writes to an Igor
packed experiment file.

If in doubt, use /D=1. See Details below.

d=1: If the target folder already exists, the new data is “mixed-in” with the
data already there (same as /D).

d=2: If the target folder already exists, it is completely deleted before the
writing of data starts.

Controls what kind of data objects are saved with a bit for each data type:

saveFlags Bit Number Saves this Type of Object

1 0 Waves

2 1 Numeric variables

4 2 String variables

SaveData

V-696

Details
If /J=objectNamesStr is used, then only the objects named in objectNamesStr are saved. For example, specifying
/J="wave0;wave1;" will save only the two named waves, ignoring any other data in all data folders.
The list of object names used with /J must be semicolon-separated. A semicolon after the last object name in the
list is optional. The object names must not be quoted even if they are liberal. The list is limited to 1000 characters.
Using /J="" acts like no /J at all.
The /M=modDateTime flag can be used in data acquisition projects to save only those waves modified since the
previous save. For example, assume that we have a global variable in the root data folder named
gLastWaveSaveDateTime. Then this function will write out only those waves modified since the previous save:
Function SaveModifiedWaves(savePath)

String savePath // Symbolic path pointing to output directory
NVAR lastSave = root:gLastWaveSaveDateTime
SaveData/O/P=$savePath/D=1/L=1/M=(lastSave) ":"
lastSave = datetime

End

Because the datetime function and the wave modification date have a coarse resolution (one second), this
function may sometimes save the same wave twice.
The /M flag makes sense only in conjunction with the /D=1 flag because /D=1 is the only way to mix-in new
data with existing data.

Writing to a Packed Experiment File
When writing to a packed file, SaveData creates a standard packed Igor experiment file which you can open
as an experiment, browse using the Data Browser, or access using the LoadData operation.

/M=modDateTime Saves waves modified on or after the specified modification date/time. Waves
modified before modDateTime will not be saved. Applies to waves only (not variables
or strings).
modDateTime is in standard Igor time format — seconds since 1/1/1904. If modDateTime
is zero, all waves will be saved, as if there were no /M flag at all.

/O Overwrites existing files or folders on disk.
Warning: If you use the /O flag and if the target already exists, it will be overwritten
without any warning. If you use /O with /D=2, you will completely overwrite the
target folder and all of its contents, including subfolders. Do not use /O with /D
unless you are absolutely sure you know what your doing.

/P=pathName Specifies the folder in which to save the specified file or folder.
pathName is the name of an Igor symbolic path, created via NewPath. It is not a file
system path like "hd:Folder1:" or "C:\\Folder1\". See Symbolic Paths on page
II-21 for details.
When used with the /D flag, if /P=pathName is present and fileOrFolderNameStr is ":",
the target is the directory specified by /P=pathName.

/Q Suppresses normal messages in the history area.

/R Recursively saves subdata folders.

/T [=topLevelName] Creates an enclosing data folder in the target with the specified name, topLevelName,
and writes the data to the new data folder.
If just /T is specified, it creates an enclosing data folder in the target using the name of
the data folder being saved. However, if the data folder being saved is the root data
folder, the name Data is used instead of root. In packed experiment files and
unpacked experiment folders, the root data folder is implicit.
If /T is omitted, the contents of the current data folder are saved with no enclosing
data folder.

SaveData

V-697

If you do not use the /O (overwrite) flag and the packed file already exists on disk, SaveData will present a dialog
to confirm which file you want to write to. If you use the /O flag, SaveData will overwrite without presenting a
dialog. When writing a packed file, SaveData always completely overwrites the preexisting packed file.
Appending to a packed experiment file is not supported because dealing with the possibility of name
conflicts (e.g., two waves with the same name in the same data folder in the packed experiment file) would
be technically difficult, very slow and errors would result in corrupted files.

Writing to a File-System Folder
When saving to a folder on disk, SaveData writes wave files, variables files, and subfolders. This resembles
the experiment folder of an unpacked experiment, but it does not contain other unpacked experiment files,
such as history or procedures. You can browse the folder using the Data Browser or access it using the
LoadData operation.
If the target directory does not exist, SaveData creates it.
If you do not use the /O (overwrite) flag and the target folder already exists on disk, SaveData will present
a dialog to confirm that you want to write to it. SaveData checks for the existence of the top file system
folder only. For example, if you write data to hd:Data:Run1, SaveData will display a dialog if hd:Data:Run1
exists. But SaveData will not display a dialog for any folders inside hd:Data:Run1.
If you use the /O flag, SaveData will write without presenting a dialog.
When writing to a directory, SaveData can operate in one of two modes. If you use /D=1 or just /D, SaveData
operates in “mix-in” mode. If you use /D=2, SaveData operates in “delete” mode.

If the target directory exists and mix-in mode is used, SaveData does not do any explicit deletion. It writes
data to the target directory and any subdirectories. Conflicting files in any directory are overwritten but
other files are left intact.
To prevent you from inadvertently deleting an entire volume, SaveData will not permit you to target the
root directory of any volume. You must target a subdirectory.
The /J flag will not work as expected when writing numeric and string variables in mix-in mode. Instead of
mixing-in the specified variables, SaveData will overwrite all variables already in the target. This is because
all numeric and string variables in a particular data folder are stored in a single file-system folder (named
“variables”), so it is not possible to mix-in. Since waves are written one-to-a-file, /J will work as expected
for waves.
When SaveData writes a wave to a file-system folder, the file name for the wave is the same as the wave
name, with the extension “.ibw” added. This is true even if the wave in the experiment was loaded from a
file with a different name.

Outputs
SaveData sets the variable V_flag to zero if the operation succeeded or to nonzero if it failed. The main use for
this is to determine if the user clicked Cancel during an interactive save. This would occur if you use the /I flag
or if you omit /O and the target already exists. V_flag will also be nonzero if an error occurs during the save.
SaveData sets the string variable S_path to the full file system path to the file or folder that was written.
S_path uses Macintosh path syntax (e.g., "hd:FolderA:FolderB:"), even on Windows. When saving
unpacked, S_path includes a trailing colon.

Examples
Write the contents of the current data folder and all subdata folders to a packed experiment file:
Function SaveDataInPackedFile(pathName, fileName)

String pathName // Name of symbolic path
String fileName // Name of packed file to be written

SaveData/R/P=$pathName fileName
End

Write the contents of the current data folder and all subdata folders to an unpacked file-system folder:
Function SaveDataInUnpackedFolder(pathName, folderName)

Warning: If the target directory exists and delete mode is used, SaveData deletes the target directory
and all of its contents. Then SaveData creates the target directory and writes the data to it.
This is a complete overwrite operation.

SaveExperiment

V-698

String pathName // Name of symbolic path
String folderName // Name of file-system folder

SaveData/D=1/R/P=$pathName folderName
End

Copy the contents of an unpacked file-system folder to a packed experiment file:
Function TransferUnpackedToPacked(path1, folderName, path2, fileName)

String path1 // Points to parent of unpacked folder
String folderName // Name of folder containing unpacked data
String path2 // Points to folder where file is to be written
String fileName // Name of packed file to be written

DFREF savedDF = GetDataFolderDFR()

NewDataFolder/O/S :TempTransfer

// Load all data from the unpacked folder.
LoadData/D/Q/R/P=$path1 folderName

// Save all data to the packed file.
SaveData/R/P=$path2 fileName

KillDataFolder : // Kill TempTransfer

SetDataFolder savedDF
End

See Also
The LoadData and SaveGraphCopy operations; the SpecialDirPath function. Saving Package Preferences
on page IV-237; Exporting Data on page II-156; The Data Browser on page II-106.

SaveExperiment
SaveExperiment [flags] [as fileName]
The SaveExperiment operation saves the current experiment.
Warning: SaveExperiment overwrites any previously-existing file named fileName.

Parameters
The optional fileName string contains the name of the experiment to be saved. fileName can be the currently
open experiment, in which case it overwrites the experiment file.
If fileName and pathName are omitted and the experiment is Untitled, you will need to locate where the
experiment file will be saved interactively via a dialog.
If you use a full or partial path for pathName, see Path Separators on page III-401 for details on forming the path.

Flags

Details
SaveExperiment acts like the Save menu command in the File menu. If the experiment is associated with an
already saved file, then SaveExperiment with no parameters will simply save the current experiment. If the
experiment resides only in memory and has not yet been saved, then a dialog will be presented unless the
path and file name are specified.
If you use a full path in the name you will not need the /P flag. If instead you use /P=pathName, note that it
is the name of an Igor symbolic path, created via NewPath. It is not a file system path like “hd:Folder1:”
or “C:\\Folder1\\”. See Symbolic Paths on page II-21 for details.

/C Saves an experiment copy (valid only when fileName or pathName is provided or both
if experiment is Untitled).

/F={format, unpackedExpFolderNameStr, unpackedExpFolderMode}

Specifies the experiment file format.
See Experiment File Format below for details.

/P=pathName Specifies folder in which to save the experiment. pathName is the name of an existing
symbolic path.

SaveGraphCopy

V-699

Experiment File Format
For background information on experiment file formats, see Experiments on page II-17.
The /F flag provides control of the file format of a previously-unsaved experiment independent of the user's
preferences as set in the Experiment Settings section of the Miscellaneous Settings dialog. It also allows you
to save a previously-saved experiment using a different experiment file format.
If you just want to save the current experiment in its current format, you don't need to use /F.
If you use /F, you must fully-specify the location of the experiment file through the /P flag and the fileName
parameter or through fileName alone if it contains a full path.
The format parameter controls the experiment file format used by SaveExperiment:

If /F is omitted or if format is -1 then the experiment is saved in its current format or, if it was never saved
to disk, in the format specified in the Experiment Settings section of the Miscellaneous Settings dialog.
If format = 0, the experiment is saved in unpacked experiment file format. fileName must end with ".uxp" or
".uxt".
If format = 1, the experiment is saved in packed experiment file format. fileName must end with ".pxp" or
".pxt".

Unpacked Experiment Folder
The unpacked experiment folder is the folder in which wave files, the history file, the variables file, and
other experiment files are stored for an unpacked experiment. See Saving as an Unpacked Experiment File
on page II-17 for details.
The /F unpackedExpFolderNameStr parameter specifies the name of the experiment folder for an unpacked
experiment. It contains a folder name, not a full or partial path. It is ignored unless saving in unpacked
experiment format.
The unpacked experiment folder is created in the same directory as the experiment file.
If /F=0 is used and unpackedExpFolderNameStr is "" then the experiment folder name is the same as the
experiment file name with the extension removed and a space and "Folder" added.
If the specified unpacked experiment folder already exists and is the current experiment's unpacked
experiment folder, it is reused. "Reuse" means that SaveExperiment saves files in the unpacked experiment
folder, possibly overwriting files already in it, but does not delete any files or folders already in it.
The unpackedExpFolderMode parameter controls what happens if the folder to be used as the unpacked
experiment folder already exists and is not the current experiment's unpacked experiment folder:

SaveGraphCopy
SaveGraphCopy [flags][as fileNameStr]
The SaveGraphCopy operation saves a graph and its waves in an Igor packed experiment file.

format =-1: Default format.

format =0: Unpacked experiment file

format =1: Packed experiment file

unpackedExpFolderMode=0 : SaveExperiment returns an error.

unpackedExpFolderMode=1 : SaveExperiment displays a dialog asking the user if it is OK to
reuse the folder. If the user answers yes, the operation proceeds.
Otherwise, it returns an error.

unpackedExpFolderMode=2 : SaveExperiment reuses the folder without asking the user.

Warning: If you pass 2 for unpackedExpFolderMode, files and folders in the unpacked experiment
folder may be overwritten without the user's express permission.

SaveGraphCopy

V-700

Parameters
The file to be written is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.

Flags

Details
The main uses for saving as a packed experiment are to save an archival copy of data or to prepare to merge data
from multiple experiments (see Merging Experiments on page II-19). The resulting experiment file preserves
the data folder hierarchy of the waves displayed in the graph starting from the “top” data folder, which is the
data folder that encloses all waves displayed in the graph. The top data folder becomes the root data folder of
the resulting experiment file. Only the graph, its waves, dashed line settings, and any pictures used in the graph
are saved in the packed experiment file, not procedures, variables, strings or any other objects in the experiment.
SaveGraphCopy does not work well with graphs containing controls. First, the controls may depend on
waves, variables or FIFOs (for chart controls) that SaveGraphCopy will not save. Second, controls typically
rely on procedures which are not saved by SaveGraphCopy.
SaveGraphCopy does not know about dependencies. If a graph contains a wave, wave0, that is dependent
on another wave, wave1 which is not in the graph, SaveGraphCopy will save wave0 but not wave1. When
the saved experiment is open, there will be a broken dependency.
SaveGraphCopy sets the variable V_flag to 0 if the operation completes normally, to -1 if the user cancels,
or to another nonzero value that indicates that an error occurred. If you want to detect the user canceling
an interactive save, use the /Z flag and check V_flag after calling SaveGraphCopy.
The SaveData operation also has the ability to save data from a graph to a packed experiment file. SaveData
is more complex but a bit more flexible than SaveGraphCopy.

Examples
This function saves all graphs in the experiment to individual packed experiment files.
Function SaveAllGraphsToPackedFiles(pathName)

String pathName // Name of an Igor symbolic path.

String graphName
Variable index

index = 0
do

graphName = WinName(index, 1)
if (strlen(graphName) == 0)

break
endif

String fileName
sprintf fileName, "%s.pxp", graphName

SaveGraphCopy/P=$pathName/W=$graphName as fileName

index += 1
while(1)

End

/I Presents a dialog from which you can specify file name and folder.

/O Overwrites file if it exists already.

/P=pathName Specifies the folder to store the file in. pathName is the name of an existing symbolic path.

/W= winName winName is the name of the graph to be saved. If /W is omitted or if winName is "", the
top graph is saved.

/Z Errors are not fatal and error dialogs are suppressed. See Details.

SaveNotebook

V-701

See Also
SaveTableCopy and SaveData operations; Merging Experiments on page II-19.

SaveNotebook
SaveNotebook [flags] notebookName [as fileNameStr]
The SaveNotebook operation saves the named notebook.

Parameters
notebookName is either kwTopWin for the top notebook window, the name of a notebook window or a host-
child specification (an hcSpec) such as Panel0#nb0. See Subwindow Syntax on page III-87 for details on
host-child specifications.
If notebookName is an host-child specification, /S must be used and saveType must be 3 or higher.
The file to be written is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.

Flags

/ENCG=textEncoding

Specifies text encoding in which the notebook is to be saved.
This flag was added in Igor Pro 7.00.
This is relevant for plain text notebooks only and is ignored for formatted notebooks
because they can contain multiple text encodings. See Plain Text File Text Encodings
on page III-417 and Formatted Text Notebook File Text Encodings on page III-421
for details.
If omitted, the file is saved in its original text encoding. Normally you should omit
/ENCG. Use it only if you have some reason to change the file's text encoding.
Passing 0 for textEncoding acts as if /ENCG were omitted.
See Text Encoding Names and Codes on page III-434 for a list of accepted values for
textEncoding.
This flag does not affect HTML export. Use /H instead.

/H={encodingName, writeParagraphProperties, writeCharacterProperties, PNGOrJPEG, quality, bitDepth}

Controls the creation of an HTML file.

encodingName specifies the HTML file text encoding. The recommended value is
"UTF-8".

writeParagraphProperties determines what paragraph properties SaveNotebook will
write to the HTML file. This is a bitwise parameter with the bits defined as follows:
Bit 0: Write paragraph alignment.
Bit 1: Write first indent.
Bit 2: Write minimum line spacing.
Bit 3: Write space-before and space-after paragraph.
All other bits are reserved for future use and should be set to zero.

SaveNotebook

V-702

Details
Interactive (/I) means that Igor displays the Save, Save As, or Save a Copy dialog.
The save will be interactive under the following conditions:
• You include the /I flag and the saveType is 2, 3, 4, 5, 6, or 7.
• saveType is 2, 3, 4, 5, 6, or 7 and you do not specify the path or filename.

If the saveType is normal and the notebook has previously been saved to a file then the /I flag, the path and
file name that you specify, if any, are ignored and the notebook is saved to its associated file without user
intervention.
The full path to the saved file is stored in the string S_path. If the save was unsuccessful, S_path will be "".

writeCharacterProperties determines what character properties SaveNotebook will
write to the HTML file. This is a bitwise parameter with the bits defined as follows:
Bit 0: Write font families.
Bit 1: Write font sizes.
Bit 2: Write font styles.
Bit 3: Write text colors.
Bit 4: Write text vertical offsets.
All other bits are reserved for future use and should be set to zero.
If you set bit 2, SaveNotebook exports only the bold, underline, and italic styles
because other character styles are not supported by HTML.

PNGOrJPEG determines whether SaveNotebook will write picture files as PNG or
JPEG:
0: PNG (default).
1: JPEG.
2: JPEG.

In Igor7 and later, there is no difference between PNGOrJPEG=1 and PNGOrJPEG=2.
See Details for more on HTML picture files.

quality specifies the degree of compression or image quality when writing pictures as
JPEG files. Legal values are in the range 0.0 to 1.0.
In Igor7 or later, the quality used is 0.9 regardless of what you pass for this parameter.

bitDepth specifies the color depth when writing pictures as JPEG files. Legal values are
legal: 1, 8, 16, 24, and 32.
In Igor7 or later, the bit depth used is 32 regardless of what you pass for this
parameter.

/I Saves interactively. A dialog is displayed.

/M=messageStr Specifies prompt message used in save dialog. But see Prompt Does Not Work on
Macintosh on page IV-137.

/O Overwrites existing file without asking permission.

/P=pathName Specifies the folder to store the file in. pathName is the name of an existing symbolic path.

/S=saveType Controls the type of save.
saveType=1: Normal save (default).
saveType=2: Save-as.
saveType=3: Save-a-copy.
saveType=4: Export as RTF (Rich Text Format).
saveType=5: Export as HTML (Hypertext Markup Language).
saveType=6: Export as plain text.
saveType=7: Export as formatted notebook.

SavePackagePreferences

V-703

If you use /P=pathName, note that it is the name of an Igor symbolic path, created via NewPath. It is not a
file system path like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-21 for details.

Exporting as RTF
For background information on writing RTF files, see Import and Export Via Rich Text Format Files on
page III-20.

Exporting as HTML
For background information on writing HTML files, see Exporting a Notebook as HTML on page III-21.
You can pass “UTF-8” or “UTF-2” for the encodingName parameter. In virtually all cases, you should use
“UTF-8”.
When creating an HTML file, SaveNotebook can write pictures using the PNG or JPEG graphics formats. PNG
is recommended because it is lossless.

See Also
Chapter III-1, Notebooks.
 Setting Bit Parameters on page IV-12 for further details about bit settings.

SavePackagePreferences
SavePackagePreferences [/FLSH=flush /KILL /P=pathName] packageName,

prefsFileName, recordID, prefsStruct
The SavePackagePreferences operation saves preference data in the specified structure so that it can be
accessed later via the LoadPackagePreferences operation.

The structure can use fields of type char, uchar, int16, uint16, int32, uint32, int64, uint64, float and double
as well as fixed-size arrays of these types and substructures with fields of these types.
The data is stored in memory and by default flushed to disk when the current experiment is saved or closed
and when Igor quits.
If the /P flag is present then the location on disk of the preference file is determined by pathName and
prefsFileName. However in the usual case the /P flag will be omitted and the preference file is located in a file
named prefsFileName in a directory named packageName in the Packages directory in Igor’s preferences directory.

See Saving Package Preferences on page IV-237 for background information and examples.

Parameters
packageName is the name of your package of Igor procedures. It is limited to 31 bytes and must be a legal
name for a directory on disk. This name must be very distinctive as this is the only thing preventing
collisions between your package and someone else’s package.
prefsFileName is the name of a preference file to be saved by SavePackagePreferences. It should include an
extension, typically ".bin".
prefsStruct is the structure containing the data to be saved in the preference file on disk.
recordID is a unique positive integer that you assign to each record that you store in the preferences file. If
you store more than one structure in the file, you would use distinct recordIDs to identify which structure
you want to save. In the simple case you will store just one structure in the preference file and you can use
0 (or any positive integer of your choice) as the recordID.

Note: The package preferences structure must not use fields of type Variable, String, WAVE,
NVAR, SVAR or FUNCREF because these fields refer to data that may not exist when
LoadPackagePreferences is called.

Note: You must choose a very distinctive name for packageName as this is the only thing
preventing collisions between your package and someone else’s package.

SavePICT

V-704

Flags

Details
SavePackagePreferences sets the following output variables:

Example
See the example under Saving Package Preferences in a Special-Format Binary File on page IV-237.

See Also
LoadPackagePreferences.

SavePICT
SavePICT [flags] [as fileNameStr]
The SavePICT operation creates a picture file representing the top graph, table or layout. The picture file
can be opened by many word processing, drawing, and page layout programs.

Parameters
The file to be written is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.
If you omit fileNameStr but include /P=pathName, SavePICT writes the file using a default file name. The
default file name is the window name followed by an extension, such as “.png”, “.emf” or “.svg”, that
depends on the graphic format being exported.
If you specify the file name as “Clipboard”, and do not specify a /P=pathName, Igor copies the picture to
the Clipboard, rather than to a file. EPS is a file-only format and can not be stored in the clipboard.
If you specify the file name as “_string_” the output will be saved into a string variable named S_Value,
which is used with the ListBox binary bitmap display mode.

/FLSH=flush

/KILL Instead of saving prefsStruct under the specified record ID, that record is deleted
from the package's preference if it exists. If it does not exist, nothing is done and no
error is returned.

/P=pathName Specifies the directory in which to save the file specified by prefsFileName.
pathName is the name of an existing symbolic path. See Symbolic Paths on page II-21
for details.
/P=$<empty string variable> acts as if the /P flag were omitted.

V_flag Set to 0 if preferences were successfully saved or to a nonzero error code if they were
not saved. The latter case is unlikely and would indicate some kind of corruption such
as if Igor's preferences directory were deleted.

V_structSize Set to the size in bytes of prefsStruct. This may be useful in handling structure version
changes.

Controls when the data is actually written to the preference file:
flush=0: The data will be flushed to disk when the current experiment is

saved, reverted or closed or when Igor quits. This is the default
behavior used when /FLSH is omitted and is recommended for most
purposes.

flush=1: The data is flushed to disk immediately.

SavePICT

V-705

If you use the special name _PictGallery_ with the /P flag, then the picture will be stored in Igor's picture
gallery (see Pictures on page III-448) with the name you provide via fileNameStr. This feature was added in
support of making movies using the /PICT flag with NewMovie.

Flags

/B=dpi Controls image resolution in dots-per-inch (dpi). The legal values for dpi are n*72
where n can be from 1 to 8. The actual image dpi is not used. Igor calculates n from
your value of dpi and then multiplies n by your computer’s screen resolution. This is
because bitmap images that are not an integer multiple of the screen resolution look
quite bad.
Also see the /RES flag.

/C=c

/D=d Obsolete in Igor Pro 7 or later.

/E=e Sets graphics format used when exporting a graphic. See Details for formats. See also
Chapter III-5, Exporting Graphics (Macintosh), or Chapter III-6, Exporting Graphics
(Windows), for a description of these modes and when to use them.

/EF= e

/I Specifies that /W coordinates are inches.

/M Specifies that /W coordinates are centimeters.

/N=winSpec /N is antiquated but still supported. Use /WIN instead.

/O Overwrites file if it exists.

/P=pathName Saves file into a folder specified by pathName, which is the name of an existing
symbolic path.

/PGR=(firstPage, lastPage)

Controls which pages in a multi-page layout are saved.
firstPage and lastPage are one-based page numbers. All pages from firstPage to
lastPage are saved if the file format supports it.
The special value 0 refers to the current page and -1 refers to the last page in the
layout.
Currently only the PDF formats support saving multiple pages. Other file formats
save only firstPage and ignore the value of lastPage.
/PGR was added in Igor Pro 7.00.

/PICT=pict Saves specified named picture rather than the target window. Native format of the
picture is used and all format flags are ignored.

/PLL=p

/Q=q Sets quality factor (0.0 is lowest, 1.0 is highest). Default is dependent on individual
format. Used only by lossy formats such as JPEG.

Specifies color mode.
c=0: Black and white.
c=1: RGB color (default).
c=2: CMYK color (EPS and native TIFF only).

Sets font embedding.
e=0: No font embedding. Not honored in Igor Pro 7 or later.
e=1: Embed nonstandard fonts.
e=2: Embed all fonts.

Specifies Postscript language level when used in conjunction with EPS export.
p=1: For very old Postscript printers.
p=2: For all other uses (default).

SavePICT

V-706

Details
SavePICT sets the variable V_flag to 0 if the operation succeeds or to a nonzero error code if it fails.
If you specify a path using the /P=pathName flag, then Igor saves the file in the folder identified by the path.
Note that pathName is the name of an Igor symbolic path, created via NewPath. It is not a file system path
like “hd:Folder1:” or “C:\\Folder1\\”. See Symbolic Paths on page II-21 for details. Otherwise, with
no path specified, Igor presents a standard save dialog to let you specify where the file is to be saved.
Graphics formats, specified via /E, are as follows:

/R=resID Obsolete in Igor Pro 7 or later.

/RES=dpi Controls the resolution of image formats in dots-per-inch. Unlike the similar /B flag, the
value for /RES is the actual output resolution and is useful when your publisher demands
a specific resolution.

/S Suppresses the preview that is normally included with an EPS file.
Obsolete in Igor Pro 7 or later.

/SNAP=s

Snapshot mode is available only for graphs and panels and only for bitmap export
formats PNG, JPEG, and TIFF at screen resolution. When using /W to specify the size
of a graph, the capture is sized to fit within the specified rectangle while maintaining
the window aspect ratio. Coordinates used with /W are in pixels.

/T=t Obsolete QuickTime export type. Not supported in Igor Pro 7 or later.

/TRAN[=1 or 0] Makes white background areas transparent using an RGBA type PNG when used
with native PNG export of graphs or page layouts.

/W=(left,top,right,bottom)

Specifies the size of the picture when exporting a graph. If /W is omitted, it uses the
graph window size.
When exporting a page layout, specifies the part of the page to export. Only objects
that fall completely within the specified area are exported. If /W is omitted, the area
of the layout containing objects is exported.
When exporting a page layout in Igor Pro 7.00 or later, you can specify /W=(0,0,0,0) to
use the full page size.
Coordinates for /W are in points unless /I or /M are specified before /W.

/WIN=winSpec Saves the named window or subwindow. winSpec can be just a window name, or a
window name following by a “#” character and the name of the subwindow, as in
/WIN=Panel0#G0.

/Z Errors are not fatal. V_flag is set to zero if no error, else nonzero if error.

/E Value Macintosh File Format Windows File Format

-9 SVG file. SVG file.

-8 PDF file. PDF file.

-7 TIFF file. Lossless but larger file than PNG; best for text, graph traces, and simple images with
sharp edges. The default resolution is 72 dpi. You can specify the resolution with the /B or /RES
flag. Cross-platform compatible.

-6 JPEG file. Lossy compression; best used for grayscale and color images with smooth tones. The
/Q flag specifies compression quality and the /B or /RES flag sets the resolution. Cross-platform
compatible.

Saves a snapshot (screen dump) of a graph or panel window.
s=1: Include all controls in capture.
s=2: Capture only window data content.

SaveTableCopy

V-707

The low resolution PDF formats on Macintosh are probably not useful and are just placeholders for
compatibility with old procedures.

See Also
The ImageSave operation for saving waves as PICTs and other image file formats. The LoadPICT operation.
See Chapter III-5, Exporting Graphics (Macintosh), or Chapter III-6, Exporting Graphics (Windows), for a
description of the /E modes.

SaveTableCopy
SaveTableCopy [flags][as fileNameStr]
The SaveTableCopy operation saves a copy of the data displayed in a table on disk. The saved file can be
an Igor packed experiment file, a tab-delimited text file, or a comma-separated values text file.
When saving as text, by default the data format matches the format shown in the table. This causes
trunctation if the underlying data has more precision than shown in the table. If you specify /F=1,
SaveTableCopy uses as many digits as needed to represent the data with full precision.
The point column is never saved.
To save data as text with full precision, use the Save operation.
When saving 3D and 4D waves as text, only the visible layer is saved. To save the entirety of a 3D or 4D
wave, use the Save operation.

Parameters
The file to be written is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If Igor
can not determine the location of the file from fileNameStr and pathName, it displays a dialog allowing you
to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming the
path.

-5 PNG (Portable Network Graphics) file. Lossless compression; best for text, graph traces, and
simple images with sharp edges. The default resolution is 72 dpi. Specify the resolution with
/B or /RES. Cross-platform compatible.

-4 High resolution bitmap PICT file. Default
resolution is 288 dpi. Specify the resolution
with /B or /RES.

Device-independent bitmap file (DIB). Default
resolution is 4x screen resolution. Specify the
resolution with /B or /RES.

-3 Encapsulated PostScript (EPS) file.
Use /S to suppress the screen preview if
exporting to Latex.

Encapsulated PostScript (EPS) file.
Use /S to suppress the screen preview if
exporting to Latex.

-2 Quartz PDF. High-resolution Enhanced Metafile (EMF).

-1 Quartz PDF (was PostScript PICT). Obsolete (was PostScript-enhanced metafile).

0 Quartz PDF (was PostScript PICT with
QuickDraw text).

Obsolete (was PostScript-enhanced metafile).

1 Low resolution Quartz PDF at 1x normal size. High-resolution Enhanced Metafile (EMF).

2 Low resolution Quartz PDF at 2x normal size. High-resolution Enhanced Metafile (EMF).

4 Low resolution Quartz PDF at 4x normal size. High-resolution Enhanced Metafile (EMF).

8 Low resolution Quartz PDF at 8x normal size. High-resolution Enhanced Metafile (EMF).

/E Value Macintosh File Format Windows File Format

SaveTableCopy

V-708

Flags

Details
The main uses for saving a table as a packed experiment are to save an archival copy of data or to prepare
to merge data from multiple experiments (see Merging Experiments on page II-19). The resulting
experiment file preserves the data folder hierarchy of the waves displayed in the table starting from the
“top” data folder, which is the data folder that encloses all waves displayed in the table. The top data folder
becomes the root data folder of the resulting experiment file. Only the table and its waves are saved in the
packed experiment file, not variables or strings or any other objects in the experiment.

/A=a

/F=f

/I Presents a dialog from which you can specify file name and folder.

/M=termStr Specifies the terminator character or characters to use at the end of each line of text.
The default is /M="\r" on Macintosh and /M="\r\n" on Windows; it is used when
/M is omitted. To use the Unix convention, just a linefeed, specify /M="\n".

/N=n Specifies whether to use column names, titles, or dimension labels.

/O Overwrites file if it exists already.

/P=pathName Specifies the folder to store the file in. pathName is the name of an existing symbolic path.

/S=s Saves all of the data in the table (s=0; default) or the selection only (s=1).
/S applies when saving text files and is ignored when saving packed experiment files.

/T=saveType

/W= winName winName is the name of the table to be saved. If /W is omitted or if winName is "", the
top table is saved.

/Z Errors are not fatal and error dialogs are suppressed. See Details.

Appends data to the file rather than overwriting.

/A applies when saving text files and is ignored when saving packed experiment
files.
If the file does not exist, a new file is created and /A has no effect.

a=0: Does not append.
a=1: Appends to the file with a blank line before the appended data.
a=2: Appends to the file with no blank line before the appended data.

Controls the precision of saved numeric data.

The /F flag was added in Igor Pro 7.00

f=0: Numeric data is written exactly as shown in the table. This may
cause truncation. This is the default behavior if /F is omitted.

f=1: Numeric data is written with as many digits as needed to represent
the data with full precision.

n is a bitwise parameter with the bits defined as follows:

The default setting for n is 1. All other bits are reserved and must be zero.

Bit 0: Include column names or titles. The column title is included if it is not
empty. If it is empty, the column name is included.

Bit 1: Include horizontal dimension labels if they are showing in the table.

Specifies the file format of the saved table.
saveType=0: Packed experiment file.
saveType=1: Tab-delimited text file.
saveType=2: Comma-separated values text file.
saveType=3: Space-delimited values text file.

sawtooth

V-709

SaveTableCopy does not know about dependencies. If a table contains a wave, wave0, that is dependent on
another wave, wave1 which is not in the table, SaveTableCopy will save wave0 but not wave1. When the
saved experiment is open, there will be a broken dependency.
The main use for saving as a tab or comma-delimited text file is for exporting data to another program.
When calling SaveTableCopy from a procedure, you should call DoUpdate before calling SaveTable copy.
This insures that the table is up-to-date if your procedure has redimensioned or otherwise changed the
number of points in the waves in the table.
SaveTableCopy sets the variable V_flag to 0 if the operation completes normally, to -1 if the user cancels, or
to another nonzero value that indicates that an error occurred. If you want to detect the user canceling an
interactive save, use the /Z flag and check V_flag after calling SaveTableCopy.
The SaveData operation also has the ability to save a table to a packed experiment file. SaveData is more
complex but a bit more flexible than SaveTableCopy.

Examples
This function saves all tables to a single tab-delimited text file.
Function SaveAllTablesToTextFile(pathName, fileName)

String pathName // Name of an Igor symbolic path.
String fileName

String tableName
Variable index

index = 0
do

tableName = WinName(index, 2)
if (strlen(tableName) == 0)

break
endif

SaveTableCopy/P=$pathName/W=$tableName/T=1/A=1 as fileName

index += 1
while(1)

End

See Also
SaveGraphCopy and SaveData operations; Merging Experiments on page II-19.

sawtooth
sawtooth(num)
The sawtooth function returns ((num +n2π) mod 2π)/2π where n is used to correct if num is negative.
Sawtooth is used to create arbitrary periodic waveforms like sine and cosine.

Examples
wave1 = sawtooth(x)

creates a sawtooth in wave1 whose Y values range from 0 to 1 as its X values go through 2π units.
wave1 = exp(sawtooth(x))

creates a series of exponentials in wave1 of amplitude exp(1) and period 2π.
You can also use sawtooth to create periodic repetitions of a given part of a wave:
wave1 = wave2(sawtooth(x))

creates a periodic repetition of wave2 in wave1 given the correct X scaling for the waves.

ScaleToIndex
ScaleToIndex(wave, coordValue, dim)
The ScaleToIndex function returns the number of the element in the requested dimension whose scaled
index value is closest to coordValue.
The ScaleToIndex function was added in Igor Pro 7.00.

Parameters
dim is a dimension number: 0 for rows, 1 for columns, 2 for layers, 3 for chunks.

ScreenResolution

V-710

coordValue is a scaled index in that dimension.

Details
The ScaleToIndex function returns the value of the expression:
round((coordValue - DimOffset(wave,dim)) / DimDelta(wave,dim))

With dim=0, ScaleToIndex is equivalent to using x2pnt.

See Also
IndexToScale, x2pnt, DimDelta, DimOffset
Waveform Model of Data on page II-57 for an explanation of wave scaling.

ScreenResolution
ScreenResolution
The ScreenResolution function returns the logical resolution of your video display screen in dots per inch
(dpi). On Macintosh this is always 72. On Windows it is usually 96 (small fonts) or 120 (large fonts).

Examples
// 72 is the number of points in an inch which is constant.
Variable pixels = numPoints * (ScreenResolution/72) // Convert points to pixels
Variable points = numPixels * (72/ScreenResolution) // Convert pixels to points

See Also
PanelResolution

sec
sec(angle)
The sec function returns the secant of angle which is in radians:

In complex expressions, angle is complex, and sec(angle) returns a complex value.

See Also
sin, cos, tan, csc, cot

sech
sech(x)
The sech function returns the hyperbolic secant of x.

In complex expressions, x is complex, and sech(x) returns a complex value.

See Also
cosh, tanh, coth, csch

Secs2Date
Secs2Date(seconds, format [, sep])
The Secs2Date function returns a string containing a date.
With format values 0, 1, and 2, the formatting of dates depends on operating system settings entered in the
Language & Region control panel (Macintosh) or the Region control panel (Windows).
If format is -1, the format is independent of operating system settings. The fixed-length format is “day /month
/year (dayOfWeekNum)”, where dayOfWeekNum is 1 for Sunday, 2 for Monday… and 7 for Saturday.

sec(x) = 1

cos(x)
.

csch(x) = 1

cosh(x)
= 2

ex + e− x .

Secs2Time

V-711

If format is -2, the format is YYYY-MM-DD.
The optional sep parameter affects format -2 only. If sep is omitted, the separator character is "-". Otherwise,
sep specifies the separator character.

Parameters
seconds is the number of seconds from 1/1/1904 to the date to be returned.
format is a number between -2 and 2 which specifies how the date is to be constructed.

Examples
Print Secs2Date(DateTime,-2) // 1993-03-14
Print Secs2Date(DateTime,-2,"/") // 1993/03/14
Print Secs2Date(DateTime,-1) // 15/03/1993 (2)
Print Secs2Date(DateTime,0) // 3/15/93 (depends on system settings)
Print Secs2Date(DateTime,1) // Monday, March 15, 1993 (depends on system settings)
Print Secs2Date(DateTime,2) // Mon, Mar 15, 1993 (depends on system settings)

See Also
For further discussion of how Igor represents dates, see Date/Time Waves on page II-78.
The date, date2secs and DateTime functions.

Secs2Time
Secs2Time(seconds, format, [fracDigits])
The Secs2Time function returns a string containing a time.

Parameters
seconds is the number of seconds from 1/1/1904 to the time to be returned.
format is a number between 0 and 5 that specifies how the time is to be constructed. It is interpreted as follows:

“Normal” formats (0 and 1) follow the preferred formatting of the short time format as set in the
International control panel (Macintosh) or in the Regional and Language Options control panel (Windows).
“Military” means that the hour is a number from 0 to 23. Hours greater than 23 are wrapped.
“Elapsed” means that the hour is a number from -9999 to 9999. The result for hours outside that range is
undefined.
The fracDigits parameter is optional and specifies the number of digits of fractional seconds. The default
value is 0. The fracDigits parameter is ignored for format=0, 1, 2,and 4.

Examples
Print Secs2Time(DateTime,0) // prints 1:07 PM
Print Secs2Time(DateTime,1) // prints 1:07:28 PM
Print Secs2Time(DateTime,2) // prints 13:07
Print Secs2Time(DateTime,3) // prints 13:07:29
Print Secs2Time(30*60*60+45*60+55,4) // Prints 30:45
Print Secs2Time(30*60*60+45*60+55,5) // Prints 30:45:55

See Also
For a discussion of how Igor represents dates, see Date/Time Waves on page II-78.
The Secs2Date, date, date2secs and DateTime functions. Also, Operators on page IV-5 for ?: details.

0: Normal time, no seconds.

1: Normal time, with seconds.

2: Military time, no seconds.

3: Military time, with seconds and optional fractional seconds.

4: Elapsed time, no seconds.

5: Elapsed time, with seconds and optional fractional seconds.

SelectNumber

V-712

SelectNumber
SelectNumber(whichOne, val1, val2 [, val3])
The SelectNumber function returns one of val1, val2, or (optionally) val3 based on the value of whichOne.
SelectNumber(whichOne, val1, val2) returns val1 if whichOne is zero, else it returns val2.
SelectNumber(whichOne, val1, val2, val3) returns val1 if whichOne is negative, val2 if whichOne is zero, or val3
if whichOne is positive.

Details
SelectNumber works with complex (or real)val1, val2, and val3 when the result is assigned to a complex
wave or variable. (Print expects a real result, see the “causes error” example, below).
If whichOne is NaN, then NaN is returned.
whichOne must always be a real value.
Unlike the ? : conditional operator, SelectNumber always evaluates all of the numeric expression
parameters val1, val2, …
SelectNumber works in a macro, whereas the conditional operator does not.

Examples
Print SelectNumber(0,1,2) // prints 1
Print SelectNumber(0,1,2,3) // prints 2
wv=SelectNumber(numtype(wv[p])==2,wv[p],0) // replace NaNs with zeros

// chooses among complex values
Variable/C cx= SelectNumber(negZeroPos,cmplx(-1,-1),0,cmplx(1,1))

// causes error because Print expects a real value (not complex)
Print SelectNumber(negZeroPos,cmplx(-1,-1),0,cmplx(1,1))

// The real function expects a complex result
Print real(SelectNumber(negZeroPos,cmplx(-1,-1),0,cmplx(1,1)))

See Also
The SelectString and limit functions, and Waveform Arithmetic and Assignments on page II-69. Also,
Operators on page IV-5 for details about the ?: operator.

SelectString
SelectString(whichOne, str1, str2 [, str3])
The SelectString function returns one of str1, str2, or (optionally) str3 based on the value of whichOne.
SelectString(whichOne, str1, str2) returns str1 if whichOne is zero, else it returns str2.
SelectString(whichOne, str1, str2, str3) returns str1 if whichOne is negative, str2 if whichOne is zero, or str3 if
whichOne is positive.

Details
If whichOne is NaN, then "" is returned.
whichOne must always be a real value.
Unlike the ? : conditional operator, SelectString always evaluates all of the string expression parameters
str1, str2, …
SelectString works in a macro, whereas the conditional operator does not.

Examples
Print SelectString(0,"hello","there") // prints "hello"
Print SelectString(1,"hello","there") // prints "there"
Print SelectString(-3,"hello","there","jack") // prints "hello"
Print SelectString(0,"hello","there","jack") // prints "there"
Print SelectString(100,"hello","there","jack") // prints "jack"

See Also
The SelectNumber function and String Expressions on page IV-12. Also, Operators on page IV-5 for details
about the ?: operator.

SetActiveSubwindow

V-713

SetActiveSubwindow
SetActiveSubwindow subWinSpec
The SetActiveSubwindow operation specifies the subwindow that is to be activated. This operation is
mainly for use by recreation macros.

Parameters
subWinSpec specifies an existing subwindow. See Subwindow Syntax on page III-87 for details on
subwindow specifications.
Use _endfloat_ for subWinSpec to make a newly-created floating panel not be the default target.

See Also
GetWindow with the activeSW keyword.

SetAxis
SetAxis [flags] axisName [, num1, num2]
The SetAxis operation sets the extent (or “range”) of the named axis.

Parameters
axisName is usually “left”, “right”, “top” or “bottom”, but it can also be the name of a free axis, such as
“vertCrossing”.
If axisName is a vertical axis such as “left” or “right” then num1 sets the bottom end of the axis and num2
sets the top end of the axis.
If axisName is a horizontal axis such as “top” or “bottom” then num1 sets the left end of the axis and num2
sets the right end of the axis.
You can flip the graph by reversing num1 and num2 (or by using /A/R). This is particularly useful for
images, because Igor plots an image inverted.
If you pass * (asterisk) for num1 and/or num2 then the corresponding end of the axis will be autoscaled.

Flags

/A[=a]

/E=z

/N=n

/R Reverses the autoscaled axis (smaller values at the left for horizontal axes, at the top
for vertical axes) when used with /A. Although it only has an effect for autoscale, it
can be used with nonautoscale version of SetAxis so that the next time the Axis Range
tab is used the “reverse axis” checkbox will already be set.

Autoscale axis (when used, num1, num2 should be omitted).
a=0: No autoscale. Same as no /A flag.
a=1: Normal autoscale. Same as /A.
a=2: Autoscale Y axis to a subset of the data defined by the current X axis

range.

Sets the treatment of zero when the axis is in autoscale mode.
z=0: Normal mode where zero is not treated special.
z=1: Forces the smaller end of the axis to be set to zero (autoscale from zero).
z=2: Axis is symmetric about zero.
z=3: If the data is unipolar (all positive or all negative), this behaves like /E=1

(autoscale from zero). If the data is bipolar, it behaves like /E=0 (normal
autoscaling).

Sets the algorithm for axis autoscaling.
n=0: Normal mode; sets the axis limits equal to the data limits.
n=1: Picks nice values for the axis limits.
n=2: Picks nice values; also ensures that the data is inset from the axis ends.

SetBackground

V-714

SetBackground
SetBackground numericExpression
The SetBackground operation sets numericExpression as the current unnamed background task.
SetBackground works only with the unnamed background task. New code should used named background
tasks instead. See Background Tasks on page IV-298 for details.
The background task runs while Igor is not busy with other things. Normally, there won’t be a background task.
The most common use for the background task is to monitor or drive a continuous data acquisition process.

Parameters
numericExpression is a single precision numeric expression that Igor executes when it isn’t doing anything
else.

Details
numericExpression is expected to return one of three numeric values:

Usually the expression will be a call to a user-defined numeric function or external function to drive or
monitor data acquisition. The expression should be designed to execute very quickly and it should not present
a dialog to the user nor should it create or destroy windows. Generally, it should do nothing more than store
data into waves or variables. You can use Igor’s dependency mechanism to perform more extensive tasks.
SetBackground designates the background task but you must use CtrlBackground to start it. You can also
use KillBackground to stop it. You can not call SetBackground from the background function itself.

See Also
The BackgroundInfo, CtrlBackground, CtrlNamedBackground, KillBackground, and SetProcessSleep
operations, and Background Tasks on page IV-298.

SetDashPattern
SetDashPattern dashNumber, {d1, s1 [, d2, s2]…}
The SetDashPattern operation defines a dashed-line pattern for a user-defined dashed line. These dashed
lines are used by the drawing tools and the Modify Waves Appearance dialog, and are elsewhere referred
to as “line styles”.

Parameters
dashNumber specifies which dash pattern is to be set. It must be between 1 and 17. Dash pattern 0 is reserved
for a solid line.

/W=winName Sets axes in the named graph window or subwindow. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.

When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/Z No error reporting if named axis doesn’t exist in a style macro.

0: Background task executed normally.

1: Background task wants to stop.

2: Background task encountered error and wants to stop.

SetDataFolder

V-715

{d1,s1 [,d2,s2]…} defines the dash pattern. The dash pattern consists of 1 to 8 “dash,skip” pairs. Each pair
consists of the number of drawn points followed by the number of skipped points.
d1 specifies the number of drawn points and s1 specifies the number of skipped points in the first
“dash,skip” pair. d2 and s2 specify the number of drawn and skipped points in the second pair and so on.
Each draw or skip value must be between 1 and 127.

Details
SetDashPattern updates all graphs, panels and layouts so that any dashed lines will be updated with the
new pattern. If you repeatedly call SetDashPattern from within a macro, you should precede the commands
with the PauseUpdate operation to prevent multiple updates (which would be slow).
Dashed lines may also be redefined by the Dashed Lines dialog which you can choose from the Misc menu.
The dashed line patterns are saved as part of the experiment. When a new experiment is opened, the
preferred dash patterns are restored.
Some programs and printer drivers do not properly render dashed lines with many “dash,skip” pairs.

Examples
Make test; Display test
SetDashPattern 17, {20,3,15,8} // sets last dashed line pattern
ModifyGraph lstyle(test)=17 // apply pattern to trace

See Also
PauseUpdate and ResumeUpdate operations, and Dashed Lines on page III-440.

SetDataFolder
SetDataFolder dataFolderSpec
The SetDataFolder operation sets the current data folder to the specified data folder.

Parameters
dataFolderSpec can be a simple name (MyDataFolder), a path (root:MyDataFolder) or a string expression
containing a name or path. It can also be a data folder reference created by the DFREF keyword or returned
by GetDataFolderDFR.
If dataFolderSpec is a path it can be a partial path relative to the current data folder (:MyDataFolder) or an
absolute path starting from root (root:MyDataFolder).

Examples
SetDataFolder foo // Sets CDF to foo in the current data folder
SetDataFolder :bar:foo // Sets CDF to foo in bar current data folder
SetDataFolder root:foo // Sets CDF to foo in the root data folder
DFREF savedDF= GetDataFolderDFR() // Remember current data folder
NewDataFolder/O/S root:MyDataFolder // Set CDF to a new data folder
Variable/G newVariable=1 // Do work in the new data folder
SetDataFolder savedDF // Restore current data folder

See Also
Chapter II-8, Data Folders and Data Folder References on page IV-72.

SetDimLabel
SetDimLabel dimNumber, dimIndex, label, wavelist
The SetDimLabel operation sets the dimension label or dimension element label to the specified label.

Parameters
Use dimNumber=0 for rows, 1 for columns, 2 for layers and 3 for chunks.
If dimIndex is -1, it sets the label for the entire dimension. For dimIndex ≥ 0, it sets the dimension label for
that element of the dimension.
label is a name (e.g., time), not a string (e.g., "time").
label is limited to 31 bytes.

SetDrawEnv

V-716

Details
Dimension labels can contain up to 31 bytes and may contain spaces and other normally-illegal characters
if you surround the name in single quotes or if you use the $ operator to convert a string expression to a
name.
Dimension labels have the same characteristics as object names. See Object Names on page III-443 for a
discussion of object names in general.

See Also
GetDimLabel, FindDimLabel
Dimension Labels on page II-85 and Example: Wave Assignment and Indexing Using Labels on page
II-75 for further usage details and examples.

SetDrawEnv
SetDrawEnv [/W=winName] keyword [=value][, keyword [=value]]…
The SetDrawEnv operation sets properties of the drawing environment.
If one or more draw objects are selected in the top window then the SetDrawEnv command will apply only
to those objects.
If no objects are selected and if the keyword save is not used then the command applies only to the next object
drawn.
If no objects are selected and if the keyword “save” is used then the command sets the environment for all
following objects.
Each draw layer has its own draw environment settings.

Parameters
SetDrawEnv can accept multiple keyword=value parameters on one line.
In the following descriptions, (r, g, b) specifies a color. r, g, and b are each a number from 0 to 65535. (0, 0, 0)
specifies black. (65535, 65535, 65535) specifies white.
Also note that the abs and rel values for the coordinate keywords “xcoord” and “ycoord” are the literal
strings “abs” and “rel”; they are not substitute names for numbers, names, or strings.

arrow=arr

arrowfat=afat Sets ratio of arrowhead width to length (default is 0.5).

arrowlen=alen Sets length of arrowhead in points (default is 10).

arrowSharp=s

arrowframe=f Specifies the stroke outline thickness of the arrow in points (default is f=0 for solid fill).

astyle=s

dash=dsh dsh is a dash pattern number between 0 and 17 (see SetDashPattern for patterns). 0
(solid line) is the default.

Specifies the arrow head position on lines.
arr=0: No arrowhead (default).
arr=1: Arrowhead at end.
arr=2: Arrowhead at start.
arr=3: Arrowhead at start and end.

Specifies the continuously variable barb sharpness between -1.0 and 1. 0.
s=1: No barb; lines only.
s=0: Blunt (default).
s=-1: Diamond.

Specifies which side of the line has barbs relative to a right-facing arrow.
s=0: None.
s=1: Top.
s=2: Bottom.
s=3: Both (default).

SetDrawEnv

V-717

fillbgc=(r, g, b) Specifies fill background color. Default is the window’s background color.

fillfgc=(r, g, b) Specifies fill foreground color. The default is white.

fillpat=fpatt

fname="fontName" Sets font name, default is the default font or the graph font.

fsize=size Sets text size, default is 12 points.

fstyle=fs

gedit= flag

gname= name Supplies optional name for an object group. Use with gstart.

gstart Marks the start of a group of objects.

gstop Marks the end of a group of objects.

gradient=<parameters>

Controls color gradients for drawing element fills. See Gradient Fills on page III-441
for details.

gradientExtra=<parameters>

Controls color gradient details for drawing element fills. See Gradient Fills on page
III-441 for details.

linebgc=(r, g, b) Sets the line background color. Default is window’s background color.

linefgc=(r, g, b) Sets the line foreground color, default is black.

linepat=patt

linethick=thick thick is a line thickness ≥ 0, default is 1 point.

origin= x0,d0 Moves coordinate system origin to x0,d0. Unlike translate, rotate, and scale, this
survives a change in coordinate system and is most useful that way. See Coordinate
Transformation.

Specifies fill pattern density.
fpatt=-1: Erase to background color.
fpatt=0: No fill.
fpatt=1: 100% (solid pattern, default).
fpatt=2: 75% gray.
fpatt=3: 50% gray.
fpatt=4: 25% gray.

fs is a bitwise parameter with each bit controlling one aspect of the font style as
follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold
Bit 1: Italic
Bit 2: Underline
Bit 4: Strikethrough

Supplies optional edit flag for a group of objects. Use with gstart.
flag=0: Select entire group, moveable (default).
flag=1: Individual components editable as if not grouped. Allows

objects to be grouped by name but still be editable.

Specifies the line pattern/density.
patt=1: 100% (solid pattern, default).
patt=2: 75% gray.
patt=3: 50% gray.
patt=4: 25% gray.

SetDrawEnv

V-718

pop Pops a draw environment from the stack. Pops should always match pushes.

push Pushes the current draw environment onto a stack (limited to 10).

rotate= deg Rotates coordinate system by deg degrees. Only makes sense if X and Y coordinate
systems are the same. See Coordinate Transformation.

rounding=rnd Radius for rounded rectangles in points, default is 10.

rsabout Redefines coordinate system rotation or scaling to occur at the translation point
instead of the current origin. To use, combine rotate or scale with translate and
rsabout parameters.

save Stores the current drawing environment as the default environment.

scale= sx,sy Scales coordinate system by sx and sy. Affects only coordinates — not line thickness
or arrow head sizes. See Coordinate Transformation.

textrgb=(r, g, b) Sets text color, default is black.

textrot=rot Text rotation in degrees.
rot is a value from -360 to 360.
0 is normal (default) horizontal left-to-right text,
90 is vertical bottom-to-top text, etc.

textxjust=xj

textyjust=yj

translate= dx,dy Shifts coordinate system by dx and dy. Units are in the current coordinate system. See
Coordinate Transformation.

xcoord=abs X coordinates are absolute window coordinates (default for all windows except graphs
where the default is xcoord=prel). The unit of measurement is pixels if the window is
a panel, otherwise they are points. The left edge of the window (or of the printable
area in a layout) is at x=0.

xcoord=rel X coordinates are relative window coordinates. x=0 is at the left edge of the window;
x=1 is at the right edge.

xcoord=prel X coordinates are relative plot rectangle coordinates (graphs only). x=0 is at the left
edge of the rectangle; x=1 is at the right edge of the rectangle. This coordinate system
ideal for objects that should maintain their size and location relative to the axes, and
is the default for graphs.

xcoord=axisName X coordinates are in terms of the named axis (graphs only).

ycoord=abs Y coordinates are absolute window coordinates (default for all windows except graphs
where the default is ycoord=prel). The unit of measurement is pixels if the window is
a panel, otherwise they are points. The top edge of the window (or the of the printable
area in a layout) is at y=0.

ycoord=rel Y coordinates are relative window coordinates. y=0 is at the top edge of the window;
y=1 is at the bottom edge.

Sets horizontal text alignment.
xj=0: Left aligned text (default).
xj=1: Center aligned text.
xj=2: Right aligned text.

Sets vertical text alignment.
yj=0: Bottom aligned text (default).
yj=1: Middle aligned text.
yj=2: Top aligned text.

SetDrawEnv

V-719

Flags

Coordinate Transformation
The execution order for the translate, rotate, scale, and origin parameters is important. Translation followed
by rotation is different than rotation followed by translation. When using multiple keywords in one
SetDrawEnv operation, the order in which they are applied is origin, translate, rotate followed by scale
regardless of the command order (with the exception of the rsabout parameter). Before using origin with
the save keyword, you should use push to save the current draw environment and then use pop after
drawing objects using the new origin.

Examples
Following is a simple example of arrow markers:
NewPanel
SetDrawEnv arrow= 1,arrowlen= 30,save
SetDrawEnv arrowsharp= 0.3
DrawLine 61,67,177,31
SetDrawEnv arrowsharp= 1
DrawLine 65,95,181,59
SetDrawEnv astyle= 1
DrawLine 69,123,185,87
SetDrawEnv arrowframe= 1
DrawLine 73,151,189,115

You can position objects in one coordinate system and then draw them in another with the origin keyword.
In the following coordinate transformation example, we position arrows in axis units but size them in
absolute units.
Make/O jack=sin(x/8)
Display jack
SetDrawEnv xcoord=bottom,ycoord=left,save
SetDrawEnv push
SetDrawEnv origin=50,0
SetDrawEnv xcoord=abs,ycoord=abs,arrow=1,arrowlen=20,arrowsharp=0.2,save
DrawLine 0,0,50,0 // arrow 50 points long pointing to the right
DrawLine 0,0,0,50 // arrow 50 points long pointing down
// now let's move over, rotate a bit and draw the same arrows:
SetDrawEnv translate=100,0
SetDrawEnv rotate=30,save
DrawLine 0,0,50,0
DrawLine 0,0,0,50
SetDrawEnv pop

Now try zooming in on the graph. You will see that the first pair of arrows always starts at 50 on the bottom
axis and 0 on the left axis whereas the second pair is 100 points to the right of the first.

See Also
Chapter III-3, Drawing, and DrawAction.

ycoord=prel Y coordinates are relative plot rectangle coordinates (graphs only). y=0 is at the top
edge of the rectangle; y=1 is at the bottom edge of the rectangle. This coordinate
system ideal for objects that should maintain their size and location relative to the
axes, and is the default for graphs.

ycoord=axisName Y coordinates are in terms of the named axis (graphs only).

/W=winName Sets the named window or subwindow for drawing. When omitted, action will affect
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

SetDrawLayer

V-720

SetDrawLayer
SetDrawLayer [/K/W=winName] layerName
The SetDrawLayer operation makes all future drawing operations use the named layer.

Parameters
Valid layerNames for graphs:

Valid layerNames for page layouts:

Valid layerNames for control panels:

There are really only three layers for control panels. ProgFront is treated as an alias for ProgBack and
UserFront is treated as an alias for UserBack.

Flags

Details
The Overlay layer is drawn above all else. It is not included when printing or exporting graphics and is
provided for programmers who wish to add user-interface drawing elements without disturbing graphics
drawing elements. Overlay was added in Igor Pro 7.00.
The back-to-front order of the layers is shown by the layer pop-up menu obtained by clicking the Layer icon

in the drawing palette: . A checkmark indicates the current layer. Non-drawing layers are indicated
with gray text.

See Also
Drawing Layers on page III-68 and the DrawAction operation.

SetEnvironmentVariable
SetEnvironmentVariable(varName, varValue)
The SetEnvironmentVariable function creates an environment variable in Igor's process and sets its value
to varValue. If a variable named varName already exists, its value is set to varValue.
The function returns 0 if it succeeds or a nonzero value if it fails.
The SetEnvironmentVariable function was added in Igor Pro 7.00.

ProgBack UserBack ProgAxes UserAxes ProgFront UserFront Overlay

ProgBack UserBack ProgFront UserFront Overlay

ProgBack UserBack ProgFront UserFront Overlay

/K Kills (erases) the given layer.

/W=winName Sets the named window or subwindow for drawing. When omitted, action will affect
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

SetFileFolderInfo

V-721

Parameters

Details
The environment of Igor's process is composed of a set of key=value pairs that are known as environment
variables. Any child process created by calling ExecuteScriptText inherits the environment variables of
Igor's process.
SetEnvironmentVariable changes the environment variables present in Igor's process and any future
process created by ExecuteScriptText but does not affect any other processes already created.
On Windows, environment variable names are case-insensitive. On other platforms, they are case-sensitive.

Examples
Variable result
result = SetEnvironmentVariable("SOME_VARIABLE", "15")
result = SetEnvironmentVariable("SOME_OTHER_VARIABLE", "string value")

See Also
GetEnvironmentVariable, UnsetEnvironmentVariable

SetFileFolderInfo
SetFileFolderInfo [flags][fileOrFolderNameStr]
The SetFileFolderInfo operation changes the properties of a file or folder.

Parameters
fileOrFolderNameStr specifies the file or folder to be changed.
If you use a full or partial path for fileOrFolderNameStr, see Path Separators on page III-401 for details on
forming the path.
Folder paths should not end with single Path Separators. See the MoveFolder Details section.
If Igor can not determine the location of the file or folder from fileOrFolderNameStr and /P=pathName, it
displays a dialog allowing you to specify the file to be deleted. Use /D to select a folder in this event,
otherwise Igor prompts your for a file.

Flags
At least one of the seven following flags is required, or nothing is actually accomplished:

varName The name of an environment variable which does not need to actually exist. It must
not be an empty string and may not contain an equals sign (=).

varValue The new contents for the variable.
On Windows, if varValue is an empty string, the variable is removed. On other
platforms, the variable is always set to varValue.

/CDAT=cdate Specifies the number of seconds since midnight January 1, 1904 when the file or folder
was first created.

/INV[=inv]

/MDAT=mDate Specifies the number of seconds since midnight January 1, 1904 when the file or folder
was modified most recently.

/RO[=ro]

Sets the visibility of a file.
inv=0: File is visible.
inv=1: Default; file is invisible (Macintosh) or Hidden (Windows).

Sets the read/write state of a file or folder.
ro=0: File or folder is writable.
ro=1: File or folder is locked (default).

SetFileFolderInfo

V-722

If fileOrFolderNameStr refers to a file (not a folder), SetFileFolderInfo updates the file properties to reflect
values given with the following keywords:

Optional Flags

Variables
SetFileFolderInfo returns information about the file or folder in the following variables:

On Macintosh, locking the file or folder is equivalent to setting the locked property
manually using the Get Info window in the Finder.
On Windows, locking the file or folder is equivalent to setting the read-only property
manually using the Properties window in Windows Explorer.

/CRE8=creatorStr Sets the four-character creator code string, such as 'IGR0' (Igor Pro creator code).

Ignored on Windows, where files have no “creator code”; instead file extensions are
“registered” or “owned” by one, and only one, application. You cannot change that
ownership from Igor Pro.

/FTYP=fTypeStr Sets the four-character file type code, such as 'TEXT' or 'IGsU' (packed experiment).
Ignored on Windows. Use MoveFile to change the file extension.

/STA[=st]

/D Uses the Select Folder dialog rather than Open File dialog when pathName and
fileOrFolderNameStr do not specify an existing file or folder.

/P=pathName Specifies the folder to look in for the file. pathName is the name of an existing symbolic
path.

/R[=r]

/Z[=z]

V_flag 0: File or folder was found.

-1: User cancelled the Open File dialog.

>0: An error occurred, such as the specified file or folder does not exist.

S_path File system path of the selected file or folder.

Specifies whether the file is a stationery file or not.

Ignored on Windows. Use MoveFile to change the file extension.

st=1: Stationery file (default).
st=0: Normal file.

Recursively applies change(s) to all files or folders in the folder specified by
/P=pathName or fileOrFolderNameStr, and the folder itself:

/R requires /D and a folder specification.

r=0: No recursion. Same as no /R.
r=1: Recursively apply changes to files.
r=2: Recursively apply changes to folders, including the folder specified

by pathName or fileOrFolderNameStr.
r=3: Recursively apply changes to both files and folders (default).

Prevents procedure execution from aborting if SetFileFolderInfo tries to set
information about a file or folder that does not exist. Use /Z if you want to handle
this case in your procedures rather than having execution abort.
/Z=0: Same as no /Z at all.
/Z=1: Used for setting information for a file or folder only if it exists. /Z

alone has the same effect as /Z=1.
/Z=2: Used for setting information for a file or folder if it exists and

displaying a dialog if it does not exist.

SetFormula

V-723

Examples
Change the file creator code; no complaint if it doesn’t exist:
SetFileFolderInfo/Z /CRE8="CWIE", "Macintosh HD:folder:afile.txt"

Set the file modification date:
Variable mDate= Date2Secs(2000,12,25) + hrs*3600+mins*60+secs
SetFileFolderInfo/P=myPath/MDAT=(mDate), "afile.txt"

Remove read-only property from a folder and everything within it:
SetFileFolderInfo/P=myPath/D/R/RO=0

See Also
The GetFileFolderInfo, MoveFile, and FStatus operations. The IndexedFile, date2secs, and ParseFilePath
functions.

SetFormula
SetFormula waveName, expressionStr
SetFormula variableName, expressionStr
The SetFormula operation binds the named wave, numeric or string variable to the expression or, if the
expression is "", unbinds it from any previous expression. In user functions, SetFormula must be used to
create dependencies.

Parameters
expressionStr is a string containing a numeric or string expression, depending on the type of the bound object.
Pass an empty string ("") for expressionStr to clear any previous dependency expression associated with the
wave or variable.

Details
The dependent object (the wave or variable) will depend on the objects referenced in the string expression.
The expression will be reevaluated any time an object referred to in the expression is modified.
Besides being set from a string expression this differs from just typing:
name := expression

in that syntax errors in expressionStr are not reported and are not fatal. You end up with a dependency
assignment that is marked as needing to be recompiled. The recompilation will be attempted every time an
object is created or when the procedure window is recompiled.
Use the Object Status dialog in the Misc menu to check up on dependent objects.

Examples
This command makes the variable v_sally dependent on the user-defined function anotherFunction,
waves wave_fred and wave_sue, and the system variable K2:
SetFormula v_sally, "anotherFunction(wave_fred[1]) + wave_sue[0] + K2"

This is equivalent to:
v_sally := anotherFunction(wave_fred[1]) + wave_sue[0] + K2

except that no error will be generated for the SetFormula if, for instance, wave_fred does not exist.
A string variable dependency can be created by a command such as:
SetFormula myStringVar, "note(wave_joe)"

observe that expressionStr is a string containing a string expression, and that:
SetFormula myStringVar,note(wave_joe)

is not the same thing. In this case the note of wave_joe would contain the expression that myStringVar
would depend on! Also, wave_joe would have to exist for Igor to understand the statement.

See Also
Chapter IV-9, Dependencies, and the GetFormula function.

SetIgorHook

V-724

SetIgorHook
SetIgorHook [/K/L] [hookType = [procName]]
The SetIgorHook operation tells Igor to call a user-defined "hook" function at the following times:
• After procedures have been successfully compiled (AfterCompiledHook)
• After a file is opened (AfterFileOpenHook)
• After the MDI frame window is resized on Windows (AfterMDIFrameSizedHook)
• After a window is created (AfterWindowCreatedHook)
• Before the debugger is opened (BeforeDebuggerOpensHook)
• Before an experiment is saved (BeforeExperimentSaveHook)
• Before a file is opened (BeforeFileOpenHook)
• Before a new experiment is opened (IgorBeforeNewHook)
• Before Igor quits (IgorBeforeQuitHook)
• When a menu item is selected (IgorMenuHook)
• During Igor's quit processing (IgorQuitHook)
• When Igor starts or a new experiment is created (IgorStartOrNewHook)

The term “hook” is used as in the phrase “to hook into”, meaning to intercept or to attach.
Hook functions are typically used by a sophisticated procedure package to make sure that the package's private
data is consistent.
In addition to using SetIgorHook, you can designate hook functions using fixed function names (see User-
Defined Hook Functions on page IV-264). The advantage of using SetIgorHook over fixed hook names is that
you don't have to worry about name conflicts.
You can designate hook functions for specific windows using window hooks (see SetWindow on page V-739).

Flags

Parameters

/K Removes procName from the list of functions called for the hookType events.
If procName is not specified all hookType functions are removed.
If hookType is not specified all functions are removed for all hookType events, returning Igor to
the pre-SetIgorHook state.

/L Executes procName last. Without /L, a newly added hook function runs before previously
registered hook functions.
A function that has been previously registered with SetIgorHook can be moved from being
called first to being called last by calling SetIgorHook again with /L.
To move a function from being called last to being called first requires removing the hook
function with /K and then calling SetIgorHook without /L.

hookType Specifies one of the fixed-name hook function names:

AfterCompiledHook

AfterFileOpenHook

AfterMDIFrameSizedHook

AfterWindowCreatedHook

BeforeDebuggerOpensHook

BeforeExperimentSaveHook

BeforeFileOpenHook

IgorBeforeNewHook

IgorBeforeQuitHook

SetIgorHook

V-725

Details
The parameters and return type of the user-defined function procName varies depending on the hookType it
is registered for.
For example, a function registered for the AfterFileOpenHook type must have the same parameters and
return type as the shown for the AfterFileOpenHook on page IV-266.
The procName function is called after any window-specific hook for these hookTypes, and the procName
function is called before any other hook functions previously registered by calling SetIgorHook unless the /L
flag is given, in which case it still runs after window-specific hook functions, but also after all other
previously registered hook functions.
The procName function should return a nonzero value (1 is typical) to prevent later functions from being
called. Returning 0 allows successive functions to be called.
SetIgorHook does not work at Igor start or new experiment time, so SetIgorHook IgorStartOrNewHook is
disallowed. Define a global or static fixed-name IgorStartOrNewHook function (see page IV-275).
The saved Igor experiment file remembers the SetIgorHooks that are in effect when the experiment is saved:

Hook Function Interactions
After all the SetIgorHook functions registered for hookType have run (and all have returned 0), any static fixed-
name hook functions are called and then the (only) fixed-name user-defined hook function, if any, is called.
As an example, when a menu event occurs, Igor handles the event by calling routines in this order:
1. The top window's hook function as set by SetWindow
2. Any SetIgorHook-registered hook functions
3. Any static fixed-named IgorMenuHook functions (in any independent module)
4. The one-and-only non-static fixed-named IgorMenuHook function (in only the ProcGlobal indepen-

dent module)

Variables
SetIgorHook returns information in the following variables:

IgorMenuHook

IgorQuitHook

IgorStartOrNewHook

See the note below about these hookType names.
hookType is required except with /K.

procName Names the user-defined hook function that is called for the hookType event.

1. SetWindow event
(called first)

2. SetIgorHook hookType
(called second)

3. User-defined Hook Function(s)
(called last)

enableMenu IgorMenuHook IgorMenuHook

menu IgorMenuHook IgorMenuHook

Note: Although you can technically use one of the fixed-name functions, as described in User-
Defined Hook Functions on page IV-264, for procName, the result would be that the
function will be called twice: once as a registered named hook function and once as the
fixed-named hook function. That is, don’t use SetIgorHook this way:
SetIgorHook AfterFileOpenHook=AfterFileOpenHook // NO

S_info Semicolon-separated list of all current hook functions associated with hookType, listed in
the order in which they are called. S_info includes the full independent module paths
(e.g.,"ProcGlobal#MyMenuHook;MyIM#MyModule#MyMenuHook;").

SetIgorMenuMode

V-726

Examples
This hook function invokes the Export Graphics menu item when Command-C (Macintosh) or Ctrl+C
(Windows) is selected for a graph, preventing the usual Copy.
SetIgorHook IgorMenuHook=CopyIsExportHook

Function CopyIsExportHook(isSelection,menuName,itemName,itemNo,win,wType)
Variable isSelection
String menuName,itemName
Variable itemNo
String win
Variable wType

Variable handledIt= 0
if(isSelection && wType==1) // menu was selected, window is graph

if(Cmpstr(menuName,"Edit")==0 && CmpStr(itemName,"Copy")==0)
DoIgorMenu "Edit", "Export Graphics" // dialog instead
handledIt= 1 // don't call other IgorMenuHook functions.

endif
endif
return handledIt

End

To unregister CopyIsExportHook as a hook procedure:
SetIgorHook/K IgorMenuHook=CopyIsExportHook // unregister CopyIsExportHook

To discover which functions are associated with a hookType, use a command such as:
SetIgorHook IgorMenuHook // inquire about names registered for IgorMenuHook
Print S_info // list of functions

To remove (or “unregister”) named hooks:
SetIgorHook/K // removes all hook functions for all hookTypes
SetIgorHook/K IgorMenuHook // removes all IgorMenuHook functions
SetIgorHook/K IgorMenuHook=CopyIsExportHook// removes only this hook function

See Also
The SetWindow operation and User-Defined Hook Functions on page IV-264.
Independent Modules on page IV-224.

SetIgorMenuMode
SetIgorMenuMode MenuNameStr, MenuItemStr, Action
The SetIgorMenuMode operation allows an Igor programmer to disable or enable Igor’s built-in menus and
menu items. This is useful for building applications that will be used by end-users who shouldn’t have
access to all Igor’s extensive and confusing functionality.

Parameters

Details
All menu names and menu item text are in English. This ensures that code developed for a localized version
of Igor will run on all versions. Note that no trailing “...” is used in MenuItemStr.

MenuNameStr The name of an Igor menu, like “File”, “Graph”, or “Load Waves”.

MenuItemStr The text of an Igor menu item, like “Copy” (in the Edit menu) or “New Graph” (in the
Windows menu). For menu items in submenus, such as the “Load Waves” submenu
in the “Data” menu, MenuItemStr is the name of the submenu.

Action One of DisableItem, EnableItem, DisableAllItems, or EnableAllItems.
DisableItem and EnableItem disable or enable just the single item named by
MenuNameStr and MenuItemStr. If MenuItemStr is "", then the menu itself is disabled.
DisableAllItems and EnableAllItems disable and enable all the items in the menu
named by MenuNameStr.

SetIgorOption

V-727

The SetIgorMenuModeProc.ipf procedure file includes procedures and commands that disable or enable
every menu and item possible. It is in your Igor Pro 7 folder, in WaveMetrics Procedures:Utilities. It is not
intended to be used as-is. You should make a copy and edit the copy to include just the parts you need.
The text of some items in the File menu changes depending on the type of the active window. In these cases
you must pass generic text as the MenuItemStr parameter. Use “Save Window”, “Save Window As”, “Save
Window Copy”, “Adopt Window” and “Revert Window” instead of “Save Notebook” or “Save Procedure”,
etc. Use “Page Setup” instead of “Page Setup For All Graphs”, etc. Use “Print” instead of “Print Graph”, etc.
The Edit→Insert File menu item was previously named Insert Text. For compatibility reasons, you can specify
either "Insert File" or "Insert Text" as MenuItemStr to modify this item.

See Also
The DoIgorMenu operation.

SetIgorOption
SetIgorOption [mainKeyword,] keyword= value
SetIgorOption [mainKeyword,] keyword= ?
The SetIgorOption operation makes unusual and temporary changes to Igor Pro’s behavior. This operation is not
compilable and you will need to use the Execute operation to use it in a user function. The details of the syntax
depend on the application and are documented where the alternate behaviors are described. In most cases the
current value of a setting can be read using the keyword=? syntax. Simple numeric options are stored in V_flag
and color options are stored in V_Red, V_Green, V_Blue, and V_Alpha The settings last for the life of the Igor
session.

See Also
Syntax Coloring on page III-359 for some usage examples; SetIgorOption IndependentModuleDev=1 on
page IV-225; Conditional Compilation on page IV-100; MarkPerfTestTime operation.

SetMarquee
SetMarquee [/W=winName] left, top, right, bottom
The SetMarquee operation creates a marquee on the target graph or layout window or the specified
window or subwindow.
The left, top, right, bottom coordinates are the same as those returned by the GetMarquee operation (screen
units measured in points).
If the coordinates are all 0, the marquee, if it exists, is killed.
The optional axis modes supported by GetMarquee are not supported by SetMarquee.

Flags

See Also
The GetMarquee operation.

SetProcessSleep
SetProcessSleep sleepTicks
The SetProcessSleep operation is obsolete and does nothing as of Igor Pro 7.00. It is documented here in case you come
across it in old Igor procedure code. Do not use it in new code.
The SetProcessSleep operation determines how much time Igor will give to background tasks or other
Macintosh applications executing in the background. This operation does nothing on Windows.

Parameters
sleepTicks is the amount of time given to background tasks in sixtieths of a second. sleepTicks values between
0 and 60 are valid.

/W=winName Specifies the named window or subwindow. When omitted, action will affect the
active window or subwindow.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

SetRandomSeed

V-728

Details
Igor starts up with sleepTicks = 1. Use 0 to give Igor maximum time, use a larger number to give other
applications more time.
Background tasks are used mainly by data acquisition programs.

See Also
Background Tasks on page IV-298 and the SetBackground operation.

SetRandomSeed
SetRandomSeed seed
The SetRandomSeed operation seeds the random number generator used for the enoise and gnoise
functions. Use SetRandomSeed if you need “random” numbers that are reproducible. If you don’t use
SetRandomSeed, the random number generator is initialized using the system clock when Igor starts. This
almost guarantees that you will never get the same sequence twice unless you use SetRandomSeed.

Flags

Parameters
seed should be a number in the interval (0, 1]. For any given seed, enoise or gnoise or any of the other random-
number generator functions generates a particular sequence of pseudorandom numbers. Calling
SetRandomSeed with the same seed restarts and repeats the sequence.

Details
Internally seed is scaled to a 32-bit unsigned integer. Consequently, the number of different values for the
internally-scaled seed is less than the resolution of the double-precision numbers in the (0, 1] range.
You should use /BETR unless you need consistency with older versions of Igor. /BETR was introduced in Igor
Pro 6.20.
The Mersenne Twister random number generator is used for most of Igor's noise functions (and optionally for
enoise and gnoise), and internally for operations that need random sequences, such as StatsSample or
StatsResample.
Without the /BETR flag, SetRandomSeed maps seed to an internal 16-bit integer for seeding the Mersenne
Twister random number generator. With /BETR it maps to an internal 32-bit integer seed. So using /BETR
reduces the chance that two values of seed will map to the same internal integer seed.

See Also
The enoise and gnoise functions. Noise Functions on page III-344.

SetScale
SetScale [/I/P] dim, num1, num2 [, unitsStr], waveName [, waveName]…
SetScale d, num1, num2 [, unitsStr], waveName [, waveName]…
The SetScale operation sets the dimension scaling or the data full scale for the named waves.

Parameters
The first parameter dim must be one of the following:

/BETR[=better] If better is absent or non-zero, a better method is used for seeding the Mersenne
Twister random number generator.

Character Signifies
d Data full scale.
t Scaling of the chunks dimension (t scaling).
x Scaling of the rows dimension (x scaling).
y Scaling of the columns dimension (y scaling).
z Scaling of the layers dimension (z scaling).

SetVariable

V-729

If setting the scaling of any dimension (x, y, z, or t), num1 is the starting index value — the scaled index for the
first point in the dimension. The meaning of num2 changes depending on the /I and /P flags. If you use /P, then
num2 is the delta value — the difference in the scaled index from one point to the next. If you use /I, num2 is
the “ending value” — the index value for the last element in the dimension. If you use neither flag, num2 is
the “right value” — the index value that the element after the last element in the dimension would have.
These three methods are just three different ways to specify the two scaling values, the starting value and
the delta value, that are stored for each dimension of each wave.
If setting the data full scale (d), then num1 is the nominal minimum and num2 is the nominal maximum data
value for the waves. The data full scale values are not used. They serve only to document the minimum and
maximum values the waves are expected to attain. No flags are used when setting the data full scale.
The unitsStr parameter is a string that identifies the natural units for the x, y, z, t, or data values of the named
waves. Igor will use this to automatically label graph axes. This string must be one to 49 bytes such as “m” for
meters, “g” for grams or “s” for seconds. If the waves have no natural units you can pass "" for this parameter.
Setting unitsStr to "dat" (case-sensitive) tells Igor that the wave is a date/time wave containing data in Igor
date/time format (seconds since midnight on January 1, 1904). Date/time waves must be double-precision.

Flags
At most one flag is allowed, and then only if dimension scaling (not data full scale) is being set:

Details
SetScale will not allow the delta scaling value to be zero. If you execute a SetScale command with a delta
value of zero, it will set the delta value to 1.0.
If you do not use the /P flag, SetScale converts num1 and num2 into a starting index value and a delta index
value. If you call SetScale on a dimension with fewer than two elements, it does this conversion as if the
dimension had two elements.
Prior to Igor Pro 3.0, Igor supported only 1D waves. “SetScale x” was used to set the scaling for the rows
dimensions and “SetScale y” was used to set the data full scale. With the addition of multidimensional
waves, “SetScale y” is now used to set the scaling of the columns dimension and “SetScale d” is used to set
the data full scale. For backward compatibility, “SetScale y” on a 1D wave sets the data full scale.
When setting the dimension scaling of a numeric wave, you can omit the unitsStr parameter. Igor will set
the wave’s scaling but not change its units. However, when setting the dimension scaling of a text wave,
you must supply a unitsStr parameter (use "" if the wave has no units). If you don’t, Igor will think that the
text wave is the start of a string expression and will attempt to treat it as the unitsStr.

See Also

See Also
CopyScales, DimDelta, DimOffset, DimSize, WaveUnits
For an explanation of waves and dimension scaling, see Changing Dimension and Data Scaling on page
II-63.
For further discussion of how Igor represents dates, see Date/Time Waves on page II-78.

SetVariable
SetVariable [/Z] ctrlName [keyword = value [, keyword = value …]]
The SetVariable operation creates or modifies a SetVariable control in the target window.
A SetVariable control sets the value of a global numeric or string variable or a point in a wave when you
type or click in the control. A SetVariable can also hold its own value without the need for a global or wave.
For information about the state or status of the control, use the ControlInfo operation.

/I Inclusive scaling. num2 is the ending index — the index value for the very last element in the
dimension.

/P Per-point scaling. num2 is the delta index value — the difference in scaled index value from
one element to the next.

SetVariable

V-730

Parameters
ctrlName is the name of the SetVariable control to be created or changed.
The following keyword=value parameters are supported:

activate Activates the control and selects the text that sets the value. Use ControlUpdate
to deactivate the control and deselect the text.

appearance={kind [, platform]}

Sets the appearance of the control. platform is optional. Both parameters are
names, not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
See Button and DefaultGUIControls for more appearance details.

bodyWidth=width Specifies an explicit size for the body (nontitle) portion of a SetVariable control.
By default (bodyWidth=0), the body portion is the amount left over from the
specified control width after providing space for the current text of the title
portion. If the font, font size or text of the title changes, then the body portion may
grow or shrink. If you supply a bodyWidth>0, then the body is fixed at the size
you specify regardless of the body text. This makes it easier to keep a set of
controls right aligned when experiments are transferred between Macintosh and
Windows, or when the default font is changed.

disable=d

fColor=(r,g,b) Sets the initial color of the title. r, g, and b range from 0 to 65535. fColor defaults
to black (0,0,0). To further change the color of the title text, use escape sequences
as described for title=titleStr.

focusRing=fr

On Macintosh, regardless of this setting, the focus ring appears if you have
enabled full keyboard access via the Shortcuts tab of the Keyboard system
preferences.

font="fontName" Sets the font used to display the value of the variable, e.g., font="Helvetica".

format=formatStr Sets the numeric format of the displayed value, e.g., format="%g". Not used with
string variables. Never use leading text or the "%W" formats, because Igor reads
the value back without interpreting the units. For a description of formatStr, see
the printf operation.

frame=f

fsize=s Sets the size of the type used to display the variable’s value.

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: No user input.

Enables or disables the drawing of a rectangle indicating keyboard focus:
fr=0: Focus rectangle will not be drawn.
fr=1: Focus rectangle will be drawn (default).

Sets the frame for the value readout.
f=0: Value unframed.
f=1: Value framed (default).

SetVariable

V-731

fstyle=fs

help={helpStr} Sets the help for the control. The help text is limited to a total of 255 bytes. You
can insert a line break by putting “\r” in a quoted string.

labelBack=(r,g,b) or 0 Specifies the background fill color for labels. r, g, and b are integers from 0 to
65535. The default is 0, which uses the window’s background color.

limits={low,high,inc} Sets the limits of the allowable values (low and high) for the variable. inc sets the
amount by which the variable is incremented if you click the control’s up/down
arrows. This applies to numeric variables, not to string variables. If inc is zero then
the up/down arrows will not be drawn.

live=l

noedit=val noedit=1 prevents the user from clicking (or tabbing into) a SetVariable control to
directly edit its value. This is useful when you want to make a string read-only or
when you want to restrict a numeric setting to those available only via the
control’s up or down arrow buttons.
noedit=0 reactivates user editing.
noedit=2 is deprecated as of Igor Pro 6.34 but still supported. It allows the use of
formatting escape codes described under Annotation Escape Codes. Use
styledText=1, instead.

noproc No procedure is to execute when the control’s value is changed.

pos={left,top} Sets the position of the control in pixels.

pos+={dx,dy} Offsets the position of the control in pixels.

proc=procName Sets the procedure to execute when the control’s value is changed.

rename=newName Gives control a new name.

styledText=val styledText=1 allows the use of formatting escape codes described under
Annotation Escape Codes on page III-53. This works for string SetVariable
controls only, not for numeric controls.
For example:
SetVariable sv0 value=_STR:"\\JC\\K(65535,0,0)Centered Red
Text"

styledText=0 treats escape codes as plain text.
The styledText keyword was added in Igor Pro 6.34. For compatibility with
earlier versions of Igor, the combination of noedit=1 and styledText=1 is recorded
as noedit=2 in recreation macros.

size={width,height} Sets width of control in pixels. height is ignored.

fs is a bitwise parameter with each bit controlling one aspect of the font style
as follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold
Bit 1: Italic
Bit 2: Underline
Bit 4: Strikethrough

Determines when the readout is updated.
l=0: Update only after variable changes (default).
l=1: Update as variable changes.

SetVariable

V-732

Flags

Details
The target window must be a graph or panel.

SetVariable Action Procedure
The action procedure for a SetVariable control takes a predefined WMSetVariableAction structure as a
parameter to the function:
Function ActionProcName(SV_Struct) : SetVariableControl

STRUCT WMSetVariableAction &SV_Struct
…
return 0

End

The “: SetVariableControl” designation tells Igor to include this procedure in the Procedure pop-up
menu in the SetVariable Control dialog.
See WMSetVariableAction for details on the WMSetVariableAction structure.
Although the return value is not currently used, action procedures should always return zero.

title=titleStr Sets the title of the control to the specified string expression. The title is displayed
to the left of the control. If titleStr is empty (""), the name of the controlled
variable is displayed as the title. Use title=" " (put a space within the
quotation marks) to create a “blank” title.
Using escape codes you can change the font, size, style, and color of the title. See
Annotation Escape Codes on page III-53 or details.

userdata(UDName)=UDStr

Sets the unnamed user data to UDStr. Use the optional (UDName) to specify a
named user data to create.

userdata(UDName)+=UDStr

Appends UDStr to the current unnamed user data. Use the optional (UDName) to
append to the named UDStr.

value=varOrWaveName Sets the numeric or string variable or wave element to be controlled.
If varOrWaveName references a wave, the point is specified using standard
bracket notation with either a numeric point number or a row label, for example:
value=awave[4] or value=awave[%alabel].
You may also use a 2D, 3D, or 4D wave and specify a column, layer, and chunk
index or dimension label in addition to the row index.
You can have the control store the value internally rather than in a global variable.
In place of varName, use _STR:str or _NUM:num. For example:
NewPanel; SetVariable sv1,value=_NUM:123

valueColor=(r,g,b) Sets the color of the value text. r, g, and b range from 0 to 65535. valueColor
defaults to black (0,0,0).

valueBackColor=(r,g,b) Sets the background color under the value text. r, g, and b range from 0 to 65535.

valueBackColor=0 Sets the background color under the value text to the default color, the standard
document background color used on the current operating system, which is
usually white.

win=winName Specifies which window or subwindow contains the named control. If not given,
then the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page
III-87 for details on forming the window hierarchy.

/Z No error reporting.

SetVariableControl

V-733

You may see an old format SetVariable action procedure in old code:
Function procName(ctrlName,varNum,varStr,varName) : SetVariableControl

String ctrlName
Variable varNum // value of variable as number
String varStr // value of variable as string
String varName // name of variable
…
return 0

End

This old format should not be used in new code.

Examples
Executing the commands:
Variable/G globalVar=99
SetVariable setvar0 size={120,20}
SetVariable setvar0 font="Helvetica", value=globalVar

creates a SetVariable control that displays the value of globalVar.

See Also
The printf operation for an explanation of formatStr, and SetVariable on page III-370.
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls. The GetUserData operation for retrieving named user data.

SetVariableControl
SetVariableControl
SetVariableControl is a procedure subtype keyword that identifies a macro or function as being an action
procedure for a user-defined SetVariable control. See Procedure Subtypes on page IV-193 for details. See
SetVariable for details on creating a SetVariable control.

SetWaveLock
SetWaveLock lockVal, waveList
The SetWaveLock operation locks a wave or waves and protects them from modification. Such protection
is not absolute, but it should prevent most common attempts to change or kill a wave.

Parameters
lockVal can be 0, to unlock, or 1, to lock the wave(s).
waveList is a list of waves or it can be allinCDF to act on all waves in the current data folder.

See Also
WaveInfo to check if a wave is locked.

SetWaveTextEncoding
SetWaveTextEncoding [flags] newTextEncoding, elements, [wave, wave, ...]
The SetWaveTextEncoding operation changes the text encoding of the specified waves and/or the text
encoding of all waves in the specified data folder.
Wave text encodings are mostly an issue in dealing with pre-Igor Pro 7 experiments containing non-ASCII
text. Most users will have no need to worry about or change them. You should not use this operation unless
you have a thorough understanding of text encoding issues or are instructed to use it by someone who has
a thorough understanding.
See Wave Text Encodings on page III-422 for essential background information.
SetWaveTextEncoding can work on a list of specific waves or on all of the waves in a data folder (/DF flag).
When working on a data folder, it can work on just the data folder itself or recursively on sub-data folders
as well.
If /CONV is present, SetTextWaveEncoding actually converts the text to a different text encoding. You
would use this, for example, to convert text stored as Shift JIS (Japanese non-Unicode) into UTF-8
(Unicode).

SetWaveTextEncoding

V-734

If /CONV is omitted, SetTextWaveEncoding merely causes Igor to reinterpret text. You would do this to tell
Igor Pro 7 what text encoding is used for a wave created by Igor Pro 6 if Igor Pro 7 gets it wrong.
Conversion does not change the characters that make up text - it merely changes the numeric codes used to
represent those characters. Reinterpretation does not change the numeric codes but does change the
characters by changing the interpretation of the numeric codes.
The SetWaveTextEncoding operation was added in Igor Pro 6.30. However, prior to Igor Pro 7, it permits
reinterpretation only, not conversion. In some cases it may be necessary to fix text encoding issues in Igor
Pro 6.3x before opening an experiment in Igor Pro 7.

Parameters
newTextEncoding specifies the text encoding to set the wave element to. See Text Encoding Names and
Codes on page III-434 for a list of codes.
newTextEncoding can be the special value 255 which marks a text wave's content as really containing binary
data, not text. See Text Waves Containing Binary Data on page III-424 below for details.
elements is a bitwise parameter that specifies one or more elements of a wave, as follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.
wave, wave, ... is a list of the targeted waves. The list is optional and typically should be omitted if you use
the /DF flag. However, if you specify a data folder via /DF and you also list specific waves,
SetWaveTextEncoding works on all waves in the data folder as well as the specifically listed waves.

Flags

Bit Value Meaning

0 1 Wave name

1 2 Wave units

2 4 Wave note

3 8 Wave dimension labels

4 16 Text wave content

/BINA={markAsBinary, diagnosticsFlags}

If markAsBinary is 1, SetWaveTextEncoding marks the content of any text wave as
binary if the data contains control characters (codes less than 32) other than carriage
return (13), linefeed (10), and tab (9).
If markAsBinary is 0, SetWaveTextEncoding acts as if /BINA were omitted.
diagnosticsFlags is optional and defaults to 1. If you omit it you can also omit the braces
(/BINA=1).

The /BINA=1 flag works with with the content of text waves only. It skips non-text
waves. It is also independent of the elements parameter. That is, it marks the text wave
content and only the text wave content as binary even if elements is something other
than 16.
If you pass 255 for newTextEncoding when using the /BINA flag, this tells
SetWaveTextEncoding to stop processing after marking binary waves. No further
conversion or reinterpretation is done.
See Text Waves Containing Binary Data on page III-424 for further discussion.

/CONV={errorMode [, defaultTextEncoding, diagnosticsFlags]}

diagnosticsFlags is a bitwise parameter defined as follows:

All other bits are reserved for future use.
See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Emit diagnostic message for each wave marked as binary.

SetWaveTextEncoding

V-735

Causes the text data to be converted to the specified text encoding. If /CONV is
present, SetTextWaveEncoding actually converts the text. If it is omitted,
SetTextWaveEncoding merely causes Igor to reinterpret it.
defaultTextEncoding and diagnosticsFlags are optional and are further discussed below.
If you omit them you can also omit the braces (/CONV=1).
If /CONV is specified and the original text encoding is binary (255) then
SetWaveTextEncoding does nothing, because all conversions involving binary are
NOPs.
If /CONV is specified and newTextEncoding is binary (255) then no conversion is done,
because all conversions involving binary are NOPs, but the wave is marked as binary.
Thus this amounts to the same thing as reinterpreting the wave's text data as binary.
If /CONV is specified, defaultTextEncoding is omitted or is -1, and the original text
encoding is unknown (0) then SetWaveTextEncoding does nothing. That is, it does no
reinterpretation or conversion.
errorMode determines how SetWaveTextEncoding behaves if the conversion can not
be done because the text can not be mapped to the specified text encoding. This will
occur if the text contains characters that can not be represented in the specified text
encoding or if Igor's notion of the original text encoding is wrong. In the latter case,
call SetWaveTextEncoding without /CONV to correct Igor's interpretation of the text
and then call SetWaveTextEncoding with /CONV to do the conversion.

defaultTextEncoding is optional. If it is present, not -1, and if the wave text element's
original encoding is unknown (0), then the wave text element is treated as if it were
the specified defaultTextEncoding. This allows you to convert the text of Igor Pro 6
waves that are set to unknown when you know that they are really some other text
encoding. For example, if you know a wave's text data text encoding is Shift JIS, you
can convert it to UTF-8 in one step, like this:
SetWaveTextEncoding /CONV={1,4} 1, 16, textWave0

Without the defaultTextEncoding, you would have to do two steps - the first to tell Igor
what the real text encoding is and the second to do the conversion:
// Text encoding is Shift JIS
SetWaveTextEncoding 4, 16, textWave0

// Convert to UTF-8
SetWaveTextEncoding /CONV=1 1, 16, textWave0

Passing -1 for defaultTextEncoding acts the same as omitting it.

errorMode takes one of these values:
1: Generate error. SetWaveTextEncoding returns an error to Igor.
2: Use a substitute character for any unmappable characters. The

substitute character for most text encodings is either control-Z or a
question mark.

3: Skip unmappable input characters. Any unmappable characters
will be missing in the output.

4: Use escape sequences representing any unmappable characters or
invalid source text.
If the source text is valid in the source text encoding but can not be
represented in the destination text encoding, unmappable
characters are replaced with \uXXXX where XXXX specifies the
UTF-16 code point of the unmappable character in hexadecimal.
If the conversion can not be done because the source text is not
valid in the source text encoding, invalid bytes are replaced with
\xXX where XX specifies the value of the invalid byte in
h d i l

SetWaveTextEncoding

V-736

Text conversion may be skipped because the wave element is marked as unknown
text encoding, because it is marked as binary, because of the /ONLY or /SKIP flags, or
because newTextEncoding is the same as the wave element's original text encoding.

/DF={dfr, recurse, excludedDFR}

dfr is a reference to a data folder. SetWaveTextEncoding operate on all waves in the
specified data folder. If dfr is null ($"") SetWaveTextEncoding acts as if /DF was
omitted.
If recurse is 1, SetWaveTextEncoding works recursively on all sub-data folders.
Otherwise it affects only the data folder referenced by dfr.
excludedDFR is an optional reference to a data folder to be skipped by
SetWaveTextEncoding. For example, this command sets the text encoding of text
wave data for all waves in all data folders except for root:Packages and its sub-data
folders:
SetWaveTextEncoding /DF={root:,1,root:Packages} 1, 16

If excludedDFR is null ($"") SetWaveTextEncoding acts as if excludedDFR was omitted
and no data folders are excluded.

/ONLY=targetedTextEncoding

SetWaveTextEncoding changes only wave elements that are currently set to
targetedTextEncoding. For example, this command converts the content of all waves
that are currently set to unknown text encoding (0) to UTF-8 (1), treating the waves
originally marked as unknown as Shift JIS (4) waves:
SetWaveTextEncoding /DF={root:,1} /ONLY=0 /CONV={1,4} 1, 16

Passing -1 for targetedTextEncoding acts as if you omitted /ONLY altogether.

/SKIP=skipTextEncoding

SetWaveTextEncoding skips all wave elements that are currently set to
skipTextEncoding. For example, this command converts the content of all waves to
UTF-8 (1) except those that are set to Japanese (4):
SetWaveTextEncoding /DF={root:,1} /SKIP=4 /CONV=1 1, 16

As explained under /CONV, binary (255) wave elements are always skipped and
unknown (0) wave elements are skipped if the /CONV defaultTextEncoding
parameter is omitted.
Passing -1 for skipTextEncoding acts as if you omitted /SKIP altogether.

/TYPE=type SetWaveTextEncoding changes only waves of the specified type.

diagnosticsFlags is an optional bitwise parameter defined as follows:

All other bits are reserved for future use.
See Setting Bit Parameters on page IV-12 for details about bit settings.
diagnosticsFlags defaults to 2 (bits 1 set) if the /DF flag is not present and to 10 (bits
1 and 3 set) if the /DF flag is present.

Bit 0: Emit diagnostic message if text conversion succeeds.
Bit 1: Emit diagnostic message if text conversion fails.
Bit 2: Emit diagnostic message if text conversion is skipped.
Bit 3: Emit summary diagnostic message.

type is:
1: Text waves only
2: Non-text waves only
3: All waves (default)

SetWaveTextEncoding

V-737

Details
Because SetWaveTextEncoding is intended for use by experts or by users instructed by experts, it does not
respect the lock state of waves. That is, it will change waves even if they are locked using SetWaveLock.
For background information on wave text encodings, see Wave Text Encodings on page III-422.
A wave's text wave content text encoding can also be set to the special value 255. This marks a text wave as
really containing binary data, not text. See Text Waves Containing Binary Data on page III-424 for details.

Using SetWaveTextEncoding
One of the main uses for SetWaveTextEncoding is to set the encoding settings to some value other than 0
(unknown) so that Igor's idea of the text encoding used for the items accurately reflects the actual text
encoding. We call this "reinterpreting" the item. It does not change the numeric codes representing the text
but rather just changes the setting that controls Igor's idea of how the text is encoded. This does change the
meaning of the underlying numeric codes. In other words, it changes the characters represented by the text.
You would do reinterpretation if you load an Igor6 experiment and Igor7 interprets the waves using the
wrong text encoding. For example, if you load an experiment that you know uses Shift JIS encoding but Igor
interprets it as Windows-1252, you get garbage for Japanese text. Reinterpreting it as Shift JIS fixes this. An
example is provided below.
The other use for SetWaveTextEncoding is to actually change the numeric codes representing the text - i.e.,
to convert the content to a different text encoding. For example, if you have text waves from Igor Pro 6 that
are encoded in Japanese (Shift JIS), you may want to convert the text to UTF-8 (a form of Unicode) so that
you can combine Japanese and non-Japanese characters or use other features that require Unicode. This also
applies to western text containing non-ASCII characters encoded as MacRoman or Windows-1252.
Converting changes the underlying numeric codes but does not change the characters represented by the
text.
The main use for converting text is to convert Igor Pro 6 waves from whatever encoding they use, which
typically will be MacRoman, Windows-1252, or Shift JIS, to UTF-8 (a form of Unicode) which is a more
modern representation but is not backward compatible with Igor Pro 6.
If the /CONV flag is omitted SetWaveTextEncoding does reinterpretation. If the /CONV flag is present then
SetWaveTextEncoding does text conversion except if the original text encoding is unknown (0) or binary
(255) in which case it does nothing.
If a wave has mistakenly been marked as containing binary, use SetTextWaveEncoding without /CONV to
set it to the correct text encoding.
If a wave's text encoding is set to unknown (0) but you know that it really contains text in some specific
encoding, you can use SetTextWaveEncoding without /CONV to set it to the correct text encoding and then
use SetTextWaveEncoding with /CONV to convert it to the desired final text encoding. Alternately you can
combine these two steps by using /CONV and providing a value for the optional defaultTextEncoding
parameter.

Output Variables
The SetWaveTextEncoding operation returns information in the following variables:

/Z[=z] Prevents procedure execution from aborting if SetWaveTextEncoding generates an
error. Use /Z or the equivalent, /Z=1, if you want to handle errors in your procedures
rather than having execution abort.
/Z does not suppress invalid parameter errors. It suppresses only errors in doing text
encoding reinterpretation or conversion.

V_numConversionsSucceeded Set only when the /CONV flag is used. Zero otherwise.
V_numConversionsSucceeded is set to the number of successful text
conversions.

V_numConversionsFailed Set only when the /CONV flag is used. Zero otherwise.
V_numConversionsFailed is set to the number of unsuccessful text
conversions.

SetWaveTextEncoding

V-738

Examples
// Keep in mind that, if /CONV is present, SetWaveTextEncoding does nothing
// for wave text elements currently set to binary (255).
// Also, if /CONV is present, SetWaveTextEncoding does nothing
// for wave text elements currently set to unknown (0) if the /CONV
// optional defaultTextEncoding parameter is omitted.
// In the following examples 1 means UTF-8, 4 means Shift JIS, and 16
// means text wave content.

// Reinterpret specific text waves as Shift JIS if they are currently set to unknown
SetWaveTextEncoding /ONLY=0 4, 16, textWave0, textWave1

// Convert specific waves' content to UTF-8
SetWaveTextEncoding /CONV=1 1, 16, textWave0, textWave1

// Reinterpret all text waves as Shift JIS if they are currently set to unknown
SetWaveTextEncoding /DF={root:,1} /ONLY=0 4, 16

// Convert all waves' content to UTF-8
SetWaveTextEncoding /DF={root:,1} /CONV=1 1, 16

// Convert all text waves' content from Shift JIS to UTF-8
// if it is currently set to unknown
SetWaveTextEncoding /DF={root:,1} /ONLY=0 /TYPE=1 /CONV={1,4} 1, 16

// Same as before but exclude the root:Packages data folder
SetWaveTextEncoding /DF={root:,1,root:Packages} /ONLY=0 /TYPE=1 /CONV={1,4} 1, 16

// Mark a text wave as really containing binary data
SetWaveTextEncoding 255, 16, textWaveContainingBinaryData

// Convert Chinese, Japanese and Korean text wave data to UTF-8.
// This example illustrates how to do a conversion based on criteria
// that require inspecting each wave.
Function ConvertCJKToUTF8(dfr, recurse)

DFREF dfr
Variable recurse

Variable index = 0
do

Wave/Z w = WaveRefIndexedDFR(dfr, index)
if (!WaveExists(w))

break
endif
if (WaveType(w) == 0) // Text wave?

Variable currentEncoding = WaveTextEncoding(w,5)// Wave content current
encoding

switch(currentEncoding)
case 4: // Japanese (Shift JIS)
case 5: // Traditional Chinese (Big5)
case 6: // Simplified Chinese (ISO-2022-CN)
case 7: // Macintosh Korean (EUC-KR)
case 8: // Windows Korean (Windows-949)

SetWaveTextEncoding /CONV=1 1, 16, w
break

endswitch
endif
index += 1

while(1)

V_numConversionsSkipped Set only when the /CONV flag is used. Zero otherwise.
V_numConversionsSkipped is set to the number of skipped text
conversions. Text conversion may be skipped because the wave
element is marked as unknown text encoding, because it is marked
as binary, because of the /ONLY or /SKIP flags or because
newTextEncoding is the same as the wave element's original text
encoding.
V_numConversionsSkipped does not count waves skipped because
of the /TYPE flag.

SetWindow

V-739

if (recurse)
Variable numChildDataFolders = CountObjectsDFR(dfr, 4)
Variable i
for(i=0; i<numChildDataFolders; i+=1)

String childDFName = GetIndexedObjNameDFR(dfr, 4, i)
DFREF childDFR = dfr:$childDFName
ConvertCJKToUTF8(childDFR, 1)

endfor
endif

SetDataFolder saveDFR
End

See Also
Text Encodings on page III-409, Wave Text Encodings on page III-422, Text Encoding Names and Codes
on page III-434, Text Waves Containing Binary Data on page III-424
WaveTextEncoding, ConvertTextEncoding, ConvertGlobalStringTextEncoding

SetWindow
SetWindow winName [, keyword = value]…
The SetWindow operation sets the window note and user data for the named window or subwindow.
SetWindow can also set hook functions for a base window or exterior subwindow (interior subwindows
not supported).

Parameters
winName can be a window or subwindow name. It can also be the keyword kwTopWin to specify the
topmost graph, panel, layout, table, or notebook window.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.

activeChildFrame=f

graphicsTech=t

hide=h

Determines if the frame indicating the active subwindow in the named
window or subwindow is drawn.
f=-1: Default. Recursively check ancestors of this window. If one is

found with a value of either 0 or 1, use that value. If the topmost
window has a value of -1, then the frame is drawn.

f=1: If this subwindow or one of its descendants becomes active, then
the frame is drawn.

f=0: If this subwindow or one of its descendants becomes active, then
the frame is not drawn.

Sets the graphics technology used to draw the window. This flag may be
useful in rare cases to work around graphics limitations. See Graphics
Technology (see page III-445) for background information.
t=0: Default: The graphics technology specified in Miscellaneous

Settings dialog, Miscellaneous category. This is Qt Graphics by
default.

t=1: Native: Core Graphics on Macintosh, GDI+ on Windows.
t=2: Old: Core Graphics on Macintosh, GDI on Windows.

Hides or unhides widows or subwindows.

When unhiding subwindows, you should combine with needUpdate=1 if
conditions require the subwindow to be redrawn since the window was
hidden.

h=0: Unhides a subwindow or base window.
h=1: Hides a subwindow or base window.
h=2: Unhides without restoring minimized windows (Windows only).

SetWindow

V-740

hook=procName Sets the window hook function that Igor will call when certain events happen. Use
SetWindow hook=$"" to specify no hook function.
See Unnamed Window Hook Functions on page IV-286 for further details.

hook(hName)=procName

Defines a named window hook hName and sets the function that Igor will call
when certain events happen. hName can be any legal name. Named hooks are
called before any unnamed hooks.
Use $"" for procName to specify no hook.
See Named Window Hook Functions on page IV-277 for further details.
To hook a subwindow, see Window Hooks and Subwindows on page IV-277.

hookcursor=number Sets the mouse cursor. This keyword is antiquated. See Setting the Mouse Cursor
on page IV-282 for the preferred technique.

hookevents=flags

To set bit 0 and bit 1 (mouse clicks and mouse moved), use 20+21 = 1+2 = 3 for flags.
Use 7 to also enable cursor moved events. See Setting Bit Parameters on page
IV-12 for details about bit settings.
This keyword applies to the unnamed hook function only. It does not affect named
hook functions which always receive all events.

markerHook= {hookFuncName, start, end}

Specifies a user function and marker number range for custom markers. The
marker range can be any positive integers less than 1000 and can overlap built-in
marker numbers. See Custom Marker Hook Functions on page IV-289 for details.
Use $"" for hookFuncName to specify no hook.

needUpdate= n Marks a window as needing an update (n=1) or takes no action (n=0).

note=noteStr Sets the window note to noteStr, replacing any existing note.

note+=noteStr Appends noteStr to current contents of the window note.

sizeLimit= {minWidth, minHeight, maxWidth, maxHeight}

Bitfield of flags to enable certain events for the unnamed hook function:
Bit 0: Mouse button clicks.
Bit 1: Mouse moved events.
Bit 2: Cursor moved events.

ShowIgorMenus

V-741

Details
For details on named window hooks, see Window Hook Functions on page IV-276.
Unnamed window hook functions are supported for backward compatibility only. New code should use
named window hook functions. For details on unnamed window hooks, see Unnamed Window Hook
Functions on page IV-286.
For details on marker hooks, see Custom Marker Hook Functions on page IV-289.

See Also
The GetWindow, SetIgorHook, and SetIgorMenuMode operations and AxisValFromPixel,
NumberByKey, PopupContextualMenu, and TraceFromPixel functions. The GetUserData operation for
retrieving named user data.

ShowIgorMenus
ShowIgorMenus [MenuNameStr [, MenuNameStr] …
The ShowIgorMenus operation shows the named built-in menus or, if none are explicitly named, shows all
built-in menus in the menu bar.
User-defined menus attached to built-in menus are also affected by this operation.

Imposes limits on a window's size when resized with the mouse or by calling
MoveWindow. The units of the limits are the same as those returned by
GetWindow wsize.
The sizeLimit keyword was added in Igor Pro 7.00.
To allow the window width to grow essentially without bound, pass INF for
maxWidth.
To allow the window height to grow essentially without bound, pass INF for
maxHeight.
If minWidth > maxWidth or minHeight > maxHeight, the maximum dimensions are
set to the minimum, effectively fixing the size of the window in that dimension.
For control panels, it is better to use ModifyPanel fixedSize=1.
Combining these limits with ModifyGraph width and height modes leads to
unexpected results and is discouraged.
If you first use sizeLimit and then execute ModifyPanel fixedSize=1 on the
same window, the fixedSize command takes precedence. If you execute
SetWindow sizeLimit on a control panel that has fixedSize=1, Igor
generates an error.
Igor includes a SetWindow sizeLimit command in a window recreation macro
if necessary. Igor6 does not support SetWindow sizeLimit so this causes an
error when recreating the window in Igor6. If you never set the sizeLimit
property for a window, or if the minimum dimensions are very small and
maximum dimensions are INF, then no SetWindow command is generated.

userdata=UDStr
userdata(UDName)=UDStr

Sets the window or subwindow user data to UDStr. Use the optional (UDName) to
specify a named user data to create.

userdata+=UDStr
userdata(UDName)+=UDStr

Appends UDStr to the current window or subwindow user data. Use the optional
(UDName) to append to the named user data.

ShowInfo

V-742

Parameters

Details
See HideIgorMenus for details.

See Also
Chapter IV-5, User-Defined Menus.
The HideIgorMenus, DoIgorMenu, and SetIgorMenuMode operations.

ShowInfo
ShowInfo [/CP=num /W=winName]
The ShowInfo operation puts an information panel on the target or named graph. The information panel
contains cursors and readouts of values associated with waves in the graph.

Flags

See Also
Info Panel and Cursors on page II-248.
The HideInfo operation.
Programming With Cursors on page II-249.

ShowTools
ShowTools [/A/W=winName][toolName]
The ShowTools operation puts a tool palette for drawing along the left hand side of the target or named
graph or control panel, and optionally activates the named tool.

Flags

Parameters
If you specify a toolName (which can be one of: normal, arrow, text, line, rect, rrect, oval, or poly) the named
tool is activated. Specifying the “normal” tool has the same effect as issuing the GraphNormal command
for a graph that has the drawing tools selected.

Details
The activated tool is not highlighted until the top graph or control panel becomes the topmost (activated)
window. Use DoWindow/F to bring a window to the top (or “front”).

MenuNameStr The name of an Igor menu, like “File”, “Data”, or “Graph”.

/CP=num

/CP={n1,n2,...} Allows you to select multiple cursor pairs to be displayed in the info panel. The
numbers n1, n2, etc., are the same as the single-pair version of this flag.
This form of /CP was added in Igor Pro 7.00.

/W=winName Displays info panel in the named window.

/A Sizes window automatically to make extra room for the tool palette. This preserves
the proportion and size of the actual graph area.

/W=winName Shows tool palette in the named window. This must be the first flag specified when
used in a Proc or Macro or on the command line.

Selects a cursor pair to display in the info panel.
num=0: Selects cursor A and cursor B.
num=1: Selects cursor C and cursor D.
num=2: Selects cursor E and cursor F.
num=3: Selects cursor G and cursor H.
num=4: Selects cursor I and cursor J.

SinIntegral

V-743

See Also
The DoWindow, GraphNormal, GraphWaveDraw, GraphWaveEdit, and HideTools operations.

SinIntegral
SinIntegral(z)
The SinIntegral(z) function returns the sine integral of z.
If z is real, a real value is returned. If z is complex then a complex value is returned.
The SinIntegral function was added in Igor Pro 7.00.

Details
The sine integral is defined by

IGOR computes the SinIntegral using the expression:

References
Abramowitz, M., and I.A. Stegun, "Handbook of Mathematical Functions", Dover, New York, 1972. Chapter
5.

See Also
CosIntegral, ExpIntegralE1, hyperGPFQ

sign
sign(num)
The sign function returns -1 if num is negative or 1 if it is not negative.

Silent
Silent num
The Silent operation is largely obsolete. Only very specalized uses remain and most users can ignore this
operation.
Prior to Igor Pro 7, Silent was used to enable or disable the display of macro commands in the command
line as they were executed. It was also used to enable compatibility modes for very old experiments.

Parameters
If num is 2, commands issued by AppleEvents or ActiveX Automation are not shown in the history are of
the command window. Use 3 to re-enable.
If num is 100, 101 or 102, all procedures are recompiled. For 102, the time to recompile is displayed in the
history.

sin
sin(angle)
The sin function returns the sine of angle which is in radians.
In complex expressions, angle is complex, and sin(angle) returns a complex value:

See Also
asin, cos, tan, sec, csc, cot

Si(z) =
sin(t)

t
dt.

0

z

∫

Si(z) = z 1F2

1

2
;

3

2
,
3

2
;−
z2

4

⎛
⎝⎜

⎞
⎠⎟

.

sin(x + iy) = sin(x)cosh(y)+ i cos(x)sinh(y).

sinc

V-744

sinc
sinc(num)
The sinc function returns sin(num)/num. The sinc function returns 1.0 when num is zero. num must be real.

sinh
sinh(num)
The sinh function returns the hyperbolic sine of num:

In complex expressions, num is complex, and sinh(num) returns a complex value.

See Also
cosh, tanh, coth

Sleep
Sleep [flags] timeSpec
The Sleep operation puts Igor to sleep for a while. After the while is up, Igor continues execution.
You could use Sleep, for example, to give an instrument time to perform an action or to allow a user to
admire a graph before proceeding.
More advanced programmers may prefer to use a background task as an alternative. See Background
Tasks on page IV-298.

Parameters
The format of timeSpec depends on which flags, if any, are present.
If no flags are present, then timeSpec is in hh:mm:ss format and specifies the number of elapsed hours,
minutes and seconds to sleep.

Flags

/A timeSpec is an absolute time in 24 hour format (e.g., 16:00:00).

/A/W Wait until tomorrow if absolute time has passed.

/B Stop sleeping if the user clicks the mouse button.

/C=cursor

/M=message If you use /C=6, the progress dialog displays message above the progress bar. By
default the message reads "Sleeping".

/Q Continue executing the procedure containing the Sleep operation even if the User
Abort Key Combinations were pressed.

/S timeSpec is a numeric expression in seconds.

sinh(x) = ex � e� x

2
.

Controls what kind of cursor to display during sleep.

cursor values 3 through 6 require Igor Pro 7.00 or later.

cursor=-1: No cursor change.
cursor=0: Hour glass (default).
cursor=1: Arrow.
cursor=2: “Click”.
cursor=3: Spinning beachball.
cursor=4: Watch with spinning hands.
cursor=5: Jacob’s ladder.
cursor=6: Displays a progress dialog instead of changing the cursor.
Other: Watch.

Slider

V-745

Details
The Sleep operation does not let the user choose menus, move cursors, run procedures, draw in graphs, or
do any other interactive task.
Normally timeSpec specifies an amount of elapsed time. If the /A flag is present, then timeSpec is an absolute
time when sleep is to end. If the specified absolute time has already passed, no sleep occurs unless you also
use /W, which makes it wait until tomorrow.
If you specify time in hh:mm:ss format, you can also specify the time indirectly through a string variable.
See the examples.
You can end sleep by pressing the User Abort Key Combinations. Normally when you do this, it aborts
any procedure that is running. However, if you use the /Q flag, the procedure continues running normally.

Examples
These examples assume the current time is 4 PM:
Sleep 00:01:30 // sleeps for 1 minute, 30 seconds
Sleep/A 23:30:00 // sleeps until 11:30 PM
Sleep/A 03:00:00 // doesn't sleep at all because time is past
Sleep/A/W 03:00:00 // sleeps until 3 AM tomorrow
String str1= "03:00:00" // put wakeup call time in string
Sleep/A/W $str1 // sleeps until 3 AM tomorrow
Sleep/B/C=2/S/Q 60 // sleep 60 seconds, or until user clicks,

// and keep going (don't abort)

The following function creates a graph and then periodically updates the displayed data. By default, it
pauses for a number of seconds specified by the interval parameter. The use of /B allows the user to make
the function proceed to the next data set without delay.
Because the /Q flag is omitted, pressing the User Abort Key Combinations or pressing Igor's Abort button
terminates the function instead of merely aborting the current Sleep call.
Function AnimatedGraph(Variable interval)

Make/N=200/O junk
SetScale/I x 0, 2*pi, junk
junk=sin(x)
Display junk
DoUpdate

Variable i
for (i = 0; i < 10; i++)

Sleep/S/C=2/B interval
junk = sin(x*(i+2))
DoUpdate

endfor
End

Slider
Slider [/Z] controlName [key [= value]][, key [= value]]…
The Slider operation creates or modifies a Slider control in the target window.
A Slider control sets or displays a single numeric value. The user can adjust the value by dragging a thumb
along the length of the Slider.
For information about the state or status of the control, use the ControlInfo operation.

Parameters
ctrlName is the name of the Slider control to be created or changed.
The following keyword=value parameters are supported:

/T timeSpec is a numeric expression in ticks (about 1/60 of a second).

appearance={kind [, platform]}

Slider

V-746

Sets the appearance of the control. platform is optional. Both parameters are names,
not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
Note: The Slider control reverts to os9 appearance on Macintosh if thumbColor isn’t
the default blue (0,0,65535).
See Button and DefaultGUIControls for more appearance details.

disable=d

fColor=(r,g,b) Sets the color of the tick marks. r, g, and b range from 0 to 65535. fColor defaults to
black (0,0,0).

focusRing=fr

On Macintosh, regardless of this setting, the focus ring appears if you have enabled
full keyboard access via the Shortcuts tab of the Keyboard system preferences.

font="fontName " Sets the font used to display the tick labels, e.g., font="Helvetica".

fsize=s Sets the size of the type for tick mark labels.

help={helpStr} Sets the help for the control. The help text is limited to a total of 255 bytes. You can
insert a line break by putting “\r” in a quoted string.

limits= {low,high,inc}

low sets left or bottom value, high sets right or top value. Use inc=0 for continuous or
use desired increment between stops.

live=l

noproc Specifies that no procedure is to execute when the control’s value is changed.

pos={left,top} Sets the position of the slider in pixels.

pos+={dx,dy} Offsets the position of the slider in pixels.

proc=procName Specifies the procedure to execute when the control’s thumb is moved by the user.

rename=newName Gives control a new name.

side=s

size={width,height} Sets width or height of control in pixels. height is ignored if vert=0 and width is ignored
if vert=1.

thumbColor=(r,g,b) Sets dominant foreground color of thumb. r, g, and b are integers from 0 to 65535.
Only the hue and saturation are used. Therefore (0,1000,0) is the same tint of green as
(0,10000,0).

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Draw in gray state; disable control action.

Enables or disables the drawing of a rectangle indicating keyboard focus:
fr=0: Focus rectangle will not be drawn.
fr=1: Focus rectangle will be drawn (default).

Controls updating of readout.
l=0: Update only after mouse is released.
l=1: Update as slider moves (default).

Controls slider thumb.
s=0: Thumb is blunt.
s=1: Thumb points right or down (default).
s=2: Thumb points up or left.

Slider

V-747

Flags

Details
The target window must be a graph or panel.
If you use negative ticks to suppress automatic labeling, you can label tick marks using drawing tools
(panels only).

Slider Action Procedure
The action procedure for a Slider control takes a predefined WMSliderAction structure as a parameter to
the function:
Function ActionProcName(S_Struct) : SliderControl

STRUCT WMSliderAction &S_Struct
…
return 0

End

The “: SliderControl” designation tells Igor to include this procedure in the Procedure pop-up menu
in the Slider Control dialog.

ticks=t

tkLblRot= deg Rotates tick labels. deg is a value between -360 and 360.

userdata(UDName)=UDStr

Sets the unnamed user data to UDStr. Use the optional (UDName) to specify a named
user data to create.

userdata(UDName)+=UDStr

Appends UDStr to the current unnamed user data. Use the optional (UDName) to
append to the named UDStr.

userTicks={tvWave,tlblWave}

User-defined tick positions and labels. tvWave contains the tick positions, and text
wave tlblWave contains the labels. See ModifyGraph userticks for more info.
Overrides normal ticking specified by ticks keyword.

value=v v is the new value for the Slider.

valueColor=(r,g,b) Sets the color of the tick labels. r, g, and b range from 0 to 65535. valueColor defaults
to black (0,0,0).

variable= var Sets the variable (var) that the slider will update. It is not necessary to connect a Slider
to a variable — you can get a Slider’s value using the ControlInfo operation.

vert=v Set vertical (v =1; default) or horizontal (v =0) orientation of the slider.

win=winName Specifies which window or subwindow contains the named control. If not given, then
the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/Z No error reporting.

Controls slider ticks.
t=0: No ticks.
t=1: Number of ticks is calculated from limits (no ticks drawn if

calculated value is less than 2 or greater than 100). Default value.
t>1: t is the number of ticks distributed between the start and stop

position. Ticks are labeled using the same automatic algorithm
used for graph axes. Use negative tick values to force ticks to not
be labeled. Ticks are shown on the side specified by the side
keyword and are not drawn if side=0.

SliderControl

V-748

See WMSliderAction for details on the WMSliderAction structure.
Although the return value is not currently used, action procedures should always return zero.
You may see an old format Slider action procedure in old code:
Function MySliderProc(name, value, event) : SliderControl

String name // name of this slider control
Variable value // value of slider
Variable event // bit field:bit 0:value set; 1:mouse down,

// 2:mouse up, 3:mouse moved

return 0 // other return values reserved
End

This old format should not be used in new code.

Examples
Function SliderExample()

NewPanel /W=(150,50,501,285)
Variable/G var1
Execute "ModifyPanel cbRGB=(56797,56797,56797)"
SetVariable setvar0,pos={141,18},size={122,17},limits={-Inf,Inf,1},value=var1
Slider foo,pos={26,31},size={62,143},limits={-5,10,1},variable=var1
Slider foo2,pos={173,161},size={150,53}
Slider foo2,limits={-5,10,1},variable=var1,vert=0,thumbColor=(0,1000,0)
Slider foo3,pos={80,31},size={62,143}
Slider foo3,limits={-5,10,1},variable=var1,side=2,thumbColor=(1000,1000,0)
Slider foo4,pos={173,59},size={150,13}
Slider foo4,limits={-5,10,1},variable=var1,side=0,vert=0
Slider foo4,thumbColor=(1000,1000,1000)
Slider foo5,pos={173,90},size={150,53}
Slider foo5,limits={-5,10,1},variable= var1,side=2,vert=0
Slider foo5,ticks=5,thumbColor=(500,1000,1000)

End

See Also
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls. The GetUserData operation for retrieving named user data.

SliderControl
SliderControl
SliderControl is a procedure subtype keyword that identifies a macro or function as being an action
procedure for a user-defined slider control. See Procedure Subtypes on page IV-193 for details. See Slider
for details on creating a slider control.

Slow
Slow ticks
The Slow operation is obsolete. Prior to Igor Pro 7 it slowed down execution of macros for debugging
purposes. It now does nothing.

Smooth
Smooth [flags] num, waveName [, waveName…]
The Smooth operation smooths the named waves using binomial (Gaussian) smoothing, boxcar (sliding
average) smoothing, Savitzky-Golay (polynomial) smoothing, or running-median filtering.

Parameters
num is the number of smoothing operations to be applied for binomial smoothing or the integer number of
points in the smoothing window for boxcar, Savitzky-Golay, and running-median smoothing.
Each waveName is smoothed in-place, overwriting the values with the smoothed result. waveName may be
a floating point or integer wave.
If waveName complex, the real and imaginary parts are smoothed independently.
If waveName contains NaNs, the results are undefined. (The Loess and Interpolate2 operations can fill in
NaNs).

Smooth

V-749

Flags

/B [=b] Invokes boxcar smoothing algorithm. If given, b specifies the number of passes to use
when smoothing the data with smoothing factor num (box width). The number of
passes can be any value between 1 and 32767.

/DIM=d Specifies the wave dimension to smooth.
d=-1: Treats entire wave as 1D (default).
For d=0, 1,…, operates along rows, columns, etc.

/E=endEffect

/EVEN [=evenAllowed]

/F [=f]

/M=threshold Invokes running-median smoothing and specifies an absolute numeric threshold
used to optionally replace “outliers”. Points that differ from the central median by an
amount exceeding threshold are replaced, either with the replacement value specified
by /R, or otherwise with the median value.

The smoothing factor num is the number of points in the smoothing window used to
compute each median.

/MPCT=percentile Used with /M to compute a smoothed value that is a different percentile than the
median. /M must be present if /MPCT is used.
percentile is a value from 0 to 100.

Determines how to handle the ends of the wave (w) when fabricating missing
neighbor values.
endEffect=0: Bounce method (default). Uses w[i] in place of the missing w[-

i] and w[n-i] in place of the missing w[n+i].
endEffect=1: Wrap method. Uses w[n-i] in place of the missing w[-i] and vice

versa.
endEffect=2: Zero method. Uses 0 for any missing value.
endEffect=3: Repeat method. Uses w[0] in place of the missing w[-i] and

w[n] in place of the missing w[n+i].

Specifies the smoothing increment for boxcar smoothing (/B). Values are:
0: Increments even values of num to the next odd value. Default when

/EVEN omitted.
1: Uses even values of num for boxcar smoothing despite the half-

sample shifting this introduces in the smoothed output (prior to
version 6, this shift was prevented). Same as/EVEN alone.

Selects the boxcar or multipass binomial smoothing method:
f=0: Slow, but accurate, method (default).
f=1: Fast method. Same as /F alone.

Special threshold values are:
0: Replace all values with running-median values or the replacement

value.
(NaN): Replace only NaN input values with running-median values or the

replacement value.

Smooth

V-750

Binomial Smoothing Details
For binomial smoothing, use no flags (other than /DIM, /E, and /F) and a num value from 1 to 32767.
The binomial smooth algorithm automatically switches to a nearly equivalent, but much faster, multipass
box smooth at smooth factor of 50. The original algorithm can be used when you set this global variable:
Variable/G root:V_doOrigBinomSmooth=1
To get the pre-Igor Pro 6 behavior you also need to add the /F flag.
The /F (fast boxcar smoothing) algorithm creates small errors when the data has a large offset. For some data
sets you may want to subtract the mean of the data before smoothing and add it back in afterwards.
The binomial smoothing algorithm does not detect and ignore NaNs in the input data.

Boxcar Smoothing Details
For boxcar smoothing, use the /B flag and a num value from 1 to 32767.
For num < 2, no smoothing is done.
If num is even and /EVEN is not specified, num is incremented to the next (odd) integer.
If num is even and /EVEN is specified, each smoothed output is formed from one more previous value than
future values.
The boxcar smoothing algorithm detects and ignores NaNs in the input data. If num is less than the number
of NaNs near the output point, then the result is NaN. Otherwise the average of the non-NaN neighboring
points is used to compute the smoothed result.

Savitzky-Golay Smoothing Details
For Savitzky-Golay smoothing, use the /S flag and an odd num value from 5 to 25. An even value for num
returns an error. If sgOrder=4, then num= 5 gives no smoothing at all so num should be at least 7.
The Savitzky-Golay smoothing algorithm does not detect and ignore NaNs in the input data.

Median and Percentile Smoothing Details
For running-median smoothing, use the /M flag and a num value from 1 to 32767. When num is 1, no
smoothing is done.
If num is even, the median is the average of the two middle values.
For example, the median of 6 values around data[i] is the median of data[i-3], data[i-2], data[i-1], data[i],
data[i+1], and data[i+2], and if these values were already sorted, the median would be the average of data[i-
1] and data[i].
Use /M=0 to replace all values with the median over the smoothing window or use
/M=threshold/R=(NaN) to replace outliers with NaNs.
Use /M=(NaN) to replace only NaN input values with the running-median values or the replacement value.

/R=replacement Specifies the value that replaces input values that exceed the central median by
threshold (requires /M). replacement can be any value (including NaN or ±Inf if
waveName is floating point).

/S=sgOrder Invokes Savitzky-Golay smoothing algorithm and specifies the smoothing order.
sgOrder must be either 2 or 4.

Roughly speaking, the smoothed value returned is the smallest value in the
smoothing window that is greater than the smallest percentile % of the values. See
"Median and Percentile Smoothing Details", below.
percentile=0: The smoothed value is the minimum value in the smoothing

window.
percentile=50: The smoothed value is the median of the values in the

smoothing window. This is the default if /MPCT is omitted.
percentile=100: The smoothed value is the maximum value in the smoothing

window.

Smooth

V-751

The running-median smoothing algorithm detects and ignores NaNs in the input data. If num is less than
the number of NaNs near the output point, then the result is NaN. Otherwise the median of the non-NaN
neighboring points is used to compute the smoothed result.
The running-median is a special case of running-percentile, with percentile=50.
The /M and /MPCT algorithm uses an interpolated rank to compute the value of percentiles other than 0
and 100.
Using Example 1 from <http://cnx.org/content/m10805/latest/> ("A Third Definition"), the 25th percentile
(/MPCT=25) of the 8 values:

Make/O sortedData={3,5,7,8,9,11,13,15}// Already sorted, rank 1 to 8

The first step is to compute the rank (R) of the 25th percentile. This is done using the following formula: R=
(percentile/100)*(num+1), where percentile is 25 and num is 8, so here R = 2.25.
If R were an integer, the Pth percentile would be the number with rank R; if R were 2 the result would be
the 2nd value = 5.
Since R is not an integer, we compute the Pth percentile by interpolation as follows:
1. Define IR as the integer portion of R (the number to the left of the decimal point). For this example, IR=2.
2. Define FR as the fractional portion of R. For this example, FR=0.25
3. Find the values with Rank IR and with Rank IR+1. For this example, this means the values with Rank 2

and the score with Rank 3. The values are 5 and 7.
4. Interpolate by multiplying the difference between the values by FR and add the result to the lower

values. For these data, this is 0.25(7-5)+5=5.5
Therefore, the 25th percentile is 5.5:

Smooth/M=0/MPCT=(percentile) 8, sortedData // 8-point smoothing window
Print sortedData[3] // prints 5.5, the 25th percentile of all 8 values

Smoothing Window and End Effects Details
These smoothing algorithms compute the output value for a given point using each point’s neighbors.
Except for running-median smoothing, each algorithm combines neighboring points before and after the
point being smoothed. At the start or end of a wave some points will not have enough neighbors so some
method for fabricating neighbor values must be implemented. The /E flag specifies the method.
The running-median filter, however, ignores /E. At each end of the data fewer values are included in the
median calculation, so that values “beyond” the end of data are not needed.
The first output value is the median of wave[0, floor((num-1)/2)]. For example, if num = 7, then the
first output value is the median of wave[0], wave[1], wave[2], and wave[3]. Because that is an even number
of points, the median is the average of the two middle values. Continuing the example, if the values were
3, 1, 7, and 5, the two middle values are 3 and 5. The computed median would be (3+5)/2=4.

Examples
Box smoothing example:
Make/N=100 wv; Display wv
wv=gnoise(1)
Smooth/B/E=3 3,wv // output[p] = average of wv[p-1], wv[p] and wv[p+1]

// /E=3 causes wv[0] = (w[0]+w[0]+w[1])/3
// and wv[n-1] = (w[n-2]+w[n-1]+w[n-1])/3

Demonstrate the impulse response of Savitzky-Golay Smoothing:
Make/O/N=100 wv
wv= p==50 // 1 at center of wave, 0 elsewhere; an impulse
SetScale/P x, 0, 1/1000, "s", wv // 1000 Hz sampling rate
Smooth/S=2 5,wv
Display wv
ModifyGraph mode=8,marker=19
FFT/MAG/DEST=fftMag wv
Display fftMag

http://cnx.org/content/m10805/latest/

SmoothCustom

V-752

Replace NaN with median:
Make/O/N=100 data= enoise(1)>.9 ? NaN : sin(x/8) // signal with NaNs
Duplicate/O data, dataMedian
Smooth/M=(NaN) 5, dataMedian // replace (only) NaNs with 5-point median

Binomial Smoothing References
Marchand, P., and L. Marmet, Revues of Scientific Instrumentation 54, 1034, 1983.

Savitzky-Golay Smoothing References
Savitzky, A., and M.J.E. Golay, Analytical Chemistry, 36, 1627-1639, 1964.
Steiner, J., Y. Termonia, and J. Deltour, Analytical Chemistry, 44, 1906-1909, 1972.
Madden, H., Analytical Chemistry, 50, 1386-1386, 1978.

Percentile References
<http://en.wikipedia.org/wiki/Percentile>
<http://cnx.org/content/m10805/latest/>

See Also
See the Loess, MatrixConvolve, and MatrixFilter operations for true 2D smoothing.
FilterFIR, FilterIIR, Loess, Interpolate2
Also see the “Smooth Operation Responses” example experiment.

SmoothCustom
SmoothCustom [/E=endEffect] coefsWaveName, waveName [, waveName]…

The SmoothCustom operation smooths waves by convolving them with coefsWaveName.

Parameters
coefsWaveName must be single or double floating point, must not be one of the destination waveNames, must
not be complex.
waveName is a numeric destination wave that is overwritten by the convolution of itself and coefsWaveName.

Note: SmoothCustom is obsolete. Use the FilterFIR operation instead. For multidimensional
data use the MatrixConvolve or MatrixFilter operations.

0.4

0.3

0.2

0.1

0.0

6055504540
ms

1.0

0.8

0.6

0.4

0.2

5004003002001000
Hz

-1.0

-0.5

0.0

0.5

1.0

806040200

-1.0

-0.5

0.0

0.5

1.0
 data
 dataMedian

http://en.wikipedia.org/wiki/Percentile
http://cnx.org/content/m10805/latest/

Sort

V-753

Flags

Details
The convolution is in the time domain. That is, the FFT is not employed. For this reason the length of
coefsWaveName should be small or small in comparison to the destination waves.
SmoothCustom presumes that the middle point of coefsWaveName corresponds to the delay = 0 point. The
“middle” point number = trunc(numpnts(coefsWaveName-1)/2). coefsWaveName usually contains the two-
sided impulse response of a filter, and contains an odd number of points. This is the type of wave created
by FilterFIR.
SmoothCustom ignores the X scaling of all the waves.
The SmoothCustom operation is not multidimensional aware. See Analysis on Multidimensional Waves
on page II-86 for details.

Sort
Sort [/A /DIML /C /R] sortKeyWaves, sortedWaveName [, sortedWaveName]…
The Sort operation sorts the sortedWaveNames by rearranging their Y values to put the data values of
sortKeyWaves in order.

Parameters
sortKeyWaves is either the name of a single wave, to use a single sort key, or the name of multiple waves in
braces, to use multiple sort keys.
All waves must be of the same length.
The sortKeyWaves must not be complex.

Flags

Details
sortKeyWaves are not actually sorted unless they also appear in the list of destination waves.
The sort algorithm does not maintain the relative position of items with the same key value.
When the /LOC flag is used, the bytes stored in the text wave at each point are converted into a Unicode
string using the text encoding of the text wave data. These Unicode strings are then compared using OS

/E=endEffect End effect method, a value between 0 and 3. See the Smooth operation for a
description of the /E flag.

/A[=a] Alphanumeric sort. When sortKeyWaves includes text waves, the normal sorting places
“wave1” and “wave10” before “wave9”.
The optional a parameter requires Igor Pro 7.00 or later.
Use /A or /A=1 to sort the number portion numerically, so that “wave9” is sorted before
“wave10”.
Use /A=2 to ignore + and - characters in the text so that “Text-09” sorts before “Text-10”.

/C Case-sensitive sort. When sortKeyWaves includes text waves, the sort is case-insensitive unless
you use the /C flag to make it case-sensitive.

/DIML Moves the dimension labels with the values (keeps any row dimension label with the row's
value).

/LOC Performs a locale-aware sort.
When sortKeyWaves includes text waves, the text encoding of the text waves’ data is taken into
account and sorting is done according to the sorting conventions of the current system locale.
This flag is ignored if the text waves’ data encoding is unknown, binary, Symbol, or Dingbats.
This flag cannot be used with the /A flag. See Details for more information.
The /LOC flag was added in Igor Pro 7.00.

/R Reversed sort; sort from largest to smallest.

SortColumns

V-754

specific text comparison routines based on the locale set in the operating system. This means that the order
of sorted items may differ when the same sort is done with the same data under different operating systems
or different system locales.
When /LOC is omitted the sort is done on the raw text without regard to the waves’ text encoding.

Examples
Sort/R myWave,myWave // sorts myWave in decreasing order
Sort xWave,xWave,yWave // sorts x wave in increasing order,

// corresponding yWave values follow.
Make/O/T myWave={"1st","2nd","3rd","4th"}
Make/O key1={2,1,1,1} // places 2nd, 3rd, 4th before 1st.
Make/O key2={0,1,3,2} // arranges 2nd, 3rd, 4th as 2nd, 4th, 3rd.
Sort {key1,key2},myWave // sorts myWave in increasing order by key1.

// For equal key1 values, sorted by key2.
// Result is myWave={"2nd","4th","3rd","1st"}

Make/O/T tw={"w1","w10","w9","w-2.1"}
Sort/A tw,tw // sorts tw in increasing number-aware order:

// Result is tw={"w-2.1","w1","w9","w10"}

See Also
Sorting on page III-126
MakeIndex, IndexSort, Reverse, SortColumns, SortList
FindDuplicates

SortColumns
SortColumns [flags] keyWaves={waveList}, sortWaves={waveList}
The SortColumns operation rearranges data in columns of the sortWaves using the data movements that
would sort the values of the keyWaves if they were sorted.
The SortColumns operation was added in Igor Pro 7.00.

Parameters
keyWaves is a lists of 1 or more wave references in braces separated by commas. The first listed wave is the
primary sort key, the second is the secondary sort key, and so on. The keyWaves list can contain a maximum
of 10 waves. The key waves can be either text or real numeric waves. Complex waves, wave reference waves
and data folder reference waves can not be used as key waves.
sortWaves is a lists of one or more wave references in braces separated by commas. The sortWaves list can
contain a maximum of 100 waves.

Flags

/A Alphanumeric sort.
When keyWaves includes text waves, or the /KNDX flag is used and the first wave in
the sortWaves list is a text wave, the normal sorting places "wave1" and "wave10"
before "wave9". Use /A to sort the number portion numerically, so that "wave9" is
sorted before "wave10". /A cannot be used with the /LOC flag.

/C Case-sensitive sort. When keyWaves includes text waves, or the /KNDX flag is used
and the first wave in the sortWaves list is a text wave, the sort is case-insensitive unless
you use the /C flag to make it case-sensitive.

/DIML Moves the row dimension labels with the data values. Column dimension labels
remain unchanged.

/KNDX={c0, c1, ... c9}

Specifies up to 10 columns of the first wave in the sortWaves list to use as the sort keys.
This flag and the keyWaves keyword are mutually exclusive. If this flag is used then
the first wave in the sortWaves list must be either a real numeric or text wave.

SortList

V-755

Details
Waves in the keyWaves list are not actually sorted unless they also appear in the sortWaves list.
All waves must have the same number of rows but can have different numbers of columns, layers and
chunks.
keyWaves, or the first wave in the sortWaves list when /KNDX is used, must be either numeric or text waves.
When the sortWaves list includes 3D or 4D waves, the operation sorts all columns of all layers/chunks.
The sorting algorithm used does not maintain the relative position of rows with the same key value.
When the /LOC flag is used, the bytes stored in the text wave at each point are converted into a Unicode
string using the text encoding of the text wave data. These Unicode strings are then compared using OS-
specific text comparison routines based on the current locale as set in the operating system. This means that
the order of sorted items may differ when the same sort is done with the same data under different
operating systems or different system locales.

Examples
// Define a function that creates sample data
Function CreateSampleData()

Make/O key1={3,1,0,2}
Make/O/T text1={"Jack","Fred","Robin","Bob"}
Make/O w1={{1,2,3,4},{11,12,13,14}}

End

// Create sample data and display in a table
CreateSampleData()
Edit key1,text1,w1

// Sort based on a numeric key
SortColumns keyWaves=key1,sortWaves=w1

// Revert the data
CreateSampleData()

// Sort based on text key
SortColumns keyWaves=text1,sortWaves=w1

// Revert the data
CreateSampleData()

// Sort using key index
SortColumns/kndx=0 sortWaves={text1,w1}

See Also
Sorting on page III-126, Sort, Reverse, SortList

SortList
SortList(listStr [, listSepStr [, options])
The SortList function returns listStr after sorting it according to the default or listSepStr and options parameters.
listStr should contain items separated by listSepStr, such as "the first item;second item;".

/LOC Locale aware sort.
When keyWaves includes text waves, or the /KNDX flag is used and the first wave in
the sortWaves list is a text wave, the text encoding of the text waves' data is taken into
account and sorting is done according to the sorting conventions of the current system
locale.
/LOC is ignored if the text waves' data encoding is unknown, binary, Symbol, or
Dingbats.
/LOC can not be used with the /A flag.
See Details for more information.

/R Reverses the sort, sorting from largest to smallest.

SoundInRecord

V-756

Use SortList to sort the items in a string containing a list of items separated by a string, such as those
returned by functions like TraceNameList or WaveList, or a line of text from a delimited text file, where
listSepStr can be "\r" or "\r\n".
listSepStr and options are optional; their defaults are ";" and 0 (ascending alphabetic sort), respectively.

Details
listStr is treated as if it ends with a listSepStr even if it doesn’t. The returned list will always have an ending
listSepStr string.
In Igor6, SortList used only the first byte of listSepStr. As of Igor7, it uses the whole string.
options controls the sorting method, as follows:

options may also be a bitwise combination of these values with the following restriction: only one of 2, 4, 8, or
16 may be specified. Thus the legal values are thus 0, 1, 2, 3, 4, 5, 8, 9, 16, 17, 32, 33, 34, 35, 36, 40, 41, 48, 49, 80
or 81. Other values will produce undefined sorting.
In a case-insensitive, unique sort (options=4+32), if two items differ only in case, which one is retained is not
specified.

Examples
// Alphabetic sorts
Print SortList("c;a;a;b") // prints "a;a;b;c;"
Print SortList("you,me,More", ",", 0) // prints "More,me,you,"
Print SortList("you,me,More", ",", 4) // prints "me,More,you,"
Print SortList("9,93,91,33,15,3", ",") // prints "15,3,33,9,91,93,"
Print SortList("Zx;abc;All;", ";", 0) // prints "All;Zx;abc;"
Print SortList("Zx;abc;All;", ";", 8) // prints "abc;All;Zx;"
Print SortList("w9;w10;w02;", ";", 16) // prints "w02;w9;w10;"

// Unique sort
Print SortList("b;c;a;a;", ";", 32) // prints "a;b;c;"
Print SortList("b;c;A;a;", ";", 4+32) // prints "A;b;c;"
Print SortList("b;c;a;A;", ";", 4+32) // prints "a;b;c;"

// Numeric sorts
Print SortList("9,93,91,33,15,3",",",2) // prints "3,9,15,33,91,93,"
Print SortList("9,93,91,33,15,3",",",3) // prints "93,91,33,15,9,3,"

See Also
Sort, StringFromList, WaveList, RemoveEnding
See Setting Bit Parameters on page IV-12 for details about bit settings.

SoundInRecord
SoundInRecord [/Z] wave
The SoundInRecord operation records audio input at the sample rate obtained from the wave’s X scaling
and for the number of points determined by the length of the wave. The recording is done synchronously.
The number type of the wave must be one of the types reported by the SoundInStatus operation in the
V_SoundInSampSize variable. On Windows this will typically be 8- or 16-bit integer while on Macintosh
16-bit integer and 32-bit floating point (the OS X native type) will be supported.

0: Default sort (ascending case-sensitive alphabetic ASCII sort).

1: Descending sort.

2: Numeric sort.

4: Case-insensitive sort.

8: Case-sensitive alphanumeric sort.

16: Case-insensitive alphanumeric sort that sorts wave0 and wave9 before wave10.

32: Unique sort in which duplicates are removed. Added in Igor Pro 7.00.

64: Ignore + and - in the alphanumeric sort so that “Text-09” sorts before “Text-10”. Set
options to 80 or 81. Added in Igor Pro 7.00.

SoundInSet

V-757

To record in stereo, provide a 2 column wave. (The software is designed to handle any number of channels
but has not been tested on more than 2.)

Flags

Details
SoundInRecord requires a computer with sound inputs. Several sample experiments using sound input can
be found in your Igor Pro 7 Folder in the Examples folder.

See Also
The SoundInSet, SoundInStartChart, and SoundInStatus operations.

SoundInSet
SoundInSet [/Z][gain=g, agc=a]
The SoundInSet operation is used to setup the input device for recording.

Parameters
SoundInSet can accept multiple keyword =value parameters on one line.

Flags

Details
SoundInSet requires a computer with sound inputs. Several sample experiments using sound inputs are in
your Igor Pro 7 Folder in the Examples folder.

See Also
The SoundInRecord, SoundInStartChart, and SoundInStatus operations.

SoundInStartChart
SoundInStartChart [/Z] buffersize , destFIFOname
The SoundInStartChart operation starts audio data acquisition into the given FIFO.

Parameters
buffersize is the number of bytes to allocate for the interrupt time buffer which then feeds into the given Igor
named FIFO destFIFOname. The FIFO must be set up with the correct number of channels and number type
- use SoundInStatus to find legal values. The sample rate is read from the FIFO also, so that also needs to
be correct.

/Z Errors are not fatal. V_flag is set to zero if no error, else nonzero if error.

agc=a Turns automatic gain control mode on (a=1) or off (a=0). Will generate an error if device does
not support setting agc. Use SoundInStatus to check or use /Z flag to make errors nonfatal.
Windows: This is not supported and V_SoundInAGC from the SoundInStatus command
always returns -1.

gain=g Sets input gain, 0 is lowest gain and 1 is highest. Will generate an error if device does not
support setting gain. Use SoundInStatus to check or use /Z flag to make errors nonfatal.

Windows: SoundInSet attempts to adjust the master gain of the sound input device but not all
sound cards have a master gain. If V_SoundInGain from the SoundInStatus command returns
-1, you will have to use your sound card software to adjust the input gain for the particular
input source your are using. On some cards there are separate line-in and microphone-in
sources.

/Z Errors are not fatal. V_flag is set to zero if no error, else nonzero if error.

SoundInStatus

V-758

Flags

Details
SoundInStartChart requires a computer with sound inputs. Several sample experiments using sound inputs
are in your Igor Pro 7 Folder in the Examples folder.
On systems where 32-bit floating point data is supported, you can use NewFIFOChan with no flags and a
range of -1 to 1.

See Also
The SoundInRecord, SoundInSet, SoundInStatus and SoundInStopChart operations, and FIFOs and
Charts on page IV-291.

SoundInStatus
SoundInStatus
The SoundInStatus operation creates and sets a set of variables and strings with information about the
current sound input device. The variable V_flag is set to an error code and will be zero if the device is
available. If not then none of the following are valid.

See Also
The SoundInRecord, SoundInSet, and SoundInStartChart operations.

SoundInStopChart
SoundInStopChart [/Z]
The SoundInStopChart operation stops audio data acquisition started by SoundInStartChart.

Flags

Details
SoundInStopChart requires a computer equipped with sound input hardware.
Audio data acquisition also stops automatically when an experiment is closed.

See Also
The SoundInStartChart and SoundInStatus operations.

/Z Errors are not fatal. V_flag is set to zero if no error, else nonzero if error.

Variables Contents

S_SoundInName String with name of device.

V_SoundInAGC Automatic gain control on or off (1 or 0). This is an optional item and if the
current device does not support AGC then V_SoundInAGC will be set to -1.

V_SoundInChansAv Available number of channels (e.g., 1 for mono, 2 for stereo).

V_SoundInGain Current input gain. Ranges from 0 (lowest) to 1. This is an optional item and if
the current device does not support gain then V_SoundInGain will be set to -1.

V_SoundInSampSize Bits set depending on number of bits available in a sample.
Bit 0: Set if can do 8 bits.
Bit 1: Set if can do 16 bits.
Bit 3: Set if 32-bit floating point is supported (range is -1 to 1).

W_SoundInRates Wave containing sample rate info: if point zero contains zero then points 1 and 2
contain the lower and upper limits of a continuous range else point zero contains
the number of discrete rates which follow in the wave. The usual rates are 44100
Hz and 4800 Hz.

/Z Errors are not fatal. V_flag is set to zero if no error, else nonzero if error.

SoundLoadWave

V-759

SoundLoadWave
SoundLoadWave [flags] waveName [,fileNameStr]
The SoundLoadWave operation loads sound data from the named file into a wave. Mono, stereo, surround-
sound, and high-resolution sound formats are supported.
The SoundLoadWave operation was added in Igor Pro 7.00.

Parameters
waveName is the name of the wave to load the sound into.
If fileNameStr is omitted or is "", SoundLoadWave displays an Open File dialog.
The file to be loaded is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If
SoundLoadWave can not determine the location of the file from fileNameStr and pathName, it displays a
dialog allowing you to choose the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.

Flags

Details
SoundLoadWave uses Core Audio on Macintosh and Qt framework calls on Windows. Note that some files
can not be loaded due to digital rights managment issues even though they can be played.
If waveName specifies a wave that does not exist, it is created. The wave is redimensioned to a wave type
that maintains the numeric precision of the sound data. If the wave can not be created or resized to fit the
loaded data then SoundLoadWave returns an error.
If waveName does exist, the wave is overwritten only if the /O flag is specified. Without the /O flag
SoundLoadWave returns an error.
Multi-channel audio is loaded into sequential columns of the destination wave.
On Macintosh, Core Audio provides only 32-bit floating point data and that is the data type used for the
wave. The BITS value in S_info, described below, may be zero for some formats.
On Windows, SoundLoadWave uses the smallest Igor wave data type that preserves the number of bits in
the audio. Igor doesn't have a 24-bit data type, so these values are stored in a 32-bit integer wave.

Output Variables
SoundLoadWave sets these output variables:

/I [= filterStr] Force interactive mode. Use optional filter string to limit allowable file extensions. See
Open File Dialog File Filters on page IV-137.

/O Overwrite existing waves in case of a name conflict.

/P=pathName Specifies the folder to load the file from. pathName is the name of an Igor symbolic
path, created via NewPath. It is not a file system path like "hd:Folder1:" or
"C:\\Folder1\". See Symbolic Paths on page II-21 for details.

/Q Quiet: Doesn't print message to history area, and doesn't abort, if the sound can not
be loaded. V_Error is set to the returned error code, which will be zero if there was no
error.

/S=(startT,endT) Load a subrange of the sound resource. startT and endT are in seconds, clipped to the
duration of the loaded sound.

/TMOT= timeOut Aborts load if timeOut, in seconds, is exceeded.

V_flag Set to 1 if a sound is loaded and fits into available memory, 0 otherwise.

SoundLoadWave

V-760

If the sound file exists, SoundLoadWave sets the string variable S_info to:
"FILE:nameOfFile;FORMAT:soundFileFormat;CHANNELS:numChannels;CHANNEL_LAYOUT:ch
annelLayoutDescription;CHANNEL_ORDER:channelsList;BITS:numBits;SAMPLES:numSamp
les;RATE:samplesPerSec;"

The soundFileFormat and channelLayoutDescription values are text descriptions of the sound data in the file,
and are written in the localized language. This information is available only on Macintosh and may or may
not be present in a given sound file.
The channelsList value is a comma-separated list of channel names, always in English abbreviations, such as
"L,R" or "L,R,C,LFE,Ls,Rs". The meaning of the abbrevations:

Examples
// Display an Open File dialog and load the chosen file.
// Use file's name for wave, overwrite any pre-existing wave, print information to history
SoundLoadWave/O myDestWave

// SoundLoadWave stores following in S_Info and prints it to the history area

V_Error Set if /Q is specified, V_Error is set to a non-zero error code if something went wrong
or to zero on success. Negative returned codes are system-dependent, positive are
Igor-defined errors.
V_Error = 1 means there wasn't enough memory to load the (uncompressed) sound.

S_path Set to the full file path of the loaded file, not including the file name.

S_fileName Set to the name of the loaded file.

S_waveNames Set to the name of loaded wave.

S_info Information about the loaded sound.

channelList Abbreviation Channel or Speaker Names

L Front Left

R Front Right

C Front Center

LFE Low Frequency Effects

Ls Left Surround (Back Left)

Rs Right Surround (Back Right)

Lc Left Center (Front Left of Center)

Rc Right Center (Front Right of Center)

Cs Center Surround (Back Center)

Lsd Left Surround Direct (Side Left)

Rsd Right Surround Direct (Side Right)

Ts Top Center Surround (Top Center)

Vhl Vertical Height Left (Top Front Left)

Vhc Vertical Height Center (Top Front Center)

Vhr Vertical Height Right (Top Front Right)

Rls Rear Left Surround (Top Back Left)

Rcs Rear Center Surround (Top Back Center)

Rrs Rear Right Surround (Top Back Right)

SoundSaveWave

V-761

FILE:<file name>;FORMAT:MPEG Layer 3;CHANNELS:2;BITS:0;SAMPLES:524416;RATE:44100;

// Rename the wave to a cleaned up version of the file name
Rename myDestWave, $CleanupName(S_fileName,1)

See Also
SoundSaveWave, PlaySound

SoundSaveWave
SoundSaveWave [flags] typeStr, waveName [, fileNameStr]
The SoundSaveWave operation saves the named wave on disk as an Audio Interchange File Format (AIFF-
C) or Microsoft WAVE sound file. AIFF-C is primarily used on Macintosh.
The SoundSaveWave operation was added in Igor Pro 7.00.

Parameters
typeStr must be either "AIFC" or "WAVE".
fileNameStr contains the name of the file in which the named wave is saved. If you omit fileNameStr ,
SoundSaveWave uses the wave name with the appropriate extension.
The file to be written is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If
SoundSaveWave can not determine the location of the file from fileNameStr and pathName, it displays a
dialog allowing you to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.

Flags

Details
The sound file is always an uncompressed AIFF-C or WAVE file, with as many channels as the wave
contains columns.
The sound file format is determined by the wave's data type. Signed 8-, 16- and 32-bit integers are
supported as is 32-bit floating point. When writing floating point waves, the wave data should be scaled to
+/- 1 as full scale.

Output Variables
SoundSaveWave sets these automatically created variables:

Examples
// Create a simple sound (1000 Hz tone burst)
Make/O/N=10000 mySound // Single-precision wave, 10,000 values
SetScale/P x, 0, 1/8000, "" mySound // 8000 Hz sampling frequency (1.25 seconds)
mySound= sin(2*pi*1000*x) // 1000 Hz tone
Hanning mySound // Fade in and out

/O Overwrites the file if it already exists.
If you omit /O and the file exists, SoundSaveWave displays a Save File dialog.

/P=pathName Specifies the folder to store the file in. pathName is the name of an Igor symbolic path,
created via NewPath. It is not a file system path like "hd:Folder1:" or
"C:\\Folder1\". See Symbolic Paths on page II-21 for details.

/Q Suppresses the normal messages in the history area of the command window. At
present nothing is written to the history even if /Q is omitted.

V_flag Set to 1 if the wave was successfully saved to the file, else 0.

S_fileName Set to the name of the saved file.

S_path Set to the full path to the file's directory.

SpecialCharacterInfo

V-762

// Save it to a file, chosen from the Save File dialog
SoundSaveWave "AIFC", mySound, "my sound.aif"

// Create a floating point stereo frequency sweep
Make/O/N=(20000,2) stereoSineSoundF32 // 32-bit float data
SetScale/P x,0,1e-4,stereoSineSoundF32 // Set sample rate to 10KHz
stereoSineSoundF32= sin(2*Pi*(1000 + (1-2*q)*150*x)*x)
NewPath sound // Create a symbolic path via dialog
SoundSaveWave/P=sound/O "WAVE", stereoSineSoundF32

See Also
SoundLoadWave, PlaySound, WaveType, WaveInfo

SpecialCharacterInfo
SpecialCharacterInfo(notebookNameStr, specialCharacterNameStr, whichStr)
The SpecialCharacterInfo function returns a string containing information about the named special
character in the named notebook window.

Parameters
If notebookNameStr is "", the top visible notebook is used. Otherwise notebookNameStr contains either
kwTopWin for the top notebook window, the name of a notebook window or a host-child specification (an
hcSpec) such as Panel0#nb0. See Subwindow Syntax on page III-87 for details on host-child specifications.
specialCharacterNameStr is the name of a special character in the notebook.
If specialCharacterNameStr is "" and if exactly one special character is selected, the selected special
character is used. If other than exactly one special character is selected, an error is returned.
whichStr identifies the information item you want. Because SpecialCharacterInfo can return several items
that may contain semicolons, it does not return a semicolon-separated keyword-value list like other info
functions. Instead it returns just one item as specified by whichStr.

Details
Here are the supported values for whichStr.

These keywords apply to Igor-object pictures only. If the specified character is not an Igor-object picture, “”
is returned.

Keyword Returned Information

NAME The name of the special character.

FRAME 0: None
1: Single
2: Double
3: Triple
4: Shadow

LOC Paragraph and character position (e.g., 1,3).

SCALING Horizontal and vertical scaling in units of one tenth of a percent (e.g., 1000,1000).

TYPE Special character type is: Picture, Graph, Table, Layout, Action, ShortDate,
LongDate, AbbreviatedDate, Time, Page, TotalPages, or WindowTitle.

Keyword Returned Information

WINTYPE 1 for graphs, 2 for tables, 3 for layouts.

OBJECTNAME The name of the window with which the special character is associated.

SpecialCharacterList

V-763

The remaining keywords apply to notebook action characters only. If the specified special character is not
a notebook action character, "" is returned.

If whichStr is an unknown keyword, SpecialCharacterInfo returns "" but does not generate an error.

Examples
Function PrintSpecialCharacterInfo(notebookName, specialCharacterName)

String notebookName, specialCharacterName

String typeStr=SpecialCharacterInfo(notebookName, specialCharacterName, "TYPE")
String locStr=SpecialCharacterInfo(notebookName, specialCharacterName, "LOC")

Printf "TYPE: %s\r", typeStr
Printf "LOC: %s\r", locStr

End

See Also
The Notebook and NotebookAction operations; the SpecialCharacterList function; Using Igor-Object
Pictures on page III-18.

SpecialCharacterList
SpecialCharacterList(notebookNameStr, separatorStr, mask, flags)
The SpecialCharacterList function returns a string containing a list of names of special characters in a
formatted text notebook.

Parameters
If notebookNameStr is "", the top visible notebook is used. Otherwise notebookNameStr contains either
kwTopWin for the top notebook window, the name of a notebook window or a host-child specification (an
hcSpec) such as Panel0#nb0. See Subwindow Syntax on page III-87 for details on host-child specifications.
separatorStr should contain a single character, usually semicolon, to separate the names.
mask determines which types of special characters are included. mask is a bitwise parameter with values:

Keyword Returned Information

BGRGB Background color in RGB format (e.g., 65535,65534,49151).

COMMANDS Command string.

ENABLEBGRGB 1 if the action’s background color is enabled, 0 if not.

HELPTEXT Help text string.

IGNOREERRORS 0 or 1.

LINKSTYLE 0 or 1.

PADDING The value of the left, right, top, bottom and internal padding properties, in that
order (.e.g, 4,4,4,4,8).

PICTURE 1 if the action has a picture, 0 if not.

PROCPICTNAME The name of the action Proc Picture or "" if none.

QUIET 0 or 1.

SHOWMODE 1: Title only
2: Picture only
3: Picture below title
4: Picture above title
5: Picture to the left of title
6: Picture to the right of title

TITLE Title string.

1: Pictures including graphs, tables and layouts.

SpecialDirPath

V-764

or a bitwise combination of the above for more than one type. See Setting Bit Parameters on page IV-12 for
details about bit settings.
flags is a bitwise parameter. Pass 0 to include all special characters or 1 to include only selected special
characters. All other bits are reserved and should be passed as zero.

Details
Only formatted text notebooks have special characters. When called for a plain text notebook,
SpecialCharacterList always returns "".

Examples
Print a list of all special characters in the top notebook:
Print SpecialCharacterList("", ";", -1, 0)

Prints a list of notebook action characters in Notebook0:
Print SpecialCharacterList("Notebook0", ";", 2, 0)

Print a list of selected notebook action characters in Notebook0:
Print SpecialCharacterList("Notebook0", ";", 2, 1)

See Also
The Notebook and NotebookAction operations; the SpecialCharacterInfo function.

SpecialDirPath
SpecialDirPath(dirIDStr, domain, flags, createDir)
The SpecialDirPath function returns a full path to a file system directory specified by dirIDStr and domain.
It provides a programmer with a way to access directories of special interest, such as the preferences
directory and the desktop directory.
The path returned always ends with a separator character which may be a colon, backslash, or forward
slash depending on the operating system and the flags parameter.
SpecialDirPath depends on operating system behavior. The exact path returned depends on the locale, the
operating system, the specific installation, the current user, and possibly other factors.

Parameters
dirIDStr is one of the following strings:

2: Notebook actions.

4: All other special characters such as dates and times.

"Packages" Place for advanced programmers to put preferences for their procedure
packages.

"Documents" The OS-defined place for users to put documents.

"Preferences" The OS-defined place for applications to put preferences.

"Desktop" The desktop.

"Temporary" The OS-defined place for applications to put temporary files.

"Igor Application" The Igor installation folder. This is typically:
/Applications/Igor Pro 7 Folder (Macintosh)

or
C:\Program Files\WaveMetrics\Igor Pro 7 Folder (Windows)

Use only with domain = 0 (the current user).

SpecialDirPath

V-765

domain permits discriminating between, for example, the preferences folder for all users versus the
preferences folder for the current user. It is supported only for certain dirIDStrs. It is one of the following:

flags a bitwise parameter:

All other bits are reserved and must be set to zero.
See Setting Bit Parameters on page IV-12 for details about bit settings.
createDir is 1 if you want the directory to be created if it does not exist or 0 if you do not want it to be created.
This flag will not work if the current user does not have sufficient privileges to create the specified
directory. In almost all cases it is not needed, you can’t count on it, and you should pass 0.

Details
The domain parameter has no effect in most cases. In almost all cases you should pass 0 (current user) for this
parameter. For values other than 0, SpecialDirPath might return an error which you must be prepared to handle.
In the event of an error, SpecialDirPath returns a NULL string and sets a runtime error code. You can check
for an error like this:
String fullPath = SpecialDirPath("Packages", 0, 0, 0)
Variable len = strlen(fullPath) // strlen(NULL) returns NaN
if (numtype(len) == 2) // fullPath is NULL?

Print "SpecialDirPath returned error."
endif

Here is sample output from SpecialDirPath(“Packages”,0,0,0):

where <user> is the name of the current user. The preferences directory may be hidden by some operating
systems.

Example
For an example using SpecialDirPath, see Saving Package Preferences on page IV-237.

"Igor Executable" The folder containing the current Igor executable. On Macintosh, this is the
path to the executable itself, not to the application bundle.
Use only with domain = 0 (the current user).
Requires Igor Pro 7.00 or later.

"Igor Preferences" The folder in which Igor's own preference files are stored.

"Igor Pro User Files" A guaranteed-writable folder for the user to store their own Igor files, and to
activate extensions, help, and procedure files by creating shortcuts or aliases
in the appropriate subfolders. Use only with domain = 0 (the current user).
This is the folder opened using the Show Igor Pro User Files menu item in the
Help menu.

0: The current user (recommended value for most purposes).

1: All users (may generate an error or return the same path as 0).

2: System (may generate an error or return the same path as 1).

Bit 0: If set, the returned path is a native path (Macintosh-style on Mac OS 9, Unix-style on Mac OS
X, Windows-style on Windows). If cleared, the returned path is a Macintosh-style path
regardless of the current platform. In most cases you should set this bit to zero since Igor
accepts Macintosh-style paths on all operating systems. You must set this bit to one if you are
going to pass the path to an external script.

Mac OS X hd:Users:<user>:Library:Preferences:WaveMetrics:Igor Pro 6:Packages:

Windows C:Documents and Settings:<user>:Application Data:WaveMetrics:Igor Pro 6:Packages:

sphericalBessJ

V-766

sphericalBessJ
sphericalBessJ(n, x [, accuracy])
The sphericalBessJ function returns the spherical Bessel function of the first kind and order n.

For example:

Details
See the bessI function for details on accuracy and speed of execution.

See Also
The sphericalBessJD and sphericalBessY functions.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

sphericalBessJD
sphericalBessJD(n, x [, accuracy])
The sphericalBessJD function returns the derivative of the spherical Bessel function of the first kind and
order n.

Details
See the bessI function for details on accuracy and speed of execution.

See Also
The sphericalBessJ and sphericalBessY functions.

sphericalBessY
sphericalBessY(n, x [, accuracy])
The sphericalBessY function returns the spherical Bessel function of the second kind and order n.

jn (x) = π
2x
Jn+1/2 (x).

j0 (x) = sin(x)

x

j1(x) = sin(x)

x2 − cos(x)

x

j2 (x) = 3

x3 − 1

x
⎛
⎝⎜

⎞
⎠⎟ sin(x)− 3

x2 cos(x).

yn (x) = π
2x
Yn+1/2 (x).

sphericalBessYD

V-767

Details
See the bessI function for details on accuracy and speed of execution.

See Also
The sphericalBessYD and sphericalBessJ functions.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

sphericalBessYD
sphericalBessYD(n, x [, accuracy])
The sphericalBessYD function returns the derivative of the spherical Bessel function of the second kind and
order n.

Details
See the bessI function for details on accuracy and speed of execution.

See Also
The sphericalBessJ and sphericalBessY functions.

sphericalHarmonics
sphericalHarmonics(L, M, q, f)
The sphericalHarmonics function returns the complex-valued spherical harmonics

where is the associated Legendre function.

See Also
The legendreA function. The NumericalIntegrationDemo.pxp experiment.

Demos
Choose File→Example Experiments→Visualization→SphericalHarmonicsDemo.

Choose File→Example Experiments→Analysis→NumericalIntegrationDemo.

References
Arfken, G., Mathematical Methods for Physicists, Academic Press, New York, 1985.

y0 (x) = − cos(x)

x

y1(x) = − cos(x)

x2 − sin(x)

x

y2 (x) = 1

x
− 3

x3

⎛
⎝⎜

⎞
⎠⎟ cos(x)− 3

x2 sin(x).

YL
M θ φ(,) 1–()M 2L 1+

4π
---------------- L M–()!

L M+()!
---------------------PL

M θcos()eiMφ=

YL
M θ ,φ() = (−1)M

2L +1

4π
(L −M)!

(L +M)!
PL
M cos(θ)()eiMφ ,

PL
M θcos()PL

M cos(θ)()

SphericalInterpolate

V-768

SphericalInterpolate
SphericalInterpolate triangulationDataWave, dataPointsWave, newLocationsWave
The SphericalInterpolate operation works in conjunction with the SphericalTriangulate operation to
calculate interpolated values on a surface of a sphere. Given a set of {xi, yi, zi} points on the surface of a
sphere with their associated values {vi}, the SphericalTriangulate operation performs the Delaunay
triangulation and creates an output that is used by the SphericalInterpolate operation to calculate values at
any other point on the surface of a sphere. The interpolation calculation uses Voronoi polygons to weigh
the contribution of the nearest neighbors to any given location on the sphere.

Parameters
triangulationDataWave is a 13 column wave that was created by the SphericalTriangulate operation.
dataPoints is a 4 column wave. The first 3 columns are the {xi, yi, zi} locations that were used to create the
triangulation, and the last column corresponds to the {vi} values at the triangulation locations.
newLocationsWave is a 3 column wave that specifies the x, y, z locations on the sphere at which the
interpolated values are calculated. Note that internally, each triplet is normalized to a point on the unit
sphere before it is used in the interpolation.

Details
You will always need to use the SphericalTriangulate operation first to generate the triangulationDataWave
input for this operation.
The result of the operation are put in the wave W_SphericalInterpolation.

See Also
The SphericalTriangulate operation.

Demo
Choose File→Example Experiments→Analysis→SphericalTriangulationDemo.

SphericalTriangulate
SphericalTriangulate [/Z] tripletWaveName
The SphericalTriangulate operation triangulates an arbitrary XYZ triplet wave on a surface of a sphere.
It starts by normalizing the data to make sure that sqrt(x2+y2+z2)=1, and then proceeds to calculate the
Delaunay triangulation.

Flags

Details
The result of the triangulation is the wave M_SphericalTriangulation. This 13 column wave is used in
SphericalInterpolate to obtain the interpolated values.

Example
// Generates output waves that can be used in Gizmo to display the triangulation.
// triangulationData is the M_TriangulationData output from SphericalTriangulation.
// tripletWave is the source wave input to SphericalTriangulation.
// Output wave sphereTrianglesPath can be used to display the triangulation as a path.
// Output wave sphereTrianglesSurf can be used to display the triangulation as a surface.
Function BuildTriangleWaves(triangulationData,tripletWave)

Wave triangulationData, tripletWave

// Extract 3 columns from triangulationData that contain the index of the row.
Duplicate/O/FREE/r=[][1,3] triangulationData,triIndices
Variable finalNumTriangles=dimSize(triIndices,0),i,j,k

// Initialize both waves to NaN so any unassigned point would appear as a hole.
Make/O/N=(5*finalNumTriangles,3) sphereTrianglesPath=NaN
Make/O/N=(3*finalNumTriangles,3) sphereTrianglesSurf=NaN

// Assign the values of the vertices to the two waves:
Variable rowIndex,rowIndex0,outRowCount=0,outcount2=0
for(i=1;i<finalNumTriangles;i+=1)

/Z No error reporting.

SplitString

V-769

for(j=0;j<3;j+=1)
rowIndex=triIndices[i][j]
for(k=0;k<3;k+=1)

sphereTrianglesPath[outRowCount][k]=tripletWave[rowIndex][k]
sphereTrianglesSurf[outcount2][k]=tripletWave[rowIndex][k]

endfor
outRowCount+=1
outcount2+=1

endfor

// Close the triangle path by returning to the first vertex:
rowIndex0=triIndices[i][0]
sphereTrianglesPath[outRowCount][0]=tripletWave[rowIndex0][0]
sphereTrianglesPath[outRowCount][1]=tripletWave[rowIndex0][1]
sphereTrianglesPath[outRowCount][2]=tripletWave[rowIndex0][2]
outRowCount+=2 // Increment row count and skip the NaN

endfor
End

See Also
The SphericalInterpolate operation.

Demo
Choose File→Example Experiments→Analysis→SphericalTriangulationDemo.

SplitString
SplitString /E=regExprStr str [, substring1 [, substring2,… substringN]]
The SplitString operation uses the regular expression regExprStr to split str into subpatterns. See
Subpatterns on page IV-175 for details. Each matched subpattern is returned sequentially in the
corresponding substring parameter.

Parameters
str is the input string to be split into subpatterns.
The substring1…substringN output parameters must be the names of existing string variables if you need to use
the matched subpatterns. The first matched subpattern is returned in substring1, the second in substring2, etc.

Flags

Details
regExprStr is a regular expression with successive subpattern definitions, such as shown in the examples.
(Subpatterns are regular expressions within parentheses.)
For unmatched subpatterns, the corresponding substring is set to "". If you specify more substring
parameters than subpatterns, the extra parameters are also set to "".
The number of matched subpatterns is returned in V_flag.
The part of str that matches regExprStr (often all of str) is stored in S_value.

Examples
// Split the output of the date() function:
Print date()
 Mon, May 2, 2005

String expr="([[:alpha:]]+), ([[:alpha:]]+) ([[:digit:]]+), ([[:digit:]]+)"
String dayOfWeek, monthName, dayNumStr, yearStr
SplitString/E=(expr) date(), dayOfWeek, monthName, dayNumStr, yearStr
Print V_flag
 4
Print dayOfWeek
 Mon
Print monthName
 May
Print dayNumStr
 2
Print yearStr

/E=regExprStr Specifies the Perl-compatible regular expression string containing subpattern definition(s).

SplitWave

V-770

 2005
Print S_value
 Mon, May 2, 2005

// Get the part of str that matches regExprStr
SplitString/E=",.*," "stuff in front,second value,stuff at end"
Print S_value
 ,second value,

See Also
Regular Expressions on page IV-164 and Subpatterns on page IV-175.
sscanf, Grep, strsearch, str2num, RemoveEnding, TrimString

SplitWave
SplitWave [flags] srcWave
The SplitWave operation creates new waves containing subsets of the data in srcWave which must be 2D or
greater.
The newly generated waves have lower dimensionality than srcWave. The operation is ideal for splitting 2D
waves into constituent columns, 3D waves into their layers, etc.
Added in Igor Pro 7.00.

Flags

/DDF=destDataFolder Specifies the data folder where the generated waves are created. If the data folder
does not exist the operation creates it. If the /DDF flag is not used, output goes
into the current data folder.

/FREE Generates free output waves. The /OREF flag must also be used when the /FREE
flag is used. When you use this flag there is no need to use either /N or /NAME.

/N=baseName Provides the base name for all output waves. The waves will be named
sequentially, i.e., baseName0, baseName1...

/NAME=strList strList is a semicolon-separated list of wave names to be used as the names of the
output waves.
If strList contains fewer names than the number needed, the operation terminates
and returns an error.
If the output data folder is the data folder containing srcWave then strList must not
contain the name of srcWave.
Only simple names, not full paths, are allowed in strList.

/O Permits overwriting of existing destination waves. Overwriting srcWave is not
permitted.

/OREF=waveRefWave waveRefWave is a wave reference wave. SplitWave stores a wave reference for
each of the output waves in waveRefWave.
If the specified waveRefWave already exists it is overwritten and its size is changed
as appropriate. If it does not already exist, it is created by the operation.

/SDIM=n Specifies the dimensionality of the output waves. By default this is 1 less than the
dimensionality of srcWave. The minimum value is n=1 which results in 1D output
waves.

/Z[=z] /Z or /Z=1 prevents procedure execution from aborting if there is an error. Use /Z
if you want to handle this case in your procedures rather than having execution
abort.
/Z=0: Same as no /Z at all. This is the default.
/Z=1: Same as /Z alone.

sprintf

V-771

Details
The SplitWave operation is in some ways the inverse of the Concatenate operation. srcWave is decomposed
into waves of lower dimensionality.
Splitting a 2D 10x15 wave results in 15 waves of 10 rows each.
Splitting a 3D 10x15x4 using /SDIM=2 results in 4 2D waves of dimension 10x15.
Splitting a 3D 10x15x4 using /SDIM=1 results in 60 1D waves of 10 rows each.
The SplitWave operation works on all wave types. srcWave must be 2D or greater.
The operation creates the string variable S_waveNames which contains a semicolon separated list of the
names of the output waves. However if you use /FREE then S_waveNames will be empty as free waves can
not be accessed by name; use /OREF to access the created waves.

Examples
// Create sample input
Make/N=(5,4,3,2) wave1 = p + 10*q + 100*r + 1000*s

// Split chunks into 2 3D waves and store them in data folder Chunks
SplitWave/DDF=Chunks/N=chunk wave1

// Split layers into 6 2D waves and store them in data folder Layers
SplitWave/DDF=Layers/N=Layers/SDIM=2 wave1

// Split into 24 1D waves and store them in data folder Columns
SplitWave/DDF=Columns/N=Columns/SDIM=1 wave1

See Also
Duplicate, Redimension, Concatenate

sprintf
sprintf stringName, formatStr [, parameter]…
The sprintf operation is the same as printf except it prints the formatted output to the string variable
stringName rather than to the history area.

Parameters

See Also
The printf operation for complete format and parameter descriptions and Creating Formatted Text on page
IV-244.

sqrt
sqrt(num)
The sqrt function returns the square root of num or NaN if num is negative.
In complex expressions, num is complex, and sqrt(num) returns the complex value x + iy.

sscanf
sscanf scanStr, formatStr, var [, var]
The sscanf operation is useful for parsing text that contains numeric or string data. It is based on the C sscanf
function and provides a subset of the features available in C.
Here is a trivial example:
Variable v1
sscanf "Value= 1.234", "Value= %f", v1

This skips the text “Value=” and the following space and then converts the text “1.234” (or whatever
number appeared there) into a number and stores it in the local variable v1.

formatStr See printf.

parameter See printf.

stringName Results are “printed” into the named string variable.

sscanf

V-772

The sscanf operation sets the variable V_flag to the number of values read. You can use this as an initial
check to see if the scanStr is consistent with your expectations.

Parameters
scanStr contains the text to be parsed.
formatStr is a format string which describes how the parsing is to be done.
formatStr is followed by the names of one or more local numeric or string variables or NVARs (references to
global numeric variables) or SVARs (references to global string variables), which are represented by var above.
sscanf can handle a maximum of 100 var parameters.

Details
The format string consists of the following:
• Normal text, which is anything other than a percent sign (“%”) or white space.
• White space (spaces, tabs, linefeeds, carriage returns).
• A percent (“%”) character, which is the start of a conversion specification.

The trivial example illustrates all three of these components.
Variable v1
sscanf "Value= 1.234", "Value= %f", v1

sscanf attempts to match normal text in the format string to the identical normal text in the scan string. In
the example, the text “Value=” in the format string skips the identical text in the scan string.
sscanf matches a single white space character in the format string to 0 or more white space characters in the
scan string. In the example, the single space skips the single space in the scan string.
When sscanf encounters a percent character in the format string, it attempts to convert the corresponding
text in the scan string into a number or string, depending on the conversion character following the percent,
and stores the resulting number or string in the corresponding variable in the parameter list. In the example,
“%f” converts the text “1.234” into a number which it stores in the local variable v1.
A conversion specification consists of:
• A percent character (“%”).
• An optional “*”, which is a conversion suppression character.
• An optional number, which is a maximum field width.
• A conversion character, which specifies how to interpret text in the scan string.

Don’t worry about the suppression character and the maximum width specification for now. They will be
explained later.
The sscanf operation supports a subset of the conversion characters supported by the C sscanf operation.
The supported conversion characters, which are case-sensitive, are:

Note: The sscanf operation is supported in user functions only. It is not available using the
command line, using a macro, or using the Execute operation.

d Converts text representing a decimal number into an integer numeric value.

i Converts text representing a decimal, octal or hexadecimal number into an integer value.
If the text starts with “0x” (zero-x), it is interpreted as hexadecimal. Otherwise, if it starts
with “0” (zero), it is interpreted as octal. Otherwise it is interpreted as decimal.

o Converts text representing an octal number into an integer numeric value.

u Converts text representing an unsigned decimal number into an integer numeric value.

x Converts text representing a hexadecimal number into an integer numeric value.

c Converts a single character into an integer value which is the ASCII code representing
that character.

e Converts text representing a decimal number into a floating point numeric value.

f Same as e.

sscanf

V-773

Here are some simplified examples to illustrate each of these conversions.
Variable v1
String s1

Convert text representing a decimal number to an integer value:
sscanf "1234", "%d", v1

Convert text representing a decimal, octal, or hexadecimal number:
sscanf "1.234", "%i", v1 // Convert from decimal.
sscanf "01234", "%i", v1 // Convert from octal.
sscanf "0x123", "%i", v1 // Convert from hex.

Convert text representing an octal number:
sscanf "1234", "%o", v1

Convert text representing an unsigned decimal number:
sscanf "1234", "%u", v1

Convert text representing a hexadecimal number:
sscanf "1FB9", "%x", v1

Convert a single character:
sscanf "A", "%c", v1

Convert text representing a decimal number to an floating point value:
sscanf "1.234", "%e", v1
sscanf "1.234", "%f", v1
sscanf "1.234", "%g", v1

Copy a string of text up to the first white space:
sscanf "Hello There", "%s", s1

Copy a string of text matching the specified characters:
sscanf "+4.27", "%[+-]", s1

In a C program, you will sometimes see the letters “l” (ell) or “h” between the percent and the conversion
character. For example, you may see “%lf” or “%hd”. These extra letters are not needed or tolerated by
Igor’s sscanf operation.
When sscanf matches the format string to the scan string, it reads from the scan string until a character that
would be inappropriate for the section of the format string that sscanf is trying to match. In the following
example, sscanf stops reading characters to be converted into a number when it hits the first character that
is not appropriate for a number.
Variable v1
String s1, s2
sscanf "1234Volts DC", "%d%s %s", v1, s1, s2

sscanf stops matching text for “%d” when it hits “V” and stores the converted number in v1. It stops
matching text for the first “%s” when it hits white space and stores the matched text in s1. It then skips the
space in the scan string because of the corresponding space in the format string. Finally, it matches the
remaining text to the second “%s” and stores the text in s2.
The maximum field width must appear just before the conversion character (“d” in this case).
Variable v1, v2
sscanf "12349876", "%4d%4d", v1, v2

The suppression character (“*”) is used in a conversion specification to skip values in the scan string. It
parses the value, but sscanf does not store the value in any variable. In the following example, we read one

g Same as e.

s Stores text up to the next white space into a string.

[Stores text that matches a list of specific characters into a string. The list consists of the
characters inside the brackets (“%[abc]”). If the first character is “^”, this means to match any
character that is not in the list. You can specify a range of characters to match. For example
"%[A-Z]" matches all of the upper case letters and "%[A-Za-z]" matches all of the upper
and lower case letters.

Stack

V-774

number into local variable v1, skip a colon, and read another number into local variable v2, skip a colon,
and read another number into local variable v3.
Variable v1, v2, v3
sscanf "12:30:45", "%d%*[:]%d%*[:]%d", v1, v2, v3

Here “%*[:]” means “read a colon character but don’t store it anywhere”. The “*” character must appear
immediately after the percent. Note that there is nothing in the parameter list corresponding to the
suppressed strings.
If the text in the scan string is not consistent with the text in the format string, sscanf may not read all of the
values that you expected. You can check for this using the V_flag variable, which is set to the number of
values read. This kind of inconsistency does not cause sscanf to return an error to Igor, which would cause
procedure execution to abort. It is a situation that you can deal with in your procedure code.
The sscanf operation returns the following kinds of errors:
• Out-of-memory.
• The number of parameters implied by formatStr does not match the number of parameters in the var list.
• formatStr calls for a numeric variable but the parameter list expects a string variable.
• formatStr calls for a string variable but the parameter list expects a numeric variable.
• formatStr includes an unsupported, unknown or incorrectly constructed conversion specification.
• The var list references a global variable that does not exist.

Examples
Here is a simple example to give you the general idea:
Function SimpleExample()

Variable v1, valuesRead
sscanf "Value=1.234", "Value=%g", v1
valuesRead = V_flag
if (valuesRead != 1)

Printf "Error: Expected 1 value, got %d values\r", valuesRead
else

Printf "Value read = %g\r", v1
endif

End

For an example that uses sscanf to load data from a text file, see the Load File Demo example in “Igor Pro
7 Folder:Examples:Programming”.

See Also
str2num, strsearch, StringMatch, SplitString

Stack
Stack [flags] [objectName][, objectName]…
The Stack operation stacks the named layout objects in the top page layout.

Parameters
objectName is the name of a graph, table, picture or annotation object in the top page layout.

Flags

See Also
The Tile operation for details on the flags and parameters.

/A=(rows,cols) /I /O=objTypes /S
/G=grout /M /R /W=(left,top,right,bottom)

StackWindows

V-775

StackWindows
StackWindows [flags] [windowName [, windowName]…]
The StackWindows operation stacks the named windows on the desktop.

Flags

See Also
See the TileWindows operation for details on the flags and parameters.

StartMSTimer
StartMSTimer
The StartMSTimer function creates a new microsecond timer and returns a timer reference number.

Details
You can create up to ten different microsecond timers using StartMSTimer. A valid timer reference number
is a number between 0 and 9. If StartMSTimer returns -1, there are no free timers available. StartMSTimer
works in conjunction with StopMSTimer.

See Also
The StopMSTimer and ticks functions.

Static
Static constant objectName = value
Static strconstant objectName = value
Static Function funcName()
Static Structure structureName
Static Picture pictName
The Static keyword specifies that a constant, user-defined function, structure, or Proc Picture is local to the
procedure file in which it appears. Static objects can only be used by other functions; they cannot be
accessed from macros; they cannot be accessed from other procedure files or from the command line.

See Also
Static Functions on page IV-96, Proc Pictures on page IV-53, and Constants on page IV-47.

StatsAngularDistanceTest
StatsAngularDistanceTest [flags][srcWave1, srcWave2, srcWave3…]
The StatsAngularDistanceTest operation performs nonparametric tests on the angular distance between sample
data and reference directions for two or more samples in individual waves. The angular distance is the shortest
distance between two points on a circle (in radians). Specify the sample waves using /WSTR or by listing them
following the flags. Set reference directions with /ANG, /ANGW, or the sample mean direction.

Flags

/A=(rows,cols) /G=grout /O=objTypes /P /W=(left,top,right,bottom)
/C /I /M /R

/ALPH=val Sets the significance level (default 0.05).

/ANG={d1, d2} Sets reference directions (in radians) for two samples; for more than two samples use
/ANGW.

/ANGM Computes the mean direction of each sample and uses it as the reference direction.

/ANGW=dWave Sets reference directions (in radians) for more than two samples using directions in
dWave, which must be single or double precision.

/APRX=m Controls the approximation method for computing the P-value in the case of two
samples (Mann-Whitney Wilcoxon). See StatsWilcoxonRankTest for more details.
The default value is 0, which may require long computation times if your sample size
is large. Use /APRX=1 if you have a large sample and you expect ties in the data.

StatsANOVA1Test

V-776

Details
The inputs for StatsAngularDistanceTest are two or more waves each corresponding to individual sample.
The waves must be single or double precision expressing the angles in radians. There is no restriction on
the number of points or dimensionality of the waves but the data should not contain NaNs or INFs. We
recommend that you use double precision waves, especially if there are ties in the data. The reference
directions should also be in radians. For two samples, StatsAngularDistanceTest computes the angular
distances between the input data and the reference directions and then uses the Mann-Whitney-Wilcoxon
test (StatsWilcoxonRankTest). Results are stored in the W_WilcoxonTest wave and in the corresponding
table. For more than two samples, StatsAngularDistanceTest uses the Kruskal-Wallis test, storing results in
the wave W_KWTestResults wave in the current data folder.
V_flag will be set to -1 for any error and to zero otherwise.

References
See, in particular, Chapter 27 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsWilcoxonRankTest and
StatsKWTest.
Examples:Statistics:Circular Statistics:AngularDistanceTest.pxp.

StatsANOVA1Test
StatsANOVA1Test [flags] [wave1, wave2,… wave100]
The StatsANOVA1Test operation performs a one-way ANOVA test (fixed-effect model). The standard
ANOVA test results are stored in the M_ANOVA1 wave in the current data folder.

Flags

/Q No results printed in the history area.

/T=k

/TAIL=tail

See Setting Bit Parameters on page IV-12 for details about bit settings.
The P value corresponding to the last tail calculated will be entered in the table.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

/ALPH=val Sets the significance level (default 0.05).

/BF Performs the Brown and Forsythe test computing F'' and degrees of freedom. The
W_ANOVA1BnF wave in the current data folder contains the output.

/Q No results printed in the history area.

/T=k Displays results in a table; additional tables are created with /BF and /W.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

tail is a bitwise parameter that specifies the tails tested.
Bit 0: Lower tail.
Bit 1: Upper tail (default).
Bit 2: Two tail.

StatsANOVA2NRTest

V-777

Details
Inputs to StatsANOVA1Test are two or more 1D numerical waves containing (one wave for each group of
samples). Use NaN for missing entries or use waves with different numbers of points. The standard
ANOVA results are in the M_ANOVA1 wave with corresponding row and column labels. Use /T to display
the results in a table. In each case you will get the two degrees of freedom values, the F value, the critical
value Fc for the choice of alpha and the degrees of freedom, and the P-value for the result. V_flag will be
set to -1 for any error and to zero otherwise.
In some cases the ANOVA test may not be appropriate. For example, if groups do not exhibit sufficient
homogeneity of variances. Although this may not be fatal for the ANOVA test, you may get more insight
by performing the variances test in StatsVariancesTest.
If there are only two groups this test should be equivalent to StatsTTest.
You can evaluate the power of an ANOVA test for a given set of degrees of freedom and noncentrality
parameter using:
power=1-StatsNCFCDF(StatsInvFCDF((1-alpha),n1,n2),n1,n2,delta)

Here n1 is the Groups’ degrees of freedom, n2 is the Error degrees of freedom, and delta is the noncentrality
parameter. For more information see ANOVA Power Calculations Panel and the associated example experiment.

References
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsVariancesTest, StatsTTest,
StatsNCFCDF, and StatsInvFCDF.

StatsANOVA2NRTest
StatsANOVA2NRTest [flags] srcWave
The StatsANOVA2NRTest operation performs a two-factor analysis of variance (ANOVA) on the data that
has no replication where there is only a single datum for every factor level. srcWave is a 2D wave of any
numeric type. Output is to the M_ANOVA2NRResults wave in the current data folder or optionally to a table.

Flags

/W Performs the Welch test F' and computes degrees of freedom. The W_ANOVA1Welch
wave in the current data folder contains the output.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

/ALPH=val Sets the significance level (default 0.05).

/FOMD Estimates one missing value. You will also have to use a single or double precision
wave for srcWave and designate the single missing value as NaN. The estimated value
is printed to the history as well as the bias used to correct the sum of the squares of
factor A.

/INT=val Sets the degree of interactivity.

k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsANOVA2NRTest

V-778

Details
Input to StatsANOVA2NRTest is a 2D wave in which the Factor A corresponds to rows and Factor B
corresponds to columns. H0 provides that there is no difference in the means of the respective populations,
i.e., if H0 is rejected for Factor A but accepted for Factor B that means that there is no difference in the means
of the columns but the means of the rows are different.
NaN and INF entries are not supported although you may use a single NaN value in combination with the
/FOMD flag. If srcWave contains dimension labels they will be used to designate the two factors in the
output.
The contents of the M_ANOVA2NRResults output wave columns are as follows:

The variable V_flag is set to zero if the operation succeeds or to -1 otherwise.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsANOVA1Test and
StatsANOVA2Test.

As indicated in the table, factor B is not tested for significant interaction under Model
3 and neither factor A nor factor B are tested for Model 1. If you are willing to accept
an increase in Type II error you can obtain the relevant values by specifying Model 2.
None of the models support a test for interaction A x B.

/MODL=m

/Q No results printed in the history area.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Column 0 Sum of the squares (SS) values

Column 1 Degrees of freedom (DF)

Column 2 Mean square (MS) values

Column 3 Computed F value for this test

Column 4 Critical F value (Fc) for the specified alpha

Column 5 Conclusion with 0 to reject H0 or 1 to accept it

Sets the degree of interactivity.
val=0: No interaction between the factors (default).
val=1: Significant interaction effect between factors.

Combination with /MODL determines which factors to test:

val Model 1 Model 2 Model 3

1 A&B A

0 A&B A&B A&B

Sets the model number.
m=1: Factor A and factor B are fixed.
m=2: Both factors are random.
m=3: Factor A is fixed and factor B is random (default).

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsANOVA2RMTest

V-779

StatsANOVA2RMTest
StatsANOVA2RMTest [flags] srcWave
The StatsANOVA2RMTest operation performs analysis of variance (ANOVA) on srcWave where replicates
consist of multiple measurements on the same subject (repeated measures). srcWave is a 2D wave of any
numeric type. Output is to the M_ANOVA2RMResults wave in the current data folder or optionally to a table.

Flags

Details
Input to StatsANOVA2RMTest is the 2D srcWave in which the factor A (Groups) are columns and the
different subjects are rows. It does not support NaNs or INFs.
The contents of the M_ANOVA2RMResults output wave columns are: the first contains the sum of the
squares (SS) values, the second contains the degrees of freedom (DF), the third contains the mean square
(MS) values, the fourth contains the single F value for this test, the fifth contains the critical F value for the
specified alpha and degrees of freedom, and the last column contains the conclusion with 0 to reject H0 or
1 to accept it. In each case H0 corresponds to the mean level, which is the same for all subjects.
V_flag will be set to -1 for any error and to zero otherwise.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsANOVA2NRTest and
StatsANOVA2Test.

StatsANOVA2Test
StatsANOVA2Test [flags] srcWave
The StatsANOVA2Test operation performs a two-factor analysis of variance (ANOVA) on srcWave. Output
is to the M_ANOVA2Results wave in the current data folder or optionally to a table.

Flags

/ALPH=val Sets the significance level (default 0.05).

/Q No results printed in the history area.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

/ALPH=val Sets the significance level (default 0.05).

/FAKE=num Specifies the number of points in srcWave obtained by “estimation”. num is subtracted
from the total and error degrees of freedom.

/MODL=m

/Q No results printed in the history area.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

Sets the model number.
m=1: Factor A and factor B are fixed.
m=2: Both factors are random.
m=3: Factor A is fixed and factor B is random (default).

StatsBetaCDF

V-780

Details
Input to StatsANOVA2Test is the single or double precision 3D srcWave in which the factor A levels are
columns, the factor B levels are rows, and the replicates are layers. If srcWave contains dimension labels they
will be used to designate the factors in the output.
Ideally, the number of replicates must be equal for each factor and each level. StatsANOVA2Test supports
both equal replication and proportional replication. Proportional replication allows for different number of
data in each cell with missing data represented as NaN and the number of points in each cell is given by
Nij=(sum of data in row i)*(sum of data in column j)/number of samples.

If you have no replicates (a single datum per cell) use StatsANOVA2NRTest instead. If the number of
replicates in your data does not satisfy these conditions you may be able to “estimate” additional replicates
using various methods. In that case use the /FAKE flag so that the operation can account for the estimated
data by reducing the total and error degrees of freedom. /FAKE only accounts for the number of estimates
being used. You must provide an appropriate number of estimated values.
The contents of the M_ANOVA2Results output wave columns are: the first contains the sum of the squares
(SS) values, the second the degrees of freedom (DF), the third contains the mean square (MS) values, the
fourth contains the computed F value for this test, the fifth contains the critical Fc value for the specified
alpha and degrees of freedom, and the last contains the conclusion with 0 to reject H0 or 1 to accept it. In
each case H0 corresponds to the mean level, which is the same for all populations.
V_flag will be set to -1 for any error and to zero otherwise.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsANOVA1Test and
StatsANOVA2NRTest.

StatsBetaCDF
StatsBetaCDF(x, p, q [, a, b])
The StatsBetaCDF function returns the beta cumulative distribution function

where B(p,q) is the beta function

The defaults (a=0 and b=1) correspond to the standard beta distribution were a is the location parameter, (b-
a) is the scale parameter, and p and q are shape parameters.

References
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsBetaPDF and StatsInvBetaCDF.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

F(x,p,q,a,b)=
1

B(p,q)
t p�1(1� t)q�1 dt

0

x�a
b�a
� ,

p,q > 0

a � x � b

B(p,q) = t p�1(1� t)q�1 dt.
0

1

�

StatsBetaPDF

V-781

StatsBetaPDF
StatsBetaPDF(x, p, q [, a, b])
The StatsBetaPDF function returns the beta probability distribution function

where B(p,q) is the beta function

The defaults (a=0 and b=1) correspond to the standard beta distribution were a is the location parameter, (b-
a) is the scale parameter, and p and q are shape parameters. When p<1, f(x=a) returns Inf.

References
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsBetaCDF and StatsInvBetaCDF.

StatsBinomialCDF
StatsBinomialCDF(x, p, N)
The StatsBinomialCDF function returns the binomial cumulative distribution function

where

See Also
Chapter III-12, Statistics for a function and operation overview; StatsBinomialCDF and
StatsBinomialPDF.

StatsBinomialPDF
StatsBinomialPDF(x, p, N)
The StatsBinomialPDF function returns the binomial probability distribution function

where

is the probability of obtaining x good outcomes in N trials where the probability of a single successful
outcome is p.

f (x; p,q,a,b) =
x � a()p�1

b � x()q�1

B p,q() b � a()p+q�1 ,�������������
a � x � b

p,q > 0

B(p,q) = t p�1(1� t)q�1dt
0

1

� .

F(x; p,N) = N
i

�

�
�

�

�
�

i=1

x

� pi (1� p)N � i , x = 1,2,...

N
i

�

�
�

�

�
�
=

N !

i!(N � i)!
.

f (x; p,N) = N
x

�

�
�

�

�
�
px (1� p)N � x , x = 0,1,2,...

N
x

�

�
�

�

�
�
=

N !

x!(N � x)!
.

StatsCauchyCDF

V-782

See Also
Chapter III-12, Statistics for a function and operation overview; StatsBinomialCDF and
StatsInvBinomialCDF.

StatsCauchyCDF
StatsCauchyCDF(x, μ, σ)
The StatsCauchyCDF function returns the Cauchy-Lorentz cumulative distribution function

See Also
Chapter III-12, Statistics for a function and operation overview; StatsCauchyCDF and StatsCauchyPDF.

StatsCauchyPDF
StatsCauchyPDF(x, μ, σ)
The StatsCauchyPDF function returns the Cauchy-Lorentz probability distribution function

where μ is the location parameter and σ is the scale parameter. Use μ=0 and σ=1 for the standard form of
the Cauchy-Lorentz distribution.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsCauchyCDF and StatsInvCauchyCDF.

StatsChiCDF
StatsChiCDF(x, n)
The StatsChiCDF function returns the chi-squared cumulative distribution function for the specified value
and degrees of freedom n.

where is γ(a,b) the incomplete gamma function. The distribution can also be expressed as

See Also
Chapter III-12, Statistics for a function and operation overview; StatsChiPDF, StatsInvChiCDF, and
gammq.

StatsChiPDF
StatsChiPDF(x, n)
The StatsChiPDF function returns the chi-squared probability distribution function for the specified value
and degrees of freedom as

F(x;μ,�) =
1

2
+

1

�
tan�1 x � μ

�

�

�
�

�
��

.

f (x;μ,�) =
1

��

1

1+ x � μ
�

�

�
�

�
��

2 ,

F(x;n) =
�

n

2
,
x

2
�

�
�

�

�
�

	
n

2
�

�
�

�

�
�

.

F(x;n) = 1� gammq
n

2
,
x

2
�

�
�

�

�
� .

StatsChiTest

V-783

See Also
Chapter III-12, Statistics for a function and operation overview; StatsChiCDF and StatsChiPDF.

StatsChiTest
StatsChiTest [flags] srcWave1, srcWave2
The StatsChiTest operation computes a χ2 statistic for comparing two distributions or a χ2 statistic for
comparing a sample distribution with its expected values. In both cases the comparison is made on a bin-
by-bin basis. Output is to the W_StatsChiTest wave in the current data folder or optionally to a table.

Flags

Details
The source waves, srcWave1 and srcWave2, must have the same number of points and can be any real
numeric data type. Any nonpositive values (including NaN) in either wave removes the entry in both
waves from consideration and reduces the degrees of freedom by one. The number degrees of freedom is
initially the number of points in srcWave1-1-nCon. By default it is assumed that srcWave1 and srcWave2
represent two distributions of binned data.
When you specify /S, srcWave1 must consist of binned values of measured data and srcWave2 must contain
the corresponding expected values. The calculation is:

Here Yi is the sample point from srcWave1, Vi is the expected value of Yi based on an assumed distribution
(srcWave2), and n is the number of points in the each wave. If you do not use /S, it calculates:

where Y1i and Y2i are taken from srcWave1 and srcWave2 respectively.
V_flag will be set to -1 for any error and to zero otherwise.

/ALZR Allows zero entries in source waves. If you are using /S zero entries in srcWave2 are
skipped.

/NCON=nCon Specifies the number of constraints (0 by default), which reduces the number degrees
of freedom and the critical value by nCon.

/S Sets the calculation mode to a single distribution where srcWave1 represents an array
of binned measurements and srcWave2 represents the corresponding expected values.

/T=k

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

f (x;n) =
exp � x

2
�

�
�

�

�
� x

n

2
�1

2
n

2 �
n

2
�

�
�

�

�
�

.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

�
2 =

Yi �Vi()2

Vi
.

i=0

n�1

�

�
2 =

Y1i �Y2i()2

Y1i +Y2i

,
i=0

n�1

�

StatsCircularCorrelationTest

V-784

See Also
Chapter III-12, Statistics for a function and operation overview; StatsContingencyTable.

StatsCircularCorrelationTest
StatsCircularCorrelationTest [flags] waveA, waveB
The StatsCircularTwoSampleTest operation peforms a number of tests for two samples of circular data.
Using the appropriate flags you can choose between parametric or nonparametric, unordered or paired
tests. The input consists of two waves that contain one or two columns. The first column contains angle data
expressed in radians and an optional second column contains associated vector lengths. The waves must be
either single or double precision floating point. Results are stored in the W_StatsCircularCorrelationTest
wave in the current data folder and optionally displayed in a table. Some flags generate additional outputs,
described below.

Flags

Details
The nonparametric test (/NAA) follows Fisher and Lee’s modification of Mardia’s statistic, which is an
analogue of Spearman’s rank correlation. The test ranks the angles of each sample and computes the
quantities r' and r'' as follows:

Here n is the number of data pairs and rai and rbi are the ranks of the ith member in the first and second
samples respectively.
The test statistic is (n-1)(r'-r''), which is compared with the critical value (for one and two tails). The CDF of
the statistic is a highly irregular function. The critical value is computed by a different methods according
to n. For 3 ≤ n ≤ 8, a built-in table of CDF transitions gives a “conservative” estimate of the critical value. For
9 ≤ n ≤ 30, the CDF is approximated by a 7th order polynomial in the region x > 0. For n ≥ 30, the CDF is
from the asymptotic expression. For 3 ≤ n ≤ 30, CDF values are obtained by Monte-Carlo simulations using
1e6 random samples for each n.
The parametric test for angular-angular correlation (/PAA) involves computation of a correlation coefficient
raa and then evaluating the mean and variance of equivalent correlation coefficients computed

/ALPH=val Sets the significance level (default 0.05).

/NAA Performs a nonparametric angular-angular correlation test.

/PAA Performs a parametric angular-angular correlation test.

/PAL Performs a parametric angular-linear correlation test. In this case the angle wave is
waveA and the linear data corresponds to waveB.

/Q No results printed in the history area.

/T=k

/Z Ignores errors.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

r ' =
cos

2�
n

rai � rbi()�

�
�

�

�
�

i=0

n�1

�	

�

�

�

2

+ sin
2�
n

rai � rbi()�

�
�

�

�
�

i=0

n�1

�	

�

�

�

2

n2 ,

r '' =
cos

2�
n

rai + rbi()�

�
�

�

�
�

i=0

n�1

�	

�

�

�

2

+ sin
2�
n

rai + rbi()�

�
�

�

�
�

i=0

n�1

�	

�

�

�

2

n2 .

raa sraa
2

StatsCircularCorrelationTest

V-785

from the same data but by deleting a different pair of angles each time. The mean and variance are then
used to compute confidence limits L1 and L2:

where is the normal distribution two-tail critical value at the a level of significance. H0 (corresponding
to no correlation) is rejected if zero is not contained in the interval [L1,L2].
The parametric test for angular-linear correlation (/PAL) involves computation of the correlation coefficient ral
which is then compared with a critical value from for alpha significance and two degrees of freedom.

where:

References
Fisher, N.I., and A.J. Lee, Nonparametric measures of angular-angular association, Biometrica, 69, 315-321,

1982.
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsInvChiCDF, StatsInvNormalCDF,
and StatsKendallTauTest.

L1 = nraa � n �1()raa � Z
� (2)

sraa
2

n
,

L2 = nraa � n �1()raa + Z
� (2)

sraa
2

n

Zα 2()

χ2

ral =
rxc

2 + rxs
2 � 2rxcrxsrcs
1� rcs

2
,

rxc =
Xi cos(ai) �

1
n

Xi
i=0

n�1

� cos(ai)
i=0

n�1

�
i=0

n�1

�

Xi
2 � 1

n
Xi

i=0

n�1

�
�

�
�

�

�
�

2

i=0

n�1

�
�

�
�

�

�
� cos2 (ai) �

1
n

cos(ai)
i=0

n�1

�
�

�
�

�

�
�

2

i=0

n�1

�
�

�
�

�

�
�

,

rxs =
Xi sin(ai) �

1
n

Xi
i=0

n�1

� sin(ai)
i=0

n�1

�
i=0

n�1

�

Xi
2 � 1

n
Xi

i=0

n�1

�
�

�
�

�

�
�

2

i=0

n�1

�
�

�
�

�

�
� sin2 (ai) �

1
n

sin(ai)
i=0

n�1

�
�

�
�

�

�
�

2

i=0

n�1

�
�

�
�

�

�
�

,

rcs =
cos(ai)sin(ai) �

1
n

sin(ai)
i=0

n�1

� cos(ai)
i=0

n�1

�
i=0

n�1

�

sin2 (ai) �
1
n

sin(ai)
i=0

n�1

�
�

�
�

�

�
�

2

i=0

n�1

�
�

�
�

�

�
� cos2 (ai) �

1
n

cos(ai)
i=0

n�1

�
�

�
�

�

�
�

2

i=0

n�1

�
�

�
�

�

�
�

.

StatsCircularMeans

V-786

StatsCircularMeans
StatsCircularMeans [flags] srcWave
The StatsCircularMeans operation calculates the mean of a number of circular means, returning the mean
angle (grand mean), the length of the mean vector, and optionally confidence interval around the mean
angle. Output is to the history area and to the W_CircularMeans wave in the current data folder.

Flags

/ALPH=val Sets the significance level (default 0.05).

/CI Calculates the confidence interval (labeled CI_t1 and CI_t2) around the mean angle.

/NSOA Performs nonparametric second order analysis according to Moore’s version of
Rayleigh’s test where H0 corresponds to uniform distribution around the circle.
Moore’s test ranks entries by the lengths of the mean radii (second column of the
input) from smallest (rank 1) to largest (rank n) and then computes the statistic:

where ai are the mean angle entries (from column 1) corresponding to vector length
rank (i+1). The critical value is obtained from Moore’s distribution
StatsInvMooreCDF.

/PSOA Perform parametric second order analysis where H0 corresponds to no mean
population direction. It assumes that the second order quantities are from a bivariate
normal distribution. If this is not the case, use /NSOA above. The test statistic is:

where

Here n is the number of means in srcWave and the critical value is computed from the
F distribution, equivalent to executing:
Print StatsInvFCDF(1-alpha,2,n-2)

/Q No results printed in the history area.

R ' =

1
n

i +1()cos ai()
i=0

n�1

�
�

�
�

�

�
�

2

+ 1
n

i +1()sin ai()
i=0

n�1

�
�

�
�

�

�
�

2

n
,

F = k(k � 2)

2

X 2S
y2 � 2XYSxy +Y

2S
x2

S
x2Sy2 � Sxy

2

�

�
�

�

X =
1

n
Xi

i=0

n�1

� =
1

n
ri

i=0

n�1

� cos ai(),

Y =
1

n
Yi

i=0

n�1

� =
1

n
ri

i=0

n�1

� sin ai(),

S
x2 = Xi

2

i=0

n�1

� �
1

n
Xi

i=0

n�1

�
�

�
�

�

�
�

2

,

S
y2 = Yi

2

i=0

n�1

� �
1

n
Yi

i=0

n�1

�
�

�
�

�

�
�

2

,

Sxy = XiYi
i=0

n�1

� �
1

n
Xi

i=0

n�1

� Yi
i=0

n�1

� .

StatsCircularMoments

V-787

Details
The srcWave input to StatsCircularMeans must be a single or double precision two column wave containing
in each row a mean angle (radians) and the length of a mean radius (the first column contains mean angles
and the second column contains mean vector lengths). srcWave must not contain any NaNs or INFs. The
confidence interval calculation follows the procedure outlined by Batschelet.
V_flag will be set to -1 for any error and to zero otherwise.

References
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsCircularMoments,
StatsInvMooreCDF, and StatsInvFCDF.

StatsCircularMoments
StatsCircularMoments [flags] srcWave
The StatsCircularMoments operation computes circular statistical moments and optionally performs
angular uniformity tests for the data in srcWave. The extent of the calculation is determined by the requested
moment. The default results are stored in the W_CircularStats wave in the current data folder and are
optionally displayed in a table. Additional results are listed under the corresponding flags.

Flags

/T=k

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

/ALPH=alpha Sets an alpha value for computing confidence intervals (default is 0.05).

/AXD=p Designates the input as p-axial data. For example, if the input represents undirected
lines then p =2 and the operation multiplies the angles by a factor p (after shifting
/ORGN and accounting for /CYCL). It does not back-transform the mean or median
axis.

/CYCL=cycle Specifies the length of the data cycle. You do not need to do so if you are using one of
the built-in modes, but this is still a useful option, as for setting the length of a
particular month when using /MODE=5.

/GRPD={start, delta}

Computes circular statistics for grouped data. In this case srcWave contains
frequencies or the number of events that belong to a particular angle group. There are
as many groups as there are elements in srcWave. The first group is centered at start
radians and each consecutive group is centered delta radians away. You must set both
the start and delta to sensible values. srcWave may contain NaNs but it is an error if all
values are NaN. The only other flags that work in combination with this flag are /Q,
/T, and /Z.

/KUPR Tests the uniformity of the distribution for ungrouped data using Kuiper statistic. The
data are converted into a set {xi} by normalizing the input angles to the range [0,1],
ranking the results then using the two quantities D+ and D- to compute the Kuiper
statistic

,

where

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

V= D+ + D�() n+0.155+0.24/ n()

StatsCircularMoments

V-788

,

,

and n is the number of valid points in srcWave. You can find the results in the wave
W_CircularStats under row label “Kuiper V” and “Kuiper CDF(V)”. See Fisher and
Press et al. for more information.

 /LOS Computes Linear Order Statistics by sorting the angle values from small to large,
dividing each angle by 2π and shifting the origin so that the output range is [0,1]. The
results are stored in the wave W_LinearOrderStats in the current data folder. The X
scaling of the wave is set so that the offset and the delta are 1/(n+1) where n is the
number of non-NaN points in the input.

/M=moment Computes specified moments. By default, it computes the second order moments as
well as skewness, kurtosis, median, and mean deviation. Use /M=1 for the first
moment. For higher moments, both the specified moment and all the default
quantities are computed.

/MODE=mode

/ORGN=origin Specifies the origin of the data (the value corresponding to an angle of zero degrees).
For example, if you are using Igor date format and you want the origin to be the first
second in year YYYY, use /ORGN=(date2secs(YYYY,1,1)).

/Q No results printed in the history area.

/RAYL[=meanDirection]

Performs the Rayleigh test for uniformity. If the “alternative” mean direction is
specified (in radians), the test computes
r0Bar=rBar cos(tBar-meanDirection)

and then computes the significance probability of r0Bar. The null hypothesis H0
corresponds to uniformity. It is rejected when r0Bar is too large. If the mean direction
is not specified then r0Bar is rBar which is always calculated as part of the first
moments so the operation only computes the relevant significance probability (P-
Value). The critical values for both cases are computed according to Durand and
Greenwood.

/SAW Saves the translated angle data in the wave W_AngleWave in the current data folder.

D+ = Max of:
1

n
-x0,

2

n
-x1,... ,1-xn-1

D- = Max of: x0, x
1-

1

n

,... , x
n-1-

n-1

n

,

Handles special types of data.

mode Data in srcWave

0 Angles in radians [0,2π]

1 Angles in radians [-π, π]

2 Angles in degrees [0,360]

3 Angles in degrees [-180,180]

4 Igor date format for one year cycles.

5 Igor date format for one month cycles.

6 Igor date format for one week cycles.

7 Igor date format for one day cycles.

8 Igor date format for one hour cycles.

StatsCircularMoments

V-789

Details
StatsCircularMoments is equivalent to WaveStats but it applies to circular data, which are distributed on
the perimeter of a circle representing some period or cycle. If your data are not described by one of the built-
in modes, you can specify the value of the origin (/ORGN), which is mapped to zero degrees and the size
of a cycle or period.
When you use Igor date formats with the built-in modes for dates, the default origin is set to zero. The
default cycle in the case of Mode 4 is 366. This is done in order to handle both leap and nonleap years.
Similarly, Mode 5 uses a cycle of 31 days. Note that the internal conversion from Igor date to (year, month,
day) is independent of the cycle specification and is therefore not affected by this choice. You should use
the /CYCL flag if you use one of these modes with a fixed size of year or month.
The parameters listed below are computed and displayed (see row labels) in the table. Here N is the number
of valid (non-NaN) angles {θi}

median is the value which minimizes

/T=k

The table is associated with the test and not with the data. If you repeat the test, it will
update the table with the new results unless you moved the output wave to a different
data folder. If the named table exists, but does not display the output wave from the
current data folder, the table is renamed and a new table is created.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

C= cos�i
i=1

n

�

S= sin�i
i=1

n

�

R = C 2 + S2

cBar = C = C n

sBar = S = S n

rBar = R = R n

tBar = � =
atan(S C) S > 0,C > 0

atan(S C) + � C < 0

atan(S C) + 2� S < 0,C > 0

�

�
�

�
�

V = 1� R

v = �2 log 1�V()

StatsCircularMoments

V-790

mean deviation = The minimum of the last equation when θ → median.
Higher order moments are denoted with the moment number such that t3Bar is the uncentered third
moment of the angle while primed quantities are relative to mean direction tBar. Using this notation

where

and

References
Fisher, N.I., Statistical Analysis of Circular Data, 295pp., Cambridge University Press, New York, 1995.
Press, William H., et al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New York,

1992.
Durand, D., and J.A. Greenwood, Modifications of the Rayleigh test for uniformity in analysis of two-

dimensional orientation data, J. Geol., 66, 229-238, 1958.

See Also
Chapter III-12, Statistics for a function and operation overview.
WaveStats, StatsAngularDistanceTest, StatsCircularCorrelationTest, StatsCircularMeans,
StatsHodgesAjneTest, StatsWatsonUSquaredTest, StatsWatsonWilliamsTest, and
StatsWheelerWatsonTest.

d(�) = � �
1

n
� � �i ��

i=1

n

�

�2
� =

1

n
cos2 �i ��()

i=1

n

�

circular �dispersion =

1� �2
�

2R
2

skewness =
�2
� sin �μ̂2 � 2�()

1� R()3
2

kurtosis =
�2
� cos �μ̂2 � 2�() � R4

1� R()2

�μ̂p =

atan Sp Cp() Sp > 0,Cp > 0

atan Sp Cp() + � Cp < 0

atan Sp Cp() + 2� Sp < 0,Cp > 0

�

�

�
�

�

�

�

Cp =
1

n
cos p�i

i=1

n

� , Sp =
1

n
sin p�i

i=1

n

� .

StatsCircularTwoSampleTest

V-791

StatsCircularTwoSampleTest
StatsCircularTwoSampleTest [flags] waveA, waveB
The StatsCircularTwoSampleTest operation performs second order analysis of angles. Using the appropriate
flags you can choose between parametric or nonparametric, unordered or paired tests. The input consists of
two waves that contain one or two columns. The first column contains angle data (mean angles) expressed in
radians and an optional second column that contains associated vector lengths. The waves must be either
single or double precision. Results are stored in the W_StatsCircularTwoSamples wave in the current data
folder and optionally displayed in a table. Some of the tests may have additional outputs.

Flags

Details
The nonparametric paired-sample test (/NPR) is Moore’s test for paired angles applied in second order
analysis. The input can consist of one or two column waves. When both waves contain a single column the
operation proceeds as if all the vector length were identically 1. The Moore statistic (H0 → pair equality) is
computed and compared to the critical value from the Moore distribution (see StatsInvMooreCDF).
The nonparametric second-order two-sample test (/NSOA) consists of pre-processing where the grand
mean is subtracted from the two inputs followed by application of Watson’s U2 test
(StatsWatsonUSquaredTest) with H0 implying that the two samples came from the same population. The
results of this test are stored in the wave W_WatsonUtest.
The parametric paired-sample test (/PPR) is due to Hotelling. In this test the input should consist of both angular
and vector length data. The test statistic is compared with a critical value from the F distribution (StatsInvFCDF).
The parametric second order two-sample test (/PSOA) is an extension of Hotelling one-sample test to
second order analysis where an F-like statistic is computed corresponding to H0 of equal mean angles.

References
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsInvMooreCDF,
StatsWatsonUSquaredTest, and StatsInvFCDF.

StatsCMSSDCDF
StatsCMSSDCDF(C, n)
The StatsCMSSDCDF function returns the cumulative distribution function of the C distribution (mean
square successive difference), which is

/ALPH = val Sets the significance level (default val=0.05).

/NPR Performs nonparametric paired-sample test (Moore). The input waves must contain
paired angular data so both must have single column and the same number of points.

/NSOA Perform nonparametric second order two-sample test. Input waves must each contain
two columns.

/PPR Performs parametric paired-sample test. Input waves must contain paired data and
must have the same number of points.

/PSOA Performs parametric second order analysis of two samples. The input waves must
each contain two columns.

/Q No information printed in the history area.

/T= k

/Z Ignores any errors.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsCochranTest

V-792

where

The distribution (C>0) can then be expressed as

where 2F1 is the hypergeometric function hyperG2F1.

References
Young, L.C., On randomness in ordered sequences, Annals of Mathematical Statistics, 12, 153-162, 1941.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsCMSSDCDF and StatsSRTest.

StatsCochranTest
StatsCochranTest [flags] [wave1, wave2,… wave100]
The StatsCochranTest operation performs Cochran’s (Q) test on a randomized block or repeated measures
dichotomous data. Output is to the M_CochranTestResults wave in the current data folder or optionally to
a table.

Flags

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/T=k

The table is associated with the test and not with the data. If you repeat the test, it will
update the table with the new results unless you moved the output wave to a different
data folder. If the named table exists but it does not display the output wave from the
current data folder, the table is renamed and a new table is created.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

f (C,n) =
�(2m + 2)

a22m+1
�(m +1)[]2 1�

C 2

a2

�

�
�

�

�
	

m

,

a2 =
n2 + 2n �12() n � 2()
n3 �13n + 24() ,

m =
n4 � n3 �13n2 + 37n � 60()

2 n3 �13n + 24() .

F(C,n) =
�(2m + 2)

a22m+1
�(m +1)[]2 C 2F1

1

2
,�m,

3

2
,
C 2

a2

�

�
�

�

�
	

,

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsContingencyTable

V-793

Details
StatsCochranTest computes Cochran's statistic and compares it to a critical value from a Chi-squared
distribution, which depends only of the significance level and the number of groups (columns). The null
hypothesis for the test is that all columns represent the same proportion of the effect represented by a non-
zero data.
The Chi-square distribution is appropriate when there are at least 4 columns and at least 24 total data
points.
Dichotomous data are presumed to consist of two values 0 and 1, thus StatsCochranTest distinguishes only
between zero and any nonzero value, which is considered to be 1; it does not allow NaNs or INFs. Input
waves can be a single 2D wave or a list of 1D numeric waves, which can also be specified in a string list with
/WSTR. In the standard terminology, data rows represent blocks and data columns represent groups. H0
corresponds to the assumption that all groups have the same proportion of 1’s.
With the /T flag, it displays the results in a table that contains the number of rows, the number of columns,
the Cochran statistic, the critical value, and the conclusion (1 to accept H0 and 0 to reject it).
V_flag will be set to -1 for any error and to zero otherwise.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsFriedmanTest.

StatsContingencyTable
StatsContingencyTable [flags] srcWave
The StatsContingencyTable operation performs contingency table analysis on 2D and 3D tables. Output is to
the W_ContingencyTableResults wave in the current data folder or optionally to a table or the history area.

Flags

/ALPH = val Sets the significance level (default val=0.05).

/COR=mode Sets the correction type for 2x2 tables. By default there is no correction. Use mode=1 for
Yates and mode=2 for Haber correction.

/FEXT={row, col} Computes Fisher’s Exact P-value with 2x2 contingency tables. row and col are zero-
based indices of the table entry where it computes the probability of getting the
results in the table or more extreme values. Without the /Q flag, it prints the
probabilities of each individual table in the history.

Example 1: When you use /FEXT={0,0} the P-value represents the sum of the
probabilities of the first group having in the Succeeded column 11 or more extreme
values, i.e., 12, 13, 14, and 15. In each case the remaining table elements are adjusted
so that row and column sums remain constant.

Example 2: When you needed to evaluate the sum of the probabilities of Group2
having 4 counts or less in the Succeeded column, then the appropriate flag is
/FEXT={1,1}, which effectively computes the equivalent of having 9, 10, 11, 12, and
13 Failed counts. In each case it computes the upper, the lower, and the two-tail
probabilities.

/HTRG Tests for heterogeneity between tables stored as layers of 3D wave.

/LLIK Computes log likelihood statistic.

/Q No results printed in the history area.

Given the contingency table:

Succeeded Failed

Group1 11 8

Group2 4 9

StatsCorrelation

V-794

Details
StatsContingencyTable supports 2D waves representing single contingency tables or 3D waves
representing multiple 2D tables (where each table is a layer) or a single 3D table. Each entry in the wave
must contain a frequency value and must be a positive number; it does not support 0’s, NaNs, or INFs. In
the special case of 2x2 tables, use the /COR flag to compute the statistic using either the Yates or Haber
corrections. Except for the heterogeneity option you can also compute the log likelihood statistic. In all the
tests, H0 corresponds to independence between the tested variables.
For 3D tables StatsContingencyTable provides Chi-squared, degrees of freedom, the critical value, and
optionally the log likelihood G statistic (/LLIK flag) for each of the following cases:
• Mutual independence by testing if all three variables are independent of each other.
• Partial dependence (rows) by testing if rows independent of columns and layers.
• Partial dependence (columns) by testing if columns independent of rows and layers.
• Partial dependence (layers) by testing if layers independent of rows and columns.

In each case you should compare the statistic with the critical value and reject H0 if the statistic exceeds or
equals the critical value.
You should examine the table entries to determine if the Chi-square statistic is appropriate (if the frequency
is smaller than 6 for /ALPH=0.05 you should consider computing the Fisher exact test).
V_flag will be set to -1 for any error and to zero otherwise.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsInvChiCDF.

StatsCorrelation
StatsCorrelation(waveA [, waveB])
The StatsCorrelation function computes Pearson’s correlation coefficient between two real valued arrays of
data of the same length. Pearson r is give by:

Here A is the average of the elements in waveA, B is the average of the elements of waveB and the sum is
over all wave elements.

Details
If you use both waveA and waveB then the two waves must have the same number of points but they could
be of different number type. If you use only the waveA parameter then waveA must be a 2D wave. In this
case StatsCorrelation will return 0 and create a 2D wave M_Pearson where the (i,j) element is Pearson’s r
corresponding to columns i and j.
Fisher’s z transformation converts Person’s r above to a normally distributed variable z:

/T=k

The table is associated with the test and not with the data. If you repeat the test, it will
update the table with the new results unless you moved the output wave to a different
data folder. If the named table exists but it does not display the output wave from the
current data folder, the table is renamed and a new table is created.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

r =
waveA[i]� A() waveB[i]� B()

i=0

n�1

�

waveA[i]� A()2
waveB[i]� B()2

i=0

n�1

�
i=0

n�1

�

StatsDExpCDF

V-795

with a standard error

You can convert between the two representations using the following functions:
Function pearsonToFisher(inr)

Variable inr
return 0.5*(ln(1+inr)-ln(1-inr))

End

Function fisherToPearson(inz)
Variable inz
return tanh(inz)

End

See Also
Correlate, StatsLinearCorrelationTest, and StatsCircularCorrelationTest.

StatsDExpCDF
StatsDExpCDF(x, m, s)
The StatsDExpCDF function returns the double-exponential cumulative distribution function

for σ>0. It returns NaN when σ=0.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsDExpPDF and StatsInvDExpCDF.

StatsDExpPDF
StatsDExpPdf(x, m, s)
The StatsDExpPdf function returns the double-exponential probability distribution function

where μ is the location parameter and σ>0 is the scale parameter. Use μ=0 and σ=1 for the standard form of
the double exponential distribution. It returns NaN when σ=0.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsDExpCDF and StatsInvDExpCDF.

StatsDIPTest
StatsDIPTest [/Z] srcWave
The StatsDIPTest operation performs Hartigan test for unimodality.

z =
1

2
ln

1+ r
1� r

�

�
�

�

�
� ,

� z =
1

n � 3
.

F(x;μ,�) =
exp

x � μ
�

�

�
�

�
� when�x < μ

1�
1

2
exp �

x � μ
�

�

�
�

�
� when�x � μ

�

�

�

�

�

�

�

f(x;μ,�)=
1

2�
exp �

x � μ
�

�

�
	

	
�,

StatsDunnettTest

V-796

Flags

Details
The input to the operation srcWave is any real numeric wave. Outputs are: V_Value contains the dip
statistic; V_min is the lower end of the modal interval; and V_max is the higher end of the modal interval.
Percentage points or critical values for the dip statistic can be obtained from simulations using an identical
sample size as in this example:
Function getCriticalValue(sampleSize,alpha)
Variable sampleSize,alpha

Make/O/N=(sampleSize) dataWave
Make/O/N=100000 dipResults
Variable i
for(i=0;i<100000;i+=1)

dataWave=enoise(100)
StatsDipTest dataWave
dipResults[i]=V_Value

endfor
Histogram/P/B=4 dipResults // Compute the PDF.
Wave W_Histogram
Integrate/METH=1 W_Histogram/D=W_INT // Compute the CDF.
Findlevel/Q W_int,(1-alpha) // Find the critical value.
return V_LevelX

End

References
Hartigan, P. M., Computation of the Dip Statistic to Test for Unimodality, Applied Statistics, 34, 320-325, 1985.

See Also
Chapter III-12, Statistics for a function and operation overview.

StatsDunnettTest
StatsDunnettTest [flags] [wave1, wave2,… wave100]
The StatsDunnettTest operation performs the Dunnett test by comparing multiple groups to a control
group. Output is to the M_DunnettTestResults wave in the current data folder or optionally to a table.
StatsDunnettTest usually follows StatsANOVA1Test.

Flags

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

/ALPH = val Sets the significance level (default val=0.05).

/CIDX=cIndex Specifies the (zero based) index of the input wave corresponding to the control group.
The default is zero (the first wave corresponds to the control group).

/Q No results printed in the history area.

/SWN Creates a text wave, T_DunnettDescriptors, containing wave names corresponding to
each row of the comparison table (Save Wave Names). Use /T to append the text wave
to the last column.

/T=k Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsErlangCDF

V-797

Details
StatsDunnettTest inputs are two or more 1D numeric waves (one wave for each group of samples). The input
waves may contain different number of points, but they must contain two or more valid entries per wave.
For output to a table (using /T), each labelled row represents the results of the test for comparing the means of
one group to the control group, and rows are ordered so that all comparisons are computed sequentially starting
with the group having the smallest mean. The contents of the labeled columns are:

V_flag will be set to -1 for any error and to zero otherwise.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsTukeyTest, StatsANOVA1Test,
StatsScheffeTest, and StatsNPMCTest.

StatsErlangCDF
StatsErlangCDF(x, b, c)
The StatsErlangCDF function returns the Erlang cumulative distribution function

where b>0 (also as λ=1/b) is the scale parameter, c> 0 the shape parameter, Γ(x) the gamma function, and
Γ(a,x) the incomplete gamma function gammaInc.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsErlangPDF.

StatsErlangPDF
StatsErlangPDF(x, b, c)
The StatsErlangPDF function returns the Erlang probability distribution function

/TAIL=tc

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

First The difference between the group means

Second SE (which is computed for possibly unequal number of points)

Third The q statistic for the pair which may be positive or negative

Fourth The critical q' value

Fifth 0 if the conclusion is to reject H0 or 1 to accept H0

Sixth The P-value

Specifies H0.

Code combinations are not allowed.

tc=1: Default; one tailed test (μc ≤ μa).
tc=2: One tailed test (μc ≥ μa).
tc=4: Two tailed test (μc = μa).

F(x;b,c) = 1�
� c,

x

b
�

�
�

�

�
	

�(c)
.

StatsErrorPDF

V-798

where b>0 (also as λ=1/b) is the scale parameter and c> 0 the shape parameter.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsErlangCDF.

StatsErrorPDF
StatsErrorPDF(x, a, b, c)
The StatsErrorPDF function returns the error probability distribution function or the exponential power
distribution

where a is the location parameter, b> 0 is the scale parameter, c> 0 is the shape parameter, and Γ(x) is the
gamma function.

See Also
Chapter III-12, Statistics for a function and operation overview.

StatsEValueCDF
StatsEValueCDF(x, μ, σ)
The StatsEValueCDF function returns the extreme-value (type I, Gumbel) cumulative distribution function

where σ>0. This is also known as the “minimum” form or distribution of the smallest extreme. To obtain
the distribution of the largest extreme reverse the sign of σ.

See Also
Chapter III-12, Statistics for a function and operation overview.
StatsEValuePDF, StatsInvEValueCDF, StatsGEVCDF, StatsGEVPDF

StatsEValuePDF
StatsEValuePDF(x, μ, σ)
The StatsEValuePDF function returns the extreme-value (type I, Gumbel) probability distribution function

where σ>0. This is also known as the “minimum” form or the distribution of the smallest extreme. To obtain
the distribution of the largest extreme reverse the sign of σ.

See Also
Chapter III-12, Statistics for a function and operation overview.

f (x;b,c) =

x

b
�

�
�

�

�
�

c�1

exp � x
b

�

�
�

�

�
�

b(c �1)!
.

f (x;a,b,c) =

exp � 1
2

x � a
b

�

�
�

�
�

2

c
�

�

�

�

�

�

�

b2
c

2
+1
� 1+ c

2
�

�
�

�
�

.

F(x;μ,�) = 1� exp � exp
x � μ
�

�

�
�

�

�
	

�

�
�

�

�
	 ,

F(x;μ,�) = 1� exp � exp
x � μ
�

�

�
�

�

�
	

�

�
�

�

�
	 ,

StatsExpCDF

V-799

StatsEValueCDF, StatsInvEValueCDF, StatsGEVCDF, StatsGEVPDF

StatsExpCDF
StatsExpCDF(x, μ, σ)
The StatsExpCDF function returns the exponential cumulative distribution function

where x ≥ μ and σ > 0. It returns NaN for σ = 0.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsExpPDF and StatsInvExpCDF.

StatsExpPDF
StatsExpPDF(x, μ, σ)
The StatsExpPDF function returns the exponential probability distribution function

where μ is the location parameter and σ>0 is the scale parameter. Use μ=0 and σ=1 for the standard form of
the exponential distribution. It returns NaN for σ=0.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsExpCDF and StatsInvExpCDF.

StatsFCDF
StatsFCDF(x, n1, n2)
The StatsFCDF function returns the cumulative distribution function for the F distribution with shape
parameters n1 and n2

where Betai is the incomplete beta function.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsFPDF and StatsInvFCDF.

StatsFPDF
StatsFPDF(x, n1, n2)
The StatsFPDF function returns the probability distribution function for the F distribution with shape
parameters n1 and n2

F(x;μ,�) = 1� exp �
x � μ
�

�

�
�

�

�
	 ,

f (x;μ,�) =
1

�
exp �

x � μ
�

�

�
�

�

�
	 ,

F(x;n1,n2) = 1� Betai
n2

2
,
n1

2
,

n2

n2 + n1x

�

�
�

�

�
�

,

f (x;n1,n2) =
�

n1 + n2

2
�

�
�

�

�
	

n1

n2

�

�
�

�

�
	

n1

2

x
n1

2
�1

�
n1

2
�

�
�

�

�
	 �

n2

2
�

�
�

�

�
	 1+ n1x

n2

�

�
�

�

�
	

n1 +n2

2

.

StatsFriedmanCDF

V-800

See Also
Chapter III-12, Statistics for a function and operation overview; StatsFCDF and StatsInvFCDF.

StatsFriedmanCDF
StatsFriedmanCDF(x, n, m, method, useTable)
The StatsFriedmanCDF function returns the cumulative probability distribution of the Friedman
distribution with m rows and n columns. The exact Friedman distribution is computationally intensive,
taking on the order of (n!)m iterations. You may be able to use a range of precomputed exact values by
passing a nonzero value for useTable, which will use method only if the value is not in the table. For large m,
consider using the Chi-squared or the Monte-Carlo approximations. To abort execution, press the User
Abort Key Combinations.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsInvFriedmanCDF and
StatsFriedmanTest.

StatsFriedmanTest
StatsFriedmanTest [flags] [wave1, wave2,… wave100]
The StatsFriedmanTest operation performs Friedman’s test on a randomized block of data. It is a
nonparametric analysis of data contained in either individual 1D waves or in a single 2D wave. Output is
to the M_FriedmanTestResults wave in the current data folder or optionally to a table.

Flags

Details
The Friedman test ranks the input data on a row-by-row basis, sums the ranks for each column, and
computes the Friedman statistic, which is proportional to the sum of the squares of the ranks.
Input waves can be a single 2D wave or a list of 1D numeric waves, which can also be specified in a string list
with /WSTR. All 1D waves must have the same number of points. A 2D wave must not contain any NaNs.

method What It Does

0 Exact computation.

1 Chi-square approximation.

2 Monte-Carlo approximation.

3 Use built-table only and return NaN if not in table.

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/RW Saves the ranking wave M_FriedmanRanks, which contains the rank values
corresponding to each input datum.

/T=k

The table is associated with the test and not with the data. If you repeat the test, it will
update the table with the new results.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsFTest

V-801

The critical value for the Friedman distribution is fairly difficult to compute when the number of rows and
columns is large because it requires a number of permutations on the order of (numColumns!)^numRows. A
certain range of these critical values are supported by precomputed tables. When the exact critical value is not
available you can use one of the two approximations that are always computed: the Chi-squared approximation
or the Iman and Davenport approximation, which converts the Friedman statistic is converted to a new value Ff
then compares it with critical values from the F distribution using weighted degrees of freedom.
With the /T flag, it displays the results in a table that contains the number of rows, the number of columns,
the Friedman statistic, the exact critical value (if available), the Chi-squared approximation, the Iman and
Davenport approximation, and the conclusion (1 to accept H0 and 0 to reject it).
V_flag will be set to -1 for any error and to zero otherwise.

References
Iman, R.L., and J.M. Davenport, Approximations of the critical region of the Friedman statistic, Comm.

Statist. A9, 571-595, 1980.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsFriedmanCDF and
StatsInvFriedmanCDF.

StatsFTest
StatsFTest [flags] wave1, wave2
The StatsFTest operation performs the F-test on the two distributions in wave1 and wave2, which can be any
real numeric type, must contain at least two data points each, and can have an arbitrary number of
dimensions. Output is to the W_StatsFTest wave in the current data folder or optionally to a table.

Flags

Details
The F statistic is the ratio of the variance of wave1 to the variance of wave2. We assume the waves have equal
wave variances and that H0 is sigma1=sigma2. For the upper one-tail test we reject H0 if F is greater than
the upper critical value or if F is smaller than the lower critical value in the lower one-tail test. In the two-
tailed test we reject H0 if F is either greater than the upper critical value or smaller than the lower critical
value. The critical values are computed by numerically solving for the argument at which the cumulative
distribution function (CDF) equals the appropriate values for the tests. The CDF is given by

where the degrees of freedom n1 and n2 equal the number of valid (non-NaN) points in each wave -1, and
betai is the incomplete beta function. To get the critical value for the upper one-tail test we solve F(x)=1-

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/T=k

/TAIL=tc

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

Specifies the tail tested.
tc=1: Lower one-tail test with Ha: sigma1>sigma2.
tc=2: Upper one-tail test with Ha: sigma1<sigma2.
tc=3: Default; the null hypothesis H0:

sigma1=sigma2 with Ha: sigma1!=sigma2.

F(x,n1,n2) = 1� betai
n2

2
,
n1

2
,

n2

n2 + n1x

�

�
�

�

�
�

,

StatsGammaCDF

V-802

alpha. For the lower one-tail test we solve F(x)=alpha. In the two-tailed test the lower critical value is a
solution for F(x)=alpha/2 and the upper critical value is a solution for F(x)=1-alpha/2.
The F-test requires that the two samples are from normally distributed populations.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsVariancesTest, StatsFCDF, and betai.

StatsGammaCDF
StatsGammaCDF(x, μ, σ, γ)
The StatsGammaCDF function returns the gamma cumulative distribution function

where Γ is the gamma function and Γinc is the incomplete gamma function gammaInc.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsGammaPDF and
StatsInvGammaCDF.

StatsGammaPDF
StatsGammaPDF(x, μ, σ, γ)
The StatsGammaPDF function returns the gamma probability distribution function

where μ is the location parameter, σ is the scale parameter, γ is the shape parameter, and Γ is the gamma
function.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsGammaCDF and
StatsInvGammaCDF.

StatsGeometricCDF
StatsGeometricCDF(x, p)
The StatsGeometricCDF function returns the geometric cumulative distribution function

where p is the probability of success in a single trial and x is the number of trials for x ≥ 0.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsGeometricPDF and
StatsInvGeometricCDF.

StatsGeometricPDF
StatsGeometricPDF(x, p)
The StatsGeometricPDF function returns the geometric probability distribution function

F(x;μ,� ,�) =
� inc � ,

x � μ
�

�

�
�

�

	

�(�)
.

x � μ
� ,� > 0

f (x;μ,� ,�) =

x � μ
�

�

�
�

�

	

� �1

exp � x � μ
�

�

�
�

�

	

��(�)
.

x � μ
� ,� > 0

F(x, p) = 1� (1� p)x+1.

f (x, p) = p(1� p)x ,

StatsHodgesAjneTest

V-803

where the p is the probability of success in a single trial and x is the number of trials x ≥ 0.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsGeometricCDF and
StatsInvGeometricCDF.

StatsHodgesAjneTest
StatsHodgesAjneTest [flags] srcWave
The StatsHodgesAjneTest operation performs the Hodges-Ajne nonparametric test for uniform distribution
around a circle. Output is to the W_HodgesAjne wave in the current data folder or optionally to a table.

Flags

Details
The input srcWave must contain angles in radians, can be any number of dimensions, can be single or double
precision, and should not contain NaNs or INFs.
StatsHodgesAjneTest performs the standard Hodges-Ajne test, which simply tests for uniformity against
the hypothesis that the population is not uniformly distributed around the circle. This test finds a diameter
that divides the circle into two halves such that one contains the least number of data m, the test statistic.
Use /SA to perform the modified (Batschelet) test, which tests against the alternative that the population is
concentrated somehow about the specified angle. The modified test counts the number of points m' in 90-
degree neighborhoods around the specified angle. The test statistic is given by C=n-m' where n is the
number of points in the wave. The critical value is computed from the binomial probability density.
In both cases H0 is rejected if the statistic is smaller than the critical value.

V_flag will be set to -1 for any error and to zero otherwise.

References
Ajne, B., A simple test for uniformity of a circular distribution, Biometrica, 55, 343-354, 1968.
See, in particular, Chapter 27 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview.
StatsCircularMeans, StatsCircularMoments, StatsWatsonUSquaredTest, StatsWatsonWilliamsTest, and
StatsWheelerWatsonTest.

StatsGEVCDF
StatsGEVCDF(x, μ, σ, ξ)
The StatsGEVCDF function returns the generalized extreme value cumulative distribution function.

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/SA=specAngle Uses the Batschelet modification of the Hodges-Ajne test to test for uniformity against
the alternative of concentration around the specified angle. specAngle must be
expressed in radians modulus 2π.

/T=k

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsGEVPDF

V-804

where

and σ>0.

See Also
Chapter III-12, Statistics for a function and operation overview.
StatsGEVPDF, StatsEValuePDF, StatsEValueCDF, StatsInvEValueCDF

StatsGEVPDF
StatsGEVPDF(x, μ, σ, ξ)
The StatsGEVPDF function returns the generalized extreme value probability distribution function.

where

and σ>0.

See Also
Chapter III-12, Statistics for a function and operation overview.
StatsGEVCDF, StatsEValuePDF, StatsEValueCDF, StatsInvEValueCDF

StatsHyperGCDF
StatsHyperGCDF(x, m, n, k)
The StatsHyperGCDF function returns the hypergeometric cumulative distribution function, which is the
probability of getting x marked items when drawing (without replacement) k items out of a population of
m items when n out of the m are marked.

Details
The hypergeometric distribution is

where is the binomial function. All parameters must be positive integers and must have m>n and x<k;
otherwise it returns NaN.

F(x,μ,σ ,ξ) = exp − 1+ ξ x − μ
σ

⎛
⎝⎜

⎞
⎠⎟

−1/ξ⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,

1+ ξ x − μ
σ

⎛
⎝⎜

⎞
⎠⎟ > 0,

f (x,μ,σ ,ξ) =
1

σ
1+ ξ x − μ

σ
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

(−1/ξ)−1

exp − 1+ ξ x − μ
σ

⎛
⎝⎜

⎞
⎠⎟

−1/ξ⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,

1+ ξ x − μ
σ

⎛
⎝⎜

⎞
⎠⎟ > 0,

F(x;m,n,k) =

n
L

�

�
�

�

�
	

m � L
k � L

�

�
�

�

�
	

m
k

�

�
�

�

�
	

L=0

x

� ,

a
b

StatsHyperGPDF

V-805

References
Klotz, J.H., Computational Approach to Statistics, <http://www.stat.wisc.edu/~klotz/Book.pdf>.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsHyperGPDF.

StatsHyperGPDF
StatsHyperGPDF(x, m, n, k)
The StatsHyperGPDF function returns the hypergeometric probability distribution function, which is the
probability of getting x marked items when drawing without replacement k items out of a population of m
items where n out of the m are marked.

Details
The hypergeometric distribution is

where is the binomial function. All parameters must be positive integers and must have m>n and x<k.

References
Klotz, J.H., Computational Approach to Statistics, <http://www.stat.wisc.edu/~klotz/Book.pdf>.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsHyperGCDF.

StatsInvBetaCDF
StatsInvBetaCDF(cdf, p, q [, a, b])
The StatsInvBetaCDF function returns the inverse of the beta cumulative distribution function. There is no
closed form expression for the inverse beta CDF; it is evaluated numerically.
The defaults (a=0 and b=1) correspond to the standard beta distribution.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsBetaCDF and StatsBetaPDF.

StatsInvBinomialCDF
StatsInvBinomialCDF(cdf, p, N)
The StatsInvBinomialCDF function returns the inverse of the binomial cumulative distribution function.
The inverse function returns the value at which the binomial CDF with probability p and total elements N,
has the value 0.95. There is no closed form expression for the inverse binomial CDF; it is evaluated
numerically.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsBinomialCDF and
StatsBinomialPDF.

StatsInvCauchyCDF
StatsInvCauchyCDF(cdf, μ, σ)
The StatsInvCauchyCDF function returns the inverse of the Cauchy-Lorentz cumulative distribution
function

f (x;m,n,k) =

n
x

�

�
�

�

�
�

m � n
k � x

�

�
�

�

�
�

m
k

�

�
�

�

�
�

,

a
b

http://www.stat.wisc.edu/~klotz/Book.pdf
http://www.stat.wisc.edu/~klotz/Book.pdf

StatsInvChiCDF

V-806

It returns NaN for cdf <0 or cdf> 1.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsCauchyCDF and StatsCauchyPDF.

StatsInvChiCDF
StatsInvChiCDF(x, n)
The StatsInvChiCDF function returns the inverse of the chi-squared distribution of x and shape parameter
n. The inverse of the distribution is also known as the percent point function.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsChiCDF and StatsChiPDF.

StatsInvCMSSDCDF
StatsInvCMSSDCDF(cdf, n)
The StatsInvCMSSDCDF function returns the critical values of the C distribution (mean square successive
difference distribution), which is given by

where

Critical values are computed from the integral of the probability distribution function.

References
Young, L.C., On randomness in ordered sequences, Annals of Mathematical Statistics, 12, 153-162, 1941.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsCMSSDCDF and StatsSRTest.

StatsInvDExpCDF
StatsInvDExpCDF(cdf, μ, σ)
The StatsInvDExpCDF function returns the inverse of the double-exponential cumulative distribution
function

It returns NaN for cdf <0 or cdf > 1.

x = μ + � tan � cdf �
1

2
�

�
�

�
�

�

�

�

� .

f (C,n) =
�(2m + 2)

a22m+1
�(m +1)[]2 1�

C 2

a2

�

�
�

�

�
	

m

,

a2 =
n2 + 2n �12() n � 2()
n3 �13n + 24() ,

m =
n4 � n3 �13n2 + 37n � 60()

2 n3 �13n + 24() .

x =
μ + � ln(2cdf) when cdf < 0.5

μ � � ln 2 1� cdf()�� �� when cdf � 0.5

�

�
	

		

StatsInvEValueCDF

V-807

See Also
Chapter III-12, Statistics for a function and operation overview; StatsDExpCDF and StatsDExpPDF.

StatsInvEValueCDF
StatsInvEValueCDF(cdf, μ, σ)
The StatsInvEValueCDF function returns the inverse of the extreme-value (type I, Gumbel) cumulative
distribution function

where σ>0. It returns NaN for cdf<0 or cdf>1. This inverse applies to the “minimum” form of the distribution.
Reverse the sign of σ to obtain the inverse distribution of the maximum form.

See Also
Chapter III-12, Statistics for a function and operation overview.
StatsEValueCDF, StatsEValuePDF, StatsGEVCDF, StatsGEVPDF

StatsInvExpCDF
StatsInvExpCDF(cdf, μ, σ)
The StatsInvExpCDF function returns the inverse of the exponential cumulative distribution function

It returns NaN for cdf <0 or cdf > 1.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsExpCDF and StatsExpPDF.

StatsInvFCDF
StatsInvFCDF(x, n1, n2)
The StatsInvFCDF function returns the inverse of the F distribution cumulative distribution function for x
and shape parameters n1 and n2. The inverse is also known as the percent point function.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsFCDF and StatsFPDF.

StatsInvFriedmanCDF
StatsInvFriedmanCDF(cdf, n, m, method, useTable)
The StatsInvFriedmanCDF function returns the inverse of the Friedman distribution cumulative distribution
function of cdf with m rows and n columns. Use this typically to compute the critical values of the distribution
Print StatsInvFriedmanCDF(1-alpha,n,m,0,1)

where alpha is the significance level of the associated test.
The complexity of the computation of Friedman CDF is on the order of (n!)m. For nonzero values of useTable,
searches are limited to the built-in table for distribution values. If n and m are not in the table the calculation
may still proceed according to the method.

method What It Does

0 Exact computation(slow, not recommended).

1 Chi-square approximation.

2 Monte-Carlo approximation (slow).

3 Use built-in table only and return a NaN if not in table.

x = μ �� ln 1� cdf()

x = μ �� ln 1� cdf().

StatsInvGammaCDF

V-808

For large m and n, consider using the Chi-squared or the Iman and Davenport approximations. To abort
execution, press the User Abort Key Combinations.

Precomputed tables use these values:

References
Iman, R.L., and J.M. Davenport, Approximations of the critical region of the Friedman statistic, Comm.

Statist., A9, 571-595, 1980.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsFriedmanCDF and
StatsFriedmanTest.

StatsInvGammaCDF
StatsInvGammaCDF(cdf, μ, σ, γ)
The StatsInvGammaCDF function returns the inverse of the gamma cumulative distribution function.
There is no closed form expression for the inverse gamma distribution; it is evaluated numerically.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsGammaCDF and StatsGammaPDF.

StatsInvGeometricCDF
StatsInvGeometricCDF(cdf, p)
The StatsInvGeometricCDF function returns the inverse of the geometric cumulative distribution function

where p is the probability of success in a single trial and x is the number of trials.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsGeometricCDF and
StatsGeometricPDF.

StatsInvKuiperCDF
StatsInvKuiperCDF(cdf)
The StatsInvKuiperCDF function returns the inverse of Kuiper cumulative distribution function.
There is no closed form expression. It is mapped to the range of 0.4 to 4, with accuracy of 1e-10.

Note: Table values are different from computed values for both methods. Table values use more
conservative criteria than computed values. Table values are more consistent with
published values because the Friedman distribution is a highly irregular function with
multiple steps of arbitrary sizes. The standard for published tables provides the X value
of the next vertical transition to the one on which the specified P is found.

n m

3 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

4 2, 3, 4, 5, 6, 7, 8, 9

5 2, 3, 4, 5, 6

6 2, 3, 4, 5

7 2, 3, 4

8 2, 3

9 2, 3

x =
ln(1� cdf)

ln(1� p)
�1.

StatsInvLogisticCDF

V-809

References
See in particular Section 14.3 of
Press, William H., et al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New York, 1992.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsKuiperCDF.

StatsInvLogisticCDF
StatsInvLogisticCDF(cdf, a, b)
The StatsInvLogisticCDF function returns the inverse of the logistic cumulative distribution function

where the scale parameter b>0 and the shape parameter is a.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsLogisticCDF and
StatsLogisticPDF functions.

StatsInvLogNormalCDF
StatsInvLogNormalCDF(cdf, sigma, theta, mu)
The StatsInvLogNormalCDF function returns the numerically evaluated inverse of the lognormal
cumulative distribution function.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsLogNormalCDF and
StatsLogNormalPDF functions.

StatsInvMaxwellCDF
StatsInvMaxwellCDF(cdf, k)
The StatsInvMaxwellCDF function returns the evaluated numerically inverse of the Maxwell cumulative
distribution function. There is no closed form expression.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsMaxwellCDF and
StatsMaxwellPDF functions.

StatsInvMooreCDF
StatsInvMooreCDF(cdf, N)
The StatsInvMooreCDF function returns the inverse cumulative distribution function for Moore’s R*,
which is used as a critical value in nonparametric version of the Rayleigh test for uniform distribution
around the circle. It supports the range 3 ≤ N ≤ 120 and does not change appreciably for N > 120.
The inverse distribution is computed from polynomial approximations derived from simulations and
should be accurate to approximately three significant digits.

References
Moore, B.R., A modification of the Rayleigh test for vector data, Biometrica, 67, 175-180, 1980.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsCircularMeans function.

x = a + b log
cdf

1� cdf
�

�
�

�

�
�

.

StatsInvNBinomialCDF

V-810

StatsInvNBinomialCDF
StatsInvNBinomialCDF(cdf, k, p)
The StatsInvNBinomialCDF function returns the numerically evaluated inverse of the negative binomial
cumulative distribution function. There is no closed form expression.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNBinomialCDF and
StatsNBinomialPDF functions.

StatsInvNCChiCDF
StatsInvNCChiCDF(cdf, n, d)
The StatsInvNCChiCDF function returns the inverse of the noncenteral chi-squared cumulative
distribution function. It is computationally intensive because the inverse is computed numerically and
involves multiple evaluations of the noncentral distribution, which is evaluated from a series expansion.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNCChiCDF, StatsNCChiPDF,
StatsChiCDF, and StatsChiPDF functions.

StatsInvNCFCDF
StatsInvNCFCDF(cdf, n1, n2, d)
The StatsInvNCFCDF function returns the numerically evaluated inverse of the cumulative distribution
function of the noncentral F distribution. n1 and n2 are the shape parameters and d is the noncentrality
measure. There is no closed form expression for the inverse.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNCFCDF and StatsNCFPDF
functions.

StatsInvNormalCDF
StatsInvNormalCDF(cdf, m, s)
The StatsInvNormalCDF function returns the numerically computed inverse of the normal cumulative
distribution function. There is no closed form expression.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNormalCDF and
StatsNormalPDF functions.

StatsInvParetoCDF
StatsInvParetoCDF(cdf, a, c)
The StatsInvParetoCDF function returns the inverse of the Pareto cumulative distribution function

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsParetoCDF and StatsParetoPDF
functions.

StatsInvPoissonCDF
StatsInvPoissonCDF(cdf, λ)
The StatsInvPoissonCDF function returns the numerically evaluated inverse of the Poisson cumulative
distribution function. There is no closed form expression for the inverse Poisson distribution.

x =
a

1� cdf()(1/c)

StatsInvPowerCDF

V-811

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsPoissonCDF and
StatsPoissonPDF functions.

StatsInvPowerCDF
StatsInvPowerCDF(cdf, b, c)
The StatsInvPowerCDF function returns the inverse of the Power Function cumulative distribution
function

where the scale parameter b and the shape parameter c satisfy b,c>0.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsPowerCDF, StatsPowerPDF and
StatsPowerNoise functions.

StatsInvQCDF
StatsInvQCDF(cdf, r, c, df)
The StatsInvQCDF function returns the critical value of the Q cumulative distribution function for r the number
of groups, c the number of treatments, and df the error degrees of freedom (df=r*c*(n-1) with sample size n).

Details
The Q distribution is the maximum of several Studentized range statistics. For a simple Tukey test, use r=1.

Examples
The critical value for a Tukey test comparing 5 treatments with 6 samples and 0.05 significance is:
Print StatsInvQCDF(1-0.05,1,5,5*(6-1))

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsTukeyTest function.

StatsInvQpCDF
StatsInvQpCDF(ng, nt, df, alpha, side, sSizeWave)
The StatsInvQpCDF function returns the critical value of the Q' cumulative distribution function for ng the
number of groups, nt the number of treatments, and df the error degrees of freedom. side=1 for upper-tail or
side=2 for two-tailed critical values.
sSizeWave is an integer wave of ng columns and nt rows specifying the number of samples in each treatment.
If sSizeWave is a null wave ($"") StatsInvQpCDF computes the number of samples from df=ng*nt*(n-1) with
n truncated to an integer.

Details
StatsInvQpCDF is a modified Q distribution typically used with Dunnett’s test, which compares the various
means with the mean of the control group or treatment.
StatsInvQpCDF differs from other StatsInvXXX functions in that you do not specify a cdf value for the
inverse (usually 1-alpha for the critical value). Here alpha selects one- or two-tailed critical values.
It is computationally intensive, taking longer to execute for smaller alpha values.

Examples
The critical value for a Dunnett test comparing 4 treatments with 4 samples and (upper tail) 0.05
significance is:
// n=4 because 12=1*4*(4-1).
Print StatsInvQpCDF(1,4,12,0.05,1,$"")
 2.28734

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsDunnettTest and StatsInvQCDF
functions.

x = b / cdf (1/c).

StatsInvRayleighCDF

V-812

StatsInvRayleighCDF
StatsInvRayleighCDF(cdf [, s [, m]])
The StatsInvRayleighCDF function returns the inverse of the Rayleigh cumulative distribution
functiongiven by

with defaults s=1 and m=0. It returns NaN for s ≤ 0 and zero for x ≤ m.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRayleighCDF and
StatsRayleighPDF functions.

StatsInvRectangularCDF
StatsInvRectangularCDF(cdf, a, b)
The StatsInvRectangularCDF function returns the inverse of the rectangular (uniform) cumulative
distribution function

where a< b.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRectangularCDF and
StatsRectangularPDF functions.

StatsInvSpearmanCDF
StatsInvSpearmanCDF(cdf, N)
The StatsInvSpearmanCDF function returns the inverse cumulative distribution function for Spearman’s r,
which is used as a critical value in rank correlation tests.
The inverse distribution is computed by finding the value of r for which it attains the cdf value. The result
is usually lower than in published tables, which are more conservative when the first derivative of the
distribution is discontinuous.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRankCorrelationTest,
StatsSpearmanRhoCDF, and StatsKendallTauTest functions.

StatsInvStudentCDF
StatsInvStudentCDF(cdf, n)
The StatsInvStudentCDF function returns the numerically evaluated inverse of Student cumulative
distribution function. There is no closed form expression.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsStudentCDF and
StatsStudentPDF functions.

StatsInvTopDownCDF
StatsInvTopDownCDF(cdf, N)
The StatsInvTopDownCDF function returns the inverse cumulative distribution function for the top-down
distribution. For 3 ≤ N ≤ 7 it uses a lookup table CDF and returns the next higher value of r for which the
distribution value is larger than cdf. For 8 ≤ N ≤ 50 it returns the nearest value for which the built-in
distribution returns cdf. For N>50 it returns the scaled normal approximation.
Tabulated values are from Iman and Conover who pick as the critical value the very first transition of the
distribution following the specified cdf value. These tabulated values tend to be slightly higher than
calculated values for 7<N<15.

x = μ + � �2 ln 1� cdf(),

x = a + cdf (b � a), a < b.

StatsInvTriangularCDF

V-813

References
Iman, R.L., and W.J. Conover, A measure of top-down correlation, Technometrics, 29, 351-357, 1987.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRankCorrelationTest and
StatsTopDownCDF functions.

StatsInvTriangularCDF
StatsInvTriangularCDF(cdf, a, b, c)
The StatsInvTriangularCDF function returns the inverse of the triangular cumulative distribution function

where a<c<b.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsTriangularCDF and
StatsTriangularPDF functions.

StatsInvUSquaredCDF
StatsInvUSquaredCDF(cdf, n, m, method, useTable)
The StatsInvUSquaredCDF function returns the inverse of Watson’s U2 cumulative distribution function
integer sample sizes n and m. Use a nonzero value for useTable to search a built-in table of values. If n and
m cannot be found in the table, it will proceed according to method:

For large n and m, consider using the Tiku approximation. To abort execution, press the User Abort Key
Combinations. Because n and m are interchangeable, n should always be the smaller value. For n>8 the
upper limit in the table matched the maximum that can be computed using the Burr algorithm. There is no
point in using method 0 with m values exceeding these limits.
The inverse is obtained from precomputed tables of Watson’s U2 (see StatsUSquaredCDF).

References
Burr, E.J., Small sample distributions of the two sample Cramer-von Mises’ W2 and Watson’s U2, Ann. Mah.

Stat. Assoc., 64, 1091-1098, 1964.
Tiku, M.L., Chi-square approximations for the distributions of goodness-of-fit statistics, Biometrica, 52, 630-

633, 1965.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsWatsonUSquaredTest and
StatsUSquaredCDF functions.

method What It Does

0 Exact computation using Burr algorithm (could be slow).

1 Tiku approximation using chi-squared.

2 Use built-in table only and return a NaN if not in table.

Note: Table values are different from computed values. These values use more conservative
criteria than computed values. Table values are more consistent with published values
because the U2 distribution is a highly irregular function with multiple steps of arbitrary
sizes. The standard for published tables provides the X value of the next vertical transition
to the one on which the specified P is found. See StatsInvFriedmanCDF.

x =
a + cdf (b � a)(c � a) ����������������������� 0 � cdf �

c � a
b � a

b � (1� cdf)(b � a)(b � c) ���������������
c � a
b � a

� cdf � 1

�

�

�
�

�

�

�

StatsInvVonMisesCDF

V-814

StatsInvVonMisesCDF
StatsInvVonMisesCDF(cdf, a, b)
The StatsInvVonMisesCDF function returns the numerically evaluated inverse of the von Mises cumulative
distribution function where the value of the integral of the distribution matches cdf. Parameters are as for
StatsVonMisesCDF.

References
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsVonMisesPDF and
StatsVonMisesNoise functions.

StatsInvWeibullCDF
StatsInvWeibullCDF(cdf, m, s, g)
The StatsInvWeibullCDF function returns the inverse of the Weibull cumulative distribution function

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsWeibullCDF and
StatsWeibullPDF functions.

StatsJBTest
StatsJBTest [flags] srcWave
The StatsJBTest operation performs the Jarque-Bera test on srcWave. Output is to the W_JBResults wave in
the current data folder.

Flags

Details
StatsJBTest computes the Jarque-Bera statistic

where S is the skewness, K is the kurtosis, and n is the number of points in the input wave. We can express
S and K terms of the jth moment of the distribution for n samples Xi

as

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/T=k

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

x = μ + � � ln 1� cdf()��
�

1/�
.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

JB =
n

6
S2 +

K 2

4

�

�
�

�

�
�

,

μ j =
1

n
(Xi � X) j

i=1

n

�

StatsKDE

V-815

and

The Jarque-Bera statistic is asymptotically distributed as a Chi-squared with two degrees of freedom. For
values of n in the range [7,2000] the operation provides critical values obtained from Monte-Carlo
simulations. For further details or if you would like to run your own simulation to obtain critical values for
other values of n, use the JarqueBeraSimulation example experiment.
StatsJBTest reports the number of finite data points, skewness, kurtosis, Jarque-Bera statistic, asymptotic critical
value, and the critical value obtained from Monte-Carlo calculations as appropriate; it ignores NaNs and INFs.

References
Jarque, C., and A. Bera, A test of normality of observations and regression residuals, International Statistical

Review, 55, 163-172, 1987.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsKSTest, WaveStats, and
StatsCircularMoments.

StatsKDE
StatsKDE [flags] srcWave
StatsKDE can be used to estimate a PDF from original data distribution. Unlike histograms, this method
produces a smooth result as it constructs the PDF from a normalized superposition of kernel functions.
The StatsKDE operation was added in Igor Pro 7.00.

Flags

/BWM=m

/DEST=destWave Specifies the output destination. Creates a real wave reference for the destination
wave in a user function. See Automatic Creation of WAVE References on page IV-66
for details.

/FREE Makes the destination wave (specified by /DEST) a free wave.

/H=bw Specifies a fixed user-defined bandwidth.

S =
μ3

μ2()3/2 ,

K =
μ4

μ2()2 � 3.

Sets the bandwidth selection method.

m=0: User-specified via /H flag

m=1: Silverman

m=2: Scott

m=3: Bowmann and Azzolini

StatsKendallTauTest

V-816

Details
StatsKDE estimates the PDF of a distribution of values using a smoothing kernel and a bandwidth paramter
which affects the degree of smoothing.
Theory suggests that the Epanechnikov kernel is the most efficient but many expressions for the optimal
bandwidth are derived for the Gaussian kernel. If srcWave contains N points and the requested output (/S
flag) has M points then the computational complexity is O(NM). For large problems it may be beneficial to
use the Gaussian kernel via the FastGaussTransform operation.

References
Wand M.P. and Jones M.C. (1995) Monographs on Statistics and Applied Probability, London: Chapman

and Hall
Bowman, A.W., and Azzalini, A. (1997), Applied Smoothing Techniques for Data Analysis, London: Oxford

University Press.

See Also
Statistics on page III-337, Histogram, FastGaussTransform

StatsKendallTauTest
StatsKendallTauTest [flags] wave1 [, wave2]
The StatsKendallTauTest operation performs the nonparametric Mann-Kendall test, which computes a
correlation coefficient τ (similar to Spearman’s correlation) from the relative order of the ranks of the data.
Output is to the W_StatsKendallTauTest wave in the current data folder.

Flags

Details
Inputs may be a pair of XY (1D) waves of any real numeric type or a single 1D wave, which is equivalent to
using a pair of XY waves where the X wave is monotonically increasing function of the point number.
StatsKendallTauTest ignores wave scaling.
Kendall’s τ is 1 for a monotonically increasing input and -1 for monotonically decreasing input. The
significance of the test is computed from the normal approximation

/KT=kernel

/Q No results printed in the history area. In the case of univariate KDE this flags
suppresses the printing of the bandwidth value.

/S={x0,dx,xn} Specifies the range of the output starting from x=x0 to x=xn in increments of dx.

/Z Ignores errors. V_flag is set to zero if there are no errors.

/Q No results printed in the history area.

/T=k

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Specifies the kernel type.

kernel=1: Epanechnikov

kernel=2: Bi-weight

kernel=3: Tri-weight

kernel=4: Triangular

kernel=5: Gaussian

kernel=6: Rectangular

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsKSTest

V-817

where n is the number of data points in each wave. The significance is expressed as a P-value for the null
hypothesis of no correlation.

References
Kendall, M.G., Rank Correlation Methods, 3rd ed., Griffin, London, 1962.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsRankCorrelationTest.
For small values of n you can compute the exact probability using the procedure
WM_KendallSProbability().

StatsKSTest
StatsKSTest [flags] srcWave [, distWave]
The StatsKSTest operation performs the Kolmogorov-Smirnov (KS) goodness-of-fit test for two continuous
distributions. The first distribution is srcWave and the second distribution can be expressed either as the optional
wave distWave or as a user function with /CDFF. Output is to the W_KSResults wave in the current data folder.

Flags

Details
The Kolmogorov-Smirnov (KS) goodness-of-fit test applies only to continuous distributions and cases
where the compared distribution (expressed as a user function) is completely specified without estimating
parameters from the data. It compares the cumulative distribution function (CDF) of two distributions and
sets the test statistic D to the largest difference between the CDFs. Because CDFs are in the range [0,1], D is
also bound by this range.
When specifying the distributions with two waves, StatsKSTest first sorts the data in the waves and then
computes the CDFs and D. You can also specify one of the distributions with a user function. For example,
the following function tests if the data in srcWave is normally distributed with zero mean and stdv=5:
Function GetUserCDF(inX) : CDFFunc

Variable inX
return StatsNormalCDF(inX,0,5)

End

The “: CDFFunc” designation, which requires Igor7 or later, tells Igor to make the function accessible from
the Kolmogorov-Smirnov Test dialog.
Outputs are the number of elements, the KS statistic D, and the critical value. When both distributions are
specified by waves, the number of elements is the weighted value (n1*n2)/(n1+n2).

References
Critical values are based on:
Birnbaum, Z. W., and Fred H. Tingey, One-sided confidence contours for probability distribution functions,

The Annals of Mathematical Statistics, 22, 592–596, 1951.

/ALPH = val Sets the significance level (default val=0.05).

/CDFF=func Specifies a user function expressing the cumulative distribution function. See Details.

/Q No results printed in the history area.

/T=k

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Var(�) =
4n +10

9n(n �1)
,

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsKuiperCDF

V-818

A statistically more powerful modification of the classic KS test can be found in:
Khamis, H.J., The two-stage delta-corrected Kolmogorov-Smirnov test, Journal of Applied Statistics, 27, 439-

450, 2000.
StatsKSTest implements the original KS test. The difficulty in implementing the modified tests for all the
cases defined by Stephens is in obtaining the critical values which have to be derived by time consuming
Monte-Carlo simulations.
Critiques can be found in:
D’Agostino, R.B., and M. Stephens, eds., Goodness-Of-Fit Techniques, Marcel Dekker, New York, 1986.
NIST/SEMATECH, Kolmogorov-Smirnov Goodness-of-Fit Test, in NIST/SEMATECH e-Handbook of

Statistical Methods,
<http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm>, 2005.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsJBTest, WaveStats, and
StatsCircularMoments.

StatsKuiperCDF
StatsKuiperCDF(V)
The StatsKuiperCDF function returns the Kuiper cumulative distribution function

Accuracy is on the order of 1e-15. It returns 0 for values of V<0.4 or 1 for V>3.1.

References
See in particular Section 14.3 of
Press, William H., et al., Numerical Recipes in C, 2nd ed., 994 pp., Cambridge University Press, New York, 1992.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsInvKuiperCDF.

StatsKWTest
StatsKWTest [flags] [wave1, wave2,… wave100]
The StatsKWTest operation performs the nonparametric Kruskal-Wallis test which tests variances using the
ranks of the data. Output is to the W_KWTestResults wave in the current data folder.

Flags

/ALPH = val Sets the significance level (default val=0.05).

/E Computes the exact P-value using the Klotz and Teng algorithm, which may require
long computation times for large data sets. You can stop the calculation by pressing
the User Abort Key Combinations after which all remaining results remain valid and
the exact P-value is set to NaN.

/Q No results printed in the history area.

/T=k

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

F(V) = 1� 2 4 j2V 2 �1()exp �2 j2V 2().
j=1

�

�

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm

StatsLinearCorrelationTest

V-819

Details
Inputs are two or more 1D numerical waves (one for each group of samples). Use NaNs for missing data or
use waves with different number of points.
StatsKWTest always computes the critical values using both the Chi-squared and Wallace approximations.
If appropriate (small enough data set) you can also use /E to obtain the exact P value. When the calculation
involves many waves or many data points the calculation of the exact critical value can be very lengthy. All
the results are saved in the wave W_KWTestResults in the current data folder and are optionally displayed
in a table (/T). The wave contains the following information:

H0 for the Kruskal-Wallis test is that all input waves are the same. If the test fails and the input consisted of
more than two waves, there is no indication for possible agreement between some of the waves. See
StatsNPMCTest for further analysis.
V_flag will be set to -1 for any error and to zero otherwise.

References
Klotz, J.H., Computational Approach to Statistics, <http://www.stat.wisc.edu/~klotz/Book.pdf>.
Klotz, J., and Teng, J., One-way layout for counts and the exact enumeration of the Kruskal-Wallis H

distribution with ties, J. Am. Stat. Assoc, 72, 165-169, 1977.
Wallace, D.L., Simplified Beta-Approximation to the Kruskal-Wallis H Test, J. Am. Stat. Assoc., 54, 225-230, 1959.
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsWilcoxonRankTest, StatsNPMCTest,
and StatsAngularDistanceTest.

StatsLinearCorrelationTest
StatsLinearCorrelationTest [flags] waveA, waveB
The StatsLinearCorrelationTest operation performs correlation tests on waveA and waveB, which must be
real valued numeric waves and must have the same number of points. Output is to the
W_StatsLinearCorrelationTest wave in the current data folder or optionally to a table.

Flags

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

Row Data

0 Number of groups

1 Number of valid data points (excludes NaNs)

2 Alpha

3 Kruskal-Wallis Statistic H

4 Chi-squared approximation for the critical value Hc

5 Chi-squared approximation for the P value

6 Wallace approximation for the critical value Hc

7 Wallace approximation for the P value

8 Exact P value (requires /E)

/ALPH = val Sets the significance level (default val=0.05).

/CI Computes confidence intervals for the correlation coefficient.

/Q No results printed in the history area.

/RHO=rhoValue Tests hypothesis that the correlation has a nonzero value |r|≤ 1.

http://www.stat.wisc.edu/~klotz/Book.pdf

StatsLinearCorrelationTest

V-820

Details
The linear correlation tests start by computing the linear correlation coefficient for the n elements of both
waves:

Next it computes the standard error of the correlation coefficient

The basic test is for hypothesis H0: the correlation coefficient is zero, in which case t and F statistics are
applicable. It computes the statistics:

and

and then the critical values for one and two tailed hypotheses (designated by tc1, tc2, Fc1, and Fc2
respectively). Critical value for r are computed using

where i takes the values 1 or 2 for one and two tailed hypotheses. Finally, it computes the power of the test
at the alpha significance level for both one and two tails (Power1 and Power2).
If you use /RHO it uses the Fisher transformation to compute

the standard error approximation

/T=k

/Z Ignores errors.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

r =
XiYi

i=1

n

� � 1
n

Xi
i=1

n

� Yi
i=1

n

�

Xi
2

i=1

n

� � 1
n

Xi
i=1

n

�
�

�
�

�

�
�

2
�

�
�

�

�
� Yi

2

i=1

n

� � 1
n

Yi
i=1

n

�
�

�
�

�

�
�

2
�

�
�

�

�
�

sr =
1� r2

n � 2

t = r / sr

F =
1+ r

1� r
,

rci =
tc

2

tc
2 + n

FisherZ=
1

2
ln

1+r

1-r
	

�
�

�

�
�

zeta=
1

2
ln

1+�

1-�

�

�
�

�

�
�

StatsLinearRegression

V-821

and the critical values from the normal distribution Zci.

The confidence intervals are calculated differently depending on the hypothesis for the value of the
correlation coefficient. If /RHO is not used the confidence intervals are computed using the critical value
Fc2, otherwise they are computed using the critical Zc2 and sigmaZ.

References
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsCircularCorrelationTest,
StatsMultiCorrelationTest, and StatsRankCorrelationTest.

StatsLinearRegression
StatsLinearRegression [flags] [wave0, wave1,…]
The StatsLinearRegression operation performs regression analysis on the input wave(s). Output is to the
W_StatsLinearRegression wave in the current data folder or optionally to a table. Additionally, the
M_DunnettMCElevations, M_TukeyMCSlopes, and M_TukeyMCElevations waves may be created as specified.

Flags

/ALPH = val Sets the significance level (default val=0.05).

/B=beta0 Tests the hypothesis that the slope b= beta0 (default is 0). The results are expressed by
the t-statistic, which can be compared with the tc value for the two-tailed test. Get the
critical value for a one-tailed test using StatsStudentCDF(1-alpha,N-2). It does
not work with /MYVW.

/BCIW Computes two confidence interval waves for the high side and the low side of the
confidence interval. The new waves are named with _CH and _CL suffixes
respectively appended to the Y wave name and are created in the current data folder.
For multiple runs a numeric suffix will also be appended to the names.

/BPIW[=mAdditional]

Computes prediction interval waves for the high side and the low side of the
confidence interval on a single additional measurement (default). Use mAdditional to
specify additional measurements. The new waves are named with _PH and _PL
suffixes respectively appended to the Y wave name and are created in the current data
folder. For multiple runs a numeric suffix will also be appended to the names.

/DET=controlIndex Performs Dunnett’s multicomparison test for the elevations. The test requires more
than two Y waves for regression, the test for the slopes should not reject the equal
slope hypothesis, and the test for the elevations should reject the equal elevation
hypothesis. controlIndex is the zero-based index of the Y wave representing the control
(X waves do not count in the index specification). The test compares the elevation of
every Y wave with the specified control.

Output is to the M_DunnettMCElevations wave in the current data folder or
optionally to a table. For every Y wave and control Y wave combination, the results
include SE, q, q' (shown as qp), and the conclusion with 1 to accept the hypothesis of
equal elevations or 0 to reject it. Use /TAIL to determine the critical value and the
sense of the test. If you use /TUK you will also get the Tukey test for the set of
elevations.

sigmaZ=
1

n � 3
,

Zstatistic=
FisherZ � zeta

sigmaZ
,

StatsLinearRegression

V-822

Details
Inputs may consist of Y waves or XY wave pairs. If X data are not used, the X values are inferred from the
Y wave scaling. For multiple waves where only some have pairs, use the /PAIR flag and enter * in each place
where the X values should be computed.
For each input StatsLinearRegression calculates:

/MYVW={xWave, yWave}

Specifies that the input consists of multiple Y values for each X value. It ignores all
other inputs and the results are appropriate only for multiple Y values at each X point.
yWave is a 2D wave of values arranged in columns. Use NaNs for padding where
rows do not have the same number of entries as others. It will use the X scaling of
yWave when xWave is null, /MYVW={*,yWave}.

It first tests the hypothesis (H0) that the population regression is linear in an analysis
of variance calculation. It generates results 1-7 (see Details) as well as: Among Groups
SS, Among Groups DF, Within Groups SS, Within Groups DF, Deviations from
Linearity SS, Deviations from Linearity DF, F statistic defined by the ratio of
Deviation from Linearity MS to Within Groups MS, and the critical value Fc.

Next, it tests the hypothesis that the slope beta=0. If the original H0 was accepted, the
new F statistic=regressionMS/residualMS. Otherwise the with the critical
F=regressionMS/WithinGroupsMS with a corresponding critical value. Finally, it
reports the values of the coefficient of determination r2 and the standard error of the
estimate SYX.

/PAIR Specifies that the input waves are XY pairs, where each pair must be an X wave
followed by a Y wave.

/Q No results printed in the history area.

/RTO Reflects the regression through the origin.

/T=k

/TAIL=tCode Sets the sense of the test when applying Dunnett’s test (see /DET). tCode is 1 or 2 for a
one-tail critical value and 4 for a two-tail critical value.

/TUK Performs a Tukey-type test on multiple regressions on two or more Y waves. There
are two possible Tukey-type tests: The first is performed if the hypothesis of equal
slopes is rejected. It compares all combinations of two Y waves to identify if some of
the waves have equal slopes. Output is to the M_TukeyMCSlopes wave in the current
data folder or optionally to a table. For every Y wave pair, the results include the
difference between slopes (absolute value), q, the critical value qc, and the conclusion
set to 1 for accepting the equality of the pair of slopes or 0 for rejecting the hypothesis.

The second Tukey-type test is performed if all the slopes are the same but the
elevations are not. The test (see /DET) compares all possible pairs of elevations to
determine which satisfy the hypothesis of equality. Output is to the
M_TukeyMCElevations wave in the current data folder.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsLinearRegression

V-823

1. Least squares regression line y=a+b*x.
2. Mean value of X: xBar.
3. Mean value of Y: yBar.
4. Sum of the squares (xi-xBar)2.

5. Sum of the squares (yi-yBar)2.
6. Sum of the product (xiyi-xyBar).

7. Standard error of the estimate

8. F statistic for the hypothesis beta=0.
9. Critical F value Fc.
10. Coefficient of determination r2.
11. Standard error of the regression coefficient Sb.
12. t-statistic for the hypothesis beta=beta0, NaN if /B is not specified.
13. Critical value tc for the t-statistic above (used to calculate L1 and L2).
14. Lower confidence interval boundary (L1) for the regression coefficient.
15. Upper confidence interval boundary (L2) for the regression coefficient.
For two Y waves with the same slope, it computes a common slope (bc) and then tests the equality of the
elevations (a). In both cases it computes a t-statistic and compares it with a critical value. If the elevations are
also the same then it computes the common elevation (ac) and the pooled means of X and Y in (xp) and (yp).
For more than two Y waves it computes:

SYX
2 =

Yi − Ŷi()2

∑
n − 2

.

Ac = Aj
j=1

W

� ; Aj � xi
2� = Xi

2

i=0

n j �1

� �
1

nj
Xi

i=0

nj �1

�
�

�
�

�

��

2

Bc = Bj
j=1

W

� ; Bj � xy� = XY
i=0

n j �1

� �
1

nj
Xi

i=0

n j �1

�
�

�
�

�

��
Yi

i=0

nj �1

�
�

�
�

�

��

Cc = Cj
j=1

W

� ; Cj � y2� = Yi
2

i=0

nj �1

� �
1

nj
Yi

i=0

nj �1

�
�

�
�

�

��

2

SSp = Cj �
Bj

2

Ajj=1

W

�

SSc = Cc �
Bc

2

Ac
2

SSt = Yji
2

i=0

nj

�
j=1

W

� �
1

N
Yji

i=0

nj

�
j=1

W

�
�

�
�

�

�
�

2

�

XjiYji
i=0

nj

�
j=1

W

� � 1
N

Xji
i=0

n j

�
j=1

W

�
�

�
�

�

�
� Yji

i=0

n j

�
j=1

W

�
�

�
�

�

�
�

�

�
�

�

�
�

2

Xji
2

i=0

nj

�
j=1

W

� � 1
N

Xji
i=0

n j

�
j=1

W

�
�

�
�

�

�
�

2

StatsLogisticCDF

V-824

Here W is the number of Y-waves and is the total number of data points in all Y-waves.

The test statistic F for equality of slopes is given by:

Fc is the corresponding critical value.
Output is to the W_LinearRegressionMC wave in the current data folder.
V_flag will be set to -1 for any error and to zero otherwise.

References
See, in particular, Chapter 18 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; curvefit.

StatsLogisticCDF
StatsLogisticCDF(x, a, b)
The StatsLogisticCDF function returns the logistic cumulative distribution function

where the scale parameter b>0 and the shape parameter is a.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsLogisticPDF and
StatsInvLogisticCDF functions.

StatsLogisticPDF
StatsLogisticPDF(x, a, b)
The StatsLogisticPDF function returns the logistic probability distribution function

where the scale parameter b>0 and the shape parameter is a.

DFp = ni � 2()
j=1

W

�

DFt = ni � 2
j=1

W

�

N = nj
j=1

W

	

F = SSc � SSp
numWaves �1

�

�
�

�

�
�

SSp

DFp
.

F(x;a,b) =
1

1+ exp � x � a
b

�

�
�

�

�
�

.

f (x;a,b) =
exp � x � a

b
�

�
�

�

�

b 1+ exp � x � a
b

�

�
�

�

�

�

�
�

�

�

2 ,

StatsLogNormalCDF

V-825

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsLogisticCDF and
StatsInvLogisticCDF functions.

StatsLogNormalCDF
StatsLogNormalCDF(x, σ [, θ, μ])
The StatsLogNormalCDF function returns the lognormal cumulative distribution function

for x ≥ θ and σ, μ>0. The standard lognormal distribution is for θ=0 and μ=1, which are the optional
parameter defaults.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsLogNormalPDF and
StatsInvLogNormalCDF functions.

StatsLogNormalPDF
StatsLogNormalPDF(x, σ [, θ, μ])
The StatsLogNormalPDF function returns the lognormal probability distribution function

for x ≥ θ and σ, μ > 0, where θ is the location parameter, μ is the scale parameter and, σ is the shape
parameter. The standard lognormal distribution is for θ=0 and μ=1, which are the optional parameter
defaults.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsLogNormalCDF and
StatsInvLogNormalCDF functions.

StatsMaxwellCDF
StatsMaxwellCDF(x, k)
The StatsMaxwellCDF function returns the Maxwell cumulative distribution function

where gammp is the regularized incomplete gamma function.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsMaxwellPDF and
StatsInvMaxwellCDF functions.

StatsMaxwellPDF
StatsMaxwellPDF(x, k)
The StatsMaxwellPDF function returns Maxwell’s probability distribution function

F(x;� ,�,μ) =
1

� 2�

1

t ��
exp � ln

t ��
μ

�

�
�

�

�
�

�

�

E

F
G

2

2� 2
�

�

��

H
I
�

J�
0

x

� dt,

f (x;� ,�,μ) =
1

� 2�

1

x ��
exp � ln

x ��
μ

�

�
�

�

�
�

�

�

�

�
�

2

2� 2
�

�

��

�

�
�

��

,

F(x;k) = gammp
3

2
,
kx2

2

	

�
�

�

�
�

, x > 0.

StatsMedian

V-826

The Maxwell distribution describes, for example, the speed distribution of molecules in an ideal gas.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsMaxwellCDF and
StatsInvMaxwellCDF functions.

StatsMedian
StatsMedian(waveName)
The StatsMedian function returns the median value of a numeric wave waveName, which must not contain NaNs.

Example
Make/N=5 sample1={1,2,3,4,5}
Print StatsMedian(sample1)
3
Make/N=6 sample2={1,2,3,4,5,6}
Print StatsMedian(sample2)
3.5

See Also
Chapter III-12, Statistics for a function and operation overview
median, WaveStats, StatsQuantiles

StatsMooreCDF
StatsMooreCDF(x, N)
The StatsMooreCDF function returns the cumulative distribution function for Moore’s R*, which is used in
a nonparametric version of the Rayleigh test for uniform distribution around the circle. It supports the
range 3 ≤ N ≤ 120 and does not change appreciably for N>120.
The distribution is computed from polynomial approximations derived from simulations and should be
accurate to approximately three significant digits.

References
Moore, B.R., A modification of the Rayleigh test for vector data, Biometrica, 67, 175-180, 1980.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsCircularMeans function.

StatsMultiCorrelationTest
StatsMultiCorrelationTest [flags] corrWave, sizeWave
The StatsMultiCorrelationTest operation performs various tests on multiple correlation coefficients. Inputs
are two 1D waves: corrWave, containing correlation coefficients, and sizeWave, containing the size (number
of elements) of the corresponding samples. Although you can do all the tests at the same time, it rarely
makes sense to do so.

Flags

/ALPH = val Sets the significance level (default val=0.05).

/CON={controlRow,tails}

Performs a multiple comparison test using the controlRow element of corrWave as a
control. It is one- or two-tailed test according to the tails parameter. Output is to the
M_ControlCorrTestResults wave in the current data folder.

f (x;k) =
2

�
k 3/2x2 exp �

kx2

2

�

�
�

�

�
�

, x > 0.

StatsMultiCorrelationTest

V-827

Details
Without any flags, StatsMultiCorrelationTest computes χ2 for the correlation coefficients and compares it
with the critical value.

/CONT=cWave Performs a multiple contrasts test on the correlation coefficients. The contrasts wave,
cWave, contains the contrast factor, ci, entry for each of the n correlation coefficients ri
in corrWave, and satisfying the condition that the sum of the entries in cWave is zero.
H0 corresponds to

The test statistic S is

where zi is the Fisher z transform of the correlation coefficient ri:

It produces the SE value, the contrast statistic S, and the critical value, which are
labeled ContrastSE, ContrastS, and Contrast_Critical, respectively, in the
W_StatsMultiCorrelationTest wave.

/Q No results printed in the history area.

/T=k

/TUK Performs a Tukey-type multi comparison testing between the correlation coefficients
by comparing every possible combination of pairs of correlation coefficients,
computing the difference in their z-transforms, the SE, and the q statistic:

The critical value is computed from the q CDF (StatsInvQCDF) with degrees of
freedom numWaves and infinity. Output is to the M_TukeyCorrTestResults wave in
the current data folder or optionally to a table.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

ci
i=0

n�1

� ri = 0.

S =
1

ci
2

ni � 3

cizi
i=0

n�1

� ,

zi =
1

2
ln

1+ ri
1� ri

�

�
�

�

�
�

.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

q =
z j � zi

1
2

1
ni � 3

+ 1
nj � 3

�

�
�

�

�
�

.

StatsNBinomialCDF

V-828

where zi is the Fisher’s z transform of the correlation coefficients and ni is the corresponding sample size. It
computes the common correlation coefficient rw and its transform zw.

These values are calculated even when not appropriate, such as when χ2 exceeds the critical value and H0
(all samples came from populations of identical correlation coefficients) is rejected.
The operation also computes ChiSquaredP (due to S.R. Paul), a different variant of χ2 that is corrected for
bias and should be compared with the same critical value. Output is to the W_StatsMultiCorrelationTest
wave in the current data folder or optionally to a table.

References
See, in particular, Chapters 19 and 11 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview.
StatsLinearCorrelationTest, StatsCircularCorrelationTest, StatsDunnettTest, StatsTukeyTest,
StatsInvQCDF, and StatsScheffeTest.

StatsNBinomialCDF
StatsNBinomialCDF(x, k, p)
The StatsNBinomialCDF function returns the negative binomial cumulative distribution function

where betai is the regularized incomplete beta function.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNBinomialPDF and
StatsInvNBinomialCDF functions.

StatsNBinomialPDF
StatsNBinomialPDF(x, k, p)
The StatsNBinomialPDF function returns the negative binomial probability distribution function

where is the binomial function.

The binomial distribution expresses the probability of the kth success in the x+k trial for two mutually
exclusive results (success and failure) and p the probability of success in a single trial.

�
2 = zi

2 ni � 3()
i=0

n�1

� �
zi ni � 3()

i=0

n�1

��
�
�

�
��

2

ni � 3()
i=0

n�1

�
,

zw =
zi ni � 3()

i=0

n�1

�

ni � 3()
i=0

n�1

�

F(x;k, p) = Betai(k, x +1; p),

f (x;k, p) = x + k �1
k �1

�

�
�

�

�
�
pk (1� p)x , x = 0,1,2...

a
b

StatsNCChiCDF

V-829

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNBinomialCDF and
StatsInvNBinomialCDF functions.

StatsNCChiCDF
StatsNCChiCDF(x, n, d)
The StatsNCChiCDF function returns the noncentral chi-squared cumulative distribution function

where n>0 corresponds to degrees of freedom, d ≥ 0 is the noncentrality parameter, and Fc is the central chi-
squared distribution.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsChiCDF, StatsNCChiPDF, and
StatsChiPDF functions.

 StatsNCChiPDF
StatsNCChiPDF(x, n, d)
The StatsNCChiPDF function returns the noncentral chi-squared probability distribution function

where n>0 is the degrees of freedom, d ≥ 0 is the noncentrality parameter, and Ik(x) is the modified Bessel
function of the first kind, bessI.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNCChiCDF, StatsInvNCChiCDF,
StatsChiCDF, and StatsChiPDF functions.

StatsNCFCDF
StatsNCFCDF(x, n1, n2, d)
The StatsNCFCDF function returns the cumulative distribution function of the noncentral F distribution.
n1 and n2 are the shape parameters and d is the noncentrality measure. There is no closed form expression
for the distribution.

References
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNCFPDF and StatsInvNCFCDF
functions.

StatsNCFPDF
StatsNCFPDF(x, n1, n2, d)
The StatsNCFPDF function returns the probability distribution function of the noncentral F distribution

F(x;n,d) = exp d 2()
i=1

�
d 2()i
i!

Fc(x;n + 2i),

f (x;n,d) =
d exp � x + d

2
�

�
�

�

�
� x

(n�1)/2

2(dx)n /4 In /2�1 dx().

StatsNCTCDF

V-830

where B() is the beta function and 1F1() is the hypergeometric function hyperG1F1.

References
Abramowitz, M., and I.A. Stegun, Handbook of Mathematical Functions, 446 pp., Dover, New York, 1972.
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNCFCDF and StatsInvNCFCDF
functions.

StatsNCTCDF
StatsNCTCDF(x, df, d)
The StatsNCTCDF function returns the cumulative distribution function of the noncentral Student-T
distribution. df is the degrees of freedom (positive integer) and d is the noncentrality measure. There is no
closed form expression for the distribution.

References
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsStudentCDF, StatsStudentPDF,
and StatsNCTPDF functions.

StatsNCTPDF
StatsNCTPDF(x, df, d)
The StatsNCTPDF function returns the probability distribution function of the noncentral Student-T
distribution. df is the degrees of freedom (positive integer) and d is the noncentrality measure.

References
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsStudentPDF, StatsStudentCDF,
and StatsNCTCDF functions.

StatsNormalCDF
StatsNormalCDF(x, m, s)
The StatsNormalCDF function returns the normal cumulative distribution function

f (x;n1,n2 ,d) =
exp �d / 2()
B

n1

2
,
n2

2
�

�
�

�

�
�

xn1 /2�1(xn1 + n2)�(n1 +n2)/2n1
n1 /2n2

n2 /2
1F1

n1 + n2

2
,
n1

2
,

xdn1

2 xn1 + n2()
�

�
�

�

�
� ,

f (x;n,�) =
nn 2n!

2n e�
2 2 (n + x2)n 2

�
n
2

�

�
�

�
�

2�x 1F1

n

2
+1;

3
2

;
�

2x2

2(n + x2)

�

�
�

�
�

(n + x2)�
n +1

2
�

�
�

�
�

+
1F1

n +1
2

;
1
2

;
�

2x2

2(n + x2)

�

�
�

�
�

(n + x2)�
n

2
+1�

�
�

�
�

�

�

	
	

	

	

�

�

	
	

	

	

F(x,μ,�) =
1

2
+

1

2
erf

x � μ
� 2

�

�
�

�

�
� ,

StatsNormalPDF

V-831

where erf is the error function.

See Also
Chapter III-12, Statistics for a function and operation overview; the erf, StatsNormalPDF and
StatsInvNormalCDF functions.

StatsNormalPDF
StatsNormalPDF(x, m, s)
The StatsNormalPDF function returns the normal probability distribution function

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsNormalCDF and
StatsInvNormalCDF functions.

StatsNPMCTest
StatsNPMCTest [flags] [wave1, wave2,… wave100]
The StatsNPMCTest operation performs a number of nonparametric multiple comparison tests. Output
waves are saved in the current data folder according to the test(s) performed. Some tests are only
appropriate when you have the same number of samples in all groups. StatsNPMCTest usually follows
StatsANOVA1Test or StatsKWTest.

Flags

/ALPH = val Sets the significance level (default val=0.05).

/CIDX=controlIndex Performs nonparametric multiple comparisons on a control group specified by the
zero-based controlIndex wave in the input list. Output is to the M_NPCCResults wave
in the current data folder or optionally to a table. The output column contents are: the
first contains the difference between the rank sums of the control and each of the other
waves; the second contains the standard error (SE); the third contains the statistic q,
defined as the ratio of the difference in rank sums to SE; the fourth contains the critical
value which also depends on the tails specification (see /TAIL); and the fifth contains
the conclusion with 0 to reject H0 and 1 to accept it. One version of this test applies
when all inputs contain the same number of samples. When that is not the case, it uses
the Dunn-Hollander-Wolfe approach to compute an appropriate SE and to handle
possible ties.

/CONW=cWave Performs a nonparametric multiple contrasts tests. cWave has one point for each input
wave. The cWave value is 1 to include the corresponding (zero based) input wave in
the first group, 2 to include the wave in the second group, or zero to exclude the wave.

The contrast is defined as the difference between the normalized sum of the ranks of
the first group and that of the second group. If cWave={0,1,1,1,2}, then the contrast is
computed as

where Rni is the normalized rank sum of the samples from the corresponding input
wave. Note the significance of allowing zeros in the contrast wave because the actual
ranking is performed on the pool of all the samples.

f (x,μ,�) =
1

� 2�
exp �

(x � μ)2

2� 2

�

�
�

�
��

.

StatsNPMCTest

V-832

Output is to the M_NPMConResults wave in the current data folder or optionally to
a table. The output column contents are: the first is the contrast value; the second is
the standard error (SE); the third is the statistic S, which is the ratio of the absolute
value of the contrast to SE; the fourth is the critical value (from χ2 the approximation);
and the fifth is the conclusion with 0 to reject H0 and 1 indicating acceptance.

This test supports input waves with different number of samples and can also handle
tied ranks. Note that the contrast wave used here is structured differently than for
StatsMultiCorrelationTest.

/DHW Performs the Dunn-Holland-Wolfe test, which supports unequal number of samples
and accounts for ties in the rank sums. Output is to the M_NPMCDHWResults wave
in the current data folder or optionally to a table. The output column contents are: the
first contains the difference between the means of the rank sums (rank sums divided
by the number of samples in the group), the second contains the standard error (SE),
the third contains the DHW statistic Q, the fourth contains the critical value, and the
fifth contains the conclusion (0 to reject H0 and 1 to accept).

/Q No results printed in the history area.

/SWN Creates a text wave containing wave names corresponding to each row of the
comparison table. Depending on your choice of tests, the following wave names are
created:
/CIDX test: T_NPCCResultsDescriptors
/DHW test: T_NPMCDHWDescriptors
/SNK test: T_NPMCSNKResultsDescriptors
/TUK test: T_NPMCTukeyDescriptors

/T=k

The table is associated with the test and not with the data. If you repeat the test, it will
update the table with the new results.

/TAIL=tc

Code combinations are not allowed.

/SNK Performs a nonparametric variation on the Student-Newman-Keuls test where the
standard error SE is a function of p (the rank difference). This test requires equal
numbers of samples in all groups; use /DHW for unequal sizes.

Output is to the M_NPMCSNKResults wave in the current data folder. The output
column contents are: the first contains the difference between rank sums, the second
contains the standard error (SE), the third contains the p value (rank difference), the
fourth the statistic, the fifth contains the critical value, and the sixth contains the
conclusion (0 to reject H0 and 1 to accept). This test is more sensitive to differences
than the Tukey test (/TUK).

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

Specifies H0 with /CIDX.

tc=1: One tailed test (μc ≤ μa).
tc=2: One tailed test (μc ≥ μa).
tc=4: Default; two tailed test (μc = μa).

StatsNPNominalSRTest

V-833

Details
Inputs to StatsNPMCTest are two or more 1D numerical waves (one wave for each group of samples)
containing two or more valid entries. The waves must have the same number of points for the use /SNK and
/TUK tests, otherwise, for waves of differing lengths you must use the Dunn-Hollander-Wolfe test (/DHW).
V_flag will be set to zero for no execution errors. Individual tests may fail if, for example, there are different
number of samples in the input waves for a test that requires an equal number of points. StatsNPMCTest
skips failed tests and V_flag will be a binary combination identifying the failed test(s):

V_flag will be set to -1 for any other errors.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsANOVA1Test and StatsKWTest.
For multiple comparisons in parametric tests see: StatsDunnettTest and StatsScheffeTest.

StatsNPNominalSRTest
StatsNPNominalSRTest [flags] [srcWave]
The StatsNPNominalSRTest operation performs a nonparametric serial randomness test for nominal data
consisting of two types. The null hypothesis is that the data are randomly distributed. Output is to the
W_StatsNPSRTest wave in the current data folder.

Flags

/TUK Perform a Tukey-type (Nemenyi) multiple comparison test using the difference
between the rank sums. This is the default that is performed if you do not specify any
of the test flags. This test requires equal numbers of points in all waves; use /DHW for
unequal sizes.
Output is to the M_NPMCTukeyResults wave in the current data folder. The output
column contents are: the first contains the difference between the rank sums, the
second contains the SE values, the third contains the statistic q, the fourth contains the
critical value for this specific alpha and the number of groups; and the last contains a
conclusion flag with 0 indicating a rejection of H0 and 1 indicating acceptance. H0
postulates that the paired means are the same.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors.

V_flag & 1 Tukey method failed (/TUK).

V_flag & 2 Student-Newman-Keuls failed (/SNK).

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/P={m,n,u} Provides a summary of the data instead of providing the nominal series. m is the
number of elements of the first type, n is the number of elements of the second type,
and u is the number of runs or contiguous sequences of each type. Do not use srcWave
with /P.

/T=k

/Z Ignores errors.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsParetoCDF

V-834

Details
The input wave to StatsNPNominalSRTest is specified with srcWave or /P. The wave must contain exactly two
values. If srcWave is a text wave, then each type can be designated by a letter or by a short string (less than 200
bytes). If srcWave is numeric, you should avoid the usual floating point waves, which can give rise to internal
representations of more than two distinct values. Output to W_StatsNPSRTest includes the total number of
points (N), the number of occurrences (m) of the first variable, the number of occurrences (n) of the second
variable, and the number of runs (u). When both m and n are less than 300, it computes the P value
(probability P(u'<u)) and the critical values using the Swed and Eisenhart algorithm. When m or n are larger
than 300, it computes the mean and standard deviation of an equivalent normal distribution with the
corresponding critical value.

References
Swed, F.S., and C. Eisenhart, Tables for testing randomness of grouping in a sequence of alternatives, Ann.

Math. Statist., 14, 66-87, 1943.
See, in particular, Chapter 25 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsSRTest.

StatsParetoCDF
StatsParetoCDF(x, a, c)
The StatsParetoCDF function returns the Pareto cumulative distribution function

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsParetoPDF and
StatsInvParetoCDF functions.

StatsParetoPDF
StatsParetoPDF(x, a, c)
The StatsParetoPDF function returns the Pareto probability distribution function

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsParetoCDF and
StatsInvParetoCDF functions.

StatsPermute
StatsPermute(waveA, waveB, dir)
The StatsPermute function permutes elements in waveA based on the lexicographic order of waveB and the
direction dir. It returns 1 if a permutation is possible and returns 0 otherwise. Use dir=1 for the next
permutation and dir=-1 for a previous permutation.

Details
Both waveA and waveB must be numeric. The lexicographic order of elements in the index wave is set so that
permutations start with the index wave waveB in ascending order and end in descending order. Elements of
waveA are permuted in place according to the order of the indices in waveB which are clipped (after permutation)
to the valid range of entries in waveA. waveB is also permuted in place in order to allow you to obtain sequential
permutations. If waveA consists of real numbers you can permute them using the lexicographic value of the
entries directly. To do so pass $"" for waveB. Whenever it returns 0, neither waveA and waveB are changed.

F(x;a,c) = 1�
a

x
�

�
�

�

�
�

c

.

f(x;a,c)=
c

x

a

x
�

�
�

�

�
�

c

,
a,c > 0

x 	 a.

StatsPoissonCDF

V-835

Examples
Function AllPermutations(num)

Variable num

Variable i,nf=factorial(num)
Make/O/N=(num) wave0=p+1,waveA,waveB=p

Print wave0
for(i=0;i<nf;i+=1)

waveA=wave0
if(statsPermute(waveA,waveB,1)==0)

break
endif
print waveA

endfor
end

Executing AllPermutations(3) prints:
 wave0[0]= {1,2,3}
 waveA[0]= {1,3,2}
 waveA[0]= {2,1,3}
 waveA[0]= {2,3,1}
 waveA[0]= {3,1,2}
 waveA[0]= {3,2,1}

See Also
Chapter III-12, Statistics for a function and operation overview.

StatsPoissonCDF
StatsPoissonCDF(x, λ)
The StatsPoissonCDF function returns the Poisson cumulative distribution function

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsPoissonPDF and
StatsInvPoissonCDF functions.

StatsPoissonPDF
StatsPoissonPDF(x, λ)
The StatsPoissonPDF function returns the Poisson probability distribution function

where λ is the shape parameter.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsPoissonCDF and
StatsInvPoissonCDF functions.

StatsPowerCDF
StatsPowerCDF(x, b, c)
The StatsPowerCDF function returns the Power Function cumulative distribution function

where the scale parameter b and the shape parameter c satisfy b,c > 0 and b ≥ x ≥ 0.

F(x;�) =
exp ��()� i

i!i=0

x

� , x = 0,1,2...

f (x;�) =
exp ��()� x

x!
, x = 0,1,2...

F(x;b,c) =
x

b
	

�
�

�

�
�

c

StatsPowerNoise

V-836

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsPowerPDF, StatsInvPowerCDF
and StatsPowerNoise functions.

StatsPowerNoise
StatsPowerNoise(b, c)
The StatsPowerNoise function returns a pseudorandom value from the power distribution function with
probability distribution:

The random number generator initializes using the system clock when Igor Pro starts. This almost
guarantees that you will never repeat a sequence. For repeatable “random” numbers, use SetRandomSeed.
The algorithm uses the Mersenne Twister random number generator.

See Also
The SetRandomSeed operation.
The StatsPowerPDF StatsInvPowerCDF and StatsInvPowerCDF functions.
Noise Functions on page III-344.
Chapter III-12, Statistics for a function and operation overview.

StatsPowerPDF
StatsPowerPDF(x, b, c)
The StatsPowerPDF function returns the Power Function probability distribution function

where b is a scale parameter and c is a shape parameter.

For b,c > 0, x is drawn from b >= x >= 0.

For b>0, c<0, x is drawn from x>b.

For b<0, c>0, x is drawn from -b <= x <= 0.

For b<0, c<0, x is drawn from x<-b.

Note that for -1<c<0 the average diverges and the magnitude of a mean calculated from N samples will in-
crease indefinitely with N.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsPowerCDF, StatsInvPowerCDF
and StatsPowerNoise functions.

StatsQCDF
StatsQCDF(q, r, c, df)
The StatsQCDF function returns the value of the Q cumulative distribution function for r the number of
groups, c the number of treatments, and df the error degrees of freedom (f=rc(n-1) with sample size n).

Details
The Q distribution is the maximum of several Studentized range statistics. For a simple Tukey test, use r=1.

References
Copenhaver, M.D., and B.S. Holland, Multiple comparisons of simple effects in the two-way analysis of

variance with fixed effects, Journal of Statistical Computation and Simulation, 30, 1-15, 1988.

f (x;b,c) =
c

x

x

b
	

�
�

�

�
�

c

.

f (x,b,c) =
c

x

x

b
	

�
�

�

�
�

c

,

StatsQpCDF

V-837

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsTukeyTest function.

StatsQpCDF
StatsQpCDF(q, nr, nt, dt, side, sSizeWave)
The StatsQpCDF function returns the Q' cumulative distribution function associated with Dunnett's test.
Here nr is the number of groups (should be set to 1), nt is the number of treatments, df is the error degrees
of freedom.
Set side=1 for upper-tail or side=2 for two-tailed CDF.
sSizeWave is an integer wave of nt rows specifying the number of samples in each treatment.

Details
StatsQpCDF is a modified Q distribution typically used with Dunnett's test, which compares the various
means with the mean of the control group or treatment

References
"Algorithm AS 251: Multivariate Normal Probability Integrals with Product Correlations Structure", C. W.

Dunnett, Appl. Stat., 38 (1989) 564-579.
A short correction for the algorithm was published in: Appl. Stat., 42 (1993) 709.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsDunnettTest, StatsInvQpCDF,
and StatsInvQCDF functions.

StatsQuantiles
StatsQuantiles [flags] srcWave
The StatsQuantiles operation computes quantiles and elementary univariate statistics for a set of data in srcWave.

Flags

/ALL Invokes all flags except /Q, /QM, and /Z.

/BOX Computes parameters necessary to construct a box plot.

/iNaN Ignores NaNs, which are sorted to the end of the array by default.

/IW Creates an index wave W_QuantilesIndex. W_QuantilesIndex[i] corresponds to the
position of srcWave[i] when sorted from minimum to maximum.

/Q No information printed in the history area.

/QM=qMethod

/QW Creates a single precision wave W_QuantileValues containing the quantile value
corresponding to each entry in srcWave.

/STBL Uses a stable sort, which may require significant computation time for multiple
entries with the same value.

Specifies the method for computing quartiles. qMethod has one of these values:

See Details for more information.

0: Tukey (default).
1: Minitab.
2: Moore and McCabe.
3: Mendenhall and Sincich.

StatsQuantiles

V-838

Details
StatsQuantiles produces quick five-number summaries or more detailed results for univariate data. Values
are returned in the wave W_StatsQuantiles and in the variables:

Entries in the wave W_StatsQuantiles depend on your choice of flags. Each row has a row label explicitly
defining its value. If you use the /ALL flag, W_StatsQuantiles will contain the following row labels:

Otherwise, W_StatsQuantiles will contain the first five entries and any additionally requested value. You
should always access values using the dimension labels (see Dimension Labels on page II-85).
There is frequently some confusion in comparing statistical results computed by different programs
because each may use a different definition of quartiles. You can specify the method of computing the
quartiles as you prefer with the /QM flag. If you neglect to choose a method, StatsQuantiles uses Tukey’s
method, which computes quartiles (also called hinges) as the lower and upper median values between the

/T=k

/TM Computes the tri-mean: 0.25*(V_Q25+2*median+V_Q75).

/TRIM=tVal Computes the trimmed mean which is the mean value of the entries between the
quantiles tVal (in %) and 100-tVal. By default tVal=25 and the trimmed mean
corresponds to the midmean.

/Z Ignores any errors.

V_min Minimum value.

V_max Maximum value.

V_Median Median value.

V_Q25 Lower quartile.

V_Q75 Upper quartile.

V_IQR Inter-quartile range V_Q75-VQ25, which is also known as the H-spread.

V_MAD Median absolute deviation.

V_mode The most frequent value.
If there is a tie and several values have the highest frequency then the lowest value
among them is returned as the mode.
If all values in srcWave are unique or if the number of points in srcWave is less than
3, V_mode is set to NaN.
This output was added in Igor Pro 7.00.

minValue lowerInnerFence

maxValue lowerOuterFence

Median upperInnerFence

Q25 upperOuterFence

Q75 triMean

IQR trimmedMean

MedianAbsoluteDeviation

Displays the result wave W_StatsQuantiles in a table and specifies window
behavior when the user attempts to close the table.

If you use /K=2 you can still kill the window using the KillWindow operation.

k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsRankCorrelationTest

V-839

median of the data and the edges of the array. The Moore and McCabe method is similar to Tukey’s method
except you do not include the median itself in computing the quartiles. Mendenhall and Sincich compute
the quartiles using 1/4 and 3/4 of (numDataPoints+1) and round to the nearest integer (if the fraction part
is exactly 0.5 they round up for the lower quartile and down for the upper quartile). Minitab uses the same
expressions but instead of rounding it uses linear interpolation.
StatsQuantiles uses a stable index sorting routine so that
IndexSort W_QuantilesIndex,srcWave

is a monotonically increasing wave.

References
Tukey, J. W., Exploratory Data Analysis, 688 pp., Addison-Wesley, Reading, Massachusetts, 1977.
Mendenhall, W., and T. Sincich, Statistics for Engineering and the Sciences, 4th ed., 1008 pp., Prentice Hall,

Englewood Cliffs, New Jersey, 1995.

See Also
Chapter III-12, Statistics for a function and operation overview; WaveStats, StatsMedian, Sort, and
MakeIndex.

StatsRankCorrelationTest
StatsRankCorrelationTest [flags] waveA, waveB
The StatsRankCorrelationTest operation performs Spearman’s rank correlation test on waveA and waveB,
1D waves containing the same number of points. Output is to the W_StatsRankCorrelationTest wave in the
current data folder.

Flags

Details
StatsRankCorrelationTest ranks waveA and waveB and then computes the sum of the squared differences of
ranks for all rows. Ties are assigned an average rank and the corrected Spearman rank correlation
coefficient is computed with ties. It reports the sum of the squared ranks (sumDi2), the sums of the ties
coefficients (sumTx and sumTy respectively), the Spearman rank correlation coefficient (in the range [-1,1]),
and the critical value. H0 corresponds to zero correlation against the alternative of nonzero correlation. The
critical value is usually lower than the one in published tables. When the first derivative of the CDF is
discontinuous, tables tend to use a more conservative value by choosing the next transition of the CDF as
the critical value. StatsRankCorrelationTest is not as powerful as StatsLinearCorrelationTest.

See Also
Chapter III-12, Statistics for a function and operation overview.
StatsLinearCorrelationTest, StatsCircularCorrelationTest, StatsKendallTauTest,
StatsSpearmanRhoCDF, and StatsInvSpearmanCDF.

StatsRayleighCDF
StatsRayleighCDF(x [, s [, m]])
The StatsRayleighCDF function returns the Rayleigh cumulative distribution function

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/T=k

/Z Ignores errors.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsRayleighPDF

V-840

with defaults s=1 and m=0. It returns NaN for s ≤ 0 and zero for x ≤ m.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRayleighPDF and
StatsInvRayleighCDF functions.

StatsRayleighPDF
StatsRayleighPDF(x [, s [, m]])
The StatsRayleighPDF function returns the Rayleigh probability distribution function

with defaults s=1 and m=0. It returns NaN for s ≤ 0 and zero for x ≤ m.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRayleighCDF and
StatsInvRayleighCDF functions.

StatsRectangularCDF
StatsRectangularCDF(x, a, b)
The StatsRectangularCDF function returns the rectangular (uniform) cumulative distribution function

where a< b.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRectangularPDF and
StatsInvRectangularCDF functions.

StatsRectangularPDF
StatsRectangularPDF(x, a, b)
The StatsRectangularPDF function returns the rectangular (uniform) probability distribution function

where a< b.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRectangularCDF and
StatsInvRectangularCDF functions.

F(x;� ,μ) = 1� exp �
x � μ()2

2� 2

�

�
�

�

�
� , � > 0, x > μ.

f (x;� ,μ) =
x � μ
�

2 exp �
x � μ()2

2� 2

�

�
�

�

�
� , � > 0, x > μ.

F(x,a,b) =

0 x � a

x � a
b � a

a � x � b

1 x � b

�

�

�
�

�

�

�

f (x;a,b) =
1

b � a
a � x � b

0 otherwise

�

�
�

�
�

StatsResample

V-841

StatsResample
StatsResample /N=numPoints [flags] srcWave
The StatsResample operation resamples srcWave by drawing (with replacement) numPoints values from
srcWave and storing them in the wave W_Resampled or M_Resampled if /MC is used. You can iterate the
process and compute various statistics on the data samples.

Flags

/ITER=n Repeats the resampling for n iterations, which is useful only when combined with
/WS or /SQ.

/JCKN=ufunc Performs Jack-Knife analysis. Here ufunc is a user function of the format:

Function ufunc(inWave)
 wave inWave
 ... compute some statistic for inWave
 return someValue
End

The results are stored in the wave W_JackKnifeStats in the current data folder. Use
Edit W_JackKnifeStats.ld

to display the wave with dimension labels.

The idea behind this method is that ufunc returns some statistic z for inWave which is
a subsample of srcWave of size (n-1). There are exactly n iterations and in each
iteration the operation calls ufunc with one element of srcWave missing and stores the
result in an internal array. At the end of iterations it uses the array to compute the
various Jack-Knife estimates.

The standard estimator is defined as:

The Jack-Knife estimator is simply:

The Jack-Knife t-estimator is slightly less biased. It is given by:

The estimate of the standard error is given by:

/K Kills W_Resampled after passing it to WaveStats. When /ITER is used, W_Resampled
is not saved.

/MC Use /MC when you want to sample random (complete) rows from a multi-column 2D
srcWave. The combination of /N=n with /MC results in the wave M_Resampled in the
current data folder. M_Resampled will have n rows, the same number of columns and
the same data type as srcWave.

/N=numPoints Specifies the number of points sampled from srcWave.

Z = ufunc(srcWave).

ẑ =
1

n
zi

i=1

n

� .

t = nZ � (n �1)ẑ,

�̂ ẑ =
n �1

n
(zi � ẑ)

2

i=1

n

� .

StatsResample

V-842

Details
StatsResample can perform Bootstrap Analysis, permutations tests, and Monte-Carlo simulations. It draws
the specified number of data points (with replacement) from srcWave and places them in a destination wave
W_Resampled.
Specify /WS or /SQ to use the WaveStats or StatsQuantiles operations, respectively, to compute results directly
from the data. StatsResample normally creates the wave W_Resampled and, optionally, the M_WaveStats and
W_StatsQuantiles waves. Both options also create various V_ variables described below. If you use more than
one iteration, StatsResample creates instead the waves M_WaveStatsSamples and M_StatsQuantilesSamples for
the results.
M_WaveStatsSamples (with /WS) contains a column for each iteration. Each column is equivalent to the
contents of M_WaveStats for that iteration. You can use the command
Edit M_WaveStatsSamples.ld

to display the results in a table using row labels, and, for example, to display a graph of the rms of the
samples as a function of iteration number execute:
Display M_WaveStatsSamples[5][]

M_StatsQuantilesSamples (with /SQ) contains a column for each iteration. Each column consists of the
contents of W_StatsQuantiles for the corresponding data. Here again you can execute the command
Edit M_StatsQuantilesSamples.ld

to display the wave in a table using row labels. To display a graph of the median as a function of iteration execute:
Display M_statsQuantilesSamples[2][]

Output Variables
StatsResample creates the following variables: V_Median, V_Q25, V_Q75, V_IQR, V_min, V_max,
V_numNaNs, V_numINFs, V_avg, V_sdev, V_rms, V_adev, V_skew, V_kurt, and V_Sum.
These variables are valid only if you use either /SQ or /WS, but not both, and only if you do not use /ITER.
Unused variables are set to NaN.
If you use /SQ the operation sets V_Median, V_Q25, V_Q75, V_IQR, V_min, and V_max.
If you use /WS the operation sets V_min, V_max, V_numNaNs, V_numINFs, V_avg, V_sdev, V_rms,
V_adev, V_skew, V_kurt, and V_Sum.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsSample, WaveStats and
StatsQuantiles.

/Q No information printed in the history area.

/SQ=m

/WS=m

/Z Ignores any errors.

Uses StatsQuantiles to compute the data quartiles. The methods are:

See Details for information about how the results are stored.
The default trim value is 25%.

m=0: Tukey (default).
m=1: Minitab.
m=2: Moore and McCabe.
m=3: Mendenhall and Sincich.

Uses WaveStats operation to calculate data statistics.

See Details for information about how the results are stored.

m=0: Creates a new wave containing the samples (default).
m=1: Creates the new wave and passes it to WaveStats/Q/M=1.
m=2: Creates the new wave and passes it to WaveStats/Q/M=2.

StatsSample

V-843

StatsSample
StatsSample /N=numPoints [flags] srcWave
StatsSample creates a random, non-repeating sample from srcWave.
It samples srcWave by drawing without replacement numPoints values from srcWave and storing them in
the output wave W_Sampled or M_Sampled if /MC or /MR are used.

Flags

Details
If you omit /MC and /MR, the output is a 1D wave named W_Sampled where the samples are chosen from
srcWave without regard to its dimensionality.
If you use either /MC or /MR the output is a 2D wave named M_Sampled which will have either the same
number of columns (/MC) as srcWave or the same number of rows (/MR) as srcWave.

See Also
Chapter III-12, Statistics, StatsResample

StatsRunsCDF
StatsRunsCDF(n, r)
The StatsRunsCDF function returns the cumulative distribution function for the up and down runs
distribution for total number of runs r in a random linear arrangement of n unequal elements. There is no
closed form expression. It is computed numerically from the recursion of the probability density

with the initial condition

References
Bradley, J.V., Distribution-Free Statistical Tests, Prentice Hall, Englewood Cliffs, New Jersey, 1968.
Olmstead, P.S., Distribution of sample arrangements for runs up and down, Annals of Mathematical

Statistics, 17, 24-33, 1946.

/ACMB Creates a wave containing all unique combinations of numPoints values from
srcWave. It is assumed that srcWave is a 1D numeric wave containing more than
numPoints elements. The results are stored in the wave M_Combinations in the
current data folder. Each row in the result wave corresponds to a unique combination
of samples.
Added in Igor Pro 7.00.

/N=numPoints Specifies the number of points sampled from srcWave. When combined with /MC,
numPoints is the number of sampled rows and when combined with /MR, it is the
number of sampled columns.

/MC Use /MC (multi-column) to randomly sample full rows from srcWave, i.e., the output
consists of all columns of each selected row. /MC and /MR are mutually exclusive
flags.

/MR Use /MR (multi-row) to randomly sample full columns from srcWave, i.e., the output
consists of all rows of each of the selected columns. /MC and /MR are mutually
exclusive flags.

/Z Ignores errors.

f (r,n) =
rf (r,n �1) + 2 f (r �1,n �1) + (n � r) f (r � 2,n �1)

n
,

f (1,n) =
2

n!
.

StatsScheffeTest

V-844

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsSRTest function.

StatsScheffeTest
StatsScheffeTest [flags] [wave1, wave2,… wave100]
The StatsScheffeTest operation performs Scheffe’s test for the equality of the means. It supports two basic
modes: the default tests all possible combinations of pairs of waves; the second tests a single combination
where the precise form of H0 is determined by the coefficients of a contrast wave (see /CONT). Output is to
the M_ScheffeTestResults wave in the current data folder.

Flags

/ALPH=val Sets the significance level (default 0.05).

/CONW=cWave Performs a multiple contrasts test. cWave has one point for each input wave. The
cWave value is 1 to include the corresponding (zero based) input wave in the first
group, 2 to include the wave in the second group, or zero to exclude the wave.

The contrast is defined as the difference between the normalized sum of the ranks of
the first group and that of the second group. If cWave={0,1,1,1,2}, then the contrast
hypothesis H0 corresponds to:

For each pair of waves (i, j) with i ¦ j, it computes

the statistic

the critical value, and a result field which is set to 1 if H0 should be accepted or 0 if it

should be rejected. W is the total number of waves, ni and are respectively the
number of data points and the average of wave i.

/Q No results printed in the history area.

/SWN Creates a text wave, T_ScheffeDescriptors, containing wave names corresponding to
each row of the comparison table (Save Wave Names). Use /T to append the text wave
to the last column.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

X1 + X2 + X3

3
� X4 = 0.

SEij = s2 1

nj
+

1

ni

�

�
�

�

	
� , s2 = Xj

2 �
j=0

n j �1

�
i=1

W

�

Xj
j=0

nj �1

�
�

�
�

�

	
�

2

nj
,

i=1

W

�

S =
ci Xi

i=0

n�1

�

SE
,

Xi

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsShapiroWilkTest

V-845

Details
The default of StatsScheffeTest (also known as the S test) tests the hypotheses of equality of means for each
possible pair of samples. It is not as powerful as Tukey’s test (StatsTukeyTest) and is more useful for
hypotheses formulated as multiple contrasts (see /CONT).

References
See, in particular, Chapter 11 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsANOVA1Test, StatsDunnettTest and
StatsTukeyTest.

StatsShapiroWilkTest
StatsShapiroWilkTest [flags] srcWave
The StatsShapiroWilkTest computes Shapiro-Wilk statistic W and its associated P-value and stores them in
V_statistic and V_prob respectively.

Flags

Details
The Shapiro-Wilk tests the null hypothesis that the population is normally distributed. If the P-value is less
than the selected alpha then the null hypothesis, normality, is rejected.
The test is valid only for waves containing 3 to 5000 data points. The operation ignores any NaNs or INFs
in srcWave.

Example
// Test normally distributed data
Make/O/N=(200) ggg=gnoise(5)
StatsShapiroWilkTest ggg
W=0.995697 p=0.846139 // p>alpha so accept normality

// Test uniform distribution
Make/O/N=(200) eee=enoise(5)
StatsShapiroWilkTest eee
W=0.959616 p=1.7979e-05 // p<alpha so reject normality

StatsSignTest
StatsSignTest [flags] wave1, wave2
The StatsSignTest operation performs the sign test for paired-sample data contained in wave1 and wave2.

Flags

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

/Q No results printed in the history area.

/Z Ignores errors.

/ALPH=val Sets the significance level (default 0.05).

/Q No results printed in the history area.

StatsSpearmanRhoCDF

V-846

Details
The input waves must be the equal length, real numeric waves and must not contain any NaNs or INFs.
Results are saved in the wave W_SignTest and are optionally displayed in a table. StatsSignTest computes
the differences in each pair and counts the total number of entries with positive and negative differences,
and tests the results using a binomial distribution. When the number of data pairs exceeds 1024 it uses a
normal approximation to the binomials for calculating the probabilities and the power of the test.

References
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview.
StatsWilcoxonRankTest

StatsSpearmanRhoCDF
StatsSpearmanRhoCDF(r, N)
The StatsSpearmanRhoCDF function returns the cumulative distribution function for Spearman’s r, which
is used in rank correlation test. It is valid for N>1 and -1 ≤ r ≤ 1. The distribution is mostly computed using
the Edgeworth series expansion.

References
Algorithm AS 89, Appl. Statist., 24, 377, 1975.
van de Wiel, M.A., and A. Di Bucchianico, Fast computation of the exact null distribution of Spearman’s rho

and Page’s L statistic for samples with and without ties, J. of Stat. Plan. and Inference, 92, 133-145, 2001.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRankCorrelationTest,
StatsInvSpearmanCDF, and StatsKendallTauTest functions.

StatsSRTest
StatsSRTest [flags] srcWave
The StatsSRTest operation performs a parametric or nonparametric serial randomness test on srcWave,
which must contain finite numerical data. The null hypothesis of the test is that the data are randomly
distributed. Output is to the W_StatsSRTest wave in the current data folder.

Flags

/T=k

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

/ALPH = val Sets the significance level (default val=0.05).

/GCD Tests the output of a random number generator (RNG). srcWave consists of values
between 0 and 232 (converted to unsigned 32-bit integers). GCD computes the gcd for
consecutive pairs of data in srcWave. The number of steps in the GCD and the
distribution of the GCD’s are compared with ideal distributions and corresponding P
values are reported. This test is part of Marsaglia’s Die-Hard battery of tests. P-values
close to either 0 or 1 indicate a nonideal RNG. You should use the reported minimum
and maximum values to check that the input is indeed in the proper range. Typically
srcWave consists of at least1e6 entries.

/NAPR Use the normal approximation even when the number of points is below 150.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsSRTest

V-847

Details
The parametric test for serial randomness is according to Young. C is given by

where is the mean and n is the number of points in srcWave. The critical value is obtained from mean
square successive difference distribution StatsInvCMSSDCDF. For more than 150 points, StatsSRTest uses
the normal approximation and provides the critical values from the normal distribution. For samples from
a normal distribution, C is symmetrically distributed about 0 with positive values indicating positive
correlation between successive entries and negative values corresponding to negative correlation.
The nonparametric test consists of counting the number of runs that are successive positive or successive
negative differences between sequential data. If two sequential data are the same it computes two numbers
of runs by considering the two possibilities where the equality is replaced with either a positive or a
negative difference. The results of the operation include the number of runs up and down, the number of
unchanged values (the number of places with no difference between consecutive entries), the size of the
longest run and its associated probability, the number of converted equalities, and the probability that the
number of runs is less than or equal to the reported number (StatsRunsCDF). When equalities are
encountered the operation computes the probabilities that the computed number of runs or less can be
found in an equivalent random sequence.
Converted equalities are those with the same sign on both sides so that when we replace the equality by the
opposite sign we increase the number of runs. The equalities that are not converted are found between two
different signs and therefore regardless of the sign that we give them they do not affect the total number of
runs. We implicitly assume that the data does not contain more than one sequential equalities.
The longest run is determined without taking into account equalities or their conversions. The probability
of the longest run is computed from Equation 6 of Olmstead, which is accurate within 0.001 when the
number of runs is 5 or more. This probability applies to either positive or negative differences and should
be divided by two if a specific sign is selected.

References
Bradley, J.V., Distribution-Free Statistical Tests, Prentice Hall, Englewood Cliffs, New Jersey, 1968.
Olmstead, P.S., Distribution of sample arrangements for runs up and down, Annals of Mathematical

Statistics, 17, 24-33, 1946.
Wallis, W.A., and G.H. Moore, A significance test for time series, J. Amer. Statist. Assoc., 36, 401-409, 1941.
Young, L.C., On randomness in ordered sequences, Annals of Mathematical Statistics, 12, 153-162, 1941.
See, in particular, Chapter 25 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.
<http://www.csis.hku.hk/cisc/projects/va/index.htm>

/NP Performs a nonparametric serial randomness test by counting the numbers of runs up
and down and computing the probability that such a value is obtained by chance.

/P Performs a parametric serial randomness test.

/Q No results printed in the history area.

/T=k

/Z Ignores errors.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

C = 1�
Xi � Xi+1()2

i=0

n�2

�

2 Xi � X()2

i=0

n�1

�

,

X

://www.csis.hku.hk/cisc/projects/va/index.htm

StatsStudentCDF

V-848

See Also
Chapter III-12, Statistics for a function and operation overview; StatsNPNominalSRTest and
StatsRunsCDF.

StatsStudentCDF
StatsStudentCDF(t, n)
The StatsStudentCDF function returns the Student (uniform) cumulative distribution function

where n>0 is degrees of freedom and is the incomplete beta function betai.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsStudentPDF and
StatsInvStudentCDF functions.

StatsStudentPDF
StatsStudentPDF(t, n)
The StatsStudentPDF function returns the Student (uniform) probability distribution function

where n>0 is degrees of freedom and B() is the beta function.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsStudentCDF and
StatsInvStudentCDF functions.

StatsTopDownCDF
StatsTopDownCDF(r, N)
The StatsTopDownCDF function returns the cumulative distribution function for the top-down correlation
coefficient. It is computationally intensive because it must evaluate many permutations [O((n!)2)]. It exactly
calculates the distribution for 3 ≤ N ≤ 7; outside this range it uses Monte-Carlo estimation for 8 ≤ N ≤ 50 and
asymptotic Normal approximation for N>50. The Monte-Carlo estimate uses 1e6 random permutations
fitted with two 9-order polynomials for the range [-1,0] and [0,1]. The results are within 0.2% of exact values
where known.

References
Iman, R.L., and W.J. Conover, A measure of top-down correlation, Technometrics, 29, 351-357, 1987.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsRankCorrelationTest and
StatsInvTopDownCDF functions.

F(t,n) =

1

2
1+ I

n

2
,
1

2
;1

�

�
�

�
� � I

n

2
,
1

2
;

n

n + t 2

�

�
�

�
�

�
�
�

�
�

t > 0

1

2
1+ I

n

2
,
1

2
;

n

n + t 2

�

�
�

�
� � I

n

2
,
1

2
;1

�

�
�

�
�

�
�
�

�
�

t < 0

1

2
t = 0

�

�

�

�

��

�

�

�

�

�

f (t,n) =

n

n + t 2

	

�
�

�

�
�

(n+1)/2

nB
n

2
,
1
2

	

�
�

�

�
�

.

StatsTriangularCDF

V-849

StatsTriangularCDF
StatsTriangularCDF(x, a, b, c)
The StatsTriangularCDF function returns the triangular cumulative distribution function

where a<c<b.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsTriangularPDF and
StatsInvTriangularCDF functions.

StatsTriangularPDF
StatsTriangularPDF(x, a, b, c)
The StatsTriangularPDF function returns the triangular probability distribution function

where a<c<b.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsTriangularCDF and
StatsInvTriangularCDF functions.

StatsTrimmedMean
StatsTrimmedMean(waveName, trimValue)
The StatsTrimmedMean function returns the mean of the wave waveName after removing trimValue fraction
of the values from both tails of the distribution. trimValue is a number in the range [0, 0.5]. waveName can be
any real numeric type.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsQuantiles and mean.

StatsTTest
StatsTTest [flags] wave1 [, wave2]
The StatsTTest operation performs two kinds of T-tests: the first compares the mean of a distribution with a
specified mean value (/MEAN) and the second compares the means of the two distributions contained in wave1
and wave2, which must contain at least two data points, can be any real numeric type, and can have an arbitrary
number of dimensions. Output is to the W_StatsTTest wave in the current data folder or optionally to a table.

Flags

/ALPH = val Sets the significance level (default val=0.05).

/CI Computes the confidence intervals for the mean(s).

F(x;a,b,c) =

(x � a)2

(b � a)(c � a)
a � x � c

1�
(b � x)2

(b � a)(c � a)
������������c � x � b.

�

�

�

�

�

�

�

f (x;a,b,c) =

2(x � a)

(b � a)(c � a)
a � x � c

2(b � x)

(b � a)(c � a)
����������c < x < b

0 ���������������������������������otherwise.

�

�

�

�
�

�

�

�

�

StatsTTest

V-850

/DFM=m

/MEAN=meanV Compares meanV with the mean of the distribution in wave1. Outputs are the number
of points in the wave, the degrees of freedom (accounting for any NaNs), the average,
standard deviation (σ),

the statistic

and the critical value, which depends on /TAIL.

/PAIR Specifies that the input waves are pairs and computes the difference of each pair of
data to get the average difference and the standard error of the difference . The t
statistic is the ratio of the two

In this case H0 is that the difference is zero.

This mode does not support /CI and /DFM.

/Q No results printed in the history area.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

Specifies method for calculating the degrees of freedom.
m=0: Default; computes equivalent degrees of freedom accounting for

possibly different variances.
m=1: Computes equivalent degrees of freedom but truncates to a smaller

integer.
m=2: Computes degrees of freedom by DF=n1+n2-2, where n is the sum of

points in the wave. Appropriate when variances are equal.

s
X
=

	

DF +1
,

t =
X � meanV

s
X

d Sd

t =
d

s
d

.

d

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsTTest

V-851

Details
When comparing the mean of a single distribution with a hypothesized mean value, you should use
/MEAN and only one wave (wave1). If you use two waves StatsTTest performs the T-test for the means of
the corresponding distributions (which is incompatible with /MEAN).
When comparing the means of two distributions, the default t-statistic is computed from Welch's
approximate t:

where are variances, ni the number of samples, and the averages of the respective waves. This expres-
sion is appropriate when the number of points and the variances of the two waves are different. If you want
to compute the t-statistic using pooled variance you can use the /AEVR flag. In this case the pooled variance
is given by

and the t-statistic is

The different test are:

/TAIL=tailCode

Here μd is the mean of the difference population.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

H0 Rejection Condition

μ1 = μ2 |t| ≥ Tc(alpha,ν)

μ1 > μ2 t ≤ Tc(alpha, ν)

μ1 < μ2 t ≥ Tc(alpha, ν)

Specifies H0.

tailCode=1: One tailed test (μ1 ≤ μ2).
tailCode=2: One tailed test (μ1 ≥ μ2).
tailCode=4: Default; two tailed test (μ1 = μ2).

When performing paired tests using /PAIR:
tailCode=1: One tailed test (μd≤ 0).
tailCode=2: One tailed test (μd ≥ 0).
tailCode=4: Default; two tailed test (μd = 0).

t ' = x1 � x2

s1
2

n1

+ s2
2

n2

,

si
2 Xi

sp
2 =

n1 �1()s1
2 + n2 �1()s2

2

n1 + n2 � 2
,

t = x1 � x2

sp
1
n1

+ 1
n2

.

StatsTukeyTest

V-852

Tc is the critical value and ν is the effective number of degrees of freedom (see /DFM flag).When accounting
for possibly unequal variances, ν is given by

The critical values (Tc) are computed by numerically by solving for the argument at which the cumulative
distribution function (CDF) equals the appropriate values for the tests. The CDF is given by

To get the critical value for the upper one-tail test we solve F(x)=1-alpha. For the lower one-tail test we solve
for x the equation F(x)=alpha. In the two-tailed test the lower critical value is a solution for F(x)=alpha/2 and
the upper critical value is a solution for F(x)=1-alpha/2.
The T-test assumes both samples are randomly taken from normal population distributions.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsStudentCDF, StatsStudentPDF, and
StatsInvStudentCDF.

References
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999. See in
particular Section 8.1.

StatsTukeyTest
StatsTukeyTest [flags] [wave1, wave2,… wave100]
The StatsTukeyTest operation performs multiple comparison Tukey (HSD) test and optionally the
Newman-Keuls test. Output is to the M_TukeyTestResults wave in the current data folder. StatsTukeyTest
usually follows StatsANOVA1Test.

Flags

/ALPH = val Sets the significance level (default val=0.05).

/NK Computes the Newman-Keuls test.

/Q No results printed in the history area.

/SWN Creates a text wave, T_TukeyDescriptors, containing wave names corresponding to
each row of the comparison table (Save Wave Names). Use /T to append the text wave
to the last column.

/T=k

/WSTR=waveListString

� =

s1
2

n1

+ s2
2

n2

�

�
�

�

�
�

2

s1
2

n1

�

�
�

�

�
�

2

n1 �1
+

s2
2

n2

�

�
�

�

�
�

2

n2 �1

.

F(x) =

1

2
betai

�

2
,
1

2
,

�

� + x2

�

�
�

	

� x < 0

1�
1

2
betai

�

2
,
1

2
,

�

� + x2

�

�
�

	

� x � 0.

�

�

�
�

�

�

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsUSquaredCDF

V-853

Details
Inputs to StatsTukeyTest are two or more 1D numeric waves (one wave for each group of samples)
containing any numbers of points but with at least two or more valid entries.
The contents of the M_TukeyTestResults columns are: the first contains the difference between the group
means , the second contains SE (supports unequal number of points), the third contains the q statistic
for the pair, and the fourth contains the critical q value, the fifth contains the conclusion with 0 to reject H0
(μi == μj) or 1 to accept H0, with /NK, the sixth contains the p values

the seventh contains the critical values, and the eighth contains the Newman-Keuls conclusion (with 0 to
reject and 1 to accept H0). The order of the rows is such that all possible comparisons are computed
sequentially starting with the comparison of the group having the largest mean with the group having the
smallest mean.
 V_flag will be set to -1 for any error and to zero otherwise.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsANOVA1Test, StatsScheffeTest, and
StatsDunnettTest.

StatsUSquaredCDF
StatsUSquaredCDF(u2, n, m, method, useTable)
The StatsUSquaredCDF function returns the cumulative distribution function for Watson’s U2 with
parameters u2 (U2 statistic) and integer sample sizes n and m. The calculation is computationally intensive,
on the order of binomial(n+m, m). Use a nonzero value for useTable to search a built-in table of values. If n
and m cannot be found in the table, it will proceed according to method:

For large n and m, consider using the Tiku approximation. To abort execution, press the User Abort Key
Combinations.
Precomputed tables, using the algorithm described by Burr, contain these values:

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors.

method What It Does

0 Exact computation using Burr algorithm (could be slow).

1 Tiku approximation using chi-squared.

2 Use built-in table only and return a NaN if not in table.

n m

4 4-30

5 5-30

6 6-30

7 7-30

8 8-26

9 9-22

10 10-18

Xi Xi–

p = rank[Xi]� rank[Xj]+1,

StatsVariancesTest

V-854

Because n and m are interchangeable, n should always be the smaller value. For n>8 the upper limit in the
table matched the maximum that can be computed using the Burr algorithm. There is no point in using
method 0 with m values exceeding these limits.

References
Burr, E.J., Small sample distributions of the two sample Cramer-von Mises’ W2 and Watson’s U2, Ann. Mah.

Stat. Assoc., 64, 1091-1098, 1964.
Tiku, M.L., Chi-square approximations for the distributions of goodness-of-fit statistics, Biometrica, 52, 630-

633, 1965.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsWatsonUSquaredTest and
StatsInvUSquaredCDF functions.

StatsVariancesTest
StatsVariancesTest [flags] [wave1, wave2,… wave100]
The StatsVariancesTest operation performs Bartlett’s or Levene’s test to determine if wave variances are
equal. Output is to the W_StatsVariancesTest wave in the current data folder or optionally to a table.

Flags

Details
All tests define the null hypothesis by

against the alternative

11 11-16

12 12-14

13 13

/ALPH = val Sets the significance level (default val=0.05).

/METH=m

/Q No results printed in the history area.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors. V_flag will be set to -1 for any error and to zero otherwise.

n m

Specifies the test type.
m=0: Bartlett test (default).
m=1: Levene’s test using the mean.
m=2: Modified Levene’s test using the median.
m=3: Modified Levene’s test using the 10% trimmed mean.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

H 0 : �1
2 = � 2

2 = ... = � k
2 ,

StatsVariancesTest

V-855

Bartlett’s test computes:

Here is the variance of the ith wave, N is the sum of the points of all the waves, ni is the number of points
in wave i, and k is the number of waves. The weighted variance is given by

H0 is rejected if T is greater than the critical value taken from the χ2 distribution computed by solving for x:

Levene’s test computes:

where

 depends on /METH.

H0 is rejected if W is greater than the critical value from the F distribution computed by solving for x:

References
NIST/SEMATECH, Bartlett’s Test, in NIST/SEMATECH e-Handbook of Statistical Methods,

<http://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm>, 2005.

See Also
Chapter III-12, Statistics for a function and operation overview.

Ha : � i
2
� � j

2 � for �at �least �one�i � j.

T =
n � k() ln �w

2() � ni �1()ln � i
2()

i=1

k

�

1+ 1
3 k �1()

1
ni �1

� 1
N � ki=1

k

��
�
�

�

�
	

.

σ2
i

�w
2 =

ni �1()� i
2

N � ki=1

k

� .

1� alpha = 1� gammq
k �1

2
,
x

2
�

�

�

�
� .

W =
N � k() ni Z i � Z()

i=1

k

�

2

k �1() Zij � Zi()2

j=1

k

�
i=1

k

�

,

Zij = Yij �Y i ,

Zi =
1

ni
Zij

j=1

k

� ,

Z =
1

N
Zij

j=1

k

�
i=1

k

� .

Yi

1� alpha = 1� betai
�2

2
,
�1

2
,

�2

�2 + �1x

�

�
�

�

�
�

.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm

StatsVonMisesCDF

V-856

StatsVonMisesCDF
StatsVonMisesCDF(x, a, b)
The StatsVonMisesCDF function returns the von Mises cumulative distribution function

where I0(b) is the modified Bessel function of the first kind (bessI), and

References
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsVonMisesPDF,
StatsInvVonMisesCDF, and StatsVonMisesNoise functions.

StatsVonMisesNoise
StatsVonMisesNoise(a, b)
The StatsVonMisesNoise function returns a pseudo-random number from a von Mises distribution whose
probability density is

where I0 is the zeroth order modified Bessel function of the first kind.

References
Best, D.J., and N. I. Fisher, Efficient simulation of von Mises distribution, Appl. Statist., 28, 152-157, 1979.

See Also
StatsVonMisesCDF, StatsVonMisesPDF, and StatsInvVonMisesCDF.
Noise Functions on page III-344.
Chapter III-12, Statistics for a function and operation overview

StatsVonMisesPDF
StatsVonMisesPDF(q, a, b)
The StatsVonMisesPDF function returns the von Mises probability distribution function

where I0(b) is the modified Bessel function of the first kind bessI, and

F(�;a,b) =
1

2� I0 (b)
exp bcos(x � a)()dx

0

�

� .

0 < � � 2�

0 < a � 2�

b > 0.

f (�;a,b) =
exp bcos(� � a)[]

2� I0 (b)
,

f (�;a,b) =
exp bcos � � a()()

2� I0 (b)
.

0 < � � 2�

0 < a � 2�

b > 0.

StatsWaldCDF

V-857

References
Evans, M., N. Hastings, and B. Peacock, Statistical Distributions, 3rd ed., Wiley, New York, 2000.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsVonMisesCDF,
StatsInvVonMisesCDF, and StatsVonMisesNoise functions.

StatsWaldCDF
StatsWaldCDF(x, m, l)
The StatsWaldCDF function returns the numerically evaluated inverse Gaussian or Wald cumulative
distribution function.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsWaldPDF function.

StatsWaldPDF
StatsWaldPDF(x, m, l)
The StatsWaldPDF function returns the inverse Gaussian or Wald probability distribution function

where x, m, l> 0.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsWaldCDF function.

StatsWatsonUSquaredTest
StatsWatsonUSquaredTest [flags] srcWave1, srcWave2
The StatsWatsonUSquaredTest operation performs Watson’s nonparametric two-sample U2 test for samples
of circular data. Output is to the W_WatsonUtest wave in the current data folder or optionally to a table.

Flags

Details
The input waves, srcWave1 and srcWave2, each must contain at least two angles in radians (mod 2π), can have
any number of dimensions, and can be single or double precision. They must not contain any NaNs or INFs.
The Watson U2 H0 postulates that the two samples came from the same population against the different
populations alternative. In the calculation, StatsWatsonUSquaredTest ranks the two inputs, accounts for
possible ties, computes the test statistic U2, and compares it with the critical value. Because of the difficulty
of computing the critical values, it always computes first the approximation due to Tiku and if possible it
computes the exact critical value using the method outlined by Burr. You can evaluate the U2 CDF to get
more information about the critical region.

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/Z Ignores errors.

f (x;μ,�) =
�

2� x3 exp �
� x � μ()2

2μ2x

�

�

�
�

�

�

	
	

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsWatsonWilliamsTest

V-858

V_flag will be set to -1 for any error and to zero otherwise.

References
We have found that this method leads to slightly different results depending on the compiler and the
system on which it is implemented:
Burr, E.J., Small sample distributions of the two sample Cramer-von Mises’ W2 and Watson’s U2, Ann. Mah.

Stat. Assoc., 64, 1091-1098, 1964.
Tiku, M.L., Chi-square approximations for the distributions of goodness-of-fit statistics, Biometrica, 52, 630-

633, 1965.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsWatsonWilliamsTest,
StatsWheelerWatsonTest, StatsUSquaredCDF, and StatsInvUSquaredCDF.

StatsWatsonWilliamsTest
StatsWatsonWilliamsTest [flags] [srcWave1, srcWave2, srcWave3,…]
The StatsWatsonWilliamsTest operation performs the Watson-Williams test for two or more sample means.
Output is to the W_WatsonWilliams wave in the current data folder or optionally to a table.

Flags

Details
The StatsWatsonWilliamsTest must have at least two input waves, which contain angles in radians, can be
single or double precision, and can be of any dimensionality; the waves must not contain any NaNs or INFs.
The Watson-Williams H0 postulates the equality of the means from all samples against the simple
inequality alternative. The test computes the sums of the sines and cosines from which it obtains a weighted
r value (rw). According to Mardia, you should use different statistics depending on the size of rw: for
rw>0.95 use the simple F statistic, but for 0.95>rw>0.7 you should use the F-statistic with the K correction
factor. Otherwise you should use the t-statistic. StatsWatsonWilliamsTest computes both the (corrected) F-
statistic and the t-statistic as well as their corresponding critical values.
 V_flag will be set to -1 for any error and to zero otherwise.

References
See, in particular, Section 6.3 of:
Mardia, K.V., Statistics of Directional Data, Academic Press, New York, New York, 1972.
See, in particular, Chapter 27 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsWeibullCDF

V-859

See Also
Chapter III-12, Statistics for a function and operation overview; StatsWatsonUSquaredTest and
StatsWheelerWatsonTest.

StatsWeibullCDF
StatsWeibullCDF(x, m, s, g)
The StatsWeibullCDF function returns the Weibull cumulative distribution function

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsWeibullPDF and
StatsInvWeibullCDF functions.

StatsWeibullPDF
StatsWeibullPDF(x, m, s, g)
The StatsWeibullPDF function returns the Weibull probability distribution function

where m is the location parameter, s is the scale parameter, and g is the shape parameter with x ≥ m and s,
g > 0.

See Also
Chapter III-12, Statistics for a function and operation overview; the StatsWeibullCDF and
StatsInvWeibullCDF functions.

StatsWheelerWatsonTest
StatsWheelerWatsonTest [flags] [srcWave1, srcWave2, srcWave3,…]
The StatsWheelerWatsonTest operation performs the nonparametric Wheeler-Watson test for two or more
samples. Output is to the W_WheelerWatson wave in the current data folder or optionally to a table.

Flags

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/T=k Displays results in a table. k specifies the table behavior when it is closed.

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/WSTR=waveListString

Specifies a string containing a semicolon-separated list of waves that contain sample
data. Use waveListString instead of listing each wave after the flags.

/Z Ignores errors.

F(x;μ,� ,�) = 1� exp �
x � μ
�

�

�
�

�

�

�
�

�

�
�

�

�

�
�

, x � μ �and �� ,� > 0.

f (x;μ,� ,�) =
�

�

x � μ
�

�

�
�

�
�
� �1

exp �
x � μ
�

�

�
�

�
�
�

�

�

	
	

�

�
�

,

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

StatsWilcoxonRankTest

V-860

Details
The StatsWatsonWilliamsTest must have at least two input waves, which contain angles in radians (mod
2π), can be single or double precision, and can be of any dimensionality; the waves must not contain any
NaNs or INFs.
The Wheeler-Watson H0 postulates that the samples came from the same population. The extension of the
test to more than two samples is due to Mardia. The Wheeler-Watson test is not valid for data with ties, in
which case you should use Watson’s U2 test.
 V_flag will be set to -1 for any error and to zero otherwise.

References
Mardia, K.V., Statistics of Directional Data, Academic Press, New York, New York, 1972.
See, in particular, Chapter 27 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.
See Also
Chapter III-12, Statistics for a function and operation overview; StatsWatsonUSquaredTest and
StatsWheelerWatsonTest.

StatsWilcoxonRankTest
StatsWilcoxonRankTest [flags] waveA, waveB
The StatsWilcoxonRankTest operation performs the nonparametric Wilcoxon-Mann-Whitney two-sample
rank test or the Wilcoxon Signed Rank test (for paired data) on waveA and waveB. Output is to the
W_WilcoxonTest wave in the current data folder or optionally to a table.
waveA and waveB must not contain NaNs or INFs.

Flags

/ALPH = val Sets the significance level (default val=0.05).

/APRX=m

Approximations may be appropriate for large sample sizes when computation may
take a long time.

/Q No results printed in the history area.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/TAIL=tail

See Setting Bit Parameters on page IV-12 for details about bit settings.
You can perform any combination of tests by adding their corresponding tail values
(/TAIL=7 tests all tail possiblities). Note that H0 changes according to the selected tail.

Sets the approximation method. It computes an exact critical value by default.
m=1: Standard normal approximation with ties (Zar P. 151).
m=2: Improved normal approximation (Zar P. 152).

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

tail is a bitwise parameter that specifies the tails tested.
Bit 0: Lower tail.
Bit 1: Upper tail (default).
Bit 2: Two tail.

StatsWilcoxonRankTest

V-861

Details
The Wilcoxon-Mann-Whitney test combines the two samples and ranks them to compute the statistic U. If
waveA has m points and waveB has n points, then U is given by

with the corresponding statistic U' given by

where Ri is the ranks of data in the ith wave (ranked in ascending order).

The distribution of U is difficult to compute, requiring the number of possible permutations of m elements
of waveA and n elements of waveB that give rise to U values that do not exceed the one computed. The
distribution is computed according to the algorithm developed by Klotz. With increasing sample size one
can avoid the time consuming distribution computation and use a normal approximation instead. Klotz
recommends this approximation for N=m+n~100.
Use /APRX=2 for the best approximation. The two approximations are discussed by Zar.
The Wilcoxon Signed Rank Test, or Wilcoxon Paired-Sample Test, ranks the difference between pairs of
values and computes the sums of the positive ranks (Tp) and the negative ranks (Tm). It calculates Tp and
Tm and P-values for all tail combinations. The P-values are:
P_lower_tail P(Wp<=Tp)
P_upper_tail P(Wp>=Tp)
P_two_tail 2*Min(P_lower_tail,P_upper_tail)
Wp is the generic symbol for the sum of positive ranks for the given number of pairs.
 V_flag will be set to -1 for any error and to zero otherwise.
In both Wilcoxon-Mann-Whitney two-sample rank test and the Wilcoxon Signed Rank test H0 is that the
data in the two input waves are statistically the same.

References
Cheung, Y.K., and J.H. Klotz, The Mann Whitney Wilcoxon distribution using linked lists, Statistica Sinica,

7, 805-813, 1997.
See in particular Chapter 15 of:
Klotz, J.H., Computational Approach to Statistics, <http://www.stat.wisc.edu/~klotz/Book.pdf>.
Streitberg, B., and J. Rohmel, Exact distributions for permutations and rank tests: An introduction to some

recently published algorithms, Statistical Software Newsletter, 12, 10-17, 1986.
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview.
StatsAngularDistanceTest, StatsKWTest, StatsWilcoxonRankTest

/WSRT Performs the Wilcoxon Signed Rank Test for paired data. The testh computes statistics
Tp and Tm, lower-tail, upper-tail, and two-tail P-values. If the number of samples is
less than 200 it computes exact P-values, otherwise they are computed using the
normal approximation. Do not use /ALPH, /APRX, and /TAIL with this flag.

/Z Ignores errors.

U = mn +
m m +1()

2
� R1,

U ' = nm +
n n +1()

2
� R2.

http://www.stat.wisc.edu/~klotz/Book.pdf

StatsWRCorrelationTest

V-862

StatsWRCorrelationTest
StatsWRCorrelationTest [flags] waveA, waveB
The StatsWRCorrelationTest operation performs a Weighted Rank Correlation test on waveA and waveB,
which contain the ranks of sequential factors. The waves are 1-based, integer ranks of factors in the range
1-2^31.
StatsWRCorrelationTest computes a top-down correlation coefficient using Savage sums as well as the
critical and P-values. Output is to the W_StatsWRCorrelationTest wave in the current data folder or
optionally to a table.

Flags

Details
The StatsWRCorrelationTest input waves must be one-dimensional and have the same length. The waves are 1-
based, integer ranks of factors corresponding to the point number. Ranks may have ties in which case you should
repeat the rank value. For example, if the second and third entries have the same rank you should enter {1,2,2,4}.
H0 stipulates that the same factors are most important in both groups represented by waveA and waveB.
The top-down correlation is the sum of the product of Savage sums for each row:

where n is the number of rows and the Savage sum Si is

and SiA corresponds to the Si value of the rank of the data in row (i-1) of waveA.

References
Iman, R.L., and W.J. Conover, A measure of top-down correlation, Technometrics, 29, 351-357, 1987.
See, in particular, Chapter 19 of:
Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

See Also
Chapter III-12, Statistics for a function and operation overview; StatsLinearCorrelationTest,
StatsRankCorrelationTest, StatsTopDownCDF, and StatsInvTopDownCDF.

/ALPH = val Sets the significance level (default val=0.05).

/Q No results printed in the history area.

/T=k

The table is associated with the test, not the data. If you repeat the test, it will update
any existing table with the new results.

/Z Ignores errors.

Displays results in a table. k specifies the table behavior when it is closed.
k=0: Normal with dialog (default).
k=1: Kills with no dialog.
k=2: Disables killing.

rTD =
SiASiB � n

i=1

n

�

n � S1

,

Si =
1

jj= i

n

 ,

StopMSTimer

V-863

StopMSTimer
StopMSTimer(timerRefNum)
The StopMSTimer function frees up the timer associated with the timerRefNum and returns the number of
elapsed microseconds since StartMSTimer was called for this timer.

Parameters
timerRefNum is the value returned by StartMSTimer or the special values -1 or -2. If timerRefNum is not valid
then StopMSTimer returns 0.
On Windows, passing -1 returns the clock frequency of the timer and. On Macintosh, it returns NaN.
Passing -2 returns the time in microseconds since the computer was started.

Details
If you want to make sure that all timers are free, call StopMSTimer ten times with timerRefNum equal to 0
through 9. It is OK to stop a timer that you never started.

Examples
How long does an empty loop take on your computer?
Function TestMSTimer()

Variable timerRefNum
Variable microSeconds
Variable n

timerRefNum = StartMSTimer
if (timerRefNum == -1)

Abort "All timers are in use"
endif
n=10000
do

n -= 1
while (n > 0)
microSeconds = StopMSTimer(timerRefNum)
Print microSeconds/10000, "microseconds per iteration"

End

See Also
The StartMSTimer and ticks functions.

str2num
str2num(str)
The str2num function returns a number represented by the string expression str.

Details
str2num returns NaN if str does not contain the text for a number.
str2num skips leading spaces and tabs and then reads up to the first non-numeric character.

See Also
The char2num, num2char and num2str functions.
The sscanf operation for more complex parsing jobs.

Strconstant
Strconstant ksName="literal string"
The Strconstant declaration defines the string literal string under the name ksName for use by other code,
such as in a switch construct.

See Also
The Constant keyword for numeric types, Constants on page IV-47, and Switch Statements on page IV-41.

String

V-864

String
String [/G] strName [=strExpr][, strName [=strExpr]…]
The String operation creates string variables and gives them the specified names.

Flags

Details
The string variable is initialized when it is created if you supply the =strExpr initializer. However, when
String is used to declare a function parameter, it is an error to attempt to initialize it.
You can create more than one string variable at a time by separating the names and optional initializers with
commas.
If used in a procedure, the new string is local to that procedure unless the /G (global) flag is used. If used
on the command line, String is equivalent to String/G.
strName can optionally include a data folder path.

See Also
String Variables on page II-97, Working With Strings on page IV-12

StringByKey
StringByKey(keyStr, kwListStr [, keySepStr [, listSepStr [, matchCase]]])
The StringByKey function returns a substring extracted from kwListStr based on the specified key contained
in keyStr. kwListStr should contain keyword-value pairs such as "KEY=value1,KEY2=value2" or
"Key:value1;KEY2:value2", depending on the values for keySepStr and listSepStr.
Use StringByKey to extract a string value from a string containing a "key1:value1;key2: value2;"
style list such as those returned by functions like AxisInfo or TraceInfo.
If the key is not found or if any of the arguments is "" then a zero-length string is returned.
keySepStr, listSepStr, and matchCase are optional; their defaults are ":", ";", and 0 respectively.

Details
keyStr is limited to 255 bytes.
kwListStr is searched for an instance of the key string bound by listSepStr on the left and a keySepStr on the
right. The text up to the next listSepStr is returned.
kwListStr is treated as if it ends with a listSepStr even if it doesn’t.
Searches for keySepStr and listSepStr are always case-sensitive. Searches for keyStr in kwListStr are usually
case-insensitive. Setting the optional matchCase parameter to 1 makes the comparisons case sensitive.
In Igor6, only the first byte of keySepStr and listSepStr was used. In Igor7 and later, all bytes are used.
If listSepStr is specified, then keySepStr must also be specified. If matchCase is specified, keySepStr and
listSepStr must be specified.

Examples
Print StringByKey("BKEY", "AKEY:hello;BKEY:nok-nok") // prints "nok-nok"
Print StringByKey("KY", "KX=1;ky=hello", "=") // prints "hello"
Print StringByKey("KY", "KX:1,KY:joey,", ":", ",") // prints "joey"
Print StringByKey("kz", "KZ:1st,kz:2nd,", ":", ",") // prints "1st"
Print StringByKey("kz", "KZ:1st,kz:2nd,", ":", ",", 1)// prints "2nd"

See Also
The NumberByKey, RemoveByKey, ReplaceNumberByKey, ReplaceStringByKey, ItemsInList,
AxisInfo, IgorInfo, SetWindow, and TraceInfo functions.

StringCRC
StringCRC(inCRC,str)
The StringCRC function returns a 32-bit cyclic redundancy check value of bytes in str starting with inCRC.

/G Creates a global string. Overwrites any existing string with the same name.

StringFromList

V-865

Pass 0 for inCRC the first time you call StringCRC for a particular stream of bytes as represented by the
string data.
Pass the last-returned value from StringCRC for inCRC if you are creating a CRC value for a given stream
of bytes through multiple calls to StringCRC.

Details
Polynomial used is:
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1
See crc32.c in the public domain source code for zlib for more information.
See Also
The WaveCRC function.

StringFromList
StringFromList(index, listStr [, listSepStr] [, offset])
The StringFromList function returns the indexth substring extracted from listStr starting offset bytes into
listStr. listStr should contain items separated by listSepStr, such as "abc;def;".
Use StringFromList to extract an item from a string such as those returned by functions like TraceNameList and
AnnotationList.

Parameters
index is the zero-based index of the list item that you want to get. If index < 0, or index ≥ the number of items
in list, or if listStr or listSepStr is "", then a zero-length string is returned.
listStr contains a series of text items separated by listSepStr. The trailing separator is optional though
recommended. For example, these are both valid lists:
"First;Second;"
"First;Second"

listSepStr is optional. If omitted it defaults to ";". Prior to Igor Pro 7, only the first byte of listSepStr was used.
Now all bytes are used.
offset is optional and requires Igor Pro 7 or later. If omitted it defaults to 0. The search begins offset bytes into
listStr. When iterating through lists containing large numbers of items, using the offset parameter provides
dramatically faster execution.

Details
For optimal performance, especially with lists larger than 100 items, provide the separatorStr and offset
parameters as shown in the DemoStringFromList example below. When using this technique, the index
parameter must be 0 and the offset parameter controls which list item is returned.

Examples
Print StringFromList(0, "wave0;wave1;") // Prints "wave0"
Print StringFromList(2, "wave0;wave1;") // Prints ""
Print StringFromList(1, "wave0;;wave2") // Prints ""

// Iterate quickly over a list using the offset parameter
Function DemoQuickStringFromList(list)

String list // A semicolon-separated string list

String separator = ";"
Variable separatorLen = strlen(separator)
Variable numItems = ItemsInList(list)

Variable offset = 0
Variable i
for(i=0; i<numItems; i+=1)

// When using offset, the index parameter is always 0
String item = StringFromList(0, list, separator, offset)
// Do something with item
offset += strlen(item) + separatorLen

endfor
End

StringList

V-866

See Also
The AddListItem, ItemsInList, FindListItem, RemoveListItem, RemoveFromList, WaveList,
WhichListItem, StringByKey, ListMatch, ControlNameList, TraceNameList, StringList, VariableList,
and FunctionList functions.

StringList
StringList(matchStr, separatorStr)
The StringList function returns a string containing a list of global string variables selected based on the
matchStr parameter. The string variables listed are all in the current data folder.

Details
For a string variable name to appear in the output string, it must match matchStr. The first character of
separatorStr is appended to each string variable name as the output string is generated.
The name of each string variable is compared to matchStr, which is some combination of normal characters
and the asterisk wildcard character that matches anything. For example:

The list contains names only, without data folder paths. Thus, they are not suitable for accessing string
variables outside the current data folder.
matchStr may begin with the ! character to return windows that do not match the rest of matchStr. For example:

The ! character is considered to be a normal character if it appears anywhere else, but there is no practical
use for it except as the first character of matchStr.

Examples

See Also
See the VariableList and WaveList functions.

StringMatch
StringMatch(string, matchStr)
The StringMatch function tests string for a match to matchStr. You may include asterisks in matchStr as a
wildcard character.
StringMatch returns 1 to indicate a match, 0 for no match or NaN if it ran out of memory.

Details
matchStr is some combination of normal characters and the asterisk wildcard character that matches
anything. For example:

"*" Matches all string variable names

"xyz" Matches name xyz only

"*xyz" Matches names which end with xyz

"xyz*" Matches names which begin with xyz

"*xyz*" Matches names which contain xyz

"abc*xyz" Matches names which begin with abc and end with xyz

"!*xyz" Matches variable names which do not end with xyz

StringList("*",";") Returns a list of all string variables in the current data folder.

StringList("S_*", ";") Returns a list of all string variables in the current data folder
whose names begin with “S_”.

"*" Matches any string.

"xyz" Matches the string “xyz” only.

strlen

V-867

If matchStr begins with the ! character, a match is indicated if string does not match matchStr. For example:

The ! character is considered to be a normal character if it appears anywhere else.
Note that matching is case-insensitive, so “xyz” also matches “XYZ” or “Xyz”.
Also note that it is impossible to match an asterisk in string: use GrepString instead.
Among other uses, the StringMatch function can be used to build your own versions of the WaveList
function, using NameOfWave and stringmatch to qualify names of waves found by WaveRefIndexedDFR.

See Also
The GrepString, cmpstr, strsearch, Demo, ListMatch, and ReplaceString functions and the sscanf
operation.

strlen
strlen(str)
The strlen function returns the number of bytes in the string expression str.
strlen returns NaN if the str is NULL. A local string variable or a string field in a structure that has never
been set is NULL. NULL is not the same as zero length. Use numtype to test if the result from strlen is NaN.

Examples
String zeroLength = ""
String neverSet
Print strlen(zeroLength), strlen(neverSet)

// Test if a string is null
Variable len = strlen(neverSet) // NaN if neverSet is null
if (numtype(len) == 2) // strlen returned NaN?

Print "neverSet is null"
endif

See Also
Characters Versus Bytes on page III-433, Character-by-Character Operations on page IV-162

strsearch
strsearch(str, findThisStr, start [, options])
The strsearch function returns the numeric position of the string expression findThisStr in the string
expression str.

Details
strsearch performs a case-sensitive search.
strsearch returns -1 if findThisStr does not occur in str.
The search starts from the character position in str specified by start; 0 is the first character in str.
strsearch limits start to one less than the length of str, so it is useful to use Inf for start when searching
backwards to ensure that the search is from the end of str.
The optional options parameter is a bitmask specifying the search options:

"*xyz" Matches strings ending with “xyz”, for instance “abcxyz”.

"xyz*" Matches strings beginning with xyz, for instance “xyzpqr”.

"*xyz*" Matches strings containing xyz, for instance “abcxyzpqr”.

"abc*xyz" Matches strings beginning with abc and ending with xyz, for instance “abcpqrxyz”.

"!*xyz" Matches strings which do not end with xyz.

1: Search backwards from start.

2: Ignore case.

strswitch-case-endswitch

V-868

Examples
String str="This is a test isn't it?"
Print strsearch(str,"test",0) // prints 10
Print strsearch(str,"TEST",0) // prints -1
Print strsearch(UpperStr(str),"TEST",0) // prints 10
Print strsearch(str,"TEST",0,2) // prints 10
Print strsearch(str,"is",0) // prints 2
Print strsearch(str,"is",3) // prints 5
Print strsearch(str,"is",Inf,1) // prints 15

See Also
sscanf, FindListItem, ReplaceString, Character-by-Character Operations
See Setting Bit Parameters on page IV-12 for details about bit settings.

strswitch-case-endswitch
strswitch(<string expression>)

case <literal><constant>:
<code>
[break]

[default:
<code>]

endswitch
A strswitch-case-endswitch statement evaluates a string expression and compares the result to the case
labels using a case-insensitive comparison. If a case label matches string expression, then execution proceeds
with code following the matching case label. When none of the cases match, execution will continue at the
default label, if it is present, or otherwise the strswitch will be exited with no action taken. Note that
although the break statement is optional, in almost all case statements it will be required for the strswitch
to work correctly.

See Also
Switch Statements on page IV-41, default and break for more usage details.

STRUCT
STRUCT structureName localName
STRUCT is a reference that creates a local reference to a Structure accessed in a user-defined function. When
a Structure is passed to a user function, it can only be passed by reference, so in the declaration within the
function you must use &localStructName to define the function input parameter.

See Also
Structures in Functions on page IV-91 for further information.
See the Structure keyword for creating a Structure definition.

StructGet
StructGet [/B=b] structVar, waveStruct[[colNum]]
StructGet /S [/B=b] structVar, strStruct
The StructGet operation reads binary numeric data from a specified column of a wave or from a string
variable and copies the data into the designated structure variable. The source wave or string will have been
filled beforehand by StructPut.

Parameters
structVar is the name of an existing structure that is to be filled with new data values.
waveStruct is the name of a wave containing binary numeric data that will be used to fill structVar. Use the
optional colNum parameter to specify a column from the structure wave. The contents of waveStruct are
created beforehand using StructPut.
strStruct is the name of a string variable containing binary numeric data. The contents of strStruct are
created beforehand using StructPut.

3: Search backwards and ignore case.

StructPut

V-869

Flags

Details
The data that are stored in waveStruct and strStruct are in binary format so you can not directly view a
meaningful representation of their contents by printing them or viewing the wave in a table. To view the
contents of waveStruct or strStruct you must use StructGet to export them back into a structure and then
retrieve the members.
If colNum is out of bounds it will be clipped to valid values and an error reported. If the row dimension does
not match the structure size, as much data as possible will be copied to the structure.
By default, data are read in big-endian, high-byte order (Motorola). This allows data written on one
platform to be read on the other.

See Also
The StructPut operation for writing structure data to waves or strings.

StructPut
StructPut [/B=b] structVar, waveStruct[[colNum]]
StructPut /S [/B=b] structVar, strStruct
The StructPut operation copies the binary numeric data in a structure variable to a specified column in a wave
or to a string variable. The data in the wave or string can be read out into another structure using StructGet.

Parameters
structVar is the name of a structure from which data will be exported.
waveStruct is the name of an existing wave to which data will be exported. Use the optional colNum
parameter to specify a column in waveStruct to contain the data. The first column of waveStruct will be filled
if colNum is omitted.
strStruct is the name of an existing string variable to which data will be exported.

Flags

Details
The structure to be exported must contain only numeric data in either integer, floating point, or double
precision format. If the structure contains any objects such as String, NVAR, WAVE, etc., then an error will
result at compile time.
If needed, StructPut will redimension waveStruct to unsigned byte format, will set the number of rows to equal
the size of the structure, and set the column dimension large enough to accommodate the size specified by
colNum. You can think of waveStruct as a one-dimensional array of structure contents indexed by colNum
although the wave is actually two-dimensional with each column containing a copy of a separate structure.

/B=b

/S Reads binary data from a string variable, which was set previously with StructPut.

/B=b

/S Writes binary data to a string variable.

Sets the byte ordering for reading of structure data.
b=0: Reads in native byte order.
b=1: Reads bytes in reversed order.
b=2: Default; reads data in big-endian, high-byte-first order (Motorola).
b=3: Reads data in little-endian, low-byte-first order (Intel).

Sets the byte ordering for writing of structure data.
b=0: Writes in native byte order.
b=1: Writes bytes in reversed order.
b=2: Default; writes data in big-endian, high-byte-first order (Motorola).
b=3: Writes data in little-endian, low-byte-first order (Intel).

Structure

V-870

By default, data are written in big-endian, high-byte order (Motorola). This allows data written on one
platform to be read on the other.
After you have exported the structure data to waveStruct or strStruct they will contain binary data that you
cannot inspect directly. To view the contents of waveStruct or strStruct, you must use the original structure
or use StructGet to export them into another structure.

See Also
The StructGet operation for reading structure data from waves or strings.

Structure
Structure structureName

memType memName [arraySize] [, memName [arraySize]]
…

EndStructure
The Structure keyword introduces a structure definition in a user function. Within the body of the structure
you declare the member type (memType) and the corresponding member name(s) (memName). Each
memName may be declared with an optional array size.

Details
Structure member types (memType) can be any of the following Igor objects: Variable, String, WAVE,
NVAR, SVAR, DFREF, FUNCREF, or STRUCT.
Igor structures also support additional member types, as given in the next table, for compatibility with C
programming structures and disk files.

The Variable and double types are identical although Variable can be also specified as complex (using the
/C flag).
Each structure member may have an optional arraySize specification, which gives the number of elements
contained by the structure member. The array size is an integer number from 1 to 400 except for members
of type STRUCT for which the upper limit is 100.

See Also
Structures in Functions on page IV-91 for further information.
See the STRUCT declaration for creating a local reference to a Structure.

Igor Member Type C Equivalent Size Note

char signed 8-bit int 1 byte

uchar unsigned 8-bit int 1 byte

int16 signed 16-bit int 2 bytes

uint16 unsigned 16-bit int 2 bytes

int32 signed 32-bit int 4 bytes

uint32 unsigned 32-bit int 4 bytes

int64 signed 64-bit int 8 bytes Requires Igor Pro 7.00 or later

uint64 unsigned 64-bit int 8 bytes Requires Igor Pro 7.00 or later

float float 4 bytes

double double 8 bytes

StrVarOrDefault

V-871

StrVarOrDefault
StrVarOrDefault(pathStr, defStrVal)
The StrVarOrDefault function checks to see if pathStr points to a string variable and if so, it returns its value.
If the string variable does not exist, returns defStrVal instead.

Details
StrVarOrDefault initializes input values of macros so they can remember their state without needing global
variables to be defined first. Numeric variables use the corresponding numeric function, NumVarOrDefault.

Examples
Macro foo(nval,sval)

Variable nval=NumVarOrDefault("root:Packages:mypack:nvalSav",2)
String sval=StrVarOrDefault("root:Packages:mypack:svalSav","Hi")

DFREF dfSav= GetDataFolderDFR()
NewDataFolder/O/S root:Packages
NewDataFolder/O/S mypack
Variable/G nvalSav= nval
String/G svalSav= sval
SetDataFolder dfSav

End

StudentA
StudentA(t, DegFree)

The StudentA function returns the area from -t to t under the Student’s T distribution having DegFree degrees
of freedom. That is, it returns the probability that a random sample from Student’s T is between -t and t.
Note that this is the bi-tail result. That is, it gives the area from -t to t, rather than the cumulative area from
-∞ to t. It is this latter number that is commonly tabulated- StudentA returns the probability 1-α where the
area from -∞ to t is the probability 1-α/2.
StudentA tests whether a normally-distributed statistic is significantly different from a certain value. You
could use it to test whether an intercept from a line fit is significantly different from zero:
Make/O/N=20 Data=0.5*x+2+gnoise(1) // line with Gaussian noise
Display Data
CurveFit line Data /D
Print "Prob = ", StudentA(W_coef[0]/W_sigma[0], V_npnts-2)

Because the noise is random, the results will differ slightly each time this is tried. When we did it, the result was:
Prob = 0.999898

which indicates that the intercept of the line fit was different from zero with 99.99 per cent probability.

See Also
StatsStudentCDF, StatsStudentPDF, StatsInvStudentCDF

StudentT
StudentT(Prob, DegFree)

The StudentT function returns the t value corresponding to an area Prob under the Student’s T distribution
from -t to t for DegFree degrees of freedom.
Note that this is a bi-tail result, which is what is usually desired. Tabulated values of the Student’s T
distribution are commonly the one-sided result.
StudentT calculates confidence intervals from standard deviations for normally-distributed statistics. For
instance, you can use it to calculate a confidence interval for the coefficients from a curve fit:
Make/O/N=20 Data=0.5*x+2+gnoise(1) // line with Gaussian noise
Display Data

Note: This function is deprecated. New code should use the more accurate StatsStudentCDF.

Note: This function is deprecated. New code should use the more accurate
StatsInvStudentCDF.

Submenu

V-872

CurveFit line Data /D
print "intercept = ", W_coef[0], "±", W_sigma[0]*StudentT(0.95, V_npnts-2)
print "slope = ", W_coef[1], "±", W_sigma[1]*StudentT(0.95, V_npnts-2)

See Also
StatsStudentCDF, StatsStudentPDF, StatsInvStudentCDF

Submenu
Submenu menuNameStr
The Submenu keyword introduces a submenu definition. It is used inside a Menu definition. See Chapter
IV-5, User-Defined Menus for further information.

sum
sum(waveName [, x1, x2])
The sum function returns the sum of the wave elements for points from x=x1 to x=x2.

Details
The X scaling of the wave is used only to locate the points nearest to x=x1 and x=x2. To use point indexing,
replace x1 with pnt2x(waveName,pointNumber1), and a similar expression for x2.
If x1 and x2 are not specified, they default to -∞ and +∞, respectively.
If the points nearest to x1 or x2 are not within the point range of 0 to numpnts(waveName)-1, sum limits them
to the nearest of point 0 or point numpnts(waveName)-1.
If any values in the point range are NaN, sum returns NaN.

Examples
Make/O/N=100 data; SetScale/I x 0,Pi,data
data=sin(x)
Print sum(data,0,Pi) // the entire point range, and no more
Print sum(data) // same as -infinity to +infinity
Print sum(data,Inf,-Inf) // +infinity to -infinity

The following is printed to the history area:
Print sum(data,0,Pi) // the entire point range, and no more

63.0201
Print sum(data) // same as -infinity to +infinity

63.0201
Print sum(data,Inf,-Inf) // +infinity to -infinity

63.0201

See Also
mean, area, SumSeries, SumDimension

SumDimension
SumDimension [flags] srcWave
The SumDimension operation sums values in srcWave along the specified dimension.
The SumDimension operation was added in Igor Pro 7.00.

Flags

/D=dimension Specifies a zero-based dimension number.

If you omit /D the operation sums the highest dimension in the wave.

dimension=0: Rows
dimension=1: Columns
dimension=2: Layers
dimension=3: Chunks

SumSeries

V-873

Details
The operation sums one dimension of an N dimensional wave producing an output wave with N-1
dimensions except if srcWave is 1D wave in which case SumDimension produces a single point 1D output
wave. For example, given a 4D wave of dimensions dim0 x dim1 x dim2 x dim3 and the command:
SumDimension/D=1/DEST=wout wave4d

creates a wave wout that satisfies

and wout has dimensions dim0 x dim2 x dim3.
If any values in srcWave are NaN, the corresponding sum element will be NaN.

See Also
sum
MatrixOp keywords sumRows, sumCols, sumBeams
ImageTransform keywords sumAllCols, sumAllRows, sumPlane, sumPlanes

SumSeries
SumSeries [flags] keyword=value
The SumSeries operation computes the sum of the results returned from a user-defined function for input
values between two specified index limits.
SumSeries was added in Igor Pro 7.00.

Flags

Keywords

/DEST=destWave Specifies the output wave created by the operation. If destWave already exists it is
overwritten by the new results.
If you omit /DEST the operation saves the data in W_SumDimension if the output
wave is 1D or M_SumDimension otherwise.

/Y=type Specifies the data type of the output wave. See WaveType for the supported values of
type.
If you omit /Y, the output wave is double precision.
Pass -1 for type to force the output wave to have the same data type as srcWave.

/CCNT=nc When summing with one or two infinite limits you can use this flag to specify the
minimum number of calls to the summand function which, when added to the sum,
produce a change that is less than the tolerance. By default nc=10.
If you are summing a well-behaved monotonic series it is sufficient to set nc=1. In
some pathological cases it is useful to check that the sum remains effectively
unchanged even after many terms are added to the series.

/INAN Ignore NaNs returned from the user function. In the case of a complex valued
summand, a NaN in either the real or imaginary components excludes the
contribution of the term to the sum.

/Q Quiet mode; do not print in the history.

/Z[=z] /Z or /Z=1 prevents reporting any errors. If the operation encounters an error it sets
V_Flag to the error code.

lowerLimit=n1 Specifies the starting index at which the summand is evaluated. n1 must be either an
integer -INF.

wout[i][k][l] = wave4d[i][j][k][l],
j=0

dim1−1

∑

SumSeries

V-874

The SumSeries Summand Function
You specify the summand function using the series keyword. The form of the user-defined summand
function is:
Function summandReal(inW,index)

Wave inW
Variable index
... compute something
return result

End

The index changes by 1 for each successive call to the summand.
You can also define a complex summand function:
Function/C summandComplex(inW,index)

Wave inW
Variable index
... compute something
Variable/C result
return result

End

Details
The SumSeries operation is primarily intended for use with one or two infinite limits. If both limits are finite
the operation performs the straightforward sum by calling the summand function once for every index
from lowerLimit to upperLimit, inclusive.
If one limit is infinite the sum is evaluated by starting from the finite limit and proceeding in the direction
of the infinite limit index until convergence is reached. Convergence in this context is defined as multiple
(nc) consecutive calls to the summand which do not change the value of the sum by more than the tolerance
value. By default nc=10 but you can change it using the /CCNT flag.
When both limits are infinite the operation first computes the sum for indices 0 to INF and then the sum
from -1 to -INF. The two calculations are independent and require that the same convergence condition is
met independently in each case. When the summand function is complex the convergence condition must
hold for the real and imaginary components independently.
The operation does not perform any test on the summand function to estimate its rate of convergence. If
you provide a non-converging summand function the operation can run indefinitely. You can abort it by
pressing the User Abort Key Combinations or by clicking the Abort button.
The result of the sum is stored in V_resultR and, if the summand function returns a complex result,
V_resultI.
If the calculation completes without error V_Flag is set to 0. Otherwise it contains an error code.

Examples
A simple test case is the geometric series for powers of 1/2. The sum of xi for i=0 to i=INF where 0<x<1 is
given by 1/(1-x). For x=1/2, this sum is 2.

series=userFunc Specifies the name of the user function that returns the summand (i.e., a single term
in the sum that corresponds to the input index). See The SumSeries Summand
Function below for details.

upperLimit=n2 Specifies the last value at which the summand is evaluated. n2 must be either an
integer INF.

tolerance=tol Specifies a tolerance value used when one or both of the limits are infinite. By default,
the tolerance value is 1e-10. tol must be finite. If both limits are finite this keyword is
ignored.

paramWave=pw pw is a single-precision or double-precision wave that is passed to the summand
function. This is useful if you need to provide the summand function external/global
data.
If you omit the paramWave keyword then the summand function receives a null
wave as the parameter wave.

SVAR

V-875

Function s1(inW,index)
Wave/z inW
Variable index

return 0.5^index
End

// Execute:
SumSeries series=s1,lowerLimit=0,upperLimit=INF
Print V_resultR

In the following example we use the series expansion of cosine and sine to evaluate exp(i*pi).
Function/C s2(inW,index)

Wave/z inW
Variable index

Variable n2=2*index
Variable xx=pi^n2
Variable sn=(-1)^index
Variable fn=Factorial(n2)
return cmplx(sn*xx/fn,sn*xx*pi/(fn*(n2+1)))

End

// Execute:
SumSeries series=s2,lowerLimit=0,upperLimit=INF
Print V_resultR,V_resultI

See Also
Integrate1D, sum

SVAR
SVAR [/Z] localName [= pathToStr][, localName1 [= pathToStr1]]…
SVAR is a declaration that creates a local reference to a global string variable accessed in a user-defined
function.
The SVAR reference is required when you access a global string variable in a function. At compile time, the
SVAR statement specifies a local name referencing a global string variable. At runtime, it makes the
connection between the local name and the actual global variable. For this connection to be made, the global
string variable must exist when the SVAR statement is executed.
When localName is the same as the global string variable name and you want to reference a global variable
in the current data folder, you can omit pathToStr.
pathToStr can be a full literal path (e.g., root:FolderA:var0), a partial literal path (e.g., :FolderA:var0) or $
followed by string variable containing a computed path (see Converting a String into a Reference Using
$ on page IV-57).
You can also use a data folder reference or the /SDFR flag to specify the location of the string variable if it
is not in the current data folder. See Data Folder References on page IV-72 and The /SDFR Flag on page
IV-74 for details.
If the global variable may not exist at runtime, use the /Z flag and call SVAR_Exists before accessing the
variable. The /Z flag prevents Igor from flagging a missing global variable as an error and dropping into
the Igor debugger. For example:
SVAR/Z nv=<pathToPossiblyMissingStringVariable>
if(SVAR_Exists(sv))

<do something with sv>
endif

Note that to create a global string variable, you use the String/G operation.

Flags

See Also
SVAR_Exists function.
Accessing Global Variables and Waves on page IV-59.

/Z An SVAR reference to a null string variable does not cause an error or a debugger
break.

SVAR_Exists

V-876

Converting a String into a Reference Using $ on page IV-57.

SVAR_Exists
SVAR_Exists(name)
The SVAR_Exists function returns 1 if the specified SVAR reference is valid or 0 if not. It can be used only
in user-defined functions.
For example, in a user function you can test if a global string variable exists like this:
SVAR /Z str1 = gStr1 // /Z prevents debugger from flagging bad SVAR
if (!SVAR_Exists(str1)) // No such global string variable?

String/G gStr1 = "" // Create and initialize it
endif

See Also
WaveExists, NVAR_Exists, and Accessing Global Variables and Waves on page IV-59.

switch-case-endswitch
switch(<numeric expression>)

case <literal><constant>:
<code>
[break]

[default:
<code>]

endswitch
A switch-case-endswitch statement evaluates a numerical expression. If a case label matches numerical
expression, then execution proceeds with code following the matching case label. When no cases match,
execution continues at the default label, if present, or otherwise the switch exits with no action taken. Note
that although the break statement is optional, in almost all case statements it is required for the switch to
work correctly.

See Also
Switch Statements on page IV-41, default and break for more usage details.

t
t
The t function returns the T value for the current chunk of the destination wave when used in a
multidimensional wave assignment statement. T is the scaled chunk index while s is the chunk index itself.

Details
Unlike x, outside of a wave assignment statement, t does not act like a normal variable.

See Also
Waveform Arithmetic and Assignments on page II-69.
For other dimensions, the p, q, r, and s functions.
For scaled dimension indices, the x, y, and z functions.

TabControl
TabControl [/Z] ctrlName [keyword = value [, keyword = value …]]
The TabControl operation creates tab panels for controls.
For information about the state or status of the control, use the ControlInfo operation.

Parameters
ctrlName is the name of the TabControl to be created or changed.
The following keyword=value parameters are supported:

appearance={kind [, platform]}

TabControl

V-877

Sets the appearance of the control. platform is optional. Both parameters are
names, not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
See DefaultGUIControls Default Fonts and Sizes for how enclosed controls are
affected by native TabControl appearance.
See Button for more appearance details.

disable=d

fColor=(r,g,b) Sets the initial color of the tab labels. r, g, and b can range from 0 to 65535.
To further change the color of the tab labels text, use escape sequences in the text
specified by the tabLabel keyword.
fColor defaults to black (0,0,0).

focusRing=fr

On Macintosh, regardless of this setting, the focus ring appears if you have
enabled full keyboard access via the Shortcuts tab of the Keyboard system
preferences.

font= "fontName" Sets the font used for tabs, e.g., font="Helvetica".

fsize= s Sets the font size for tabs.

fstyle=fs

labelBack=(r,g,b) or 0 Sets fill color for current tab and the interior. r, g, and b are integers from 0 to
65535. If not set, then interior is transparent and the current tab is filled with the
window background. Note that if you use a fill color, draw objects can not be used
because they will be covered up.

noproc Specifies that no function is to run when clicking a tab.

pos={left,top} Sets the position of the control in pixels.

pos+={dx,dy} Offsets the position of the control in pixels.

proc=procName Specifies the function to run when the tab is pressed. Your function must hide and
show other controls as desired. The TabControl does not do this automatically.

size={width,height} Sets TabControl size in pixels.

tabLabel(n)=lbl Sets nth tab label to lbl. Set the label of the last tab to "" to reduce the number of tabs.
Using escape codes you can change the font, size, style, and color of the label. See
Annotation Escape Codes on page III-53 or details.

userdata(UDName)=UDStr

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Draw in gray state; disable control action.

Enables or disables the drawing of a rectangle indicating keyboard focus:
fr=0: Focus rectangle will not be drawn.
fr=1: Focus rectangle will be drawn (default).

fs is a bitwise parameter with each bit controlling one aspect of the font style
as follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold
Bit 1: Italic
Bit 2: Underline
Bit 4: Strikethrough

TabControl

V-878

Flags

Tab Control Action Procedure
The action procedure for a TabControl takes a predefined WMTabControlAction structure as a parameter
to the function:
Function ActionProcName(TC_Struct) : TabControl

STRUCT WMTabControlAction &TC_Struct
…
return 0

End

The “: TabControl” designation tells Igor to include this procedure in the Procedure pop-up menu in
the Tab Control dialog.
See WMTabControlAction for details on the WMTabControlAction structure.
Although the return value is not currently used, action procedures should always return zero.
When clicking a TabControl with the selector arrow, click in the title region. The control is not selected if you
click in the body. This is to make it easier to select controls in the body rather than the TabControl itself.

Example
Designing a TabControl with all the accompanying interior controls can be somewhat difficult. Here is a
suggested technique:
First, create and set the size and label for one tab. Then create the various controls for this first tab. Before
starting on the second tab, create the TabControl’s procedure so that it can be used to hide the first set of
controls. Then add the second tab, click it to run your procedure and start adding controls for this new tab.
When done, update your procedure so the new controls are hidden when you start on the third tab.
Here is an example:
1. Create a panel and a TabControl:
NewPanel /W=(150,50,478,250)
ShowTools
TabControl MyTabControl,pos={29,38},size={241,142},tabLabel(0)="First Tab",value=0

2. Add a few controls to the interior of the TabControl:
Button button0,pos={52,72},size={80,20},title="First"
CheckBox check0,pos={52,105},size={102,15},title="Check first",value=0

3. Write an action procedure:
Function TabActionProc(tc) : TabControl

STRUCT WMTabControlAction& tc

switch(tc.eventCode)
case 2: // Mouse up

Button button0, disable=(tc.tab!=0)
CheckBox check0, disable=(tc.tab!=0)
break

Sets the unnamed user data to UDStr. Use the optional (UDName) to specify a
named user data to create.

userdata(UDName)+=UDStr

Appends UDStr to the current unnamed user data. Use the optional (UDName) to
append to the named UDStr.

value=v Sets current tab number. Tabs count from 0.

win=winName Specifies which window or subwindow contains the named control. If not given,
then the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page
III-87 for details on forming the window hierarchy.

/Z No error reporting.

TabControl

V-879

endswitch
End

4. Set the action procedure and add a new tab:
TabControl MyTabControl,proc=TabActionProc,tabLabel(1)="Second Tab"

5. Click the second tab, which hides the first tab’s controls, and then add new controls like this:
Button button1,pos={58,73},size={80,20},title="Second"
CheckBox check1,pos={60,105},size={114,15},title="Check second",value= 0

6. Finally, change the action procedure by adding these lines at the end:
Button button1,disable=(tc.tab!=1)
CheckBox check1,disable=(tc.tab!=1)

See Also
The ControlInfo operation for information about the control along with the ModifyControl and
ModifyControlList operations. Chapter III-14, Controls and Control Panels, for details about control
panels and controls. The GetUserData operation for retrieving named user data.

TabControl
TabControl
TabControl is a procedure subtype keyword that identifies a macro or function as being an action procedure
for a user-defined tab control. See Procedure Subtypes on page IV-193 for details. See TabControl for
details on creating a tab control.

Table
Table
Table is a procedure subtype keyword that identifies a macro as being a table recreation macro. It is
automatically used when Igor creates a window recreation macro for a table. See Procedure Subtypes on
page IV-193 and Killing and Recreating a Table on page II-176 for details.

TableStyle
TableStyle
TableStyle is a procedure subtype keyword that puts the name of the procedure in the Style pop-up menu
of the New Table dialog and in the Table Macros menu. See Table Style Macros on page II-205 for details.

TableInfo
TableInfo(winNameStr, itemIndex)
The TableInfo function returns a string containing a semicolon-separated list of keywords and values that
describe a column in a table or overall properties of the table. The main purpose of TableInfo is to allow an
advanced Igor programmer to write a procedure which formats or arranges a table or which manipulates
the table selection.

Parameters
winNameStr is the name of an existing table window or "" to refer to the top table.
itemIndex is one of the following:

TableInfo returns "" in the following situations:
• winNameStr is "" and there are no table windows.
• winNameStr is a name but there are no table windows with that name.
• itemIndex not -2 and is out of range for an existing column.

itemIndex Value Returns

-2 Information about the table as a whole.

-1 Information about the Point column

≥0 Information about a column other than the Point column. 0 refers to the first column
after the Point column, 1 refers to the second column after the Point column, and so on.

TableInfo

V-880

Details
If itemIndex is -2, the returned string describes the table as a whole and contains the following keywords,
with a semicolon after each keyword-value pair.

If itemIndex is -1 up to but not including the number of used columns to the right of the Point column, the
returned string describes the specified column and contains the following keywords, with a semicolon after
each keyword-value pair.

Keyword Information Following Keyword

TABLENAME The name of the table.

HOST The host specification of the table’s host window if it is a subwindow or "" if
it is a top-level table window.

ROWS Number of used rows in the table.

COLUMNS Number of used columns in the table including the Point column.

SELECTION A description of the table selection as you would specify it when invoking the
ModifyTable operation’s selection keyword.

FIRSTCELL An identification of the first visible data cell in the top/left corner of the table
in row-column format. The first data cell is at location 0, 0.

LASTCELL An identification of the last visible data cell in the bottom/right corner of the
table in row-column format.

TARGETCELL An identification of the target (highlighted) data cell in row-column format.

ENTERING 1 if an entry has been started in the entry line, 0 if not.

Keyword Information Following Keyword

TABLENAME The name of the table.

HOST The host specification of the table’s host window if it is a subwindow or "" if
it is a top-level table window.

COLUMNNAME Name of the column as you would specify it to the Edit operation if you were
creating a table showing just the column of interest.

TYPE Column’s type which will be one of the following: Unused, Point, Index, Label,
Data, RealData, ImagData. “Index” identifies a index column such as the X
values of a wave. “Label” identifies a column of dimension labels. “Data”
identifies a data column of a scalar wave. RealData and ImagData identify a
real or imaginary column of a complex wave.

INDEX Column’s position. -1 refers to the Point column, 0 to the first data column, and
so on.

DATATYPE Numeric data type of the wave or zero for text waves. See WaveType for a
definition of data type codes.

WAVE A full data folder path to the wave displayed in the column or "" for the Point
column.

COLUMNS The total number of columns in the table from the wave for the column for which
you are getting information. This can be used to skip over all of the columns of
a multidimensional wave.

HDIM The wave dimension displayed horizontally as you move from one column to
the next. 0 means rows, 1 means columns, 2 means layers, 3 means chunks.

VDIM The wave dimension displayed vertically in the column. 0 means rows, 1 means
columns, 2 means layers, 3 means chunks.

TITLE As specified for the ModifyTable operation’s title keyword.

Tag

V-881

Examples
This example makes the table’s target cell advance by one position within the range of selected cells each time
it is called. To try it, create a table, select a range of cells and then run the function using the Macros menu.
Menu "Macros"

"Test/1", /Q, AdvanceTargetCell("")
End

Function AdvanceTargetCell(tableName)
String tableName // Name of table or "" for top table.

String info = TableInfo(tableName, -2)
if (strlen(info) == 0)

return -1 // No such table
endif

String selectionInfo
selectionInfo = StringByKey("SELECTION", info)

Variable fRow, fCol, lRow, lCol, tRow, tCol
sscanf selectionInfo, "%d,%d,%d,%d,%d,%d", fRow, fCol, lRow, lCol, tRow, tCol

tCol += 1
if (tCol > lCol)

tCol = fCol
tRow += 1
if (tRow > lRow)

tRow = fRow
endif

endif

ModifyTable selection=(-1, -1, -1, -1, tRow, tCol)
End

See Also
The ModifyTable operation.

Tag
Tag [flags] [traceOrAxisName, xAttach [, textStr]]
The Tag operation puts a tag on the target or named graph window or subwindow. A tag is an annotation
that is attached to a particular point on a trace, image, waterfall plot, or axis in a graph.

Parameters
traceOrAxisName is an optional trace or axis name. A trace name can be optionally followed by the #
character and an instance number in order to distinguish multiple instances of the same wave in a graph. It

WIDTH Column’s width in points.

FORMAT As specified for the ModifyTable operation’s format keyword.

DIGITS As specified for the ModifyTable operation’s digits keyword.

SIGDIGITS As specified for the ModifyTable operation’s sigDigits keyword.

TRAILINGZEROS As specified for the ModifyTable operation’s trailingZeros keyword.

SHOWFRACSECONDS As specified for the ModifyTable operation’s showFracSeconds keyword.

FONT The name of the column’s font.

SIZE Column’s font size.

STYLE As specified for the ModifyTable operation’s style keyword.

ALIGNMENT 0=left, 1=center, 2=right.

RGB The column’s color in R,G,B format.

ELEMENTS As specified for the ModifyTable operation’s elements keyword.

Keyword Information Following Keyword

Tag

V-882

identifies the trace or image to which the tag is to be attached. An axis name can be one of the standard axis
names (Bottom, Top, Left, or Right) or a user-defined custom axis name.
A string containing traceOrAxisName must be used with the $ operator to specify traceOrAxisName.
xAttach is the X value of the point on the trace to which the tag is to be attached. For a multidimensional
image, it is the linear index into the matrix array. For an axis, xAttach can be the X or Y point depending on
the particular axis to which the tag is attached; specifying NaN for xAttach will center the tag on the axis.
textStr is the text that is to appear in the tag.

Flags

/A=anchorCode

The anchor point is on the tag itself. Any line or arrow drawn from the tag to the wave
starts at the tag’s anchor point. The anchor point also determines the precise spot on
the tag which represents its position.

/AO=ao Sets the text's auto-orientation mode. A non-zero a0 value overrides the /O value.
/AO is for trace tags only. Setting /AO for any other kind of annotation has no effect.
An auto-oriented tag's text rotates whenever it is redrawn, usually when the
underlying data changes, the graph is resized, or when the tag is attached to a new
point.

/B=(r,g,b) Sets color of the tag’s background. r, g, and b specify the amount of red, green, and
blue as an integer from 0 to 65535.

/B=b

/C Changes the existing tag.

/F=frame

Specifies position of tag anchor point. anchorCode is a literal, not a string.
LT left top
LC left center
LB left bottom
MT middle top
MC middle center (default)
MB middle bottom
RT right top
RC right center
RB right bottom

The values for ao are:
ao=0: No auto-orientation. Use the /O value (default).
ao=1: Tangent to the trace line at the attachment point.
ao=2: Tangent to the trace line, snaps to vertical or horizontal if within 2

degrees of vertical or horizontal.
ao=3: Perpendicular to the trace line.
ao=4: Perpendicular to the trace line, snaps to vertical or horizontal if

within 2 degrees of vertical or horizontal.

Controls the tag background.
b=0: Opaque background.
b=1: Transparent background.
b=2: Same background as the graph plot area background.
b=3: Same background as the window background.

Controls the tag frame.
frame=0: No frame.
frame=1: Underline frame.
frame=2: Box frame.

Tag

V-883

/G=(r,g,b) Sets color of the text in the tag. r, g, and b specify the amount of red, green, and blue
as an integer from 0 to 65535.

/H=legendSymbolWidth

legendSymbolWidth sets width of the legend symbol (the sample line or marker) in
points. Use 0 for the default, automatic width.

/I=i

/K Kills existing tag.

/L=line

/LS= linespace Specifies a tweak to the normal line spacing where linespace is points of extra (plus or
minus) line spacing. For negative values, a blank line may be necessary to avoid
clipping the bottom of the last line.

/M[=sameSize] /M or /M=1 specifies that legend markers should be the same size as the marker in the
graph.
/M=0 turns same-size mode off so that the size of the marker in the legend is based on
text size.

/N=name Specifies name of the tag to create or change.

/O=rot Sets the text's rotation. rot is in (integer) degrees, counterclockwise and must be a
number from -360 to 360.
0 is normal horizontal left-to-right text, 90 is vertical bottom-to-top text.
If the tag is attached to a trace (not an image or axis), any non-zero /AO value will
overwrite this rotation value.

/P=tipOffset Sets the offset from the tip of a tag’s line or arrow to the point on the wave that it is
tagging. tipOffset is a positive number from 0 to 200 in points. If tipOffset=0 (default),
it automatically chooses an appropriate offset.

/Q[=contourInstance] Associates a tag with a particular contour level trace in a graph recreation macro. Of
interest mainly to hard-core programmers.

When “=contourInstance” is present, /Q associates the tag with the contour wave. Igor
will feel free to change or delete the tag, as appropriate, when it recalculates the
contour (because you changed the contour data or appearance, the graph size or the
axis range). contourInstance is a contour instance name, such as zWave or zWave#1 if
you have the same wave contoured twice in the graph.

/Q by itself, with “=contourInstance” not present, disassociates the tag from the contour
wave. Igor will no longer modify or delete the tag (unless the contour level to which
it is attached is deleted). If you manually tweak a contour label, using the Modify
Annotation dialog, Igor uses this flag.

/R=newName Renames the tag.

Controls the tag visibility.
i=1: Tag will be invisible if it is “off screen”. “Off screen” means that its

attachment point or any part of the tag’s text is off screen. This is
esthetically pleasing but gives you nothing to grab if you want to
drag the tag back on screen.

i=0: Tag will always be visible. If it is “off screen”, it appears at the
extreme edge of the graph.

Controls the line attaching the tag to the tagged point.
line=0: No line from tag to attachment point.
line=1: Line connecting tag to attachment point.
line=2: Line with arrow pointing from tag to attachment point.
line=3: Line with arrow pointing from attachment point to tag.
line=4: Line with arrows at both ends.

Tag

V-884

Details
If the /C flag is used, it must be the first flag in the command and must be followed immediately by the
/N=name flag.
If the /K flag is used, it must be the first flag in the command and must be followed immediately by the
/N=name flag with no further flags or parameters.
traceOrAxisName, xAttach, and textStr are all optional. If traceOrAxisName is specified, then xAttach must be
specified, and vice versa. textStr may be specified only if traceOrAxisName and xAttach are specified.
This syntax allows changes to the tag to be made through the flags parameters without needing to respecify
the other parameters. Similarly, the tag’s attachment point can be changed without needing to respecify the
textStr parameter.

/S=style

/T=tabSpec tabSpec is a single number in points, such as /T=72, for evenly spaced tabs or a list of
tab stops in points such as /T={50, 150, 225}.

/TL=extLineSpec Specifies extended tag line parameters similar to the SetDrawEnv arrow settings.
extLineSpec = {keyword = value,…} or zero to turn off all extended specifications.

/W=winName Operates on the named graph window or subwindow. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/V=vis

/X=xOffset Distance from point to tag as percentage of graph width. For axis tags, the offsets are
proportional to the size of the text used for the axis labels.

/Y=yOffset Distance from point to tag as percentage of graph height. For axis tags, the offsets are
proportional to the size of the text used for the axis labels.

/Z=freeze

Controls the tag frame style.
style=0: Single frame.
style=1: Double frame.
style=2: Triple frame.
style=3: Shadow frame.

Valid keyword-value pairs are:
len=l Length of arrow head in points (l=0 for auto).
fat=f Width to length ratio of arrow head (default is 0.5 same as f=0).
style=s Sets barb side mode (see SetDrawEnv astyle for values).
shar =s Sets sharpness between -1 and 1 (default is 0; blunt).
frame=f Sets frame thickness in outline mode.
lThick=l Sets line thickness in points (default is 0.5 for l=0).
lineRGB=(r,g,b) Sets color for lines. Default is all zeros (black); the same as the tag

frame.
dash=d Specifies dash pattern number between 0 and 17 (see

SetDashPattern for patterns).

Controls annotation visibility.
vis=0: Invisible annotation; not selectable. The annotation is still listed

in AnnotationList.
vis=1: Visible annotation (default).

Controls freezing of tag position.
freeze=1: Freezes tag position (you can’t move it with the mouse).
freeze=0: Unfreezes it.

Tag

V-885

xAttach is in terms of the wave’s X scaling. If traceOrAxisName is displayed as an XY pair, we recommend
that you use “point scaling” for the waves, so that xAttach can be a point number (because xAttach will not
be an X axis value).
A tag can have at most 100 lines.
textStr can contain escape codes which affect subsequent characters in the text. An escape code is
introduced by a backslash character. In a literal string, you must enter two backslashes to produce one. See
Backslashes in Annotation Escape Sequences on page III-57 for details.
Using escape codes you can change the font, size, style and color of text, create superscripts and subscripts,
create dynamically-updated text, insert legend symbols, and apply other effects. See Annotation Escape
Codes on page III-53 for details.
Some escape codes insert text based on the wave point or axis to which a tag is attached. See Tag Escape
Codes on page III-55 and Axis Label Escape Codes on page III-57 for details.
The characters “<??>” in a tag indicate that you specified an invalid escape code or used a font that is not
available.

Examples
Tag/C/N=t1/X=25/Y=50

moves the tag named t1 to the location defined by X=25 and Y=50.
Tag/C/N=t1 wave1, 50

moves the tag named t1 to wave1 at x=50.
Tag/N=t2 wave1, 50,"\\JC\\{numpnts(wave1)} points\rin this wave"

creates a new tag on wave1 that shows the number of points in the wave.
Tag w,0,"\\{\"%g is first, %g is last\"\rw[0],w[numpnts(w)-1]}"

creates a new tag on w that shows the value of the first and last points in the wave.
"\r" inserts a carriage-return character which starts a new line of text in the annotation.
Following is an example of various ways in which axis tags can be used:
Make/O jack=sin(x/8)
SetScale x,0,14e9,"y" jack
Display jack
Label bottom "\\u#2" // turn off default axis label
ModifyGraph axOffset(bottom)=1.16667 // make room for tag (manual adustment)
Tag/N=text0/F=0/A=MT/X=0.20/Y=-4.29/L=0 bottom, Nan, "\\JCTime (\\U)\r2nd line"

// now a few "important location" tags...
Tag/N=text1/F=0/A=LB/X=1.20/Y=3.00 bottom, 0, "Big Bang"
Tag/N=text2/F=0/A=MB/X=0.00/Y=2.86 bottom, 8000000000, "Earth formed"
Tag/N=text3/F=0/A=RB/X=-0.80/Y=4.71 bottom, 13040000000, "Dinosaurs ruled"

See Also
TextBox, Legend, AppendText, AnnotationInfo, AnnotationList
TagVal, TagWaveRef
Annotation Escape Codes on page III-53
Label, Axis Labels on page II-246
Trace Names on page II-216, Programming With Trace Names on page IV-81

TagVal

V-886

TagVal
TagVal(code)
TagVal is a very specialized function that is only valid when called from within the text of a tag as part of
a \{} dynamic text escape sequence. It returns a number reflecting some property of the tag and helps you
to display information about the tagged wave. The property is selected by the code parameter:

Because TagVal returns a numeric value, the result can be formatted any way you wish using the printf
formatting codes. In contrast, the \O codes insert preformatted text, and you don’t have control over the format.
TagVal is sometimes used in conjunction with the TagWaveRef function. For example, you might write a
user-defined function that calculates a value as a function of a wave and a point number.

Examples
Tag wave0, 0, "Y value is \\{\"%g\",TagVal(2)}"
Tag wave0, 0, "Y value is \\{\"%g\",TagWaveRef()[TagVal(0)]}"
Tag wave0, 0, "Y value is \\OY"

These examples all produce identical results.

See Also
The Tag operation, the TagWaveRef function.
For a discussion of wave references, see Wave Reference Functions on page IV-186.

TagWaveRef
TagWaveRef()
TagWaveRef is a very specialized function that is only valid when called from within the text of a tag as
part of a \{} dynamic text escape sequence. It returns a wave reference to the wave that the tag is on and
helps you to display information about the tagged wave. It is often used in conjunction with the TagVal
function. You can pass the result of TagWaveRef to any function that takes a Wave parameter.

Examples
Show the name of the data folder containing the tagged wave:
Tag wave0, 0,"\\ON is in \\{\"%s\",GetWavesDataFolder(TagWaveRef(),0)}"

See Also
The Tag operation, the TagVal function
For a discussion of wave references, see Wave Reference Functions on page IV-186.

tan
tan(angle)
The tan function returns the tangent of angle which is in radians.

code Return Value

0 Similar to \OP, returns the tag attach point number.

1 Similar to \OX, returns the X coordinate of tag attachment in the graph. When a tag is attached to
an XY pair of traces, the X coordinate will most likely be different than the tag’s X scaling
attachment value specified in the Tag command.

2 Similar to \OY, returns the Y coordinate of tag attachment in the graph or the Y axis value in
a Waterfall plot.

3 Similar to \OZ, returns the Z coordinate of tag attachment in a contour, image, or Waterfall
plot.

4 Similar to \Ox, returns the trace x offset.

5 Similar to \Oy, returns the trace y offset.

6 Returns the X muloffset (with the not set value 0 translated to 1).

7 Returns the Y muloffset (with the not set value 0 translated to 1).

tanh

V-887

In complex expressions, angle is complex, and tan(angle) returns a complex value:

See Also
atan, atan2, sin, cos, sec, csc, cot

tanh
tanh(num)
The tanh function returns the hyperbolic tangent of num:

In complex expressions, num is complex, and tanh(num) returns a complex value.

See Also
sinh, cosh, coth

TextBox
TextBox [flags] [textStr]
The TextBox operation puts a textbox on the target or named graph window. A textbox is an annotation that
is not associated with any particular trace.

Parameters
textStr is the text that is to appear in the textbox. It is optional.

Flags

/A=anchorCode

anchorCode is a literal, not a string.
For interior textboxes, the anchor point is on the rectangular edge of the plot area of
the graph window (where the left, bottom, right, and top axes are drawn).
For exterior textboxes, the anchor point is on the rectangular edge of the entire graph
window.

/B=(r,g,b) Sets the color of the tag’s background. r, g, and b specify the amount of red, green, and
blue as an integer from 0 to 65535.

tan(x + iy) = sin(x+ iy)

cos(x + iy)
= sin(2x)+ isinh(2y)

cos(2x)+ cosh(2y)
.

tanh(x) = ex � e� x

ex + e� x .

Specifies position of textbox anchor point.

anchorCode Position anchorCode Position

LT left top RT right top

LC left center RC right center

LB left bottom RB right bottom

MT middle top

MC middle center

MB middle bottom

TextBox

V-888

/B=b

/C Changes existing textbox.

/D={thickMult [, shadowThick [, haloThick]]}

thickMult multiplies the normal frame thickness of a text-box. The thickness may be
set using just /D=thickMult.
shadowThick, if present, overrides Igor’s normal shadow thickness. It is in units of
fractional points.

haloThick governs the annotation’s halo thickness (a surrounding band of the
annotation’s background color), which can be -1 to 10 points wide.

The default haloThick value is -1, which preserves the behavior of previous versions of
Igor where the halo of all annotations was set by the global variable
root:V_TBBufZone. Any negative value of haloThick (-0.5, for example) will be
overridden by V_TBBufZone if it exists, otherwise the absolute value of haloThick will
be used. A zero or positive value overrides V_TBBufZone.

Any of the parameters may be missing. To set haloThick to 0 without changing other
parameters, use /D={,,0}.

/E[=exterior] /E or /E=1 forces textbox (or legend) to be exterior to graph (provided anchorCode is
not MC) and pushes the graph margins away from the anchor edge(s). /E=2 also forces
exterior mode but does not push the margins.
/E=0 returns it to the default (an “interior textbox” which can be anywhere in the
graph window).

/F=frame

/G=(r,g,b) Sets color of the text in the tag. r, g, and b specify the amount of red, green, and blue
as an integer from 0 to 65535.

/H=legendSymbolWidth

legendSymbolWidth sets width of the legend symbol (the sample line or marker) in
points. Use 0 for the default, automatic width.

/K Kills existing textbox.

/LS= linespace Specifies a tweak to the normal line spacing where linespace is points of extra (plus or
minus) line spacing. For negative values, a blank line may be necessary to avoid
clipping the bottom of the last line.

/M[=sameSize] /M or /M=1 specifies that legend markers should be the same size as the marker in the
graph.
/M=0 turns same-size mode off so that the size of the marker in the legend is based on
text size.

/N=name Specifies the name of the textbox to change or create.

/O=rot Sets the text's rotation. rot is in (integer) degrees, counterclockwise and must be a
number from -360 to 360.
0 is normal horizontal left-to-right text, 90 is vertical bottom-to-top text.

Controls the textbox background.
b=0: Opaque background.
b=1: Transparent background.
b=2: Same background as the graph plot area background.
b=3: Same background as the window background.

Controls the textbox frame.
frame=0: No frame.
frame=1: Underline frame.
frame=2: Box frame.

TextBox

V-889

Details
Use the optional /W=winName flag to specify a specific graph or layout window. When used on the
command line or in a Macro, Proc, or Window procedure, /W must precede all other flags.
If the /C flag is used, it must be the first flag in the command (except that if may follow an initial /W) and
must be followed immediately by the /N=name flag.
If the /K flag is used, it must be the first flag in the command (or follow an initial /W) and must be followed
immediately by the /N=name flag with no further flags or parameters.
textStr is optional. If missing, the textbox text is unchanged. This allows changes to the textbox to be made
through the flags without changing the text.
A textbox can have at most 100 lines.
textStr can contain escape codes which affect subsequent characters in the text. An escape code is
introduced by a backslash character. In a literal string, you must enter two backslashes to produce one. See
Backslashes in Annotation Escape Sequences on page III-57 for details.
Using escape codes you can change the font, size, style and color of text, create superscripts and subscripts,
create dynamically-updated text, insert legend symbols, and apply other effects. See Annotation Escape
Codes on page III-53 for details.
 The characters “<??>” in a textbox indicate that you specified an invalid escape code or used a font that is
not available.

Examples
TextBox/C/N=t1/X=25/Y=50

/R=newName Renames the textbox.

/S=style

/T=tabSpec tabSpec is a single number in points, such as /T=72, for evenly spaced tabs or a list of
tab stops in points such as /T={50, 150, 225}.

/V=vis

/W=winName Operates in the named graph window or subwindow. When omitted, action will
affect the active window or subwindow. This must be the first flag specified when
used in a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/X=xOffset For interior textboxes xOffset is the distance from anchor to textbox as a percentage of
the plot area width.
For exterior textboxes xOffset is the distance from anchor to textbox as a percentage of
the graph window width. See /E and /A.

/Y=yOffset yOffset is the distance from anchor to textbox as a percentage of the plot area height
(interior textboxes) or graph window height (exterior textboxes). See /E and /A.

/Z=freeze

Controls the textbox frame style.
style=0: Single frame.
style=1: Double frame.
style=2: Triple frame.
style=3: Shadow frame.

Controls annotation visibility.
vis=0: Invisible annotation; not selectable. The annotation is still listed

in AnnotationList.
vis=1: Visible annotation (default).

Controls freezing of textbox position.
freeze=1: Freezes textbox position (you can’t move it with the mouse).
freeze=0: Unfreezes it.

TextEncoding

V-890

moves the textbox named t1 to the location defined by X=25 and Y=50.
TextBox/C/N=t1 "New Text"

changes the text for t1.

See Also
Tag, Legend, AppendText, AnnotationInfo, AnnotationList
Annotation Escape Codes on page III-53
See the printf operation for formatting codes used in formatStr.
Programming with Annotations on page III-52.
Trace Names on page II-216, Programming With Trace Names on page IV-81.

TextEncoding
#pragma TextEncoding = "<text encoding name>"

#pragma TextEncoding is a compiler directive that tells Igor the text encoding used by a procedure file. Igor
needs to know this in order to correctly interpret non-ASCII characters in the file. We recommend that you
add a TextEncoding pragma to your procedure files.
See Text Encoding Names and Codes on page III-434 for a list of accepted text encoding names.
This statement must be flush against the left edge of the procedure file with no indentation. It is usually
placed at or near the top of the file.
The TextEncoding pragma was added in Igor Pro 7.00 and is ignored by earlier versions.
See The TextEncoding Pragma on page IV-51 for further explanation.

TextEncodingCode
TextEncodingCode(textEncodingNameStr)
The TextEncodingCode function returns the Igor text encoding code for the named text encoding or 0 if the
text encoding is unknown.
The TextEncodingCode function was added in Igor Pro 7.00.

Parameters
textEncodingNameStr is an Igor text encoding name as listed under Text Encoding Names and Codes on
page III-434.

Details
Igor ignores all non-alphanumeric characters in text encoding names so "Shift JIS", "ShiftJIS", "Shift_JIS" and
"Shift-JIS" are equivalent.
It also ignores leading zeros in numbers embedded in text encoding names so "ISO-8859-1" and "ISO-8859-
01" are equivalent.
TextEncodingCode does a case-insensitive comparison.

See Also
Text Encodings on page III-409, Text Encoding Names and Codes on page III-434, TextEncodingName

TextEncodingName
TextEncodingName(textEncoding, index)
The TextEncodingName function returns one or more text encoding names corresponding to the specified
text encoding code. The result is returned as a string value.
If textEncoding is not a valid Igor text encoding code or if index is out of range, TextEncodingName returns
"Unknown".
This function is mainly useful for providing a human-readable string corresponding to a given text
encoding code for display purposes. You might use it to generate some Internet-compatible text, such as an
HTML page, if you need a string to specify the charset.
The TextEncodingName function was added in Igor Pro 7.00.

TextFile

V-891

Parameters
textEncoding is an Igor text encoding code as listed under Text Encoding Names and Codes on page III-434.
index specifies which text encoding name you want. A given text encoding can be identified by more than
one name. Normally you will pass 0 to get the first text encoding name for the specified text encoding code.
This is the preferred text encoding name. You can pass 1 for the second name, if any, 2 for the third, if any,
and so on. You can pass -1 to get a semicolon-separated list of all text encoding names for the specified text
encoding.

Details
Internally Igor has a table of text encoding codes and the corresponding text encoding names. For a given
code there may be more than one acceptable name. For example, for the code 2 (MacRoman), the names
"macintosh", "MacRoman" and "x-macroman" are accepted, with "macintosh" being preferred. The
TextEncodingName function returns a text encoding name from the internal table.
The preferred name is usually the name recognized by the Internet Assigned Numbers Authority (IANA)
as listed at http://www.iana.org/assignments/character-sets.

Examples
// Get the preferred name for the MacRoman text encoding (2)
String firstName = TextEncodingName(2, 0); Print firstName

// Get the second name for the MacRoman text encoding (2)
String secondName = TextEncodingName(2, 1); Print secondName

// Get a semicolon-separated list of all text encoding names for MacRoman
String names = TextEncodingName(2, -1); Print names

See Also
Text Encodings on page III-409, Text Encoding Names and Codes on page III-434, TextEncodingCode

TextFile
TextFile(pathName, index [, creatorStr])

The TextFile function returns a string containing the name of the indexth TEXT file from the folder specified
by pathName.
On Macintosh, TextFile returns only files whose file type property is TEXT, regardless of the file's extension.
On Windows, Igor considers files with “.txt” extensions to be of type TEXT.

Details
TextFile returns an empty string ("") if there is no such file.
pathName is the name of an Igor symbolic path; it is not a string.
index starts from zero.
creatorStr is an optional string argument containing four ASCII characters such as “IGR0”. Only files of the
specified Macintosh creator code are indexed. Set creatorStr to “????” to index all text files (or omit the
argument altogether). This argument is ignored on Windows systems.
The order of files in a folder is determined by the operating system.

Examples
You can use TextFile in a procedure to sequence through each TEXT file in a folder, put the name of the text
file into a string variable, and use this string variable as a parameter to the LoadWave or Open operations:
Function/S PrintFirstLineOfTextFiles(pathName)

String pathName // Name of an Igor symbolic path.

Variable refNum, index
String str, fileName
index = 0
do

fileName = TextFile($pathName, index)
if (strlen(fileName) == 0)

Note: TextFile is antiquated. Use IndexedFile instead.

http://www.iana.org/assignments/character-sets

ThreadGroupCreate

V-892

break // No more files
endif
Open/R/P=$pathName refNum as fileName
FReadLine refNum, str // Read first line including CR/LF
Print fileName +":" + str // Print file name and first line
Close refNum
index += 1 // Next file

while (1)
End

See Also
See the IndexedFile function, which is similar to TextFile but works on files of any type, and also
IndexedDir. Also see the LoadWave and Open the operations.

ThreadGroupCreate
ThreadGroupCreate(nt)
The ThreadGroupCreate function creates a thread group containing nt threads and returns a thread ID
number. Use the number of computer processors for nt when trying to improve computation speed using
parallel threads. A background worker might use just one thread regardless of the number of processors.

See Also
ThreadSafe Functions on page IV-97 and ThreadSafe Functions and Multitasking on page IV-308.

ThreadGroupGetDF
ThreadGroupGetDF(tgID, waitms)
ThreadGroupGetDFR should be used instead of ThreadGroupGetDF which causes memory leaks.
The ThreadGroupGetDF function retrieves a data folder path string from a thread group queue and
removes the data folder from the queue.
When called from a preemptive thread it returns a data folder from the thread group's input queue. When
called from the main thread it returns a data folder from the thread group's output queue.
tgID is a thread group ID returned by ThreadGroupCreate. You can pass 0 for tgID when calling
ThreadGroupGetDF from a preemptive thread. You must pass a valid thread group ID when calling
ThreadGroupGetDF from the main thread.
waitms is the maximum number of milliseconds to wait for a data folder to become available in the queue.
Pass 0 to test if a data folder is available immediately. Pass INF to wait indefinitely or until a user abort.
ThreadGroupGetDF returns "" if the timeout period specified by waitms expires and no data folder is
available in the queue.

See Also
ThreadSafe Functions on page IV-97 and ThreadSafe Functions and Multitasking on page IV-308.
The ThreadGroupGetDFR function.

ThreadGroupGetDFR
ThreadGroupGetDFR(tgID, waitms)
The ThreadGroupGetDF function retrieves a data folder reference from a thread group queue and removes
the data folder from the queue. The data folder becomes a free data folder.
When called from a preemptive thread it returns a data folder from the thread group's input queue. When
called from the main thread it returns a data folder from the thread group's output queue.
tgID is a thread group ID returned by ThreadGroupCreate. You can pass 0 for tgID when calling
ThreadGroupGetDFR from a preemptive thread. You must pass a valid thread group ID when calling
ThreadGroupGetDFR from the main thread.
waitms is the maximum number of milliseconds to wait for a data folder to become available in the queue.
Pass 0 to test if a data folder is available immediately. Pass INF to wait indefinitely or until a user abort.
ThreadGroupGetDFR returns a NULL data folder reference if the timeout period specified by waitms
expires and no data folder is available in the queue. You can test for NULL using DataFolderRefStatus.

ThreadGroupPutDF

V-893

See Also
ThreadSafe Functions on page IV-97, ThreadSafe Functions and Multitasking on page IV-308 and Free
Data Folders on page IV-88.

ThreadGroupPutDF
ThreadGroupPutDF tgID, datafolder
The ThreadGroupPutDF operation posts data to a preemptive thread group.

Parameters
tgID is thread group ID returned by ThreadGroupCreate, datafolder is the data folder you wish to send to
the thread group.
datafolder can be just the name of a child data folder in the current data folder, a partial path (relative to the
current data folder) and name or an absolute path (starting from root) and name.

Details
When you call it from the main thread, ThreadGroupPutDF removes datafolder from the main thread’s data
hierarchy and posts to the input queue of the thread group specified by tgID.
When you call it from a preemptive thread, use 0 for tgID and the data folder will be posted to the output
queue of thread group to which thread belongs.
Input and output data folders may be retrieved from the queues by calling the string function
ThreadGroupGetDF or ThreadGroupGetDFR.

From the standpoint of the source thread, ThreadGroupPutDF is conceptually similar to KillDataFolder
and, like KillDataFolder, if the current data folder is within datafolder, the current data folder is set to the
parent of datafolder. You can not pass root: as datafolder.

See Also
The ThreadGroupCreate function, ThreadSafe Functions on page IV-97, and ThreadSafe Functions and
Multitasking on page IV-308.

ThreadGroupRelease
ThreadGroupRelease(tgID)
The ThreadGroupRelease function releases thread group (and tgID is no longer valid). tgID is the thread
group ID returned by ThreadGroupCreate.
If threads are still running, they are killed. An attempt is made to safely stop running threads but, if they
continue to run, they will be force quit.
ThreadGroupRelease returns zero if successful, -1 if an error occurred (probably invalid tgID), or -2 if a force
quit was needed. In the latter case, you should restart Igor Pro.
Any data folders remaining in the group’s input or output queues will be discarded.

See Also
The ThreadGroupCreate function, ThreadSafe Functions on page IV-97, and ThreadSafe Functions and
Multitasking on page IV-308.

Warning: Take care not to use any stale WAVE, NVAR, or SVAR variables that might contain
references to objects in the data folder. Use WAVEClear on all WAVE reference variables
that might contain references to waves that are in the data folder being posted before calling
ThreadGroupPutDF. An error will occur if any waves in the data folder are in use or
referenced in a WAVE variable.

Warning: Any DFREF variables that refer to the data folder (or any child thereof) must be cleared
prior to executing this command. You can clear a DFREF using dfr=$"".

ThreadGroupWait

V-894

ThreadGroupWait
ThreadGroupWait(tgID, waitms)
The ThreadGroupWait function returns index+1 of the first thread found still running after waitms
milliseconds or returns zero if all are done.
tgID is the thread group ID returned by ThreadGroupCreate and waitms is milliseconds to wait.
If any of the threads of the group encountered a runtime error, the first such error will be reported now.
Use zero for waitms to just test or provide a large value to cause the main thread to sleep until the threads
are finished. You can use INF to wait forever or until a user abort. If you know the maximum time the
threads should take, you can use that value so you can print an error message or take other action if the
threads don’t return in time.
When ThreadGroupWait is called, Igor updates certain internal variables including variables that track
whether a thread has finished and what result it returned. Therefore you must call ThreadGroupWait
before calling ThreadReturnValue.
ThreadGroupWait updates the internal state of all threads in the group.

Finding a Free Thread
If you pass -2 for waitms, ThreadGroupWait returns index+1 of the first free (not running) thread or 0 if all
threads in the group are running.
This allows you to dispatch a thread anytime a free thread is available. See Parallel Processing - Thread-at-
a-Time Method on page IV-311 for an example.

See Also
The ThreadGroupCreate function, ThreadSafe Functions on page IV-97, and ThreadSafe Functions and
Multitasking on page IV-308.

ThreadProcessorCount
ThreadProcessorCount
The ThreadProcessorCount function returns the number of processors in your computer. For example, on
a Macintosh Core Duo, it would return 2.

ThreadReturnValue
ThreadReturnValue(tgID, index)
The ThreadReturnValue function returns the value that the specified thread function returned when it exited.
Returns NAN if thread is still running. tgID is the thread group ID returned by ThreadGroupCreate and index
is the thread number.
When ThreadGroupWait is called, Igor updates certain internal variables including variables that track
whether a thread has finished and what result it returned. Therefore you must call ThreadGroupWait before
calling ThreadReturnValue.

See Also
The ThreadGroupCreate function, ThreadSafe Functions on page IV-97, and ThreadSafe Functions and
Multitasking on page IV-308.

ThreadSafe
ThreadSafe Function funcName()
The ThreadSafe keyword declaration specifies that a user function can be used for preemptive multitasking
background tasks on multiprocessor computer systems.
A ThreadSafe function is one that can operate correctly during simultaneous execution by multiple threads.
Such functions are generally limited to numeric or utility functions. Functions that access windows are not
ThreadSafe. To determine if an operation is ThreadSafe, use the Command Help tab of the Help Browser
and choose ThreadSafe from the pop-up menu.
ThreadSafe functions can call other ThreadSafe functions but may not call non-ThreadSafe functions. Non-
ThreadSafe functions can call ThreadSafe functions.

ThreadStart

V-895

See Also
ThreadSafe Functions on page IV-97 and ThreadSafe Functions and Multitasking on page IV-308.

ThreadStart
ThreadStart tgID, index, WorkerFunc(param1, param2,…)
The ThreadStart operation starts the specified function running in a preemptive thread.

Parameters
tgID is thread group ID returned by ThreadGroupCreate, index is the desired thread of the group to set up
to execute the specified ThreadSafe WorkerFunc.

Details
The worker function starts running immediately.
The worker function must be defined as ThreadSafe and must return a real or complex numeric result.
The worker function's return value can be obtained after the function finishes by calling
ThreadReturnValue. Igor records the fact that a thread has terminated when you call ThreadGroupWait so
you must call ThreadGroupWait before calling ThreadReturnValue.
The worker function can take variable and wave parameters. It can not take pass-by-reference parameters
or data folder reference parameters.
Any waves you pass to the worker are accessible to both the main thread and to your preemptive thread.
Such waves are marked as being in use by a thread and Igor will refuse to perform any manipulations that
could change the size of the wave.

See Also
The ThreadGroupCreate and ThreadReturnValue functions; ThreadSafe Functions on page IV-97, and
ThreadSafe Functions and Multitasking on page IV-308.

ticks
ticks
The ticks function returns the number of ticks (approximately 1/60 second) elapsed since the operating
system was initialized.

See Also
The StopMSTimer function.

Tile
Tile [flags] [objectName [, objectName]…]
The Tile operation tiles the specified objects in the top page layout.

Parameters
objectName is the name of a graph, table, picture or annotation object in the top page layout.

Flags

/A=(rows,cols) Specifies number of rows/columns in which to tile objects.

/G=grout Specifies grout, the spacing between window tiles, in prevailing coordinates (points
unless preceded by /I, /M or /R).

/I Specifies coordinates in inches.

/M Specifies coordinates in centimeters.

TileWindows

V-896

Details
If /A=(rows,cols) is not used, Tile uses an appropriate number of rows and columns. If /A=(rows,cols) is used,
objects are tiled in a grid of that many rows and columns. If rows or cols is zero, it substitutes an appropriate
number for the zero parameter.
Objects to be tiled are determined by the /S and /O=objTypes flags and by any objectNames.
If no /S or /O flags are present and there are no objectNames, then all objects in the layout are tiled.
Otherwise the objects to be tiled are determined as follows:
• All objects specified by objectNames are tiled.
• If the /S flag is present, the selected objects, if any, are also tiled.
• If the /O=objTypes flag is present then any objects specified by objTypes are also tiled. objTypes is a

bitwise mask, so /O=3 tiles both graphs and tables.

See Also
The Stack operation.

TileWindows
TileWindows [flags] [windowName [, windowName]…]
The TileWindows operation tiles the specified windows on the desktop (Macintosh) or in the Igor frame
window (Windows).

Flags

/O=objTypes

/R Specifies coordinates measured in percent of the printable page.

/S Adds selected objects to objects to be tiled.

/W=(left,top,right,bottom)

Specifies page layout area in which to tile objects. Coordinates are in points unless /I,
/M or /R are specified before /W.

/A=(rows,cols) Specifies number of rows/columns in which to tile windows.

/C Adds the command window to the windows to be tiled.

/G=grout Specifies grout, the spacing between tiles, in prevailing units (points unless /I or /M
are used).

/I Specifies coordinates in inches.

/M Specifies coordinates in centimeters.

/O=objTypes Adds windows of types specified by objTypes to windows to be tiled.

Adds objects of type(s) specified by bitwise mask to list of objects to be tiled:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Tile graphs.
Bit 1: Tile tables.
Bit 3: Tile pictures.
Bit 5: Tile textboxes.

time

V-897

Details
The windows to be tiled are determined by the /C, /P, and /O=objTypes flags and by the windowNames. If no
/C, /P or /O flags are present and there is no windowNames then all windows are tiled.
Otherwise the windows to be tiled are determined as follows:
• All named windows are tiled.
• If the /C flag is present, the command window is also tiled.
• If the /P flag is present, the procedure window is also tiled.
• If the /O=objTypes flag is present, any windows specified by objTypes are also tiled.

Examples
To tile all the procedure windows, including the main one, use:
TileWindows/P/O=128 // 2^7=128

See Also
The StackWindows operation.

time
time()
The time function returns a string containing the current time. The empty parentheses are required.

See Also
The date, date2secs and DateTime functions.

TitleBox
TitleBox [/Z] ctrlName [keyword = value [, keyword = value …]]
The TitleBox operation creates the named title box in the target window.
For information about the state or status of the control, use the ControlInfo operation.

Parameters
ctrlName is the name of the TitleBox control to be created or changed.

Other bits should always be zero. See Setting Bit Parameters on page IV-12 for details
about bit settings.

/P Adds the main procedure window to the windows to be tiled.

/R Specifies coordinates measured as % of tiling rectangle.

/W=(left,top,right,bottom)

Specifies tiling rectangle on the screen. Coordinates are in points unless /I, /M, or /R
are specified before /W.

objTypes is a bitwise mask where:
Bit 0: Graphs
Bit 1: Tables
Bit 2: Page layouts
Bit 4: Notebooks
Bit 6: Control panels
Bit 7: Procedure windows
Bit 9: Help windows
Bit 12: XOP target windows
Bit 14: Camera windows
Bit 16: Gizmo windows

TitleBox

V-898

The following keyword=value parameters are supported:

anchor= hv Specifies the anchor mode using a two letter code, hv. h may be L, M, or R for left,
middle, and right. v may be T, C, or B for top, center and bottom. Default is LT.

If fixedSize=1, the anchor code sets the positioning of text within the frame.

appearance={kind [, platform]}

Sets the appearance of the control. platform is optional. Both parameters are names,
not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
See Button and DefaultGUIControls for more appearance details.

disable=d

fColor=(r,g,b) Sets color of the titlebox. r, g, and b are integers from 0 to 65535.

fixedSize=f

font="fontName" Sets the font used for the control, e.g., font="Helvetica".

frame= f

fsize=s Sets font size.

fstyle=fs

labelBack=(r,g,b) or 0

Sets background color for title box. r, g, and b are integers from 0 to 65535. If not set
(or labelBack=0), then background is transparent (not erased).

pos={left,top} Sets the location of the top left corner in pixels.

pos+={dx,dy} Offsets the position of the control in pixels.

size={w,h} Set the width and height in pixels.

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Draw in gray state.

Controls title box sizing:
f =0: The titlebox automatically sizes itself to fit the title text (default).
f =1: The size settings are honored, and the titlebox does not

automatically size itself to fit the title text.

Sets frame style:
f=0: No frame.
f=1: Default (same as f=3).
f=2: Simple box.
f=3: 3D sunken frame.
f=4: 3D raised frame.
f=5: Text well.

fs is a bitwise parameter with each bit controlling one aspect of the font style
as follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold
Bit 1: Italic
Bit 2: Underline
Bit 4: Strikethrough

TitleBox

V-899

Flags

Details
The text can come from either the title=titleStr or variable=svar method. Whichever is used last is the current
method. The maximum length of text with the title=titleStr method is 100 bytes while the variable=svar
method has no limit.
Using escape codes you can change the font, size, style and color of text, and apply other effects. See
Annotation Escape Codes on page III-53 for details.
By default, the titlebox automatically resizes itself relative to the anchor point on the rectangle that encloses
the text. Therefore you can specify a size of 0,0 along with a pos value in order to place the anchor point at
the desired position. When fixedSize=1 is used, the titlebox does not resize itself and instead honors the
values specified via the size keyword.
TitleBoxes can be used not only for titles but also as status or results readout areas, especially in conjunction
with the variable= svar mode. When using a titlebox like this, you may find it useful to use fixedSize=1 so
that the titlebox doesn't change size as the text changes.

Examples
NewPanel /W=(94,72,459,294)
DrawLine 150,32,150,140
DrawLine 70,100,213,100 // draw crossing lines at 150,100

// illustrate a default box
TitleBox tb1,title="A title box\rwith 2 lines",pos={150,100}

// Move center to 150,100
TitleBox tb1,pos={150,100},size={0,0},anchor=MC

// Set background color and therfore opaque mode
TitleBox tb1,labelBack=(55000,55000,65000)

// Now a few frame styles. Run these one at a time
TitleBox tb1,frame= 0 // no frame
TitleBox tb1,frame= 2 // plain frame
TitleBox tb1,frame= 3 // 3D sunken
TitleBox tb1,frame= 4 // 3D raised
TitleBox tb1,frame= 5 // text well

// Now some fancy text…
TitleBox tb1,frame= 1 // back to default (3D raised)
TitleBox tb1,title= "\Z18\[020 log\\B10\\M|[1 + 2K(jwt) + (jwt)\\S2\\M]|\\S-1"

// Create a string variable and hook up to the TitleBox
String s1= "text from a string variable"
TitleBox tb1,variable=s1

// Change string variable contents & note automatic update of TitleBox
s1= "something new"

See Also
Annotation Escape Codes on page III-53.

title=titleStr Sets the text of the title box to titleStr. titleStr is limited to 100 bytes.
Using escape codes you can change the font, size, style, and color of the title. See
Annotation Escape Codes on page III-53 or details.

variable= svar Specifies an optional global string variable from which to get the TitleBox text.

win=winName Specifies which window or subwindow contains the named control. If not given, then
the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

/Z No error reporting.

ToCommandLine

V-900

ToCommandLine
ToCommandLine commandsStr
The ToCommandLine operation sends command text to the command line without executing the command(s).
The intended usage is for user-created panel windows with “To Cmd Line” buttons that are mimicking
built-in Igor dialogs. You’ll usually want to use Execute, instead.

Parameters

Details
To send more than one line of commands, separate the commands with “\r” characters.

Examples
Macro CmdPanel()

PauseUpdate; Silent 1
NewPanel /W=(150,50,430,229)
Button toCmdLine,pos={39,148},size={103,20},title="To Cmd Line"
Button toCmdLine,proc=ToCmdLineButtonProc

End

Function ToCmdLineButtonProc(ctrlName) : ButtonControl
String ctrlName

String cmd="MyFunction(xin,yin,\"yResult\")"// line 1: generate results
cmd +="\rDisplay yOutput vs wx as \"results\"" // line 2: display results
ToCommandLine cmd

return 0
End

See Also
The Execute and DoIgorMenu operations.

ToolsGrid
ToolsGrid [/W=winName] keyword = value [, keyword = value …]
The ToolsGrid operation controls the grid you can use for laying out draw or control objects.

Parameters
ToolsGrid can accept multiple keyword = value parameters on one line.

commandsStr The text of one or more commands.

Note: ToCommandLine does not work when typed on the command line; use it only in a Macro,
Proc, or Function.

snap=n Turns snap to grid on (n=1) or off (n=0).

visible=n Turns on grid visibility (n=1) or hides it (n=0).

grid=(xy0,dxy,ndiv) Defines both X and Y grids where ndiv is the number of subdivisions between major
grid lines and xy0 and dxy define the origin and spacing. Units are in points.

gridx=(x0,dx,ndiv) Defines the X grid where ndiv is the number of subdivisions between major grid lines
and x0 and dx define the origin and spacing. Units are in points.

gridy=(y0,dy,ndiv) Defines the Y grid where ndiv is the number of subdivisions between major grid lines
and y0 and dy define the origin and spacing. Units are in points.

TraceFromPixel

V-901

Flags

Details
The default grid is 1 inch with 8 subdivisions. The grid is visible only in draw or selector mode and appears
in front of the currently active draw layer.

TraceFromPixel
TraceFromPixel(xpixel, ypixel, optionsString)
The TraceFromPixel function returns a string based on an attempt to hit test the provided X and Y
coordinates. Used to determine if the mouse was clicked on a trace in a graph.
When a trace is found, TraceFromPixel returns a string containing the following KEY:value; pairs:
TRACE:tracename

HITPOINT:pnt

tracename will be quoted if necessary and may contain instance notation. pnt is the point number index into
the trace’s wave when the hit was detected. If a trace is not found near the coordinate point, a zero length
string is returned.

Parameters
xpixel and ypixel are the X and Y pixel coordinates.
optionsString can contain the following:
WINDOW:winName;

PREF:traceName;

ONLY:traceName;

DELTAX:dx;DELTAY:dy;

Use the WINDOW option to hit test in a graph other than the top graph. Use the ONLY option to search only
for a special target trace. If the PREF option is used then the search will start with the specified trace but if
no hit is detected, it will go on to the others.
When identifying a subwindow with WINDOW:winName, see Subwindow Syntax on page III-87 for details
on forming the window hierarchy.
The DELTAX and DELTAY values must both be specified to alter the region that Igor searches for traces.
The dx and dy values are in pixels and the region searched is the rectangle from xpixel-dx to xpixel+dx and
ypixel-dy to ypixel+dy.
If DELTAX or DELTAY are omitted, the search region depends on whether PREF or ONLY are specified. If
either are specified then Igor first searches for the trace using dx = 3 and dy = 3. If the trace is not identified,
Igor searches again using dx = 6 and dy = 6. If the trace is still not identified, Igor gives up and returns a zero-
length result string.
If neither PREF nor ONLY are specified then Igor uses tries 3, 6, 12, and 24 for dx and dy until it finds a trace
or gives up and returns a zero-length result string.

See Also
The NumberByKey, StringByKey, AxisValFromPixel, and PixelFromAxisVal functions.
ModifyGraph (traces) and Instance Notation on page IV-19 for discussions of trace names and instance
notation.
Trace Names on page II-216, Programming With Trace Names on page IV-81.

/W=winName Sets the named window or subwindow for drawing. When omitted, action will affect
the active window or subwindow. This must be the first flag specified when used in
a Proc or Macro or on the command line.
When identifying a subwindow with winName, see Subwindow Syntax on page III-87
for details on forming the window hierarchy.

TraceInfo

V-902

TraceInfo
TraceInfo(graphNameStr, ywavenameStr, instance)
The TraceInfo function returns a string containing a semicolon-separated list of information about the trace
in the named graph window or subwindow.

Parameters
graphNameStr can be "" to refer to the top graph.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
yWaveNameStr is either the name of a wave containing data displayed as a trace in the named graph, or a
trace name (wave name with “#n” appended to distinguish the nth image of the wave in the graph). You
might get a trace name from the TraceNameList function.
If yWaveNameStr contains a wave name, instance identifies which trace of yWaveNameStr you want
information about. instance is usually 0 because there is normally only one instance of a given wave
displayed in a graph. Set instance to 1 for information about the second trace of the wave named by
yWaveNameStr, etc. If yWaveNameStr is "", then information is returned on the instanceth trace in the graph.
If yWaveNameStr is a trace name, and instance is zero, the instance is extracted from yWaveNameStr. If
instance is greater than zero, the wave name is extracted from yWaveNameStr, and information is returned
concerning the instanceth instance of the wave.

Details
The string contains several groups of information. Each group is prefaced by a keyword and colon, and
terminated with the semicolon. The keywords are as follows:

Keyword Information Following Keyword

AXISFLAGS Flags used to specify the axes. Usually blank because /L and /B (left and bottom axes)
are the defaults.

AXISZ Z value of a contour level trace or NaN if the trace is not a contour trace.

ERRORBARS The ErrorBars command for the trace, as it would appear in the recreation macro
(without the beginning tab character).

RECREATION List of keyword commands as used by ModifyGraph command. The format of these
keyword commands is:

keyword(x)=modifyParameters;

XAXIS X axis name.

XRANGE Point subrange of the trace’s X data wave in “[startPoint,þendPoint : increment]” format.

Note: Unlike the actual syntax of a trace subrange specification where increment is
preceded by a semicolon character, here it is preceded by a colon character to preserve
the notion that semicolon is what separates the keyword-value groups.

If the entire X wave is displayed (the usual case), the XRANGE value is “[*]”.

If an X wave is not used to display the trace, then the XRANGE value is "".

XWAVE X wave name if any, else blank.

XWAVEDF Full path to the data folder containing the X wave or blank if no X wave.

YAXIS Y axis name.

YRANGE Point subrange of the trace’s Y data wave or “[*]”.

TraceNameList

V-903

The format of the RECREATION information is designed so that you can extract a keyword command from
the keyword and colon up to the “;”, prepend “ModifyGraph ”, replace the “x” with the name of a trace
(“data#1” for instance) and then Execute the resultant string as a command.

Examples
This example shows how to extract a string value from the keyword-value list returned by TraceInfo:
String yAxisName= StringByKey("YAXIS", TraceInfo("","",0))

This example shows how to extract a subrange and put the semicolon back:
String yRange= StringByKey("YRANGE", TraceInfo("","",0))
Print yRange // prints "[30,40:2]"
yRange= ReplaceString(":", yRange, ";")
Print yRange // prints "[30,40;2]"

The next example shows the trace information for the second instance of the wave “data” (which has an
instance number of 1) displayed in the top graph:
Make/O data=x;Display/L/T data,data // two instances of data: 0 and 1
Print TraceInfo("","data",1)[0,64] // error if you try to print all
Print TraceInfo("","data",1)[65,128]

Prints the following in the history area:
XWAVE:;YAXIS:left;XAXIS:top;AXISFLAGS:/T;AXISZ:NAN(255);XWAVEDF:;
RECREATION:zColor(x)=0;zmrkSize(x)=0;zmrkNum(x)=0;textMarker(x)=

Following is a function that returns the marker code from the given instance of a named wave in the top
graph. This example uses the convenient GetNumFromModifyStr() function provided by the #include
<Readback ModifyStr> procedures, which are useful for parsing strings returned by TraceInfo.
#include <Readback ModifyStr>

Function MarkerOfWave(wv,instance)
Wave wv
Variable instance

Variable marker
String info = TraceInfo("",NameOfWave(wv),instance)

marker = GetNumFromModifyStr(info,"marker","",0)

return marker
End

See Also
Trace Names on page II-216, Programming With Trace Names on page IV-81.
The Execute operation.

TraceNameList
TraceNameList(graphNameStr, separatorStr, optionsFlag)
The TraceNameList function returns a string containing a list of trace names in the graph window or
subwindow identified by graphNameStr.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
The parameter separatorStr should contain a single character such as “,” or “;” to separate the names.

Details
The bits of optionsFlag have the following meanings:
See Setting Bit Parameters on page IV-12 for details about bit settings.

Note: The syntax of any subrange specifications in the RECREATION information are modified
in the same way as for XRANGE and YRANGE. Currently only the zColor, zmrkSize, and
zmrkNum keywords might have a subrange specification.

TraceNameToWaveRef

V-904

A trace name is defined as the name of the Y wave that defines the trace with an optional #ddd suffix that
distinguishes between two or more traces that have the same wave name. Since the trace name has to be
parsed, it is quoted if necessary.
Commands that take a trace name as a parameter or in a keyword can use a string containing a trace name
with the $ operator to specify traceName. For instance, to change the display mode of a wave, you might use
ModifyGraph mode(myWave#1)=3

but
String myTraceName="myWave#1"
ModifyGraph mode($myTraceName)=3

will also work.

Examples
Make/O jack,'jack # 2';Display jack,jack,'jack # 2','jack # 2'
Print TraceNameList("",";",1)
Prints: jack;jack#1;'jack # 2';'jack # 2'#1;

// Generate a list of hidden traces
Make/O jack,jill,joy;Display jack,jill,joy
ModifyGraph hideTrace(joy)=1// hide joy
// (hidden + visible) - visible = hidden
String visibleTraces=TraceNameList("",";",1+4)// only visible normal traces
String allNormalTraces=TraceNameList("",";",1)// hidden + visible normal traces
String hiddenTraces= RemoveFromList(visibleTraces,allNormalTraces)
Print hiddenTraces
// Prints: joy;

See Also
Trace Names on page II-216, Programming With Trace Names on page IV-81.
For other commands related to waves and traces: WaveRefIndexed, XWaveRefFromTrace,
TraceNameToWaveRef, CsrWaveRef, and CsrXWaveRef.
For a description of traces: ModifyGraph. For a discussion of contour traces: Contour Traces on page
II-283.
For commands referencing other waves in a graph: ImageNameList, ImageNameToWaveRef,
ContourNameList, and ContourNameToWaveRef.
ModifyGraph (traces) and Instance Notation on page IV-19 for discussions of trace names and instance
notation.

TraceNameToWaveRef
TraceNameToWaveRef(graphNameStr, traceNameStr)
The TraceNameToWaveRef function returns a wave reference to the Y wave corresponding to the given
trace in the graph window or subwindow named by graphNameStr.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
The trace is identified by the string in traceNameStr, which could be a string determined using
TraceNameList. Note that the same trace name can refer to different waves in different graphs.
Use Instance Notation (see page IV-19) to choose from traces in a graph that represent waves of the same
name. For example, if traceNameStr is “myWave#2”, it refers to the third instance of wave “myWave” in the
graph (“myWave#0” or just “myWave” is the first instance).

Bit Number Bit Value Meaning
0 1 Include normal graph traces
1 2 Include contour traces
2 4 Omit hidden traces (the default is to list even hidden traces)

Triangulate3D

V-905

See Also
Trace Names on page II-216, Programming With Trace Names on page IV-81.
For other commands related to waves and traces: WaveRefIndexed, XWaveRefFromTrace,
TraceNameList, CsrWaveRef, and CsrXWaveRef.
For a description of traces: ModifyGraph. For a discussion of contour traces, see Contour Traces on page
II-283.
For a discussion of wave references, see Wave Reference Functions on page IV-186.
For commands referencing other waves in a graph: ImageNameList, ImageNameToWaveRef,
ContourNameList, and ContourNameToWaveRef.

Triangulate3D
Triangulate3D [/OUT=format] srcWave
The Triangulate3D operation creates a Delaunay “triangulation” of a 3D scatter wave. The output is a list
of tetrahedra that completely span the convex volume defined by srcWave. Triangulate3D can also generate
the triangulation needed for performing 3D interpolation for the same domain. Normally srcWave is a
triplet wave (a 2D wave of 3 columns), but can use any 2D wave that has more than 3 columns (the
operation ignores all but the first 3 columns).

Flags

Details
Triangulate3D implements Watson’s algorithm for tetrahedralization of a set of points in three dimensions. It
starts by creating a very large tetrahedron which inscribes all the data points followed by a sequential insertion
of one datum at a time. With each new datum the algorithm finds the tetrahedron in which the datum falls. It
then proceeds to subdivide the tetrahedron so that the datum becomes a vertex of new tetrahedra.
The algorithm suffers from two known problems. First, it may, due to numerical instabilities, result in
tetrahedra that are too thin. You can get around this problem by introducing a slight random perturbation
in the input wave. For example:
srcWave+=enoise(amp)

Here amp is chosen so that it is much smaller than the smallest cartesian distance between two input points.
The second problem has to do with memory allocations which may exhaust available memory for some
pathological spatial distributions of data points. The operation reports both problems in the history area.

Examples
Make/O/N=(10,3) ddd=gnoise(5) // create random 10 points in space
Triangulate3d/out=2 ddd

// now display the triangulation in Gizmo:
Window Gizmo0() : GizmoPlot

PauseUpdate; Silent 1

/OUT=format

/VOL Computes the volume of the full convex hull by summing the volumes of the
tetrahedra generated in the triangulation. The result is stored in the variable V_value.
This flag requires Igor Pro 7.00 or later.

Specifies how to save the output triangulation data.
format=1: Default; saves the triangulation result in the wave M_3DVertexList,

which contains in each row, indices to rows in srcWave that describe
the X, Y, Z coordinates of a single tetrahedral vertex. Each
tetrahedron is described by one row in M_3DVertexList.

format=2: Saves the triangulation result in the wave M_TetraPath, which is a
triplet path wave describing the tetrahedra edges. For each
tetrahedron, there are four rows (triangles) separated by row of
NaNs. The total number of rows in M_TetraPath is 20 times the
number of tetrahedra in the triangulation.

format=4: Saves a wave containing internal diagnostic information generated
during the triangulation process.

TrimString

V-906

if(exists("NewGizmo")!=4)
DoAlert 0, "Gizmo XOP must be installed"
return

endif
NewGizmo/N=Gizmo0 /W=(309,44,642,373)
ModifyGizmo startRecMacro
ModifyGizmo scalingMode=2
AppendToGizmo Scatter=root:ddd,name=scatter0
ModifyGizmo ModifyObject=scatter0 property={ scatterColorType,0}
ModifyGizmo ModifyObject=scatter0 property={ Shape,2}
ModifyGizmo ModifyObject=scatter0 property={ size,0.2}
ModifyGizmo ModifyObject=scatter0 property={ color,0,0,0,1}
AppendToGizmo Path=root:M_TetraPath,name=path0
ModifyGizmo ModifyObject=path0 property={ pathColor,0,0,1,1}
ModifyGizmo setDisplayList=0, object=scatter0
ModifyGizmo setDisplayList=1, object=path0
ModifyGizmo autoscaling=1
ModifyGizmo compile
ModifyGizmo endRecMacro

End

References
Watson, D.F., Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes,

The Computer J., 24, 167-172, 1981.
Further information about this algorithm can be found in:
Watson, D.F., CONTOURING: A guide to the analysis and display of spatial data, Pergamon Press, 1992.

See Also
The Interpolate3D operation and the Interp3D function.

TrimString
TrimString(str [, simplifyInternalSpaces])
The TrimString function returns a string identical to str except that leading and trailing whitespace
characters are removed. The whitespace characters are space, tab, carriage-return and linefeed.
If the optional second parameter is non-zero, then each run of whitespace characters between words in str
is "simplified" to a single space character.
TrimString was added in Igor Pro 7.00.

Examples
Print TrimString(" spaces at ends ") // Prints "spaces at ends"
Print TrimString(" spaces at ends ", 1) // Prints "spaces at ends"

See Also
SplitWave, RemoveEnding, ReplaceString

trunc
trunc(num)
The trunc function returns the integer closest to num in the direction of zero.

See Also
The round, floor, and ceil functions.

try
try
The try flow control keyword marks the beginning of the initial code block in a try-catch-entry flow control
construct.

See Also
The try-catch-endtry flow control statement for details.

try-catch-endtry

V-907

try-catch-endtry
try

<code>
catch

<code to handle abort>
endtry
A try-catch-endtry flow control statement provides a means for catching and responding to abort conditions
in user functions. A programmatic abort is generated when the code executes Abort, AbortOnRTE or
AbortOnValue. A user abort is generated when the user clicks the Abort button or presses the user abort key
combination.
When code executes in the try-catch area, a programmatic abort immediately jumps to the code in the catch-
endtry area rather than jumping to the end of the user function. A user abort jumps to the catch-entry area
when a flow control keyword such as for or while executes or at the end of the try code. Normal flow (no
aborts) skips all code within the catch-endtry area.

Details
During execution of code in the catch-endtry area, user aborts are suppressed. This means that, if the user
attempts to abort procedure execution by pressing the User Abort Key Combinations or by clicking the
Abort button, this will not abort the catch code itself.
When an abort occurs, information about the cause of the abort is returned via the V_AbortCode
 variable as follows:

See Also
Flow Control for Aborts on page IV-45 and try-catch-endtry Flow Control on page IV-45 for further
details.
The AbortOnRTE and AbortOnValue keywords, and the Abort operation.

UInt64
uint64 localName
Declares a local unsigned 64-bit integer in a user-defined function or structure.
UInt64 is available in Igor Pro 7 and later. See Integer Expressions on page IV-36 for details.

See Also
Int, Int64

UniqueName
UniqueName(baseName, objectType, startSuffix [, windowNameStr])
The UniqueName function returns the concatenation of baseName and a number such that the result is not
in conflict with any other object name.
windowNameStr is optional. If missing, it is taken to be the top graph, panel, layout, or notebook according
to the value of objectType.

Details
baseName should be an unquoted name, such as you might receive from the user via a dialog or control panel.

-4: Abort triggered by AbortOnRTE.

-3: Abort caused by Abort operation.

-2: Stack overflow abort.

-1: User abort.

>=1: Abort triggered by AbortOnValue.

UnPadString

V-908

objectType is one of the following:

startSuffix is the number used as a starting point when generating the numeric suffix that makes the name
unique. Normally you should pass zero for startSuffix. If you know that names of the form base0 through
baseN are in use, you can make UniqueName run a bit faster by passing N+1 as the startSuffix.
The windowNameStr argument is used only with objectTypes 14, 15, and 16. The returned name is unique only
to the window (other windows might have objects with the same name). If a named window is given but does
not exist, UniqueName returns baseName startSuffix. windowNameStr is ignored for other objectTypes

Examples
String uniqueWaveName = UniqueName(baseWaveName, 1, 0)
String uniqueControlName = UniqueName("ctrl", 15, 0, "Panel0")

See Also
CheckName and CleanupName.

UnPadString
UnPadString(str, padValue)
The UnPadString function undoes the action of PadString. It returns a string identical to str except that
trailing bytes of padValue are removed.

See Also
PadString

UnsetEnvironmentVariable
UnsetEnvironmentVariable(varName)
The UnsetEnvironmentVariable function deletes the variable named varName from the environment of
Igor's process, if it exists
The function returns 0 if it succeeds or a nonzero value if it fails.
The UnsetEnvironmentVariable function was added in Igor Pro 7.00.

Parameters

Details
The environment of Igor's process is composed of a set of key=value pairs that are known as environment
variables.
The environment of Igor's process is composed of a set of key=value pairs that are known as environment
variables. Any child process created by calling ExecuteScriptText inherits the environment variables of
Igor's process.
UnsetEnvironmentVariable changes the environment variables present in Igor's process and any future
process created by ExecuteScriptText but does not affect any other processes already created.
On Windows, environment variable names are case-insensitive. On other platforms, they are case-sensitive.

1 Wave. 9 Control panel window.
2 Reserved. 10 Notebook window.
3 Numeric variable. 11 Data folder.
4 String variable. 12 Symbolic path.
5 XOP target window. 13 Picture.
6 Graph window. 14 Annotation in the named or topmost graph or layout.
7 Table window. 15 Control in the named or topmost graph or panel.
8 Layout window. 16 Notebook action character in the named or topmost

notebook.

varName The name of an environment variable which does not need to actually exist. It must
not be an empty string and may not contain an equals sign (=).

Unwrap

V-909

Examples
Variable result
result = SetEnvironmentVariable("SOME_VARIABLE", "15") // Sets the variable
result = UnsetEnvironmentVariable("SOME_VARIABLE") // Unsets the variable

See Also
GetEnvironmentVariable, SetEnvironmentVariable

Unwrap
Unwrap modulus, waveName [, waveName]…
The Unwrap operation scans through each named wave trying to undo the effect of a modulus operation.

Parameters
modulus is the value applied to the named waves through the mod function as if the command:
waveName = mod(waveName,modulus)

had been executed. It is this calculation which Unwrap attempts to undo.

Details
The unwrap operation works with 1D waves only. See ImageUnwrapPhase for phase unwrapping in two
dimensions.

Examples
If you perform an FFT on a wave, the result is a complex wave in rectangular coordinates. You can create a
real wave that contains the phase of the result of the FFT with the command:
wave2 = imag(r2polar(wave1))

However, the rectangular to polar conversion leaves the phase information modulo 2π. You can restore the
phase information with the command:
Unwrap 2*pi, wave2

Because the first point of a wave that has been FFTed has no phase information, in this example you would
precede the Unwrap command with the command:
wave2[0] = wave2[1]

See Also
The ImageUnwrapPhase operation and mod function.

UpperStr
UpperStr(str)
The UpperStr function returns a string expression in which all lower-case ASCII characters in str are
converted to upper-case.

See Also
The LowerStr function.

URLDecode
URLDecode(inputStr)
The URLDecode function returns a percent-decoded copy of the percent-encoded string inputStr. It is
unlikely that you will need to use this function; it is provided for completeness.
For an explanation of percent-encoding, see Percent Encoding on page IV-253.

Example
String theURL = "http://google.com?key1=35%25%20larger"
theURL = URLDecode(theURL)
Print theURL
 http://google.com?key1=35% larger

See Also
URLEncode, URLRequest, URLs on page IV-252.

URLEncode

V-910

URLEncode
URLEncode(inputStr)
The URLEncode function returns a percent-encoded copy of inputStr.
Percent-encoding is useful when encoding the query part of a URL or when the URL contains special
characters that might otherwise be misinterpreted by a web server. For an explanation of percent-encoding,
see Percent Encoding on page IV-253.

Example
String baseURL = "http://google.com"
String key1 = "key1"
String value1 = URLEncode("35% larger")
String theURL = ""
sprintf theURL, "%s?%s=%s", baseURL, key1, value1
Print theURL
 http://google.com?key1=35%25%20larger

See Also
URLDecode, URLRequest, URLs on page IV-252.

URLRequest
URLRequest [flags] url=urlStr [method=methodName, headers=headersStr]
The URLRequest operation connects to a URL using the specified method and optionally stores the
response from the server. urlStr can point to a remote server or to a local file. The server's response is stored
in the S_serverResponse output variable or in a file if you use the /FILE flag.
The URLRequest operation was added in Igor Pro 7.00.

Keywords
The url=urlStr keyword is require. All others are optional.

url=urlStr A string containing the URL to retrieve. See URLs on page IV-252 for details.

method=methodName Specifies which method to use for the request. The get method is used by default.

Because methodName is a name, not a string, you must not enclose it in quotes.
Before using the post method, you should read The The HTTP POST Method on
page V-915 so that you know how to use the optional headers parameter.
If you use the head method, URLRequest sets the S_serverResponse output
variable to "" because only the headers are retrieved. As with other methods, the
headers are stored in the S_headers output variable.

This table shows the valid methods for each supported scheme. Not all
servers support all of the listed methods.

Scheme Supported Methods

http, https get, post, put, head, delete

ftp get, put

file get, put

URLRequest

V-911

Flags

headers=headersStr Specifies a string containing additional or replacement headers to use with the
request. This parameter is ignored unless the scheme is http or https.
The headers parameter is provided primarily for use with the post method when
making HTTP requests and is ignored for schemes other than http/https. The
header consists of a colon-separated key:value pair (though see the next
paragraph for an exception). Pairs must be separated by a carriage return (\r)
character.
Certain standard headers (such as Content-Type and User-Agent) may
automatically be set when making the request. You can override those default
values by using this keyword and setting a different value. If you add a header
with no content, as in "Accept:" (there is no data on the right side of the colon), the
internally used header is disabled. To actually add a header with no content, use
the form "MyHeader;" (note the trailing semicolon).
Any headers specified with this keyword are sent only to the http server, not to
the proxy server, if one is in use.
See The HTTP POST Method on page V-915 for a detailed explanation and
examples.

/AUTH={username, password }

Uses the specified username and password string parameters for authentication.
Values provided here override any username and/or password provided as
part of the URL. To specify a username but not a password, pass "" for the
password parameter.
Note: See Safe Handling of Passwords on page IV-254 for more information on
how to use URLRequest to prevent authentication information, such as
passwords, from being accidentally revealed.

/DFIL=dataFileNameStr Specifies a file name to use as a source of data. Typically this flag is used only
with the put or post methods, but it is accepted with all methods. Unless
dataFileNameStr is a full path, the /P flag must also be used. When using the post
or put methods, one and only one of the /DFIL or /DSTR flags must be used.
When you use /DFIL and the method is anything other than put, the "Content-
Type: application/x-www-form-urlencoded" header is automatically added. If
necessary, you can override this behavior using the headers keyword. See The
HTTP POST Method on page V-915 for more information.

/DSTR=dataStr Specifies the string to use as a source of data. Typically you use this flag only
with the put or post methods, but it is accepted with all methods. When using
the post or put methods, one and only one of the /DFIL or /DSTR flags must be
used.
When /DSTR is used and the method is anything other than put, the "Content-
Type: application/x-www-form-urlencoded" header is automatically added. If
necessary, you can override this behavior using the headers keyword. See The
HTTP POST Method on page V-915 for more information.

URLRequest

V-912

/FILE=destFileNameStr If present, URLRequest saves the server's response in a file instead of in the
S_serverResponse output variable.
URLRequest ignores /FILE if you include the /IGN flag and the ignoreResponse
parameter is not 0.
destFileNameStr can be a full path to the file, in which case /P=pathName is not
needed, a partial path relative to the folder associated with pathName, or the
name of a file in the folder associated with pathName. If the file already exists,
URLRequest returns an error unless you include the /O flag.
If you include /O and the file already exists, the existing file is overwritten. This
happens even in the event of an empty response or transfer error.
You should consider using the /FILE flag when you are expecting the server to
return a large amount of data, such as when downloading a file.

/IGN[=ignoreResponse] Ignore and do not store the server's response to the request. /IGN alone has the
same effect as /IGN=1.
If ignore is turned on, URLRequest sets the S_serverResponse output variable
to "", regardless of whether the server responded to the request or not. If you
include the /FILE flag, URLRequest does not create the output file and sets
S_fileName is set to "".

/NRED=maxNumRedirects Specifies the maximum number of redirects that are allowed. A redirect means
that when a certain URL is requested, the server responds telling the client to
try a different URL. Most web browsers automatically follow server redirects,
up to a certain limit. For security purposes, it is sometimes useful to prevent
redirects from being followed at all.
maxNumRedirects is a number between -1 and 1000. To allow infinite
redirection, set maxNumRedirects to -1. If you omit the /NRED flag, a moderate
value (currently 20, but subject to change in the future) is used.

/O Specifies that the file is to be overwritten when you use the /FILE flag and the
output file already exists. If you omit /O and the file exists, URLRequest returns
an error.

/P=pathName Specifies the folder to use for the output file, specified by the /FILE flag, and/or
the source data file, specified by the /DFIL flag. pathName is the name of an
existing Igor symbolic path.
The /P flag affects both the /FILE and /DFIL flags. If you use both flags and want
to use different directories, you must provide a full path for one or both of the
/FILE and /DFIL flag parameters.
If the /P flag is used without one or both of the /FILE and /DFIL flags, it is
ignored.

/PROX[={proxyURLStr, proxyUserNameStr, proxyPassStr, proxyOptions}]

NOTE: This flag is experimental and has not been extensively tested. The
behavior of this flag may change in the future, or it may be eliminated
entirely.

This flag is useful only when your goal is to establish a connection with a
server and the server's response is not important. All error message codes
and strings are still set when ignore is on.
/IGN=0: Same as no /IGN.
/IGN=1: Ignore server response completely. S_headers is set to "".
/IGN=2: Ignore server response but capture the headers of the

response. S_serverResponse is set to "" but S_headers will
contain the headers.

URLRequest

V-913

Designates a proxy server to be used when making the connection.
proxyURLStr is either the host name or IP address of the proxy server, or a full
URL. If a full URL is used, the scheme specifies which kind of proxy is used.
Typically the scheme for a proxy server should be either http or socks5. If no
scheme is provided, http is assumed. See URLs on page IV-252 for more
information.
If the proxy server does not require authentication, or if the username and
password for the proxy server are specified in proxyURLStr, the optional
proxyUserNameStr and proxyPassStr parameters do not need to be provided.
The following two examples do the same thing:
/PROX={"http://proxy.example.com:800"}

/PROX={"http://proxy.example.com:800", "", ""}

As with other URLs, you can also provide the username and password as part
of the URL itself. The following two examples do the same thing:
/PROX={"http://proxy.example.com:800", "user", "pass"}

/PROX={"http://user:pass@proxy.example.com:800"}

proxyOptions is optional and for future use. It is currently ignored. If provided,
you must set it to 0.
If you use the /PROX flag without any parameters, Igor attempts to get proxy
information from the operating system's proxy configuration information. If
Igor cannot get any proxy server information from the system, no proxy server
is used.
See Safe Handling of Passwords on page IV-254 for more information on how
to use URLRequest to prevent authentication information, such as passwords,
from being accidentally revealed.

/TIME=timeoutSeconds Forces the operation to time out after timeoutSeconds seconds if it has not
completed by that time. If this flag is not provided, URLRequest runs until the
server has finished sending and receiving data. For simple requests a value of
a few seconds is appropriate. However, because uploading and/or
downloading large amounts of data may take a long time, if timeoutSeconds is
too small the request might be prematurely terminated. If you omit the /TIME
flag, or if timeoutSeconds = 0, there is no timeout.
Regardless of whether or not you include /TIME, you can abort the operation
by pressing the User Abort Key Combinations.

/V=diagnosticMode

/Z[=z]

This flag is useful only when your goal is to establish a connection with a
server and the server's response is not important. All error message codes
Controls diagnostic messages printed in the history area of the command
window.
/V=0: Do not print any diagnostic messages. This is the default if you

omit /V.
/V=1: Prints an error message if a run time error occurs.
/V=2: Prints full debugging information.

Suppress error generation. Use this if you want to handle errors yourself.

/Z alone has the same effect as /Z=1.

/Z=0: Do not suppress errors. This is the default if /Z is omitted.
/Z=1: Any errors generated by Igor do not stop execution. If there is

an error the error code is stored in V_Flag.

URLRequest

V-914

Output Variables
URLRequest sets the following output variables:

Basic Examples
// Retrieve the contents of the WaveMetrics home page.
// Output is stored in S_serverResponse
URLRequest url="http://www.wavemetrics.com"

// Download the Windows Igor6 installer and save it as a file on the desktop.
NewPath/O Desktop, SpecialDirPath("Desktop", 0, 0, 0)
String theURL = "http://www.wavemetrics.net/Downloads/Win/setupIgor6.exe"
URLRequest/FILE="setupIgor6.exe"/P=Desktop url=theURL

// Download a file to the desktop from an FTP server.
NewPath/O Desktop, SpecialDirPath("Desktop", 0, 0, 0)
String theURL = "ftp://ftp.wavemetrics.com/test/test.htm"
URLRequest/O/FILE="test.htm"/P=Desktop url=theURL

// Upload the same file to the FTP server.
theURL = "ftp://user:pass@ftp.wavemetrics.com/test.htm"
URLRequest/DFIL="test.htm"/P=Desktop method=put, url=theURL

Using the File Scheme
URLRequest supports the file scheme in URLs. You must provide the full path to the file as a native
Windows-style or UNIX-style path, depending on which platform the code is running.
You must specify the schema as "file:///". Note that you must use three front slash characters (/) between the
colon and the full file path (for most URLs you would only use two slashes).

V_flag V_flag is zero if the operation succeeds without an error or a non-zero Igor error
code if it fails.
Note that "succeeds without an error" does not necessarily mean that the
operation performed as you intended. For example, if you attempt to connect to
a server that requires a username and password for authentication but you do not
provide this information, V_flag is likely to be 0, indicating no error. You need to
inspect the value of V_responseCode to ensure that it is what you expect.

V_responseCode Contains the status code provided by the server.
V_responseCode is valid only if V_flag is 0, meaning that no error occured. If
V_flag is nonzero, an error occured and V_responseCode will be 0.
Different schemes use different sets of status codes.
A list of http/https status codes and their definitions can be found at:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
A list of FTP status codes can be found at:
https://en.wikipedia.org/wiki/List_of_FTP_server_return_codes

S_serverResponse Contains the server's response to the request.
S_serverResponse is set to "" if you use the /FILE flag or the /IGN=1 or /IGN=2
flags.
We recommend that you use the /FILE flag when you expect the size of the server
response to be large, such as when downloading a large file.

S_headers Contains a list of all of the headers received as part of the response. Header names
are separated from their value by a colon and pairs are separated by a carriage
return followed by a line feed (\r\n). For schemes other than http and https,
S_headers is set to "".

S_fileName Contains the full Igor-style path to the output file if the /FILE flag was used. If
there was an error saving to the specified file, or another kind of error, or if the
/FILE flag was not used, S_fileName is set to "".

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

URLRequest

V-915

URLRequest url="file:///C:\\Data\\Trial1\\control.ibw" // Works on Windows only
URLRequest url="file:///Users/bob/Data/Trial1/control.ibw" // Works on Macintosh only
URLRequest url="file:///C:\\Data\\Trial1\\control.ibw" // Doesn't work
URLRequest url="file:///Users/bob/Data/Trial1/control.ibw" // Doesn't work

The following example shows how to convert a full Igor file path to a native path suitable for use as a file
URL:
String nativeFilePath
#ifdef WINDOWS

String igorFilePath = "C:Documents:myFile.txt"
nativeFilePath = ParseFilePath(5, igorFilePath, "*", 0, 0)

#endif
#ifdef MACINTOSH

String igorFilePath = "MacintoshHD:Documents:myFile.txt"
nativeFilePath = ParseFilePath(5, igorFilePath, "/", 0, 0)

#endif
URLRequest url="file:///" + nativeFilePath

The HTTP POST Method
Like the HTTP GET method, the HTTP POST method can be used to transmit information to a web server.
When using the GET method, all information must be contained within the URL itself. As an example,
making a GET request to the URL <http://www.google.com/search?q=Igor+Pro+WaveMetrics> searches
Google using the keywords "Igor", "Pro", and "WaveMetrics".
Unlike the GET method, the POST method allows the client to send information to the server that is not
contained within the URL itself. This is necessary in many situations, such as when uploading a file or
transfering a large amount of data. In addition, because the data contained in POST requests is typically not
stored in the log files of web servers, it is more appropriate for sending data that is secure, such as login
credentials and form submissions which might contain sensitive information.
When using the POST method, the client must encode its data using one of several methods and must tell
the server what type of data is being sent and how it is encoded. The client does this by setting the Content-
Type header that is part of the request. The most commonly used content type is "application/x-www-form-
urlencoded". Unless you provide your own Content-Type header using the optional headers parameter,
URLRequest will set this header for you. This is true regardless of which data source (/DSTR for string or
/DFIL for file) you use for the POST.
Here is a simple example that uses the POST method with URL encoded data (the default Content-Type).
String theURL = "http://www.example.com/process.php"
String nameData = URLEncode("name") + "=" + URLEncode("Dan P. Ikes, Jr.")
String address = "650 E. Chicago Ave."
String addressData = URLEncode("address") + "=" + URLEncode(address)
String postData = nameData + "&" + addressData
URLRequest/DSTR=postData method=post, url=theURL

There are two things to note in this example.
First, both the key name and value string are passed through URLEncode so that any special characters can
be percent-encoded.
Second, keys and values are separated by an equal sign ("=") and key/value pairs are separated by an
ampersand ("&"). These characters are not passed through URLEncode because doing so would cause them
to lose their meaning as special characters.
For more information on using the application/x-www-form-urlencoded content type, see
http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1
It is also possible to transmit more complicated data using the POST method, such as simulating a form that
contains regular text fields as well as a file upload field. To do so you must set the Content-Type header
using the headers parameter. You must also build your post data using a multi-part header. Here is an
example:
String theURL = "http://www.example.com/process.php"
String postData = ""
// Note: The boundary is arbitrary. It needs to be
// unique enough that it is not contained within any
// of the actual data being transmitted in the post.
String boundary = "AaBbCcDd0987"

// name
postData += "--" + boundary + "\r\n"// beginning of this part

http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1

ValDisplay

V-916

postData += "Content-Disposition: form-data; name=\"name\"\r\n"
postData += "\r\n"
postData += "Dan P. Ikes, Jr.\r\n"

// address
postData += "--" + boundary + "\r\n"
postData += "Content-Disposition: form-data; name=\"address\"\r\n"
postData += "\r\n"
postData += "650 E. Chicago Ave.\r\n"

// file
// Open the file we plan to send and store the binary
// contents of the file in a string.
Variable refNum
Open/R/Z/P=Igor refNum as "ReadMe.ihf"
FStatus refNum
Variable fileSize = V_logEOF
String fileContents = ""
fileContents = PadString(fileContents, fileSize, 0)
FBinRead refNum, fileContents
Close refNum
postData += "--" + boundary + "\r\n"
postData += "Content-Disposition: form-data; name=\"file\"; filename=\"ReadMe.ihf\"\r\n"
postData += "Content-Type: application/octet-stream\r\n"
postData += "Content-Transfer-Encoding: binary\r\n"
postData += "\r\n"
postData += fileContents + "\r\n"

postData += "--" + boundary + "--\r\n" // end of this part

String headers
headers = "Content-Type: multipart/form-data; boundary=" + boundary
URLRequest/DSTR=postData method=post, url=theURL, headers=headers

For more information on using the multipart/form-data content type, see
http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.2

See Also
URLEncode, URLDecode, FetchURL, BrowseURL
Network Communication on page IV-252, URLs on page IV-252

ValDisplay
ValDisplay [/Z] ctrlName [keyword = value [, keyword = value …]]
The ValDisplay operation creates or modifies the named control that displays a numeric value in the target
window. The appearance of the control varies; see the Examples section.
For information about the state or status of the control, use the ControlInfo operation.

Parameters
ctrlName is the name of the ValDisplay control to be created or changed.
The following keyword=value parameters are supported:

appearance={kind [, platform]}

Sets the appearance of the control. platform is optional. Both parameters are
names, not strings.
kind can be one of default, native, or os9.
platform can be one of Mac, Win, or All.
See Button and DefaultGUIControls for more appearance details.

barBackColor=(r,g,b) Sets the background color under the bar (if any). r, g, and b range from 0 to 65535.

barBackColor=0 Sets the background color under the bar to the default color, the standard
document background color used on the current operating system, which is
usually white.

http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.2

ValDisplay

V-917

barmisc={lts, valwidth} Sets the “limits text size” and the size of the type showing the bar limits. If lts is
zero, the bar limits are not displayed. Otherwise, lts must be between 5 and 100.
valwidth is the “value readout width”. It claims the amount of horizontal space for
the numeric part of the display.
If valwidth equals or exceeds the control width available to it, the numeric readout
uses all the room, and prevents display of any bar.
If valwidth is zero, there is no numeric readout, and only the bar is displayed.
valwidth can range from zero to 4000, and it defaults to 1000 (which usually leaves
no room for the display bar).

bodyWidth=width Specifies an explicit size for the body (nontitle) portion of a ValDisplay control.
By default (bodyWidth=0), the body portion is the amount left over from the
specified control width after providing space for the current text of the title
portion. If the font, font size, or text of the title changes, then the body portion
may grow or shrink. If you supply a bodyWidth>0, then the body is fixed at the
size you specify regardless of the body text. This makes it easier to keep a set of
controls right aligned when experiments are transferred between Macintosh and
Windows, or when the default font is changed.

disable=d

fColor=(r,g,b) Sets the initial color of the title. r, g, and b range from 0 to 65535. fColor defaults
to black (0,0,0). To further change the color of the title text, use escape sequences
as described for title=titleStr.

font="fontName" Sets the font used to display the value of the variable, e.g.,
font="Helvetica"

format=formatStr Sets the numeric format of the displayed value. The default format is "%g". For a
description of formatStr, see the printf operation.

frame=f

fsize=s Sets the size of the type used to display the value in the numeric readout. The
default is 12 points.

fstyle=fs

Sets user editability of the control.
d=0: Normal.
d=1: Hide.
d=2: Disable user input.

Does not change control appearance because it is read-only.
d=3: Hide and disable the control.

This is useful to disable a control that is also hidden because it is
in a hidden tab.

Sets frame style:
f=0: Value is unframed.
f=1: Default; value is framed (same as f=3).
f=2: Simple box.
f=3: 3D sunken frame.
f=4: 3D raised frame.
f=5: Text well.

fs is a bitwise parameter with each bit controlling one aspect of the font style
as follows:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Bit 0: Bold
Bit 1: Italic
Bit 2: Underline
Bit 4: Strikethrough

ValDisplay

V-918

help={helpStr} Sets the help for the control. The help text is limited to a total of 255 bytes. On
Macintosh, help appears when you turn Igor Tips on. On Windows, help for the
first 127 bytes or up to the first line break appears in the status line. If you press
F1 while the cursor is over the control, you will see the entire help text. You can
insert a line break by putting “\r” in a quoted string.

highColor=(r,g,b) Specifies the bar color when the value is greater than base in the limits keyword.
r, g, and b are integers from 0 to 65535.

labelBack=(r,g,b) or 0 Specifies the background fill color for labels. r, g, and b are integers from 0 to
65535. The default is 0, which uses the window’s background color.

limits={low,high,base} Controls how the value is translated into a graphical representation when the display
includes a bar (described fully in Details). Defaults are {0,0,0}, which aren’t too
useful.

limitsColor=(r,g,b) Sets the color of the limits text, if any. r, g, and b range from 0 to 65535. limitsColor
defaults to black (0,0,0).

limitsBackColor=(r,g,b) Sets the background color under the limits text. r, g, and b range from 0 to 65535.

limitsBackColor=0 Sets the background color under the limits text to the default color, the standard
document background color used on the current operating system, which is
usually white.

lowColor=(r,g,b) Specifies the bar color when the value is less than base in the limits keyword. r, g,
and b are integers from 0 to 65535.

mode=m

pos={left,top} Sets the position of the display in pixels, from 0 to 32767.

pos+={dx,dy} Offsets the position of the display in pixels.

rename=newName Gives the ValDisplay control a new name.

size={width,height} Sets width and height of display in pixels. width can range from 10 to 200 pixels,
height from 5 to 200 pixels. Default width is 50, default height is determined by
the numeric readout font size.

title=titleStr Sets title of display to the specified string expression. The title appears to the left
of the display. If this title is too long, it won’t leave enough room to display the
bar or even the numeric readout! Defaults to "" (no title).
Using escape codes you can change the font, size, style, and color of the title. See
Annotation Escape Codes on page III-53 or details.

value=valExpr Displays the numeric expression valExpr. It is not a string.
As of version 6.1, you can use the syntax _NUM:num to specify a numeric value
without using a dependency.

valueColor=(r,g,b) Sets the color of the value readout text, if any. r, g, and b range from 0 to 65535.
valueColor defaults to black (0,0,0).

Specifies the type of LED display to use, if any.
m=0: Bar mode (default).
m=1: Oval LED.
m=2: Rectangular LED.
m=3: Bar mode with no fractional part.
m=4: Candy-stripe effect for the bar area to support indefinite-style

progress windows. The value is taken to be the phase of the
candy stripe. When using value= _NUM:n, n is taken as an
increment value so you would normally just use 1. Uses the
native platform appearance if the high and low colors are left as
default. Note native formats may not fill vertical space. See
Progress Windows on page IV-144 for an example.

ValDisplay

V-919

Flags

Details
The target window must be a graph or panel.
The appearance of the ValDisplay control depends primarily on the width and valwidth parameters and the width
of the title. Space for the individual elements is allocated from left to right, with the title receiving first priority.
If the control width hasn’t all been used by the title, then the value display gets either valwidth pixels of room, or
what is left. If the control width hasn’t been used up, the bar is displayed in the remaining control width:

If you use the bodyWidth keyword, the value readout width and bar width occupy the body width. The
total control width is then bodyWidth+title width, and the width from the size keyword is ignored.
The limits values low, high, and base and the value of valExpr control how the bar, if any, is drawn. The bar
is drawn from a starting position corresponding to the base value to an ending position determined by the
value of valExpr, low and high. low corresponds to the left side of the bar, and high corresponds to the right.
The position that corresponds to the base value is linearly interpolated between low and high.
For example, with low= -10, high=10, and base= 0, a valExpr value of 5 will draw from the center of the bar
area (0 is centered between -10 and 10) to the right, halfway from the center to the right of the bar area (5 is
halfway from 0 to 10):

valueBackColor=(r,g,b) Sets the background color under the value readout text.r, g, and b range from 0 to
65535.

valueBackColor=0 Sets the background color under the value readout text to the default color, the
standard document background color used on the current operating system,
which is usually white.

win=winName Specifies which window or subwindow contains the named control. If not given,
then the top-most graph or panel window or subwindow is assumed.
When identifying a subwindow with winName, see Subwindow Syntax on page
III-87 for details on forming the window hierarchy.

zeroColor=(r,g,b) Governs the LED color (in LED mode only). r, g, and b are integers from 0 to
65535. Used in conjunction with the limits keyword such that zeroColor
determines one endpoint color when base is between low and high, or LED color
when the value is less than low.

/Z No error reporting.

The Title

Bar Width = Control Width -
Title Width - Value Readout Width

Control Width
Title Width

Value
Readout

Width

Bar “snakes”
up/down/up
for additional
resolution.

Value of valExpr

high limit

low limit

Draws Blue Bar Draws Red Bar

low = -10 high = 10
5

base = 0

ValDisplay

V-920

The valExpr must be executable at any time. The expression is stored and executed when the ValDisplay
needs to be updated. However, execution will occur outside the routine that creates the ValDisplay, so you
must not use local variables in the expression.
valExpr may be enclosed in quotes and preceded with a # character (see When Dependencies are Updated
on page IV-217) to defer evaluation of the validity of the numeric expression, which may be needed if the
expression references as-yet-nonexistent global variables or user-defined functions:
ValDisplay valdisp0 value=notAVar*2 // "unknown name or symbol" error
ValDisplay valdisp0 value=#"notAVar*2" // still not valid, no error
Variable notAVar=3 // now valid; ValDisplay works

In a ValDisplay, the #"" syntax permits use of a string expression. Normally, the # prefix signifies that the
following text must be a literal quoted string. String expressions are evaluated at runtime to obtain the final
expression for the ValDisplay. In other words, there is a level of indirection.

Examples
Here is a sampling of the various types of ValDisplay controls available:

You can use a ValDisplay to replace the bar mode with a solid color fill designed to look like an LED. Use
the mode keyword with mode=1 to create an oval LED or mode=2 to create a rectangular LED. You can
specify different frames with the rectangular LED but only a simple frame is available for the oval mode.
Use mode=0 to revert to bar mode.
The color and brightness of the LED depends on the value that the ValDisplay is monitoring combined with
the limits={low, high, base) setting, the two color settings used in bar mode along with a third color (zeroColor)
that is used only in LED mode. When the value is between low and high, the color is a linear combination of
endpoint colors. If base is between low and high, the endpoint colors are the low color and the zero color, or the
zero color and the high color. For values outside the limits, the appropriate limiting color is chosen.
If base is less than the low, the endpoint colors are the low color and the high color. In this case, if the value
is less than low the LED takes on the zero color.
You should use the bodyWidth setting in conjunction with LED mode to keep the LED from dramatically
changing size or disappearing when the title is changed or if your experiment is moved to a different
platform (Macintosh vs PC).
Try the ValDisplay Demo example experiment to see these different modes in action. The experiment file is
in your Igor Pro 7 folder, in the “Examples:Feature Demos” subfolder.

See Also
See Creating ValDisplay Controls on page III-385 for more examples.
The ControlInfo operation for information about the control. Chapter III-14, Controls and Control Panels,
for details about control panels and controls. The GetUserData operation for retrieving named user data.
printf for an explanation of formatStr.
Progress Windows on page IV-144 for an example of candy-stripe mode=4.

Current value

High limit

Low limit

Low limit High limit

Blue

Red

LED displays
in a GroupBox.

Variable

V-921

Variable
Variable [flags] varName [=numExpr][, varName [=numExpr]]…
The Variable operation creates real or complex variables and gives them the specified name.

Flags

Details
The variable is initialized when it is created if you supply the initial value. However, when Variable is used
to declare a function parameter, it is an error to attempt to initialize it.
You can create more than one variable at a time by separating the names and optional initializers for
multiple variables with a comma.
Numeric variables are double precision. In ancient times, variables could be single or double precision and
the /D flag meant double precision. The /D flag is allowed for backward compatibility but is no longer
needed and should not be used in new code.
If used in a macro or function the new variable is local to that macro or function unless the /G (global) flag
is used. If used on the command line, the new variable is global.
varName can include a data folder path.

Examples
To initialize a complex variable, use the cmplx function. For example:
Variable/C cv1 = cmplx(1,2)

sets the real part of cv1 to 1 and the imaginary part to 2.

See Also
Numeric Variables on page II-96

Variance
Variance(inWave [, x1, x2])
Returns the variance of the real-valued inWave. The function ignores NaN and INF values in inWave.

Parameters
inWave is expected to be a real-valued numeric wave. If inWave is a complex or text wave, Variance returns
NaN.
x1 and x2 specify a range in inWave over which the variance is to be calculated. They are used only to locate
the points nearest to x=x1 and x=x2 . The variance is then calculated over that range of points. The order of
x1 and x2 is immaterial.
If omitted, x1 and x2 default to -∞ and +∞ respectively and the variance is calculated for the entire wave.

Details
The variance is defined by

where

/C Declares a complex variable.

/D Obsolete, included only for backward compatibility (see Details).

/G Creates a variable with global scope and overwrites any existing variable.

var =
xi � x()2

i=1

n

�

n �1

VariableList

V-922

Examples
Make/O/N=5 test = p
SetScale/P x, 0, .1, test

// Print variance of entire wave
Print Variance(test)

// Print variance from x=0 to x=.2
Print Variance(test, 0, .2)

// Print variance for points 1 through 3
Variable x1=pnt2x(test, 1)
Variable x2=pnt2x(test, 3)
Print Variance(test, x1, x2)

See Also
mean, median, WaveStats

VariableList
VariableList(matchStr, separatorStr, variableTypeCode)
The VariableList function returns a string containing a list of global variables selected based on the matchStr
and variableTypeCode parameters. The variables listed are all in the current data folder.

Details
For a variable name to appear in the output string, it must match matchStr and also must fit the
requirements of variableTypeCode. The first character of separatorStr is appended to each variable name as
the output string is generated.
The name of each variable is compared to matchStr, which is some combination of normal characters and
the asterisk wildcard character that matches anything. For example:

matchStr may begin with the ! character to return windows that do not match the rest of matchStr. For
example:

The ! character is considered to be a normal character if it appears anywhere else, but there is no practical
use for it except as the first character of matchStr.
variableTypeCode is used to further qualify the variable. The variable name goes into the output string only
if it passes the match test and its type is compatible with variableTypeCode. variableTypeCode is any one of:

"*" Matches all variable names.

"xyz" Matches variable name xyz only.

"*xyz" Matches variable names which end with xyz.

"xyz*" Matches variable names which begin with xyz.

"*xyz*" Matches variable names which contain xyz.

"abc*xyz" Matches variable names which begin with abc and end with xyz.

"!*xyz" Matches variable names which do not end with xyz.

2: System variables (K0, K1 . . .)

4: Scalar variables

5: Complex variables

x =
Xi

i=1

n

n
.

vcsr

V-923

Examples

See Also
See the StringList and WaveList functions.
See Setting Bit Parameters on page IV-12 for details about bit settings.

vcsr
vcsr(cursorName [, graphNameStr])
The vcsr function returns the Y (vertical) value of the point which the specified cursor (A through J) is
attached to in the top (or named) graph.

Parameters
cursorName identifies the cursor, which can be cursor A through J.
graphNameStr specifies the graph window or subwindow.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.

Details
The result is computed from the coordinate system of the graph’s Y axis. The Y axis used is the one used to
display the wave on which the cursor is placed.

See Also
The hcsr, pcsr, qcsr, xcsr, and zcsr functions.
Programming With Cursors on page II-249.

version
#pragma version = versNum
In the File Information dialog, #pragma version=versNum provides file version information that is
displayed next to the file name in the dialog. This line must not be indented and must appear in the first
fifty lines of the file. See Procedure File Version Information on page IV-155.

See Also
The The version Pragma on page IV-50, Procedure File Version Information on page IV-155, the IgorInfo
function, and #pragma.

VoigtFunc
VoigtFunc(X,Y)

Computes the Voigt function using an approximation giving an accuracy better than one part in 105 over
large range of input parameters.
VoigtFunc returns values from a normalized Voigt peak centered at X=0 for the given value of X. The X
input is a normalized distance from the peak center:

where is the Gaussian component half-width, and is the distance from the peak center.

The parameter Y is the shape parameter: when Y is zero, the peak is pure Gaussian. When Y approaches
infinity, the shape is pure Lorentzian. When Y is sqrt(ln(2)), the ratio of the Lorentzian and Gaussian half-
widths is one.

VariableList("*",";",4) Returns a list of all scalar variables.

VariableList("!V_*", ";",5) Returns a list of all complex variables except those whose names
begin with “V_”.

X = ln(2)
ν −ν0

γ g

γ g ν −ν0

WAVE

V-924

VoigtFunc was added in Igor Pro 7.00.

Details
The VoigtFunc function returns values from a normalized peak that can be used as the basis for user-
defined fitting functions. A typical fitting function might look like this:
Function VoigtFit(w,xx) : FitFunc

Wave w
Variable xx

//CurveFitDialog/ These comments were created by the Curve Fitting dialog.
//CurveFitDialog/ Equation:
//CurveFitDialog/ f(xx) = Y0+Amp*VoigtFunc(width*(xx-x0),shape)
//CurveFitDialog/ End of Equation
//CurveFitDialog/ Independent Variables 1
//CurveFitDialog/ xx
//CurveFitDialog/ Coefficients 5
//CurveFitDialog/ w[0] = Y0
//CurveFitDialog/ w[1] = Amp
//CurveFitDialog/ w[2] = width
//CurveFitDialog/ w[3] = x0
//CurveFitDialog/ w[4] = shape

return w[0]+w[1]*VoigtFunc(w[2]*(xx-w[3]),w[4])
End

Parameter w[0] sets the vertical offset, w[1] sets the amplitude, w[2] affects the width, w[3] sets the location
of the peak and w[4] adjusts the shape (but also affects the amplitude). Note that w[2] cannot be taken
directly to be width, as the shape parameter also affects the width.
After the fit, you can use the returned coefficients to calculate the area (a) along with the half width at half
max for the Gaussian (wg), Lorentzian (wl) and the Voigt (wv). Assuming the coefficient wave is named
w_coef:
a = w_coef[1]*sqrt(pi)/w_coef[2]
wg = sqrt(ln(2))/w_coef[2]
wl = w_coef[4]/w_coef[2]
wv = wl/2 + sqrt(wl^2/4 + wg^2)

References
The approximation is described here:
Wells, R.J., Rapid Approximation to the Voigt/Faddeeva Function and Its Derivatives, Journal of Quantitative
Sprectroscopy and Radiative Transfer, 1999.

WAVE
WAVE [/C][/T][/Z] localName [=pathToWave][, localName1 [=pathToWave1]]…
WAVE is a declaration that identifies the nature of a user-defined function parameter or creates a local
reference to a wave accessed in the body of a user-defined function.
The optional parameter pathToWave is used only in the body of a function, not in a parameter declaration.
The WAVE reference is required when you use a wave in an assignment statement in a function. At compile
time, the WAVE statement specifies that the local name references a wave. At runtime, it makes the
connection between the local name and the actual wave. For this connection to be made, the wave must exist
when the WAVE statement is executed.
When localName is the same as the global wave name and you want to reference a wave in the current data
folder, you can omit the pathToWave.
pathToWave can be a full literal path (e.g., root:FolderA:wave0), a partial literal path (e.g., :FolderA:wave0)
or $ followed by string variable containing a computed path (see Converting a String into a Reference
Using $ on page IV-57).
You can also use a data folder reference or the /SDFR flag to specify the location of the wave if it is not in
the current data folder. See Data Folder References on page IV-72 and The /SDFR Flag on page IV-74 for
details.
If the wave may not exist at runtime, use the /Z flag and call WaveExists before accessing the wave. The /Z
flag prevents Igor from flagging a missing wave as an error and dropping into the debugger. For example:

WAVEClear

V-925

WAVE/Z wv=<pathToPossiblyMissingWave>

if(WaveExists(wv))
<do something with wv>

endif

Note that to create a wave, you use the Make operation.

Flags

See Also
WaveExists function.
WAVE Reference Type Flags on page IV-68 for additional wave type flags and information.
Accessing Global Variables and Waves on page IV-59.
Accessing Waves in Functions on page IV-76.
Converting a String into a Reference Using $ on page IV-57.

WAVEClear
WAVEClear localName [, localName1 …]
The WAVEClear operation clears out a WAVE reference variable. WAVEClear is equivalent to WAVE/Z
localName= $"".

Details
Use WAVEClear to avoid unexpected results from certain operations such as Duplicate or Concatenate,
which will reuse the contents of a WAVE reference variable and may not generate the wave in the desired
data folder or with the desired name.
WAVEClear ensures that memory is deallocated after waves are killed as in this example:
Function foo()

Make wave1
FunctionThatKillsWave1()
WAVEClear wave1
AnotherFunction()

End

Although memory used for wave1 will be deallocated when foo returns, that memory will not be
automatically released while the function executes because the WAVE variable still contains a reference to
the wave. In this example, WAVEClear deallocates that memory before AnotherFunction executes.
You can also use WAVEClear before passing a data folder to preemptive threads using
ThreadGroupPutDF.

See Also
Accessing Waves in Functions on page IV-76, Wave Reference Counting on page IV-194, and ThreadSafe
Functions and Multitasking on page IV-308.

WaveCRC
WaveCRC(inCRC, waveName [, checkHeader])
The WaveCRC function returns a 32-bit cyclic redundancy check value of the bytes in the named wave
starting with inCRC.
Pass 0 for inCRC the first time you call WaveCRC for a particular stream of bytes as represented by the wave
data.
Pass the last-returned value from WaveCRC for inCRC if you are creating a CRC value for a given stream
of bytes through multiple calls to WaveCRC.
waveName may be a numeric or text wave.

/C Complex wave.

/T Text wave.

/Z Ignores wave reference checking failures.

WaveDims

V-926

The optional checkHeader parameter determines how much of the wave is checked:

Details
Polynomial used is:
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1
See crc32.c in the public domain source code for zlib for more information.

See Also
The StringCRC function.

WaveDims
WaveDims(wave)
The WaveDims function returns the number of dimensions used by wave.
Returns zero if wave reference is null. See WaveExists for a discussion of null wave references.
Also returns zero if wave has zero rows. A matrix will return 2.

WaveExists
WaveExists(wave)
The WaveExists function returns one if wave reference is valid or zero if the wave reference is null. For
example if, in a user function, you have:
Wave w= $"no such wave"

then WaveExists(w) will return zero.
WaveExists should be used in functions only. In macros, use the exists function instead.

See Also
exists, NVAR_Exists, SVAR_Exists, and Accessing Global Variables and Waves on page IV-59.

WaveInfo
WaveInfo(waveName, 0)
The WaveInfo function returns a string containing a semicolon-separated list of information about the
named wave.
The second parameter is reserved for future use and must be zero.

Details
The string contains six kinds of information. Each group is prefaced by a keyword and colon, and
terminated with a semicolon. The keywords are:

checkHeader What It Does

0 Check only the wave data (default).

1 Check only the internal binary header.

2 Check both.

Keyword Information Following Keyword

DUNITS The wave’s data units.

FULLSCALE Three numbers indicating whether the wave has any data full scale information, and the
min and max data full scale values. The format of the FULLSCALE description is:
FULLSCALE:validFS,minFS,maxFS;

validFS is 1 if minFS and maxFS have been set via a SetScale d command; otherwise
it is 0.

LOCK Reads back the value set by SetWaveLock.

WaveList

V-927

Always pass 0 as the second input parameter. In future versions of Igor, this parameter may request other
kinds of information to be returned.
A null wave reference returns a zero-length string. This might be encountered, for instance, when using
WaveRefIndexedDFR in a loop to act on all waves in a data folder, and the loop has incremented beyond
the highest valid index.

Examples
Make/O wave1;SetScale x,0,1,"dyn",wave1;SetScale y,3,20,"v",wave1
String info = WaveInfo(wave1,0)
Print NumberByKey("NUMTYPE", info) // Prints 2
Print StringByKey("DUNITS", info) // Prints "v"

See Also
The functions and operations listed under “About Waves” categories in the Command Help tab of the Igor
Help Browser; among them are CreationDate, ModDate, WaveType, note, and numpnts.
NumberByKey and StringByKey functions for parsing the returned keyword list.
WaveInfo lacks information about multidimensional waves. Individual functions are provided to return
dimension-related information: DimDelta, DimOffset, DimSize, WaveUnits, and GetDimLabel.

WaveList
WaveList(matchStr, separatorStr, optionsStr)
The WaveList function returns a string containing a list of waves selected from the current data folder based
on matchStr and optionsStr parameters. See Details for information on listing waves in graphs, and for
references to newer, data folder-aware functions.

MODIFIED 1 if the wave has been modified since the experiment was last saved, else 0.

MODTIME The date and time that the wave was last modified in seconds since January 1, 1904.

NUMTYPE A number denoting the data type of the wave.
For text waves this is 0.
For wave reference waves it is 16384.
For data folder reference waves it is 256.

For example, the number denoting a complex double precision wave is 5 (i.e., 1+4).

PATH The name of the symbolic path in which the wave file is stored (e.g., PATH:home;) or
nothing if there is no path for the wave (PATH:;).

SIZEINBYTES The total size of the wave in bytes. This includes the wave’s header, data, note,
dimension labels, and unit strings. This keyword was added in Igor Pro 7.00.

XUNITS The wave’s X units.

Keyword Information Following Keyword

For numeric waves it is one of the following:
1: Complex, added to one of the following
2: 32-bit (single precision) floating point
4: 64-bit (double precision) floating point
8: 8-bit signed integer
16: 16-bit signed integer
32: 32-bit signed integer
64: Unsigned, added to 8, 16, or 32 if wave is unsigned

WaveList

V-928

Details
For a wave name to appear in the output string, it must match matchStr and also must fit the requirements
of optionsStr and it must be in the current data folder. The first character of separatorStr is appended to each
wave name as the output string is generated.
The name of each wave is compared to matchStr, which is some combination of normal characters and the
asterisk wildcard character that matches anything.
For example:

matchStr may begin with the ! character to return windows that do not match the rest of matchStr. For
example:

The ! character is considered to be a normal character if it appears anywhere else, but there is no practical
use for it except as the first character of matchStr.
optionsStr is used to further qualify the wave.
Use "" to accept all waves in the current data folder that are permitted by matchStr.
Set optionsStr to one or more of the following comma-separated keyword-value pairs:

"*" Matches all wave names in current data folder.

"xyz" Matches wave name xyz only, if xyz is in the current data folder.

"*xyz" Matches wave names which end with xyz and are in the current data folder.

"xyz*" Matches wave names which begin with xyz and are in the current data folder.

"*xyz*" Matches wave names which contain xyz and are in the current data folder.

"abc*xyz" Matches wave names which begin with abc and end with xyz and are in the current data
folder.

"!*xyz" Matches wave names which do not end with xyz.

optionsStr Selection Criteria

"BYTE:0" or "BYTE:1" Waves that are not 8-bit integer (if 0) or only waves that are 8-bit integer (if 1).

"CMPLX:0" or
"CMPLX:1"

Waves that are not complex (if 0) or only waves that are complex (if 1).

"DIMS:numberOfDims" All waves in current data folder that have numberOfDims dimensions. This is the
number of dimensions reported by WaveDims.

Use "DIMS:0" for all waves having no points (numpnts(w)==0).

Use "DIMS:1" for graph traces (or one of the X, Y, and Z waves of a contour plot).

Use "DIMS:2" for false color and indexed color images (see Indexed Color
Details on page II-312).

Use "DIMS:3" for direct color images (see Direct Color Details on page II-313).

"DF:0" or "DF:1" Consider waves that are not data folder reference waves (if 0) or only waves that
are data folder reference waves (if 1). You can create waves that contain data
folder references using the Make /DF flag.

"DP:0" or "DP:1" Waves that are not double precision floating point (if 0) or only waves that are
double precision floating point (if 1).

"INT64:0" or
"INT64:1"

Consider waves that are not 64-bit integer (if 0) or only waves that are 64-bit
integer (if 1). 64-bit integer waves are supported in Igor7 and later.

"INTEGER:0" or
"INTEGER:1"

Waves that are not 32-bit integer (if 0) or only waves that are 32-bit integer (if 1).

"MAXCHUNKS:max" Waves having no more than max chunks.

WaveList

V-929

You can specify more than one option by separating the options with a comma. See the Examples.

There are several functions that are more useful for listing waves in graphs and tables.
WaveList with WIN:windowName gives only the names of the waves in the graph or table and does not
include the data folder for each wave. If you need to know what data folder the waves are in, use
WaveRefIndexed to get the wave itself and then if needed use GetWavesDataFolder to get the path.
When identifying a subwindow with WIN:windowName, see Subwindow Syntax on page III-87 for details
on forming the window hierarchy.
To list the actual waves used in a graph, or to distinguish two or more instances of the same named wave
in a graph, use TraceNameList. This function can be used in conjunction with TraceNameToWaveRef, and
XWaveRefFromTrace.
Use ContourNameList to list contour plots in a given window and ContourNameToWaveRef to access the
waves used to generate the contour plot.
To list the contour traces (that is, the contour lines themselves) use TraceNameList with the appropriate option.
Use ImageNameList to list images in a given window and ImageNameToWaveRef to access the waves
used to generate the images.

"MAXCOLS:max" Waves having no more than max columns.

"MAXLAYERS:max" Waves having no more than max layers.

"MAXROWS:max" Waves having no more than max rows.

"MINCHUNKS:min" Waves having at least min chunks.

"MINCOLS:min" Waves having at least min columns.

"MINLAYERS:min" Waves having at least min layers.

"MINROWS:min" Waves having at least min rows.

"SP:0" or "SP:1" Waves that are not single precision floating point (if 0) or only waves that are
single precision floating point (if 1).

"TEXT:0" or "TEXT:1" Waves that are not text (if 0) or only waves that are text (if 1).

"UNSIGNED:0" or
"UNSIGNED:1"

Waves that are not unsigned integer (if 0) or only waves that are unsigned
integer (if 1).

"WAVE:0" or "WAVE:1" Consider waves that do not contain wave references (if 0) or only waves that
contain wave references (if 1). You can create waves that contain wave
references using the Make /WAVE flag.

"WIN:" All waves in the current data folder that are displayed in the top graph or table.

"WIN:windowName" All waves in the current data folder that are displayed in the named table or
graph window or subwindow.

"WORD:0" or "WORD:1" Waves that are not 16-bit integer (if 0) or only waves that are 16-bit integer (if 1).

Note: Even when optionsStr is used to list waves used in a graph or table, the waves must be in
the current data folder.

Note: In addition to waves displayed as normal graph traces, WaveList will list matrix waves
used with AppendImage or NewImage and the X, Y, and Z waves used with
AppendXYZContour.

Note: Individual contour traces are not listed because they have no corresponding waves. See
Contour Traces on page II-283.

optionsStr Selection Criteria

WaveMax

V-930

Processing Lists of Waves
Contrary to what you might expect, you can not use the output of WaveList directly with operations that have a
list of waves as their parameters. See Processing Lists of Waves on page IV-187 for ways of dealing with this.

Examples
// Returns a list of all waves in the current data folder.
WaveList("*",";","")

// Returns a list of all waves in the current data folder and displayed in the top table or graph.
WaveList("*", ";","WIN:")

// Returns a list of waves in the current data folder whose names
// end in “_bkg” and which are displayed in Graph0 as 1D traces.
WaveList("*_bkg", ";", "WIN:Graph0")

// Returns a list of waves in the current data folder whose names do not
// end in “X” and which are displayed in Graph0 as 1D traces or as one
// of the X, Y, and Z waves of an AppendXYZContour plot.
WaveList("!*X", ";", "WIN:Graph0,DIMS:1")

See Also
Chapter II-6, Multidimensional Waves.
Execute, ContourNameList, ImageNameList, TraceNameList, and WaveRefIndexed.

WaveMax
WaveMax(waveName [, x1, x2])
The WaveMax function returns the maximum value in the wave for points between x=x1 to x=x2, inclusive.

Details
If x1 and x2 are not specified, they default to -inf and +inf, respectively.
The X scaling of the wave is used only to locate the points nearest to x=x1 and x=x2. To use point indexing,
replace x1 with pnt2x(waveName,pointNumber1), and a similar expression for x2.
If the points nearest to x1 or x2 are not within the point range of 0 to numpnts(waveName)-1, WaveMax limits
them to the nearest of point 0 or point numpnts(waveName)-1.
For a floating-point wave, WaveMax runs about three times faster than getting the same information using
WaveStats. For an integer wave, WaveMax runs about ten times faster than WaveStats. The advantage may
not hold for short waves.

See Also
The WaveMin function and WaveStats operation.

WaveMeanStdv
WaveMeanStdv srcWave binSizeWave
The WaveMeanStdv operation calculates the standard deviation of the means for the specified bin
distribution saving the result in the wave W_MeanStdv.
For each entry in binSizeWave, srcWave is divided into the specified number of bins. Values in each bin are
averaged and then the mean and standard deviation of the averages (among all bins) are calculated. The
value of the standard deviation of the bin averages divided by the mean is then stored in W_MeanStdv
corresponding to the bin size entry in binSizeWave.
All entries in binSizeWave must be positive integers.

Details
When the number of points in srcWave does not divide evenly into the bin size entry from binSizeWave, the
last bin will have a smaller number of data points. In order not to skew the results the values corresponding
to the last bin will be dropped. If your data set is small compared to the bin size you might want to pad
srcWave with additional values (e.g., duplicate values from the beginning of the wave).
This operation does not support NaNs. If you get a NaN as an entry in the output wave then there is either
a NaN in srcWave or something is wrong with the calculation for that entry.

WaveMin

V-931

WaveMin
WaveMin(waveName [, x1, x2])
The WaveMin function returns the minimum value in the wave for points between x=x1 to x=x2, inclusive.

Details
If x1 and x2 are not specified, they default to -inf and +inf, respectively.
The X scaling of the wave is used only to locate the points nearest to x=x1 and x=x2. To use point indexing,
replace x1 with pnt2x(waveName,pointNumber1), and a similar expression for x2.
If the points nearest to x1 or x2 are not within the point range of 0 to numpnts(waveName)-1, WaveMin limits
them to the nearest of point 0 or point numpnts(waveName)-1.
For a floating-point wave, WaveMin runs about three times faster than getting the same information using
WaveStats. For an integer wave, WaveMin runs about ten times faster than WaveStats. The advantage may
not hold for short waves.

See Also
The WaveMax function and WaveStats operation.

WaveName
WaveName(winNameStr, index, type)
The WaveName function returns a string containing the name of the indexth wave of the specified type in
the named window or subwindow.

Parameters
winNameStr can be "" to refer to the top graph or table.
When identifying a subwindow with winNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.

Details
WaveName works on waves displayed in a graph, in a table or on the list of waves in the current data folder.
If the window is a table, WaveName returns the column name (e.g., “wave0.d”), rather than the name of
the wave itself (e.g., “wave0”).
For most uses, we recommend that you use WaveRefIndexed or WaveRefIndexedDFR instead of
WaveName. WaveName returns a string containing the wave name only, with no data folder path
qualifying it. Thus, you may get erroneous results if the wave referred to in the graph has the same name
as a different wave in the current data folder. Likewise, if the named wave resides in a data folder that is
not the current data folder, you will not be able to refer to the named wave. Use WaveRefIndexedDFR
instead.
winNameStr is a string expression containing the name of a graph or table or an empty string (""). If the
string is empty and type is 4 then WaveName works on the list of all waves in the current data folder. If the
string is empty and the type parameter is not 4 then WaveName works on the top graph or table.
index starts from zero.
type is a number from 1 to 4. When type is 4 and winNameStr is "", WaveName works on the list of all waves
in the current data folder.
For graph windows, type is 1 for y waves, 2 for x waves, 3 for either y or x waves.
For table windows, type is 1 for data columns, 2 for index or dimension label columns, 3 for either data or
index or dimension label columns.
WaveName returns an empty string ("") if there is no wave matching the parameters.

Examples
WaveName("",0,4) // Returns name first wave current data folder.
WaveName("",0,1) // Returns name of first Y wave in the top graph.
WaveName("Graph0",1,2) // Returns name of second X wave in Graph0.
WaveName("Table0",1,3) // Returns name of second column in Table0.

WaveRefIndexed

V-932

WaveRefIndexed
WaveRefIndexed(winNameStr, index, type)
The WaveRefIndexed function returns a wave reference to the indexth wave of the specified type in the
named window or subwindow.
To iterate through the waves in a data folder, use WaveRefIndexedDFR instead of WaveRefIndexed.

Parameters
winNameStr can be "" to refer to the top graph or table window or the current data folder.
When identifying a subwindow with winNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.

Details
WaveRefIndexed is analogous to WaveName but works better with data folders. We recommend that you
use it instead of WaveName.
winNameStr is a string expression containing the name of a graph or table or an empty string (""). If the
string is empty and type is 4 then WaveRefIndexed works on Igor’s list of all waves in the current data
folder. If the string is empty and the type parameter is not 4 then WaveRefIndexed works on the top graph
or table.
index starts from zero.
type is a number from 1 to 4. When type is 4 and winNameStr is "", WaveRefIndexed works on the list of all
waves in the current data folder.
For graph windows, type is 1 for y waves, 2 for x waves, 3 for either y or x waves.
For table windows, type is 1 for data columns, 2 for index or dimension label columns, 3 for either data or
index or dimension label columns.
WaveRefIndexed returns a null reference (see WaveExists) if there is no wave matching the parameters.

Examples
WaveRefIndexed("",0,1) // Returns first Y wave in the top graph.
WaveRefIndexed("Graph0",1,2) // Returns second X wave in Graph0.
WaveRefIndexed("Table0",1,3) // wave in second column in Table0.

See Also
WaveRefIndexedDFR, NameOfWave, GetWavesDataFolder
For a discussion of wave references, see Wave Reference Functions on page IV-186.

WaveRefIndexedDFR
WaveRefIndexedDFR(dfr, index)
The WaveRefIndexedDFR function returns a wave reference to the indexth wave in the specified data folder.

Parameters
dfr is a data folder reference.
index is the zero-based index of the wave you want to access.

Details
WaveRefIndexedDFR returns a null reference (see WaveExists) if there is no wave corresponding to index
in the specified data folder.

Example
// DemoWaveRefIndexedDFR can be called like this:
// DemoWaveRefIndexedDFR(root:, 0) // Work on root
// DemoWaveRefIndexedDFR(root:SubDataFolder, 0) // Work on root:SubDataFolder
// DemoWaveRefIndexedDFR(:, 0) // Work on current data folder
Function DemoWaveRefIndexedDFR(dfr, recurse)

DFREF dfr
Variable recurse

Variable index = 0
do

WaveRefsEqual

V-933

Wave/Z w = WaveRefIndexedDFR(dfr, index)
if (!WaveExists(w))

break
endif
String path = GetWavesDataFolder(w, 2)
Print path
index += 1

while(1)

if (recurse)
Variable numChildDataFolders = CountObjectsDFR(dfr, 4)
Variable i
for(i=0; i<numChildDataFolders; i+=1)

String childDFName = GetIndexedObjNameDFR(dfr, 4, i)
DFREF childDFR = dfr:$childDFName
DemoWaveRefIndexedDFR(childDFR, 1)

endfor
endif

End

See Also
WaveRefIndexed, NameOfWave, GetWavesDataFolder
For a discussion of wave references, see Wave Reference Functions on page IV-186.

WaveRefsEqual
WaveRefsEqual(w1, w2)
The WaveRefsEqual function returns the truth the two wave references are the same.

See Also
Wave Reference Functions on page IV-186

WaveRefWaveToList
WaveRefWaveToList(waveRefWave, option)
The WaveRefWaveToList function returns a semicolon-separated string list containing data folder paths.
Each element of the returned string list is the full or partial path to the wave referenced by the
corresponding element of waveRefWave. Entries in waveRefWave that are NULL or entries that correspond
to free waves result in an empty list element.
The WaveRefWaveToList function was added in Igor Pro 7.00.

Parameters
waveRefWave is a wave reference wave each element of which contains a reference to an existing wave or
NULL (0).
option determines if the returned path is a full path or a partial path relative to the current data folder:

Other values of option are reserved for the future.

Example
Function Test()

SetDataFolder root:
Make/O/FREE aaa
Make/O bbb
Make/O/WAVE/N=3 wr
Wr[0]=aaa

 // Wr[1] is null by initialization.
wr[2]=bbb
Print WaveRefWaveToList(wr,0)

End

// Executing Test() gives:

 ;;root:bbb;

option=0: Full path.

option=1: Partial path relative to the current data folder.

WaveStats

V-934

The first empty string corresponds to the free wave 'aaa' and the second empty string corresponds to the
null entry in the wave reference wave.

See Also
ListToWaveRefWave, ListToTextWave, Wave References on page IV-65

WaveStats
WaveStats [flags] waveName
The WaveStats operation computes several statistics on the named wave.

Flags

/ALPH=val Sets the significance level for the confidence interval of the mean (default val=0.05).

/C=method Calculates statistics for complex waves only. Does not affect real waves.
You can use method in various combinations to process the real, imaginary,
magnitude, and phase of the wave. The result is stored in the wave M_WaveStats (see
Details for format).

If you use a single method the results are stored both in M_WaveStats and in the
standard variables (e.g., V_avg, etc.). If you specify method as a combination of more
than one binary field then the variables reflect the results for the lowest chosen field
and all results are stored in the wave M_WaveStats.
For example, if you use /C=12, the variables will be set for the statistics of the
magnitude and M_WaveStats will contain columns corresponding to the magnitude
and to the phase.
In this mode V_numInfs will always be zero.

Note: If you invoke this operation and M_WaveStats already exists in the current data
folder, it will be either overwritten or initialized to NaN.

/M=moment Calculates statistical moments.

/Q Prevents results from being printed in history.

method is defined as follows:
method=0: Default; ignores the imaginary part of waveName. Use /W to also

store statistics in M_WaveStats.
method=1: Calculates statistics for real part of waveName and stores it in

M_WaveStats.
method=2: Calculates statistics for imaginary part of waveName and stores the

result in M_WaveStats.
method=4: Calculates statistics for magnitude of waveName, i.e.,

sqrt(real^2 +imag^2), and stores the result in M_WaveStats.
method=8: Calculate statistics for phase of waveName using

atan2(imag,real).

moment is defined as follows:
moment=1: Calculates only lower moments: V_avg, V_npnts, V_numInfs, and

V_numNaNs. Use it if you do not need the higher moments.
moment=2: Default; calculates both lower moments and higher order

quantities: V_sdev, V_rms, V_adev, V_skew, and v_kurt.

WaveStats

V-935

Details
WaveStats uses a two-pass algorithm to produce more accurate results than obtained by computing the
binomial expansions of the third and fourth order moments.
WaveStats returns the statistics in the automatically created variables:

/PCST Computes the statistics on a per-column basis for a real valued wave of two or more
dimensions. The results are saved in the wave M_WaveStats which has the same
number of columns, layers and chunks as the input wave and where the rows,
designated by dimension labels, contain the standard WaveStats statistics. All the V_
variables are set to NaN. Note that this flag is not compatible with the flags /C, /R,
/RMD.
The /PCST flag was added in Igor Pro 7.00.

/R=(startX,endX) Specifies an X range of the wave to evaluate.

/R=[startP,endP] Specifies a point range of the wave to evaluate.
If you specify the range as /R=[startP] then the end of the range is taken as the end of
the wave. If /R is omitted, the entire wave is evaluated.

/RMD=[firstRow,lastRow][firstColumn,lastColumn][firstLayer,lastlayer][firstChunk,lastChunk]

Designates a contiguous range of data in the source wave to which the operation is to
be applied. This flag was added in Igor Pro 7.00.
You can include all higher dimensions by leaving off the corresponding brackets. For
example:
/RMD=[firstRow,lastRow]

includes all available columns, layers and chunks.
You can use empty brackets to include all of a given dimension. For example:
/RMD=[][firstColumn,lastColumn]

means "all rows from column A to column B".
You can use a * to specify the end of any dimension. For example:
/RMD=[firstRow,*]

means "from firstRow through the last row".

/W Stores results in the wave M_WaveStats in addition to the various V_ variables when /C=0.

/Z No error reporting.

/ZSCR Computes z scores

which are saved in W_ZScores.

V_npnts Number of points in range excluding points whose value is NaN or INF.

V_numNans Number of NaNs.

V_numINFs Number of INFs.

V_avg Average of data values.

V_sum Sum of data values.

zi =
Yi −Y

σ
,

WaveStats

V-936

V_sdev
Standard deviation of data values,

“Variance” is V_sdev2.

V_sem Standard error of the mean

V_rms RMS of Y values

V_adev Average deviation

V_skew Skewness

V_kurt Kurtosis

V_minloc X location of minimum data value.

V_min Minimum data value.

V_maxloc X location of maximum data value.

V_max Maximum data value.

V_minRowLoc Row containing minimum data value.

V_maxRowLoc Row containing maximum data value.

V_minColLoc Column containing minimum data value (2D or higher waves).

V_maxColLoc Column containing maximum data value (2D or higher waves).

V_minLayerLoc Layer containing minimum data value (3D or higher waves).

V_maxLayerLoc Layer containing maximum data value (3D or higher waves).

V_minChunkLoc Chunk containing minimum data value (4D waves only).

V_maxChunkLoc Chunk containing maximum data value (4D waves only).

V_startRow The unscaled index of the first row included in caculating statistics.

V_endRow The unscaled index of the last row included in caculating statistics.

V_startCol The unscaled index of the first column included in calculating statistics. Set only when
/RMD is used.

V_endCol The unscaled index of the last column included in calculating statistics. Set only when
/RMD is used.

σ =
Yi −V _avg()2∑
V _npnts −1

sem = σ
V _npnts

= 1

V _npnts
Yi

2∑

= 1

V _npnts
Yi −Y

i=0

V _npnts−1

∑

= 1

V _npnts

Yi −Y
σ

⎛
⎝⎜

⎞
⎠⎟

3

i=0

V _npnts−1

∑

= 1

V _npnts

Yi −Y
σ

⎛
⎝⎜

⎞
⎠⎟

4

i=0

V _npnts−1

∑
⎛

⎝
⎜

⎞

⎠
⎟ − 3

WaveTextEncoding

V-937

WaveStats prints the statistics in the history area unless /Q is specified. The various multidimensional min
and max location variables will only print to the history area for waves having the appropriate
dimensionality.
The format of the M_WaveStats wave is:

meanL1 and meanL2 are the confidence intervals for the mean

 and

where ta,v is the critical value of the Student T distribution for alpha significance and degree of freedom
v=V_npnts-1.
Use Edit M_WaveStats.ld to display the results in a table with dimension labels identifying each of the
row statistics.
WaveStats is not entirely multidimensional aware. Even so, much of the information computed by
WaveStats is useful. See Analysis on Multidimensional Waves on page II-86 for details.

See Also
Chapter III-12, Statistics for a function and operation overview.
The ImageStats operation for calculating wave statistics for specified regions of interest in 2D matrix waves.
The WaveMax, WaveMin, mean, median and Variance functions.

WaveTextEncoding
WaveTextEncoding(wave, element, getEffectiveTextEncoding)
The WaveTextEncoding function returns the text encoding code for the specified element of a wave. See
Wave Text Encodings on page III-422 for background information.
This function is used to deal with text encoding issues that sometimes arise in when you load pre-Igor Pro
7 experiments. Most users will have no need to use it.

V_startLayer The unscaled index of the first layer included in calculating statistics. Set only when
/RMD is used.

V_endLayer The unscaled index of the last layer included in calculating statistics. Set only when
/RMD is used.

V_startChunk The unscaled index of the first chunk included in calculating statistics. Set only when
/RMD is used.

V_endChunk The unscaled index of the last chunk included in calculating statistics. Set only when
/RMD is used.

Row Statistic Row Statistic Row Statistic Row Statistic

0 numPoints 9 minLoc 18 maxColLoc 27 startCol

1 numNaNs 10 min 19 maxLayerLoc 28 endCol

2 numInfs 11 maxLoc 20 maxChunkLoc 29 startLayer

3 avg 12 max 21 startRow 30 endLayer

4 sdev 13 minRowLoc 22 endRow 31 startChunk

5 rms 14 minColLoc 23 sum 32 endChunk

6 adev 15 minLayerLoc 24 meanL1

7 skew 16 minChunkLoc 25 meanL2

8 kurt 17 maxRowLoc 26 sem

MeanL1 = V _ avg − tα ,v

V _ sdev

V _ npnts
, MeanL2 = V _ avg + tα ,ν

V _ sdev

V _ npnts

WaveTransform

V-938

The WaveTextEncoding function was added in Igor Pro 6.30. The getEffectiveTextEncoding parameter was
added in Igor Pro 7.00.

Parameters
wave specifies the wave of interest.
element specifies a part of the wave, as follows:

getEffectiveTextEncoding determines if WaveTextEncoding returns a raw text encoding code or an effective
text encoding code as explained below.

Details
WaveTextEncoding returns a integer text encoding code. See Text Encoding Names and Codes on page
III-434 for details.
As explained under Wave Text Encodings on page III-422, each of the wave elements has a corresponding
text encoding setting. Because the notion of text encoding settings was added in Igor Pro 6.30, waves
created by earlier versions have their text encoding settings set to unknown (0).
The text encoding setting stored for a given element is the "raw" text encoding. If it is unknown, then Igor
applies some rules when the wave is accessed to determine an "effective" text encoding for the element
being accessed. The rules are explained under Determining the Text Encoding for a Plain Text File on
page III-417.
If getEffectiveTextEncoding is non-zero then WaveTextEncoding returns the effective text encoding. If
getEffectiveTextEncoding is zero it returns the raw text encoding.

See Also
Wave Text Encodings on page III-422, Text Encoding Names and Codes on page III-434, Determining the
Text Encoding for a Plain Text File on page III-417

WaveTransform
WaveTransform [flags] keyword srcWave
The WaveTransform operation transforms srcWave in various ways. If the /O flag is not specified then
unless otherwise indicated the output is stored in the wave W_WaveTransform, which will be of the same
data type as srcWave and saved in the current data folder.

Parameters
keyword is one of the following:

Value Meaning

1 Wave name

2 Wave units

4 Wave note

8 Wave dimension labels

16 Text wave content

abs Calculates the absolute value of the entries in srcWave. It stores results in W_Abs if
srcWave is 1D or M_Abs otherwise. It will overwrite srcWave when used with the /O
flag. srcWave must be single or double precision real wave.

acos Calculates the inverse cosine of the entries in srcWave. It stores results in W_Acos if
srcWave is 1D or M_Acos otherwise. It will overwrite srcWave when used with the /O
flag. srcWave must be single or double precision real wave.

asin Calculates the inverse sine of the entries in srcWave. It stores results in W_Asin if
srcWave is 1D or M_Asin otherwise. It will overwrite srcWave when used with the /O
flag. srcWave must be single or double precision real wave.

WaveTransform

V-939

atan Calculates the inverse tangent of the entries in srcWave. It stores results in W_Atan if
srcWave is 1D or M_Atan otherwise. It will overwrite srcWave when used with the /O
flag. srcWave must be single or double precision real wave.

cconjugate Calculates the complex conjugate of srcWave. Stores results in W_CConjugate or
M_CConjugate, depending on wave dimensionality, or overwrites srcWave if /O is used.

cos Calculates the cosine of the entries in srcWave. It stores results in W_Cos if srcWave is
1D or M_Cos otherwise. It will overwrite srcWave when used with the /O flag. srcWave
must be single or double precision real wave.

crystalToRect Converts triplet (three column {x,y,z}) waves from nonorthogonal crystallographic
coordinates to rectangular cartesian system. The parameters provided in the /P flag
are the crystallographic definition of the coordinate system given by {a, b, c, alpha,
beta, gamma}. The three angles are assumed to be expressed in radians unless the /D
flag is specified. The transformation sets the first component parallel to the vector a
and the third component parallel to c*. The output is stored in the current data folder
in the wave M_CrystalToRect which has the same data type. If the /O flag is specified,
the output overwrites the original data.

flip Flips the data in srcWave about its center. If /O flag is used, srcWave is overwritten.
Otherwise a new wave is created in the current data folder. The wave is named
W_flipped or M_flipped according to the dimensionality of srcWave.

index Fills srcWave as in jack=p.
If /P is specified then jack=p+param1.
The /O flag does not apply here.

inverse Computes 1/srcWave[i] for each point in srcWave and stores it in W_Inverse or
M_Inverse depending on the dimensionality of srcWave.

inverseIndex Fills srcWave as in jack=numPnts-1-p.
If /P is specified the jack=numPnts-1-p+param1.

magnitude Creates a real-valued wave that is the magnitude of srcWave. If you do not specify the
/O flag, the output is stored in W_Magnitude or M_Magnitude depending on the
dimensionality of srcWave; the output precision will be the same as srcWave.

magsqr Creates a real-valued wave that is the magnitude squared of srcWave. If srcWave is a
double precision complex wave, the output is also double precision, otherwise the
output is a single precision wave. Stores the result in wave W_MagSqr or M_MagSqr,
depending on the dimensionality of srcWave, or overwrites srcWave if /O is used.

max Calculates the maximum of a point in srcWave and a fixed number specified as a single
parameter with the /P flag. It stores results in W_max if srcWave is 1D or M_max
otherwise. It will overwrite srcWave when used with the /O flag. See also the min
keyword and the example below.

min Calculates the minimum of a point in srcWave and a fixed number specified as a single
parameter with the /P flag. It stores results in W_min if srcWave is 1D or M_min
otherwise. It will overwrite srcWave when used with the /O flag. See also the max
keyword and the example below.

normalizeArea Calculates the area under the curve and rescales the wave so that the area is 1. Note
that waves with negative areas will be rescaled to positive values. Applies to 1D real-
valued waves. It does not affect wave scaling. Stores the result in the wave
W_normalizedArea or overwrites srcWave if /O is used.

phase Creates a real-valued wave containing the phase of the complex input wave. If the /O
flag is not used, the output is stored in W_Phase or M_Phase depending on the
dimensionality of imageMatrix. You can also use /P={norm} to divide the output wave
by the value of norm.

WaveTransform

V-940

rectToCrystal Converts triplet (three column {x,y,z}) waves from cartesian coordinates to
nonorthogonal crystallographic coordinate system. The parameters provided in the
/P flag are the crystallographic definition of the coordinate system given by {a, b, c,
alpha, beta, gamma}. The three angles are assumed to be expressed in radians unless
the /D flag is specified. The transformation assumes the first component parallel to the
vector a and the third component parallel to c*. The output is stored in the current
data folder in the wave M_RectToCrystal which has the same data type. If the /O flag
is specified, the output overwrites the original data.

setConstant Sets srcWave points to a constant value specified by the /V flag. This keyword applies
to real, numeric waves only.
You can use /R with setConstant to set a subset of a wave.
setConstant was added in Igor Pro 7.00.

setZero Sets all srcWave points to zero. setZero was added in Igor Pro 7.00.

sgn Sets the value to -1 if the entry is negative, 1 otherwise. Stores the results in W_Sgn or
overwrites srcWave if /O is used. This operation will not work on UNSIGNED waves.

shift Shifts the position of data in srcWave by the specified number of points.
Unlike Rotate, WaveTransform discards data points that shift outside existing wave
boundaries. After the shift, vacated wave points are set to the specified fillValue. The
shift and the fillValue are specified with the /P flag using the syntax: /P={numPoints,
fillValue}. If you do not provide a fill value, it will be 0 for integer waves and NaN for
SP and DP.

sin Calculates the sine of the entries in srcWave. Stores results in W_Sin if srcWave is 1D
or M_Sin otherwise. Overwrites srcWave when used with the /O flag. srcWave must be
a real single or double precision floating point wave.

sqrt Calculates the square root of the entries in srcWave. It stores results in W_sqrt if
srcWave is 1D or M_sqrt otherwise. It will overwrite srcWave when used with the /O
flag. srcWave must be single- or double-precision real wave.

tan Calculates the tangent of the entries in srcWave. The results are stored in W_tan if
srcWave is 1D or M_tan otherwise. It will overwrite srcWave when used with the /O
flag. srcWave must be single- or double-precision real wave.

zapINFs Deletes elements whose value is infinity or -infinity. This is relevant for 1D single-
precision and double-precision floating point waves only and does nothing for other
types of 1D waves. It is not suitable for multi-dimensional waves and returns an error
if srcWave is multi-dimensional. Use MatrixOp replace for multi-dimensional
waves.

zapNaNs Deletes elements whose value is NaN. This is relevant for 1D single-precision and
double-precision floating point waves only and does nothing for other types of 1D
waves. It is not suitable for multi-dimensional waves and returns an error if srcWave
is multi-dimensional. Use MatrixOp replaceNaNs for multi-dimensional waves.

WaveType

V-941

Flags

Examples
// Produce output values in the range [-1,1]:
WaveTransform /P={(pi)} phase complexWave

// Faster than myWave=myWave>1 ? 1 : myWave
WaveTransform /P={1}/O min myWave

See Also
The Rotate operation.

References
Shmueli, U. (Ed.), International Tables for Crystallography, Volume B: 3.3, Kluwer Academic Publishers,

Dordrecht, The Netherlands, 1996.

WaveType
WaveType(waveName [,selector])
The WaveType function returns the type of data stored in the wave.
If selector = 1, WaveType returns 0 for a null wave, 1 if numeric, 2 if text, 3 if the wave holds data folder
references or 4 if the wave holds wave references.
If selector = 2, WaveType returns 0 for a null wave, 1 for a normal global wave or 2 for a free wave or a wave
that is stored in a free data folder.
If selector is omitted or zero, the returned value for non-numeric waves (text waves, wave-reference waves
and data folder-reference waves) is 0.
If selector is omitted or zero, the returned value for numeric waves is a combination of bit values shown in
the following table:

/D If present, angles in wave data are interpreted as in degrees. Otherwise they are
interpreted as in radians.

/O Overwrites input wave.

/P={param1…} Specifies parameters as appropriate for the keyword that you are using. The number
of parameters and their order depends on the keyword.

/R=[startRow,endRow][startCol,endCol][startLayer,endLayer][startChunk,endChunk]

Specifies the range of elements to set for the setConstant keyword.
You can omit parameters for dimensions that don’t exist in srcWave. For example, if
srcWave is 1D, specify just /R=[startRow,endRow].
/R was added in Igor Pro 7.00.

/V=value Specifies the value to use for the setConstant keyword. /V was added in Igor Pro 7.00.

Type Bit Number Decimal Value Hexadecimal Value

complex 0 1 1

32-bit float 1 2 2

64-bit float 2 4 4

8-bit integer 3 8 8

16-bit integer 4 16 10

32-bit integer 5 32 20

64-bit integer 7 128 80 Requires Igor Pro 7 or later

unsigned 6 64 40

WaveUnits

V-942

The unsigned bit is used only with the integer types while the complex bit can be used with any numeric
type. Set only one of bits 1-5 or bit 7 as they are mutually exclusive. See Setting Bit Parameters on page
IV-12 for details about bit settings.

Examples
Variable waveIsComplex = WaveType(wave) & 0x01
Variable waveIs32BitFloat = WaveType(wave) & 0x02
Variable waveIs64BitFloat = WaveType(wave) & 0x04
Variable waveIs8BitInteger = WaveType(wave) & 0x08
Variable waveIs16BitInteger = WaveType(wave) & 0x10
Variable waveIs32BitInteger = WaveType(wave) & 0x20
Variable waveIs64BitInteger = WaveType(wave) & 0x80
Variable waveIsUnsigned = WaveType(wave) & 0x40

See Also
For concepts related to selector = 1 or 2, see Free Waves on page IV-84, Wave Reference Waves on page
IV-71 and Data Folder Reference Waves on page IV-76.

WaveUnits
WaveUnits(waveName, dimNumber)
The WaveUnits function returns a string containing the units for the given dimension.
Use dimNumber=0 for rows, 1 for columns, 2 for layers, and 3 for chunks. Use -1 to get the data units. If the wave
is just 1D, dimNumber=0 returns X units and 1 returns data units. This behavior is just like the WaveMetrics
procedure WaveUnits found in the WaveMetrics Procedures folder in previous versions of Igor Pro.

See Also
DimDelta, DimOffset, DimSize, SetScale

wfprintf
wfprintf refNumOrStr, formatStr [flags] waveName [, waveName]…
The wfprintf operation is like the printf operation except that it prints the contents of the named waves to
a file whose file reference number is in refNum.
The Save operation also outputs wave data to a text file. Use Save unless you need the added flexibility
provided by wfprintf.

Parameters
refNumOrStr is a numeric expression, a string variable or an SVAR pointing to a global string variable.
If a numeric expression, then it is a file reference number returned by the Open operation or an expression
that evaluates to 1.
If refNumOrStr is 1, Igor prints to the history area instead of to a file.
If refNumOrStr is the name of a string variable, the wave contents are “printed” to the named string
variable. refNumOrStr can also be the name of an SVAR to print to a global string:

SVAR sv = root:globalString
wfprintf sv, "", wave0

refNumOrStr can not be an element of a text wave.
The value of each named wave is printed to the file according to the conversion specified in formatStr.
formatStr contains one numeric conversion specification per column. See printf. If formatStr is "", wfprintf
uses a default format which gives tab-delimited columns. formatStr is limited to 800 bytes.

WhichListItem

V-943

Flags

Details
As of Igor7, wfprintf supports 1D and 2D waves. Previously it supported 1D waves only.
The number of conversion characters in formatStr must exactly match the number of wave columns in all
input waves. With real waves, the total number of columns is limited to 100. With complex waves, the real
column and imaginary column each count as a column and the total number of columns is limited to 200.
The only conversion characters allowed are fFeEgdouxXcs (the floating point, integer and string conversion
characters). You cannot use an asterisk to specify field width or precision. If any of these restrictions is
intolerable, you can use fprintf in a loop.
With integer conversion characters d, o, u, x, and X, applied to floating point waves, wfprintf truncates the
fractional part.

Examples
Function Example1()

Make/O/N=10 wave0=sin(p*pi/10) // test numeric wave
Make/O/N=10/T textWave= "row "+num2istr(p) // test text wave
Variable refNum
Open/P=home refNum as "output.txt"// open file for write
wfprintf refNum, "%s = %g\r"/R=[0,5], textWave, wave0 // print 6 values each
Close refNum

End

The resulting output.txt file contains:
row 0 = 0
row 1 = 0.309017
row 2 = 0.587785
row 3 = 0.809017
row 4 = 0.951057
row 5 = 1

Function/S NumericWaveToStringList(w)
Wave w // numeric wave (if text, use /T here and %s below)
String list
wfprintf list, "%g;" w // semicolon-separated list
return list

End

Print NumericWaveToStringList(wave0)
 0;0.309017;0.587785;0.809017;0.951057;1;0.951057;0.809017;0.587785;0.309017;

See Also
The printf operation for complete format and parameter descriptions and Creating Formatted Text on page
IV-244. The Open operation about refNum and for another way of writing wave files.
The Save operation.

WhichListItem
WhichListItem(itemStr, listStr [, listSepStr [, startIndex [, matchCase]]])
The WhichListItem function returns the index of the first item of listStr that matches itemStr. listStr should
contain items separated by the listSepStr character, such as "abc;def;". If the item is not found in the list, -1
is returned.
Use WhichListItem to locate an item in a string containing a list of items separated by a single character, such
as those returned by functions like TraceNameList or AnnotationList, or a line from a delimited text file.
listSepStr, startIndex, and matchCase are optional; their defaults are ";", 0, and 1 respectively.

Note: /R must follow the formatStr parameter directly without an intervening comma.

/R=(startX,endX) Specifies an X range in the wave(s) to print.

/R=[startP,endP] Specifies a point range in the wave(s) to print.

WignerTransform

V-944

Details
WhichListItem differs from FindListItem in that WhichListItem returns a list index, while FindListItem
returns a character offset into a string.
listStr is searched for itemStr bound by listSepStr on the left and right.
listStr is treated as if it ends with a listSepStr even if it doesn’t.
Searches for listSepStr are always case-sensitive. The comparison of itemStr to the contents of listStr is
usually case-sensitive. Setting the optional matchCase parameter to 0 makes the comparison case insensitive.
If itemStr is not found, if listStr is "", or if startIndex is not within the range of 0 to ItemsInList(listStr)-1, then
-1 is returned.
In Igor6, only the first byte of listSepStr was used. In Igor7 and later, all bytes are used.
Items can be empty. In "abc;def;;ghi", the third item, whose zero-based index is 2, is empty. In
";def;;ghi;" the first and third items, whose zero-based indices are 0 and 2, are empty.
If startIndex is specified, then listSepStr must also be specified. If matchCase is specified, startIndex and
listSepStr must be specified.

Examples
Print WhichListItem("wave0", "wave0;wave1;") // prints 0
Print WhichListItem("c", "a;b;") // prints -1
Print WhichListItem("", "a;;b;") // prints 1
Print WhichListItem("c", "a,b,c,x,c", ",") // prints 2
Print WhichListItem("c", "a,b,c,x,c", ",", 3) // prints 4
Print WhichListItem("C", "x;c;C;") // prints 2
Print WhichListItem("C", "x;c;C;", ";", 0, 0) // prints 1

See Also
The AddListItem, FindListItem, FunctionList, ItemsInList, RemoveListItem, RemoveFromList,
StringFromList, StringList, TraceNameList, VariableList, and WaveList functions.

WignerTransform
WignerTransform [/Z][/WIDE=wSize][/GAUS=gaussianWidth][/DEST=destWave] srcWave
The WignerTransform operation computes the Wigner transformation of a 1D signal in srcWave, which is
the name of a real or complex wave. The result of the WignerTransform is stored in destWave or in the wave
M_Wigner in the current data folder.

Flags

Details
The Wigner transform maps a time signal U(t) into a 2D time-frequency representation:

The computation of the Wigner transform evaluates the offset product

/DEST=destWave Creates by default a real wave reference for the destination wave in a user function.
See Automatic Creation of WAVE References on page IV-66 for details.

/GAUS=gWidth Computes the Gaussian Wigner Transform, which is a convolution of the Wigner
Transform with a two-dimensional Gaussian (in the two parameters of the
transform). The computation of the transform simplifies significantly when the
product of the widths of the two Gaussians is unity (minimum uncertainty ellipse).
gWidth uses the same units as the srcWave scaling.

/WIDE=wSize Computes Wigner Transform and sets the transform width to wSize. This is the
default transformation with wSize set to the size of srcWave.

/Z No error reporting.

W t,ν() = U t + x
2

⎛
⎝⎜

⎞
⎠⎟U

* t − x
2

⎛
⎝⎜

⎞
⎠⎟ e

−2πixν dx
−∞

∞

∫ .

Window

V-945

over a finite window and then Fourier transforms the result. The offset product can be evaluated over a
finite window width, which can vary from a few elements of the input wave to the full length of the wave.
You can control the width of this window using the /WIDE flag. If you do not specify the output destination,
WignerTransform saves the results in the wave M_Wigner in the current data folder.
Although the Wigner transform is real, the output will be complex when srcWave is complex. By inspecting
the complex wave you can gain some insight into the numerical stability of the algorithm. The X-scaling of
the output wave is identical to the scaling of srcWave. The Y-scaling of the input wave is taken from the
Fourier Transform of the offset product, which in turn is determined by the X-scaling of srcWave.
Specifically, if dx=DimDelta(srcWave,0) and srcWave has N points then
dy=DimDelta(M_Wigner,1)=1/(dx*N). WignerTransform does not set the units of the output wave.
The Ambiguity Function is related to the Wigner Transform by a Fourier Transform, and is defined by

Convolving the Wigner Transform with a 2D Gaussian leads to what is sometimes called the Gaussian
Wigner Transform or GWT. Formally the GWT is given by the equation:

Computationally this equation simplifies if the respective widths of the two Gaussians satisfy the minimum
uncertainty condition δt*δν=1. The /GAUS flag calculates the Gaussian Wigner Transform using your
specified width, δt, and it selects a δν such that it satisfies the minimum uncertainty condition.

See Also
CWT, FFT, and WaveTransform operations.
For further discussion and examples see Wigner Transform on page III-250.

References
Wigner, E. P., On the quantum correction for thermo-dynamic equilibrium, Physics Review, 40, 749-759,

1932.
Bartelt, H.O., K.-H. Brenner, and A.W. Lohman, The Wigner distribution function and its optical

production, Optics Communications, 32, 32-38, 1980.

Window
Window macroName([parameters]) [:macro type]
The Window keyword introduces a macro that recreates a graph, table, layout, or control panel window.
The macro appears in the appropriate submenu of the Windows menu. Window macros are automatically
created when you close a graph, table, layout, control panel, or XOP target window. You should use Macro,
Proc, or Function instead of Window for your own window macros. Otherwise, it works the same as Macro.

See Also
The Macro, Proc, and Function keywords. Data Folders and Window Recreation Macros on page II-103
for details.
Macro Syntax on page IV-110 for further information.

U t + x
2

⎛
⎝⎜

⎞
⎠⎟U

* t − x
2

⎛
⎝⎜

⎞
⎠⎟

A τ ,ν() = U t + τ
2

⎛
⎝⎜

⎞
⎠⎟U

* t − τ
2

⎛
⎝⎜

⎞
⎠⎟

−∞

∞

∫ e−2πitνdt.

GWT t,ν;δ t ,δν() = 1

δ tδν

dt 'dν 'W (t ',ν ')exp −2π t − t '
δ t

⎛
⎝⎜

⎞
⎠⎟

2

+ ν −ν '

δν

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∫∫ .

WindowFunction

V-946

WindowFunction
WindowFunction [/FFT[=f] /DEST=destWave] windowKind, srcWave
The WindowFunction operation multiplies a one-dimensional (real or complex) srcWave by the named
window function.
By default the result overwrites srcWave.

Parameters

Flags

Details
A “window function” alters the input data by decreasing values near the start and end of the data smoothly
towards zero, so that when the FFT of the data is computed the effects of nonintegral-periodic signals are
diminished. This improves the ability of the FFT to distinguish among closely-spaced frequencies. Each
window function has advantages and disadvantages, usually trading off rejection of “leakage” against the
ability to discriminate adjacent frequencies. For more details, see the References.
WindowFunction stores the window function’s normalization value (the average squared window value)
in V_value. This is the value you would get from WaveStats’s V_rms*V_rms for a wave of srcWave’s length
whose values were all equal to 1:
Make/O data = 1
WindowFunction Bartlet, data // Bartlet allowed as synonym for Bartlett
Print V_value // Prints 0.330709, mean of squared window values

WaveStats/Q data
Print V_rms*V_rms // Prints 0.330709

See Also
FFT, ImageWindow, DPSS

References
For more information about the use of window functions see:

srcWave A one-dimensional wave of any numerical type. See ImageWindow for windowing
two-dimensional data.

windowKind Specifies the windowing function. Choices for windowKind are:
Bartlett, Blackman367, Blackman361, Blackman492, Blackman474, Cos1, Cos2, Cos3,
Cos4, Hamming, Hanning, KaiserBessel20, KaiserBessel25, KaiserBessel30, Parzen,
Poisson2, Poisson3, Poisson4, and Riemann.

See FFT for window equations and details. The equations assume that /FFT=1.

/DEST=destWave Creates or overwrites destWave with the result of the multiplication of srcWave and the
window function.
When used in a function, the WindowFunction operation by default creates a real
wave reference for the destination wave. See Automatic Creation of WAVE
References on page IV-66 for details.

/FFT [=1] The window interval is 0…N=numpnts(srcWave). This sets the first value of srcWave
to zero, but not the last value. This is appropriate for windowing data in preparation
for Fourier Transforms, and is the same algorithm used by FFT.
The window interval is 0…N=numpnts(srcWave)-1 if /FFT is missing or /FFT=0.
This sets the first and last value of srcWave to 0. This is the (only) algorithm that the
Hanning operation uses.

WinList

V-947

Harris, F.J., On the use of windows for harmonic analysis with the discrete Fourier Transform, Proc, IEEE,
66, 51-83, 1978.

Wikipedia entry: <http://en.wikipedia.org/wiki/Window_function>.

WinList
WinList(matchStr, separatorStr, optionsStr)
The WinList function returns a string containing a list of windows selected based on the matchStr and
optionsStr parameters.

Details
For a window name to appear in the output string, it must match matchStr and also must fit the
requirements of optionsStr. The first character of separatorStr is appended to each window name as the
output string is generated.
The name of each window is compared to matchStr, which is some combination of normal characters and
the asterisk wildcard character that matches anything. For example:

matchStr may begin with the ! character to return windows that do not match the rest of matchStr. For example:

The ! character is considered to be a normal character if it appears anywhere else, but there is no practical
use for it except as the first character of matchStr.
optionsStr is used to further qualify the window. The acceptable values for optionsStr are:

"*" Matches all window names

"xyz" Matches window name xyz only

"*xyz" Matches window names which end with xyz

"xyz*" Matches window names which begin with xyz

"*xyz*" Matches window names which contain xyz

"abc*xyz" Matches window names which begin with abc and end with xyz

"!*xyz" Matches window names which do not end with xyz

"" Consider all windows.

"WIN:" The target window.

"WIN:windowTypes" Consider windows that match windowTypes.

"INCLUDE:includeTypes" Consider procedure windows that match includeTypes.

Using INCLUDE: implies WIN:128.

"INDEPENDENTMODULE:1" Consider procedure windows that are part of any independent
module as well as those that are not. Matching windows names are
actually the window titles followed by " [<independent module
name>]".
Using INDEPENDENTMODULE: implies WIN:128.

"INDEPENDENTMODULE:0" Consider procedure windows only if they are not part of any
independent module. Matching windows names are actually the
window titles, which for an external file includes the file extension,
such as "WMMenus.ipf".
Using INDEPENDENTMODULE: implies WIN:128.

"FLT:1" Return only panels that were created with NewPanel/FLT=1.
Specifying "FLT" also implies "WIN:64".
Omit FLT or use "FLT:0" to return windows that do not float (and
most do not).

http://en.wikipedia.org/wiki/Window_function

WinList

V-948

windowTypes is a literal number. The window name goes into the output string only if it passes the match
test and its type is compatible with windowTypes. windowTypes is a bitwise parameter:

See Setting Bit Parameters on page IV-12 for details about bit settings.
Procedure windows and help windows don't have names. WinList returns the window title instead.
includeTypes is also a literal number. The window name goes into the output string only if it passes the
match test and its type is compatible with includeTypes. includeTypes is one of:

or a bitwise combination of the above for more than one type of inclusion.
You can combine the WIN, INCLUDE and INDEPENDENTMODULE options by separating them with a comma.
When the INDEPENDENTMODULE option is used, the title of any procedure window that is part of an
independent module will be followed by " [<independent module name>]".
For example, if a procedure file contains:
#pragma IndependentModule=myIndependentModule
#include <Axis Utilities>

A call to WinList like this:
String list = WinList("* [myIndependentModule]", ";", "INDEPENDENTMODULE:1")

will store "Axis Utilities.ipf [myIndependentModule];" in the list string, along with any other procedure
windows that are part of that independent module.
When the INDEPENDENTMODULE option is omitted, the returned procedure window titles do not include
any independent module name suffix, and the procedure files "visible" to WinList depend on the setting of
SetIgorOption independentModuleDev (which must be done after opening the experiment):

"FLT:2" Return only panels that were created with NewPanel/FLT=2.
Specifying "FLT" also implies "WIN:64".

"VISIBLE:1" Return only visible windows (ignore hidden windows).

1: Graphs

2: Tables

4: Layouts

16: Notebooks

64: Panels

128: Procedure windows

512: Help windows

4096: XOP target windows

16384: Camera windows in Igor Pro 7.00 or later

65536: Gizmo windows in Igor Pro 7.00 or later

1: Procedure windows that are not #included.

2: Procedure windows included by #include "someFileName".

4: Procedure windows included by #include <someFileName>.

SetIgorOption
independentModuleDev=0

Consider procedure windows only if they are not part of
any independent module and if they are not hidden
(using #pragma hide, for example).

SetIgorOption
independentModuleDev=1

Consider all procedure windows including those in
independent modules or hidden.

WinName

V-949

Examples

See Also
Independent Modules on page IV-224. The ChildWindowList and WinType functions.

WinName
WinName(index, windowTypes [, visibleWindowsOnly [, floatKind]])
The WinName function returns a string containing the name of the indexth window of the specified type, or
an empty string ("") if no window fits the parameters.
If the optional visibleWindowsOnly parameter is nonzero, only visible windows are considered. Otherwise
both visible and hidden windows are considered.
If the optional floatKind parameter is 1, only floating windows created with NewPanel/FLT=1 are
considered. If floatKind is 2, only NewPanel/FLT=2 windows are considered. windowTypes must contain at
least 64 (panels).
If floatKind is omitted or is 0 only non-floating ("normal") windows are considered.
Procedure windows don’t have names. WinName returns the procedure window title instead.

Details
index starts from zero, and returns the top-most window matching the parameters.
The window names are ordered in window-stacking order, as returned by WinList.
DoWindow/B moves the window to the back and changes the index needed to retrieve its name to the
greatest index that returns any name.
Hiding or showing a window (with SetWindow hide=1 or Notebook visible=0 or by manual means)
does not affect the index associated with the window.
windowTypes is a bitwise parameter:

See Setting Bit Parameters on page IV-12 for details about bit settings.

Examples
Print WinName(0,1) // Prints the name of the top graph.
Print WinName(0,3) // Prints the name of the top graph or table.

Command Returned List

WinList("*",";","") All existing non-floating windows.

WinList("*", ";","WIN:3") All graph and table windows.

WinList("Result_*", ";", "WIN:1") Graphs whose names start with “Result_”.

WinList("*", ";","WIN:64,FLT:1,FLT:2") All floating panel windows.

WinList("*", ";","INCLUDE:6") All #included procedure windows.

WinList("*", ";","WIN:1,INCLUDE:6") All graphs and #included procedure windows.

1: Graphs.

2: Tables.

4: Layouts.

16: Notebooks.

64: Panels.

128: Procedure windows.

4096: XOP target windows.

16384: Camera windows in Igor Pro 7.00 or later

65536: Gizmo windows in Igor Pro 7.00 or later

WinRecreation

V-950

String win=WinName(0,1) // The name of the top visible graph.
SetWindow $win hide=1 // Hide the graph (it may already be hidden).
Print WinName(0,1) // Prints the name of the now-hidden graph.
Print WinName(0,1,1) // Prints the name of the top visible graph.
Print WinName(0,64,1,1) // Name of the top visible NewPanel/FLT=1 window.

See Also
WinList, DoWindow (/F and /B flags), SetWindow (hide keyword), Notebook (Miscellaneous) (visible
keyword), NewPanel (/FLT flag).

WinRecreation
WinRecreation(winStr, options)
The WinRecreation function returns a string containing the window recreation macro (or style macro) for
the named window.

Parameters
winStr is the name of a graph, table, page layout, panel, notebook, Gizmo, camera, or XOP target window
or the title of a procedure window or help file. If winStr is "" and options is 0 or 1, information for the top
graph, table, page layout, panel, notebook, or XOP target window is returned.
As of Igor Pro 7.00, winStr may be a subwindow path. The returned recreation macro is generated as if the
subwindow were extracted from its host as a standalone window. See Subwindow Syntax on page III-87
for details on forming the subwindow path.
The meaning of options depends on the type of window as described in the following sections.

Target Window Details
Target windows include graphs, tables, page layouts, panels, notebooks, and XOP target windows.
If options is 0, WinRecreation returns the window recreation macro.
If options is 1, WinRecreation returns the style macro or an empty string if the window does not support
style macros.

Graphs Details
If options is 2, WinRecreation returns a recreation macro in which all occurrences of wave names are
replaced with an ID number having the form ##<number>## (for instance, ##25##). These ID numbers can
be found easily using the strsearch function. This is intended for applications that need to alter the
recreation macro by replacing wave names with something else, usually other wave names. The ID
numbers are the same as those returned by the GetWindow operation with the wavelist keyword.

Graphs and Panels Details
If options is 4, WinRecreation returns the window recreation macro without the default behavior of causing
the graph to revert to “normal” mode (as if the GraphNormal operation had been called). This allows the
use of WinRecreation when a graph or panel is in drawing tools mode without exiting that mode. For
windows other than graphs or panels, this is equivalent to an options value of 0.

Notebooks Details
If options is -1, WinRecreation returns the same text that the Generate Commands menu item would generate
with the Selected paragraphs radio button selected and all the checkboxes selected (includes text commands).
If options is 0, WinRecreation returns the same text that the Generate Commands menu item would generate with
the Entire document radio button selected and all the checkboxes except “Generate text commands” selected).
If options is 1, WinRecreation returns the same text that the Generate Commands menu item would generate
with the Entire document radio button selected and all the checkboxes selected (includes text commands).
Regardless of the value of options the text returned by WinRecreation for notebook always ends with 5 lines
of file-related information formatted as comments:

// File Name: MyNotebook.txt
// Path: "Macintosh HD:Desktop Folder:"
// Symbolic Path: home
// Selection Start: paragraph 100, position 31
// Selection End: paragraph 100, position 31

WinType

V-951

Help Windows Details
WinRecreation returns the same 5 lines of file-related information as described above for notebooks.
Set options to -3 to ensure that winStr is interpreted as a help window title (help windows have only titles,
not window names).

Procedures Details
WinRecreation returns the same 5 lines of file-related information as described above for notebooks.
Set options to -2 to ensure that winStr is interpreted as a procedure window title (procedure windows have
only titles, not window names).
If SetIgorOption IndependentModuleDev=1 is in effect, winStr can also be a procedure window title
followed by a space and, in brackets, an independent module name. In such cases WinRecreation returns
text from or information about the specified procedure file which is part of that independent module. (See
Independent Modules on page IV-224 for independent module details.)
For example, in an experiment containing:
#pragma IndependentModule=myIM
#include <Axis Utilities>

code like this:
String text=WinRecreation("Axis Utilities.ipf [myIM]",-2)

will return the file-related information for the Axis Utilities.ipf procedure window, which is normally a
hidden part of the myIM independent module.
To get the text content of a procedure window, use the ProcedureText function.

Examples
WinRecreation("Graph0",0) // Returns recreation macro for Graph0.

WinRecreation("",1) // Style macro for top window.

String win= WinName(0,16,1) // top visible notebook
String str= WinRecreation(str,-1) // Selected Text commands
Variable line= itemsInList(str,"\r")-5 // First file info line
Print StringFromList(line, str,"\r") // Print File Name:
Print StringFromList(line+1, str,"\r") // Print Path:
Print StringFromList(line+2, str,"\r") // Print Symbolic Path:
Print StringFromList(line+3, str,"\r") // Selection Start:
Print StringFromList(line+4, str,"\r") // Selection End:

See Also
Saving a Window as a Recreation Macro on page II-42.

WinType
WinType(winNameStr)
The WinType function returns a value indicating the type of the named window.

Details
winNameStr is a string or string expression containing the name of a window or subwindow, or "" to signify
the target window. When identifying a subwindow with winNameStr, see Subwindow Syntax on page
III-87 for details on forming the window hierarchy.
WinType returns the following values:
0: No window by that name.

1: Graph

2: Table

3: Layout

5: Notebook

7: Panel

13: XOP target window

WMAxisHookStruct

V-952

Because command and procedure windows do not have names (they only have titles), WinType can not even
be asked about those windows.

See Also
The WinName, ChildWindowList, and WinList functions.

WMAxisHookStruct
See NewFreeAxis for further explanation of WMAxisHookStruct.
Structure WMAxisHookStruct

char win[200] // Host window or subwindow name
char axName[32] // Name of axis
char mastName[32] // Name of controlling axis or ""
char units[50] // Axis units.
Variable min // Current axis range minimum value
Variable max // Current axis range maximum value

EndStructure

WMBackgroundStruct
See CtrlNamedBackground, Background Tasks on page IV-298, and Preemptive Background Task on
page IV-314 for further explanation of WMBackgroundStruct.
Structure WMBackgroundStruct

char name[32] // Background task name
UInt32 curRunTicks // Tick count when task was called
Int32 started // TRUE when CtrlNamedBackground start is issued
UInt32 nextRunTicks // Precomputed value for next run

// but user functions may change this
EndStructure

WMButtonAction
This structure is passed to action procedures for button controls created using the Button operation.
Structure WMButtonAction

char ctrlName[32] // Control name
char win[200] // Host window or subwindow name
STRUCT Rect winRect // Local coordinates of host window
STRUCT Rect ctrlRect // Enclosing rectangle of the control
STRUCT Point mouseLoc // Mouse location
Int32 eventCode // See details below
Int32 eventMod // See Control Structure eventMod Field on page III-390
String userData // Primary unnamed user data.
Int32 blockReentry // See Control Structure blockReentry Field on page III-390

EndStructure

The constants used to specify the size of structure char arrays are internal to Igor Pro and may change.

WMButtonAction eventCode Field
Action functions should respond only to documented eventCode values. Other event codes may be added
in the future.

The event code passed to the button action procedure has the following meaning:

15: Camera window in Igor Pro 7.00 or later

17: Gizmo window in Igor Pro 7.00 or later

eventCode Event
-1 Control being killed
1 Mouse down
2 Mouse up
3 Mouse up outside control
4 Mouse moved

WMCheckboxAction

V-953

Events 2 and 3 happen only after event 1.
Events 4, 5, and 6 happen only when the mouse is over the control but happen regardless of the mouse
button state.
Event 7 happens only when the mouse is pressed inside the control and then dragged outside.

WMCheckboxAction
This structure is passed to action procedures for checkbox controls created using the CheckBox operation.
Structure WMCheckboxAction

char ctrlName[32] // Control name
char win[200] // Host window or subwindow name
STRUCT Rect winRect // Local coordinates of host window
STRUCT Rect ctrlRect // Enclosing rectangle of the control
STRUCT Point mouseLoc // Mouse location
Int32 eventCode // See details below
Int32 eventMod // See Control Structure eventMod Field on page III-390
String userData // Primary unnamed user data
Int32 blockReentry // See Control Structure blockReentry Field on page III-390
Int32 checked // Checkbox state

EndStructure

The constants used to specify the size of structure char arrays are internal to Igor Pro and may change.

WMCheckboxAction eventCode Field
Action functions should respond only to documented eventCode values. Other event codes may be added
in the future.

The event code passed to the checkbox action procedure has the following meaning:

WMCustomControlAction
This structure is passed to action procedures for custom controls created using the CustomControl
operation.
Structure WMCustomControlAction

char ctrlName[32] // Control name
char win[200] // Host window or subwindow name
STRUCT Rect winRect // Local coordinates of host window
STRUCT Rect ctrlRect // Enclosing rectangle of the control
STRUCT Point mouseLoc // Mouse location
Int32 eventCode // See details below
Int32 eventMod // See Control Structure eventMod Field on page III-390
String userData // Primary unnamed user data
Int32 blockReentry // See Control Structure blockReentry Field on page III-390
Int32 missedEvents // TRUE when events occurred but the user

// function was not available for action
Int32 mode // General purpose

// Used only when eventCode==kCCE_frame
Int32 curFrame // Input and output

// Used when eventCode is kCCE_mousemoved, kCCE_mouseenter or kCCE_mouseleave
Int32 needAction // See below for details

// These fields are valid only with value=varName
Int32 isVariable // TRUE if varName is a variable
Int32 isWave // TRUE if varName referenced a wave
Int32 isString // TRUE if varName is a String type

5 Mouse enter
6 Mouse leave
7 Mouse dragged while outside the control

eventCode Event
-1 Control being killed
2 Mouse up

eventCode Event

WMCustomControlAction

V-954

NVAR nVal // Valid if isVariable and not isString
SVAR sVal // Valid if isVariable and isString
WAVE nWave // Valid if isWave and not isString
WAVE/T sWave // Valid if isWave and not isString
Int32 rowIndex // If isWave, this is the row index

// unless rowLabel is not empty
char rowLabel[32] // Wave row label

// These fields are valid only when eventCode==kCCE_char
Int32 kbChar // Keyboard key character code
Int32 specialKeyCode // See Keyboard Events on page IV-281 - Added in Igor Pro 7
char keyText[16] // UTF-8 string representing key struck - Added in Igor Pro 7
Int32 kbMods // Keyboard key modifiers bit field. See details below.

EndStructure

The constants used to specify the size of structure char arrays are internal to Igor Pro and may change.

WMCustomControl eventMod Field
When determining the state of the eventCode member in the WMCustomControlAction structure, the
various values you use are listed in the following table. You can define the kCCE symbolic constants by
adding this to your procedure file:
#include <CustomControl Definitions>

WMCustomControl needAction Field
The meaning of needAction depends on the event.

Event Code Description

kCCE_mousedown = 1 Mouse down in control.

kCCE_mouseup = 2 Mouse up in control.

kCCE_mouseup_out = 3 Mouse up outside control.

kCCE_mousemoved = 4 Mouse moved (happens only when mouse is over the control).

kCCE_enter = 5 Mouse entered control.

kCCE_leave = 6 Mouse left control.

kCCE_mouseDraggedOuts
ide = 7

The mouse moved while it was outside the control. This event is delivered
only after the mouse is pressed inside the control and dragged outside.
While the mouse is inside the control, kCCE_mousemoved is delivered
whether the mouse button is up or down.

kCCE_draw = 10 Time to draw custom content.

kCCE_mode = 11 Sent when executing CustomControl name, mode=m.

kCCE_frame = 12 Sent before drawing a subframe of a custom picture.

kCCE_dispose = 13 Sent as the control is killed.

kCCE_modernize = 14 Sent when dependency (variable or wave set by value=varName parameter)
fires. It will also get draw events, which probably don’t need a response.

kCCE_tab = 15 Sent when user tabs into the control. If you want keystrokes (kCCE_char),
then set needAction.

kCCE_char = 16 Sent on keyboard events. Stores the keyboard character in kbChar and
modifiers bit field is stored in kbMods. Sets needAction if key event was
used and requires a redraw.

kCCE_drawOSBM = 17 Called after drawing pict from picture parameter into an offscreen bitmap.
You can draw custom content here.

kCCE_idle = 18 Idle event typically used to blink insertion points etc. Set needAction to
force the control to redraw. Sent only when the host window is topmost.

WMDrawUserShapeStruct

V-955

Events kCCE_mousemoved, kCCE_enter, kCCE_leave, and kCCE_mouseDraggedOutside set needAction
to TRUE to force redraw, which is normally not done for these events.
Events kCCE_tab and kCCE_mousedown set needAction to TRUE to request keyboard focus (and get
kCCE_char events).
Event kCCE_idle sets needAction to TRUE to request redraw.

WMCustomControl kbMods Field

WMDrawUserShapeStruct
See DrawUserShape for further explanation of WMDrawUserShapeStruct.
Structure WMDrawUserShapeStruct

char action[32] // Input: Specifies what action is requested.

SInt32 options // Input: Value from /MO flag.
// Output: When action is getInfo, set bits as follows:
// Set bit 0 if the shape should behave like a simple line.

 // When resizing end-points, you will get live updates.
// Set bit 1 if the shape is to act like a button;
// You will get mouse down in normal operate mode.
// Set bit 2 to get roll-over action.
// You will get hitTest action and
// if 1 is returned, the mouse will be captured.

SInt32 operateMode // Input: If 0, the shape is being edited;
// if 1, normal operate mode
// (only if options bit 1 or 2 was set during getInfo).

PointF mouseLoc // Input: The location of the mouse in normalized coordinates.

SInt32 doSetCursor // Output: If action is hitTest, set true
// to use the following cursor number.
// Also used for mouseMoved in rollover mode.

SInt32 cursorCode // Output: If action is hitTest and doSetCursor is set,
// then set this to the desired Igor cursor number.

double x0,y0,x1,y1 // Input: Coordinates of the enclosing rectangle of the shape.

RectF objectR // Input: Coordinates of the enclosing rectangle of the shape
// in device units.

char winName[MAX_HostChildSpec+1] // Input: Full path to host subwindow

// Information about the coordinate system
Rect drawRect // Draw rect in device coordinates
Rect plotRect // In a graph, this is the plot area
char xcName[MAX_OBJ_NAME+1] // Name of X coordinate system, may be axis name
char ycName[MAX_OBJ_NAME+1] // Name of Y coordinate system, may be axis name

double angle // Input: Rotation angle, use when displaying text
String textString // Input: Use or ignore; special output for "getInfo"
String privateString // Input and output: Maintained by Igor

// but defined by user function;
// may be binary; special output for "getInfo"

EndStructure

WMFitInfoStruct
See The WMFitInfoStruct Structure on page III-231 for further explanation of WMFitInfoStruct.

Bit 0: Command (Macintosh)

Bit 1: Shift

Bit 2: Alpha Lock. Not supported in Igor7 or later.

Bit 3: Option (Macintosh) or Alt (Windows)

Bit 4: Control (Macintosh) or Windows key (Windows).

WMGizmoHookStruct

V-956

Structure WMFitInfoStruct
char IterStarted // Nonzero on the first call of an iteration
char DoingDestWave // Nonzero when called to evaluate autodest wave
char StopNow // Fit function sets this to nonzero to

// indicate that a problem has occurred
// and fitting should stop

Int32 IterNumber // Number of iterations completed
Int32 ParamPerturbed // See The WMFitInfoStruct Structure on page III-231

EndStructure

WMGizmoHookStruct
See Gizmo Named Hook Functions on page II-384 for further explanation of WMGizmoHookStruct.
Structure WMGizmoHookStruct

Int32 version
char winName[32]
char eventName[32]
Int32 width
Int32 height
Int32 mouseX
Int32 mouseY
Variable xmin
Variable xmax
Variable ymin
Variable ymax
Variable zmin
Variable zmax
Variable eulerA
Variable eulerB
Variable eulerC
Variable wheelDx
Variable wheelDy

EndStructure

WMListboxAction
This structure is passed to action procedures for listbox controls created using the ListBox operation.
Structure WMListboxAction

char ctrlName[32] // Control name
char win[200] // Host window or subwindow name
STRUCT Rect winRect // Local coordinates of host window
STRUCT Rect ctrlRect // Enclosing rectangle of the control
STRUCT Point mouseLoc // Mouse location
Int32 eventCode // See details below
Int32 eventMod // See Control Structure eventMod Field on page III-390
String userData // Primary unnamed user data
Int32 blockReentry // See Control Structure blockReentry Field on page III-390
Int32 eventCode2 // Obsolete
Int32 row // Selection row. See ListBox for details.
Int32 col // Selection column. See ListBox for details.
WAVE/T listWave // List wave specified by ListBox command
WAVE selWave // Selection wave specified by ListBox command
WAVE colorWave // Color wave specified by ListBox command
WAVE/T titleWave // Title wave specified by ListBox command

EndStructure

The constants used to specify the size of structure char arrays are internal to Igor Pro and may change.

WMListboxAction eventCode Field
Action functions should respond only to documented eventCode values. Other event codes may be added
in the future.
The event code passed to the listbox action procedure has the following meaning:

eventCode Meaning

-1 Control being killed.

1 Mouse down.

2 Mouse up.

WMMarkerHookStruct

V-957

WMListboxAction row and col Fields
The row field is the row number of selection in interior or -1 if in title area.
The col field is the column number of the selection.

The meanings of row and col are different for eventCodes 8 through 11:

If eventCode is 11, row is the horizontal shift in pixels of the column col that was resized, not the total
horizontal shift of the list as reported in V_horizScroll by ControlInfo. If row is negative, the divider was
moved to the left. col=0 corresponds to adjusting the divider on the right side of the first column. Use
ControlInfo to get a list of all column widths.

WMMarkerHookStruct
See Custom Marker Hook Functions on page IV-289 for further explanation of WMMarkerHookStruct.
Structure WMMarkerHookStruct

Int32 usage // 0= normal draw, 1= legend draw
Int32 marker // Marker number minus start
float x, y // Location of desired center of marker
float size // Half width/height of marker
Int32 opaque // 1 if marker should be opaque
float penThick // Stroke width
STRUCT RGBColor mrkRGB // Fill color
STRUCT RGBColor eraseRGB // Background color
STRUCT RGBColor penRGB // Stroke color
WAVE ywave // Trace's y wave
double ywIndex // Point number on ywave where marker is being drawn

EndStructure

3 Double click.

4 Cell selection (mouse or arrow keys).

5 Cell selection plus Shift key.

6 Begin edit.

7 Finish edit.

8 Vertical scroll. See Scroll Event Warnings on page V-434.

9 Horizontal scroll by user or by the hScroll=h keyword.

10 Top row set by row=r or first column set by col=c keywords.

11 Column divider resized.

12 Keystroke, character code is place in row field.
See Note on Keystroke Event on page V-435.

13 Checkbox was clicked. This event is sent after selWave is updated.

Code row col

8 top visible row horiz shift in pixels.

9 top visible row horiz shift (user scroll).

9 -1 horiz shift (hScroll keyword).

10 top visible row -1 (row keyword).

10 -1 first visible col (col keyword).

11 column shift column resized by user.

eventCode Meaning

WMPopupAction

V-958

WMPopupAction
This structure is passed to action procedures for popup menu controls created using the PopupMenu
operation.
Structure WMPopupAction

char ctrlName[32] // Control name
char win[200] // Host window or subwindow name
STRUCT Rect winRect // Local coordinates of host window
STRUCT Rect ctrlRect // Enclosing rectangle of the control
STRUCT Point mouseLoc // Mouse location
Int32 eventCode // See details below
Int32 eventMod // See Control Structure eventMod Field on page III-390
String userData // Primary unnamed user data
Int32 blockReentry // See Control Structure blockReentry Field on page III-390
Int32 popNum // Item number currently selected (1-based)
char popStr[MAXCMDLEN] // Contents of current popup item

EndStructure

The constants used to specify the size of structure char arrays are internal to Igor Pro and may change.

WMPopupAction eventCode Field
Action functions should respond only to documented eventCode values. Other event codes may be added
in the future.

The event code passed to the pop-up menu action procedure has the following meaning:

WMSetVariableAction
This structure is passed to action procedures for SetVariable controls created using the SetVariable
operation.
Structure WMSetVariableAction

char ctrlName[32] // Control name
char win[200] // Host window or subwindow name
STRUCT Rect winRect // Local coordinates of host window
STRUCT Rect ctrlRect // Enclosing rectangle of the control
STRUCT Point mouseLoc // Mouse location
Int32 eventCode // See details below
Int32 eventMod // See Control Structure eventMod Field on page III-390
String userData // Primary unnamed user data
Int32 blockReentry // See Control Structure blockReentry Field on page III-390
Int32 isStr // TRUE for a string variable
Variable dval // Numeric value of variable
char sval[MAXCMDLEN] // Value of variable as a string
char vName[MAX_OBJ_NAME+2 + (MAXDIMS * (MAX_OBJ_NAME+5)) + 1]
WAVE svWave // Valid if using wave
Int32 rowIndex // Row index for a wave if rowLabel is empty
char rowLabel[MAX_OBJ_NAME+1] // Wave row dimension label
Int32 colIndex // Column index for a wave if colLabel is empty
char colLabel[MAX_OBJ_NAME+1] // Wave column dimension label
Int32 layerIndex // Layer index for a wave if layerLabel is empty
char layerLabel[MAX_OBJ_NAME+1] // Wave layer label
Int32 chunkIndex // Chunk index for a wave if chunkLabel is empty
char chunkLabel[MAX_OBJ_NAME+1] // Wave chunk label

EndStructure

The constants used to specify the size of structure char arrays are internal to Igor Pro and may change.

WMSetVariableAction eventCode Field
Action functions should respond only to documented eventCode values. Other event codes may be added
in the future.

eventCode Event
-1 Control being killed
2 Mouse up

WMSliderAction

V-959

The event code passed to the SetVariable action procedure has the following meaning:

Code -1 is never sent to an old-style (non-structure parameter) action procedure.
Codes 4 and 5 are sent only for string SetVariables or numeric SetVariables whose increment setting is zero.
For numeric SetVariables whose increment is non-zero, the mouse scroll wheel acts like a mouse click on
the increment or decrement arrows.
Code 6 is by default sent to only structure-based action procedures.
Use SetIgorOption EnableSVE6=0 to disable sending this event at all and EnableSVE6=2 to send the event
to both structure-based and old-style SetVariable action procedures. The default for EnableSVE6 is =1.

WMSliderAction
This structure is passed to action procedures for slider controls created using the Slider operation.
Structure WMSliderAction

char ctrlName[32] // Control name
char win[200] // Host window or subwindow name
STRUCT Rect winRect // Local coordinates of host window
STRUCT Rect ctrlRect // Enclosing rectangle of the control
STRUCT Point mouseLoc // Mouse location
Int32 eventCode // See details below
Int32 eventMod // See Control Structure eventMod Field on page III-390
String userData // Primary unnamed user data
Int32 blockReentry // See Control Structure blockReentry Field on page III-390
Variable curval // Value of slider

EndStructure

The constants used to specify the size of structure char arrays are internal to Igor Pro and may change.

WMSliderAction eventCode Field
Action functions should respond only to documented eventCode values. Other event codes may be added
in the future.
The event code passed to the slider action procedure is a bitwise value with the following meaning:

If eventCode is -1, the control is being killed.

eventCode Meaning

-1 Control being killed

1 Mouse up

2 Enter key

3 Live update

4 Mouse scroll wheel up

5 Mouse scroll wheel down

6 Value changed by dependency update

7 Begin edit (Igor7 or later)

8 End edit (Igor7 or later)

eventCode Meaning

Bit 0: Value set

Bit 1: Mouse down

Bit 2: Mouse up

Bit 3: Mouse moved

WMTabControlAction

V-960

WMTabControlAction
This structure is passed to action procedures for tab controls created using the TabControl operation.
Structure WMTabControlAction

char ctrlName[32] // Control name
char win[200] // Host window or subwindow name
STRUCT Rect winRect // Local coordinates of host window
STRUCT Rect ctrlRect // Enclosing rectangle of the control
STRUCT Point mouseLoc // Mouse location
Int32 eventCode // See details below
Int32 eventMod // See Control Structure eventMod Field on page III-390
String userData // Primary unnamed user data
Int32 blockReentry // See Control Structure blockReentry Field on page III-390
Int32 tab // Tab number

EndStructure

The constants used to specify the size of structure char arrays are internal to Igor Pro and may change.

WMTabControlAction eventCode Field
Action functions should respond only to documented eventCode values. Other event codes may be added
in the future.

The event code passed to tab control action procedure has the following meaning:

WMWinHookStruct
See Named Window Hook Functions on page IV-277 for further explanation of WMWinHookStruct.
Structure WMWinHookStruct

char winName[200] // Host window or subwindow name
STRUCT Rect winRect // Local coordinates of the affected (sub)window
STRUCT Point mouseLoc // Mouse location
Variable ticks // Tick count when event happened
Int32 eventCode // See Named Window Hook Events on page IV-277
char eventName[32] // See Named Window Hook Events on page IV-277
Int32 eventMod // See Control Structure eventMod Field on page III-390
char menuName[256] // Name of the menu item as for SetIgorMenuMode
char menuItem[256] // Text of the menu item as for SetIgorMenuMode
char traceName[32] // See Named Window Hook Functions on page IV-277
char cursorName[2] // Cursor name A through J
Variable pointNumber // See Named Window Hook Functions on page IV-277
Variable yPointNumber // See Named Window Hook Functions
Int32 isFree // 1 if the cursor is not attached to anything
Int32 keycode // ASCII value of key struck
Int32 specialKeyCode // See Keyboard Events on page IV-281 - Igor Pro 7 or later
char keyText[16] // UTF-8 string representing key struck - Igor Pro 7 or later
char oldWinName[32] // Simple name of the window or subwindow
Int32 doSetCursor // Set to 1 to change cursor to cursorCode
Int32 cursorCode // See Setting the Mouse Cursor on page IV-282
Variable wheelDx // Vertical lines to scroll
Variable wheelDy // Horizontal lines to scroll

EndStructure

wnoise
wnoise(shape, scale)
The wnoise function returns a pseudo-random value from the two-parameter Weibull distribution
characterized by the shape and scale, the respective gamma and alpha parameters. The two-parameter Weibull
probability distribution function is

eventCode Event
-1 Control being killed
2 Mouse up

x

V-961

The mean of the Weibull distribution is

and the variance is

Note that this definition of the PDF uses different scaling than the one used in StatsWeibullPDF. To match
the scaling of StatsWeibullPDF multiply the result from Wnoise by the factor scale^(1-1/shape).
The random number generator initializes using the system clock when Igor Pro starts. This almost
guarantees that you will never repeat a sequence. For repeatable “random” numbers, use SetRandomSeed.
The algorithm uses the Mersenne Twister random number generator.

See Also
The SetRandomSeed operation.
Noise Functions on page III-344.
Chapter III-12, Statistics for a function and operation overview.

x
x
The x function returns the scaled row index for the current point of the destination wave in a wave
assignment statement. This is the same as the X value if the destination wave is a vector (1D wave).

Details
Outside of a wave assignment statement, x acts like a normal variable. That is, you can assign a value to it
and use it in an expression.

See Also
The p function and Waveform Arithmetic and Assignments on page II-69.

x2pnt
x2pnt(waveName, x1)
The x2pnt function returns the integer point number on the wave whose X value is closest to x1.
For higher dimensions, use ScaleToIndex.

See Also
DimDelta, DimOffset, pnt2x, ScaleToIndex
For an explanation of waves and X scaling, see Changing Dimension and Data Scaling on page II-63.

x � 0

f (x;�,�) =
�

�
x� �1 exp �

1

�
x��

�
�

	

�

� > 0

� > 0

�

1

�
� 1+

1

�

�

�
�

�
��

,

�

2

�
� 1+

2

�

�

�
�

�

	

��

2

�
� 1+

1

�

�

�
�

�

	

�

�

�

�

�

2

.

xcsr

V-962

xcsr
xcsr(cursorName [, graphNameStr])
The xcsr function returns the X value of the point which the named cursor (A through J) is on in the top or
named graph.

Parameters
cursorName identifies the cursor, which can be cursor A through J.
graphNameStr specifies the graph window or subwindow.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.

Details
The result is derived from the wave that the cursor is on, not from the X axis of the graph. If the wave is
displayed as an XY pair, the X axis and the wave’s X scaling will usually be different.

See Also
The hcsr, pcsr, qcsr, vcsr, and zcsr functions.
Programming With Cursors on page II-249.

XLLoadWave
XLLoadWave [flags] [fileNameStr]
The XLLoadWave operation loads data from the named Excel .xls or .xlsx file into waves.

Parameters
The file to be loaded is specified by fileNameStr and /P=pathName where pathName is the name of an Igor
symbolic path. fileNameStr can be a full path to the file, in which case /P is not needed, a partial path relative
to the folder associated with pathName, or the name of a file in the folder associated with pathName. If
XLLoadWave can not determine the location of the file from fileNameStr and pathName, it displays a dialog
allowing you to specify the file.
If you use a full or partial path for fileNameStr, see Path Separators on page III-401 for details on forming
the path.
If fileNameStr is omitted or is "", or if the /I flag is used, XLLoadWave presents an Open File dialog from
which you can choose the file to load.

Flags

/A Automatically assigns arbitrary wave names using "wave" as the base name. Skips
names already in use.

/A=baseName Same as /A but it automatically assigns wave names of the form baseName0,
baseName1.

/C=columnType XLLoadWave will use the Deduce from Row method of determining the type of the
Excel file columns, using the row specified by columnType to deduce column types.
See Deduce from row on page II-141.

/COLT=columnTypeStr

columnTypeStr specifies how XLLoadWave should treat each column. For example,
"1T3N" means 1 text column followed by 3 numeric columns. See Determining Wave
Types on page V-964.

/D Creates double-precision floating point waves. If omitted, XLLoadWave creates
single-precision floating point waves.

XLLoadWave

V-963

Wave Names
The names of the loaded waves are determined by the /A, /N, /W and /NAME flags. If all of the flags are
omitted, default names, like ColumnA and ColumnB, are used.
If /W=w is present, names are loaded from row w of the worksheet and then converted to standard Igor
names by replacing spaces and punctuation characters with underscores.

/F=f

/I Forces XLLoadWave to display an Open File dialog even if the file is fully specified
via /P and fileNameStr.

/J=infoMode If infoMode is 1, 2 or 3, XLLoadWave does not load the file but instead returns
information about the worksheets within the workbook via the string variable
S_value. See Getting Information About the Excel File on page V-965.

/K=k Discards waves with fewer than k points. For historical reasons, k defaults to 2.

/N Same as /A except that, instead of choosing names that are not in use, it overwrites
existing waves.

/N=baseName Same as /N except that it automatically assigns wave names of the form baseName0,
baseName1.

/NAME=nameList nameList is a semicolon-separated list of wave names to be used for the loaded waves.
See Wave Names on page V-963 for details.

/O Overwrites existing waves in case of a name conflict.

/P=pathName Specifies the folder to look in for fileNameStr. pathName is the name of an existing
symbolic path.

/Q Suppresses the normal messages in the history area.

/R=(cell1,cell2) Restricts loading to the specified cells, e.g. /R=(A3,D21). Row and column numbers
start from 1.
The /R flag supports an optional extra parameter that should be used only in very rare
cases. XLLoadWave reads the range of defined cells from the file itself and clips cell1
and cell2 to that range.
In very rare cases the file does not accurately identify the range of defined cells so the
clipping prevents loading cells that exist in the file. In this rare case, use /R=(cell1,
cell2,1). The last parameter tells XLLoadWave to skip the clipping. If you specify
incorrect values for cell1 or cell2 you may get errors or garbage results.

/S=sheetNameStr Specifies which worksheet to load from a workbook file. If you omit /S=sheetNameStr,
or if sheetNameStr is "", XLLoadWave loads the first worksheet in the workbook.

/T Automatically creates a table of loaded waves.

/V=v

/W=w w specifies the row in which XLLoadWave will look for wave names. The first row is
row number 1.

New programming should use the /T flag instead of the /D, /L and /F flags.
f specifies the data format of the file:
f=1: Signed integer (8, 16, 32 bits allowed)
f=2: Creates double-precision waves
f=3: Floating point (default, 32, 64 bits allowed)

Controls the handling of blanks at the end of a column.
v=0: XLLoadWave leaves blanks at the end of a column in the Igor wave.
v=1: XLLoadWave removes blanks at the end of a column from the Igor

wave. If the column has fewer than two remaining points, it is not
loaded into a wave. This is the default mode that is used if you omit
/V.

XLLoadWave

V-964

If /NAME=nameList is present, the wave names come from nameList, a semicolon-separated list of names.
For example:
/NAME="StartTime;UnitA;UnitB;"

The names in nameList can be standard or liberal names. For example, this specifies names two standard
names and one liberal name which contains a space:
/NAME="Signal;Ambient Temp;Response;"

If a name in the list is _skip_, the corresponding Excel column is skipped. For example, this would load the
first and third columns and skip the second:
/NAME="Signal;_skip_;Response;"

If a name in the list is empty, the name used for the corresponding wave is as it would be if /NAME were
omitted. This can be used to skip columns while taking wave names from the spreadsheet for loaded
columns. In this example, the names of the first and third waves would be determined by row 1 of the
spreadsheet while the second column would be skipped:
/W=1 /NAME=";_skip_;;"

The /N flag instructs Igor to automatically name new waves "wave", or baseName if /N=baseName is used,
plus a number. The number starts from zero and increments by one for each wave loaded from the file. If
the resulting name conflicts with an existing wave, the existing wave is overwritten.
The /A flag is like /N except that it skips names already in use.
/NAME overrides /W. /A or /N overrides both /NAME and /W.
No matter how the wave names are generated, if there is a name conflict and overwrite is off (/O is omitted),
a unique name is generated. See XLLoadWave and Wave Names on page II-142 for further details.

Determining Wave Types
The /C or /COLT flag tells XLLoadWave how to decide what kind of wave, numeric, text, or date/time, to
make for each Excel column.
Using /C=columnType causes XLLoadWave to use the Deduce from Row method of determining the type of
the Excel file columns. columnType is the Excel row number that XLLoadWave should use to make the
deduction.
Using /COLT=columnTypeStr causes XLLoadWave treat the columns based on the columnTypeStr
parameter. If columnTypeStr is "N", XLLoadWave uses the Treat all Columns as Numeric method. If
columnTypeStr is "T", XLLoadWave uses the Treat all Columns as Text method. If columnTypeStr is "D",
XLLoadWave uses the Treat all Columns as Date method.
For any other value of columnTypeStr , XLLoadWave uses the Use Column Type String method. For
example, "1T5N" tells XLLoadWave to create a text wave for the first column and numeric waves for the
next 5 or more columns.
If you omit /C and /COLT, XLLoadWave uses the Treat all Columns as Numeric method.
See What XLLoadWave Loads on page II-140 for further details.

Output Variables
XLLoadWave sets the followin output variables:

S_path uses Macintosh path syntax (e.g., “hd:FolderA:FolderB:”), even on Windows. It includes a
trailing colon.

V_flag Number of waves loaded.

S_fileName Name of the file being loaded.

S_path File system path to the folder containing the file.

S_waveNames Semicolon-separated list of the names of loaded waves.

S_worksheetName Name of the loaded worksheet within the workbook file.

S_value Set only if you use the /J flag. See Getting Information About the Excel File
below.

XWaveName

V-965

When XLLoadWave presents an Open File dialog and the user cancels, V_flag is set to 0 and S_fileName is set
to "".

Getting Information About the Excel File
The /J flag allows you to get information about an Excel file without actually loading it.
If infoMode is 1, XLLoadWave does not load the file but instead returns a semicolon-separated list of the
names of the worksheets within the workbook via the string variable S_value.
If infoMode is 2, XLLoadWave does not load the file but instead returns information about the first
worksheet or the worksheet specified by /S via the string variable S_value. The format of the returned
information is:
NAME:<worksheet name>;FIRSTROW:<first row>;FIRSTCOL:<first col>;LASTROW:<last

row>;LASTCOL:<last col>;

<first row> and <last row> are 1-based row numbers. <first col> and <last col> are 1-based column numbers;
1 refers to Column A. These refer to the defined rows and columns in the worksheet even if some or all cells
are blank. If <last col> is zero, this means that there are no defined cells in the worksheet.
If infoMode is 3, XLLoadWave does not load the file but instead returns information about the first
worksheet or the worksheet specified by /S via the string variable S_value. The format of the returned
information is:
NAME:<worksheet name>;FIRST:<first cell>;LAST:<last cell>;

<first cell> and <last cell> are expressed in standard Excel notation (A1, B24, etc.). These refer to the defined
rows and columns in the worksheet even if some or all cells are blank. If <last cell> is "@0", this means that
there are no defined cells in the worksheet.
Use the StringByKey, NumberByKey functions to extract the information from S_value. If you use these
functions, your code won't break if we later add a keyword/value pair to the returned information.

Examples
Old versions of Excel came with a number of sample files. One of them was called “Instrument Data”. The
following procedure loads an area of this file, makes a table and then makes a graph of the loaded waves.
This example assumes that you have the "Instrument Data.xls" file and a symbolic path named Science that
points to the folder containing the file.
Function InstrumentData()

// Load Instrument Data file from the Scientific Analysis folder
XLLoadWave/O/T/R=(C9,M27)/W=8/C=9/P=Science "Instrument Data.xls"

// Make graph.
Display M1, M2, M3 vs X_Time
Label bottom, "Time"; Label left, "Mass"
ModifyGraph dateInfo(bottom)={1,0,0}

End

See also Loading Excel Data Into a 2D Wave on page II-143.

XWaveName
XWaveName(graphNameStr, traceNameStr)
The XWaveName function returns a string containing the name of the wave supplying the X coordinates
for the named trace in the named graph window or subwindow.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.
traceNameStr is the name of the trace in question.

Details
XWaveName returns an empty string ("") if the trace is not plotted versus an X wave.
For most uses, we recommend that you use XWaveRefFromTrace instead of WaveName. XWaveName
returns a string containing the wave name only, with no data folder path qualifying it. Thus, you may get

XWaveRefFromTrace

V-966

erroneous results if the X wave referred to in the graph has the same name as a different wave in the current
data folder. Likewise, if the named wave resides in a folder that is not the current data folder, you will not
be able to refer to the named wave.
graphNameStr and traceNameStr are strings, not names.

Examples
Display ywave vs xwave // XY graph
Print XWaveName("","ywave") // prints xwave

See also
Trace Names on page II-216, Programming With Trace Names on page IV-81.

XWaveRefFromTrace
XWaveRefFromTrace(graphNameStr, traceNameStr)
The XWaveRefFromTrace function returns a wave reference to the wave supplying the X coordinates
against which the named trace is displayed in the named graph window or subwindow.

Parameters
graphNameStr can be "" to refer to the top graph window.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.

Details
XWaveRefFromTrace returns a null reference (see WaveExists) if the wave is not plotted versus an X wave.
graphNameStr and traceNameStr are strings, not names.

Examples
Display ywave vs xwave // XY graph
Print XWaveRefFromTrace("","ywave")[50] // prints value of xwave at point 50

See Also
For other commands related to waves and traces: WaveRefIndexed, TraceNameToWaveRef,
TraceNameList, CsrWaveRef, and CsrXWaveRef.
For a description of traces: ModifyGraph.
For a discussion of contour traces see Contour Traces on page II-283.
For commands referencing other waves in a graph: ImageNameList, ImageNameToWaveRef,
ContourNameList, and ContourNameToWaveRef.
For a discussion of wave references, see Wave Reference Functions on page IV-186.

See Also
Trace Names on page II-216, Programming With Trace Names on page IV-81.

y
y
The y function returns the Y value for the current column of the destination wave when used in a
multidimensional wave assignment statement. Y is the scaled column index whereas q is the column index itself.

Details
Unlike x, outside of a wave assignment statement, y does not act like a normal variable.

See Also
x, z, and t functions for other dimensions.
p, q, r, and s functions for the scaled indices.

z

V-967

z
z
The z function returns the Z value for the current layer of the destination wave when used in a
multidimensional wave assignment statement. z is the scaled layer index whereas r is the layer index itself.

Details
Unlike x, outside of a wave assignment statement, z does not act like a normal variable.

See Also
x, y, and t functions for other dimensions.
p, q, r, and s functions for the scaled indices.

zcsr
zcsr(cursorName [, graphNameStr])
The zcsr function returns a Z value when the specified cursor is on a contour, image, or waterfall plot.
Otherwise, it returns NaN.

Parameters
cursorName identifies the cursor, which can be cursor A through J.
graphNameStr specifies the graph window or subwindow.
When identifying a subwindow with graphNameStr, see Subwindow Syntax on page III-87 for details on
forming the window hierarchy.

Examples
Print zcsr(A) // not zcsr("A")
Print zcsr(A,"Graph0") // specifies the graph

See Also
The hcsr, pcsr, qcsr, vcsr, and xcsr functions.
Programming With Cursors on page II-249.

zeta
zeta(a, b [, terms])
The zeta function returns the Hurwitz Zeta function for real or complex arguments a and b

The Riemann zeta function is the special case:

The zeta function was added in Igor Pro 7.00.

Parameters
The terms parameter defaults to 40. In practice evaluation may terminate before the specified number of
terms when convergence is achieved.

References
Olver, Frank W. J.; Lozier, Daniel W.; Boisvert, Ronald F.; Clark, Charles W., eds., "NIST Handbook of

Mathematical Functions", 607 pp., Cambridge University Press, 2010.

ζ (a,b) = 1

(k + b)a
,

k=0

∞

∑
ℜ(a) >1,

b ≠ 0,−1,−2,...

ζ (a) =ζ (a,1).

ZernikeR

V-968

See Also
Dilogarithm

ZernikeR
ZernikeR(n,m,r)
The ZernikeR function returns the Zernike radial polynomials of degree n that contains no power of r that
is less than m. Here m is even or odd according to whether n is even or odd, and r is in the range 0 to 1.
Note that the full circle polynomials are complex. For any angle t (theta), they are given by:
ZernikeR(n,m,r)*exp(imt).

	Igor Reference
	Built-In Operations by Category
	Graphs
	Contour and Image Plots
	Tables
	Layouts
	Gizmo
	Subwindows
	Other Windows
	All Windows
	Wave Operations
	Analysis
	Matrix Operations
	Analysis of Functions
	Signal Processing
	Image Analysis
	Statistics
	Geometry
	Drawing
	Programming & Utilities
	Files & Paths
	Data Folders
	Movies & Sound
	Controls & Cursors
	FIFOs
	Printing

	Built-In Functions by Category
	Numbers
	Trig
	Exponential
	Complex
	Rounding
	Conversion
	Time and Date
	Matrix Analysis
	Wave Analysis
	About Waves
	Special
	Statistics
	Windows
	Strings
	Names
	Lists
	Programming
	Data Folders
	I/O (files, paths, and PICTs)

	Built-In Keywords
	Procedure Declarations
	Procedure Subtypes
	Object References
	Function Local Variable Keywords
	Flow Control
	Other Programming Keywords

	Built-in Structures
	Hook Functions
	Alphabetic Listing of Functions, Operations and Keywords
	Reference Syntax Guide
	#define
	#if-#elif-#endif
	#if-#endif
	#ifdef-#endif
	#ifndef-#endif
	#include
	#pragma
	#undef
	Abort
	AbortOnRTE
	AbortOnValue
	abs
	acos
	acosh
	AddFIFOData
	AddFIFOVectData
	AddListItem
	AddMovieAudio
	AddMovieFrame
	AdoptFiles
	airyA
	airyAD
	airyB
	airyBD
	alog
	AnnotationInfo
	AnnotationList
	APMath
	Append
	AppendImage
	AppendLayoutObject
	AppendMatrixContour
	AppendText
	AppendToGizmo
	AppendToGraph
	AppendToLayout
	AppendToTable
	AppendXYZContour
	area
	areaXY
	asin
	asinh
	atan
	atan2
	atanh
	AutoPositionWindow
	AxisInfo
	AxisList
	AxisValFromPixel
	BackgroundInfo
	Beep
	Besseli
	Besselj
	Besselk
	Bessely
	bessI
	bessJ
	bessK
	bessY
	beta
	betai
	BinarySearch
	BinarySearchInterp
	binomial
	binomialln
	binomialNoise
	BoundingBall
	break
	BrowseURL
	BuildMenu
	Button
	ButtonControl
	cabs
	CameraWindow
	CaptureHistory
	CaptureHistoryStart
	catch
	cd
	CDFFunc
	ceil
	cequal
	char2num
	Chart
	chebyshev
	chebyshevU
	CheckBox
	CheckBoxControl
	CheckDisplayed
	CheckName
	ChildWindowList
	ChooseColor
	CleanupName
	Close
	CloseHelp
	CloseMovie
	CloseProc
	cmplx
	cmpstr
	ColorScale
	ColorTab2Wave
	Complex
	Concatenate
	conj
	Constant
	continue
	ContourInfo
	ContourNameList
	ContourNameToWaveRef
	ContourZ
	ControlBar
	ControlInfo
	ControlNameList
	ControlUpdate
	ConvertGlobalStringTextEncoding
	ConvertTextEncoding
	ConvexHull
	Convolve
	CopyFile
	CopyFolder
	CopyScales
	Correlate
	cos
	cosh
	CosIntegral
	cot
	coth
	CountObjects
	CountObjectsDFR
	cpowi
	CreateAliasShortcut
	CreateBrowser
	CreationDate
	Cross
	csc
	csch
	CsrInfo
	CsrWave
	CsrWaveRef
	CsrXWave
	CsrXWaveRef
	CTabList
	CtrlBackground
	CtrlNamedBackground
	CtrlFIFO
	Cursor
	CursorStyle
	CurveFit
	CustomControl
	CWT
	DataFolderDir
	DataFolderExists
	DataFolderRefsEqual
	DataFolderRefStatus
	dateToJulian
	date
	date2secs
	DateTime
	dawson
	DDEExecute
	DDEInitiate
	DDEPokeString
	DDEPokeWave
	DDERequestString
	DDERequestWave
	DDEStatus
	DDETerminate
	Debugger
	DebuggerOptions
	default
	DefaultFont
	DefaultGUIControls
	DefaultGUIFont
	DefaultTextEncoding
	defined
	DefineGuide
	DelayUpdate
	DeleteAnnotations
	DeleteFile
	DeleteFolder
	DeletePoints
	deltax
	DFREF
	Differentiate
	digamma
	Dilogarithm
	DimDelta
	DimOffset
	DimSize
	Dir
	Display
	DisplayHelpTopic
	DisplayProcedure
	do-while
	DoAlert
	DoIgorMenu
	DoPrompt
	Double
	DoUpdate
	DoWindow
	DoWindow/T
	DoWindow/S
	DoXOPIdle
	DPSS
	DrawAction
	DrawArc
	DrawBezier
	DrawLine
	DrawOval
	DrawPICT
	DrawPoly
	DrawRect
	DrawRRect
	DrawText
	DrawUserShape
	DSPDetrend
	DSPPeriodogram
	Duplicate
	DuplicateDataFolder
	DWT
	e
	EdgeStats
	Edit
	ei
	End
	EndMacro
	EndStructure
	endtry
	enoise
	EqualWaves
	erf
	erfc
	erfcw
	ErrorBars
	Execute
	Execute/P
	ExecuteScriptText
	exists
	exp
	ExperimentModified
	expInt
	ExpIntegralE1
	expnoise
	ExportGizmo
	Extract
	factorial
	FakeData
	FastGaussTransform
	FastOp
	faverage
	faverageXY
	FBinRead
	FBinWrite
	FetchURL
	FFT
	FGetPos
	FIFO2Wave
	FIFOStatus
	FilterFIR
	FilterIIR
	FindContour
	FindDimLabel
	FindDuplicates
	FindLevel
	FindLevels
	FindListItem
	FindPeak
	FindPointsInPoly
	FindRoots
	FindSequence
	FindValue
	FitFunc
	floor
	FontList
	FontSizeHeight
	FontSizeStringWidth
	for-endfor
	FPClustering
	fprintf
	FReadLine
	fresnelCos
	fresnelCS
	fresnelSin
	FSetPos
	FStatus
	FTPCreateDirectory
	FTPDelete
	FTPDownload
	FTPUpload
	FuncFit
	FuncFitMD
	FUNCREF
	FuncRefInfo
	Function
	FunctionInfo
	FunctionList
	FunctionPath
	GalleryGlobal
	gamma
	gammaEuler
	gammaInc
	gammaNoise
	gammln
	gammp
	gammq
	Gauss
	Gauss1D
	Gauss2D
	GBLoadWave
	gcd
	GetAxis
	GetBrowserLine
	GetBrowserSelection
	GetCamera
	GetDataFolder
	GetDataFolderDFR
	GetDefaultFont
	GetDefaultFontSize
	GetDefaultFontStyle
	GetDimLabel
	GetEnvironmentVariable
	GetErrMessage
	GetFileFolderInfo
	GetFormula
	GetGizmo
	GetIndependentModuleName
	GetIndexedObjName
	GetIndexedObjNameDFR
	GetKeyState
	GetLastUserMenuInfo
	GetMarquee
	GetMouse
	GetRTError
	GetRTErrMessage
	GetRTLocation
	GetRTLocInfo
	GetRTStackInfo
	GetScrapText
	GetSelection
	GetUserData
	GetWavesDataFolder
	GetWavesDataFolderDFR
	GetWindow
	GizmoInfo
	GizmoPlot
	GizmoScale
	gnoise
	Graph
	GraphMarquee
	GraphNormal
	GraphStyle
	GraphWaveDraw
	GraphWaveEdit
	Grep
	GrepList
	GrepString
	GridStyle
	GroupBox
	GuideInfo
	GuideNameList
	Hanning
	Hash
	hcsr
	hermite
	hermiteGauss
	hide
	HideIgorMenus
	HideInfo
	HideProcedures
	HideTools
	HilbertTransform
	Histogram
	hyperG0F1
	hyperG1F1
	hyperG2F1
	hyperGNoise
	hyperGPFQ
	i
	ICA
	if-elseif-endif
	if-endif
	IFFT
	IgorInfo
	IgorVersion
	IgorVersion
	ilim
	imag
	ImageAnalyzeParticles
	ImageBlend
	ImageBoundaryToMask
	ImageEdgeDetection
	ImageFileInfo
	ImageFilter
	ImageFocus
	ImageFromXYZ
	ImageGenerateROIMask
	ImageGLCM
	ImageHistModification
	ImageHistogram
	ImageInfo
	ImageInterpolate
	ImageLineProfile
	ImageLoad
	ImageMorphology
	ImageNameList
	ImageNameToWaveRef
	ImageRegistration
	ImageRemoveBackground
	ImageRestore
	ImageRotate
	ImageSave
	ImageSeedFill
	ImageSnake
	ImageSkeleton3D
	ImageStats
	ImageThreshold
	ImageTransform
	ImageUnwrapPhase
	ImageWindow
	IndependentModule
	IndependentModuleList
	IndexedDir
	IndexedFile
	IndexSort
	IndexToScale
	Inf
	InsertPoints
	Int
	Int64
	Integrate
	Integrate1D
	Integrate2D
	IntegrateODE
	interp
	Interp2D
	Interp3D
	Interp3DPath
	Interpolate2
	Interpolate3D
	inverseErf
	inverseErfc
	ItemsInList
	j
	JCAMPLoadWave
	JacobiCn
	JacobiSn
	jlim
	JointHistogram
	JulianToDate
	KillBackground
	KillControl
	KillDataFolder
	KillFIFO
	KillFreeAxis
	KillPath
	KillPICTs
	KillStrings
	KillVariables
	KillWaves
	KillWindow
	KMeans
	Label
	laguerre
	laguerreA
	laguerreGauss
	LambertW
	Layout
	Layout
	LayoutInfo
	LayoutMarquee
	LayoutPageAction
	LayoutSlideShow
	LayoutStyle
	leftx
	Legend
	legendreA
	limit
	LinearFeedbackShiftRegister
	ListBox
	ListBoxControl
	ListMatch
	ListToTextWave
	ListToWaveRefWave
	ln
	LoadData
	LoadPackagePreferences
	LoadPICT
	LoadWave
	Loess
	log
	logNormalNoise
	LombPeriodogram
	lorentzianNoise
	LowerStr
	Macro
	MacroList
	magsqr
	Make
	MakeIndex
	MandelbrotPoint
	MarcumQ
	MarkPerfTestTime
	MatrixCondition
	MatrixConvolve
	MatrixCorr
	MatrixDet
	MatrixDot
	MatrixEigenV
	MatrixFilter
	MatrixGaussJ
	MatrixGLM
	MatrixInverse
	MatrixLinearSolve
	MatrixLinearSolveTD
	MatrixLLS
	MatrixLUBkSub
	MatrixLUD
	MatrixLUDTD
	MatrixMultiply
	MatrixOp
	MatrixRank
	MatrixSchur
	MatrixSolve
	MatrixSVBkSub
	MatrixSVD
	MatrixTrace
	MatrixTranspose
	max
	mean
	median
	MeasureStyledText
	Menu
	min
	MLLoadWave
	mod
	ModDate
	Modify
	ModifyBrowser
	ModifyCamera
	ModifyContour
	ModifyControl
	ModifyControlList
	ModifyFreeAxis
	ModifyGizmo
	ModifyGraph (general)
	ModifyGraph (traces)
	ModifyGraph (axes)
	ModifyGraph (colors)
	ModifyImage
	ModifyLayout
	ModifyPanel
	ModifyTable
	ModifyWaterfall
	ModuleName
	MoveDataFolder
	MoveFile
	MoveFolder
	MoveString
	MoveSubwindow
	MoveVariable
	MoveWave
	MoveWindow
	MultiTaperPSD
	MultiThread
	MultiThreadingControl
	NameOfWave
	NaN
	NeuralNetworkRun
	NeuralNetworkTrain
	NewCamera
	NewDataFolder
	NewFIFO
	NewFIFOChan
	NewFreeAxis
	NewFreeDataFolder
	NewFreeWave
	NewGizmo
	NewImage
	NewLayout
	NewMovie
	NewNotebook
	NewPanel
	NewPath
	NewWaterfall
	norm
	NormalizeUnicode
	note
	Note
	Notebook
	Notebook (Document Properties)
	Notebook (Headers and Footers)
	Notebook (Miscellaneous)
	Notebook (Paragraph Properties)
	Notebook (Selection)
	Notebook (Text Properties)
	Notebook (Writing Graphics)
	Notebook (Writing Special Characters)
	Notebook (Accessing Contents)
	Notebook (Writing Text)
	NotebookAction
	num2char
	num2istr
	num2str
	NumberByKey
	numpnts
	numtype
	NumVarOrDefault
	NVAR
	NVAR_Exists
	Open
	OpenHelp
	OpenNotebook
	OpenProc
	OperationList
	Optimize
	Override
	p
	p2rect
	PadString
	Panel
	PanelResolution
	ParamIsDefault
	ParseFilePath
	ParseOperationTemplate
	PathInfo
	PathList
	PauseForUser
	PauseUpdate
	PCA
	pcsr
	Pi
	PICTInfo
	PICTList
	Picture
	PixelFromAxisVal
	PlayMovie
	PlayMovieAction
	PlaySnd
	PlaySound
	pnt2x
	Point
	PointF
	poissonNoise
	poly
	poly2D
	PolygonArea
	popup
	PopupContextualMenu
	PopupMenu
	PopupMenuControl
	PossiblyQuoteName
	Preferences
	PrimeFactors
	Print
	printf
	PrintGraphs
	PrintLayout
	PrintNotebook
	PrintSettings
	PrintTable
	Proc
	ProcedureText
	ProcGlobal
	Project
	Prompt
	PulseStats
	PutScrapText
	pwd
	q
	qcsr
	Quit
	r
	r2polar
	RatioFromNumber
	Rect
	RectF
	ReadVariables
	real
	Redimension
	Remove
	RemoveByKey
	RemoveContour
	RemoveEnding
	RemoveFromGizmo
	RemoveFromGraph
	RemoveFromLayout
	RemoveFromList
	RemoveFromTable
	RemoveImage
	RemoveLayoutObjects
	RemoveListItem
	RemovePath
	Rename
	RenameDataFolder
	RenamePath
	RenamePICT
	RenameWindow
	ReorderImages
	ReorderTraces
	ReplaceNumberByKey
	ReplaceString
	ReplaceStringByKey
	ReplaceText
	ReplaceWave
	Resample
	ResumeUpdate
	return
	Reverse
	RGBColor
	RGBAColor
	rightx
	root
	Rotate
	round
	rtGlobals
	s
	Save
	SaveData
	SaveExperiment
	SaveGraphCopy
	SaveNotebook
	SavePackagePreferences
	SavePICT
	SaveTableCopy
	sawtooth
	ScaleToIndex
	ScreenResolution
	sec
	sech
	Secs2Date
	Secs2Time
	SelectNumber
	SelectString
	SetActiveSubwindow
	SetAxis
	SetBackground
	SetDashPattern
	SetDataFolder
	SetDimLabel
	SetDrawEnv
	SetDrawLayer
	SetEnvironmentVariable
	SetFileFolderInfo
	SetFormula
	SetIgorHook
	SetIgorMenuMode
	SetIgorOption
	SetMarquee
	SetProcessSleep
	SetRandomSeed
	SetScale
	SetVariable
	SetVariableControl
	SetWaveLock
	SetWaveTextEncoding
	SetWindow
	ShowIgorMenus
	ShowInfo
	ShowTools
	SinIntegral
	sign
	Silent
	sin
	sinc
	sinh
	Sleep
	Slider
	SliderControl
	Slow
	Smooth
	SmoothCustom
	Sort
	SortColumns
	SortList
	SoundInRecord
	SoundInSet
	SoundInStartChart
	SoundInStatus
	SoundInStopChart
	SoundLoadWave
	SoundSaveWave
	SpecialCharacterInfo
	SpecialCharacterList
	SpecialDirPath
	sphericalBessJ
	sphericalBessJD
	sphericalBessY
	sphericalBessYD
	sphericalHarmonics
	SphericalInterpolate
	SphericalTriangulate
	SplitString
	SplitWave
	sprintf
	sqrt
	sscanf
	Stack
	StackWindows
	StartMSTimer
	Static
	StatsAngularDistanceTest
	StatsANOVA1Test
	StatsANOVA2NRTest
	StatsANOVA2RMTest
	StatsANOVA2Test
	StatsBetaCDF
	StatsBetaPDF
	StatsBinomialCDF
	StatsBinomialPDF
	StatsCauchyCDF
	StatsCauchyPDF
	StatsChiCDF
	StatsChiPDF
	StatsChiTest
	StatsCircularCorrelationTest
	StatsCircularMeans
	StatsCircularMoments
	StatsCircularTwoSampleTest
	StatsCMSSDCDF
	StatsCochranTest
	StatsContingencyTable
	StatsCorrelation
	StatsDExpCDF
	StatsDExpPDF
	StatsDIPTest
	StatsDunnettTest
	StatsErlangCDF
	StatsErlangPDF
	StatsErrorPDF
	StatsEValueCDF
	StatsEValuePDF
	StatsExpCDF
	StatsExpPDF
	StatsFCDF
	StatsFPDF
	StatsFriedmanCDF
	StatsFriedmanTest
	StatsFTest
	StatsGammaCDF
	StatsGammaPDF
	StatsGeometricCDF
	StatsGeometricPDF
	StatsHodgesAjneTest
	StatsGEVCDF
	StatsGEVPDF
	StatsHyperGCDF
	StatsHyperGPDF
	StatsInvBetaCDF
	StatsInvBinomialCDF
	StatsInvCauchyCDF
	StatsInvChiCDF
	StatsInvCMSSDCDF
	StatsInvDExpCDF
	StatsInvEValueCDF
	StatsInvExpCDF
	StatsInvFCDF
	StatsInvFriedmanCDF
	StatsInvGammaCDF
	StatsInvGeometricCDF
	StatsInvKuiperCDF
	StatsInvLogisticCDF
	StatsInvLogNormalCDF
	StatsInvMaxwellCDF
	StatsInvMooreCDF
	StatsInvNBinomialCDF
	StatsInvNCChiCDF
	StatsInvNCFCDF
	StatsInvNormalCDF
	StatsInvParetoCDF
	StatsInvPoissonCDF
	StatsInvPowerCDF
	StatsInvQCDF
	StatsInvQpCDF
	StatsInvRayleighCDF
	StatsInvRectangularCDF
	StatsInvSpearmanCDF
	StatsInvStudentCDF
	StatsInvTopDownCDF
	StatsInvTriangularCDF
	StatsInvUSquaredCDF
	StatsInvVonMisesCDF
	StatsInvWeibullCDF
	StatsJBTest
	StatsKDE
	StatsKendallTauTest
	StatsKSTest
	StatsKuiperCDF
	StatsKWTest
	StatsLinearCorrelationTest
	StatsLinearRegression
	StatsLogisticCDF
	StatsLogisticPDF
	StatsLogNormalCDF
	StatsLogNormalPDF
	StatsMaxwellCDF
	StatsMaxwellPDF
	StatsMedian
	StatsMooreCDF
	StatsMultiCorrelationTest
	StatsNBinomialCDF
	StatsNBinomialPDF
	StatsNCChiCDF
	StatsNCChiPDF
	StatsNCFCDF
	StatsNCFPDF
	StatsNCTCDF
	StatsNCTPDF
	StatsNormalCDF
	StatsNormalPDF
	StatsNPMCTest
	StatsNPNominalSRTest
	StatsParetoCDF
	StatsParetoPDF
	StatsPermute
	StatsPoissonCDF
	StatsPoissonPDF
	StatsPowerCDF
	StatsPowerNoise
	StatsPowerPDF
	StatsQCDF
	StatsQpCDF
	StatsQuantiles
	StatsRankCorrelationTest
	StatsRayleighCDF
	StatsRayleighPDF
	StatsRectangularCDF
	StatsRectangularPDF
	StatsResample
	StatsSample
	StatsRunsCDF
	StatsScheffeTest
	StatsShapiroWilkTest
	StatsSignTest
	StatsSpearmanRhoCDF
	StatsSRTest
	StatsStudentCDF
	StatsStudentPDF
	StatsTopDownCDF
	StatsTriangularCDF
	StatsTriangularPDF
	StatsTrimmedMean
	StatsTTest
	StatsTukeyTest
	StatsUSquaredCDF
	StatsVariancesTest
	StatsVonMisesCDF
	StatsVonMisesNoise
	StatsVonMisesPDF
	StatsWaldCDF
	StatsWaldPDF
	StatsWatsonUSquaredTest
	StatsWatsonWilliamsTest
	StatsWeibullCDF
	StatsWeibullPDF
	StatsWheelerWatsonTest
	StatsWilcoxonRankTest
	StatsWRCorrelationTest
	StopMSTimer
	str2num
	Strconstant
	String
	StringByKey
	StringCRC
	StringFromList
	StringList
	StringMatch
	strlen
	strsearch
	strswitch-case-endswitch
	STRUCT
	StructGet
	StructPut
	Structure
	StrVarOrDefault
	StudentA
	StudentT
	Submenu
	sum
	SumDimension
	SumSeries
	SVAR
	SVAR_Exists
	switch-case-endswitch
	t
	TabControl
	TabControl
	Table
	TableStyle
	TableInfo
	Tag
	TagVal
	TagWaveRef
	tan
	tanh
	TextBox
	TextEncoding
	TextEncodingCode
	TextEncodingName
	TextFile
	ThreadGroupCreate
	ThreadGroupGetDF
	ThreadGroupGetDFR
	ThreadGroupPutDF
	ThreadGroupRelease
	ThreadGroupWait
	ThreadProcessorCount
	ThreadReturnValue
	ThreadSafe
	ThreadStart
	ticks
	Tile
	TileWindows
	time
	TitleBox
	ToCommandLine
	ToolsGrid
	TraceFromPixel
	TraceInfo
	TraceNameList
	TraceNameToWaveRef
	Triangulate3D
	TrimString
	trunc
	try
	try-catch-endtry
	UInt64
	UniqueName
	UnPadString
	UnsetEnvironmentVariable
	Unwrap
	UpperStr
	URLDecode
	URLEncode
	URLRequest
	ValDisplay
	Variable
	Variance
	VariableList
	vcsr
	version
	VoigtFunc
	WAVE
	WAVEClear
	WaveCRC
	WaveDims
	WaveExists
	WaveInfo
	WaveList
	WaveMax
	WaveMeanStdv
	WaveMin
	WaveName
	WaveRefIndexed
	WaveRefIndexedDFR
	WaveRefsEqual
	WaveRefWaveToList
	WaveStats
	WaveTextEncoding
	WaveTransform
	WaveType
	WaveUnits
	wfprintf
	WhichListItem
	WignerTransform
	Window
	WindowFunction
	WinList
	WinName
	WinRecreation
	WinType
	WMAxisHookStruct
	WMBackgroundStruct
	WMButtonAction
	WMCheckboxAction
	WMCustomControlAction
	WMDrawUserShapeStruct
	WMFitInfoStruct
	WMGizmoHookStruct
	WMListboxAction
	WMMarkerHookStruct
	WMPopupAction
	WMSetVariableAction
	WMSliderAction
	WMTabControlAction
	WMWinHookStruct
	wnoise
	x
	x2pnt
	xcsr
	XLLoadWave
	XWaveName
	XWaveRefFromTrace
	y
	z
	zcsr
	zeta
	ZernikeR

